xref: /sqlite-3.40.0/src/select.c (revision 5d72d924)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
72   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
100     if( bFree ) sqlite3DbFreeNN(db, p);
101     p = pPrior;
102     bFree = 1;
103   }
104 }
105 
106 /*
107 ** Initialize a SelectDest structure.
108 */
109 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
110   pDest->eDest = (u8)eDest;
111   pDest->iSDParm = iParm;
112   pDest->zAffSdst = 0;
113   pDest->iSdst = 0;
114   pDest->nSdst = 0;
115 }
116 
117 
118 /*
119 ** Allocate a new Select structure and return a pointer to that
120 ** structure.
121 */
122 Select *sqlite3SelectNew(
123   Parse *pParse,        /* Parsing context */
124   ExprList *pEList,     /* which columns to include in the result */
125   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
126   Expr *pWhere,         /* the WHERE clause */
127   ExprList *pGroupBy,   /* the GROUP BY clause */
128   Expr *pHaving,        /* the HAVING clause */
129   ExprList *pOrderBy,   /* the ORDER BY clause */
130   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
131   Expr *pLimit          /* LIMIT value.  NULL means not used */
132 ){
133   Select *pNew;
134   Select standin;
135   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
136   if( pNew==0 ){
137     assert( pParse->db->mallocFailed );
138     pNew = &standin;
139   }
140   if( pEList==0 ){
141     pEList = sqlite3ExprListAppend(pParse, 0,
142                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
143   }
144   pNew->pEList = pEList;
145   pNew->op = TK_SELECT;
146   pNew->selFlags = selFlags;
147   pNew->iLimit = 0;
148   pNew->iOffset = 0;
149 #if SELECTTRACE_ENABLED
150   pNew->zSelName[0] = 0;
151 #endif
152   pNew->addrOpenEphm[0] = -1;
153   pNew->addrOpenEphm[1] = -1;
154   pNew->nSelectRow = 0;
155   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
156   pNew->pSrc = pSrc;
157   pNew->pWhere = pWhere;
158   pNew->pGroupBy = pGroupBy;
159   pNew->pHaving = pHaving;
160   pNew->pOrderBy = pOrderBy;
161   pNew->pPrior = 0;
162   pNew->pNext = 0;
163   pNew->pLimit = pLimit;
164   pNew->pWith = 0;
165   if( pParse->db->mallocFailed ) {
166     clearSelect(pParse->db, pNew, pNew!=&standin);
167     pNew = 0;
168   }else{
169     assert( pNew->pSrc!=0 || pParse->nErr>0 );
170   }
171   assert( pNew!=&standin );
172   return pNew;
173 }
174 
175 #if SELECTTRACE_ENABLED
176 /*
177 ** Set the name of a Select object
178 */
179 void sqlite3SelectSetName(Select *p, const char *zName){
180   if( p && zName ){
181     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
182   }
183 }
184 #endif
185 
186 
187 /*
188 ** Delete the given Select structure and all of its substructures.
189 */
190 void sqlite3SelectDelete(sqlite3 *db, Select *p){
191   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
192 }
193 
194 /*
195 ** Return a pointer to the right-most SELECT statement in a compound.
196 */
197 static Select *findRightmost(Select *p){
198   while( p->pNext ) p = p->pNext;
199   return p;
200 }
201 
202 /*
203 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
204 ** type of join.  Return an integer constant that expresses that type
205 ** in terms of the following bit values:
206 **
207 **     JT_INNER
208 **     JT_CROSS
209 **     JT_OUTER
210 **     JT_NATURAL
211 **     JT_LEFT
212 **     JT_RIGHT
213 **
214 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
215 **
216 ** If an illegal or unsupported join type is seen, then still return
217 ** a join type, but put an error in the pParse structure.
218 */
219 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
220   int jointype = 0;
221   Token *apAll[3];
222   Token *p;
223                              /*   0123456789 123456789 123456789 123 */
224   static const char zKeyText[] = "naturaleftouterightfullinnercross";
225   static const struct {
226     u8 i;        /* Beginning of keyword text in zKeyText[] */
227     u8 nChar;    /* Length of the keyword in characters */
228     u8 code;     /* Join type mask */
229   } aKeyword[] = {
230     /* natural */ { 0,  7, JT_NATURAL                },
231     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
232     /* outer   */ { 10, 5, JT_OUTER                  },
233     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
234     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
235     /* inner   */ { 23, 5, JT_INNER                  },
236     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
237   };
238   int i, j;
239   apAll[0] = pA;
240   apAll[1] = pB;
241   apAll[2] = pC;
242   for(i=0; i<3 && apAll[i]; i++){
243     p = apAll[i];
244     for(j=0; j<ArraySize(aKeyword); j++){
245       if( p->n==aKeyword[j].nChar
246           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
247         jointype |= aKeyword[j].code;
248         break;
249       }
250     }
251     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
252     if( j>=ArraySize(aKeyword) ){
253       jointype |= JT_ERROR;
254       break;
255     }
256   }
257   if(
258      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
259      (jointype & JT_ERROR)!=0
260   ){
261     const char *zSp = " ";
262     assert( pB!=0 );
263     if( pC==0 ){ zSp++; }
264     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
265        "%T %T%s%T", pA, pB, zSp, pC);
266     jointype = JT_INNER;
267   }else if( (jointype & JT_OUTER)!=0
268          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
269     sqlite3ErrorMsg(pParse,
270       "RIGHT and FULL OUTER JOINs are not currently supported");
271     jointype = JT_INNER;
272   }
273   return jointype;
274 }
275 
276 /*
277 ** Return the index of a column in a table.  Return -1 if the column
278 ** is not contained in the table.
279 */
280 static int columnIndex(Table *pTab, const char *zCol){
281   int i;
282   for(i=0; i<pTab->nCol; i++){
283     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
284   }
285   return -1;
286 }
287 
288 /*
289 ** Search the first N tables in pSrc, from left to right, looking for a
290 ** table that has a column named zCol.
291 **
292 ** When found, set *piTab and *piCol to the table index and column index
293 ** of the matching column and return TRUE.
294 **
295 ** If not found, return FALSE.
296 */
297 static int tableAndColumnIndex(
298   SrcList *pSrc,       /* Array of tables to search */
299   int N,               /* Number of tables in pSrc->a[] to search */
300   const char *zCol,    /* Name of the column we are looking for */
301   int *piTab,          /* Write index of pSrc->a[] here */
302   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
303 ){
304   int i;               /* For looping over tables in pSrc */
305   int iCol;            /* Index of column matching zCol */
306 
307   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
308   for(i=0; i<N; i++){
309     iCol = columnIndex(pSrc->a[i].pTab, zCol);
310     if( iCol>=0 ){
311       if( piTab ){
312         *piTab = i;
313         *piCol = iCol;
314       }
315       return 1;
316     }
317   }
318   return 0;
319 }
320 
321 /*
322 ** This function is used to add terms implied by JOIN syntax to the
323 ** WHERE clause expression of a SELECT statement. The new term, which
324 ** is ANDed with the existing WHERE clause, is of the form:
325 **
326 **    (tab1.col1 = tab2.col2)
327 **
328 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
329 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
330 ** column iColRight of tab2.
331 */
332 static void addWhereTerm(
333   Parse *pParse,                  /* Parsing context */
334   SrcList *pSrc,                  /* List of tables in FROM clause */
335   int iLeft,                      /* Index of first table to join in pSrc */
336   int iColLeft,                   /* Index of column in first table */
337   int iRight,                     /* Index of second table in pSrc */
338   int iColRight,                  /* Index of column in second table */
339   int isOuterJoin,                /* True if this is an OUTER join */
340   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
341 ){
342   sqlite3 *db = pParse->db;
343   Expr *pE1;
344   Expr *pE2;
345   Expr *pEq;
346 
347   assert( iLeft<iRight );
348   assert( pSrc->nSrc>iRight );
349   assert( pSrc->a[iLeft].pTab );
350   assert( pSrc->a[iRight].pTab );
351 
352   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
353   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
354 
355   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
356   if( pEq && isOuterJoin ){
357     ExprSetProperty(pEq, EP_FromJoin);
358     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
359     ExprSetVVAProperty(pEq, EP_NoReduce);
360     pEq->iRightJoinTable = (i16)pE2->iTable;
361   }
362   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
363 }
364 
365 /*
366 ** Set the EP_FromJoin property on all terms of the given expression.
367 ** And set the Expr.iRightJoinTable to iTable for every term in the
368 ** expression.
369 **
370 ** The EP_FromJoin property is used on terms of an expression to tell
371 ** the LEFT OUTER JOIN processing logic that this term is part of the
372 ** join restriction specified in the ON or USING clause and not a part
373 ** of the more general WHERE clause.  These terms are moved over to the
374 ** WHERE clause during join processing but we need to remember that they
375 ** originated in the ON or USING clause.
376 **
377 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
378 ** expression depends on table iRightJoinTable even if that table is not
379 ** explicitly mentioned in the expression.  That information is needed
380 ** for cases like this:
381 **
382 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
383 **
384 ** The where clause needs to defer the handling of the t1.x=5
385 ** term until after the t2 loop of the join.  In that way, a
386 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
387 ** defer the handling of t1.x=5, it will be processed immediately
388 ** after the t1 loop and rows with t1.x!=5 will never appear in
389 ** the output, which is incorrect.
390 */
391 static void setJoinExpr(Expr *p, int iTable){
392   while( p ){
393     ExprSetProperty(p, EP_FromJoin);
394     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
395     ExprSetVVAProperty(p, EP_NoReduce);
396     p->iRightJoinTable = (i16)iTable;
397     if( p->op==TK_FUNCTION && p->x.pList ){
398       int i;
399       for(i=0; i<p->x.pList->nExpr; i++){
400         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
401       }
402     }
403     setJoinExpr(p->pLeft, iTable);
404     p = p->pRight;
405   }
406 }
407 
408 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
410 ** an ordinary term that omits the EP_FromJoin mark.
411 **
412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
413 */
414 static void unsetJoinExpr(Expr *p, int iTable){
415   while( p ){
416     if( ExprHasProperty(p, EP_FromJoin)
417      && (iTable<0 || p->iRightJoinTable==iTable) ){
418       ExprClearProperty(p, EP_FromJoin);
419     }
420     if( p->op==TK_FUNCTION && p->x.pList ){
421       int i;
422       for(i=0; i<p->x.pList->nExpr; i++){
423         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
424       }
425     }
426     unsetJoinExpr(p->pLeft, iTable);
427     p = p->pRight;
428   }
429 }
430 
431 /*
432 ** This routine processes the join information for a SELECT statement.
433 ** ON and USING clauses are converted into extra terms of the WHERE clause.
434 ** NATURAL joins also create extra WHERE clause terms.
435 **
436 ** The terms of a FROM clause are contained in the Select.pSrc structure.
437 ** The left most table is the first entry in Select.pSrc.  The right-most
438 ** table is the last entry.  The join operator is held in the entry to
439 ** the left.  Thus entry 0 contains the join operator for the join between
440 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
441 ** also attached to the left entry.
442 **
443 ** This routine returns the number of errors encountered.
444 */
445 static int sqliteProcessJoin(Parse *pParse, Select *p){
446   SrcList *pSrc;                  /* All tables in the FROM clause */
447   int i, j;                       /* Loop counters */
448   struct SrcList_item *pLeft;     /* Left table being joined */
449   struct SrcList_item *pRight;    /* Right table being joined */
450 
451   pSrc = p->pSrc;
452   pLeft = &pSrc->a[0];
453   pRight = &pLeft[1];
454   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
455     Table *pRightTab = pRight->pTab;
456     int isOuter;
457 
458     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
459     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
460 
461     /* When the NATURAL keyword is present, add WHERE clause terms for
462     ** every column that the two tables have in common.
463     */
464     if( pRight->fg.jointype & JT_NATURAL ){
465       if( pRight->pOn || pRight->pUsing ){
466         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
467            "an ON or USING clause", 0);
468         return 1;
469       }
470       for(j=0; j<pRightTab->nCol; j++){
471         char *zName;   /* Name of column in the right table */
472         int iLeft;     /* Matching left table */
473         int iLeftCol;  /* Matching column in the left table */
474 
475         zName = pRightTab->aCol[j].zName;
476         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
477           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
478                        isOuter, &p->pWhere);
479         }
480       }
481     }
482 
483     /* Disallow both ON and USING clauses in the same join
484     */
485     if( pRight->pOn && pRight->pUsing ){
486       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
487         "clauses in the same join");
488       return 1;
489     }
490 
491     /* Add the ON clause to the end of the WHERE clause, connected by
492     ** an AND operator.
493     */
494     if( pRight->pOn ){
495       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
496       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
497       pRight->pOn = 0;
498     }
499 
500     /* Create extra terms on the WHERE clause for each column named
501     ** in the USING clause.  Example: If the two tables to be joined are
502     ** A and B and the USING clause names X, Y, and Z, then add this
503     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
504     ** Report an error if any column mentioned in the USING clause is
505     ** not contained in both tables to be joined.
506     */
507     if( pRight->pUsing ){
508       IdList *pList = pRight->pUsing;
509       for(j=0; j<pList->nId; j++){
510         char *zName;     /* Name of the term in the USING clause */
511         int iLeft;       /* Table on the left with matching column name */
512         int iLeftCol;    /* Column number of matching column on the left */
513         int iRightCol;   /* Column number of matching column on the right */
514 
515         zName = pList->a[j].zName;
516         iRightCol = columnIndex(pRightTab, zName);
517         if( iRightCol<0
518          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
519         ){
520           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
521             "not present in both tables", zName);
522           return 1;
523         }
524         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
525                      isOuter, &p->pWhere);
526       }
527     }
528   }
529   return 0;
530 }
531 
532 /* Forward reference */
533 static KeyInfo *keyInfoFromExprList(
534   Parse *pParse,       /* Parsing context */
535   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
536   int iStart,          /* Begin with this column of pList */
537   int nExtra           /* Add this many extra columns to the end */
538 );
539 
540 /*
541 ** An instance of this object holds information (beyond pParse and pSelect)
542 ** needed to load the next result row that is to be added to the sorter.
543 */
544 typedef struct RowLoadInfo RowLoadInfo;
545 struct RowLoadInfo {
546   int regResult;               /* Store results in array of registers here */
547   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549   ExprList *pExtra;            /* Extra columns needed by sorter refs */
550   int regExtraResult;          /* Where to load the extra columns */
551 #endif
552 };
553 
554 /*
555 ** This routine does the work of loading query data into an array of
556 ** registers so that it can be added to the sorter.
557 */
558 static void innerLoopLoadRow(
559   Parse *pParse,             /* Statement under construction */
560   Select *pSelect,           /* The query being coded */
561   RowLoadInfo *pInfo         /* Info needed to complete the row load */
562 ){
563   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
564                           0, pInfo->ecelFlags);
565 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
566   if( pInfo->pExtra ){
567     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
568     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
569   }
570 #endif
571 }
572 
573 /*
574 ** Code the OP_MakeRecord instruction that generates the entry to be
575 ** added into the sorter.
576 **
577 ** Return the register in which the result is stored.
578 */
579 static int makeSorterRecord(
580   Parse *pParse,
581   SortCtx *pSort,
582   Select *pSelect,
583   int regBase,
584   int nBase
585 ){
586   int nOBSat = pSort->nOBSat;
587   Vdbe *v = pParse->pVdbe;
588   int regOut = ++pParse->nMem;
589   if( pSort->pDeferredRowLoad ){
590     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
591   }
592   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
593   return regOut;
594 }
595 
596 /*
597 ** Generate code that will push the record in registers regData
598 ** through regData+nData-1 onto the sorter.
599 */
600 static void pushOntoSorter(
601   Parse *pParse,         /* Parser context */
602   SortCtx *pSort,        /* Information about the ORDER BY clause */
603   Select *pSelect,       /* The whole SELECT statement */
604   int regData,           /* First register holding data to be sorted */
605   int regOrigData,       /* First register holding data before packing */
606   int nData,             /* Number of elements in the regData data array */
607   int nPrefixReg         /* No. of reg prior to regData available for use */
608 ){
609   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
610   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
611   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
612   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
613   int regBase;                                     /* Regs for sorter record */
614   int regRecord = 0;                               /* Assembled sorter record */
615   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
616   int op;                            /* Opcode to add sorter record to sorter */
617   int iLimit;                        /* LIMIT counter */
618   int iSkip = 0;                     /* End of the sorter insert loop */
619 
620   assert( bSeq==0 || bSeq==1 );
621 
622   /* Three cases:
623   **   (1) The data to be sorted has already been packed into a Record
624   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
625   **       will be completely unrelated to regOrigData.
626   **   (2) All output columns are included in the sort record.  In that
627   **       case regData==regOrigData.
628   **   (3) Some output columns are omitted from the sort record due to
629   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
630   **       SQLITE_ECEL_OMITREF optimization.  In that case, regOrigData==0
631   **       to prevent this routine from trying to copy values that might
632   **       not exist.
633   */
634   assert( nData==1 || regData==regOrigData || regOrigData==0 );
635 
636   if( nPrefixReg ){
637     assert( nPrefixReg==nExpr+bSeq );
638     regBase = regData - nPrefixReg;
639   }else{
640     regBase = pParse->nMem + 1;
641     pParse->nMem += nBase;
642   }
643   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
644   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
645   pSort->labelDone = sqlite3VdbeMakeLabel(v);
646   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
647                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
648   if( bSeq ){
649     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
650   }
651   if( nPrefixReg==0 && nData>0 ){
652     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
653   }
654   if( nOBSat>0 ){
655     int regPrevKey;   /* The first nOBSat columns of the previous row */
656     int addrFirst;    /* Address of the OP_IfNot opcode */
657     int addrJmp;      /* Address of the OP_Jump opcode */
658     VdbeOp *pOp;      /* Opcode that opens the sorter */
659     int nKey;         /* Number of sorting key columns, including OP_Sequence */
660     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
661 
662     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
663     regPrevKey = pParse->nMem+1;
664     pParse->nMem += pSort->nOBSat;
665     nKey = nExpr - pSort->nOBSat + bSeq;
666     if( bSeq ){
667       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
668     }else{
669       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
670     }
671     VdbeCoverage(v);
672     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
673     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
674     if( pParse->db->mallocFailed ) return;
675     pOp->p2 = nKey + nData;
676     pKI = pOp->p4.pKeyInfo;
677     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
678     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
679     testcase( pKI->nAllField > pKI->nKeyField+2 );
680     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
681                                            pKI->nAllField-pKI->nKeyField-1);
682     addrJmp = sqlite3VdbeCurrentAddr(v);
683     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
684     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
685     pSort->regReturn = ++pParse->nMem;
686     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
687     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
688     if( iLimit ){
689       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
690       VdbeCoverage(v);
691     }
692     sqlite3VdbeJumpHere(v, addrFirst);
693     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
694     sqlite3VdbeJumpHere(v, addrJmp);
695   }
696   if( iLimit ){
697     /* At this point the values for the new sorter entry are stored
698     ** in an array of registers. They need to be composed into a record
699     ** and inserted into the sorter if either (a) there are currently
700     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
701     ** the largest record currently in the sorter. If (b) is true and there
702     ** are already LIMIT+OFFSET items in the sorter, delete the largest
703     ** entry before inserting the new one. This way there are never more
704     ** than LIMIT+OFFSET items in the sorter.
705     **
706     ** If the new record does not need to be inserted into the sorter,
707     ** jump to the next iteration of the loop. Or, if the
708     ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
709     ** loop delivers items in sorted order, jump to the next iteration
710     ** of the outer loop.
711     */
712     int iCsr = pSort->iECursor;
713     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
714     VdbeCoverage(v);
715     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
716     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
717                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
718     VdbeCoverage(v);
719     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
720   }
721   if( regRecord==0 ){
722     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
723   }
724   if( pSort->sortFlags & SORTFLAG_UseSorter ){
725     op = OP_SorterInsert;
726   }else{
727     op = OP_IdxInsert;
728   }
729   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
730                        regBase+nOBSat, nBase-nOBSat);
731   if( iSkip ){
732     assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
733     sqlite3VdbeChangeP2(v, iSkip,
734          sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
735   }
736 }
737 
738 /*
739 ** Add code to implement the OFFSET
740 */
741 static void codeOffset(
742   Vdbe *v,          /* Generate code into this VM */
743   int iOffset,      /* Register holding the offset counter */
744   int iContinue     /* Jump here to skip the current record */
745 ){
746   if( iOffset>0 ){
747     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
748     VdbeComment((v, "OFFSET"));
749   }
750 }
751 
752 /*
753 ** Add code that will check to make sure the N registers starting at iMem
754 ** form a distinct entry.  iTab is a sorting index that holds previously
755 ** seen combinations of the N values.  A new entry is made in iTab
756 ** if the current N values are new.
757 **
758 ** A jump to addrRepeat is made and the N+1 values are popped from the
759 ** stack if the top N elements are not distinct.
760 */
761 static void codeDistinct(
762   Parse *pParse,     /* Parsing and code generating context */
763   int iTab,          /* A sorting index used to test for distinctness */
764   int addrRepeat,    /* Jump to here if not distinct */
765   int N,             /* Number of elements */
766   int iMem           /* First element */
767 ){
768   Vdbe *v;
769   int r1;
770 
771   v = pParse->pVdbe;
772   r1 = sqlite3GetTempReg(pParse);
773   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
774   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
775   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
776   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
777   sqlite3ReleaseTempReg(pParse, r1);
778 }
779 
780 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
781 /*
782 ** This function is called as part of inner-loop generation for a SELECT
783 ** statement with an ORDER BY that is not optimized by an index. It
784 ** determines the expressions, if any, that the sorter-reference
785 ** optimization should be used for. The sorter-reference optimization
786 ** is used for SELECT queries like:
787 **
788 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
789 **
790 ** If the optimization is used for expression "bigblob", then instead of
791 ** storing values read from that column in the sorter records, the PK of
792 ** the row from table t1 is stored instead. Then, as records are extracted from
793 ** the sorter to return to the user, the required value of bigblob is
794 ** retrieved directly from table t1. If the values are very large, this
795 ** can be more efficient than storing them directly in the sorter records.
796 **
797 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
798 ** for which the sorter-reference optimization should be enabled.
799 ** Additionally, the pSort->aDefer[] array is populated with entries
800 ** for all cursors required to evaluate all selected expressions. Finally.
801 ** output variable (*ppExtra) is set to an expression list containing
802 ** expressions for all extra PK values that should be stored in the
803 ** sorter records.
804 */
805 static void selectExprDefer(
806   Parse *pParse,                  /* Leave any error here */
807   SortCtx *pSort,                 /* Sorter context */
808   ExprList *pEList,               /* Expressions destined for sorter */
809   ExprList **ppExtra              /* Expressions to append to sorter record */
810 ){
811   int i;
812   int nDefer = 0;
813   ExprList *pExtra = 0;
814   for(i=0; i<pEList->nExpr; i++){
815     struct ExprList_item *pItem = &pEList->a[i];
816     if( pItem->u.x.iOrderByCol==0 ){
817       Expr *pExpr = pItem->pExpr;
818       Table *pTab = pExpr->pTab;
819       if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab)
820        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
821       ){
822         int j;
823         for(j=0; j<nDefer; j++){
824           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
825         }
826         if( j==nDefer ){
827           if( nDefer==ArraySize(pSort->aDefer) ){
828             continue;
829           }else{
830             int nKey = 1;
831             int k;
832             Index *pPk = 0;
833             if( !HasRowid(pTab) ){
834               pPk = sqlite3PrimaryKeyIndex(pTab);
835               nKey = pPk->nKeyCol;
836             }
837             for(k=0; k<nKey; k++){
838               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
839               if( pNew ){
840                 pNew->iTable = pExpr->iTable;
841                 pNew->pTab = pExpr->pTab;
842                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
843                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
844               }
845             }
846             pSort->aDefer[nDefer].pTab = pExpr->pTab;
847             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
848             pSort->aDefer[nDefer].nKey = nKey;
849             nDefer++;
850           }
851         }
852         pItem->bSorterRef = 1;
853       }
854     }
855   }
856   pSort->nDefer = (u8)nDefer;
857   *ppExtra = pExtra;
858 }
859 #endif
860 
861 /*
862 ** This routine generates the code for the inside of the inner loop
863 ** of a SELECT.
864 **
865 ** If srcTab is negative, then the p->pEList expressions
866 ** are evaluated in order to get the data for this row.  If srcTab is
867 ** zero or more, then data is pulled from srcTab and p->pEList is used only
868 ** to get the number of columns and the collation sequence for each column.
