1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 100 if( bFree ) sqlite3DbFreeNN(db, p); 101 p = pPrior; 102 bFree = 1; 103 } 104 } 105 106 /* 107 ** Initialize a SelectDest structure. 108 */ 109 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 110 pDest->eDest = (u8)eDest; 111 pDest->iSDParm = iParm; 112 pDest->zAffSdst = 0; 113 pDest->iSdst = 0; 114 pDest->nSdst = 0; 115 } 116 117 118 /* 119 ** Allocate a new Select structure and return a pointer to that 120 ** structure. 121 */ 122 Select *sqlite3SelectNew( 123 Parse *pParse, /* Parsing context */ 124 ExprList *pEList, /* which columns to include in the result */ 125 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 126 Expr *pWhere, /* the WHERE clause */ 127 ExprList *pGroupBy, /* the GROUP BY clause */ 128 Expr *pHaving, /* the HAVING clause */ 129 ExprList *pOrderBy, /* the ORDER BY clause */ 130 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 131 Expr *pLimit /* LIMIT value. NULL means not used */ 132 ){ 133 Select *pNew; 134 Select standin; 135 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 136 if( pNew==0 ){ 137 assert( pParse->db->mallocFailed ); 138 pNew = &standin; 139 } 140 if( pEList==0 ){ 141 pEList = sqlite3ExprListAppend(pParse, 0, 142 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 143 } 144 pNew->pEList = pEList; 145 pNew->op = TK_SELECT; 146 pNew->selFlags = selFlags; 147 pNew->iLimit = 0; 148 pNew->iOffset = 0; 149 #if SELECTTRACE_ENABLED 150 pNew->zSelName[0] = 0; 151 #endif 152 pNew->addrOpenEphm[0] = -1; 153 pNew->addrOpenEphm[1] = -1; 154 pNew->nSelectRow = 0; 155 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 156 pNew->pSrc = pSrc; 157 pNew->pWhere = pWhere; 158 pNew->pGroupBy = pGroupBy; 159 pNew->pHaving = pHaving; 160 pNew->pOrderBy = pOrderBy; 161 pNew->pPrior = 0; 162 pNew->pNext = 0; 163 pNew->pLimit = pLimit; 164 pNew->pWith = 0; 165 if( pParse->db->mallocFailed ) { 166 clearSelect(pParse->db, pNew, pNew!=&standin); 167 pNew = 0; 168 }else{ 169 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 170 } 171 assert( pNew!=&standin ); 172 return pNew; 173 } 174 175 #if SELECTTRACE_ENABLED 176 /* 177 ** Set the name of a Select object 178 */ 179 void sqlite3SelectSetName(Select *p, const char *zName){ 180 if( p && zName ){ 181 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 182 } 183 } 184 #endif 185 186 187 /* 188 ** Delete the given Select structure and all of its substructures. 189 */ 190 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 191 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 192 } 193 194 /* 195 ** Return a pointer to the right-most SELECT statement in a compound. 196 */ 197 static Select *findRightmost(Select *p){ 198 while( p->pNext ) p = p->pNext; 199 return p; 200 } 201 202 /* 203 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 204 ** type of join. Return an integer constant that expresses that type 205 ** in terms of the following bit values: 206 ** 207 ** JT_INNER 208 ** JT_CROSS 209 ** JT_OUTER 210 ** JT_NATURAL 211 ** JT_LEFT 212 ** JT_RIGHT 213 ** 214 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 215 ** 216 ** If an illegal or unsupported join type is seen, then still return 217 ** a join type, but put an error in the pParse structure. 218 */ 219 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 220 int jointype = 0; 221 Token *apAll[3]; 222 Token *p; 223 /* 0123456789 123456789 123456789 123 */ 224 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 225 static const struct { 226 u8 i; /* Beginning of keyword text in zKeyText[] */ 227 u8 nChar; /* Length of the keyword in characters */ 228 u8 code; /* Join type mask */ 229 } aKeyword[] = { 230 /* natural */ { 0, 7, JT_NATURAL }, 231 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 232 /* outer */ { 10, 5, JT_OUTER }, 233 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 234 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 235 /* inner */ { 23, 5, JT_INNER }, 236 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 237 }; 238 int i, j; 239 apAll[0] = pA; 240 apAll[1] = pB; 241 apAll[2] = pC; 242 for(i=0; i<3 && apAll[i]; i++){ 243 p = apAll[i]; 244 for(j=0; j<ArraySize(aKeyword); j++){ 245 if( p->n==aKeyword[j].nChar 246 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 247 jointype |= aKeyword[j].code; 248 break; 249 } 250 } 251 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 252 if( j>=ArraySize(aKeyword) ){ 253 jointype |= JT_ERROR; 254 break; 255 } 256 } 257 if( 258 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 259 (jointype & JT_ERROR)!=0 260 ){ 261 const char *zSp = " "; 262 assert( pB!=0 ); 263 if( pC==0 ){ zSp++; } 264 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 265 "%T %T%s%T", pA, pB, zSp, pC); 266 jointype = JT_INNER; 267 }else if( (jointype & JT_OUTER)!=0 268 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 269 sqlite3ErrorMsg(pParse, 270 "RIGHT and FULL OUTER JOINs are not currently supported"); 271 jointype = JT_INNER; 272 } 273 return jointype; 274 } 275 276 /* 277 ** Return the index of a column in a table. Return -1 if the column 278 ** is not contained in the table. 279 */ 280 static int columnIndex(Table *pTab, const char *zCol){ 281 int i; 282 for(i=0; i<pTab->nCol; i++){ 283 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 284 } 285 return -1; 286 } 287 288 /* 289 ** Search the first N tables in pSrc, from left to right, looking for a 290 ** table that has a column named zCol. 291 ** 292 ** When found, set *piTab and *piCol to the table index and column index 293 ** of the matching column and return TRUE. 294 ** 295 ** If not found, return FALSE. 296 */ 297 static int tableAndColumnIndex( 298 SrcList *pSrc, /* Array of tables to search */ 299 int N, /* Number of tables in pSrc->a[] to search */ 300 const char *zCol, /* Name of the column we are looking for */ 301 int *piTab, /* Write index of pSrc->a[] here */ 302 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 303 ){ 304 int i; /* For looping over tables in pSrc */ 305 int iCol; /* Index of column matching zCol */ 306 307 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 308 for(i=0; i<N; i++){ 309 iCol = columnIndex(pSrc->a[i].pTab, zCol); 310 if( iCol>=0 ){ 311 if( piTab ){ 312 *piTab = i; 313 *piCol = iCol; 314 } 315 return 1; 316 } 317 } 318 return 0; 319 } 320 321 /* 322 ** This function is used to add terms implied by JOIN syntax to the 323 ** WHERE clause expression of a SELECT statement. The new term, which 324 ** is ANDed with the existing WHERE clause, is of the form: 325 ** 326 ** (tab1.col1 = tab2.col2) 327 ** 328 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 329 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 330 ** column iColRight of tab2. 331 */ 332 static void addWhereTerm( 333 Parse *pParse, /* Parsing context */ 334 SrcList *pSrc, /* List of tables in FROM clause */ 335 int iLeft, /* Index of first table to join in pSrc */ 336 int iColLeft, /* Index of column in first table */ 337 int iRight, /* Index of second table in pSrc */ 338 int iColRight, /* Index of column in second table */ 339 int isOuterJoin, /* True if this is an OUTER join */ 340 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 341 ){ 342 sqlite3 *db = pParse->db; 343 Expr *pE1; 344 Expr *pE2; 345 Expr *pEq; 346 347 assert( iLeft<iRight ); 348 assert( pSrc->nSrc>iRight ); 349 assert( pSrc->a[iLeft].pTab ); 350 assert( pSrc->a[iRight].pTab ); 351 352 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 353 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 354 355 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 356 if( pEq && isOuterJoin ){ 357 ExprSetProperty(pEq, EP_FromJoin); 358 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 359 ExprSetVVAProperty(pEq, EP_NoReduce); 360 pEq->iRightJoinTable = (i16)pE2->iTable; 361 } 362 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 363 } 364 365 /* 366 ** Set the EP_FromJoin property on all terms of the given expression. 367 ** And set the Expr.iRightJoinTable to iTable for every term in the 368 ** expression. 369 ** 370 ** The EP_FromJoin property is used on terms of an expression to tell 371 ** the LEFT OUTER JOIN processing logic that this term is part of the 372 ** join restriction specified in the ON or USING clause and not a part 373 ** of the more general WHERE clause. These terms are moved over to the 374 ** WHERE clause during join processing but we need to remember that they 375 ** originated in the ON or USING clause. 376 ** 377 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 378 ** expression depends on table iRightJoinTable even if that table is not 379 ** explicitly mentioned in the expression. That information is needed 380 ** for cases like this: 381 ** 382 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 383 ** 384 ** The where clause needs to defer the handling of the t1.x=5 385 ** term until after the t2 loop of the join. In that way, a 386 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 387 ** defer the handling of t1.x=5, it will be processed immediately 388 ** after the t1 loop and rows with t1.x!=5 will never appear in 389 ** the output, which is incorrect. 390 */ 391 static void setJoinExpr(Expr *p, int iTable){ 392 while( p ){ 393 ExprSetProperty(p, EP_FromJoin); 394 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 395 ExprSetVVAProperty(p, EP_NoReduce); 396 p->iRightJoinTable = (i16)iTable; 397 if( p->op==TK_FUNCTION && p->x.pList ){ 398 int i; 399 for(i=0; i<p->x.pList->nExpr; i++){ 400 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 401 } 402 } 403 setJoinExpr(p->pLeft, iTable); 404 p = p->pRight; 405 } 406 } 407 408 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 410 ** an ordinary term that omits the EP_FromJoin mark. 411 ** 412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 413 */ 414 static void unsetJoinExpr(Expr *p, int iTable){ 415 while( p ){ 416 if( ExprHasProperty(p, EP_FromJoin) 417 && (iTable<0 || p->iRightJoinTable==iTable) ){ 418 ExprClearProperty(p, EP_FromJoin); 419 } 420 if( p->op==TK_FUNCTION && p->x.pList ){ 421 int i; 422 for(i=0; i<p->x.pList->nExpr; i++){ 423 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 424 } 425 } 426 unsetJoinExpr(p->pLeft, iTable); 427 p = p->pRight; 428 } 429 } 430 431 /* 432 ** This routine processes the join information for a SELECT statement. 433 ** ON and USING clauses are converted into extra terms of the WHERE clause. 434 ** NATURAL joins also create extra WHERE clause terms. 435 ** 436 ** The terms of a FROM clause are contained in the Select.pSrc structure. 437 ** The left most table is the first entry in Select.pSrc. The right-most 438 ** table is the last entry. The join operator is held in the entry to 439 ** the left. Thus entry 0 contains the join operator for the join between 440 ** entries 0 and 1. Any ON or USING clauses associated with the join are 441 ** also attached to the left entry. 442 ** 443 ** This routine returns the number of errors encountered. 444 */ 445 static int sqliteProcessJoin(Parse *pParse, Select *p){ 446 SrcList *pSrc; /* All tables in the FROM clause */ 447 int i, j; /* Loop counters */ 448 struct SrcList_item *pLeft; /* Left table being joined */ 449 struct SrcList_item *pRight; /* Right table being joined */ 450 451 pSrc = p->pSrc; 452 pLeft = &pSrc->a[0]; 453 pRight = &pLeft[1]; 454 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 455 Table *pRightTab = pRight->pTab; 456 int isOuter; 457 458 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 459 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 460 461 /* When the NATURAL keyword is present, add WHERE clause terms for 462 ** every column that the two tables have in common. 463 */ 464 if( pRight->fg.jointype & JT_NATURAL ){ 465 if( pRight->pOn || pRight->pUsing ){ 466 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 467 "an ON or USING clause", 0); 468 return 1; 469 } 470 for(j=0; j<pRightTab->nCol; j++){ 471 char *zName; /* Name of column in the right table */ 472 int iLeft; /* Matching left table */ 473 int iLeftCol; /* Matching column in the left table */ 474 475 zName = pRightTab->aCol[j].zName; 476 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 477 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 478 isOuter, &p->pWhere); 479 } 480 } 481 } 482 483 /* Disallow both ON and USING clauses in the same join 484 */ 485 if( pRight->pOn && pRight->pUsing ){ 486 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 487 "clauses in the same join"); 488 return 1; 489 } 490 491 /* Add the ON clause to the end of the WHERE clause, connected by 492 ** an AND operator. 493 */ 494 if( pRight->pOn ){ 495 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 496 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 497 pRight->pOn = 0; 498 } 499 500 /* Create extra terms on the WHERE clause for each column named 501 ** in the USING clause. Example: If the two tables to be joined are 502 ** A and B and the USING clause names X, Y, and Z, then add this 503 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 504 ** Report an error if any column mentioned in the USING clause is 505 ** not contained in both tables to be joined. 506 */ 507 if( pRight->pUsing ){ 508 IdList *pList = pRight->pUsing; 509 for(j=0; j<pList->nId; j++){ 510 char *zName; /* Name of the term in the USING clause */ 511 int iLeft; /* Table on the left with matching column name */ 512 int iLeftCol; /* Column number of matching column on the left */ 513 int iRightCol; /* Column number of matching column on the right */ 514 515 zName = pList->a[j].zName; 516 iRightCol = columnIndex(pRightTab, zName); 517 if( iRightCol<0 518 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 519 ){ 520 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 521 "not present in both tables", zName); 522 return 1; 523 } 524 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 525 isOuter, &p->pWhere); 526 } 527 } 528 } 529 return 0; 530 } 531 532 /* Forward reference */ 533 static KeyInfo *keyInfoFromExprList( 534 Parse *pParse, /* Parsing context */ 535 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 536 int iStart, /* Begin with this column of pList */ 537 int nExtra /* Add this many extra columns to the end */ 538 ); 539 540 /* 541 ** An instance of this object holds information (beyond pParse and pSelect) 542 ** needed to load the next result row that is to be added to the sorter. 543 */ 544 typedef struct RowLoadInfo RowLoadInfo; 545 struct RowLoadInfo { 546 int regResult; /* Store results in array of registers here */ 547 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 549 ExprList *pExtra; /* Extra columns needed by sorter refs */ 550 int regExtraResult; /* Where to load the extra columns */ 551 #endif 552 }; 553 554 /* 555 ** This routine does the work of loading query data into an array of 556 ** registers so that it can be added to the sorter. 557 */ 558 static void innerLoopLoadRow( 559 Parse *pParse, /* Statement under construction */ 560 Select *pSelect, /* The query being coded */ 561 RowLoadInfo *pInfo /* Info needed to complete the row load */ 562 ){ 563 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 564 0, pInfo->ecelFlags); 565 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 566 if( pInfo->pExtra ){ 567 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 568 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 569 } 570 #endif 571 } 572 573 /* 574 ** Code the OP_MakeRecord instruction that generates the entry to be 575 ** added into the sorter. 576 ** 577 ** Return the register in which the result is stored. 578 */ 579 static int makeSorterRecord( 580 Parse *pParse, 581 SortCtx *pSort, 582 Select *pSelect, 583 int regBase, 584 int nBase 585 ){ 586 int nOBSat = pSort->nOBSat; 587 Vdbe *v = pParse->pVdbe; 588 int regOut = ++pParse->nMem; 589 if( pSort->pDeferredRowLoad ){ 590 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 591 } 592 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 593 return regOut; 594 } 595 596 /* 597 ** Generate code that will push the record in registers regData 598 ** through regData+nData-1 onto the sorter. 599 */ 600 static void pushOntoSorter( 601 Parse *pParse, /* Parser context */ 602 SortCtx *pSort, /* Information about the ORDER BY clause */ 603 Select *pSelect, /* The whole SELECT statement */ 604 int regData, /* First register holding data to be sorted */ 605 int regOrigData, /* First register holding data before packing */ 606 int nData, /* Number of elements in the regData data array */ 607 int nPrefixReg /* No. of reg prior to regData available for use */ 608 ){ 609 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 610 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 611 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 612 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 613 int regBase; /* Regs for sorter record */ 614 int regRecord = 0; /* Assembled sorter record */ 615 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 616 int op; /* Opcode to add sorter record to sorter */ 617 int iLimit; /* LIMIT counter */ 618 int iSkip = 0; /* End of the sorter insert loop */ 619 620 assert( bSeq==0 || bSeq==1 ); 621 622 /* Three cases: 623 ** (1) The data to be sorted has already been packed into a Record 624 ** by a prior OP_MakeRecord. In this case nData==1 and regData 625 ** will be completely unrelated to regOrigData. 626 ** (2) All output columns are included in the sort record. In that 627 ** case regData==regOrigData. 628 ** (3) Some output columns are omitted from the sort record due to 629 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 630 ** SQLITE_ECEL_OMITREF optimization. In that case, regOrigData==0 631 ** to prevent this routine from trying to copy values that might 632 ** not exist. 633 */ 634 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 635 636 if( nPrefixReg ){ 637 assert( nPrefixReg==nExpr+bSeq ); 638 regBase = regData - nPrefixReg; 639 }else{ 640 regBase = pParse->nMem + 1; 641 pParse->nMem += nBase; 642 } 643 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 644 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 645 pSort->labelDone = sqlite3VdbeMakeLabel(v); 646 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 647 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 648 if( bSeq ){ 649 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 650 } 651 if( nPrefixReg==0 && nData>0 ){ 652 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 653 } 654 if( nOBSat>0 ){ 655 int regPrevKey; /* The first nOBSat columns of the previous row */ 656 int addrFirst; /* Address of the OP_IfNot opcode */ 657 int addrJmp; /* Address of the OP_Jump opcode */ 658 VdbeOp *pOp; /* Opcode that opens the sorter */ 659 int nKey; /* Number of sorting key columns, including OP_Sequence */ 660 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 661 662 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 663 regPrevKey = pParse->nMem+1; 664 pParse->nMem += pSort->nOBSat; 665 nKey = nExpr - pSort->nOBSat + bSeq; 666 if( bSeq ){ 667 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 668 }else{ 669 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 670 } 671 VdbeCoverage(v); 672 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 673 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 674 if( pParse->db->mallocFailed ) return; 675 pOp->p2 = nKey + nData; 676 pKI = pOp->p4.pKeyInfo; 677 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 678 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 679 testcase( pKI->nAllField > pKI->nKeyField+2 ); 680 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 681 pKI->nAllField-pKI->nKeyField-1); 682 addrJmp = sqlite3VdbeCurrentAddr(v); 683 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 684 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 685 pSort->regReturn = ++pParse->nMem; 686 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 687 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 688 if( iLimit ){ 689 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 690 VdbeCoverage(v); 691 } 692 sqlite3VdbeJumpHere(v, addrFirst); 693 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 694 sqlite3VdbeJumpHere(v, addrJmp); 695 } 696 if( iLimit ){ 697 /* At this point the values for the new sorter entry are stored 698 ** in an array of registers. They need to be composed into a record 699 ** and inserted into the sorter if either (a) there are currently 700 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 701 ** the largest record currently in the sorter. If (b) is true and there 702 ** are already LIMIT+OFFSET items in the sorter, delete the largest 703 ** entry before inserting the new one. This way there are never more 704 ** than LIMIT+OFFSET items in the sorter. 705 ** 706 ** If the new record does not need to be inserted into the sorter, 707 ** jump to the next iteration of the loop. Or, if the 708 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner 709 ** loop delivers items in sorted order, jump to the next iteration 710 ** of the outer loop. 711 */ 712 int iCsr = pSort->iECursor; 713 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 714 VdbeCoverage(v); 715 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 716 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 717 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 718 VdbeCoverage(v); 719 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 720 } 721 if( regRecord==0 ){ 722 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 723 } 724 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 725 op = OP_SorterInsert; 726 }else{ 727 op = OP_IdxInsert; 728 } 729 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 730 regBase+nOBSat, nBase-nOBSat); 731 if( iSkip ){ 732 assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 ); 733 sqlite3VdbeChangeP2(v, iSkip, 734 sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop); 735 } 736 } 737 738 /* 739 ** Add code to implement the OFFSET 740 */ 741 static void codeOffset( 742 Vdbe *v, /* Generate code into this VM */ 743 int iOffset, /* Register holding the offset counter */ 744 int iContinue /* Jump here to skip the current record */ 745 ){ 746 if( iOffset>0 ){ 747 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 748 VdbeComment((v, "OFFSET")); 749 } 750 } 751 752 /* 753 ** Add code that will check to make sure the N registers starting at iMem 754 ** form a distinct entry. iTab is a sorting index that holds previously 755 ** seen combinations of the N values. A new entry is made in iTab 756 ** if the current N values are new. 757 ** 758 ** A jump to addrRepeat is made and the N+1 values are popped from the 759 ** stack if the top N elements are not distinct. 760 */ 761 static void codeDistinct( 762 Parse *pParse, /* Parsing and code generating context */ 763 int iTab, /* A sorting index used to test for distinctness */ 764 int addrRepeat, /* Jump to here if not distinct */ 765 int N, /* Number of elements */ 766 int iMem /* First element */ 767 ){ 768 Vdbe *v; 769 int r1; 770 771 v = pParse->pVdbe; 772 r1 = sqlite3GetTempReg(pParse); 773 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 774 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 775 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 776 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 777 sqlite3ReleaseTempReg(pParse, r1); 778 } 779 780 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 781 /* 782 ** This function is called as part of inner-loop generation for a SELECT 783 ** statement with an ORDER BY that is not optimized by an index. It 784 ** determines the expressions, if any, that the sorter-reference 785 ** optimization should be used for. The sorter-reference optimization 786 ** is used for SELECT queries like: 787 ** 788 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 789 ** 790 ** If the optimization is used for expression "bigblob", then instead of 791 ** storing values read from that column in the sorter records, the PK of 792 ** the row from table t1 is stored instead. Then, as records are extracted from 793 ** the sorter to return to the user, the required value of bigblob is 794 ** retrieved directly from table t1. If the values are very large, this 795 ** can be more efficient than storing them directly in the sorter records. 796 ** 797 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 798 ** for which the sorter-reference optimization should be enabled. 799 ** Additionally, the pSort->aDefer[] array is populated with entries 800 ** for all cursors required to evaluate all selected expressions. Finally. 801 ** output variable (*ppExtra) is set to an expression list containing 802 ** expressions for all extra PK values that should be stored in the 803 ** sorter records. 