xref: /sqlite-3.40.0/src/select.c (revision 60ce5d31)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101       sqlite3WindowListDelete(db, p->pWinDefn);
102     }
103 #endif
104     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105     if( bFree ) sqlite3DbFreeNN(db, p);
106     p = pPrior;
107     bFree = 1;
108   }
109 }
110 
111 /*
112 ** Initialize a SelectDest structure.
113 */
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115   pDest->eDest = (u8)eDest;
116   pDest->iSDParm = iParm;
117   pDest->zAffSdst = 0;
118   pDest->iSdst = 0;
119   pDest->nSdst = 0;
120 }
121 
122 
123 /*
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
126 */
127 Select *sqlite3SelectNew(
128   Parse *pParse,        /* Parsing context */
129   ExprList *pEList,     /* which columns to include in the result */
130   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
131   Expr *pWhere,         /* the WHERE clause */
132   ExprList *pGroupBy,   /* the GROUP BY clause */
133   Expr *pHaving,        /* the HAVING clause */
134   ExprList *pOrderBy,   /* the ORDER BY clause */
135   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
136   Expr *pLimit          /* LIMIT value.  NULL means not used */
137 ){
138   Select *pNew;
139   Select standin;
140   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141   if( pNew==0 ){
142     assert( pParse->db->mallocFailed );
143     pNew = &standin;
144   }
145   if( pEList==0 ){
146     pEList = sqlite3ExprListAppend(pParse, 0,
147                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
148   }
149   pNew->pEList = pEList;
150   pNew->op = TK_SELECT;
151   pNew->selFlags = selFlags;
152   pNew->iLimit = 0;
153   pNew->iOffset = 0;
154   pNew->selId = ++pParse->nSelect;
155   pNew->addrOpenEphm[0] = -1;
156   pNew->addrOpenEphm[1] = -1;
157   pNew->nSelectRow = 0;
158   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
159   pNew->pSrc = pSrc;
160   pNew->pWhere = pWhere;
161   pNew->pGroupBy = pGroupBy;
162   pNew->pHaving = pHaving;
163   pNew->pOrderBy = pOrderBy;
164   pNew->pPrior = 0;
165   pNew->pNext = 0;
166   pNew->pLimit = pLimit;
167   pNew->pWith = 0;
168 #ifndef SQLITE_OMIT_WINDOWFUNC
169   pNew->pWin = 0;
170   pNew->pWinDefn = 0;
171 #endif
172   if( pParse->db->mallocFailed ) {
173     clearSelect(pParse->db, pNew, pNew!=&standin);
174     pNew = 0;
175   }else{
176     assert( pNew->pSrc!=0 || pParse->nErr>0 );
177   }
178   assert( pNew!=&standin );
179   return pNew;
180 }
181 
182 
183 /*
184 ** Delete the given Select structure and all of its substructures.
185 */
186 void sqlite3SelectDelete(sqlite3 *db, Select *p){
187   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
188 }
189 
190 /*
191 ** Return a pointer to the right-most SELECT statement in a compound.
192 */
193 static Select *findRightmost(Select *p){
194   while( p->pNext ) p = p->pNext;
195   return p;
196 }
197 
198 /*
199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
200 ** type of join.  Return an integer constant that expresses that type
201 ** in terms of the following bit values:
202 **
203 **     JT_INNER
204 **     JT_CROSS
205 **     JT_OUTER
206 **     JT_NATURAL
207 **     JT_LEFT
208 **     JT_RIGHT
209 **
210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
211 **
212 ** If an illegal or unsupported join type is seen, then still return
213 ** a join type, but put an error in the pParse structure.
214 */
215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
216   int jointype = 0;
217   Token *apAll[3];
218   Token *p;
219                              /*   0123456789 123456789 123456789 123 */
220   static const char zKeyText[] = "naturaleftouterightfullinnercross";
221   static const struct {
222     u8 i;        /* Beginning of keyword text in zKeyText[] */
223     u8 nChar;    /* Length of the keyword in characters */
224     u8 code;     /* Join type mask */
225   } aKeyword[] = {
226     /* natural */ { 0,  7, JT_NATURAL                },
227     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
228     /* outer   */ { 10, 5, JT_OUTER                  },
229     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
230     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
231     /* inner   */ { 23, 5, JT_INNER                  },
232     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
233   };
234   int i, j;
235   apAll[0] = pA;
236   apAll[1] = pB;
237   apAll[2] = pC;
238   for(i=0; i<3 && apAll[i]; i++){
239     p = apAll[i];
240     for(j=0; j<ArraySize(aKeyword); j++){
241       if( p->n==aKeyword[j].nChar
242           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
243         jointype |= aKeyword[j].code;
244         break;
245       }
246     }
247     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
248     if( j>=ArraySize(aKeyword) ){
249       jointype |= JT_ERROR;
250       break;
251     }
252   }
253   if(
254      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
255      (jointype & JT_ERROR)!=0
256   ){
257     const char *zSp = " ";
258     assert( pB!=0 );
259     if( pC==0 ){ zSp++; }
260     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
261        "%T %T%s%T", pA, pB, zSp, pC);
262     jointype = JT_INNER;
263   }else if( (jointype & JT_OUTER)!=0
264          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
265     sqlite3ErrorMsg(pParse,
266       "RIGHT and FULL OUTER JOINs are not currently supported");
267     jointype = JT_INNER;
268   }
269   return jointype;
270 }
271 
272 /*
273 ** Return the index of a column in a table.  Return -1 if the column
274 ** is not contained in the table.
275 */
276 static int columnIndex(Table *pTab, const char *zCol){
277   int i;
278   for(i=0; i<pTab->nCol; i++){
279     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
280   }
281   return -1;
282 }
283 
284 /*
285 ** Search the first N tables in pSrc, from left to right, looking for a
286 ** table that has a column named zCol.
287 **
288 ** When found, set *piTab and *piCol to the table index and column index
289 ** of the matching column and return TRUE.
290 **
291 ** If not found, return FALSE.
292 */
293 static int tableAndColumnIndex(
294   SrcList *pSrc,       /* Array of tables to search */
295   int N,               /* Number of tables in pSrc->a[] to search */
296   const char *zCol,    /* Name of the column we are looking for */
297   int *piTab,          /* Write index of pSrc->a[] here */
298   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
299 ){
300   int i;               /* For looping over tables in pSrc */
301   int iCol;            /* Index of column matching zCol */
302 
303   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
304   for(i=0; i<N; i++){
305     iCol = columnIndex(pSrc->a[i].pTab, zCol);
306     if( iCol>=0 ){
307       if( piTab ){
308         *piTab = i;
309         *piCol = iCol;
310       }
311       return 1;
312     }
313   }
314   return 0;
315 }
316 
317 /*
318 ** This function is used to add terms implied by JOIN syntax to the
319 ** WHERE clause expression of a SELECT statement. The new term, which
320 ** is ANDed with the existing WHERE clause, is of the form:
321 **
322 **    (tab1.col1 = tab2.col2)
323 **
324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
326 ** column iColRight of tab2.
327 */
328 static void addWhereTerm(
329   Parse *pParse,                  /* Parsing context */
330   SrcList *pSrc,                  /* List of tables in FROM clause */
331   int iLeft,                      /* Index of first table to join in pSrc */
332   int iColLeft,                   /* Index of column in first table */
333   int iRight,                     /* Index of second table in pSrc */
334   int iColRight,                  /* Index of column in second table */
335   int isOuterJoin,                /* True if this is an OUTER join */
336   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
337 ){
338   sqlite3 *db = pParse->db;
339   Expr *pE1;
340   Expr *pE2;
341   Expr *pEq;
342 
343   assert( iLeft<iRight );
344   assert( pSrc->nSrc>iRight );
345   assert( pSrc->a[iLeft].pTab );
346   assert( pSrc->a[iRight].pTab );
347 
348   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
349   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
350 
351   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
352   if( pEq && isOuterJoin ){
353     ExprSetProperty(pEq, EP_FromJoin);
354     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
355     ExprSetVVAProperty(pEq, EP_NoReduce);
356     pEq->iRightJoinTable = (i16)pE2->iTable;
357   }
358   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
359 }
360 
361 /*
362 ** Set the EP_FromJoin property on all terms of the given expression.
363 ** And set the Expr.iRightJoinTable to iTable for every term in the
364 ** expression.
365 **
366 ** The EP_FromJoin property is used on terms of an expression to tell
367 ** the LEFT OUTER JOIN processing logic that this term is part of the
368 ** join restriction specified in the ON or USING clause and not a part
369 ** of the more general WHERE clause.  These terms are moved over to the
370 ** WHERE clause during join processing but we need to remember that they
371 ** originated in the ON or USING clause.
372 **
373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
374 ** expression depends on table iRightJoinTable even if that table is not
375 ** explicitly mentioned in the expression.  That information is needed
376 ** for cases like this:
377 **
378 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
379 **
380 ** The where clause needs to defer the handling of the t1.x=5
381 ** term until after the t2 loop of the join.  In that way, a
382 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
383 ** defer the handling of t1.x=5, it will be processed immediately
384 ** after the t1 loop and rows with t1.x!=5 will never appear in
385 ** the output, which is incorrect.
386 */
387 static void setJoinExpr(Expr *p, int iTable){
388   while( p ){
389     ExprSetProperty(p, EP_FromJoin);
390     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
391     ExprSetVVAProperty(p, EP_NoReduce);
392     p->iRightJoinTable = (i16)iTable;
393     if( p->op==TK_FUNCTION && p->x.pList ){
394       int i;
395       for(i=0; i<p->x.pList->nExpr; i++){
396         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
397       }
398     }
399     setJoinExpr(p->pLeft, iTable);
400     p = p->pRight;
401   }
402 }
403 
404 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
406 ** an ordinary term that omits the EP_FromJoin mark.
407 **
408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
409 */
410 static void unsetJoinExpr(Expr *p, int iTable){
411   while( p ){
412     if( ExprHasProperty(p, EP_FromJoin)
413      && (iTable<0 || p->iRightJoinTable==iTable) ){
414       ExprClearProperty(p, EP_FromJoin);
415     }
416     if( p->op==TK_FUNCTION && p->x.pList ){
417       int i;
418       for(i=0; i<p->x.pList->nExpr; i++){
419         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
420       }
421     }
422     unsetJoinExpr(p->pLeft, iTable);
423     p = p->pRight;
424   }
425 }
426 
427 /*
428 ** This routine processes the join information for a SELECT statement.
429 ** ON and USING clauses are converted into extra terms of the WHERE clause.
430 ** NATURAL joins also create extra WHERE clause terms.
431 **
432 ** The terms of a FROM clause are contained in the Select.pSrc structure.
433 ** The left most table is the first entry in Select.pSrc.  The right-most
434 ** table is the last entry.  The join operator is held in the entry to
435 ** the left.  Thus entry 0 contains the join operator for the join between
436 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
437 ** also attached to the left entry.
438 **
439 ** This routine returns the number of errors encountered.
440 */
441 static int sqliteProcessJoin(Parse *pParse, Select *p){
442   SrcList *pSrc;                  /* All tables in the FROM clause */
443   int i, j;                       /* Loop counters */
444   struct SrcList_item *pLeft;     /* Left table being joined */
445   struct SrcList_item *pRight;    /* Right table being joined */
446 
447   pSrc = p->pSrc;
448   pLeft = &pSrc->a[0];
449   pRight = &pLeft[1];
450   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
451     Table *pRightTab = pRight->pTab;
452     int isOuter;
453 
454     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
455     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
456 
457     /* When the NATURAL keyword is present, add WHERE clause terms for
458     ** every column that the two tables have in common.
459     */
460     if( pRight->fg.jointype & JT_NATURAL ){
461       if( pRight->pOn || pRight->pUsing ){
462         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
463            "an ON or USING clause", 0);
464         return 1;
465       }
466       for(j=0; j<pRightTab->nCol; j++){
467         char *zName;   /* Name of column in the right table */
468         int iLeft;     /* Matching left table */
469         int iLeftCol;  /* Matching column in the left table */
470 
471         zName = pRightTab->aCol[j].zName;
472         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
473           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
474                        isOuter, &p->pWhere);
475         }
476       }
477     }
478 
479     /* Disallow both ON and USING clauses in the same join
480     */
481     if( pRight->pOn && pRight->pUsing ){
482       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
483         "clauses in the same join");
484       return 1;
485     }
486 
487     /* Add the ON clause to the end of the WHERE clause, connected by
488     ** an AND operator.
489     */
490     if( pRight->pOn ){
491       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
492       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
493       pRight->pOn = 0;
494     }
495 
496     /* Create extra terms on the WHERE clause for each column named
497     ** in the USING clause.  Example: If the two tables to be joined are
498     ** A and B and the USING clause names X, Y, and Z, then add this
499     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
500     ** Report an error if any column mentioned in the USING clause is
501     ** not contained in both tables to be joined.
502     */
503     if( pRight->pUsing ){
504       IdList *pList = pRight->pUsing;
505       for(j=0; j<pList->nId; j++){
506         char *zName;     /* Name of the term in the USING clause */
507         int iLeft;       /* Table on the left with matching column name */
508         int iLeftCol;    /* Column number of matching column on the left */
509         int iRightCol;   /* Column number of matching column on the right */
510 
511         zName = pList->a[j].zName;
512         iRightCol = columnIndex(pRightTab, zName);
513         if( iRightCol<0
514          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
515         ){
516           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
517             "not present in both tables", zName);
518           return 1;
519         }
520         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
521                      isOuter, &p->pWhere);
522       }
523     }
524   }
525   return 0;
526 }
527 
528 /*
529 ** An instance of this object holds information (beyond pParse and pSelect)
530 ** needed to load the next result row that is to be added to the sorter.
531 */
532 typedef struct RowLoadInfo RowLoadInfo;
533 struct RowLoadInfo {
534   int regResult;               /* Store results in array of registers here */
535   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
537   ExprList *pExtra;            /* Extra columns needed by sorter refs */
538   int regExtraResult;          /* Where to load the extra columns */
539 #endif
540 };
541 
542 /*
543 ** This routine does the work of loading query data into an array of
544 ** registers so that it can be added to the sorter.
545 */
546 static void innerLoopLoadRow(
547   Parse *pParse,             /* Statement under construction */
548   Select *pSelect,           /* The query being coded */
549   RowLoadInfo *pInfo         /* Info needed to complete the row load */
550 ){
551   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
552                           0, pInfo->ecelFlags);
553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
554   if( pInfo->pExtra ){
555     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
556     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
557   }
558 #endif
559 }
560 
561 /*
562 ** Code the OP_MakeRecord instruction that generates the entry to be
563 ** added into the sorter.
564 **
565 ** Return the register in which the result is stored.
566 */
567 static int makeSorterRecord(
568   Parse *pParse,
569   SortCtx *pSort,
570   Select *pSelect,
571   int regBase,
572   int nBase
573 ){
574   int nOBSat = pSort->nOBSat;
575   Vdbe *v = pParse->pVdbe;
576   int regOut = ++pParse->nMem;
577   if( pSort->pDeferredRowLoad ){
578     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
579   }
580   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
581   return regOut;
582 }
583 
584 /*
585 ** Generate code that will push the record in registers regData
586 ** through regData+nData-1 onto the sorter.
587 */
588 static void pushOntoSorter(
589   Parse *pParse,         /* Parser context */
590   SortCtx *pSort,        /* Information about the ORDER BY clause */
591   Select *pSelect,       /* The whole SELECT statement */
592   int regData,           /* First register holding data to be sorted */
593   int regOrigData,       /* First register holding data before packing */
594   int nData,             /* Number of elements in the regData data array */
595   int nPrefixReg         /* No. of reg prior to regData available for use */
596 ){
597   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
598   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
599   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
600   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
601   int regBase;                                     /* Regs for sorter record */
602   int regRecord = 0;                               /* Assembled sorter record */
603   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
604   int op;                            /* Opcode to add sorter record to sorter */
605   int iLimit;                        /* LIMIT counter */
606   int iSkip = 0;                     /* End of the sorter insert loop */
607 
608   assert( bSeq==0 || bSeq==1 );
609 
610   /* Three cases:
611   **   (1) The data to be sorted has already been packed into a Record
612   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
613   **       will be completely unrelated to regOrigData.
614   **   (2) All output columns are included in the sort record.  In that
615   **       case regData==regOrigData.
616   **   (3) Some output columns are omitted from the sort record due to
617   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
618   **       SQLITE_ECEL_OMITREF optimization, or due to the
619   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
620   **       regOrigData is 0 to prevent this routine from trying to copy
621   **       values that might not yet exist.
622   */
623   assert( nData==1 || regData==regOrigData || regOrigData==0 );
624 
625   if( nPrefixReg ){
626     assert( nPrefixReg==nExpr+bSeq );
627     regBase = regData - nPrefixReg;
628   }else{
629     regBase = pParse->nMem + 1;
630     pParse->nMem += nBase;
631   }
632   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
633   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
634   pSort->labelDone = sqlite3VdbeMakeLabel(v);
635   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
636                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
637   if( bSeq ){
638     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
639   }
640   if( nPrefixReg==0 && nData>0 ){
641     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
642   }
643   if( nOBSat>0 ){
644     int regPrevKey;   /* The first nOBSat columns of the previous row */
645     int addrFirst;    /* Address of the OP_IfNot opcode */
646     int addrJmp;      /* Address of the OP_Jump opcode */
647     VdbeOp *pOp;      /* Opcode that opens the sorter */
648     int nKey;         /* Number of sorting key columns, including OP_Sequence */
649     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
650 
651     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
652     regPrevKey = pParse->nMem+1;
653     pParse->nMem += pSort->nOBSat;
654     nKey = nExpr - pSort->nOBSat + bSeq;
655     if( bSeq ){
656       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
657     }else{
658       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
659     }
660     VdbeCoverage(v);
661     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
662     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
663     if( pParse->db->mallocFailed ) return;
664     pOp->p2 = nKey + nData;
665     pKI = pOp->p4.pKeyInfo;
666     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
667     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
668     testcase( pKI->nAllField > pKI->nKeyField+2 );
669     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
670                                            pKI->nAllField-pKI->nKeyField-1);
671     addrJmp = sqlite3VdbeCurrentAddr(v);
672     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
673     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
674     pSort->regReturn = ++pParse->nMem;
675     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
676     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
677     if( iLimit ){
678       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
679       VdbeCoverage(v);
680     }
681     sqlite3VdbeJumpHere(v, addrFirst);
682     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
683     sqlite3VdbeJumpHere(v, addrJmp);
684   }
685   if( iLimit ){
686     /* At this point the values for the new sorter entry are stored
687     ** in an array of registers. They need to be composed into a record
688     ** and inserted into the sorter if either (a) there are currently
689     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
690     ** the largest record currently in the sorter. If (b) is true and there
691     ** are already LIMIT+OFFSET items in the sorter, delete the largest
692     ** entry before inserting the new one. This way there are never more
693     ** than LIMIT+OFFSET items in the sorter.
694     **
695     ** If the new record does not need to be inserted into the sorter,
696     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
697     ** value is not zero, then it is a label of where to jump.  Otherwise,
698     ** just bypass the row insert logic.  See the header comment on the
699     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
700     */
701     int iCsr = pSort->iECursor;
702     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
705     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
706                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
707     VdbeCoverage(v);
708     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
709   }
710   if( regRecord==0 ){
711     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
712   }
713   if( pSort->sortFlags & SORTFLAG_UseSorter ){
714     op = OP_SorterInsert;
715   }else{
716     op = OP_IdxInsert;
717   }
718   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
719                        regBase+nOBSat, nBase-nOBSat);
720   if( iSkip ){
721     sqlite3VdbeChangeP2(v, iSkip,
722          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
723   }
724 }
725 
726 /*
727 ** Add code to implement the OFFSET
728 */
729 static void codeOffset(
730   Vdbe *v,          /* Generate code into this VM */
731   int iOffset,      /* Register holding the offset counter */
732   int iContinue     /* Jump here to skip the current record */
733 ){
734   if( iOffset>0 ){
735     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
736     VdbeComment((v, "OFFSET"));
737   }
738 }
739 
740 /*
741 ** Add code that will check to make sure the N registers starting at iMem
742 ** form a distinct entry.  iTab is a sorting index that holds previously
743 ** seen combinations of the N values.  A new entry is made in iTab
744 ** if the current N values are new.
745 **
746 ** A jump to addrRepeat is made and the N+1 values are popped from the
747 ** stack if the top N elements are not distinct.
748 */
749 static void codeDistinct(
750   Parse *pParse,     /* Parsing and code generating context */
751   int iTab,          /* A sorting index used to test for distinctness */
752   int addrRepeat,    /* Jump to here if not distinct */
753   int N,             /* Number of elements */
754   int iMem           /* First element */
755 ){
756   Vdbe *v;
757   int r1;
758 
759   v = pParse->pVdbe;
760   r1 = sqlite3GetTempReg(pParse);
761   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
762   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
763   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
764   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
765   sqlite3ReleaseTempReg(pParse, r1);
766 }
767 
768 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
769 /*
770 ** This function is called as part of inner-loop generation for a SELECT
771 ** statement with an ORDER BY that is not optimized by an index. It
772 ** determines the expressions, if any, that the sorter-reference
773 ** optimization should be used for. The sorter-reference optimization
774 ** is used for SELECT queries like:
775 **
776 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
777 **
778 ** If the optimization is used for expression "bigblob", then instead of
779 ** storing values read from that column in the sorter records, the PK of
780 ** the row from table t1 is stored instead. Then, as records are extracted from
781 ** the sorter to return to the user, the required value of bigblob is
782 ** retrieved directly from table t1. If the values are very large, this
783 ** can be more efficient than storing them directly in the sorter records.
784 **
785 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
786 ** for which the sorter-reference optimization should be enabled.
787 ** Additionally, the pSort->aDefer[] array is populated with entries
788 ** for all cursors required to evaluate all selected expressions. Finally.
789 ** output variable (*ppExtra) is set to an expression list containing
790 ** expressions for all extra PK values that should be stored in the
791 ** sorter records.
792 */
793 static void selectExprDefer(
794   Parse *pParse,                  /* Leave any error here */
795   SortCtx *pSort,                 /* Sorter context */
796   ExprList *pEList,               /* Expressions destined for sorter */
797   ExprList **ppExtra              /* Expressions to append to sorter record */
798 ){
799   int i;
800   int nDefer = 0;
801   ExprList *pExtra = 0;
802   for(i=0; i<pEList->nExpr; i++){
803     struct ExprList_item *pItem = &pEList->a[i];
804     if( pItem->u.x.iOrderByCol==0 ){
805       Expr *pExpr = pItem->pExpr;
806       Table *pTab = pExpr->y.pTab;
807       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
808        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
809       ){
810         int j;
811         for(j=0; j<nDefer; j++){
812           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
813         }
814         if( j==nDefer ){
815           if( nDefer==ArraySize(pSort->aDefer) ){
816             continue;
817           }else{
818             int nKey = 1;
819             int k;
820             Index *pPk = 0;
821             if( !HasRowid(pTab) ){
822               pPk = sqlite3PrimaryKeyIndex(pTab);
823               nKey = pPk->nKeyCol;
824             }
825             for(k=0; k<nKey; k++){
826               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
827               if( pNew ){
828                 pNew->iTable = pExpr->iTable;
829                 pNew->y.pTab = pExpr->y.pTab;
830                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
831                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
832               }
833             }
834             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
835             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
836             pSort->aDefer[nDefer].nKey = nKey;
837             nDefer++;
838           }
839         }
840         pItem->bSorterRef = 1;
841       }
842     }
843   }
844   pSort->nDefer = (u8)nDefer;
845   *ppExtra = pExtra;
846 }
847 #endif
848 
849 /*
850 ** This routine generates the code for the inside of the inner loop
851 ** of a SELECT.
852 **
853 ** If srcTab is negative, then the p->pEList expressions
854 ** are evaluated in order to get the data for this row.  If srcTab is
855 ** zero or more, then data is pulled from srcTab and p->pEList is used only
856 ** to get the number of columns and the collation sequence for each column.
857 */
858 static void selectInnerLoop(
859   Parse *pParse,          /* The parser context */
860   Select *p,              /* The complete select statement being coded */
861   int srcTab,             /* Pull data from this table if non-negative */
862   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
863   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
864   SelectDest *pDest,      /* How to dispose of the results */
865   int iContinue,          /* Jump here to continue with next row */
866   int iBreak              /* Jump here to break out of the inner loop */
867 ){
868   Vdbe *v = pParse->pVdbe;
869   int i;
870   int hasDistinct;            /* True if the DISTINCT keyword is present */
871   int eDest = pDest->eDest;   /* How to dispose of results */
872   int iParm = pDest->iSDParm; /* First argument to disposal method */
873   int nResultCol;             /* Number of result columns */
874   int nPrefixReg = 0;         /* Number of extra registers before regResult */
875   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
876 
877   /* Usually, regResult is the first cell in an array of memory cells
878   ** containing the current result row. In this case regOrig is set to the
879   ** same value. However, if the results are being sent to the sorter, the
880   ** values for any expressions that are also part of the sort-key are omitted
881   ** from this array. In this case regOrig is set to zero.  */
882   int regResult;              /* Start of memory holding current results */
883   int regOrig;                /* Start of memory holding full result (or 0) */
884 
885   assert( v );
886   assert( p->pEList!=0 );
887   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
888   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
889   if( pSort==0 && !hasDistinct ){
890     assert( iContinue!=0 );
891     codeOffset(v, p->iOffset, iContinue);
892   }
893 
894   /* Pull the requested columns.
895   */
896   nResultCol = p->pEList->nExpr;
897 
898   if( pDest->iSdst==0 ){
899     if( pSort ){
900       nPrefixReg = pSort->pOrderBy->nExpr;
901       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
902       pParse->nMem += nPrefixReg;
903     }
904     pDest->iSdst = pParse->nMem+1;
905     pParse->nMem += nResultCol;
906   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
907     /* This is an error condition that can result, for example, when a SELECT
908     ** on the right-hand side of an INSERT contains more result columns than
909     ** there are columns in the table on the left.  The error will be caught
910     ** and reported later.  But we need to make sure enough memory is allocated
911     ** to avoid other spurious errors in the meantime. */
912     pParse->nMem += nResultCol;
913   }
914   pDest->nSdst = nResultCol;
915   regOrig = regResult = pDest->iSdst;
916   if( srcTab>=0 ){
917     for(i=0; i<nResultCol; i++){
918       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
919       VdbeComment((v, "%s", p->pEList->a[i].zName));
920     }
921   }else if( eDest!=SRT_Exists ){
922 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
923     ExprList *pExtra = 0;
924 #endif
925     /* If the destination is an EXISTS(...) expression, the actual
926     ** values returned by the SELECT are not required.