869 */
870 static void selectInnerLoop(
871   Parse *pParse,          /* The parser context */
872   Select *p,              /* The complete select statement being coded */
873   int srcTab,             /* Pull data from this table if non-negative */
874   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
875   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
876   SelectDest *pDest,      /* How to dispose of the results */
877   int iContinue,          /* Jump here to continue with next row */
878   int iBreak              /* Jump here to break out of the inner loop */
879 ){
880   Vdbe *v = pParse->pVdbe;
881   int i;
882   int hasDistinct;            /* True if the DISTINCT keyword is present */
883   int eDest = pDest->eDest;   /* How to dispose of results */
884   int iParm = pDest->iSDParm; /* First argument to disposal method */
885   int nResultCol;             /* Number of result columns */
886   int nPrefixReg = 0;         /* Number of extra registers before regResult */
887   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
888 
889   /* Usually, regResult is the first cell in an array of memory cells
890   ** containing the current result row. In this case regOrig is set to the
891   ** same value. However, if the results are being sent to the sorter, the
892   ** values for any expressions that are also part of the sort-key are omitted
893   ** from this array. In this case regOrig is set to zero.  */
894   int regResult;              /* Start of memory holding current results */
895   int regOrig;                /* Start of memory holding full result (or 0) */
896 
897   assert( v );
898   assert( p->pEList!=0 );
899   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
900   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
901   if( pSort==0 && !hasDistinct ){
902     assert( iContinue!=0 );
903     codeOffset(v, p->iOffset, iContinue);
904   }
905 
906   /* Pull the requested columns.
907   */
908   nResultCol = p->pEList->nExpr;
909 
910   if( pDest->iSdst==0 ){
911     if( pSort ){
912       nPrefixReg = pSort->pOrderBy->nExpr;
913       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
914       pParse->nMem += nPrefixReg;
915     }
916     pDest->iSdst = pParse->nMem+1;
917     pParse->nMem += nResultCol;
918   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
919     /* This is an error condition that can result, for example, when a SELECT
920     ** on the right-hand side of an INSERT contains more result columns than
921     ** there are columns in the table on the left.  The error will be caught
922     ** and reported later.  But we need to make sure enough memory is allocated
923     ** to avoid other spurious errors in the meantime. */
924     pParse->nMem += nResultCol;
925   }
926   pDest->nSdst = nResultCol;
927   regOrig = regResult = pDest->iSdst;
928   if( srcTab>=0 ){
929     for(i=0; i<nResultCol; i++){
930       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
931       VdbeComment((v, "%s", p->pEList->a[i].zName));
932     }
933   }else if( eDest!=SRT_Exists ){
934 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
935     ExprList *pExtra = 0;
936 #endif
937     /* If the destination is an EXISTS(...) expression, the actual
938     ** values returned by the SELECT are not required.
939     */
940     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
941     ExprList *pEList;
942     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
943       ecelFlags = SQLITE_ECEL_DUP;
944     }else{
945       ecelFlags = 0;
946     }
947     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
948       /* For each expression in p->pEList that is a copy of an expression in
949       ** the ORDER BY clause (pSort->pOrderBy), set the associated
950       ** iOrderByCol value to one more than the index of the ORDER BY
951       ** expression within the sort-key that pushOntoSorter() will generate.
952       ** This allows the p->pEList field to be omitted from the sorted record,
953       ** saving space and CPU cycles.  */
954       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
955 
956       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
957         int j;
958         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
959           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
960         }
961       }
962 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
963       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
964       if( pExtra && pParse->db->mallocFailed==0 ){
965         /* If there are any extra PK columns to add to the sorter records,
966         ** allocate extra memory cells and adjust the OpenEphemeral
967         ** instruction to account for the larger records. This is only
968         ** required if there are one or more WITHOUT ROWID tables with
969         ** composite primary keys in the SortCtx.aDefer[] array.  */
970         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
971         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
972         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
973         pParse->nMem += pExtra->nExpr;
974       }
975 #endif
976 
977       /* Adjust nResultCol to account for columns that are omitted
978       ** from the sorter by the optimizations in this branch */
979       pEList = p->pEList;
980       for(i=0; i<pEList->nExpr; i++){
981         if( pEList->a[i].u.x.iOrderByCol>0
982 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
983          || pEList->a[i].bSorterRef
984 #endif
985         ){
986           nResultCol--;
987           regOrig = 0;
988         }
989       }
990 
991       testcase( regOrig );
992       testcase( eDest==SRT_Set );
993       testcase( eDest==SRT_Mem );
994       testcase( eDest==SRT_Coroutine );
995       testcase( eDest==SRT_Output );
996       assert( eDest==SRT_Set || eDest==SRT_Mem
997            || eDest==SRT_Coroutine || eDest==SRT_Output );
998     }
999     sRowLoadInfo.regResult = regResult;
1000     sRowLoadInfo.ecelFlags = ecelFlags;
1001 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1002     sRowLoadInfo.pExtra = pExtra;
1003     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1004     if( pExtra ) nResultCol += pExtra->nExpr;
1005 #endif
1006     if( p->iLimit
1007      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1008      && nPrefixReg>0
1009     ){
1010       assert( pSort!=0 );
1011       assert( hasDistinct==0 );
1012       pSort->pDeferredRowLoad = &sRowLoadInfo;
1013     }else{
1014       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1015     }
1016   }
1017 
1018   /* If the DISTINCT keyword was present on the SELECT statement
1019   ** and this row has been seen before, then do not make this row
1020   ** part of the result.
1021   */
1022   if( hasDistinct ){
1023     switch( pDistinct->eTnctType ){
1024       case WHERE_DISTINCT_ORDERED: {
1025         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1026         int iJump;              /* Jump destination */
1027         int regPrev;            /* Previous row content */
1028 
1029         /* Allocate space for the previous row */
1030         regPrev = pParse->nMem+1;
1031         pParse->nMem += nResultCol;
1032 
1033         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1034         ** sets the MEM_Cleared bit on the first register of the
1035         ** previous value.  This will cause the OP_Ne below to always
1036         ** fail on the first iteration of the loop even if the first
1037         ** row is all NULLs.
1038         */
1039         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1040         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1041         pOp->opcode = OP_Null;
1042         pOp->p1 = 1;
1043         pOp->p2 = regPrev;
1044 
1045         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1046         for(i=0; i<nResultCol; i++){
1047           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1048           if( i<nResultCol-1 ){
1049             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1050             VdbeCoverage(v);
1051           }else{
1052             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1053             VdbeCoverage(v);
1054            }
1055           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1056           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1057         }
1058         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1059         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1060         break;
1061       }
1062 
1063       case WHERE_DISTINCT_UNIQUE: {
1064         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1065         break;
1066       }
1067 
1068       default: {
1069         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1070         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1071                      regResult);
1072         break;
1073       }
1074     }
1075     if( pSort==0 ){
1076       codeOffset(v, p->iOffset, iContinue);
1077     }
1078   }
1079 
1080   switch( eDest ){
1081     /* In this mode, write each query result to the key of the temporary
1082     ** table iParm.
1083     */
1084 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1085     case SRT_Union: {
1086       int r1;
1087       r1 = sqlite3GetTempReg(pParse);
1088       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1089       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1090       sqlite3ReleaseTempReg(pParse, r1);
1091       break;
1092     }
1093 
1094     /* Construct a record from the query result, but instead of
1095     ** saving that record, use it as a key to delete elements from
1096     ** the temporary table iParm.
1097     */
1098     case SRT_Except: {
1099       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1100       break;
1101     }
1102 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1103 
1104     /* Store the result as data using a unique key.
1105     */
1106     case SRT_Fifo:
1107     case SRT_DistFifo:
1108     case SRT_Table:
1109     case SRT_EphemTab: {
1110       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1111       testcase( eDest==SRT_Table );
1112       testcase( eDest==SRT_EphemTab );
1113       testcase( eDest==SRT_Fifo );
1114       testcase( eDest==SRT_DistFifo );
1115       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1116 #ifndef SQLITE_OMIT_CTE
1117       if( eDest==SRT_DistFifo ){
1118         /* If the destination is DistFifo, then cursor (iParm+1) is open
1119         ** on an ephemeral index. If the current row is already present
1120         ** in the index, do not write it to the output. If not, add the
1121         ** current row to the index and proceed with writing it to the
1122         ** output table as well.  */
1123         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1124         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1125         VdbeCoverage(v);
1126         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1127         assert( pSort==0 );
1128       }
1129 #endif
1130       if( pSort ){
1131         assert( regResult==regOrig );
1132         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1133       }else{
1134         int r2 = sqlite3GetTempReg(pParse);
1135         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1136         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1137         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1138         sqlite3ReleaseTempReg(pParse, r2);
1139       }
1140       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1141       break;
1142     }
1143 
1144 #ifndef SQLITE_OMIT_SUBQUERY
1145     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1146     ** then there should be a single item on the stack.  Write this
1147     ** item into the set table with bogus data.
1148     */
1149     case SRT_Set: {
1150       if( pSort ){
1151         /* At first glance you would think we could optimize out the
1152         ** ORDER BY in this case since the order of entries in the set
1153         ** does not matter.  But there might be a LIMIT clause, in which
1154         ** case the order does matter */
1155         pushOntoSorter(
1156             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1157       }else{
1158         int r1 = sqlite3GetTempReg(pParse);
1159         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1160         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1161             r1, pDest->zAffSdst, nResultCol);
1162         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1163         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1164         sqlite3ReleaseTempReg(pParse, r1);
1165       }
1166       break;
1167     }
1168 
1169     /* If any row exist in the result set, record that fact and abort.
1170     */
1171     case SRT_Exists: {
1172       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1173       /* The LIMIT clause will terminate the loop for us */
1174       break;
1175     }
1176 
1177     /* If this is a scalar select that is part of an expression, then
1178     ** store the results in the appropriate memory cell or array of
1179     ** memory cells and break out of the scan loop.
1180     */
1181     case SRT_Mem: {
1182       if( pSort ){
1183         assert( nResultCol<=pDest->nSdst );
1184         pushOntoSorter(
1185             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1186       }else{
1187         assert( nResultCol==pDest->nSdst );
1188         assert( regResult==iParm );
1189         /* The LIMIT clause will jump out of the loop for us */
1190       }
1191       break;
1192     }
1193 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1194 
1195     case SRT_Coroutine:       /* Send data to a co-routine */
1196     case SRT_Output: {        /* Return the results */
1197       testcase( eDest==SRT_Coroutine );
1198       testcase( eDest==SRT_Output );
1199       if( pSort ){
1200         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1201                        nPrefixReg);
1202       }else if( eDest==SRT_Coroutine ){
1203         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1204       }else{
1205         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1206         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1207       }
1208       break;
1209     }
1210 
1211 #ifndef SQLITE_OMIT_CTE
1212     /* Write the results into a priority queue that is order according to
1213     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1214     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1215     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1216     ** final OP_Sequence column.  The last column is the record as a blob.
1217     */
1218     case SRT_DistQueue:
1219     case SRT_Queue: {
1220       int nKey;
1221       int r1, r2, r3;
1222       int addrTest = 0;
1223       ExprList *pSO;
1224       pSO = pDest->pOrderBy;
1225       assert( pSO );
1226       nKey = pSO->nExpr;
1227       r1 = sqlite3GetTempReg(pParse);
1228       r2 = sqlite3GetTempRange(pParse, nKey+2);
1229       r3 = r2+nKey+1;
1230       if( eDest==SRT_DistQueue ){
1231         /* If the destination is DistQueue, then cursor (iParm+1) is open
1232         ** on a second ephemeral index that holds all values every previously
1233         ** added to the queue. */
1234         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1235                                         regResult, nResultCol);
1236         VdbeCoverage(v);
1237       }
1238       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1239       if( eDest==SRT_DistQueue ){
1240         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1241         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1242       }
1243       for(i=0; i<nKey; i++){
1244         sqlite3VdbeAddOp2(v, OP_SCopy,
1245                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1246                           r2+i);
1247       }
1248       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1249       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1250       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1251       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1252       sqlite3ReleaseTempReg(pParse, r1);
1253       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1254       break;
1255     }
1256 #endif /* SQLITE_OMIT_CTE */
1257 
1258 
1259 
1260 #if !defined(SQLITE_OMIT_TRIGGER)
1261     /* Discard the results.  This is used for SELECT statements inside
1262     ** the body of a TRIGGER.  The purpose of such selects is to call
1263     ** user-defined functions that have side effects.  We do not care
1264     ** about the actual results of the select.
1265     */
1266     default: {
1267       assert( eDest==SRT_Discard );
1268       break;
1269     }
1270 #endif
1271   }
1272 
1273   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1274   ** there is a sorter, in which case the sorter has already limited
1275   ** the output for us.
1276   */
1277   if( pSort==0 && p->iLimit ){
1278     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1279   }
1280 }
1281 
1282 /*
1283 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1284 ** X extra columns.
1285 */
1286 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1287   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1288   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1289   if( p ){
1290     p->aSortOrder = (u8*)&p->aColl[N+X];
1291     p->nKeyField = (u16)N;
1292     p->nAllField = (u16)(N+X);
1293     p->enc = ENC(db);
1294     p->db = db;
1295     p->nRef = 1;
1296     memset(&p[1], 0, nExtra);
1297   }else{
1298     sqlite3OomFault(db);
1299   }
1300   return p;
1301 }
1302 
1303 /*
1304 ** Deallocate a KeyInfo object
1305 */
1306 void sqlite3KeyInfoUnref(KeyInfo *p){
1307   if( p ){
1308     assert( p->nRef>0 );
1309     p->nRef--;
1310     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1311   }
1312 }
1313 
1314 /*
1315 ** Make a new pointer to a KeyInfo object
1316 */
1317 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1318   if( p ){
1319     assert( p->nRef>0 );
1320     p->nRef++;
1321   }
1322   return p;
1323 }
1324 
1325 #ifdef SQLITE_DEBUG
1326 /*
1327 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1328 ** can only be changed if this is just a single reference to the object.
1329 **
1330 ** This routine is used only inside of assert() statements.
1331 */
1332 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1333 #endif /* SQLITE_DEBUG */
1334 
1335 /*
1336 ** Given an expression list, generate a KeyInfo structure that records
1337 ** the collating sequence for each expression in that expression list.
1338 **
1339 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1340 ** KeyInfo structure is appropriate for initializing a virtual index to
1341 ** implement that clause.  If the ExprList is the result set of a SELECT
1342 ** then the KeyInfo structure is appropriate for initializing a virtual
1343 ** index to implement a DISTINCT test.
1344 **
1345 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1346 ** function is responsible for seeing that this structure is eventually
1347 ** freed.
1348 */
1349 static KeyInfo *keyInfoFromExprList(
1350   Parse *pParse,       /* Parsing context */
1351   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1352   int iStart,          /* Begin with this column of pList */
1353   int nExtra           /* Add this many extra columns to the end */
1354 ){
1355   int nExpr;
1356   KeyInfo *pInfo;
1357   struct ExprList_item *pItem;
1358   sqlite3 *db = pParse->db;
1359   int i;
1360 
1361   nExpr = pList->nExpr;
1362   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1363   if( pInfo ){
1364     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1365     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1366       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1367       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1368     }
1369   }
1370   return pInfo;
1371 }
1372 
1373 /*
1374 ** Name of the connection operator, used for error messages.
1375 */
1376 static const char *selectOpName(int id){
1377   char *z;
1378   switch( id ){
1379     case TK_ALL:       z = "UNION ALL";   break;
1380     case TK_INTERSECT: z = "INTERSECT";   break;
1381     case TK_EXCEPT:    z = "EXCEPT";      break;
1382     default:           z = "UNION";       break;
1383   }
1384   return z;
1385 }
1386 
1387 #ifndef SQLITE_OMIT_EXPLAIN
1388 /*
1389 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1390 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1391 ** where the caption is of the form:
1392 **
1393 **   "USE TEMP B-TREE FOR xxx"
1394 **
1395 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1396 ** is determined by the zUsage argument.
1397 */
1398 static void explainTempTable(Parse *pParse, const char *zUsage){
1399   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1400 }
1401 
1402 /*
1403 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1404 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1405 ** in sqlite3Select() to assign values to structure member variables that
1406 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1407 ** code with #ifndef directives.
1408 */
1409 # define explainSetInteger(a, b) a = b
1410 
1411 #else
1412 /* No-op versions of the explainXXX() functions and macros. */
1413 # define explainTempTable(y,z)
1414 # define explainSetInteger(y,z)
1415 #endif
1416 
1417 
1418 /*
1419 ** If the inner loop was generated using a non-null pOrderBy argument,
1420 ** then the results were placed in a sorter.  After the loop is terminated
1421 ** we need to run the sorter and output the results.  The following
1422 ** routine generates the code needed to do that.
1423 */
1424 static void generateSortTail(
1425   Parse *pParse,    /* Parsing context */
1426   Select *p,        /* The SELECT statement */
1427   SortCtx *pSort,   /* Information on the ORDER BY clause */
1428   int nColumn,      /* Number of columns of data */
1429   SelectDest *pDest /* Write the sorted results here */
1430 ){
1431   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1432   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1433   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1434   int addr;                       /* Top of output loop. Jump for Next. */
1435   int addrOnce = 0;
1436   int iTab;
1437   ExprList *pOrderBy = pSort->pOrderBy;
1438   int eDest = pDest->eDest;
1439   int iParm = pDest->iSDParm;
1440   int regRow;
1441   int regRowid;
1442   int iCol;
1443   int nKey;                       /* Number of key columns in sorter record */
1444   int iSortTab;                   /* Sorter cursor to read from */
1445   int i;
1446   int bSeq;                       /* True if sorter record includes seq. no. */
1447   int nRefKey = 0;
1448   struct ExprList_item *aOutEx = p->pEList->a;
1449 
1450   assert( addrBreak<0 );
1451   if( pSort->labelBkOut ){
1452     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1453     sqlite3VdbeGoto(v, addrBreak);
1454     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1455   }
1456 
1457 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1458   /* Open any cursors needed for sorter-reference expressions */
1459   for(i=0; i<pSort->nDefer; i++){
1460     Table *pTab = pSort->aDefer[i].pTab;
1461     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1462     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1463     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1464   }
1465 #endif
1466 
1467   iTab = pSort->iECursor;
1468   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1469     regRowid = 0;
1470     regRow = pDest->iSdst;
1471   }else{
1472     regRowid = sqlite3GetTempReg(pParse);
1473     regRow = sqlite3GetTempRange(pParse, nColumn);
1474   }
1475   nKey = pOrderBy->nExpr - pSort->nOBSat;
1476   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1477     int regSortOut = ++pParse->nMem;
1478     iSortTab = pParse->nTab++;
1479     if( pSort->labelBkOut ){
1480       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1481     }
1482     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1483         nKey+1+nColumn+nRefKey);
1484     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1485     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1486     VdbeCoverage(v);
1487     codeOffset(v, p->iOffset, addrContinue);
1488     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1489     bSeq = 0;
1490   }else{
1491     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1492     codeOffset(v, p->iOffset, addrContinue);
1493     iSortTab = iTab;
1494     bSeq = 1;
1495   }
1496   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1497 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1498     if( aOutEx[i].bSorterRef ) continue;
1499 #endif
1500     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1501   }
1502 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1503   if( pSort->nDefer ){
1504     int iKey = iCol+1;
1505     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1506 
1507     for(i=0; i<pSort->nDefer; i++){
1508       int iCsr = pSort->aDefer[i].iCsr;
1509       Table *pTab = pSort->aDefer[i].pTab;
1510       int nKey = pSort->aDefer[i].nKey;
1511 
1512       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1513       if( HasRowid(pTab) ){
1514         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1515         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1516             sqlite3VdbeCurrentAddr(v)+1, regKey);
1517       }else{
1518         int k;
1519         int iJmp;
1520         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1521         for(k=0; k<nKey; k++){
1522           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1523         }
1524         iJmp = sqlite3VdbeCurrentAddr(v);
1525         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1526         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1527         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1528       }
1529     }
1530     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1531   }
1532 #endif
1533   for(i=nColumn-1; i>=0; i--){
1534 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1535     if( aOutEx[i].bSorterRef ){
1536       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1537     }else
1538 #endif
1539     {
1540       int iRead;
1541       if( aOutEx[i].u.x.iOrderByCol ){
1542         iRead = aOutEx[i].u.x.iOrderByCol-1;
1543       }else{
1544         iRead = iCol--;
1545       }
1546       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1547       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1548     }
1549   }
1550   switch( eDest ){
1551     case SRT_Table:
1552     case SRT_EphemTab: {
1553       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1554       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1555       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1556       break;
1557     }
1558 #ifndef SQLITE_OMIT_SUBQUERY
1559     case SRT_Set: {
1560       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1561       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1562                         pDest->zAffSdst, nColumn);
1563       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1564       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1565       break;
1566     }
1567     case SRT_Mem: {
1568       /* The LIMIT clause will terminate the loop for us */
1569       break;
1570     }
1571 #endif
1572     default: {
1573       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1574       testcase( eDest==SRT_Output );
1575       testcase( eDest==SRT_Coroutine );
1576       if( eDest==SRT_Output ){
1577         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1578         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1579       }else{
1580         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1581       }
1582       break;
1583     }
1584   }
1585   if( regRowid ){
1586     if( eDest==SRT_Set ){
1587       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1588     }else{
1589       sqlite3ReleaseTempReg(pParse, regRow);
1590     }
1591     sqlite3ReleaseTempReg(pParse, regRowid);
1592   }
1593   /* The bottom of the loop
1594   */
1595   sqlite3VdbeResolveLabel(v, addrContinue);
1596   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1597     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1598   }else{
1599     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1600   }
1601   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1602   sqlite3VdbeResolveLabel(v, addrBreak);
1603 }
1604 
1605 /*
1606 ** Return a pointer to a string containing the 'declaration type' of the
1607 ** expression pExpr. The string may be treated as static by the caller.
1608 **
1609 ** Also try to estimate the size of the returned value and return that
1610 ** result in *pEstWidth.
1611 **
1612 ** The declaration type is the exact datatype definition extracted from the
1613 ** original CREATE TABLE statement if the expression is a column. The
1614 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1615 ** is considered a column can be complex in the presence of subqueries. The
1616 ** result-set expression in all of the following SELECT statements is
1617 ** considered a column by this function.
1618 **
1619 **   SELECT col FROM tbl;
1620 **   SELECT (SELECT col FROM tbl;
1621 **   SELECT (SELECT col FROM tbl);
1622 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1623 **
1624 ** The declaration type for any expression other than a column is NULL.
1625 **
1626 ** This routine has either 3 or 6 parameters depending on whether or not
1627 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1628 */
1629 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1630 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1631 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1632 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1633 #endif
1634 static const char *columnTypeImpl(
1635   NameContext *pNC,
1636 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1637   Expr *pExpr
1638 #else
1639   Expr *pExpr,
1640   const char **pzOrigDb,
1641   const char **pzOrigTab,
1642   const char **pzOrigCol
1643 #endif
1644 ){
1645   char const *zType = 0;
1646   int j;
1647 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1648   char const *zOrigDb = 0;
1649   char const *zOrigTab = 0;
1650   char const *zOrigCol = 0;
1651 #endif
1652 
1653   assert( pExpr!=0 );
1654   assert( pNC->pSrcList!=0 );
1655   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1656                                        ** are processed */
1657   switch( pExpr->op ){
1658     case TK_COLUMN: {
1659       /* The expression is a column. Locate the table the column is being
1660       ** extracted from in NameContext.pSrcList. This table may be real
1661       ** database table or a subquery.
1662       */
1663       Table *pTab = 0;            /* Table structure column is extracted from */
1664       Select *pS = 0;             /* Select the column is extracted from */
1665       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1666       while( pNC && !pTab ){
1667         SrcList *pTabList = pNC->pSrcList;
1668         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1669         if( j<pTabList->nSrc ){
1670           pTab = pTabList->a[j].pTab;
1671           pS = pTabList->a[j].pSelect;
1672         }else{
1673           pNC = pNC->pNext;
1674         }
1675       }
1676 
1677       if( pTab==0 ){
1678         /* At one time, code such as "SELECT new.x" within a trigger would
1679         ** cause this condition to run.  Since then, we have restructured how
1680         ** trigger code is generated and so this condition is no longer
1681         ** possible. However, it can still be true for statements like
1682         ** the following:
1683         **
1684         **   CREATE TABLE t1(col INTEGER);
1685         **   SELECT (SELECT t1.col) FROM FROM t1;
1686         **
1687         ** when columnType() is called on the expression "t1.col" in the
1688         ** sub-select. In this case, set the column type to NULL, even
1689         ** though it should really be "INTEGER".
1690         **
1691         ** This is not a problem, as the column type of "t1.col" is never
1692         ** used. When columnType() is called on the expression
1693         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1694         ** branch below.  */
1695         break;
1696       }
1697 
1698       assert( pTab && pExpr->pTab==pTab );
1699       if( pS ){
1700         /* The "table" is actually a sub-select or a view in the FROM clause
1701         ** of the SELECT statement. Return the declaration type and origin
1702         ** data for the result-set column of the sub-select.
1703         */
1704         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1705           /* If iCol is less than zero, then the expression requests the
1706           ** rowid of the sub-select or view. This expression is legal (see
1707           ** test case misc2.2.2) - it always evaluates to NULL.
