1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iParm = iParm; 40 pDest->affinity = 0; 41 pDest->iMem = 0; 42 pDest->nMem = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 int isDistinct, /* true if the DISTINCT keyword is present */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 pNew = &standin; 69 memset(pNew, 0, sizeof(*pNew)); 70 } 71 if( pEList==0 ){ 72 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 73 } 74 pNew->pEList = pEList; 75 pNew->pSrc = pSrc; 76 pNew->pWhere = pWhere; 77 pNew->pGroupBy = pGroupBy; 78 pNew->pHaving = pHaving; 79 pNew->pOrderBy = pOrderBy; 80 pNew->selFlags = isDistinct ? SF_Distinct : 0; 81 pNew->op = TK_SELECT; 82 pNew->pLimit = pLimit; 83 pNew->pOffset = pOffset; 84 assert( pOffset==0 || pLimit!=0 ); 85 pNew->addrOpenEphm[0] = -1; 86 pNew->addrOpenEphm[1] = -1; 87 pNew->addrOpenEphm[2] = -1; 88 if( db->mallocFailed ) { 89 clearSelect(db, pNew); 90 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 91 pNew = 0; 92 } 93 return pNew; 94 } 95 96 /* 97 ** Delete the given Select structure and all of its substructures. 98 */ 99 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 100 if( p ){ 101 clearSelect(db, p); 102 sqlite3DbFree(db, p); 103 } 104 } 105 106 /* 107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 108 ** type of join. Return an integer constant that expresses that type 109 ** in terms of the following bit values: 110 ** 111 ** JT_INNER 112 ** JT_CROSS 113 ** JT_OUTER 114 ** JT_NATURAL 115 ** JT_LEFT 116 ** JT_RIGHT 117 ** 118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 119 ** 120 ** If an illegal or unsupported join type is seen, then still return 121 ** a join type, but put an error in the pParse structure. 122 */ 123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 124 int jointype = 0; 125 Token *apAll[3]; 126 Token *p; 127 /* 0123456789 123456789 123456789 123 */ 128 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 129 static const struct { 130 u8 i; /* Beginning of keyword text in zKeyText[] */ 131 u8 nChar; /* Length of the keyword in characters */ 132 u8 code; /* Join type mask */ 133 } aKeyword[] = { 134 /* natural */ { 0, 7, JT_NATURAL }, 135 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 136 /* outer */ { 10, 5, JT_OUTER }, 137 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 138 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 139 /* inner */ { 23, 5, JT_INNER }, 140 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 141 }; 142 int i, j; 143 apAll[0] = pA; 144 apAll[1] = pB; 145 apAll[2] = pC; 146 for(i=0; i<3 && apAll[i]; i++){ 147 p = apAll[i]; 148 for(j=0; j<ArraySize(aKeyword); j++){ 149 if( p->n==aKeyword[j].nChar 150 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 151 jointype |= aKeyword[j].code; 152 break; 153 } 154 } 155 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 156 if( j>=ArraySize(aKeyword) ){ 157 jointype |= JT_ERROR; 158 break; 159 } 160 } 161 if( 162 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 163 (jointype & JT_ERROR)!=0 164 ){ 165 const char *zSp = " "; 166 assert( pB!=0 ); 167 if( pC==0 ){ zSp++; } 168 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 169 "%T %T%s%T", pA, pB, zSp, pC); 170 jointype = JT_INNER; 171 }else if( (jointype & JT_OUTER)!=0 172 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 173 sqlite3ErrorMsg(pParse, 174 "RIGHT and FULL OUTER JOINs are not currently supported"); 175 jointype = JT_INNER; 176 } 177 return jointype; 178 } 179 180 /* 181 ** Return the index of a column in a table. Return -1 if the column 182 ** is not contained in the table. 183 */ 184 static int columnIndex(Table *pTab, const char *zCol){ 185 int i; 186 for(i=0; i<pTab->nCol; i++){ 187 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 188 } 189 return -1; 190 } 191 192 /* 193 ** Search the first N tables in pSrc, from left to right, looking for a 194 ** table that has a column named zCol. 195 ** 196 ** When found, set *piTab and *piCol to the table index and column index 197 ** of the matching column and return TRUE. 198 ** 199 ** If not found, return FALSE. 200 */ 201 static int tableAndColumnIndex( 202 SrcList *pSrc, /* Array of tables to search */ 203 int N, /* Number of tables in pSrc->a[] to search */ 204 const char *zCol, /* Name of the column we are looking for */ 205 int *piTab, /* Write index of pSrc->a[] here */ 206 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 207 ){ 208 int i; /* For looping over tables in pSrc */ 209 int iCol; /* Index of column matching zCol */ 210 211 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 212 for(i=0; i<N; i++){ 213 iCol = columnIndex(pSrc->a[i].pTab, zCol); 214 if( iCol>=0 ){ 215 if( piTab ){ 216 *piTab = i; 217 *piCol = iCol; 218 } 219 return 1; 220 } 221 } 222 return 0; 223 } 224 225 /* 226 ** This function is used to add terms implied by JOIN syntax to the 227 ** WHERE clause expression of a SELECT statement. The new term, which 228 ** is ANDed with the existing WHERE clause, is of the form: 229 ** 230 ** (tab1.col1 = tab2.col2) 231 ** 232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 234 ** column iColRight of tab2. 235 */ 236 static void addWhereTerm( 237 Parse *pParse, /* Parsing context */ 238 SrcList *pSrc, /* List of tables in FROM clause */ 239 int iLeft, /* Index of first table to join in pSrc */ 240 int iColLeft, /* Index of column in first table */ 241 int iRight, /* Index of second table in pSrc */ 242 int iColRight, /* Index of column in second table */ 243 int isOuterJoin, /* True if this is an OUTER join */ 244 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 245 ){ 246 sqlite3 *db = pParse->db; 247 Expr *pE1; 248 Expr *pE2; 249 Expr *pEq; 250 251 assert( iLeft<iRight ); 252 assert( pSrc->nSrc>iRight ); 253 assert( pSrc->a[iLeft].pTab ); 254 assert( pSrc->a[iRight].pTab ); 255 256 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 257 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 258 259 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 260 if( pEq && isOuterJoin ){ 261 ExprSetProperty(pEq, EP_FromJoin); 262 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 263 ExprSetIrreducible(pEq); 264 pEq->iRightJoinTable = (i16)pE2->iTable; 265 } 266 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 267 } 268 269 /* 270 ** Set the EP_FromJoin property on all terms of the given expression. 271 ** And set the Expr.iRightJoinTable to iTable for every term in the 272 ** expression. 273 ** 274 ** The EP_FromJoin property is used on terms of an expression to tell 275 ** the LEFT OUTER JOIN processing logic that this term is part of the 276 ** join restriction specified in the ON or USING clause and not a part 277 ** of the more general WHERE clause. These terms are moved over to the 278 ** WHERE clause during join processing but we need to remember that they 279 ** originated in the ON or USING clause. 280 ** 281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 282 ** expression depends on table iRightJoinTable even if that table is not 283 ** explicitly mentioned in the expression. That information is needed 284 ** for cases like this: 285 ** 286 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 287 ** 288 ** The where clause needs to defer the handling of the t1.x=5 289 ** term until after the t2 loop of the join. In that way, a 290 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 291 ** defer the handling of t1.x=5, it will be processed immediately 292 ** after the t1 loop and rows with t1.x!=5 will never appear in 293 ** the output, which is incorrect. 294 */ 295 static void setJoinExpr(Expr *p, int iTable){ 296 while( p ){ 297 ExprSetProperty(p, EP_FromJoin); 298 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 299 ExprSetIrreducible(p); 300 p->iRightJoinTable = (i16)iTable; 301 setJoinExpr(p->pLeft, iTable); 302 p = p->pRight; 303 } 304 } 305 306 /* 307 ** This routine processes the join information for a SELECT statement. 308 ** ON and USING clauses are converted into extra terms of the WHERE clause. 309 ** NATURAL joins also create extra WHERE clause terms. 310 ** 311 ** The terms of a FROM clause are contained in the Select.pSrc structure. 312 ** The left most table is the first entry in Select.pSrc. The right-most 313 ** table is the last entry. The join operator is held in the entry to 314 ** the left. Thus entry 0 contains the join operator for the join between 315 ** entries 0 and 1. Any ON or USING clauses associated with the join are 316 ** also attached to the left entry. 317 ** 318 ** This routine returns the number of errors encountered. 319 */ 320 static int sqliteProcessJoin(Parse *pParse, Select *p){ 321 SrcList *pSrc; /* All tables in the FROM clause */ 322 int i, j; /* Loop counters */ 323 struct SrcList_item *pLeft; /* Left table being joined */ 324 struct SrcList_item *pRight; /* Right table being joined */ 325 326 pSrc = p->pSrc; 327 pLeft = &pSrc->a[0]; 328 pRight = &pLeft[1]; 329 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 330 Table *pLeftTab = pLeft->pTab; 331 Table *pRightTab = pRight->pTab; 332 int isOuter; 333 334 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 335 isOuter = (pRight->jointype & JT_OUTER)!=0; 336 337 /* When the NATURAL keyword is present, add WHERE clause terms for 338 ** every column that the two tables have in common. 339 */ 340 if( pRight->jointype & JT_NATURAL ){ 341 if( pRight->pOn || pRight->pUsing ){ 342 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 343 "an ON or USING clause", 0); 344 return 1; 345 } 346 for(j=0; j<pRightTab->nCol; j++){ 347 char *zName; /* Name of column in the right table */ 348 int iLeft; /* Matching left table */ 349 int iLeftCol; /* Matching column in the left table */ 350 351 zName = pRightTab->aCol[j].zName; 352 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 353 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 354 isOuter, &p->pWhere); 355 } 356 } 357 } 358 359 /* Disallow both ON and USING clauses in the same join 360 */ 361 if( pRight->pOn && pRight->pUsing ){ 362 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 363 "clauses in the same join"); 364 return 1; 365 } 366 367 /* Add the ON clause to the end of the WHERE clause, connected by 368 ** an AND operator. 369 */ 370 if( pRight->pOn ){ 371 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 372 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 373 pRight->pOn = 0; 374 } 375 376 /* Create extra terms on the WHERE clause for each column named 377 ** in the USING clause. Example: If the two tables to be joined are 378 ** A and B and the USING clause names X, Y, and Z, then add this 379 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 380 ** Report an error if any column mentioned in the USING clause is 381 ** not contained in both tables to be joined. 382 */ 383 if( pRight->pUsing ){ 384 IdList *pList = pRight->pUsing; 385 for(j=0; j<pList->nId; j++){ 386 char *zName; /* Name of the term in the USING clause */ 387 int iLeft; /* Table on the left with matching column name */ 388 int iLeftCol; /* Column number of matching column on the left */ 389 int iRightCol; /* Column number of matching column on the right */ 390 391 zName = pList->a[j].zName; 392 iRightCol = columnIndex(pRightTab, zName); 393 if( iRightCol<0 394 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 395 ){ 396 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 397 "not present in both tables", zName); 398 return 1; 399 } 400 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 401 isOuter, &p->pWhere); 402 } 403 } 404 } 405 return 0; 406 } 407 408 /* 409 ** Insert code into "v" that will push the record on the top of the 410 ** stack into the sorter. 411 */ 412 static void pushOntoSorter( 413 Parse *pParse, /* Parser context */ 414 ExprList *pOrderBy, /* The ORDER BY clause */ 415 Select *pSelect, /* The whole SELECT statement */ 416 int regData /* Register holding data to be sorted */ 417 ){ 418 Vdbe *v = pParse->pVdbe; 419 int nExpr = pOrderBy->nExpr; 420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 421 int regRecord = sqlite3GetTempReg(pParse); 422 sqlite3ExprCacheClear(pParse); 423 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 424 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 425 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 427 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 428 sqlite3ReleaseTempReg(pParse, regRecord); 429 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 430 if( pSelect->iLimit ){ 431 int addr1, addr2; 432 int iLimit; 433 if( pSelect->iOffset ){ 434 iLimit = pSelect->iOffset+1; 435 }else{ 436 iLimit = pSelect->iLimit; 437 } 438 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 439 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 440 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 441 sqlite3VdbeJumpHere(v, addr1); 442 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 443 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 444 sqlite3VdbeJumpHere(v, addr2); 445 pSelect->iLimit = 0; 446 } 447 } 448 449 /* 450 ** Add code to implement the OFFSET 451 */ 452 static void codeOffset( 453 Vdbe *v, /* Generate code into this VM */ 454 Select *p, /* The SELECT statement being coded */ 455 int iContinue /* Jump here to skip the current record */ 456 ){ 457 if( p->iOffset && iContinue!=0 ){ 458 int addr; 459 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 460 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 461 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 462 VdbeComment((v, "skip OFFSET records")); 463 sqlite3VdbeJumpHere(v, addr); 464 } 465 } 466 467 /* 468 ** Add code that will check to make sure the N registers starting at iMem 469 ** form a distinct entry. iTab is a sorting index that holds previously 470 ** seen combinations of the N values. A new entry is made in iTab 471 ** if the current N values are new. 472 ** 473 ** A jump to addrRepeat is made and the N+1 values are popped from the 474 ** stack if the top N elements are not distinct. 475 */ 476 static void codeDistinct( 477 Parse *pParse, /* Parsing and code generating context */ 478 int iTab, /* A sorting index used to test for distinctness */ 479 int addrRepeat, /* Jump to here if not distinct */ 480 int N, /* Number of elements */ 481 int iMem /* First element */ 482 ){ 483 Vdbe *v; 484 int r1; 485 486 v = pParse->pVdbe; 487 r1 = sqlite3GetTempReg(pParse); 488 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 489 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 490 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 491 sqlite3ReleaseTempReg(pParse, r1); 492 } 493 494 /* 495 ** Generate an error message when a SELECT is used within a subexpression 496 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 497 ** column. We do this in a subroutine because the error occurs in multiple 498 ** places. 499 */ 500 static int checkForMultiColumnSelectError( 501 Parse *pParse, /* Parse context. */ 502 SelectDest *pDest, /* Destination of SELECT results */ 503 int nExpr /* Number of result columns returned by SELECT */ 504 ){ 505 int eDest = pDest->eDest; 506 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 507 sqlite3ErrorMsg(pParse, "only a single result allowed for " 508 "a SELECT that is part of an expression"); 509 return 1; 510 }else{ 511 return 0; 512 } 513 } 514 515 /* 516 ** This routine generates the code for the inside of the inner loop 517 ** of a SELECT. 518 ** 519 ** If srcTab and nColumn are both zero, then the pEList expressions 520 ** are evaluated in order to get the data for this row. If nColumn>0 521 ** then data is pulled from srcTab and pEList is used only to get the 522 ** datatypes for each column. 523 */ 524 static void selectInnerLoop( 525 Parse *pParse, /* The parser context */ 526 Select *p, /* The complete select statement being coded */ 527 ExprList *pEList, /* List of values being extracted */ 528 int srcTab, /* Pull data from this table */ 529 int nColumn, /* Number of columns in the source table */ 530 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 531 int distinct, /* If >=0, make sure results are distinct */ 532 SelectDest *pDest, /* How to dispose of the results */ 533 int iContinue, /* Jump here to continue with next row */ 534 int iBreak /* Jump here to break out of the inner loop */ 535 ){ 536 Vdbe *v = pParse->pVdbe; 537 int i; 538 int hasDistinct; /* True if the DISTINCT keyword is present */ 539 int regResult; /* Start of memory holding result set */ 540 int eDest = pDest->eDest; /* How to dispose of results */ 541 int iParm = pDest->iParm; /* First argument to disposal method */ 542 int nResultCol; /* Number of result columns */ 543 544 assert( v ); 545 if( NEVER(v==0) ) return; 546 assert( pEList!=0 ); 547 hasDistinct = distinct>=0; 548 if( pOrderBy==0 && !hasDistinct ){ 549 codeOffset(v, p, iContinue); 550 } 551 552 /* Pull the requested columns. 553 */ 554 if( nColumn>0 ){ 555 nResultCol = nColumn; 556 }else{ 557 nResultCol = pEList->nExpr; 558 } 559 if( pDest->iMem==0 ){ 560 pDest->iMem = pParse->nMem+1; 561 pDest->nMem = nResultCol; 562 pParse->nMem += nResultCol; 563 }else{ 564 assert( pDest->nMem==nResultCol ); 565 } 566 regResult = pDest->iMem; 567 if( nColumn>0 ){ 568 for(i=0; i<nColumn; i++){ 569 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 570 } 571 }else if( eDest!=SRT_Exists ){ 572 /* If the destination is an EXISTS(...) expression, the actual 573 ** values returned by the SELECT are not required. 574 */ 575 sqlite3ExprCacheClear(pParse); 576 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 577 } 578 nColumn = nResultCol; 579 580 /* If the DISTINCT keyword was present on the SELECT statement 581 ** and this row has been seen before, then do not make this row 582 ** part of the result. 583 */ 584 if( hasDistinct ){ 585 assert( pEList!=0 ); 586 assert( pEList->nExpr==nColumn ); 587 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 588 if( pOrderBy==0 ){ 589 codeOffset(v, p, iContinue); 590 } 591 } 592 593 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 594 return; 595 } 596 597 switch( eDest ){ 598 /* In this mode, write each query result to the key of the temporary 599 ** table iParm. 600 */ 601 #ifndef SQLITE_OMIT_COMPOUND_SELECT 602 case SRT_Union: { 603 int r1; 604 r1 = sqlite3GetTempReg(pParse); 605 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 606 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 607 sqlite3ReleaseTempReg(pParse, r1); 608 break; 609 } 610 611 /* Construct a record from the query result, but instead of 612 ** saving that record, use it as a key to delete elements from 613 ** the temporary table iParm. 