927     */
928     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
929     ExprList *pEList;
930     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
931       ecelFlags = SQLITE_ECEL_DUP;
932     }else{
933       ecelFlags = 0;
934     }
935     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
936       /* For each expression in p->pEList that is a copy of an expression in
937       ** the ORDER BY clause (pSort->pOrderBy), set the associated
938       ** iOrderByCol value to one more than the index of the ORDER BY
939       ** expression within the sort-key that pushOntoSorter() will generate.
940       ** This allows the p->pEList field to be omitted from the sorted record,
941       ** saving space and CPU cycles.  */
942       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
943 
944       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
945         int j;
946         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
947           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
948         }
949       }
950 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
951       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
952       if( pExtra && pParse->db->mallocFailed==0 ){
953         /* If there are any extra PK columns to add to the sorter records,
954         ** allocate extra memory cells and adjust the OpenEphemeral
955         ** instruction to account for the larger records. This is only
956         ** required if there are one or more WITHOUT ROWID tables with
957         ** composite primary keys in the SortCtx.aDefer[] array.  */
958         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
959         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
960         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
961         pParse->nMem += pExtra->nExpr;
962       }
963 #endif
964 
965       /* Adjust nResultCol to account for columns that are omitted
966       ** from the sorter by the optimizations in this branch */
967       pEList = p->pEList;
968       for(i=0; i<pEList->nExpr; i++){
969         if( pEList->a[i].u.x.iOrderByCol>0
970 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
971          || pEList->a[i].bSorterRef
972 #endif
973         ){
974           nResultCol--;
975           regOrig = 0;
976         }
977       }
978 
979       testcase( regOrig );
980       testcase( eDest==SRT_Set );
981       testcase( eDest==SRT_Mem );
982       testcase( eDest==SRT_Coroutine );
983       testcase( eDest==SRT_Output );
984       assert( eDest==SRT_Set || eDest==SRT_Mem
985            || eDest==SRT_Coroutine || eDest==SRT_Output );
986     }
987     sRowLoadInfo.regResult = regResult;
988     sRowLoadInfo.ecelFlags = ecelFlags;
989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
990     sRowLoadInfo.pExtra = pExtra;
991     sRowLoadInfo.regExtraResult = regResult + nResultCol;
992     if( pExtra ) nResultCol += pExtra->nExpr;
993 #endif
994     if( p->iLimit
995      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
996      && nPrefixReg>0
997     ){
998       assert( pSort!=0 );
999       assert( hasDistinct==0 );
1000       pSort->pDeferredRowLoad = &sRowLoadInfo;
1001       regOrig = 0;
1002     }else{
1003       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1004     }
1005   }
1006 
1007   /* If the DISTINCT keyword was present on the SELECT statement
1008   ** and this row has been seen before, then do not make this row
1009   ** part of the result.
1010   */
1011   if( hasDistinct ){
1012     switch( pDistinct->eTnctType ){
1013       case WHERE_DISTINCT_ORDERED: {
1014         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1015         int iJump;              /* Jump destination */
1016         int regPrev;            /* Previous row content */
1017 
1018         /* Allocate space for the previous row */
1019         regPrev = pParse->nMem+1;
1020         pParse->nMem += nResultCol;
1021 
1022         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1023         ** sets the MEM_Cleared bit on the first register of the
1024         ** previous value.  This will cause the OP_Ne below to always
1025         ** fail on the first iteration of the loop even if the first
1026         ** row is all NULLs.
1027         */
1028         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1029         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1030         pOp->opcode = OP_Null;
1031         pOp->p1 = 1;
1032         pOp->p2 = regPrev;
1033 
1034         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1035         for(i=0; i<nResultCol; i++){
1036           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1037           if( i<nResultCol-1 ){
1038             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1039             VdbeCoverage(v);
1040           }else{
1041             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1042             VdbeCoverage(v);
1043            }
1044           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1045           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1046         }
1047         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1048         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1049         break;
1050       }
1051 
1052       case WHERE_DISTINCT_UNIQUE: {
1053         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1054         break;
1055       }
1056 
1057       default: {
1058         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1059         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1060                      regResult);
1061         break;
1062       }
1063     }
1064     if( pSort==0 ){
1065       codeOffset(v, p->iOffset, iContinue);
1066     }
1067   }
1068 
1069   switch( eDest ){
1070     /* In this mode, write each query result to the key of the temporary
1071     ** table iParm.
1072     */
1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1074     case SRT_Union: {
1075       int r1;
1076       r1 = sqlite3GetTempReg(pParse);
1077       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1078       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1079       sqlite3ReleaseTempReg(pParse, r1);
1080       break;
1081     }
1082 
1083     /* Construct a record from the query result, but instead of
1084     ** saving that record, use it as a key to delete elements from
1085     ** the temporary table iParm.
1086     */
1087     case SRT_Except: {
1088       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1089       break;
1090     }
1091 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1092 
1093     /* Store the result as data using a unique key.
1094     */
1095     case SRT_Fifo:
1096     case SRT_DistFifo:
1097     case SRT_Table:
1098     case SRT_EphemTab: {
1099       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1100       testcase( eDest==SRT_Table );
1101       testcase( eDest==SRT_EphemTab );
1102       testcase( eDest==SRT_Fifo );
1103       testcase( eDest==SRT_DistFifo );
1104       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1105 #ifndef SQLITE_OMIT_CTE
1106       if( eDest==SRT_DistFifo ){
1107         /* If the destination is DistFifo, then cursor (iParm+1) is open
1108         ** on an ephemeral index. If the current row is already present
1109         ** in the index, do not write it to the output. If not, add the
1110         ** current row to the index and proceed with writing it to the
1111         ** output table as well.  */
1112         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1113         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1114         VdbeCoverage(v);
1115         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1116         assert( pSort==0 );
1117       }
1118 #endif
1119       if( pSort ){
1120         assert( regResult==regOrig );
1121         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1122       }else{
1123         int r2 = sqlite3GetTempReg(pParse);
1124         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1125         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1126         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1127         sqlite3ReleaseTempReg(pParse, r2);
1128       }
1129       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1130       break;
1131     }
1132 
1133 #ifndef SQLITE_OMIT_SUBQUERY
1134     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1135     ** then there should be a single item on the stack.  Write this
1136     ** item into the set table with bogus data.
1137     */
1138     case SRT_Set: {
1139       if( pSort ){
1140         /* At first glance you would think we could optimize out the
1141         ** ORDER BY in this case since the order of entries in the set
1142         ** does not matter.  But there might be a LIMIT clause, in which
1143         ** case the order does matter */
1144         pushOntoSorter(
1145             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1146       }else{
1147         int r1 = sqlite3GetTempReg(pParse);
1148         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1149         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1150             r1, pDest->zAffSdst, nResultCol);
1151         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1152         sqlite3ReleaseTempReg(pParse, r1);
1153       }
1154       break;
1155     }
1156 
1157     /* If any row exist in the result set, record that fact and abort.
1158     */
1159     case SRT_Exists: {
1160       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1161       /* The LIMIT clause will terminate the loop for us */
1162       break;
1163     }
1164 
1165     /* If this is a scalar select that is part of an expression, then
1166     ** store the results in the appropriate memory cell or array of
1167     ** memory cells and break out of the scan loop.
1168     */
1169     case SRT_Mem: {
1170       if( pSort ){
1171         assert( nResultCol<=pDest->nSdst );
1172         pushOntoSorter(
1173             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1174       }else{
1175         assert( nResultCol==pDest->nSdst );
1176         assert( regResult==iParm );
1177         /* The LIMIT clause will jump out of the loop for us */
1178       }
1179       break;
1180     }
1181 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1182 
1183     case SRT_Coroutine:       /* Send data to a co-routine */
1184     case SRT_Output: {        /* Return the results */
1185       testcase( eDest==SRT_Coroutine );
1186       testcase( eDest==SRT_Output );
1187       if( pSort ){
1188         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1189                        nPrefixReg);
1190       }else if( eDest==SRT_Coroutine ){
1191         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1192       }else{
1193         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1194       }
1195       break;
1196     }
1197 
1198 #ifndef SQLITE_OMIT_CTE
1199     /* Write the results into a priority queue that is order according to
1200     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1201     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1202     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1203     ** final OP_Sequence column.  The last column is the record as a blob.
1204     */
1205     case SRT_DistQueue:
1206     case SRT_Queue: {
1207       int nKey;
1208       int r1, r2, r3;
1209       int addrTest = 0;
1210       ExprList *pSO;
1211       pSO = pDest->pOrderBy;
1212       assert( pSO );
1213       nKey = pSO->nExpr;
1214       r1 = sqlite3GetTempReg(pParse);
1215       r2 = sqlite3GetTempRange(pParse, nKey+2);
1216       r3 = r2+nKey+1;
1217       if( eDest==SRT_DistQueue ){
1218         /* If the destination is DistQueue, then cursor (iParm+1) is open
1219         ** on a second ephemeral index that holds all values every previously
1220         ** added to the queue. */
1221         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1222                                         regResult, nResultCol);
1223         VdbeCoverage(v);
1224       }
1225       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1226       if( eDest==SRT_DistQueue ){
1227         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1228         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1229       }
1230       for(i=0; i<nKey; i++){
1231         sqlite3VdbeAddOp2(v, OP_SCopy,
1232                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1233                           r2+i);
1234       }
1235       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1236       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1237       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1238       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1239       sqlite3ReleaseTempReg(pParse, r1);
1240       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1241       break;
1242     }
1243 #endif /* SQLITE_OMIT_CTE */
1244 
1245 
1246 
1247 #if !defined(SQLITE_OMIT_TRIGGER)
1248     /* Discard the results.  This is used for SELECT statements inside
1249     ** the body of a TRIGGER.  The purpose of such selects is to call
1250     ** user-defined functions that have side effects.  We do not care
1251     ** about the actual results of the select.
1252     */
1253     default: {
1254       assert( eDest==SRT_Discard );
1255       break;
1256     }
1257 #endif
1258   }
1259 
1260   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1261   ** there is a sorter, in which case the sorter has already limited
1262   ** the output for us.
1263   */
1264   if( pSort==0 && p->iLimit ){
1265     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1266   }
1267 }
1268 
1269 /*
1270 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1271 ** X extra columns.
1272 */
1273 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1274   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1275   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1276   if( p ){
1277     p->aSortOrder = (u8*)&p->aColl[N+X];
1278     p->nKeyField = (u16)N;
1279     p->nAllField = (u16)(N+X);
1280     p->enc = ENC(db);
1281     p->db = db;
1282     p->nRef = 1;
1283     memset(&p[1], 0, nExtra);
1284   }else{
1285     sqlite3OomFault(db);
1286   }
1287   return p;
1288 }
1289 
1290 /*
1291 ** Deallocate a KeyInfo object
1292 */
1293 void sqlite3KeyInfoUnref(KeyInfo *p){
1294   if( p ){
1295     assert( p->nRef>0 );
1296     p->nRef--;
1297     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1298   }
1299 }
1300 
1301 /*
1302 ** Make a new pointer to a KeyInfo object
1303 */
1304 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1305   if( p ){
1306     assert( p->nRef>0 );
1307     p->nRef++;
1308   }
1309   return p;
1310 }
1311 
1312 #ifdef SQLITE_DEBUG
1313 /*
1314 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1315 ** can only be changed if this is just a single reference to the object.
1316 **
1317 ** This routine is used only inside of assert() statements.
1318 */
1319 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1320 #endif /* SQLITE_DEBUG */
1321 
1322 /*
1323 ** Given an expression list, generate a KeyInfo structure that records
1324 ** the collating sequence for each expression in that expression list.
1325 **
1326 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1327 ** KeyInfo structure is appropriate for initializing a virtual index to
1328 ** implement that clause.  If the ExprList is the result set of a SELECT
1329 ** then the KeyInfo structure is appropriate for initializing a virtual
1330 ** index to implement a DISTINCT test.
1331 **
1332 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1333 ** function is responsible for seeing that this structure is eventually
1334 ** freed.
1335 */
1336 KeyInfo *sqlite3KeyInfoFromExprList(
1337   Parse *pParse,       /* Parsing context */
1338   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1339   int iStart,          /* Begin with this column of pList */
1340   int nExtra           /* Add this many extra columns to the end */
1341 ){
1342   int nExpr;
1343   KeyInfo *pInfo;
1344   struct ExprList_item *pItem;
1345   sqlite3 *db = pParse->db;
1346   int i;
1347 
1348   nExpr = pList->nExpr;
1349   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1350   if( pInfo ){
1351     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1352     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1353       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1354       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1355     }
1356   }
1357   return pInfo;
1358 }
1359 
1360 /*
1361 ** Name of the connection operator, used for error messages.
1362 */
1363 static const char *selectOpName(int id){
1364   char *z;
1365   switch( id ){
1366     case TK_ALL:       z = "UNION ALL";   break;
1367     case TK_INTERSECT: z = "INTERSECT";   break;
1368     case TK_EXCEPT:    z = "EXCEPT";      break;
1369     default:           z = "UNION";       break;
1370   }
1371   return z;
1372 }
1373 
1374 #ifndef SQLITE_OMIT_EXPLAIN
1375 /*
1376 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1377 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1378 ** where the caption is of the form:
1379 **
1380 **   "USE TEMP B-TREE FOR xxx"
1381 **
1382 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1383 ** is determined by the zUsage argument.
1384 */
1385 static void explainTempTable(Parse *pParse, const char *zUsage){
1386   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1387 }
1388 
1389 /*
1390 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1391 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1392 ** in sqlite3Select() to assign values to structure member variables that
1393 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1394 ** code with #ifndef directives.
1395 */
1396 # define explainSetInteger(a, b) a = b
1397 
1398 #else
1399 /* No-op versions of the explainXXX() functions and macros. */
1400 # define explainTempTable(y,z)
1401 # define explainSetInteger(y,z)
1402 #endif
1403 
1404 
1405 /*
1406 ** If the inner loop was generated using a non-null pOrderBy argument,
1407 ** then the results were placed in a sorter.  After the loop is terminated
1408 ** we need to run the sorter and output the results.  The following
1409 ** routine generates the code needed to do that.
1410 */
1411 static void generateSortTail(
1412   Parse *pParse,    /* Parsing context */
1413   Select *p,        /* The SELECT statement */
1414   SortCtx *pSort,   /* Information on the ORDER BY clause */
1415   int nColumn,      /* Number of columns of data */
1416   SelectDest *pDest /* Write the sorted results here */
1417 ){
1418   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1419   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1420   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1421   int addr;                       /* Top of output loop. Jump for Next. */
1422   int addrOnce = 0;
1423   int iTab;
1424   ExprList *pOrderBy = pSort->pOrderBy;
1425   int eDest = pDest->eDest;
1426   int iParm = pDest->iSDParm;
1427   int regRow;
1428   int regRowid;
1429   int iCol;
1430   int nKey;                       /* Number of key columns in sorter record */
1431   int iSortTab;                   /* Sorter cursor to read from */
1432   int i;
1433   int bSeq;                       /* True if sorter record includes seq. no. */
1434   int nRefKey = 0;
1435   struct ExprList_item *aOutEx = p->pEList->a;
1436 
1437   assert( addrBreak<0 );
1438   if( pSort->labelBkOut ){
1439     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1440     sqlite3VdbeGoto(v, addrBreak);
1441     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1442   }
1443 
1444 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1445   /* Open any cursors needed for sorter-reference expressions */
1446   for(i=0; i<pSort->nDefer; i++){
1447     Table *pTab = pSort->aDefer[i].pTab;
1448     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1449     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1450     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1451   }
1452 #endif
1453 
1454   iTab = pSort->iECursor;
1455   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1456     regRowid = 0;
1457     regRow = pDest->iSdst;
1458   }else{
1459     regRowid = sqlite3GetTempReg(pParse);
1460     regRow = sqlite3GetTempRange(pParse, nColumn);
1461   }
1462   nKey = pOrderBy->nExpr - pSort->nOBSat;
1463   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1464     int regSortOut = ++pParse->nMem;
1465     iSortTab = pParse->nTab++;
1466     if( pSort->labelBkOut ){
1467       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1468     }
1469     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1470         nKey+1+nColumn+nRefKey);
1471     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1472     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1473     VdbeCoverage(v);
1474     codeOffset(v, p->iOffset, addrContinue);
1475     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1476     bSeq = 0;
1477   }else{
1478     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1479     codeOffset(v, p->iOffset, addrContinue);
1480     iSortTab = iTab;
1481     bSeq = 1;
1482   }
1483   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1484 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1485     if( aOutEx[i].bSorterRef ) continue;
1486 #endif
1487     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1488   }
1489 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1490   if( pSort->nDefer ){
1491     int iKey = iCol+1;
1492     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1493 
1494     for(i=0; i<pSort->nDefer; i++){
1495       int iCsr = pSort->aDefer[i].iCsr;
1496       Table *pTab = pSort->aDefer[i].pTab;
1497       int nKey = pSort->aDefer[i].nKey;
1498 
1499       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1500       if( HasRowid(pTab) ){
1501         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1502         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1503             sqlite3VdbeCurrentAddr(v)+1, regKey);
1504       }else{
1505         int k;
1506         int iJmp;
1507         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1508         for(k=0; k<nKey; k++){
1509           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1510         }
1511         iJmp = sqlite3VdbeCurrentAddr(v);
1512         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1513         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1514         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1515       }
1516     }
1517     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1518   }
1519 #endif
1520   for(i=nColumn-1; i>=0; i--){
1521 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1522     if( aOutEx[i].bSorterRef ){
1523       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1524     }else
1525 #endif
1526     {
1527       int iRead;
1528       if( aOutEx[i].u.x.iOrderByCol ){
1529         iRead = aOutEx[i].u.x.iOrderByCol-1;
1530       }else{
1531         iRead = iCol--;
1532       }
1533       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1534       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1535     }
1536   }
1537   switch( eDest ){
1538     case SRT_Table:
1539     case SRT_EphemTab: {
1540       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1541       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1542       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1543       break;
1544     }
1545 #ifndef SQLITE_OMIT_SUBQUERY
1546     case SRT_Set: {
1547       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1548       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1549                         pDest->zAffSdst, nColumn);
1550       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1551       break;
1552     }
1553     case SRT_Mem: {
1554       /* The LIMIT clause will terminate the loop for us */
1555       break;
1556     }
1557 #endif
1558     default: {
1559       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1560       testcase( eDest==SRT_Output );
1561       testcase( eDest==SRT_Coroutine );
1562       if( eDest==SRT_Output ){
1563         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1564       }else{
1565         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1566       }
1567       break;
1568     }
1569   }
1570   if( regRowid ){
1571     if( eDest==SRT_Set ){
1572       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1573     }else{
1574       sqlite3ReleaseTempReg(pParse, regRow);
1575     }
1576     sqlite3ReleaseTempReg(pParse, regRowid);
1577   }
1578   /* The bottom of the loop
1579   */
1580   sqlite3VdbeResolveLabel(v, addrContinue);
1581   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1582     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1583   }else{
1584     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1585   }
1586   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1587   sqlite3VdbeResolveLabel(v, addrBreak);
1588 }
1589 
1590 /*
1591 ** Return a pointer to a string containing the 'declaration type' of the
1592 ** expression pExpr. The string may be treated as static by the caller.
1593 **
1594 ** Also try to estimate the size of the returned value and return that
1595 ** result in *pEstWidth.
1596 **
1597 ** The declaration type is the exact datatype definition extracted from the
1598 ** original CREATE TABLE statement if the expression is a column. The
1599 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1600 ** is considered a column can be complex in the presence of subqueries. The
1601 ** result-set expression in all of the following SELECT statements is
1602 ** considered a column by this function.
1603 **
1604 **   SELECT col FROM tbl;
1605 **   SELECT (SELECT col FROM tbl;
1606 **   SELECT (SELECT col FROM tbl);
1607 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1608 **
1609 ** The declaration type for any expression other than a column is NULL.
1610 **
1611 ** This routine has either 3 or 6 parameters depending on whether or not
1612 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1613 */
1614 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1615 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1616 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1617 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1618 #endif
1619 static const char *columnTypeImpl(
1620   NameContext *pNC,
1621 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1622   Expr *pExpr
1623 #else
1624   Expr *pExpr,
1625   const char **pzOrigDb,
1626   const char **pzOrigTab,
1627   const char **pzOrigCol
1628 #endif
1629 ){
1630   char const *zType = 0;
1631   int j;
1632 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1633   char const *zOrigDb = 0;
1634   char const *zOrigTab = 0;
1635   char const *zOrigCol = 0;
1636 #endif
1637 
1638   assert( pExpr!=0 );
1639   assert( pNC->pSrcList!=0 );
1640   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1641                                        ** are processed */
1642   switch( pExpr->op ){
1643     case TK_COLUMN: {
1644       /* The expression is a column. Locate the table the column is being
1645       ** extracted from in NameContext.pSrcList. This table may be real
1646       ** database table or a subquery.
1647       */
1648       Table *pTab = 0;            /* Table structure column is extracted from */
1649       Select *pS = 0;             /* Select the column is extracted from */
1650       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1651       while( pNC && !pTab ){
1652         SrcList *pTabList = pNC->pSrcList;
1653         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1654         if( j<pTabList->nSrc ){
1655           pTab = pTabList->a[j].pTab;
1656           pS = pTabList->a[j].pSelect;
1657         }else{
1658           pNC = pNC->pNext;
1659         }
1660       }
1661 
1662       if( pTab==0 ){
1663         /* At one time, code such as "SELECT new.x" within a trigger would
1664         ** cause this condition to run.  Since then, we have restructured how
1665         ** trigger code is generated and so this condition is no longer
1666         ** possible. However, it can still be true for statements like
1667         ** the following:
1668         **
1669         **   CREATE TABLE t1(col INTEGER);
1670         **   SELECT (SELECT t1.col) FROM FROM t1;
1671         **
1672         ** when columnType() is called on the expression "t1.col" in the
1673         ** sub-select. In this case, set the column type to NULL, even
1674         ** though it should really be "INTEGER".
1675         **
1676         ** This is not a problem, as the column type of "t1.col" is never
1677         ** used. When columnType() is called on the expression
1678         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1679         ** branch below.  */
1680         break;
1681       }
1682 
1683       assert( pTab && pExpr->y.pTab==pTab );
1684       if( pS ){
1685         /* The "table" is actually a sub-select or a view in the FROM clause
1686         ** of the SELECT statement. Return the declaration type and origin
1687         ** data for the result-set column of the sub-select.
1688         */
1689         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1690           /* If iCol is less than zero, then the expression requests the
1691           ** rowid of the sub-select or view. This expression is legal (see
1692           ** test case misc2.2.2) - it always evaluates to NULL.
1693           */
1694           NameContext sNC;
1695           Expr *p = pS->pEList->a[iCol].pExpr;
1696           sNC.pSrcList = pS->pSrc;
1697           sNC.pNext = pNC;
1698           sNC.pParse = pNC->pParse;
1699           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1700         }
1701       }else{
1702         /* A real table or a CTE table */
1703         assert( !pS );
1704 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1705         if( iCol<0 ) iCol = pTab->iPKey;
1706         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1707         if( iCol<0 ){
1708           zType = "INTEGER";
1709           zOrigCol = "rowid";
1710         }else{
1711           zOrigCol = pTab->aCol[iCol].zName;
1712           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1713         }
1714         zOrigTab = pTab->zName;
1715         if( pNC->pParse && pTab->pSchema ){
1716           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1717           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1718         }
1719 #else
1720         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1721         if( iCol<0 ){
1722           zType = "INTEGER";
1723         }else{
1724           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1725         }
1726 #endif
1727       }
1728       break;
1729     }
1730 #ifndef SQLITE_OMIT_SUBQUERY
1731     case TK_SELECT: {
1732       /* The expression is a sub-select. Return the declaration type and
1733       ** origin info for the single column in the result set of the SELECT
1734       ** statement.
1735       */
1736       NameContext sNC;
1737       Select *pS = pExpr->x.pSelect;
1738       Expr *p = pS->pEList->a[0].pExpr;
1739       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1740       sNC.pSrcList = pS->pSrc;
1741       sNC.pNext = pNC;
1742       sNC.pParse = pNC->pParse;
1743       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1744       break;
1745     }
1746 #endif
1747   }
1748 
1749 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1750   if( pzOrigDb ){
1751     assert( pzOrigTab && pzOrigCol );
1752     *pzOrigDb = zOrigDb;
1753     *pzOrigTab = zOrigTab;
1754     *pzOrigCol = zOrigCol;
1755   }
1756 #endif
1757   return zType;
1758 }
1759 
1760 /*
1761 ** Generate code that will tell the VDBE the declaration types of columns
1762 ** in the result set.
1763 */
1764 static void generateColumnTypes(
1765   Parse *pParse,      /* Parser context */
1766   SrcList *pTabList,  /* List of tables */
1767   ExprList *pEList    /* Expressions defining the result set */
1768 ){
1769 #ifndef SQLITE_OMIT_DECLTYPE
1770   Vdbe *v = pParse->pVdbe;
1771   int i;
1772   NameContext sNC;
1773   sNC.pSrcList = pTabList;
1774   sNC.pParse = pParse;
1775   sNC.pNext = 0;
1776   for(i=0; i<pEList->nExpr; i++){
1777     Expr *p = pEList->a[i].pExpr;
1778     const char *zType;
1779 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1780     const char *zOrigDb = 0;
1781     const char *zOrigTab = 0;
1782     const char *zOrigCol = 0;
1783     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1784 
1785     /* The vdbe must make its own copy of the column-type and other
1786     ** column specific strings, in case the schema is reset before this
1787     ** virtual machine is deleted.
1788     */
1789     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1790     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1791     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1792 #else
1793     zType = columnType(&sNC, p, 0, 0, 0);
1794 #endif
1795     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1796   }
1797 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1798 }
1799 
1800 
1801 /*
1802 ** Compute the column names for a SELECT statement.