1708           */
1709           NameContext sNC;
1710           Expr *p = pS->pEList->a[iCol].pExpr;
1711           sNC.pSrcList = pS->pSrc;
1712           sNC.pNext = pNC;
1713           sNC.pParse = pNC->pParse;
1714           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1715         }
1716       }else{
1717         /* A real table or a CTE table */
1718         assert( !pS );
1719 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1720         if( iCol<0 ) iCol = pTab->iPKey;
1721         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1722         if( iCol<0 ){
1723           zType = "INTEGER";
1724           zOrigCol = "rowid";
1725         }else{
1726           zOrigCol = pTab->aCol[iCol].zName;
1727           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1728         }
1729         zOrigTab = pTab->zName;
1730         if( pNC->pParse && pTab->pSchema ){
1731           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1732           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1733         }
1734 #else
1735         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1736         if( iCol<0 ){
1737           zType = "INTEGER";
1738         }else{
1739           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1740         }
1741 #endif
1742       }
1743       break;
1744     }
1745 #ifndef SQLITE_OMIT_SUBQUERY
1746     case TK_SELECT: {
1747       /* The expression is a sub-select. Return the declaration type and
1748       ** origin info for the single column in the result set of the SELECT
1749       ** statement.
1750       */
1751       NameContext sNC;
1752       Select *pS = pExpr->x.pSelect;
1753       Expr *p = pS->pEList->a[0].pExpr;
1754       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1755       sNC.pSrcList = pS->pSrc;
1756       sNC.pNext = pNC;
1757       sNC.pParse = pNC->pParse;
1758       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1759       break;
1760     }
1761 #endif
1762   }
1763 
1764 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1765   if( pzOrigDb ){
1766     assert( pzOrigTab && pzOrigCol );
1767     *pzOrigDb = zOrigDb;
1768     *pzOrigTab = zOrigTab;
1769     *pzOrigCol = zOrigCol;
1770   }
1771 #endif
1772   return zType;
1773 }
1774 
1775 /*
1776 ** Generate code that will tell the VDBE the declaration types of columns
1777 ** in the result set.
1778 */
1779 static void generateColumnTypes(
1780   Parse *pParse,      /* Parser context */
1781   SrcList *pTabList,  /* List of tables */
1782   ExprList *pEList    /* Expressions defining the result set */
1783 ){
1784 #ifndef SQLITE_OMIT_DECLTYPE
1785   Vdbe *v = pParse->pVdbe;
1786   int i;
1787   NameContext sNC;
1788   sNC.pSrcList = pTabList;
1789   sNC.pParse = pParse;
1790   sNC.pNext = 0;
1791   for(i=0; i<pEList->nExpr; i++){
1792     Expr *p = pEList->a[i].pExpr;
1793     const char *zType;
1794 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1795     const char *zOrigDb = 0;
1796     const char *zOrigTab = 0;
1797     const char *zOrigCol = 0;
1798     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1799 
1800     /* The vdbe must make its own copy of the column-type and other
1801     ** column specific strings, in case the schema is reset before this
1802     ** virtual machine is deleted.
1803     */
1804     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1805     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1806     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1807 #else
1808     zType = columnType(&sNC, p, 0, 0, 0);
1809 #endif
1810     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1811   }
1812 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1813 }
1814 
1815 
1816 /*
1817 ** Compute the column names for a SELECT statement.
1818 **
1819 ** The only guarantee that SQLite makes about column names is that if the
1820 ** column has an AS clause assigning it a name, that will be the name used.
1821 ** That is the only documented guarantee.  However, countless applications
1822 ** developed over the years have made baseless assumptions about column names
1823 ** and will break if those assumptions changes.  Hence, use extreme caution
1824 ** when modifying this routine to avoid breaking legacy.
1825 **
1826 ** See Also: sqlite3ColumnsFromExprList()
1827 **
1828 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1829 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1830 ** applications should operate this way.  Nevertheless, we need to support the
1831 ** other modes for legacy:
1832 **
1833 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1834 **                              originally appears in the SELECT statement.  In
1835 **                              other words, the zSpan of the result expression.
1836 **
1837 **    short=ON, full=OFF:       (This is the default setting).  If the result
1838 **                              refers directly to a table column, then the
1839 **                              result column name is just the table column
1840 **                              name: COLUMN.  Otherwise use zSpan.
1841 **
1842 **    full=ON, short=ANY:       If the result refers directly to a table column,
1843 **                              then the result column name with the table name
1844 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1845 */
1846 static void generateColumnNames(
1847   Parse *pParse,      /* Parser context */
1848   Select *pSelect     /* Generate column names for this SELECT statement */
1849 ){
1850   Vdbe *v = pParse->pVdbe;
1851   int i;
1852   Table *pTab;
1853   SrcList *pTabList;
1854   ExprList *pEList;
1855   sqlite3 *db = pParse->db;
1856   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1857   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1858 
1859 #ifndef SQLITE_OMIT_EXPLAIN
1860   /* If this is an EXPLAIN, skip this step */
1861   if( pParse->explain ){
1862     return;
1863   }
1864 #endif
1865 
1866   if( pParse->colNamesSet ) return;
1867   /* Column names are determined by the left-most term of a compound select */
1868   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1869   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1870   pTabList = pSelect->pSrc;
1871   pEList = pSelect->pEList;
1872   assert( v!=0 );
1873   assert( pTabList!=0 );
1874   pParse->colNamesSet = 1;
1875   fullName = (db->flags & SQLITE_FullColNames)!=0;
1876   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1877   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1878   for(i=0; i<pEList->nExpr; i++){
1879     Expr *p = pEList->a[i].pExpr;
1880 
1881     assert( p!=0 );
1882     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1883     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1884     if( pEList->a[i].zName ){
1885       /* An AS clause always takes first priority */
1886       char *zName = pEList->a[i].zName;
1887       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1888     }else if( srcName && p->op==TK_COLUMN ){
1889       char *zCol;
1890       int iCol = p->iColumn;
1891       pTab = p->pTab;
1892       assert( pTab!=0 );
1893       if( iCol<0 ) iCol = pTab->iPKey;
1894       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1895       if( iCol<0 ){
1896         zCol = "rowid";
1897       }else{
1898         zCol = pTab->aCol[iCol].zName;
1899       }
1900       if( fullName ){
1901         char *zName = 0;
1902         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1903         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1904       }else{
1905         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1906       }
1907     }else{
1908       const char *z = pEList->a[i].zSpan;
1909       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1910       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1911     }
1912   }
1913   generateColumnTypes(pParse, pTabList, pEList);
1914 }
1915 
1916 /*
1917 ** Given an expression list (which is really the list of expressions
1918 ** that form the result set of a SELECT statement) compute appropriate
1919 ** column names for a table that would hold the expression list.
1920 **
1921 ** All column names will be unique.
1922 **
1923 ** Only the column names are computed.  Column.zType, Column.zColl,
1924 ** and other fields of Column are zeroed.
1925 **
1926 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1927 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1928 **
1929 ** The only guarantee that SQLite makes about column names is that if the
1930 ** column has an AS clause assigning it a name, that will be the name used.
1931 ** That is the only documented guarantee.  However, countless applications
1932 ** developed over the years have made baseless assumptions about column names
1933 ** and will break if those assumptions changes.  Hence, use extreme caution
1934 ** when modifying this routine to avoid breaking legacy.
1935 **
1936 ** See Also: generateColumnNames()
1937 */
1938 int sqlite3ColumnsFromExprList(
1939   Parse *pParse,          /* Parsing context */
1940   ExprList *pEList,       /* Expr list from which to derive column names */
1941   i16 *pnCol,             /* Write the number of columns here */
1942   Column **paCol          /* Write the new column list here */
1943 ){
1944   sqlite3 *db = pParse->db;   /* Database connection */
1945   int i, j;                   /* Loop counters */
1946   u32 cnt;                    /* Index added to make the name unique */
1947   Column *aCol, *pCol;        /* For looping over result columns */
1948   int nCol;                   /* Number of columns in the result set */
1949   char *zName;                /* Column name */
1950   int nName;                  /* Size of name in zName[] */
1951   Hash ht;                    /* Hash table of column names */
1952 
1953   sqlite3HashInit(&ht);
1954   if( pEList ){
1955     nCol = pEList->nExpr;
1956     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1957     testcase( aCol==0 );
1958     if( nCol>32767 ) nCol = 32767;
1959   }else{
1960     nCol = 0;
1961     aCol = 0;
1962   }
1963   assert( nCol==(i16)nCol );
1964   *pnCol = nCol;
1965   *paCol = aCol;
1966 
1967   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1968     /* Get an appropriate name for the column
1969     */
1970     if( (zName = pEList->a[i].zName)!=0 ){
1971       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1972     }else{
1973       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1974       while( pColExpr->op==TK_DOT ){
1975         pColExpr = pColExpr->pRight;
1976         assert( pColExpr!=0 );
1977       }
1978       assert( pColExpr->op!=TK_AGG_COLUMN );
1979       if( pColExpr->op==TK_COLUMN ){
1980         /* For columns use the column name name */
1981         int iCol = pColExpr->iColumn;
1982         Table *pTab = pColExpr->pTab;
1983         assert( pTab!=0 );
1984         if( iCol<0 ) iCol = pTab->iPKey;
1985         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1986       }else if( pColExpr->op==TK_ID ){
1987         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1988         zName = pColExpr->u.zToken;
1989       }else{
1990         /* Use the original text of the column expression as its name */
1991         zName = pEList->a[i].zSpan;
1992       }
1993     }
1994     if( zName ){
1995       zName = sqlite3DbStrDup(db, zName);
1996     }else{
1997       zName = sqlite3MPrintf(db,"column%d",i+1);
1998     }
1999 
2000     /* Make sure the column name is unique.  If the name is not unique,
2001     ** append an integer to the name so that it becomes unique.
2002     */
2003     cnt = 0;
2004     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2005       nName = sqlite3Strlen30(zName);
2006       if( nName>0 ){
2007         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2008         if( zName[j]==':' ) nName = j;
2009       }
2010       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2011       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2012     }
2013     pCol->zName = zName;
2014     sqlite3ColumnPropertiesFromName(0, pCol);
2015     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2016       sqlite3OomFault(db);
2017     }
2018   }
2019   sqlite3HashClear(&ht);
2020   if( db->mallocFailed ){
2021     for(j=0; j<i; j++){
2022       sqlite3DbFree(db, aCol[j].zName);
2023     }
2024     sqlite3DbFree(db, aCol);
2025     *paCol = 0;
2026     *pnCol = 0;
2027     return SQLITE_NOMEM_BKPT;
2028   }
2029   return SQLITE_OK;
2030 }
2031 
2032 /*
2033 ** Add type and collation information to a column list based on
2034 ** a SELECT statement.
2035 **
2036 ** The column list presumably came from selectColumnNamesFromExprList().
2037 ** The column list has only names, not types or collations.  This
2038 ** routine goes through and adds the types and collations.
2039 **
2040 ** This routine requires that all identifiers in the SELECT
2041 ** statement be resolved.
2042 */
2043 void sqlite3SelectAddColumnTypeAndCollation(
2044   Parse *pParse,        /* Parsing contexts */
2045   Table *pTab,          /* Add column type information to this table */
2046   Select *pSelect       /* SELECT used to determine types and collations */
2047 ){
2048   sqlite3 *db = pParse->db;
2049   NameContext sNC;
2050   Column *pCol;
2051   CollSeq *pColl;
2052   int i;
2053   Expr *p;
2054   struct ExprList_item *a;
2055 
2056   assert( pSelect!=0 );
2057   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2058   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2059   if( db->mallocFailed ) return;
2060   memset(&sNC, 0, sizeof(sNC));
2061   sNC.pSrcList = pSelect->pSrc;
2062   a = pSelect->pEList->a;
2063   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2064     const char *zType;
2065     int n, m;
2066     p = a[i].pExpr;
2067     zType = columnType(&sNC, p, 0, 0, 0);
2068     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2069     pCol->affinity = sqlite3ExprAffinity(p);
2070     if( zType ){
2071       m = sqlite3Strlen30(zType);
2072       n = sqlite3Strlen30(pCol->zName);
2073       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2074       if( pCol->zName ){
2075         memcpy(&pCol->zName[n+1], zType, m+1);
2076         pCol->colFlags |= COLFLAG_HASTYPE;
2077       }
2078     }
2079     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2080     pColl = sqlite3ExprCollSeq(pParse, p);
2081     if( pColl && pCol->zColl==0 ){
2082       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2083     }
2084   }
2085   pTab->szTabRow = 1; /* Any non-zero value works */
2086 }
2087 
2088 /*
2089 ** Given a SELECT statement, generate a Table structure that describes
2090 ** the result set of that SELECT.
2091 */
2092 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2093   Table *pTab;
2094   sqlite3 *db = pParse->db;
2095   int savedFlags;
2096 
2097   savedFlags = db->flags;
2098   db->flags &= ~SQLITE_FullColNames;
2099   db->flags |= SQLITE_ShortColNames;
2100   sqlite3SelectPrep(pParse, pSelect, 0);
2101   if( pParse->nErr ) return 0;
2102   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2103   db->flags = savedFlags;
2104   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2105   if( pTab==0 ){
2106     return 0;
2107   }
2108   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2109   ** is disabled */
2110   assert( db->lookaside.bDisable );
2111   pTab->nTabRef = 1;
2112   pTab->zName = 0;
2113   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2114   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2115   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2116   pTab->iPKey = -1;
2117   if( db->mallocFailed ){
2118     sqlite3DeleteTable(db, pTab);
2119     return 0;
2120   }
2121   return pTab;
2122 }
2123 
2124 /*
2125 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2126 ** If an error occurs, return NULL and leave a message in pParse.
2127 */
2128 Vdbe *sqlite3GetVdbe(Parse *pParse){
2129   if( pParse->pVdbe ){
2130     return pParse->pVdbe;
2131   }
2132   if( pParse->pToplevel==0
2133    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2134   ){
2135     pParse->okConstFactor = 1;
2136   }
2137   return sqlite3VdbeCreate(pParse);
2138 }
2139 
2140 
2141 /*
2142 ** Compute the iLimit and iOffset fields of the SELECT based on the
2143 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2144 ** that appear in the original SQL statement after the LIMIT and OFFSET
2145 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2146 ** are the integer memory register numbers for counters used to compute
2147 ** the limit and offset.  If there is no limit and/or offset, then
2148 ** iLimit and iOffset are negative.
2149 **
2150 ** This routine changes the values of iLimit and iOffset only if
2151 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2152 ** and iOffset should have been preset to appropriate default values (zero)
2153 ** prior to calling this routine.
2154 **
2155 ** The iOffset register (if it exists) is initialized to the value
2156 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2157 ** iOffset+1 is initialized to LIMIT+OFFSET.
2158 **
2159 ** Only if pLimit->pLeft!=0 do the limit registers get
2160 ** redefined.  The UNION ALL operator uses this property to force
2161 ** the reuse of the same limit and offset registers across multiple
2162 ** SELECT statements.
2163 */
2164 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2165   Vdbe *v = 0;
2166   int iLimit = 0;
2167   int iOffset;
2168   int n;
2169   Expr *pLimit = p->pLimit;
2170 
2171   if( p->iLimit ) return;
2172 
2173   /*
2174   ** "LIMIT -1" always shows all rows.  There is some
2175   ** controversy about what the correct behavior should be.
2176   ** The current implementation interprets "LIMIT 0" to mean
2177   ** no rows.
2178   */
2179   sqlite3ExprCacheClear(pParse);
2180   if( pLimit ){
2181     assert( pLimit->op==TK_LIMIT );
2182     assert( pLimit->pLeft!=0 );
2183     p->iLimit = iLimit = ++pParse->nMem;
2184     v = sqlite3GetVdbe(pParse);
2185     assert( v!=0 );
2186     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2187       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2188       VdbeComment((v, "LIMIT counter"));
2189       if( n==0 ){
2190         sqlite3VdbeGoto(v, iBreak);
2191       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2192         p->nSelectRow = sqlite3LogEst((u64)n);
2193         p->selFlags |= SF_FixedLimit;
2194       }
2195     }else{
2196       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2197       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2198       VdbeComment((v, "LIMIT counter"));
2199       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2200     }
2201     if( pLimit->pRight ){
2202       p->iOffset = iOffset = ++pParse->nMem;
2203       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2204       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2205       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2206       VdbeComment((v, "OFFSET counter"));
2207       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2208       VdbeComment((v, "LIMIT+OFFSET"));
2209     }
2210   }
2211 }
2212 
2213 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2214 /*
2215 ** Return the appropriate collating sequence for the iCol-th column of
2216 ** the result set for the compound-select statement "p".  Return NULL if
2217 ** the column has no default collating sequence.
2218 **
2219 ** The collating sequence for the compound select is taken from the
2220 ** left-most term of the select that has a collating sequence.
2221 */
2222 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2223   CollSeq *pRet;
2224   if( p->pPrior ){
2225     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2226   }else{
2227     pRet = 0;
2228   }
2229   assert( iCol>=0 );
2230   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2231   ** have been thrown during name resolution and we would not have gotten
2232   ** this far */
2233   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2234     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2235   }
2236   return pRet;
2237 }
2238 
2239 /*
2240 ** The select statement passed as the second parameter is a compound SELECT
2241 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2242 ** structure suitable for implementing the ORDER BY.
2243 **
2244 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2245 ** function is responsible for ensuring that this structure is eventually
2246 ** freed.
2247 */
2248 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2249   ExprList *pOrderBy = p->pOrderBy;
2250   int nOrderBy = p->pOrderBy->nExpr;
2251   sqlite3 *db = pParse->db;
2252   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2253   if( pRet ){
2254     int i;
2255     for(i=0; i<nOrderBy; i++){
2256       struct ExprList_item *pItem = &pOrderBy->a[i];
2257       Expr *pTerm = pItem->pExpr;
2258       CollSeq *pColl;
2259 
2260       if( pTerm->flags & EP_Collate ){
2261         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2262       }else{
2263         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2264         if( pColl==0 ) pColl = db->pDfltColl;
2265         pOrderBy->a[i].pExpr =
2266           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2267       }
2268       assert( sqlite3KeyInfoIsWriteable(pRet) );
2269       pRet->aColl[i] = pColl;
2270       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2271     }
2272   }
2273 
2274   return pRet;
2275 }
2276 
2277 #ifndef SQLITE_OMIT_CTE
2278 /*
2279 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2280 ** query of the form:
2281 **
2282 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2283 **                         \___________/             \_______________/
2284 **                           p->pPrior                      p
2285 **
2286 **
2287 ** There is exactly one reference to the recursive-table in the FROM clause
2288 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2289 **
2290 ** The setup-query runs once to generate an initial set of rows that go
2291 ** into a Queue table.  Rows are extracted from the Queue table one by
2292 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2293 ** extracted row (now in the iCurrent table) becomes the content of the
2294 ** recursive-table for a recursive-query run.  The output of the recursive-query
2295 ** is added back into the Queue table.  Then another row is extracted from Queue
2296 ** and the iteration continues until the Queue table is empty.
2297 **
2298 ** If the compound query operator is UNION then no duplicate rows are ever
2299 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2300 ** that have ever been inserted into Queue and causes duplicates to be
2301 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2302 **
2303 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2304 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2305 ** an ORDER BY, the Queue table is just a FIFO.
2306 **
2307 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2308 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2309 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2310 ** with a positive value, then the first OFFSET outputs are discarded rather
2311 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2312 ** rows have been skipped.
2313 */
2314 static void generateWithRecursiveQuery(
2315   Parse *pParse,        /* Parsing context */
2316   Select *p,            /* The recursive SELECT to be coded */
2317   SelectDest *pDest     /* What to do with query results */
2318 ){
2319   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2320   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2321   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2322   Select *pSetup = p->pPrior;   /* The setup query */
2323   int addrTop;                  /* Top of the loop */
2324   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2325   int iCurrent = 0;             /* The Current table */
2326   int regCurrent;               /* Register holding Current table */
2327   int iQueue;                   /* The Queue table */
2328   int iDistinct = 0;            /* To ensure unique results if UNION */
2329   int eDest = SRT_Fifo;         /* How to write to Queue */
2330   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2331   int i;                        /* Loop counter */
2332   int rc;                       /* Result code */
2333   ExprList *pOrderBy;           /* The ORDER BY clause */
2334   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2335   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2336 
2337   /* Obtain authorization to do a recursive query */
2338   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2339 
2340   /* Process the LIMIT and OFFSET clauses, if they exist */
2341   addrBreak = sqlite3VdbeMakeLabel(v);
2342   p->nSelectRow = 320;  /* 4 billion rows */
2343   computeLimitRegisters(pParse, p, addrBreak);
2344   pLimit = p->pLimit;
2345   regLimit = p->iLimit;
2346   regOffset = p->iOffset;
2347   p->pLimit = 0;
2348   p->iLimit = p->iOffset = 0;
2349   pOrderBy = p->pOrderBy;
2350 
2351   /* Locate the cursor number of the Current table */
2352   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2353     if( pSrc->a[i].fg.isRecursive ){
2354       iCurrent = pSrc->a[i].iCursor;
2355       break;
2356     }
2357   }
2358 
2359   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2360   ** the Distinct table must be exactly one greater than Queue in order
2361   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2362   iQueue = pParse->nTab++;
2363   if( p->op==TK_UNION ){
2364     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2365     iDistinct = pParse->nTab++;
2366   }else{
2367     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2368   }
2369   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2370 
2371   /* Allocate cursors for Current, Queue, and Distinct. */
2372   regCurrent = ++pParse->nMem;
2373   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2374   if( pOrderBy ){
2375     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2376     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2377                       (char*)pKeyInfo, P4_KEYINFO);
2378     destQueue.pOrderBy = pOrderBy;
2379   }else{
2380     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2381   }
2382   VdbeComment((v, "Queue table"));
2383   if( iDistinct ){
2384     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2385     p->selFlags |= SF_UsesEphemeral;
2386   }
2387 
2388   /* Detach the ORDER BY clause from the compound SELECT */
2389   p->pOrderBy = 0;
2390 
2391   /* Store the results of the setup-query in Queue. */
2392   pSetup->pNext = 0;
2393   ExplainQueryPlan((pParse, 1, "SETUP"));
2394   rc = sqlite3Select(pParse, pSetup, &destQueue);
2395   pSetup->pNext = p;
2396   if( rc ) goto end_of_recursive_query;
2397 
2398   /* Find the next row in the Queue and output that row */
2399   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2400 
2401   /* Transfer the next row in Queue over to Current */
2402   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2403   if( pOrderBy ){
2404     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2405   }else{
2406     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2407   }
2408   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2409 
2410   /* Output the single row in Current */
2411   addrCont = sqlite3VdbeMakeLabel(v);
2412   codeOffset(v, regOffset, addrCont);
2413   selectInnerLoop(pParse, p, iCurrent,
2414       0, 0, pDest, addrCont, addrBreak);
2415   if( regLimit ){
2416     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2417     VdbeCoverage(v);
2418   }
2419   sqlite3VdbeResolveLabel(v, addrCont);
2420 
2421   /* Execute the recursive SELECT taking the single row in Current as
2422   ** the value for the recursive-table. Store the results in the Queue.
2423   */
2424   if( p->selFlags & SF_Aggregate ){
2425     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2426   }else{
2427     p->pPrior = 0;
2428     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2429     sqlite3Select(pParse, p, &destQueue);
2430     assert( p->pPrior==0 );
2431     p->pPrior = pSetup;
2432   }
2433 
2434   /* Keep running the loop until the Queue is empty */
2435   sqlite3VdbeGoto(v, addrTop);
2436   sqlite3VdbeResolveLabel(v, addrBreak);
2437 
2438 end_of_recursive_query:
2439   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2440   p->pOrderBy = pOrderBy;
2441   p->pLimit = pLimit;
2442   return;
2443 }
2444 #endif /* SQLITE_OMIT_CTE */
2445 
2446 /* Forward references */
2447 static int multiSelectOrderBy(
2448   Parse *pParse,        /* Parsing context */
2449   Select *p,            /* The right-most of SELECTs to be coded */
2450   SelectDest *pDest     /* What to do with query results */
2451 );
2452 
2453 /*
2454 ** Handle the special case of a compound-select that originates from a
2455 ** VALUES clause.  By handling this as a special case, we avoid deep
2456 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2457 ** on a VALUES clause.
2458 **
2459 ** Because the Select object originates from a VALUES clause:
2460 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2461 **   (2) All terms are UNION ALL
2462 **   (3) There is no ORDER BY clause
2463 **
2464 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2465 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2466 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2467 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2468 */
2469 static int multiSelectValues(
2470   Parse *pParse,        /* Parsing context */
2471   Select *p,            /* The right-most of SELECTs to be coded */
2472   SelectDest *pDest     /* What to do with query results */
2473 ){
2474   int nRow = 1;
2475   int rc = 0;
2476   int bShowAll = p->pLimit==0;
2477   assert( p->selFlags & SF_MultiValue );
2478   do{
2479     assert( p->selFlags & SF_Values );
2480     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2481     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2482     if( p->pPrior==0 ) break;
2483     assert( p->pPrior->pNext==p );
2484     p = p->pPrior;
2485     nRow += bShowAll;
2486   }while(1);
2487   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2488                     nRow==1 ? "" : "S"));
2489   while( p ){
2490     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2491     if( !bShowAll ) break;
2492     p->nSelectRow = nRow;
2493     p = p->pNext;
2494   }
2495   return rc;
2496 }
2497 
2498 /*
2499 ** This routine is called to process a compound query form from
2500 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2501 ** INTERSECT
2502 **
2503 ** "p" points to the right-most of the two queries.  the query on the
2504 ** left is p->pPrior.  The left query could also be a compound query
2505 ** in which case this routine will be called recursively.