804 */ 805 static void selectExprDefer( 806 Parse *pParse, /* Leave any error here */ 807 SortCtx *pSort, /* Sorter context */ 808 ExprList *pEList, /* Expressions destined for sorter */ 809 ExprList **ppExtra /* Expressions to append to sorter record */ 810 ){ 811 int i; 812 int nDefer = 0; 813 ExprList *pExtra = 0; 814 for(i=0; i<pEList->nExpr; i++){ 815 struct ExprList_item *pItem = &pEList->a[i]; 816 if( pItem->u.x.iOrderByCol==0 ){ 817 Expr *pExpr = pItem->pExpr; 818 Table *pTab = pExpr->pTab; 819 if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab) 820 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 821 ){ 822 int j; 823 for(j=0; j<nDefer; j++){ 824 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 825 } 826 if( j==nDefer ){ 827 if( nDefer==ArraySize(pSort->aDefer) ){ 828 continue; 829 }else{ 830 int nKey = 1; 831 int k; 832 Index *pPk = 0; 833 if( !HasRowid(pTab) ){ 834 pPk = sqlite3PrimaryKeyIndex(pTab); 835 nKey = pPk->nKeyCol; 836 } 837 for(k=0; k<nKey; k++){ 838 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 839 if( pNew ){ 840 pNew->iTable = pExpr->iTable; 841 pNew->pTab = pExpr->pTab; 842 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 843 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 844 } 845 } 846 pSort->aDefer[nDefer].pTab = pExpr->pTab; 847 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 848 pSort->aDefer[nDefer].nKey = nKey; 849 nDefer++; 850 } 851 } 852 pItem->bSorterRef = 1; 853 } 854 } 855 } 856 pSort->nDefer = (u8)nDefer; 857 *ppExtra = pExtra; 858 } 859 #endif 860 861 /* 862 ** This routine generates the code for the inside of the inner loop 863 ** of a SELECT. 864 ** 865 ** If srcTab is negative, then the p->pEList expressions 866 ** are evaluated in order to get the data for this row. If srcTab is 867 ** zero or more, then data is pulled from srcTab and p->pEList is used only 868 ** to get the number of columns and the collation sequence for each column. 869 */ 870 static void selectInnerLoop( 871 Parse *pParse, /* The parser context */ 872 Select *p, /* The complete select statement being coded */ 873 int srcTab, /* Pull data from this table if non-negative */ 874 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 875 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 876 SelectDest *pDest, /* How to dispose of the results */ 877 int iContinue, /* Jump here to continue with next row */ 878 int iBreak /* Jump here to break out of the inner loop */ 879 ){ 880 Vdbe *v = pParse->pVdbe; 881 int i; 882 int hasDistinct; /* True if the DISTINCT keyword is present */ 883 int eDest = pDest->eDest; /* How to dispose of results */ 884 int iParm = pDest->iSDParm; /* First argument to disposal method */ 885 int nResultCol; /* Number of result columns */ 886 int nPrefixReg = 0; /* Number of extra registers before regResult */ 887 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 888 889 /* Usually, regResult is the first cell in an array of memory cells 890 ** containing the current result row. In this case regOrig is set to the 891 ** same value. However, if the results are being sent to the sorter, the 892 ** values for any expressions that are also part of the sort-key are omitted 893 ** from this array. In this case regOrig is set to zero. */ 894 int regResult; /* Start of memory holding current results */ 895 int regOrig; /* Start of memory holding full result (or 0) */ 896 897 assert( v ); 898 assert( p->pEList!=0 ); 899 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 900 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 901 if( pSort==0 && !hasDistinct ){ 902 assert( iContinue!=0 ); 903 codeOffset(v, p->iOffset, iContinue); 904 } 905 906 /* Pull the requested columns. 907 */ 908 nResultCol = p->pEList->nExpr; 909 910 if( pDest->iSdst==0 ){ 911 if( pSort ){ 912 nPrefixReg = pSort->pOrderBy->nExpr; 913 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 914 pParse->nMem += nPrefixReg; 915 } 916 pDest->iSdst = pParse->nMem+1; 917 pParse->nMem += nResultCol; 918 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 919 /* This is an error condition that can result, for example, when a SELECT 920 ** on the right-hand side of an INSERT contains more result columns than 921 ** there are columns in the table on the left. The error will be caught 922 ** and reported later. But we need to make sure enough memory is allocated 923 ** to avoid other spurious errors in the meantime. */ 924 pParse->nMem += nResultCol; 925 } 926 pDest->nSdst = nResultCol; 927 regOrig = regResult = pDest->iSdst; 928 if( srcTab>=0 ){ 929 for(i=0; i<nResultCol; i++){ 930 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 931 VdbeComment((v, "%s", p->pEList->a[i].zName)); 932 } 933 }else if( eDest!=SRT_Exists ){ 934 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 935 ExprList *pExtra = 0; 936 #endif 937 /* If the destination is an EXISTS(...) expression, the actual 938 ** values returned by the SELECT are not required. 939 */ 940 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 941 ExprList *pEList; 942 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 943 ecelFlags = SQLITE_ECEL_DUP; 944 }else{ 945 ecelFlags = 0; 946 } 947 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 948 /* For each expression in p->pEList that is a copy of an expression in 949 ** the ORDER BY clause (pSort->pOrderBy), set the associated 950 ** iOrderByCol value to one more than the index of the ORDER BY 951 ** expression within the sort-key that pushOntoSorter() will generate. 952 ** This allows the p->pEList field to be omitted from the sorted record, 953 ** saving space and CPU cycles. */ 954 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 955 956 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 957 int j; 958 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 959 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 960 } 961 } 962 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 963 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 964 if( pExtra && pParse->db->mallocFailed==0 ){ 965 /* If there are any extra PK columns to add to the sorter records, 966 ** allocate extra memory cells and adjust the OpenEphemeral 967 ** instruction to account for the larger records. This is only 968 ** required if there are one or more WITHOUT ROWID tables with 969 ** composite primary keys in the SortCtx.aDefer[] array. */ 970 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 971 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 972 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 973 pParse->nMem += pExtra->nExpr; 974 } 975 #endif 976 977 /* Adjust nResultCol to account for columns that are omitted 978 ** from the sorter by the optimizations in this branch */ 979 pEList = p->pEList; 980 for(i=0; i<pEList->nExpr; i++){ 981 if( pEList->a[i].u.x.iOrderByCol>0 982 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 983 || pEList->a[i].bSorterRef 984 #endif 985 ){ 986 nResultCol--; 987 regOrig = 0; 988 } 989 } 990 991 testcase( regOrig ); 992 testcase( eDest==SRT_Set ); 993 testcase( eDest==SRT_Mem ); 994 testcase( eDest==SRT_Coroutine ); 995 testcase( eDest==SRT_Output ); 996 assert( eDest==SRT_Set || eDest==SRT_Mem 997 || eDest==SRT_Coroutine || eDest==SRT_Output ); 998 } 999 sRowLoadInfo.regResult = regResult; 1000 sRowLoadInfo.ecelFlags = ecelFlags; 1001 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1002 sRowLoadInfo.pExtra = pExtra; 1003 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1004 if( pExtra ) nResultCol += pExtra->nExpr; 1005 #endif 1006 if( p->iLimit 1007 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1008 && nPrefixReg>0 1009 ){ 1010 assert( pSort!=0 ); 1011 assert( hasDistinct==0 ); 1012 pSort->pDeferredRowLoad = &sRowLoadInfo; 1013 }else{ 1014 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1015 } 1016 } 1017 1018 /* If the DISTINCT keyword was present on the SELECT statement 1019 ** and this row has been seen before, then do not make this row 1020 ** part of the result. 1021 */ 1022 if( hasDistinct ){ 1023 switch( pDistinct->eTnctType ){ 1024 case WHERE_DISTINCT_ORDERED: { 1025 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1026 int iJump; /* Jump destination */ 1027 int regPrev; /* Previous row content */ 1028 1029 /* Allocate space for the previous row */ 1030 regPrev = pParse->nMem+1; 1031 pParse->nMem += nResultCol; 1032 1033 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1034 ** sets the MEM_Cleared bit on the first register of the 1035 ** previous value. This will cause the OP_Ne below to always 1036 ** fail on the first iteration of the loop even if the first 1037 ** row is all NULLs. 1038 */ 1039 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1040 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1041 pOp->opcode = OP_Null; 1042 pOp->p1 = 1; 1043 pOp->p2 = regPrev; 1044 1045 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1046 for(i=0; i<nResultCol; i++){ 1047 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1048 if( i<nResultCol-1 ){ 1049 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1050 VdbeCoverage(v); 1051 }else{ 1052 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1053 VdbeCoverage(v); 1054 } 1055 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1056 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1057 } 1058 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1059 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1060 break; 1061 } 1062 1063 case WHERE_DISTINCT_UNIQUE: { 1064 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1065 break; 1066 } 1067 1068 default: { 1069 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1070 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1071 regResult); 1072 break; 1073 } 1074 } 1075 if( pSort==0 ){ 1076 codeOffset(v, p->iOffset, iContinue); 1077 } 1078 } 1079 1080 switch( eDest ){ 1081 /* In this mode, write each query result to the key of the temporary 1082 ** table iParm. 1083 */ 1084 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1085 case SRT_Union: { 1086 int r1; 1087 r1 = sqlite3GetTempReg(pParse); 1088 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1089 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1090 sqlite3ReleaseTempReg(pParse, r1); 1091 break; 1092 } 1093 1094 /* Construct a record from the query result, but instead of 1095 ** saving that record, use it as a key to delete elements from 1096 ** the temporary table iParm. 1097 */ 1098 case SRT_Except: { 1099 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1100 break; 1101 } 1102 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1103 1104 /* Store the result as data using a unique key. 1105 */ 1106 case SRT_Fifo: 1107 case SRT_DistFifo: 1108 case SRT_Table: 1109 case SRT_EphemTab: { 1110 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1111 testcase( eDest==SRT_Table ); 1112 testcase( eDest==SRT_EphemTab ); 1113 testcase( eDest==SRT_Fifo ); 1114 testcase( eDest==SRT_DistFifo ); 1115 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1116 #ifndef SQLITE_OMIT_CTE 1117 if( eDest==SRT_DistFifo ){ 1118 /* If the destination is DistFifo, then cursor (iParm+1) is open 1119 ** on an ephemeral index. If the current row is already present 1120 ** in the index, do not write it to the output. If not, add the 1121 ** current row to the index and proceed with writing it to the 1122 ** output table as well. */ 1123 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1124 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1125 VdbeCoverage(v); 1126 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1127 assert( pSort==0 ); 1128 } 1129 #endif 1130 if( pSort ){ 1131 assert( regResult==regOrig ); 1132 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1133 }else{ 1134 int r2 = sqlite3GetTempReg(pParse); 1135 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1136 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1137 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1138 sqlite3ReleaseTempReg(pParse, r2); 1139 } 1140 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1141 break; 1142 } 1143 1144 #ifndef SQLITE_OMIT_SUBQUERY 1145 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1146 ** then there should be a single item on the stack. Write this 1147 ** item into the set table with bogus data. 1148 */ 1149 case SRT_Set: { 1150 if( pSort ){ 1151 /* At first glance you would think we could optimize out the 1152 ** ORDER BY in this case since the order of entries in the set 1153 ** does not matter. But there might be a LIMIT clause, in which 1154 ** case the order does matter */ 1155 pushOntoSorter( 1156 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1157 }else{ 1158 int r1 = sqlite3GetTempReg(pParse); 1159 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1160 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1161 r1, pDest->zAffSdst, nResultCol); 1162 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1163 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1164 sqlite3ReleaseTempReg(pParse, r1); 1165 } 1166 break; 1167 } 1168 1169 /* If any row exist in the result set, record that fact and abort. 1170 */ 1171 case SRT_Exists: { 1172 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1173 /* The LIMIT clause will terminate the loop for us */ 1174 break; 1175 } 1176 1177 /* If this is a scalar select that is part of an expression, then 1178 ** store the results in the appropriate memory cell or array of 1179 ** memory cells and break out of the scan loop. 1180 */ 1181 case SRT_Mem: { 1182 if( pSort ){ 1183 assert( nResultCol<=pDest->nSdst ); 1184 pushOntoSorter( 1185 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1186 }else{ 1187 assert( nResultCol==pDest->nSdst ); 1188 assert( regResult==iParm ); 1189 /* The LIMIT clause will jump out of the loop for us */ 1190 } 1191 break; 1192 } 1193 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1194 1195 case SRT_Coroutine: /* Send data to a co-routine */ 1196 case SRT_Output: { /* Return the results */ 1197 testcase( eDest==SRT_Coroutine ); 1198 testcase( eDest==SRT_Output ); 1199 if( pSort ){ 1200 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1201 nPrefixReg); 1202 }else if( eDest==SRT_Coroutine ){ 1203 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1204 }else{ 1205 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1206 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1207 } 1208 break; 1209 } 1210 1211 #ifndef SQLITE_OMIT_CTE 1212 /* Write the results into a priority queue that is order according to 1213 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1214 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1215 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1216 ** final OP_Sequence column. The last column is the record as a blob. 1217 */ 1218 case SRT_DistQueue: 1219 case SRT_Queue: { 1220 int nKey; 1221 int r1, r2, r3; 1222 int addrTest = 0; 1223 ExprList *pSO; 1224 pSO = pDest->pOrderBy; 1225 assert( pSO ); 1226 nKey = pSO->nExpr; 1227 r1 = sqlite3GetTempReg(pParse); 1228 r2 = sqlite3GetTempRange(pParse, nKey+2); 1229 r3 = r2+nKey+1; 1230 if( eDest==SRT_DistQueue ){ 1231 /* If the destination is DistQueue, then cursor (iParm+1) is open 1232 ** on a second ephemeral index that holds all values every previously 1233 ** added to the queue. */ 1234 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1235 regResult, nResultCol); 1236 VdbeCoverage(v); 1237 } 1238 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1239 if( eDest==SRT_DistQueue ){ 1240 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1241 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1242 } 1243 for(i=0; i<nKey; i++){ 1244 sqlite3VdbeAddOp2(v, OP_SCopy, 1245 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1246 r2+i); 1247 } 1248 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1249 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1250 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1251 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1252 sqlite3ReleaseTempReg(pParse, r1); 1253 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1254 break; 1255 } 1256 #endif /* SQLITE_OMIT_CTE */ 1257 1258 1259 1260 #if !defined(SQLITE_OMIT_TRIGGER) 1261 /* Discard the results. This is used for SELECT statements inside 1262 ** the body of a TRIGGER. The purpose of such selects is to call 1263 ** user-defined functions that have side effects. We do not care 1264 ** about the actual results of the select. 1265 */ 1266 default: { 1267 assert( eDest==SRT_Discard ); 1268 break; 1269 } 1270 #endif 1271 } 1272 1273 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1274 ** there is a sorter, in which case the sorter has already limited 1275 ** the output for us. 1276 */ 1277 if( pSort==0 && p->iLimit ){ 1278 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1279 } 1280 } 1281 1282 /* 1283 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1284 ** X extra columns. 1285 */ 1286 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1287 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1288 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1289 if( p ){ 1290 p->aSortOrder = (u8*)&p->aColl[N+X]; 1291 p->nKeyField = (u16)N; 1292 p->nAllField = (u16)(N+X); 1293 p->enc = ENC(db); 1294 p->db = db; 1295 p->nRef = 1; 1296 memset(&p[1], 0, nExtra); 1297 }else{ 1298 sqlite3OomFault(db); 1299 } 1300 return p; 1301 } 1302 1303 /* 1304 ** Deallocate a KeyInfo object 1305 */ 1306 void sqlite3KeyInfoUnref(KeyInfo *p){ 1307 if( p ){ 1308 assert( p->nRef>0 ); 1309 p->nRef--; 1310 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1311 } 1312 } 1313 1314 /* 1315 ** Make a new pointer to a KeyInfo object 1316 */ 1317 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1318 if( p ){ 1319 assert( p->nRef>0 ); 1320 p->nRef++; 1321 } 1322 return p; 1323 } 1324 1325 #ifdef SQLITE_DEBUG 1326 /* 1327 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1328 ** can only be changed if this is just a single reference to the object. 1329 ** 1330 ** This routine is used only inside of assert() statements. 1331 */ 1332 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1333 #endif /* SQLITE_DEBUG */ 1334 1335 /* 1336 ** Given an expression list, generate a KeyInfo structure that records 1337 ** the collating sequence for each expression in that expression list. 1338 ** 1339 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1340 ** KeyInfo structure is appropriate for initializing a virtual index to 1341 ** implement that clause. If the ExprList is the result set of a SELECT 1342 ** then the KeyInfo structure is appropriate for initializing a virtual 1343 ** index to implement a DISTINCT test. 1344 ** 1345 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1346 ** function is responsible for seeing that this structure is eventually 1347 ** freed. 1348 */ 1349 static KeyInfo *keyInfoFromExprList( 1350 Parse *pParse, /* Parsing context */ 1351 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1352 int iStart, /* Begin with this column of pList */ 1353 int nExtra /* Add this many extra columns to the end */ 1354 ){ 1355 int nExpr; 1356 KeyInfo *pInfo; 1357 struct ExprList_item *pItem; 1358 sqlite3 *db = pParse->db; 1359 int i; 1360 1361 nExpr = pList->nExpr; 1362 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1363 if( pInfo ){ 1364 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1365 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1366 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1367 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1368 } 1369 } 1370 return pInfo; 1371 } 1372 1373 /* 1374 ** Name of the connection operator, used for error messages. 1375 */ 1376 static const char *selectOpName(int id){ 1377 char *z; 1378 switch( id ){ 1379 case TK_ALL: z = "UNION ALL"; break; 1380 case TK_INTERSECT: z = "INTERSECT"; break; 1381 case TK_EXCEPT: z = "EXCEPT"; break; 1382 default: z = "UNION"; break; 1383 } 1384 return z; 1385 } 1386 1387 #ifndef SQLITE_OMIT_EXPLAIN 1388 /* 1389 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1390 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1391 ** where the caption is of the form: 1392 ** 1393 ** "USE TEMP B-TREE FOR xxx" 1394 ** 1395 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1396 ** is determined by the zUsage argument. 1397 */ 1398 static void explainTempTable(Parse *pParse, const char *zUsage){ 1399 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1400 } 1401 1402 /* 1403 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1404 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1405 ** in sqlite3Select() to assign values to structure member variables that 1406 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1407 ** code with #ifndef directives. 1408 */ 1409 # define explainSetInteger(a, b) a = b 1410 1411 #else 1412 /* No-op versions of the explainXXX() functions and macros. */ 1413 # define explainTempTable(y,z) 1414 # define explainSetInteger(y,z) 1415 #endif 1416 1417 1418 /* 1419 ** If the inner loop was generated using a non-null pOrderBy argument, 1420 ** then the results were placed in a sorter. After the loop is terminated 1421 ** we need to run the sorter and output the results. The following 1422 ** routine generates the code needed to do that. 1423 */ 1424 static void generateSortTail( 1425 Parse *pParse, /* Parsing context */ 1426 Select *p, /* The SELECT statement */ 1427 SortCtx *pSort, /* Information on the ORDER BY clause */ 1428 int nColumn, /* Number of columns of data */ 1429 SelectDest *pDest /* Write the sorted results here */ 1430 ){ 1431 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1432 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1433 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1434 int addr; /* Top of output loop. Jump for Next. */ 1435 int addrOnce = 0; 1436 int iTab; 1437 ExprList *pOrderBy = pSort->pOrderBy; 1438 int eDest = pDest->eDest; 1439 int iParm = pDest->iSDParm; 1440 int regRow; 1441 int regRowid; 1442 int iCol; 1443 int nKey; /* Number of key columns in sorter record */ 1444 int iSortTab; /* Sorter cursor to read from */ 1445 int i; 1446 int bSeq; /* True if sorter record includes seq. no. */ 1447 int nRefKey = 0; 1448 struct ExprList_item *aOutEx = p->pEList->a; 1449 1450 assert( addrBreak<0 ); 1451 if( pSort->labelBkOut ){ 1452 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1453 sqlite3VdbeGoto(v, addrBreak); 1454 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1455 } 1456 1457 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1458 /* Open any cursors needed for sorter-reference expressions */ 1459 for(i=0; i<pSort->nDefer; i++){ 1460 Table *pTab = pSort->aDefer[i].pTab; 1461 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1462 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1463 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1464 } 1465 #endif 1466 1467 iTab = pSort->iECursor; 1468 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1469 regRowid = 0; 1470 regRow = pDest->iSdst; 1471 }else{ 1472 regRowid = sqlite3GetTempReg(pParse); 1473 regRow = sqlite3GetTempRange(pParse, nColumn); 1474 } 1475 nKey = pOrderBy->nExpr - pSort->nOBSat; 1476 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1477 int regSortOut = ++pParse->nMem; 1478 iSortTab = pParse->nTab++; 1479 if( pSort->labelBkOut ){ 1480 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1481 } 1482 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1483 nKey+1+nColumn+nRefKey); 1484 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1485 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1486 VdbeCoverage(v); 1487 codeOffset(v, p->iOffset, addrContinue); 1488 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1489 bSeq = 0; 1490 }else{ 1491 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1492 codeOffset(v, p->iOffset, addrContinue); 1493 iSortTab = iTab; 1494 bSeq = 1; 1495 } 1496 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1497 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1498 if( aOutEx[i].bSorterRef ) continue; 1499 #endif 1500 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1501 } 1502 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1503 if( pSort->nDefer ){ 1504 int iKey = iCol+1; 1505 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1506 1507 for(i=0; i<pSort->nDefer; i++){ 1508 int iCsr = pSort->aDefer[i].iCsr; 1509 Table *pTab = pSort->aDefer[i].pTab; 1510 int nKey = pSort->aDefer[i].nKey; 1511 1512 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1513 if( HasRowid(pTab) ){ 1514 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1515 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1516 sqlite3VdbeCurrentAddr(v)+1, regKey); 1517 }else{ 1518 int k; 1519 int iJmp; 1520 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1521 for(k=0; k<nKey; k++){ 1522 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1523 } 1524 iJmp = sqlite3VdbeCurrentAddr(v); 1525 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1526 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1527 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1528 } 1529 } 1530 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1531 } 1532 #endif 1533 for(i=nColumn-1; i>=0; i--){ 1534 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1535 if( aOutEx[i].bSorterRef ){ 1536 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1537 }else 1538 #endif 1539 { 1540 int iRead; 1541 if( aOutEx[i].u.x.iOrderByCol ){ 1542 iRead = aOutEx[i].u.x.iOrderByCol-1; 1543 }else{ 1544 iRead = iCol--; 1545 } 1546 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1547 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1548 } 1549 } 1550 switch( eDest ){ 1551 case SRT_Table: 1552 case SRT_EphemTab: { 1553 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1554 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1555 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1556 break; 1557 } 1558 #ifndef SQLITE_OMIT_SUBQUERY 1559 case SRT_Set: { 1560 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1561 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1562 pDest->zAffSdst, nColumn); 1563 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1564 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1565 break; 1566 } 1567 case SRT_Mem: { 1568 /* The LIMIT clause will terminate the loop for us */ 1569 break; 1570 } 1571 #endif 1572 default: { 1573 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1574 testcase( eDest==SRT_Output ); 1575 testcase( eDest==SRT_Coroutine ); 1576 if( eDest==SRT_Output ){ 1577 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1578 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1579 }else{ 1580 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1581 } 1582 break; 1583 } 1584 } 1585 if( regRowid ){ 1586 if( eDest==SRT_Set ){ 1587 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1588 }else{ 1589 sqlite3ReleaseTempReg(pParse, regRow); 1590 } 1591 sqlite3ReleaseTempReg(pParse, regRowid); 1592 } 1593 /* The bottom of the loop 1594 */ 1595 sqlite3VdbeResolveLabel(v, addrContinue); 1596 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1597 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1598 }else{ 1599 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1600 } 1601 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1602 sqlite3VdbeResolveLabel(v, addrBreak); 1603 } 1604 1605 /* 1606 ** Return a pointer to a string containing the 'declaration type' of the 1607 ** expression pExpr. The string may be treated as static by the caller. 