1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 #ifndef SQLITE_OMIT_WINDOWFUNC 100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 101 sqlite3WindowListDelete(db, p->pWinDefn); 102 } 103 #endif 104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 105 if( bFree ) sqlite3DbFreeNN(db, p); 106 p = pPrior; 107 bFree = 1; 108 } 109 } 110 111 /* 112 ** Initialize a SelectDest structure. 113 */ 114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 115 pDest->eDest = (u8)eDest; 116 pDest->iSDParm = iParm; 117 pDest->zAffSdst = 0; 118 pDest->iSdst = 0; 119 pDest->nSdst = 0; 120 } 121 122 123 /* 124 ** Allocate a new Select structure and return a pointer to that 125 ** structure. 126 */ 127 Select *sqlite3SelectNew( 128 Parse *pParse, /* Parsing context */ 129 ExprList *pEList, /* which columns to include in the result */ 130 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 131 Expr *pWhere, /* the WHERE clause */ 132 ExprList *pGroupBy, /* the GROUP BY clause */ 133 Expr *pHaving, /* the HAVING clause */ 134 ExprList *pOrderBy, /* the ORDER BY clause */ 135 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 136 Expr *pLimit /* LIMIT value. NULL means not used */ 137 ){ 138 Select *pNew; 139 Select standin; 140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 141 if( pNew==0 ){ 142 assert( pParse->db->mallocFailed ); 143 pNew = &standin; 144 } 145 if( pEList==0 ){ 146 pEList = sqlite3ExprListAppend(pParse, 0, 147 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 148 } 149 pNew->pEList = pEList; 150 pNew->op = TK_SELECT; 151 pNew->selFlags = selFlags; 152 pNew->iLimit = 0; 153 pNew->iOffset = 0; 154 pNew->selId = ++pParse->nSelect; 155 pNew->addrOpenEphm[0] = -1; 156 pNew->addrOpenEphm[1] = -1; 157 pNew->nSelectRow = 0; 158 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 159 pNew->pSrc = pSrc; 160 pNew->pWhere = pWhere; 161 pNew->pGroupBy = pGroupBy; 162 pNew->pHaving = pHaving; 163 pNew->pOrderBy = pOrderBy; 164 pNew->pPrior = 0; 165 pNew->pNext = 0; 166 pNew->pLimit = pLimit; 167 pNew->pWith = 0; 168 #ifndef SQLITE_OMIT_WINDOWFUNC 169 pNew->pWin = 0; 170 pNew->pWinDefn = 0; 171 #endif 172 if( pParse->db->mallocFailed ) { 173 clearSelect(pParse->db, pNew, pNew!=&standin); 174 pNew = 0; 175 }else{ 176 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 177 } 178 assert( pNew!=&standin ); 179 return pNew; 180 } 181 182 183 /* 184 ** Delete the given Select structure and all of its substructures. 185 */ 186 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 187 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 188 } 189 190 /* 191 ** Return a pointer to the right-most SELECT statement in a compound. 192 */ 193 static Select *findRightmost(Select *p){ 194 while( p->pNext ) p = p->pNext; 195 return p; 196 } 197 198 /* 199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 200 ** type of join. Return an integer constant that expresses that type 201 ** in terms of the following bit values: 202 ** 203 ** JT_INNER 204 ** JT_CROSS 205 ** JT_OUTER 206 ** JT_NATURAL 207 ** JT_LEFT 208 ** JT_RIGHT 209 ** 210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 211 ** 212 ** If an illegal or unsupported join type is seen, then still return 213 ** a join type, but put an error in the pParse structure. 214 */ 215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 216 int jointype = 0; 217 Token *apAll[3]; 218 Token *p; 219 /* 0123456789 123456789 123456789 123 */ 220 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 221 static const struct { 222 u8 i; /* Beginning of keyword text in zKeyText[] */ 223 u8 nChar; /* Length of the keyword in characters */ 224 u8 code; /* Join type mask */ 225 } aKeyword[] = { 226 /* natural */ { 0, 7, JT_NATURAL }, 227 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 228 /* outer */ { 10, 5, JT_OUTER }, 229 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 230 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 231 /* inner */ { 23, 5, JT_INNER }, 232 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 233 }; 234 int i, j; 235 apAll[0] = pA; 236 apAll[1] = pB; 237 apAll[2] = pC; 238 for(i=0; i<3 && apAll[i]; i++){ 239 p = apAll[i]; 240 for(j=0; j<ArraySize(aKeyword); j++){ 241 if( p->n==aKeyword[j].nChar 242 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 243 jointype |= aKeyword[j].code; 244 break; 245 } 246 } 247 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 248 if( j>=ArraySize(aKeyword) ){ 249 jointype |= JT_ERROR; 250 break; 251 } 252 } 253 if( 254 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 255 (jointype & JT_ERROR)!=0 256 ){ 257 const char *zSp = " "; 258 assert( pB!=0 ); 259 if( pC==0 ){ zSp++; } 260 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 261 "%T %T%s%T", pA, pB, zSp, pC); 262 jointype = JT_INNER; 263 }else if( (jointype & JT_OUTER)!=0 264 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 265 sqlite3ErrorMsg(pParse, 266 "RIGHT and FULL OUTER JOINs are not currently supported"); 267 jointype = JT_INNER; 268 } 269 return jointype; 270 } 271 272 /* 273 ** Return the index of a column in a table. Return -1 if the column 274 ** is not contained in the table. 275 */ 276 static int columnIndex(Table *pTab, const char *zCol){ 277 int i; 278 for(i=0; i<pTab->nCol; i++){ 279 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 280 } 281 return -1; 282 } 283 284 /* 285 ** Search the first N tables in pSrc, from left to right, looking for a 286 ** table that has a column named zCol. 287 ** 288 ** When found, set *piTab and *piCol to the table index and column index 289 ** of the matching column and return TRUE. 290 ** 291 ** If not found, return FALSE. 292 */ 293 static int tableAndColumnIndex( 294 SrcList *pSrc, /* Array of tables to search */ 295 int N, /* Number of tables in pSrc->a[] to search */ 296 const char *zCol, /* Name of the column we are looking for */ 297 int *piTab, /* Write index of pSrc->a[] here */ 298 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 299 ){ 300 int i; /* For looping over tables in pSrc */ 301 int iCol; /* Index of column matching zCol */ 302 303 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 304 for(i=0; i<N; i++){ 305 iCol = columnIndex(pSrc->a[i].pTab, zCol); 306 if( iCol>=0 ){ 307 if( piTab ){ 308 *piTab = i; 309 *piCol = iCol; 310 } 311 return 1; 312 } 313 } 314 return 0; 315 } 316 317 /* 318 ** This function is used to add terms implied by JOIN syntax to the 319 ** WHERE clause expression of a SELECT statement. The new term, which 320 ** is ANDed with the existing WHERE clause, is of the form: 321 ** 322 ** (tab1.col1 = tab2.col2) 323 ** 324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 326 ** column iColRight of tab2. 327 */ 328 static void addWhereTerm( 329 Parse *pParse, /* Parsing context */ 330 SrcList *pSrc, /* List of tables in FROM clause */ 331 int iLeft, /* Index of first table to join in pSrc */ 332 int iColLeft, /* Index of column in first table */ 333 int iRight, /* Index of second table in pSrc */ 334 int iColRight, /* Index of column in second table */ 335 int isOuterJoin, /* True if this is an OUTER join */ 336 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 337 ){ 338 sqlite3 *db = pParse->db; 339 Expr *pE1; 340 Expr *pE2; 341 Expr *pEq; 342 343 assert( iLeft<iRight ); 344 assert( pSrc->nSrc>iRight ); 345 assert( pSrc->a[iLeft].pTab ); 346 assert( pSrc->a[iRight].pTab ); 347 348 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 349 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 350 351 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 352 if( pEq && isOuterJoin ){ 353 ExprSetProperty(pEq, EP_FromJoin); 354 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 355 ExprSetVVAProperty(pEq, EP_NoReduce); 356 pEq->iRightJoinTable = (i16)pE2->iTable; 357 } 358 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 359 } 360 361 /* 362 ** Set the EP_FromJoin property on all terms of the given expression. 363 ** And set the Expr.iRightJoinTable to iTable for every term in the 364 ** expression. 365 ** 366 ** The EP_FromJoin property is used on terms of an expression to tell 367 ** the LEFT OUTER JOIN processing logic that this term is part of the 368 ** join restriction specified in the ON or USING clause and not a part 369 ** of the more general WHERE clause. These terms are moved over to the 370 ** WHERE clause during join processing but we need to remember that they 371 ** originated in the ON or USING clause. 372 ** 373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 374 ** expression depends on table iRightJoinTable even if that table is not 375 ** explicitly mentioned in the expression. That information is needed 376 ** for cases like this: 377 ** 378 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 379 ** 380 ** The where clause needs to defer the handling of the t1.x=5 381 ** term until after the t2 loop of the join. In that way, a 382 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 383 ** defer the handling of t1.x=5, it will be processed immediately 384 ** after the t1 loop and rows with t1.x!=5 will never appear in 385 ** the output, which is incorrect. 386 */ 387 static void setJoinExpr(Expr *p, int iTable){ 388 while( p ){ 389 ExprSetProperty(p, EP_FromJoin); 390 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 391 ExprSetVVAProperty(p, EP_NoReduce); 392 p->iRightJoinTable = (i16)iTable; 393 if( p->op==TK_FUNCTION && p->x.pList ){ 394 int i; 395 for(i=0; i<p->x.pList->nExpr; i++){ 396 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 397 } 398 } 399 setJoinExpr(p->pLeft, iTable); 400 p = p->pRight; 401 } 402 } 403 404 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 406 ** an ordinary term that omits the EP_FromJoin mark. 407 ** 408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 409 */ 410 static void unsetJoinExpr(Expr *p, int iTable){ 411 while( p ){ 412 if( ExprHasProperty(p, EP_FromJoin) 413 && (iTable<0 || p->iRightJoinTable==iTable) ){ 414 ExprClearProperty(p, EP_FromJoin); 415 } 416 if( p->op==TK_FUNCTION && p->x.pList ){ 417 int i; 418 for(i=0; i<p->x.pList->nExpr; i++){ 419 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 420 } 421 } 422 unsetJoinExpr(p->pLeft, iTable); 423 p = p->pRight; 424 } 425 } 426 427 /* 428 ** This routine processes the join information for a SELECT statement. 429 ** ON and USING clauses are converted into extra terms of the WHERE clause. 430 ** NATURAL joins also create extra WHERE clause terms. 431 ** 432 ** The terms of a FROM clause are contained in the Select.pSrc structure. 433 ** The left most table is the first entry in Select.pSrc. The right-most 434 ** table is the last entry. The join operator is held in the entry to 435 ** the left. Thus entry 0 contains the join operator for the join between 436 ** entries 0 and 1. Any ON or USING clauses associated with the join are 437 ** also attached to the left entry. 438 ** 439 ** This routine returns the number of errors encountered. 440 */ 441 static int sqliteProcessJoin(Parse *pParse, Select *p){ 442 SrcList *pSrc; /* All tables in the FROM clause */ 443 int i, j; /* Loop counters */ 444 struct SrcList_item *pLeft; /* Left table being joined */ 445 struct SrcList_item *pRight; /* Right table being joined */ 446 447 pSrc = p->pSrc; 448 pLeft = &pSrc->a[0]; 449 pRight = &pLeft[1]; 450 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 451 Table *pRightTab = pRight->pTab; 452 int isOuter; 453 454 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 455 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 456 457 /* When the NATURAL keyword is present, add WHERE clause terms for 458 ** every column that the two tables have in common. 459 */ 460 if( pRight->fg.jointype & JT_NATURAL ){ 461 if( pRight->pOn || pRight->pUsing ){ 462 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 463 "an ON or USING clause", 0); 464 return 1; 465 } 466 for(j=0; j<pRightTab->nCol; j++){ 467 char *zName; /* Name of column in the right table */ 468 int iLeft; /* Matching left table */ 469 int iLeftCol; /* Matching column in the left table */ 470 471 zName = pRightTab->aCol[j].zName; 472 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 473 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 474 isOuter, &p->pWhere); 475 } 476 } 477 } 478 479 /* Disallow both ON and USING clauses in the same join 480 */ 481 if( pRight->pOn && pRight->pUsing ){ 482 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 483 "clauses in the same join"); 484 return 1; 485 } 486 487 /* Add the ON clause to the end of the WHERE clause, connected by 488 ** an AND operator. 489 */ 490 if( pRight->pOn ){ 491 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 492 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 493 pRight->pOn = 0; 494 } 495 496 /* Create extra terms on the WHERE clause for each column named 497 ** in the USING clause. Example: If the two tables to be joined are 498 ** A and B and the USING clause names X, Y, and Z, then add this 499 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 500 ** Report an error if any column mentioned in the USING clause is 501 ** not contained in both tables to be joined. 502 */ 503 if( pRight->pUsing ){ 504 IdList *pList = pRight->pUsing; 505 for(j=0; j<pList->nId; j++){ 506 char *zName; /* Name of the term in the USING clause */ 507 int iLeft; /* Table on the left with matching column name */ 508 int iLeftCol; /* Column number of matching column on the left */ 509 int iRightCol; /* Column number of matching column on the right */ 510 511 zName = pList->a[j].zName; 512 iRightCol = columnIndex(pRightTab, zName); 513 if( iRightCol<0 514 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 515 ){ 516 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 517 "not present in both tables", zName); 518 return 1; 519 } 520 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 521 isOuter, &p->pWhere); 522 } 523 } 524 } 525 return 0; 526 } 527 528 /* 529 ** An instance of this object holds information (beyond pParse and pSelect) 530 ** needed to load the next result row that is to be added to the sorter. 531 */ 532 typedef struct RowLoadInfo RowLoadInfo; 533 struct RowLoadInfo { 534 int regResult; /* Store results in array of registers here */ 535 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 537 ExprList *pExtra; /* Extra columns needed by sorter refs */ 538 int regExtraResult; /* Where to load the extra columns */ 539 #endif 540 }; 541 542 /* 543 ** This routine does the work of loading query data into an array of 544 ** registers so that it can be added to the sorter. 545 */ 546 static void innerLoopLoadRow( 547 Parse *pParse, /* Statement under construction */ 548 Select *pSelect, /* The query being coded */ 549 RowLoadInfo *pInfo /* Info needed to complete the row load */ 550 ){ 551 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 552 0, pInfo->ecelFlags); 553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 554 if( pInfo->pExtra ){ 555 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 556 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 557 } 558 #endif 559 } 560 561 /* 562 ** Code the OP_MakeRecord instruction that generates the entry to be 563 ** added into the sorter. 564 ** 565 ** Return the register in which the result is stored. 566 */ 567 static int makeSorterRecord( 568 Parse *pParse, 569 SortCtx *pSort, 570 Select *pSelect, 571 int regBase, 572 int nBase 573 ){ 574 int nOBSat = pSort->nOBSat; 575 Vdbe *v = pParse->pVdbe; 576 int regOut = ++pParse->nMem; 577 if( pSort->pDeferredRowLoad ){ 578 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 579 } 580 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 581 return regOut; 582 } 583 584 /* 585 ** Generate code that will push the record in registers regData 586 ** through regData+nData-1 onto the sorter. 587 */ 588 static void pushOntoSorter( 589 Parse *pParse, /* Parser context */ 590 SortCtx *pSort, /* Information about the ORDER BY clause */ 591 Select *pSelect, /* The whole SELECT statement */ 592 int regData, /* First register holding data to be sorted */ 593 int regOrigData, /* First register holding data before packing */ 594 int nData, /* Number of elements in the regData data array */ 595 int nPrefixReg /* No. of reg prior to regData available for use */ 596 ){ 597 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 598 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 599 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 600 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 601 int regBase; /* Regs for sorter record */ 602 int regRecord = 0; /* Assembled sorter record */ 603 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 604 int op; /* Opcode to add sorter record to sorter */ 605 int iLimit; /* LIMIT counter */ 606 int iSkip = 0; /* End of the sorter insert loop */ 607 608 assert( bSeq==0 || bSeq==1 ); 609 610 /* Three cases: 611 ** (1) The data to be sorted has already been packed into a Record 612 ** by a prior OP_MakeRecord. In this case nData==1 and regData 613 ** will be completely unrelated to regOrigData. 614 ** (2) All output columns are included in the sort record. In that 615 ** case regData==regOrigData. 616 ** (3) Some output columns are omitted from the sort record due to 617 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 618 ** SQLITE_ECEL_OMITREF optimization, or due to the 619 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 620 ** regOrigData is 0 to prevent this routine from trying to copy 621 ** values that might not yet exist. 622 */ 623 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 624 625 if( nPrefixReg ){ 626 assert( nPrefixReg==nExpr+bSeq ); 627 regBase = regData - nPrefixReg; 628 }else{ 629 regBase = pParse->nMem + 1; 630 pParse->nMem += nBase; 631 } 632 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 633 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 634 pSort->labelDone = sqlite3VdbeMakeLabel(v); 635 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 636 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 637 if( bSeq ){ 638 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 639 } 640 if( nPrefixReg==0 && nData>0 ){ 641 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 642 } 643 if( nOBSat>0 ){ 644 int regPrevKey; /* The first nOBSat columns of the previous row */ 645 int addrFirst; /* Address of the OP_IfNot opcode */ 646 int addrJmp; /* Address of the OP_Jump opcode */ 647 VdbeOp *pOp; /* Opcode that opens the sorter */ 648 int nKey; /* Number of sorting key columns, including OP_Sequence */ 649 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 650 651 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 652 regPrevKey = pParse->nMem+1; 653 pParse->nMem += pSort->nOBSat; 654 nKey = nExpr - pSort->nOBSat + bSeq; 655 if( bSeq ){ 656 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 657 }else{ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 659 } 660 VdbeCoverage(v); 661 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 662 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 663 if( pParse->db->mallocFailed ) return; 664 pOp->p2 = nKey + nData; 665 pKI = pOp->p4.pKeyInfo; 666 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 667 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 668 testcase( pKI->nAllField > pKI->nKeyField+2 ); 669 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 670 pKI->nAllField-pKI->nKeyField-1); 671 addrJmp = sqlite3VdbeCurrentAddr(v); 672 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 673 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 674 pSort->regReturn = ++pParse->nMem; 675 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 676 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 677 if( iLimit ){ 678 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 679 VdbeCoverage(v); 680 } 681 sqlite3VdbeJumpHere(v, addrFirst); 682 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 683 sqlite3VdbeJumpHere(v, addrJmp); 684 } 685 if( iLimit ){ 686 /* At this point the values for the new sorter entry are stored 687 ** in an array of registers. They need to be composed into a record 688 ** and inserted into the sorter if either (a) there are currently 689 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 690 ** the largest record currently in the sorter. If (b) is true and there 691 ** are already LIMIT+OFFSET items in the sorter, delete the largest 692 ** entry before inserting the new one. This way there are never more 693 ** than LIMIT+OFFSET items in the sorter. 694 ** 695 ** If the new record does not need to be inserted into the sorter, 696 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 697 ** value is not zero, then it is a label of where to jump. Otherwise, 698 ** just bypass the row insert logic. See the header comment on the 699 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 700 */ 701 int iCsr = pSort->iECursor; 702 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 703 VdbeCoverage(v); 704 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 705 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 706 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 707 VdbeCoverage(v); 708 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 709 } 710 if( regRecord==0 ){ 711 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 712 } 713 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 714 op = OP_SorterInsert; 715 }else{ 716 op = OP_IdxInsert; 717 } 718 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 719 regBase+nOBSat, nBase-nOBSat); 720 if( iSkip ){ 721 sqlite3VdbeChangeP2(v, iSkip, 722 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 723 } 724 } 725 726 /* 727 ** Add code to implement the OFFSET 728 */ 729 static void codeOffset( 730 Vdbe *v, /* Generate code into this VM */ 731 int iOffset, /* Register holding the offset counter */ 732 int iContinue /* Jump here to skip the current record */ 733 ){ 734 if( iOffset>0 ){ 735 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 736 VdbeComment((v, "OFFSET")); 737 } 738 } 739 740 /* 741 ** Add code that will check to make sure the N registers starting at iMem 742 ** form a distinct entry. iTab is a sorting index that holds previously 743 ** seen combinations of the N values. A new entry is made in iTab 744 ** if the current N values are new. 745 ** 746 ** A jump to addrRepeat is made and the N+1 values are popped from the 747 ** stack if the top N elements are not distinct. 748 */ 749 static void codeDistinct( 750 Parse *pParse, /* Parsing and code generating context */ 751 int iTab, /* A sorting index used to test for distinctness */ 752 int addrRepeat, /* Jump to here if not distinct */ 753 int N, /* Number of elements */ 754 int iMem /* First element */ 755 ){ 756 Vdbe *v; 757 int r1; 758 759 v = pParse->pVdbe; 760 r1 = sqlite3GetTempReg(pParse); 761 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 762 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 763 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 764 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 765 sqlite3ReleaseTempReg(pParse, r1); 766 } 767 768 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 769 /* 770 ** This function is called as part of inner-loop generation for a SELECT 771 ** statement with an ORDER BY that is not optimized by an index. It 772 ** determines the expressions, if any, that the sorter-reference 773 ** optimization should be used for. The sorter-reference optimization 774 ** is used for SELECT queries like: 775 ** 776 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 777 ** 778 ** If the optimization is used for expression "bigblob", then instead of 779 ** storing values read from that column in the sorter records, the PK of 780 ** the row from table t1 is stored instead. Then, as records are extracted from 781 ** the sorter to return to the user, the required value of bigblob is 782 ** retrieved directly from table t1. If the values are very large, this 783 ** can be more efficient than storing them directly in the sorter records. 784 ** 785 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 786 ** for which the sorter-reference optimization should be enabled. 787 ** Additionally, the pSort->aDefer[] array is populated with entries 788 ** for all cursors required to evaluate all selected expressions. Finally. 789 ** output variable (*ppExtra) is set to an expression list containing 790 ** expressions for all extra PK values that should be stored in the 791 ** sorter records. 792 */ 793 static void selectExprDefer( 794 Parse *pParse, /* Leave any error here */ 795 SortCtx *pSort, /* Sorter context */ 796 ExprList *pEList, /* Expressions destined for sorter */ 797 ExprList **ppExtra /* Expressions to append to sorter record */ 798 ){ 799 int i; 800 int nDefer = 0; 801 ExprList *pExtra = 0; 802 for(i=0; i<pEList->nExpr; i++){ 803 struct ExprList_item *pItem = &pEList->a[i]; 804 if( pItem->u.x.iOrderByCol==0 ){ 805 Expr *pExpr = pItem->pExpr; 806 Table *pTab = pExpr->y.pTab; 807 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 808 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 809 ){ 810 int j; 811 for(j=0; j<nDefer; j++){ 812 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 813 } 814 if( j==nDefer ){ 815 if( nDefer==ArraySize(pSort->aDefer) ){ 816 continue; 817 }else{ 818 int nKey = 1; 819 int k; 820 Index *pPk = 0; 821 if( !HasRowid(pTab) ){ 822 pPk = sqlite3PrimaryKeyIndex(pTab); 823 nKey = pPk->nKeyCol; 824 } 825 for(k=0; k<nKey; k++){ 826 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 827 if( pNew ){ 828 pNew->iTable = pExpr->iTable; 829 pNew->y.pTab = pExpr->y.pTab; 830 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 831 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 832 } 833 } 834 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 835 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 836 pSort->aDefer[nDefer].nKey = nKey; 837 nDefer++; 838 } 839 } 840 pItem->bSorterRef = 1; 841 } 842 } 843 } 844 pSort->nDefer = (u8)nDefer; 845 *ppExtra = pExtra; 846 } 847 #endif 848 849 /* 850 ** This routine generates the code for the inside of the inner loop 851 ** of a SELECT. 852 ** 853 ** If srcTab is negative, then the p->pEList expressions 854 ** are evaluated in order to get the data for this row. If srcTab is 855 ** zero or more, then data is pulled from srcTab and p->pEList is used only 856 ** to get the number of columns and the collation sequence for each column. 857 */ 858 static void selectInnerLoop( 859 Parse *pParse, /* The parser context */ 860 Select *p, /* The complete select statement being coded */ 861 int srcTab, /* Pull data from this table if non-negative */ 862 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 863 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 864 SelectDest *pDest, /* How to dispose of the results */ 865 int iContinue, /* Jump here to continue with next row */ 866 int iBreak /* Jump here to break out of the inner loop */ 867 ){ 868 Vdbe *v = pParse->pVdbe; 869 int i; 870 int hasDistinct; /* True if the DISTINCT keyword is present */ 871 int eDest = pDest->eDest; /* How to dispose of results */ 872 int iParm = pDest->iSDParm; /* First argument to disposal method */ 873 int nResultCol; /* Number of result columns */ 874 int nPrefixReg = 0; /* Number of extra registers before regResult */ 875 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 876 877 /* Usually, regResult is the first cell in an array of memory cells 878 ** containing the current result row. In this case regOrig is set to the 879 ** same value. However, if the results are being sent to the sorter, the 880 ** values for any expressions that are also part of the sort-key are omitted 881 ** from this array. In this case regOrig is set to zero. */ 882 int regResult; /* Start of memory holding current results */ 883 int regOrig; /* Start of memory holding full result (or 0) */ 884 885 assert( v ); 886 assert( p->pEList!=0 ); 887 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 888 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 889 if( pSort==0 && !hasDistinct ){ 890 assert( iContinue!=0 ); 891 codeOffset(v, p->iOffset, iContinue); 892 } 893 894 /* Pull the requested columns. 895 */ 896 nResultCol = p->pEList->nExpr; 897 898 if( pDest->iSdst==0 ){ 899 if( pSort ){ 900 nPrefixReg = pSort->pOrderBy->nExpr; 901 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 902 pParse->nMem += nPrefixReg; 903 } 904 pDest->iSdst = pParse->nMem+1; 905 pParse->nMem += nResultCol; 906 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 907 /* This is an error condition that can result, for example, when a SELECT 908 ** on the right-hand side of an INSERT contains more result columns than 909 ** there are columns in the table on the left. The error will be caught 910 ** and reported later. But we need to make sure enough memory is allocated 911 ** to avoid other spurious errors in the meantime. */ 912 pParse->nMem += nResultCol; 913 } 914 pDest->nSdst = nResultCol; 915 regOrig = regResult = pDest->iSdst; 916 if( srcTab>=0 ){ 917 for(i=0; i<nResultCol; i++){ 918 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 919 VdbeComment((v, "%s", p->pEList->a[i].zName)); 920 } 921 }else if( eDest!