2506 **
2507 ** The results of the total query are to be written into a destination
2508 ** of type eDest with parameter iParm.
2509 **
2510 ** Example 1:  Consider a three-way compound SQL statement.
2511 **
2512 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2513 **
2514 ** This statement is parsed up as follows:
2515 **
2516 **     SELECT c FROM t3
2517 **      |
2518 **      `----->  SELECT b FROM t2
2519 **                |
2520 **                `------>  SELECT a FROM t1
2521 **
2522 ** The arrows in the diagram above represent the Select.pPrior pointer.
2523 ** So if this routine is called with p equal to the t3 query, then
2524 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2525 **
2526 ** Notice that because of the way SQLite parses compound SELECTs, the
2527 ** individual selects always group from left to right.
2528 */
2529 static int multiSelect(
2530   Parse *pParse,        /* Parsing context */
2531   Select *p,            /* The right-most of SELECTs to be coded */
2532   SelectDest *pDest     /* What to do with query results */
2533 ){
2534   int rc = SQLITE_OK;   /* Success code from a subroutine */
2535   Select *pPrior;       /* Another SELECT immediately to our left */
2536   Vdbe *v;              /* Generate code to this VDBE */
2537   SelectDest dest;      /* Alternative data destination */
2538   Select *pDelete = 0;  /* Chain of simple selects to delete */
2539   sqlite3 *db;          /* Database connection */
2540 
2541   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2542   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2543   */
2544   assert( p && p->pPrior );  /* Calling function guarantees this much */
2545   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2546   db = pParse->db;
2547   pPrior = p->pPrior;
2548   dest = *pDest;
2549   if( pPrior->pOrderBy || pPrior->pLimit ){
2550     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2551       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2552     rc = 1;
2553     goto multi_select_end;
2554   }
2555 
2556   v = sqlite3GetVdbe(pParse);
2557   assert( v!=0 );  /* The VDBE already created by calling function */
2558 
2559   /* Create the destination temporary table if necessary
2560   */
2561   if( dest.eDest==SRT_EphemTab ){
2562     assert( p->pEList );
2563     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2564     dest.eDest = SRT_Table;
2565   }
2566 
2567   /* Special handling for a compound-select that originates as a VALUES clause.
2568   */
2569   if( p->selFlags & SF_MultiValue ){
2570     rc = multiSelectValues(pParse, p, &dest);
2571     goto multi_select_end;
2572   }
2573 
2574   /* Make sure all SELECTs in the statement have the same number of elements
2575   ** in their result sets.
2576   */
2577   assert( p->pEList && pPrior->pEList );
2578   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2579 
2580 #ifndef SQLITE_OMIT_CTE
2581   if( p->selFlags & SF_Recursive ){
2582     generateWithRecursiveQuery(pParse, p, &dest);
2583   }else
2584 #endif
2585 
2586   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2587   */
2588   if( p->pOrderBy ){
2589     return multiSelectOrderBy(pParse, p, pDest);
2590   }else{
2591 
2592 #ifndef SQLITE_OMIT_EXPLAIN
2593     if( pPrior->pPrior==0 ){
2594       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2595       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2596     }
2597 #endif
2598 
2599     /* Generate code for the left and right SELECT statements.
2600     */
2601     switch( p->op ){
2602       case TK_ALL: {
2603         int addr = 0;
2604         int nLimit;
2605         assert( !pPrior->pLimit );
2606         pPrior->iLimit = p->iLimit;
2607         pPrior->iOffset = p->iOffset;
2608         pPrior->pLimit = p->pLimit;
2609         rc = sqlite3Select(pParse, pPrior, &dest);
2610         p->pLimit = 0;
2611         if( rc ){
2612           goto multi_select_end;
2613         }
2614         p->pPrior = 0;
2615         p->iLimit = pPrior->iLimit;
2616         p->iOffset = pPrior->iOffset;
2617         if( p->iLimit ){
2618           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2619           VdbeComment((v, "Jump ahead if LIMIT reached"));
2620           if( p->iOffset ){
2621             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2622                               p->iLimit, p->iOffset+1, p->iOffset);
2623           }
2624         }
2625         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2626         rc = sqlite3Select(pParse, p, &dest);
2627         testcase( rc!=SQLITE_OK );
2628         pDelete = p->pPrior;
2629         p->pPrior = pPrior;
2630         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2631         if( pPrior->pLimit
2632          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2633          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2634         ){
2635           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2636         }
2637         if( addr ){
2638           sqlite3VdbeJumpHere(v, addr);
2639         }
2640         break;
2641       }
2642       case TK_EXCEPT:
2643       case TK_UNION: {
2644         int unionTab;    /* Cursor number of the temp table holding result */
2645         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2646         int priorOp;     /* The SRT_ operation to apply to prior selects */
2647         Expr *pLimit;    /* Saved values of p->nLimit  */
2648         int addr;
2649         SelectDest uniondest;
2650 
2651         testcase( p->op==TK_EXCEPT );
2652         testcase( p->op==TK_UNION );
2653         priorOp = SRT_Union;
2654         if( dest.eDest==priorOp ){
2655           /* We can reuse a temporary table generated by a SELECT to our
2656           ** right.
2657           */
2658           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2659           unionTab = dest.iSDParm;
2660         }else{
2661           /* We will need to create our own temporary table to hold the
2662           ** intermediate results.
2663           */
2664           unionTab = pParse->nTab++;
2665           assert( p->pOrderBy==0 );
2666           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2667           assert( p->addrOpenEphm[0] == -1 );
2668           p->addrOpenEphm[0] = addr;
2669           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2670           assert( p->pEList );
2671         }
2672 
2673         /* Code the SELECT statements to our left
2674         */
2675         assert( !pPrior->pOrderBy );
2676         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2677         rc = sqlite3Select(pParse, pPrior, &uniondest);
2678         if( rc ){
2679           goto multi_select_end;
2680         }
2681 
2682         /* Code the current SELECT statement
2683         */
2684         if( p->op==TK_EXCEPT ){
2685           op = SRT_Except;
2686         }else{
2687           assert( p->op==TK_UNION );
2688           op = SRT_Union;
2689         }
2690         p->pPrior = 0;
2691         pLimit = p->pLimit;
2692         p->pLimit = 0;
2693         uniondest.eDest = op;
2694         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2695                           selectOpName(p->op)));
2696         rc = sqlite3Select(pParse, p, &uniondest);
2697         testcase( rc!=SQLITE_OK );
2698         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2699         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2700         sqlite3ExprListDelete(db, p->pOrderBy);
2701         pDelete = p->pPrior;
2702         p->pPrior = pPrior;
2703         p->pOrderBy = 0;
2704         if( p->op==TK_UNION ){
2705           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2706         }
2707         sqlite3ExprDelete(db, p->pLimit);
2708         p->pLimit = pLimit;
2709         p->iLimit = 0;
2710         p->iOffset = 0;
2711 
2712         /* Convert the data in the temporary table into whatever form
2713         ** it is that we currently need.
2714         */
2715         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2716         if( dest.eDest!=priorOp ){
2717           int iCont, iBreak, iStart;
2718           assert( p->pEList );
2719           iBreak = sqlite3VdbeMakeLabel(v);
2720           iCont = sqlite3VdbeMakeLabel(v);
2721           computeLimitRegisters(pParse, p, iBreak);
2722           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2723           iStart = sqlite3VdbeCurrentAddr(v);
2724           selectInnerLoop(pParse, p, unionTab,
2725                           0, 0, &dest, iCont, iBreak);
2726           sqlite3VdbeResolveLabel(v, iCont);
2727           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2728           sqlite3VdbeResolveLabel(v, iBreak);
2729           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2730         }
2731         break;
2732       }
2733       default: assert( p->op==TK_INTERSECT ); {
2734         int tab1, tab2;
2735         int iCont, iBreak, iStart;
2736         Expr *pLimit;
2737         int addr;
2738         SelectDest intersectdest;
2739         int r1;
2740 
2741         /* INTERSECT is different from the others since it requires
2742         ** two temporary tables.  Hence it has its own case.  Begin
2743         ** by allocating the tables we will need.
2744         */
2745         tab1 = pParse->nTab++;
2746         tab2 = pParse->nTab++;
2747         assert( p->pOrderBy==0 );
2748 
2749         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2750         assert( p->addrOpenEphm[0] == -1 );
2751         p->addrOpenEphm[0] = addr;
2752         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2753         assert( p->pEList );
2754 
2755         /* Code the SELECTs to our left into temporary table "tab1".
2756         */
2757         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2758         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2759         if( rc ){
2760           goto multi_select_end;
2761         }
2762 
2763         /* Code the current SELECT into temporary table "tab2"
2764         */
2765         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2766         assert( p->addrOpenEphm[1] == -1 );
2767         p->addrOpenEphm[1] = addr;
2768         p->pPrior = 0;
2769         pLimit = p->pLimit;
2770         p->pLimit = 0;
2771         intersectdest.iSDParm = tab2;
2772         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2773                           selectOpName(p->op)));
2774         rc = sqlite3Select(pParse, p, &intersectdest);
2775         testcase( rc!=SQLITE_OK );
2776         pDelete = p->pPrior;
2777         p->pPrior = pPrior;
2778         if( p->nSelectRow>pPrior->nSelectRow ){
2779           p->nSelectRow = pPrior->nSelectRow;
2780         }
2781         sqlite3ExprDelete(db, p->pLimit);
2782         p->pLimit = pLimit;
2783 
2784         /* Generate code to take the intersection of the two temporary
2785         ** tables.
2786         */
2787         assert( p->pEList );
2788         iBreak = sqlite3VdbeMakeLabel(v);
2789         iCont = sqlite3VdbeMakeLabel(v);
2790         computeLimitRegisters(pParse, p, iBreak);
2791         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2792         r1 = sqlite3GetTempReg(pParse);
2793         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2794         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2795         VdbeCoverage(v);
2796         sqlite3ReleaseTempReg(pParse, r1);
2797         selectInnerLoop(pParse, p, tab1,
2798                         0, 0, &dest, iCont, iBreak);
2799         sqlite3VdbeResolveLabel(v, iCont);
2800         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2801         sqlite3VdbeResolveLabel(v, iBreak);
2802         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2803         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2804         break;
2805       }
2806     }
2807 
2808   #ifndef SQLITE_OMIT_EXPLAIN
2809     if( p->pNext==0 ){
2810       ExplainQueryPlanPop(pParse);
2811     }
2812   #endif
2813   }
2814 
2815   /* Compute collating sequences used by
2816   ** temporary tables needed to implement the compound select.
2817   ** Attach the KeyInfo structure to all temporary tables.
2818   **
2819   ** This section is run by the right-most SELECT statement only.
2820   ** SELECT statements to the left always skip this part.  The right-most
2821   ** SELECT might also skip this part if it has no ORDER BY clause and
2822   ** no temp tables are required.
2823   */
2824   if( p->selFlags & SF_UsesEphemeral ){
2825     int i;                        /* Loop counter */
2826     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2827     Select *pLoop;                /* For looping through SELECT statements */
2828     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2829     int nCol;                     /* Number of columns in result set */
2830 
2831     assert( p->pNext==0 );
2832     nCol = p->pEList->nExpr;
2833     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2834     if( !pKeyInfo ){
2835       rc = SQLITE_NOMEM_BKPT;
2836       goto multi_select_end;
2837     }
2838     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2839       *apColl = multiSelectCollSeq(pParse, p, i);
2840       if( 0==*apColl ){
2841         *apColl = db->pDfltColl;
2842       }
2843     }
2844 
2845     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2846       for(i=0; i<2; i++){
2847         int addr = pLoop->addrOpenEphm[i];
2848         if( addr<0 ){
2849           /* If [0] is unused then [1] is also unused.  So we can
2850           ** always safely abort as soon as the first unused slot is found */
2851           assert( pLoop->addrOpenEphm[1]<0 );
2852           break;
2853         }
2854         sqlite3VdbeChangeP2(v, addr, nCol);
2855         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2856                             P4_KEYINFO);
2857         pLoop->addrOpenEphm[i] = -1;
2858       }
2859     }
2860     sqlite3KeyInfoUnref(pKeyInfo);
2861   }
2862 
2863 multi_select_end:
2864   pDest->iSdst = dest.iSdst;
2865   pDest->nSdst = dest.nSdst;
2866   sqlite3SelectDelete(db, pDelete);
2867   return rc;
2868 }
2869 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2870 
2871 /*
2872 ** Error message for when two or more terms of a compound select have different
2873 ** size result sets.
2874 */
2875 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2876   if( p->selFlags & SF_Values ){
2877     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2878   }else{
2879     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2880       " do not have the same number of result columns", selectOpName(p->op));
2881   }
2882 }
2883 
2884 /*
2885 ** Code an output subroutine for a coroutine implementation of a
2886 ** SELECT statment.
2887 **
2888 ** The data to be output is contained in pIn->iSdst.  There are
2889 ** pIn->nSdst columns to be output.  pDest is where the output should
2890 ** be sent.
2891 **
2892 ** regReturn is the number of the register holding the subroutine
2893 ** return address.
2894 **
2895 ** If regPrev>0 then it is the first register in a vector that
2896 ** records the previous output.  mem[regPrev] is a flag that is false
2897 ** if there has been no previous output.  If regPrev>0 then code is
2898 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2899 ** keys.
2900 **
2901 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2902 ** iBreak.
2903 */
2904 static int generateOutputSubroutine(
2905   Parse *pParse,          /* Parsing context */
2906   Select *p,              /* The SELECT statement */
2907   SelectDest *pIn,        /* Coroutine supplying data */
2908   SelectDest *pDest,      /* Where to send the data */
2909   int regReturn,          /* The return address register */
2910   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2911   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2912   int iBreak              /* Jump here if we hit the LIMIT */
2913 ){
2914   Vdbe *v = pParse->pVdbe;
2915   int iContinue;
2916   int addr;
2917 
2918   addr = sqlite3VdbeCurrentAddr(v);
2919   iContinue = sqlite3VdbeMakeLabel(v);
2920 
2921   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2922   */
2923   if( regPrev ){
2924     int addr1, addr2;
2925     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2926     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2927                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2928     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2929     sqlite3VdbeJumpHere(v, addr1);
2930     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2931     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2932   }
2933   if( pParse->db->mallocFailed ) return 0;
2934 
2935   /* Suppress the first OFFSET entries if there is an OFFSET clause
2936   */
2937   codeOffset(v, p->iOffset, iContinue);
2938 
2939   assert( pDest->eDest!=SRT_Exists );
2940   assert( pDest->eDest!=SRT_Table );
2941   switch( pDest->eDest ){
2942     /* Store the result as data using a unique key.
2943     */
2944     case SRT_EphemTab: {
2945       int r1 = sqlite3GetTempReg(pParse);
2946       int r2 = sqlite3GetTempReg(pParse);
2947       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2948       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2949       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2950       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2951       sqlite3ReleaseTempReg(pParse, r2);
2952       sqlite3ReleaseTempReg(pParse, r1);
2953       break;
2954     }
2955 
2956 #ifndef SQLITE_OMIT_SUBQUERY
2957     /* If we are creating a set for an "expr IN (SELECT ...)".
2958     */
2959     case SRT_Set: {
2960       int r1;
2961       testcase( pIn->nSdst>1 );
2962       r1 = sqlite3GetTempReg(pParse);
2963       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2964           r1, pDest->zAffSdst, pIn->nSdst);
2965       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2966       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2967                            pIn->iSdst, pIn->nSdst);
2968       sqlite3ReleaseTempReg(pParse, r1);
2969       break;
2970     }
2971 
2972     /* If this is a scalar select that is part of an expression, then
2973     ** store the results in the appropriate memory cell and break out
2974     ** of the scan loop.
2975     */
2976     case SRT_Mem: {
2977       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2978       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2979       /* The LIMIT clause will jump out of the loop for us */
2980       break;
2981     }
2982 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2983 
2984     /* The results are stored in a sequence of registers
2985     ** starting at pDest->iSdst.  Then the co-routine yields.
2986     */
2987     case SRT_Coroutine: {
2988       if( pDest->iSdst==0 ){
2989         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2990         pDest->nSdst = pIn->nSdst;
2991       }
2992       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2993       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2994       break;
2995     }
2996 
2997     /* If none of the above, then the result destination must be
2998     ** SRT_Output.  This routine is never called with any other
2999     ** destination other than the ones handled above or SRT_Output.
3000     **
3001     ** For SRT_Output, results are stored in a sequence of registers.
3002     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3003     ** return the next row of result.
3004     */
3005     default: {
3006       assert( pDest->eDest==SRT_Output );
3007       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3008       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
3009       break;
3010     }
3011   }
3012 
3013   /* Jump to the end of the loop if the LIMIT is reached.
3014   */
3015   if( p->iLimit ){
3016     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3017   }
3018 
3019   /* Generate the subroutine return
3020   */
3021   sqlite3VdbeResolveLabel(v, iContinue);
3022   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3023 
3024   return addr;
3025 }
3026 
3027 /*
3028 ** Alternative compound select code generator for cases when there
3029 ** is an ORDER BY clause.
3030 **
3031 ** We assume a query of the following form:
3032 **
3033 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3034 **
3035 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3036 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3037 ** co-routines.  Then run the co-routines in parallel and merge the results
3038 ** into the output.  In addition to the two coroutines (called selectA and
3039 ** selectB) there are 7 subroutines:
3040 **
3041 **    outA:    Move the output of the selectA coroutine into the output
3042 **             of the compound query.
3043 **
3044 **    outB:    Move the output of the selectB coroutine into the output
3045 **             of the compound query.  (Only generated for UNION and
3046 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3047 **             appears only in B.)
3048 **
3049 **    AltB:    Called when there is data from both coroutines and A<B.
3050 **
3051 **    AeqB:    Called when there is data from both coroutines and A==B.
3052 **
3053 **    AgtB:    Called when there is data from both coroutines and A>B.
3054 **
3055 **    EofA:    Called when data is exhausted from selectA.
3056 **
3057 **    EofB:    Called when data is exhausted from selectB.
3058 **
3059 ** The implementation of the latter five subroutines depend on which
3060 ** <operator> is used:
3061 **
3062 **
3063 **             UNION ALL         UNION            EXCEPT          INTERSECT
3064 **          -------------  -----------------  --------------  -----------------
3065 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3066 **
3067 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3068 **
3069 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3070 **
3071 **   EofA:   outB, nextB      outB, nextB          halt             halt
3072 **
3073 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3074 **
3075 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3076 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3077 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3078 ** following nextX causes a jump to the end of the select processing.
3079 **
3080 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3081 ** within the output subroutine.  The regPrev register set holds the previously
3082 ** output value.  A comparison is made against this value and the output
3083 ** is skipped if the next results would be the same as the previous.
3084 **
3085 ** The implementation plan is to implement the two coroutines and seven
3086 ** subroutines first, then put the control logic at the bottom.  Like this:
3087 **
3088 **          goto Init
3089 **     coA: coroutine for left query (A)
3090 **     coB: coroutine for right query (B)
3091 **    outA: output one row of A
3092 **    outB: output one row of B (UNION and UNION ALL only)
3093 **    EofA: ...
3094 **    EofB: ...
3095 **    AltB: ...
3096 **    AeqB: ...
3097 **    AgtB: ...
3098 **    Init: initialize coroutine registers
3099 **          yield coA
3100 **          if eof(A) goto EofA
3101 **          yield coB
3102 **          if eof(B) goto EofB
3103 **    Cmpr: Compare A, B
3104 **          Jump AltB, AeqB, AgtB
3105 **     End: ...
3106 **
3107 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3108 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3109 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3110 ** and AgtB jump to either L2 or to one of EofA or EofB.
3111 */
3112 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3113 static int multiSelectOrderBy(
3114   Parse *pParse,        /* Parsing context */
3115   Select *p,            /* The right-most of SELECTs to be coded */
3116   SelectDest *pDest     /* What to do with query results */
3117 ){
3118   int i, j;             /* Loop counters */
3119   Select *pPrior;       /* Another SELECT immediately to our left */
3120   Vdbe *v;              /* Generate code to this VDBE */
3121   SelectDest destA;     /* Destination for coroutine A */
3122   SelectDest destB;     /* Destination for coroutine B */
3123   int regAddrA;         /* Address register for select-A coroutine */
3124   int regAddrB;         /* Address register for select-B coroutine */
3125   int addrSelectA;      /* Address of the select-A coroutine */
3126   int addrSelectB;      /* Address of the select-B coroutine */
3127   int regOutA;          /* Address register for the output-A subroutine */
3128   int regOutB;          /* Address register for the output-B subroutine */
3129   int addrOutA;         /* Address of the output-A subroutine */
3130   int addrOutB = 0;     /* Address of the output-B subroutine */
3131   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3132   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3133   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3134   int addrAltB;         /* Address of the A<B subroutine */
3135   int addrAeqB;         /* Address of the A==B subroutine */
3136   int addrAgtB;         /* Address of the A>B subroutine */
3137   int regLimitA;        /* Limit register for select-A */
3138   int regLimitB;        /* Limit register for select-A */
3139   int regPrev;          /* A range of registers to hold previous output */
3140   int savedLimit;       /* Saved value of p->iLimit */
3141   int savedOffset;      /* Saved value of p->iOffset */
3142   int labelCmpr;        /* Label for the start of the merge algorithm */
3143   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3144   int addr1;            /* Jump instructions that get retargetted */
3145   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3146   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3147   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3148   sqlite3 *db;          /* Database connection */
3149   ExprList *pOrderBy;   /* The ORDER BY clause */
3150   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3151   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3152 
3153   assert( p->pOrderBy!=0 );
3154   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3155   db = pParse->db;
3156   v = pParse->pVdbe;
3157   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3158   labelEnd = sqlite3VdbeMakeLabel(v);
3159   labelCmpr = sqlite3VdbeMakeLabel(v);
3160 
3161 
3162   /* Patch up the ORDER BY clause
3163   */
3164   op = p->op;
3165   pPrior = p->pPrior;
3166   assert( pPrior->pOrderBy==0 );
3167   pOrderBy = p->pOrderBy;
3168   assert( pOrderBy );
3169   nOrderBy = pOrderBy->nExpr;
3170 
3171   /* For operators other than UNION ALL we have to make sure that
3172   ** the ORDER BY clause covers every term of the result set.  Add
3173   ** terms to the ORDER BY clause as necessary.
3174   */
3175   if( op!=TK_ALL ){
3176     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3177       struct ExprList_item *pItem;
3178       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3179         assert( pItem->u.x.iOrderByCol>0 );
3180         if( pItem->u.x.iOrderByCol==i ) break;
3181       }
3182       if( j==nOrderBy ){
3183         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3184         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3185         pNew->flags |= EP_IntValue;
3186         pNew->u.iValue = i;
3187         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3188         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3189       }
3190     }
3191   }
3192 
3193   /* Compute the comparison permutation and keyinfo that is used with
3194   ** the permutation used to determine if the next
3195   ** row of results comes from selectA or selectB.  Also add explicit
3196   ** collations to the ORDER BY clause terms so that when the subqueries
3197   ** to the right and the left are evaluated, they use the correct
3198   ** collation.
3199   */
3200   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3201   if( aPermute ){
3202     struct ExprList_item *pItem;
3203     aPermute[0] = nOrderBy;
3204     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3205       assert( pItem->u.x.iOrderByCol>0 );
3206       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3207       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3208     }
3209     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3210   }else{
3211     pKeyMerge = 0;
3212   }
3213 
3214   /* Reattach the ORDER BY clause to the query.
3215   */
3216   p->pOrderBy = pOrderBy;
3217   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3218 
3219   /* Allocate a range of temporary registers and the KeyInfo needed
3220   ** for the logic that removes duplicate result rows when the
3221   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3222   */
3223   if( op==TK_ALL ){
3224     regPrev = 0;
3225   }else{
3226     int nExpr = p->pEList->nExpr;
3227     assert( nOrderBy>=nExpr || db->mallocFailed );
3228     regPrev = pParse->nMem+1;
3229     pParse->nMem += nExpr+1;
3230     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3231     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3232     if( pKeyDup ){
3233       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3234       for(i=0; i<nExpr; i++){
3235         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3236         pKeyDup->aSortOrder[i] = 0;
3237       }
3238     }
3239   }
3240 
3241   /* Separate the left and the right query from one another
3242   */
3243   p->pPrior = 0;
3244   pPrior->pNext = 0;
3245   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3246   if( pPrior->pPrior==0 ){
3247     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3248   }
3249 
3250   /* Compute the limit registers */
3251   computeLimitRegisters(pParse, p, labelEnd);
3252   if( p->iLimit && op==TK_ALL ){
3253     regLimitA = ++pParse->nMem;
3254     regLimitB = ++pParse->nMem;
3255     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3256                                   regLimitA);
3257     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3258   }else{
3259     regLimitA = regLimitB = 0;
3260   }
3261   sqlite3ExprDelete(db, p->pLimit);
3262   p->pLimit = 0;
3263 
3264   regAddrA = ++pParse->nMem;
3265   regAddrB = ++pParse->nMem;
3266   regOutA = ++pParse->nMem;
3267   regOutB = ++pParse->nMem;
3268   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3269   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3270 
3271   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3272 
3273   /* Generate a coroutine to evaluate the SELECT statement to the
3274   ** left of the compound operator - the "A" select.