1608 ** 1609 ** Also try to estimate the size of the returned value and return that 1610 ** result in *pEstWidth. 1611 ** 1612 ** The declaration type is the exact datatype definition extracted from the 1613 ** original CREATE TABLE statement if the expression is a column. The 1614 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1615 ** is considered a column can be complex in the presence of subqueries. The 1616 ** result-set expression in all of the following SELECT statements is 1617 ** considered a column by this function. 1618 ** 1619 ** SELECT col FROM tbl; 1620 ** SELECT (SELECT col FROM tbl; 1621 ** SELECT (SELECT col FROM tbl); 1622 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1623 ** 1624 ** The declaration type for any expression other than a column is NULL. 1625 ** 1626 ** This routine has either 3 or 6 parameters depending on whether or not 1627 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1628 */ 1629 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1630 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1631 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1632 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1633 #endif 1634 static const char *columnTypeImpl( 1635 NameContext *pNC, 1636 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1637 Expr *pExpr 1638 #else 1639 Expr *pExpr, 1640 const char **pzOrigDb, 1641 const char **pzOrigTab, 1642 const char **pzOrigCol 1643 #endif 1644 ){ 1645 char const *zType = 0; 1646 int j; 1647 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1648 char const *zOrigDb = 0; 1649 char const *zOrigTab = 0; 1650 char const *zOrigCol = 0; 1651 #endif 1652 1653 assert( pExpr!=0 ); 1654 assert( pNC->pSrcList!=0 ); 1655 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1656 ** are processed */ 1657 switch( pExpr->op ){ 1658 case TK_COLUMN: { 1659 /* The expression is a column. Locate the table the column is being 1660 ** extracted from in NameContext.pSrcList. This table may be real 1661 ** database table or a subquery. 1662 */ 1663 Table *pTab = 0; /* Table structure column is extracted from */ 1664 Select *pS = 0; /* Select the column is extracted from */ 1665 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1666 while( pNC && !pTab ){ 1667 SrcList *pTabList = pNC->pSrcList; 1668 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1669 if( j<pTabList->nSrc ){ 1670 pTab = pTabList->a[j].pTab; 1671 pS = pTabList->a[j].pSelect; 1672 }else{ 1673 pNC = pNC->pNext; 1674 } 1675 } 1676 1677 if( pTab==0 ){ 1678 /* At one time, code such as "SELECT new.x" within a trigger would 1679 ** cause this condition to run. Since then, we have restructured how 1680 ** trigger code is generated and so this condition is no longer 1681 ** possible. However, it can still be true for statements like 1682 ** the following: 1683 ** 1684 ** CREATE TABLE t1(col INTEGER); 1685 ** SELECT (SELECT t1.col) FROM FROM t1; 1686 ** 1687 ** when columnType() is called on the expression "t1.col" in the 1688 ** sub-select. In this case, set the column type to NULL, even 1689 ** though it should really be "INTEGER". 1690 ** 1691 ** This is not a problem, as the column type of "t1.col" is never 1692 ** used. When columnType() is called on the expression 1693 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1694 ** branch below. */ 1695 break; 1696 } 1697 1698 assert( pTab && pExpr->pTab==pTab ); 1699 if( pS ){ 1700 /* The "table" is actually a sub-select or a view in the FROM clause 1701 ** of the SELECT statement. Return the declaration type and origin 1702 ** data for the result-set column of the sub-select. 1703 */ 1704 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1705 /* If iCol is less than zero, then the expression requests the 1706 ** rowid of the sub-select or view. This expression is legal (see 1707 ** test case misc2.2.2) - it always evaluates to NULL. 1708 */ 1709 NameContext sNC; 1710 Expr *p = pS->pEList->a[iCol].pExpr; 1711 sNC.pSrcList = pS->pSrc; 1712 sNC.pNext = pNC; 1713 sNC.pParse = pNC->pParse; 1714 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1715 } 1716 }else{ 1717 /* A real table or a CTE table */ 1718 assert( !pS ); 1719 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1720 if( iCol<0 ) iCol = pTab->iPKey; 1721 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1722 if( iCol<0 ){ 1723 zType = "INTEGER"; 1724 zOrigCol = "rowid"; 1725 }else{ 1726 zOrigCol = pTab->aCol[iCol].zName; 1727 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1728 } 1729 zOrigTab = pTab->zName; 1730 if( pNC->pParse && pTab->pSchema ){ 1731 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1732 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1733 } 1734 #else 1735 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1736 if( iCol<0 ){ 1737 zType = "INTEGER"; 1738 }else{ 1739 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1740 } 1741 #endif 1742 } 1743 break; 1744 } 1745 #ifndef SQLITE_OMIT_SUBQUERY 1746 case TK_SELECT: { 1747 /* The expression is a sub-select. Return the declaration type and 1748 ** origin info for the single column in the result set of the SELECT 1749 ** statement. 1750 */ 1751 NameContext sNC; 1752 Select *pS = pExpr->x.pSelect; 1753 Expr *p = pS->pEList->a[0].pExpr; 1754 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1755 sNC.pSrcList = pS->pSrc; 1756 sNC.pNext = pNC; 1757 sNC.pParse = pNC->pParse; 1758 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1759 break; 1760 } 1761 #endif 1762 } 1763 1764 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1765 if( pzOrigDb ){ 1766 assert( pzOrigTab && pzOrigCol ); 1767 *pzOrigDb = zOrigDb; 1768 *pzOrigTab = zOrigTab; 1769 *pzOrigCol = zOrigCol; 1770 } 1771 #endif 1772 return zType; 1773 } 1774 1775 /* 1776 ** Generate code that will tell the VDBE the declaration types of columns 1777 ** in the result set. 1778 */ 1779 static void generateColumnTypes( 1780 Parse *pParse, /* Parser context */ 1781 SrcList *pTabList, /* List of tables */ 1782 ExprList *pEList /* Expressions defining the result set */ 1783 ){ 1784 #ifndef SQLITE_OMIT_DECLTYPE 1785 Vdbe *v = pParse->pVdbe; 1786 int i; 1787 NameContext sNC; 1788 sNC.pSrcList = pTabList; 1789 sNC.pParse = pParse; 1790 sNC.pNext = 0; 1791 for(i=0; i<pEList->nExpr; i++){ 1792 Expr *p = pEList->a[i].pExpr; 1793 const char *zType; 1794 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1795 const char *zOrigDb = 0; 1796 const char *zOrigTab = 0; 1797 const char *zOrigCol = 0; 1798 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1799 1800 /* The vdbe must make its own copy of the column-type and other 1801 ** column specific strings, in case the schema is reset before this 1802 ** virtual machine is deleted. 1803 */ 1804 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1805 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1806 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1807 #else 1808 zType = columnType(&sNC, p, 0, 0, 0); 1809 #endif 1810 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1811 } 1812 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1813 } 1814 1815 1816 /* 1817 ** Compute the column names for a SELECT statement. 1818 ** 1819 ** The only guarantee that SQLite makes about column names is that if the 1820 ** column has an AS clause assigning it a name, that will be the name used. 1821 ** That is the only documented guarantee. However, countless applications 1822 ** developed over the years have made baseless assumptions about column names 1823 ** and will break if those assumptions changes. Hence, use extreme caution 1824 ** when modifying this routine to avoid breaking legacy. 1825 ** 1826 ** See Also: sqlite3ColumnsFromExprList() 1827 ** 1828 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1829 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1830 ** applications should operate this way. Nevertheless, we need to support the 1831 ** other modes for legacy: 1832 ** 1833 ** short=OFF, full=OFF: Column name is the text of the expression has it 1834 ** originally appears in the SELECT statement. In 1835 ** other words, the zSpan of the result expression. 1836 ** 1837 ** short=ON, full=OFF: (This is the default setting). If the result 1838 ** refers directly to a table column, then the 1839 ** result column name is just the table column 1840 ** name: COLUMN. Otherwise use zSpan. 1841 ** 1842 ** full=ON, short=ANY: If the result refers directly to a table column, 1843 ** then the result column name with the table name 1844 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1845 */ 1846 static void generateColumnNames( 1847 Parse *pParse, /* Parser context */ 1848 Select *pSelect /* Generate column names for this SELECT statement */ 1849 ){ 1850 Vdbe *v = pParse->pVdbe; 1851 int i; 1852 Table *pTab; 1853 SrcList *pTabList; 1854 ExprList *pEList; 1855 sqlite3 *db = pParse->db; 1856 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1857 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1858 1859 #ifndef SQLITE_OMIT_EXPLAIN 1860 /* If this is an EXPLAIN, skip this step */ 1861 if( pParse->explain ){ 1862 return; 1863 } 1864 #endif 1865 1866 if( pParse->colNamesSet ) return; 1867 /* Column names are determined by the left-most term of a compound select */ 1868 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1869 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1870 pTabList = pSelect->pSrc; 1871 pEList = pSelect->pEList; 1872 assert( v!=0 ); 1873 assert( pTabList!=0 ); 1874 pParse->colNamesSet = 1; 1875 fullName = (db->flags & SQLITE_FullColNames)!=0; 1876 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1877 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1878 for(i=0; i<pEList->nExpr; i++){ 1879 Expr *p = pEList->a[i].pExpr; 1880 1881 assert( p!=0 ); 1882 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1883 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1884 if( pEList->a[i].zName ){ 1885 /* An AS clause always takes first priority */ 1886 char *zName = pEList->a[i].zName; 1887 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1888 }else if( srcName && p->op==TK_COLUMN ){ 1889 char *zCol; 1890 int iCol = p->iColumn; 1891 pTab = p->pTab; 1892 assert( pTab!=0 ); 1893 if( iCol<0 ) iCol = pTab->iPKey; 1894 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1895 if( iCol<0 ){ 1896 zCol = "rowid"; 1897 }else{ 1898 zCol = pTab->aCol[iCol].zName; 1899 } 1900 if( fullName ){ 1901 char *zName = 0; 1902 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1903 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1904 }else{ 1905 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1906 } 1907 }else{ 1908 const char *z = pEList->a[i].zSpan; 1909 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1910 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1911 } 1912 } 1913 generateColumnTypes(pParse, pTabList, pEList); 1914 } 1915 1916 /* 1917 ** Given an expression list (which is really the list of expressions 1918 ** that form the result set of a SELECT statement) compute appropriate 1919 ** column names for a table that would hold the expression list. 1920 ** 1921 ** All column names will be unique. 1922 ** 1923 ** Only the column names are computed. Column.zType, Column.zColl, 1924 ** and other fields of Column are zeroed. 1925 ** 1926 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1927 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1928 ** 1929 ** The only guarantee that SQLite makes about column names is that if the 1930 ** column has an AS clause assigning it a name, that will be the name used. 1931 ** That is the only documented guarantee. However, countless applications 1932 ** developed over the years have made baseless assumptions about column names 1933 ** and will break if those assumptions changes. Hence, use extreme caution 1934 ** when modifying this routine to avoid breaking legacy. 1935 ** 1936 ** See Also: generateColumnNames() 1937 */ 1938 int sqlite3ColumnsFromExprList( 1939 Parse *pParse, /* Parsing context */ 1940 ExprList *pEList, /* Expr list from which to derive column names */ 1941 i16 *pnCol, /* Write the number of columns here */ 1942 Column **paCol /* Write the new column list here */ 1943 ){ 1944 sqlite3 *db = pParse->db; /* Database connection */ 1945 int i, j; /* Loop counters */ 1946 u32 cnt; /* Index added to make the name unique */ 1947 Column *aCol, *pCol; /* For looping over result columns */ 1948 int nCol; /* Number of columns in the result set */ 1949 char *zName; /* Column name */ 1950 int nName; /* Size of name in zName[] */ 1951 Hash ht; /* Hash table of column names */ 1952 1953 sqlite3HashInit(&ht); 1954 if( pEList ){ 1955 nCol = pEList->nExpr; 1956 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1957 testcase( aCol==0 ); 1958 if( nCol>32767 ) nCol = 32767; 1959 }else{ 1960 nCol = 0; 1961 aCol = 0; 1962 } 1963 assert( nCol==(i16)nCol ); 1964 *pnCol = nCol; 1965 *paCol = aCol; 1966 1967 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1968 /* Get an appropriate name for the column 1969 */ 1970 if( (zName = pEList->a[i].zName)!=0 ){ 1971 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1972 }else{ 1973 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1974 while( pColExpr->op==TK_DOT ){ 1975 pColExpr = pColExpr->pRight; 1976 assert( pColExpr!=0 ); 1977 } 1978 assert( pColExpr->op!=TK_AGG_COLUMN ); 1979 if( pColExpr->op==TK_COLUMN ){ 1980 /* For columns use the column name name */ 1981 int iCol = pColExpr->iColumn; 1982 Table *pTab = pColExpr->pTab; 1983 assert( pTab!=0 ); 1984 if( iCol<0 ) iCol = pTab->iPKey; 1985 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1986 }else if( pColExpr->op==TK_ID ){ 1987 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1988 zName = pColExpr->u.zToken; 1989 }else{ 1990 /* Use the original text of the column expression as its name */ 1991 zName = pEList->a[i].zSpan; 1992 } 1993 } 1994 if( zName ){ 1995 zName = sqlite3DbStrDup(db, zName); 1996 }else{ 1997 zName = sqlite3MPrintf(db,"column%d",i+1); 1998 } 1999 2000 /* Make sure the column name is unique. If the name is not unique, 2001 ** append an integer to the name so that it becomes unique. 2002 */ 2003 cnt = 0; 2004 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2005 nName = sqlite3Strlen30(zName); 2006 if( nName>0 ){ 2007 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2008 if( zName[j]==':' ) nName = j; 2009 } 2010 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2011 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2012 } 2013 pCol->zName = zName; 2014 sqlite3ColumnPropertiesFromName(0, pCol); 2015 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2016 sqlite3OomFault(db); 2017 } 2018 } 2019 sqlite3HashClear(&ht); 2020 if( db->mallocFailed ){ 2021 for(j=0; j<i; j++){ 2022 sqlite3DbFree(db, aCol[j].zName); 2023 } 2024 sqlite3DbFree(db, aCol); 2025 *paCol = 0; 2026 *pnCol = 0; 2027 return SQLITE_NOMEM_BKPT; 2028 } 2029 return SQLITE_OK; 2030 } 2031 2032 /* 2033 ** Add type and collation information to a column list based on 2034 ** a SELECT statement. 2035 ** 2036 ** The column list presumably came from selectColumnNamesFromExprList(). 2037 ** The column list has only names, not types or collations. This 2038 ** routine goes through and adds the types and collations. 2039 ** 2040 ** This routine requires that all identifiers in the SELECT 2041 ** statement be resolved. 2042 */ 2043 void sqlite3SelectAddColumnTypeAndCollation( 2044 Parse *pParse, /* Parsing contexts */ 2045 Table *pTab, /* Add column type information to this table */ 2046 Select *pSelect /* SELECT used to determine types and collations */ 2047 ){ 2048 sqlite3 *db = pParse->db; 2049 NameContext sNC; 2050 Column *pCol; 2051 CollSeq *pColl; 2052 int i; 2053 Expr *p; 2054 struct ExprList_item *a; 2055 2056 assert( pSelect!=0 ); 2057 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2058 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2059 if( db->mallocFailed ) return; 2060 memset(&sNC, 0, sizeof(sNC)); 2061 sNC.pSrcList = pSelect->pSrc; 2062 a = pSelect->pEList->a; 2063 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2064 const char *zType; 2065 int n, m; 2066 p = a[i].pExpr; 2067 zType = columnType(&sNC, p, 0, 0, 0); 2068 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2069 pCol->affinity = sqlite3ExprAffinity(p); 2070 if( zType ){ 2071 m = sqlite3Strlen30(zType); 2072 n = sqlite3Strlen30(pCol->zName); 2073 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2074 if( pCol->zName ){ 2075 memcpy(&pCol->zName[n+1], zType, m+1); 2076 pCol->colFlags |= COLFLAG_HASTYPE; 2077 } 2078 } 2079 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2080 pColl = sqlite3ExprCollSeq(pParse, p); 2081 if( pColl && pCol->zColl==0 ){ 2082 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2083 } 2084 } 2085 pTab->szTabRow = 1; /* Any non-zero value works */ 2086 } 2087 2088 /* 2089 ** Given a SELECT statement, generate a Table structure that describes 2090 ** the result set of that SELECT. 2091 */ 2092 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2093 Table *pTab; 2094 sqlite3 *db = pParse->db; 2095 int savedFlags; 2096 2097 savedFlags = db->flags; 2098 db->flags &= ~SQLITE_FullColNames; 2099 db->flags |= SQLITE_ShortColNames; 2100 sqlite3SelectPrep(pParse, pSelect, 0); 2101 if( pParse->nErr ) return 0; 2102 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2103 db->flags = savedFlags; 2104 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2105 if( pTab==0 ){ 2106 return 0; 2107 } 2108 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2109 ** is disabled */ 2110 assert( db->lookaside.bDisable ); 2111 pTab->nTabRef = 1; 2112 pTab->zName = 0; 2113 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2114 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2115 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2116 pTab->iPKey = -1; 2117 if( db->mallocFailed ){ 2118 sqlite3DeleteTable(db, pTab); 2119 return 0; 2120 } 2121 return pTab; 2122 } 2123 2124 /* 2125 ** Get a VDBE for the given parser context. Create a new one if necessary. 2126 ** If an error occurs, return NULL and leave a message in pParse. 2127 */ 2128 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2129 if( pParse->pVdbe ){ 2130 return pParse->pVdbe; 2131 } 2132 if( pParse->pToplevel==0 2133 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2134 ){ 2135 pParse->okConstFactor = 1; 2136 } 2137 return sqlite3VdbeCreate(pParse); 2138 } 2139 2140 2141 /* 2142 ** Compute the iLimit and iOffset fields of the SELECT based on the 2143 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2144 ** that appear in the original SQL statement after the LIMIT and OFFSET 2145 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2146 ** are the integer memory register numbers for counters used to compute 2147 ** the limit and offset. If there is no limit and/or offset, then 2148 ** iLimit and iOffset are negative. 2149 ** 2150 ** This routine changes the values of iLimit and iOffset only if 2151 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2152 ** and iOffset should have been preset to appropriate default values (zero) 2153 ** prior to calling this routine. 2154 ** 2155 ** The iOffset register (if it exists) is initialized to the value 2156 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2157 ** iOffset+1 is initialized to LIMIT+OFFSET. 2158 ** 2159 ** Only if pLimit->pLeft!=0 do the limit registers get 2160 ** redefined. The UNION ALL operator uses this property to force 2161 ** the reuse of the same limit and offset registers across multiple 2162 ** SELECT statements. 2163 */ 2164 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2165 Vdbe *v = 0; 2166 int iLimit = 0; 2167 int iOffset; 2168 int n; 2169 Expr *pLimit = p->pLimit; 2170 2171 if( p->iLimit ) return; 2172 2173 /* 2174 ** "LIMIT -1" always shows all rows. There is some 2175 ** controversy about what the correct behavior should be. 2176 ** The current implementation interprets "LIMIT 0" to mean 2177 ** no rows. 2178 */ 2179 sqlite3ExprCacheClear(pParse); 2180 if( pLimit ){ 2181 assert( pLimit->op==TK_LIMIT ); 2182 assert( pLimit->pLeft!=0 ); 2183 p->iLimit = iLimit = ++pParse->nMem; 2184 v = sqlite3GetVdbe(pParse); 2185 assert( v!=0 ); 2186 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2187 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2188 VdbeComment((v, "LIMIT counter")); 2189 if( n==0 ){ 2190 sqlite3VdbeGoto(v, iBreak); 2191 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2192 p->nSelectRow = sqlite3LogEst((u64)n); 2193 p->selFlags |= SF_FixedLimit; 2194 } 2195 }else{ 2196 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2197 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2198 VdbeComment((v, "LIMIT counter")); 2199 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2200 } 2201 if( pLimit->pRight ){ 2202 p->iOffset = iOffset = ++pParse->nMem; 2203 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2204 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2205 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2206 VdbeComment((v, "OFFSET counter")); 2207 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2208 VdbeComment((v, "LIMIT+OFFSET")); 2209 } 2210 } 2211 } 2212 2213 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2214 /* 2215 ** Return the appropriate collating sequence for the iCol-th column of 2216 ** the result set for the compound-select statement "p". Return NULL if 2217 ** the column has no default collating sequence. 2218 ** 2219 ** The collating sequence for the compound select is taken from the 2220 ** left-most term of the select that has a collating sequence. 2221 */ 2222 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2223 CollSeq *pRet; 2224 if( p->pPrior ){ 2225 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2226 }else{ 2227 pRet = 0; 2228 } 2229 assert( iCol>=0 ); 2230 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2231 ** have been thrown during name resolution and we would not have gotten 2232 ** this far */ 2233 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2234 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2235 } 2236 return pRet; 2237 } 2238 2239 /* 2240 ** The select statement passed as the second parameter is a compound SELECT 2241 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2242 ** structure suitable for implementing the ORDER BY. 2243 ** 2244 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2245 ** function is responsible for ensuring that this structure is eventually 2246 ** freed. 2247 */ 2248 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2249 ExprList *pOrderBy = p->pOrderBy; 2250 int nOrderBy = p->pOrderBy->nExpr; 2251 sqlite3 *db = pParse->db; 2252 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2253 if( pRet ){ 2254 int i; 2255 for(i=0; i<nOrderBy; i++){ 2256 struct ExprList_item *pItem = &pOrderBy->a[i]; 2257 Expr *pTerm = pItem->pExpr; 2258 CollSeq *pColl; 2259 2260 if( pTerm->flags & EP_Collate ){ 2261 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2262 }else{ 2263 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2264 if( pColl==0 ) pColl = db->pDfltColl; 2265 pOrderBy->a[i].pExpr = 2266 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2267 } 2268 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2269 pRet->aColl[i] = pColl; 2270 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2271 } 2272 } 2273 2274 return pRet; 2275 } 2276 2277 #ifndef SQLITE_OMIT_CTE 2278 /* 2279 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2280 ** query of the form: 2281 ** 2282 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2283 ** \___________/ \_______________/ 2284 ** p->pPrior p 2285 ** 2286 ** 2287 ** There is exactly one reference to the recursive-table in the FROM clause 2288 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2289 ** 2290 ** The setup-query runs once to generate an initial set of rows that go 2291 ** into a Queue table. Rows are extracted from the Queue table one by 2292 ** one. Each row extracted from Queue is output to pDest. Then the single 2293 ** extracted row (now in the iCurrent table) becomes the content of the 2294 ** recursive-table for a recursive-query run. The output of the recursive-query 2295 ** is added back into the Queue table. Then another row is extracted from Queue 2296 ** and the iteration continues until the Queue table is empty. 