=SRT_Exists ){ 922 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 923 ExprList *pExtra = 0; 924 #endif 925 /* If the destination is an EXISTS(...) expression, the actual 926 ** values returned by the SELECT are not required. 927 */ 928 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 929 ExprList *pEList; 930 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 931 ecelFlags = SQLITE_ECEL_DUP; 932 }else{ 933 ecelFlags = 0; 934 } 935 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 936 /* For each expression in p->pEList that is a copy of an expression in 937 ** the ORDER BY clause (pSort->pOrderBy), set the associated 938 ** iOrderByCol value to one more than the index of the ORDER BY 939 ** expression within the sort-key that pushOntoSorter() will generate. 940 ** This allows the p->pEList field to be omitted from the sorted record, 941 ** saving space and CPU cycles. */ 942 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 943 944 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 945 int j; 946 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 947 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 948 } 949 } 950 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 951 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 952 if( pExtra && pParse->db->mallocFailed==0 ){ 953 /* If there are any extra PK columns to add to the sorter records, 954 ** allocate extra memory cells and adjust the OpenEphemeral 955 ** instruction to account for the larger records. This is only 956 ** required if there are one or more WITHOUT ROWID tables with 957 ** composite primary keys in the SortCtx.aDefer[] array. */ 958 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 959 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 960 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 961 pParse->nMem += pExtra->nExpr; 962 } 963 #endif 964 965 /* Adjust nResultCol to account for columns that are omitted 966 ** from the sorter by the optimizations in this branch */ 967 pEList = p->pEList; 968 for(i=0; i<pEList->nExpr; i++){ 969 if( pEList->a[i].u.x.iOrderByCol>0 970 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 971 || pEList->a[i].bSorterRef 972 #endif 973 ){ 974 nResultCol--; 975 regOrig = 0; 976 } 977 } 978 979 testcase( regOrig ); 980 testcase( eDest==SRT_Set ); 981 testcase( eDest==SRT_Mem ); 982 testcase( eDest==SRT_Coroutine ); 983 testcase( eDest==SRT_Output ); 984 assert( eDest==SRT_Set || eDest==SRT_Mem 985 || eDest==SRT_Coroutine || eDest==SRT_Output ); 986 } 987 sRowLoadInfo.regResult = regResult; 988 sRowLoadInfo.ecelFlags = ecelFlags; 989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 990 sRowLoadInfo.pExtra = pExtra; 991 sRowLoadInfo.regExtraResult = regResult + nResultCol; 992 if( pExtra ) nResultCol += pExtra->nExpr; 993 #endif 994 if( p->iLimit 995 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 996 && nPrefixReg>0 997 ){ 998 assert( pSort!=0 ); 999 assert( hasDistinct==0 ); 1000 pSort->pDeferredRowLoad = &sRowLoadInfo; 1001 regOrig = 0; 1002 }else{ 1003 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1004 } 1005 } 1006 1007 /* If the DISTINCT keyword was present on the SELECT statement 1008 ** and this row has been seen before, then do not make this row 1009 ** part of the result. 1010 */ 1011 if( hasDistinct ){ 1012 switch( pDistinct->eTnctType ){ 1013 case WHERE_DISTINCT_ORDERED: { 1014 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1015 int iJump; /* Jump destination */ 1016 int regPrev; /* Previous row content */ 1017 1018 /* Allocate space for the previous row */ 1019 regPrev = pParse->nMem+1; 1020 pParse->nMem += nResultCol; 1021 1022 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1023 ** sets the MEM_Cleared bit on the first register of the 1024 ** previous value. This will cause the OP_Ne below to always 1025 ** fail on the first iteration of the loop even if the first 1026 ** row is all NULLs. 1027 */ 1028 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1029 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1030 pOp->opcode = OP_Null; 1031 pOp->p1 = 1; 1032 pOp->p2 = regPrev; 1033 1034 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1035 for(i=0; i<nResultCol; i++){ 1036 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1037 if( i<nResultCol-1 ){ 1038 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1039 VdbeCoverage(v); 1040 }else{ 1041 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1042 VdbeCoverage(v); 1043 } 1044 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1045 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1046 } 1047 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1048 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1049 break; 1050 } 1051 1052 case WHERE_DISTINCT_UNIQUE: { 1053 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1054 break; 1055 } 1056 1057 default: { 1058 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1059 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1060 regResult); 1061 break; 1062 } 1063 } 1064 if( pSort==0 ){ 1065 codeOffset(v, p->iOffset, iContinue); 1066 } 1067 } 1068 1069 switch( eDest ){ 1070 /* In this mode, write each query result to the key of the temporary 1071 ** table iParm. 1072 */ 1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1074 case SRT_Union: { 1075 int r1; 1076 r1 = sqlite3GetTempReg(pParse); 1077 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1078 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1079 sqlite3ReleaseTempReg(pParse, r1); 1080 break; 1081 } 1082 1083 /* Construct a record from the query result, but instead of 1084 ** saving that record, use it as a key to delete elements from 1085 ** the temporary table iParm. 1086 */ 1087 case SRT_Except: { 1088 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1089 break; 1090 } 1091 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1092 1093 /* Store the result as data using a unique key. 1094 */ 1095 case SRT_Fifo: 1096 case SRT_DistFifo: 1097 case SRT_Table: 1098 case SRT_EphemTab: { 1099 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1100 testcase( eDest==SRT_Table ); 1101 testcase( eDest==SRT_EphemTab ); 1102 testcase( eDest==SRT_Fifo ); 1103 testcase( eDest==SRT_DistFifo ); 1104 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1105 #ifndef SQLITE_OMIT_CTE 1106 if( eDest==SRT_DistFifo ){ 1107 /* If the destination is DistFifo, then cursor (iParm+1) is open 1108 ** on an ephemeral index. If the current row is already present 1109 ** in the index, do not write it to the output. If not, add the 1110 ** current row to the index and proceed with writing it to the 1111 ** output table as well. */ 1112 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1113 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1114 VdbeCoverage(v); 1115 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1116 assert( pSort==0 ); 1117 } 1118 #endif 1119 if( pSort ){ 1120 assert( regResult==regOrig ); 1121 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1122 }else{ 1123 int r2 = sqlite3GetTempReg(pParse); 1124 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1125 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1126 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1127 sqlite3ReleaseTempReg(pParse, r2); 1128 } 1129 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1130 break; 1131 } 1132 1133 #ifndef SQLITE_OMIT_SUBQUERY 1134 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1135 ** then there should be a single item on the stack. Write this 1136 ** item into the set table with bogus data. 1137 */ 1138 case SRT_Set: { 1139 if( pSort ){ 1140 /* At first glance you would think we could optimize out the 1141 ** ORDER BY in this case since the order of entries in the set 1142 ** does not matter. But there might be a LIMIT clause, in which 1143 ** case the order does matter */ 1144 pushOntoSorter( 1145 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1146 }else{ 1147 int r1 = sqlite3GetTempReg(pParse); 1148 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1149 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1150 r1, pDest->zAffSdst, nResultCol); 1151 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1152 sqlite3ReleaseTempReg(pParse, r1); 1153 } 1154 break; 1155 } 1156 1157 /* If any row exist in the result set, record that fact and abort. 1158 */ 1159 case SRT_Exists: { 1160 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1161 /* The LIMIT clause will terminate the loop for us */ 1162 break; 1163 } 1164 1165 /* If this is a scalar select that is part of an expression, then 1166 ** store the results in the appropriate memory cell or array of 1167 ** memory cells and break out of the scan loop. 1168 */ 1169 case SRT_Mem: { 1170 if( pSort ){ 1171 assert( nResultCol<=pDest->nSdst ); 1172 pushOntoSorter( 1173 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1174 }else{ 1175 assert( nResultCol==pDest->nSdst ); 1176 assert( regResult==iParm ); 1177 /* The LIMIT clause will jump out of the loop for us */ 1178 } 1179 break; 1180 } 1181 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1182 1183 case SRT_Coroutine: /* Send data to a co-routine */ 1184 case SRT_Output: { /* Return the results */ 1185 testcase( eDest==SRT_Coroutine ); 1186 testcase( eDest==SRT_Output ); 1187 if( pSort ){ 1188 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1189 nPrefixReg); 1190 }else if( eDest==SRT_Coroutine ){ 1191 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1192 }else{ 1193 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1194 } 1195 break; 1196 } 1197 1198 #ifndef SQLITE_OMIT_CTE 1199 /* Write the results into a priority queue that is order according to 1200 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1201 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1202 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1203 ** final OP_Sequence column. The last column is the record as a blob. 1204 */ 1205 case SRT_DistQueue: 1206 case SRT_Queue: { 1207 int nKey; 1208 int r1, r2, r3; 1209 int addrTest = 0; 1210 ExprList *pSO; 1211 pSO = pDest->pOrderBy; 1212 assert( pSO ); 1213 nKey = pSO->nExpr; 1214 r1 = sqlite3GetTempReg(pParse); 1215 r2 = sqlite3GetTempRange(pParse, nKey+2); 1216 r3 = r2+nKey+1; 1217 if( eDest==SRT_DistQueue ){ 1218 /* If the destination is DistQueue, then cursor (iParm+1) is open 1219 ** on a second ephemeral index that holds all values every previously 1220 ** added to the queue. */ 1221 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1222 regResult, nResultCol); 1223 VdbeCoverage(v); 1224 } 1225 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1226 if( eDest==SRT_DistQueue ){ 1227 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1228 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1229 } 1230 for(i=0; i<nKey; i++){ 1231 sqlite3VdbeAddOp2(v, OP_SCopy, 1232 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1233 r2+i); 1234 } 1235 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1236 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1237 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1238 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1239 sqlite3ReleaseTempReg(pParse, r1); 1240 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1241 break; 1242 } 1243 #endif /* SQLITE_OMIT_CTE */ 1244 1245 1246 1247 #if !defined(SQLITE_OMIT_TRIGGER) 1248 /* Discard the results. This is used for SELECT statements inside 1249 ** the body of a TRIGGER. The purpose of such selects is to call 1250 ** user-defined functions that have side effects. We do not care 1251 ** about the actual results of the select. 1252 */ 1253 default: { 1254 assert( eDest==SRT_Discard ); 1255 break; 1256 } 1257 #endif 1258 } 1259 1260 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1261 ** there is a sorter, in which case the sorter has already limited 1262 ** the output for us. 1263 */ 1264 if( pSort==0 && p->iLimit ){ 1265 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1266 } 1267 } 1268 1269 /* 1270 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1271 ** X extra columns. 1272 */ 1273 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1274 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1275 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1276 if( p ){ 1277 p->aSortOrder = (u8*)&p->aColl[N+X]; 1278 p->nKeyField = (u16)N; 1279 p->nAllField = (u16)(N+X); 1280 p->enc = ENC(db); 1281 p->db = db; 1282 p->nRef = 1; 1283 memset(&p[1], 0, nExtra); 1284 }else{ 1285 sqlite3OomFault(db); 1286 } 1287 return p; 1288 } 1289 1290 /* 1291 ** Deallocate a KeyInfo object 1292 */ 1293 void sqlite3KeyInfoUnref(KeyInfo *p){ 1294 if( p ){ 1295 assert( p->nRef>0 ); 1296 p->nRef--; 1297 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1298 } 1299 } 1300 1301 /* 1302 ** Make a new pointer to a KeyInfo object 1303 */ 1304 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1305 if( p ){ 1306 assert( p->nRef>0 ); 1307 p->nRef++; 1308 } 1309 return p; 1310 } 1311 1312 #ifdef SQLITE_DEBUG 1313 /* 1314 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1315 ** can only be changed if this is just a single reference to the object. 1316 ** 1317 ** This routine is used only inside of assert() statements. 1318 */ 1319 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1320 #endif /* SQLITE_DEBUG */ 1321 1322 /* 1323 ** Given an expression list, generate a KeyInfo structure that records 1324 ** the collating sequence for each expression in that expression list. 1325 ** 1326 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1327 ** KeyInfo structure is appropriate for initializing a virtual index to 1328 ** implement that clause. If the ExprList is the result set of a SELECT 1329 ** then the KeyInfo structure is appropriate for initializing a virtual 1330 ** index to implement a DISTINCT test. 1331 ** 1332 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1333 ** function is responsible for seeing that this structure is eventually 1334 ** freed. 1335 */ 1336 KeyInfo *sqlite3KeyInfoFromExprList( 1337 Parse *pParse, /* Parsing context */ 1338 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1339 int iStart, /* Begin with this column of pList */ 1340 int nExtra /* Add this many extra columns to the end */ 1341 ){ 1342 int nExpr; 1343 KeyInfo *pInfo; 1344 struct ExprList_item *pItem; 1345 sqlite3 *db = pParse->db; 1346 int i; 1347 1348 nExpr = pList->nExpr; 1349 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1350 if( pInfo ){ 1351 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1352 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1353 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1354 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1355 } 1356 } 1357 return pInfo; 1358 } 1359 1360 /* 1361 ** Name of the connection operator, used for error messages. 1362 */ 1363 static const char *selectOpName(int id){ 1364 char *z; 1365 switch( id ){ 1366 case TK_ALL: z = "UNION ALL"; break; 1367 case TK_INTERSECT: z = "INTERSECT"; break; 1368 case TK_EXCEPT: z = "EXCEPT"; break; 1369 default: z = "UNION"; break; 1370 } 1371 return z; 1372 } 1373 1374 #ifndef SQLITE_OMIT_EXPLAIN 1375 /* 1376 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1377 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1378 ** where the caption is of the form: 1379 ** 1380 ** "USE TEMP B-TREE FOR xxx" 1381 ** 1382 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1383 ** is determined by the zUsage argument. 1384 */ 1385 static void explainTempTable(Parse *pParse, const char *zUsage){ 1386 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1387 } 1388 1389 /* 1390 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1391 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1392 ** in sqlite3Select() to assign values to structure member variables that 1393 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1394 ** code with #ifndef directives. 1395 */ 1396 # define explainSetInteger(a, b) a = b 1397 1398 #else 1399 /* No-op versions of the explainXXX() functions and macros. */ 1400 # define explainTempTable(y,z) 1401 # define explainSetInteger(y,z) 1402 #endif 1403 1404 1405 /* 1406 ** If the inner loop was generated using a non-null pOrderBy argument, 1407 ** then the results were placed in a sorter. After the loop is terminated 1408 ** we need to run the sorter and output the results. The following 1409 ** routine generates the code needed to do that. 1410 */ 1411 static void generateSortTail( 1412 Parse *pParse, /* Parsing context */ 1413 Select *p, /* The SELECT statement */ 1414 SortCtx *pSort, /* Information on the ORDER BY clause */ 1415 int nColumn, /* Number of columns of data */ 1416 SelectDest *pDest /* Write the sorted results here */ 1417 ){ 1418 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1419 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1420 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1421 int addr; /* Top of output loop. Jump for Next. */ 1422 int addrOnce = 0; 1423 int iTab; 1424 ExprList *pOrderBy = pSort->pOrderBy; 1425 int eDest = pDest->eDest; 1426 int iParm = pDest->iSDParm; 1427 int regRow; 1428 int regRowid; 1429 int iCol; 1430 int nKey; /* Number of key columns in sorter record */ 1431 int iSortTab; /* Sorter cursor to read from */ 1432 int i; 1433 int bSeq; /* True if sorter record includes seq. no. */ 1434 int nRefKey = 0; 1435 struct ExprList_item *aOutEx = p->pEList->a; 1436 1437 assert( addrBreak<0 ); 1438 if( pSort->labelBkOut ){ 1439 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1440 sqlite3VdbeGoto(v, addrBreak); 1441 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1442 } 1443 1444 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1445 /* Open any cursors needed for sorter-reference expressions */ 1446 for(i=0; i<pSort->nDefer; i++){ 1447 Table *pTab = pSort->aDefer[i].pTab; 1448 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1449 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1450 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1451 } 1452 #endif 1453 1454 iTab = pSort->iECursor; 1455 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1456 regRowid = 0; 1457 regRow = pDest->iSdst; 1458 }else{ 1459 regRowid = sqlite3GetTempReg(pParse); 1460 regRow = sqlite3GetTempRange(pParse, nColumn); 1461 } 1462 nKey = pOrderBy->nExpr - pSort->nOBSat; 1463 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1464 int regSortOut = ++pParse->nMem; 1465 iSortTab = pParse->nTab++; 1466 if( pSort->labelBkOut ){ 1467 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1468 } 1469 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1470 nKey+1+nColumn+nRefKey); 1471 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1472 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1473 VdbeCoverage(v); 1474 codeOffset(v, p->iOffset, addrContinue); 1475 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1476 bSeq = 0; 1477 }else{ 1478 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1479 codeOffset(v, p->iOffset, addrContinue); 1480 iSortTab = iTab; 1481 bSeq = 1; 1482 } 1483 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1484 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1485 if( aOutEx[i].bSorterRef ) continue; 1486 #endif 1487 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1488 } 1489 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1490 if( pSort->nDefer ){ 1491 int iKey = iCol+1; 1492 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1493 1494 for(i=0; i<pSort->nDefer; i++){ 1495 int iCsr = pSort->aDefer[i].iCsr; 1496 Table *pTab = pSort->aDefer[i].pTab; 1497 int nKey = pSort->aDefer[i].nKey; 1498 1499 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1500 if( HasRowid(pTab) ){ 1501 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1502 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1503 sqlite3VdbeCurrentAddr(v)+1, regKey); 1504 }else{ 1505 int k; 1506 int iJmp; 1507 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1508 for(k=0; k<nKey; k++){ 1509 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1510 } 1511 iJmp = sqlite3VdbeCurrentAddr(v); 1512 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1513 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1514 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1515 } 1516 } 1517 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1518 } 1519 #endif 1520 for(i=nColumn-1; i>=0; i--){ 1521 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1522 if( aOutEx[i].bSorterRef ){ 1523 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1524 }else 1525 #endif 1526 { 1527 int iRead; 1528 if( aOutEx[i].u.x.iOrderByCol ){ 1529 iRead = aOutEx[i].u.x.iOrderByCol-1; 1530 }else{ 1531 iRead = iCol--; 1532 } 1533 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1534 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1535 } 1536 } 1537 switch( eDest ){ 1538 case SRT_Table: 1539 case SRT_EphemTab: { 1540 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1541 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1542 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1543 break; 1544 } 1545 #ifndef SQLITE_OMIT_SUBQUERY 1546 case SRT_Set: { 1547 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1548 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1549 pDest->zAffSdst, nColumn); 1550 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1551 break; 1552 } 1553 case SRT_Mem: { 1554 /* The LIMIT clause will terminate the loop for us */ 1555 break; 1556 } 1557 #endif 1558 default: { 1559 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1560 testcase( eDest==SRT_Output ); 1561 testcase( eDest==SRT_Coroutine ); 1562 if( eDest==SRT_Output ){ 1563 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1564 }else{ 1565 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1566 } 1567 break; 1568 } 1569 } 1570 if( regRowid ){ 1571 if( eDest==SRT_Set ){ 1572 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1573 }else{ 1574 sqlite3ReleaseTempReg(pParse, regRow); 1575 } 1576 sqlite3ReleaseTempReg(pParse, regRowid); 1577 } 1578 /* The bottom of the loop 1579 */ 1580 sqlite3VdbeResolveLabel(v, addrContinue); 1581 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1582 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1583 }else{ 1584 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1585 } 1586 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1587 sqlite3VdbeResolveLabel(v, addrBreak); 1588 } 1589 1590 /* 1591 ** Return a pointer to a string containing the 'declaration type' of the 1592 ** expression pExpr. The string may be treated as static by the caller. 1593 ** 1594 ** Also try to estimate the size of the returned value and return that 1595 ** result in *pEstWidth. 1596 ** 1597 ** The declaration type is the exact datatype definition extracted from the 1598 ** original CREATE TABLE statement if the expression is a column. The 1599 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1600 ** is considered a column can be complex in the presence of subqueries. The 1601 ** result-set expression in all of the following SELECT statements is 1602 ** considered a column by this function. 1603 ** 1604 ** SELECT col FROM tbl; 1605 ** SELECT (SELECT col FROM tbl; 1606 ** SELECT (SELECT col FROM tbl); 1607 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1608 ** 1609 ** The declaration type for any expression other than a column is NULL. 1610 ** 1611 ** This routine has either 3 or 6 parameters depending on whether or not 1612 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1613 */ 1614 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1615 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1616 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1617 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1618 #endif 1619 static const char *columnTypeImpl( 1620 NameContext *pNC, 1621 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1622 Expr *pExpr 1623 #else 1624 Expr *pExpr, 1625 const char **pzOrigDb, 1626 const char **pzOrigTab, 1627 const char **pzOrigCol 1628 #endif 1629 ){ 1630 char const *zType = 0; 1631 int j; 1632 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1633 char const *zOrigDb = 0; 1634 char const *zOrigTab = 0; 1635 char const *zOrigCol = 0; 1636 #endif 1637 1638 assert( pExpr!=0 ); 1639 assert( pNC->pSrcList!=0 ); 1640 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1641 ** are processed */ 1642 switch( pExpr->op ){ 1643 case TK_COLUMN: { 1644 /* The expression is a column. Locate the table the column is being 1645 ** extracted from in NameContext.pSrcList. This table may be real 1646 ** database table or a subquery. 1647 */ 1648 Table *pTab = 0; /* Table structure column is extracted from */ 1649 Select *pS = 0; /* Select the column is extracted from */ 1650 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1651 while( pNC && !pTab ){ 1652 SrcList *pTabList = pNC->pSrcList; 1653 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1654 if( j<pTabList->nSrc ){ 1655 pTab = pTabList->a[j].pTab; 1656 pS = pTabList->a[j].pSelect; 1657 }else{ 1658 pNC = pNC->pNext; 1659 } 1660 } 1661 1662 if( pTab==0 ){ 1663 /* At one time, code such as "SELECT new.x" within a trigger would 1664 ** cause this condition to run. Since then, we have restructured how 1665 ** trigger code is generated and so this condition is no longer 1666 ** possible. However, it can still be true for statements like 1667 ** the following: 1668 ** 1669 ** CREATE TABLE t1(col INTEGER); 1670 ** SELECT (SELECT t1.col) FROM FROM t1; 1671 ** 1672 ** when columnType() is called on the expression "t1.col" in the 1673 ** sub-select. In this case, set the column type to NULL, even 1674 ** though it should really be "INTEGER". 1675 ** 1676 ** This is not a problem, as the column type of "t1.col" is never 1677 ** used. When columnType() is called on the expression 1678 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1679 ** branch below. */ 1680 break; 1681 } 1682 1683 assert( pTab && pExpr->y.pTab==pTab ); 1684 if( pS ){ 1685 /* The "table" is actually a sub-select or a view in the FROM clause 1686 ** of the SELECT statement. Return the declaration type and origin 1687 ** data for the result-set column of the sub-select. 1688 */ 1689 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1690 /* If iCol is less than zero, then the expression requests the 1691 ** rowid of the sub-select or view. This expression is legal (see 1692 ** test case misc2.2.2) - it always evaluates to NULL. 1693 */ 1694 NameContext sNC; 1695 Expr *p = pS->pEList->a[iCol].pExpr; 1696 sNC.pSrcList = pS->pSrc; 1697 sNC.pNext = pNC; 1698 sNC.pParse = pNC->pParse; 1699 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1700 } 1701 }else{ 1702 /* A real table or a CTE table */ 1703 assert( !pS ); 1704 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1705 if( iCol<0 ) iCol = pTab->iPKey; 1706 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1707 if( iCol<0 ){ 1708 zType = "INTEGER"; 1709 zOrigCol = "rowid"; 1710 }else{ 1711 zOrigCol = pTab->aCol[iCol].zName; 1712 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1713 } 1714 zOrigTab = pTab->zName; 1715 if( pNC->pParse && pTab->pSchema ){ 1716 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1717 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1718 } 1719 #else 1720 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1721 if( iCol<0 ){ 1722 zType = "INTEGER"; 1723 }else{ 1724 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1725 } 1726 #endif 1727 } 1728 break; 1729 } 1730 #ifndef SQLITE_OMIT_SUBQUERY 1731 case TK_SELECT: { 1732 /* The expression is a sub-select. Return the declaration type and 1733 ** origin info for the single column in the result set of the SELECT 1734 ** statement. 1735 */ 1736 NameContext sNC; 1737 Select *pS = pExpr->x.pSelect; 1738 Expr *p = pS->pEList->a[0].pExpr; 1739 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1740 sNC.pSrcList = pS->pSrc; 1741 sNC.pNext = pNC; 1742 sNC.pParse = pNC->pParse; 1743 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1744 break; 1745 } 1746 #endif 1747 } 1748 1749 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1750 if( pzOrigDb ){ 1751 assert( pzOrigTab && pzOrigCol ); 1752 *pzOrigDb = zOrigDb; 1753 *pzOrigTab = zOrigTab; 1754 *pzOrigCol = zOrigCol; 1755 } 1756 #endif 1757 return zType; 1758 } 1759 1760 /* 1761 ** Generate code that will tell the VDBE the declaration types of columns 1762 ** in the result set. 1763 */ 1764 static void generateColumnTypes( 1765 Parse *pParse, /* Parser context */ 1766 SrcList *pTabList, /* List of tables */ 1767 ExprList *pEList /* Expressions defining the result set */ 1768 ){ 1769 #ifndef SQLITE_OMIT_DECLTYPE 1770 Vdbe *v = pParse->pVdbe; 1771 int i; 1772 NameContext sNC; 1773 sNC.pSrcList = pTabList; 1774 sNC.pParse = pParse; 1775 sNC.pNext = 0; 1776 for(i=0; i<pEList->nExpr; i++){ 1777 Expr *p = pEList->a[i].pExpr; 1778 const char *zType; 1779 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1780 const char *zOrigDb = 0; 1781 const char *zOrigTab = 0; 1782 const char *zOrigCol = 0; 1783 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1784 1785 /* The vdbe must make its own copy of the column-type and other 1786 ** column specific strings, in case the schema is reset before this 1787 ** virtual machine is deleted. 