3275   */
3276   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3277   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3278   VdbeComment((v, "left SELECT"));
3279   pPrior->iLimit = regLimitA;
3280   ExplainQueryPlan((pParse, 1, "LEFT"));
3281   sqlite3Select(pParse, pPrior, &destA);
3282   sqlite3VdbeEndCoroutine(v, regAddrA);
3283   sqlite3VdbeJumpHere(v, addr1);
3284 
3285   /* Generate a coroutine to evaluate the SELECT statement on
3286   ** the right - the "B" select
3287   */
3288   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3289   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3290   VdbeComment((v, "right SELECT"));
3291   savedLimit = p->iLimit;
3292   savedOffset = p->iOffset;
3293   p->iLimit = regLimitB;
3294   p->iOffset = 0;
3295   ExplainQueryPlan((pParse, 1, "RIGHT"));
3296   sqlite3Select(pParse, p, &destB);
3297   p->iLimit = savedLimit;
3298   p->iOffset = savedOffset;
3299   sqlite3VdbeEndCoroutine(v, regAddrB);
3300 
3301   /* Generate a subroutine that outputs the current row of the A
3302   ** select as the next output row of the compound select.
3303   */
3304   VdbeNoopComment((v, "Output routine for A"));
3305   addrOutA = generateOutputSubroutine(pParse,
3306                  p, &destA, pDest, regOutA,
3307                  regPrev, pKeyDup, labelEnd);
3308 
3309   /* Generate a subroutine that outputs the current row of the B
3310   ** select as the next output row of the compound select.
3311   */
3312   if( op==TK_ALL || op==TK_UNION ){
3313     VdbeNoopComment((v, "Output routine for B"));
3314     addrOutB = generateOutputSubroutine(pParse,
3315                  p, &destB, pDest, regOutB,
3316                  regPrev, pKeyDup, labelEnd);
3317   }
3318   sqlite3KeyInfoUnref(pKeyDup);
3319 
3320   /* Generate a subroutine to run when the results from select A
3321   ** are exhausted and only data in select B remains.
3322   */
3323   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3324     addrEofA_noB = addrEofA = labelEnd;
3325   }else{
3326     VdbeNoopComment((v, "eof-A subroutine"));
3327     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3328     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3329                                      VdbeCoverage(v);
3330     sqlite3VdbeGoto(v, addrEofA);
3331     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3332   }
3333 
3334   /* Generate a subroutine to run when the results from select B
3335   ** are exhausted and only data in select A remains.
3336   */
3337   if( op==TK_INTERSECT ){
3338     addrEofB = addrEofA;
3339     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3340   }else{
3341     VdbeNoopComment((v, "eof-B subroutine"));
3342     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3343     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3344     sqlite3VdbeGoto(v, addrEofB);
3345   }
3346 
3347   /* Generate code to handle the case of A<B
3348   */
3349   VdbeNoopComment((v, "A-lt-B subroutine"));
3350   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3351   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3352   sqlite3VdbeGoto(v, labelCmpr);
3353 
3354   /* Generate code to handle the case of A==B
3355   */
3356   if( op==TK_ALL ){
3357     addrAeqB = addrAltB;
3358   }else if( op==TK_INTERSECT ){
3359     addrAeqB = addrAltB;
3360     addrAltB++;
3361   }else{
3362     VdbeNoopComment((v, "A-eq-B subroutine"));
3363     addrAeqB =
3364     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3365     sqlite3VdbeGoto(v, labelCmpr);
3366   }
3367 
3368   /* Generate code to handle the case of A>B
3369   */
3370   VdbeNoopComment((v, "A-gt-B subroutine"));
3371   addrAgtB = sqlite3VdbeCurrentAddr(v);
3372   if( op==TK_ALL || op==TK_UNION ){
3373     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3374   }
3375   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3376   sqlite3VdbeGoto(v, labelCmpr);
3377 
3378   /* This code runs once to initialize everything.
3379   */
3380   sqlite3VdbeJumpHere(v, addr1);
3381   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3382   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3383 
3384   /* Implement the main merge loop
3385   */
3386   sqlite3VdbeResolveLabel(v, labelCmpr);
3387   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3388   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3389                          (char*)pKeyMerge, P4_KEYINFO);
3390   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3391   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3392 
3393   /* Jump to the this point in order to terminate the query.
3394   */
3395   sqlite3VdbeResolveLabel(v, labelEnd);
3396 
3397   /* Reassembly the compound query so that it will be freed correctly
3398   ** by the calling function */
3399   if( p->pPrior ){
3400     sqlite3SelectDelete(db, p->pPrior);
3401   }
3402   p->pPrior = pPrior;
3403   pPrior->pNext = p;
3404 
3405   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3406   **** subqueries ****/
3407   ExplainQueryPlanPop(pParse);
3408   return pParse->nErr!=0;
3409 }
3410 #endif
3411 
3412 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3413 
3414 /* An instance of the SubstContext object describes an substitution edit
3415 ** to be performed on a parse tree.
3416 **
3417 ** All references to columns in table iTable are to be replaced by corresponding
3418 ** expressions in pEList.
3419 */
3420 typedef struct SubstContext {
3421   Parse *pParse;            /* The parsing context */
3422   int iTable;               /* Replace references to this table */
3423   int iNewTable;            /* New table number */
3424   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3425   ExprList *pEList;         /* Replacement expressions */
3426 } SubstContext;
3427 
3428 /* Forward Declarations */
3429 static void substExprList(SubstContext*, ExprList*);
3430 static void substSelect(SubstContext*, Select*, int);
3431 
3432 /*
3433 ** Scan through the expression pExpr.  Replace every reference to
3434 ** a column in table number iTable with a copy of the iColumn-th
3435 ** entry in pEList.  (But leave references to the ROWID column
3436 ** unchanged.)
3437 **
3438 ** This routine is part of the flattening procedure.  A subquery
3439 ** whose result set is defined by pEList appears as entry in the
3440 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3441 ** FORM clause entry is iTable.  This routine makes the necessary
3442 ** changes to pExpr so that it refers directly to the source table
3443 ** of the subquery rather the result set of the subquery.
3444 */
3445 static Expr *substExpr(
3446   SubstContext *pSubst,  /* Description of the substitution */
3447   Expr *pExpr            /* Expr in which substitution occurs */
3448 ){
3449   if( pExpr==0 ) return 0;
3450   if( ExprHasProperty(pExpr, EP_FromJoin)
3451    && pExpr->iRightJoinTable==pSubst->iTable
3452   ){
3453     pExpr->iRightJoinTable = pSubst->iNewTable;
3454   }
3455   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3456     if( pExpr->iColumn<0 ){
3457       pExpr->op = TK_NULL;
3458     }else{
3459       Expr *pNew;
3460       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3461       Expr ifNullRow;
3462       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3463       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3464       if( sqlite3ExprIsVector(pCopy) ){
3465         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3466       }else{
3467         sqlite3 *db = pSubst->pParse->db;
3468         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3469           memset(&ifNullRow, 0, sizeof(ifNullRow));
3470           ifNullRow.op = TK_IF_NULL_ROW;
3471           ifNullRow.pLeft = pCopy;
3472           ifNullRow.iTable = pSubst->iNewTable;
3473           pCopy = &ifNullRow;
3474         }
3475         pNew = sqlite3ExprDup(db, pCopy, 0);
3476         if( pNew && pSubst->isLeftJoin ){
3477           ExprSetProperty(pNew, EP_CanBeNull);
3478         }
3479         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3480           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3481           ExprSetProperty(pNew, EP_FromJoin);
3482         }
3483         sqlite3ExprDelete(db, pExpr);
3484         pExpr = pNew;
3485       }
3486     }
3487   }else{
3488     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3489       pExpr->iTable = pSubst->iNewTable;
3490     }
3491     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3492     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3493     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3494       substSelect(pSubst, pExpr->x.pSelect, 1);
3495     }else{
3496       substExprList(pSubst, pExpr->x.pList);
3497     }
3498   }
3499   return pExpr;
3500 }
3501 static void substExprList(
3502   SubstContext *pSubst, /* Description of the substitution */
3503   ExprList *pList       /* List to scan and in which to make substitutes */
3504 ){
3505   int i;
3506   if( pList==0 ) return;
3507   for(i=0; i<pList->nExpr; i++){
3508     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3509   }
3510 }
3511 static void substSelect(
3512   SubstContext *pSubst, /* Description of the substitution */
3513   Select *p,            /* SELECT statement in which to make substitutions */
3514   int doPrior           /* Do substitutes on p->pPrior too */
3515 ){
3516   SrcList *pSrc;
3517   struct SrcList_item *pItem;
3518   int i;
3519   if( !p ) return;
3520   do{
3521     substExprList(pSubst, p->pEList);
3522     substExprList(pSubst, p->pGroupBy);
3523     substExprList(pSubst, p->pOrderBy);
3524     p->pHaving = substExpr(pSubst, p->pHaving);
3525     p->pWhere = substExpr(pSubst, p->pWhere);
3526     pSrc = p->pSrc;
3527     assert( pSrc!=0 );
3528     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3529       substSelect(pSubst, pItem->pSelect, 1);
3530       if( pItem->fg.isTabFunc ){
3531         substExprList(pSubst, pItem->u1.pFuncArg);
3532       }
3533     }
3534   }while( doPrior && (p = p->pPrior)!=0 );
3535 }
3536 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3537 
3538 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3539 /*
3540 ** This routine attempts to flatten subqueries as a performance optimization.
3541 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3542 **
3543 ** To understand the concept of flattening, consider the following
3544 ** query:
3545 **
3546 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3547 **
3548 ** The default way of implementing this query is to execute the
3549 ** subquery first and store the results in a temporary table, then
3550 ** run the outer query on that temporary table.  This requires two
3551 ** passes over the data.  Furthermore, because the temporary table
3552 ** has no indices, the WHERE clause on the outer query cannot be
3553 ** optimized.
3554 **
3555 ** This routine attempts to rewrite queries such as the above into
3556 ** a single flat select, like this:
3557 **
3558 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3559 **
3560 ** The code generated for this simplification gives the same result
3561 ** but only has to scan the data once.  And because indices might
3562 ** exist on the table t1, a complete scan of the data might be
3563 ** avoided.
3564 **
3565 ** Flattening is subject to the following constraints:
3566 **
3567 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3568 **        The subquery and the outer query cannot both be aggregates.
3569 **
3570 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3571 **        (2) If the subquery is an aggregate then
3572 **        (2a) the outer query must not be a join and
3573 **        (2b) the outer query must not use subqueries
3574 **             other than the one FROM-clause subquery that is a candidate
3575 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3576 **             from 2015-02-09.)
3577 **
3578 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3579 **        (3a) the subquery may not be a join and
3580 **        (3b) the FROM clause of the subquery may not contain a virtual
3581 **             table and
3582 **        (3c) the outer query may not be an aggregate.
3583 **
3584 **   (4)  The subquery can not be DISTINCT.
3585 **
3586 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3587 **        sub-queries that were excluded from this optimization. Restriction
3588 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3589 **
3590 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3591 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3592 **
3593 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3594 **        A FROM clause, consider adding a FROM clause with the special
3595 **        table sqlite_once that consists of a single row containing a
3596 **        single NULL.
3597 **
3598 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3599 **
3600 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3601 **
3602 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3603 **        accidently carried the comment forward until 2014-09-15.  Original
3604 **        constraint: "If the subquery is aggregate then the outer query
3605 **        may not use LIMIT."
3606 **
3607 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3608 **
3609 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3610 **        a separate restriction deriving from ticket #350.
3611 **
3612 **  (13)  The subquery and outer query may not both use LIMIT.
3613 **
3614 **  (14)  The subquery may not use OFFSET.
3615 **
3616 **  (15)  If the outer query is part of a compound select, then the
3617 **        subquery may not use LIMIT.
3618 **        (See ticket #2339 and ticket [02a8e81d44]).
3619 **
3620 **  (16)  If the outer query is aggregate, then the subquery may not
3621 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3622 **        until we introduced the group_concat() function.
3623 **
3624 **  (17)  If the subquery is a compound select, then
3625 **        (17a) all compound operators must be a UNION ALL, and
3626 **        (17b) no terms within the subquery compound may be aggregate
3627 **              or DISTINCT, and
3628 **        (17c) every term within the subquery compound must have a FROM clause
3629 **        (17d) the outer query may not be
3630 **              (17d1) aggregate, or
3631 **              (17d2) DISTINCT, or
3632 **              (17d3) a join.
3633 **
3634 **        The parent and sub-query may contain WHERE clauses. Subject to
3635 **        rules (11), (13) and (14), they may also contain ORDER BY,
3636 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3637 **        operator other than UNION ALL because all the other compound
3638 **        operators have an implied DISTINCT which is disallowed by
3639 **        restriction (4).
3640 **
3641 **        Also, each component of the sub-query must return the same number
3642 **        of result columns. This is actually a requirement for any compound
3643 **        SELECT statement, but all the code here does is make sure that no
3644 **        such (illegal) sub-query is flattened. The caller will detect the
3645 **        syntax error and return a detailed message.
3646 **
3647 **  (18)  If the sub-query is a compound select, then all terms of the
3648 **        ORDER BY clause of the parent must be simple references to
3649 **        columns of the sub-query.
3650 **
3651 **  (19)  If the subquery uses LIMIT then the outer query may not
3652 **        have a WHERE clause.
3653 **
3654 **  (20)  If the sub-query is a compound select, then it must not use
3655 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3656 **        somewhat by saying that the terms of the ORDER BY clause must
3657 **        appear as unmodified result columns in the outer query.  But we
3658 **        have other optimizations in mind to deal with that case.
3659 **
3660 **  (21)  If the subquery uses LIMIT then the outer query may not be
3661 **        DISTINCT.  (See ticket [752e1646fc]).
3662 **
3663 **  (22)  The subquery may not be a recursive CTE.
3664 **
3665 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3666 **        a recursive CTE, then the sub-query may not be a compound query.
3667 **        This restriction is because transforming the
3668 **        parent to a compound query confuses the code that handles
3669 **        recursive queries in multiSelect().
3670 **
3671 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3672 **        The subquery may not be an aggregate that uses the built-in min() or
3673 **        or max() functions.  (Without this restriction, a query like:
3674 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3675 **        return the value X for which Y was maximal.)
3676 **
3677 **
3678 ** In this routine, the "p" parameter is a pointer to the outer query.
3679 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3680 ** uses aggregates.
3681 **
3682 ** If flattening is not attempted, this routine is a no-op and returns 0.
3683 ** If flattening is attempted this routine returns 1.
3684 **
3685 ** All of the expression analysis must occur on both the outer query and
3686 ** the subquery before this routine runs.
3687 */
3688 static int flattenSubquery(
3689   Parse *pParse,       /* Parsing context */
3690   Select *p,           /* The parent or outer SELECT statement */
3691   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3692   int isAgg            /* True if outer SELECT uses aggregate functions */
3693 ){
3694   const char *zSavedAuthContext = pParse->zAuthContext;
3695   Select *pParent;    /* Current UNION ALL term of the other query */
3696   Select *pSub;       /* The inner query or "subquery" */
3697   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3698   SrcList *pSrc;      /* The FROM clause of the outer query */
3699   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3700   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3701   int iNewParent = -1;/* Replacement table for iParent */
3702   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3703   int i;              /* Loop counter */
3704   Expr *pWhere;                    /* The WHERE clause */
3705   struct SrcList_item *pSubitem;   /* The subquery */
3706   sqlite3 *db = pParse->db;
3707 
3708   /* Check to see if flattening is permitted.  Return 0 if not.
3709   */
3710   assert( p!=0 );
3711   assert( p->pPrior==0 );
3712   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3713   pSrc = p->pSrc;
3714   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3715   pSubitem = &pSrc->a[iFrom];
3716   iParent = pSubitem->iCursor;
3717   pSub = pSubitem->pSelect;
3718   assert( pSub!=0 );
3719 
3720   pSubSrc = pSub->pSrc;
3721   assert( pSubSrc );
3722   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3723   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3724   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3725   ** became arbitrary expressions, we were forced to add restrictions (13)
3726   ** and (14). */
3727   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3728   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3729   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3730     return 0;                                            /* Restriction (15) */
3731   }
3732   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3733   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3734   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3735      return 0;         /* Restrictions (8)(9) */
3736   }
3737   if( p->pOrderBy && pSub->pOrderBy ){
3738      return 0;                                           /* Restriction (11) */
3739   }
3740   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3741   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3742   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3743      return 0;         /* Restriction (21) */
3744   }
3745   if( pSub->selFlags & (SF_Recursive) ){
3746     return 0; /* Restrictions (22) */
3747   }
3748 
3749   /*
3750   ** If the subquery is the right operand of a LEFT JOIN, then the
3751   ** subquery may not be a join itself (3a). Example of why this is not
3752   ** allowed:
3753   **
3754   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3755   **
3756   ** If we flatten the above, we would get
3757   **
3758   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3759   **
3760   ** which is not at all the same thing.
3761   **
3762   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3763   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3764   ** aggregates are processed - there is no mechanism to determine if
3765   ** the LEFT JOIN table should be all-NULL.
3766   **
3767   ** See also tickets #306, #350, and #3300.
3768   */
3769   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3770     isLeftJoin = 1;
3771     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3772       /*  (3a)             (3c)     (3b) */
3773       return 0;
3774     }
3775   }
3776 #ifdef SQLITE_EXTRA_IFNULLROW
3777   else if( iFrom>0 && !isAgg ){
3778     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3779     ** every reference to any result column from subquery in a join, even
3780     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3781     ** opcode. */
3782     isLeftJoin = -1;
3783   }
3784 #endif
3785 
3786   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3787   ** use only the UNION ALL operator. And none of the simple select queries
3788   ** that make up the compound SELECT are allowed to be aggregate or distinct
3789   ** queries.
3790   */
3791   if( pSub->pPrior ){
3792     if( pSub->pOrderBy ){
3793       return 0;  /* Restriction (20) */
3794     }
3795     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3796       return 0; /* (17d1), (17d2), or (17d3) */
3797     }
3798     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3799       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3800       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3801       assert( pSub->pSrc!=0 );
3802       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3803       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3804        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3805        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3806       ){
3807         return 0;
3808       }
3809       testcase( pSub1->pSrc->nSrc>1 );
3810     }
3811 
3812     /* Restriction (18). */
3813     if( p->pOrderBy ){
3814       int ii;
3815       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3816         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3817       }
3818     }
3819   }
3820 
3821   /* Ex-restriction (23):
3822   ** The only way that the recursive part of a CTE can contain a compound
3823   ** subquery is for the subquery to be one term of a join.  But if the
3824   ** subquery is a join, then the flattening has already been stopped by
3825   ** restriction (17d3)
3826   */
3827   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3828 
3829   /***** If we reach this point, flattening is permitted. *****/
3830   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3831                    pSub->zSelName, pSub, iFrom));
3832 
3833   /* Authorize the subquery */
3834   pParse->zAuthContext = pSubitem->zName;
3835   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3836   testcase( i==SQLITE_DENY );
3837   pParse->zAuthContext = zSavedAuthContext;
3838 
3839   /* If the sub-query is a compound SELECT statement, then (by restrictions
3840   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3841   ** be of the form:
3842   **
3843   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3844   **
3845   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3846   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3847   ** OFFSET clauses and joins them to the left-hand-side of the original
3848   ** using UNION ALL operators. In this case N is the number of simple
3849   ** select statements in the compound sub-query.
3850   **
3851   ** Example:
3852   **
3853   **     SELECT a+1 FROM (
3854   **        SELECT x FROM tab
3855   **        UNION ALL
3856   **        SELECT y FROM tab
3857   **        UNION ALL
3858   **        SELECT abs(z*2) FROM tab2
3859   **     ) WHERE a!=5 ORDER BY 1
3860   **
3861   ** Transformed into:
3862   **
3863   **     SELECT x+1 FROM tab WHERE x+1!=5
3864   **     UNION ALL
3865   **     SELECT y+1 FROM tab WHERE y+1!=5
3866   **     UNION ALL
3867   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3868   **     ORDER BY 1
3869   **
3870   ** We call this the "compound-subquery flattening".
3871   */
3872   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3873     Select *pNew;
3874     ExprList *pOrderBy = p->pOrderBy;
3875     Expr *pLimit = p->pLimit;
3876     Select *pPrior = p->pPrior;
3877     p->pOrderBy = 0;
3878     p->pSrc = 0;
3879     p->pPrior = 0;
3880     p->pLimit = 0;
3881     pNew = sqlite3SelectDup(db, p, 0);
3882     sqlite3SelectSetName(pNew, pSub->zSelName);
3883     p->pLimit = pLimit;
3884     p->pOrderBy = pOrderBy;
3885     p->pSrc = pSrc;
3886     p->op = TK_ALL;
3887     if( pNew==0 ){
3888       p->pPrior = pPrior;
3889     }else{
3890       pNew->pPrior = pPrior;
3891       if( pPrior ) pPrior->pNext = pNew;
3892       pNew->pNext = p;
3893       p->pPrior = pNew;
3894       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3895                               " creates %s.%p as peer\n",pNew->zSelName, pNew));
3896     }
3897     if( db->mallocFailed ) return 1;
3898   }
3899 
3900   /* Begin flattening the iFrom-th entry of the FROM clause
3901   ** in the outer query.
3902   */
3903   pSub = pSub1 = pSubitem->pSelect;
3904 
3905   /* Delete the transient table structure associated with the
3906   ** subquery
3907   */
3908   sqlite3DbFree(db, pSubitem->zDatabase);
3909   sqlite3DbFree(db, pSubitem->zName);
3910   sqlite3DbFree(db, pSubitem->zAlias);
3911   pSubitem->zDatabase = 0;
3912   pSubitem->zName = 0;
3913   pSubitem->zAlias = 0;
3914   pSubitem->pSelect = 0;
3915 
3916   /* Defer deleting the Table object associated with the
3917   ** subquery until code generation is
3918   ** complete, since there may still exist Expr.pTab entries that
3919   ** refer to the subquery even after flattening.  Ticket #3346.
3920   **
3921   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3922   */
3923   if( ALWAYS(pSubitem->pTab!=0) ){
3924     Table *pTabToDel = pSubitem->pTab;
3925     if( pTabToDel->nTabRef==1 ){
3926       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3927       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3928       pToplevel->pZombieTab = pTabToDel;
3929     }else{
3930       pTabToDel->nTabRef--;
3931     }
3932     pSubitem->pTab = 0;
3933   }
3934 
3935   /* The following loop runs once for each term in a compound-subquery
3936   ** flattening (as described above).  If we are doing a different kind
3937   ** of flattening - a flattening other than a compound-subquery flattening -
3938   ** then this loop only runs once.
3939   **
3940   ** This loop moves all of the FROM elements of the subquery into the
3941   ** the FROM clause of the outer query.  Before doing this, remember
3942   ** the cursor number for the original outer query FROM element in
3943   ** iParent.  The iParent cursor will never be used.  Subsequent code
3944   ** will scan expressions looking for iParent references and replace
3945   ** those references with expressions that resolve to the subquery FROM
3946   ** elements we are now copying in.
3947   */
3948   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3949     int nSubSrc;
3950     u8 jointype = 0;
3951     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3952     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3953     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3954 
3955     if( pSrc ){
3956       assert( pParent==p );  /* First time through the loop */
3957       jointype = pSubitem->fg.jointype;
3958     }else{
3959       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3960       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3961       if( pSrc==0 ){
3962         assert( db->mallocFailed );
3963         break;
3964       }
3965     }
3966 
3967     /* The subquery uses a single slot of the FROM clause of the outer
3968     ** query.  If the subquery has more than one element in its FROM clause,
3969     ** then expand the outer query to make space for it to hold all elements
3970     ** of the subquery.
3971     **
3972     ** Example:
3973     **
3974     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3975     **
3976     ** The outer query has 3 slots in its FROM clause.  One slot of the
3977     ** outer query (the middle slot) is used by the subquery.  The next
3978     ** block of code will expand the outer query FROM clause to 4 slots.
3979     ** The middle slot is expanded to two slots in order to make space
3980     ** for the two elements in the FROM clause of the subquery.
3981     */
3982     if( nSubSrc>1 ){
3983       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3984       if( db->mallocFailed ){
3985         break;
3986       }
3987     }
3988 
3989     /* Transfer the FROM clause terms from the subquery into the
3990     ** outer query.
3991     */
3992     for(i=0; i<nSubSrc; i++){
3993       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3994       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3995       pSrc->a[i+iFrom] = pSubSrc->a[i];
3996       iNewParent = pSubSrc->a[i].iCursor;
3997       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3998     }
3999     pSrc->a[iFrom].fg.jointype = jointype;
4000 
4001     /* Now begin substituting subquery result set expressions for
4002     ** references to the iParent in the outer query.