614 */ 615 case SRT_Except: { 616 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 617 break; 618 } 619 #endif 620 621 /* Store the result as data using a unique key. 622 */ 623 case SRT_Table: 624 case SRT_EphemTab: { 625 int r1 = sqlite3GetTempReg(pParse); 626 testcase( eDest==SRT_Table ); 627 testcase( eDest==SRT_EphemTab ); 628 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 629 if( pOrderBy ){ 630 pushOntoSorter(pParse, pOrderBy, p, r1); 631 }else{ 632 int r2 = sqlite3GetTempReg(pParse); 633 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 634 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 635 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 636 sqlite3ReleaseTempReg(pParse, r2); 637 } 638 sqlite3ReleaseTempReg(pParse, r1); 639 break; 640 } 641 642 #ifndef SQLITE_OMIT_SUBQUERY 643 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 644 ** then there should be a single item on the stack. Write this 645 ** item into the set table with bogus data. 646 */ 647 case SRT_Set: { 648 assert( nColumn==1 ); 649 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 650 if( pOrderBy ){ 651 /* At first glance you would think we could optimize out the 652 ** ORDER BY in this case since the order of entries in the set 653 ** does not matter. But there might be a LIMIT clause, in which 654 ** case the order does matter */ 655 pushOntoSorter(pParse, pOrderBy, p, regResult); 656 }else{ 657 int r1 = sqlite3GetTempReg(pParse); 658 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 659 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 660 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 661 sqlite3ReleaseTempReg(pParse, r1); 662 } 663 break; 664 } 665 666 /* If any row exist in the result set, record that fact and abort. 667 */ 668 case SRT_Exists: { 669 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 670 /* The LIMIT clause will terminate the loop for us */ 671 break; 672 } 673 674 /* If this is a scalar select that is part of an expression, then 675 ** store the results in the appropriate memory cell and break out 676 ** of the scan loop. 677 */ 678 case SRT_Mem: { 679 assert( nColumn==1 ); 680 if( pOrderBy ){ 681 pushOntoSorter(pParse, pOrderBy, p, regResult); 682 }else{ 683 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 684 /* The LIMIT clause will jump out of the loop for us */ 685 } 686 break; 687 } 688 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 689 690 /* Send the data to the callback function or to a subroutine. In the 691 ** case of a subroutine, the subroutine itself is responsible for 692 ** popping the data from the stack. 693 */ 694 case SRT_Coroutine: 695 case SRT_Output: { 696 testcase( eDest==SRT_Coroutine ); 697 testcase( eDest==SRT_Output ); 698 if( pOrderBy ){ 699 int r1 = sqlite3GetTempReg(pParse); 700 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 701 pushOntoSorter(pParse, pOrderBy, p, r1); 702 sqlite3ReleaseTempReg(pParse, r1); 703 }else if( eDest==SRT_Coroutine ){ 704 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 705 }else{ 706 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 707 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 708 } 709 break; 710 } 711 712 #if !defined(SQLITE_OMIT_TRIGGER) 713 /* Discard the results. This is used for SELECT statements inside 714 ** the body of a TRIGGER. The purpose of such selects is to call 715 ** user-defined functions that have side effects. We do not care 716 ** about the actual results of the select. 717 */ 718 default: { 719 assert( eDest==SRT_Discard ); 720 break; 721 } 722 #endif 723 } 724 725 /* Jump to the end of the loop if the LIMIT is reached. 726 */ 727 if( p->iLimit ){ 728 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 729 ** pushOntoSorter() would have cleared p->iLimit */ 730 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 731 } 732 } 733 734 /* 735 ** Given an expression list, generate a KeyInfo structure that records 736 ** the collating sequence for each expression in that expression list. 737 ** 738 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 739 ** KeyInfo structure is appropriate for initializing a virtual index to 740 ** implement that clause. If the ExprList is the result set of a SELECT 741 ** then the KeyInfo structure is appropriate for initializing a virtual 742 ** index to implement a DISTINCT test. 743 ** 744 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 745 ** function is responsible for seeing that this structure is eventually 746 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 747 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 748 */ 749 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 750 sqlite3 *db = pParse->db; 751 int nExpr; 752 KeyInfo *pInfo; 753 struct ExprList_item *pItem; 754 int i; 755 756 nExpr = pList->nExpr; 757 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 758 if( pInfo ){ 759 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 760 pInfo->nField = (u16)nExpr; 761 pInfo->enc = ENC(db); 762 pInfo->db = db; 763 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 764 CollSeq *pColl; 765 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 766 if( !pColl ){ 767 pColl = db->pDfltColl; 768 } 769 pInfo->aColl[i] = pColl; 770 pInfo->aSortOrder[i] = pItem->sortOrder; 771 } 772 } 773 return pInfo; 774 } 775 776 777 /* 778 ** If the inner loop was generated using a non-null pOrderBy argument, 779 ** then the results were placed in a sorter. After the loop is terminated 780 ** we need to run the sorter and output the results. The following 781 ** routine generates the code needed to do that. 782 */ 783 static void generateSortTail( 784 Parse *pParse, /* Parsing context */ 785 Select *p, /* The SELECT statement */ 786 Vdbe *v, /* Generate code into this VDBE */ 787 int nColumn, /* Number of columns of data */ 788 SelectDest *pDest /* Write the sorted results here */ 789 ){ 790 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 791 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 792 int addr; 793 int iTab; 794 int pseudoTab = 0; 795 ExprList *pOrderBy = p->pOrderBy; 796 797 int eDest = pDest->eDest; 798 int iParm = pDest->iParm; 799 800 int regRow; 801 int regRowid; 802 803 iTab = pOrderBy->iECursor; 804 regRow = sqlite3GetTempReg(pParse); 805 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 806 pseudoTab = pParse->nTab++; 807 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 808 regRowid = 0; 809 }else{ 810 regRowid = sqlite3GetTempReg(pParse); 811 } 812 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 813 codeOffset(v, p, addrContinue); 814 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 815 switch( eDest ){ 816 case SRT_Table: 817 case SRT_EphemTab: { 818 testcase( eDest==SRT_Table ); 819 testcase( eDest==SRT_EphemTab ); 820 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 821 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 822 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 823 break; 824 } 825 #ifndef SQLITE_OMIT_SUBQUERY 826 case SRT_Set: { 827 assert( nColumn==1 ); 828 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 829 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 830 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 831 break; 832 } 833 case SRT_Mem: { 834 assert( nColumn==1 ); 835 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 836 /* The LIMIT clause will terminate the loop for us */ 837 break; 838 } 839 #endif 840 default: { 841 int i; 842 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 843 testcase( eDest==SRT_Output ); 844 testcase( eDest==SRT_Coroutine ); 845 for(i=0; i<nColumn; i++){ 846 assert( regRow!=pDest->iMem+i ); 847 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 848 if( i==0 ){ 849 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 850 } 851 } 852 if( eDest==SRT_Output ){ 853 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 854 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 855 }else{ 856 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 857 } 858 break; 859 } 860 } 861 sqlite3ReleaseTempReg(pParse, regRow); 862 sqlite3ReleaseTempReg(pParse, regRowid); 863 864 /* LIMIT has been implemented by the pushOntoSorter() routine. 865 */ 866 assert( p->iLimit==0 ); 867 868 /* The bottom of the loop 869 */ 870 sqlite3VdbeResolveLabel(v, addrContinue); 871 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 872 sqlite3VdbeResolveLabel(v, addrBreak); 873 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 874 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 875 } 876 } 877 878 /* 879 ** Return a pointer to a string containing the 'declaration type' of the 880 ** expression pExpr. The string may be treated as static by the caller. 881 ** 882 ** The declaration type is the exact datatype definition extracted from the 883 ** original CREATE TABLE statement if the expression is a column. The 884 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 885 ** is considered a column can be complex in the presence of subqueries. The 886 ** result-set expression in all of the following SELECT statements is 887 ** considered a column by this function. 888 ** 889 ** SELECT col FROM tbl; 890 ** SELECT (SELECT col FROM tbl; 891 ** SELECT (SELECT col FROM tbl); 892 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 893 ** 894 ** The declaration type for any expression other than a column is NULL. 895 */ 896 static const char *columnType( 897 NameContext *pNC, 898 Expr *pExpr, 899 const char **pzOriginDb, 900 const char **pzOriginTab, 901 const char **pzOriginCol 902 ){ 903 char const *zType = 0; 904 char const *zOriginDb = 0; 905 char const *zOriginTab = 0; 906 char const *zOriginCol = 0; 907 int j; 908 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 909 910 switch( pExpr->op ){ 911 case TK_AGG_COLUMN: 912 case TK_COLUMN: { 913 /* The expression is a column. Locate the table the column is being 914 ** extracted from in NameContext.pSrcList. This table may be real 915 ** database table or a subquery. 916 */ 917 Table *pTab = 0; /* Table structure column is extracted from */ 918 Select *pS = 0; /* Select the column is extracted from */ 919 int iCol = pExpr->iColumn; /* Index of column in pTab */ 920 testcase( pExpr->op==TK_AGG_COLUMN ); 921 testcase( pExpr->op==TK_COLUMN ); 922 while( pNC && !pTab ){ 923 SrcList *pTabList = pNC->pSrcList; 924 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 925 if( j<pTabList->nSrc ){ 926 pTab = pTabList->a[j].pTab; 927 pS = pTabList->a[j].pSelect; 928 }else{ 929 pNC = pNC->pNext; 930 } 931 } 932 933 if( pTab==0 ){ 934 /* At one time, code such as "SELECT new.x" within a trigger would 935 ** cause this condition to run. Since then, we have restructured how 936 ** trigger code is generated and so this condition is no longer 937 ** possible. However, it can still be true for statements like 938 ** the following: 939 ** 940 ** CREATE TABLE t1(col INTEGER); 941 ** SELECT (SELECT t1.col) FROM FROM t1; 942 ** 943 ** when columnType() is called on the expression "t1.col" in the 944 ** sub-select. In this case, set the column type to NULL, even 945 ** though it should really be "INTEGER". 946 ** 947 ** This is not a problem, as the column type of "t1.col" is never 948 ** used. When columnType() is called on the expression 949 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 950 ** branch below. */ 951 break; 952 } 953 954 assert( pTab && pExpr->pTab==pTab ); 955 if( pS ){ 956 /* The "table" is actually a sub-select or a view in the FROM clause 957 ** of the SELECT statement. Return the declaration type and origin 958 ** data for the result-set column of the sub-select. 959 */ 960 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 961 /* If iCol is less than zero, then the expression requests the 962 ** rowid of the sub-select or view. This expression is legal (see 963 ** test case misc2.2.2) - it always evaluates to NULL. 964 */ 965 NameContext sNC; 966 Expr *p = pS->pEList->a[iCol].pExpr; 967 sNC.pSrcList = pS->pSrc; 968 sNC.pNext = pNC; 969 sNC.pParse = pNC->pParse; 970 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 971 } 972 }else if( ALWAYS(pTab->pSchema) ){ 973 /* A real table */ 974 assert( !pS ); 975 if( iCol<0 ) iCol = pTab->iPKey; 976 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 977 if( iCol<0 ){ 978 zType = "INTEGER"; 979 zOriginCol = "rowid"; 980 }else{ 981 zType = pTab->aCol[iCol].zType; 982 zOriginCol = pTab->aCol[iCol].zName; 983 } 984 zOriginTab = pTab->zName; 985 if( pNC->pParse ){ 986 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 987 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 988 } 989 } 990 break; 991 } 992 #ifndef SQLITE_OMIT_SUBQUERY 993 case TK_SELECT: { 994 /* The expression is a sub-select. Return the declaration type and 995 ** origin info for the single column in the result set of the SELECT 996 ** statement. 997 */ 998 NameContext sNC; 999 Select *pS = pExpr->x.pSelect; 1000 Expr *p = pS->pEList->a[0].pExpr; 1001 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1002 sNC.pSrcList = pS->pSrc; 1003 sNC.pNext = pNC; 1004 sNC.pParse = pNC->pParse; 1005 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1006 break; 1007 } 1008 #endif 1009 } 1010 1011 if( pzOriginDb ){ 1012 assert( pzOriginTab && pzOriginCol ); 1013 *pzOriginDb = zOriginDb; 1014 *pzOriginTab = zOriginTab; 1015 *pzOriginCol = zOriginCol; 1016 } 1017 return zType; 1018 } 1019 1020 /* 1021 ** Generate code that will tell the VDBE the declaration types of columns 1022 ** in the result set. 1023 */ 1024 static void generateColumnTypes( 1025 Parse *pParse, /* Parser context */ 1026 SrcList *pTabList, /* List of tables */ 1027 ExprList *pEList /* Expressions defining the result set */ 1028 ){ 1029 #ifndef SQLITE_OMIT_DECLTYPE 1030 Vdbe *v = pParse->pVdbe; 1031 int i; 1032 NameContext sNC; 1033 sNC.pSrcList = pTabList; 1034 sNC.pParse = pParse; 1035 for(i=0; i<pEList->nExpr; i++){ 1036 Expr *p = pEList->a[i].pExpr; 1037 const char *zType; 1038 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1039 const char *zOrigDb = 0; 1040 const char *zOrigTab = 0; 1041 const char *zOrigCol = 0; 1042 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1043 1044 /* The vdbe must make its own copy of the column-type and other 1045 ** column specific strings, in case the schema is reset before this 1046 ** virtual machine is deleted. 1047 */ 1048 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1049 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1050 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1051 #else 1052 zType = columnType(&sNC, p, 0, 0, 0); 1053 #endif 1054 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1055 } 1056 #endif /* SQLITE_OMIT_DECLTYPE */ 1057 } 1058 1059 /* 1060 ** Generate code that will tell the VDBE the names of columns 1061 ** in the result set. This information is used to provide the 1062 ** azCol[] values in the callback. 1063 */ 1064 static void generateColumnNames( 1065 Parse *pParse, /* Parser context */ 1066 SrcList *pTabList, /* List of tables */ 1067 ExprList *pEList /* Expressions defining the result set */ 1068 ){ 1069 Vdbe *v = pParse->pVdbe; 1070 int i, j; 1071 sqlite3 *db = pParse->db; 1072 int fullNames, shortNames; 1073 1074 #ifndef SQLITE_OMIT_EXPLAIN 1075 /* If this is an EXPLAIN, skip this step */ 1076 if( pParse->explain ){ 1077 return; 1078 } 1079 #endif 1080 1081 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1082 pParse->colNamesSet = 1; 1083 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1084 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1085 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1086 for(i=0; i<pEList->nExpr; i++){ 1087 Expr *p; 1088 p = pEList->a[i].pExpr; 1089 if( NEVER(p==0) ) continue; 1090 if( pEList->a[i].zName ){ 1091 char *zName = pEList->a[i].zName; 1092 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1093 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1094 Table *pTab; 1095 char *zCol; 1096 int iCol = p->iColumn; 1097 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1098 if( pTabList->a[j].iCursor==p->iTable ) break; 1099 } 1100 assert( j<pTabList->nSrc ); 1101 pTab = pTabList->a[j].pTab; 1102 if( iCol<0 ) iCol = pTab->iPKey; 1103 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1104 if( iCol<0 ){ 1105 zCol = "rowid"; 1106 }else{ 1107 zCol = pTab->aCol[iCol].zName; 1108 } 1109 if( !shortNames && !fullNames ){ 1110 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1111 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1112 }else if( fullNames ){ 1113 char *zName = 0; 1114 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1115 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1116 }else{ 1117 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1118 } 1119 }else{ 1120 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1121 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1122 } 1123 } 1124 generateColumnTypes(pParse, pTabList, pEList); 1125 } 1126 1127 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1128 /* 1129 ** Name of the connection operator, used for error messages. 1130 */ 1131 static const char *selectOpName(int id){ 1132 char *z; 1133 switch( id ){ 1134 case TK_ALL: z = "UNION ALL"; break; 1135 case TK_INTERSECT: z = "INTERSECT"; break; 1136 case TK_EXCEPT: z = "EXCEPT"; break; 1137 default: z = "UNION"; break; 1138 } 1139 return z; 1140 } 1141 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1142 1143 /* 1144 ** Given a an expression list (which is really the list of expressions 1145 ** that form the result set of a SELECT statement) compute appropriate 1146 ** column names for a table that would hold the expression list. 1147 ** 1148 ** All column names will be unique. 1149 ** 1150 ** Only the column names are computed. Column.zType, Column.zColl, 1151 ** and other fields of Column are zeroed. 1152 ** 1153 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1154 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1155 */ 1156 static int selectColumnsFromExprList( 1157 Parse *pParse, /* Parsing context */ 1158 ExprList *pEList, /* Expr list from which to derive column names */ 1159 int *pnCol, /* Write the number of columns here */ 1160 Column **paCol /* Write the new column list here */ 1161 ){ 1162 sqlite3 *db = pParse->db; /* Database connection */ 1163 int i, j; /* Loop counters */ 1164 int cnt; /* Index added to make the name unique */ 1165 Column *aCol, *pCol; /* For looping over result columns */ 1166 int nCol; /* Number of columns in the result set */ 1167 Expr *p; /* Expression for a single result column */ 1168 char *zName; /* Column name */ 1169 int nName; /* Size of name in zName[] */ 1170 1171 *pnCol = nCol = pEList->nExpr; 1172 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1173 if( aCol==0 ) return SQLITE_NOMEM; 1174 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1175 /* Get an appropriate name for the column 1176 */ 1177 p = pEList->a[i].pExpr; 1178 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1179 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1180 if( (zName = pEList->a[i].zName)!