1788 */ 1789 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1790 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1791 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1792 #else 1793 zType = columnType(&sNC, p, 0, 0, 0); 1794 #endif 1795 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1796 } 1797 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1798 } 1799 1800 1801 /* 1802 ** Compute the column names for a SELECT statement. 1803 ** 1804 ** The only guarantee that SQLite makes about column names is that if the 1805 ** column has an AS clause assigning it a name, that will be the name used. 1806 ** That is the only documented guarantee. However, countless applications 1807 ** developed over the years have made baseless assumptions about column names 1808 ** and will break if those assumptions changes. Hence, use extreme caution 1809 ** when modifying this routine to avoid breaking legacy. 1810 ** 1811 ** See Also: sqlite3ColumnsFromExprList() 1812 ** 1813 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1814 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1815 ** applications should operate this way. Nevertheless, we need to support the 1816 ** other modes for legacy: 1817 ** 1818 ** short=OFF, full=OFF: Column name is the text of the expression has it 1819 ** originally appears in the SELECT statement. In 1820 ** other words, the zSpan of the result expression. 1821 ** 1822 ** short=ON, full=OFF: (This is the default setting). If the result 1823 ** refers directly to a table column, then the 1824 ** result column name is just the table column 1825 ** name: COLUMN. Otherwise use zSpan. 1826 ** 1827 ** full=ON, short=ANY: If the result refers directly to a table column, 1828 ** then the result column name with the table name 1829 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1830 */ 1831 static void generateColumnNames( 1832 Parse *pParse, /* Parser context */ 1833 Select *pSelect /* Generate column names for this SELECT statement */ 1834 ){ 1835 Vdbe *v = pParse->pVdbe; 1836 int i; 1837 Table *pTab; 1838 SrcList *pTabList; 1839 ExprList *pEList; 1840 sqlite3 *db = pParse->db; 1841 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1842 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1843 1844 #ifndef SQLITE_OMIT_EXPLAIN 1845 /* If this is an EXPLAIN, skip this step */ 1846 if( pParse->explain ){ 1847 return; 1848 } 1849 #endif 1850 1851 if( pParse->colNamesSet ) return; 1852 /* Column names are determined by the left-most term of a compound select */ 1853 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1854 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1855 pTabList = pSelect->pSrc; 1856 pEList = pSelect->pEList; 1857 assert( v!=0 ); 1858 assert( pTabList!=0 ); 1859 pParse->colNamesSet = 1; 1860 fullName = (db->flags & SQLITE_FullColNames)!=0; 1861 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1862 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1863 for(i=0; i<pEList->nExpr; i++){ 1864 Expr *p = pEList->a[i].pExpr; 1865 1866 assert( p!=0 ); 1867 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1868 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1869 if( pEList->a[i].zName ){ 1870 /* An AS clause always takes first priority */ 1871 char *zName = pEList->a[i].zName; 1872 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1873 }else if( srcName && p->op==TK_COLUMN ){ 1874 char *zCol; 1875 int iCol = p->iColumn; 1876 pTab = p->y.pTab; 1877 assert( pTab!=0 ); 1878 if( iCol<0 ) iCol = pTab->iPKey; 1879 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1880 if( iCol<0 ){ 1881 zCol = "rowid"; 1882 }else{ 1883 zCol = pTab->aCol[iCol].zName; 1884 } 1885 if( fullName ){ 1886 char *zName = 0; 1887 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1888 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1889 }else{ 1890 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1891 } 1892 }else{ 1893 const char *z = pEList->a[i].zSpan; 1894 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1895 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1896 } 1897 } 1898 generateColumnTypes(pParse, pTabList, pEList); 1899 } 1900 1901 /* 1902 ** Given an expression list (which is really the list of expressions 1903 ** that form the result set of a SELECT statement) compute appropriate 1904 ** column names for a table that would hold the expression list. 1905 ** 1906 ** All column names will be unique. 1907 ** 1908 ** Only the column names are computed. Column.zType, Column.zColl, 1909 ** and other fields of Column are zeroed. 1910 ** 1911 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1912 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1913 ** 1914 ** The only guarantee that SQLite makes about column names is that if the 1915 ** column has an AS clause assigning it a name, that will be the name used. 1916 ** That is the only documented guarantee. However, countless applications 1917 ** developed over the years have made baseless assumptions about column names 1918 ** and will break if those assumptions changes. Hence, use extreme caution 1919 ** when modifying this routine to avoid breaking legacy. 1920 ** 1921 ** See Also: generateColumnNames() 1922 */ 1923 int sqlite3ColumnsFromExprList( 1924 Parse *pParse, /* Parsing context */ 1925 ExprList *pEList, /* Expr list from which to derive column names */ 1926 i16 *pnCol, /* Write the number of columns here */ 1927 Column **paCol /* Write the new column list here */ 1928 ){ 1929 sqlite3 *db = pParse->db; /* Database connection */ 1930 int i, j; /* Loop counters */ 1931 u32 cnt; /* Index added to make the name unique */ 1932 Column *aCol, *pCol; /* For looping over result columns */ 1933 int nCol; /* Number of columns in the result set */ 1934 char *zName; /* Column name */ 1935 int nName; /* Size of name in zName[] */ 1936 Hash ht; /* Hash table of column names */ 1937 1938 sqlite3HashInit(&ht); 1939 if( pEList ){ 1940 nCol = pEList->nExpr; 1941 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1942 testcase( aCol==0 ); 1943 if( nCol>32767 ) nCol = 32767; 1944 }else{ 1945 nCol = 0; 1946 aCol = 0; 1947 } 1948 assert( nCol==(i16)nCol ); 1949 *pnCol = nCol; 1950 *paCol = aCol; 1951 1952 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1953 /* Get an appropriate name for the column 1954 */ 1955 if( (zName = pEList->a[i].zName)!=0 ){ 1956 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1957 }else{ 1958 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1959 while( pColExpr->op==TK_DOT ){ 1960 pColExpr = pColExpr->pRight; 1961 assert( pColExpr!=0 ); 1962 } 1963 assert( pColExpr->op!=TK_AGG_COLUMN ); 1964 if( pColExpr->op==TK_COLUMN ){ 1965 /* For columns use the column name name */ 1966 int iCol = pColExpr->iColumn; 1967 Table *pTab = pColExpr->y.pTab; 1968 assert( pTab!=0 ); 1969 if( iCol<0 ) iCol = pTab->iPKey; 1970 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1971 }else if( pColExpr->op==TK_ID ){ 1972 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1973 zName = pColExpr->u.zToken; 1974 }else{ 1975 /* Use the original text of the column expression as its name */ 1976 zName = pEList->a[i].zSpan; 1977 } 1978 } 1979 if( zName ){ 1980 zName = sqlite3DbStrDup(db, zName); 1981 }else{ 1982 zName = sqlite3MPrintf(db,"column%d",i+1); 1983 } 1984 1985 /* Make sure the column name is unique. If the name is not unique, 1986 ** append an integer to the name so that it becomes unique. 1987 */ 1988 cnt = 0; 1989 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1990 nName = sqlite3Strlen30(zName); 1991 if( nName>0 ){ 1992 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1993 if( zName[j]==':' ) nName = j; 1994 } 1995 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1996 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1997 } 1998 pCol->zName = zName; 1999 sqlite3ColumnPropertiesFromName(0, pCol); 2000 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2001 sqlite3OomFault(db); 2002 } 2003 } 2004 sqlite3HashClear(&ht); 2005 if( db->mallocFailed ){ 2006 for(j=0; j<i; j++){ 2007 sqlite3DbFree(db, aCol[j].zName); 2008 } 2009 sqlite3DbFree(db, aCol); 2010 *paCol = 0; 2011 *pnCol = 0; 2012 return SQLITE_NOMEM_BKPT; 2013 } 2014 return SQLITE_OK; 2015 } 2016 2017 /* 2018 ** Add type and collation information to a column list based on 2019 ** a SELECT statement. 2020 ** 2021 ** The column list presumably came from selectColumnNamesFromExprList(). 2022 ** The column list has only names, not types or collations. This 2023 ** routine goes through and adds the types and collations. 2024 ** 2025 ** This routine requires that all identifiers in the SELECT 2026 ** statement be resolved. 2027 */ 2028 void sqlite3SelectAddColumnTypeAndCollation( 2029 Parse *pParse, /* Parsing contexts */ 2030 Table *pTab, /* Add column type information to this table */ 2031 Select *pSelect /* SELECT used to determine types and collations */ 2032 ){ 2033 sqlite3 *db = pParse->db; 2034 NameContext sNC; 2035 Column *pCol; 2036 CollSeq *pColl; 2037 int i; 2038 Expr *p; 2039 struct ExprList_item *a; 2040 2041 assert( pSelect!=0 ); 2042 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2043 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2044 if( db->mallocFailed ) return; 2045 memset(&sNC, 0, sizeof(sNC)); 2046 sNC.pSrcList = pSelect->pSrc; 2047 a = pSelect->pEList->a; 2048 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2049 const char *zType; 2050 int n, m; 2051 p = a[i].pExpr; 2052 zType = columnType(&sNC, p, 0, 0, 0); 2053 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2054 pCol->affinity = sqlite3ExprAffinity(p); 2055 if( zType ){ 2056 m = sqlite3Strlen30(zType); 2057 n = sqlite3Strlen30(pCol->zName); 2058 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2059 if( pCol->zName ){ 2060 memcpy(&pCol->zName[n+1], zType, m+1); 2061 pCol->colFlags |= COLFLAG_HASTYPE; 2062 } 2063 } 2064 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2065 pColl = sqlite3ExprCollSeq(pParse, p); 2066 if( pColl && pCol->zColl==0 ){ 2067 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2068 } 2069 } 2070 pTab->szTabRow = 1; /* Any non-zero value works */ 2071 } 2072 2073 /* 2074 ** Given a SELECT statement, generate a Table structure that describes 2075 ** the result set of that SELECT. 2076 */ 2077 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2078 Table *pTab; 2079 sqlite3 *db = pParse->db; 2080 int savedFlags; 2081 2082 savedFlags = db->flags; 2083 db->flags &= ~SQLITE_FullColNames; 2084 db->flags |= SQLITE_ShortColNames; 2085 sqlite3SelectPrep(pParse, pSelect, 0); 2086 if( pParse->nErr ) return 0; 2087 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2088 db->flags = savedFlags; 2089 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2090 if( pTab==0 ){ 2091 return 0; 2092 } 2093 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2094 ** is disabled */ 2095 assert( db->lookaside.bDisable ); 2096 pTab->nTabRef = 1; 2097 pTab->zName = 0; 2098 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2099 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2100 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2101 pTab->iPKey = -1; 2102 if( db->mallocFailed ){ 2103 sqlite3DeleteTable(db, pTab); 2104 return 0; 2105 } 2106 return pTab; 2107 } 2108 2109 /* 2110 ** Get a VDBE for the given parser context. Create a new one if necessary. 2111 ** If an error occurs, return NULL and leave a message in pParse. 2112 */ 2113 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2114 if( pParse->pVdbe ){ 2115 return pParse->pVdbe; 2116 } 2117 if( pParse->pToplevel==0 2118 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2119 ){ 2120 pParse->okConstFactor = 1; 2121 } 2122 return sqlite3VdbeCreate(pParse); 2123 } 2124 2125 2126 /* 2127 ** Compute the iLimit and iOffset fields of the SELECT based on the 2128 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2129 ** that appear in the original SQL statement after the LIMIT and OFFSET 2130 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2131 ** are the integer memory register numbers for counters used to compute 2132 ** the limit and offset. If there is no limit and/or offset, then 2133 ** iLimit and iOffset are negative. 2134 ** 2135 ** This routine changes the values of iLimit and iOffset only if 2136 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2137 ** and iOffset should have been preset to appropriate default values (zero) 2138 ** prior to calling this routine. 2139 ** 2140 ** The iOffset register (if it exists) is initialized to the value 2141 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2142 ** iOffset+1 is initialized to LIMIT+OFFSET. 2143 ** 2144 ** Only if pLimit->pLeft!=0 do the limit registers get 2145 ** redefined. The UNION ALL operator uses this property to force 2146 ** the reuse of the same limit and offset registers across multiple 2147 ** SELECT statements. 2148 */ 2149 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2150 Vdbe *v = 0; 2151 int iLimit = 0; 2152 int iOffset; 2153 int n; 2154 Expr *pLimit = p->pLimit; 2155 2156 if( p->iLimit ) return; 2157 2158 /* 2159 ** "LIMIT -1" always shows all rows. There is some 2160 ** controversy about what the correct behavior should be. 2161 ** The current implementation interprets "LIMIT 0" to mean 2162 ** no rows. 2163 */ 2164 if( pLimit ){ 2165 assert( pLimit->op==TK_LIMIT ); 2166 assert( pLimit->pLeft!=0 ); 2167 p->iLimit = iLimit = ++pParse->nMem; 2168 v = sqlite3GetVdbe(pParse); 2169 assert( v!=0 ); 2170 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2171 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2172 VdbeComment((v, "LIMIT counter")); 2173 if( n==0 ){ 2174 sqlite3VdbeGoto(v, iBreak); 2175 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2176 p->nSelectRow = sqlite3LogEst((u64)n); 2177 p->selFlags |= SF_FixedLimit; 2178 } 2179 }else{ 2180 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2181 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2182 VdbeComment((v, "LIMIT counter")); 2183 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2184 } 2185 if( pLimit->pRight ){ 2186 p->iOffset = iOffset = ++pParse->nMem; 2187 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2188 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2189 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2190 VdbeComment((v, "OFFSET counter")); 2191 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2192 VdbeComment((v, "LIMIT+OFFSET")); 2193 } 2194 } 2195 } 2196 2197 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2198 /* 2199 ** Return the appropriate collating sequence for the iCol-th column of 2200 ** the result set for the compound-select statement "p". Return NULL if 2201 ** the column has no default collating sequence. 2202 ** 2203 ** The collating sequence for the compound select is taken from the 2204 ** left-most term of the select that has a collating sequence. 2205 */ 2206 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2207 CollSeq *pRet; 2208 if( p->pPrior ){ 2209 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2210 }else{ 2211 pRet = 0; 2212 } 2213 assert( iCol>=0 ); 2214 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2215 ** have been thrown during name resolution and we would not have gotten 2216 ** this far */ 2217 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2218 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2219 } 2220 return pRet; 2221 } 2222 2223 /* 2224 ** The select statement passed as the second parameter is a compound SELECT 2225 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2226 ** structure suitable for implementing the ORDER BY. 2227 ** 2228 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2229 ** function is responsible for ensuring that this structure is eventually 2230 ** freed. 2231 */ 2232 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2233 ExprList *pOrderBy = p->pOrderBy; 2234 int nOrderBy = p->pOrderBy->nExpr; 2235 sqlite3 *db = pParse->db; 2236 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2237 if( pRet ){ 2238 int i; 2239 for(i=0; i<nOrderBy; i++){ 2240 struct ExprList_item *pItem = &pOrderBy->a[i]; 2241 Expr *pTerm = pItem->pExpr; 2242 CollSeq *pColl; 2243 2244 if( pTerm->flags & EP_Collate ){ 2245 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2246 }else{ 2247 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2248 if( pColl==0 ) pColl = db->pDfltColl; 2249 pOrderBy->a[i].pExpr = 2250 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2251 } 2252 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2253 pRet->aColl[i] = pColl; 2254 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2255 } 2256 } 2257 2258 return pRet; 2259 } 2260 2261 #ifndef SQLITE_OMIT_CTE 2262 /* 2263 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2264 ** query of the form: 2265 ** 2266 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2267 ** \___________/ \_______________/ 2268 ** p->pPrior p 2269 ** 2270 ** 2271 ** There is exactly one reference to the recursive-table in the FROM clause 2272 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2273 ** 2274 ** The setup-query runs once to generate an initial set of rows that go 2275 ** into a Queue table. Rows are extracted from the Queue table one by 2276 ** one. Each row extracted from Queue is output to pDest. Then the single 2277 ** extracted row (now in the iCurrent table) becomes the content of the 2278 ** recursive-table for a recursive-query run. The output of the recursive-query 2279 ** is added back into the Queue table. Then another row is extracted from Queue 2280 ** and the iteration continues until the Queue table is empty. 2281 ** 2282 ** If the compound query operator is UNION then no duplicate rows are ever 2283 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2284 ** that have ever been inserted into Queue and causes duplicates to be 2285 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2286 ** 2287 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2288 ** ORDER BY order and the first entry is extracted for each cycle. Without 2289 ** an ORDER BY, the Queue table is just a FIFO. 2290 ** 2291 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2292 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2293 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2294 ** with a positive value, then the first OFFSET outputs are discarded rather 2295 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2296 ** rows have been skipped. 2297 */ 2298 static void generateWithRecursiveQuery( 2299 Parse *pParse, /* Parsing context */ 2300 Select *p, /* The recursive SELECT to be coded */ 2301 SelectDest *pDest /* What to do with query results */ 2302 ){ 2303 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2304 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2305 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2306 Select *pSetup = p->pPrior; /* The setup query */ 2307 int addrTop; /* Top of the loop */ 2308 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2309 int iCurrent = 0; /* The Current table */ 2310 int regCurrent; /* Register holding Current table */ 2311 int iQueue; /* The Queue table */ 2312 int iDistinct = 0; /* To ensure unique results if UNION */ 2313 int eDest = SRT_Fifo; /* How to write to Queue */ 2314 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2315 int i; /* Loop counter */ 2316 int rc; /* Result code */ 2317 ExprList *pOrderBy; /* The ORDER BY clause */ 2318 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2319 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2320 2321 #ifndef SQLITE_OMIT_WINDOWFUNC 2322 if( p->pWin ){ 2323 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2324 return; 2325 } 2326 #endif 2327 2328 /* Obtain authorization to do a recursive query */ 2329 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2330 2331 /* Process the LIMIT and OFFSET clauses, if they exist */ 2332 addrBreak = sqlite3VdbeMakeLabel(v); 2333 p->nSelectRow = 320; /* 4 billion rows */ 2334 computeLimitRegisters(pParse, p, addrBreak); 2335 pLimit = p->pLimit; 2336 regLimit = p->iLimit; 2337 regOffset = p->iOffset; 2338 p->pLimit = 0; 2339 p->iLimit = p->iOffset = 0; 2340 pOrderBy = p->pOrderBy; 2341 2342 /* Locate the cursor number of the Current table */ 2343 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2344 if( pSrc->a[i].fg.isRecursive ){ 2345 iCurrent = pSrc->a[i].iCursor; 2346 break; 2347 } 2348 } 2349 2350 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2351 ** the Distinct table must be exactly one greater than Queue in order 2352 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2353 iQueue = pParse->nTab++; 2354 if( p->op==TK_UNION ){ 2355 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2356 iDistinct = pParse->nTab++; 2357 }else{ 2358 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2359 } 2360 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2361 2362 /* Allocate cursors for Current, Queue, and Distinct. */ 2363 regCurrent = ++pParse->nMem; 2364 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2365 if( pOrderBy ){ 2366 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2367 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2368 (char*)pKeyInfo, P4_KEYINFO); 2369 destQueue.pOrderBy = pOrderBy; 2370 }else{ 2371 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2372 } 2373 VdbeComment((v, "Queue table")); 2374 if( iDistinct ){ 2375 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2376 p->selFlags |= SF_UsesEphemeral; 2377 } 2378 2379 /* Detach the ORDER BY clause from the compound SELECT */ 2380 p->pOrderBy = 0; 2381 2382 /* Store the results of the setup-query in Queue. */ 2383 pSetup->pNext = 0; 2384 ExplainQueryPlan((pParse, 1, "SETUP")); 2385 rc = sqlite3Select(pParse, pSetup, &destQueue); 2386 pSetup->pNext = p; 2387 if( rc ) goto end_of_recursive_query; 2388 2389 /* Find the next row in the Queue and output that row */ 2390 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2391 2392 /* Transfer the next row in Queue over to Current */ 2393 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2394 if( pOrderBy ){ 2395 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2396 }else{ 2397 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2398 } 2399 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2400 2401 /* Output the single row in Current */ 2402 addrCont = sqlite3VdbeMakeLabel(v); 2403 codeOffset(v, regOffset, addrCont); 2404 selectInnerLoop(pParse, p, iCurrent, 2405 0, 0, pDest, addrCont, addrBreak); 2406 if( regLimit ){ 2407 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2408 VdbeCoverage(v); 2409 } 2410 sqlite3VdbeResolveLabel(v, addrCont); 2411 2412 /* Execute the recursive SELECT taking the single row in Current as 2413 ** the value for the recursive-table. Store the results in the Queue. 2414 */ 2415 if( p->selFlags & SF_Aggregate ){ 2416 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2417 }else{ 2418 p->pPrior = 0; 2419 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2420 sqlite3Select(pParse, p, &destQueue); 2421 assert( p->pPrior==0 ); 2422 p->pPrior = pSetup; 2423 } 2424 2425 /* Keep running the loop until the Queue is empty */ 2426 sqlite3VdbeGoto(v, addrTop); 2427 sqlite3VdbeResolveLabel(v, addrBreak); 2428 2429 end_of_recursive_query: 2430 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2431 p->pOrderBy = pOrderBy; 2432 p->pLimit = pLimit; 2433 return; 2434 } 2435 #endif /* SQLITE_OMIT_CTE */ 2436 2437 /* Forward references */ 2438 static int multiSelectOrderBy( 2439 Parse *pParse, /* Parsing context */ 2440 Select *p, /* The right-most of SELECTs to be coded */ 2441 SelectDest *pDest /* What to do with query results */ 2442 ); 2443 2444 /* 2445 ** Handle the special case of a compound-select that originates from a 2446 ** VALUES clause. By handling this as a special case, we avoid deep 2447 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2448 ** on a VALUES clause. 2449 ** 2450 ** Because the Select object originates from a VALUES clause: 2451 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2452 ** (2) All terms are UNION ALL 2453 ** (3) There is no ORDER BY clause 2454 ** 2455 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2456 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2457 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2458 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2459 */ 2460 static int multiSelectValues( 2461 Parse *pParse, /* Parsing context */ 2462 Select *p, /* The right-most of SELECTs to be coded */ 2463 SelectDest *pDest /* What to do with query results */ 2464 ){ 2465 int nRow = 1; 2466 int rc = 0; 2467 int bShowAll = p->pLimit==0; 2468 assert( p->selFlags & SF_MultiValue ); 2469 do{ 2470 assert( p->selFlags & SF_Values ); 2471 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2472 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2473 if( p->pPrior==0 ) break; 2474 assert( p->pPrior->pNext==p ); 2475 p = p->pPrior; 2476 nRow += bShowAll; 2477 }while(1); 2478 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2479 nRow==1 ? "" : "S")); 2480 while( p ){ 2481 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2482 if( !bShowAll ) break; 2483 p->nSelectRow = nRow; 2484 p = p->pNext; 2485 } 2486 return rc; 2487 } 2488 2489 /* 2490 ** This routine is called to process a compound query form from 2491 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2492 ** INTERSECT 2493 ** 2494 ** "p" points to the right-most of the two queries. the query on the 2495 ** left is p->pPrior. The left query could also be a compound query 2496 ** in which case this routine will be called recursively. 2497 ** 2498 ** The results of the total query are to be written into a destination 2499 ** of type eDest with parameter iParm. 2500 ** 2501 ** Example 1: Consider a three-way compound SQL statement. 2502 ** 2503 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2504 ** 2505 ** This statement is parsed up as follows: 2506 ** 2507 ** SELECT c FROM t3 2508 ** | 2509 ** `-----> SELECT b FROM t2 2510 ** | 2511 ** `------> SELECT a FROM t1 2512 ** 2513 ** The arrows in the diagram above represent the Select.pPrior pointer. 2514 ** So if this routine is called with p equal to the t3 query, then 2515 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2516 ** 2517 ** Notice that because of the way SQLite parses compound SELECTs, the 2518 ** individual selects always group from left to right. 2519 */ 2520 static int multiSelect( 2521 Parse *pParse, /* Parsing context */ 2522 Select *p, /* The right-most of SELECTs to be coded */ 2523 SelectDest *pDest /* What to do with query results */ 2524 ){ 2525 int rc = SQLITE_OK; /* Success code from a subroutine */ 2526 Select *pPrior; /* Another SELECT immediately to our left */ 2527 Vdbe *v; /* Generate code to this VDBE */ 2528 SelectDest dest; /* Alternative data destination */ 2529 Select *pDelete = 0; /* Chain of simple selects to delete */ 2530 sqlite3 *db; /* Database connection */ 2531 2532 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2533 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2534 */ 2535 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2536 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2537 db = pParse->db; 2538 pPrior = p->pPrior; 2539 dest = *pDest; 2540 if( pPrior->pOrderBy || pPrior->pLimit ){ 2541 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2542 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2543 rc = 1; 2544 goto multi_select_end; 2545 } 2546 2547 v = sqlite3GetVdbe(pParse); 2548 assert( v!=0 ); /* The VDBE already created by calling function */ 2549 2550 /* Create the destination temporary table if necessary 2551 */ 2552 if( dest.eDest==SRT_EphemTab ){ 2553 assert( p->pEList ); 2554 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2555 dest.eDest = SRT_Table; 2556 } 2557 2558 /* Special handling for a compound-select that originates as a VALUES clause. 2559 */ 2560 if( p->selFlags & SF_MultiValue ){ 2561 rc = multiSelectValues(pParse, p, &dest); 2562 goto multi_select_end; 2563 } 2564 2565 /* Make sure all SELECTs in the statement have the same number of elements 2566 ** in their result sets. 2567 */ 2568 assert( p->pEList && pPrior->pEList ); 2569 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2570 2571 #ifndef SQLITE_OMIT_CTE 2572 if( p->selFlags & SF_Recursive ){ 2573 generateWithRecursiveQuery(pParse, p, &dest); 2574 }else 2575 #endif 2576 2577 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2578 */ 2579 if( p->pOrderBy ){ 2580 return multiSelectOrderBy(pParse, p, pDest); 2581 }else{ 2582 2583 #ifndef SQLITE_OMIT_EXPLAIN 2584 if( pPrior->pPrior==0 ){ 2585 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2586 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2587 } 2588 #endif 2589 2590 /* Generate code for the left and right SELECT statements. 