1803 **
1804 ** The only guarantee that SQLite makes about column names is that if the
1805 ** column has an AS clause assigning it a name, that will be the name used.
1806 ** That is the only documented guarantee.  However, countless applications
1807 ** developed over the years have made baseless assumptions about column names
1808 ** and will break if those assumptions changes.  Hence, use extreme caution
1809 ** when modifying this routine to avoid breaking legacy.
1810 **
1811 ** See Also: sqlite3ColumnsFromExprList()
1812 **
1813 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1814 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1815 ** applications should operate this way.  Nevertheless, we need to support the
1816 ** other modes for legacy:
1817 **
1818 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1819 **                              originally appears in the SELECT statement.  In
1820 **                              other words, the zSpan of the result expression.
1821 **
1822 **    short=ON, full=OFF:       (This is the default setting).  If the result
1823 **                              refers directly to a table column, then the
1824 **                              result column name is just the table column
1825 **                              name: COLUMN.  Otherwise use zSpan.
1826 **
1827 **    full=ON, short=ANY:       If the result refers directly to a table column,
1828 **                              then the result column name with the table name
1829 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1830 */
1831 static void generateColumnNames(
1832   Parse *pParse,      /* Parser context */
1833   Select *pSelect     /* Generate column names for this SELECT statement */
1834 ){
1835   Vdbe *v = pParse->pVdbe;
1836   int i;
1837   Table *pTab;
1838   SrcList *pTabList;
1839   ExprList *pEList;
1840   sqlite3 *db = pParse->db;
1841   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1842   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1843 
1844 #ifndef SQLITE_OMIT_EXPLAIN
1845   /* If this is an EXPLAIN, skip this step */
1846   if( pParse->explain ){
1847     return;
1848   }
1849 #endif
1850 
1851   if( pParse->colNamesSet ) return;
1852   /* Column names are determined by the left-most term of a compound select */
1853   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1854   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1855   pTabList = pSelect->pSrc;
1856   pEList = pSelect->pEList;
1857   assert( v!=0 );
1858   assert( pTabList!=0 );
1859   pParse->colNamesSet = 1;
1860   fullName = (db->flags & SQLITE_FullColNames)!=0;
1861   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1862   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1863   for(i=0; i<pEList->nExpr; i++){
1864     Expr *p = pEList->a[i].pExpr;
1865 
1866     assert( p!=0 );
1867     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1868     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1869     if( pEList->a[i].zName ){
1870       /* An AS clause always takes first priority */
1871       char *zName = pEList->a[i].zName;
1872       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1873     }else if( srcName && p->op==TK_COLUMN ){
1874       char *zCol;
1875       int iCol = p->iColumn;
1876       pTab = p->y.pTab;
1877       assert( pTab!=0 );
1878       if( iCol<0 ) iCol = pTab->iPKey;
1879       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1880       if( iCol<0 ){
1881         zCol = "rowid";
1882       }else{
1883         zCol = pTab->aCol[iCol].zName;
1884       }
1885       if( fullName ){
1886         char *zName = 0;
1887         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1888         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1889       }else{
1890         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1891       }
1892     }else{
1893       const char *z = pEList->a[i].zSpan;
1894       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1895       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1896     }
1897   }
1898   generateColumnTypes(pParse, pTabList, pEList);
1899 }
1900 
1901 /*
1902 ** Given an expression list (which is really the list of expressions
1903 ** that form the result set of a SELECT statement) compute appropriate
1904 ** column names for a table that would hold the expression list.
1905 **
1906 ** All column names will be unique.
1907 **
1908 ** Only the column names are computed.  Column.zType, Column.zColl,
1909 ** and other fields of Column are zeroed.
1910 **
1911 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1912 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1913 **
1914 ** The only guarantee that SQLite makes about column names is that if the
1915 ** column has an AS clause assigning it a name, that will be the name used.
1916 ** That is the only documented guarantee.  However, countless applications
1917 ** developed over the years have made baseless assumptions about column names
1918 ** and will break if those assumptions changes.  Hence, use extreme caution
1919 ** when modifying this routine to avoid breaking legacy.
1920 **
1921 ** See Also: generateColumnNames()
1922 */
1923 int sqlite3ColumnsFromExprList(
1924   Parse *pParse,          /* Parsing context */
1925   ExprList *pEList,       /* Expr list from which to derive column names */
1926   i16 *pnCol,             /* Write the number of columns here */
1927   Column **paCol          /* Write the new column list here */
1928 ){
1929   sqlite3 *db = pParse->db;   /* Database connection */
1930   int i, j;                   /* Loop counters */
1931   u32 cnt;                    /* Index added to make the name unique */
1932   Column *aCol, *pCol;        /* For looping over result columns */
1933   int nCol;                   /* Number of columns in the result set */
1934   char *zName;                /* Column name */
1935   int nName;                  /* Size of name in zName[] */
1936   Hash ht;                    /* Hash table of column names */
1937 
1938   sqlite3HashInit(&ht);
1939   if( pEList ){
1940     nCol = pEList->nExpr;
1941     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1942     testcase( aCol==0 );
1943     if( nCol>32767 ) nCol = 32767;
1944   }else{
1945     nCol = 0;
1946     aCol = 0;
1947   }
1948   assert( nCol==(i16)nCol );
1949   *pnCol = nCol;
1950   *paCol = aCol;
1951 
1952   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1953     /* Get an appropriate name for the column
1954     */
1955     if( (zName = pEList->a[i].zName)!=0 ){
1956       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1957     }else{
1958       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1959       while( pColExpr->op==TK_DOT ){
1960         pColExpr = pColExpr->pRight;
1961         assert( pColExpr!=0 );
1962       }
1963       assert( pColExpr->op!=TK_AGG_COLUMN );
1964       if( pColExpr->op==TK_COLUMN ){
1965         /* For columns use the column name name */
1966         int iCol = pColExpr->iColumn;
1967         Table *pTab = pColExpr->y.pTab;
1968         assert( pTab!=0 );
1969         if( iCol<0 ) iCol = pTab->iPKey;
1970         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1971       }else if( pColExpr->op==TK_ID ){
1972         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1973         zName = pColExpr->u.zToken;
1974       }else{
1975         /* Use the original text of the column expression as its name */
1976         zName = pEList->a[i].zSpan;
1977       }
1978     }
1979     if( zName ){
1980       zName = sqlite3DbStrDup(db, zName);
1981     }else{
1982       zName = sqlite3MPrintf(db,"column%d",i+1);
1983     }
1984 
1985     /* Make sure the column name is unique.  If the name is not unique,
1986     ** append an integer to the name so that it becomes unique.
1987     */
1988     cnt = 0;
1989     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1990       nName = sqlite3Strlen30(zName);
1991       if( nName>0 ){
1992         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1993         if( zName[j]==':' ) nName = j;
1994       }
1995       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1996       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1997     }
1998     pCol->zName = zName;
1999     sqlite3ColumnPropertiesFromName(0, pCol);
2000     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2001       sqlite3OomFault(db);
2002     }
2003   }
2004   sqlite3HashClear(&ht);
2005   if( db->mallocFailed ){
2006     for(j=0; j<i; j++){
2007       sqlite3DbFree(db, aCol[j].zName);
2008     }
2009     sqlite3DbFree(db, aCol);
2010     *paCol = 0;
2011     *pnCol = 0;
2012     return SQLITE_NOMEM_BKPT;
2013   }
2014   return SQLITE_OK;
2015 }
2016 
2017 /*
2018 ** Add type and collation information to a column list based on
2019 ** a SELECT statement.
2020 **
2021 ** The column list presumably came from selectColumnNamesFromExprList().
2022 ** The column list has only names, not types or collations.  This
2023 ** routine goes through and adds the types and collations.
2024 **
2025 ** This routine requires that all identifiers in the SELECT
2026 ** statement be resolved.
2027 */
2028 void sqlite3SelectAddColumnTypeAndCollation(
2029   Parse *pParse,        /* Parsing contexts */
2030   Table *pTab,          /* Add column type information to this table */
2031   Select *pSelect       /* SELECT used to determine types and collations */
2032 ){
2033   sqlite3 *db = pParse->db;
2034   NameContext sNC;
2035   Column *pCol;
2036   CollSeq *pColl;
2037   int i;
2038   Expr *p;
2039   struct ExprList_item *a;
2040 
2041   assert( pSelect!=0 );
2042   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2043   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2044   if( db->mallocFailed ) return;
2045   memset(&sNC, 0, sizeof(sNC));
2046   sNC.pSrcList = pSelect->pSrc;
2047   a = pSelect->pEList->a;
2048   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2049     const char *zType;
2050     int n, m;
2051     p = a[i].pExpr;
2052     zType = columnType(&sNC, p, 0, 0, 0);
2053     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2054     pCol->affinity = sqlite3ExprAffinity(p);
2055     if( zType ){
2056       m = sqlite3Strlen30(zType);
2057       n = sqlite3Strlen30(pCol->zName);
2058       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2059       if( pCol->zName ){
2060         memcpy(&pCol->zName[n+1], zType, m+1);
2061         pCol->colFlags |= COLFLAG_HASTYPE;
2062       }
2063     }
2064     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2065     pColl = sqlite3ExprCollSeq(pParse, p);
2066     if( pColl && pCol->zColl==0 ){
2067       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2068     }
2069   }
2070   pTab->szTabRow = 1; /* Any non-zero value works */
2071 }
2072 
2073 /*
2074 ** Given a SELECT statement, generate a Table structure that describes
2075 ** the result set of that SELECT.
2076 */
2077 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2078   Table *pTab;
2079   sqlite3 *db = pParse->db;
2080   int savedFlags;
2081 
2082   savedFlags = db->flags;
2083   db->flags &= ~SQLITE_FullColNames;
2084   db->flags |= SQLITE_ShortColNames;
2085   sqlite3SelectPrep(pParse, pSelect, 0);
2086   if( pParse->nErr ) return 0;
2087   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2088   db->flags = savedFlags;
2089   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2090   if( pTab==0 ){
2091     return 0;
2092   }
2093   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2094   ** is disabled */
2095   assert( db->lookaside.bDisable );
2096   pTab->nTabRef = 1;
2097   pTab->zName = 0;
2098   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2099   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2100   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2101   pTab->iPKey = -1;
2102   if( db->mallocFailed ){
2103     sqlite3DeleteTable(db, pTab);
2104     return 0;
2105   }
2106   return pTab;
2107 }
2108 
2109 /*
2110 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2111 ** If an error occurs, return NULL and leave a message in pParse.
2112 */
2113 Vdbe *sqlite3GetVdbe(Parse *pParse){
2114   if( pParse->pVdbe ){
2115     return pParse->pVdbe;
2116   }
2117   if( pParse->pToplevel==0
2118    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2119   ){
2120     pParse->okConstFactor = 1;
2121   }
2122   return sqlite3VdbeCreate(pParse);
2123 }
2124 
2125 
2126 /*
2127 ** Compute the iLimit and iOffset fields of the SELECT based on the
2128 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2129 ** that appear in the original SQL statement after the LIMIT and OFFSET
2130 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2131 ** are the integer memory register numbers for counters used to compute
2132 ** the limit and offset.  If there is no limit and/or offset, then
2133 ** iLimit and iOffset are negative.
2134 **
2135 ** This routine changes the values of iLimit and iOffset only if
2136 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2137 ** and iOffset should have been preset to appropriate default values (zero)
2138 ** prior to calling this routine.
2139 **
2140 ** The iOffset register (if it exists) is initialized to the value
2141 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2142 ** iOffset+1 is initialized to LIMIT+OFFSET.
2143 **
2144 ** Only if pLimit->pLeft!=0 do the limit registers get
2145 ** redefined.  The UNION ALL operator uses this property to force
2146 ** the reuse of the same limit and offset registers across multiple
2147 ** SELECT statements.
2148 */
2149 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2150   Vdbe *v = 0;
2151   int iLimit = 0;
2152   int iOffset;
2153   int n;
2154   Expr *pLimit = p->pLimit;
2155 
2156   if( p->iLimit ) return;
2157 
2158   /*
2159   ** "LIMIT -1" always shows all rows.  There is some
2160   ** controversy about what the correct behavior should be.
2161   ** The current implementation interprets "LIMIT 0" to mean
2162   ** no rows.
2163   */
2164   if( pLimit ){
2165     assert( pLimit->op==TK_LIMIT );
2166     assert( pLimit->pLeft!=0 );
2167     p->iLimit = iLimit = ++pParse->nMem;
2168     v = sqlite3GetVdbe(pParse);
2169     assert( v!=0 );
2170     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2171       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2172       VdbeComment((v, "LIMIT counter"));
2173       if( n==0 ){
2174         sqlite3VdbeGoto(v, iBreak);
2175       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2176         p->nSelectRow = sqlite3LogEst((u64)n);
2177         p->selFlags |= SF_FixedLimit;
2178       }
2179     }else{
2180       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2181       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2182       VdbeComment((v, "LIMIT counter"));
2183       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2184     }
2185     if( pLimit->pRight ){
2186       p->iOffset = iOffset = ++pParse->nMem;
2187       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2188       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2189       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2190       VdbeComment((v, "OFFSET counter"));
2191       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2192       VdbeComment((v, "LIMIT+OFFSET"));
2193     }
2194   }
2195 }
2196 
2197 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2198 /*
2199 ** Return the appropriate collating sequence for the iCol-th column of
2200 ** the result set for the compound-select statement "p".  Return NULL if
2201 ** the column has no default collating sequence.
2202 **
2203 ** The collating sequence for the compound select is taken from the
2204 ** left-most term of the select that has a collating sequence.
2205 */
2206 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2207   CollSeq *pRet;
2208   if( p->pPrior ){
2209     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2210   }else{
2211     pRet = 0;
2212   }
2213   assert( iCol>=0 );
2214   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2215   ** have been thrown during name resolution and we would not have gotten
2216   ** this far */
2217   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2218     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2219   }
2220   return pRet;
2221 }
2222 
2223 /*
2224 ** The select statement passed as the second parameter is a compound SELECT
2225 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2226 ** structure suitable for implementing the ORDER BY.
2227 **
2228 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2229 ** function is responsible for ensuring that this structure is eventually
2230 ** freed.
2231 */
2232 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2233   ExprList *pOrderBy = p->pOrderBy;
2234   int nOrderBy = p->pOrderBy->nExpr;
2235   sqlite3 *db = pParse->db;
2236   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2237   if( pRet ){
2238     int i;
2239     for(i=0; i<nOrderBy; i++){
2240       struct ExprList_item *pItem = &pOrderBy->a[i];
2241       Expr *pTerm = pItem->pExpr;
2242       CollSeq *pColl;
2243 
2244       if( pTerm->flags & EP_Collate ){
2245         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2246       }else{
2247         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2248         if( pColl==0 ) pColl = db->pDfltColl;
2249         pOrderBy->a[i].pExpr =
2250           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2251       }
2252       assert( sqlite3KeyInfoIsWriteable(pRet) );
2253       pRet->aColl[i] = pColl;
2254       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2255     }
2256   }
2257 
2258   return pRet;
2259 }
2260 
2261 #ifndef SQLITE_OMIT_CTE
2262 /*
2263 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2264 ** query of the form:
2265 **
2266 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2267 **                         \___________/             \_______________/
2268 **                           p->pPrior                      p
2269 **
2270 **
2271 ** There is exactly one reference to the recursive-table in the FROM clause
2272 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2273 **
2274 ** The setup-query runs once to generate an initial set of rows that go
2275 ** into a Queue table.  Rows are extracted from the Queue table one by
2276 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2277 ** extracted row (now in the iCurrent table) becomes the content of the
2278 ** recursive-table for a recursive-query run.  The output of the recursive-query
2279 ** is added back into the Queue table.  Then another row is extracted from Queue
2280 ** and the iteration continues until the Queue table is empty.
2281 **
2282 ** If the compound query operator is UNION then no duplicate rows are ever
2283 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2284 ** that have ever been inserted into Queue and causes duplicates to be
2285 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2286 **
2287 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2288 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2289 ** an ORDER BY, the Queue table is just a FIFO.
2290 **
2291 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2292 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2293 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2294 ** with a positive value, then the first OFFSET outputs are discarded rather
2295 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2296 ** rows have been skipped.
2297 */
2298 static void generateWithRecursiveQuery(
2299   Parse *pParse,        /* Parsing context */
2300   Select *p,            /* The recursive SELECT to be coded */
2301   SelectDest *pDest     /* What to do with query results */
2302 ){
2303   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2304   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2305   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2306   Select *pSetup = p->pPrior;   /* The setup query */
2307   int addrTop;                  /* Top of the loop */
2308   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2309   int iCurrent = 0;             /* The Current table */
2310   int regCurrent;               /* Register holding Current table */
2311   int iQueue;                   /* The Queue table */
2312   int iDistinct = 0;            /* To ensure unique results if UNION */
2313   int eDest = SRT_Fifo;         /* How to write to Queue */
2314   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2315   int i;                        /* Loop counter */
2316   int rc;                       /* Result code */
2317   ExprList *pOrderBy;           /* The ORDER BY clause */
2318   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2319   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2320 
2321 #ifndef SQLITE_OMIT_WINDOWFUNC
2322   if( p->pWin ){
2323     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2324     return;
2325   }
2326 #endif
2327 
2328   /* Obtain authorization to do a recursive query */
2329   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2330 
2331   /* Process the LIMIT and OFFSET clauses, if they exist */
2332   addrBreak = sqlite3VdbeMakeLabel(v);
2333   p->nSelectRow = 320;  /* 4 billion rows */
2334   computeLimitRegisters(pParse, p, addrBreak);
2335   pLimit = p->pLimit;
2336   regLimit = p->iLimit;
2337   regOffset = p->iOffset;
2338   p->pLimit = 0;
2339   p->iLimit = p->iOffset = 0;
2340   pOrderBy = p->pOrderBy;
2341 
2342   /* Locate the cursor number of the Current table */
2343   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2344     if( pSrc->a[i].fg.isRecursive ){
2345       iCurrent = pSrc->a[i].iCursor;
2346       break;
2347     }
2348   }
2349 
2350   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2351   ** the Distinct table must be exactly one greater than Queue in order
2352   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2353   iQueue = pParse->nTab++;
2354   if( p->op==TK_UNION ){
2355     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2356     iDistinct = pParse->nTab++;
2357   }else{
2358     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2359   }
2360   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2361 
2362   /* Allocate cursors for Current, Queue, and Distinct. */
2363   regCurrent = ++pParse->nMem;
2364   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2365   if( pOrderBy ){
2366     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2367     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2368                       (char*)pKeyInfo, P4_KEYINFO);
2369     destQueue.pOrderBy = pOrderBy;
2370   }else{
2371     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2372   }
2373   VdbeComment((v, "Queue table"));
2374   if( iDistinct ){
2375     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2376     p->selFlags |= SF_UsesEphemeral;
2377   }
2378 
2379   /* Detach the ORDER BY clause from the compound SELECT */
2380   p->pOrderBy = 0;
2381 
2382   /* Store the results of the setup-query in Queue. */
2383   pSetup->pNext = 0;
2384   ExplainQueryPlan((pParse, 1, "SETUP"));
2385   rc = sqlite3Select(pParse, pSetup, &destQueue);
2386   pSetup->pNext = p;
2387   if( rc ) goto end_of_recursive_query;
2388 
2389   /* Find the next row in the Queue and output that row */
2390   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2391 
2392   /* Transfer the next row in Queue over to Current */
2393   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2394   if( pOrderBy ){
2395     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2396   }else{
2397     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2398   }
2399   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2400 
2401   /* Output the single row in Current */
2402   addrCont = sqlite3VdbeMakeLabel(v);
2403   codeOffset(v, regOffset, addrCont);
2404   selectInnerLoop(pParse, p, iCurrent,
2405       0, 0, pDest, addrCont, addrBreak);
2406   if( regLimit ){
2407     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2408     VdbeCoverage(v);
2409   }
2410   sqlite3VdbeResolveLabel(v, addrCont);
2411 
2412   /* Execute the recursive SELECT taking the single row in Current as
2413   ** the value for the recursive-table. Store the results in the Queue.
2414   */
2415   if( p->selFlags & SF_Aggregate ){
2416     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2417   }else{
2418     p->pPrior = 0;
2419     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2420     sqlite3Select(pParse, p, &destQueue);
2421     assert( p->pPrior==0 );
2422     p->pPrior = pSetup;
2423   }
2424 
2425   /* Keep running the loop until the Queue is empty */
2426   sqlite3VdbeGoto(v, addrTop);
2427   sqlite3VdbeResolveLabel(v, addrBreak);
2428 
2429 end_of_recursive_query:
2430   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2431   p->pOrderBy = pOrderBy;
2432   p->pLimit = pLimit;
2433   return;
2434 }
2435 #endif /* SQLITE_OMIT_CTE */
2436 
2437 /* Forward references */
2438 static int multiSelectOrderBy(
2439   Parse *pParse,        /* Parsing context */
2440   Select *p,            /* The right-most of SELECTs to be coded */
2441   SelectDest *pDest     /* What to do with query results */
2442 );
2443 
2444 /*
2445 ** Handle the special case of a compound-select that originates from a
2446 ** VALUES clause.  By handling this as a special case, we avoid deep
2447 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2448 ** on a VALUES clause.
2449 **
2450 ** Because the Select object originates from a VALUES clause:
2451 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2452 **   (2) All terms are UNION ALL
2453 **   (3) There is no ORDER BY clause
2454 **
2455 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2456 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2457 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2458 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2459 */
2460 static int multiSelectValues(
2461   Parse *pParse,        /* Parsing context */
2462   Select *p,            /* The right-most of SELECTs to be coded */
2463   SelectDest *pDest     /* What to do with query results */
2464 ){
2465   int nRow = 1;
2466   int rc = 0;
2467   int bShowAll = p->pLimit==0;
2468   assert( p->selFlags & SF_MultiValue );
2469   do{
2470     assert( p->selFlags & SF_Values );
2471     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2472     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2473     if( p->pPrior==0 ) break;
2474     assert( p->pPrior->pNext==p );
2475     p = p->pPrior;
2476     nRow += bShowAll;
2477   }while(1);
2478   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2479                     nRow==1 ? "" : "S"));
2480   while( p ){
2481     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2482     if( !bShowAll ) break;
2483     p->nSelectRow = nRow;
2484     p = p->pNext;
2485   }
2486   return rc;
2487 }
2488 
2489 /*
2490 ** This routine is called to process a compound query form from
2491 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2492 ** INTERSECT
2493 **
2494 ** "p" points to the right-most of the two queries.  the query on the
2495 ** left is p->pPrior.  The left query could also be a compound query
2496 ** in which case this routine will be called recursively.
2497 **
2498 ** The results of the total query are to be written into a destination
2499 ** of type eDest with parameter iParm.
2500 **
2501 ** Example 1:  Consider a three-way compound SQL statement.
2502 **
2503 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2504 **
2505 ** This statement is parsed up as follows:
2506 **
2507 **     SELECT c FROM t3
2508 **      |
2509 **      `----->  SELECT b FROM t2
2510 **                |
2511 **                `------>  SELECT a FROM t1
2512 **
2513 ** The arrows in the diagram above represent the Select.pPrior pointer.
2514 ** So if this routine is called with p equal to the t3 query, then
2515 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2516 **
2517 ** Notice that because of the way SQLite parses compound SELECTs, the
2518 ** individual selects always group from left to right.
2519 */
2520 static int multiSelect(
2521   Parse *pParse,        /* Parsing context */
2522   Select *p,            /* The right-most of SELECTs to be coded */
2523   SelectDest *pDest     /* What to do with query results */
2524 ){
2525   int rc = SQLITE_OK;   /* Success code from a subroutine */
2526   Select *pPrior;       /* Another SELECT immediately to our left */
2527   Vdbe *v;              /* Generate code to this VDBE */
2528   SelectDest dest;      /* Alternative data destination */
2529   Select *pDelete = 0;  /* Chain of simple selects to delete */
2530   sqlite3 *db;          /* Database connection */
2531 
2532   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2533   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2534   */
2535   assert( p && p->pPrior );  /* Calling function guarantees this much */
2536   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2537   db = pParse->db;
2538   pPrior = p->pPrior;
2539   dest = *pDest;
2540   if( pPrior->pOrderBy || pPrior->pLimit ){
2541     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2542       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2543     rc = 1;
2544     goto multi_select_end;
2545   }
2546 
2547   v = sqlite3GetVdbe(pParse);
2548   assert( v!=0 );  /* The VDBE already created by calling function */
2549 
2550   /* Create the destination temporary table if necessary
2551   */
2552   if( dest.eDest==SRT_EphemTab ){
2553     assert( p->pEList );
2554     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2555     dest.eDest = SRT_Table;
2556   }
2557 
2558   /* Special handling for a compound-select that originates as a VALUES clause.
2559   */
2560   if( p->selFlags & SF_MultiValue ){
2561     rc = multiSelectValues(pParse, p, &dest);
2562     goto multi_select_end;
2563   }
2564 
2565   /* Make sure all SELECTs in the statement have the same number of elements
2566   ** in their result sets.
2567   */
2568   assert( p->pEList && pPrior->pEList );
2569   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2570 
2571 #ifndef SQLITE_OMIT_CTE
2572   if( p->selFlags & SF_Recursive ){
2573     generateWithRecursiveQuery(pParse, p, &dest);
2574   }else
2575 #endif
2576 
2577   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2578   */
2579   if( p->pOrderBy ){
2580     return multiSelectOrderBy(pParse, p, pDest);
2581   }else{
2582 
2583 #ifndef SQLITE_OMIT_EXPLAIN
2584     if( pPrior->pPrior==0 ){
2585       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2586       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2587     }
2588 #endif
2589 
2590     /* Generate code for the left and right SELECT statements.