=0 ){ 1181 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1182 zName = sqlite3DbStrDup(db, zName); 1183 }else{ 1184 Expr *pColExpr = p; /* The expression that is the result column name */ 1185 Table *pTab; /* Table associated with this expression */ 1186 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1187 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1188 /* For columns use the column name name */ 1189 int iCol = pColExpr->iColumn; 1190 pTab = pColExpr->pTab; 1191 if( iCol<0 ) iCol = pTab->iPKey; 1192 zName = sqlite3MPrintf(db, "%s", 1193 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1194 }else if( pColExpr->op==TK_ID ){ 1195 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1196 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1197 }else{ 1198 /* Use the original text of the column expression as its name */ 1199 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1200 } 1201 } 1202 if( db->mallocFailed ){ 1203 sqlite3DbFree(db, zName); 1204 break; 1205 } 1206 1207 /* Make sure the column name is unique. If the name is not unique, 1208 ** append a integer to the name so that it becomes unique. 1209 */ 1210 nName = sqlite3Strlen30(zName); 1211 for(j=cnt=0; j<i; j++){ 1212 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1213 char *zNewName; 1214 zName[nName] = 0; 1215 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1216 sqlite3DbFree(db, zName); 1217 zName = zNewName; 1218 j = -1; 1219 if( zName==0 ) break; 1220 } 1221 } 1222 pCol->zName = zName; 1223 } 1224 if( db->mallocFailed ){ 1225 for(j=0; j<i; j++){ 1226 sqlite3DbFree(db, aCol[j].zName); 1227 } 1228 sqlite3DbFree(db, aCol); 1229 *paCol = 0; 1230 *pnCol = 0; 1231 return SQLITE_NOMEM; 1232 } 1233 return SQLITE_OK; 1234 } 1235 1236 /* 1237 ** Add type and collation information to a column list based on 1238 ** a SELECT statement. 1239 ** 1240 ** The column list presumably came from selectColumnNamesFromExprList(). 1241 ** The column list has only names, not types or collations. This 1242 ** routine goes through and adds the types and collations. 1243 ** 1244 ** This routine requires that all identifiers in the SELECT 1245 ** statement be resolved. 1246 */ 1247 static void selectAddColumnTypeAndCollation( 1248 Parse *pParse, /* Parsing contexts */ 1249 int nCol, /* Number of columns */ 1250 Column *aCol, /* List of columns */ 1251 Select *pSelect /* SELECT used to determine types and collations */ 1252 ){ 1253 sqlite3 *db = pParse->db; 1254 NameContext sNC; 1255 Column *pCol; 1256 CollSeq *pColl; 1257 int i; 1258 Expr *p; 1259 struct ExprList_item *a; 1260 1261 assert( pSelect!=0 ); 1262 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1263 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1264 if( db->mallocFailed ) return; 1265 memset(&sNC, 0, sizeof(sNC)); 1266 sNC.pSrcList = pSelect->pSrc; 1267 a = pSelect->pEList->a; 1268 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1269 p = a[i].pExpr; 1270 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1271 pCol->affinity = sqlite3ExprAffinity(p); 1272 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1273 pColl = sqlite3ExprCollSeq(pParse, p); 1274 if( pColl ){ 1275 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1276 } 1277 } 1278 } 1279 1280 /* 1281 ** Given a SELECT statement, generate a Table structure that describes 1282 ** the result set of that SELECT. 1283 */ 1284 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1285 Table *pTab; 1286 sqlite3 *db = pParse->db; 1287 int savedFlags; 1288 1289 savedFlags = db->flags; 1290 db->flags &= ~SQLITE_FullColNames; 1291 db->flags |= SQLITE_ShortColNames; 1292 sqlite3SelectPrep(pParse, pSelect, 0); 1293 if( pParse->nErr ) return 0; 1294 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1295 db->flags = savedFlags; 1296 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1297 if( pTab==0 ){ 1298 return 0; 1299 } 1300 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1301 ** is disabled */ 1302 assert( db->lookaside.bEnabled==0 ); 1303 pTab->nRef = 1; 1304 pTab->zName = 0; 1305 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1306 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1307 pTab->iPKey = -1; 1308 if( db->mallocFailed ){ 1309 sqlite3DeleteTable(db, pTab); 1310 return 0; 1311 } 1312 return pTab; 1313 } 1314 1315 /* 1316 ** Get a VDBE for the given parser context. Create a new one if necessary. 1317 ** If an error occurs, return NULL and leave a message in pParse. 1318 */ 1319 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1320 Vdbe *v = pParse->pVdbe; 1321 if( v==0 ){ 1322 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1323 #ifndef SQLITE_OMIT_TRACE 1324 if( v ){ 1325 sqlite3VdbeAddOp0(v, OP_Trace); 1326 } 1327 #endif 1328 } 1329 return v; 1330 } 1331 1332 1333 /* 1334 ** Compute the iLimit and iOffset fields of the SELECT based on the 1335 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1336 ** that appear in the original SQL statement after the LIMIT and OFFSET 1337 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1338 ** are the integer memory register numbers for counters used to compute 1339 ** the limit and offset. If there is no limit and/or offset, then 1340 ** iLimit and iOffset are negative. 1341 ** 1342 ** This routine changes the values of iLimit and iOffset only if 1343 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1344 ** iOffset should have been preset to appropriate default values 1345 ** (usually but not always -1) prior to calling this routine. 1346 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1347 ** redefined. The UNION ALL operator uses this property to force 1348 ** the reuse of the same limit and offset registers across multiple 1349 ** SELECT statements. 1350 */ 1351 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1352 Vdbe *v = 0; 1353 int iLimit = 0; 1354 int iOffset; 1355 int addr1, n; 1356 if( p->iLimit ) return; 1357 1358 /* 1359 ** "LIMIT -1" always shows all rows. There is some 1360 ** contraversy about what the correct behavior should be. 1361 ** The current implementation interprets "LIMIT 0" to mean 1362 ** no rows. 1363 */ 1364 sqlite3ExprCacheClear(pParse); 1365 assert( p->pOffset==0 || p->pLimit!=0 ); 1366 if( p->pLimit ){ 1367 p->iLimit = iLimit = ++pParse->nMem; 1368 v = sqlite3GetVdbe(pParse); 1369 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1370 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1371 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1372 VdbeComment((v, "LIMIT counter")); 1373 if( n==0 ){ 1374 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1375 } 1376 }else{ 1377 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1378 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1379 VdbeComment((v, "LIMIT counter")); 1380 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1381 } 1382 if( p->pOffset ){ 1383 p->iOffset = iOffset = ++pParse->nMem; 1384 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1385 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1386 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1387 VdbeComment((v, "OFFSET counter")); 1388 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1389 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1390 sqlite3VdbeJumpHere(v, addr1); 1391 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1392 VdbeComment((v, "LIMIT+OFFSET")); 1393 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1394 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1395 sqlite3VdbeJumpHere(v, addr1); 1396 } 1397 } 1398 } 1399 1400 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1401 /* 1402 ** Return the appropriate collating sequence for the iCol-th column of 1403 ** the result set for the compound-select statement "p". Return NULL if 1404 ** the column has no default collating sequence. 1405 ** 1406 ** The collating sequence for the compound select is taken from the 1407 ** left-most term of the select that has a collating sequence. 1408 */ 1409 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1410 CollSeq *pRet; 1411 if( p->pPrior ){ 1412 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1413 }else{ 1414 pRet = 0; 1415 } 1416 assert( iCol>=0 ); 1417 if( pRet==0 && iCol<p->pEList->nExpr ){ 1418 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1419 } 1420 return pRet; 1421 } 1422 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1423 1424 /* Forward reference */ 1425 static int multiSelectOrderBy( 1426 Parse *pParse, /* Parsing context */ 1427 Select *p, /* The right-most of SELECTs to be coded */ 1428 SelectDest *pDest /* What to do with query results */ 1429 ); 1430 1431 1432 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1433 /* 1434 ** This routine is called to process a compound query form from 1435 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1436 ** INTERSECT 1437 ** 1438 ** "p" points to the right-most of the two queries. the query on the 1439 ** left is p->pPrior. The left query could also be a compound query 1440 ** in which case this routine will be called recursively. 1441 ** 1442 ** The results of the total query are to be written into a destination 1443 ** of type eDest with parameter iParm. 1444 ** 1445 ** Example 1: Consider a three-way compound SQL statement. 1446 ** 1447 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1448 ** 1449 ** This statement is parsed up as follows: 1450 ** 1451 ** SELECT c FROM t3 1452 ** | 1453 ** `-----> SELECT b FROM t2 1454 ** | 1455 ** `------> SELECT a FROM t1 1456 ** 1457 ** The arrows in the diagram above represent the Select.pPrior pointer. 1458 ** So if this routine is called with p equal to the t3 query, then 1459 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1460 ** 1461 ** Notice that because of the way SQLite parses compound SELECTs, the 1462 ** individual selects always group from left to right. 1463 */ 1464 static int multiSelect( 1465 Parse *pParse, /* Parsing context */ 1466 Select *p, /* The right-most of SELECTs to be coded */ 1467 SelectDest *pDest /* What to do with query results */ 1468 ){ 1469 int rc = SQLITE_OK; /* Success code from a subroutine */ 1470 Select *pPrior; /* Another SELECT immediately to our left */ 1471 Vdbe *v; /* Generate code to this VDBE */ 1472 SelectDest dest; /* Alternative data destination */ 1473 Select *pDelete = 0; /* Chain of simple selects to delete */ 1474 sqlite3 *db; /* Database connection */ 1475 1476 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1477 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1478 */ 1479 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1480 db = pParse->db; 1481 pPrior = p->pPrior; 1482 assert( pPrior->pRightmost!=pPrior ); 1483 assert( pPrior->pRightmost==p->pRightmost ); 1484 dest = *pDest; 1485 if( pPrior->pOrderBy ){ 1486 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1487 selectOpName(p->op)); 1488 rc = 1; 1489 goto multi_select_end; 1490 } 1491 if( pPrior->pLimit ){ 1492 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1493 selectOpName(p->op)); 1494 rc = 1; 1495 goto multi_select_end; 1496 } 1497 1498 v = sqlite3GetVdbe(pParse); 1499 assert( v!=0 ); /* The VDBE already created by calling function */ 1500 1501 /* Create the destination temporary table if necessary 1502 */ 1503 if( dest.eDest==SRT_EphemTab ){ 1504 assert( p->pEList ); 1505 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1506 dest.eDest = SRT_Table; 1507 } 1508 1509 /* Make sure all SELECTs in the statement have the same number of elements 1510 ** in their result sets. 1511 */ 1512 assert( p->pEList && pPrior->pEList ); 1513 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1514 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1515 " do not have the same number of result columns", selectOpName(p->op)); 1516 rc = 1; 1517 goto multi_select_end; 1518 } 1519 1520 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1521 */ 1522 if( p->pOrderBy ){ 1523 return multiSelectOrderBy(pParse, p, pDest); 1524 } 1525 1526 /* Generate code for the left and right SELECT statements. 1527 */ 1528 switch( p->op ){ 1529 case TK_ALL: { 1530 int addr = 0; 1531 assert( !pPrior->pLimit ); 1532 pPrior->pLimit = p->pLimit; 1533 pPrior->pOffset = p->pOffset; 1534 rc = sqlite3Select(pParse, pPrior, &dest); 1535 p->pLimit = 0; 1536 p->pOffset = 0; 1537 if( rc ){ 1538 goto multi_select_end; 1539 } 1540 p->pPrior = 0; 1541 p->iLimit = pPrior->iLimit; 1542 p->iOffset = pPrior->iOffset; 1543 if( p->iLimit ){ 1544 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1545 VdbeComment((v, "Jump ahead if LIMIT reached")); 1546 } 1547 rc = sqlite3Select(pParse, p, &dest); 1548 testcase( rc!=SQLITE_OK ); 1549 pDelete = p->pPrior; 1550 p->pPrior = pPrior; 1551 if( addr ){ 1552 sqlite3VdbeJumpHere(v, addr); 1553 } 1554 break; 1555 } 1556 case TK_EXCEPT: 1557 case TK_UNION: { 1558 int unionTab; /* Cursor number of the temporary table holding result */ 1559 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1560 int priorOp; /* The SRT_ operation to apply to prior selects */ 1561 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1562 int addr; 1563 SelectDest uniondest; 1564 1565 testcase( p->op==TK_EXCEPT ); 1566 testcase( p->op==TK_UNION ); 1567 priorOp = SRT_Union; 1568 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1569 /* We can reuse a temporary table generated by a SELECT to our 1570 ** right. 1571 */ 1572 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1573 ** of a 3-way or more compound */ 1574 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1575 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1576 unionTab = dest.iParm; 1577 }else{ 1578 /* We will need to create our own temporary table to hold the 1579 ** intermediate results. 1580 */ 1581 unionTab = pParse->nTab++; 1582 assert( p->pOrderBy==0 ); 1583 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1584 assert( p->addrOpenEphm[0] == -1 ); 1585 p->addrOpenEphm[0] = addr; 1586 p->pRightmost->selFlags |= SF_UsesEphemeral; 1587 assert( p->pEList ); 1588 } 1589 1590 /* Code the SELECT statements to our left 1591 */ 1592 assert( !pPrior->pOrderBy ); 1593 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1594 rc = sqlite3Select(pParse, pPrior, &uniondest); 1595 if( rc ){ 1596 goto multi_select_end; 1597 } 1598 1599 /* Code the current SELECT statement 1600 */ 1601 if( p->op==TK_EXCEPT ){ 1602 op = SRT_Except; 1603 }else{ 1604 assert( p->op==TK_UNION ); 1605 op = SRT_Union; 1606 } 1607 p->pPrior = 0; 1608 pLimit = p->pLimit; 1609 p->pLimit = 0; 1610 pOffset = p->pOffset; 1611 p->pOffset = 0; 1612 uniondest.eDest = op; 1613 rc = sqlite3Select(pParse, p, &uniondest); 1614 testcase( rc!=SQLITE_OK ); 1615 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1616 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1617 sqlite3ExprListDelete(db, p->pOrderBy); 1618 pDelete = p->pPrior; 1619 p->pPrior = pPrior; 1620 p->pOrderBy = 0; 1621 sqlite3ExprDelete(db, p->pLimit); 1622 p->pLimit = pLimit; 1623 p->pOffset = pOffset; 1624 p->iLimit = 0; 1625 p->iOffset = 0; 1626 1627 /* Convert the data in the temporary table into whatever form 1628 ** it is that we currently need. 1629 */ 1630 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1631 if( dest.eDest!=priorOp ){ 1632 int iCont, iBreak, iStart; 1633 assert( p->pEList ); 1634 if( dest.eDest==SRT_Output ){ 1635 Select *pFirst = p; 1636 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1637 generateColumnNames(pParse, 0, pFirst->pEList); 1638 } 1639 iBreak = sqlite3VdbeMakeLabel(v); 1640 iCont = sqlite3VdbeMakeLabel(v); 1641 computeLimitRegisters(pParse, p, iBreak); 1642 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1643 iStart = sqlite3VdbeCurrentAddr(v); 1644 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1645 0, -1, &dest, iCont, iBreak); 1646 sqlite3VdbeResolveLabel(v, iCont); 1647 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1648 sqlite3VdbeResolveLabel(v, iBreak); 1649 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1650 } 1651 break; 1652 } 1653 default: assert( p->op==TK_INTERSECT ); { 1654 int tab1, tab2; 1655 int iCont, iBreak, iStart; 1656 Expr *pLimit, *pOffset; 1657 int addr; 1658 SelectDest intersectdest; 1659 int r1; 1660 1661 /* INTERSECT is different from the others since it requires 1662 ** two temporary tables. Hence it has its own case. Begin 1663 ** by allocating the tables we will need. 1664 */ 1665 tab1 = pParse->nTab++; 1666 tab2 = pParse->nTab++; 1667 assert( p->pOrderBy==0 ); 1668 1669 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1670 assert( p->addrOpenEphm[0] == -1 ); 1671 p->addrOpenEphm[0] = addr; 1672 p->pRightmost->selFlags |= SF_UsesEphemeral; 1673 assert( p->pEList ); 1674 1675 /* Code the SELECTs to our left into temporary table "tab1". 1676 */ 1677 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1678 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1679 if( rc ){ 1680 goto multi_select_end; 1681 } 1682 1683 /* Code the current SELECT into temporary table "tab2" 1684 */ 1685 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1686 assert( p->addrOpenEphm[1] == -1 ); 1687 p->addrOpenEphm[1] = addr; 1688 p->pPrior = 0; 1689 pLimit = p->pLimit; 1690 p->pLimit = 0; 1691 pOffset = p->pOffset; 1692 p->pOffset = 0; 1693 intersectdest.iParm = tab2; 1694 rc = sqlite3Select(pParse, p, &intersectdest); 1695 testcase( rc!=SQLITE_OK ); 1696 pDelete = p->pPrior; 1697 p->pPrior = pPrior; 1698 sqlite3ExprDelete(db, p->pLimit); 1699 p->pLimit = pLimit; 1700 p->pOffset = pOffset; 1701 1702 /* Generate code to take the intersection of the two temporary 1703 ** tables. 1704 */ 1705 assert( p->pEList ); 1706 if( dest.eDest==SRT_Output ){ 1707 Select *pFirst = p; 1708 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1709 generateColumnNames(pParse, 0, pFirst->pEList); 1710 } 1711 iBreak = sqlite3VdbeMakeLabel(v); 1712 iCont = sqlite3VdbeMakeLabel(v); 1713 computeLimitRegisters(pParse, p, iBreak); 1714 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1715 r1 = sqlite3GetTempReg(pParse); 1716 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1717 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1718 sqlite3ReleaseTempReg(pParse, r1); 1719 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1720 0, -1, &dest, iCont, iBreak); 1721 sqlite3VdbeResolveLabel(v, iCont); 1722 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1723 sqlite3VdbeResolveLabel(v, iBreak); 1724 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1725 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1726 break; 1727 } 1728 } 1729 1730 /* Compute collating sequences used by 1731 ** temporary tables needed to implement the compound select. 