2297 ** 2298 ** If the compound query operator is UNION then no duplicate rows are ever 2299 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2300 ** that have ever been inserted into Queue and causes duplicates to be 2301 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2302 ** 2303 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2304 ** ORDER BY order and the first entry is extracted for each cycle. Without 2305 ** an ORDER BY, the Queue table is just a FIFO. 2306 ** 2307 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2308 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2309 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2310 ** with a positive value, then the first OFFSET outputs are discarded rather 2311 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2312 ** rows have been skipped. 2313 */ 2314 static void generateWithRecursiveQuery( 2315 Parse *pParse, /* Parsing context */ 2316 Select *p, /* The recursive SELECT to be coded */ 2317 SelectDest *pDest /* What to do with query results */ 2318 ){ 2319 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2320 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2321 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2322 Select *pSetup = p->pPrior; /* The setup query */ 2323 int addrTop; /* Top of the loop */ 2324 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2325 int iCurrent = 0; /* The Current table */ 2326 int regCurrent; /* Register holding Current table */ 2327 int iQueue; /* The Queue table */ 2328 int iDistinct = 0; /* To ensure unique results if UNION */ 2329 int eDest = SRT_Fifo; /* How to write to Queue */ 2330 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2331 int i; /* Loop counter */ 2332 int rc; /* Result code */ 2333 ExprList *pOrderBy; /* The ORDER BY clause */ 2334 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2335 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2336 2337 /* Obtain authorization to do a recursive query */ 2338 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2339 2340 /* Process the LIMIT and OFFSET clauses, if they exist */ 2341 addrBreak = sqlite3VdbeMakeLabel(v); 2342 p->nSelectRow = 320; /* 4 billion rows */ 2343 computeLimitRegisters(pParse, p, addrBreak); 2344 pLimit = p->pLimit; 2345 regLimit = p->iLimit; 2346 regOffset = p->iOffset; 2347 p->pLimit = 0; 2348 p->iLimit = p->iOffset = 0; 2349 pOrderBy = p->pOrderBy; 2350 2351 /* Locate the cursor number of the Current table */ 2352 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2353 if( pSrc->a[i].fg.isRecursive ){ 2354 iCurrent = pSrc->a[i].iCursor; 2355 break; 2356 } 2357 } 2358 2359 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2360 ** the Distinct table must be exactly one greater than Queue in order 2361 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2362 iQueue = pParse->nTab++; 2363 if( p->op==TK_UNION ){ 2364 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2365 iDistinct = pParse->nTab++; 2366 }else{ 2367 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2368 } 2369 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2370 2371 /* Allocate cursors for Current, Queue, and Distinct. */ 2372 regCurrent = ++pParse->nMem; 2373 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2374 if( pOrderBy ){ 2375 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2376 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2377 (char*)pKeyInfo, P4_KEYINFO); 2378 destQueue.pOrderBy = pOrderBy; 2379 }else{ 2380 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2381 } 2382 VdbeComment((v, "Queue table")); 2383 if( iDistinct ){ 2384 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2385 p->selFlags |= SF_UsesEphemeral; 2386 } 2387 2388 /* Detach the ORDER BY clause from the compound SELECT */ 2389 p->pOrderBy = 0; 2390 2391 /* Store the results of the setup-query in Queue. */ 2392 pSetup->pNext = 0; 2393 ExplainQueryPlan((pParse, 1, "SETUP")); 2394 rc = sqlite3Select(pParse, pSetup, &destQueue); 2395 pSetup->pNext = p; 2396 if( rc ) goto end_of_recursive_query; 2397 2398 /* Find the next row in the Queue and output that row */ 2399 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2400 2401 /* Transfer the next row in Queue over to Current */ 2402 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2403 if( pOrderBy ){ 2404 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2405 }else{ 2406 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2407 } 2408 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2409 2410 /* Output the single row in Current */ 2411 addrCont = sqlite3VdbeMakeLabel(v); 2412 codeOffset(v, regOffset, addrCont); 2413 selectInnerLoop(pParse, p, iCurrent, 2414 0, 0, pDest, addrCont, addrBreak); 2415 if( regLimit ){ 2416 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2417 VdbeCoverage(v); 2418 } 2419 sqlite3VdbeResolveLabel(v, addrCont); 2420 2421 /* Execute the recursive SELECT taking the single row in Current as 2422 ** the value for the recursive-table. Store the results in the Queue. 2423 */ 2424 if( p->selFlags & SF_Aggregate ){ 2425 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2426 }else{ 2427 p->pPrior = 0; 2428 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2429 sqlite3Select(pParse, p, &destQueue); 2430 assert( p->pPrior==0 ); 2431 p->pPrior = pSetup; 2432 } 2433 2434 /* Keep running the loop until the Queue is empty */ 2435 sqlite3VdbeGoto(v, addrTop); 2436 sqlite3VdbeResolveLabel(v, addrBreak); 2437 2438 end_of_recursive_query: 2439 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2440 p->pOrderBy = pOrderBy; 2441 p->pLimit = pLimit; 2442 return; 2443 } 2444 #endif /* SQLITE_OMIT_CTE */ 2445 2446 /* Forward references */ 2447 static int multiSelectOrderBy( 2448 Parse *pParse, /* Parsing context */ 2449 Select *p, /* The right-most of SELECTs to be coded */ 2450 SelectDest *pDest /* What to do with query results */ 2451 ); 2452 2453 /* 2454 ** Handle the special case of a compound-select that originates from a 2455 ** VALUES clause. By handling this as a special case, we avoid deep 2456 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2457 ** on a VALUES clause. 2458 ** 2459 ** Because the Select object originates from a VALUES clause: 2460 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2461 ** (2) All terms are UNION ALL 2462 ** (3) There is no ORDER BY clause 2463 ** 2464 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2465 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2466 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2467 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2468 */ 2469 static int multiSelectValues( 2470 Parse *pParse, /* Parsing context */ 2471 Select *p, /* The right-most of SELECTs to be coded */ 2472 SelectDest *pDest /* What to do with query results */ 2473 ){ 2474 int nRow = 1; 2475 int rc = 0; 2476 int bShowAll = p->pLimit==0; 2477 assert( p->selFlags & SF_MultiValue ); 2478 do{ 2479 assert( p->selFlags & SF_Values ); 2480 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2481 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2482 if( p->pPrior==0 ) break; 2483 assert( p->pPrior->pNext==p ); 2484 p = p->pPrior; 2485 nRow += bShowAll; 2486 }while(1); 2487 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2488 nRow==1 ? "" : "S")); 2489 while( p ){ 2490 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2491 if( !bShowAll ) break; 2492 p->nSelectRow = nRow; 2493 p = p->pNext; 2494 } 2495 return rc; 2496 } 2497 2498 /* 2499 ** This routine is called to process a compound query form from 2500 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2501 ** INTERSECT 2502 ** 2503 ** "p" points to the right-most of the two queries. the query on the 2504 ** left is p->pPrior. The left query could also be a compound query 2505 ** in which case this routine will be called recursively. 2506 ** 2507 ** The results of the total query are to be written into a destination 2508 ** of type eDest with parameter iParm. 2509 ** 2510 ** Example 1: Consider a three-way compound SQL statement. 2511 ** 2512 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2513 ** 2514 ** This statement is parsed up as follows: 2515 ** 2516 ** SELECT c FROM t3 2517 ** | 2518 ** `-----> SELECT b FROM t2 2519 ** | 2520 ** `------> SELECT a FROM t1 2521 ** 2522 ** The arrows in the diagram above represent the Select.pPrior pointer. 2523 ** So if this routine is called with p equal to the t3 query, then 2524 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2525 ** 2526 ** Notice that because of the way SQLite parses compound SELECTs, the 2527 ** individual selects always group from left to right. 2528 */ 2529 static int multiSelect( 2530 Parse *pParse, /* Parsing context */ 2531 Select *p, /* The right-most of SELECTs to be coded */ 2532 SelectDest *pDest /* What to do with query results */ 2533 ){ 2534 int rc = SQLITE_OK; /* Success code from a subroutine */ 2535 Select *pPrior; /* Another SELECT immediately to our left */ 2536 Vdbe *v; /* Generate code to this VDBE */ 2537 SelectDest dest; /* Alternative data destination */ 2538 Select *pDelete = 0; /* Chain of simple selects to delete */ 2539 sqlite3 *db; /* Database connection */ 2540 2541 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2542 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2543 */ 2544 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2545 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2546 db = pParse->db; 2547 pPrior = p->pPrior; 2548 dest = *pDest; 2549 if( pPrior->pOrderBy || pPrior->pLimit ){ 2550 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2551 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2552 rc = 1; 2553 goto multi_select_end; 2554 } 2555 2556 v = sqlite3GetVdbe(pParse); 2557 assert( v!=0 ); /* The VDBE already created by calling function */ 2558 2559 /* Create the destination temporary table if necessary 2560 */ 2561 if( dest.eDest==SRT_EphemTab ){ 2562 assert( p->pEList ); 2563 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2564 dest.eDest = SRT_Table; 2565 } 2566 2567 /* Special handling for a compound-select that originates as a VALUES clause. 2568 */ 2569 if( p->selFlags & SF_MultiValue ){ 2570 rc = multiSelectValues(pParse, p, &dest); 2571 goto multi_select_end; 2572 } 2573 2574 /* Make sure all SELECTs in the statement have the same number of elements 2575 ** in their result sets. 2576 */ 2577 assert( p->pEList && pPrior->pEList ); 2578 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2579 2580 #ifndef SQLITE_OMIT_CTE 2581 if( p->selFlags & SF_Recursive ){ 2582 generateWithRecursiveQuery(pParse, p, &dest); 2583 }else 2584 #endif 2585 2586 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2587 */ 2588 if( p->pOrderBy ){ 2589 return multiSelectOrderBy(pParse, p, pDest); 2590 }else{ 2591 2592 #ifndef SQLITE_OMIT_EXPLAIN 2593 if( pPrior->pPrior==0 ){ 2594 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2595 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2596 } 2597 #endif 2598 2599 /* Generate code for the left and right SELECT statements. 2600 */ 2601 switch( p->op ){ 2602 case TK_ALL: { 2603 int addr = 0; 2604 int nLimit; 2605 assert( !pPrior->pLimit ); 2606 pPrior->iLimit = p->iLimit; 2607 pPrior->iOffset = p->iOffset; 2608 pPrior->pLimit = p->pLimit; 2609 rc = sqlite3Select(pParse, pPrior, &dest); 2610 p->pLimit = 0; 2611 if( rc ){ 2612 goto multi_select_end; 2613 } 2614 p->pPrior = 0; 2615 p->iLimit = pPrior->iLimit; 2616 p->iOffset = pPrior->iOffset; 2617 if( p->iLimit ){ 2618 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2619 VdbeComment((v, "Jump ahead if LIMIT reached")); 2620 if( p->iOffset ){ 2621 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2622 p->iLimit, p->iOffset+1, p->iOffset); 2623 } 2624 } 2625 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2626 rc = sqlite3Select(pParse, p, &dest); 2627 testcase( rc!=SQLITE_OK ); 2628 pDelete = p->pPrior; 2629 p->pPrior = pPrior; 2630 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2631 if( pPrior->pLimit 2632 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2633 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2634 ){ 2635 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2636 } 2637 if( addr ){ 2638 sqlite3VdbeJumpHere(v, addr); 2639 } 2640 break; 2641 } 2642 case TK_EXCEPT: 2643 case TK_UNION: { 2644 int unionTab; /* Cursor number of the temp table holding result */ 2645 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2646 int priorOp; /* The SRT_ operation to apply to prior selects */ 2647 Expr *pLimit; /* Saved values of p->nLimit */ 2648 int addr; 2649 SelectDest uniondest; 2650 2651 testcase( p->op==TK_EXCEPT ); 2652 testcase( p->op==TK_UNION ); 2653 priorOp = SRT_Union; 2654 if( dest.eDest==priorOp ){ 2655 /* We can reuse a temporary table generated by a SELECT to our 2656 ** right. 2657 */ 2658 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2659 unionTab = dest.iSDParm; 2660 }else{ 2661 /* We will need to create our own temporary table to hold the 2662 ** intermediate results. 2663 */ 2664 unionTab = pParse->nTab++; 2665 assert( p->pOrderBy==0 ); 2666 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2667 assert( p->addrOpenEphm[0] == -1 ); 2668 p->addrOpenEphm[0] = addr; 2669 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2670 assert( p->pEList ); 2671 } 2672 2673 /* Code the SELECT statements to our left 2674 */ 2675 assert( !pPrior->pOrderBy ); 2676 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2677 rc = sqlite3Select(pParse, pPrior, &uniondest); 2678 if( rc ){ 2679 goto multi_select_end; 2680 } 2681 2682 /* Code the current SELECT statement 2683 */ 2684 if( p->op==TK_EXCEPT ){ 2685 op = SRT_Except; 2686 }else{ 2687 assert( p->op==TK_UNION ); 2688 op = SRT_Union; 2689 } 2690 p->pPrior = 0; 2691 pLimit = p->pLimit; 2692 p->pLimit = 0; 2693 uniondest.eDest = op; 2694 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2695 selectOpName(p->op))); 2696 rc = sqlite3Select(pParse, p, &uniondest); 2697 testcase( rc!=SQLITE_OK ); 2698 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2699 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2700 sqlite3ExprListDelete(db, p->pOrderBy); 2701 pDelete = p->pPrior; 2702 p->pPrior = pPrior; 2703 p->pOrderBy = 0; 2704 if( p->op==TK_UNION ){ 2705 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2706 } 2707 sqlite3ExprDelete(db, p->pLimit); 2708 p->pLimit = pLimit; 2709 p->iLimit = 0; 2710 p->iOffset = 0; 2711 2712 /* Convert the data in the temporary table into whatever form 2713 ** it is that we currently need. 2714 */ 2715 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2716 if( dest.eDest!=priorOp ){ 2717 int iCont, iBreak, iStart; 2718 assert( p->pEList ); 2719 iBreak = sqlite3VdbeMakeLabel(v); 2720 iCont = sqlite3VdbeMakeLabel(v); 2721 computeLimitRegisters(pParse, p, iBreak); 2722 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2723 iStart = sqlite3VdbeCurrentAddr(v); 2724 selectInnerLoop(pParse, p, unionTab, 2725 0, 0, &dest, iCont, iBreak); 2726 sqlite3VdbeResolveLabel(v, iCont); 2727 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2728 sqlite3VdbeResolveLabel(v, iBreak); 2729 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2730 } 2731 break; 2732 } 2733 default: assert( p->op==TK_INTERSECT ); { 2734 int tab1, tab2; 2735 int iCont, iBreak, iStart; 2736 Expr *pLimit; 2737 int addr; 2738 SelectDest intersectdest; 2739 int r1; 2740 2741 /* INTERSECT is different from the others since it requires 2742 ** two temporary tables. Hence it has its own case. Begin 2743 ** by allocating the tables we will need. 2744 */ 2745 tab1 = pParse->nTab++; 2746 tab2 = pParse->nTab++; 2747 assert( p->pOrderBy==0 ); 2748 2749 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2750 assert( p->addrOpenEphm[0] == -1 ); 2751 p->addrOpenEphm[0] = addr; 2752 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2753 assert( p->pEList ); 2754 2755 /* Code the SELECTs to our left into temporary table "tab1". 2756 */ 2757 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2758 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2759 if( rc ){ 2760 goto multi_select_end; 2761 } 2762 2763 /* Code the current SELECT into temporary table "tab2" 2764 */ 2765 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2766 assert( p->addrOpenEphm[1] == -1 ); 2767 p->addrOpenEphm[1] = addr; 2768 p->pPrior = 0; 2769 pLimit = p->pLimit; 2770 p->pLimit = 0; 2771 intersectdest.iSDParm = tab2; 2772 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2773 selectOpName(p->op))); 2774 rc = sqlite3Select(pParse, p, &intersectdest); 2775 testcase( rc!=SQLITE_OK ); 2776 pDelete = p->pPrior; 2777 p->pPrior = pPrior; 2778 if( p->nSelectRow>pPrior->nSelectRow ){ 2779 p->nSelectRow = pPrior->nSelectRow; 2780 } 2781 sqlite3ExprDelete(db, p->pLimit); 2782 p->pLimit = pLimit; 2783 2784 /* Generate code to take the intersection of the two temporary 2785 ** tables. 2786 */ 2787 assert( p->pEList ); 2788 iBreak = sqlite3VdbeMakeLabel(v); 2789 iCont = sqlite3VdbeMakeLabel(v); 2790 computeLimitRegisters(pParse, p, iBreak); 2791 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2792 r1 = sqlite3GetTempReg(pParse); 2793 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2794 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2795 VdbeCoverage(v); 2796 sqlite3ReleaseTempReg(pParse, r1); 2797 selectInnerLoop(pParse, p, tab1, 2798 0, 0, &dest, iCont, iBreak); 2799 sqlite3VdbeResolveLabel(v, iCont); 2800 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2801 sqlite3VdbeResolveLabel(v, iBreak); 2802 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2803 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2804 break; 2805 } 2806 } 2807 2808 #ifndef SQLITE_OMIT_EXPLAIN 2809 if( p->pNext==0 ){ 2810 ExplainQueryPlanPop(pParse); 2811 } 2812 #endif 2813 } 2814 2815 /* Compute collating sequences used by 2816 ** temporary tables needed to implement the compound select. 2817 ** Attach the KeyInfo structure to all temporary tables. 2818 ** 2819 ** This section is run by the right-most SELECT statement only. 2820 ** SELECT statements to the left always skip this part. The right-most 2821 ** SELECT might also skip this part if it has no ORDER BY clause and 2822 ** no temp tables are required. 2823 */ 2824 if( p->selFlags & SF_UsesEphemeral ){ 2825 int i; /* Loop counter */ 2826 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2827 Select *pLoop; /* For looping through SELECT statements */ 2828 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2829 int nCol; /* Number of columns in result set */ 2830 2831 assert( p->pNext==0 ); 2832 nCol = p->pEList->nExpr; 2833 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2834 if( !pKeyInfo ){ 2835 rc = SQLITE_NOMEM_BKPT; 2836 goto multi_select_end; 2837 } 2838 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2839 *apColl = multiSelectCollSeq(pParse, p, i); 2840 if( 0==*apColl ){ 2841 *apColl = db->pDfltColl; 2842 } 2843 } 2844 2845 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2846 for(i=0; i<2; i++){ 2847 int addr = pLoop->addrOpenEphm[i]; 2848 if( addr<0 ){ 2849 /* If [0] is unused then [1] is also unused. So we can 2850 ** always safely abort as soon as the first unused slot is found */ 2851 assert( pLoop->addrOpenEphm[1]<0 ); 2852 break; 2853 } 2854 sqlite3VdbeChangeP2(v, addr, nCol); 2855 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2856 P4_KEYINFO); 2857 pLoop->addrOpenEphm[i] = -1; 2858 } 2859 } 2860 sqlite3KeyInfoUnref(pKeyInfo); 2861 } 2862 2863 multi_select_end: 2864 pDest->iSdst = dest.iSdst; 2865 pDest->nSdst = dest.nSdst; 2866 sqlite3SelectDelete(db, pDelete); 2867 return rc; 2868 } 2869 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2870 2871 /* 2872 ** Error message for when two or more terms of a compound select have different 2873 ** size result sets. 2874 */ 2875 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2876 if( p->selFlags & SF_Values ){ 2877 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2878 }else{ 2879 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2880 " do not have the same number of result columns", selectOpName(p->op)); 2881 } 2882 } 2883 2884 /* 2885 ** Code an output subroutine for a coroutine implementation of a 2886 ** SELECT statment. 2887 ** 2888 ** The data to be output is contained in pIn->iSdst. There are 2889 ** pIn->nSdst columns to be output. pDest is where the output should 2890 ** be sent. 2891 ** 2892 ** regReturn is the number of the register holding the subroutine 2893 ** return address. 2894 ** 2895 ** If regPrev>0 then it is the first register in a vector that 2896 ** records the previous output. mem[regPrev] is a flag that is false 2897 ** if there has been no previous output. If regPrev>0 then code is 2898 ** generated to suppress duplicates. pKeyInfo is used for comparing 2899 ** keys. 2900 ** 2901 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2902 ** iBreak. 2903 */ 2904 static int generateOutputSubroutine( 2905 Parse *pParse, /* Parsing context */ 2906 Select *p, /* The SELECT statement */ 2907 SelectDest *pIn, /* Coroutine supplying data */ 2908 SelectDest *pDest, /* Where to send the data */ 2909 int regReturn, /* The return address register */ 2910 int regPrev, /* Previous result register. No uniqueness if 0 */ 2911 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2912 int iBreak /* Jump here if we hit the LIMIT */ 2913 ){ 2914 Vdbe *v = pParse->pVdbe; 2915 int iContinue; 2916 int addr; 2917 2918 addr = sqlite3VdbeCurrentAddr(v); 2919 iContinue = sqlite3VdbeMakeLabel(v); 2920 2921 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2922 */ 2923 if( regPrev ){ 2924 int addr1, addr2; 2925 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2926 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2927 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2928 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2929 sqlite3VdbeJumpHere(v, addr1); 2930 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2931 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2932 } 2933 if( pParse->db->mallocFailed ) return 0; 2934 2935 /* Suppress the first OFFSET entries if there is an OFFSET clause 2936 */ 2937 codeOffset(v, p->iOffset, iContinue); 2938 2939 assert( pDest->eDest!=SRT_Exists ); 2940 assert( pDest->eDest!=SRT_Table ); 2941 switch( pDest->eDest ){ 2942 /* Store the result as data using a unique key. 2943 */ 2944 case SRT_EphemTab: { 2945 int r1 = sqlite3GetTempReg(pParse); 2946 int r2 = sqlite3GetTempReg(pParse); 2947 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2948 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2949 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2950 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2951 sqlite3ReleaseTempReg(pParse, r2); 2952 sqlite3ReleaseTempReg(pParse, r1); 2953 break; 2954 } 2955 2956 #ifndef SQLITE_OMIT_SUBQUERY 2957 /* If we are creating a set for an "expr IN (SELECT ...)". 2958 */ 2959 case SRT_Set: { 2960 int r1; 2961 testcase( pIn->nSdst>1 ); 2962 r1 = sqlite3GetTempReg(pParse); 2963 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2964 r1, pDest->zAffSdst, pIn->nSdst); 2965 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2966 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2967 pIn->iSdst, pIn->nSdst); 2968 sqlite3ReleaseTempReg(pParse, r1); 2969 break; 2970 } 2971 2972 /* If this is a scalar select that is part of an expression, then 2973 ** store the results in the appropriate memory cell and break out 2974 ** of the scan loop. 2975 */ 2976 case SRT_Mem: { 2977 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2978 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2979 /* The LIMIT clause will jump out of the loop for us */ 2980 break; 2981 } 2982 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2983 2984 /* The results are stored in a sequence of registers 2985 ** starting at pDest->iSdst. Then the co-routine yields. 2986 */ 2987 case SRT_Coroutine: { 2988 if( pDest->iSdst==0 ){ 2989 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2990 pDest->nSdst = pIn->nSdst; 2991 } 2992 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2993 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2994 break; 2995 } 2996 2997 /* If none of the above, then the result destination must be 2998 ** SRT_Output. This routine is never called with any other 2999 ** destination other than the ones handled above or SRT_Output. 3000 ** 3001 ** For SRT_Output, results are stored in a sequence of registers. 