2591 */ 2592 switch( p->op ){ 2593 case TK_ALL: { 2594 int addr = 0; 2595 int nLimit; 2596 assert( !pPrior->pLimit ); 2597 pPrior->iLimit = p->iLimit; 2598 pPrior->iOffset = p->iOffset; 2599 pPrior->pLimit = p->pLimit; 2600 rc = sqlite3Select(pParse, pPrior, &dest); 2601 p->pLimit = 0; 2602 if( rc ){ 2603 goto multi_select_end; 2604 } 2605 p->pPrior = 0; 2606 p->iLimit = pPrior->iLimit; 2607 p->iOffset = pPrior->iOffset; 2608 if( p->iLimit ){ 2609 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2610 VdbeComment((v, "Jump ahead if LIMIT reached")); 2611 if( p->iOffset ){ 2612 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2613 p->iLimit, p->iOffset+1, p->iOffset); 2614 } 2615 } 2616 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2617 rc = sqlite3Select(pParse, p, &dest); 2618 testcase( rc!=SQLITE_OK ); 2619 pDelete = p->pPrior; 2620 p->pPrior = pPrior; 2621 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2622 if( pPrior->pLimit 2623 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2624 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2625 ){ 2626 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2627 } 2628 if( addr ){ 2629 sqlite3VdbeJumpHere(v, addr); 2630 } 2631 break; 2632 } 2633 case TK_EXCEPT: 2634 case TK_UNION: { 2635 int unionTab; /* Cursor number of the temp table holding result */ 2636 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2637 int priorOp; /* The SRT_ operation to apply to prior selects */ 2638 Expr *pLimit; /* Saved values of p->nLimit */ 2639 int addr; 2640 SelectDest uniondest; 2641 2642 testcase( p->op==TK_EXCEPT ); 2643 testcase( p->op==TK_UNION ); 2644 priorOp = SRT_Union; 2645 if( dest.eDest==priorOp ){ 2646 /* We can reuse a temporary table generated by a SELECT to our 2647 ** right. 2648 */ 2649 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2650 unionTab = dest.iSDParm; 2651 }else{ 2652 /* We will need to create our own temporary table to hold the 2653 ** intermediate results. 2654 */ 2655 unionTab = pParse->nTab++; 2656 assert( p->pOrderBy==0 ); 2657 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2658 assert( p->addrOpenEphm[0] == -1 ); 2659 p->addrOpenEphm[0] = addr; 2660 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2661 assert( p->pEList ); 2662 } 2663 2664 /* Code the SELECT statements to our left 2665 */ 2666 assert( !pPrior->pOrderBy ); 2667 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2668 rc = sqlite3Select(pParse, pPrior, &uniondest); 2669 if( rc ){ 2670 goto multi_select_end; 2671 } 2672 2673 /* Code the current SELECT statement 2674 */ 2675 if( p->op==TK_EXCEPT ){ 2676 op = SRT_Except; 2677 }else{ 2678 assert( p->op==TK_UNION ); 2679 op = SRT_Union; 2680 } 2681 p->pPrior = 0; 2682 pLimit = p->pLimit; 2683 p->pLimit = 0; 2684 uniondest.eDest = op; 2685 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2686 selectOpName(p->op))); 2687 rc = sqlite3Select(pParse, p, &uniondest); 2688 testcase( rc!=SQLITE_OK ); 2689 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2690 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2691 sqlite3ExprListDelete(db, p->pOrderBy); 2692 pDelete = p->pPrior; 2693 p->pPrior = pPrior; 2694 p->pOrderBy = 0; 2695 if( p->op==TK_UNION ){ 2696 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2697 } 2698 sqlite3ExprDelete(db, p->pLimit); 2699 p->pLimit = pLimit; 2700 p->iLimit = 0; 2701 p->iOffset = 0; 2702 2703 /* Convert the data in the temporary table into whatever form 2704 ** it is that we currently need. 2705 */ 2706 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2707 if( dest.eDest!=priorOp ){ 2708 int iCont, iBreak, iStart; 2709 assert( p->pEList ); 2710 iBreak = sqlite3VdbeMakeLabel(v); 2711 iCont = sqlite3VdbeMakeLabel(v); 2712 computeLimitRegisters(pParse, p, iBreak); 2713 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2714 iStart = sqlite3VdbeCurrentAddr(v); 2715 selectInnerLoop(pParse, p, unionTab, 2716 0, 0, &dest, iCont, iBreak); 2717 sqlite3VdbeResolveLabel(v, iCont); 2718 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2719 sqlite3VdbeResolveLabel(v, iBreak); 2720 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2721 } 2722 break; 2723 } 2724 default: assert( p->op==TK_INTERSECT ); { 2725 int tab1, tab2; 2726 int iCont, iBreak, iStart; 2727 Expr *pLimit; 2728 int addr; 2729 SelectDest intersectdest; 2730 int r1; 2731 2732 /* INTERSECT is different from the others since it requires 2733 ** two temporary tables. Hence it has its own case. Begin 2734 ** by allocating the tables we will need. 2735 */ 2736 tab1 = pParse->nTab++; 2737 tab2 = pParse->nTab++; 2738 assert( p->pOrderBy==0 ); 2739 2740 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2741 assert( p->addrOpenEphm[0] == -1 ); 2742 p->addrOpenEphm[0] = addr; 2743 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2744 assert( p->pEList ); 2745 2746 /* Code the SELECTs to our left into temporary table "tab1". 2747 */ 2748 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2749 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2750 if( rc ){ 2751 goto multi_select_end; 2752 } 2753 2754 /* Code the current SELECT into temporary table "tab2" 2755 */ 2756 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2757 assert( p->addrOpenEphm[1] == -1 ); 2758 p->addrOpenEphm[1] = addr; 2759 p->pPrior = 0; 2760 pLimit = p->pLimit; 2761 p->pLimit = 0; 2762 intersectdest.iSDParm = tab2; 2763 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2764 selectOpName(p->op))); 2765 rc = sqlite3Select(pParse, p, &intersectdest); 2766 testcase( rc!=SQLITE_OK ); 2767 pDelete = p->pPrior; 2768 p->pPrior = pPrior; 2769 if( p->nSelectRow>pPrior->nSelectRow ){ 2770 p->nSelectRow = pPrior->nSelectRow; 2771 } 2772 sqlite3ExprDelete(db, p->pLimit); 2773 p->pLimit = pLimit; 2774 2775 /* Generate code to take the intersection of the two temporary 2776 ** tables. 2777 */ 2778 assert( p->pEList ); 2779 iBreak = sqlite3VdbeMakeLabel(v); 2780 iCont = sqlite3VdbeMakeLabel(v); 2781 computeLimitRegisters(pParse, p, iBreak); 2782 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2783 r1 = sqlite3GetTempReg(pParse); 2784 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2785 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2786 VdbeCoverage(v); 2787 sqlite3ReleaseTempReg(pParse, r1); 2788 selectInnerLoop(pParse, p, tab1, 2789 0, 0, &dest, iCont, iBreak); 2790 sqlite3VdbeResolveLabel(v, iCont); 2791 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2792 sqlite3VdbeResolveLabel(v, iBreak); 2793 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2794 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2795 break; 2796 } 2797 } 2798 2799 #ifndef SQLITE_OMIT_EXPLAIN 2800 if( p->pNext==0 ){ 2801 ExplainQueryPlanPop(pParse); 2802 } 2803 #endif 2804 } 2805 2806 /* Compute collating sequences used by 2807 ** temporary tables needed to implement the compound select. 2808 ** Attach the KeyInfo structure to all temporary tables. 2809 ** 2810 ** This section is run by the right-most SELECT statement only. 2811 ** SELECT statements to the left always skip this part. The right-most 2812 ** SELECT might also skip this part if it has no ORDER BY clause and 2813 ** no temp tables are required. 2814 */ 2815 if( p->selFlags & SF_UsesEphemeral ){ 2816 int i; /* Loop counter */ 2817 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2818 Select *pLoop; /* For looping through SELECT statements */ 2819 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2820 int nCol; /* Number of columns in result set */ 2821 2822 assert( p->pNext==0 ); 2823 nCol = p->pEList->nExpr; 2824 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2825 if( !pKeyInfo ){ 2826 rc = SQLITE_NOMEM_BKPT; 2827 goto multi_select_end; 2828 } 2829 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2830 *apColl = multiSelectCollSeq(pParse, p, i); 2831 if( 0==*apColl ){ 2832 *apColl = db->pDfltColl; 2833 } 2834 } 2835 2836 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2837 for(i=0; i<2; i++){ 2838 int addr = pLoop->addrOpenEphm[i]; 2839 if( addr<0 ){ 2840 /* If [0] is unused then [1] is also unused. So we can 2841 ** always safely abort as soon as the first unused slot is found */ 2842 assert( pLoop->addrOpenEphm[1]<0 ); 2843 break; 2844 } 2845 sqlite3VdbeChangeP2(v, addr, nCol); 2846 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2847 P4_KEYINFO); 2848 pLoop->addrOpenEphm[i] = -1; 2849 } 2850 } 2851 sqlite3KeyInfoUnref(pKeyInfo); 2852 } 2853 2854 multi_select_end: 2855 pDest->iSdst = dest.iSdst; 2856 pDest->nSdst = dest.nSdst; 2857 sqlite3SelectDelete(db, pDelete); 2858 return rc; 2859 } 2860 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2861 2862 /* 2863 ** Error message for when two or more terms of a compound select have different 2864 ** size result sets. 2865 */ 2866 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2867 if( p->selFlags & SF_Values ){ 2868 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2869 }else{ 2870 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2871 " do not have the same number of result columns", selectOpName(p->op)); 2872 } 2873 } 2874 2875 /* 2876 ** Code an output subroutine for a coroutine implementation of a 2877 ** SELECT statment. 2878 ** 2879 ** The data to be output is contained in pIn->iSdst. There are 2880 ** pIn->nSdst columns to be output. pDest is where the output should 2881 ** be sent. 2882 ** 2883 ** regReturn is the number of the register holding the subroutine 2884 ** return address. 2885 ** 2886 ** If regPrev>0 then it is the first register in a vector that 2887 ** records the previous output. mem[regPrev] is a flag that is false 2888 ** if there has been no previous output. If regPrev>0 then code is 2889 ** generated to suppress duplicates. pKeyInfo is used for comparing 2890 ** keys. 2891 ** 2892 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2893 ** iBreak. 2894 */ 2895 static int generateOutputSubroutine( 2896 Parse *pParse, /* Parsing context */ 2897 Select *p, /* The SELECT statement */ 2898 SelectDest *pIn, /* Coroutine supplying data */ 2899 SelectDest *pDest, /* Where to send the data */ 2900 int regReturn, /* The return address register */ 2901 int regPrev, /* Previous result register. No uniqueness if 0 */ 2902 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2903 int iBreak /* Jump here if we hit the LIMIT */ 2904 ){ 2905 Vdbe *v = pParse->pVdbe; 2906 int iContinue; 2907 int addr; 2908 2909 addr = sqlite3VdbeCurrentAddr(v); 2910 iContinue = sqlite3VdbeMakeLabel(v); 2911 2912 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2913 */ 2914 if( regPrev ){ 2915 int addr1, addr2; 2916 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2917 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2918 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2919 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2920 sqlite3VdbeJumpHere(v, addr1); 2921 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2922 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2923 } 2924 if( pParse->db->mallocFailed ) return 0; 2925 2926 /* Suppress the first OFFSET entries if there is an OFFSET clause 2927 */ 2928 codeOffset(v, p->iOffset, iContinue); 2929 2930 assert( pDest->eDest!=SRT_Exists ); 2931 assert( pDest->eDest!=SRT_Table ); 2932 switch( pDest->eDest ){ 2933 /* Store the result as data using a unique key. 2934 */ 2935 case SRT_EphemTab: { 2936 int r1 = sqlite3GetTempReg(pParse); 2937 int r2 = sqlite3GetTempReg(pParse); 2938 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2939 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2940 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2941 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2942 sqlite3ReleaseTempReg(pParse, r2); 2943 sqlite3ReleaseTempReg(pParse, r1); 2944 break; 2945 } 2946 2947 #ifndef SQLITE_OMIT_SUBQUERY 2948 /* If we are creating a set for an "expr IN (SELECT ...)". 2949 */ 2950 case SRT_Set: { 2951 int r1; 2952 testcase( pIn->nSdst>1 ); 2953 r1 = sqlite3GetTempReg(pParse); 2954 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2955 r1, pDest->zAffSdst, pIn->nSdst); 2956 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2957 pIn->iSdst, pIn->nSdst); 2958 sqlite3ReleaseTempReg(pParse, r1); 2959 break; 2960 } 2961 2962 /* If this is a scalar select that is part of an expression, then 2963 ** store the results in the appropriate memory cell and break out 2964 ** of the scan loop. 2965 */ 2966 case SRT_Mem: { 2967 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2968 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2969 /* The LIMIT clause will jump out of the loop for us */ 2970 break; 2971 } 2972 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2973 2974 /* The results are stored in a sequence of registers 2975 ** starting at pDest->iSdst. Then the co-routine yields. 2976 */ 2977 case SRT_Coroutine: { 2978 if( pDest->iSdst==0 ){ 2979 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2980 pDest->nSdst = pIn->nSdst; 2981 } 2982 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2983 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2984 break; 2985 } 2986 2987 /* If none of the above, then the result destination must be 2988 ** SRT_Output. This routine is never called with any other 2989 ** destination other than the ones handled above or SRT_Output. 2990 ** 2991 ** For SRT_Output, results are stored in a sequence of registers. 2992 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2993 ** return the next row of result. 2994 */ 2995 default: { 2996 assert( pDest->eDest==SRT_Output ); 2997 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2998 break; 2999 } 3000 } 3001 3002 /* Jump to the end of the loop if the LIMIT is reached. 3003 */ 3004 if( p->iLimit ){ 3005 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3006 } 3007 3008 /* Generate the subroutine return 3009 */ 3010 sqlite3VdbeResolveLabel(v, iContinue); 3011 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3012 3013 return addr; 3014 } 3015 3016 /* 3017 ** Alternative compound select code generator for cases when there 3018 ** is an ORDER BY clause. 3019 ** 3020 ** We assume a query of the following form: 3021 ** 3022 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3023 ** 3024 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3025 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3026 ** co-routines. Then run the co-routines in parallel and merge the results 3027 ** into the output. In addition to the two coroutines (called selectA and 3028 ** selectB) there are 7 subroutines: 3029 ** 3030 ** outA: Move the output of the selectA coroutine into the output 3031 ** of the compound query. 3032 ** 3033 ** outB: Move the output of the selectB coroutine into the output 3034 ** of the compound query. (Only generated for UNION and 3035 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3036 ** appears only in B.) 3037 ** 3038 ** AltB: Called when there is data from both coroutines and A<B. 3039 ** 3040 ** AeqB: Called when there is data from both coroutines and A==B. 3041 ** 3042 ** AgtB: Called when there is data from both coroutines and A>B. 3043 ** 3044 ** EofA: Called when data is exhausted from selectA. 3045 ** 3046 ** EofB: Called when data is exhausted from selectB. 3047 ** 3048 ** The implementation of the latter five subroutines depend on which 3049 ** <operator> is used: 3050 ** 3051 ** 3052 ** UNION ALL UNION EXCEPT INTERSECT 3053 ** ------------- ----------------- -------------- ----------------- 3054 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3055 ** 3056 ** AeqB: outA, nextA nextA nextA outA, nextA 3057 ** 3058 ** AgtB: outB, nextB outB, nextB nextB nextB 3059 ** 3060 ** EofA: outB, nextB outB, nextB halt halt 3061 ** 3062 ** EofB: outA, nextA outA, nextA outA, nextA halt 3063 ** 3064 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3065 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3066 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3067 ** following nextX causes a jump to the end of the select processing. 3068 ** 3069 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3070 ** within the output subroutine. The regPrev register set holds the previously 3071 ** output value. A comparison is made against this value and the output 3072 ** is skipped if the next results would be the same as the previous. 3073 ** 3074 ** The implementation plan is to implement the two coroutines and seven 3075 ** subroutines first, then put the control logic at the bottom. Like this: 3076 ** 3077 ** goto Init 3078 ** coA: coroutine for left query (A) 3079 ** coB: coroutine for right query (B) 3080 ** outA: output one row of A 3081 ** outB: output one row of B (UNION and UNION ALL only) 3082 ** EofA: ... 3083 ** EofB: ... 3084 ** AltB: ... 3085 ** AeqB: ... 3086 ** AgtB: ... 3087 ** Init: initialize coroutine registers 3088 ** yield coA 3089 ** if eof(A) goto EofA 3090 ** yield coB 3091 ** if eof(B) goto EofB 3092 ** Cmpr: Compare A, B 3093 ** Jump AltB, AeqB, AgtB 3094 ** End: ... 3095 ** 3096 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3097 ** actually called using Gosub and they do not Return. EofA and EofB loop 3098 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3099 ** and AgtB jump to either L2 or to one of EofA or EofB. 3100 */ 3101 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3102 static int multiSelectOrderBy( 3103 Parse *pParse, /* Parsing context */ 3104 Select *p, /* The right-most of SELECTs to be coded */ 3105 SelectDest *pDest /* What to do with query results */ 3106 ){ 3107 int i, j; /* Loop counters */ 3108 Select *pPrior; /* Another SELECT immediately to our left */ 3109 Vdbe *v; /* Generate code to this VDBE */ 3110 SelectDest destA; /* Destination for coroutine A */ 3111 SelectDest destB; /* Destination for coroutine B */ 3112 int regAddrA; /* Address register for select-A coroutine */ 3113 int regAddrB; /* Address register for select-B coroutine */ 3114 int addrSelectA; /* Address of the select-A coroutine */ 3115 int addrSelectB; /* Address of the select-B coroutine */ 3116 int regOutA; /* Address register for the output-A subroutine */ 3117 int regOutB; /* Address register for the output-B subroutine */ 3118 int addrOutA; /* Address of the output-A subroutine */ 3119 int addrOutB = 0; /* Address of the output-B subroutine */ 3120 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3121 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3122 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3123 int addrAltB; /* Address of the A<B subroutine */ 3124 int addrAeqB; /* Address of the A==B subroutine */ 3125 int addrAgtB; /* Address of the A>B subroutine */ 3126 int regLimitA; /* Limit register for select-A */ 3127 int regLimitB; /* Limit register for select-A */ 3128 int regPrev; /* A range of registers to hold previous output */ 3129 int savedLimit; /* Saved value of p->iLimit */ 3130 int savedOffset; /* Saved value of p->iOffset */ 3131 int labelCmpr; /* Label for the start of the merge algorithm */ 3132 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3133 int addr1; /* Jump instructions that get retargetted */ 3134 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3135 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3136 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3137 sqlite3 *db; /* Database connection */ 3138 ExprList *pOrderBy; /* The ORDER BY clause */ 3139 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3140 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3141 3142 assert( p->pOrderBy!=0 ); 3143 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3144 db = pParse->db; 3145 v = pParse->pVdbe; 3146 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3147 labelEnd = sqlite3VdbeMakeLabel(v); 3148 labelCmpr = sqlite3VdbeMakeLabel(v); 3149 3150 3151 /* Patch up the ORDER BY clause 3152 */ 3153 op = p->op; 3154 pPrior = p->pPrior; 3155 assert( pPrior->pOrderBy==0 ); 3156 pOrderBy = p->pOrderBy; 3157 assert( pOrderBy ); 3158 nOrderBy = pOrderBy->nExpr; 3159 3160 /* For operators other than UNION ALL we have to make sure that 3161 ** the ORDER BY clause covers every term of the result set. Add 3162 ** terms to the ORDER BY clause as necessary. 3163 */ 3164 if( op!=TK_ALL ){ 3165 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3166 struct ExprList_item *pItem; 3167 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3168 assert( pItem->u.x.iOrderByCol>0 ); 3169 if( pItem->u.x.iOrderByCol==i ) break; 3170 } 3171 if( j==nOrderBy ){ 3172 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3173 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3174 pNew->flags |= EP_IntValue; 3175 pNew->u.iValue = i; 3176 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3177 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3178 } 3179 } 3180 } 3181 3182 /* Compute the comparison permutation and keyinfo that is used with 3183 ** the permutation used to determine if the next 3184 ** row of results comes from selectA or selectB. Also add explicit 3185 ** collations to the ORDER BY clause terms so that when the subqueries 3186 ** to the right and the left are evaluated, they use the correct 3187 ** collation. 3188 */ 3189 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3190 if( aPermute ){ 3191 struct ExprList_item *pItem; 3192 aPermute[0] = nOrderBy; 3193 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3194 assert( pItem->u.x.iOrderByCol>0 ); 3195 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3196 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3197 } 3198 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3199 }else{ 3200 pKeyMerge = 0; 3201 } 3202 3203 /* Reattach the ORDER BY clause to the query. 3204 */ 3205 p->pOrderBy = pOrderBy; 3206 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3207 3208 /* Allocate a range of temporary registers and the KeyInfo needed 3209 ** for the logic that removes duplicate result rows when the 3210 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3211 */ 3212 if( op==TK_ALL ){ 3213 regPrev = 0; 3214 }else{ 3215 int nExpr = p->pEList->nExpr; 3216 assert( nOrderBy>=nExpr || db->mallocFailed ); 3217 regPrev = pParse->nMem+1; 3218 pParse->nMem += nExpr+1; 3219 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3220 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3221 if( pKeyDup ){ 3222 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3223 for(i=0; i<nExpr; i++){ 3224 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3225 pKeyDup->aSortOrder[i] = 0; 3226 } 3227 } 3228 } 3229 3230 /* Separate the left and the right query from one another 3231 */ 3232 p->pPrior = 0; 3233 pPrior->pNext = 0; 3234 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3235 if( pPrior->pPrior==0 ){ 3236 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3237 } 3238 3239 /* Compute the limit registers */ 3240 computeLimitRegisters(pParse, p, labelEnd); 3241 if( p->iLimit && op==TK_ALL ){ 3242 regLimitA = ++pParse->nMem; 3243 regLimitB = ++pParse->nMem; 3244 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3245 regLimitA); 3246 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3247 }else{ 3248 regLimitA = regLimitB = 0; 3249 } 3250 sqlite3ExprDelete(db, p->pLimit); 3251 p->pLimit = 0; 3252 3253 regAddrA = ++pParse->nMem; 3254 regAddrB = ++pParse->nMem; 3255 regOutA = ++pParse->nMem; 3256 regOutB = ++pParse->nMem; 3257 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3258 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3259 3260 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3261 3262 /* Generate a coroutine to evaluate the SELECT statement to the 3263 ** left of the compound operator - the "A" select. 3264 */ 3265 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3266 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3267 VdbeComment((v, "left SELECT")); 3268 pPrior->iLimit = regLimitA; 3269 ExplainQueryPlan((pParse, 1, "LEFT")); 3270 sqlite3Select(pParse, pPrior, &destA); 3271 sqlite3VdbeEndCoroutine(v, regAddrA); 3272 sqlite3VdbeJumpHere(v, addr1); 3273 3274 /* Generate a coroutine to evaluate the SELECT statement on 3275 ** the right - the "B" select 3276 */ 3277 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3278 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3279 VdbeComment((v, "right SELECT")); 3280 savedLimit = p->iLimit; 3281 savedOffset = p->iOffset; 3282 p->iLimit = regLimitB; 3283 p->iOffset = 0; 3284 ExplainQueryPlan((pParse, 1, "RIGHT")); 3285 sqlite3Select(pParse, p, &destB); 3286 p->iLimit = savedLimit; 3287 p->iOffset = savedOffset; 3288 sqlite3VdbeEndCoroutine(v, regAddrB); 3289 3290 /* Generate a subroutine that outputs the current row of the A 3291 ** select as the next output row of the compound select. 3292 */ 3293 VdbeNoopComment((v, "Output routine for A")); 3294 addrOutA = generateOutputSubroutine(pParse, 3295 p, &destA, pDest, regOutA, 3296 regPrev, pKeyDup, labelEnd); 3297 3298 /* Generate a subroutine that outputs the current row of the B 3299 ** select as the next output row of the compound select. 3300 */ 3301 if( op==TK_ALL || op==TK_UNION ){ 3302 VdbeNoopComment((v, "Output routine for B")); 3303 addrOutB = generateOutputSubroutine(pParse, 3304 p, &destB, pDest, regOutB, 3305 regPrev, pKeyDup, labelEnd); 3306 } 3307 sqlite3KeyInfoUnref(pKeyDup); 3308 3309 /* Generate a subroutine to run when the results from select A 3310 ** are exhausted and only data in select B remains. 3311 */ 3312 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3313 addrEofA_noB = addrEofA = labelEnd; 3314 }else{ 3315 VdbeNoopComment((v, "eof-A subroutine")); 3316 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3317 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3318 VdbeCoverage(v); 3319 sqlite3VdbeGoto(v, addrEofA); 3320 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3321 } 3322 3323 /* Generate a subroutine to run when the results from select B 3324 ** are exhausted and only data in select A remains. 3325 */ 3326 if( op==TK_INTERSECT ){ 3327 addrEofB = addrEofA; 3328 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3329 }else{ 3330 VdbeNoopComment((v, "eof-B subroutine")); 3331 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3332 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3333 sqlite3VdbeGoto(v, addrEofB); 3334 } 3335 3336 /* Generate code to handle the case of A<B 3337 */ 3338 VdbeNoopComment((v, "A-lt-B subroutine")); 3339 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3340 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3341 sqlite3VdbeGoto(v, labelCmpr); 3342 3343 /* Generate code to handle the case of A==B 3344 */ 3345 if( op==TK_ALL ){ 3346 addrAeqB = addrAltB; 3347 }else if( op==TK_INTERSECT ){ 3348 addrAeqB = addrAltB; 3349 addrAltB++; 3350 }else{ 3351 VdbeNoopComment((v, "A-eq-B subroutine")); 3352 addrAeqB = 3353 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3354 sqlite3VdbeGoto(v, labelCmpr); 3355 } 3356 3357 /* Generate code to handle the case of A>B 3358 */ 3359 VdbeNoopComment((v, "A-gt-B subroutine")); 3360 addrAgtB = sqlite3VdbeCurrentAddr(v); 3361 if( op==TK_ALL || op==TK_UNION ){ 3362 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3363 } 3364 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3365 sqlite3VdbeGoto(v, labelCmpr); 3366 3367 /* This code runs once to initialize everything. 3368 */ 3369 sqlite3VdbeJumpHere(v, addr1); 3370 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3371 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3372 3373 /* Implement the main merge loop 3374 */ 3375 sqlite3VdbeResolveLabel(v, labelCmpr); 3376 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3377 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3378 (char*)pKeyMerge, P4_KEYINFO); 3379 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3380 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3381 3382 /* Jump to the this point in order to terminate the query. 3383 */ 3384 sqlite3VdbeResolveLabel(v, labelEnd); 3385 3386 /* Reassembly the compound query so that it will be freed correctly 3387 ** by the calling function */ 3388 if( p->pPrior ){ 3389 sqlite3SelectDelete(db, p->pPrior); 3390 } 3391 p->pPrior = pPrior; 3392 pPrior->pNext = p; 3393 3394 /*** TBD: Insert subroutine calls to close cursors on incomplete 3395 **** subqueries ****/ 3396 ExplainQueryPlanPop(pParse); 3397 return pParse->nErr!=0; 3398 } 3399 #endif 3400 3401 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3402 3403 /* An instance of the SubstContext object describes an substitution edit 3404 ** to be performed on a parse tree. 3405 ** 3406 ** All references to columns in table iTable are to be replaced by corresponding 3407 ** expressions in pEList. 