2591     */
2592     switch( p->op ){
2593       case TK_ALL: {
2594         int addr = 0;
2595         int nLimit;
2596         assert( !pPrior->pLimit );
2597         pPrior->iLimit = p->iLimit;
2598         pPrior->iOffset = p->iOffset;
2599         pPrior->pLimit = p->pLimit;
2600         rc = sqlite3Select(pParse, pPrior, &dest);
2601         p->pLimit = 0;
2602         if( rc ){
2603           goto multi_select_end;
2604         }
2605         p->pPrior = 0;
2606         p->iLimit = pPrior->iLimit;
2607         p->iOffset = pPrior->iOffset;
2608         if( p->iLimit ){
2609           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2610           VdbeComment((v, "Jump ahead if LIMIT reached"));
2611           if( p->iOffset ){
2612             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2613                               p->iLimit, p->iOffset+1, p->iOffset);
2614           }
2615         }
2616         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2617         rc = sqlite3Select(pParse, p, &dest);
2618         testcase( rc!=SQLITE_OK );
2619         pDelete = p->pPrior;
2620         p->pPrior = pPrior;
2621         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2622         if( pPrior->pLimit
2623          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2624          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2625         ){
2626           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2627         }
2628         if( addr ){
2629           sqlite3VdbeJumpHere(v, addr);
2630         }
2631         break;
2632       }
2633       case TK_EXCEPT:
2634       case TK_UNION: {
2635         int unionTab;    /* Cursor number of the temp table holding result */
2636         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2637         int priorOp;     /* The SRT_ operation to apply to prior selects */
2638         Expr *pLimit;    /* Saved values of p->nLimit  */
2639         int addr;
2640         SelectDest uniondest;
2641 
2642         testcase( p->op==TK_EXCEPT );
2643         testcase( p->op==TK_UNION );
2644         priorOp = SRT_Union;
2645         if( dest.eDest==priorOp ){
2646           /* We can reuse a temporary table generated by a SELECT to our
2647           ** right.
2648           */
2649           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2650           unionTab = dest.iSDParm;
2651         }else{
2652           /* We will need to create our own temporary table to hold the
2653           ** intermediate results.
2654           */
2655           unionTab = pParse->nTab++;
2656           assert( p->pOrderBy==0 );
2657           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2658           assert( p->addrOpenEphm[0] == -1 );
2659           p->addrOpenEphm[0] = addr;
2660           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2661           assert( p->pEList );
2662         }
2663 
2664         /* Code the SELECT statements to our left
2665         */
2666         assert( !pPrior->pOrderBy );
2667         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2668         rc = sqlite3Select(pParse, pPrior, &uniondest);
2669         if( rc ){
2670           goto multi_select_end;
2671         }
2672 
2673         /* Code the current SELECT statement
2674         */
2675         if( p->op==TK_EXCEPT ){
2676           op = SRT_Except;
2677         }else{
2678           assert( p->op==TK_UNION );
2679           op = SRT_Union;
2680         }
2681         p->pPrior = 0;
2682         pLimit = p->pLimit;
2683         p->pLimit = 0;
2684         uniondest.eDest = op;
2685         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2686                           selectOpName(p->op)));
2687         rc = sqlite3Select(pParse, p, &uniondest);
2688         testcase( rc!=SQLITE_OK );
2689         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2690         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2691         sqlite3ExprListDelete(db, p->pOrderBy);
2692         pDelete = p->pPrior;
2693         p->pPrior = pPrior;
2694         p->pOrderBy = 0;
2695         if( p->op==TK_UNION ){
2696           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2697         }
2698         sqlite3ExprDelete(db, p->pLimit);
2699         p->pLimit = pLimit;
2700         p->iLimit = 0;
2701         p->iOffset = 0;
2702 
2703         /* Convert the data in the temporary table into whatever form
2704         ** it is that we currently need.
2705         */
2706         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2707         if( dest.eDest!=priorOp ){
2708           int iCont, iBreak, iStart;
2709           assert( p->pEList );
2710           iBreak = sqlite3VdbeMakeLabel(v);
2711           iCont = sqlite3VdbeMakeLabel(v);
2712           computeLimitRegisters(pParse, p, iBreak);
2713           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2714           iStart = sqlite3VdbeCurrentAddr(v);
2715           selectInnerLoop(pParse, p, unionTab,
2716                           0, 0, &dest, iCont, iBreak);
2717           sqlite3VdbeResolveLabel(v, iCont);
2718           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2719           sqlite3VdbeResolveLabel(v, iBreak);
2720           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2721         }
2722         break;
2723       }
2724       default: assert( p->op==TK_INTERSECT ); {
2725         int tab1, tab2;
2726         int iCont, iBreak, iStart;
2727         Expr *pLimit;
2728         int addr;
2729         SelectDest intersectdest;
2730         int r1;
2731 
2732         /* INTERSECT is different from the others since it requires
2733         ** two temporary tables.  Hence it has its own case.  Begin
2734         ** by allocating the tables we will need.
2735         */
2736         tab1 = pParse->nTab++;
2737         tab2 = pParse->nTab++;
2738         assert( p->pOrderBy==0 );
2739 
2740         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2741         assert( p->addrOpenEphm[0] == -1 );
2742         p->addrOpenEphm[0] = addr;
2743         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2744         assert( p->pEList );
2745 
2746         /* Code the SELECTs to our left into temporary table "tab1".
2747         */
2748         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2749         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2750         if( rc ){
2751           goto multi_select_end;
2752         }
2753 
2754         /* Code the current SELECT into temporary table "tab2"
2755         */
2756         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2757         assert( p->addrOpenEphm[1] == -1 );
2758         p->addrOpenEphm[1] = addr;
2759         p->pPrior = 0;
2760         pLimit = p->pLimit;
2761         p->pLimit = 0;
2762         intersectdest.iSDParm = tab2;
2763         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2764                           selectOpName(p->op)));
2765         rc = sqlite3Select(pParse, p, &intersectdest);
2766         testcase( rc!=SQLITE_OK );
2767         pDelete = p->pPrior;
2768         p->pPrior = pPrior;
2769         if( p->nSelectRow>pPrior->nSelectRow ){
2770           p->nSelectRow = pPrior->nSelectRow;
2771         }
2772         sqlite3ExprDelete(db, p->pLimit);
2773         p->pLimit = pLimit;
2774 
2775         /* Generate code to take the intersection of the two temporary
2776         ** tables.
2777         */
2778         assert( p->pEList );
2779         iBreak = sqlite3VdbeMakeLabel(v);
2780         iCont = sqlite3VdbeMakeLabel(v);
2781         computeLimitRegisters(pParse, p, iBreak);
2782         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2783         r1 = sqlite3GetTempReg(pParse);
2784         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2785         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2786         VdbeCoverage(v);
2787         sqlite3ReleaseTempReg(pParse, r1);
2788         selectInnerLoop(pParse, p, tab1,
2789                         0, 0, &dest, iCont, iBreak);
2790         sqlite3VdbeResolveLabel(v, iCont);
2791         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2792         sqlite3VdbeResolveLabel(v, iBreak);
2793         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2794         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2795         break;
2796       }
2797     }
2798 
2799   #ifndef SQLITE_OMIT_EXPLAIN
2800     if( p->pNext==0 ){
2801       ExplainQueryPlanPop(pParse);
2802     }
2803   #endif
2804   }
2805 
2806   /* Compute collating sequences used by
2807   ** temporary tables needed to implement the compound select.
2808   ** Attach the KeyInfo structure to all temporary tables.
2809   **
2810   ** This section is run by the right-most SELECT statement only.
2811   ** SELECT statements to the left always skip this part.  The right-most
2812   ** SELECT might also skip this part if it has no ORDER BY clause and
2813   ** no temp tables are required.
2814   */
2815   if( p->selFlags & SF_UsesEphemeral ){
2816     int i;                        /* Loop counter */
2817     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2818     Select *pLoop;                /* For looping through SELECT statements */
2819     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2820     int nCol;                     /* Number of columns in result set */
2821 
2822     assert( p->pNext==0 );
2823     nCol = p->pEList->nExpr;
2824     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2825     if( !pKeyInfo ){
2826       rc = SQLITE_NOMEM_BKPT;
2827       goto multi_select_end;
2828     }
2829     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2830       *apColl = multiSelectCollSeq(pParse, p, i);
2831       if( 0==*apColl ){
2832         *apColl = db->pDfltColl;
2833       }
2834     }
2835 
2836     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2837       for(i=0; i<2; i++){
2838         int addr = pLoop->addrOpenEphm[i];
2839         if( addr<0 ){
2840           /* If [0] is unused then [1] is also unused.  So we can
2841           ** always safely abort as soon as the first unused slot is found */
2842           assert( pLoop->addrOpenEphm[1]<0 );
2843           break;
2844         }
2845         sqlite3VdbeChangeP2(v, addr, nCol);
2846         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2847                             P4_KEYINFO);
2848         pLoop->addrOpenEphm[i] = -1;
2849       }
2850     }
2851     sqlite3KeyInfoUnref(pKeyInfo);
2852   }
2853 
2854 multi_select_end:
2855   pDest->iSdst = dest.iSdst;
2856   pDest->nSdst = dest.nSdst;
2857   sqlite3SelectDelete(db, pDelete);
2858   return rc;
2859 }
2860 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2861 
2862 /*
2863 ** Error message for when two or more terms of a compound select have different
2864 ** size result sets.
2865 */
2866 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2867   if( p->selFlags & SF_Values ){
2868     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2869   }else{
2870     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2871       " do not have the same number of result columns", selectOpName(p->op));
2872   }
2873 }
2874 
2875 /*
2876 ** Code an output subroutine for a coroutine implementation of a
2877 ** SELECT statment.
2878 **
2879 ** The data to be output is contained in pIn->iSdst.  There are
2880 ** pIn->nSdst columns to be output.  pDest is where the output should
2881 ** be sent.
2882 **
2883 ** regReturn is the number of the register holding the subroutine
2884 ** return address.
2885 **
2886 ** If regPrev>0 then it is the first register in a vector that
2887 ** records the previous output.  mem[regPrev] is a flag that is false
2888 ** if there has been no previous output.  If regPrev>0 then code is
2889 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2890 ** keys.
2891 **
2892 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2893 ** iBreak.
2894 */
2895 static int generateOutputSubroutine(
2896   Parse *pParse,          /* Parsing context */
2897   Select *p,              /* The SELECT statement */
2898   SelectDest *pIn,        /* Coroutine supplying data */
2899   SelectDest *pDest,      /* Where to send the data */
2900   int regReturn,          /* The return address register */
2901   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2902   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2903   int iBreak              /* Jump here if we hit the LIMIT */
2904 ){
2905   Vdbe *v = pParse->pVdbe;
2906   int iContinue;
2907   int addr;
2908 
2909   addr = sqlite3VdbeCurrentAddr(v);
2910   iContinue = sqlite3VdbeMakeLabel(v);
2911 
2912   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2913   */
2914   if( regPrev ){
2915     int addr1, addr2;
2916     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2917     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2918                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2919     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2920     sqlite3VdbeJumpHere(v, addr1);
2921     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2922     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2923   }
2924   if( pParse->db->mallocFailed ) return 0;
2925 
2926   /* Suppress the first OFFSET entries if there is an OFFSET clause
2927   */
2928   codeOffset(v, p->iOffset, iContinue);
2929 
2930   assert( pDest->eDest!=SRT_Exists );
2931   assert( pDest->eDest!=SRT_Table );
2932   switch( pDest->eDest ){
2933     /* Store the result as data using a unique key.
2934     */
2935     case SRT_EphemTab: {
2936       int r1 = sqlite3GetTempReg(pParse);
2937       int r2 = sqlite3GetTempReg(pParse);
2938       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2939       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2940       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2941       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2942       sqlite3ReleaseTempReg(pParse, r2);
2943       sqlite3ReleaseTempReg(pParse, r1);
2944       break;
2945     }
2946 
2947 #ifndef SQLITE_OMIT_SUBQUERY
2948     /* If we are creating a set for an "expr IN (SELECT ...)".
2949     */
2950     case SRT_Set: {
2951       int r1;
2952       testcase( pIn->nSdst>1 );
2953       r1 = sqlite3GetTempReg(pParse);
2954       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2955           r1, pDest->zAffSdst, pIn->nSdst);
2956       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2957                            pIn->iSdst, pIn->nSdst);
2958       sqlite3ReleaseTempReg(pParse, r1);
2959       break;
2960     }
2961 
2962     /* If this is a scalar select that is part of an expression, then
2963     ** store the results in the appropriate memory cell and break out
2964     ** of the scan loop.
2965     */
2966     case SRT_Mem: {
2967       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2968       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2969       /* The LIMIT clause will jump out of the loop for us */
2970       break;
2971     }
2972 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2973 
2974     /* The results are stored in a sequence of registers
2975     ** starting at pDest->iSdst.  Then the co-routine yields.
2976     */
2977     case SRT_Coroutine: {
2978       if( pDest->iSdst==0 ){
2979         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2980         pDest->nSdst = pIn->nSdst;
2981       }
2982       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2983       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2984       break;
2985     }
2986 
2987     /* If none of the above, then the result destination must be
2988     ** SRT_Output.  This routine is never called with any other
2989     ** destination other than the ones handled above or SRT_Output.
2990     **
2991     ** For SRT_Output, results are stored in a sequence of registers.
2992     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2993     ** return the next row of result.
2994     */
2995     default: {
2996       assert( pDest->eDest==SRT_Output );
2997       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2998       break;
2999     }
3000   }
3001 
3002   /* Jump to the end of the loop if the LIMIT is reached.
3003   */
3004   if( p->iLimit ){
3005     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3006   }
3007 
3008   /* Generate the subroutine return
3009   */
3010   sqlite3VdbeResolveLabel(v, iContinue);
3011   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3012 
3013   return addr;
3014 }
3015 
3016 /*
3017 ** Alternative compound select code generator for cases when there
3018 ** is an ORDER BY clause.
3019 **
3020 ** We assume a query of the following form:
3021 **
3022 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3023 **
3024 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3025 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3026 ** co-routines.  Then run the co-routines in parallel and merge the results
3027 ** into the output.  In addition to the two coroutines (called selectA and
3028 ** selectB) there are 7 subroutines:
3029 **
3030 **    outA:    Move the output of the selectA coroutine into the output
3031 **             of the compound query.
3032 **
3033 **    outB:    Move the output of the selectB coroutine into the output
3034 **             of the compound query.  (Only generated for UNION and
3035 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3036 **             appears only in B.)
3037 **
3038 **    AltB:    Called when there is data from both coroutines and A<B.
3039 **
3040 **    AeqB:    Called when there is data from both coroutines and A==B.
3041 **
3042 **    AgtB:    Called when there is data from both coroutines and A>B.
3043 **
3044 **    EofA:    Called when data is exhausted from selectA.
3045 **
3046 **    EofB:    Called when data is exhausted from selectB.
3047 **
3048 ** The implementation of the latter five subroutines depend on which
3049 ** <operator> is used:
3050 **
3051 **
3052 **             UNION ALL         UNION            EXCEPT          INTERSECT
3053 **          -------------  -----------------  --------------  -----------------
3054 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3055 **
3056 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3057 **
3058 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3059 **
3060 **   EofA:   outB, nextB      outB, nextB          halt             halt
3061 **
3062 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3063 **
3064 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3065 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3066 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3067 ** following nextX causes a jump to the end of the select processing.
3068 **
3069 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3070 ** within the output subroutine.  The regPrev register set holds the previously
3071 ** output value.  A comparison is made against this value and the output
3072 ** is skipped if the next results would be the same as the previous.
3073 **
3074 ** The implementation plan is to implement the two coroutines and seven
3075 ** subroutines first, then put the control logic at the bottom.  Like this:
3076 **
3077 **          goto Init
3078 **     coA: coroutine for left query (A)
3079 **     coB: coroutine for right query (B)
3080 **    outA: output one row of A
3081 **    outB: output one row of B (UNION and UNION ALL only)
3082 **    EofA: ...
3083 **    EofB: ...
3084 **    AltB: ...
3085 **    AeqB: ...
3086 **    AgtB: ...
3087 **    Init: initialize coroutine registers
3088 **          yield coA
3089 **          if eof(A) goto EofA
3090 **          yield coB
3091 **          if eof(B) goto EofB
3092 **    Cmpr: Compare A, B
3093 **          Jump AltB, AeqB, AgtB
3094 **     End: ...
3095 **
3096 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3097 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3098 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3099 ** and AgtB jump to either L2 or to one of EofA or EofB.
3100 */
3101 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3102 static int multiSelectOrderBy(
3103   Parse *pParse,        /* Parsing context */
3104   Select *p,            /* The right-most of SELECTs to be coded */
3105   SelectDest *pDest     /* What to do with query results */
3106 ){
3107   int i, j;             /* Loop counters */
3108   Select *pPrior;       /* Another SELECT immediately to our left */
3109   Vdbe *v;              /* Generate code to this VDBE */
3110   SelectDest destA;     /* Destination for coroutine A */
3111   SelectDest destB;     /* Destination for coroutine B */
3112   int regAddrA;         /* Address register for select-A coroutine */
3113   int regAddrB;         /* Address register for select-B coroutine */
3114   int addrSelectA;      /* Address of the select-A coroutine */
3115   int addrSelectB;      /* Address of the select-B coroutine */
3116   int regOutA;          /* Address register for the output-A subroutine */
3117   int regOutB;          /* Address register for the output-B subroutine */
3118   int addrOutA;         /* Address of the output-A subroutine */
3119   int addrOutB = 0;     /* Address of the output-B subroutine */
3120   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3121   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3122   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3123   int addrAltB;         /* Address of the A<B subroutine */
3124   int addrAeqB;         /* Address of the A==B subroutine */
3125   int addrAgtB;         /* Address of the A>B subroutine */
3126   int regLimitA;        /* Limit register for select-A */
3127   int regLimitB;        /* Limit register for select-A */
3128   int regPrev;          /* A range of registers to hold previous output */
3129   int savedLimit;       /* Saved value of p->iLimit */
3130   int savedOffset;      /* Saved value of p->iOffset */
3131   int labelCmpr;        /* Label for the start of the merge algorithm */
3132   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3133   int addr1;            /* Jump instructions that get retargetted */
3134   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3135   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3136   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3137   sqlite3 *db;          /* Database connection */
3138   ExprList *pOrderBy;   /* The ORDER BY clause */
3139   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3140   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3141 
3142   assert( p->pOrderBy!=0 );
3143   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3144   db = pParse->db;
3145   v = pParse->pVdbe;
3146   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3147   labelEnd = sqlite3VdbeMakeLabel(v);
3148   labelCmpr = sqlite3VdbeMakeLabel(v);
3149 
3150 
3151   /* Patch up the ORDER BY clause
3152   */
3153   op = p->op;
3154   pPrior = p->pPrior;
3155   assert( pPrior->pOrderBy==0 );
3156   pOrderBy = p->pOrderBy;
3157   assert( pOrderBy );
3158   nOrderBy = pOrderBy->nExpr;
3159 
3160   /* For operators other than UNION ALL we have to make sure that
3161   ** the ORDER BY clause covers every term of the result set.  Add
3162   ** terms to the ORDER BY clause as necessary.
3163   */
3164   if( op!=TK_ALL ){
3165     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3166       struct ExprList_item *pItem;
3167       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3168         assert( pItem->u.x.iOrderByCol>0 );
3169         if( pItem->u.x.iOrderByCol==i ) break;
3170       }
3171       if( j==nOrderBy ){
3172         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3173         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3174         pNew->flags |= EP_IntValue;
3175         pNew->u.iValue = i;
3176         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3177         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3178       }
3179     }
3180   }
3181 
3182   /* Compute the comparison permutation and keyinfo that is used with
3183   ** the permutation used to determine if the next
3184   ** row of results comes from selectA or selectB.  Also add explicit
3185   ** collations to the ORDER BY clause terms so that when the subqueries
3186   ** to the right and the left are evaluated, they use the correct
3187   ** collation.
3188   */
3189   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3190   if( aPermute ){
3191     struct ExprList_item *pItem;
3192     aPermute[0] = nOrderBy;
3193     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3194       assert( pItem->u.x.iOrderByCol>0 );
3195       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3196       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3197     }
3198     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3199   }else{
3200     pKeyMerge = 0;
3201   }
3202 
3203   /* Reattach the ORDER BY clause to the query.
3204   */
3205   p->pOrderBy = pOrderBy;
3206   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3207 
3208   /* Allocate a range of temporary registers and the KeyInfo needed
3209   ** for the logic that removes duplicate result rows when the
3210   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3211   */
3212   if( op==TK_ALL ){
3213     regPrev = 0;
3214   }else{
3215     int nExpr = p->pEList->nExpr;
3216     assert( nOrderBy>=nExpr || db->mallocFailed );
3217     regPrev = pParse->nMem+1;
3218     pParse->nMem += nExpr+1;
3219     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3220     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3221     if( pKeyDup ){
3222       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3223       for(i=0; i<nExpr; i++){
3224         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3225         pKeyDup->aSortOrder[i] = 0;
3226       }
3227     }
3228   }
3229 
3230   /* Separate the left and the right query from one another
3231   */
3232   p->pPrior = 0;
3233   pPrior->pNext = 0;
3234   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3235   if( pPrior->pPrior==0 ){
3236     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3237   }
3238 
3239   /* Compute the limit registers */
3240   computeLimitRegisters(pParse, p, labelEnd);
3241   if( p->iLimit && op==TK_ALL ){
3242     regLimitA = ++pParse->nMem;
3243     regLimitB = ++pParse->nMem;
3244     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3245                                   regLimitA);
3246     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3247   }else{
3248     regLimitA = regLimitB = 0;
3249   }
3250   sqlite3ExprDelete(db, p->pLimit);
3251   p->pLimit = 0;
3252 
3253   regAddrA = ++pParse->nMem;
3254   regAddrB = ++pParse->nMem;
3255   regOutA = ++pParse->nMem;
3256   regOutB = ++pParse->nMem;
3257   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3258   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3259 
3260   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3261 
3262   /* Generate a coroutine to evaluate the SELECT statement to the
3263   ** left of the compound operator - the "A" select.
3264   */
3265   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3266   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3267   VdbeComment((v, "left SELECT"));
3268   pPrior->iLimit = regLimitA;
3269   ExplainQueryPlan((pParse, 1, "LEFT"));
3270   sqlite3Select(pParse, pPrior, &destA);
3271   sqlite3VdbeEndCoroutine(v, regAddrA);
3272   sqlite3VdbeJumpHere(v, addr1);
3273 
3274   /* Generate a coroutine to evaluate the SELECT statement on
3275   ** the right - the "B" select
3276   */
3277   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3278   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3279   VdbeComment((v, "right SELECT"));
3280   savedLimit = p->iLimit;
3281   savedOffset = p->iOffset;
3282   p->iLimit = regLimitB;
3283   p->iOffset = 0;
3284   ExplainQueryPlan((pParse, 1, "RIGHT"));
3285   sqlite3Select(pParse, p, &destB);
3286   p->iLimit = savedLimit;
3287   p->iOffset = savedOffset;
3288   sqlite3VdbeEndCoroutine(v, regAddrB);
3289 
3290   /* Generate a subroutine that outputs the current row of the A
3291   ** select as the next output row of the compound select.
3292   */
3293   VdbeNoopComment((v, "Output routine for A"));
3294   addrOutA = generateOutputSubroutine(pParse,
3295                  p, &destA, pDest, regOutA,
3296                  regPrev, pKeyDup, labelEnd);
3297 
3298   /* Generate a subroutine that outputs the current row of the B
3299   ** select as the next output row of the compound select.
3300   */
3301   if( op==TK_ALL || op==TK_UNION ){
3302     VdbeNoopComment((v, "Output routine for B"));
3303     addrOutB = generateOutputSubroutine(pParse,
3304                  p, &destB, pDest, regOutB,
3305                  regPrev, pKeyDup, labelEnd);
3306   }
3307   sqlite3KeyInfoUnref(pKeyDup);
3308 
3309   /* Generate a subroutine to run when the results from select A
3310   ** are exhausted and only data in select B remains.
3311   */
3312   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3313     addrEofA_noB = addrEofA = labelEnd;
3314   }else{
3315     VdbeNoopComment((v, "eof-A subroutine"));
3316     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3317     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3318                                      VdbeCoverage(v);
3319     sqlite3VdbeGoto(v, addrEofA);
3320     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3321   }
3322 
3323   /* Generate a subroutine to run when the results from select B
3324   ** are exhausted and only data in select A remains.
3325   */
3326   if( op==TK_INTERSECT ){
3327     addrEofB = addrEofA;
3328     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3329   }else{
3330     VdbeNoopComment((v, "eof-B subroutine"));
3331     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3332     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3333     sqlite3VdbeGoto(v, addrEofB);
3334   }
3335 
3336   /* Generate code to handle the case of A<B
3337   */
3338   VdbeNoopComment((v, "A-lt-B subroutine"));
3339   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3340   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3341   sqlite3VdbeGoto(v, labelCmpr);
3342 
3343   /* Generate code to handle the case of A==B
3344   */
3345   if( op==TK_ALL ){
3346     addrAeqB = addrAltB;
3347   }else if( op==TK_INTERSECT ){
3348     addrAeqB = addrAltB;
3349     addrAltB++;
3350   }else{
3351     VdbeNoopComment((v, "A-eq-B subroutine"));
3352     addrAeqB =
3353     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3354     sqlite3VdbeGoto(v, labelCmpr);
3355   }
3356 
3357   /* Generate code to handle the case of A>B
3358   */
3359   VdbeNoopComment((v, "A-gt-B subroutine"));
3360   addrAgtB = sqlite3VdbeCurrentAddr(v);
3361   if( op==TK_ALL || op==TK_UNION ){
3362     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3363   }
3364   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3365   sqlite3VdbeGoto(v, labelCmpr);
3366 
3367   /* This code runs once to initialize everything.
3368   */
3369   sqlite3VdbeJumpHere(v, addr1);
3370   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3371   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3372 
3373   /* Implement the main merge loop
3374   */
3375   sqlite3VdbeResolveLabel(v, labelCmpr);
3376   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3377   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3378                          (char*)pKeyMerge, P4_KEYINFO);
3379   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3380   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3381 
3382   /* Jump to the this point in order to terminate the query.
3383   */
3384   sqlite3VdbeResolveLabel(v, labelEnd);
3385 
3386   /* Reassembly the compound query so that it will be freed correctly
3387   ** by the calling function */
3388   if( p->pPrior ){
3389     sqlite3SelectDelete(db, p->pPrior);
3390   }
3391   p->pPrior = pPrior;
3392   pPrior->pNext = p;
3393 
3394   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3395   **** subqueries ****/
3396   ExplainQueryPlanPop(pParse);
3397   return pParse->nErr!=0;
3398 }
3399 #endif
3400 
3401 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3402 
3403 /* An instance of the SubstContext object describes an substitution edit
3404 ** to be performed on a parse tree.