3002 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3003 ** return the next row of result. 3004 */ 3005 default: { 3006 assert( pDest->eDest==SRT_Output ); 3007 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3008 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 3009 break; 3010 } 3011 } 3012 3013 /* Jump to the end of the loop if the LIMIT is reached. 3014 */ 3015 if( p->iLimit ){ 3016 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3017 } 3018 3019 /* Generate the subroutine return 3020 */ 3021 sqlite3VdbeResolveLabel(v, iContinue); 3022 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3023 3024 return addr; 3025 } 3026 3027 /* 3028 ** Alternative compound select code generator for cases when there 3029 ** is an ORDER BY clause. 3030 ** 3031 ** We assume a query of the following form: 3032 ** 3033 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3034 ** 3035 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3036 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3037 ** co-routines. Then run the co-routines in parallel and merge the results 3038 ** into the output. In addition to the two coroutines (called selectA and 3039 ** selectB) there are 7 subroutines: 3040 ** 3041 ** outA: Move the output of the selectA coroutine into the output 3042 ** of the compound query. 3043 ** 3044 ** outB: Move the output of the selectB coroutine into the output 3045 ** of the compound query. (Only generated for UNION and 3046 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3047 ** appears only in B.) 3048 ** 3049 ** AltB: Called when there is data from both coroutines and A<B. 3050 ** 3051 ** AeqB: Called when there is data from both coroutines and A==B. 3052 ** 3053 ** AgtB: Called when there is data from both coroutines and A>B. 3054 ** 3055 ** EofA: Called when data is exhausted from selectA. 3056 ** 3057 ** EofB: Called when data is exhausted from selectB. 3058 ** 3059 ** The implementation of the latter five subroutines depend on which 3060 ** <operator> is used: 3061 ** 3062 ** 3063 ** UNION ALL UNION EXCEPT INTERSECT 3064 ** ------------- ----------------- -------------- ----------------- 3065 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3066 ** 3067 ** AeqB: outA, nextA nextA nextA outA, nextA 3068 ** 3069 ** AgtB: outB, nextB outB, nextB nextB nextB 3070 ** 3071 ** EofA: outB, nextB outB, nextB halt halt 3072 ** 3073 ** EofB: outA, nextA outA, nextA outA, nextA halt 3074 ** 3075 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3076 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3077 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3078 ** following nextX causes a jump to the end of the select processing. 3079 ** 3080 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3081 ** within the output subroutine. The regPrev register set holds the previously 3082 ** output value. A comparison is made against this value and the output 3083 ** is skipped if the next results would be the same as the previous. 3084 ** 3085 ** The implementation plan is to implement the two coroutines and seven 3086 ** subroutines first, then put the control logic at the bottom. Like this: 3087 ** 3088 ** goto Init 3089 ** coA: coroutine for left query (A) 3090 ** coB: coroutine for right query (B) 3091 ** outA: output one row of A 3092 ** outB: output one row of B (UNION and UNION ALL only) 3093 ** EofA: ... 3094 ** EofB: ... 3095 ** AltB: ... 3096 ** AeqB: ... 3097 ** AgtB: ... 3098 ** Init: initialize coroutine registers 3099 ** yield coA 3100 ** if eof(A) goto EofA 3101 ** yield coB 3102 ** if eof(B) goto EofB 3103 ** Cmpr: Compare A, B 3104 ** Jump AltB, AeqB, AgtB 3105 ** End: ... 3106 ** 3107 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3108 ** actually called using Gosub and they do not Return. EofA and EofB loop 3109 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3110 ** and AgtB jump to either L2 or to one of EofA or EofB. 3111 */ 3112 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3113 static int multiSelectOrderBy( 3114 Parse *pParse, /* Parsing context */ 3115 Select *p, /* The right-most of SELECTs to be coded */ 3116 SelectDest *pDest /* What to do with query results */ 3117 ){ 3118 int i, j; /* Loop counters */ 3119 Select *pPrior; /* Another SELECT immediately to our left */ 3120 Vdbe *v; /* Generate code to this VDBE */ 3121 SelectDest destA; /* Destination for coroutine A */ 3122 SelectDest destB; /* Destination for coroutine B */ 3123 int regAddrA; /* Address register for select-A coroutine */ 3124 int regAddrB; /* Address register for select-B coroutine */ 3125 int addrSelectA; /* Address of the select-A coroutine */ 3126 int addrSelectB; /* Address of the select-B coroutine */ 3127 int regOutA; /* Address register for the output-A subroutine */ 3128 int regOutB; /* Address register for the output-B subroutine */ 3129 int addrOutA; /* Address of the output-A subroutine */ 3130 int addrOutB = 0; /* Address of the output-B subroutine */ 3131 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3132 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3133 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3134 int addrAltB; /* Address of the A<B subroutine */ 3135 int addrAeqB; /* Address of the A==B subroutine */ 3136 int addrAgtB; /* Address of the A>B subroutine */ 3137 int regLimitA; /* Limit register for select-A */ 3138 int regLimitB; /* Limit register for select-A */ 3139 int regPrev; /* A range of registers to hold previous output */ 3140 int savedLimit; /* Saved value of p->iLimit */ 3141 int savedOffset; /* Saved value of p->iOffset */ 3142 int labelCmpr; /* Label for the start of the merge algorithm */ 3143 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3144 int addr1; /* Jump instructions that get retargetted */ 3145 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3146 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3147 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3148 sqlite3 *db; /* Database connection */ 3149 ExprList *pOrderBy; /* The ORDER BY clause */ 3150 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3151 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3152 3153 assert( p->pOrderBy!=0 ); 3154 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3155 db = pParse->db; 3156 v = pParse->pVdbe; 3157 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3158 labelEnd = sqlite3VdbeMakeLabel(v); 3159 labelCmpr = sqlite3VdbeMakeLabel(v); 3160 3161 3162 /* Patch up the ORDER BY clause 3163 */ 3164 op = p->op; 3165 pPrior = p->pPrior; 3166 assert( pPrior->pOrderBy==0 ); 3167 pOrderBy = p->pOrderBy; 3168 assert( pOrderBy ); 3169 nOrderBy = pOrderBy->nExpr; 3170 3171 /* For operators other than UNION ALL we have to make sure that 3172 ** the ORDER BY clause covers every term of the result set. Add 3173 ** terms to the ORDER BY clause as necessary. 3174 */ 3175 if( op!=TK_ALL ){ 3176 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3177 struct ExprList_item *pItem; 3178 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3179 assert( pItem->u.x.iOrderByCol>0 ); 3180 if( pItem->u.x.iOrderByCol==i ) break; 3181 } 3182 if( j==nOrderBy ){ 3183 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3184 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3185 pNew->flags |= EP_IntValue; 3186 pNew->u.iValue = i; 3187 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3188 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3189 } 3190 } 3191 } 3192 3193 /* Compute the comparison permutation and keyinfo that is used with 3194 ** the permutation used to determine if the next 3195 ** row of results comes from selectA or selectB. Also add explicit 3196 ** collations to the ORDER BY clause terms so that when the subqueries 3197 ** to the right and the left are evaluated, they use the correct 3198 ** collation. 3199 */ 3200 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3201 if( aPermute ){ 3202 struct ExprList_item *pItem; 3203 aPermute[0] = nOrderBy; 3204 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3205 assert( pItem->u.x.iOrderByCol>0 ); 3206 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3207 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3208 } 3209 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3210 }else{ 3211 pKeyMerge = 0; 3212 } 3213 3214 /* Reattach the ORDER BY clause to the query. 3215 */ 3216 p->pOrderBy = pOrderBy; 3217 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3218 3219 /* Allocate a range of temporary registers and the KeyInfo needed 3220 ** for the logic that removes duplicate result rows when the 3221 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3222 */ 3223 if( op==TK_ALL ){ 3224 regPrev = 0; 3225 }else{ 3226 int nExpr = p->pEList->nExpr; 3227 assert( nOrderBy>=nExpr || db->mallocFailed ); 3228 regPrev = pParse->nMem+1; 3229 pParse->nMem += nExpr+1; 3230 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3231 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3232 if( pKeyDup ){ 3233 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3234 for(i=0; i<nExpr; i++){ 3235 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3236 pKeyDup->aSortOrder[i] = 0; 3237 } 3238 } 3239 } 3240 3241 /* Separate the left and the right query from one another 3242 */ 3243 p->pPrior = 0; 3244 pPrior->pNext = 0; 3245 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3246 if( pPrior->pPrior==0 ){ 3247 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3248 } 3249 3250 /* Compute the limit registers */ 3251 computeLimitRegisters(pParse, p, labelEnd); 3252 if( p->iLimit && op==TK_ALL ){ 3253 regLimitA = ++pParse->nMem; 3254 regLimitB = ++pParse->nMem; 3255 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3256 regLimitA); 3257 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3258 }else{ 3259 regLimitA = regLimitB = 0; 3260 } 3261 sqlite3ExprDelete(db, p->pLimit); 3262 p->pLimit = 0; 3263 3264 regAddrA = ++pParse->nMem; 3265 regAddrB = ++pParse->nMem; 3266 regOutA = ++pParse->nMem; 3267 regOutB = ++pParse->nMem; 3268 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3269 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3270 3271 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3272 3273 /* Generate a coroutine to evaluate the SELECT statement to the 3274 ** left of the compound operator - the "A" select. 3275 */ 3276 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3277 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3278 VdbeComment((v, "left SELECT")); 3279 pPrior->iLimit = regLimitA; 3280 ExplainQueryPlan((pParse, 1, "LEFT")); 3281 sqlite3Select(pParse, pPrior, &destA); 3282 sqlite3VdbeEndCoroutine(v, regAddrA); 3283 sqlite3VdbeJumpHere(v, addr1); 3284 3285 /* Generate a coroutine to evaluate the SELECT statement on 3286 ** the right - the "B" select 3287 */ 3288 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3289 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3290 VdbeComment((v, "right SELECT")); 3291 savedLimit = p->iLimit; 3292 savedOffset = p->iOffset; 3293 p->iLimit = regLimitB; 3294 p->iOffset = 0; 3295 ExplainQueryPlan((pParse, 1, "RIGHT")); 3296 sqlite3Select(pParse, p, &destB); 3297 p->iLimit = savedLimit; 3298 p->iOffset = savedOffset; 3299 sqlite3VdbeEndCoroutine(v, regAddrB); 3300 3301 /* Generate a subroutine that outputs the current row of the A 3302 ** select as the next output row of the compound select. 3303 */ 3304 VdbeNoopComment((v, "Output routine for A")); 3305 addrOutA = generateOutputSubroutine(pParse, 3306 p, &destA, pDest, regOutA, 3307 regPrev, pKeyDup, labelEnd); 3308 3309 /* Generate a subroutine that outputs the current row of the B 3310 ** select as the next output row of the compound select. 3311 */ 3312 if( op==TK_ALL || op==TK_UNION ){ 3313 VdbeNoopComment((v, "Output routine for B")); 3314 addrOutB = generateOutputSubroutine(pParse, 3315 p, &destB, pDest, regOutB, 3316 regPrev, pKeyDup, labelEnd); 3317 } 3318 sqlite3KeyInfoUnref(pKeyDup); 3319 3320 /* Generate a subroutine to run when the results from select A 3321 ** are exhausted and only data in select B remains. 3322 */ 3323 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3324 addrEofA_noB = addrEofA = labelEnd; 3325 }else{ 3326 VdbeNoopComment((v, "eof-A subroutine")); 3327 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3328 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3329 VdbeCoverage(v); 3330 sqlite3VdbeGoto(v, addrEofA); 3331 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3332 } 3333 3334 /* Generate a subroutine to run when the results from select B 3335 ** are exhausted and only data in select A remains. 3336 */ 3337 if( op==TK_INTERSECT ){ 3338 addrEofB = addrEofA; 3339 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3340 }else{ 3341 VdbeNoopComment((v, "eof-B subroutine")); 3342 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3343 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3344 sqlite3VdbeGoto(v, addrEofB); 3345 } 3346 3347 /* Generate code to handle the case of A<B 3348 */ 3349 VdbeNoopComment((v, "A-lt-B subroutine")); 3350 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3351 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3352 sqlite3VdbeGoto(v, labelCmpr); 3353 3354 /* Generate code to handle the case of A==B 3355 */ 3356 if( op==TK_ALL ){ 3357 addrAeqB = addrAltB; 3358 }else if( op==TK_INTERSECT ){ 3359 addrAeqB = addrAltB; 3360 addrAltB++; 3361 }else{ 3362 VdbeNoopComment((v, "A-eq-B subroutine")); 3363 addrAeqB = 3364 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3365 sqlite3VdbeGoto(v, labelCmpr); 3366 } 3367 3368 /* Generate code to handle the case of A>B 3369 */ 3370 VdbeNoopComment((v, "A-gt-B subroutine")); 3371 addrAgtB = sqlite3VdbeCurrentAddr(v); 3372 if( op==TK_ALL || op==TK_UNION ){ 3373 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3374 } 3375 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3376 sqlite3VdbeGoto(v, labelCmpr); 3377 3378 /* This code runs once to initialize everything. 3379 */ 3380 sqlite3VdbeJumpHere(v, addr1); 3381 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3382 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3383 3384 /* Implement the main merge loop 3385 */ 3386 sqlite3VdbeResolveLabel(v, labelCmpr); 3387 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3388 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3389 (char*)pKeyMerge, P4_KEYINFO); 3390 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3391 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3392 3393 /* Jump to the this point in order to terminate the query. 3394 */ 3395 sqlite3VdbeResolveLabel(v, labelEnd); 3396 3397 /* Reassembly the compound query so that it will be freed correctly 3398 ** by the calling function */ 3399 if( p->pPrior ){ 3400 sqlite3SelectDelete(db, p->pPrior); 3401 } 3402 p->pPrior = pPrior; 3403 pPrior->pNext = p; 3404 3405 /*** TBD: Insert subroutine calls to close cursors on incomplete 3406 **** subqueries ****/ 3407 ExplainQueryPlanPop(pParse); 3408 return pParse->nErr!=0; 3409 } 3410 #endif 3411 3412 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3413 3414 /* An instance of the SubstContext object describes an substitution edit 3415 ** to be performed on a parse tree. 3416 ** 3417 ** All references to columns in table iTable are to be replaced by corresponding 3418 ** expressions in pEList. 3419 */ 3420 typedef struct SubstContext { 3421 Parse *pParse; /* The parsing context */ 3422 int iTable; /* Replace references to this table */ 3423 int iNewTable; /* New table number */ 3424 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3425 ExprList *pEList; /* Replacement expressions */ 3426 } SubstContext; 3427 3428 /* Forward Declarations */ 3429 static void substExprList(SubstContext*, ExprList*); 3430 static void substSelect(SubstContext*, Select*, int); 3431 3432 /* 3433 ** Scan through the expression pExpr. Replace every reference to 3434 ** a column in table number iTable with a copy of the iColumn-th 3435 ** entry in pEList. (But leave references to the ROWID column 3436 ** unchanged.) 3437 ** 3438 ** This routine is part of the flattening procedure. A subquery 3439 ** whose result set is defined by pEList appears as entry in the 3440 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3441 ** FORM clause entry is iTable. This routine makes the necessary 3442 ** changes to pExpr so that it refers directly to the source table 3443 ** of the subquery rather the result set of the subquery. 3444 */ 3445 static Expr *substExpr( 3446 SubstContext *pSubst, /* Description of the substitution */ 3447 Expr *pExpr /* Expr in which substitution occurs */ 3448 ){ 3449 if( pExpr==0 ) return 0; 3450 if( ExprHasProperty(pExpr, EP_FromJoin) 3451 && pExpr->iRightJoinTable==pSubst->iTable 3452 ){ 3453 pExpr->iRightJoinTable = pSubst->iNewTable; 3454 } 3455 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3456 if( pExpr->iColumn<0 ){ 3457 pExpr->op = TK_NULL; 3458 }else{ 3459 Expr *pNew; 3460 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3461 Expr ifNullRow; 3462 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3463 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3464 if( sqlite3ExprIsVector(pCopy) ){ 3465 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3466 }else{ 3467 sqlite3 *db = pSubst->pParse->db; 3468 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3469 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3470 ifNullRow.op = TK_IF_NULL_ROW; 3471 ifNullRow.pLeft = pCopy; 3472 ifNullRow.iTable = pSubst->iNewTable; 3473 pCopy = &ifNullRow; 3474 } 3475 pNew = sqlite3ExprDup(db, pCopy, 0); 3476 if( pNew && pSubst->isLeftJoin ){ 3477 ExprSetProperty(pNew, EP_CanBeNull); 3478 } 3479 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3480 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3481 ExprSetProperty(pNew, EP_FromJoin); 3482 } 3483 sqlite3ExprDelete(db, pExpr); 3484 pExpr = pNew; 3485 } 3486 } 3487 }else{ 3488 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3489 pExpr->iTable = pSubst->iNewTable; 3490 } 3491 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3492 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3493 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3494 substSelect(pSubst, pExpr->x.pSelect, 1); 3495 }else{ 3496 substExprList(pSubst, pExpr->x.pList); 3497 } 3498 } 3499 return pExpr; 3500 } 3501 static void substExprList( 3502 SubstContext *pSubst, /* Description of the substitution */ 3503 ExprList *pList /* List to scan and in which to make substitutes */ 3504 ){ 3505 int i; 3506 if( pList==0 ) return; 3507 for(i=0; i<pList->nExpr; i++){ 3508 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3509 } 3510 } 3511 static void substSelect( 3512 SubstContext *pSubst, /* Description of the substitution */ 3513 Select *p, /* SELECT statement in which to make substitutions */ 3514 int doPrior /* Do substitutes on p->pPrior too */ 3515 ){ 3516 SrcList *pSrc; 3517 struct SrcList_item *pItem; 3518 int i; 3519 if( !p ) return; 3520 do{ 3521 substExprList(pSubst, p->pEList); 3522 substExprList(pSubst, p->pGroupBy); 3523 substExprList(pSubst, p->pOrderBy); 3524 p->pHaving = substExpr(pSubst, p->pHaving); 3525 p->pWhere = substExpr(pSubst, p->pWhere); 3526 pSrc = p->pSrc; 3527 assert( pSrc!=0 ); 3528 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3529 substSelect(pSubst, pItem->pSelect, 1); 3530 if( pItem->fg.isTabFunc ){ 3531 substExprList(pSubst, pItem->u1.pFuncArg); 3532 } 3533 } 3534 }while( doPrior && (p = p->pPrior)!=0 ); 3535 } 3536 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3537 3538 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3539 /* 3540 ** This routine attempts to flatten subqueries as a performance optimization. 3541 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3542 ** 3543 ** To understand the concept of flattening, consider the following 3544 ** query: 3545 ** 3546 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3547 ** 3548 ** The default way of implementing this query is to execute the 3549 ** subquery first and store the results in a temporary table, then 3550 ** run the outer query on that temporary table. This requires two 3551 ** passes over the data. Furthermore, because the temporary table 3552 ** has no indices, the WHERE clause on the outer query cannot be 3553 ** optimized. 3554 ** 3555 ** This routine attempts to rewrite queries such as the above into 3556 ** a single flat select, like this: 3557 ** 3558 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3559 ** 3560 ** The code generated for this simplification gives the same result 3561 ** but only has to scan the data once. And because indices might 3562 ** exist on the table t1, a complete scan of the data might be 3563 ** avoided. 3564 ** 3565 ** Flattening is subject to the following constraints: 3566 ** 3567 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3568 ** The subquery and the outer query cannot both be aggregates. 3569 ** 3570 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3571 ** (2) If the subquery is an aggregate then 3572 ** (2a) the outer query must not be a join and 3573 ** (2b) the outer query must not use subqueries 3574 ** other than the one FROM-clause subquery that is a candidate 3575 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3576 ** from 2015-02-09.) 3577 ** 3578 ** (3) If the subquery is the right operand of a LEFT JOIN then 3579 ** (3a) the subquery may not be a join and 3580 ** (3b) the FROM clause of the subquery may not contain a virtual 3581 ** table and 3582 ** (3c) the outer query may not be an aggregate. 3583 ** 3584 ** (4) The subquery can not be DISTINCT. 3585 ** 3586 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3587 ** sub-queries that were excluded from this optimization. Restriction 3588 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3589 ** 3590 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3591 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3592 ** 3593 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3594 ** A FROM clause, consider adding a FROM clause with the special 3595 ** table sqlite_once that consists of a single row containing a 3596 ** single NULL. 3597 ** 3598 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3599 ** 3600 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3601 ** 3602 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3603 ** accidently carried the comment forward until 2014-09-15. Original 3604 ** constraint: "If the subquery is aggregate then the outer query 3605 ** may not use LIMIT." 3606 ** 3607 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3608 ** 3609 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3610 ** a separate restriction deriving from ticket #350. 3611 ** 3612 ** (13) The subquery and outer query may not both use LIMIT. 3613 ** 3614 ** (14) The subquery may not use OFFSET. 3615 ** 3616 ** (15) If the outer query is part of a compound select, then the 3617 ** subquery may not use LIMIT. 3618 ** (See ticket #2339 and ticket [02a8e81d44]). 3619 ** 3620 ** (16) If the outer query is aggregate, then the subquery may not 3621 ** use ORDER BY. (Ticket #2942) This used to not matter 3622 ** until we introduced the group_concat() function. 3623 ** 3624 ** (17) If the subquery is a compound select, then 3625 ** (17a) all compound operators must be a UNION ALL, and 3626 ** (17b) no terms within the subquery compound may be aggregate 3627 ** or DISTINCT, and 3628 ** (17c) every term within the subquery compound must have a FROM clause 3629 ** (17d) the outer query may not be 3630 ** (17d1) aggregate, or 3631 ** (17d2) DISTINCT, or 3632 ** (17d3) a join. 3633 ** 3634 ** The parent and sub-query may contain WHERE clauses. Subject to 3635 ** rules (11), (13) and (14), they may also contain ORDER BY, 3636 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3637 ** operator other than UNION ALL because all the other compound 3638 ** operators have an implied DISTINCT which is disallowed by 3639 ** restriction (4). 3640 ** 3641 ** Also, each component of the sub-query must return the same number 3642 ** of result columns. This is actually a requirement for any compound 3643 ** SELECT statement, but all the code here does is make sure that no 3644 ** such (illegal) sub-query is flattened. The caller will detect the 3645 ** syntax error and return a detailed message. 3646 ** 3647 ** (18) If the sub-query is a compound select, then all terms of the 3648 ** ORDER BY clause of the parent must be simple references to 3649 ** columns of the sub-query. 3650 ** 3651 ** (19) If the subquery uses LIMIT then the outer query may not 3652 ** have a WHERE clause. 3653 ** 3654 ** (20) If the sub-query is a compound select, then it must not use 3655 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3656 ** somewhat by saying that the terms of the ORDER BY clause must 3657 ** appear as unmodified result columns in the outer query. But we 3658 ** have other optimizations in mind to deal with that case. 3659 ** 3660 ** (21) If the subquery uses LIMIT then the outer query may not be 3661 ** DISTINCT. (See ticket [752e1646fc]). 3662 ** 3663 ** (22) The subquery may not be a recursive CTE. 3664 ** 3665 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3666 ** a recursive CTE, then the sub-query may not be a compound query. 