4003     **
4004     ** Example:
4005     **
4006     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4007     **   \                     \_____________ subquery __________/          /
4008     **    \_____________________ outer query ______________________________/
4009     **
4010     ** We look at every expression in the outer query and every place we see
4011     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4012     */
4013     if( pSub->pOrderBy ){
4014       /* At this point, any non-zero iOrderByCol values indicate that the
4015       ** ORDER BY column expression is identical to the iOrderByCol'th
4016       ** expression returned by SELECT statement pSub. Since these values
4017       ** do not necessarily correspond to columns in SELECT statement pParent,
4018       ** zero them before transfering the ORDER BY clause.
4019       **
4020       ** Not doing this may cause an error if a subsequent call to this
4021       ** function attempts to flatten a compound sub-query into pParent
4022       ** (the only way this can happen is if the compound sub-query is
4023       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4024       ExprList *pOrderBy = pSub->pOrderBy;
4025       for(i=0; i<pOrderBy->nExpr; i++){
4026         pOrderBy->a[i].u.x.iOrderByCol = 0;
4027       }
4028       assert( pParent->pOrderBy==0 );
4029       pParent->pOrderBy = pOrderBy;
4030       pSub->pOrderBy = 0;
4031     }
4032     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4033     if( isLeftJoin>0 ){
4034       setJoinExpr(pWhere, iNewParent);
4035     }
4036     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4037     if( db->mallocFailed==0 ){
4038       SubstContext x;
4039       x.pParse = pParse;
4040       x.iTable = iParent;
4041       x.iNewTable = iNewParent;
4042       x.isLeftJoin = isLeftJoin;
4043       x.pEList = pSub->pEList;
4044       substSelect(&x, pParent, 0);
4045     }
4046 
4047     /* The flattened query is distinct if either the inner or the
4048     ** outer query is distinct.
4049     */
4050     pParent->selFlags |= pSub->selFlags & SF_Distinct;
4051 
4052     /*
4053     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4054     **
4055     ** One is tempted to try to add a and b to combine the limits.  But this
4056     ** does not work if either limit is negative.
4057     */
4058     if( pSub->pLimit ){
4059       pParent->pLimit = pSub->pLimit;
4060       pSub->pLimit = 0;
4061     }
4062   }
4063 
4064   /* Finially, delete what is left of the subquery and return
4065   ** success.
4066   */
4067   sqlite3SelectDelete(db, pSub1);
4068 
4069 #if SELECTTRACE_ENABLED
4070   if( sqlite3SelectTrace & 0x100 ){
4071     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4072     sqlite3TreeViewSelect(0, p, 0);
4073   }
4074 #endif
4075 
4076   return 1;
4077 }
4078 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4079 
4080 
4081 
4082 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4083 /*
4084 ** Make copies of relevant WHERE clause terms of the outer query into
4085 ** the WHERE clause of subquery.  Example:
4086 **
4087 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4088 **
4089 ** Transformed into:
4090 **
4091 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4092 **     WHERE x=5 AND y=10;
4093 **
4094 ** The hope is that the terms added to the inner query will make it more
4095 ** efficient.
4096 **
4097 ** Do not attempt this optimization if:
4098 **
4099 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4100 **           disallow this optimization for aggregate subqueries, but now
4101 **           it is allowed by putting the extra terms on the HAVING clause.
4102 **           The added HAVING clause is pointless if the subquery lacks
4103 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4104 **           so there does not appear to be any reason to add extra logic
4105 **           to suppress it. **)
4106 **
4107 **   (2) The inner query is the recursive part of a common table expression.
4108 **
4109 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4110 **       close would change the meaning of the LIMIT).
4111 **
4112 **   (4) The inner query is the right operand of a LEFT JOIN and the
4113 **       expression to be pushed down does not come from the ON clause
4114 **       on that LEFT JOIN.
4115 **
4116 **   (5) The WHERE clause expression originates in the ON or USING clause
4117 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4118 **       left join.  An example:
4119 **
4120 **           SELECT *
4121 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4122 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4123 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4124 **
4125 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4126 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4127 **       then the (1,1,NULL) row would be suppressed.
4128 **
4129 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4130 ** terms are duplicated into the subquery.
4131 */
4132 static int pushDownWhereTerms(
4133   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4134   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4135   Expr *pWhere,         /* The WHERE clause of the outer query */
4136   int iCursor,          /* Cursor number of the subquery */
4137   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4138 ){
4139   Expr *pNew;
4140   int nChng = 0;
4141   if( pWhere==0 ) return 0;
4142   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4143 
4144 #ifdef SQLITE_DEBUG
4145   /* Only the first term of a compound can have a WITH clause.  But make
4146   ** sure no other terms are marked SF_Recursive in case something changes
4147   ** in the future.
4148   */
4149   {
4150     Select *pX;
4151     for(pX=pSubq; pX; pX=pX->pPrior){
4152       assert( (pX->selFlags & (SF_Recursive))==0 );
4153     }
4154   }
4155 #endif
4156 
4157   if( pSubq->pLimit!=0 ){
4158     return 0; /* restriction (3) */
4159   }
4160   while( pWhere->op==TK_AND ){
4161     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4162                                 iCursor, isLeftJoin);
4163     pWhere = pWhere->pLeft;
4164   }
4165   if( isLeftJoin
4166    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4167          || pWhere->iRightJoinTable!=iCursor)
4168   ){
4169     return 0; /* restriction (4) */
4170   }
4171   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4172     return 0; /* restriction (5) */
4173   }
4174   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4175     nChng++;
4176     while( pSubq ){
4177       SubstContext x;
4178       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4179       unsetJoinExpr(pNew, -1);
4180       x.pParse = pParse;
4181       x.iTable = iCursor;
4182       x.iNewTable = iCursor;
4183       x.isLeftJoin = 0;
4184       x.pEList = pSubq->pEList;
4185       pNew = substExpr(&x, pNew);
4186       if( pSubq->selFlags & SF_Aggregate ){
4187         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4188       }else{
4189         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4190       }
4191       pSubq = pSubq->pPrior;
4192     }
4193   }
4194   return nChng;
4195 }
4196 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4197 
4198 /*
4199 ** The pFunc is the only aggregate function in the query.  Check to see
4200 ** if the query is a candidate for the min/max optimization.
4201 **
4202 ** If the query is a candidate for the min/max optimization, then set
4203 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4204 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4205 ** whether pFunc is a min() or max() function.
4206 **
4207 ** If the query is not a candidate for the min/max optimization, return
4208 ** WHERE_ORDERBY_NORMAL (which must be zero).
4209 **
4210 ** This routine must be called after aggregate functions have been
4211 ** located but before their arguments have been subjected to aggregate
4212 ** analysis.
4213 */
4214 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4215   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4216   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4217   const char *zFunc;                    /* Name of aggregate function pFunc */
4218   ExprList *pOrderBy;
4219   u8 sortOrder;
4220 
4221   assert( *ppMinMax==0 );
4222   assert( pFunc->op==TK_AGG_FUNCTION );
4223   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4224   zFunc = pFunc->u.zToken;
4225   if( sqlite3StrICmp(zFunc, "min")==0 ){
4226     eRet = WHERE_ORDERBY_MIN;
4227     sortOrder = SQLITE_SO_ASC;
4228   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4229     eRet = WHERE_ORDERBY_MAX;
4230     sortOrder = SQLITE_SO_DESC;
4231   }else{
4232     return eRet;
4233   }
4234   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4235   assert( pOrderBy!=0 || db->mallocFailed );
4236   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4237   return eRet;
4238 }
4239 
4240 /*
4241 ** The select statement passed as the first argument is an aggregate query.
4242 ** The second argument is the associated aggregate-info object. This
4243 ** function tests if the SELECT is of the form:
4244 **
4245 **   SELECT count(*) FROM <tbl>
4246 **
4247 ** where table is a database table, not a sub-select or view. If the query
4248 ** does match this pattern, then a pointer to the Table object representing
4249 ** <tbl> is returned. Otherwise, 0 is returned.
4250 */
4251 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4252   Table *pTab;
4253   Expr *pExpr;
4254 
4255   assert( !p->pGroupBy );
4256 
4257   if( p->pWhere || p->pEList->nExpr!=1
4258    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4259   ){
4260     return 0;
4261   }
4262   pTab = p->pSrc->a[0].pTab;
4263   pExpr = p->pEList->a[0].pExpr;
4264   assert( pTab && !pTab->pSelect && pExpr );
4265 
4266   if( IsVirtual(pTab) ) return 0;
4267   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4268   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4269   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4270   if( pExpr->flags&EP_Distinct ) return 0;
4271 
4272   return pTab;
4273 }
4274 
4275 /*
4276 ** If the source-list item passed as an argument was augmented with an
4277 ** INDEXED BY clause, then try to locate the specified index. If there
4278 ** was such a clause and the named index cannot be found, return
4279 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4280 ** pFrom->pIndex and return SQLITE_OK.
4281 */
4282 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4283   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4284     Table *pTab = pFrom->pTab;
4285     char *zIndexedBy = pFrom->u1.zIndexedBy;
4286     Index *pIdx;
4287     for(pIdx=pTab->pIndex;
4288         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4289         pIdx=pIdx->pNext
4290     );
4291     if( !pIdx ){
4292       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4293       pParse->checkSchema = 1;
4294       return SQLITE_ERROR;
4295     }
4296     pFrom->pIBIndex = pIdx;
4297   }
4298   return SQLITE_OK;
4299 }
4300 /*
4301 ** Detect compound SELECT statements that use an ORDER BY clause with
4302 ** an alternative collating sequence.
4303 **
4304 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4305 **
4306 ** These are rewritten as a subquery:
4307 **
4308 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4309 **     ORDER BY ... COLLATE ...
4310 **
4311 ** This transformation is necessary because the multiSelectOrderBy() routine
4312 ** above that generates the code for a compound SELECT with an ORDER BY clause
4313 ** uses a merge algorithm that requires the same collating sequence on the
4314 ** result columns as on the ORDER BY clause.  See ticket
4315 ** http://www.sqlite.org/src/info/6709574d2a
4316 **
4317 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4318 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4319 ** there are COLLATE terms in the ORDER BY.
4320 */
4321 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4322   int i;
4323   Select *pNew;
4324   Select *pX;
4325   sqlite3 *db;
4326   struct ExprList_item *a;
4327   SrcList *pNewSrc;
4328   Parse *pParse;
4329   Token dummy;
4330 
4331   if( p->pPrior==0 ) return WRC_Continue;
4332   if( p->pOrderBy==0 ) return WRC_Continue;
4333   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4334   if( pX==0 ) return WRC_Continue;
4335   a = p->pOrderBy->a;
4336   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4337     if( a[i].pExpr->flags & EP_Collate ) break;
4338   }
4339   if( i<0 ) return WRC_Continue;
4340 
4341   /* If we reach this point, that means the transformation is required. */
4342 
4343   pParse = pWalker->pParse;
4344   db = pParse->db;
4345   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4346   if( pNew==0 ) return WRC_Abort;
4347   memset(&dummy, 0, sizeof(dummy));
4348   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4349   if( pNewSrc==0 ) return WRC_Abort;
4350   *pNew = *p;
4351   p->pSrc = pNewSrc;
4352   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4353   p->op = TK_SELECT;
4354   p->pWhere = 0;
4355   pNew->pGroupBy = 0;
4356   pNew->pHaving = 0;
4357   pNew->pOrderBy = 0;
4358   p->pPrior = 0;
4359   p->pNext = 0;
4360   p->pWith = 0;
4361   p->selFlags &= ~SF_Compound;
4362   assert( (p->selFlags & SF_Converted)==0 );
4363   p->selFlags |= SF_Converted;
4364   assert( pNew->pPrior!=0 );
4365   pNew->pPrior->pNext = pNew;
4366   pNew->pLimit = 0;
4367   return WRC_Continue;
4368 }
4369 
4370 /*
4371 ** Check to see if the FROM clause term pFrom has table-valued function
4372 ** arguments.  If it does, leave an error message in pParse and return
4373 ** non-zero, since pFrom is not allowed to be a table-valued function.
4374 */
4375 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4376   if( pFrom->fg.isTabFunc ){
4377     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4378     return 1;
4379   }
4380   return 0;
4381 }
4382 
4383 #ifndef SQLITE_OMIT_CTE
4384 /*
4385 ** Argument pWith (which may be NULL) points to a linked list of nested
4386 ** WITH contexts, from inner to outermost. If the table identified by
4387 ** FROM clause element pItem is really a common-table-expression (CTE)
4388 ** then return a pointer to the CTE definition for that table. Otherwise
4389 ** return NULL.
4390 **
4391 ** If a non-NULL value is returned, set *ppContext to point to the With
4392 ** object that the returned CTE belongs to.
4393 */
4394 static struct Cte *searchWith(
4395   With *pWith,                    /* Current innermost WITH clause */
4396   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4397   With **ppContext                /* OUT: WITH clause return value belongs to */
4398 ){
4399   const char *zName;
4400   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4401     With *p;
4402     for(p=pWith; p; p=p->pOuter){
4403       int i;
4404       for(i=0; i<p->nCte; i++){
4405         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4406           *ppContext = p;
4407           return &p->a[i];
4408         }
4409       }
4410     }
4411   }
4412   return 0;
4413 }
4414 
4415 /* The code generator maintains a stack of active WITH clauses
4416 ** with the inner-most WITH clause being at the top of the stack.
4417 **
4418 ** This routine pushes the WITH clause passed as the second argument
4419 ** onto the top of the stack. If argument bFree is true, then this
4420 ** WITH clause will never be popped from the stack. In this case it
4421 ** should be freed along with the Parse object. In other cases, when
4422 ** bFree==0, the With object will be freed along with the SELECT
4423 ** statement with which it is associated.
4424 */
4425 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4426   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4427   if( pWith ){
4428     assert( pParse->pWith!=pWith );
4429     pWith->pOuter = pParse->pWith;
4430     pParse->pWith = pWith;
4431     if( bFree ) pParse->pWithToFree = pWith;
4432   }
4433 }
4434 
4435 /*
4436 ** This function checks if argument pFrom refers to a CTE declared by
4437 ** a WITH clause on the stack currently maintained by the parser. And,
4438 ** if currently processing a CTE expression, if it is a recursive
4439 ** reference to the current CTE.
4440 **
4441 ** If pFrom falls into either of the two categories above, pFrom->pTab
4442 ** and other fields are populated accordingly. The caller should check
4443 ** (pFrom->pTab!=0) to determine whether or not a successful match
4444 ** was found.
4445 **
4446 ** Whether or not a match is found, SQLITE_OK is returned if no error
4447 ** occurs. If an error does occur, an error message is stored in the
4448 ** parser and some error code other than SQLITE_OK returned.
4449 */
4450 static int withExpand(
4451   Walker *pWalker,
4452   struct SrcList_item *pFrom
4453 ){
4454   Parse *pParse = pWalker->pParse;
4455   sqlite3 *db = pParse->db;
4456   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4457   With *pWith;                    /* WITH clause that pCte belongs to */
4458 
4459   assert( pFrom->pTab==0 );
4460 
4461   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4462   if( pCte ){
4463     Table *pTab;
4464     ExprList *pEList;
4465     Select *pSel;
4466     Select *pLeft;                /* Left-most SELECT statement */
4467     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4468     With *pSavedWith;             /* Initial value of pParse->pWith */
4469 
4470     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4471     ** recursive reference to CTE pCte. Leave an error in pParse and return
4472     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4473     ** In this case, proceed.  */
4474     if( pCte->zCteErr ){
4475       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4476       return SQLITE_ERROR;
4477     }
4478     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4479 
4480     assert( pFrom->pTab==0 );
4481     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4482     if( pTab==0 ) return WRC_Abort;
4483     pTab->nTabRef = 1;
4484     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4485     pTab->iPKey = -1;
4486     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4487     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4488     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4489     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4490     assert( pFrom->pSelect );
4491 
4492     /* Check if this is a recursive CTE. */
4493     pSel = pFrom->pSelect;
4494     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4495     if( bMayRecursive ){
4496       int i;
4497       SrcList *pSrc = pFrom->pSelect->pSrc;
4498       for(i=0; i<pSrc->nSrc; i++){
4499         struct SrcList_item *pItem = &pSrc->a[i];
4500         if( pItem->zDatabase==0
4501          && pItem->zName!=0
4502          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4503           ){
4504           pItem->pTab = pTab;
4505           pItem->fg.isRecursive = 1;
4506           pTab->nTabRef++;
4507           pSel->selFlags |= SF_Recursive;
4508         }
4509       }
4510     }
4511 
4512     /* Only one recursive reference is permitted. */
4513     if( pTab->nTabRef>2 ){
4514       sqlite3ErrorMsg(
4515           pParse, "multiple references to recursive table: %s", pCte->zName
4516       );
4517       return SQLITE_ERROR;
4518     }
4519     assert( pTab->nTabRef==1 ||
4520             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4521 
4522     pCte->zCteErr = "circular reference: %s";
4523     pSavedWith = pParse->pWith;
4524     pParse->pWith = pWith;
4525     if( bMayRecursive ){
4526       Select *pPrior = pSel->pPrior;
4527       assert( pPrior->pWith==0 );
4528       pPrior->pWith = pSel->pWith;
4529       sqlite3WalkSelect(pWalker, pPrior);
4530       pPrior->pWith = 0;
4531     }else{
4532       sqlite3WalkSelect(pWalker, pSel);
4533     }
4534     pParse->pWith = pWith;
4535 
4536     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4537     pEList = pLeft->pEList;
4538     if( pCte->pCols ){
4539       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4540         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4541             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4542         );
4543         pParse->pWith = pSavedWith;
4544         return SQLITE_ERROR;
4545       }
4546       pEList = pCte->pCols;
4547     }
4548 
4549     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4550     if( bMayRecursive ){
4551       if( pSel->selFlags & SF_Recursive ){
4552         pCte->zCteErr = "multiple recursive references: %s";
4553       }else{
4554         pCte->zCteErr = "recursive reference in a subquery: %s";
4555       }
4556       sqlite3WalkSelect(pWalker, pSel);
4557     }
4558     pCte->zCteErr = 0;
4559     pParse->pWith = pSavedWith;
4560   }
4561 
4562   return SQLITE_OK;
4563 }
4564 #endif
4565 
4566 #ifndef SQLITE_OMIT_CTE
4567 /*
4568 ** If the SELECT passed as the second argument has an associated WITH
4569 ** clause, pop it from the stack stored as part of the Parse object.
4570 **
4571 ** This function is used as the xSelectCallback2() callback by
4572 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4573 ** names and other FROM clause elements.
4574 */
4575 static void selectPopWith(Walker *pWalker, Select *p){
4576   Parse *pParse = pWalker->pParse;
4577   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4578     With *pWith = findRightmost(p)->pWith;
4579     if( pWith!=0 ){
4580       assert( pParse->pWith==pWith );
4581       pParse->pWith = pWith->pOuter;
4582     }
4583   }
4584 }
4585 #else
4586 #define selectPopWith 0
4587 #endif
4588 
4589 /*
4590 ** This routine is a Walker callback for "expanding" a SELECT statement.
4591 ** "Expanding" means to do the following:
4592 **
4593 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4594 **         element of the FROM clause.
4595 **
4596 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4597 **         defines FROM clause.  When views appear in the FROM clause,
4598 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4599 **         that implements the view.  A copy is made of the view's SELECT
4600 **         statement so that we can freely modify or delete that statement
4601 **         without worrying about messing up the persistent representation
4602 **         of the view.
4603 **
4604 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4605 **         on joins and the ON and USING clause of joins.
4606 **
4607 **    (4)  Scan the list of columns in the result set (pEList) looking
4608 **         for instances of the "*" operator or the TABLE.* operator.
4609 **         If found, expand each "*" to be every column in every table
4610 **         and TABLE.* to be every column in TABLE.
4611 **
4612 */
4613 static int selectExpander(Walker *pWalker, Select *p){
4614   Parse *pParse = pWalker->pParse;
4615   int i, j, k;
4616   SrcList *pTabList;
4617   ExprList *pEList;
4618   struct SrcList_item *pFrom;
4619   sqlite3 *db = pParse->db;
4620   Expr *pE, *pRight, *pExpr;
4621   u16 selFlags = p->selFlags;
4622   u32 elistFlags = 0;
4623 
4624   p->selFlags |= SF_Expanded;
4625   if( db->mallocFailed  ){
4626     return WRC_Abort;
4627   }
4628   assert( p->pSrc!=0 );
4629   if( (selFlags & SF_Expanded)!=0 ){
4630     return WRC_Prune;
4631   }
4632   pTabList = p->pSrc;
4633   pEList = p->pEList;
4634   sqlite3WithPush(pParse, p->pWith, 0);
4635 
4636   /* Make sure cursor numbers have been assigned to all entries in
4637   ** the FROM clause of the SELECT statement.
4638   */
4639   sqlite3SrcListAssignCursors(pParse, pTabList);
4640 
4641   /* Look up every table named in the FROM clause of the select.  If
4642   ** an entry of the FROM clause is a subquery instead of a table or view,
4643   ** then create a transient table structure to describe the subquery.
4644   */
4645   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4646     Table *pTab;
4647     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4648     if( pFrom->fg.isRecursive ) continue;
4649     assert( pFrom->pTab==0 );
4650 #ifndef SQLITE_OMIT_CTE
4651     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4652     if( pFrom->pTab ) {} else
4653 #endif
4654     if( pFrom->zName==0 ){
4655 #ifndef SQLITE_OMIT_SUBQUERY
4656       Select *pSel = pFrom->pSelect;
4657       /* A sub-query in the FROM clause of a SELECT */
4658       assert( pSel!=0 );
4659       assert( pFrom->pTab==0 );
4660       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4661       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4662       if( pTab==0 ) return WRC_Abort;
4663       pTab->nTabRef = 1;
4664       if( pFrom->zAlias ){
4665         pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4666       }else{
4667         pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4668       }
4669       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4670       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4671       pTab->iPKey = -1;
4672       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4673       pTab->tabFlags |= TF_Ephemeral;
4674 #endif
4675     }else{
4676       /* An ordinary table or view name in the FROM clause */
4677       assert( pFrom->pTab==0 );
4678       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4679       if( pTab==0 ) return WRC_Abort;
4680       if( pTab->nTabRef>=0xffff ){
4681         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4682            pTab->zName);
4683         pFrom->pTab = 0;
4684         return WRC_Abort;
4685       }
4686       pTab->nTabRef++;
4687       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4688         return WRC_Abort;
4689       }
4690 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4691       if( IsVirtual(pTab) || pTab->pSelect ){
4692         i16 nCol;
4693         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4694         assert( pFrom->pSelect==0 );
4695         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4696         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4697         nCol = pTab->nCol;
4698         pTab->nCol = -1;
4699         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4700         pTab->nCol = nCol;
4701       }
4702 #endif
4703     }
4704 
4705     /* Locate the index named by the INDEXED BY clause, if any. */
4706     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4707       return WRC_Abort;
4708     }
4709   }
4710 
4711   /* Process NATURAL keywords, and ON and USING clauses of joins.
4712   */
4713   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4714     return WRC_Abort;
4715   }
4716 
4717   /* For every "*" that occurs in the column list, insert the names of
4718   ** all columns in all tables.  And for every TABLE.* insert the names
4719   ** of all columns in TABLE.  The parser inserted a special expression
4720   ** with the TK_ASTERISK operator for each "*" that it found in the column
4721   ** list.  The following code just has to locate the TK_ASTERISK
4722   ** expressions and expand each one to the list of all columns in
4723   ** all tables.
4724   **
4725   ** The first loop just checks to see if there are any "*" operators
4726   ** that need expanding.
4727   */
4728   for(k=0; k<pEList->nExpr; k++){
4729     pE = pEList->a[k].pExpr;
4730     if( pE->op==TK_ASTERISK ) break;
4731     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4732     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4733     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4734     elistFlags |= pE->flags;
4735   }
4736   if( k<pEList->nExpr ){
4737     /*
4738     ** If we get here it means the result set contains one or more "*"
4739     ** operators that need to be expanded.  Loop through each expression
4740     ** in the result set and expand them one by one.
4741     */
4742     struct ExprList_item *a = pEList->a;
4743     ExprList *pNew = 0;
4744     int flags = pParse->db->flags;
4745     int longNames = (flags & SQLITE_FullColNames)!=0
4746                       && (flags & SQLITE_ShortColNames)==0;
4747 
4748     for(k=0; k<pEList->nExpr; k++){
4749       pE = a[k].pExpr;
4750       elistFlags |= pE->flags;
4751       pRight = pE->pRight;
4752       assert( pE->op!=TK_DOT || pRight!=0 );
4753       if( pE->op!=TK_ASTERISK
4754        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4755       ){
4756         /* This particular expression does not need to be expanded.