1732 ** Attach the KeyInfo structure to all temporary tables. 1733 ** 1734 ** This section is run by the right-most SELECT statement only. 1735 ** SELECT statements to the left always skip this part. The right-most 1736 ** SELECT might also skip this part if it has no ORDER BY clause and 1737 ** no temp tables are required. 1738 */ 1739 if( p->selFlags & SF_UsesEphemeral ){ 1740 int i; /* Loop counter */ 1741 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1742 Select *pLoop; /* For looping through SELECT statements */ 1743 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1744 int nCol; /* Number of columns in result set */ 1745 1746 assert( p->pRightmost==p ); 1747 nCol = p->pEList->nExpr; 1748 pKeyInfo = sqlite3DbMallocZero(db, 1749 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1750 if( !pKeyInfo ){ 1751 rc = SQLITE_NOMEM; 1752 goto multi_select_end; 1753 } 1754 1755 pKeyInfo->enc = ENC(db); 1756 pKeyInfo->nField = (u16)nCol; 1757 1758 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1759 *apColl = multiSelectCollSeq(pParse, p, i); 1760 if( 0==*apColl ){ 1761 *apColl = db->pDfltColl; 1762 } 1763 } 1764 1765 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1766 for(i=0; i<2; i++){ 1767 int addr = pLoop->addrOpenEphm[i]; 1768 if( addr<0 ){ 1769 /* If [0] is unused then [1] is also unused. So we can 1770 ** always safely abort as soon as the first unused slot is found */ 1771 assert( pLoop->addrOpenEphm[1]<0 ); 1772 break; 1773 } 1774 sqlite3VdbeChangeP2(v, addr, nCol); 1775 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1776 pLoop->addrOpenEphm[i] = -1; 1777 } 1778 } 1779 sqlite3DbFree(db, pKeyInfo); 1780 } 1781 1782 multi_select_end: 1783 pDest->iMem = dest.iMem; 1784 pDest->nMem = dest.nMem; 1785 sqlite3SelectDelete(db, pDelete); 1786 return rc; 1787 } 1788 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1789 1790 /* 1791 ** Code an output subroutine for a coroutine implementation of a 1792 ** SELECT statment. 1793 ** 1794 ** The data to be output is contained in pIn->iMem. There are 1795 ** pIn->nMem columns to be output. pDest is where the output should 1796 ** be sent. 1797 ** 1798 ** regReturn is the number of the register holding the subroutine 1799 ** return address. 1800 ** 1801 ** If regPrev>0 then it is a the first register in a vector that 1802 ** records the previous output. mem[regPrev] is a flag that is false 1803 ** if there has been no previous output. If regPrev>0 then code is 1804 ** generated to suppress duplicates. pKeyInfo is used for comparing 1805 ** keys. 1806 ** 1807 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1808 ** iBreak. 1809 */ 1810 static int generateOutputSubroutine( 1811 Parse *pParse, /* Parsing context */ 1812 Select *p, /* The SELECT statement */ 1813 SelectDest *pIn, /* Coroutine supplying data */ 1814 SelectDest *pDest, /* Where to send the data */ 1815 int regReturn, /* The return address register */ 1816 int regPrev, /* Previous result register. No uniqueness if 0 */ 1817 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1818 int p4type, /* The p4 type for pKeyInfo */ 1819 int iBreak /* Jump here if we hit the LIMIT */ 1820 ){ 1821 Vdbe *v = pParse->pVdbe; 1822 int iContinue; 1823 int addr; 1824 1825 addr = sqlite3VdbeCurrentAddr(v); 1826 iContinue = sqlite3VdbeMakeLabel(v); 1827 1828 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1829 */ 1830 if( regPrev ){ 1831 int j1, j2; 1832 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1833 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1834 (char*)pKeyInfo, p4type); 1835 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1836 sqlite3VdbeJumpHere(v, j1); 1837 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1838 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1839 } 1840 if( pParse->db->mallocFailed ) return 0; 1841 1842 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1843 */ 1844 codeOffset(v, p, iContinue); 1845 1846 switch( pDest->eDest ){ 1847 /* Store the result as data using a unique key. 1848 */ 1849 case SRT_Table: 1850 case SRT_EphemTab: { 1851 int r1 = sqlite3GetTempReg(pParse); 1852 int r2 = sqlite3GetTempReg(pParse); 1853 testcase( pDest->eDest==SRT_Table ); 1854 testcase( pDest->eDest==SRT_EphemTab ); 1855 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1856 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1857 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1858 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1859 sqlite3ReleaseTempReg(pParse, r2); 1860 sqlite3ReleaseTempReg(pParse, r1); 1861 break; 1862 } 1863 1864 #ifndef SQLITE_OMIT_SUBQUERY 1865 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1866 ** then there should be a single item on the stack. Write this 1867 ** item into the set table with bogus data. 1868 */ 1869 case SRT_Set: { 1870 int r1; 1871 assert( pIn->nMem==1 ); 1872 p->affinity = 1873 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1874 r1 = sqlite3GetTempReg(pParse); 1875 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1876 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1877 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1878 sqlite3ReleaseTempReg(pParse, r1); 1879 break; 1880 } 1881 1882 #if 0 /* Never occurs on an ORDER BY query */ 1883 /* If any row exist in the result set, record that fact and abort. 1884 */ 1885 case SRT_Exists: { 1886 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1887 /* The LIMIT clause will terminate the loop for us */ 1888 break; 1889 } 1890 #endif 1891 1892 /* If this is a scalar select that is part of an expression, then 1893 ** store the results in the appropriate memory cell and break out 1894 ** of the scan loop. 1895 */ 1896 case SRT_Mem: { 1897 assert( pIn->nMem==1 ); 1898 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1899 /* The LIMIT clause will jump out of the loop for us */ 1900 break; 1901 } 1902 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1903 1904 /* The results are stored in a sequence of registers 1905 ** starting at pDest->iMem. Then the co-routine yields. 1906 */ 1907 case SRT_Coroutine: { 1908 if( pDest->iMem==0 ){ 1909 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1910 pDest->nMem = pIn->nMem; 1911 } 1912 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1913 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1914 break; 1915 } 1916 1917 /* If none of the above, then the result destination must be 1918 ** SRT_Output. This routine is never called with any other 1919 ** destination other than the ones handled above or SRT_Output. 1920 ** 1921 ** For SRT_Output, results are stored in a sequence of registers. 1922 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 1923 ** return the next row of result. 1924 */ 1925 default: { 1926 assert( pDest->eDest==SRT_Output ); 1927 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1928 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1929 break; 1930 } 1931 } 1932 1933 /* Jump to the end of the loop if the LIMIT is reached. 1934 */ 1935 if( p->iLimit ){ 1936 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 1937 } 1938 1939 /* Generate the subroutine return 1940 */ 1941 sqlite3VdbeResolveLabel(v, iContinue); 1942 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1943 1944 return addr; 1945 } 1946 1947 /* 1948 ** Alternative compound select code generator for cases when there 1949 ** is an ORDER BY clause. 1950 ** 1951 ** We assume a query of the following form: 1952 ** 1953 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1954 ** 1955 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1956 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1957 ** co-routines. Then run the co-routines in parallel and merge the results 1958 ** into the output. In addition to the two coroutines (called selectA and 1959 ** selectB) there are 7 subroutines: 1960 ** 1961 ** outA: Move the output of the selectA coroutine into the output 1962 ** of the compound query. 1963 ** 1964 ** outB: Move the output of the selectB coroutine into the output 1965 ** of the compound query. (Only generated for UNION and 1966 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1967 ** appears only in B.) 1968 ** 1969 ** AltB: Called when there is data from both coroutines and A<B. 1970 ** 1971 ** AeqB: Called when there is data from both coroutines and A==B. 1972 ** 1973 ** AgtB: Called when there is data from both coroutines and A>B. 1974 ** 1975 ** EofA: Called when data is exhausted from selectA. 1976 ** 1977 ** EofB: Called when data is exhausted from selectB. 1978 ** 1979 ** The implementation of the latter five subroutines depend on which 1980 ** <operator> is used: 1981 ** 1982 ** 1983 ** UNION ALL UNION EXCEPT INTERSECT 1984 ** ------------- ----------------- -------------- ----------------- 1985 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1986 ** 1987 ** AeqB: outA, nextA nextA nextA outA, nextA 1988 ** 1989 ** AgtB: outB, nextB outB, nextB nextB nextB 1990 ** 1991 ** EofA: outB, nextB outB, nextB halt halt 1992 ** 1993 ** EofB: outA, nextA outA, nextA outA, nextA halt 1994 ** 1995 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1996 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1997 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1998 ** following nextX causes a jump to the end of the select processing. 1999 ** 2000 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2001 ** within the output subroutine. The regPrev register set holds the previously 2002 ** output value. A comparison is made against this value and the output 2003 ** is skipped if the next results would be the same as the previous. 2004 ** 2005 ** The implementation plan is to implement the two coroutines and seven 2006 ** subroutines first, then put the control logic at the bottom. Like this: 2007 ** 2008 ** goto Init 2009 ** coA: coroutine for left query (A) 2010 ** coB: coroutine for right query (B) 2011 ** outA: output one row of A 2012 ** outB: output one row of B (UNION and UNION ALL only) 2013 ** EofA: ... 2014 ** EofB: ... 2015 ** AltB: ... 2016 ** AeqB: ... 2017 ** AgtB: ... 2018 ** Init: initialize coroutine registers 2019 ** yield coA 2020 ** if eof(A) goto EofA 2021 ** yield coB 2022 ** if eof(B) goto EofB 2023 ** Cmpr: Compare A, B 2024 ** Jump AltB, AeqB, AgtB 2025 ** End: ... 2026 ** 2027 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2028 ** actually called using Gosub and they do not Return. EofA and EofB loop 2029 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2030 ** and AgtB jump to either L2 or to one of EofA or EofB. 2031 */ 2032 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2033 static int multiSelectOrderBy( 2034 Parse *pParse, /* Parsing context */ 2035 Select *p, /* The right-most of SELECTs to be coded */ 2036 SelectDest *pDest /* What to do with query results */ 2037 ){ 2038 int i, j; /* Loop counters */ 2039 Select *pPrior; /* Another SELECT immediately to our left */ 2040 Vdbe *v; /* Generate code to this VDBE */ 2041 SelectDest destA; /* Destination for coroutine A */ 2042 SelectDest destB; /* Destination for coroutine B */ 2043 int regAddrA; /* Address register for select-A coroutine */ 2044 int regEofA; /* Flag to indicate when select-A is complete */ 2045 int regAddrB; /* Address register for select-B coroutine */ 2046 int regEofB; /* Flag to indicate when select-B is complete */ 2047 int addrSelectA; /* Address of the select-A coroutine */ 2048 int addrSelectB; /* Address of the select-B coroutine */ 2049 int regOutA; /* Address register for the output-A subroutine */ 2050 int regOutB; /* Address register for the output-B subroutine */ 2051 int addrOutA; /* Address of the output-A subroutine */ 2052 int addrOutB = 0; /* Address of the output-B subroutine */ 2053 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2054 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2055 int addrAltB; /* Address of the A<B subroutine */ 2056 int addrAeqB; /* Address of the A==B subroutine */ 2057 int addrAgtB; /* Address of the A>B subroutine */ 2058 int regLimitA; /* Limit register for select-A */ 2059 int regLimitB; /* Limit register for select-A */ 2060 int regPrev; /* A range of registers to hold previous output */ 2061 int savedLimit; /* Saved value of p->iLimit */ 2062 int savedOffset; /* Saved value of p->iOffset */ 2063 int labelCmpr; /* Label for the start of the merge algorithm */ 2064 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2065 int j1; /* Jump instructions that get retargetted */ 2066 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2067 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2068 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2069 sqlite3 *db; /* Database connection */ 2070 ExprList *pOrderBy; /* The ORDER BY clause */ 2071 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2072 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2073 2074 assert( p->pOrderBy!=0 ); 2075 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2076 db = pParse->db; 2077 v = pParse->pVdbe; 2078 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2079 labelEnd = sqlite3VdbeMakeLabel(v); 2080 labelCmpr = sqlite3VdbeMakeLabel(v); 2081 2082 2083 /* Patch up the ORDER BY clause 2084 */ 2085 op = p->op; 2086 pPrior = p->pPrior; 2087 assert( pPrior->pOrderBy==0 ); 2088 pOrderBy = p->pOrderBy; 2089 assert( pOrderBy ); 2090 nOrderBy = pOrderBy->nExpr; 2091 2092 /* For operators other than UNION ALL we have to make sure that 2093 ** the ORDER BY clause covers every term of the result set. Add 2094 ** terms to the ORDER BY clause as necessary. 2095 */ 2096 if( op!=TK_ALL ){ 2097 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2098 struct ExprList_item *pItem; 2099 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2100 assert( pItem->iCol>0 ); 2101 if( pItem->iCol==i ) break; 2102 } 2103 if( j==nOrderBy ){ 2104 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2105 if( pNew==0 ) return SQLITE_NOMEM; 2106 pNew->flags |= EP_IntValue; 2107 pNew->u.iValue = i; 2108 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2109 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2110 } 2111 } 2112 } 2113 2114 /* Compute the comparison permutation and keyinfo that is used with 2115 ** the permutation used to determine if the next 2116 ** row of results comes from selectA or selectB. Also add explicit 2117 ** collations to the ORDER BY clause terms so that when the subqueries 2118 ** to the right and the left are evaluated, they use the correct 2119 ** collation. 2120 */ 2121 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2122 if( aPermute ){ 2123 struct ExprList_item *pItem; 2124 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2125 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2126 aPermute[i] = pItem->iCol - 1; 2127 } 2128 pKeyMerge = 2129 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2130 if( pKeyMerge ){ 2131 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2132 pKeyMerge->nField = (u16)nOrderBy; 2133 pKeyMerge->enc = ENC(db); 2134 for(i=0; i<nOrderBy; i++){ 2135 CollSeq *pColl; 2136 Expr *pTerm = pOrderBy->a[i].pExpr; 2137 if( pTerm->flags & EP_ExpCollate ){ 2138 pColl = pTerm->pColl; 2139 }else{ 2140 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2141 pTerm->flags |= EP_ExpCollate; 2142 pTerm->pColl = pColl; 2143 } 2144 pKeyMerge->aColl[i] = pColl; 2145 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2146 } 2147 } 2148 }else{ 2149 pKeyMerge = 0; 2150 } 2151 2152 /* Reattach the ORDER BY clause to the query. 2153 */ 2154 p->pOrderBy = pOrderBy; 2155 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2156 2157 /* Allocate a range of temporary registers and the KeyInfo needed 2158 ** for the logic that removes duplicate result rows when the 2159 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2160 */ 2161 if( op==TK_ALL ){ 2162 regPrev = 0; 2163 }else{ 2164 int nExpr = p->pEList->nExpr; 2165 assert( nOrderBy>=nExpr || db->mallocFailed ); 2166 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2167 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2168 pKeyDup = sqlite3DbMallocZero(db, 2169 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2170 if( pKeyDup ){ 2171 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2172 pKeyDup->nField = (u16)nExpr; 2173 pKeyDup->enc = ENC(db); 2174 for(i=0; i<nExpr; i++){ 2175 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2176 pKeyDup->aSortOrder[i] = 0; 2177 } 2178 } 2179 } 2180 2181 /* Separate the left and the right query from one another 2182 */ 2183 p->pPrior = 0; 2184 pPrior->pRightmost = 0; 2185 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2186 if( pPrior->pPrior==0 ){ 2187 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2188 } 2189 2190 /* Compute the limit registers */ 2191 computeLimitRegisters(pParse, p, labelEnd); 2192 if( p->iLimit && op==TK_ALL ){ 2193 regLimitA = ++pParse->nMem; 2194 regLimitB = ++pParse->nMem; 2195 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2196 regLimitA); 2197 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2198 }else{ 2199 regLimitA = regLimitB = 0; 2200 } 2201 sqlite3ExprDelete(db, p->pLimit); 2202 p->pLimit = 0; 2203 sqlite3ExprDelete(db, p->pOffset); 2204 p->pOffset = 0; 2205 2206 regAddrA = ++pParse->nMem; 2207 regEofA = ++pParse->nMem; 2208 regAddrB = ++pParse->nMem; 2209 regEofB = ++pParse->nMem; 2210 regOutA = ++pParse->nMem; 2211 regOutB = ++pParse->nMem; 2212 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2213 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2214 2215 /* Jump past the various subroutines and coroutines to the main 2216 ** merge loop 2217 */ 2218 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2219 addrSelectA = sqlite3VdbeCurrentAddr(v); 2220 2221 2222 /* Generate a coroutine to evaluate the SELECT statement to the 2223 ** left of the compound operator - the "A" select. 2224 */ 2225 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2226 pPrior->iLimit = regLimitA; 2227 sqlite3Select(pParse, pPrior, &destA); 2228 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2229 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2230 VdbeNoopComment((v, "End coroutine for left SELECT")); 2231 2232 /* Generate a coroutine to evaluate the SELECT statement on 2233 ** the right - the "B" select 2234 */ 2235 addrSelectB = sqlite3VdbeCurrentAddr(v); 2236 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2237 savedLimit = p->iLimit; 2238 savedOffset = p->iOffset; 2239 p->iLimit = regLimitB; 2240 p->iOffset = 0; 2241 sqlite3Select(pParse, p, &destB); 2242 p->iLimit = savedLimit; 2243 p->iOffset = savedOffset; 2244 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2245 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2246 VdbeNoopComment((v, "End coroutine for right SELECT")); 2247 2248 /* Generate a subroutine that outputs the current row of the A 2249 ** select as the next output row of the compound select. 