3405 **
3406 ** All references to columns in table iTable are to be replaced by corresponding
3407 ** expressions in pEList.
3408 */
3409 typedef struct SubstContext {
3410   Parse *pParse;            /* The parsing context */
3411   int iTable;               /* Replace references to this table */
3412   int iNewTable;            /* New table number */
3413   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3414   ExprList *pEList;         /* Replacement expressions */
3415 } SubstContext;
3416 
3417 /* Forward Declarations */
3418 static void substExprList(SubstContext*, ExprList*);
3419 static void substSelect(SubstContext*, Select*, int);
3420 
3421 /*
3422 ** Scan through the expression pExpr.  Replace every reference to
3423 ** a column in table number iTable with a copy of the iColumn-th
3424 ** entry in pEList.  (But leave references to the ROWID column
3425 ** unchanged.)
3426 **
3427 ** This routine is part of the flattening procedure.  A subquery
3428 ** whose result set is defined by pEList appears as entry in the
3429 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3430 ** FORM clause entry is iTable.  This routine makes the necessary
3431 ** changes to pExpr so that it refers directly to the source table
3432 ** of the subquery rather the result set of the subquery.
3433 */
3434 static Expr *substExpr(
3435   SubstContext *pSubst,  /* Description of the substitution */
3436   Expr *pExpr            /* Expr in which substitution occurs */
3437 ){
3438   if( pExpr==0 ) return 0;
3439   if( ExprHasProperty(pExpr, EP_FromJoin)
3440    && pExpr->iRightJoinTable==pSubst->iTable
3441   ){
3442     pExpr->iRightJoinTable = pSubst->iNewTable;
3443   }
3444   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3445     if( pExpr->iColumn<0 ){
3446       pExpr->op = TK_NULL;
3447     }else{
3448       Expr *pNew;
3449       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3450       Expr ifNullRow;
3451       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3452       assert( pExpr->pRight==0 );
3453       if( sqlite3ExprIsVector(pCopy) ){
3454         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3455       }else{
3456         sqlite3 *db = pSubst->pParse->db;
3457         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3458           memset(&ifNullRow, 0, sizeof(ifNullRow));
3459           ifNullRow.op = TK_IF_NULL_ROW;
3460           ifNullRow.pLeft = pCopy;
3461           ifNullRow.iTable = pSubst->iNewTable;
3462           pCopy = &ifNullRow;
3463         }
3464         pNew = sqlite3ExprDup(db, pCopy, 0);
3465         if( pNew && pSubst->isLeftJoin ){
3466           ExprSetProperty(pNew, EP_CanBeNull);
3467         }
3468         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3469           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3470           ExprSetProperty(pNew, EP_FromJoin);
3471         }
3472         sqlite3ExprDelete(db, pExpr);
3473         pExpr = pNew;
3474       }
3475     }
3476   }else{
3477     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3478       pExpr->iTable = pSubst->iNewTable;
3479     }
3480     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3481     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3482     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3483       substSelect(pSubst, pExpr->x.pSelect, 1);
3484     }else{
3485       substExprList(pSubst, pExpr->x.pList);
3486     }
3487   }
3488   return pExpr;
3489 }
3490 static void substExprList(
3491   SubstContext *pSubst, /* Description of the substitution */
3492   ExprList *pList       /* List to scan and in which to make substitutes */
3493 ){
3494   int i;
3495   if( pList==0 ) return;
3496   for(i=0; i<pList->nExpr; i++){
3497     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3498   }
3499 }
3500 static void substSelect(
3501   SubstContext *pSubst, /* Description of the substitution */
3502   Select *p,            /* SELECT statement in which to make substitutions */
3503   int doPrior           /* Do substitutes on p->pPrior too */
3504 ){
3505   SrcList *pSrc;
3506   struct SrcList_item *pItem;
3507   int i;
3508   if( !p ) return;
3509   do{
3510     substExprList(pSubst, p->pEList);
3511     substExprList(pSubst, p->pGroupBy);
3512     substExprList(pSubst, p->pOrderBy);
3513     p->pHaving = substExpr(pSubst, p->pHaving);
3514     p->pWhere = substExpr(pSubst, p->pWhere);
3515     pSrc = p->pSrc;
3516     assert( pSrc!=0 );
3517     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3518       substSelect(pSubst, pItem->pSelect, 1);
3519       if( pItem->fg.isTabFunc ){
3520         substExprList(pSubst, pItem->u1.pFuncArg);
3521       }
3522     }
3523   }while( doPrior && (p = p->pPrior)!=0 );
3524 }
3525 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3526 
3527 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3528 /*
3529 ** This routine attempts to flatten subqueries as a performance optimization.
3530 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3531 **
3532 ** To understand the concept of flattening, consider the following
3533 ** query:
3534 **
3535 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3536 **
3537 ** The default way of implementing this query is to execute the
3538 ** subquery first and store the results in a temporary table, then
3539 ** run the outer query on that temporary table.  This requires two
3540 ** passes over the data.  Furthermore, because the temporary table
3541 ** has no indices, the WHERE clause on the outer query cannot be
3542 ** optimized.
3543 **
3544 ** This routine attempts to rewrite queries such as the above into
3545 ** a single flat select, like this:
3546 **
3547 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3548 **
3549 ** The code generated for this simplification gives the same result
3550 ** but only has to scan the data once.  And because indices might
3551 ** exist on the table t1, a complete scan of the data might be
3552 ** avoided.
3553 **
3554 ** Flattening is subject to the following constraints:
3555 **
3556 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3557 **        The subquery and the outer query cannot both be aggregates.
3558 **
3559 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3560 **        (2) If the subquery is an aggregate then
3561 **        (2a) the outer query must not be a join and
3562 **        (2b) the outer query must not use subqueries
3563 **             other than the one FROM-clause subquery that is a candidate
3564 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3565 **             from 2015-02-09.)
3566 **
3567 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3568 **        (3a) the subquery may not be a join and
3569 **        (3b) the FROM clause of the subquery may not contain a virtual
3570 **             table and
3571 **        (3c) the outer query may not be an aggregate.
3572 **
3573 **   (4)  The subquery can not be DISTINCT.
3574 **
3575 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3576 **        sub-queries that were excluded from this optimization. Restriction
3577 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3578 **
3579 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3580 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3581 **
3582 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3583 **        A FROM clause, consider adding a FROM clause with the special
3584 **        table sqlite_once that consists of a single row containing a
3585 **        single NULL.
3586 **
3587 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3588 **
3589 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3590 **
3591 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3592 **        accidently carried the comment forward until 2014-09-15.  Original
3593 **        constraint: "If the subquery is aggregate then the outer query
3594 **        may not use LIMIT."
3595 **
3596 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3597 **
3598 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3599 **        a separate restriction deriving from ticket #350.
3600 **
3601 **  (13)  The subquery and outer query may not both use LIMIT.
3602 **
3603 **  (14)  The subquery may not use OFFSET.
3604 **
3605 **  (15)  If the outer query is part of a compound select, then the
3606 **        subquery may not use LIMIT.
3607 **        (See ticket #2339 and ticket [02a8e81d44]).
3608 **
3609 **  (16)  If the outer query is aggregate, then the subquery may not
3610 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3611 **        until we introduced the group_concat() function.
3612 **
3613 **  (17)  If the subquery is a compound select, then
3614 **        (17a) all compound operators must be a UNION ALL, and
3615 **        (17b) no terms within the subquery compound may be aggregate
3616 **              or DISTINCT, and
3617 **        (17c) every term within the subquery compound must have a FROM clause
3618 **        (17d) the outer query may not be
3619 **              (17d1) aggregate, or
3620 **              (17d2) DISTINCT, or
3621 **              (17d3) a join.
3622 **
3623 **        The parent and sub-query may contain WHERE clauses. Subject to
3624 **        rules (11), (13) and (14), they may also contain ORDER BY,
3625 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3626 **        operator other than UNION ALL because all the other compound
3627 **        operators have an implied DISTINCT which is disallowed by
3628 **        restriction (4).
3629 **
3630 **        Also, each component of the sub-query must return the same number
3631 **        of result columns. This is actually a requirement for any compound
3632 **        SELECT statement, but all the code here does is make sure that no
3633 **        such (illegal) sub-query is flattened. The caller will detect the
3634 **        syntax error and return a detailed message.
3635 **
3636 **  (18)  If the sub-query is a compound select, then all terms of the
3637 **        ORDER BY clause of the parent must be simple references to
3638 **        columns of the sub-query.
3639 **
3640 **  (19)  If the subquery uses LIMIT then the outer query may not
3641 **        have a WHERE clause.
3642 **
3643 **  (20)  If the sub-query is a compound select, then it must not use
3644 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3645 **        somewhat by saying that the terms of the ORDER BY clause must
3646 **        appear as unmodified result columns in the outer query.  But we
3647 **        have other optimizations in mind to deal with that case.
3648 **
3649 **  (21)  If the subquery uses LIMIT then the outer query may not be
3650 **        DISTINCT.  (See ticket [752e1646fc]).
3651 **
3652 **  (22)  The subquery may not be a recursive CTE.
3653 **
3654 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3655 **        a recursive CTE, then the sub-query may not be a compound query.
3656 **        This restriction is because transforming the
3657 **        parent to a compound query confuses the code that handles
3658 **        recursive queries in multiSelect().
3659 **
3660 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3661 **        The subquery may not be an aggregate that uses the built-in min() or
3662 **        or max() functions.  (Without this restriction, a query like:
3663 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3664 **        return the value X for which Y was maximal.)
3665 **
3666 **  (25)  If either the subquery or the parent query contains a window
3667 **        function in the select list or ORDER BY clause, flattening
3668 **        is not attempted.
3669 **
3670 **
3671 ** In this routine, the "p" parameter is a pointer to the outer query.
3672 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3673 ** uses aggregates.
3674 **
3675 ** If flattening is not attempted, this routine is a no-op and returns 0.
3676 ** If flattening is attempted this routine returns 1.
3677 **
3678 ** All of the expression analysis must occur on both the outer query and
3679 ** the subquery before this routine runs.
3680 */
3681 static int flattenSubquery(
3682   Parse *pParse,       /* Parsing context */
3683   Select *p,           /* The parent or outer SELECT statement */
3684   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3685   int isAgg            /* True if outer SELECT uses aggregate functions */
3686 ){
3687   const char *zSavedAuthContext = pParse->zAuthContext;
3688   Select *pParent;    /* Current UNION ALL term of the other query */
3689   Select *pSub;       /* The inner query or "subquery" */
3690   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3691   SrcList *pSrc;      /* The FROM clause of the outer query */
3692   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3693   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3694   int iNewParent = -1;/* Replacement table for iParent */
3695   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3696   int i;              /* Loop counter */
3697   Expr *pWhere;                    /* The WHERE clause */
3698   struct SrcList_item *pSubitem;   /* The subquery */
3699   sqlite3 *db = pParse->db;
3700 
3701   /* Check to see if flattening is permitted.  Return 0 if not.
3702   */
3703   assert( p!=0 );
3704   assert( p->pPrior==0 );
3705   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3706   pSrc = p->pSrc;
3707   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3708   pSubitem = &pSrc->a[iFrom];
3709   iParent = pSubitem->iCursor;
3710   pSub = pSubitem->pSelect;
3711   assert( pSub!=0 );
3712 
3713 #ifndef SQLITE_OMIT_WINDOWFUNC
3714   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3715 #endif
3716 
3717   pSubSrc = pSub->pSrc;
3718   assert( pSubSrc );
3719   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3720   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3721   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3722   ** became arbitrary expressions, we were forced to add restrictions (13)
3723   ** and (14). */
3724   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3725   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3726   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3727     return 0;                                            /* Restriction (15) */
3728   }
3729   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3730   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3731   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3732      return 0;         /* Restrictions (8)(9) */
3733   }
3734   if( p->pOrderBy && pSub->pOrderBy ){
3735      return 0;                                           /* Restriction (11) */
3736   }
3737   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3738   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3739   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3740      return 0;         /* Restriction (21) */
3741   }
3742   if( pSub->selFlags & (SF_Recursive) ){
3743     return 0; /* Restrictions (22) */
3744   }
3745 
3746   /*
3747   ** If the subquery is the right operand of a LEFT JOIN, then the
3748   ** subquery may not be a join itself (3a). Example of why this is not
3749   ** allowed:
3750   **
3751   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3752   **
3753   ** If we flatten the above, we would get
3754   **
3755   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3756   **
3757   ** which is not at all the same thing.
3758   **
3759   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3760   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3761   ** aggregates are processed - there is no mechanism to determine if
3762   ** the LEFT JOIN table should be all-NULL.
3763   **
3764   ** See also tickets #306, #350, and #3300.
3765   */
3766   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3767     isLeftJoin = 1;
3768     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3769       /*  (3a)             (3c)     (3b) */
3770       return 0;
3771     }
3772   }
3773 #ifdef SQLITE_EXTRA_IFNULLROW
3774   else if( iFrom>0 && !isAgg ){
3775     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3776     ** every reference to any result column from subquery in a join, even
3777     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3778     ** opcode. */
3779     isLeftJoin = -1;
3780   }
3781 #endif
3782 
3783   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3784   ** use only the UNION ALL operator. And none of the simple select queries
3785   ** that make up the compound SELECT are allowed to be aggregate or distinct
3786   ** queries.
3787   */
3788   if( pSub->pPrior ){
3789     if( pSub->pOrderBy ){
3790       return 0;  /* Restriction (20) */
3791     }
3792     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3793       return 0; /* (17d1), (17d2), or (17d3) */
3794     }
3795     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3796       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3797       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3798       assert( pSub->pSrc!=0 );
3799       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3800       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3801        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3802        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3803       ){
3804         return 0;
3805       }
3806       testcase( pSub1->pSrc->nSrc>1 );
3807     }
3808 
3809     /* Restriction (18). */
3810     if( p->pOrderBy ){
3811       int ii;
3812       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3813         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3814       }
3815     }
3816   }
3817 
3818   /* Ex-restriction (23):
3819   ** The only way that the recursive part of a CTE can contain a compound
3820   ** subquery is for the subquery to be one term of a join.  But if the
3821   ** subquery is a join, then the flattening has already been stopped by
3822   ** restriction (17d3)
3823   */
3824   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3825 
3826   /***** If we reach this point, flattening is permitted. *****/
3827   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3828                    pSub->selId, pSub, iFrom));
3829 
3830   /* Authorize the subquery */
3831   pParse->zAuthContext = pSubitem->zName;
3832   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3833   testcase( i==SQLITE_DENY );
3834   pParse->zAuthContext = zSavedAuthContext;
3835 
3836   /* If the sub-query is a compound SELECT statement, then (by restrictions
3837   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3838   ** be of the form:
3839   **
3840   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3841   **
3842   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3843   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3844   ** OFFSET clauses and joins them to the left-hand-side of the original
3845   ** using UNION ALL operators. In this case N is the number of simple
3846   ** select statements in the compound sub-query.
3847   **
3848   ** Example:
3849   **
3850   **     SELECT a+1 FROM (
3851   **        SELECT x FROM tab
3852   **        UNION ALL
3853   **        SELECT y FROM tab
3854   **        UNION ALL
3855   **        SELECT abs(z*2) FROM tab2
3856   **     ) WHERE a!=5 ORDER BY 1
3857   **
3858   ** Transformed into:
3859   **
3860   **     SELECT x+1 FROM tab WHERE x+1!=5
3861   **     UNION ALL
3862   **     SELECT y+1 FROM tab WHERE y+1!=5
3863   **     UNION ALL
3864   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3865   **     ORDER BY 1
3866   **
3867   ** We call this the "compound-subquery flattening".
3868   */
3869   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3870     Select *pNew;
3871     ExprList *pOrderBy = p->pOrderBy;
3872     Expr *pLimit = p->pLimit;
3873     Select *pPrior = p->pPrior;
3874     p->pOrderBy = 0;
3875     p->pSrc = 0;
3876     p->pPrior = 0;
3877     p->pLimit = 0;
3878     pNew = sqlite3SelectDup(db, p, 0);
3879     p->pLimit = pLimit;
3880     p->pOrderBy = pOrderBy;
3881     p->pSrc = pSrc;
3882     p->op = TK_ALL;
3883     if( pNew==0 ){
3884       p->pPrior = pPrior;
3885     }else{
3886       pNew->pPrior = pPrior;
3887       if( pPrior ) pPrior->pNext = pNew;
3888       pNew->pNext = p;
3889       p->pPrior = pNew;
3890       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3891                               " creates %u as peer\n",pNew->selId));
3892     }
3893     if( db->mallocFailed ) return 1;
3894   }
3895 
3896   /* Begin flattening the iFrom-th entry of the FROM clause
3897   ** in the outer query.
3898   */
3899   pSub = pSub1 = pSubitem->pSelect;
3900 
3901   /* Delete the transient table structure associated with the
3902   ** subquery
3903   */
3904   sqlite3DbFree(db, pSubitem->zDatabase);
3905   sqlite3DbFree(db, pSubitem->zName);
3906   sqlite3DbFree(db, pSubitem->zAlias);
3907   pSubitem->zDatabase = 0;
3908   pSubitem->zName = 0;
3909   pSubitem->zAlias = 0;
3910   pSubitem->pSelect = 0;
3911 
3912   /* Defer deleting the Table object associated with the
3913   ** subquery until code generation is
3914   ** complete, since there may still exist Expr.pTab entries that
3915   ** refer to the subquery even after flattening.  Ticket #3346.
3916   **
3917   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3918   */
3919   if( ALWAYS(pSubitem->pTab!=0) ){
3920     Table *pTabToDel = pSubitem->pTab;
3921     if( pTabToDel->nTabRef==1 ){
3922       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3923       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3924       pToplevel->pZombieTab = pTabToDel;
3925     }else{
3926       pTabToDel->nTabRef--;
3927     }
3928     pSubitem->pTab = 0;
3929   }
3930 
3931   /* The following loop runs once for each term in a compound-subquery
3932   ** flattening (as described above).  If we are doing a different kind
3933   ** of flattening - a flattening other than a compound-subquery flattening -
3934   ** then this loop only runs once.
3935   **
3936   ** This loop moves all of the FROM elements of the subquery into the
3937   ** the FROM clause of the outer query.  Before doing this, remember
3938   ** the cursor number for the original outer query FROM element in
3939   ** iParent.  The iParent cursor will never be used.  Subsequent code
3940   ** will scan expressions looking for iParent references and replace
3941   ** those references with expressions that resolve to the subquery FROM
3942   ** elements we are now copying in.
3943   */
3944   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3945     int nSubSrc;
3946     u8 jointype = 0;
3947     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3948     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3949     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3950 
3951     if( pSrc ){
3952       assert( pParent==p );  /* First time through the loop */
3953       jointype = pSubitem->fg.jointype;
3954     }else{
3955       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3956       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3957       if( pSrc==0 ){
3958         assert( db->mallocFailed );
3959         break;
3960       }
3961     }
3962 
3963     /* The subquery uses a single slot of the FROM clause of the outer
3964     ** query.  If the subquery has more than one element in its FROM clause,
3965     ** then expand the outer query to make space for it to hold all elements
3966     ** of the subquery.
3967     **
3968     ** Example:
3969     **
3970     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3971     **
3972     ** The outer query has 3 slots in its FROM clause.  One slot of the
3973     ** outer query (the middle slot) is used by the subquery.  The next
3974     ** block of code will expand the outer query FROM clause to 4 slots.
3975     ** The middle slot is expanded to two slots in order to make space
3976     ** for the two elements in the FROM clause of the subquery.
3977     */
3978     if( nSubSrc>1 ){
3979       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3980       if( db->mallocFailed ){
3981         break;
3982       }
3983     }
3984 
3985     /* Transfer the FROM clause terms from the subquery into the
3986     ** outer query.
3987     */
3988     for(i=0; i<nSubSrc; i++){
3989       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3990       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3991       pSrc->a[i+iFrom] = pSubSrc->a[i];
3992       iNewParent = pSubSrc->a[i].iCursor;
3993       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3994     }
3995     pSrc->a[iFrom].fg.jointype = jointype;
3996 
3997     /* Now begin substituting subquery result set expressions for
3998     ** references to the iParent in the outer query.
3999     **
4000     ** Example:
4001     **
4002     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4003     **   \                     \_____________ subquery __________/          /
4004     **    \_____________________ outer query ______________________________/
4005     **
4006     ** We look at every expression in the outer query and every place we see
4007     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4008     */
4009     if( pSub->pOrderBy ){
4010       /* At this point, any non-zero iOrderByCol values indicate that the
4011       ** ORDER BY column expression is identical to the iOrderByCol'th
4012       ** expression returned by SELECT statement pSub. Since these values
4013       ** do not necessarily correspond to columns in SELECT statement pParent,
4014       ** zero them before transfering the ORDER BY clause.
4015       **
4016       ** Not doing this may cause an error if a subsequent call to this
4017       ** function attempts to flatten a compound sub-query into pParent
4018       ** (the only way this can happen is if the compound sub-query is
4019       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4020       ExprList *pOrderBy = pSub->pOrderBy;
4021       for(i=0; i<pOrderBy->nExpr; i++){
4022         pOrderBy->a[i].u.x.iOrderByCol = 0;
4023       }
4024       assert( pParent->pOrderBy==0 );
4025       pParent->pOrderBy = pOrderBy;
4026       pSub->pOrderBy = 0;
4027     }
4028     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4029     if( isLeftJoin>0 ){
4030       setJoinExpr(pWhere, iNewParent);
4031     }
4032     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4033     if( db->mallocFailed==0 ){
4034       SubstContext x;
4035       x.pParse = pParse;
4036       x.iTable = iParent;
4037       x.iNewTable = iNewParent;
4038       x.isLeftJoin = isLeftJoin;
4039       x.pEList = pSub->pEList;
4040       substSelect(&x, pParent, 0);
4041     }
4042 
4043     /* The flattened query is distinct if either the inner or the
4044     ** outer query is distinct.
4045     */
4046     pParent->selFlags |= pSub->selFlags & SF_Distinct;
4047 
4048     /*
4049     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4050     **
4051     ** One is tempted to try to add a and b to combine the limits.  But this
4052     ** does not work if either limit is negative.
4053     */
4054     if( pSub->pLimit ){
4055       pParent->pLimit = pSub->pLimit;
4056       pSub->pLimit = 0;
4057     }
4058   }
4059 
4060   /* Finially, delete what is left of the subquery and return
4061   ** success.
4062   */
4063   sqlite3SelectDelete(db, pSub1);
4064 
4065 #if SELECTTRACE_ENABLED
4066   if( sqlite3SelectTrace & 0x100 ){
4067     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4068     sqlite3TreeViewSelect(0, p, 0);
4069   }
4070 #endif
4071 
4072   return 1;
4073 }
4074 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4075 
4076 /*
4077 ** A structure to keep track of all of the column values that are fixed to
4078 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4079 */
4080 typedef struct WhereConst WhereConst;
4081 struct WhereConst {
4082   Parse *pParse;   /* Parsing context */
4083   int nConst;      /* Number for COLUMN=CONSTANT terms */
4084   int nChng;       /* Number of times a constant is propagated */
4085   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4086 };
4087 
4088 /*
4089 ** Add a new entry to the pConst object.  Except, do not add duplicate
4090 ** pColumn entires.
4091 */
4092 static void constInsert(
4093   WhereConst *pConst,      /* The WhereConst into which we are inserting */
4094   Expr *pColumn,           /* The COLUMN part of the constraint */
4095   Expr *pValue             /* The VALUE part of the constraint */
4096 ){
4097   int i;
4098   assert( pColumn->op==TK_COLUMN );
4099 
4100   /* 2018-10-25 ticket [cf5ed20f]
4101   ** Make sure the same pColumn is not inserted more than once */
4102   for(i=0; i<pConst->nConst; i++){
4103     const Expr *pExpr = pConst->apExpr[i*2];
4104     assert( pExpr->op==TK_COLUMN );
4105     if( pExpr->iTable==pColumn->iTable
4106      && pExpr->iColumn==pColumn->iColumn
4107     ){
4108       return;  /* Already present.  Return without doing anything. */
4109     }
4110   }
4111 
4112   pConst->nConst++;
4113   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4114                          pConst->nConst*2*sizeof(Expr*));
4115   if( pConst->apExpr==0 ){
4116     pConst->nConst = 0;
4117   }else{
4118     if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4119     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4120     pConst->apExpr[pConst->nConst*2-1] = pValue;
4121   }
4122 }
4123 
4124 /*
4125 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4126 ** is a constant expression and where the term must be true because it
4127 ** is part of the AND-connected terms of the expression.  For each term
4128 ** found, add it to the pConst structure.
4129 */
4130 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4131   Expr *pRight, *pLeft;
4132   if( pExpr==0 ) return;
4133   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4134   if( pExpr->op==TK_AND ){
4135     findConstInWhere(pConst, pExpr->pRight);
4136     findConstInWhere(pConst, pExpr->pLeft);
4137     return;
4138   }
4139   if( pExpr->op!=TK_EQ ) return;
4140   pRight = pExpr->pRight;
4141   pLeft = pExpr->pLeft;
4142   assert( pRight!=0 );
4143   assert( pLeft!=0 );
4144   if( pRight->op==TK_COLUMN
4145    && !ExprHasProperty(pRight, EP_FixedCol)
4146    && sqlite3ExprIsConstant(pLeft)
4147    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4148   ){
4149     constInsert(pConst, pRight, pLeft);
4150   }else
4151   if( pLeft->op==TK_COLUMN
4152    && !ExprHasProperty(pLeft, EP_FixedCol)
4153    && sqlite3ExprIsConstant(pRight)
4154    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4155   ){
4156     constInsert(pConst, pLeft, pRight);
4157   }
4158 }
4159 
4160 /*
4161 ** This is a Walker expression callback.  pExpr is a candidate expression
4162 ** to be replaced by a value.  If pExpr is equivalent to one of the
4163 ** columns named in pWalker->u.pConst, then overwrite it with its
4164 ** corresponding value.