3408 */ 3409 typedef struct SubstContext { 3410 Parse *pParse; /* The parsing context */ 3411 int iTable; /* Replace references to this table */ 3412 int iNewTable; /* New table number */ 3413 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3414 ExprList *pEList; /* Replacement expressions */ 3415 } SubstContext; 3416 3417 /* Forward Declarations */ 3418 static void substExprList(SubstContext*, ExprList*); 3419 static void substSelect(SubstContext*, Select*, int); 3420 3421 /* 3422 ** Scan through the expression pExpr. Replace every reference to 3423 ** a column in table number iTable with a copy of the iColumn-th 3424 ** entry in pEList. (But leave references to the ROWID column 3425 ** unchanged.) 3426 ** 3427 ** This routine is part of the flattening procedure. A subquery 3428 ** whose result set is defined by pEList appears as entry in the 3429 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3430 ** FORM clause entry is iTable. This routine makes the necessary 3431 ** changes to pExpr so that it refers directly to the source table 3432 ** of the subquery rather the result set of the subquery. 3433 */ 3434 static Expr *substExpr( 3435 SubstContext *pSubst, /* Description of the substitution */ 3436 Expr *pExpr /* Expr in which substitution occurs */ 3437 ){ 3438 if( pExpr==0 ) return 0; 3439 if( ExprHasProperty(pExpr, EP_FromJoin) 3440 && pExpr->iRightJoinTable==pSubst->iTable 3441 ){ 3442 pExpr->iRightJoinTable = pSubst->iNewTable; 3443 } 3444 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3445 if( pExpr->iColumn<0 ){ 3446 pExpr->op = TK_NULL; 3447 }else{ 3448 Expr *pNew; 3449 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3450 Expr ifNullRow; 3451 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3452 assert( pExpr->pRight==0 ); 3453 if( sqlite3ExprIsVector(pCopy) ){ 3454 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3455 }else{ 3456 sqlite3 *db = pSubst->pParse->db; 3457 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3458 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3459 ifNullRow.op = TK_IF_NULL_ROW; 3460 ifNullRow.pLeft = pCopy; 3461 ifNullRow.iTable = pSubst->iNewTable; 3462 pCopy = &ifNullRow; 3463 } 3464 pNew = sqlite3ExprDup(db, pCopy, 0); 3465 if( pNew && pSubst->isLeftJoin ){ 3466 ExprSetProperty(pNew, EP_CanBeNull); 3467 } 3468 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3469 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3470 ExprSetProperty(pNew, EP_FromJoin); 3471 } 3472 sqlite3ExprDelete(db, pExpr); 3473 pExpr = pNew; 3474 } 3475 } 3476 }else{ 3477 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3478 pExpr->iTable = pSubst->iNewTable; 3479 } 3480 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3481 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3482 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3483 substSelect(pSubst, pExpr->x.pSelect, 1); 3484 }else{ 3485 substExprList(pSubst, pExpr->x.pList); 3486 } 3487 } 3488 return pExpr; 3489 } 3490 static void substExprList( 3491 SubstContext *pSubst, /* Description of the substitution */ 3492 ExprList *pList /* List to scan and in which to make substitutes */ 3493 ){ 3494 int i; 3495 if( pList==0 ) return; 3496 for(i=0; i<pList->nExpr; i++){ 3497 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3498 } 3499 } 3500 static void substSelect( 3501 SubstContext *pSubst, /* Description of the substitution */ 3502 Select *p, /* SELECT statement in which to make substitutions */ 3503 int doPrior /* Do substitutes on p->pPrior too */ 3504 ){ 3505 SrcList *pSrc; 3506 struct SrcList_item *pItem; 3507 int i; 3508 if( !p ) return; 3509 do{ 3510 substExprList(pSubst, p->pEList); 3511 substExprList(pSubst, p->pGroupBy); 3512 substExprList(pSubst, p->pOrderBy); 3513 p->pHaving = substExpr(pSubst, p->pHaving); 3514 p->pWhere = substExpr(pSubst, p->pWhere); 3515 pSrc = p->pSrc; 3516 assert( pSrc!=0 ); 3517 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3518 substSelect(pSubst, pItem->pSelect, 1); 3519 if( pItem->fg.isTabFunc ){ 3520 substExprList(pSubst, pItem->u1.pFuncArg); 3521 } 3522 } 3523 }while( doPrior && (p = p->pPrior)!=0 ); 3524 } 3525 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3526 3527 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3528 /* 3529 ** This routine attempts to flatten subqueries as a performance optimization. 3530 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3531 ** 3532 ** To understand the concept of flattening, consider the following 3533 ** query: 3534 ** 3535 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3536 ** 3537 ** The default way of implementing this query is to execute the 3538 ** subquery first and store the results in a temporary table, then 3539 ** run the outer query on that temporary table. This requires two 3540 ** passes over the data. Furthermore, because the temporary table 3541 ** has no indices, the WHERE clause on the outer query cannot be 3542 ** optimized. 3543 ** 3544 ** This routine attempts to rewrite queries such as the above into 3545 ** a single flat select, like this: 3546 ** 3547 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3548 ** 3549 ** The code generated for this simplification gives the same result 3550 ** but only has to scan the data once. And because indices might 3551 ** exist on the table t1, a complete scan of the data might be 3552 ** avoided. 3553 ** 3554 ** Flattening is subject to the following constraints: 3555 ** 3556 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3557 ** The subquery and the outer query cannot both be aggregates. 3558 ** 3559 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3560 ** (2) If the subquery is an aggregate then 3561 ** (2a) the outer query must not be a join and 3562 ** (2b) the outer query must not use subqueries 3563 ** other than the one FROM-clause subquery that is a candidate 3564 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3565 ** from 2015-02-09.) 3566 ** 3567 ** (3) If the subquery is the right operand of a LEFT JOIN then 3568 ** (3a) the subquery may not be a join and 3569 ** (3b) the FROM clause of the subquery may not contain a virtual 3570 ** table and 3571 ** (3c) the outer query may not be an aggregate. 3572 ** 3573 ** (4) The subquery can not be DISTINCT. 3574 ** 3575 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3576 ** sub-queries that were excluded from this optimization. Restriction 3577 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3578 ** 3579 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3580 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3581 ** 3582 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3583 ** A FROM clause, consider adding a FROM clause with the special 3584 ** table sqlite_once that consists of a single row containing a 3585 ** single NULL. 3586 ** 3587 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3588 ** 3589 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3590 ** 3591 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3592 ** accidently carried the comment forward until 2014-09-15. Original 3593 ** constraint: "If the subquery is aggregate then the outer query 3594 ** may not use LIMIT." 3595 ** 3596 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3597 ** 3598 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3599 ** a separate restriction deriving from ticket #350. 3600 ** 3601 ** (13) The subquery and outer query may not both use LIMIT. 3602 ** 3603 ** (14) The subquery may not use OFFSET. 3604 ** 3605 ** (15) If the outer query is part of a compound select, then the 3606 ** subquery may not use LIMIT. 3607 ** (See ticket #2339 and ticket [02a8e81d44]). 3608 ** 3609 ** (16) If the outer query is aggregate, then the subquery may not 3610 ** use ORDER BY. (Ticket #2942) This used to not matter 3611 ** until we introduced the group_concat() function. 3612 ** 3613 ** (17) If the subquery is a compound select, then 3614 ** (17a) all compound operators must be a UNION ALL, and 3615 ** (17b) no terms within the subquery compound may be aggregate 3616 ** or DISTINCT, and 3617 ** (17c) every term within the subquery compound must have a FROM clause 3618 ** (17d) the outer query may not be 3619 ** (17d1) aggregate, or 3620 ** (17d2) DISTINCT, or 3621 ** (17d3) a join. 3622 ** 3623 ** The parent and sub-query may contain WHERE clauses. Subject to 3624 ** rules (11), (13) and (14), they may also contain ORDER BY, 3625 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3626 ** operator other than UNION ALL because all the other compound 3627 ** operators have an implied DISTINCT which is disallowed by 3628 ** restriction (4). 3629 ** 3630 ** Also, each component of the sub-query must return the same number 3631 ** of result columns. This is actually a requirement for any compound 3632 ** SELECT statement, but all the code here does is make sure that no 3633 ** such (illegal) sub-query is flattened. The caller will detect the 3634 ** syntax error and return a detailed message. 3635 ** 3636 ** (18) If the sub-query is a compound select, then all terms of the 3637 ** ORDER BY clause of the parent must be simple references to 3638 ** columns of the sub-query. 3639 ** 3640 ** (19) If the subquery uses LIMIT then the outer query may not 3641 ** have a WHERE clause. 3642 ** 3643 ** (20) If the sub-query is a compound select, then it must not use 3644 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3645 ** somewhat by saying that the terms of the ORDER BY clause must 3646 ** appear as unmodified result columns in the outer query. But we 3647 ** have other optimizations in mind to deal with that case. 3648 ** 3649 ** (21) If the subquery uses LIMIT then the outer query may not be 3650 ** DISTINCT. (See ticket [752e1646fc]). 3651 ** 3652 ** (22) The subquery may not be a recursive CTE. 3653 ** 3654 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3655 ** a recursive CTE, then the sub-query may not be a compound query. 3656 ** This restriction is because transforming the 3657 ** parent to a compound query confuses the code that handles 3658 ** recursive queries in multiSelect(). 3659 ** 3660 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3661 ** The subquery may not be an aggregate that uses the built-in min() or 3662 ** or max() functions. (Without this restriction, a query like: 3663 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3664 ** return the value X for which Y was maximal.) 3665 ** 3666 ** (25) If either the subquery or the parent query contains a window 3667 ** function in the select list or ORDER BY clause, flattening 3668 ** is not attempted. 3669 ** 3670 ** 3671 ** In this routine, the "p" parameter is a pointer to the outer query. 3672 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3673 ** uses aggregates. 3674 ** 3675 ** If flattening is not attempted, this routine is a no-op and returns 0. 3676 ** If flattening is attempted this routine returns 1. 3677 ** 3678 ** All of the expression analysis must occur on both the outer query and 3679 ** the subquery before this routine runs. 3680 */ 3681 static int flattenSubquery( 3682 Parse *pParse, /* Parsing context */ 3683 Select *p, /* The parent or outer SELECT statement */ 3684 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3685 int isAgg /* True if outer SELECT uses aggregate functions */ 3686 ){ 3687 const char *zSavedAuthContext = pParse->zAuthContext; 3688 Select *pParent; /* Current UNION ALL term of the other query */ 3689 Select *pSub; /* The inner query or "subquery" */ 3690 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3691 SrcList *pSrc; /* The FROM clause of the outer query */ 3692 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3693 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3694 int iNewParent = -1;/* Replacement table for iParent */ 3695 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3696 int i; /* Loop counter */ 3697 Expr *pWhere; /* The WHERE clause */ 3698 struct SrcList_item *pSubitem; /* The subquery */ 3699 sqlite3 *db = pParse->db; 3700 3701 /* Check to see if flattening is permitted. Return 0 if not. 3702 */ 3703 assert( p!=0 ); 3704 assert( p->pPrior==0 ); 3705 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3706 pSrc = p->pSrc; 3707 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3708 pSubitem = &pSrc->a[iFrom]; 3709 iParent = pSubitem->iCursor; 3710 pSub = pSubitem->pSelect; 3711 assert( pSub!=0 ); 3712 3713 #ifndef SQLITE_OMIT_WINDOWFUNC 3714 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3715 #endif 3716 3717 pSubSrc = pSub->pSrc; 3718 assert( pSubSrc ); 3719 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3720 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3721 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3722 ** became arbitrary expressions, we were forced to add restrictions (13) 3723 ** and (14). */ 3724 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3725 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3726 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3727 return 0; /* Restriction (15) */ 3728 } 3729 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3730 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3731 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3732 return 0; /* Restrictions (8)(9) */ 3733 } 3734 if( p->pOrderBy && pSub->pOrderBy ){ 3735 return 0; /* Restriction (11) */ 3736 } 3737 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3738 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3739 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3740 return 0; /* Restriction (21) */ 3741 } 3742 if( pSub->selFlags & (SF_Recursive) ){ 3743 return 0; /* Restrictions (22) */ 3744 } 3745 3746 /* 3747 ** If the subquery is the right operand of a LEFT JOIN, then the 3748 ** subquery may not be a join itself (3a). Example of why this is not 3749 ** allowed: 3750 ** 3751 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3752 ** 3753 ** If we flatten the above, we would get 3754 ** 3755 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3756 ** 3757 ** which is not at all the same thing. 3758 ** 3759 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3760 ** query cannot be an aggregate. (3c) This is an artifact of the way 3761 ** aggregates are processed - there is no mechanism to determine if 3762 ** the LEFT JOIN table should be all-NULL. 3763 ** 3764 ** See also tickets #306, #350, and #3300. 3765 */ 3766 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3767 isLeftJoin = 1; 3768 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3769 /* (3a) (3c) (3b) */ 3770 return 0; 3771 } 3772 } 3773 #ifdef SQLITE_EXTRA_IFNULLROW 3774 else if( iFrom>0 && !isAgg ){ 3775 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3776 ** every reference to any result column from subquery in a join, even 3777 ** though they are not necessary. This will stress-test the OP_IfNullRow 3778 ** opcode. */ 3779 isLeftJoin = -1; 3780 } 3781 #endif 3782 3783 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3784 ** use only the UNION ALL operator. And none of the simple select queries 3785 ** that make up the compound SELECT are allowed to be aggregate or distinct 3786 ** queries. 3787 */ 3788 if( pSub->pPrior ){ 3789 if( pSub->pOrderBy ){ 3790 return 0; /* Restriction (20) */ 3791 } 3792 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3793 return 0; /* (17d1), (17d2), or (17d3) */ 3794 } 3795 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3796 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3797 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3798 assert( pSub->pSrc!=0 ); 3799 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3800 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3801 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3802 || pSub1->pSrc->nSrc<1 /* (17c) */ 3803 ){ 3804 return 0; 3805 } 3806 testcase( pSub1->pSrc->nSrc>1 ); 3807 } 3808 3809 /* Restriction (18). */ 3810 if( p->pOrderBy ){ 3811 int ii; 3812 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3813 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3814 } 3815 } 3816 } 3817 3818 /* Ex-restriction (23): 3819 ** The only way that the recursive part of a CTE can contain a compound 3820 ** subquery is for the subquery to be one term of a join. But if the 3821 ** subquery is a join, then the flattening has already been stopped by 3822 ** restriction (17d3) 3823 */ 3824 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3825 3826 /***** If we reach this point, flattening is permitted. *****/ 3827 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3828 pSub->selId, pSub, iFrom)); 3829 3830 /* Authorize the subquery */ 3831 pParse->zAuthContext = pSubitem->zName; 3832 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3833 testcase( i==SQLITE_DENY ); 3834 pParse->zAuthContext = zSavedAuthContext; 3835 3836 /* If the sub-query is a compound SELECT statement, then (by restrictions 3837 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3838 ** be of the form: 3839 ** 3840 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3841 ** 3842 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3843 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3844 ** OFFSET clauses and joins them to the left-hand-side of the original 3845 ** using UNION ALL operators. In this case N is the number of simple 3846 ** select statements in the compound sub-query. 3847 ** 3848 ** Example: 3849 ** 3850 ** SELECT a+1 FROM ( 3851 ** SELECT x FROM tab 3852 ** UNION ALL 3853 ** SELECT y FROM tab 3854 ** UNION ALL 3855 ** SELECT abs(z*2) FROM tab2 3856 ** ) WHERE a!=5 ORDER BY 1 3857 ** 3858 ** Transformed into: 3859 ** 3860 ** SELECT x+1 FROM tab WHERE x+1!=5 3861 ** UNION ALL 3862 ** SELECT y+1 FROM tab WHERE y+1!=5 3863 ** UNION ALL 3864 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3865 ** ORDER BY 1 3866 ** 3867 ** We call this the "compound-subquery flattening". 3868 */ 3869 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3870 Select *pNew; 3871 ExprList *pOrderBy = p->pOrderBy; 3872 Expr *pLimit = p->pLimit; 3873 Select *pPrior = p->pPrior; 3874 p->pOrderBy = 0; 3875 p->pSrc = 0; 3876 p->pPrior = 0; 3877 p->pLimit = 0; 3878 pNew = sqlite3SelectDup(db, p, 0); 3879 p->pLimit = pLimit; 3880 p->pOrderBy = pOrderBy; 3881 p->pSrc = pSrc; 3882 p->op = TK_ALL; 3883 if( pNew==0 ){ 3884 p->pPrior = pPrior; 3885 }else{ 3886 pNew->pPrior = pPrior; 3887 if( pPrior ) pPrior->pNext = pNew; 3888 pNew->pNext = p; 3889 p->pPrior = pNew; 3890 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3891 " creates %u as peer\n",pNew->selId)); 3892 } 3893 if( db->mallocFailed ) return 1; 3894 } 3895 3896 /* Begin flattening the iFrom-th entry of the FROM clause 3897 ** in the outer query. 3898 */ 3899 pSub = pSub1 = pSubitem->pSelect; 3900 3901 /* Delete the transient table structure associated with the 3902 ** subquery 3903 */ 3904 sqlite3DbFree(db, pSubitem->zDatabase); 3905 sqlite3DbFree(db, pSubitem->zName); 3906 sqlite3DbFree(db, pSubitem->zAlias); 3907 pSubitem->zDatabase = 0; 3908 pSubitem->zName = 0; 3909 pSubitem->zAlias = 0; 3910 pSubitem->pSelect = 0; 3911 3912 /* Defer deleting the Table object associated with the 3913 ** subquery until code generation is 3914 ** complete, since there may still exist Expr.pTab entries that 3915 ** refer to the subquery even after flattening. Ticket #3346. 3916 ** 3917 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3918 */ 3919 if( ALWAYS(pSubitem->pTab!=0) ){ 3920 Table *pTabToDel = pSubitem->pTab; 3921 if( pTabToDel->nTabRef==1 ){ 3922 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3923 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3924 pToplevel->pZombieTab = pTabToDel; 3925 }else{ 3926 pTabToDel->nTabRef--; 3927 } 3928 pSubitem->pTab = 0; 3929 } 3930 3931 /* The following loop runs once for each term in a compound-subquery 3932 ** flattening (as described above). If we are doing a different kind 3933 ** of flattening - a flattening other than a compound-subquery flattening - 3934 ** then this loop only runs once. 3935 ** 3936 ** This loop moves all of the FROM elements of the subquery into the 3937 ** the FROM clause of the outer query. Before doing this, remember 3938 ** the cursor number for the original outer query FROM element in 3939 ** iParent. The iParent cursor will never be used. Subsequent code 3940 ** will scan expressions looking for iParent references and replace 3941 ** those references with expressions that resolve to the subquery FROM 3942 ** elements we are now copying in. 3943 */ 3944 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3945 int nSubSrc; 3946 u8 jointype = 0; 3947 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3948 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3949 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3950 3951 if( pSrc ){ 3952 assert( pParent==p ); /* First time through the loop */ 3953 jointype = pSubitem->fg.jointype; 3954 }else{ 3955 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3956 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3957 if( pSrc==0 ){ 3958 assert( db->mallocFailed ); 3959 break; 3960 } 3961 } 3962 3963 /* The subquery uses a single slot of the FROM clause of the outer 3964 ** query. If the subquery has more than one element in its FROM clause, 3965 ** then expand the outer query to make space for it to hold all elements 3966 ** of the subquery. 3967 ** 3968 ** Example: 3969 ** 3970 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3971 ** 3972 ** The outer query has 3 slots in its FROM clause. One slot of the 3973 ** outer query (the middle slot) is used by the subquery. The next 3974 ** block of code will expand the outer query FROM clause to 4 slots. 3975 ** The middle slot is expanded to two slots in order to make space 3976 ** for the two elements in the FROM clause of the subquery. 3977 */ 3978 if( nSubSrc>1 ){ 3979 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3980 if( db->mallocFailed ){ 3981 break; 3982 } 3983 } 3984 3985 /* Transfer the FROM clause terms from the subquery into the 3986 ** outer query. 3987 */ 3988 for(i=0; i<nSubSrc; i++){ 3989 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3990 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3991 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3992 iNewParent = pSubSrc->a[i].iCursor; 3993 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3994 } 3995 pSrc->a[iFrom].fg.jointype = jointype; 3996 3997 /* Now begin substituting subquery result set expressions for 3998 ** references to the iParent in the outer query. 3999 ** 4000 ** Example: 4001 ** 4002 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4003 ** \ \_____________ subquery __________/ / 4004 ** \_____________________ outer query ______________________________/ 4005 ** 4006 ** We look at every expression in the outer query and every place we see 4007 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4008 */ 4009 if( pSub->pOrderBy ){ 4010 /* At this point, any non-zero iOrderByCol values indicate that the 4011 ** ORDER BY column expression is identical to the iOrderByCol'th 4012 ** expression returned by SELECT statement pSub. Since these values 4013 ** do not necessarily correspond to columns in SELECT statement pParent, 4014 ** zero them before transfering the ORDER BY clause. 4015 ** 4016 ** Not doing this may cause an error if a subsequent call to this 4017 ** function attempts to flatten a compound sub-query into pParent 4018 ** (the only way this can happen is if the compound sub-query is 4019 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4020 ExprList *pOrderBy = pSub->pOrderBy; 4021 for(i=0; i<pOrderBy->nExpr; i++){ 4022 pOrderBy->a[i].u.x.iOrderByCol = 0; 4023 } 4024 assert( pParent->pOrderBy==0 ); 4025 pParent->pOrderBy = pOrderBy; 4026 pSub->pOrderBy = 0; 4027 } 4028 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 4029 if( isLeftJoin>0 ){ 4030 setJoinExpr(pWhere, iNewParent); 4031 } 4032 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 4033 if( db->mallocFailed==0 ){ 4034 SubstContext x; 4035 x.pParse = pParse; 4036 x.iTable = iParent; 4037 x.iNewTable = iNewParent; 4038 x.isLeftJoin = isLeftJoin; 4039 x.pEList = pSub->pEList; 4040 substSelect(&x, pParent, 0); 4041 } 4042 4043 /* The flattened query is distinct if either the inner or the 4044 ** outer query is distinct. 4045 */ 4046 pParent->selFlags |= pSub->selFlags & SF_Distinct; 4047 4048 /* 4049 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4050 ** 4051 ** One is tempted to try to add a and b to combine the limits. But this 4052 ** does not work if either limit is negative. 4053 */ 4054 if( pSub->pLimit ){ 4055 pParent->pLimit = pSub->pLimit; 4056 pSub->pLimit = 0; 4057 } 4058 } 4059 4060 /* Finially, delete what is left of the subquery and return 4061 ** success. 4062 */ 4063 sqlite3SelectDelete(db, pSub1); 4064 4065 #if SELECTTRACE_ENABLED 4066 if( sqlite3SelectTrace & 0x100 ){ 4067 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4068 sqlite3TreeViewSelect(0, p, 0); 4069 } 4070 #endif 4071 4072 return 1; 4073 } 4074 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4075 4076 /* 4077 ** A structure to keep track of all of the column values that are fixed to 4078 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4079 */ 4080 typedef struct WhereConst WhereConst; 4081 struct WhereConst { 4082 Parse *pParse; /* Parsing context */ 4083 int nConst; /* Number for COLUMN=CONSTANT terms */ 4084 int nChng; /* Number of times a constant is propagated */ 4085 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4086 }; 4087 4088 /* 4089 ** Add a new entry to the pConst object. Except, do not add duplicate 4090 ** pColumn entires. 4091 */ 4092 static void constInsert( 4093 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4094 Expr *pColumn, /* The COLUMN part of the constraint */ 4095 Expr *pValue /* The VALUE part of the constraint */ 4096 ){ 4097 int i; 4098 assert( pColumn->op==TK_COLUMN ); 4099 4100 /* 2018-10-25 ticket [cf5ed20f] 4101 ** Make sure the same pColumn is not inserted more than once */ 4102 for(i=0; i<pConst->nConst; i++){ 4103 const Expr *pExpr = pConst->apExpr[i*2]; 4104 assert( pExpr->op==TK_COLUMN ); 4105 if( pExpr->iTable==pColumn->iTable 4106 && pExpr->iColumn==pColumn->iColumn 4107 ){ 4108 return; /* Already present. Return without doing anything. */ 4109 } 4110 } 4111 4112 pConst->nConst++; 4113 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4114 pConst->nConst*2*sizeof(Expr*)); 4115 if( pConst->apExpr==0 ){ 4116 pConst->nConst = 0; 4117 }else{ 4118 if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft; 4119 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4120 pConst->apExpr[pConst->nConst*2-1] = pValue; 4121 } 4122 } 4123 4124 /* 4125 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4126 ** is a constant expression and where the term must be true because it 4127 ** is part of the AND-connected terms of the expression. For each term 4128 ** found, add it to the pConst structure. 4129 */ 4130 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4131 Expr *pRight, *pLeft; 4132 if( pExpr==0 ) return; 4133 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4134 if( pExpr->op==TK_AND ){ 4135 findConstInWhere(pConst, pExpr->pRight); 4136 findConstInWhere(pConst, pExpr->pLeft); 4137 return; 4138 } 4139 if( pExpr->op!=TK_EQ ) return; 4140 pRight = pExpr->pRight; 4141 pLeft = pExpr->pLeft; 4142 assert( pRight!=0 ); 4143 assert( pLeft!=0 ); 4144 if( pRight->op==TK_COLUMN 4145 && !ExprHasProperty(pRight, EP_FixedCol) 4146 && sqlite3ExprIsConstant(pLeft) 4147 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4148 ){ 4149 constInsert(pConst, pRight, pLeft); 4150 }else 4151 if( pLeft->op==TK_COLUMN 4152 && !ExprHasProperty(pLeft, EP_FixedCol) 4153 && sqlite3ExprIsConstant(pRight) 4154 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4155 ){ 4156 constInsert(pConst, pLeft, pRight); 4157 } 4158 } 4159 4160 /* 4161 ** This is a Walker expression callback. pExpr is a candidate expression 4162 ** to be replaced by a value. If pExpr is equivalent to one of the 4163 ** columns named in pWalker->u.pConst, then overwrite it with its 4164 ** corresponding value. 4165 */ 4166 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4167 int i; 4168 WhereConst *pConst; 4169 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4170 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue; 4171 pConst = pWalker->u.pConst; 4172 for(i=0; i<pConst->nConst; i++){ 4173 Expr *pColumn = pConst->apExpr[i*2]; 4174 if( pColumn==pExpr ) continue; 4175 if( pColumn->iTable!=pExpr->iTable ) continue; 4176 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4177 /* A match is found. Add the EP_FixedCol property */ 4178 pConst->nChng++; 4179 ExprClearProperty(pExpr, EP_Leaf); 4180 ExprSetProperty(pExpr, EP_FixedCol); 4181 assert( pExpr->pLeft==0 ); 4182 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4183 break; 4184 } 4185 return WRC_Prune; 4186 } 4187 4188 /* 4189 ** The WHERE-clause constant propagation optimization. 4190 ** 4191 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4192 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level 4193 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN) 4194 ** then throughout the query replace all other occurrences of COLUMN 4195 ** with CONSTANT within the WHERE clause. 