2250 */ 2251 VdbeNoopComment((v, "Output routine for A")); 2252 addrOutA = generateOutputSubroutine(pParse, 2253 p, &destA, pDest, regOutA, 2254 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2255 2256 /* Generate a subroutine that outputs the current row of the B 2257 ** select as the next output row of the compound select. 2258 */ 2259 if( op==TK_ALL || op==TK_UNION ){ 2260 VdbeNoopComment((v, "Output routine for B")); 2261 addrOutB = generateOutputSubroutine(pParse, 2262 p, &destB, pDest, regOutB, 2263 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2264 } 2265 2266 /* Generate a subroutine to run when the results from select A 2267 ** are exhausted and only data in select B remains. 2268 */ 2269 VdbeNoopComment((v, "eof-A subroutine")); 2270 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2271 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2272 }else{ 2273 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2274 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2275 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2276 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2277 } 2278 2279 /* Generate a subroutine to run when the results from select B 2280 ** are exhausted and only data in select A remains. 2281 */ 2282 if( op==TK_INTERSECT ){ 2283 addrEofB = addrEofA; 2284 }else{ 2285 VdbeNoopComment((v, "eof-B subroutine")); 2286 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2287 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2288 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2289 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2290 } 2291 2292 /* Generate code to handle the case of A<B 2293 */ 2294 VdbeNoopComment((v, "A-lt-B subroutine")); 2295 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2296 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2297 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2298 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2299 2300 /* Generate code to handle the case of A==B 2301 */ 2302 if( op==TK_ALL ){ 2303 addrAeqB = addrAltB; 2304 }else if( op==TK_INTERSECT ){ 2305 addrAeqB = addrAltB; 2306 addrAltB++; 2307 }else{ 2308 VdbeNoopComment((v, "A-eq-B subroutine")); 2309 addrAeqB = 2310 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2311 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2312 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2313 } 2314 2315 /* Generate code to handle the case of A>B 2316 */ 2317 VdbeNoopComment((v, "A-gt-B subroutine")); 2318 addrAgtB = sqlite3VdbeCurrentAddr(v); 2319 if( op==TK_ALL || op==TK_UNION ){ 2320 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2321 } 2322 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2323 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2324 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2325 2326 /* This code runs once to initialize everything. 2327 */ 2328 sqlite3VdbeJumpHere(v, j1); 2329 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2330 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2331 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2332 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2333 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2334 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2335 2336 /* Implement the main merge loop 2337 */ 2338 sqlite3VdbeResolveLabel(v, labelCmpr); 2339 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2340 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2341 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2342 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2343 2344 /* Release temporary registers 2345 */ 2346 if( regPrev ){ 2347 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2348 } 2349 2350 /* Jump to the this point in order to terminate the query. 2351 */ 2352 sqlite3VdbeResolveLabel(v, labelEnd); 2353 2354 /* Set the number of output columns 2355 */ 2356 if( pDest->eDest==SRT_Output ){ 2357 Select *pFirst = pPrior; 2358 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2359 generateColumnNames(pParse, 0, pFirst->pEList); 2360 } 2361 2362 /* Reassembly the compound query so that it will be freed correctly 2363 ** by the calling function */ 2364 if( p->pPrior ){ 2365 sqlite3SelectDelete(db, p->pPrior); 2366 } 2367 p->pPrior = pPrior; 2368 2369 /*** TBD: Insert subroutine calls to close cursors on incomplete 2370 **** subqueries ****/ 2371 return SQLITE_OK; 2372 } 2373 #endif 2374 2375 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2376 /* Forward Declarations */ 2377 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2378 static void substSelect(sqlite3*, Select *, int, ExprList *); 2379 2380 /* 2381 ** Scan through the expression pExpr. Replace every reference to 2382 ** a column in table number iTable with a copy of the iColumn-th 2383 ** entry in pEList. (But leave references to the ROWID column 2384 ** unchanged.) 2385 ** 2386 ** This routine is part of the flattening procedure. A subquery 2387 ** whose result set is defined by pEList appears as entry in the 2388 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2389 ** FORM clause entry is iTable. This routine make the necessary 2390 ** changes to pExpr so that it refers directly to the source table 2391 ** of the subquery rather the result set of the subquery. 2392 */ 2393 static Expr *substExpr( 2394 sqlite3 *db, /* Report malloc errors to this connection */ 2395 Expr *pExpr, /* Expr in which substitution occurs */ 2396 int iTable, /* Table to be substituted */ 2397 ExprList *pEList /* Substitute expressions */ 2398 ){ 2399 if( pExpr==0 ) return 0; 2400 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2401 if( pExpr->iColumn<0 ){ 2402 pExpr->op = TK_NULL; 2403 }else{ 2404 Expr *pNew; 2405 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2406 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2407 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2408 if( pNew && pExpr->pColl ){ 2409 pNew->pColl = pExpr->pColl; 2410 } 2411 sqlite3ExprDelete(db, pExpr); 2412 pExpr = pNew; 2413 } 2414 }else{ 2415 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2416 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2417 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2418 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2419 }else{ 2420 substExprList(db, pExpr->x.pList, iTable, pEList); 2421 } 2422 } 2423 return pExpr; 2424 } 2425 static void substExprList( 2426 sqlite3 *db, /* Report malloc errors here */ 2427 ExprList *pList, /* List to scan and in which to make substitutes */ 2428 int iTable, /* Table to be substituted */ 2429 ExprList *pEList /* Substitute values */ 2430 ){ 2431 int i; 2432 if( pList==0 ) return; 2433 for(i=0; i<pList->nExpr; i++){ 2434 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2435 } 2436 } 2437 static void substSelect( 2438 sqlite3 *db, /* Report malloc errors here */ 2439 Select *p, /* SELECT statement in which to make substitutions */ 2440 int iTable, /* Table to be replaced */ 2441 ExprList *pEList /* Substitute values */ 2442 ){ 2443 SrcList *pSrc; 2444 struct SrcList_item *pItem; 2445 int i; 2446 if( !p ) return; 2447 substExprList(db, p->pEList, iTable, pEList); 2448 substExprList(db, p->pGroupBy, iTable, pEList); 2449 substExprList(db, p->pOrderBy, iTable, pEList); 2450 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2451 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2452 substSelect(db, p->pPrior, iTable, pEList); 2453 pSrc = p->pSrc; 2454 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2455 if( ALWAYS(pSrc) ){ 2456 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2457 substSelect(db, pItem->pSelect, iTable, pEList); 2458 } 2459 } 2460 } 2461 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2462 2463 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2464 /* 2465 ** This routine attempts to flatten subqueries in order to speed 2466 ** execution. It returns 1 if it makes changes and 0 if no flattening 2467 ** occurs. 2468 ** 2469 ** To understand the concept of flattening, consider the following 2470 ** query: 2471 ** 2472 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2473 ** 2474 ** The default way of implementing this query is to execute the 2475 ** subquery first and store the results in a temporary table, then 2476 ** run the outer query on that temporary table. This requires two 2477 ** passes over the data. Furthermore, because the temporary table 2478 ** has no indices, the WHERE clause on the outer query cannot be 2479 ** optimized. 2480 ** 2481 ** This routine attempts to rewrite queries such as the above into 2482 ** a single flat select, like this: 2483 ** 2484 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2485 ** 2486 ** The code generated for this simpification gives the same result 2487 ** but only has to scan the data once. And because indices might 2488 ** exist on the table t1, a complete scan of the data might be 2489 ** avoided. 2490 ** 2491 ** Flattening is only attempted if all of the following are true: 2492 ** 2493 ** (1) The subquery and the outer query do not both use aggregates. 2494 ** 2495 ** (2) The subquery is not an aggregate or the outer query is not a join. 2496 ** 2497 ** (3) The subquery is not the right operand of a left outer join 2498 ** (Originally ticket #306. Strenghtened by ticket #3300) 2499 ** 2500 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2501 ** 2502 ** (5) The subquery is not DISTINCT or the outer query does not use 2503 ** aggregates. 2504 ** 2505 ** (6) The subquery does not use aggregates or the outer query is not 2506 ** DISTINCT. 2507 ** 2508 ** (7) The subquery has a FROM clause. 2509 ** 2510 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2511 ** 2512 ** (9) The subquery does not use LIMIT or the outer query does not use 2513 ** aggregates. 2514 ** 2515 ** (10) The subquery does not use aggregates or the outer query does not 2516 ** use LIMIT. 2517 ** 2518 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2519 ** 2520 ** (**) Not implemented. Subsumed into restriction (3). Was previously 2521 ** a separate restriction deriving from ticket #350. 2522 ** 2523 ** (13) The subquery and outer query do not both use LIMIT 2524 ** 2525 ** (14) The subquery does not use OFFSET 2526 ** 2527 ** (15) The outer query is not part of a compound select or the 2528 ** subquery does not have a LIMIT clause. 2529 ** (See ticket #2339 and ticket [02a8e81d44]). 2530 ** 2531 ** (16) The outer query is not an aggregate or the subquery does 2532 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2533 ** until we introduced the group_concat() function. 2534 ** 2535 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2536 ** compound clause made up entirely of non-aggregate queries, and 2537 ** the parent query: 2538 ** 2539 ** * is not itself part of a compound select, 2540 ** * is not an aggregate or DISTINCT query, and 2541 ** * has no other tables or sub-selects in the FROM clause. 2542 ** 2543 ** The parent and sub-query may contain WHERE clauses. Subject to 2544 ** rules (11), (13) and (14), they may also contain ORDER BY, 2545 ** LIMIT and OFFSET clauses. 2546 ** 2547 ** (18) If the sub-query is a compound select, then all terms of the 2548 ** ORDER by clause of the parent must be simple references to 2549 ** columns of the sub-query. 2550 ** 2551 ** (19) The subquery does not use LIMIT or the outer query does not 2552 ** have a WHERE clause. 2553 ** 2554 ** (20) If the sub-query is a compound select, then it must not use 2555 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2556 ** somewhat by saying that the terms of the ORDER BY clause must 2557 ** appear as unmodified result columns in the outer query. But 2558 ** have other optimizations in mind to deal with that case. 2559 ** 2560 ** In this routine, the "p" parameter is a pointer to the outer query. 2561 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2562 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2563 ** 2564 ** If flattening is not attempted, this routine is a no-op and returns 0. 2565 ** If flattening is attempted this routine returns 1. 2566 ** 2567 ** All of the expression analysis must occur on both the outer query and 2568 ** the subquery before this routine runs. 2569 */ 2570 static int flattenSubquery( 2571 Parse *pParse, /* Parsing context */ 2572 Select *p, /* The parent or outer SELECT statement */ 2573 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2574 int isAgg, /* True if outer SELECT uses aggregate functions */ 2575 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2576 ){ 2577 const char *zSavedAuthContext = pParse->zAuthContext; 2578 Select *pParent; 2579 Select *pSub; /* The inner query or "subquery" */ 2580 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2581 SrcList *pSrc; /* The FROM clause of the outer query */ 2582 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2583 ExprList *pList; /* The result set of the outer query */ 2584 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2585 int i; /* Loop counter */ 2586 Expr *pWhere; /* The WHERE clause */ 2587 struct SrcList_item *pSubitem; /* The subquery */ 2588 sqlite3 *db = pParse->db; 2589 2590 /* Check to see if flattening is permitted. Return 0 if not. 2591 */ 2592 assert( p!=0 ); 2593 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2594 if( db->flags & SQLITE_QueryFlattener ) return 0; 2595 pSrc = p->pSrc; 2596 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2597 pSubitem = &pSrc->a[iFrom]; 2598 iParent = pSubitem->iCursor; 2599 pSub = pSubitem->pSelect; 2600 assert( pSub!=0 ); 2601 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2602 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2603 pSubSrc = pSub->pSrc; 2604 assert( pSubSrc ); 2605 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2606 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2607 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2608 ** became arbitrary expressions, we were forced to add restrictions (13) 2609 ** and (14). */ 2610 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2611 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2612 if( p->pRightmost && pSub->pLimit ){ 2613 return 0; /* Restriction (15) */ 2614 } 2615 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2616 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2617 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2618 return 0; 2619 } 2620 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2621 return 0; /* Restriction (6) */ 2622 } 2623 if( p->pOrderBy && pSub->pOrderBy ){ 2624 return 0; /* Restriction (11) */ 2625 } 2626 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2627 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2628 2629 /* OBSOLETE COMMENT 1: 2630 ** Restriction 3: If the subquery is a join, make sure the subquery is 2631 ** not used as the right operand of an outer join. Examples of why this 2632 ** is not allowed: 2633 ** 2634 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2635 ** 2636 ** If we flatten the above, we would get 2637 ** 2638 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2639 ** 2640 ** which is not at all the same thing. 2641 ** 2642 ** OBSOLETE COMMENT 2: 2643 ** Restriction 12: If the subquery is the right operand of a left outer 2644 ** join, make sure the subquery has no WHERE clause. 2645 ** An examples of why this is not allowed: 2646 ** 2647 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2648 ** 2649 ** If we flatten the above, we would get 2650 ** 2651 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2652 ** 2653 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2654 ** effectively converts the OUTER JOIN into an INNER JOIN. 2655 ** 2656 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2657 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2658 ** is fraught with danger. Best to avoid the whole thing. If the 2659 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2660 */ 2661 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2662 return 0; 2663 } 2664 2665 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2666 ** use only the UNION ALL operator. And none of the simple select queries 2667 ** that make up the compound SELECT are allowed to be aggregate or distinct 2668 ** queries. 2669 */ 2670 if( pSub->pPrior ){ 2671 if( pSub->pOrderBy ){ 2672 return 0; /* Restriction 20 */ 2673 } 2674 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2675 return 0; 2676 } 2677 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2678 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2679 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2680 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2681 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2682 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 2683 ){ 2684 return 0; 2685 } 2686 } 2687 2688 /* Restriction 18. */ 2689 if( p->pOrderBy ){ 2690 int ii; 2691 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2692 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2693 } 2694 } 2695 } 2696 2697 /***** If we reach this point, flattening is permitted. *****/ 2698 2699 /* Authorize the subquery */ 2700 pParse->zAuthContext = pSubitem->zName; 2701 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2702 pParse->zAuthContext = zSavedAuthContext; 2703 2704 /* If the sub-query is a compound SELECT statement, then (by restrictions 2705 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2706 ** be of the form: 2707 ** 2708 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2709 ** 2710 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2711 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2712 ** OFFSET clauses and joins them to the left-hand-side of the original 2713 ** using UNION ALL operators. In this case N is the number of simple 2714 ** select statements in the compound sub-query. 2715 ** 2716 ** Example: 2717 ** 2718 ** SELECT a+1 FROM ( 2719 ** SELECT x FROM tab 2720 ** UNION ALL 2721 ** SELECT y FROM tab 2722 ** UNION ALL 2723 ** SELECT abs(z*2) FROM tab2 2724 ** ) WHERE a!=5 ORDER BY 1 2725 ** 2726 ** Transformed into: 2727 ** 2728 ** SELECT x+1 FROM tab WHERE x+1!=5 2729 ** UNION ALL 2730 ** SELECT y+1 FROM tab WHERE y+1!=5 2731 ** UNION ALL 2732 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2733 ** ORDER BY 1 2734 ** 2735 ** We call this the "compound-subquery flattening". 