4757         */
4758         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4759         if( pNew ){
4760           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4761           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4762           a[k].zName = 0;
4763           a[k].zSpan = 0;
4764         }
4765         a[k].pExpr = 0;
4766       }else{
4767         /* This expression is a "*" or a "TABLE.*" and needs to be
4768         ** expanded. */
4769         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4770         char *zTName = 0;       /* text of name of TABLE */
4771         if( pE->op==TK_DOT ){
4772           assert( pE->pLeft!=0 );
4773           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4774           zTName = pE->pLeft->u.zToken;
4775         }
4776         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4777           Table *pTab = pFrom->pTab;
4778           Select *pSub = pFrom->pSelect;
4779           char *zTabName = pFrom->zAlias;
4780           const char *zSchemaName = 0;
4781           int iDb;
4782           if( zTabName==0 ){
4783             zTabName = pTab->zName;
4784           }
4785           if( db->mallocFailed ) break;
4786           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4787             pSub = 0;
4788             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4789               continue;
4790             }
4791             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4792             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4793           }
4794           for(j=0; j<pTab->nCol; j++){
4795             char *zName = pTab->aCol[j].zName;
4796             char *zColname;  /* The computed column name */
4797             char *zToFree;   /* Malloced string that needs to be freed */
4798             Token sColname;  /* Computed column name as a token */
4799 
4800             assert( zName );
4801             if( zTName && pSub
4802              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4803             ){
4804               continue;
4805             }
4806 
4807             /* If a column is marked as 'hidden', omit it from the expanded
4808             ** result-set list unless the SELECT has the SF_IncludeHidden
4809             ** bit set.
4810             */
4811             if( (p->selFlags & SF_IncludeHidden)==0
4812              && IsHiddenColumn(&pTab->aCol[j])
4813             ){
4814               continue;
4815             }
4816             tableSeen = 1;
4817 
4818             if( i>0 && zTName==0 ){
4819               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4820                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4821               ){
4822                 /* In a NATURAL join, omit the join columns from the
4823                 ** table to the right of the join */
4824                 continue;
4825               }
4826               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4827                 /* In a join with a USING clause, omit columns in the
4828                 ** using clause from the table on the right. */
4829                 continue;
4830               }
4831             }
4832             pRight = sqlite3Expr(db, TK_ID, zName);
4833             zColname = zName;
4834             zToFree = 0;
4835             if( longNames || pTabList->nSrc>1 ){
4836               Expr *pLeft;
4837               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4838               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4839               if( zSchemaName ){
4840                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4841                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4842               }
4843               if( longNames ){
4844                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4845                 zToFree = zColname;
4846               }
4847             }else{
4848               pExpr = pRight;
4849             }
4850             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4851             sqlite3TokenInit(&sColname, zColname);
4852             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4853             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4854               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4855               if( pSub ){
4856                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4857                 testcase( pX->zSpan==0 );
4858               }else{
4859                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4860                                            zSchemaName, zTabName, zColname);
4861                 testcase( pX->zSpan==0 );
4862               }
4863               pX->bSpanIsTab = 1;
4864             }
4865             sqlite3DbFree(db, zToFree);
4866           }
4867         }
4868         if( !tableSeen ){
4869           if( zTName ){
4870             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4871           }else{
4872             sqlite3ErrorMsg(pParse, "no tables specified");
4873           }
4874         }
4875       }
4876     }
4877     sqlite3ExprListDelete(db, pEList);
4878     p->pEList = pNew;
4879   }
4880   if( p->pEList ){
4881     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4882       sqlite3ErrorMsg(pParse, "too many columns in result set");
4883       return WRC_Abort;
4884     }
4885     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4886       p->selFlags |= SF_ComplexResult;
4887     }
4888   }
4889   return WRC_Continue;
4890 }
4891 
4892 /*
4893 ** No-op routine for the parse-tree walker.
4894 **
4895 ** When this routine is the Walker.xExprCallback then expression trees
4896 ** are walked without any actions being taken at each node.  Presumably,
4897 ** when this routine is used for Walker.xExprCallback then
4898 ** Walker.xSelectCallback is set to do something useful for every
4899 ** subquery in the parser tree.
4900 */
4901 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4902   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4903   return WRC_Continue;
4904 }
4905 
4906 /*
4907 ** No-op routine for the parse-tree walker for SELECT statements.
4908 ** subquery in the parser tree.
4909 */
4910 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4911   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4912   return WRC_Continue;
4913 }
4914 
4915 #if SQLITE_DEBUG
4916 /*
4917 ** Always assert.  This xSelectCallback2 implementation proves that the
4918 ** xSelectCallback2 is never invoked.
4919 */
4920 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4921   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4922   assert( 0 );
4923 }
4924 #endif
4925 /*
4926 ** This routine "expands" a SELECT statement and all of its subqueries.
4927 ** For additional information on what it means to "expand" a SELECT
4928 ** statement, see the comment on the selectExpand worker callback above.
4929 **
4930 ** Expanding a SELECT statement is the first step in processing a
4931 ** SELECT statement.  The SELECT statement must be expanded before
4932 ** name resolution is performed.
4933 **
4934 ** If anything goes wrong, an error message is written into pParse.
4935 ** The calling function can detect the problem by looking at pParse->nErr
4936 ** and/or pParse->db->mallocFailed.
4937 */
4938 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4939   Walker w;
4940   w.xExprCallback = sqlite3ExprWalkNoop;
4941   w.pParse = pParse;
4942   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4943     w.xSelectCallback = convertCompoundSelectToSubquery;
4944     w.xSelectCallback2 = 0;
4945     sqlite3WalkSelect(&w, pSelect);
4946   }
4947   w.xSelectCallback = selectExpander;
4948   w.xSelectCallback2 = selectPopWith;
4949   sqlite3WalkSelect(&w, pSelect);
4950 }
4951 
4952 
4953 #ifndef SQLITE_OMIT_SUBQUERY
4954 /*
4955 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4956 ** interface.
4957 **
4958 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4959 ** information to the Table structure that represents the result set
4960 ** of that subquery.
4961 **
4962 ** The Table structure that represents the result set was constructed
4963 ** by selectExpander() but the type and collation information was omitted
4964 ** at that point because identifiers had not yet been resolved.  This
4965 ** routine is called after identifier resolution.
4966 */
4967 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4968   Parse *pParse;
4969   int i;
4970   SrcList *pTabList;
4971   struct SrcList_item *pFrom;
4972 
4973   assert( p->selFlags & SF_Resolved );
4974   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4975   p->selFlags |= SF_HasTypeInfo;
4976   pParse = pWalker->pParse;
4977   pTabList = p->pSrc;
4978   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4979     Table *pTab = pFrom->pTab;
4980     assert( pTab!=0 );
4981     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4982       /* A sub-query in the FROM clause of a SELECT */
4983       Select *pSel = pFrom->pSelect;
4984       if( pSel ){
4985         while( pSel->pPrior ) pSel = pSel->pPrior;
4986         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4987       }
4988     }
4989   }
4990 }
4991 #endif
4992 
4993 
4994 /*
4995 ** This routine adds datatype and collating sequence information to
4996 ** the Table structures of all FROM-clause subqueries in a
4997 ** SELECT statement.
4998 **
4999 ** Use this routine after name resolution.
5000 */
5001 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5002 #ifndef SQLITE_OMIT_SUBQUERY
5003   Walker w;
5004   w.xSelectCallback = sqlite3SelectWalkNoop;
5005   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5006   w.xExprCallback = sqlite3ExprWalkNoop;
5007   w.pParse = pParse;
5008   sqlite3WalkSelect(&w, pSelect);
5009 #endif
5010 }
5011 
5012 
5013 /*
5014 ** This routine sets up a SELECT statement for processing.  The
5015 ** following is accomplished:
5016 **
5017 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5018 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5019 **     *  ON and USING clauses are shifted into WHERE statements
5020 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5021 **     *  Identifiers in expression are matched to tables.
5022 **
5023 ** This routine acts recursively on all subqueries within the SELECT.
5024 */
5025 void sqlite3SelectPrep(
5026   Parse *pParse,         /* The parser context */
5027   Select *p,             /* The SELECT statement being coded. */
5028   NameContext *pOuterNC  /* Name context for container */
5029 ){
5030   assert( p!=0 || pParse->db->mallocFailed );
5031   if( pParse->db->mallocFailed ) return;
5032   if( p->selFlags & SF_HasTypeInfo ) return;
5033   sqlite3SelectExpand(pParse, p);
5034   if( pParse->nErr || pParse->db->mallocFailed ) return;
5035   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5036   if( pParse->nErr || pParse->db->mallocFailed ) return;
5037   sqlite3SelectAddTypeInfo(pParse, p);
5038 }
5039 
5040 /*
5041 ** Reset the aggregate accumulator.
5042 **
5043 ** The aggregate accumulator is a set of memory cells that hold
5044 ** intermediate results while calculating an aggregate.  This
5045 ** routine generates code that stores NULLs in all of those memory
5046 ** cells.
5047 */
5048 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5049   Vdbe *v = pParse->pVdbe;
5050   int i;
5051   struct AggInfo_func *pFunc;
5052   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5053   if( nReg==0 ) return;
5054 #ifdef SQLITE_DEBUG
5055   /* Verify that all AggInfo registers are within the range specified by
5056   ** AggInfo.mnReg..AggInfo.mxReg */
5057   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5058   for(i=0; i<pAggInfo->nColumn; i++){
5059     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5060          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5061   }
5062   for(i=0; i<pAggInfo->nFunc; i++){
5063     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5064          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5065   }
5066 #endif
5067   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5068   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5069     if( pFunc->iDistinct>=0 ){
5070       Expr *pE = pFunc->pExpr;
5071       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5072       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5073         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5074            "argument");
5075         pFunc->iDistinct = -1;
5076       }else{
5077         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
5078         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5079                           (char*)pKeyInfo, P4_KEYINFO);
5080       }
5081     }
5082   }
5083 }
5084 
5085 /*
5086 ** Invoke the OP_AggFinalize opcode for every aggregate function
5087 ** in the AggInfo structure.
5088 */
5089 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5090   Vdbe *v = pParse->pVdbe;
5091   int i;
5092   struct AggInfo_func *pF;
5093   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5094     ExprList *pList = pF->pExpr->x.pList;
5095     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5096     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5097     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5098   }
5099 }
5100 
5101 /*
5102 ** Update the accumulator memory cells for an aggregate based on
5103 ** the current cursor position.
5104 */
5105 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
5106   Vdbe *v = pParse->pVdbe;
5107   int i;
5108   int regHit = 0;
5109   int addrHitTest = 0;
5110   struct AggInfo_func *pF;
5111   struct AggInfo_col *pC;
5112 
5113   pAggInfo->directMode = 1;
5114   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5115     int nArg;
5116     int addrNext = 0;
5117     int regAgg;
5118     ExprList *pList = pF->pExpr->x.pList;
5119     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5120     if( pList ){
5121       nArg = pList->nExpr;
5122       regAgg = sqlite3GetTempRange(pParse, nArg);
5123       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5124     }else{
5125       nArg = 0;
5126       regAgg = 0;
5127     }
5128     if( pF->iDistinct>=0 ){
5129       addrNext = sqlite3VdbeMakeLabel(v);
5130       testcase( nArg==0 );  /* Error condition */
5131       testcase( nArg>1 );   /* Also an error */
5132       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5133     }
5134     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5135       CollSeq *pColl = 0;
5136       struct ExprList_item *pItem;
5137       int j;
5138       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5139       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5140         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5141       }
5142       if( !pColl ){
5143         pColl = pParse->db->pDfltColl;
5144       }
5145       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5146       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5147     }
5148     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
5149     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5150     sqlite3VdbeChangeP5(v, (u8)nArg);
5151     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
5152     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5153     if( addrNext ){
5154       sqlite3VdbeResolveLabel(v, addrNext);
5155       sqlite3ExprCacheClear(pParse);
5156     }
5157   }
5158 
5159   /* Before populating the accumulator registers, clear the column cache.
5160   ** Otherwise, if any of the required column values are already present
5161   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5162   ** to pC->iMem. But by the time the value is used, the original register
5163   ** may have been used, invalidating the underlying buffer holding the
5164   ** text or blob value. See ticket [883034dcb5].
5165   **
5166   ** Another solution would be to change the OP_SCopy used to copy cached
5167   ** values to an OP_Copy.
5168   */
5169   if( regHit ){
5170     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5171   }
5172   sqlite3ExprCacheClear(pParse);
5173   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5174     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5175   }
5176   pAggInfo->directMode = 0;
5177   sqlite3ExprCacheClear(pParse);
5178   if( addrHitTest ){
5179     sqlite3VdbeJumpHere(v, addrHitTest);
5180   }
5181 }
5182 
5183 /*
5184 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5185 ** count(*) query ("SELECT count(*) FROM pTab").
5186 */
5187 #ifndef SQLITE_OMIT_EXPLAIN
5188 static void explainSimpleCount(
5189   Parse *pParse,                  /* Parse context */
5190   Table *pTab,                    /* Table being queried */
5191   Index *pIdx                     /* Index used to optimize scan, or NULL */
5192 ){
5193   if( pParse->explain==2 ){
5194     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5195     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5196         pTab->zName,
5197         bCover ? " USING COVERING INDEX " : "",
5198         bCover ? pIdx->zName : ""
5199     );
5200   }
5201 }
5202 #else
5203 # define explainSimpleCount(a,b,c)
5204 #endif
5205 
5206 /*
5207 ** sqlite3WalkExpr() callback used by havingToWhere().
5208 **
5209 ** If the node passed to the callback is a TK_AND node, return
5210 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5211 **
5212 ** Otherwise, return WRC_Prune. In this case, also check if the
5213 ** sub-expression matches the criteria for being moved to the WHERE
5214 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5215 ** within the HAVING expression with a constant "1".
5216 */
5217 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5218   if( pExpr->op!=TK_AND ){
5219     Select *pS = pWalker->u.pSelect;
5220     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5221       sqlite3 *db = pWalker->pParse->db;
5222       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5223       if( pNew ){
5224         Expr *pWhere = pS->pWhere;
5225         SWAP(Expr, *pNew, *pExpr);
5226         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5227         pS->pWhere = pNew;
5228         pWalker->eCode = 1;
5229       }
5230     }
5231     return WRC_Prune;
5232   }
5233   return WRC_Continue;
5234 }
5235 
5236 /*
5237 ** Transfer eligible terms from the HAVING clause of a query, which is
5238 ** processed after grouping, to the WHERE clause, which is processed before
5239 ** grouping. For example, the query:
5240 **
5241 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5242 **
5243 ** can be rewritten as:
5244 **
5245 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5246 **
5247 ** A term of the HAVING expression is eligible for transfer if it consists
5248 ** entirely of constants and expressions that are also GROUP BY terms that
5249 ** use the "BINARY" collation sequence.
5250 */
5251 static void havingToWhere(Parse *pParse, Select *p){
5252   Walker sWalker;
5253   memset(&sWalker, 0, sizeof(sWalker));
5254   sWalker.pParse = pParse;
5255   sWalker.xExprCallback = havingToWhereExprCb;
5256   sWalker.u.pSelect = p;
5257   sqlite3WalkExpr(&sWalker, p->pHaving);
5258 #if SELECTTRACE_ENABLED
5259   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5260     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5261     sqlite3TreeViewSelect(0, p, 0);
5262   }
5263 #endif
5264 }
5265 
5266 /*
5267 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5268 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5269 ** then return 0.
5270 */
5271 static struct SrcList_item *isSelfJoinView(
5272   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5273   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5274 ){
5275   struct SrcList_item *pItem;
5276   for(pItem = pTabList->a; pItem<pThis; pItem++){
5277     if( pItem->pSelect==0 ) continue;
5278     if( pItem->fg.viaCoroutine ) continue;
5279     if( pItem->zName==0 ) continue;
5280     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5281     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5282     if( sqlite3ExprCompare(0,
5283           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5284     ){
5285       /* The view was modified by some other optimization such as
5286       ** pushDownWhereTerms() */
5287       continue;
5288     }
5289     return pItem;
5290   }
5291   return 0;
5292 }
5293 
5294 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5295 /*
5296 ** Attempt to transform a query of the form
5297 **
5298 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5299 **
5300 ** Into this:
5301 **
5302 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5303 **
5304 ** The transformation only works if all of the following are true:
5305 **
5306 **   *  The subquery is a UNION ALL of two or more terms
5307 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5308 **   *  The outer query is a simple count(*)
5309 **
5310 ** Return TRUE if the optimization is undertaken.
5311 */
5312 static int countOfViewOptimization(Parse *pParse, Select *p){
5313   Select *pSub, *pPrior;
5314   Expr *pExpr;
5315   Expr *pCount;
5316   sqlite3 *db;
5317   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5318   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5319   pExpr = p->pEList->a[0].pExpr;
5320   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5321   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5322   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5323   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5324   pSub = p->pSrc->a[0].pSelect;
5325   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5326   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5327   do{
5328     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5329     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5330     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5331     pSub = pSub->pPrior;                              /* Repeat over compound */
5332   }while( pSub );
5333 
5334   /* If we reach this point then it is OK to perform the transformation */
5335 
5336   db = pParse->db;
5337   pCount = pExpr;
5338   pExpr = 0;
5339   pSub = p->pSrc->a[0].pSelect;
5340   p->pSrc->a[0].pSelect = 0;
5341   sqlite3SrcListDelete(db, p->pSrc);
5342   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5343   while( pSub ){
5344     Expr *pTerm;
5345     pPrior = pSub->pPrior;
5346     pSub->pPrior = 0;
5347     pSub->pNext = 0;
5348     pSub->selFlags |= SF_Aggregate;
5349     pSub->selFlags &= ~SF_Compound;
5350     pSub->nSelectRow = 0;
5351     sqlite3ExprListDelete(db, pSub->pEList);
5352     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5353     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5354     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5355     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5356     if( pExpr==0 ){
5357       pExpr = pTerm;
5358     }else{
5359       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5360     }
5361     pSub = pPrior;
5362   }
5363   p->pEList->a[0].pExpr = pExpr;
5364   p->selFlags &= ~SF_Aggregate;
5365 
5366 #if SELECTTRACE_ENABLED
5367   if( sqlite3SelectTrace & 0x400 ){
5368     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5369     sqlite3TreeViewSelect(0, p, 0);
5370   }
5371 #endif
5372   return 1;
5373 }
5374 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5375 
5376 /*
5377 ** Generate code for the SELECT statement given in the p argument.
5378 **
5379 ** The results are returned according to the SelectDest structure.
5380 ** See comments in sqliteInt.h for further information.
5381 **
5382 ** This routine returns the number of errors.  If any errors are
5383 ** encountered, then an appropriate error message is left in
5384 ** pParse->zErrMsg.
5385 **
5386 ** This routine does NOT free the Select structure passed in.  The
5387 ** calling function needs to do that.
5388 */
5389 int sqlite3Select(
5390   Parse *pParse,         /* The parser context */
5391   Select *p,             /* The SELECT statement being coded. */
5392   SelectDest *pDest      /* What to do with the query results */
5393 ){
5394   int i, j;              /* Loop counters */
5395   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5396   Vdbe *v;               /* The virtual machine under construction */
5397   int isAgg;             /* True for select lists like "count(*)" */
5398   ExprList *pEList = 0;  /* List of columns to extract. */
5399   SrcList *pTabList;     /* List of tables to select from */
5400   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5401   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5402   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5403   int rc = 1;            /* Value to return from this function */
5404   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5405   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5406   AggInfo sAggInfo;      /* Information used by aggregate queries */
5407   int iEnd;              /* Address of the end of the query */
5408   sqlite3 *db;           /* The database connection */
5409   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5410   u8 minMaxFlag;                 /* Flag for min/max queries */
5411 
5412   db = pParse->db;
5413   v = sqlite3GetVdbe(pParse);
5414   if( p==0 || db->mallocFailed || pParse->nErr ){
5415     return 1;
5416   }
5417   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5418   memset(&sAggInfo, 0, sizeof(sAggInfo));
5419 #if SELECTTRACE_ENABLED
5420   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5421   if( sqlite3SelectTrace & 0x100 ){
5422     sqlite3TreeViewSelect(0, p, 0);
5423   }
5424 #endif
5425 
5426   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5427   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5428   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5429   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5430   if( IgnorableOrderby(pDest) ){
5431     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5432            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5433            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5434            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5435     /* If ORDER BY makes no difference in the output then neither does
5436     ** DISTINCT so it can be removed too. */
5437     sqlite3ExprListDelete(db, p->pOrderBy);
5438     p->pOrderBy = 0;
5439     p->selFlags &= ~SF_Distinct;
5440   }
5441   sqlite3SelectPrep(pParse, p, 0);
5442   memset(&sSort, 0, sizeof(sSort));
5443   sSort.pOrderBy = p->pOrderBy;
5444   pTabList = p->pSrc;
5445   if( pParse->nErr || db->mallocFailed ){
5446     goto select_end;
5447   }
5448   assert( p->pEList!=0 );
5449   isAgg = (p->selFlags & SF_Aggregate)!=0;
5450 #if SELECTTRACE_ENABLED
5451   if( sqlite3SelectTrace & 0x104 ){
5452     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5453     sqlite3TreeViewSelect(0, p, 0);
5454   }
5455 #endif
5456 
5457   if( pDest->eDest==SRT_Output ){
5458     generateColumnNames(pParse, p);
5459   }
5460 
5461   /* Try to various optimizations (flattening subqueries, and strength
5462   ** reduction of join operators) in the FROM clause up into the main query
5463   */
5464 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5465   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5466     struct SrcList_item *pItem = &pTabList->a[i];
5467     Select *pSub = pItem->pSelect;
5468     Table *pTab = pItem->pTab;
5469 
5470     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5471     ** of the LEFT JOIN used in the WHERE clause.
5472     */
5473     if( (pItem->fg.jointype & JT_LEFT)!=0
5474      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5475      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5476     ){
5477       SELECTTRACE(0x100,pParse,p,
5478                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5479       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5480       unsetJoinExpr(p->pWhere, pItem->iCursor);
5481     }
5482 
5483     /* No futher action if this term of the FROM clause is no a subquery */
5484     if( pSub==0 ) continue;
5485 
5486     /* Catch mismatch in the declared columns of a view and the number of
5487     ** columns in the SELECT on the RHS */
5488     if( pTab->nCol!=pSub->pEList->nExpr ){
5489       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5490                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5491       goto select_end;
5492     }
5493 
5494     /* Do not try to flatten an aggregate subquery.
5495     **
5496     ** Flattening an aggregate subquery is only possible if the outer query
5497     ** is not a join.  But if the outer query is not a join, then the subquery
5498     ** will be implemented as a co-routine and there is no advantage to
5499     ** flattening in that case.
5500     */
5501     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5502     assert( pSub->pGroupBy==0 );
5503 
5504     /* If the outer query contains a "complex" result set (that is,
5505     ** if the result set of the outer query uses functions or subqueries)
5506     ** and if the subquery contains an ORDER BY clause and if
5507     ** it will be implemented as a co-routine, then do not flatten.  This
5508     ** restriction allows SQL constructs like this:
5509     **
5510     **  SELECT expensive_function(x)
5511     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5512     **
5513     ** The expensive_function() is only computed on the 10 rows that
5514     ** are output, rather than every row of the table.
5515     **
5516     ** The requirement that the outer query have a complex result set
5517     ** means that flattening does occur on simpler SQL constraints without
5518     ** the expensive_function() like:
5519     **
5520     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5521     */
5522     if( pSub->pOrderBy!=0
5523      && i==0
5524      && (p->selFlags & SF_ComplexResult)!=0
5525      && (pTabList->nSrc==1
5526          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5527     ){
5528       continue;
5529     }
5530 
5531     if( flattenSubquery(pParse, p, i, isAgg) ){
5532       /* This subquery can be absorbed into its parent. */
5533       i = -1;
5534     }
5535     pTabList = p->pSrc;
5536     if( db->mallocFailed ) goto select_end;
5537     if( !IgnorableOrderby(pDest) ){
5538       sSort.pOrderBy = p->pOrderBy;
5539     }
5540   }
5541 #endif
5542 
5543 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5544   /* Handle compound SELECT statements using the separate multiSelect()
5545   ** procedure.
5546   */
5547   if( p->pPrior ){
5548     rc = multiSelect(pParse, p, pDest);
5549 #if SELECTTRACE_ENABLED
5550     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5551     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5552       sqlite3TreeViewSelect(0, p, 0);
5553     }
5554 #endif
5555     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5556     return rc;
5557   }
5558 #endif
5559 
5560   /* For each term in the FROM clause, do two things:
5561   ** (1) Authorized unreferenced tables
5562   ** (2) Generate code for all sub-queries
5563   */
5564   for(i=0; i<pTabList->nSrc; i++){
5565     struct SrcList_item *pItem = &pTabList->a[i];
5566     SelectDest dest;
5567     Select *pSub;
5568 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5569     const char *zSavedAuthContext;
5570 #endif
5571 
5572     /* Issue SQLITE_READ authorizations with a fake column name for any
5573     ** tables that are referenced but from which no values are extracted.