3667 ** This restriction is because transforming the 3668 ** parent to a compound query confuses the code that handles 3669 ** recursive queries in multiSelect(). 3670 ** 3671 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3672 ** The subquery may not be an aggregate that uses the built-in min() or 3673 ** or max() functions. (Without this restriction, a query like: 3674 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3675 ** return the value X for which Y was maximal.) 3676 ** 3677 ** 3678 ** In this routine, the "p" parameter is a pointer to the outer query. 3679 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3680 ** uses aggregates. 3681 ** 3682 ** If flattening is not attempted, this routine is a no-op and returns 0. 3683 ** If flattening is attempted this routine returns 1. 3684 ** 3685 ** All of the expression analysis must occur on both the outer query and 3686 ** the subquery before this routine runs. 3687 */ 3688 static int flattenSubquery( 3689 Parse *pParse, /* Parsing context */ 3690 Select *p, /* The parent or outer SELECT statement */ 3691 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3692 int isAgg /* True if outer SELECT uses aggregate functions */ 3693 ){ 3694 const char *zSavedAuthContext = pParse->zAuthContext; 3695 Select *pParent; /* Current UNION ALL term of the other query */ 3696 Select *pSub; /* The inner query or "subquery" */ 3697 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3698 SrcList *pSrc; /* The FROM clause of the outer query */ 3699 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3700 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3701 int iNewParent = -1;/* Replacement table for iParent */ 3702 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3703 int i; /* Loop counter */ 3704 Expr *pWhere; /* The WHERE clause */ 3705 struct SrcList_item *pSubitem; /* The subquery */ 3706 sqlite3 *db = pParse->db; 3707 3708 /* Check to see if flattening is permitted. Return 0 if not. 3709 */ 3710 assert( p!=0 ); 3711 assert( p->pPrior==0 ); 3712 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3713 pSrc = p->pSrc; 3714 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3715 pSubitem = &pSrc->a[iFrom]; 3716 iParent = pSubitem->iCursor; 3717 pSub = pSubitem->pSelect; 3718 assert( pSub!=0 ); 3719 3720 pSubSrc = pSub->pSrc; 3721 assert( pSubSrc ); 3722 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3723 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3724 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3725 ** became arbitrary expressions, we were forced to add restrictions (13) 3726 ** and (14). */ 3727 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3728 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3729 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3730 return 0; /* Restriction (15) */ 3731 } 3732 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3733 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3734 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3735 return 0; /* Restrictions (8)(9) */ 3736 } 3737 if( p->pOrderBy && pSub->pOrderBy ){ 3738 return 0; /* Restriction (11) */ 3739 } 3740 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3741 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3742 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3743 return 0; /* Restriction (21) */ 3744 } 3745 if( pSub->selFlags & (SF_Recursive) ){ 3746 return 0; /* Restrictions (22) */ 3747 } 3748 3749 /* 3750 ** If the subquery is the right operand of a LEFT JOIN, then the 3751 ** subquery may not be a join itself (3a). Example of why this is not 3752 ** allowed: 3753 ** 3754 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3755 ** 3756 ** If we flatten the above, we would get 3757 ** 3758 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3759 ** 3760 ** which is not at all the same thing. 3761 ** 3762 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3763 ** query cannot be an aggregate. (3c) This is an artifact of the way 3764 ** aggregates are processed - there is no mechanism to determine if 3765 ** the LEFT JOIN table should be all-NULL. 3766 ** 3767 ** See also tickets #306, #350, and #3300. 3768 */ 3769 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3770 isLeftJoin = 1; 3771 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3772 /* (3a) (3c) (3b) */ 3773 return 0; 3774 } 3775 } 3776 #ifdef SQLITE_EXTRA_IFNULLROW 3777 else if( iFrom>0 && !isAgg ){ 3778 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3779 ** every reference to any result column from subquery in a join, even 3780 ** though they are not necessary. This will stress-test the OP_IfNullRow 3781 ** opcode. */ 3782 isLeftJoin = -1; 3783 } 3784 #endif 3785 3786 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3787 ** use only the UNION ALL operator. And none of the simple select queries 3788 ** that make up the compound SELECT are allowed to be aggregate or distinct 3789 ** queries. 3790 */ 3791 if( pSub->pPrior ){ 3792 if( pSub->pOrderBy ){ 3793 return 0; /* Restriction (20) */ 3794 } 3795 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3796 return 0; /* (17d1), (17d2), or (17d3) */ 3797 } 3798 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3799 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3800 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3801 assert( pSub->pSrc!=0 ); 3802 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3803 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3804 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3805 || pSub1->pSrc->nSrc<1 /* (17c) */ 3806 ){ 3807 return 0; 3808 } 3809 testcase( pSub1->pSrc->nSrc>1 ); 3810 } 3811 3812 /* Restriction (18). */ 3813 if( p->pOrderBy ){ 3814 int ii; 3815 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3816 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3817 } 3818 } 3819 } 3820 3821 /* Ex-restriction (23): 3822 ** The only way that the recursive part of a CTE can contain a compound 3823 ** subquery is for the subquery to be one term of a join. But if the 3824 ** subquery is a join, then the flattening has already been stopped by 3825 ** restriction (17d3) 3826 */ 3827 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3828 3829 /***** If we reach this point, flattening is permitted. *****/ 3830 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3831 pSub->zSelName, pSub, iFrom)); 3832 3833 /* Authorize the subquery */ 3834 pParse->zAuthContext = pSubitem->zName; 3835 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3836 testcase( i==SQLITE_DENY ); 3837 pParse->zAuthContext = zSavedAuthContext; 3838 3839 /* If the sub-query is a compound SELECT statement, then (by restrictions 3840 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3841 ** be of the form: 3842 ** 3843 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3844 ** 3845 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3846 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3847 ** OFFSET clauses and joins them to the left-hand-side of the original 3848 ** using UNION ALL operators. In this case N is the number of simple 3849 ** select statements in the compound sub-query. 3850 ** 3851 ** Example: 3852 ** 3853 ** SELECT a+1 FROM ( 3854 ** SELECT x FROM tab 3855 ** UNION ALL 3856 ** SELECT y FROM tab 3857 ** UNION ALL 3858 ** SELECT abs(z*2) FROM tab2 3859 ** ) WHERE a!=5 ORDER BY 1 3860 ** 3861 ** Transformed into: 3862 ** 3863 ** SELECT x+1 FROM tab WHERE x+1!=5 3864 ** UNION ALL 3865 ** SELECT y+1 FROM tab WHERE y+1!=5 3866 ** UNION ALL 3867 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3868 ** ORDER BY 1 3869 ** 3870 ** We call this the "compound-subquery flattening". 3871 */ 3872 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3873 Select *pNew; 3874 ExprList *pOrderBy = p->pOrderBy; 3875 Expr *pLimit = p->pLimit; 3876 Select *pPrior = p->pPrior; 3877 p->pOrderBy = 0; 3878 p->pSrc = 0; 3879 p->pPrior = 0; 3880 p->pLimit = 0; 3881 pNew = sqlite3SelectDup(db, p, 0); 3882 sqlite3SelectSetName(pNew, pSub->zSelName); 3883 p->pLimit = pLimit; 3884 p->pOrderBy = pOrderBy; 3885 p->pSrc = pSrc; 3886 p->op = TK_ALL; 3887 if( pNew==0 ){ 3888 p->pPrior = pPrior; 3889 }else{ 3890 pNew->pPrior = pPrior; 3891 if( pPrior ) pPrior->pNext = pNew; 3892 pNew->pNext = p; 3893 p->pPrior = pNew; 3894 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3895 " creates %s.%p as peer\n",pNew->zSelName, pNew)); 3896 } 3897 if( db->mallocFailed ) return 1; 3898 } 3899 3900 /* Begin flattening the iFrom-th entry of the FROM clause 3901 ** in the outer query. 3902 */ 3903 pSub = pSub1 = pSubitem->pSelect; 3904 3905 /* Delete the transient table structure associated with the 3906 ** subquery 3907 */ 3908 sqlite3DbFree(db, pSubitem->zDatabase); 3909 sqlite3DbFree(db, pSubitem->zName); 3910 sqlite3DbFree(db, pSubitem->zAlias); 3911 pSubitem->zDatabase = 0; 3912 pSubitem->zName = 0; 3913 pSubitem->zAlias = 0; 3914 pSubitem->pSelect = 0; 3915 3916 /* Defer deleting the Table object associated with the 3917 ** subquery until code generation is 3918 ** complete, since there may still exist Expr.pTab entries that 3919 ** refer to the subquery even after flattening. Ticket #3346. 3920 ** 3921 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3922 */ 3923 if( ALWAYS(pSubitem->pTab!=0) ){ 3924 Table *pTabToDel = pSubitem->pTab; 3925 if( pTabToDel->nTabRef==1 ){ 3926 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3927 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3928 pToplevel->pZombieTab = pTabToDel; 3929 }else{ 3930 pTabToDel->nTabRef--; 3931 } 3932 pSubitem->pTab = 0; 3933 } 3934 3935 /* The following loop runs once for each term in a compound-subquery 3936 ** flattening (as described above). If we are doing a different kind 3937 ** of flattening - a flattening other than a compound-subquery flattening - 3938 ** then this loop only runs once. 3939 ** 3940 ** This loop moves all of the FROM elements of the subquery into the 3941 ** the FROM clause of the outer query. Before doing this, remember 3942 ** the cursor number for the original outer query FROM element in 3943 ** iParent. The iParent cursor will never be used. Subsequent code 3944 ** will scan expressions looking for iParent references and replace 3945 ** those references with expressions that resolve to the subquery FROM 3946 ** elements we are now copying in. 3947 */ 3948 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3949 int nSubSrc; 3950 u8 jointype = 0; 3951 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3952 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3953 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3954 3955 if( pSrc ){ 3956 assert( pParent==p ); /* First time through the loop */ 3957 jointype = pSubitem->fg.jointype; 3958 }else{ 3959 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3960 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3961 if( pSrc==0 ){ 3962 assert( db->mallocFailed ); 3963 break; 3964 } 3965 } 3966 3967 /* The subquery uses a single slot of the FROM clause of the outer 3968 ** query. If the subquery has more than one element in its FROM clause, 3969 ** then expand the outer query to make space for it to hold all elements 3970 ** of the subquery. 3971 ** 3972 ** Example: 3973 ** 3974 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3975 ** 3976 ** The outer query has 3 slots in its FROM clause. One slot of the 3977 ** outer query (the middle slot) is used by the subquery. The next 3978 ** block of code will expand the outer query FROM clause to 4 slots. 3979 ** The middle slot is expanded to two slots in order to make space 3980 ** for the two elements in the FROM clause of the subquery. 3981 */ 3982 if( nSubSrc>1 ){ 3983 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3984 if( db->mallocFailed ){ 3985 break; 3986 } 3987 } 3988 3989 /* Transfer the FROM clause terms from the subquery into the 3990 ** outer query. 3991 */ 3992 for(i=0; i<nSubSrc; i++){ 3993 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3994 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3995 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3996 iNewParent = pSubSrc->a[i].iCursor; 3997 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3998 } 3999 pSrc->a[iFrom].fg.jointype = jointype; 4000 4001 /* Now begin substituting subquery result set expressions for 4002 ** references to the iParent in the outer query. 4003 ** 4004 ** Example: 4005 ** 4006 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4007 ** \ \_____________ subquery __________/ / 4008 ** \_____________________ outer query ______________________________/ 4009 ** 4010 ** We look at every expression in the outer query and every place we see 4011 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4012 */ 4013 if( pSub->pOrderBy ){ 4014 /* At this point, any non-zero iOrderByCol values indicate that the 4015 ** ORDER BY column expression is identical to the iOrderByCol'th 4016 ** expression returned by SELECT statement pSub. Since these values 4017 ** do not necessarily correspond to columns in SELECT statement pParent, 4018 ** zero them before transfering the ORDER BY clause. 4019 ** 4020 ** Not doing this may cause an error if a subsequent call to this 4021 ** function attempts to flatten a compound sub-query into pParent 4022 ** (the only way this can happen is if the compound sub-query is 4023 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4024 ExprList *pOrderBy = pSub->pOrderBy; 4025 for(i=0; i<pOrderBy->nExpr; i++){ 4026 pOrderBy->a[i].u.x.iOrderByCol = 0; 4027 } 4028 assert( pParent->pOrderBy==0 ); 4029 pParent->pOrderBy = pOrderBy; 4030 pSub->pOrderBy = 0; 4031 } 4032 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 4033 if( isLeftJoin>0 ){ 4034 setJoinExpr(pWhere, iNewParent); 4035 } 4036 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 4037 if( db->mallocFailed==0 ){ 4038 SubstContext x; 4039 x.pParse = pParse; 4040 x.iTable = iParent; 4041 x.iNewTable = iNewParent; 4042 x.isLeftJoin = isLeftJoin; 4043 x.pEList = pSub->pEList; 4044 substSelect(&x, pParent, 0); 4045 } 4046 4047 /* The flattened query is distinct if either the inner or the 4048 ** outer query is distinct. 4049 */ 4050 pParent->selFlags |= pSub->selFlags & SF_Distinct; 4051 4052 /* 4053 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4054 ** 4055 ** One is tempted to try to add a and b to combine the limits. But this 4056 ** does not work if either limit is negative. 4057 */ 4058 if( pSub->pLimit ){ 4059 pParent->pLimit = pSub->pLimit; 4060 pSub->pLimit = 0; 4061 } 4062 } 4063 4064 /* Finially, delete what is left of the subquery and return 4065 ** success. 4066 */ 4067 sqlite3SelectDelete(db, pSub1); 4068 4069 #if SELECTTRACE_ENABLED 4070 if( sqlite3SelectTrace & 0x100 ){ 4071 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4072 sqlite3TreeViewSelect(0, p, 0); 4073 } 4074 #endif 4075 4076 return 1; 4077 } 4078 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4079 4080 4081 4082 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4083 /* 4084 ** Make copies of relevant WHERE clause terms of the outer query into 4085 ** the WHERE clause of subquery. Example: 4086 ** 4087 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4088 ** 4089 ** Transformed into: 4090 ** 4091 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4092 ** WHERE x=5 AND y=10; 4093 ** 4094 ** The hope is that the terms added to the inner query will make it more 4095 ** efficient. 4096 ** 4097 ** Do not attempt this optimization if: 4098 ** 4099 ** (1) (** This restriction was removed on 2017-09-29. We used to 4100 ** disallow this optimization for aggregate subqueries, but now 4101 ** it is allowed by putting the extra terms on the HAVING clause. 4102 ** The added HAVING clause is pointless if the subquery lacks 4103 ** a GROUP BY clause. But such a HAVING clause is also harmless 4104 ** so there does not appear to be any reason to add extra logic 4105 ** to suppress it. **) 4106 ** 4107 ** (2) The inner query is the recursive part of a common table expression. 4108 ** 4109 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4110 ** close would change the meaning of the LIMIT). 4111 ** 4112 ** (4) The inner query is the right operand of a LEFT JOIN and the 4113 ** expression to be pushed down does not come from the ON clause 4114 ** on that LEFT JOIN. 4115 ** 4116 ** (5) The WHERE clause expression originates in the ON or USING clause 4117 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4118 ** left join. An example: 4119 ** 4120 ** SELECT * 4121 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4122 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4123 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4124 ** 4125 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4126 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4127 ** then the (1,1,NULL) row would be suppressed. 4128 ** 4129 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4130 ** terms are duplicated into the subquery. 4131 */ 4132 static int pushDownWhereTerms( 4133 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4134 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4135 Expr *pWhere, /* The WHERE clause of the outer query */ 4136 int iCursor, /* Cursor number of the subquery */ 4137 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4138 ){ 4139 Expr *pNew; 4140 int nChng = 0; 4141 if( pWhere==0 ) return 0; 4142 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4143 4144 #ifdef SQLITE_DEBUG 4145 /* Only the first term of a compound can have a WITH clause. But make 4146 ** sure no other terms are marked SF_Recursive in case something changes 4147 ** in the future. 4148 */ 4149 { 4150 Select *pX; 4151 for(pX=pSubq; pX; pX=pX->pPrior){ 4152 assert( (pX->selFlags & (SF_Recursive))==0 ); 4153 } 4154 } 4155 #endif 4156 4157 if( pSubq->pLimit!=0 ){ 4158 return 0; /* restriction (3) */ 4159 } 4160 while( pWhere->op==TK_AND ){ 4161 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4162 iCursor, isLeftJoin); 4163 pWhere = pWhere->pLeft; 4164 } 4165 if( isLeftJoin 4166 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4167 || pWhere->iRightJoinTable!=iCursor) 4168 ){ 4169 return 0; /* restriction (4) */ 4170 } 4171 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4172 return 0; /* restriction (5) */ 4173 } 4174 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4175 nChng++; 4176 while( pSubq ){ 4177 SubstContext x; 4178 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4179 unsetJoinExpr(pNew, -1); 4180 x.pParse = pParse; 4181 x.iTable = iCursor; 4182 x.iNewTable = iCursor; 4183 x.isLeftJoin = 0; 4184 x.pEList = pSubq->pEList; 4185 pNew = substExpr(&x, pNew); 4186 if( pSubq->selFlags & SF_Aggregate ){ 4187 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4188 }else{ 4189 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4190 } 4191 pSubq = pSubq->pPrior; 4192 } 4193 } 4194 return nChng; 4195 } 4196 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4197 4198 /* 4199 ** The pFunc is the only aggregate function in the query. Check to see 4200 ** if the query is a candidate for the min/max optimization. 4201 ** 4202 ** If the query is a candidate for the min/max optimization, then set 4203 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4204 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4205 ** whether pFunc is a min() or max() function. 4206 ** 4207 ** If the query is not a candidate for the min/max optimization, return 4208 ** WHERE_ORDERBY_NORMAL (which must be zero). 4209 ** 4210 ** This routine must be called after aggregate functions have been 4211 ** located but before their arguments have been subjected to aggregate 4212 ** analysis. 4213 */ 4214 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4215 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4216 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4217 const char *zFunc; /* Name of aggregate function pFunc */ 4218 ExprList *pOrderBy; 4219 u8 sortOrder; 4220 4221 assert( *ppMinMax==0 ); 4222 assert( pFunc->op==TK_AGG_FUNCTION ); 4223 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4224 zFunc = pFunc->u.zToken; 4225 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4226 eRet = WHERE_ORDERBY_MIN; 4227 sortOrder = SQLITE_SO_ASC; 4228 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4229 eRet = WHERE_ORDERBY_MAX; 4230 sortOrder = SQLITE_SO_DESC; 4231 }else{ 4232 return eRet; 4233 } 4234 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4235 assert( pOrderBy!=0 || db->mallocFailed ); 4236 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4237 return eRet; 4238 } 4239 4240 /* 4241 ** The select statement passed as the first argument is an aggregate query. 4242 ** The second argument is the associated aggregate-info object. This 4243 ** function tests if the SELECT is of the form: 4244 ** 4245 ** SELECT count(*) FROM <tbl> 4246 ** 4247 ** where table is a database table, not a sub-select or view. If the query 4248 ** does match this pattern, then a pointer to the Table object representing 4249 ** <tbl> is returned. Otherwise, 0 is returned. 4250 */ 4251 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4252 Table *pTab; 4253 Expr *pExpr; 4254 4255 assert( !p->pGroupBy ); 4256 4257 if( p->pWhere || p->pEList->nExpr!=1 4258 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4259 ){ 4260 return 0; 4261 } 4262 pTab = p->pSrc->a[0].pTab; 4263 pExpr = p->pEList->a[0].pExpr; 4264 assert( pTab && !pTab->pSelect && pExpr ); 4265 4266 if( IsVirtual(pTab) ) return 0; 4267 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4268 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4269 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4270 if( pExpr->flags&EP_Distinct ) return 0; 4271 4272 return pTab; 4273 } 4274 4275 /* 4276 ** If the source-list item passed as an argument was augmented with an 4277 ** INDEXED BY clause, then try to locate the specified index. If there 4278 ** was such a clause and the named index cannot be found, return 4279 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4280 ** pFrom->pIndex and return SQLITE_OK. 4281 */ 4282 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4283 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4284 Table *pTab = pFrom->pTab; 4285 char *zIndexedBy = pFrom->u1.zIndexedBy; 4286 Index *pIdx; 4287 for(pIdx=pTab->pIndex; 4288 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4289 pIdx=pIdx->pNext 4290 ); 4291 if( !pIdx ){ 4292 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4293 pParse->checkSchema = 1; 4294 return SQLITE_ERROR; 4295 } 4296 pFrom->pIBIndex = pIdx; 4297 } 4298 return SQLITE_OK; 4299 } 4300 /* 4301 ** Detect compound SELECT statements that use an ORDER BY clause with 4302 ** an alternative collating sequence. 4303 ** 4304 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4305 ** 4306 ** These are rewritten as a subquery: 4307 ** 4308 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4309 ** ORDER BY ... COLLATE ... 4310 ** 4311 ** This transformation is necessary because the multiSelectOrderBy() routine 4312 ** above that generates the code for a compound SELECT with an ORDER BY clause 4313 ** uses a merge algorithm that requires the same collating sequence on the 4314 ** result columns as on the ORDER BY clause. See ticket 4315 ** http://www.sqlite.org/src/info/6709574d2a 4316 ** 4317 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4318 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4319 ** there are COLLATE terms in the ORDER BY. 4320 */ 4321 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4322 int i; 4323 Select *pNew; 4324 Select *pX; 4325 sqlite3 *db; 4326 struct ExprList_item *a; 4327 SrcList *pNewSrc; 4328 Parse *pParse; 4329 Token dummy; 4330 4331 if( p->pPrior==0 ) return WRC_Continue; 4332 if( p->pOrderBy==0 ) return WRC_Continue; 4333 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4334 if( pX==0 ) return WRC_Continue; 4335 a = p->pOrderBy->a; 4336 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4337 if( a[i].pExpr->flags & EP_Collate ) break; 4338 } 4339 if( i<0 ) return WRC_Continue; 4340 4341 /* If we reach this point, that means the transformation is required. */ 4342 4343 pParse = pWalker->pParse; 4344 db = pParse->db; 4345 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4346 if( pNew==0 ) return WRC_Abort; 4347 memset(&dummy, 0, sizeof(dummy)); 4348 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4349 if( pNewSrc==0 ) return WRC_Abort; 4350 *pNew = *p; 4351 p->pSrc = pNewSrc; 4352 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4353 p->op = TK_SELECT; 4354 p->pWhere = 0; 4355 pNew->pGroupBy = 0; 4356 pNew->pHaving = 0; 4357 pNew->pOrderBy = 0; 4358 p->pPrior = 0; 4359 p->pNext = 0; 4360 p->pWith = 0; 4361 p->selFlags &= ~SF_Compound; 4362 assert( (p->selFlags & SF_Converted)==0 ); 4363 p->selFlags |= SF_Converted; 4364 assert( pNew->pPrior!=0 ); 4365 pNew->pPrior->pNext = pNew; 4366 pNew->pLimit = 0; 4367 return WRC_Continue; 4368 } 4369 4370 /* 4371 ** Check to see if the FROM clause term pFrom has table-valued function 4372 ** arguments. If it does, leave an error message in pParse and return 4373 ** non-zero, since pFrom is not allowed to be a table-valued function. 