4165 */
4166 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4167   int i;
4168   WhereConst *pConst;
4169   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4170   if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4171   pConst = pWalker->u.pConst;
4172   for(i=0; i<pConst->nConst; i++){
4173     Expr *pColumn = pConst->apExpr[i*2];
4174     if( pColumn==pExpr ) continue;
4175     if( pColumn->iTable!=pExpr->iTable ) continue;
4176     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4177     /* A match is found.  Add the EP_FixedCol property */
4178     pConst->nChng++;
4179     ExprClearProperty(pExpr, EP_Leaf);
4180     ExprSetProperty(pExpr, EP_FixedCol);
4181     assert( pExpr->pLeft==0 );
4182     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4183     break;
4184   }
4185   return WRC_Prune;
4186 }
4187 
4188 /*
4189 ** The WHERE-clause constant propagation optimization.
4190 **
4191 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4192 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4193 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4194 ** then throughout the query replace all other occurrences of COLUMN
4195 ** with CONSTANT within the WHERE clause.
4196 **
4197 ** For example, the query:
4198 **
4199 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4200 **
4201 ** Is transformed into
4202 **
4203 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4204 **
4205 ** Return true if any transformations where made and false if not.
4206 **
4207 ** Implementation note:  Constant propagation is tricky due to affinity
4208 ** and collating sequence interactions.  Consider this example:
4209 **
4210 **    CREATE TABLE t1(a INT,b TEXT);
4211 **    INSERT INTO t1 VALUES(123,'0123');
4212 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4213 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4214 **
4215 ** The two SELECT statements above should return different answers.  b=a
4216 ** is alway true because the comparison uses numeric affinity, but b=123
4217 ** is false because it uses text affinity and '0123' is not the same as '123'.
4218 ** To work around this, the expression tree is not actually changed from
4219 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4220 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4221 ** routines know to generate the constant "123" instead of looking up the
4222 ** column value.  Also, to avoid collation problems, this optimization is
4223 ** only attempted if the "a=123" term uses the default BINARY collation.
4224 */
4225 static int propagateConstants(
4226   Parse *pParse,   /* The parsing context */
4227   Select *p        /* The query in which to propagate constants */
4228 ){
4229   WhereConst x;
4230   Walker w;
4231   int nChng = 0;
4232   x.pParse = pParse;
4233   do{
4234     x.nConst = 0;
4235     x.nChng = 0;
4236     x.apExpr = 0;
4237     findConstInWhere(&x, p->pWhere);
4238     if( x.nConst ){
4239       memset(&w, 0, sizeof(w));
4240       w.pParse = pParse;
4241       w.xExprCallback = propagateConstantExprRewrite;
4242       w.xSelectCallback = sqlite3SelectWalkNoop;
4243       w.xSelectCallback2 = 0;
4244       w.walkerDepth = 0;
4245       w.u.pConst = &x;
4246       sqlite3WalkExpr(&w, p->pWhere);
4247       sqlite3DbFree(x.pParse->db, x.apExpr);
4248       nChng += x.nChng;
4249     }
4250   }while( x.nChng );
4251   return nChng;
4252 }
4253 
4254 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4255 /*
4256 ** Make copies of relevant WHERE clause terms of the outer query into
4257 ** the WHERE clause of subquery.  Example:
4258 **
4259 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4260 **
4261 ** Transformed into:
4262 **
4263 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4264 **     WHERE x=5 AND y=10;
4265 **
4266 ** The hope is that the terms added to the inner query will make it more
4267 ** efficient.
4268 **
4269 ** Do not attempt this optimization if:
4270 **
4271 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4272 **           disallow this optimization for aggregate subqueries, but now
4273 **           it is allowed by putting the extra terms on the HAVING clause.
4274 **           The added HAVING clause is pointless if the subquery lacks
4275 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4276 **           so there does not appear to be any reason to add extra logic
4277 **           to suppress it. **)
4278 **
4279 **   (2) The inner query is the recursive part of a common table expression.
4280 **
4281 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4282 **       clause would change the meaning of the LIMIT).
4283 **
4284 **   (4) The inner query is the right operand of a LEFT JOIN and the
4285 **       expression to be pushed down does not come from the ON clause
4286 **       on that LEFT JOIN.
4287 **
4288 **   (5) The WHERE clause expression originates in the ON or USING clause
4289 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4290 **       left join.  An example:
4291 **
4292 **           SELECT *
4293 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4294 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4295 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4296 **
4297 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4298 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4299 **       then the (1,1,NULL) row would be suppressed.
4300 **
4301 **   (6) The inner query features one or more window-functions (since
4302 **       changes to the WHERE clause of the inner query could change the
4303 **       window over which window functions are calculated).
4304 **
4305 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4306 ** terms are duplicated into the subquery.
4307 */
4308 static int pushDownWhereTerms(
4309   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4310   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4311   Expr *pWhere,         /* The WHERE clause of the outer query */
4312   int iCursor,          /* Cursor number of the subquery */
4313   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4314 ){
4315   Expr *pNew;
4316   int nChng = 0;
4317   if( pWhere==0 ) return 0;
4318   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4319 
4320 #ifndef SQLITE_OMIT_WINDOWFUNC
4321   if( pSubq->pWin ) return 0;    /* restriction (6) */
4322 #endif
4323 
4324 #ifdef SQLITE_DEBUG
4325   /* Only the first term of a compound can have a WITH clause.  But make
4326   ** sure no other terms are marked SF_Recursive in case something changes
4327   ** in the future.
4328   */
4329   {
4330     Select *pX;
4331     for(pX=pSubq; pX; pX=pX->pPrior){
4332       assert( (pX->selFlags & (SF_Recursive))==0 );
4333     }
4334   }
4335 #endif
4336 
4337   if( pSubq->pLimit!=0 ){
4338     return 0; /* restriction (3) */
4339   }
4340   while( pWhere->op==TK_AND ){
4341     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4342                                 iCursor, isLeftJoin);
4343     pWhere = pWhere->pLeft;
4344   }
4345   if( isLeftJoin
4346    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4347          || pWhere->iRightJoinTable!=iCursor)
4348   ){
4349     return 0; /* restriction (4) */
4350   }
4351   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4352     return 0; /* restriction (5) */
4353   }
4354   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4355     nChng++;
4356     while( pSubq ){
4357       SubstContext x;
4358       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4359       unsetJoinExpr(pNew, -1);
4360       x.pParse = pParse;
4361       x.iTable = iCursor;
4362       x.iNewTable = iCursor;
4363       x.isLeftJoin = 0;
4364       x.pEList = pSubq->pEList;
4365       pNew = substExpr(&x, pNew);
4366       if( pSubq->selFlags & SF_Aggregate ){
4367         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4368       }else{
4369         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4370       }
4371       pSubq = pSubq->pPrior;
4372     }
4373   }
4374   return nChng;
4375 }
4376 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4377 
4378 /*
4379 ** The pFunc is the only aggregate function in the query.  Check to see
4380 ** if the query is a candidate for the min/max optimization.
4381 **
4382 ** If the query is a candidate for the min/max optimization, then set
4383 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4384 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4385 ** whether pFunc is a min() or max() function.
4386 **
4387 ** If the query is not a candidate for the min/max optimization, return
4388 ** WHERE_ORDERBY_NORMAL (which must be zero).
4389 **
4390 ** This routine must be called after aggregate functions have been
4391 ** located but before their arguments have been subjected to aggregate
4392 ** analysis.
4393 */
4394 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4395   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4396   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4397   const char *zFunc;                    /* Name of aggregate function pFunc */
4398   ExprList *pOrderBy;
4399   u8 sortOrder;
4400 
4401   assert( *ppMinMax==0 );
4402   assert( pFunc->op==TK_AGG_FUNCTION );
4403   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4404   zFunc = pFunc->u.zToken;
4405   if( sqlite3StrICmp(zFunc, "min")==0 ){
4406     eRet = WHERE_ORDERBY_MIN;
4407     sortOrder = SQLITE_SO_ASC;
4408   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4409     eRet = WHERE_ORDERBY_MAX;
4410     sortOrder = SQLITE_SO_DESC;
4411   }else{
4412     return eRet;
4413   }
4414   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4415   assert( pOrderBy!=0 || db->mallocFailed );
4416   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4417   return eRet;
4418 }
4419 
4420 /*
4421 ** The select statement passed as the first argument is an aggregate query.
4422 ** The second argument is the associated aggregate-info object. This
4423 ** function tests if the SELECT is of the form:
4424 **
4425 **   SELECT count(*) FROM <tbl>
4426 **
4427 ** where table is a database table, not a sub-select or view. If the query
4428 ** does match this pattern, then a pointer to the Table object representing
4429 ** <tbl> is returned. Otherwise, 0 is returned.
4430 */
4431 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4432   Table *pTab;
4433   Expr *pExpr;
4434 
4435   assert( !p->pGroupBy );
4436 
4437   if( p->pWhere || p->pEList->nExpr!=1
4438    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4439   ){
4440     return 0;
4441   }
4442   pTab = p->pSrc->a[0].pTab;
4443   pExpr = p->pEList->a[0].pExpr;
4444   assert( pTab && !pTab->pSelect && pExpr );
4445 
4446   if( IsVirtual(pTab) ) return 0;
4447   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4448   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4449   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4450   if( pExpr->flags&EP_Distinct ) return 0;
4451 
4452   return pTab;
4453 }
4454 
4455 /*
4456 ** If the source-list item passed as an argument was augmented with an
4457 ** INDEXED BY clause, then try to locate the specified index. If there
4458 ** was such a clause and the named index cannot be found, return
4459 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4460 ** pFrom->pIndex and return SQLITE_OK.
4461 */
4462 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4463   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4464     Table *pTab = pFrom->pTab;
4465     char *zIndexedBy = pFrom->u1.zIndexedBy;
4466     Index *pIdx;
4467     for(pIdx=pTab->pIndex;
4468         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4469         pIdx=pIdx->pNext
4470     );
4471     if( !pIdx ){
4472       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4473       pParse->checkSchema = 1;
4474       return SQLITE_ERROR;
4475     }
4476     pFrom->pIBIndex = pIdx;
4477   }
4478   return SQLITE_OK;
4479 }
4480 /*
4481 ** Detect compound SELECT statements that use an ORDER BY clause with
4482 ** an alternative collating sequence.
4483 **
4484 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4485 **
4486 ** These are rewritten as a subquery:
4487 **
4488 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4489 **     ORDER BY ... COLLATE ...
4490 **
4491 ** This transformation is necessary because the multiSelectOrderBy() routine
4492 ** above that generates the code for a compound SELECT with an ORDER BY clause
4493 ** uses a merge algorithm that requires the same collating sequence on the
4494 ** result columns as on the ORDER BY clause.  See ticket
4495 ** http://www.sqlite.org/src/info/6709574d2a
4496 **
4497 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4498 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4499 ** there are COLLATE terms in the ORDER BY.
4500 */
4501 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4502   int i;
4503   Select *pNew;
4504   Select *pX;
4505   sqlite3 *db;
4506   struct ExprList_item *a;
4507   SrcList *pNewSrc;
4508   Parse *pParse;
4509   Token dummy;
4510 
4511   if( p->pPrior==0 ) return WRC_Continue;
4512   if( p->pOrderBy==0 ) return WRC_Continue;
4513   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4514   if( pX==0 ) return WRC_Continue;
4515   a = p->pOrderBy->a;
4516   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4517     if( a[i].pExpr->flags & EP_Collate ) break;
4518   }
4519   if( i<0 ) return WRC_Continue;
4520 
4521   /* If we reach this point, that means the transformation is required. */
4522 
4523   pParse = pWalker->pParse;
4524   db = pParse->db;
4525   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4526   if( pNew==0 ) return WRC_Abort;
4527   memset(&dummy, 0, sizeof(dummy));
4528   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4529   if( pNewSrc==0 ) return WRC_Abort;
4530   *pNew = *p;
4531   p->pSrc = pNewSrc;
4532   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4533   p->op = TK_SELECT;
4534   p->pWhere = 0;
4535   pNew->pGroupBy = 0;
4536   pNew->pHaving = 0;
4537   pNew->pOrderBy = 0;
4538   p->pPrior = 0;
4539   p->pNext = 0;
4540   p->pWith = 0;
4541   p->selFlags &= ~SF_Compound;
4542   assert( (p->selFlags & SF_Converted)==0 );
4543   p->selFlags |= SF_Converted;
4544   assert( pNew->pPrior!=0 );
4545   pNew->pPrior->pNext = pNew;
4546   pNew->pLimit = 0;
4547   return WRC_Continue;
4548 }
4549 
4550 /*
4551 ** Check to see if the FROM clause term pFrom has table-valued function
4552 ** arguments.  If it does, leave an error message in pParse and return
4553 ** non-zero, since pFrom is not allowed to be a table-valued function.
4554 */
4555 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4556   if( pFrom->fg.isTabFunc ){
4557     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4558     return 1;
4559   }
4560   return 0;
4561 }
4562 
4563 #ifndef SQLITE_OMIT_CTE
4564 /*
4565 ** Argument pWith (which may be NULL) points to a linked list of nested
4566 ** WITH contexts, from inner to outermost. If the table identified by
4567 ** FROM clause element pItem is really a common-table-expression (CTE)
4568 ** then return a pointer to the CTE definition for that table. Otherwise
4569 ** return NULL.
4570 **
4571 ** If a non-NULL value is returned, set *ppContext to point to the With
4572 ** object that the returned CTE belongs to.
4573 */
4574 static struct Cte *searchWith(
4575   With *pWith,                    /* Current innermost WITH clause */
4576   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4577   With **ppContext                /* OUT: WITH clause return value belongs to */
4578 ){
4579   const char *zName;
4580   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4581     With *p;
4582     for(p=pWith; p; p=p->pOuter){
4583       int i;
4584       for(i=0; i<p->nCte; i++){
4585         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4586           *ppContext = p;
4587           return &p->a[i];
4588         }
4589       }
4590     }
4591   }
4592   return 0;
4593 }
4594 
4595 /* The code generator maintains a stack of active WITH clauses
4596 ** with the inner-most WITH clause being at the top of the stack.
4597 **
4598 ** This routine pushes the WITH clause passed as the second argument
4599 ** onto the top of the stack. If argument bFree is true, then this
4600 ** WITH clause will never be popped from the stack. In this case it
4601 ** should be freed along with the Parse object. In other cases, when
4602 ** bFree==0, the With object will be freed along with the SELECT
4603 ** statement with which it is associated.
4604 */
4605 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4606   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4607   if( pWith ){
4608     assert( pParse->pWith!=pWith );
4609     pWith->pOuter = pParse->pWith;
4610     pParse->pWith = pWith;
4611     if( bFree ) pParse->pWithToFree = pWith;
4612   }
4613 }
4614 
4615 /*
4616 ** This function checks if argument pFrom refers to a CTE declared by
4617 ** a WITH clause on the stack currently maintained by the parser. And,
4618 ** if currently processing a CTE expression, if it is a recursive
4619 ** reference to the current CTE.
4620 **
4621 ** If pFrom falls into either of the two categories above, pFrom->pTab
4622 ** and other fields are populated accordingly. The caller should check
4623 ** (pFrom->pTab!=0) to determine whether or not a successful match
4624 ** was found.
4625 **
4626 ** Whether or not a match is found, SQLITE_OK is returned if no error
4627 ** occurs. If an error does occur, an error message is stored in the
4628 ** parser and some error code other than SQLITE_OK returned.
4629 */
4630 static int withExpand(
4631   Walker *pWalker,
4632   struct SrcList_item *pFrom
4633 ){
4634   Parse *pParse = pWalker->pParse;
4635   sqlite3 *db = pParse->db;
4636   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4637   With *pWith;                    /* WITH clause that pCte belongs to */
4638 
4639   assert( pFrom->pTab==0 );
4640 
4641   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4642   if( pCte ){
4643     Table *pTab;
4644     ExprList *pEList;
4645     Select *pSel;
4646     Select *pLeft;                /* Left-most SELECT statement */
4647     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4648     With *pSavedWith;             /* Initial value of pParse->pWith */
4649 
4650     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4651     ** recursive reference to CTE pCte. Leave an error in pParse and return
4652     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4653     ** In this case, proceed.  */
4654     if( pCte->zCteErr ){
4655       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4656       return SQLITE_ERROR;
4657     }
4658     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4659 
4660     assert( pFrom->pTab==0 );
4661     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4662     if( pTab==0 ) return WRC_Abort;
4663     pTab->nTabRef = 1;
4664     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4665     pTab->iPKey = -1;
4666     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4667     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4668     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4669     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4670     assert( pFrom->pSelect );
4671 
4672     /* Check if this is a recursive CTE. */
4673     pSel = pFrom->pSelect;
4674     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4675     if( bMayRecursive ){
4676       int i;
4677       SrcList *pSrc = pFrom->pSelect->pSrc;
4678       for(i=0; i<pSrc->nSrc; i++){
4679         struct SrcList_item *pItem = &pSrc->a[i];
4680         if( pItem->zDatabase==0
4681          && pItem->zName!=0
4682          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4683           ){
4684           pItem->pTab = pTab;
4685           pItem->fg.isRecursive = 1;
4686           pTab->nTabRef++;
4687           pSel->selFlags |= SF_Recursive;
4688         }
4689       }
4690     }
4691 
4692     /* Only one recursive reference is permitted. */
4693     if( pTab->nTabRef>2 ){
4694       sqlite3ErrorMsg(
4695           pParse, "multiple references to recursive table: %s", pCte->zName
4696       );
4697       return SQLITE_ERROR;
4698     }
4699     assert( pTab->nTabRef==1 ||
4700             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4701 
4702     pCte->zCteErr = "circular reference: %s";
4703     pSavedWith = pParse->pWith;
4704     pParse->pWith = pWith;
4705     if( bMayRecursive ){
4706       Select *pPrior = pSel->pPrior;
4707       assert( pPrior->pWith==0 );
4708       pPrior->pWith = pSel->pWith;
4709       sqlite3WalkSelect(pWalker, pPrior);
4710       pPrior->pWith = 0;
4711     }else{
4712       sqlite3WalkSelect(pWalker, pSel);
4713     }
4714     pParse->pWith = pWith;
4715 
4716     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4717     pEList = pLeft->pEList;
4718     if( pCte->pCols ){
4719       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4720         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4721             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4722         );
4723         pParse->pWith = pSavedWith;
4724         return SQLITE_ERROR;
4725       }
4726       pEList = pCte->pCols;
4727     }
4728 
4729     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4730     if( bMayRecursive ){
4731       if( pSel->selFlags & SF_Recursive ){
4732         pCte->zCteErr = "multiple recursive references: %s";
4733       }else{
4734         pCte->zCteErr = "recursive reference in a subquery: %s";
4735       }
4736       sqlite3WalkSelect(pWalker, pSel);
4737     }
4738     pCte->zCteErr = 0;
4739     pParse->pWith = pSavedWith;
4740   }
4741 
4742   return SQLITE_OK;
4743 }
4744 #endif
4745 
4746 #ifndef SQLITE_OMIT_CTE
4747 /*
4748 ** If the SELECT passed as the second argument has an associated WITH
4749 ** clause, pop it from the stack stored as part of the Parse object.
4750 **
4751 ** This function is used as the xSelectCallback2() callback by
4752 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4753 ** names and other FROM clause elements.
4754 */
4755 static void selectPopWith(Walker *pWalker, Select *p){
4756   Parse *pParse = pWalker->pParse;
4757   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4758     With *pWith = findRightmost(p)->pWith;
4759     if( pWith!=0 ){
4760       assert( pParse->pWith==pWith );
4761       pParse->pWith = pWith->pOuter;
4762     }
4763   }
4764 }
4765 #else
4766 #define selectPopWith 0
4767 #endif
4768 
4769 /*
4770 ** The SrcList_item structure passed as the second argument represents a
4771 ** sub-query in the FROM clause of a SELECT statement. This function
4772 ** allocates and populates the SrcList_item.pTab object. If successful,
4773 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4774 ** SQLITE_NOMEM.
4775 */
4776 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4777   Select *pSel = pFrom->pSelect;
4778   Table *pTab;
4779 
4780   assert( pSel );
4781   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4782   if( pTab==0 ) return SQLITE_NOMEM;
4783   pTab->nTabRef = 1;
4784   if( pFrom->zAlias ){
4785     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4786   }else{
4787     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4788   }
4789   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4790   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4791   pTab->iPKey = -1;
4792   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4793   pTab->tabFlags |= TF_Ephemeral;
4794 
4795   return SQLITE_OK;
4796 }
4797 
4798 /*
4799 ** This routine is a Walker callback for "expanding" a SELECT statement.
4800 ** "Expanding" means to do the following:
4801 **
4802 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4803 **         element of the FROM clause.
4804 **
4805 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4806 **         defines FROM clause.  When views appear in the FROM clause,
4807 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4808 **         that implements the view.  A copy is made of the view's SELECT
4809 **         statement so that we can freely modify or delete that statement
4810 **         without worrying about messing up the persistent representation
4811 **         of the view.
4812 **
4813 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4814 **         on joins and the ON and USING clause of joins.
4815 **
4816 **    (4)  Scan the list of columns in the result set (pEList) looking
4817 **         for instances of the "*" operator or the TABLE.* operator.
4818 **         If found, expand each "*" to be every column in every table
4819 **         and TABLE.* to be every column in TABLE.
4820 **
4821 */
4822 static int selectExpander(Walker *pWalker, Select *p){
4823   Parse *pParse = pWalker->pParse;
4824   int i, j, k;
4825   SrcList *pTabList;
4826   ExprList *pEList;
4827   struct SrcList_item *pFrom;
4828   sqlite3 *db = pParse->db;
4829   Expr *pE, *pRight, *pExpr;
4830   u16 selFlags = p->selFlags;
4831   u32 elistFlags = 0;
4832 
4833   p->selFlags |= SF_Expanded;
4834   if( db->mallocFailed  ){
4835     return WRC_Abort;
4836   }
4837   assert( p->pSrc!=0 );
4838   if( (selFlags & SF_Expanded)!=0 ){
4839     return WRC_Prune;
4840   }
4841   pTabList = p->pSrc;
4842   pEList = p->pEList;
4843   sqlite3WithPush(pParse, p->pWith, 0);
4844 
4845   /* Make sure cursor numbers have been assigned to all entries in
4846   ** the FROM clause of the SELECT statement.
4847   */
4848   sqlite3SrcListAssignCursors(pParse, pTabList);
4849 
4850   /* Look up every table named in the FROM clause of the select.  If
4851   ** an entry of the FROM clause is a subquery instead of a table or view,
4852   ** then create a transient table structure to describe the subquery.
4853   */
4854   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4855     Table *pTab;
4856     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4857     if( pFrom->fg.isRecursive ) continue;
4858     assert( pFrom->pTab==0 );
4859 #ifndef SQLITE_OMIT_CTE
4860     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4861     if( pFrom->pTab ) {} else
4862 #endif
4863     if( pFrom->zName==0 ){
4864 #ifndef SQLITE_OMIT_SUBQUERY
4865       Select *pSel = pFrom->pSelect;
4866       /* A sub-query in the FROM clause of a SELECT */
4867       assert( pSel!=0 );
4868       assert( pFrom->pTab==0 );
4869       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4870       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4871 #endif
4872     }else{
4873       /* An ordinary table or view name in the FROM clause */
4874       assert( pFrom->pTab==0 );
4875       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4876       if( pTab==0 ) return WRC_Abort;
4877       if( pTab->nTabRef>=0xffff ){
4878         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4879            pTab->zName);
4880         pFrom->pTab = 0;
4881         return WRC_Abort;
4882       }
4883       pTab->nTabRef++;
4884       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4885         return WRC_Abort;
4886       }
4887 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4888       if( IsVirtual(pTab) || pTab->pSelect ){
4889         i16 nCol;
4890         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4891         assert( pFrom->pSelect==0 );
4892         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4893         nCol = pTab->nCol;
4894         pTab->nCol = -1;
4895         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4896         pTab->nCol = nCol;
4897       }
4898 #endif
4899     }
4900 
4901     /* Locate the index named by the INDEXED BY clause, if any. */
4902     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4903       return WRC_Abort;
4904     }
4905   }
4906 
4907   /* Process NATURAL keywords, and ON and USING clauses of joins.
4908   */
4909   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4910     return WRC_Abort;
4911   }
4912 
4913   /* For every "*" that occurs in the column list, insert the names of
4914   ** all columns in all tables.  And for every TABLE.* insert the names
4915   ** of all columns in TABLE.  The parser inserted a special expression
4916   ** with the TK_ASTERISK operator for each "*" that it found in the column
4917   ** list.  The following code just has to locate the TK_ASTERISK
4918   ** expressions and expand each one to the list of all columns in
4919   ** all tables.
4920   **
4921   ** The first loop just checks to see if there are any "*" operators
4922   ** that need expanding.
4923   */
4924   for(k=0; k<pEList->nExpr; k++){
4925     pE = pEList->a[k].pExpr;
4926     if( pE->op==TK_ASTERISK ) break;
4927     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4928     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4929     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4930     elistFlags |= pE->flags;
4931   }
4932   if( k<pEList->nExpr ){
4933     /*
4934     ** If we get here it means the result set contains one or more "*"
4935     ** operators that need to be expanded.  Loop through each expression
4936     ** in the result set and expand them one by one.
4937     */
4938     struct ExprList_item *a = pEList->a;
4939     ExprList *pNew = 0;
4940     int flags = pParse->db->flags;
4941     int longNames = (flags & SQLITE_FullColNames)!=0
4942                       && (flags & SQLITE_ShortColNames)==0;
4943 
4944     for(k=0; k<pEList->nExpr; k++){
4945       pE = a[k].pExpr;
4946       elistFlags |= pE->flags;
4947       pRight = pE->pRight;
4948       assert( pE->op!=TK_DOT || pRight!=0 );
4949       if( pE->op!=TK_ASTERISK
4950        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4951       ){
4952         /* This particular expression does not need to be expanded.