4196 ** 4197 ** For example, the query: 4198 ** 4199 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4200 ** 4201 ** Is transformed into 4202 ** 4203 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4204 ** 4205 ** Return true if any transformations where made and false if not. 4206 ** 4207 ** Implementation note: Constant propagation is tricky due to affinity 4208 ** and collating sequence interactions. Consider this example: 4209 ** 4210 ** CREATE TABLE t1(a INT,b TEXT); 4211 ** INSERT INTO t1 VALUES(123,'0123'); 4212 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4213 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4214 ** 4215 ** The two SELECT statements above should return different answers. b=a 4216 ** is alway true because the comparison uses numeric affinity, but b=123 4217 ** is false because it uses text affinity and '0123' is not the same as '123'. 4218 ** To work around this, the expression tree is not actually changed from 4219 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4220 ** and the "123" value is hung off of the pLeft pointer. Code generator 4221 ** routines know to generate the constant "123" instead of looking up the 4222 ** column value. Also, to avoid collation problems, this optimization is 4223 ** only attempted if the "a=123" term uses the default BINARY collation. 4224 */ 4225 static int propagateConstants( 4226 Parse *pParse, /* The parsing context */ 4227 Select *p /* The query in which to propagate constants */ 4228 ){ 4229 WhereConst x; 4230 Walker w; 4231 int nChng = 0; 4232 x.pParse = pParse; 4233 do{ 4234 x.nConst = 0; 4235 x.nChng = 0; 4236 x.apExpr = 0; 4237 findConstInWhere(&x, p->pWhere); 4238 if( x.nConst ){ 4239 memset(&w, 0, sizeof(w)); 4240 w.pParse = pParse; 4241 w.xExprCallback = propagateConstantExprRewrite; 4242 w.xSelectCallback = sqlite3SelectWalkNoop; 4243 w.xSelectCallback2 = 0; 4244 w.walkerDepth = 0; 4245 w.u.pConst = &x; 4246 sqlite3WalkExpr(&w, p->pWhere); 4247 sqlite3DbFree(x.pParse->db, x.apExpr); 4248 nChng += x.nChng; 4249 } 4250 }while( x.nChng ); 4251 return nChng; 4252 } 4253 4254 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4255 /* 4256 ** Make copies of relevant WHERE clause terms of the outer query into 4257 ** the WHERE clause of subquery. Example: 4258 ** 4259 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4260 ** 4261 ** Transformed into: 4262 ** 4263 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4264 ** WHERE x=5 AND y=10; 4265 ** 4266 ** The hope is that the terms added to the inner query will make it more 4267 ** efficient. 4268 ** 4269 ** Do not attempt this optimization if: 4270 ** 4271 ** (1) (** This restriction was removed on 2017-09-29. We used to 4272 ** disallow this optimization for aggregate subqueries, but now 4273 ** it is allowed by putting the extra terms on the HAVING clause. 4274 ** The added HAVING clause is pointless if the subquery lacks 4275 ** a GROUP BY clause. But such a HAVING clause is also harmless 4276 ** so there does not appear to be any reason to add extra logic 4277 ** to suppress it. **) 4278 ** 4279 ** (2) The inner query is the recursive part of a common table expression. 4280 ** 4281 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4282 ** clause would change the meaning of the LIMIT). 4283 ** 4284 ** (4) The inner query is the right operand of a LEFT JOIN and the 4285 ** expression to be pushed down does not come from the ON clause 4286 ** on that LEFT JOIN. 4287 ** 4288 ** (5) The WHERE clause expression originates in the ON or USING clause 4289 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4290 ** left join. An example: 4291 ** 4292 ** SELECT * 4293 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4294 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4295 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4296 ** 4297 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4298 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4299 ** then the (1,1,NULL) row would be suppressed. 4300 ** 4301 ** (6) The inner query features one or more window-functions (since 4302 ** changes to the WHERE clause of the inner query could change the 4303 ** window over which window functions are calculated). 4304 ** 4305 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4306 ** terms are duplicated into the subquery. 4307 */ 4308 static int pushDownWhereTerms( 4309 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4310 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4311 Expr *pWhere, /* The WHERE clause of the outer query */ 4312 int iCursor, /* Cursor number of the subquery */ 4313 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4314 ){ 4315 Expr *pNew; 4316 int nChng = 0; 4317 if( pWhere==0 ) return 0; 4318 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4319 4320 #ifndef SQLITE_OMIT_WINDOWFUNC 4321 if( pSubq->pWin ) return 0; /* restriction (6) */ 4322 #endif 4323 4324 #ifdef SQLITE_DEBUG 4325 /* Only the first term of a compound can have a WITH clause. But make 4326 ** sure no other terms are marked SF_Recursive in case something changes 4327 ** in the future. 4328 */ 4329 { 4330 Select *pX; 4331 for(pX=pSubq; pX; pX=pX->pPrior){ 4332 assert( (pX->selFlags & (SF_Recursive))==0 ); 4333 } 4334 } 4335 #endif 4336 4337 if( pSubq->pLimit!=0 ){ 4338 return 0; /* restriction (3) */ 4339 } 4340 while( pWhere->op==TK_AND ){ 4341 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4342 iCursor, isLeftJoin); 4343 pWhere = pWhere->pLeft; 4344 } 4345 if( isLeftJoin 4346 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4347 || pWhere->iRightJoinTable!=iCursor) 4348 ){ 4349 return 0; /* restriction (4) */ 4350 } 4351 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4352 return 0; /* restriction (5) */ 4353 } 4354 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4355 nChng++; 4356 while( pSubq ){ 4357 SubstContext x; 4358 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4359 unsetJoinExpr(pNew, -1); 4360 x.pParse = pParse; 4361 x.iTable = iCursor; 4362 x.iNewTable = iCursor; 4363 x.isLeftJoin = 0; 4364 x.pEList = pSubq->pEList; 4365 pNew = substExpr(&x, pNew); 4366 if( pSubq->selFlags & SF_Aggregate ){ 4367 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4368 }else{ 4369 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4370 } 4371 pSubq = pSubq->pPrior; 4372 } 4373 } 4374 return nChng; 4375 } 4376 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4377 4378 /* 4379 ** The pFunc is the only aggregate function in the query. Check to see 4380 ** if the query is a candidate for the min/max optimization. 4381 ** 4382 ** If the query is a candidate for the min/max optimization, then set 4383 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4384 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4385 ** whether pFunc is a min() or max() function. 4386 ** 4387 ** If the query is not a candidate for the min/max optimization, return 4388 ** WHERE_ORDERBY_NORMAL (which must be zero). 4389 ** 4390 ** This routine must be called after aggregate functions have been 4391 ** located but before their arguments have been subjected to aggregate 4392 ** analysis. 4393 */ 4394 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4395 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4396 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4397 const char *zFunc; /* Name of aggregate function pFunc */ 4398 ExprList *pOrderBy; 4399 u8 sortOrder; 4400 4401 assert( *ppMinMax==0 ); 4402 assert( pFunc->op==TK_AGG_FUNCTION ); 4403 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4404 zFunc = pFunc->u.zToken; 4405 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4406 eRet = WHERE_ORDERBY_MIN; 4407 sortOrder = SQLITE_SO_ASC; 4408 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4409 eRet = WHERE_ORDERBY_MAX; 4410 sortOrder = SQLITE_SO_DESC; 4411 }else{ 4412 return eRet; 4413 } 4414 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4415 assert( pOrderBy!=0 || db->mallocFailed ); 4416 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4417 return eRet; 4418 } 4419 4420 /* 4421 ** The select statement passed as the first argument is an aggregate query. 4422 ** The second argument is the associated aggregate-info object. This 4423 ** function tests if the SELECT is of the form: 4424 ** 4425 ** SELECT count(*) FROM <tbl> 4426 ** 4427 ** where table is a database table, not a sub-select or view. If the query 4428 ** does match this pattern, then a pointer to the Table object representing 4429 ** <tbl> is returned. Otherwise, 0 is returned. 4430 */ 4431 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4432 Table *pTab; 4433 Expr *pExpr; 4434 4435 assert( !p->pGroupBy ); 4436 4437 if( p->pWhere || p->pEList->nExpr!=1 4438 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4439 ){ 4440 return 0; 4441 } 4442 pTab = p->pSrc->a[0].pTab; 4443 pExpr = p->pEList->a[0].pExpr; 4444 assert( pTab && !pTab->pSelect && pExpr ); 4445 4446 if( IsVirtual(pTab) ) return 0; 4447 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4448 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4449 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4450 if( pExpr->flags&EP_Distinct ) return 0; 4451 4452 return pTab; 4453 } 4454 4455 /* 4456 ** If the source-list item passed as an argument was augmented with an 4457 ** INDEXED BY clause, then try to locate the specified index. If there 4458 ** was such a clause and the named index cannot be found, return 4459 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4460 ** pFrom->pIndex and return SQLITE_OK. 4461 */ 4462 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4463 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4464 Table *pTab = pFrom->pTab; 4465 char *zIndexedBy = pFrom->u1.zIndexedBy; 4466 Index *pIdx; 4467 for(pIdx=pTab->pIndex; 4468 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4469 pIdx=pIdx->pNext 4470 ); 4471 if( !pIdx ){ 4472 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4473 pParse->checkSchema = 1; 4474 return SQLITE_ERROR; 4475 } 4476 pFrom->pIBIndex = pIdx; 4477 } 4478 return SQLITE_OK; 4479 } 4480 /* 4481 ** Detect compound SELECT statements that use an ORDER BY clause with 4482 ** an alternative collating sequence. 4483 ** 4484 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4485 ** 4486 ** These are rewritten as a subquery: 4487 ** 4488 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4489 ** ORDER BY ... COLLATE ... 4490 ** 4491 ** This transformation is necessary because the multiSelectOrderBy() routine 4492 ** above that generates the code for a compound SELECT with an ORDER BY clause 4493 ** uses a merge algorithm that requires the same collating sequence on the 4494 ** result columns as on the ORDER BY clause. See ticket 4495 ** http://www.sqlite.org/src/info/6709574d2a 4496 ** 4497 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4498 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4499 ** there are COLLATE terms in the ORDER BY. 4500 */ 4501 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4502 int i; 4503 Select *pNew; 4504 Select *pX; 4505 sqlite3 *db; 4506 struct ExprList_item *a; 4507 SrcList *pNewSrc; 4508 Parse *pParse; 4509 Token dummy; 4510 4511 if( p->pPrior==0 ) return WRC_Continue; 4512 if( p->pOrderBy==0 ) return WRC_Continue; 4513 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4514 if( pX==0 ) return WRC_Continue; 4515 a = p->pOrderBy->a; 4516 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4517 if( a[i].pExpr->flags & EP_Collate ) break; 4518 } 4519 if( i<0 ) return WRC_Continue; 4520 4521 /* If we reach this point, that means the transformation is required. */ 4522 4523 pParse = pWalker->pParse; 4524 db = pParse->db; 4525 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4526 if( pNew==0 ) return WRC_Abort; 4527 memset(&dummy, 0, sizeof(dummy)); 4528 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4529 if( pNewSrc==0 ) return WRC_Abort; 4530 *pNew = *p; 4531 p->pSrc = pNewSrc; 4532 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4533 p->op = TK_SELECT; 4534 p->pWhere = 0; 4535 pNew->pGroupBy = 0; 4536 pNew->pHaving = 0; 4537 pNew->pOrderBy = 0; 4538 p->pPrior = 0; 4539 p->pNext = 0; 4540 p->pWith = 0; 4541 p->selFlags &= ~SF_Compound; 4542 assert( (p->selFlags & SF_Converted)==0 ); 4543 p->selFlags |= SF_Converted; 4544 assert( pNew->pPrior!=0 ); 4545 pNew->pPrior->pNext = pNew; 4546 pNew->pLimit = 0; 4547 return WRC_Continue; 4548 } 4549 4550 /* 4551 ** Check to see if the FROM clause term pFrom has table-valued function 4552 ** arguments. If it does, leave an error message in pParse and return 4553 ** non-zero, since pFrom is not allowed to be a table-valued function. 4554 */ 4555 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4556 if( pFrom->fg.isTabFunc ){ 4557 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4558 return 1; 4559 } 4560 return 0; 4561 } 4562 4563 #ifndef SQLITE_OMIT_CTE 4564 /* 4565 ** Argument pWith (which may be NULL) points to a linked list of nested 4566 ** WITH contexts, from inner to outermost. If the table identified by 4567 ** FROM clause element pItem is really a common-table-expression (CTE) 4568 ** then return a pointer to the CTE definition for that table. Otherwise 4569 ** return NULL. 4570 ** 4571 ** If a non-NULL value is returned, set *ppContext to point to the With 4572 ** object that the returned CTE belongs to. 4573 */ 4574 static struct Cte *searchWith( 4575 With *pWith, /* Current innermost WITH clause */ 4576 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4577 With **ppContext /* OUT: WITH clause return value belongs to */ 4578 ){ 4579 const char *zName; 4580 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4581 With *p; 4582 for(p=pWith; p; p=p->pOuter){ 4583 int i; 4584 for(i=0; i<p->nCte; i++){ 4585 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4586 *ppContext = p; 4587 return &p->a[i]; 4588 } 4589 } 4590 } 4591 } 4592 return 0; 4593 } 4594 4595 /* The code generator maintains a stack of active WITH clauses 4596 ** with the inner-most WITH clause being at the top of the stack. 4597 ** 4598 ** This routine pushes the WITH clause passed as the second argument 4599 ** onto the top of the stack. If argument bFree is true, then this 4600 ** WITH clause will never be popped from the stack. In this case it 4601 ** should be freed along with the Parse object. In other cases, when 4602 ** bFree==0, the With object will be freed along with the SELECT 4603 ** statement with which it is associated. 4604 */ 4605 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4606 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4607 if( pWith ){ 4608 assert( pParse->pWith!=pWith ); 4609 pWith->pOuter = pParse->pWith; 4610 pParse->pWith = pWith; 4611 if( bFree ) pParse->pWithToFree = pWith; 4612 } 4613 } 4614 4615 /* 4616 ** This function checks if argument pFrom refers to a CTE declared by 4617 ** a WITH clause on the stack currently maintained by the parser. And, 4618 ** if currently processing a CTE expression, if it is a recursive 4619 ** reference to the current CTE. 4620 ** 4621 ** If pFrom falls into either of the two categories above, pFrom->pTab 4622 ** and other fields are populated accordingly. The caller should check 4623 ** (pFrom->pTab!=0) to determine whether or not a successful match 4624 ** was found. 4625 ** 4626 ** Whether or not a match is found, SQLITE_OK is returned if no error 4627 ** occurs. If an error does occur, an error message is stored in the 4628 ** parser and some error code other than SQLITE_OK returned. 4629 */ 4630 static int withExpand( 4631 Walker *pWalker, 4632 struct SrcList_item *pFrom 4633 ){ 4634 Parse *pParse = pWalker->pParse; 4635 sqlite3 *db = pParse->db; 4636 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4637 With *pWith; /* WITH clause that pCte belongs to */ 4638 4639 assert( pFrom->pTab==0 ); 4640 4641 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4642 if( pCte ){ 4643 Table *pTab; 4644 ExprList *pEList; 4645 Select *pSel; 4646 Select *pLeft; /* Left-most SELECT statement */ 4647 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4648 With *pSavedWith; /* Initial value of pParse->pWith */ 4649 4650 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4651 ** recursive reference to CTE pCte. Leave an error in pParse and return 4652 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4653 ** In this case, proceed. */ 4654 if( pCte->zCteErr ){ 4655 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4656 return SQLITE_ERROR; 4657 } 4658 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4659 4660 assert( pFrom->pTab==0 ); 4661 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4662 if( pTab==0 ) return WRC_Abort; 4663 pTab->nTabRef = 1; 4664 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4665 pTab->iPKey = -1; 4666 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4667 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4668 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4669 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4670 assert( pFrom->pSelect ); 4671 4672 /* Check if this is a recursive CTE. */ 4673 pSel = pFrom->pSelect; 4674 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4675 if( bMayRecursive ){ 4676 int i; 4677 SrcList *pSrc = pFrom->pSelect->pSrc; 4678 for(i=0; i<pSrc->nSrc; i++){ 4679 struct SrcList_item *pItem = &pSrc->a[i]; 4680 if( pItem->zDatabase==0 4681 && pItem->zName!=0 4682 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4683 ){ 4684 pItem->pTab = pTab; 4685 pItem->fg.isRecursive = 1; 4686 pTab->nTabRef++; 4687 pSel->selFlags |= SF_Recursive; 4688 } 4689 } 4690 } 4691 4692 /* Only one recursive reference is permitted. */ 4693 if( pTab->nTabRef>2 ){ 4694 sqlite3ErrorMsg( 4695 pParse, "multiple references to recursive table: %s", pCte->zName 4696 ); 4697 return SQLITE_ERROR; 4698 } 4699 assert( pTab->nTabRef==1 || 4700 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4701 4702 pCte->zCteErr = "circular reference: %s"; 4703 pSavedWith = pParse->pWith; 4704 pParse->pWith = pWith; 4705 if( bMayRecursive ){ 4706 Select *pPrior = pSel->pPrior; 4707 assert( pPrior->pWith==0 ); 4708 pPrior->pWith = pSel->pWith; 4709 sqlite3WalkSelect(pWalker, pPrior); 4710 pPrior->pWith = 0; 4711 }else{ 4712 sqlite3WalkSelect(pWalker, pSel); 4713 } 4714 pParse->pWith = pWith; 4715 4716 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4717 pEList = pLeft->pEList; 4718 if( pCte->pCols ){ 4719 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4720 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4721 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4722 ); 4723 pParse->pWith = pSavedWith; 4724 return SQLITE_ERROR; 4725 } 4726 pEList = pCte->pCols; 4727 } 4728 4729 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4730 if( bMayRecursive ){ 4731 if( pSel->selFlags & SF_Recursive ){ 4732 pCte->zCteErr = "multiple recursive references: %s"; 4733 }else{ 4734 pCte->zCteErr = "recursive reference in a subquery: %s"; 4735 } 4736 sqlite3WalkSelect(pWalker, pSel); 4737 } 4738 pCte->zCteErr = 0; 4739 pParse->pWith = pSavedWith; 4740 } 4741 4742 return SQLITE_OK; 4743 } 4744 #endif 4745 4746 #ifndef SQLITE_OMIT_CTE 4747 /* 4748 ** If the SELECT passed as the second argument has an associated WITH 4749 ** clause, pop it from the stack stored as part of the Parse object. 4750 ** 4751 ** This function is used as the xSelectCallback2() callback by 4752 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4753 ** names and other FROM clause elements. 4754 */ 4755 static void selectPopWith(Walker *pWalker, Select *p){ 4756 Parse *pParse = pWalker->pParse; 4757 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4758 With *pWith = findRightmost(p)->pWith; 4759 if( pWith!=0 ){ 4760 assert( pParse->pWith==pWith ); 4761 pParse->pWith = pWith->pOuter; 4762 } 4763 } 4764 } 4765 #else 4766 #define selectPopWith 0 4767 #endif 4768 4769 /* 4770 ** The SrcList_item structure passed as the second argument represents a 4771 ** sub-query in the FROM clause of a SELECT statement. This function 4772 ** allocates and populates the SrcList_item.pTab object. If successful, 4773 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4774 ** SQLITE_NOMEM. 4775 */ 4776 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4777 Select *pSel = pFrom->pSelect; 4778 Table *pTab; 4779 4780 assert( pSel ); 4781 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4782 if( pTab==0 ) return SQLITE_NOMEM; 4783 pTab->nTabRef = 1; 4784 if( pFrom->zAlias ){ 4785 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4786 }else{ 4787 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4788 } 4789 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4790 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4791 pTab->iPKey = -1; 4792 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4793 pTab->tabFlags |= TF_Ephemeral; 4794 4795 return SQLITE_OK; 4796 } 4797 4798 /* 4799 ** This routine is a Walker callback for "expanding" a SELECT statement. 4800 ** "Expanding" means to do the following: 4801 ** 4802 ** (1) Make sure VDBE cursor numbers have been assigned to every 4803 ** element of the FROM clause. 4804 ** 4805 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4806 ** defines FROM clause. When views appear in the FROM clause, 4807 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4808 ** that implements the view. A copy is made of the view's SELECT 4809 ** statement so that we can freely modify or delete that statement 4810 ** without worrying about messing up the persistent representation 4811 ** of the view. 4812 ** 4813 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4814 ** on joins and the ON and USING clause of joins. 4815 ** 4816 ** (4) Scan the list of columns in the result set (pEList) looking 4817 ** for instances of the "*" operator or the TABLE.* operator. 4818 ** If found, expand each "*" to be every column in every table 4819 ** and TABLE.* to be every column in TABLE. 4820 ** 4821 */ 4822 static int selectExpander(Walker *pWalker, Select *p){ 4823 Parse *pParse = pWalker->pParse; 4824 int i, j, k; 4825 SrcList *pTabList; 4826 ExprList *pEList; 4827 struct SrcList_item *pFrom; 4828 sqlite3 *db = pParse->db; 4829 Expr *pE, *pRight, *pExpr; 4830 u16 selFlags = p->selFlags; 4831 u32 elistFlags = 0; 4832 4833 p->selFlags |= SF_Expanded; 4834 if( db->mallocFailed ){ 4835 return WRC_Abort; 4836 } 4837 assert( p->pSrc!=0 ); 4838 if( (selFlags & SF_Expanded)!=0 ){ 4839 return WRC_Prune; 4840 } 4841 pTabList = p->pSrc; 4842 pEList = p->pEList; 4843 sqlite3WithPush(pParse, p->pWith, 0); 4844 4845 /* Make sure cursor numbers have been assigned to all entries in 4846 ** the FROM clause of the SELECT statement. 4847 */ 4848 sqlite3SrcListAssignCursors(pParse, pTabList); 4849 4850 /* Look up every table named in the FROM clause of the select. If 4851 ** an entry of the FROM clause is a subquery instead of a table or view, 4852 ** then create a transient table structure to describe the subquery. 4853 */ 4854 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4855 Table *pTab; 4856 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4857 if( pFrom->fg.isRecursive ) continue; 4858 assert( pFrom->pTab==0 ); 4859 #ifndef SQLITE_OMIT_CTE 4860 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4861 if( pFrom->pTab ) {} else 4862 #endif 4863 if( pFrom->zName==0 ){ 4864 #ifndef SQLITE_OMIT_SUBQUERY 4865 Select *pSel = pFrom->pSelect; 4866 /* A sub-query in the FROM clause of a SELECT */ 4867 assert( pSel!=0 ); 4868 assert( pFrom->pTab==0 ); 4869 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4870 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4871 #endif 4872 }else{ 4873 /* An ordinary table or view name in the FROM clause */ 4874 assert( pFrom->pTab==0 ); 4875 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4876 if( pTab==0 ) return WRC_Abort; 4877 if( pTab->nTabRef>=0xffff ){ 4878 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4879 pTab->zName); 4880 pFrom->pTab = 0; 4881 return WRC_Abort; 4882 } 4883 pTab->nTabRef++; 4884 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4885 return WRC_Abort; 4886 } 4887 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4888 if( IsVirtual(pTab) || pTab->pSelect ){ 4889 i16 nCol; 4890 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4891 assert( pFrom->pSelect==0 ); 4892 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4893 nCol = pTab->nCol; 4894 pTab->nCol = -1; 4895 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4896 pTab->nCol = nCol; 4897 } 4898 #endif 4899 } 4900 4901 /* Locate the index named by the INDEXED BY clause, if any. */ 4902 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4903 return WRC_Abort; 4904 } 4905 } 4906 4907 /* Process NATURAL keywords, and ON and USING clauses of joins. 4908 */ 4909 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4910 return WRC_Abort; 4911 } 4912 4913 /* For every "*" that occurs in the column list, insert the names of 4914 ** all columns in all tables. And for every TABLE.* insert the names 4915 ** of all columns in TABLE. The parser inserted a special expression 4916 ** with the TK_ASTERISK operator for each "*" that it found in the column 4917 ** list. The following code just has to locate the TK_ASTERISK 4918 ** expressions and expand each one to the list of all columns in 4919 ** all tables. 4920 ** 4921 ** The first loop just checks to see if there are any "*" operators 4922 ** that need expanding. 4923 */ 4924 for(k=0; k<pEList->nExpr; k++){ 4925 pE = pEList->a[k].pExpr; 4926 if( pE->op==TK_ASTERISK ) break; 4927 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4928 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4929 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4930 elistFlags |= pE->flags; 4931 } 4932 if( k<pEList->nExpr ){ 4933 /* 4934 ** If we get here it means the result set contains one or more "*" 4935 ** operators that need to be expanded. Loop through each expression 4936 ** in the result set and expand them one by one. 4937 */ 4938 struct ExprList_item *a = pEList->a; 4939 ExprList *pNew = 0; 4940 int flags = pParse->db->flags; 4941 int longNames = (flags & SQLITE_FullColNames)!=0 4942 && (flags & SQLITE_ShortColNames)==0; 4943 4944 for(k=0; k<pEList->nExpr; k++){ 4945 pE = a[k].pExpr; 4946 elistFlags |= pE->flags; 4947 pRight = pE->pRight; 4948 assert( pE->op!=TK_DOT || pRight!=0 ); 4949 if( pE->op!=TK_ASTERISK 4950 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4951 ){ 4952 /* This particular expression does not need to be expanded. 4953 */ 4954 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4955 if( pNew ){ 4956 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4957 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4958 a[k].zName = 0; 4959 a[k].zSpan = 0; 4960 } 4961 a[k].pExpr = 0; 4962 }else{ 4963 /* This expression is a "*" or a "TABLE.*" and needs to be 4964 ** expanded. */ 4965 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4966 char *zTName = 0; /* text of name of TABLE */ 4967 if( pE->op==TK_DOT ){ 4968 assert( pE->pLeft!=0 ); 4969 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4970 zTName = pE->pLeft->u.zToken; 4971 } 4972 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4973 Table *pTab = pFrom->pTab; 4974 Select *pSub = pFrom->pSelect; 4975 char *zTabName = pFrom->zAlias; 4976 const char *zSchemaName = 0; 4977 int iDb; 4978 if( zTabName==0 ){ 4979 zTabName = pTab->zName; 4980 } 4981 if( db->mallocFailed ) break; 4982 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4983 pSub = 0; 4984 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4985 continue; 4986 } 4987 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4988 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4989 } 4990 for(j=0; j<pTab->nCol; j++){ 4991 char *zName = pTab->aCol[j].zName; 4992 char *zColname; /* The computed column name */ 4993 char *zToFree; /* Malloced string that needs to be freed */ 4994 Token sColname; /* Computed column name as a token */ 4995 4996 assert( zName ); 4997 if( zTName && pSub 4998 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4999 ){ 5000 continue; 5001 } 5002 5003 /* If a column is marked as 'hidden', omit it from the expanded 5004 ** result-set list unless the SELECT has the SF_IncludeHidden 5005 ** bit set. 5006 */ 5007 if( (p->selFlags & SF_IncludeHidden)==0 5008 && IsHiddenColumn(&pTab->aCol[j]) 5009 ){ 5010 continue; 5011 } 5012 tableSeen = 1; 5013 5014 if( i>0 && zTName==0 ){ 5015 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5016 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 5017 ){ 5018 /* In a NATURAL join, omit the join columns from the 5019 ** table to the right of the join */ 5020 continue; 5021 } 5022 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5023 /* In a join with a USING clause, omit columns in the 5024 ** using clause from the table on the right. */ 5025 continue; 5026 } 5027 } 5028 pRight = sqlite3Expr(db, TK_ID, zName); 5029 zColname = zName; 5030 zToFree = 0; 5031 if( longNames || pTabList->nSrc>1 ){ 5032 Expr *pLeft; 5033 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5034 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5035 if( zSchemaName ){ 5036 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5037 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5038 } 5039 if( longNames ){ 5040 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5041 zToFree = zColname; 5042 } 5043 }else{ 5044 pExpr = pRight; 5045 } 5046 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5047 sqlite3TokenInit(&sColname, zColname); 5048 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5049 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 5050 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5051 if( pSub ){ 5052 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 5053 testcase( pX->zSpan==0 ); 5054 }else{ 5055 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 5056 zSchemaName, zTabName, zColname); 5057 testcase( pX->zSpan==0 ); 5058 } 5059 pX->bSpanIsTab = 1; 5060 } 5061 sqlite3DbFree(db, zToFree); 5062 } 5063 } 5064 if( !tableSeen ){ 5065 if( zTName ){ 5066 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5067 }else{ 5068 sqlite3ErrorMsg(pParse, "no tables specified"); 5069 } 5070 } 5071 } 5072 } 5073 sqlite3ExprListDelete(db, pEList); 5074 p->pEList = pNew; 5075 } 5076 if( p->pEList ){ 5077 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5078 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5079 return WRC_Abort; 5080 } 5081 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5082 p->selFlags |= SF_ComplexResult; 5083 } 5084 } 5085 return WRC_Continue; 5086 } 5087 5088 /* 5089 ** No-op routine for the parse-tree walker. 