4374 */ 4375 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4376 if( pFrom->fg.isTabFunc ){ 4377 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4378 return 1; 4379 } 4380 return 0; 4381 } 4382 4383 #ifndef SQLITE_OMIT_CTE 4384 /* 4385 ** Argument pWith (which may be NULL) points to a linked list of nested 4386 ** WITH contexts, from inner to outermost. If the table identified by 4387 ** FROM clause element pItem is really a common-table-expression (CTE) 4388 ** then return a pointer to the CTE definition for that table. Otherwise 4389 ** return NULL. 4390 ** 4391 ** If a non-NULL value is returned, set *ppContext to point to the With 4392 ** object that the returned CTE belongs to. 4393 */ 4394 static struct Cte *searchWith( 4395 With *pWith, /* Current innermost WITH clause */ 4396 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4397 With **ppContext /* OUT: WITH clause return value belongs to */ 4398 ){ 4399 const char *zName; 4400 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4401 With *p; 4402 for(p=pWith; p; p=p->pOuter){ 4403 int i; 4404 for(i=0; i<p->nCte; i++){ 4405 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4406 *ppContext = p; 4407 return &p->a[i]; 4408 } 4409 } 4410 } 4411 } 4412 return 0; 4413 } 4414 4415 /* The code generator maintains a stack of active WITH clauses 4416 ** with the inner-most WITH clause being at the top of the stack. 4417 ** 4418 ** This routine pushes the WITH clause passed as the second argument 4419 ** onto the top of the stack. If argument bFree is true, then this 4420 ** WITH clause will never be popped from the stack. In this case it 4421 ** should be freed along with the Parse object. In other cases, when 4422 ** bFree==0, the With object will be freed along with the SELECT 4423 ** statement with which it is associated. 4424 */ 4425 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4426 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4427 if( pWith ){ 4428 assert( pParse->pWith!=pWith ); 4429 pWith->pOuter = pParse->pWith; 4430 pParse->pWith = pWith; 4431 if( bFree ) pParse->pWithToFree = pWith; 4432 } 4433 } 4434 4435 /* 4436 ** This function checks if argument pFrom refers to a CTE declared by 4437 ** a WITH clause on the stack currently maintained by the parser. And, 4438 ** if currently processing a CTE expression, if it is a recursive 4439 ** reference to the current CTE. 4440 ** 4441 ** If pFrom falls into either of the two categories above, pFrom->pTab 4442 ** and other fields are populated accordingly. The caller should check 4443 ** (pFrom->pTab!=0) to determine whether or not a successful match 4444 ** was found. 4445 ** 4446 ** Whether or not a match is found, SQLITE_OK is returned if no error 4447 ** occurs. If an error does occur, an error message is stored in the 4448 ** parser and some error code other than SQLITE_OK returned. 4449 */ 4450 static int withExpand( 4451 Walker *pWalker, 4452 struct SrcList_item *pFrom 4453 ){ 4454 Parse *pParse = pWalker->pParse; 4455 sqlite3 *db = pParse->db; 4456 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4457 With *pWith; /* WITH clause that pCte belongs to */ 4458 4459 assert( pFrom->pTab==0 ); 4460 4461 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4462 if( pCte ){ 4463 Table *pTab; 4464 ExprList *pEList; 4465 Select *pSel; 4466 Select *pLeft; /* Left-most SELECT statement */ 4467 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4468 With *pSavedWith; /* Initial value of pParse->pWith */ 4469 4470 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4471 ** recursive reference to CTE pCte. Leave an error in pParse and return 4472 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4473 ** In this case, proceed. */ 4474 if( pCte->zCteErr ){ 4475 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4476 return SQLITE_ERROR; 4477 } 4478 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4479 4480 assert( pFrom->pTab==0 ); 4481 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4482 if( pTab==0 ) return WRC_Abort; 4483 pTab->nTabRef = 1; 4484 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4485 pTab->iPKey = -1; 4486 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4487 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4488 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4489 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4490 assert( pFrom->pSelect ); 4491 4492 /* Check if this is a recursive CTE. */ 4493 pSel = pFrom->pSelect; 4494 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4495 if( bMayRecursive ){ 4496 int i; 4497 SrcList *pSrc = pFrom->pSelect->pSrc; 4498 for(i=0; i<pSrc->nSrc; i++){ 4499 struct SrcList_item *pItem = &pSrc->a[i]; 4500 if( pItem->zDatabase==0 4501 && pItem->zName!=0 4502 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4503 ){ 4504 pItem->pTab = pTab; 4505 pItem->fg.isRecursive = 1; 4506 pTab->nTabRef++; 4507 pSel->selFlags |= SF_Recursive; 4508 } 4509 } 4510 } 4511 4512 /* Only one recursive reference is permitted. */ 4513 if( pTab->nTabRef>2 ){ 4514 sqlite3ErrorMsg( 4515 pParse, "multiple references to recursive table: %s", pCte->zName 4516 ); 4517 return SQLITE_ERROR; 4518 } 4519 assert( pTab->nTabRef==1 || 4520 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4521 4522 pCte->zCteErr = "circular reference: %s"; 4523 pSavedWith = pParse->pWith; 4524 pParse->pWith = pWith; 4525 if( bMayRecursive ){ 4526 Select *pPrior = pSel->pPrior; 4527 assert( pPrior->pWith==0 ); 4528 pPrior->pWith = pSel->pWith; 4529 sqlite3WalkSelect(pWalker, pPrior); 4530 pPrior->pWith = 0; 4531 }else{ 4532 sqlite3WalkSelect(pWalker, pSel); 4533 } 4534 pParse->pWith = pWith; 4535 4536 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4537 pEList = pLeft->pEList; 4538 if( pCte->pCols ){ 4539 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4540 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4541 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4542 ); 4543 pParse->pWith = pSavedWith; 4544 return SQLITE_ERROR; 4545 } 4546 pEList = pCte->pCols; 4547 } 4548 4549 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4550 if( bMayRecursive ){ 4551 if( pSel->selFlags & SF_Recursive ){ 4552 pCte->zCteErr = "multiple recursive references: %s"; 4553 }else{ 4554 pCte->zCteErr = "recursive reference in a subquery: %s"; 4555 } 4556 sqlite3WalkSelect(pWalker, pSel); 4557 } 4558 pCte->zCteErr = 0; 4559 pParse->pWith = pSavedWith; 4560 } 4561 4562 return SQLITE_OK; 4563 } 4564 #endif 4565 4566 #ifndef SQLITE_OMIT_CTE 4567 /* 4568 ** If the SELECT passed as the second argument has an associated WITH 4569 ** clause, pop it from the stack stored as part of the Parse object. 4570 ** 4571 ** This function is used as the xSelectCallback2() callback by 4572 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4573 ** names and other FROM clause elements. 4574 */ 4575 static void selectPopWith(Walker *pWalker, Select *p){ 4576 Parse *pParse = pWalker->pParse; 4577 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4578 With *pWith = findRightmost(p)->pWith; 4579 if( pWith!=0 ){ 4580 assert( pParse->pWith==pWith ); 4581 pParse->pWith = pWith->pOuter; 4582 } 4583 } 4584 } 4585 #else 4586 #define selectPopWith 0 4587 #endif 4588 4589 /* 4590 ** This routine is a Walker callback for "expanding" a SELECT statement. 4591 ** "Expanding" means to do the following: 4592 ** 4593 ** (1) Make sure VDBE cursor numbers have been assigned to every 4594 ** element of the FROM clause. 4595 ** 4596 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4597 ** defines FROM clause. When views appear in the FROM clause, 4598 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4599 ** that implements the view. A copy is made of the view's SELECT 4600 ** statement so that we can freely modify or delete that statement 4601 ** without worrying about messing up the persistent representation 4602 ** of the view. 4603 ** 4604 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4605 ** on joins and the ON and USING clause of joins. 4606 ** 4607 ** (4) Scan the list of columns in the result set (pEList) looking 4608 ** for instances of the "*" operator or the TABLE.* operator. 4609 ** If found, expand each "*" to be every column in every table 4610 ** and TABLE.* to be every column in TABLE. 4611 ** 4612 */ 4613 static int selectExpander(Walker *pWalker, Select *p){ 4614 Parse *pParse = pWalker->pParse; 4615 int i, j, k; 4616 SrcList *pTabList; 4617 ExprList *pEList; 4618 struct SrcList_item *pFrom; 4619 sqlite3 *db = pParse->db; 4620 Expr *pE, *pRight, *pExpr; 4621 u16 selFlags = p->selFlags; 4622 u32 elistFlags = 0; 4623 4624 p->selFlags |= SF_Expanded; 4625 if( db->mallocFailed ){ 4626 return WRC_Abort; 4627 } 4628 assert( p->pSrc!=0 ); 4629 if( (selFlags & SF_Expanded)!=0 ){ 4630 return WRC_Prune; 4631 } 4632 pTabList = p->pSrc; 4633 pEList = p->pEList; 4634 sqlite3WithPush(pParse, p->pWith, 0); 4635 4636 /* Make sure cursor numbers have been assigned to all entries in 4637 ** the FROM clause of the SELECT statement. 4638 */ 4639 sqlite3SrcListAssignCursors(pParse, pTabList); 4640 4641 /* Look up every table named in the FROM clause of the select. If 4642 ** an entry of the FROM clause is a subquery instead of a table or view, 4643 ** then create a transient table structure to describe the subquery. 4644 */ 4645 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4646 Table *pTab; 4647 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4648 if( pFrom->fg.isRecursive ) continue; 4649 assert( pFrom->pTab==0 ); 4650 #ifndef SQLITE_OMIT_CTE 4651 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4652 if( pFrom->pTab ) {} else 4653 #endif 4654 if( pFrom->zName==0 ){ 4655 #ifndef SQLITE_OMIT_SUBQUERY 4656 Select *pSel = pFrom->pSelect; 4657 /* A sub-query in the FROM clause of a SELECT */ 4658 assert( pSel!=0 ); 4659 assert( pFrom->pTab==0 ); 4660 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4661 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4662 if( pTab==0 ) return WRC_Abort; 4663 pTab->nTabRef = 1; 4664 if( pFrom->zAlias ){ 4665 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias); 4666 }else{ 4667 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab); 4668 } 4669 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4670 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4671 pTab->iPKey = -1; 4672 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4673 pTab->tabFlags |= TF_Ephemeral; 4674 #endif 4675 }else{ 4676 /* An ordinary table or view name in the FROM clause */ 4677 assert( pFrom->pTab==0 ); 4678 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4679 if( pTab==0 ) return WRC_Abort; 4680 if( pTab->nTabRef>=0xffff ){ 4681 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4682 pTab->zName); 4683 pFrom->pTab = 0; 4684 return WRC_Abort; 4685 } 4686 pTab->nTabRef++; 4687 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4688 return WRC_Abort; 4689 } 4690 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4691 if( IsVirtual(pTab) || pTab->pSelect ){ 4692 i16 nCol; 4693 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4694 assert( pFrom->pSelect==0 ); 4695 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4696 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4697 nCol = pTab->nCol; 4698 pTab->nCol = -1; 4699 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4700 pTab->nCol = nCol; 4701 } 4702 #endif 4703 } 4704 4705 /* Locate the index named by the INDEXED BY clause, if any. */ 4706 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4707 return WRC_Abort; 4708 } 4709 } 4710 4711 /* Process NATURAL keywords, and ON and USING clauses of joins. 4712 */ 4713 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4714 return WRC_Abort; 4715 } 4716 4717 /* For every "*" that occurs in the column list, insert the names of 4718 ** all columns in all tables. And for every TABLE.* insert the names 4719 ** of all columns in TABLE. The parser inserted a special expression 4720 ** with the TK_ASTERISK operator for each "*" that it found in the column 4721 ** list. The following code just has to locate the TK_ASTERISK 4722 ** expressions and expand each one to the list of all columns in 4723 ** all tables. 4724 ** 4725 ** The first loop just checks to see if there are any "*" operators 4726 ** that need expanding. 4727 */ 4728 for(k=0; k<pEList->nExpr; k++){ 4729 pE = pEList->a[k].pExpr; 4730 if( pE->op==TK_ASTERISK ) break; 4731 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4732 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4733 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4734 elistFlags |= pE->flags; 4735 } 4736 if( k<pEList->nExpr ){ 4737 /* 4738 ** If we get here it means the result set contains one or more "*" 4739 ** operators that need to be expanded. Loop through each expression 4740 ** in the result set and expand them one by one. 4741 */ 4742 struct ExprList_item *a = pEList->a; 4743 ExprList *pNew = 0; 4744 int flags = pParse->db->flags; 4745 int longNames = (flags & SQLITE_FullColNames)!=0 4746 && (flags & SQLITE_ShortColNames)==0; 4747 4748 for(k=0; k<pEList->nExpr; k++){ 4749 pE = a[k].pExpr; 4750 elistFlags |= pE->flags; 4751 pRight = pE->pRight; 4752 assert( pE->op!=TK_DOT || pRight!=0 ); 4753 if( pE->op!=TK_ASTERISK 4754 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4755 ){ 4756 /* This particular expression does not need to be expanded. 4757 */ 4758 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4759 if( pNew ){ 4760 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4761 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4762 a[k].zName = 0; 4763 a[k].zSpan = 0; 4764 } 4765 a[k].pExpr = 0; 4766 }else{ 4767 /* This expression is a "*" or a "TABLE.*" and needs to be 4768 ** expanded. */ 4769 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4770 char *zTName = 0; /* text of name of TABLE */ 4771 if( pE->op==TK_DOT ){ 4772 assert( pE->pLeft!=0 ); 4773 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4774 zTName = pE->pLeft->u.zToken; 4775 } 4776 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4777 Table *pTab = pFrom->pTab; 4778 Select *pSub = pFrom->pSelect; 4779 char *zTabName = pFrom->zAlias; 4780 const char *zSchemaName = 0; 4781 int iDb; 4782 if( zTabName==0 ){ 4783 zTabName = pTab->zName; 4784 } 4785 if( db->mallocFailed ) break; 4786 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4787 pSub = 0; 4788 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4789 continue; 4790 } 4791 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4792 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4793 } 4794 for(j=0; j<pTab->nCol; j++){ 4795 char *zName = pTab->aCol[j].zName; 4796 char *zColname; /* The computed column name */ 4797 char *zToFree; /* Malloced string that needs to be freed */ 4798 Token sColname; /* Computed column name as a token */ 4799 4800 assert( zName ); 4801 if( zTName && pSub 4802 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4803 ){ 4804 continue; 4805 } 4806 4807 /* If a column is marked as 'hidden', omit it from the expanded 4808 ** result-set list unless the SELECT has the SF_IncludeHidden 4809 ** bit set. 4810 */ 4811 if( (p->selFlags & SF_IncludeHidden)==0 4812 && IsHiddenColumn(&pTab->aCol[j]) 4813 ){ 4814 continue; 4815 } 4816 tableSeen = 1; 4817 4818 if( i>0 && zTName==0 ){ 4819 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4820 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4821 ){ 4822 /* In a NATURAL join, omit the join columns from the 4823 ** table to the right of the join */ 4824 continue; 4825 } 4826 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4827 /* In a join with a USING clause, omit columns in the 4828 ** using clause from the table on the right. */ 4829 continue; 4830 } 4831 } 4832 pRight = sqlite3Expr(db, TK_ID, zName); 4833 zColname = zName; 4834 zToFree = 0; 4835 if( longNames || pTabList->nSrc>1 ){ 4836 Expr *pLeft; 4837 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4838 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4839 if( zSchemaName ){ 4840 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4841 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4842 } 4843 if( longNames ){ 4844 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4845 zToFree = zColname; 4846 } 4847 }else{ 4848 pExpr = pRight; 4849 } 4850 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4851 sqlite3TokenInit(&sColname, zColname); 4852 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4853 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4854 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4855 if( pSub ){ 4856 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4857 testcase( pX->zSpan==0 ); 4858 }else{ 4859 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4860 zSchemaName, zTabName, zColname); 4861 testcase( pX->zSpan==0 ); 4862 } 4863 pX->bSpanIsTab = 1; 4864 } 4865 sqlite3DbFree(db, zToFree); 4866 } 4867 } 4868 if( !tableSeen ){ 4869 if( zTName ){ 4870 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4871 }else{ 4872 sqlite3ErrorMsg(pParse, "no tables specified"); 4873 } 4874 } 4875 } 4876 } 4877 sqlite3ExprListDelete(db, pEList); 4878 p->pEList = pNew; 4879 } 4880 if( p->pEList ){ 4881 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4882 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4883 return WRC_Abort; 4884 } 4885 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4886 p->selFlags |= SF_ComplexResult; 4887 } 4888 } 4889 return WRC_Continue; 4890 } 4891 4892 /* 4893 ** No-op routine for the parse-tree walker. 4894 ** 4895 ** When this routine is the Walker.xExprCallback then expression trees 4896 ** are walked without any actions being taken at each node. Presumably, 4897 ** when this routine is used for Walker.xExprCallback then 4898 ** Walker.xSelectCallback is set to do something useful for every 4899 ** subquery in the parser tree. 4900 */ 4901 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4902 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4903 return WRC_Continue; 4904 } 4905 4906 /* 4907 ** No-op routine for the parse-tree walker for SELECT statements. 4908 ** subquery in the parser tree. 4909 */ 4910 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4911 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4912 return WRC_Continue; 4913 } 4914 4915 #if SQLITE_DEBUG 4916 /* 4917 ** Always assert. This xSelectCallback2 implementation proves that the 4918 ** xSelectCallback2 is never invoked. 4919 */ 4920 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4921 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4922 assert( 0 ); 4923 } 4924 #endif 4925 /* 4926 ** This routine "expands" a SELECT statement and all of its subqueries. 4927 ** For additional information on what it means to "expand" a SELECT 4928 ** statement, see the comment on the selectExpand worker callback above. 4929 ** 4930 ** Expanding a SELECT statement is the first step in processing a 4931 ** SELECT statement. The SELECT statement must be expanded before 4932 ** name resolution is performed. 4933 ** 4934 ** If anything goes wrong, an error message is written into pParse. 4935 ** The calling function can detect the problem by looking at pParse->nErr 4936 ** and/or pParse->db->mallocFailed. 4937 */ 4938 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4939 Walker w; 4940 w.xExprCallback = sqlite3ExprWalkNoop; 4941 w.pParse = pParse; 4942 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4943 w.xSelectCallback = convertCompoundSelectToSubquery; 4944 w.xSelectCallback2 = 0; 4945 sqlite3WalkSelect(&w, pSelect); 4946 } 4947 w.xSelectCallback = selectExpander; 4948 w.xSelectCallback2 = selectPopWith; 4949 sqlite3WalkSelect(&w, pSelect); 4950 } 4951 4952 4953 #ifndef SQLITE_OMIT_SUBQUERY 4954 /* 4955 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4956 ** interface. 4957 ** 4958 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4959 ** information to the Table structure that represents the result set 4960 ** of that subquery. 4961 ** 4962 ** The Table structure that represents the result set was constructed 4963 ** by selectExpander() but the type and collation information was omitted 4964 ** at that point because identifiers had not yet been resolved. This 4965 ** routine is called after identifier resolution. 4966 */ 4967 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4968 Parse *pParse; 4969 int i; 4970 SrcList *pTabList; 4971 struct SrcList_item *pFrom; 4972 4973 assert( p->selFlags & SF_Resolved ); 4974 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4975 p->selFlags |= SF_HasTypeInfo; 4976 pParse = pWalker->pParse; 4977 pTabList = p->pSrc; 4978 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4979 Table *pTab = pFrom->pTab; 4980 assert( pTab!=0 ); 4981 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4982 /* A sub-query in the FROM clause of a SELECT */ 4983 Select *pSel = pFrom->pSelect; 4984 if( pSel ){ 4985 while( pSel->pPrior ) pSel = pSel->pPrior; 4986 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4987 } 4988 } 4989 } 4990 } 4991 #endif 4992 4993 4994 /* 4995 ** This routine adds datatype and collating sequence information to 4996 ** the Table structures of all FROM-clause subqueries in a 4997 ** SELECT statement. 4998 ** 4999 ** Use this routine after name resolution. 5000 */ 5001 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5002 #ifndef SQLITE_OMIT_SUBQUERY 5003 Walker w; 5004 w.xSelectCallback = sqlite3SelectWalkNoop; 5005 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5006 w.xExprCallback = sqlite3ExprWalkNoop; 5007 w.pParse = pParse; 5008 sqlite3WalkSelect(&w, pSelect); 5009 #endif 5010 } 5011 5012 5013 /* 5014 ** This routine sets up a SELECT statement for processing. The 5015 ** following is accomplished: 5016 ** 5017 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5018 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5019 ** * ON and USING clauses are shifted into WHERE statements 5020 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5021 ** * Identifiers in expression are matched to tables. 5022 ** 5023 ** This routine acts recursively on all subqueries within the SELECT. 5024 */ 5025 void sqlite3SelectPrep( 5026 Parse *pParse, /* The parser context */ 5027 Select *p, /* The SELECT statement being coded. */ 5028 NameContext *pOuterNC /* Name context for container */ 5029 ){ 5030 assert( p!=0 || pParse->db->mallocFailed ); 5031 if( pParse->db->mallocFailed ) return; 5032 if( p->selFlags & SF_HasTypeInfo ) return; 5033 sqlite3SelectExpand(pParse, p); 5034 if( pParse->nErr || pParse->db->mallocFailed ) return; 5035 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5036 if( pParse->nErr || pParse->db->mallocFailed ) return; 5037 sqlite3SelectAddTypeInfo(pParse, p); 5038 } 5039 5040 /* 5041 ** Reset the aggregate accumulator. 5042 ** 5043 ** The aggregate accumulator is a set of memory cells that hold 5044 ** intermediate results while calculating an aggregate. This 5045 ** routine generates code that stores NULLs in all of those memory 5046 ** cells. 5047 */ 5048 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5049 Vdbe *v = pParse->pVdbe; 5050 int i; 5051 struct AggInfo_func *pFunc; 5052 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5053 if( nReg==0 ) return; 5054 #ifdef SQLITE_DEBUG 5055 /* Verify that all AggInfo registers are within the range specified by 5056 ** AggInfo.mnReg..AggInfo.mxReg */ 5057 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5058 for(i=0; i<pAggInfo->nColumn; i++){ 5059 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5060 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5061 } 5062 for(i=0; i<pAggInfo->nFunc; i++){ 5063 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5064 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5065 } 5066 #endif 5067 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5068 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5069 if( pFunc->iDistinct>=0 ){ 5070 Expr *pE = pFunc->pExpr; 5071 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5072 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5073 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5074 "argument"); 5075 pFunc->iDistinct = -1; 5076 }else{ 5077 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 5078 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5079 (char*)pKeyInfo, P4_KEYINFO); 5080 } 5081 } 5082 } 5083 } 5084 5085 /* 5086 ** Invoke the OP_AggFinalize opcode for every aggregate function 5087 ** in the AggInfo structure. 5088 */ 5089 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5090 Vdbe *v = pParse->pVdbe; 5091 int i; 5092 struct AggInfo_func *pF; 5093 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5094 ExprList *pList = pF->pExpr->x.pList; 5095 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5096 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5097 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5098 } 5099 } 5100 5101 /* 5102 ** Update the accumulator memory cells for an aggregate based on 5103 ** the current cursor position. 