4953         */
4954         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4955         if( pNew ){
4956           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4957           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4958           a[k].zName = 0;
4959           a[k].zSpan = 0;
4960         }
4961         a[k].pExpr = 0;
4962       }else{
4963         /* This expression is a "*" or a "TABLE.*" and needs to be
4964         ** expanded. */
4965         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4966         char *zTName = 0;       /* text of name of TABLE */
4967         if( pE->op==TK_DOT ){
4968           assert( pE->pLeft!=0 );
4969           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4970           zTName = pE->pLeft->u.zToken;
4971         }
4972         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4973           Table *pTab = pFrom->pTab;
4974           Select *pSub = pFrom->pSelect;
4975           char *zTabName = pFrom->zAlias;
4976           const char *zSchemaName = 0;
4977           int iDb;
4978           if( zTabName==0 ){
4979             zTabName = pTab->zName;
4980           }
4981           if( db->mallocFailed ) break;
4982           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4983             pSub = 0;
4984             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4985               continue;
4986             }
4987             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4988             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4989           }
4990           for(j=0; j<pTab->nCol; j++){
4991             char *zName = pTab->aCol[j].zName;
4992             char *zColname;  /* The computed column name */
4993             char *zToFree;   /* Malloced string that needs to be freed */
4994             Token sColname;  /* Computed column name as a token */
4995 
4996             assert( zName );
4997             if( zTName && pSub
4998              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4999             ){
5000               continue;
5001             }
5002 
5003             /* If a column is marked as 'hidden', omit it from the expanded
5004             ** result-set list unless the SELECT has the SF_IncludeHidden
5005             ** bit set.
5006             */
5007             if( (p->selFlags & SF_IncludeHidden)==0
5008              && IsHiddenColumn(&pTab->aCol[j])
5009             ){
5010               continue;
5011             }
5012             tableSeen = 1;
5013 
5014             if( i>0 && zTName==0 ){
5015               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5016                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
5017               ){
5018                 /* In a NATURAL join, omit the join columns from the
5019                 ** table to the right of the join */
5020                 continue;
5021               }
5022               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5023                 /* In a join with a USING clause, omit columns in the
5024                 ** using clause from the table on the right. */
5025                 continue;
5026               }
5027             }
5028             pRight = sqlite3Expr(db, TK_ID, zName);
5029             zColname = zName;
5030             zToFree = 0;
5031             if( longNames || pTabList->nSrc>1 ){
5032               Expr *pLeft;
5033               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5034               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5035               if( zSchemaName ){
5036                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5037                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5038               }
5039               if( longNames ){
5040                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5041                 zToFree = zColname;
5042               }
5043             }else{
5044               pExpr = pRight;
5045             }
5046             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5047             sqlite3TokenInit(&sColname, zColname);
5048             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5049             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5050               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5051               if( pSub ){
5052                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
5053                 testcase( pX->zSpan==0 );
5054               }else{
5055                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
5056                                            zSchemaName, zTabName, zColname);
5057                 testcase( pX->zSpan==0 );
5058               }
5059               pX->bSpanIsTab = 1;
5060             }
5061             sqlite3DbFree(db, zToFree);
5062           }
5063         }
5064         if( !tableSeen ){
5065           if( zTName ){
5066             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5067           }else{
5068             sqlite3ErrorMsg(pParse, "no tables specified");
5069           }
5070         }
5071       }
5072     }
5073     sqlite3ExprListDelete(db, pEList);
5074     p->pEList = pNew;
5075   }
5076   if( p->pEList ){
5077     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5078       sqlite3ErrorMsg(pParse, "too many columns in result set");
5079       return WRC_Abort;
5080     }
5081     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5082       p->selFlags |= SF_ComplexResult;
5083     }
5084   }
5085   return WRC_Continue;
5086 }
5087 
5088 /*
5089 ** No-op routine for the parse-tree walker.
5090 **
5091 ** When this routine is the Walker.xExprCallback then expression trees
5092 ** are walked without any actions being taken at each node.  Presumably,
5093 ** when this routine is used for Walker.xExprCallback then
5094 ** Walker.xSelectCallback is set to do something useful for every
5095 ** subquery in the parser tree.
5096 */
5097 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5098   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5099   return WRC_Continue;
5100 }
5101 
5102 /*
5103 ** No-op routine for the parse-tree walker for SELECT statements.
5104 ** subquery in the parser tree.
5105 */
5106 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5107   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5108   return WRC_Continue;
5109 }
5110 
5111 #if SQLITE_DEBUG
5112 /*
5113 ** Always assert.  This xSelectCallback2 implementation proves that the
5114 ** xSelectCallback2 is never invoked.
5115 */
5116 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5117   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5118   assert( 0 );
5119 }
5120 #endif
5121 /*
5122 ** This routine "expands" a SELECT statement and all of its subqueries.
5123 ** For additional information on what it means to "expand" a SELECT
5124 ** statement, see the comment on the selectExpand worker callback above.
5125 **
5126 ** Expanding a SELECT statement is the first step in processing a
5127 ** SELECT statement.  The SELECT statement must be expanded before
5128 ** name resolution is performed.
5129 **
5130 ** If anything goes wrong, an error message is written into pParse.
5131 ** The calling function can detect the problem by looking at pParse->nErr
5132 ** and/or pParse->db->mallocFailed.
5133 */
5134 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5135   Walker w;
5136   w.xExprCallback = sqlite3ExprWalkNoop;
5137   w.pParse = pParse;
5138   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5139     w.xSelectCallback = convertCompoundSelectToSubquery;
5140     w.xSelectCallback2 = 0;
5141     sqlite3WalkSelect(&w, pSelect);
5142   }
5143   w.xSelectCallback = selectExpander;
5144   w.xSelectCallback2 = selectPopWith;
5145   sqlite3WalkSelect(&w, pSelect);
5146 }
5147 
5148 
5149 #ifndef SQLITE_OMIT_SUBQUERY
5150 /*
5151 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5152 ** interface.
5153 **
5154 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5155 ** information to the Table structure that represents the result set
5156 ** of that subquery.
5157 **
5158 ** The Table structure that represents the result set was constructed
5159 ** by selectExpander() but the type and collation information was omitted
5160 ** at that point because identifiers had not yet been resolved.  This
5161 ** routine is called after identifier resolution.
5162 */
5163 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5164   Parse *pParse;
5165   int i;
5166   SrcList *pTabList;
5167   struct SrcList_item *pFrom;
5168 
5169   assert( p->selFlags & SF_Resolved );
5170   if( p->selFlags & SF_HasTypeInfo ) return;
5171   p->selFlags |= SF_HasTypeInfo;
5172   pParse = pWalker->pParse;
5173   pTabList = p->pSrc;
5174   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5175     Table *pTab = pFrom->pTab;
5176     assert( pTab!=0 );
5177     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5178       /* A sub-query in the FROM clause of a SELECT */
5179       Select *pSel = pFrom->pSelect;
5180       if( pSel ){
5181         while( pSel->pPrior ) pSel = pSel->pPrior;
5182         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5183       }
5184     }
5185   }
5186 }
5187 #endif
5188 
5189 
5190 /*
5191 ** This routine adds datatype and collating sequence information to
5192 ** the Table structures of all FROM-clause subqueries in a
5193 ** SELECT statement.
5194 **
5195 ** Use this routine after name resolution.
5196 */
5197 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5198 #ifndef SQLITE_OMIT_SUBQUERY
5199   Walker w;
5200   w.xSelectCallback = sqlite3SelectWalkNoop;
5201   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5202   w.xExprCallback = sqlite3ExprWalkNoop;
5203   w.pParse = pParse;
5204   sqlite3WalkSelect(&w, pSelect);
5205 #endif
5206 }
5207 
5208 
5209 /*
5210 ** This routine sets up a SELECT statement for processing.  The
5211 ** following is accomplished:
5212 **
5213 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5214 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5215 **     *  ON and USING clauses are shifted into WHERE statements
5216 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5217 **     *  Identifiers in expression are matched to tables.
5218 **
5219 ** This routine acts recursively on all subqueries within the SELECT.
5220 */
5221 void sqlite3SelectPrep(
5222   Parse *pParse,         /* The parser context */
5223   Select *p,             /* The SELECT statement being coded. */
5224   NameContext *pOuterNC  /* Name context for container */
5225 ){
5226   assert( p!=0 || pParse->db->mallocFailed );
5227   if( pParse->db->mallocFailed ) return;
5228   if( p->selFlags & SF_HasTypeInfo ) return;
5229   sqlite3SelectExpand(pParse, p);
5230   if( pParse->nErr || pParse->db->mallocFailed ) return;
5231   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5232   if( pParse->nErr || pParse->db->mallocFailed ) return;
5233   sqlite3SelectAddTypeInfo(pParse, p);
5234 }
5235 
5236 /*
5237 ** Reset the aggregate accumulator.
5238 **
5239 ** The aggregate accumulator is a set of memory cells that hold
5240 ** intermediate results while calculating an aggregate.  This
5241 ** routine generates code that stores NULLs in all of those memory
5242 ** cells.
5243 */
5244 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5245   Vdbe *v = pParse->pVdbe;
5246   int i;
5247   struct AggInfo_func *pFunc;
5248   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5249   if( nReg==0 ) return;
5250 #ifdef SQLITE_DEBUG
5251   /* Verify that all AggInfo registers are within the range specified by
5252   ** AggInfo.mnReg..AggInfo.mxReg */
5253   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5254   for(i=0; i<pAggInfo->nColumn; i++){
5255     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5256          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5257   }
5258   for(i=0; i<pAggInfo->nFunc; i++){
5259     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5260          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5261   }
5262 #endif
5263   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5264   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5265     if( pFunc->iDistinct>=0 ){
5266       Expr *pE = pFunc->pExpr;
5267       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5268       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5269         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5270            "argument");
5271         pFunc->iDistinct = -1;
5272       }else{
5273         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5274         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5275                           (char*)pKeyInfo, P4_KEYINFO);
5276       }
5277     }
5278   }
5279 }
5280 
5281 /*
5282 ** Invoke the OP_AggFinalize opcode for every aggregate function
5283 ** in the AggInfo structure.
5284 */
5285 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5286   Vdbe *v = pParse->pVdbe;
5287   int i;
5288   struct AggInfo_func *pF;
5289   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5290     ExprList *pList = pF->pExpr->x.pList;
5291     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5292     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5293     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5294   }
5295 }
5296 
5297 
5298 /*
5299 ** Update the accumulator memory cells for an aggregate based on
5300 ** the current cursor position.
5301 **
5302 ** If regAcc is non-zero and there are no min() or max() aggregates
5303 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5304 ** registers i register regAcc contains 0. The caller will take care
5305 ** of setting and clearing regAcc.
5306 */
5307 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5308   Vdbe *v = pParse->pVdbe;
5309   int i;
5310   int regHit = 0;
5311   int addrHitTest = 0;
5312   struct AggInfo_func *pF;
5313   struct AggInfo_col *pC;
5314 
5315   pAggInfo->directMode = 1;
5316   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5317     int nArg;
5318     int addrNext = 0;
5319     int regAgg;
5320     ExprList *pList = pF->pExpr->x.pList;
5321     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5322     if( pList ){
5323       nArg = pList->nExpr;
5324       regAgg = sqlite3GetTempRange(pParse, nArg);
5325       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5326     }else{
5327       nArg = 0;
5328       regAgg = 0;
5329     }
5330     if( pF->iDistinct>=0 ){
5331       addrNext = sqlite3VdbeMakeLabel(v);
5332       testcase( nArg==0 );  /* Error condition */
5333       testcase( nArg>1 );   /* Also an error */
5334       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5335     }
5336     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5337       CollSeq *pColl = 0;
5338       struct ExprList_item *pItem;
5339       int j;
5340       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5341       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5342         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5343       }
5344       if( !pColl ){
5345         pColl = pParse->db->pDfltColl;
5346       }
5347       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5348       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5349     }
5350     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5351     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5352     sqlite3VdbeChangeP5(v, (u8)nArg);
5353     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5354     if( addrNext ){
5355       sqlite3VdbeResolveLabel(v, addrNext);
5356     }
5357   }
5358   if( regHit==0 && pAggInfo->nAccumulator ){
5359     regHit = regAcc;
5360   }
5361   if( regHit ){
5362     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5363   }
5364   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5365     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5366   }
5367   pAggInfo->directMode = 0;
5368   if( addrHitTest ){
5369     sqlite3VdbeJumpHere(v, addrHitTest);
5370   }
5371 }
5372 
5373 /*
5374 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5375 ** count(*) query ("SELECT count(*) FROM pTab").
5376 */
5377 #ifndef SQLITE_OMIT_EXPLAIN
5378 static void explainSimpleCount(
5379   Parse *pParse,                  /* Parse context */
5380   Table *pTab,                    /* Table being queried */
5381   Index *pIdx                     /* Index used to optimize scan, or NULL */
5382 ){
5383   if( pParse->explain==2 ){
5384     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5385     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5386         pTab->zName,
5387         bCover ? " USING COVERING INDEX " : "",
5388         bCover ? pIdx->zName : ""
5389     );
5390   }
5391 }
5392 #else
5393 # define explainSimpleCount(a,b,c)
5394 #endif
5395 
5396 /*
5397 ** sqlite3WalkExpr() callback used by havingToWhere().
5398 **
5399 ** If the node passed to the callback is a TK_AND node, return
5400 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5401 **
5402 ** Otherwise, return WRC_Prune. In this case, also check if the
5403 ** sub-expression matches the criteria for being moved to the WHERE
5404 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5405 ** within the HAVING expression with a constant "1".
5406 */
5407 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5408   if( pExpr->op!=TK_AND ){
5409     Select *pS = pWalker->u.pSelect;
5410     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5411       sqlite3 *db = pWalker->pParse->db;
5412       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5413       if( pNew ){
5414         Expr *pWhere = pS->pWhere;
5415         SWAP(Expr, *pNew, *pExpr);
5416         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5417         pS->pWhere = pNew;
5418         pWalker->eCode = 1;
5419       }
5420     }
5421     return WRC_Prune;
5422   }
5423   return WRC_Continue;
5424 }
5425 
5426 /*
5427 ** Transfer eligible terms from the HAVING clause of a query, which is
5428 ** processed after grouping, to the WHERE clause, which is processed before
5429 ** grouping. For example, the query:
5430 **
5431 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5432 **
5433 ** can be rewritten as:
5434 **
5435 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5436 **
5437 ** A term of the HAVING expression is eligible for transfer if it consists
5438 ** entirely of constants and expressions that are also GROUP BY terms that
5439 ** use the "BINARY" collation sequence.
5440 */
5441 static void havingToWhere(Parse *pParse, Select *p){
5442   Walker sWalker;
5443   memset(&sWalker, 0, sizeof(sWalker));
5444   sWalker.pParse = pParse;
5445   sWalker.xExprCallback = havingToWhereExprCb;
5446   sWalker.u.pSelect = p;
5447   sqlite3WalkExpr(&sWalker, p->pHaving);
5448 #if SELECTTRACE_ENABLED
5449   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5450     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5451     sqlite3TreeViewSelect(0, p, 0);
5452   }
5453 #endif
5454 }
5455 
5456 /*
5457 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5458 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5459 ** then return 0.
5460 */
5461 static struct SrcList_item *isSelfJoinView(
5462   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5463   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5464 ){
5465   struct SrcList_item *pItem;
5466   for(pItem = pTabList->a; pItem<pThis; pItem++){
5467     if( pItem->pSelect==0 ) continue;
5468     if( pItem->fg.viaCoroutine ) continue;
5469     if( pItem->zName==0 ) continue;
5470     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5471     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5472     if( sqlite3ExprCompare(0,
5473           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5474     ){
5475       /* The view was modified by some other optimization such as
5476       ** pushDownWhereTerms() */
5477       continue;
5478     }
5479     return pItem;
5480   }
5481   return 0;
5482 }
5483 
5484 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5485 /*
5486 ** Attempt to transform a query of the form
5487 **
5488 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5489 **
5490 ** Into this:
5491 **
5492 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5493 **
5494 ** The transformation only works if all of the following are true:
5495 **
5496 **   *  The subquery is a UNION ALL of two or more terms
5497 **   *  The subquery does not have a LIMIT clause
5498 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5499 **   *  The outer query is a simple count(*)
5500 **
5501 ** Return TRUE if the optimization is undertaken.
5502 */
5503 static int countOfViewOptimization(Parse *pParse, Select *p){
5504   Select *pSub, *pPrior;
5505   Expr *pExpr;
5506   Expr *pCount;
5507   sqlite3 *db;
5508   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5509   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5510   pExpr = p->pEList->a[0].pExpr;
5511   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5512   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5513   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5514   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5515   pSub = p->pSrc->a[0].pSelect;
5516   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5517   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5518   do{
5519     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5520     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5521     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5522     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5523     pSub = pSub->pPrior;                              /* Repeat over compound */
5524   }while( pSub );
5525 
5526   /* If we reach this point then it is OK to perform the transformation */
5527 
5528   db = pParse->db;
5529   pCount = pExpr;
5530   pExpr = 0;
5531   pSub = p->pSrc->a[0].pSelect;
5532   p->pSrc->a[0].pSelect = 0;
5533   sqlite3SrcListDelete(db, p->pSrc);
5534   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5535   while( pSub ){
5536     Expr *pTerm;
5537     pPrior = pSub->pPrior;
5538     pSub->pPrior = 0;
5539     pSub->pNext = 0;
5540     pSub->selFlags |= SF_Aggregate;
5541     pSub->selFlags &= ~SF_Compound;
5542     pSub->nSelectRow = 0;
5543     sqlite3ExprListDelete(db, pSub->pEList);
5544     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5545     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5546     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5547     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5548     if( pExpr==0 ){
5549       pExpr = pTerm;
5550     }else{
5551       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5552     }
5553     pSub = pPrior;
5554   }
5555   p->pEList->a[0].pExpr = pExpr;
5556   p->selFlags &= ~SF_Aggregate;
5557 
5558 #if SELECTTRACE_ENABLED
5559   if( sqlite3SelectTrace & 0x400 ){
5560     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5561     sqlite3TreeViewSelect(0, p, 0);
5562   }
5563 #endif
5564   return 1;
5565 }
5566 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5567 
5568 /*
5569 ** Generate code for the SELECT statement given in the p argument.
5570 **
5571 ** The results are returned according to the SelectDest structure.
5572 ** See comments in sqliteInt.h for further information.
5573 **
5574 ** This routine returns the number of errors.  If any errors are
5575 ** encountered, then an appropriate error message is left in
5576 ** pParse->zErrMsg.
5577 **
5578 ** This routine does NOT free the Select structure passed in.  The
5579 ** calling function needs to do that.
5580 */
5581 int sqlite3Select(
5582   Parse *pParse,         /* The parser context */
5583   Select *p,             /* The SELECT statement being coded. */
5584   SelectDest *pDest      /* What to do with the query results */
5585 ){
5586   int i, j;              /* Loop counters */
5587   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5588   Vdbe *v;               /* The virtual machine under construction */
5589   int isAgg;             /* True for select lists like "count(*)" */
5590   ExprList *pEList = 0;  /* List of columns to extract. */
5591   SrcList *pTabList;     /* List of tables to select from */
5592   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5593   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5594   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5595   int rc = 1;            /* Value to return from this function */
5596   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5597   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5598   AggInfo sAggInfo;      /* Information used by aggregate queries */
5599   int iEnd;              /* Address of the end of the query */
5600   sqlite3 *db;           /* The database connection */
5601   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5602   u8 minMaxFlag;                 /* Flag for min/max queries */
5603 
5604   db = pParse->db;
5605   v = sqlite3GetVdbe(pParse);
5606   if( p==0 || db->mallocFailed || pParse->nErr ){
5607     return 1;
5608   }
5609   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5610   memset(&sAggInfo, 0, sizeof(sAggInfo));
5611 #if SELECTTRACE_ENABLED
5612   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5613   if( sqlite3SelectTrace & 0x100 ){
5614     sqlite3TreeViewSelect(0, p, 0);
5615   }
5616 #endif
5617 
5618   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5619   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5620   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5621   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5622   if( IgnorableOrderby(pDest) ){
5623     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5624            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5625            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5626            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5627     /* If ORDER BY makes no difference in the output then neither does
5628     ** DISTINCT so it can be removed too. */
5629     sqlite3ExprListDelete(db, p->pOrderBy);
5630     p->pOrderBy = 0;
5631     p->selFlags &= ~SF_Distinct;
5632   }
5633   sqlite3SelectPrep(pParse, p, 0);
5634   if( pParse->nErr || db->mallocFailed ){
5635     goto select_end;
5636   }
5637   assert( p->pEList!=0 );
5638 #if SELECTTRACE_ENABLED
5639   if( sqlite3SelectTrace & 0x104 ){
5640     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5641     sqlite3TreeViewSelect(0, p, 0);
5642   }
5643 #endif
5644 
5645   if( pDest->eDest==SRT_Output ){
5646     generateColumnNames(pParse, p);
5647   }
5648 
5649 #ifndef SQLITE_OMIT_WINDOWFUNC
5650   if( sqlite3WindowRewrite(pParse, p) ){
5651     goto select_end;
5652   }
5653 #if SELECTTRACE_ENABLED
5654   if( sqlite3SelectTrace & 0x108 ){
5655     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5656     sqlite3TreeViewSelect(0, p, 0);
5657   }
5658 #endif
5659 #endif /* SQLITE_OMIT_WINDOWFUNC */
5660   pTabList = p->pSrc;
5661   isAgg = (p->selFlags & SF_Aggregate)!=0;
5662   memset(&sSort, 0, sizeof(sSort));
5663   sSort.pOrderBy = p->pOrderBy;
5664 
5665   /* Try to various optimizations (flattening subqueries, and strength
5666   ** reduction of join operators) in the FROM clause up into the main query
5667   */
5668 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5669   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5670     struct SrcList_item *pItem = &pTabList->a[i];
5671     Select *pSub = pItem->pSelect;
5672     Table *pTab = pItem->pTab;
5673 
5674     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5675     ** of the LEFT JOIN used in the WHERE clause.
5676     */
5677     if( (pItem->fg.jointype & JT_LEFT)!=0
5678      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5679      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5680     ){
5681       SELECTTRACE(0x100,pParse,p,
5682                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5683       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5684       unsetJoinExpr(p->pWhere, pItem->iCursor);
5685     }
5686 
5687     /* No futher action if this term of the FROM clause is no a subquery */
5688     if( pSub==0 ) continue;
5689 
5690     /* Catch mismatch in the declared columns of a view and the number of
5691     ** columns in the SELECT on the RHS */
5692     if( pTab->nCol!=pSub->pEList->nExpr ){
5693       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5694                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5695       goto select_end;
5696     }
5697 
5698     /* Do not try to flatten an aggregate subquery.
5699     **
5700     ** Flattening an aggregate subquery is only possible if the outer query
5701     ** is not a join.  But if the outer query is not a join, then the subquery
5702     ** will be implemented as a co-routine and there is no advantage to
5703     ** flattening in that case.
5704     */
5705     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5706     assert( pSub->pGroupBy==0 );
5707 
5708     /* If the outer query contains a "complex" result set (that is,
5709     ** if the result set of the outer query uses functions or subqueries)
5710     ** and if the subquery contains an ORDER BY clause and if
5711     ** it will be implemented as a co-routine, then do not flatten.  This
5712     ** restriction allows SQL constructs like this:
5713     **
5714     **  SELECT expensive_function(x)
5715     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5716     **
5717     ** The expensive_function() is only computed on the 10 rows that
5718     ** are output, rather than every row of the table.
5719     **
5720     ** The requirement that the outer query have a complex result set
5721     ** means that flattening does occur on simpler SQL constraints without
5722     ** the expensive_function() like:
5723     **
5724     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5725     */
5726     if( pSub->pOrderBy!=0
5727      && i==0
5728      && (p->selFlags & SF_ComplexResult)!=0
5729      && (pTabList->nSrc==1
5730          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5731     ){
5732       continue;
5733     }
5734 
5735     if( flattenSubquery(pParse, p, i, isAgg) ){
5736       /* This subquery can be absorbed into its parent. */
5737       i = -1;
5738     }
5739     pTabList = p->pSrc;
5740     if( db->mallocFailed ) goto select_end;
5741     if( !IgnorableOrderby(pDest) ){
5742       sSort.pOrderBy = p->pOrderBy;
5743     }
5744   }
5745 #endif
5746 
5747 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5748   /* Handle compound SELECT statements using the separate multiSelect()
5749   ** procedure.
5750   */
5751   if( p->pPrior ){
5752     rc = multiSelect(pParse, p, pDest);
5753 #if SELECTTRACE_ENABLED
5754     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5755     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5756       sqlite3TreeViewSelect(0, p, 0);
5757     }
5758 #endif
5759     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5760     return rc;
5761   }
5762 #endif
5763 
5764   /* Do the WHERE-clause constant propagation optimization if this is
5765   ** a join.  No need to speed time on this operation for non-join queries
5766   ** as the equivalent optimization will be handled by query planner in
5767   ** sqlite3WhereBegin().
5768   */
5769   if( pTabList->nSrc>1
5770    && OptimizationEnabled(db, SQLITE_PropagateConst)
5771    && propagateConstants(pParse, p)
5772   ){
5773 #if SELECTTRACE_ENABLED
5774     if( sqlite3SelectTrace & 0x100 ){
5775       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5776       sqlite3TreeViewSelect(0, p, 0);
5777     }
5778 #endif
5779   }else{
5780     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5781   }
5782 
5783 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5784   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5785    && countOfViewOptimization(pParse, p)
5786   ){
5787     if( db->mallocFailed ) goto select_end;
5788     pEList = p->pEList;
5789     pTabList = p->pSrc;
5790   }
5791 #endif
5792 
5793   /* For each term in the FROM clause, do two things:
5794   ** (1) Authorized unreferenced tables
5795   ** (2) Generate code for all sub-queries
5796   */
5797   for(i=0; i<pTabList->nSrc; i++){
5798     struct SrcList_item *pItem = &pTabList->a[i];
5799     SelectDest dest;
5800     Select *pSub;
5801 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5802     const char *zSavedAuthContext;
5803 #endif
5804 
5805     /* Issue SQLITE_READ authorizations with a fake column name for any
5806     ** tables that are referenced but from which no values are extracted.
5807     ** Examples of where these kinds of null SQLITE_READ authorizations
5808     ** would occur:
5809     **
5810     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5811     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5812     **
5813     ** The fake column name is an empty string.  It is possible for a table to
5814     ** have a column named by the empty string, in which case there is no way to
5815     ** distinguish between an unreferenced table and an actual reference to the
5816     ** "" column. The original design was for the fake column name to be a NULL,
5817     ** which would be unambiguous.  But legacy authorization callbacks might
5818     ** assume the column name is non-NULL and segfault.  The use of an empty
5819     ** string for the fake column name seems safer.