5574     ** Examples of where these kinds of null SQLITE_READ authorizations
5575     ** would occur:
5576     **
5577     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5578     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5579     **
5580     ** The fake column name is an empty string.  It is possible for a table to
5581     ** have a column named by the empty string, in which case there is no way to
5582     ** distinguish between an unreferenced table and an actual reference to the
5583     ** "" column. The original design was for the fake column name to be a NULL,
5584     ** which would be unambiguous.  But legacy authorization callbacks might
5585     ** assume the column name is non-NULL and segfault.  The use of an empty
5586     ** string for the fake column name seems safer.
5587     */
5588     if( pItem->colUsed==0 ){
5589       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5590     }
5591 
5592 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5593     /* Generate code for all sub-queries in the FROM clause
5594     */
5595     pSub = pItem->pSelect;
5596     if( pSub==0 ) continue;
5597 
5598     /* Sometimes the code for a subquery will be generated more than
5599     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5600     ** for example.  In that case, do not regenerate the code to manifest
5601     ** a view or the co-routine to implement a view.  The first instance
5602     ** is sufficient, though the subroutine to manifest the view does need
5603     ** to be invoked again. */
5604     if( pItem->addrFillSub ){
5605       if( pItem->fg.viaCoroutine==0 ){
5606         /* The subroutine that manifests the view might be a one-time routine,
5607         ** or it might need to be rerun on each iteration because it
5608         ** encodes a correlated subquery. */
5609         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5610         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5611       }
5612       continue;
5613     }
5614 
5615     /* Increment Parse.nHeight by the height of the largest expression
5616     ** tree referred to by this, the parent select. The child select
5617     ** may contain expression trees of at most
5618     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5619     ** more conservative than necessary, but much easier than enforcing
5620     ** an exact limit.
5621     */
5622     pParse->nHeight += sqlite3SelectExprHeight(p);
5623 
5624     /* Make copies of constant WHERE-clause terms in the outer query down
5625     ** inside the subquery.  This can help the subquery to run more efficiently.
5626     */
5627     if( OptimizationEnabled(db, SQLITE_PushDown)
5628      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5629                            (pItem->fg.jointype & JT_OUTER)!=0)
5630     ){
5631 #if SELECTTRACE_ENABLED
5632       if( sqlite3SelectTrace & 0x100 ){
5633         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5634         sqlite3TreeViewSelect(0, p, 0);
5635       }
5636 #endif
5637     }else{
5638       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5639     }
5640 
5641     zSavedAuthContext = pParse->zAuthContext;
5642     pParse->zAuthContext = pItem->zName;
5643 
5644     /* Generate code to implement the subquery
5645     **
5646     ** The subquery is implemented as a co-routine if the subquery is
5647     ** guaranteed to be the outer loop (so that it does not need to be
5648     ** computed more than once)
5649     **
5650     ** TODO: Are there other reasons beside (1) to use a co-routine
5651     ** implementation?
5652     */
5653     if( i==0
5654      && (pTabList->nSrc==1
5655             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5656     ){
5657       /* Implement a co-routine that will return a single row of the result
5658       ** set on each invocation.
5659       */
5660       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5661 
5662       pItem->regReturn = ++pParse->nMem;
5663       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5664       VdbeComment((v, "%s", pItem->pTab->zName));
5665       pItem->addrFillSub = addrTop;
5666       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5667       ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub));
5668       sqlite3Select(pParse, pSub, &dest);
5669       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5670       pItem->fg.viaCoroutine = 1;
5671       pItem->regResult = dest.iSdst;
5672       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5673       sqlite3VdbeJumpHere(v, addrTop-1);
5674       sqlite3ClearTempRegCache(pParse);
5675     }else{
5676       /* Generate a subroutine that will fill an ephemeral table with
5677       ** the content of this subquery.  pItem->addrFillSub will point
5678       ** to the address of the generated subroutine.  pItem->regReturn
5679       ** is a register allocated to hold the subroutine return address
5680       */
5681       int topAddr;
5682       int onceAddr = 0;
5683       int retAddr;
5684       struct SrcList_item *pPrior;
5685 
5686       assert( pItem->addrFillSub==0 );
5687       pItem->regReturn = ++pParse->nMem;
5688       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5689       pItem->addrFillSub = topAddr+1;
5690       if( pItem->fg.isCorrelated==0 ){
5691         /* If the subquery is not correlated and if we are not inside of
5692         ** a trigger, then we only need to compute the value of the subquery
5693         ** once. */
5694         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5695         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5696       }else{
5697         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5698       }
5699       pPrior = isSelfJoinView(pTabList, pItem);
5700       if( pPrior ){
5701         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5702         assert( pPrior->pSelect!=0 );
5703         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5704       }else{
5705         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5706         ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub));
5707         sqlite3Select(pParse, pSub, &dest);
5708       }
5709       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5710       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5711       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5712       VdbeComment((v, "end %s", pItem->pTab->zName));
5713       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5714       sqlite3ClearTempRegCache(pParse);
5715     }
5716     if( db->mallocFailed ) goto select_end;
5717     pParse->nHeight -= sqlite3SelectExprHeight(p);
5718     pParse->zAuthContext = zSavedAuthContext;
5719 #endif
5720   }
5721 
5722   /* Various elements of the SELECT copied into local variables for
5723   ** convenience */
5724   pEList = p->pEList;
5725   pWhere = p->pWhere;
5726   pGroupBy = p->pGroupBy;
5727   pHaving = p->pHaving;
5728   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5729 
5730 #if SELECTTRACE_ENABLED
5731   if( sqlite3SelectTrace & 0x400 ){
5732     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5733     sqlite3TreeViewSelect(0, p, 0);
5734   }
5735 #endif
5736 
5737 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5738   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5739    && countOfViewOptimization(pParse, p)
5740   ){
5741     if( db->mallocFailed ) goto select_end;
5742     pEList = p->pEList;
5743     pTabList = p->pSrc;
5744   }
5745 #endif
5746 
5747   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5748   ** if the select-list is the same as the ORDER BY list, then this query
5749   ** can be rewritten as a GROUP BY. In other words, this:
5750   **
5751   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5752   **
5753   ** is transformed to:
5754   **
5755   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5756   **
5757   ** The second form is preferred as a single index (or temp-table) may be
5758   ** used for both the ORDER BY and DISTINCT processing. As originally
5759   ** written the query must use a temp-table for at least one of the ORDER
5760   ** BY and DISTINCT, and an index or separate temp-table for the other.
5761   */
5762   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5763    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5764   ){
5765     p->selFlags &= ~SF_Distinct;
5766     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5767     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5768     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5769     ** original setting of the SF_Distinct flag, not the current setting */
5770     assert( sDistinct.isTnct );
5771 
5772 #if SELECTTRACE_ENABLED
5773     if( sqlite3SelectTrace & 0x400 ){
5774       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5775       sqlite3TreeViewSelect(0, p, 0);
5776     }
5777 #endif
5778   }
5779 
5780   /* If there is an ORDER BY clause, then create an ephemeral index to
5781   ** do the sorting.  But this sorting ephemeral index might end up
5782   ** being unused if the data can be extracted in pre-sorted order.
5783   ** If that is the case, then the OP_OpenEphemeral instruction will be
5784   ** changed to an OP_Noop once we figure out that the sorting index is
5785   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5786   ** that change.
5787   */
5788   if( sSort.pOrderBy ){
5789     KeyInfo *pKeyInfo;
5790     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5791     sSort.iECursor = pParse->nTab++;
5792     sSort.addrSortIndex =
5793       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5794           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5795           (char*)pKeyInfo, P4_KEYINFO
5796       );
5797   }else{
5798     sSort.addrSortIndex = -1;
5799   }
5800 
5801   /* If the output is destined for a temporary table, open that table.
5802   */
5803   if( pDest->eDest==SRT_EphemTab ){
5804     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5805   }
5806 
5807   /* Set the limiter.
5808   */
5809   iEnd = sqlite3VdbeMakeLabel(v);
5810   if( (p->selFlags & SF_FixedLimit)==0 ){
5811     p->nSelectRow = 320;  /* 4 billion rows */
5812   }
5813   computeLimitRegisters(pParse, p, iEnd);
5814   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5815     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5816     sSort.sortFlags |= SORTFLAG_UseSorter;
5817   }
5818 
5819   /* Open an ephemeral index to use for the distinct set.
5820   */
5821   if( p->selFlags & SF_Distinct ){
5822     sDistinct.tabTnct = pParse->nTab++;
5823     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5824                              sDistinct.tabTnct, 0, 0,
5825                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5826                              P4_KEYINFO);
5827     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5828     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5829   }else{
5830     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5831   }
5832 
5833   if( !isAgg && pGroupBy==0 ){
5834     /* No aggregate functions and no GROUP BY clause */
5835     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5836     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5837     wctrlFlags |= p->selFlags & SF_FixedLimit;
5838 
5839     /* Begin the database scan. */
5840     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5841     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5842                                p->pEList, wctrlFlags, p->nSelectRow);
5843     if( pWInfo==0 ) goto select_end;
5844     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5845       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5846     }
5847     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5848       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5849     }
5850     if( sSort.pOrderBy ){
5851       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5852       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5853       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5854         sSort.pOrderBy = 0;
5855       }
5856     }
5857 
5858     /* If sorting index that was created by a prior OP_OpenEphemeral
5859     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5860     ** into an OP_Noop.
5861     */
5862     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5863       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5864     }
5865 
5866     /* Use the standard inner loop. */
5867     assert( p->pEList==pEList );
5868     selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5869                     sqlite3WhereContinueLabel(pWInfo),
5870                     sqlite3WhereBreakLabel(pWInfo));
5871 
5872     /* End the database scan loop.
5873     */
5874     sqlite3WhereEnd(pWInfo);
5875   }else{
5876     /* This case when there exist aggregate functions or a GROUP BY clause
5877     ** or both */
5878     NameContext sNC;    /* Name context for processing aggregate information */
5879     int iAMem;          /* First Mem address for storing current GROUP BY */
5880     int iBMem;          /* First Mem address for previous GROUP BY */
5881     int iUseFlag;       /* Mem address holding flag indicating that at least
5882                         ** one row of the input to the aggregator has been
5883                         ** processed */
5884     int iAbortFlag;     /* Mem address which causes query abort if positive */
5885     int groupBySort;    /* Rows come from source in GROUP BY order */
5886     int addrEnd;        /* End of processing for this SELECT */
5887     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5888     int sortOut = 0;    /* Output register from the sorter */
5889     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5890 
5891     /* Remove any and all aliases between the result set and the
5892     ** GROUP BY clause.
5893     */
5894     if( pGroupBy ){
5895       int k;                        /* Loop counter */
5896       struct ExprList_item *pItem;  /* For looping over expression in a list */
5897 
5898       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5899         pItem->u.x.iAlias = 0;
5900       }
5901       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5902         pItem->u.x.iAlias = 0;
5903       }
5904       assert( 66==sqlite3LogEst(100) );
5905       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5906     }else{
5907       assert( 0==sqlite3LogEst(1) );
5908       p->nSelectRow = 0;
5909     }
5910 
5911     /* If there is both a GROUP BY and an ORDER BY clause and they are
5912     ** identical, then it may be possible to disable the ORDER BY clause
5913     ** on the grounds that the GROUP BY will cause elements to come out
5914     ** in the correct order. It also may not - the GROUP BY might use a
5915     ** database index that causes rows to be grouped together as required
5916     ** but not actually sorted. Either way, record the fact that the
5917     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5918     ** variable.  */
5919     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5920       orderByGrp = 1;
5921     }
5922 
5923     /* Create a label to jump to when we want to abort the query */
5924     addrEnd = sqlite3VdbeMakeLabel(v);
5925 
5926     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5927     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5928     ** SELECT statement.
5929     */
5930     memset(&sNC, 0, sizeof(sNC));
5931     sNC.pParse = pParse;
5932     sNC.pSrcList = pTabList;
5933     sNC.uNC.pAggInfo = &sAggInfo;
5934     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
5935     sAggInfo.mnReg = pParse->nMem+1;
5936     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5937     sAggInfo.pGroupBy = pGroupBy;
5938     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5939     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5940     if( pHaving ){
5941       if( pGroupBy ){
5942         assert( pWhere==p->pWhere );
5943         assert( pHaving==p->pHaving );
5944         assert( pGroupBy==p->pGroupBy );
5945         havingToWhere(pParse, p);
5946         pWhere = p->pWhere;
5947       }
5948       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5949     }
5950     sAggInfo.nAccumulator = sAggInfo.nColumn;
5951     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5952       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5953     }else{
5954       minMaxFlag = WHERE_ORDERBY_NORMAL;
5955     }
5956     for(i=0; i<sAggInfo.nFunc; i++){
5957       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5958       sNC.ncFlags |= NC_InAggFunc;
5959       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5960       sNC.ncFlags &= ~NC_InAggFunc;
5961     }
5962     sAggInfo.mxReg = pParse->nMem;
5963     if( db->mallocFailed ) goto select_end;
5964 #if SELECTTRACE_ENABLED
5965     if( sqlite3SelectTrace & 0x400 ){
5966       int ii;
5967       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5968       sqlite3TreeViewSelect(0, p, 0);
5969       for(ii=0; ii<sAggInfo.nColumn; ii++){
5970         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5971             ii, sAggInfo.aCol[ii].iMem);
5972         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5973       }
5974       for(ii=0; ii<sAggInfo.nFunc; ii++){
5975         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5976             ii, sAggInfo.aFunc[ii].iMem);
5977         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5978       }
5979     }
5980 #endif
5981 
5982 
5983     /* Processing for aggregates with GROUP BY is very different and
5984     ** much more complex than aggregates without a GROUP BY.
5985     */
5986     if( pGroupBy ){
5987       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5988       int addr1;          /* A-vs-B comparision jump */
5989       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5990       int regOutputRow;   /* Return address register for output subroutine */
5991       int addrSetAbort;   /* Set the abort flag and return */
5992       int addrTopOfLoop;  /* Top of the input loop */
5993       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5994       int addrReset;      /* Subroutine for resetting the accumulator */
5995       int regReset;       /* Return address register for reset subroutine */
5996 
5997       /* If there is a GROUP BY clause we might need a sorting index to
5998       ** implement it.  Allocate that sorting index now.  If it turns out
5999       ** that we do not need it after all, the OP_SorterOpen instruction
6000       ** will be converted into a Noop.
6001       */
6002       sAggInfo.sortingIdx = pParse->nTab++;
6003       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
6004       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6005           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6006           0, (char*)pKeyInfo, P4_KEYINFO);
6007 
6008       /* Initialize memory locations used by GROUP BY aggregate processing
6009       */
6010       iUseFlag = ++pParse->nMem;
6011       iAbortFlag = ++pParse->nMem;
6012       regOutputRow = ++pParse->nMem;
6013       addrOutputRow = sqlite3VdbeMakeLabel(v);
6014       regReset = ++pParse->nMem;
6015       addrReset = sqlite3VdbeMakeLabel(v);
6016       iAMem = pParse->nMem + 1;
6017       pParse->nMem += pGroupBy->nExpr;
6018       iBMem = pParse->nMem + 1;
6019       pParse->nMem += pGroupBy->nExpr;
6020       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6021       VdbeComment((v, "clear abort flag"));
6022       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6023       VdbeComment((v, "indicate accumulator empty"));
6024       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6025 
6026       /* Begin a loop that will extract all source rows in GROUP BY order.
6027       ** This might involve two separate loops with an OP_Sort in between, or
6028       ** it might be a single loop that uses an index to extract information
6029       ** in the right order to begin with.
6030       */
6031       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6032       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6033       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6034           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6035       );
6036       if( pWInfo==0 ) goto select_end;
6037       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6038         /* The optimizer is able to deliver rows in group by order so
6039         ** we do not have to sort.  The OP_OpenEphemeral table will be
6040         ** cancelled later because we still need to use the pKeyInfo
6041         */
6042         groupBySort = 0;
6043       }else{
6044         /* Rows are coming out in undetermined order.  We have to push
6045         ** each row into a sorting index, terminate the first loop,
6046         ** then loop over the sorting index in order to get the output
6047         ** in sorted order
6048         */
6049         int regBase;
6050         int regRecord;
6051         int nCol;
6052         int nGroupBy;
6053 
6054         explainTempTable(pParse,
6055             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6056                     "DISTINCT" : "GROUP BY");
6057 
6058         groupBySort = 1;
6059         nGroupBy = pGroupBy->nExpr;
6060         nCol = nGroupBy;
6061         j = nGroupBy;
6062         for(i=0; i<sAggInfo.nColumn; i++){
6063           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6064             nCol++;
6065             j++;
6066           }
6067         }
6068         regBase = sqlite3GetTempRange(pParse, nCol);
6069         sqlite3ExprCacheClear(pParse);
6070         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6071         j = nGroupBy;
6072         for(i=0; i<sAggInfo.nColumn; i++){
6073           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6074           if( pCol->iSorterColumn>=j ){
6075             int r1 = j + regBase;
6076             sqlite3ExprCodeGetColumnToReg(pParse,
6077                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
6078             j++;
6079           }
6080         }
6081         regRecord = sqlite3GetTempReg(pParse);
6082         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6083         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6084         sqlite3ReleaseTempReg(pParse, regRecord);
6085         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6086         sqlite3WhereEnd(pWInfo);
6087         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6088         sortOut = sqlite3GetTempReg(pParse);
6089         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6090         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6091         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6092         sAggInfo.useSortingIdx = 1;
6093         sqlite3ExprCacheClear(pParse);
6094 
6095       }
6096 
6097       /* If the index or temporary table used by the GROUP BY sort
6098       ** will naturally deliver rows in the order required by the ORDER BY
6099       ** clause, cancel the ephemeral table open coded earlier.
6100       **
6101       ** This is an optimization - the correct answer should result regardless.
6102       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6103       ** disable this optimization for testing purposes.  */
6104       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6105        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6106       ){
6107         sSort.pOrderBy = 0;
6108         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6109       }
6110 
6111       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6112       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6113       ** Then compare the current GROUP BY terms against the GROUP BY terms
6114       ** from the previous row currently stored in a0, a1, a2...
6115       */
6116       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6117       sqlite3ExprCacheClear(pParse);
6118       if( groupBySort ){
6119         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6120                           sortOut, sortPTab);
6121       }
6122       for(j=0; j<pGroupBy->nExpr; j++){
6123         if( groupBySort ){
6124           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6125         }else{
6126           sAggInfo.directMode = 1;
6127           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6128         }
6129       }
6130       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6131                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6132       addr1 = sqlite3VdbeCurrentAddr(v);
6133       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6134 
6135       /* Generate code that runs whenever the GROUP BY changes.
6136       ** Changes in the GROUP BY are detected by the previous code
6137       ** block.  If there were no changes, this block is skipped.
6138       **
6139       ** This code copies current group by terms in b0,b1,b2,...
6140       ** over to a0,a1,a2.  It then calls the output subroutine
6141       ** and resets the aggregate accumulator registers in preparation
6142       ** for the next GROUP BY batch.
6143       */
6144       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6145       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6146       VdbeComment((v, "output one row"));
6147       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6148       VdbeComment((v, "check abort flag"));
6149       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6150       VdbeComment((v, "reset accumulator"));
6151 
6152       /* Update the aggregate accumulators based on the content of
6153       ** the current row
6154       */
6155       sqlite3VdbeJumpHere(v, addr1);
6156       updateAccumulator(pParse, &sAggInfo);
6157       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6158       VdbeComment((v, "indicate data in accumulator"));
6159 
6160       /* End of the loop
6161       */
6162       if( groupBySort ){
6163         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6164         VdbeCoverage(v);
6165       }else{
6166         sqlite3WhereEnd(pWInfo);
6167         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6168       }
6169 
6170       /* Output the final row of result
6171       */
6172       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6173       VdbeComment((v, "output final row"));
6174 
6175       /* Jump over the subroutines
6176       */
6177       sqlite3VdbeGoto(v, addrEnd);
6178 
6179       /* Generate a subroutine that outputs a single row of the result
6180       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6181       ** is less than or equal to zero, the subroutine is a no-op.  If
6182       ** the processing calls for the query to abort, this subroutine
6183       ** increments the iAbortFlag memory location before returning in
6184       ** order to signal the caller to abort.
6185       */
6186       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6187       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6188       VdbeComment((v, "set abort flag"));
6189       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6190       sqlite3VdbeResolveLabel(v, addrOutputRow);
6191       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6192       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6193       VdbeCoverage(v);
6194       VdbeComment((v, "Groupby result generator entry point"));
6195       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6196       finalizeAggFunctions(pParse, &sAggInfo);
6197       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6198       selectInnerLoop(pParse, p, -1, &sSort,
6199                       &sDistinct, pDest,
6200                       addrOutputRow+1, addrSetAbort);
6201       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6202       VdbeComment((v, "end groupby result generator"));
6203 
6204       /* Generate a subroutine that will reset the group-by accumulator
6205       */
6206       sqlite3VdbeResolveLabel(v, addrReset);
6207       resetAccumulator(pParse, &sAggInfo);
6208       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6209 
6210     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6211     else {
6212 #ifndef SQLITE_OMIT_BTREECOUNT
6213       Table *pTab;
6214       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6215         /* If isSimpleCount() returns a pointer to a Table structure, then
6216         ** the SQL statement is of the form:
6217         **
6218         **   SELECT count(*) FROM <tbl>
6219         **
6220         ** where the Table structure returned represents table <tbl>.
6221         **
6222         ** This statement is so common that it is optimized specially. The
6223         ** OP_Count instruction is executed either on the intkey table that
6224         ** contains the data for table <tbl> or on one of its indexes. It
6225         ** is better to execute the op on an index, as indexes are almost
6226         ** always spread across less pages than their corresponding tables.
6227         */
6228         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6229         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6230         Index *pIdx;                         /* Iterator variable */
6231         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6232         Index *pBest = 0;                    /* Best index found so far */
6233         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6234 
6235         sqlite3CodeVerifySchema(pParse, iDb);
6236         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6237 
6238         /* Search for the index that has the lowest scan cost.
6239         **
6240         ** (2011-04-15) Do not do a full scan of an unordered index.
6241         **
6242         ** (2013-10-03) Do not count the entries in a partial index.
6243         **
6244         ** In practice the KeyInfo structure will not be used. It is only
6245         ** passed to keep OP_OpenRead happy.
6246         */
6247         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6248         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6249           if( pIdx->bUnordered==0
6250            && pIdx->szIdxRow<pTab->szTabRow
6251            && pIdx->pPartIdxWhere==0
6252            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6253           ){
6254             pBest = pIdx;
6255           }
6256         }
6257         if( pBest ){
6258           iRoot = pBest->tnum;
6259           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6260         }
6261 
6262         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6263         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6264         if( pKeyInfo ){
6265           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6266         }
6267         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6268         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6269         explainSimpleCount(pParse, pTab, pBest);
6270       }else
6271 #endif /* SQLITE_OMIT_BTREECOUNT */
6272       {
6273         /* This case runs if the aggregate has no GROUP BY clause.  The
6274         ** processing is much simpler since there is only a single row
6275         ** of output.
6276         */
6277         assert( p->pGroupBy==0 );
6278         resetAccumulator(pParse, &sAggInfo);
6279 
6280         /* If this query is a candidate for the min/max optimization, then
6281         ** minMaxFlag will have been previously set to either
6282         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6283         ** be an appropriate ORDER BY expression for the optimization.
6284         */
6285         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6286         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6287 
6288         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6289         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6290                                    0, minMaxFlag, 0);
6291         if( pWInfo==0 ){
6292           goto select_end;
6293         }
6294         updateAccumulator(pParse, &sAggInfo);
6295         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6296           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6297           VdbeComment((v, "%s() by index",
6298                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6299         }
6300         sqlite3WhereEnd(pWInfo);
6301         finalizeAggFunctions(pParse, &sAggInfo);
6302       }
6303 
6304       sSort.pOrderBy = 0;
6305       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6306       selectInnerLoop(pParse, p, -1, 0, 0,
6307                       pDest, addrEnd, addrEnd);
6308     }
6309     sqlite3VdbeResolveLabel(v, addrEnd);
6310 
6311   } /* endif aggregate query */
6312 
6313   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6314     explainTempTable(pParse, "DISTINCT");
6315   }
6316 
6317   /* If there is an ORDER BY clause, then we need to sort the results
6318   ** and send them to the callback one by one.
6319   */
6320   if( sSort.pOrderBy ){
6321     explainTempTable(pParse,
6322                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6323     assert( p->pEList==pEList );
6324     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6325   }
6326 
6327   /* Jump here to skip this query
6328   */
6329   sqlite3VdbeResolveLabel(v, iEnd);
6330 
6331   /* The SELECT has been coded. If there is an error in the Parse structure,
6332   ** set the return code to 1. Otherwise 0. */
6333   rc = (pParse->nErr>0);
6334 
6335   /* Control jumps to here if an error is encountered above, or upon
6336   ** successful coding of the SELECT.
6337   */
6338 select_end:
6339   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6340   sqlite3DbFree(db, sAggInfo.aCol);
6341   sqlite3DbFree(db, sAggInfo.aFunc);
6342 #if SELECTTRACE_ENABLED
6343   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6344   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6345     sqlite3TreeViewSelect(0, p, 0);
6346   }
6347 #endif
6348   ExplainQueryPlanPop(pParse);
6349   return rc;
6350 }
6351