2736 */ 2737 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2738 Select *pNew; 2739 ExprList *pOrderBy = p->pOrderBy; 2740 Expr *pLimit = p->pLimit; 2741 Select *pPrior = p->pPrior; 2742 p->pOrderBy = 0; 2743 p->pSrc = 0; 2744 p->pPrior = 0; 2745 p->pLimit = 0; 2746 pNew = sqlite3SelectDup(db, p, 0); 2747 p->pLimit = pLimit; 2748 p->pOrderBy = pOrderBy; 2749 p->pSrc = pSrc; 2750 p->op = TK_ALL; 2751 p->pRightmost = 0; 2752 if( pNew==0 ){ 2753 pNew = pPrior; 2754 }else{ 2755 pNew->pPrior = pPrior; 2756 pNew->pRightmost = 0; 2757 } 2758 p->pPrior = pNew; 2759 if( db->mallocFailed ) return 1; 2760 } 2761 2762 /* Begin flattening the iFrom-th entry of the FROM clause 2763 ** in the outer query. 2764 */ 2765 pSub = pSub1 = pSubitem->pSelect; 2766 2767 /* Delete the transient table structure associated with the 2768 ** subquery 2769 */ 2770 sqlite3DbFree(db, pSubitem->zDatabase); 2771 sqlite3DbFree(db, pSubitem->zName); 2772 sqlite3DbFree(db, pSubitem->zAlias); 2773 pSubitem->zDatabase = 0; 2774 pSubitem->zName = 0; 2775 pSubitem->zAlias = 0; 2776 pSubitem->pSelect = 0; 2777 2778 /* Defer deleting the Table object associated with the 2779 ** subquery until code generation is 2780 ** complete, since there may still exist Expr.pTab entries that 2781 ** refer to the subquery even after flattening. Ticket #3346. 2782 ** 2783 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2784 */ 2785 if( ALWAYS(pSubitem->pTab!=0) ){ 2786 Table *pTabToDel = pSubitem->pTab; 2787 if( pTabToDel->nRef==1 ){ 2788 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2789 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2790 pToplevel->pZombieTab = pTabToDel; 2791 }else{ 2792 pTabToDel->nRef--; 2793 } 2794 pSubitem->pTab = 0; 2795 } 2796 2797 /* The following loop runs once for each term in a compound-subquery 2798 ** flattening (as described above). If we are doing a different kind 2799 ** of flattening - a flattening other than a compound-subquery flattening - 2800 ** then this loop only runs once. 2801 ** 2802 ** This loop moves all of the FROM elements of the subquery into the 2803 ** the FROM clause of the outer query. Before doing this, remember 2804 ** the cursor number for the original outer query FROM element in 2805 ** iParent. The iParent cursor will never be used. Subsequent code 2806 ** will scan expressions looking for iParent references and replace 2807 ** those references with expressions that resolve to the subquery FROM 2808 ** elements we are now copying in. 2809 */ 2810 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2811 int nSubSrc; 2812 u8 jointype = 0; 2813 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2814 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2815 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2816 2817 if( pSrc ){ 2818 assert( pParent==p ); /* First time through the loop */ 2819 jointype = pSubitem->jointype; 2820 }else{ 2821 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2822 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2823 if( pSrc==0 ){ 2824 assert( db->mallocFailed ); 2825 break; 2826 } 2827 } 2828 2829 /* The subquery uses a single slot of the FROM clause of the outer 2830 ** query. If the subquery has more than one element in its FROM clause, 2831 ** then expand the outer query to make space for it to hold all elements 2832 ** of the subquery. 2833 ** 2834 ** Example: 2835 ** 2836 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2837 ** 2838 ** The outer query has 3 slots in its FROM clause. One slot of the 2839 ** outer query (the middle slot) is used by the subquery. The next 2840 ** block of code will expand the out query to 4 slots. The middle 2841 ** slot is expanded to two slots in order to make space for the 2842 ** two elements in the FROM clause of the subquery. 2843 */ 2844 if( nSubSrc>1 ){ 2845 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2846 if( db->mallocFailed ){ 2847 break; 2848 } 2849 } 2850 2851 /* Transfer the FROM clause terms from the subquery into the 2852 ** outer query. 2853 */ 2854 for(i=0; i<nSubSrc; i++){ 2855 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 2856 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2857 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2858 } 2859 pSrc->a[iFrom].jointype = jointype; 2860 2861 /* Now begin substituting subquery result set expressions for 2862 ** references to the iParent in the outer query. 2863 ** 2864 ** Example: 2865 ** 2866 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2867 ** \ \_____________ subquery __________/ / 2868 ** \_____________________ outer query ______________________________/ 2869 ** 2870 ** We look at every expression in the outer query and every place we see 2871 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2872 */ 2873 pList = pParent->pEList; 2874 for(i=0; i<pList->nExpr; i++){ 2875 if( pList->a[i].zName==0 ){ 2876 const char *zSpan = pList->a[i].zSpan; 2877 if( ALWAYS(zSpan) ){ 2878 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 2879 } 2880 } 2881 } 2882 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2883 if( isAgg ){ 2884 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2885 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2886 } 2887 if( pSub->pOrderBy ){ 2888 assert( pParent->pOrderBy==0 ); 2889 pParent->pOrderBy = pSub->pOrderBy; 2890 pSub->pOrderBy = 0; 2891 }else if( pParent->pOrderBy ){ 2892 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2893 } 2894 if( pSub->pWhere ){ 2895 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2896 }else{ 2897 pWhere = 0; 2898 } 2899 if( subqueryIsAgg ){ 2900 assert( pParent->pHaving==0 ); 2901 pParent->pHaving = pParent->pWhere; 2902 pParent->pWhere = pWhere; 2903 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2904 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2905 sqlite3ExprDup(db, pSub->pHaving, 0)); 2906 assert( pParent->pGroupBy==0 ); 2907 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 2908 }else{ 2909 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2910 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2911 } 2912 2913 /* The flattened query is distinct if either the inner or the 2914 ** outer query is distinct. 2915 */ 2916 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2917 2918 /* 2919 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2920 ** 2921 ** One is tempted to try to add a and b to combine the limits. But this 2922 ** does not work if either limit is negative. 2923 */ 2924 if( pSub->pLimit ){ 2925 pParent->pLimit = pSub->pLimit; 2926 pSub->pLimit = 0; 2927 } 2928 } 2929 2930 /* Finially, delete what is left of the subquery and return 2931 ** success. 2932 */ 2933 sqlite3SelectDelete(db, pSub1); 2934 2935 return 1; 2936 } 2937 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2938 2939 /* 2940 ** Analyze the SELECT statement passed as an argument to see if it 2941 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2942 ** it is, or 0 otherwise. At present, a query is considered to be 2943 ** a min()/max() query if: 2944 ** 2945 ** 1. There is a single object in the FROM clause. 2946 ** 2947 ** 2. There is a single expression in the result set, and it is 2948 ** either min(x) or max(x), where x is a column reference. 2949 */ 2950 static u8 minMaxQuery(Select *p){ 2951 Expr *pExpr; 2952 ExprList *pEList = p->pEList; 2953 2954 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2955 pExpr = pEList->a[0].pExpr; 2956 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2957 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 2958 pEList = pExpr->x.pList; 2959 if( pEList==0 || pEList->nExpr!=1 ) return 0; 2960 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2961 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2962 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 2963 return WHERE_ORDERBY_MIN; 2964 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 2965 return WHERE_ORDERBY_MAX; 2966 } 2967 return WHERE_ORDERBY_NORMAL; 2968 } 2969 2970 /* 2971 ** The select statement passed as the first argument is an aggregate query. 2972 ** The second argment is the associated aggregate-info object. This 2973 ** function tests if the SELECT is of the form: 2974 ** 2975 ** SELECT count(*) FROM <tbl> 2976 ** 2977 ** where table is a database table, not a sub-select or view. If the query 2978 ** does match this pattern, then a pointer to the Table object representing 2979 ** <tbl> is returned. Otherwise, 0 is returned. 2980 */ 2981 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 2982 Table *pTab; 2983 Expr *pExpr; 2984 2985 assert( !p->pGroupBy ); 2986 2987 if( p->pWhere || p->pEList->nExpr!=1 2988 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 2989 ){ 2990 return 0; 2991 } 2992 pTab = p->pSrc->a[0].pTab; 2993 pExpr = p->pEList->a[0].pExpr; 2994 assert( pTab && !pTab->pSelect && pExpr ); 2995 2996 if( IsVirtual(pTab) ) return 0; 2997 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2998 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 2999 if( pExpr->flags&EP_Distinct ) return 0; 3000 3001 return pTab; 3002 } 3003 3004 /* 3005 ** If the source-list item passed as an argument was augmented with an 3006 ** INDEXED BY clause, then try to locate the specified index. If there 3007 ** was such a clause and the named index cannot be found, return 3008 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3009 ** pFrom->pIndex and return SQLITE_OK. 3010 */ 3011 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3012 if( pFrom->pTab && pFrom->zIndex ){ 3013 Table *pTab = pFrom->pTab; 3014 char *zIndex = pFrom->zIndex; 3015 Index *pIdx; 3016 for(pIdx=pTab->pIndex; 3017 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3018 pIdx=pIdx->pNext 3019 ); 3020 if( !pIdx ){ 3021 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3022 pParse->checkSchema = 1; 3023 return SQLITE_ERROR; 3024 } 3025 pFrom->pIndex = pIdx; 3026 } 3027 return SQLITE_OK; 3028 } 3029 3030 /* 3031 ** This routine is a Walker callback for "expanding" a SELECT statement. 3032 ** "Expanding" means to do the following: 3033 ** 3034 ** (1) Make sure VDBE cursor numbers have been assigned to every 3035 ** element of the FROM clause. 3036 ** 3037 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3038 ** defines FROM clause. When views appear in the FROM clause, 3039 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3040 ** that implements the view. A copy is made of the view's SELECT 3041 ** statement so that we can freely modify or delete that statement 3042 ** without worrying about messing up the presistent representation 3043 ** of the view. 3044 ** 3045 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3046 ** on joins and the ON and USING clause of joins. 3047 ** 3048 ** (4) Scan the list of columns in the result set (pEList) looking 3049 ** for instances of the "*" operator or the TABLE.* operator. 3050 ** If found, expand each "*" to be every column in every table 3051 ** and TABLE.* to be every column in TABLE. 3052 ** 3053 */ 3054 static int selectExpander(Walker *pWalker, Select *p){ 3055 Parse *pParse = pWalker->pParse; 3056 int i, j, k; 3057 SrcList *pTabList; 3058 ExprList *pEList; 3059 struct SrcList_item *pFrom; 3060 sqlite3 *db = pParse->db; 3061 3062 if( db->mallocFailed ){ 3063 return WRC_Abort; 3064 } 3065 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3066 return WRC_Prune; 3067 } 3068 p->selFlags |= SF_Expanded; 3069 pTabList = p->pSrc; 3070 pEList = p->pEList; 3071 3072 /* Make sure cursor numbers have been assigned to all entries in 3073 ** the FROM clause of the SELECT statement. 3074 */ 3075 sqlite3SrcListAssignCursors(pParse, pTabList); 3076 3077 /* Look up every table named in the FROM clause of the select. If 3078 ** an entry of the FROM clause is a subquery instead of a table or view, 3079 ** then create a transient table structure to describe the subquery. 3080 */ 3081 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3082 Table *pTab; 3083 if( pFrom->pTab!=0 ){ 3084 /* This statement has already been prepared. There is no need 3085 ** to go further. */ 3086 assert( i==0 ); 3087 return WRC_Prune; 3088 } 3089 if( pFrom->zName==0 ){ 3090 #ifndef SQLITE_OMIT_SUBQUERY 3091 Select *pSel = pFrom->pSelect; 3092 /* A sub-query in the FROM clause of a SELECT */ 3093 assert( pSel!=0 ); 3094 assert( pFrom->pTab==0 ); 3095 sqlite3WalkSelect(pWalker, pSel); 3096 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3097 if( pTab==0 ) return WRC_Abort; 3098 pTab->nRef = 1; 3099 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3100 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3101 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3102 pTab->iPKey = -1; 3103 pTab->tabFlags |= TF_Ephemeral; 3104 #endif 3105 }else{ 3106 /* An ordinary table or view name in the FROM clause */ 3107 assert( pFrom->pTab==0 ); 3108 pFrom->pTab = pTab = 3109 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3110 if( pTab==0 ) return WRC_Abort; 3111 pTab->nRef++; 3112 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3113 if( pTab->pSelect || IsVirtual(pTab) ){ 3114 /* We reach here if the named table is a really a view */ 3115 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3116 assert( pFrom->pSelect==0 ); 3117 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3118 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3119 } 3120 #endif 3121 } 3122 3123 /* Locate the index named by the INDEXED BY clause, if any. */ 3124 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3125 return WRC_Abort; 3126 } 3127 } 3128 3129 /* Process NATURAL keywords, and ON and USING clauses of joins. 3130 */ 3131 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3132 return WRC_Abort; 3133 } 3134 3135 /* For every "*" that occurs in the column list, insert the names of 3136 ** all columns in all tables. And for every TABLE.* insert the names 3137 ** of all columns in TABLE. The parser inserted a special expression 3138 ** with the TK_ALL operator for each "*" that it found in the column list. 3139 ** The following code just has to locate the TK_ALL expressions and expand 3140 ** each one to the list of all columns in all tables. 3141 ** 3142 ** The first loop just checks to see if there are any "*" operators 3143 ** that need expanding. 3144 */ 3145 for(k=0; k<pEList->nExpr; k++){ 3146 Expr *pE = pEList->a[k].pExpr; 3147 if( pE->op==TK_ALL ) break; 3148 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3149 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3150 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3151 } 3152 if( k<pEList->nExpr ){ 3153 /* 3154 ** If we get here it means the result set contains one or more "*" 3155 ** operators that need to be expanded. Loop through each expression 3156 ** in the result set and expand them one by one. 3157 */ 3158 struct ExprList_item *a = pEList->a; 3159 ExprList *pNew = 0; 3160 int flags = pParse->db->flags; 3161 int longNames = (flags & SQLITE_FullColNames)!=0 3162 && (flags & SQLITE_ShortColNames)==0; 3163 3164 for(k=0; k<pEList->nExpr; k++){ 3165 Expr *pE = a[k].pExpr; 3166 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3167 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3168 /* This particular expression does not need to be expanded. 3169 */ 3170 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3171 if( pNew ){ 3172 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3173 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3174 a[k].zName = 0; 3175 a[k].zSpan = 0; 3176 } 3177 a[k].pExpr = 0; 3178 }else{ 3179 /* This expression is a "*" or a "TABLE.*" and needs to be 3180 ** expanded. */ 3181 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3182 char *zTName; /* text of name of TABLE */ 3183 if( pE->op==TK_DOT ){ 3184 assert( pE->pLeft!=0 ); 3185 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3186 zTName = pE->pLeft->u.zToken; 3187 }else{ 3188 zTName = 0; 3189 } 3190 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3191 Table *pTab = pFrom->pTab; 3192 char *zTabName = pFrom->zAlias; 3193 if( zTabName==0 ){ 3194 zTabName = pTab->zName; 3195 } 3196 if( db->mallocFailed ) break; 3197 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3198 continue; 3199 } 3200 tableSeen = 1; 3201 for(j=0; j<pTab->nCol; j++){ 3202 Expr *pExpr, *pRight; 3203 char *zName = pTab->aCol[j].zName; 3204 char *zColname; /* The computed column name */ 3205 char *zToFree; /* Malloced string that needs to be freed */ 3206 Token sColname; /* Computed column name as a token */ 3207 3208 /* If a column is marked as 'hidden' (currently only possible 3209 ** for virtual tables), do not include it in the expanded 3210 ** result-set list. 3211 */ 3212 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3213 assert(IsVirtual(pTab)); 3214 continue; 3215 } 3216 3217 if( i>0 && zTName==0 ){ 3218 if( (pFrom->jointype & JT_NATURAL)!=0 3219 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 3220 ){ 3221 /* In a NATURAL join, omit the join columns from the 3222 ** table to the right of the join */ 3223 continue; 3224 } 3225 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 3226 /* In a join with a USING clause, omit columns in the 3227 ** using clause from the table on the right. */ 3228 continue; 3229 } 3230 } 3231 pRight = sqlite3Expr(db, TK_ID, zName); 3232 zColname = zName; 3233 zToFree = 0; 3234 if( longNames || pTabList->nSrc>1 ){ 3235 Expr *pLeft; 3236 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3237 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3238 if( longNames ){ 3239 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3240 zToFree = zColname; 3241 } 3242 }else{ 3243 pExpr = pRight; 3244 } 3245 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3246 sColname.z = zColname; 3247 sColname.n = sqlite3Strlen30(zColname); 3248 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3249 sqlite3DbFree(db, zToFree); 3250 } 3251 } 3252 if( !tableSeen ){ 3253 if( zTName ){ 3254 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3255 }else{ 3256 sqlite3ErrorMsg(pParse, "no tables specified"); 3257 } 3258 } 3259 } 3260 } 3261 sqlite3ExprListDelete(db, pEList); 3262 p->pEList = pNew; 3263 } 3264 #if SQLITE_MAX_COLUMN 3265 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3266 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3267 } 3268 #endif 3269 return WRC_Continue; 3270 } 3271 3272 /* 3273 ** No-op routine for the parse-tree walker. 3274 ** 3275 ** When this routine is the Walker.xExprCallback then expression trees 3276 ** are walked without any actions being taken at each node. Presumably, 3277 ** when this routine is used for Walker.xExprCallback then 3278 ** Walker.xSelectCallback is set to do something useful for every 3279 ** subquery in the parser tree. 3280 */ 3281 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3282 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3283 return WRC_Continue; 3284 } 3285 3286 /* 3287 ** This routine "expands" a SELECT statement and all of its subqueries. 