5090 ** 5091 ** When this routine is the Walker.xExprCallback then expression trees 5092 ** are walked without any actions being taken at each node. Presumably, 5093 ** when this routine is used for Walker.xExprCallback then 5094 ** Walker.xSelectCallback is set to do something useful for every 5095 ** subquery in the parser tree. 5096 */ 5097 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5098 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5099 return WRC_Continue; 5100 } 5101 5102 /* 5103 ** No-op routine for the parse-tree walker for SELECT statements. 5104 ** subquery in the parser tree. 5105 */ 5106 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5107 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5108 return WRC_Continue; 5109 } 5110 5111 #if SQLITE_DEBUG 5112 /* 5113 ** Always assert. This xSelectCallback2 implementation proves that the 5114 ** xSelectCallback2 is never invoked. 5115 */ 5116 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5117 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5118 assert( 0 ); 5119 } 5120 #endif 5121 /* 5122 ** This routine "expands" a SELECT statement and all of its subqueries. 5123 ** For additional information on what it means to "expand" a SELECT 5124 ** statement, see the comment on the selectExpand worker callback above. 5125 ** 5126 ** Expanding a SELECT statement is the first step in processing a 5127 ** SELECT statement. The SELECT statement must be expanded before 5128 ** name resolution is performed. 5129 ** 5130 ** If anything goes wrong, an error message is written into pParse. 5131 ** The calling function can detect the problem by looking at pParse->nErr 5132 ** and/or pParse->db->mallocFailed. 5133 */ 5134 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5135 Walker w; 5136 w.xExprCallback = sqlite3ExprWalkNoop; 5137 w.pParse = pParse; 5138 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5139 w.xSelectCallback = convertCompoundSelectToSubquery; 5140 w.xSelectCallback2 = 0; 5141 sqlite3WalkSelect(&w, pSelect); 5142 } 5143 w.xSelectCallback = selectExpander; 5144 w.xSelectCallback2 = selectPopWith; 5145 sqlite3WalkSelect(&w, pSelect); 5146 } 5147 5148 5149 #ifndef SQLITE_OMIT_SUBQUERY 5150 /* 5151 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5152 ** interface. 5153 ** 5154 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5155 ** information to the Table structure that represents the result set 5156 ** of that subquery. 5157 ** 5158 ** The Table structure that represents the result set was constructed 5159 ** by selectExpander() but the type and collation information was omitted 5160 ** at that point because identifiers had not yet been resolved. This 5161 ** routine is called after identifier resolution. 5162 */ 5163 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5164 Parse *pParse; 5165 int i; 5166 SrcList *pTabList; 5167 struct SrcList_item *pFrom; 5168 5169 assert( p->selFlags & SF_Resolved ); 5170 if( p->selFlags & SF_HasTypeInfo ) return; 5171 p->selFlags |= SF_HasTypeInfo; 5172 pParse = pWalker->pParse; 5173 pTabList = p->pSrc; 5174 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5175 Table *pTab = pFrom->pTab; 5176 assert( pTab!=0 ); 5177 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5178 /* A sub-query in the FROM clause of a SELECT */ 5179 Select *pSel = pFrom->pSelect; 5180 if( pSel ){ 5181 while( pSel->pPrior ) pSel = pSel->pPrior; 5182 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 5183 } 5184 } 5185 } 5186 } 5187 #endif 5188 5189 5190 /* 5191 ** This routine adds datatype and collating sequence information to 5192 ** the Table structures of all FROM-clause subqueries in a 5193 ** SELECT statement. 5194 ** 5195 ** Use this routine after name resolution. 5196 */ 5197 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5198 #ifndef SQLITE_OMIT_SUBQUERY 5199 Walker w; 5200 w.xSelectCallback = sqlite3SelectWalkNoop; 5201 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5202 w.xExprCallback = sqlite3ExprWalkNoop; 5203 w.pParse = pParse; 5204 sqlite3WalkSelect(&w, pSelect); 5205 #endif 5206 } 5207 5208 5209 /* 5210 ** This routine sets up a SELECT statement for processing. The 5211 ** following is accomplished: 5212 ** 5213 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5214 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5215 ** * ON and USING clauses are shifted into WHERE statements 5216 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5217 ** * Identifiers in expression are matched to tables. 5218 ** 5219 ** This routine acts recursively on all subqueries within the SELECT. 5220 */ 5221 void sqlite3SelectPrep( 5222 Parse *pParse, /* The parser context */ 5223 Select *p, /* The SELECT statement being coded. */ 5224 NameContext *pOuterNC /* Name context for container */ 5225 ){ 5226 assert( p!=0 || pParse->db->mallocFailed ); 5227 if( pParse->db->mallocFailed ) return; 5228 if( p->selFlags & SF_HasTypeInfo ) return; 5229 sqlite3SelectExpand(pParse, p); 5230 if( pParse->nErr || pParse->db->mallocFailed ) return; 5231 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5232 if( pParse->nErr || pParse->db->mallocFailed ) return; 5233 sqlite3SelectAddTypeInfo(pParse, p); 5234 } 5235 5236 /* 5237 ** Reset the aggregate accumulator. 5238 ** 5239 ** The aggregate accumulator is a set of memory cells that hold 5240 ** intermediate results while calculating an aggregate. This 5241 ** routine generates code that stores NULLs in all of those memory 5242 ** cells. 5243 */ 5244 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5245 Vdbe *v = pParse->pVdbe; 5246 int i; 5247 struct AggInfo_func *pFunc; 5248 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5249 if( nReg==0 ) return; 5250 #ifdef SQLITE_DEBUG 5251 /* Verify that all AggInfo registers are within the range specified by 5252 ** AggInfo.mnReg..AggInfo.mxReg */ 5253 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5254 for(i=0; i<pAggInfo->nColumn; i++){ 5255 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5256 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5257 } 5258 for(i=0; i<pAggInfo->nFunc; i++){ 5259 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5260 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5261 } 5262 #endif 5263 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5264 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5265 if( pFunc->iDistinct>=0 ){ 5266 Expr *pE = pFunc->pExpr; 5267 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5268 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5269 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5270 "argument"); 5271 pFunc->iDistinct = -1; 5272 }else{ 5273 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5274 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5275 (char*)pKeyInfo, P4_KEYINFO); 5276 } 5277 } 5278 } 5279 } 5280 5281 /* 5282 ** Invoke the OP_AggFinalize opcode for every aggregate function 5283 ** in the AggInfo structure. 5284 */ 5285 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5286 Vdbe *v = pParse->pVdbe; 5287 int i; 5288 struct AggInfo_func *pF; 5289 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5290 ExprList *pList = pF->pExpr->x.pList; 5291 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5292 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5293 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5294 } 5295 } 5296 5297 5298 /* 5299 ** Update the accumulator memory cells for an aggregate based on 5300 ** the current cursor position. 5301 ** 5302 ** If regAcc is non-zero and there are no min() or max() aggregates 5303 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5304 ** registers i register regAcc contains 0. The caller will take care 5305 ** of setting and clearing regAcc. 5306 */ 5307 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5308 Vdbe *v = pParse->pVdbe; 5309 int i; 5310 int regHit = 0; 5311 int addrHitTest = 0; 5312 struct AggInfo_func *pF; 5313 struct AggInfo_col *pC; 5314 5315 pAggInfo->directMode = 1; 5316 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5317 int nArg; 5318 int addrNext = 0; 5319 int regAgg; 5320 ExprList *pList = pF->pExpr->x.pList; 5321 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5322 if( pList ){ 5323 nArg = pList->nExpr; 5324 regAgg = sqlite3GetTempRange(pParse, nArg); 5325 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5326 }else{ 5327 nArg = 0; 5328 regAgg = 0; 5329 } 5330 if( pF->iDistinct>=0 ){ 5331 addrNext = sqlite3VdbeMakeLabel(v); 5332 testcase( nArg==0 ); /* Error condition */ 5333 testcase( nArg>1 ); /* Also an error */ 5334 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5335 } 5336 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5337 CollSeq *pColl = 0; 5338 struct ExprList_item *pItem; 5339 int j; 5340 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5341 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5342 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5343 } 5344 if( !pColl ){ 5345 pColl = pParse->db->pDfltColl; 5346 } 5347 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5348 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5349 } 5350 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5351 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5352 sqlite3VdbeChangeP5(v, (u8)nArg); 5353 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5354 if( addrNext ){ 5355 sqlite3VdbeResolveLabel(v, addrNext); 5356 } 5357 } 5358 if( regHit==0 && pAggInfo->nAccumulator ){ 5359 regHit = regAcc; 5360 } 5361 if( regHit ){ 5362 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5363 } 5364 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5365 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5366 } 5367 pAggInfo->directMode = 0; 5368 if( addrHitTest ){ 5369 sqlite3VdbeJumpHere(v, addrHitTest); 5370 } 5371 } 5372 5373 /* 5374 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5375 ** count(*) query ("SELECT count(*) FROM pTab"). 5376 */ 5377 #ifndef SQLITE_OMIT_EXPLAIN 5378 static void explainSimpleCount( 5379 Parse *pParse, /* Parse context */ 5380 Table *pTab, /* Table being queried */ 5381 Index *pIdx /* Index used to optimize scan, or NULL */ 5382 ){ 5383 if( pParse->explain==2 ){ 5384 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5385 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5386 pTab->zName, 5387 bCover ? " USING COVERING INDEX " : "", 5388 bCover ? pIdx->zName : "" 5389 ); 5390 } 5391 } 5392 #else 5393 # define explainSimpleCount(a,b,c) 5394 #endif 5395 5396 /* 5397 ** sqlite3WalkExpr() callback used by havingToWhere(). 5398 ** 5399 ** If the node passed to the callback is a TK_AND node, return 5400 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5401 ** 5402 ** Otherwise, return WRC_Prune. In this case, also check if the 5403 ** sub-expression matches the criteria for being moved to the WHERE 5404 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5405 ** within the HAVING expression with a constant "1". 5406 */ 5407 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5408 if( pExpr->op!=TK_AND ){ 5409 Select *pS = pWalker->u.pSelect; 5410 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5411 sqlite3 *db = pWalker->pParse->db; 5412 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5413 if( pNew ){ 5414 Expr *pWhere = pS->pWhere; 5415 SWAP(Expr, *pNew, *pExpr); 5416 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5417 pS->pWhere = pNew; 5418 pWalker->eCode = 1; 5419 } 5420 } 5421 return WRC_Prune; 5422 } 5423 return WRC_Continue; 5424 } 5425 5426 /* 5427 ** Transfer eligible terms from the HAVING clause of a query, which is 5428 ** processed after grouping, to the WHERE clause, which is processed before 5429 ** grouping. For example, the query: 5430 ** 5431 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5432 ** 5433 ** can be rewritten as: 5434 ** 5435 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5436 ** 5437 ** A term of the HAVING expression is eligible for transfer if it consists 5438 ** entirely of constants and expressions that are also GROUP BY terms that 5439 ** use the "BINARY" collation sequence. 5440 */ 5441 static void havingToWhere(Parse *pParse, Select *p){ 5442 Walker sWalker; 5443 memset(&sWalker, 0, sizeof(sWalker)); 5444 sWalker.pParse = pParse; 5445 sWalker.xExprCallback = havingToWhereExprCb; 5446 sWalker.u.pSelect = p; 5447 sqlite3WalkExpr(&sWalker, p->pHaving); 5448 #if SELECTTRACE_ENABLED 5449 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5450 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5451 sqlite3TreeViewSelect(0, p, 0); 5452 } 5453 #endif 5454 } 5455 5456 /* 5457 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5458 ** If it is, then return the SrcList_item for the prior view. If it is not, 5459 ** then return 0. 5460 */ 5461 static struct SrcList_item *isSelfJoinView( 5462 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5463 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5464 ){ 5465 struct SrcList_item *pItem; 5466 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5467 if( pItem->pSelect==0 ) continue; 5468 if( pItem->fg.viaCoroutine ) continue; 5469 if( pItem->zName==0 ) continue; 5470 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5471 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5472 if( sqlite3ExprCompare(0, 5473 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5474 ){ 5475 /* The view was modified by some other optimization such as 5476 ** pushDownWhereTerms() */ 5477 continue; 5478 } 5479 return pItem; 5480 } 5481 return 0; 5482 } 5483 5484 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5485 /* 5486 ** Attempt to transform a query of the form 5487 ** 5488 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5489 ** 5490 ** Into this: 5491 ** 5492 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5493 ** 5494 ** The transformation only works if all of the following are true: 5495 ** 5496 ** * The subquery is a UNION ALL of two or more terms 5497 ** * The subquery does not have a LIMIT clause 5498 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5499 ** * The outer query is a simple count(*) 5500 ** 5501 ** Return TRUE if the optimization is undertaken. 5502 */ 5503 static int countOfViewOptimization(Parse *pParse, Select *p){ 5504 Select *pSub, *pPrior; 5505 Expr *pExpr; 5506 Expr *pCount; 5507 sqlite3 *db; 5508 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5509 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5510 pExpr = p->pEList->a[0].pExpr; 5511 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5512 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5513 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5514 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5515 pSub = p->pSrc->a[0].pSelect; 5516 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5517 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5518 do{ 5519 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5520 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5521 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5522 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5523 pSub = pSub->pPrior; /* Repeat over compound */ 5524 }while( pSub ); 5525 5526 /* If we reach this point then it is OK to perform the transformation */ 5527 5528 db = pParse->db; 5529 pCount = pExpr; 5530 pExpr = 0; 5531 pSub = p->pSrc->a[0].pSelect; 5532 p->pSrc->a[0].pSelect = 0; 5533 sqlite3SrcListDelete(db, p->pSrc); 5534 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5535 while( pSub ){ 5536 Expr *pTerm; 5537 pPrior = pSub->pPrior; 5538 pSub->pPrior = 0; 5539 pSub->pNext = 0; 5540 pSub->selFlags |= SF_Aggregate; 5541 pSub->selFlags &= ~SF_Compound; 5542 pSub->nSelectRow = 0; 5543 sqlite3ExprListDelete(db, pSub->pEList); 5544 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5545 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5546 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5547 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5548 if( pExpr==0 ){ 5549 pExpr = pTerm; 5550 }else{ 5551 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5552 } 5553 pSub = pPrior; 5554 } 5555 p->pEList->a[0].pExpr = pExpr; 5556 p->selFlags &= ~SF_Aggregate; 5557 5558 #if SELECTTRACE_ENABLED 5559 if( sqlite3SelectTrace & 0x400 ){ 5560 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5561 sqlite3TreeViewSelect(0, p, 0); 5562 } 5563 #endif 5564 return 1; 5565 } 5566 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5567 5568 /* 5569 ** Generate code for the SELECT statement given in the p argument. 5570 ** 5571 ** The results are returned according to the SelectDest structure. 5572 ** See comments in sqliteInt.h for further information. 5573 ** 5574 ** This routine returns the number of errors. If any errors are 5575 ** encountered, then an appropriate error message is left in 5576 ** pParse->zErrMsg. 5577 ** 5578 ** This routine does NOT free the Select structure passed in. The 5579 ** calling function needs to do that. 5580 */ 5581 int sqlite3Select( 5582 Parse *pParse, /* The parser context */ 5583 Select *p, /* The SELECT statement being coded. */ 5584 SelectDest *pDest /* What to do with the query results */ 5585 ){ 5586 int i, j; /* Loop counters */ 5587 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5588 Vdbe *v; /* The virtual machine under construction */ 5589 int isAgg; /* True for select lists like "count(*)" */ 5590 ExprList *pEList = 0; /* List of columns to extract. */ 5591 SrcList *pTabList; /* List of tables to select from */ 5592 Expr *pWhere; /* The WHERE clause. May be NULL */ 5593 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5594 Expr *pHaving; /* The HAVING clause. May be NULL */ 5595 int rc = 1; /* Value to return from this function */ 5596 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5597 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5598 AggInfo sAggInfo; /* Information used by aggregate queries */ 5599 int iEnd; /* Address of the end of the query */ 5600 sqlite3 *db; /* The database connection */ 5601 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5602 u8 minMaxFlag; /* Flag for min/max queries */ 5603 5604 db = pParse->db; 5605 v = sqlite3GetVdbe(pParse); 5606 if( p==0 || db->mallocFailed || pParse->nErr ){ 5607 return 1; 5608 } 5609 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5610 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5611 #if SELECTTRACE_ENABLED 5612 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5613 if( sqlite3SelectTrace & 0x100 ){ 5614 sqlite3TreeViewSelect(0, p, 0); 5615 } 5616 #endif 5617 5618 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5619 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5620 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5621 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5622 if( IgnorableOrderby(pDest) ){ 5623 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5624 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5625 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5626 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5627 /* If ORDER BY makes no difference in the output then neither does 5628 ** DISTINCT so it can be removed too. */ 5629 sqlite3ExprListDelete(db, p->pOrderBy); 5630 p->pOrderBy = 0; 5631 p->selFlags &= ~SF_Distinct; 5632 } 5633 sqlite3SelectPrep(pParse, p, 0); 5634 if( pParse->nErr || db->mallocFailed ){ 5635 goto select_end; 5636 } 5637 assert( p->pEList!=0 ); 5638 #if SELECTTRACE_ENABLED 5639 if( sqlite3SelectTrace & 0x104 ){ 5640 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5641 sqlite3TreeViewSelect(0, p, 0); 5642 } 5643 #endif 5644 5645 if( pDest->eDest==SRT_Output ){ 5646 generateColumnNames(pParse, p); 5647 } 5648 5649 #ifndef SQLITE_OMIT_WINDOWFUNC 5650 if( sqlite3WindowRewrite(pParse, p) ){ 5651 goto select_end; 5652 } 5653 #if SELECTTRACE_ENABLED 5654 if( sqlite3SelectTrace & 0x108 ){ 5655 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5656 sqlite3TreeViewSelect(0, p, 0); 5657 } 5658 #endif 5659 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5660 pTabList = p->pSrc; 5661 isAgg = (p->selFlags & SF_Aggregate)!=0; 5662 memset(&sSort, 0, sizeof(sSort)); 5663 sSort.pOrderBy = p->pOrderBy; 5664 5665 /* Try to various optimizations (flattening subqueries, and strength 5666 ** reduction of join operators) in the FROM clause up into the main query 5667 */ 5668 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5669 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5670 struct SrcList_item *pItem = &pTabList->a[i]; 5671 Select *pSub = pItem->pSelect; 5672 Table *pTab = pItem->pTab; 5673 5674 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5675 ** of the LEFT JOIN used in the WHERE clause. 5676 */ 5677 if( (pItem->fg.jointype & JT_LEFT)!=0 5678 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5679 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5680 ){ 5681 SELECTTRACE(0x100,pParse,p, 5682 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5683 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5684 unsetJoinExpr(p->pWhere, pItem->iCursor); 5685 } 5686 5687 /* No futher action if this term of the FROM clause is no a subquery */ 5688 if( pSub==0 ) continue; 5689 5690 /* Catch mismatch in the declared columns of a view and the number of 5691 ** columns in the SELECT on the RHS */ 5692 if( pTab->nCol!=pSub->pEList->nExpr ){ 5693 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5694 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5695 goto select_end; 5696 } 5697 5698 /* Do not try to flatten an aggregate subquery. 5699 ** 5700 ** Flattening an aggregate subquery is only possible if the outer query 5701 ** is not a join. But if the outer query is not a join, then the subquery 5702 ** will be implemented as a co-routine and there is no advantage to 5703 ** flattening in that case. 5704 */ 5705 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5706 assert( pSub->pGroupBy==0 ); 5707 5708 /* If the outer query contains a "complex" result set (that is, 5709 ** if the result set of the outer query uses functions or subqueries) 5710 ** and if the subquery contains an ORDER BY clause and if 5711 ** it will be implemented as a co-routine, then do not flatten. This 5712 ** restriction allows SQL constructs like this: 5713 ** 5714 ** SELECT expensive_function(x) 5715 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5716 ** 5717 ** The expensive_function() is only computed on the 10 rows that 5718 ** are output, rather than every row of the table. 5719 ** 5720 ** The requirement that the outer query have a complex result set 5721 ** means that flattening does occur on simpler SQL constraints without 5722 ** the expensive_function() like: 5723 ** 5724 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5725 */ 5726 if( pSub->pOrderBy!=0 5727 && i==0 5728 && (p->selFlags & SF_ComplexResult)!=0 5729 && (pTabList->nSrc==1 5730 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5731 ){ 5732 continue; 5733 } 5734 5735 if( flattenSubquery(pParse, p, i, isAgg) ){ 5736 /* This subquery can be absorbed into its parent. */ 5737 i = -1; 5738 } 5739 pTabList = p->pSrc; 5740 if( db->mallocFailed ) goto select_end; 5741 if( !IgnorableOrderby(pDest) ){ 5742 sSort.pOrderBy = p->pOrderBy; 5743 } 5744 } 5745 #endif 5746 5747 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5748 /* Handle compound SELECT statements using the separate multiSelect() 5749 ** procedure. 5750 */ 5751 if( p->pPrior ){ 5752 rc = multiSelect(pParse, p, pDest); 5753 #if SELECTTRACE_ENABLED 5754 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5755 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5756 sqlite3TreeViewSelect(0, p, 0); 5757 } 5758 #endif 5759 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5760 return rc; 5761 } 5762 #endif 5763 5764 /* Do the WHERE-clause constant propagation optimization if this is 5765 ** a join. No need to speed time on this operation for non-join queries 5766 ** as the equivalent optimization will be handled by query planner in 5767 ** sqlite3WhereBegin(). 5768 */ 5769 if( pTabList->nSrc>1 5770 && OptimizationEnabled(db, SQLITE_PropagateConst) 5771 && propagateConstants(pParse, p) 5772 ){ 5773 #if SELECTTRACE_ENABLED 5774 if( sqlite3SelectTrace & 0x100 ){ 5775 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5776 sqlite3TreeViewSelect(0, p, 0); 5777 } 5778 #endif 5779 }else{ 5780 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5781 } 5782 5783 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5784 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5785 && countOfViewOptimization(pParse, p) 5786 ){ 5787 if( db->mallocFailed ) goto select_end; 5788 pEList = p->pEList; 5789 pTabList = p->pSrc; 5790 } 5791 #endif 5792 5793 /* For each term in the FROM clause, do two things: 5794 ** (1) Authorized unreferenced tables 5795 ** (2) Generate code for all sub-queries 5796 */ 5797 for(i=0; i<pTabList->nSrc; i++){ 5798 struct SrcList_item *pItem = &pTabList->a[i]; 5799 SelectDest dest; 5800 Select *pSub; 5801 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5802 const char *zSavedAuthContext; 5803 #endif 5804 5805 /* Issue SQLITE_READ authorizations with a fake column name for any 5806 ** tables that are referenced but from which no values are extracted. 5807 ** Examples of where these kinds of null SQLITE_READ authorizations 5808 ** would occur: 5809 ** 5810 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5811 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5812 ** 5813 ** The fake column name is an empty string. It is possible for a table to 5814 ** have a column named by the empty string, in which case there is no way to 5815 ** distinguish between an unreferenced table and an actual reference to the 5816 ** "" column. The original design was for the fake column name to be a NULL, 5817 ** which would be unambiguous. But legacy authorization callbacks might 5818 ** assume the column name is non-NULL and segfault. The use of an empty 5819 ** string for the fake column name seems safer. 5820 */ 5821 if( pItem->colUsed==0 ){ 5822 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5823 } 5824 5825 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5826 /* Generate code for all sub-queries in the FROM clause 5827 */ 5828 pSub = pItem->pSelect; 5829 if( pSub==0 ) continue; 5830 5831 /* Sometimes the code for a subquery will be generated more than 5832 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5833 ** for example. In that case, do not regenerate the code to manifest 5834 ** a view or the co-routine to implement a view. The first instance 5835 ** is sufficient, though the subroutine to manifest the view does need 5836 ** to be invoked again. */ 5837 if( pItem->addrFillSub ){ 5838 if( pItem->fg.viaCoroutine==0 ){ 5839 /* The subroutine that manifests the view might be a one-time routine, 5840 ** or it might need to be rerun on each iteration because it 5841 ** encodes a correlated subquery. */ 5842 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5843 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5844 } 5845 continue; 5846 } 5847 5848 /* Increment Parse.nHeight by the height of the largest expression 5849 ** tree referred to by this, the parent select. The child select 5850 ** may contain expression trees of at most 5851 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5852 ** more conservative than necessary, but much easier than enforcing 5853 ** an exact limit. 