5820     */
5821     if( pItem->colUsed==0 ){
5822       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5823     }
5824 
5825 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5826     /* Generate code for all sub-queries in the FROM clause
5827     */
5828     pSub = pItem->pSelect;
5829     if( pSub==0 ) continue;
5830 
5831     /* Sometimes the code for a subquery will be generated more than
5832     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5833     ** for example.  In that case, do not regenerate the code to manifest
5834     ** a view or the co-routine to implement a view.  The first instance
5835     ** is sufficient, though the subroutine to manifest the view does need
5836     ** to be invoked again. */
5837     if( pItem->addrFillSub ){
5838       if( pItem->fg.viaCoroutine==0 ){
5839         /* The subroutine that manifests the view might be a one-time routine,
5840         ** or it might need to be rerun on each iteration because it
5841         ** encodes a correlated subquery. */
5842         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5843         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5844       }
5845       continue;
5846     }
5847 
5848     /* Increment Parse.nHeight by the height of the largest expression
5849     ** tree referred to by this, the parent select. The child select
5850     ** may contain expression trees of at most
5851     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5852     ** more conservative than necessary, but much easier than enforcing
5853     ** an exact limit.
5854     */
5855     pParse->nHeight += sqlite3SelectExprHeight(p);
5856 
5857     /* Make copies of constant WHERE-clause terms in the outer query down
5858     ** inside the subquery.  This can help the subquery to run more efficiently.
5859     */
5860     if( OptimizationEnabled(db, SQLITE_PushDown)
5861      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5862                            (pItem->fg.jointype & JT_OUTER)!=0)
5863     ){
5864 #if SELECTTRACE_ENABLED
5865       if( sqlite3SelectTrace & 0x100 ){
5866         SELECTTRACE(0x100,pParse,p,
5867             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5868         sqlite3TreeViewSelect(0, p, 0);
5869       }
5870 #endif
5871     }else{
5872       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5873     }
5874 
5875     zSavedAuthContext = pParse->zAuthContext;
5876     pParse->zAuthContext = pItem->zName;
5877 
5878     /* Generate code to implement the subquery
5879     **
5880     ** The subquery is implemented as a co-routine if the subquery is
5881     ** guaranteed to be the outer loop (so that it does not need to be
5882     ** computed more than once)
5883     **
5884     ** TODO: Are there other reasons beside (1) to use a co-routine
5885     ** implementation?
5886     */
5887     if( i==0
5888      && (pTabList->nSrc==1
5889             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5890     ){
5891       /* Implement a co-routine that will return a single row of the result
5892       ** set on each invocation.
5893       */
5894       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5895 
5896       pItem->regReturn = ++pParse->nMem;
5897       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5898       VdbeComment((v, "%s", pItem->pTab->zName));
5899       pItem->addrFillSub = addrTop;
5900       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5901       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5902       sqlite3Select(pParse, pSub, &dest);
5903       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5904       pItem->fg.viaCoroutine = 1;
5905       pItem->regResult = dest.iSdst;
5906       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5907       sqlite3VdbeJumpHere(v, addrTop-1);
5908       sqlite3ClearTempRegCache(pParse);
5909     }else{
5910       /* Generate a subroutine that will fill an ephemeral table with
5911       ** the content of this subquery.  pItem->addrFillSub will point
5912       ** to the address of the generated subroutine.  pItem->regReturn
5913       ** is a register allocated to hold the subroutine return address
5914       */
5915       int topAddr;
5916       int onceAddr = 0;
5917       int retAddr;
5918       struct SrcList_item *pPrior;
5919 
5920       assert( pItem->addrFillSub==0 );
5921       pItem->regReturn = ++pParse->nMem;
5922       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5923       pItem->addrFillSub = topAddr+1;
5924       if( pItem->fg.isCorrelated==0 ){
5925         /* If the subquery is not correlated and if we are not inside of
5926         ** a trigger, then we only need to compute the value of the subquery
5927         ** once. */
5928         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5929         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5930       }else{
5931         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5932       }
5933       pPrior = isSelfJoinView(pTabList, pItem);
5934       if( pPrior ){
5935         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5936         assert( pPrior->pSelect!=0 );
5937         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5938       }else{
5939         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5940         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
5941         sqlite3Select(pParse, pSub, &dest);
5942       }
5943       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5944       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5945       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5946       VdbeComment((v, "end %s", pItem->pTab->zName));
5947       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5948       sqlite3ClearTempRegCache(pParse);
5949     }
5950     if( db->mallocFailed ) goto select_end;
5951     pParse->nHeight -= sqlite3SelectExprHeight(p);
5952     pParse->zAuthContext = zSavedAuthContext;
5953 #endif
5954   }
5955 
5956   /* Various elements of the SELECT copied into local variables for
5957   ** convenience */
5958   pEList = p->pEList;
5959   pWhere = p->pWhere;
5960   pGroupBy = p->pGroupBy;
5961   pHaving = p->pHaving;
5962   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5963 
5964 #if SELECTTRACE_ENABLED
5965   if( sqlite3SelectTrace & 0x400 ){
5966     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5967     sqlite3TreeViewSelect(0, p, 0);
5968   }
5969 #endif
5970 
5971   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5972   ** if the select-list is the same as the ORDER BY list, then this query
5973   ** can be rewritten as a GROUP BY. In other words, this:
5974   **
5975   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5976   **
5977   ** is transformed to:
5978   **
5979   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5980   **
5981   ** The second form is preferred as a single index (or temp-table) may be
5982   ** used for both the ORDER BY and DISTINCT processing. As originally
5983   ** written the query must use a temp-table for at least one of the ORDER
5984   ** BY and DISTINCT, and an index or separate temp-table for the other.
5985   */
5986   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5987    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5988   ){
5989     p->selFlags &= ~SF_Distinct;
5990     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5991     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5992     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5993     ** original setting of the SF_Distinct flag, not the current setting */
5994     assert( sDistinct.isTnct );
5995 
5996 #if SELECTTRACE_ENABLED
5997     if( sqlite3SelectTrace & 0x400 ){
5998       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5999       sqlite3TreeViewSelect(0, p, 0);
6000     }
6001 #endif
6002   }
6003 
6004   /* If there is an ORDER BY clause, then create an ephemeral index to
6005   ** do the sorting.  But this sorting ephemeral index might end up
6006   ** being unused if the data can be extracted in pre-sorted order.
6007   ** If that is the case, then the OP_OpenEphemeral instruction will be
6008   ** changed to an OP_Noop once we figure out that the sorting index is
6009   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6010   ** that change.
6011   */
6012   if( sSort.pOrderBy ){
6013     KeyInfo *pKeyInfo;
6014     pKeyInfo = sqlite3KeyInfoFromExprList(
6015         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6016     sSort.iECursor = pParse->nTab++;
6017     sSort.addrSortIndex =
6018       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6019           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6020           (char*)pKeyInfo, P4_KEYINFO
6021       );
6022   }else{
6023     sSort.addrSortIndex = -1;
6024   }
6025 
6026   /* If the output is destined for a temporary table, open that table.
6027   */
6028   if( pDest->eDest==SRT_EphemTab ){
6029     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6030   }
6031 
6032   /* Set the limiter.
6033   */
6034   iEnd = sqlite3VdbeMakeLabel(v);
6035   if( (p->selFlags & SF_FixedLimit)==0 ){
6036     p->nSelectRow = 320;  /* 4 billion rows */
6037   }
6038   computeLimitRegisters(pParse, p, iEnd);
6039   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6040     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6041     sSort.sortFlags |= SORTFLAG_UseSorter;
6042   }
6043 
6044   /* Open an ephemeral index to use for the distinct set.
6045   */
6046   if( p->selFlags & SF_Distinct ){
6047     sDistinct.tabTnct = pParse->nTab++;
6048     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6049                        sDistinct.tabTnct, 0, 0,
6050                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6051                        P4_KEYINFO);
6052     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6053     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6054   }else{
6055     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6056   }
6057 
6058   if( !isAgg && pGroupBy==0 ){
6059     /* No aggregate functions and no GROUP BY clause */
6060     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6061                    | (p->selFlags & SF_FixedLimit);
6062 #ifndef SQLITE_OMIT_WINDOWFUNC
6063     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6064     if( pWin ){
6065       sqlite3WindowCodeInit(pParse, pWin);
6066     }
6067 #endif
6068     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6069 
6070 
6071     /* Begin the database scan. */
6072     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6073     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6074                                p->pEList, wctrlFlags, p->nSelectRow);
6075     if( pWInfo==0 ) goto select_end;
6076     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6077       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6078     }
6079     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6080       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6081     }
6082     if( sSort.pOrderBy ){
6083       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6084       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6085       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6086         sSort.pOrderBy = 0;
6087       }
6088     }
6089 
6090     /* If sorting index that was created by a prior OP_OpenEphemeral
6091     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6092     ** into an OP_Noop.
6093     */
6094     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6095       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6096     }
6097 
6098     assert( p->pEList==pEList );
6099 #ifndef SQLITE_OMIT_WINDOWFUNC
6100     if( pWin ){
6101       int addrGosub = sqlite3VdbeMakeLabel(v);
6102       int iCont = sqlite3VdbeMakeLabel(v);
6103       int iBreak = sqlite3VdbeMakeLabel(v);
6104       int regGosub = ++pParse->nMem;
6105 
6106       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6107 
6108       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6109       sqlite3VdbeResolveLabel(v, addrGosub);
6110       VdbeNoopComment((v, "inner-loop subroutine"));
6111       sSort.labelOBLopt = 0;
6112       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6113       sqlite3VdbeResolveLabel(v, iCont);
6114       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6115       VdbeComment((v, "end inner-loop subroutine"));
6116       sqlite3VdbeResolveLabel(v, iBreak);
6117     }else
6118 #endif /* SQLITE_OMIT_WINDOWFUNC */
6119     {
6120       /* Use the standard inner loop. */
6121       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6122           sqlite3WhereContinueLabel(pWInfo),
6123           sqlite3WhereBreakLabel(pWInfo));
6124 
6125       /* End the database scan loop.
6126       */
6127       sqlite3WhereEnd(pWInfo);
6128     }
6129   }else{
6130     /* This case when there exist aggregate functions or a GROUP BY clause
6131     ** or both */
6132     NameContext sNC;    /* Name context for processing aggregate information */
6133     int iAMem;          /* First Mem address for storing current GROUP BY */
6134     int iBMem;          /* First Mem address for previous GROUP BY */
6135     int iUseFlag;       /* Mem address holding flag indicating that at least
6136                         ** one row of the input to the aggregator has been
6137                         ** processed */
6138     int iAbortFlag;     /* Mem address which causes query abort if positive */
6139     int groupBySort;    /* Rows come from source in GROUP BY order */
6140     int addrEnd;        /* End of processing for this SELECT */
6141     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6142     int sortOut = 0;    /* Output register from the sorter */
6143     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6144 
6145     /* Remove any and all aliases between the result set and the
6146     ** GROUP BY clause.
6147     */
6148     if( pGroupBy ){
6149       int k;                        /* Loop counter */
6150       struct ExprList_item *pItem;  /* For looping over expression in a list */
6151 
6152       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6153         pItem->u.x.iAlias = 0;
6154       }
6155       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6156         pItem->u.x.iAlias = 0;
6157       }
6158       assert( 66==sqlite3LogEst(100) );
6159       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6160     }else{
6161       assert( 0==sqlite3LogEst(1) );
6162       p->nSelectRow = 0;
6163     }
6164 
6165     /* If there is both a GROUP BY and an ORDER BY clause and they are
6166     ** identical, then it may be possible to disable the ORDER BY clause
6167     ** on the grounds that the GROUP BY will cause elements to come out
6168     ** in the correct order. It also may not - the GROUP BY might use a
6169     ** database index that causes rows to be grouped together as required
6170     ** but not actually sorted. Either way, record the fact that the
6171     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6172     ** variable.  */
6173     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6174       orderByGrp = 1;
6175     }
6176 
6177     /* Create a label to jump to when we want to abort the query */
6178     addrEnd = sqlite3VdbeMakeLabel(v);
6179 
6180     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6181     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6182     ** SELECT statement.
6183     */
6184     memset(&sNC, 0, sizeof(sNC));
6185     sNC.pParse = pParse;
6186     sNC.pSrcList = pTabList;
6187     sNC.uNC.pAggInfo = &sAggInfo;
6188     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6189     sAggInfo.mnReg = pParse->nMem+1;
6190     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6191     sAggInfo.pGroupBy = pGroupBy;
6192     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6193     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6194     if( pHaving ){
6195       if( pGroupBy ){
6196         assert( pWhere==p->pWhere );
6197         assert( pHaving==p->pHaving );
6198         assert( pGroupBy==p->pGroupBy );
6199         havingToWhere(pParse, p);
6200         pWhere = p->pWhere;
6201       }
6202       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6203     }
6204     sAggInfo.nAccumulator = sAggInfo.nColumn;
6205     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6206       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6207     }else{
6208       minMaxFlag = WHERE_ORDERBY_NORMAL;
6209     }
6210     for(i=0; i<sAggInfo.nFunc; i++){
6211       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6212       sNC.ncFlags |= NC_InAggFunc;
6213       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6214       sNC.ncFlags &= ~NC_InAggFunc;
6215     }
6216     sAggInfo.mxReg = pParse->nMem;
6217     if( db->mallocFailed ) goto select_end;
6218 #if SELECTTRACE_ENABLED
6219     if( sqlite3SelectTrace & 0x400 ){
6220       int ii;
6221       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6222       sqlite3TreeViewSelect(0, p, 0);
6223       for(ii=0; ii<sAggInfo.nColumn; ii++){
6224         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6225             ii, sAggInfo.aCol[ii].iMem);
6226         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6227       }
6228       for(ii=0; ii<sAggInfo.nFunc; ii++){
6229         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6230             ii, sAggInfo.aFunc[ii].iMem);
6231         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6232       }
6233     }
6234 #endif
6235 
6236 
6237     /* Processing for aggregates with GROUP BY is very different and
6238     ** much more complex than aggregates without a GROUP BY.
6239     */
6240     if( pGroupBy ){
6241       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6242       int addr1;          /* A-vs-B comparision jump */
6243       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6244       int regOutputRow;   /* Return address register for output subroutine */
6245       int addrSetAbort;   /* Set the abort flag and return */
6246       int addrTopOfLoop;  /* Top of the input loop */
6247       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6248       int addrReset;      /* Subroutine for resetting the accumulator */
6249       int regReset;       /* Return address register for reset subroutine */
6250 
6251       /* If there is a GROUP BY clause we might need a sorting index to
6252       ** implement it.  Allocate that sorting index now.  If it turns out
6253       ** that we do not need it after all, the OP_SorterOpen instruction
6254       ** will be converted into a Noop.
6255       */
6256       sAggInfo.sortingIdx = pParse->nTab++;
6257       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6258       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6259           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6260           0, (char*)pKeyInfo, P4_KEYINFO);
6261 
6262       /* Initialize memory locations used by GROUP BY aggregate processing
6263       */
6264       iUseFlag = ++pParse->nMem;
6265       iAbortFlag = ++pParse->nMem;
6266       regOutputRow = ++pParse->nMem;
6267       addrOutputRow = sqlite3VdbeMakeLabel(v);
6268       regReset = ++pParse->nMem;
6269       addrReset = sqlite3VdbeMakeLabel(v);
6270       iAMem = pParse->nMem + 1;
6271       pParse->nMem += pGroupBy->nExpr;
6272       iBMem = pParse->nMem + 1;
6273       pParse->nMem += pGroupBy->nExpr;
6274       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6275       VdbeComment((v, "clear abort flag"));
6276       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6277 
6278       /* Begin a loop that will extract all source rows in GROUP BY order.
6279       ** This might involve two separate loops with an OP_Sort in between, or
6280       ** it might be a single loop that uses an index to extract information
6281       ** in the right order to begin with.
6282       */
6283       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6284       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6285       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6286           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6287       );
6288       if( pWInfo==0 ) goto select_end;
6289       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6290         /* The optimizer is able to deliver rows in group by order so
6291         ** we do not have to sort.  The OP_OpenEphemeral table will be
6292         ** cancelled later because we still need to use the pKeyInfo
6293         */
6294         groupBySort = 0;
6295       }else{
6296         /* Rows are coming out in undetermined order.  We have to push
6297         ** each row into a sorting index, terminate the first loop,
6298         ** then loop over the sorting index in order to get the output
6299         ** in sorted order
6300         */
6301         int regBase;
6302         int regRecord;
6303         int nCol;
6304         int nGroupBy;
6305 
6306         explainTempTable(pParse,
6307             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6308                     "DISTINCT" : "GROUP BY");
6309 
6310         groupBySort = 1;
6311         nGroupBy = pGroupBy->nExpr;
6312         nCol = nGroupBy;
6313         j = nGroupBy;
6314         for(i=0; i<sAggInfo.nColumn; i++){
6315           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6316             nCol++;
6317             j++;
6318           }
6319         }
6320         regBase = sqlite3GetTempRange(pParse, nCol);
6321         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6322         j = nGroupBy;
6323         for(i=0; i<sAggInfo.nColumn; i++){
6324           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6325           if( pCol->iSorterColumn>=j ){
6326             int r1 = j + regBase;
6327             sqlite3ExprCodeGetColumnOfTable(v,
6328                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6329             j++;
6330           }
6331         }
6332         regRecord = sqlite3GetTempReg(pParse);
6333         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6334         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6335         sqlite3ReleaseTempReg(pParse, regRecord);
6336         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6337         sqlite3WhereEnd(pWInfo);
6338         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6339         sortOut = sqlite3GetTempReg(pParse);
6340         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6341         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6342         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6343         sAggInfo.useSortingIdx = 1;
6344       }
6345 
6346       /* If the index or temporary table used by the GROUP BY sort
6347       ** will naturally deliver rows in the order required by the ORDER BY
6348       ** clause, cancel the ephemeral table open coded earlier.
6349       **
6350       ** This is an optimization - the correct answer should result regardless.
6351       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6352       ** disable this optimization for testing purposes.  */
6353       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6354        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6355       ){
6356         sSort.pOrderBy = 0;
6357         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6358       }
6359 
6360       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6361       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6362       ** Then compare the current GROUP BY terms against the GROUP BY terms
6363       ** from the previous row currently stored in a0, a1, a2...
6364       */
6365       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6366       if( groupBySort ){
6367         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6368                           sortOut, sortPTab);
6369       }
6370       for(j=0; j<pGroupBy->nExpr; j++){
6371         if( groupBySort ){
6372           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6373         }else{
6374           sAggInfo.directMode = 1;
6375           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6376         }
6377       }
6378       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6379                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6380       addr1 = sqlite3VdbeCurrentAddr(v);
6381       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6382 
6383       /* Generate code that runs whenever the GROUP BY changes.
6384       ** Changes in the GROUP BY are detected by the previous code
6385       ** block.  If there were no changes, this block is skipped.
6386       **
6387       ** This code copies current group by terms in b0,b1,b2,...
6388       ** over to a0,a1,a2.  It then calls the output subroutine
6389       ** and resets the aggregate accumulator registers in preparation
6390       ** for the next GROUP BY batch.
6391       */
6392       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6393       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6394       VdbeComment((v, "output one row"));
6395       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6396       VdbeComment((v, "check abort flag"));
6397       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6398       VdbeComment((v, "reset accumulator"));
6399 
6400       /* Update the aggregate accumulators based on the content of
6401       ** the current row
6402       */
6403       sqlite3VdbeJumpHere(v, addr1);
6404       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6405       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6406       VdbeComment((v, "indicate data in accumulator"));
6407 
6408       /* End of the loop
6409       */
6410       if( groupBySort ){
6411         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6412         VdbeCoverage(v);
6413       }else{
6414         sqlite3WhereEnd(pWInfo);
6415         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6416       }
6417 
6418       /* Output the final row of result
6419       */
6420       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6421       VdbeComment((v, "output final row"));
6422 
6423       /* Jump over the subroutines
6424       */
6425       sqlite3VdbeGoto(v, addrEnd);
6426 
6427       /* Generate a subroutine that outputs a single row of the result
6428       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6429       ** is less than or equal to zero, the subroutine is a no-op.  If
6430       ** the processing calls for the query to abort, this subroutine
6431       ** increments the iAbortFlag memory location before returning in
6432       ** order to signal the caller to abort.
6433       */
6434       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6435       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6436       VdbeComment((v, "set abort flag"));
6437       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6438       sqlite3VdbeResolveLabel(v, addrOutputRow);
6439       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6440       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6441       VdbeCoverage(v);
6442       VdbeComment((v, "Groupby result generator entry point"));
6443       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6444       finalizeAggFunctions(pParse, &sAggInfo);
6445       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6446       selectInnerLoop(pParse, p, -1, &sSort,
6447                       &sDistinct, pDest,
6448                       addrOutputRow+1, addrSetAbort);
6449       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6450       VdbeComment((v, "end groupby result generator"));
6451 
6452       /* Generate a subroutine that will reset the group-by accumulator
6453       */
6454       sqlite3VdbeResolveLabel(v, addrReset);
6455       resetAccumulator(pParse, &sAggInfo);
6456       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6457       VdbeComment((v, "indicate accumulator empty"));
6458       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6459 
6460     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6461     else {
6462 #ifndef SQLITE_OMIT_BTREECOUNT
6463       Table *pTab;
6464       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6465         /* If isSimpleCount() returns a pointer to a Table structure, then
6466         ** the SQL statement is of the form:
6467         **
6468         **   SELECT count(*) FROM <tbl>
6469         **
6470         ** where the Table structure returned represents table <tbl>.
6471         **
6472         ** This statement is so common that it is optimized specially. The
6473         ** OP_Count instruction is executed either on the intkey table that
6474         ** contains the data for table <tbl> or on one of its indexes. It
6475         ** is better to execute the op on an index, as indexes are almost
6476         ** always spread across less pages than their corresponding tables.
6477         */
6478         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6479         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6480         Index *pIdx;                         /* Iterator variable */
6481         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6482         Index *pBest = 0;                    /* Best index found so far */
6483         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6484 
6485         sqlite3CodeVerifySchema(pParse, iDb);
6486         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6487 
6488         /* Search for the index that has the lowest scan cost.
6489         **
6490         ** (2011-04-15) Do not do a full scan of an unordered index.
6491         **
6492         ** (2013-10-03) Do not count the entries in a partial index.
6493         **
6494         ** In practice the KeyInfo structure will not be used. It is only
6495         ** passed to keep OP_OpenRead happy.
6496         */
6497         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6498         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6499           if( pIdx->bUnordered==0
6500            && pIdx->szIdxRow<pTab->szTabRow
6501            && pIdx->pPartIdxWhere==0
6502            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6503           ){
6504             pBest = pIdx;
6505           }
6506         }
6507         if( pBest ){
6508           iRoot = pBest->tnum;
6509           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6510         }
6511 
6512         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6513         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6514         if( pKeyInfo ){
6515           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6516         }
6517         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6518         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6519         explainSimpleCount(pParse, pTab, pBest);
6520       }else
6521 #endif /* SQLITE_OMIT_BTREECOUNT */
6522       {
6523         int regAcc = 0;           /* "populate accumulators" flag */
6524 
6525         /* If there are accumulator registers but no min() or max() functions,
6526         ** allocate register regAcc. Register regAcc will contain 0 the first
6527         ** time the inner loop runs, and 1 thereafter. The code generated
6528         ** by updateAccumulator() only updates the accumulator registers if
6529         ** regAcc contains 0.  */
6530         if( sAggInfo.nAccumulator ){
6531           for(i=0; i<sAggInfo.nFunc; i++){
6532             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6533           }
6534           if( i==sAggInfo.nFunc ){
6535             regAcc = ++pParse->nMem;
6536             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6537           }
6538         }
6539 
6540         /* This case runs if the aggregate has no GROUP BY clause.  The
6541         ** processing is much simpler since there is only a single row
6542         ** of output.
6543         */
6544         assert( p->pGroupBy==0 );
6545         resetAccumulator(pParse, &sAggInfo);
6546 
6547         /* If this query is a candidate for the min/max optimization, then
6548         ** minMaxFlag will have been previously set to either
6549         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6550         ** be an appropriate ORDER BY expression for the optimization.
6551         */
6552         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6553         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6554 
6555         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6556         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6557                                    0, minMaxFlag, 0);
6558         if( pWInfo==0 ){
6559           goto select_end;
6560         }
6561         updateAccumulator(pParse, regAcc, &sAggInfo);
6562         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6563         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6564           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6565           VdbeComment((v, "%s() by index",
6566                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6567         }
6568         sqlite3WhereEnd(pWInfo);
6569         finalizeAggFunctions(pParse, &sAggInfo);
6570       }
6571 
6572       sSort.pOrderBy = 0;
6573       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6574       selectInnerLoop(pParse, p, -1, 0, 0,
6575                       pDest, addrEnd, addrEnd);
6576     }
6577     sqlite3VdbeResolveLabel(v, addrEnd);
6578 
6579   } /* endif aggregate query */
6580 
6581   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6582     explainTempTable(pParse, "DISTINCT");
6583   }
6584 
6585   /* If there is an ORDER BY clause, then we need to sort the results
6586   ** and send them to the callback one by one.
6587   */
6588   if( sSort.pOrderBy ){
6589     explainTempTable(pParse,
6590                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6591     assert( p->pEList==pEList );
6592     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6593   }
6594 
6595   /* Jump here to skip this query
6596   */
6597   sqlite3VdbeResolveLabel(v, iEnd);
6598 
6599   /* The SELECT has been coded. If there is an error in the Parse structure,
6600   ** set the return code to 1. Otherwise 0. */
6601   rc = (pParse->nErr>0);
6602 
6603   /* Control jumps to here if an error is encountered above, or upon
6604   ** successful coding of the SELECT.
6605   */
6606 select_end:
6607   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6608   sqlite3DbFree(db, sAggInfo.aCol);
6609   sqlite3DbFree(db, sAggInfo.aFunc);
6610 #if SELECTTRACE_ENABLED
6611   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6612   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6613     sqlite3TreeViewSelect(0, p, 0);
6614   }
6615 #endif
6616   ExplainQueryPlanPop(pParse);
6617   return rc;
6618 }
6619