3288 ** For additional information on what it means to "expand" a SELECT 3289 ** statement, see the comment on the selectExpand worker callback above. 3290 ** 3291 ** Expanding a SELECT statement is the first step in processing a 3292 ** SELECT statement. The SELECT statement must be expanded before 3293 ** name resolution is performed. 3294 ** 3295 ** If anything goes wrong, an error message is written into pParse. 3296 ** The calling function can detect the problem by looking at pParse->nErr 3297 ** and/or pParse->db->mallocFailed. 3298 */ 3299 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3300 Walker w; 3301 w.xSelectCallback = selectExpander; 3302 w.xExprCallback = exprWalkNoop; 3303 w.pParse = pParse; 3304 sqlite3WalkSelect(&w, pSelect); 3305 } 3306 3307 3308 #ifndef SQLITE_OMIT_SUBQUERY 3309 /* 3310 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3311 ** interface. 3312 ** 3313 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3314 ** information to the Table structure that represents the result set 3315 ** of that subquery. 3316 ** 3317 ** The Table structure that represents the result set was constructed 3318 ** by selectExpander() but the type and collation information was omitted 3319 ** at that point because identifiers had not yet been resolved. This 3320 ** routine is called after identifier resolution. 3321 */ 3322 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3323 Parse *pParse; 3324 int i; 3325 SrcList *pTabList; 3326 struct SrcList_item *pFrom; 3327 3328 assert( p->selFlags & SF_Resolved ); 3329 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3330 p->selFlags |= SF_HasTypeInfo; 3331 pParse = pWalker->pParse; 3332 pTabList = p->pSrc; 3333 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3334 Table *pTab = pFrom->pTab; 3335 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3336 /* A sub-query in the FROM clause of a SELECT */ 3337 Select *pSel = pFrom->pSelect; 3338 assert( pSel ); 3339 while( pSel->pPrior ) pSel = pSel->pPrior; 3340 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3341 } 3342 } 3343 } 3344 return WRC_Continue; 3345 } 3346 #endif 3347 3348 3349 /* 3350 ** This routine adds datatype and collating sequence information to 3351 ** the Table structures of all FROM-clause subqueries in a 3352 ** SELECT statement. 3353 ** 3354 ** Use this routine after name resolution. 3355 */ 3356 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3357 #ifndef SQLITE_OMIT_SUBQUERY 3358 Walker w; 3359 w.xSelectCallback = selectAddSubqueryTypeInfo; 3360 w.xExprCallback = exprWalkNoop; 3361 w.pParse = pParse; 3362 sqlite3WalkSelect(&w, pSelect); 3363 #endif 3364 } 3365 3366 3367 /* 3368 ** This routine sets of a SELECT statement for processing. The 3369 ** following is accomplished: 3370 ** 3371 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3372 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3373 ** * ON and USING clauses are shifted into WHERE statements 3374 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3375 ** * Identifiers in expression are matched to tables. 3376 ** 3377 ** This routine acts recursively on all subqueries within the SELECT. 3378 */ 3379 void sqlite3SelectPrep( 3380 Parse *pParse, /* The parser context */ 3381 Select *p, /* The SELECT statement being coded. */ 3382 NameContext *pOuterNC /* Name context for container */ 3383 ){ 3384 sqlite3 *db; 3385 if( NEVER(p==0) ) return; 3386 db = pParse->db; 3387 if( p->selFlags & SF_HasTypeInfo ) return; 3388 sqlite3SelectExpand(pParse, p); 3389 if( pParse->nErr || db->mallocFailed ) return; 3390 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3391 if( pParse->nErr || db->mallocFailed ) return; 3392 sqlite3SelectAddTypeInfo(pParse, p); 3393 } 3394 3395 /* 3396 ** Reset the aggregate accumulator. 3397 ** 3398 ** The aggregate accumulator is a set of memory cells that hold 3399 ** intermediate results while calculating an aggregate. This 3400 ** routine simply stores NULLs in all of those memory cells. 3401 */ 3402 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3403 Vdbe *v = pParse->pVdbe; 3404 int i; 3405 struct AggInfo_func *pFunc; 3406 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3407 return; 3408 } 3409 for(i=0; i<pAggInfo->nColumn; i++){ 3410 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3411 } 3412 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3413 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3414 if( pFunc->iDistinct>=0 ){ 3415 Expr *pE = pFunc->pExpr; 3416 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3417 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3418 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3419 "argument"); 3420 pFunc->iDistinct = -1; 3421 }else{ 3422 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3423 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3424 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3425 } 3426 } 3427 } 3428 } 3429 3430 /* 3431 ** Invoke the OP_AggFinalize opcode for every aggregate function 3432 ** in the AggInfo structure. 3433 */ 3434 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3435 Vdbe *v = pParse->pVdbe; 3436 int i; 3437 struct AggInfo_func *pF; 3438 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3439 ExprList *pList = pF->pExpr->x.pList; 3440 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3441 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3442 (void*)pF->pFunc, P4_FUNCDEF); 3443 } 3444 } 3445 3446 /* 3447 ** Update the accumulator memory cells for an aggregate based on 3448 ** the current cursor position. 3449 */ 3450 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3451 Vdbe *v = pParse->pVdbe; 3452 int i; 3453 struct AggInfo_func *pF; 3454 struct AggInfo_col *pC; 3455 3456 pAggInfo->directMode = 1; 3457 sqlite3ExprCacheClear(pParse); 3458 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3459 int nArg; 3460 int addrNext = 0; 3461 int regAgg; 3462 ExprList *pList = pF->pExpr->x.pList; 3463 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3464 if( pList ){ 3465 nArg = pList->nExpr; 3466 regAgg = sqlite3GetTempRange(pParse, nArg); 3467 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3468 }else{ 3469 nArg = 0; 3470 regAgg = 0; 3471 } 3472 if( pF->iDistinct>=0 ){ 3473 addrNext = sqlite3VdbeMakeLabel(v); 3474 assert( nArg==1 ); 3475 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3476 } 3477 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3478 CollSeq *pColl = 0; 3479 struct ExprList_item *pItem; 3480 int j; 3481 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3482 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3483 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3484 } 3485 if( !pColl ){ 3486 pColl = pParse->db->pDfltColl; 3487 } 3488 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3489 } 3490 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3491 (void*)pF->pFunc, P4_FUNCDEF); 3492 sqlite3VdbeChangeP5(v, (u8)nArg); 3493 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3494 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3495 if( addrNext ){ 3496 sqlite3VdbeResolveLabel(v, addrNext); 3497 sqlite3ExprCacheClear(pParse); 3498 } 3499 } 3500 3501 /* Before populating the accumulator registers, clear the column cache. 3502 ** Otherwise, if any of the required column values are already present 3503 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 3504 ** to pC->iMem. But by the time the value is used, the original register 3505 ** may have been used, invalidating the underlying buffer holding the 3506 ** text or blob value. See ticket [883034dcb5]. 3507 ** 3508 ** Another solution would be to change the OP_SCopy used to copy cached 3509 ** values to an OP_Copy. 3510 */ 3511 sqlite3ExprCacheClear(pParse); 3512 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3513 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3514 } 3515 pAggInfo->directMode = 0; 3516 sqlite3ExprCacheClear(pParse); 3517 } 3518 3519 /* 3520 ** Generate code for the SELECT statement given in the p argument. 3521 ** 3522 ** The results are distributed in various ways depending on the 3523 ** contents of the SelectDest structure pointed to by argument pDest 3524 ** as follows: 3525 ** 3526 ** pDest->eDest Result 3527 ** ------------ ------------------------------------------- 3528 ** SRT_Output Generate a row of output (using the OP_ResultRow 3529 ** opcode) for each row in the result set. 3530 ** 3531 ** SRT_Mem Only valid if the result is a single column. 3532 ** Store the first column of the first result row 3533 ** in register pDest->iParm then abandon the rest 3534 ** of the query. This destination implies "LIMIT 1". 3535 ** 3536 ** SRT_Set The result must be a single column. Store each 3537 ** row of result as the key in table pDest->iParm. 3538 ** Apply the affinity pDest->affinity before storing 3539 ** results. Used to implement "IN (SELECT ...)". 3540 ** 3541 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3542 ** 3543 ** SRT_Except Remove results from the temporary table pDest->iParm. 3544 ** 3545 ** SRT_Table Store results in temporary table pDest->iParm. 3546 ** This is like SRT_EphemTab except that the table 3547 ** is assumed to already be open. 3548 ** 3549 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3550 ** the result there. The cursor is left open after 3551 ** returning. This is like SRT_Table except that 3552 ** this destination uses OP_OpenEphemeral to create 3553 ** the table first. 3554 ** 3555 ** SRT_Coroutine Generate a co-routine that returns a new row of 3556 ** results each time it is invoked. The entry point 3557 ** of the co-routine is stored in register pDest->iParm. 3558 ** 3559 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3560 ** set is not empty. 3561 ** 3562 ** SRT_Discard Throw the results away. This is used by SELECT 3563 ** statements within triggers whose only purpose is 3564 ** the side-effects of functions. 3565 ** 3566 ** This routine returns the number of errors. If any errors are 3567 ** encountered, then an appropriate error message is left in 3568 ** pParse->zErrMsg. 3569 ** 3570 ** This routine does NOT free the Select structure passed in. The 3571 ** calling function needs to do that. 3572 */ 3573 int sqlite3Select( 3574 Parse *pParse, /* The parser context */ 3575 Select *p, /* The SELECT statement being coded. */ 3576 SelectDest *pDest /* What to do with the query results */ 3577 ){ 3578 int i, j; /* Loop counters */ 3579 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3580 Vdbe *v; /* The virtual machine under construction */ 3581 int isAgg; /* True for select lists like "count(*)" */ 3582 ExprList *pEList; /* List of columns to extract. */ 3583 SrcList *pTabList; /* List of tables to select from */ 3584 Expr *pWhere; /* The WHERE clause. May be NULL */ 3585 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3586 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3587 Expr *pHaving; /* The HAVING clause. May be NULL */ 3588 int isDistinct; /* True if the DISTINCT keyword is present */ 3589 int distinct; /* Table to use for the distinct set */ 3590 int rc = 1; /* Value to return from this function */ 3591 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3592 AggInfo sAggInfo; /* Information used by aggregate queries */ 3593 int iEnd; /* Address of the end of the query */ 3594 sqlite3 *db; /* The database connection */ 3595 3596 db = pParse->db; 3597 if( p==0 || db->mallocFailed || pParse->nErr ){ 3598 return 1; 3599 } 3600 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3601 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3602 3603 if( IgnorableOrderby(pDest) ){ 3604 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3605 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3606 /* If ORDER BY makes no difference in the output then neither does 3607 ** DISTINCT so it can be removed too. */ 3608 sqlite3ExprListDelete(db, p->pOrderBy); 3609 p->pOrderBy = 0; 3610 p->selFlags &= ~SF_Distinct; 3611 } 3612 sqlite3SelectPrep(pParse, p, 0); 3613 pOrderBy = p->pOrderBy; 3614 pTabList = p->pSrc; 3615 pEList = p->pEList; 3616 if( pParse->nErr || db->mallocFailed ){ 3617 goto select_end; 3618 } 3619 isAgg = (p->selFlags & SF_Aggregate)!=0; 3620 assert( pEList!=0 ); 3621 3622 /* Begin generating code. 3623 */ 3624 v = sqlite3GetVdbe(pParse); 3625 if( v==0 ) goto select_end; 3626 3627 /* Generate code for all sub-queries in the FROM clause 3628 */ 3629 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3630 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3631 struct SrcList_item *pItem = &pTabList->a[i]; 3632 SelectDest dest; 3633 Select *pSub = pItem->pSelect; 3634 int isAggSub; 3635 3636 if( pSub==0 || pItem->isPopulated ) continue; 3637 3638 /* Increment Parse.nHeight by the height of the largest expression 3639 ** tree refered to by this, the parent select. The child select 3640 ** may contain expression trees of at most 3641 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3642 ** more conservative than necessary, but much easier than enforcing 3643 ** an exact limit. 3644 */ 3645 pParse->nHeight += sqlite3SelectExprHeight(p); 3646 3647 /* Check to see if the subquery can be absorbed into the parent. */ 3648 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3649 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3650 if( isAggSub ){ 3651 isAgg = 1; 3652 p->selFlags |= SF_Aggregate; 3653 } 3654 i = -1; 3655 }else{ 3656 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3657 assert( pItem->isPopulated==0 ); 3658 sqlite3Select(pParse, pSub, &dest); 3659 pItem->isPopulated = 1; 3660 } 3661 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3662 goto select_end; 3663 } 3664 pParse->nHeight -= sqlite3SelectExprHeight(p); 3665 pTabList = p->pSrc; 3666 if( !IgnorableOrderby(pDest) ){ 3667 pOrderBy = p->pOrderBy; 3668 } 3669 } 3670 pEList = p->pEList; 3671 #endif 3672 pWhere = p->pWhere; 3673 pGroupBy = p->pGroupBy; 3674 pHaving = p->pHaving; 3675 isDistinct = (p->selFlags & SF_Distinct)!=0; 3676 3677 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3678 /* If there is are a sequence of queries, do the earlier ones first. 3679 */ 3680 if( p->pPrior ){ 3681 if( p->pRightmost==0 ){ 3682 Select *pLoop, *pRight = 0; 3683 int cnt = 0; 3684 int mxSelect; 3685 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3686 pLoop->pRightmost = p; 3687 pLoop->pNext = pRight; 3688 pRight = pLoop; 3689 } 3690 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3691 if( mxSelect && cnt>mxSelect ){ 3692 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3693 return 1; 3694 } 3695 } 3696 return multiSelect(pParse, p, pDest); 3697 } 3698 #endif 3699 3700 /* If writing to memory or generating a set 3701 ** only a single column may be output. 3702 */ 3703 #ifndef SQLITE_OMIT_SUBQUERY 3704 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3705 goto select_end; 3706 } 3707 #endif 3708 3709 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3710 ** GROUP BY might use an index, DISTINCT never does. 3711 */ 3712 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 3713 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 3714 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3715 pGroupBy = p->pGroupBy; 3716 p->selFlags &= ~SF_Distinct; 3717 isDistinct = 0; 3718 } 3719 3720 /* If there is both a GROUP BY and an ORDER BY clause and they are 3721 ** identical, then disable the ORDER BY clause since the GROUP BY 3722 ** will cause elements to come out in the correct order. This is 3723 ** an optimization - the correct answer should result regardless. 3724 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 3725 ** to disable this optimization for testing purposes. 3726 */ 3727 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 3728 && (db->flags & SQLITE_GroupByOrder)==0 ){ 3729 pOrderBy = 0; 3730 } 3731 3732 /* If there is an ORDER BY clause, then this sorting 3733 ** index might end up being unused if the data can be 3734 ** extracted in pre-sorted order. If that is the case, then the 3735 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3736 ** we figure out that the sorting index is not needed. The addrSortIndex 3737 ** variable is used to facilitate that change. 3738 */ 3739 if( pOrderBy ){ 3740 KeyInfo *pKeyInfo; 3741 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3742 pOrderBy->iECursor = pParse->nTab++; 3743 p->addrOpenEphm[2] = addrSortIndex = 3744 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3745 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3746 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3747 }else{ 3748 addrSortIndex = -1; 3749 } 3750 3751 /* If the output is destined for a temporary table, open that table. 3752 */ 3753 if( pDest->eDest==SRT_EphemTab ){ 3754 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3755 } 3756 3757 /* Set the limiter. 3758 */ 3759 iEnd = sqlite3VdbeMakeLabel(v); 3760 computeLimitRegisters(pParse, p, iEnd); 3761 3762 /* Open a virtual index to use for the distinct set. 3763 */ 3764 if( isDistinct ){ 3765 KeyInfo *pKeyInfo; 3766 assert( isAgg || pGroupBy ); 3767 distinct = pParse->nTab++; 3768 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3769 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3770 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3771 }else{ 3772 distinct = -1; 3773 } 3774 3775 /* Aggregate and non-aggregate queries are handled differently */ 3776 if( !isAgg && pGroupBy==0 ){ 3777 /* This case is for non-aggregate queries 3778 ** Begin the database scan 3779 */ 3780 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3781 if( pWInfo==0 ) goto select_end; 3782 3783 /* If sorting index that was created by a prior OP_OpenEphemeral 3784 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3785 ** into an OP_Noop. 3786 */ 3787 if( addrSortIndex>=0 && pOrderBy==0 ){ 3788 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3789 p->addrOpenEphm[2] = -1; 3790 } 3791 3792 /* Use the standard inner loop 3793 */ 3794 assert(!isDistinct); 3795 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3796 pWInfo->iContinue, pWInfo->iBreak); 3797 3798 /* End the database scan loop. 3799 */ 3800 sqlite3WhereEnd(pWInfo); 3801 }else{ 3802 /* This is the processing for aggregate queries */ 3803 NameContext sNC; /* Name context for processing aggregate information */ 3804 int iAMem; /* First Mem address for storing current GROUP BY */ 3805 int iBMem; /* First Mem address for previous GROUP BY */ 3806 int iUseFlag; /* Mem address holding flag indicating that at least 3807 ** one row of the input to the aggregator has been 3808 ** processed */ 3809 int iAbortFlag; /* Mem address which causes query abort if positive */ 3810 int groupBySort; /* Rows come from source in GROUP BY order */ 3811 int addrEnd; /* End of processing for this SELECT */ 3812 3813 /* Remove any and all aliases between the result set and the 3814 ** GROUP BY clause. 