5854 */ 5855 pParse->nHeight += sqlite3SelectExprHeight(p); 5856 5857 /* Make copies of constant WHERE-clause terms in the outer query down 5858 ** inside the subquery. This can help the subquery to run more efficiently. 5859 */ 5860 if( OptimizationEnabled(db, SQLITE_PushDown) 5861 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5862 (pItem->fg.jointype & JT_OUTER)!=0) 5863 ){ 5864 #if SELECTTRACE_ENABLED 5865 if( sqlite3SelectTrace & 0x100 ){ 5866 SELECTTRACE(0x100,pParse,p, 5867 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 5868 sqlite3TreeViewSelect(0, p, 0); 5869 } 5870 #endif 5871 }else{ 5872 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5873 } 5874 5875 zSavedAuthContext = pParse->zAuthContext; 5876 pParse->zAuthContext = pItem->zName; 5877 5878 /* Generate code to implement the subquery 5879 ** 5880 ** The subquery is implemented as a co-routine if the subquery is 5881 ** guaranteed to be the outer loop (so that it does not need to be 5882 ** computed more than once) 5883 ** 5884 ** TODO: Are there other reasons beside (1) to use a co-routine 5885 ** implementation? 5886 */ 5887 if( i==0 5888 && (pTabList->nSrc==1 5889 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5890 ){ 5891 /* Implement a co-routine that will return a single row of the result 5892 ** set on each invocation. 5893 */ 5894 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5895 5896 pItem->regReturn = ++pParse->nMem; 5897 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5898 VdbeComment((v, "%s", pItem->pTab->zName)); 5899 pItem->addrFillSub = addrTop; 5900 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5901 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 5902 sqlite3Select(pParse, pSub, &dest); 5903 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5904 pItem->fg.viaCoroutine = 1; 5905 pItem->regResult = dest.iSdst; 5906 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5907 sqlite3VdbeJumpHere(v, addrTop-1); 5908 sqlite3ClearTempRegCache(pParse); 5909 }else{ 5910 /* Generate a subroutine that will fill an ephemeral table with 5911 ** the content of this subquery. pItem->addrFillSub will point 5912 ** to the address of the generated subroutine. pItem->regReturn 5913 ** is a register allocated to hold the subroutine return address 5914 */ 5915 int topAddr; 5916 int onceAddr = 0; 5917 int retAddr; 5918 struct SrcList_item *pPrior; 5919 5920 assert( pItem->addrFillSub==0 ); 5921 pItem->regReturn = ++pParse->nMem; 5922 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5923 pItem->addrFillSub = topAddr+1; 5924 if( pItem->fg.isCorrelated==0 ){ 5925 /* If the subquery is not correlated and if we are not inside of 5926 ** a trigger, then we only need to compute the value of the subquery 5927 ** once. */ 5928 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5929 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5930 }else{ 5931 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5932 } 5933 pPrior = isSelfJoinView(pTabList, pItem); 5934 if( pPrior ){ 5935 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5936 assert( pPrior->pSelect!=0 ); 5937 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5938 }else{ 5939 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5940 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 5941 sqlite3Select(pParse, pSub, &dest); 5942 } 5943 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5944 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5945 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5946 VdbeComment((v, "end %s", pItem->pTab->zName)); 5947 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5948 sqlite3ClearTempRegCache(pParse); 5949 } 5950 if( db->mallocFailed ) goto select_end; 5951 pParse->nHeight -= sqlite3SelectExprHeight(p); 5952 pParse->zAuthContext = zSavedAuthContext; 5953 #endif 5954 } 5955 5956 /* Various elements of the SELECT copied into local variables for 5957 ** convenience */ 5958 pEList = p->pEList; 5959 pWhere = p->pWhere; 5960 pGroupBy = p->pGroupBy; 5961 pHaving = p->pHaving; 5962 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5963 5964 #if SELECTTRACE_ENABLED 5965 if( sqlite3SelectTrace & 0x400 ){ 5966 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5967 sqlite3TreeViewSelect(0, p, 0); 5968 } 5969 #endif 5970 5971 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5972 ** if the select-list is the same as the ORDER BY list, then this query 5973 ** can be rewritten as a GROUP BY. In other words, this: 5974 ** 5975 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5976 ** 5977 ** is transformed to: 5978 ** 5979 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5980 ** 5981 ** The second form is preferred as a single index (or temp-table) may be 5982 ** used for both the ORDER BY and DISTINCT processing. As originally 5983 ** written the query must use a temp-table for at least one of the ORDER 5984 ** BY and DISTINCT, and an index or separate temp-table for the other. 5985 */ 5986 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5987 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5988 ){ 5989 p->selFlags &= ~SF_Distinct; 5990 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5991 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5992 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5993 ** original setting of the SF_Distinct flag, not the current setting */ 5994 assert( sDistinct.isTnct ); 5995 5996 #if SELECTTRACE_ENABLED 5997 if( sqlite3SelectTrace & 0x400 ){ 5998 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5999 sqlite3TreeViewSelect(0, p, 0); 6000 } 6001 #endif 6002 } 6003 6004 /* If there is an ORDER BY clause, then create an ephemeral index to 6005 ** do the sorting. But this sorting ephemeral index might end up 6006 ** being unused if the data can be extracted in pre-sorted order. 6007 ** If that is the case, then the OP_OpenEphemeral instruction will be 6008 ** changed to an OP_Noop once we figure out that the sorting index is 6009 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6010 ** that change. 6011 */ 6012 if( sSort.pOrderBy ){ 6013 KeyInfo *pKeyInfo; 6014 pKeyInfo = sqlite3KeyInfoFromExprList( 6015 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6016 sSort.iECursor = pParse->nTab++; 6017 sSort.addrSortIndex = 6018 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6019 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6020 (char*)pKeyInfo, P4_KEYINFO 6021 ); 6022 }else{ 6023 sSort.addrSortIndex = -1; 6024 } 6025 6026 /* If the output is destined for a temporary table, open that table. 6027 */ 6028 if( pDest->eDest==SRT_EphemTab ){ 6029 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6030 } 6031 6032 /* Set the limiter. 6033 */ 6034 iEnd = sqlite3VdbeMakeLabel(v); 6035 if( (p->selFlags & SF_FixedLimit)==0 ){ 6036 p->nSelectRow = 320; /* 4 billion rows */ 6037 } 6038 computeLimitRegisters(pParse, p, iEnd); 6039 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6040 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6041 sSort.sortFlags |= SORTFLAG_UseSorter; 6042 } 6043 6044 /* Open an ephemeral index to use for the distinct set. 6045 */ 6046 if( p->selFlags & SF_Distinct ){ 6047 sDistinct.tabTnct = pParse->nTab++; 6048 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6049 sDistinct.tabTnct, 0, 0, 6050 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6051 P4_KEYINFO); 6052 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6053 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6054 }else{ 6055 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6056 } 6057 6058 if( !isAgg && pGroupBy==0 ){ 6059 /* No aggregate functions and no GROUP BY clause */ 6060 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6061 | (p->selFlags & SF_FixedLimit); 6062 #ifndef SQLITE_OMIT_WINDOWFUNC 6063 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6064 if( pWin ){ 6065 sqlite3WindowCodeInit(pParse, pWin); 6066 } 6067 #endif 6068 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6069 6070 6071 /* Begin the database scan. */ 6072 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6073 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6074 p->pEList, wctrlFlags, p->nSelectRow); 6075 if( pWInfo==0 ) goto select_end; 6076 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6077 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6078 } 6079 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6080 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6081 } 6082 if( sSort.pOrderBy ){ 6083 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6084 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6085 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6086 sSort.pOrderBy = 0; 6087 } 6088 } 6089 6090 /* If sorting index that was created by a prior OP_OpenEphemeral 6091 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6092 ** into an OP_Noop. 6093 */ 6094 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6095 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6096 } 6097 6098 assert( p->pEList==pEList ); 6099 #ifndef SQLITE_OMIT_WINDOWFUNC 6100 if( pWin ){ 6101 int addrGosub = sqlite3VdbeMakeLabel(v); 6102 int iCont = sqlite3VdbeMakeLabel(v); 6103 int iBreak = sqlite3VdbeMakeLabel(v); 6104 int regGosub = ++pParse->nMem; 6105 6106 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6107 6108 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6109 sqlite3VdbeResolveLabel(v, addrGosub); 6110 VdbeNoopComment((v, "inner-loop subroutine")); 6111 sSort.labelOBLopt = 0; 6112 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6113 sqlite3VdbeResolveLabel(v, iCont); 6114 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6115 VdbeComment((v, "end inner-loop subroutine")); 6116 sqlite3VdbeResolveLabel(v, iBreak); 6117 }else 6118 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6119 { 6120 /* Use the standard inner loop. */ 6121 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6122 sqlite3WhereContinueLabel(pWInfo), 6123 sqlite3WhereBreakLabel(pWInfo)); 6124 6125 /* End the database scan loop. 6126 */ 6127 sqlite3WhereEnd(pWInfo); 6128 } 6129 }else{ 6130 /* This case when there exist aggregate functions or a GROUP BY clause 6131 ** or both */ 6132 NameContext sNC; /* Name context for processing aggregate information */ 6133 int iAMem; /* First Mem address for storing current GROUP BY */ 6134 int iBMem; /* First Mem address for previous GROUP BY */ 6135 int iUseFlag; /* Mem address holding flag indicating that at least 6136 ** one row of the input to the aggregator has been 6137 ** processed */ 6138 int iAbortFlag; /* Mem address which causes query abort if positive */ 6139 int groupBySort; /* Rows come from source in GROUP BY order */ 6140 int addrEnd; /* End of processing for this SELECT */ 6141 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6142 int sortOut = 0; /* Output register from the sorter */ 6143 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6144 6145 /* Remove any and all aliases between the result set and the 6146 ** GROUP BY clause. 6147 */ 6148 if( pGroupBy ){ 6149 int k; /* Loop counter */ 6150 struct ExprList_item *pItem; /* For looping over expression in a list */ 6151 6152 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6153 pItem->u.x.iAlias = 0; 6154 } 6155 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6156 pItem->u.x.iAlias = 0; 6157 } 6158 assert( 66==sqlite3LogEst(100) ); 6159 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6160 }else{ 6161 assert( 0==sqlite3LogEst(1) ); 6162 p->nSelectRow = 0; 6163 } 6164 6165 /* If there is both a GROUP BY and an ORDER BY clause and they are 6166 ** identical, then it may be possible to disable the ORDER BY clause 6167 ** on the grounds that the GROUP BY will cause elements to come out 6168 ** in the correct order. It also may not - the GROUP BY might use a 6169 ** database index that causes rows to be grouped together as required 6170 ** but not actually sorted. Either way, record the fact that the 6171 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6172 ** variable. */ 6173 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6174 orderByGrp = 1; 6175 } 6176 6177 /* Create a label to jump to when we want to abort the query */ 6178 addrEnd = sqlite3VdbeMakeLabel(v); 6179 6180 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6181 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6182 ** SELECT statement. 6183 */ 6184 memset(&sNC, 0, sizeof(sNC)); 6185 sNC.pParse = pParse; 6186 sNC.pSrcList = pTabList; 6187 sNC.uNC.pAggInfo = &sAggInfo; 6188 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6189 sAggInfo.mnReg = pParse->nMem+1; 6190 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6191 sAggInfo.pGroupBy = pGroupBy; 6192 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6193 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6194 if( pHaving ){ 6195 if( pGroupBy ){ 6196 assert( pWhere==p->pWhere ); 6197 assert( pHaving==p->pHaving ); 6198 assert( pGroupBy==p->pGroupBy ); 6199 havingToWhere(pParse, p); 6200 pWhere = p->pWhere; 6201 } 6202 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6203 } 6204 sAggInfo.nAccumulator = sAggInfo.nColumn; 6205 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6206 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6207 }else{ 6208 minMaxFlag = WHERE_ORDERBY_NORMAL; 6209 } 6210 for(i=0; i<sAggInfo.nFunc; i++){ 6211 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 6212 sNC.ncFlags |= NC_InAggFunc; 6213 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 6214 sNC.ncFlags &= ~NC_InAggFunc; 6215 } 6216 sAggInfo.mxReg = pParse->nMem; 6217 if( db->mallocFailed ) goto select_end; 6218 #if SELECTTRACE_ENABLED 6219 if( sqlite3SelectTrace & 0x400 ){ 6220 int ii; 6221 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6222 sqlite3TreeViewSelect(0, p, 0); 6223 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6224 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6225 ii, sAggInfo.aCol[ii].iMem); 6226 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6227 } 6228 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6229 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6230 ii, sAggInfo.aFunc[ii].iMem); 6231 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6232 } 6233 } 6234 #endif 6235 6236 6237 /* Processing for aggregates with GROUP BY is very different and 6238 ** much more complex than aggregates without a GROUP BY. 6239 */ 6240 if( pGroupBy ){ 6241 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6242 int addr1; /* A-vs-B comparision jump */ 6243 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6244 int regOutputRow; /* Return address register for output subroutine */ 6245 int addrSetAbort; /* Set the abort flag and return */ 6246 int addrTopOfLoop; /* Top of the input loop */ 6247 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6248 int addrReset; /* Subroutine for resetting the accumulator */ 6249 int regReset; /* Return address register for reset subroutine */ 6250 6251 /* If there is a GROUP BY clause we might need a sorting index to 6252 ** implement it. Allocate that sorting index now. If it turns out 6253 ** that we do not need it after all, the OP_SorterOpen instruction 6254 ** will be converted into a Noop. 6255 */ 6256 sAggInfo.sortingIdx = pParse->nTab++; 6257 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6258 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6259 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6260 0, (char*)pKeyInfo, P4_KEYINFO); 6261 6262 /* Initialize memory locations used by GROUP BY aggregate processing 6263 */ 6264 iUseFlag = ++pParse->nMem; 6265 iAbortFlag = ++pParse->nMem; 6266 regOutputRow = ++pParse->nMem; 6267 addrOutputRow = sqlite3VdbeMakeLabel(v); 6268 regReset = ++pParse->nMem; 6269 addrReset = sqlite3VdbeMakeLabel(v); 6270 iAMem = pParse->nMem + 1; 6271 pParse->nMem += pGroupBy->nExpr; 6272 iBMem = pParse->nMem + 1; 6273 pParse->nMem += pGroupBy->nExpr; 6274 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6275 VdbeComment((v, "clear abort flag")); 6276 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6277 6278 /* Begin a loop that will extract all source rows in GROUP BY order. 6279 ** This might involve two separate loops with an OP_Sort in between, or 6280 ** it might be a single loop that uses an index to extract information 6281 ** in the right order to begin with. 6282 */ 6283 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6284 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6285 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6286 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6287 ); 6288 if( pWInfo==0 ) goto select_end; 6289 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6290 /* The optimizer is able to deliver rows in group by order so 6291 ** we do not have to sort. The OP_OpenEphemeral table will be 6292 ** cancelled later because we still need to use the pKeyInfo 6293 */ 6294 groupBySort = 0; 6295 }else{ 6296 /* Rows are coming out in undetermined order. We have to push 6297 ** each row into a sorting index, terminate the first loop, 6298 ** then loop over the sorting index in order to get the output 6299 ** in sorted order 6300 */ 6301 int regBase; 6302 int regRecord; 6303 int nCol; 6304 int nGroupBy; 6305 6306 explainTempTable(pParse, 6307 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6308 "DISTINCT" : "GROUP BY"); 6309 6310 groupBySort = 1; 6311 nGroupBy = pGroupBy->nExpr; 6312 nCol = nGroupBy; 6313 j = nGroupBy; 6314 for(i=0; i<sAggInfo.nColumn; i++){ 6315 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6316 nCol++; 6317 j++; 6318 } 6319 } 6320 regBase = sqlite3GetTempRange(pParse, nCol); 6321 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6322 j = nGroupBy; 6323 for(i=0; i<sAggInfo.nColumn; i++){ 6324 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6325 if( pCol->iSorterColumn>=j ){ 6326 int r1 = j + regBase; 6327 sqlite3ExprCodeGetColumnOfTable(v, 6328 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6329 j++; 6330 } 6331 } 6332 regRecord = sqlite3GetTempReg(pParse); 6333 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6334 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6335 sqlite3ReleaseTempReg(pParse, regRecord); 6336 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6337 sqlite3WhereEnd(pWInfo); 6338 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6339 sortOut = sqlite3GetTempReg(pParse); 6340 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6341 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6342 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6343 sAggInfo.useSortingIdx = 1; 6344 } 6345 6346 /* If the index or temporary table used by the GROUP BY sort 6347 ** will naturally deliver rows in the order required by the ORDER BY 6348 ** clause, cancel the ephemeral table open coded earlier. 6349 ** 6350 ** This is an optimization - the correct answer should result regardless. 6351 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6352 ** disable this optimization for testing purposes. */ 6353 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6354 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6355 ){ 6356 sSort.pOrderBy = 0; 6357 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6358 } 6359 6360 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6361 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6362 ** Then compare the current GROUP BY terms against the GROUP BY terms 6363 ** from the previous row currently stored in a0, a1, a2... 6364 */ 6365 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6366 if( groupBySort ){ 6367 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6368 sortOut, sortPTab); 6369 } 6370 for(j=0; j<pGroupBy->nExpr; j++){ 6371 if( groupBySort ){ 6372 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6373 }else{ 6374 sAggInfo.directMode = 1; 6375 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6376 } 6377 } 6378 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6379 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6380 addr1 = sqlite3VdbeCurrentAddr(v); 6381 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6382 6383 /* Generate code that runs whenever the GROUP BY changes. 6384 ** Changes in the GROUP BY are detected by the previous code 6385 ** block. If there were no changes, this block is skipped. 6386 ** 6387 ** This code copies current group by terms in b0,b1,b2,... 6388 ** over to a0,a1,a2. It then calls the output subroutine 6389 ** and resets the aggregate accumulator registers in preparation 6390 ** for the next GROUP BY batch. 6391 */ 6392 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6393 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6394 VdbeComment((v, "output one row")); 6395 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6396 VdbeComment((v, "check abort flag")); 6397 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6398 VdbeComment((v, "reset accumulator")); 6399 6400 /* Update the aggregate accumulators based on the content of 6401 ** the current row 6402 */ 6403 sqlite3VdbeJumpHere(v, addr1); 6404 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6405 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6406 VdbeComment((v, "indicate data in accumulator")); 6407 6408 /* End of the loop 6409 */ 6410 if( groupBySort ){ 6411 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6412 VdbeCoverage(v); 6413 }else{ 6414 sqlite3WhereEnd(pWInfo); 6415 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6416 } 6417 6418 /* Output the final row of result 6419 */ 6420 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6421 VdbeComment((v, "output final row")); 6422 6423 /* Jump over the subroutines 6424 */ 6425 sqlite3VdbeGoto(v, addrEnd); 6426 6427 /* Generate a subroutine that outputs a single row of the result 6428 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6429 ** is less than or equal to zero, the subroutine is a no-op. If 6430 ** the processing calls for the query to abort, this subroutine 6431 ** increments the iAbortFlag memory location before returning in 6432 ** order to signal the caller to abort. 6433 */ 6434 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6435 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6436 VdbeComment((v, "set abort flag")); 6437 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6438 sqlite3VdbeResolveLabel(v, addrOutputRow); 6439 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6440 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6441 VdbeCoverage(v); 6442 VdbeComment((v, "Groupby result generator entry point")); 6443 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6444 finalizeAggFunctions(pParse, &sAggInfo); 6445 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6446 selectInnerLoop(pParse, p, -1, &sSort, 6447 &sDistinct, pDest, 6448 addrOutputRow+1, addrSetAbort); 6449 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6450 VdbeComment((v, "end groupby result generator")); 6451 6452 /* Generate a subroutine that will reset the group-by accumulator 6453 */ 6454 sqlite3VdbeResolveLabel(v, addrReset); 6455 resetAccumulator(pParse, &sAggInfo); 6456 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6457 VdbeComment((v, "indicate accumulator empty")); 6458 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6459 6460 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6461 else { 6462 #ifndef SQLITE_OMIT_BTREECOUNT 6463 Table *pTab; 6464 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6465 /* If isSimpleCount() returns a pointer to a Table structure, then 6466 ** the SQL statement is of the form: 6467 ** 6468 ** SELECT count(*) FROM <tbl> 6469 ** 6470 ** where the Table structure returned represents table <tbl>. 6471 ** 6472 ** This statement is so common that it is optimized specially. The 6473 ** OP_Count instruction is executed either on the intkey table that 6474 ** contains the data for table <tbl> or on one of its indexes. It 6475 ** is better to execute the op on an index, as indexes are almost 6476 ** always spread across less pages than their corresponding tables. 6477 */ 6478 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6479 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6480 Index *pIdx; /* Iterator variable */ 6481 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6482 Index *pBest = 0; /* Best index found so far */ 6483 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6484 6485 sqlite3CodeVerifySchema(pParse, iDb); 6486 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6487 6488 /* Search for the index that has the lowest scan cost. 6489 ** 6490 ** (2011-04-15) Do not do a full scan of an unordered index. 6491 ** 6492 ** (2013-10-03) Do not count the entries in a partial index. 6493 ** 6494 ** In practice the KeyInfo structure will not be used. It is only 6495 ** passed to keep OP_OpenRead happy. 6496 */ 6497 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6498 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6499 if( pIdx->bUnordered==0 6500 && pIdx->szIdxRow<pTab->szTabRow 6501 && pIdx->pPartIdxWhere==0 6502 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6503 ){ 6504 pBest = pIdx; 6505 } 6506 } 6507 if( pBest ){ 6508 iRoot = pBest->tnum; 6509 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6510 } 6511 6512 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6513 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6514 if( pKeyInfo ){ 6515 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6516 } 6517 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6518 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6519 explainSimpleCount(pParse, pTab, pBest); 6520 }else 6521 #endif /* SQLITE_OMIT_BTREECOUNT */ 6522 { 6523 int regAcc = 0; /* "populate accumulators" flag */ 6524 6525 /* If there are accumulator registers but no min() or max() functions, 6526 ** allocate register regAcc. Register regAcc will contain 0 the first 6527 ** time the inner loop runs, and 1 thereafter. The code generated 6528 ** by updateAccumulator() only updates the accumulator registers if 6529 ** regAcc contains 0. */ 6530 if( sAggInfo.nAccumulator ){ 6531 for(i=0; i<sAggInfo.nFunc; i++){ 6532 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6533 } 6534 if( i==sAggInfo.nFunc ){ 6535 regAcc = ++pParse->nMem; 6536 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6537 } 6538 } 6539 6540 /* This case runs if the aggregate has no GROUP BY clause. The 6541 ** processing is much simpler since there is only a single row 6542 ** of output. 6543 */ 6544 assert( p->pGroupBy==0 ); 6545 resetAccumulator(pParse, &sAggInfo); 6546 6547 /* If this query is a candidate for the min/max optimization, then 6548 ** minMaxFlag will have been previously set to either 6549 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6550 ** be an appropriate ORDER BY expression for the optimization. 6551 */ 6552 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6553 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6554 6555 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6556 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6557 0, minMaxFlag, 0); 6558 if( pWInfo==0 ){ 6559 goto select_end; 6560 } 6561 updateAccumulator(pParse, regAcc, &sAggInfo); 6562 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6563 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6564 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6565 VdbeComment((v, "%s() by index", 6566 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6567 } 6568 sqlite3WhereEnd(pWInfo); 6569 finalizeAggFunctions(pParse, &sAggInfo); 6570 } 6571 6572 sSort.pOrderBy = 0; 6573 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6574 selectInnerLoop(pParse, p, -1, 0, 0, 6575 pDest, addrEnd, addrEnd); 6576 } 6577 sqlite3VdbeResolveLabel(v, addrEnd); 6578 6579 } /* endif aggregate query */ 6580 6581 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6582 explainTempTable(pParse, "DISTINCT"); 6583 } 6584 6585 /* If there is an ORDER BY clause, then we need to sort the results 6586 ** and send them to the callback one by one. 6587 */ 6588 if( sSort.pOrderBy ){ 6589 explainTempTable(pParse, 6590 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6591 assert( p->pEList==pEList ); 6592 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6593 } 6594 6595 /* Jump here to skip this query 6596 */ 6597 sqlite3VdbeResolveLabel(v, iEnd); 6598 6599 /* The SELECT has been coded. If there is an error in the Parse structure, 6600 ** set the return code to 1. Otherwise 0. */ 6601 rc = (pParse->nErr>0); 6602 6603 /* Control jumps to here if an error is encountered above, or upon 6604 ** successful coding of the SELECT. 6605 */ 6606 select_end: 6607 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6608 sqlite3DbFree(db, sAggInfo.aCol); 6609 sqlite3DbFree(db, sAggInfo.aFunc); 6610 #if SELECTTRACE_ENABLED 6611 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6612 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6613 sqlite3TreeViewSelect(0, p, 0); 6614 } 6615 #endif 6616 ExplainQueryPlanPop(pParse); 6617 return rc; 6618 } 6619