3815 */ 3816 if( pGroupBy ){ 3817 int k; /* Loop counter */ 3818 struct ExprList_item *pItem; /* For looping over expression in a list */ 3819 3820 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3821 pItem->iAlias = 0; 3822 } 3823 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3824 pItem->iAlias = 0; 3825 } 3826 } 3827 3828 3829 /* Create a label to jump to when we want to abort the query */ 3830 addrEnd = sqlite3VdbeMakeLabel(v); 3831 3832 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3833 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3834 ** SELECT statement. 3835 */ 3836 memset(&sNC, 0, sizeof(sNC)); 3837 sNC.pParse = pParse; 3838 sNC.pSrcList = pTabList; 3839 sNC.pAggInfo = &sAggInfo; 3840 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3841 sAggInfo.pGroupBy = pGroupBy; 3842 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3843 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3844 if( pHaving ){ 3845 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3846 } 3847 sAggInfo.nAccumulator = sAggInfo.nColumn; 3848 for(i=0; i<sAggInfo.nFunc; i++){ 3849 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3850 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3851 } 3852 if( db->mallocFailed ) goto select_end; 3853 3854 /* Processing for aggregates with GROUP BY is very different and 3855 ** much more complex than aggregates without a GROUP BY. 3856 */ 3857 if( pGroupBy ){ 3858 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3859 int j1; /* A-vs-B comparision jump */ 3860 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3861 int regOutputRow; /* Return address register for output subroutine */ 3862 int addrSetAbort; /* Set the abort flag and return */ 3863 int addrTopOfLoop; /* Top of the input loop */ 3864 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3865 int addrReset; /* Subroutine for resetting the accumulator */ 3866 int regReset; /* Return address register for reset subroutine */ 3867 3868 /* If there is a GROUP BY clause we might need a sorting index to 3869 ** implement it. Allocate that sorting index now. If it turns out 3870 ** that we do not need it after all, the OpenEphemeral instruction 3871 ** will be converted into a Noop. 3872 */ 3873 sAggInfo.sortingIdx = pParse->nTab++; 3874 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3875 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3876 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3877 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3878 3879 /* Initialize memory locations used by GROUP BY aggregate processing 3880 */ 3881 iUseFlag = ++pParse->nMem; 3882 iAbortFlag = ++pParse->nMem; 3883 regOutputRow = ++pParse->nMem; 3884 addrOutputRow = sqlite3VdbeMakeLabel(v); 3885 regReset = ++pParse->nMem; 3886 addrReset = sqlite3VdbeMakeLabel(v); 3887 iAMem = pParse->nMem + 1; 3888 pParse->nMem += pGroupBy->nExpr; 3889 iBMem = pParse->nMem + 1; 3890 pParse->nMem += pGroupBy->nExpr; 3891 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3892 VdbeComment((v, "clear abort flag")); 3893 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3894 VdbeComment((v, "indicate accumulator empty")); 3895 3896 /* Begin a loop that will extract all source rows in GROUP BY order. 3897 ** This might involve two separate loops with an OP_Sort in between, or 3898 ** it might be a single loop that uses an index to extract information 3899 ** in the right order to begin with. 3900 */ 3901 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3902 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3903 if( pWInfo==0 ) goto select_end; 3904 if( pGroupBy==0 ){ 3905 /* The optimizer is able to deliver rows in group by order so 3906 ** we do not have to sort. The OP_OpenEphemeral table will be 3907 ** cancelled later because we still need to use the pKeyInfo 3908 */ 3909 pGroupBy = p->pGroupBy; 3910 groupBySort = 0; 3911 }else{ 3912 /* Rows are coming out in undetermined order. We have to push 3913 ** each row into a sorting index, terminate the first loop, 3914 ** then loop over the sorting index in order to get the output 3915 ** in sorted order 3916 */ 3917 int regBase; 3918 int regRecord; 3919 int nCol; 3920 int nGroupBy; 3921 3922 groupBySort = 1; 3923 nGroupBy = pGroupBy->nExpr; 3924 nCol = nGroupBy + 1; 3925 j = nGroupBy+1; 3926 for(i=0; i<sAggInfo.nColumn; i++){ 3927 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3928 nCol++; 3929 j++; 3930 } 3931 } 3932 regBase = sqlite3GetTempRange(pParse, nCol); 3933 sqlite3ExprCacheClear(pParse); 3934 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3935 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3936 j = nGroupBy+1; 3937 for(i=0; i<sAggInfo.nColumn; i++){ 3938 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3939 if( pCol->iSorterColumn>=j ){ 3940 int r1 = j + regBase; 3941 int r2; 3942 3943 r2 = sqlite3ExprCodeGetColumn(pParse, 3944 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 3945 if( r1!=r2 ){ 3946 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3947 } 3948 j++; 3949 } 3950 } 3951 regRecord = sqlite3GetTempReg(pParse); 3952 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3953 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3954 sqlite3ReleaseTempReg(pParse, regRecord); 3955 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3956 sqlite3WhereEnd(pWInfo); 3957 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3958 VdbeComment((v, "GROUP BY sort")); 3959 sAggInfo.useSortingIdx = 1; 3960 sqlite3ExprCacheClear(pParse); 3961 } 3962 3963 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3964 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3965 ** Then compare the current GROUP BY terms against the GROUP BY terms 3966 ** from the previous row currently stored in a0, a1, a2... 3967 */ 3968 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3969 sqlite3ExprCacheClear(pParse); 3970 for(j=0; j<pGroupBy->nExpr; j++){ 3971 if( groupBySort ){ 3972 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3973 }else{ 3974 sAggInfo.directMode = 1; 3975 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3976 } 3977 } 3978 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3979 (char*)pKeyInfo, P4_KEYINFO); 3980 j1 = sqlite3VdbeCurrentAddr(v); 3981 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3982 3983 /* Generate code that runs whenever the GROUP BY changes. 3984 ** Changes in the GROUP BY are detected by the previous code 3985 ** block. If there were no changes, this block is skipped. 3986 ** 3987 ** This code copies current group by terms in b0,b1,b2,... 3988 ** over to a0,a1,a2. It then calls the output subroutine 3989 ** and resets the aggregate accumulator registers in preparation 3990 ** for the next GROUP BY batch. 3991 */ 3992 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3993 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3994 VdbeComment((v, "output one row")); 3995 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3996 VdbeComment((v, "check abort flag")); 3997 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3998 VdbeComment((v, "reset accumulator")); 3999 4000 /* Update the aggregate accumulators based on the content of 4001 ** the current row 4002 */ 4003 sqlite3VdbeJumpHere(v, j1); 4004 updateAccumulator(pParse, &sAggInfo); 4005 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4006 VdbeComment((v, "indicate data in accumulator")); 4007 4008 /* End of the loop 4009 */ 4010 if( groupBySort ){ 4011 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 4012 }else{ 4013 sqlite3WhereEnd(pWInfo); 4014 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 4015 } 4016 4017 /* Output the final row of result 4018 */ 4019 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4020 VdbeComment((v, "output final row")); 4021 4022 /* Jump over the subroutines 4023 */ 4024 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4025 4026 /* Generate a subroutine that outputs a single row of the result 4027 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4028 ** is less than or equal to zero, the subroutine is a no-op. If 4029 ** the processing calls for the query to abort, this subroutine 4030 ** increments the iAbortFlag memory location before returning in 4031 ** order to signal the caller to abort. 4032 */ 4033 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4034 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4035 VdbeComment((v, "set abort flag")); 4036 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4037 sqlite3VdbeResolveLabel(v, addrOutputRow); 4038 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4039 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4040 VdbeComment((v, "Groupby result generator entry point")); 4041 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4042 finalizeAggFunctions(pParse, &sAggInfo); 4043 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4044 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4045 distinct, pDest, 4046 addrOutputRow+1, addrSetAbort); 4047 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4048 VdbeComment((v, "end groupby result generator")); 4049 4050 /* Generate a subroutine that will reset the group-by accumulator 4051 */ 4052 sqlite3VdbeResolveLabel(v, addrReset); 4053 resetAccumulator(pParse, &sAggInfo); 4054 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4055 4056 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4057 else { 4058 ExprList *pDel = 0; 4059 #ifndef SQLITE_OMIT_BTREECOUNT 4060 Table *pTab; 4061 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4062 /* If isSimpleCount() returns a pointer to a Table structure, then 4063 ** the SQL statement is of the form: 4064 ** 4065 ** SELECT count(*) FROM <tbl> 4066 ** 4067 ** where the Table structure returned represents table <tbl>. 4068 ** 4069 ** This statement is so common that it is optimized specially. The 4070 ** OP_Count instruction is executed either on the intkey table that 4071 ** contains the data for table <tbl> or on one of its indexes. It 4072 ** is better to execute the op on an index, as indexes are almost 4073 ** always spread across less pages than their corresponding tables. 4074 */ 4075 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4076 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4077 Index *pIdx; /* Iterator variable */ 4078 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4079 Index *pBest = 0; /* Best index found so far */ 4080 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4081 4082 sqlite3CodeVerifySchema(pParse, iDb); 4083 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4084 4085 /* Search for the index that has the least amount of columns. If 4086 ** there is such an index, and it has less columns than the table 4087 ** does, then we can assume that it consumes less space on disk and 4088 ** will therefore be cheaper to scan to determine the query result. 4089 ** In this case set iRoot to the root page number of the index b-tree 4090 ** and pKeyInfo to the KeyInfo structure required to navigate the 4091 ** index. 4092 ** 4093 ** In practice the KeyInfo structure will not be used. It is only 4094 ** passed to keep OP_OpenRead happy. 4095 */ 4096 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4097 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4098 pBest = pIdx; 4099 } 4100 } 4101 if( pBest && pBest->nColumn<pTab->nCol ){ 4102 iRoot = pBest->tnum; 4103 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4104 } 4105 4106 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4107 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4108 if( pKeyInfo ){ 4109 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4110 } 4111 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4112 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4113 }else 4114 #endif /* SQLITE_OMIT_BTREECOUNT */ 4115 { 4116 /* Check if the query is of one of the following forms: 4117 ** 4118 ** SELECT min(x) FROM ... 4119 ** SELECT max(x) FROM ... 4120 ** 4121 ** If it is, then ask the code in where.c to attempt to sort results 4122 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4123 ** If where.c is able to produce results sorted in this order, then 4124 ** add vdbe code to break out of the processing loop after the 4125 ** first iteration (since the first iteration of the loop is 4126 ** guaranteed to operate on the row with the minimum or maximum 4127 ** value of x, the only row required). 4128 ** 4129 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4130 ** modify behaviour as follows: 4131 ** 4132 ** + If the query is a "SELECT min(x)", then the loop coded by 4133 ** where.c should not iterate over any values with a NULL value 4134 ** for x. 4135 ** 4136 ** + The optimizer code in where.c (the thing that decides which 4137 ** index or indices to use) should place a different priority on 4138 ** satisfying the 'ORDER BY' clause than it does in other cases. 4139 ** Refer to code and comments in where.c for details. 4140 */ 4141 ExprList *pMinMax = 0; 4142 u8 flag = minMaxQuery(p); 4143 if( flag ){ 4144 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4145 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4146 pDel = pMinMax; 4147 if( pMinMax && !db->mallocFailed ){ 4148 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4149 pMinMax->a[0].pExpr->op = TK_COLUMN; 4150 } 4151 } 4152 4153 /* This case runs if the aggregate has no GROUP BY clause. The 4154 ** processing is much simpler since there is only a single row 4155 ** of output. 4156 */ 4157 resetAccumulator(pParse, &sAggInfo); 4158 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4159 if( pWInfo==0 ){ 4160 sqlite3ExprListDelete(db, pDel); 4161 goto select_end; 4162 } 4163 updateAccumulator(pParse, &sAggInfo); 4164 if( !pMinMax && flag ){ 4165 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4166 VdbeComment((v, "%s() by index", 4167 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4168 } 4169 sqlite3WhereEnd(pWInfo); 4170 finalizeAggFunctions(pParse, &sAggInfo); 4171 } 4172 4173 pOrderBy = 0; 4174 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4175 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4176 pDest, addrEnd, addrEnd); 4177 sqlite3ExprListDelete(db, pDel); 4178 } 4179 sqlite3VdbeResolveLabel(v, addrEnd); 4180 4181 } /* endif aggregate query */ 4182 4183 /* If there is an ORDER BY clause, then we need to sort the results 4184 ** and send them to the callback one by one. 4185 */ 4186 if( pOrderBy ){ 4187 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4188 } 4189 4190 /* Jump here to skip this query 4191 */ 4192 sqlite3VdbeResolveLabel(v, iEnd); 4193 4194 /* The SELECT was successfully coded. Set the return code to 0 4195 ** to indicate no errors. 4196 */ 4197 rc = 0; 4198 4199 /* Control jumps to here if an error is encountered above, or upon 4200 ** successful coding of the SELECT. 4201 */ 4202 select_end: 4203 4204 /* Identify column names if results of the SELECT are to be output. 4205 */ 4206 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4207 generateColumnNames(pParse, pTabList, pEList); 4208 } 4209 4210 sqlite3DbFree(db, sAggInfo.aCol); 4211 sqlite3DbFree(db, sAggInfo.aFunc); 4212 return rc; 4213 } 4214 4215 #if defined(SQLITE_DEBUG) 4216 /* 4217 ******************************************************************************* 4218 ** The following code is used for testing and debugging only. The code 4219 ** that follows does not appear in normal builds. 4220 ** 4221 ** These routines are used to print out the content of all or part of a 4222 ** parse structures such as Select or Expr. Such printouts are useful 4223 ** for helping to understand what is happening inside the code generator 4224 ** during the execution of complex SELECT statements. 4225 ** 4226 ** These routine are not called anywhere from within the normal 4227 ** code base. Then are intended to be called from within the debugger 4228 ** or from temporary "printf" statements inserted for debugging. 4229 */ 4230 void sqlite3PrintExpr(Expr *p){ 4231 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 4232 sqlite3DebugPrintf("(%s", p->u.zToken); 4233 }else{ 4234 sqlite3DebugPrintf("(%d", p->op); 4235 } 4236 if( p->pLeft ){ 4237 sqlite3DebugPrintf(" "); 4238 sqlite3PrintExpr(p->pLeft); 4239 } 4240 if( p->pRight ){ 4241 sqlite3DebugPrintf(" "); 4242 sqlite3PrintExpr(p->pRight); 4243 } 4244 sqlite3DebugPrintf(")"); 4245 } 4246 void sqlite3PrintExprList(ExprList *pList){ 4247 int i; 4248 for(i=0; i<pList->nExpr; i++){ 4249 sqlite3PrintExpr(pList->a[i].pExpr); 4250 if( i<pList->nExpr-1 ){ 4251 sqlite3DebugPrintf(", "); 4252 } 4253 } 4254 } 4255 void sqlite3PrintSelect(Select *p, int indent){ 4256 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4257 sqlite3PrintExprList(p->pEList); 4258 sqlite3DebugPrintf("\n"); 4259 if( p->pSrc ){ 4260 char *zPrefix; 4261 int i; 4262 zPrefix = "FROM"; 4263 for(i=0; i<p->pSrc->nSrc; i++){ 4264 struct SrcList_item *pItem = &p->pSrc->a[i]; 4265 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4266 zPrefix = ""; 4267 if( pItem->pSelect ){ 4268 sqlite3DebugPrintf("(\n"); 4269 sqlite3PrintSelect(pItem->pSelect, indent+10); 4270 sqlite3DebugPrintf("%*s)", indent+8, ""); 4271 }else if( pItem->zName ){ 4272 sqlite3DebugPrintf("%s", pItem->zName); 4273 } 4274 if( pItem->pTab ){ 4275 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4276 } 4277 if( pItem->zAlias ){ 4278 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4279 } 4280 if( i<p->pSrc->nSrc-1 ){ 4281 sqlite3DebugPrintf(","); 4282 } 4283 sqlite3DebugPrintf("\n"); 4284 } 4285 } 4286 if( p->pWhere ){ 4287 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4288 sqlite3PrintExpr(p->pWhere); 4289 sqlite3DebugPrintf("\n"); 4290 } 4291 if( p->pGroupBy ){ 4292 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4293 sqlite3PrintExprList(p->pGroupBy); 4294 sqlite3DebugPrintf("\n"); 4295 } 4296 if( p->pHaving ){ 4297 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4298 sqlite3PrintExpr(p->pHaving); 4299 sqlite3DebugPrintf("\n"); 4300 } 4301 if( p->pOrderBy ){ 4302 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4303 sqlite3PrintExprList(p->pOrderBy); 4304 sqlite3DebugPrintf("\n"); 4305 } 4306 } 4307 /* End of the structure debug printing code 4308 *****************************************************************************/ 4309 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4310