5104 */ 5105 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5106 Vdbe *v = pParse->pVdbe; 5107 int i; 5108 int regHit = 0; 5109 int addrHitTest = 0; 5110 struct AggInfo_func *pF; 5111 struct AggInfo_col *pC; 5112 5113 pAggInfo->directMode = 1; 5114 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5115 int nArg; 5116 int addrNext = 0; 5117 int regAgg; 5118 ExprList *pList = pF->pExpr->x.pList; 5119 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5120 if( pList ){ 5121 nArg = pList->nExpr; 5122 regAgg = sqlite3GetTempRange(pParse, nArg); 5123 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5124 }else{ 5125 nArg = 0; 5126 regAgg = 0; 5127 } 5128 if( pF->iDistinct>=0 ){ 5129 addrNext = sqlite3VdbeMakeLabel(v); 5130 testcase( nArg==0 ); /* Error condition */ 5131 testcase( nArg>1 ); /* Also an error */ 5132 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5133 } 5134 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5135 CollSeq *pColl = 0; 5136 struct ExprList_item *pItem; 5137 int j; 5138 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5139 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5140 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5141 } 5142 if( !pColl ){ 5143 pColl = pParse->db->pDfltColl; 5144 } 5145 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5146 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5147 } 5148 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 5149 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5150 sqlite3VdbeChangeP5(v, (u8)nArg); 5151 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 5152 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5153 if( addrNext ){ 5154 sqlite3VdbeResolveLabel(v, addrNext); 5155 sqlite3ExprCacheClear(pParse); 5156 } 5157 } 5158 5159 /* Before populating the accumulator registers, clear the column cache. 5160 ** Otherwise, if any of the required column values are already present 5161 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 5162 ** to pC->iMem. But by the time the value is used, the original register 5163 ** may have been used, invalidating the underlying buffer holding the 5164 ** text or blob value. See ticket [883034dcb5]. 5165 ** 5166 ** Another solution would be to change the OP_SCopy used to copy cached 5167 ** values to an OP_Copy. 5168 */ 5169 if( regHit ){ 5170 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5171 } 5172 sqlite3ExprCacheClear(pParse); 5173 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5174 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5175 } 5176 pAggInfo->directMode = 0; 5177 sqlite3ExprCacheClear(pParse); 5178 if( addrHitTest ){ 5179 sqlite3VdbeJumpHere(v, addrHitTest); 5180 } 5181 } 5182 5183 /* 5184 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5185 ** count(*) query ("SELECT count(*) FROM pTab"). 5186 */ 5187 #ifndef SQLITE_OMIT_EXPLAIN 5188 static void explainSimpleCount( 5189 Parse *pParse, /* Parse context */ 5190 Table *pTab, /* Table being queried */ 5191 Index *pIdx /* Index used to optimize scan, or NULL */ 5192 ){ 5193 if( pParse->explain==2 ){ 5194 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5195 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5196 pTab->zName, 5197 bCover ? " USING COVERING INDEX " : "", 5198 bCover ? pIdx->zName : "" 5199 ); 5200 } 5201 } 5202 #else 5203 # define explainSimpleCount(a,b,c) 5204 #endif 5205 5206 /* 5207 ** sqlite3WalkExpr() callback used by havingToWhere(). 5208 ** 5209 ** If the node passed to the callback is a TK_AND node, return 5210 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5211 ** 5212 ** Otherwise, return WRC_Prune. In this case, also check if the 5213 ** sub-expression matches the criteria for being moved to the WHERE 5214 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5215 ** within the HAVING expression with a constant "1". 5216 */ 5217 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5218 if( pExpr->op!=TK_AND ){ 5219 Select *pS = pWalker->u.pSelect; 5220 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5221 sqlite3 *db = pWalker->pParse->db; 5222 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5223 if( pNew ){ 5224 Expr *pWhere = pS->pWhere; 5225 SWAP(Expr, *pNew, *pExpr); 5226 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5227 pS->pWhere = pNew; 5228 pWalker->eCode = 1; 5229 } 5230 } 5231 return WRC_Prune; 5232 } 5233 return WRC_Continue; 5234 } 5235 5236 /* 5237 ** Transfer eligible terms from the HAVING clause of a query, which is 5238 ** processed after grouping, to the WHERE clause, which is processed before 5239 ** grouping. For example, the query: 5240 ** 5241 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5242 ** 5243 ** can be rewritten as: 5244 ** 5245 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5246 ** 5247 ** A term of the HAVING expression is eligible for transfer if it consists 5248 ** entirely of constants and expressions that are also GROUP BY terms that 5249 ** use the "BINARY" collation sequence. 5250 */ 5251 static void havingToWhere(Parse *pParse, Select *p){ 5252 Walker sWalker; 5253 memset(&sWalker, 0, sizeof(sWalker)); 5254 sWalker.pParse = pParse; 5255 sWalker.xExprCallback = havingToWhereExprCb; 5256 sWalker.u.pSelect = p; 5257 sqlite3WalkExpr(&sWalker, p->pHaving); 5258 #if SELECTTRACE_ENABLED 5259 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5260 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5261 sqlite3TreeViewSelect(0, p, 0); 5262 } 5263 #endif 5264 } 5265 5266 /* 5267 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5268 ** If it is, then return the SrcList_item for the prior view. If it is not, 5269 ** then return 0. 5270 */ 5271 static struct SrcList_item *isSelfJoinView( 5272 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5273 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5274 ){ 5275 struct SrcList_item *pItem; 5276 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5277 if( pItem->pSelect==0 ) continue; 5278 if( pItem->fg.viaCoroutine ) continue; 5279 if( pItem->zName==0 ) continue; 5280 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5281 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5282 if( sqlite3ExprCompare(0, 5283 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5284 ){ 5285 /* The view was modified by some other optimization such as 5286 ** pushDownWhereTerms() */ 5287 continue; 5288 } 5289 return pItem; 5290 } 5291 return 0; 5292 } 5293 5294 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5295 /* 5296 ** Attempt to transform a query of the form 5297 ** 5298 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5299 ** 5300 ** Into this: 5301 ** 5302 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5303 ** 5304 ** The transformation only works if all of the following are true: 5305 ** 5306 ** * The subquery is a UNION ALL of two or more terms 5307 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5308 ** * The outer query is a simple count(*) 5309 ** 5310 ** Return TRUE if the optimization is undertaken. 5311 */ 5312 static int countOfViewOptimization(Parse *pParse, Select *p){ 5313 Select *pSub, *pPrior; 5314 Expr *pExpr; 5315 Expr *pCount; 5316 sqlite3 *db; 5317 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5318 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5319 pExpr = p->pEList->a[0].pExpr; 5320 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5321 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5322 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5323 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5324 pSub = p->pSrc->a[0].pSelect; 5325 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5326 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5327 do{ 5328 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5329 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5330 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5331 pSub = pSub->pPrior; /* Repeat over compound */ 5332 }while( pSub ); 5333 5334 /* If we reach this point then it is OK to perform the transformation */ 5335 5336 db = pParse->db; 5337 pCount = pExpr; 5338 pExpr = 0; 5339 pSub = p->pSrc->a[0].pSelect; 5340 p->pSrc->a[0].pSelect = 0; 5341 sqlite3SrcListDelete(db, p->pSrc); 5342 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5343 while( pSub ){ 5344 Expr *pTerm; 5345 pPrior = pSub->pPrior; 5346 pSub->pPrior = 0; 5347 pSub->pNext = 0; 5348 pSub->selFlags |= SF_Aggregate; 5349 pSub->selFlags &= ~SF_Compound; 5350 pSub->nSelectRow = 0; 5351 sqlite3ExprListDelete(db, pSub->pEList); 5352 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5353 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5354 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5355 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5356 if( pExpr==0 ){ 5357 pExpr = pTerm; 5358 }else{ 5359 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5360 } 5361 pSub = pPrior; 5362 } 5363 p->pEList->a[0].pExpr = pExpr; 5364 p->selFlags &= ~SF_Aggregate; 5365 5366 #if SELECTTRACE_ENABLED 5367 if( sqlite3SelectTrace & 0x400 ){ 5368 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5369 sqlite3TreeViewSelect(0, p, 0); 5370 } 5371 #endif 5372 return 1; 5373 } 5374 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5375 5376 /* 5377 ** Generate code for the SELECT statement given in the p argument. 5378 ** 5379 ** The results are returned according to the SelectDest structure. 5380 ** See comments in sqliteInt.h for further information. 5381 ** 5382 ** This routine returns the number of errors. If any errors are 5383 ** encountered, then an appropriate error message is left in 5384 ** pParse->zErrMsg. 5385 ** 5386 ** This routine does NOT free the Select structure passed in. The 5387 ** calling function needs to do that. 5388 */ 5389 int sqlite3Select( 5390 Parse *pParse, /* The parser context */ 5391 Select *p, /* The SELECT statement being coded. */ 5392 SelectDest *pDest /* What to do with the query results */ 5393 ){ 5394 int i, j; /* Loop counters */ 5395 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5396 Vdbe *v; /* The virtual machine under construction */ 5397 int isAgg; /* True for select lists like "count(*)" */ 5398 ExprList *pEList = 0; /* List of columns to extract. */ 5399 SrcList *pTabList; /* List of tables to select from */ 5400 Expr *pWhere; /* The WHERE clause. May be NULL */ 5401 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5402 Expr *pHaving; /* The HAVING clause. May be NULL */ 5403 int rc = 1; /* Value to return from this function */ 5404 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5405 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5406 AggInfo sAggInfo; /* Information used by aggregate queries */ 5407 int iEnd; /* Address of the end of the query */ 5408 sqlite3 *db; /* The database connection */ 5409 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5410 u8 minMaxFlag; /* Flag for min/max queries */ 5411 5412 db = pParse->db; 5413 v = sqlite3GetVdbe(pParse); 5414 if( p==0 || db->mallocFailed || pParse->nErr ){ 5415 return 1; 5416 } 5417 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5418 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5419 #if SELECTTRACE_ENABLED 5420 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5421 if( sqlite3SelectTrace & 0x100 ){ 5422 sqlite3TreeViewSelect(0, p, 0); 5423 } 5424 #endif 5425 5426 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5427 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5428 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5429 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5430 if( IgnorableOrderby(pDest) ){ 5431 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5432 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5433 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5434 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5435 /* If ORDER BY makes no difference in the output then neither does 5436 ** DISTINCT so it can be removed too. */ 5437 sqlite3ExprListDelete(db, p->pOrderBy); 5438 p->pOrderBy = 0; 5439 p->selFlags &= ~SF_Distinct; 5440 } 5441 sqlite3SelectPrep(pParse, p, 0); 5442 memset(&sSort, 0, sizeof(sSort)); 5443 sSort.pOrderBy = p->pOrderBy; 5444 pTabList = p->pSrc; 5445 if( pParse->nErr || db->mallocFailed ){ 5446 goto select_end; 5447 } 5448 assert( p->pEList!=0 ); 5449 isAgg = (p->selFlags & SF_Aggregate)!=0; 5450 #if SELECTTRACE_ENABLED 5451 if( sqlite3SelectTrace & 0x104 ){ 5452 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5453 sqlite3TreeViewSelect(0, p, 0); 5454 } 5455 #endif 5456 5457 if( pDest->eDest==SRT_Output ){ 5458 generateColumnNames(pParse, p); 5459 } 5460 5461 /* Try to various optimizations (flattening subqueries, and strength 5462 ** reduction of join operators) in the FROM clause up into the main query 5463 */ 5464 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5465 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5466 struct SrcList_item *pItem = &pTabList->a[i]; 5467 Select *pSub = pItem->pSelect; 5468 Table *pTab = pItem->pTab; 5469 5470 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5471 ** of the LEFT JOIN used in the WHERE clause. 5472 */ 5473 if( (pItem->fg.jointype & JT_LEFT)!=0 5474 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5475 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5476 ){ 5477 SELECTTRACE(0x100,pParse,p, 5478 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5479 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5480 unsetJoinExpr(p->pWhere, pItem->iCursor); 5481 } 5482 5483 /* No futher action if this term of the FROM clause is no a subquery */ 5484 if( pSub==0 ) continue; 5485 5486 /* Catch mismatch in the declared columns of a view and the number of 5487 ** columns in the SELECT on the RHS */ 5488 if( pTab->nCol!=pSub->pEList->nExpr ){ 5489 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5490 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5491 goto select_end; 5492 } 5493 5494 /* Do not try to flatten an aggregate subquery. 5495 ** 5496 ** Flattening an aggregate subquery is only possible if the outer query 5497 ** is not a join. But if the outer query is not a join, then the subquery 5498 ** will be implemented as a co-routine and there is no advantage to 5499 ** flattening in that case. 5500 */ 5501 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5502 assert( pSub->pGroupBy==0 ); 5503 5504 /* If the outer query contains a "complex" result set (that is, 5505 ** if the result set of the outer query uses functions or subqueries) 5506 ** and if the subquery contains an ORDER BY clause and if 5507 ** it will be implemented as a co-routine, then do not flatten. This 5508 ** restriction allows SQL constructs like this: 5509 ** 5510 ** SELECT expensive_function(x) 5511 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5512 ** 5513 ** The expensive_function() is only computed on the 10 rows that 5514 ** are output, rather than every row of the table. 5515 ** 5516 ** The requirement that the outer query have a complex result set 5517 ** means that flattening does occur on simpler SQL constraints without 5518 ** the expensive_function() like: 5519 ** 5520 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5521 */ 5522 if( pSub->pOrderBy!=0 5523 && i==0 5524 && (p->selFlags & SF_ComplexResult)!=0 5525 && (pTabList->nSrc==1 5526 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5527 ){ 5528 continue; 5529 } 5530 5531 if( flattenSubquery(pParse, p, i, isAgg) ){ 5532 /* This subquery can be absorbed into its parent. */ 5533 i = -1; 5534 } 5535 pTabList = p->pSrc; 5536 if( db->mallocFailed ) goto select_end; 5537 if( !IgnorableOrderby(pDest) ){ 5538 sSort.pOrderBy = p->pOrderBy; 5539 } 5540 } 5541 #endif 5542 5543 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5544 /* Handle compound SELECT statements using the separate multiSelect() 5545 ** procedure. 5546 */ 5547 if( p->pPrior ){ 5548 rc = multiSelect(pParse, p, pDest); 5549 #if SELECTTRACE_ENABLED 5550 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5551 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5552 sqlite3TreeViewSelect(0, p, 0); 5553 } 5554 #endif 5555 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5556 return rc; 5557 } 5558 #endif 5559 5560 /* For each term in the FROM clause, do two things: 5561 ** (1) Authorized unreferenced tables 5562 ** (2) Generate code for all sub-queries 5563 */ 5564 for(i=0; i<pTabList->nSrc; i++){ 5565 struct SrcList_item *pItem = &pTabList->a[i]; 5566 SelectDest dest; 5567 Select *pSub; 5568 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5569 const char *zSavedAuthContext; 5570 #endif 5571 5572 /* Issue SQLITE_READ authorizations with a fake column name for any 5573 ** tables that are referenced but from which no values are extracted. 5574 ** Examples of where these kinds of null SQLITE_READ authorizations 5575 ** would occur: 5576 ** 5577 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5578 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5579 ** 5580 ** The fake column name is an empty string. It is possible for a table to 5581 ** have a column named by the empty string, in which case there is no way to 5582 ** distinguish between an unreferenced table and an actual reference to the 5583 ** "" column. The original design was for the fake column name to be a NULL, 5584 ** which would be unambiguous. But legacy authorization callbacks might 5585 ** assume the column name is non-NULL and segfault. The use of an empty 5586 ** string for the fake column name seems safer. 5587 */ 5588 if( pItem->colUsed==0 ){ 5589 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5590 } 5591 5592 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5593 /* Generate code for all sub-queries in the FROM clause 5594 */ 5595 pSub = pItem->pSelect; 5596 if( pSub==0 ) continue; 5597 5598 /* Sometimes the code for a subquery will be generated more than 5599 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5600 ** for example. In that case, do not regenerate the code to manifest 5601 ** a view or the co-routine to implement a view. The first instance 5602 ** is sufficient, though the subroutine to manifest the view does need 5603 ** to be invoked again. */ 5604 if( pItem->addrFillSub ){ 5605 if( pItem->fg.viaCoroutine==0 ){ 5606 /* The subroutine that manifests the view might be a one-time routine, 5607 ** or it might need to be rerun on each iteration because it 5608 ** encodes a correlated subquery. */ 5609 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5610 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5611 } 5612 continue; 5613 } 5614 5615 /* Increment Parse.nHeight by the height of the largest expression 5616 ** tree referred to by this, the parent select. The child select 5617 ** may contain expression trees of at most 5618 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5619 ** more conservative than necessary, but much easier than enforcing 5620 ** an exact limit. 5621 */ 5622 pParse->nHeight += sqlite3SelectExprHeight(p); 5623 5624 /* Make copies of constant WHERE-clause terms in the outer query down 5625 ** inside the subquery. This can help the subquery to run more efficiently. 5626 */ 5627 if( OptimizationEnabled(db, SQLITE_PushDown) 5628 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5629 (pItem->fg.jointype & JT_OUTER)!=0) 5630 ){ 5631 #if SELECTTRACE_ENABLED 5632 if( sqlite3SelectTrace & 0x100 ){ 5633 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5634 sqlite3TreeViewSelect(0, p, 0); 5635 } 5636 #endif 5637 }else{ 5638 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5639 } 5640 5641 zSavedAuthContext = pParse->zAuthContext; 5642 pParse->zAuthContext = pItem->zName; 5643 5644 /* Generate code to implement the subquery 5645 ** 5646 ** The subquery is implemented as a co-routine if the subquery is 5647 ** guaranteed to be the outer loop (so that it does not need to be 5648 ** computed more than once) 5649 ** 5650 ** TODO: Are there other reasons beside (1) to use a co-routine 5651 ** implementation? 5652 */ 5653 if( i==0 5654 && (pTabList->nSrc==1 5655 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5656 ){ 5657 /* Implement a co-routine that will return a single row of the result 5658 ** set on each invocation. 5659 */ 5660 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5661 5662 pItem->regReturn = ++pParse->nMem; 5663 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5664 VdbeComment((v, "%s", pItem->pTab->zName)); 5665 pItem->addrFillSub = addrTop; 5666 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5667 ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub)); 5668 sqlite3Select(pParse, pSub, &dest); 5669 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5670 pItem->fg.viaCoroutine = 1; 5671 pItem->regResult = dest.iSdst; 5672 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5673 sqlite3VdbeJumpHere(v, addrTop-1); 5674 sqlite3ClearTempRegCache(pParse); 5675 }else{ 5676 /* Generate a subroutine that will fill an ephemeral table with 5677 ** the content of this subquery. pItem->addrFillSub will point 5678 ** to the address of the generated subroutine. pItem->regReturn 5679 ** is a register allocated to hold the subroutine return address 5680 */ 5681 int topAddr; 5682 int onceAddr = 0; 5683 int retAddr; 5684 struct SrcList_item *pPrior; 5685 5686 assert( pItem->addrFillSub==0 ); 5687 pItem->regReturn = ++pParse->nMem; 5688 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5689 pItem->addrFillSub = topAddr+1; 5690 if( pItem->fg.isCorrelated==0 ){ 5691 /* If the subquery is not correlated and if we are not inside of 5692 ** a trigger, then we only need to compute the value of the subquery 5693 ** once. */ 5694 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5695 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5696 }else{ 5697 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5698 } 5699 pPrior = isSelfJoinView(pTabList, pItem); 5700 if( pPrior ){ 5701 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5702 assert( pPrior->pSelect!=0 ); 5703 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5704 }else{ 5705 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5706 ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub)); 5707 sqlite3Select(pParse, pSub, &dest); 5708 } 5709 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5710 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5711 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5712 VdbeComment((v, "end %s", pItem->pTab->zName)); 5713 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5714 sqlite3ClearTempRegCache(pParse); 5715 } 5716 if( db->mallocFailed ) goto select_end; 5717 pParse->nHeight -= sqlite3SelectExprHeight(p); 5718 pParse->zAuthContext = zSavedAuthContext; 5719 #endif 5720 } 5721 5722 /* Various elements of the SELECT copied into local variables for 5723 ** convenience */ 5724 pEList = p->pEList; 5725 pWhere = p->pWhere; 5726 pGroupBy = p->pGroupBy; 5727 pHaving = p->pHaving; 5728 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5729 5730 #if SELECTTRACE_ENABLED 5731 if( sqlite3SelectTrace & 0x400 ){ 5732 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5733 sqlite3TreeViewSelect(0, p, 0); 5734 } 5735 #endif 5736 5737 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5738 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5739 && countOfViewOptimization(pParse, p) 5740 ){ 5741 if( db->mallocFailed ) goto select_end; 5742 pEList = p->pEList; 5743 pTabList = p->pSrc; 5744 } 5745 #endif 5746 5747 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5748 ** if the select-list is the same as the ORDER BY list, then this query 5749 ** can be rewritten as a GROUP BY. In other words, this: 5750 ** 5751 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5752 ** 5753 ** is transformed to: 5754 ** 5755 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5756 ** 5757 ** The second form is preferred as a single index (or temp-table) may be 5758 ** used for both the ORDER BY and DISTINCT processing. As originally 5759 ** written the query must use a temp-table for at least one of the ORDER 5760 ** BY and DISTINCT, and an index or separate temp-table for the other. 5761 */ 5762 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5763 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5764 ){ 5765 p->selFlags &= ~SF_Distinct; 5766 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5767 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5768 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5769 ** original setting of the SF_Distinct flag, not the current setting */ 5770 assert( sDistinct.isTnct ); 5771 5772 #if SELECTTRACE_ENABLED 5773 if( sqlite3SelectTrace & 0x400 ){ 5774 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5775 sqlite3TreeViewSelect(0, p, 0); 5776 } 5777 #endif 5778 } 5779 5780 /* If there is an ORDER BY clause, then create an ephemeral index to 5781 ** do the sorting. But this sorting ephemeral index might end up 5782 ** being unused if the data can be extracted in pre-sorted order. 5783 ** If that is the case, then the OP_OpenEphemeral instruction will be 5784 ** changed to an OP_Noop once we figure out that the sorting index is 5785 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5786 ** that change. 5787 */ 5788 if( sSort.pOrderBy ){ 5789 KeyInfo *pKeyInfo; 5790 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5791 sSort.iECursor = pParse->nTab++; 5792 sSort.addrSortIndex = 5793 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5794 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5795 (char*)pKeyInfo, P4_KEYINFO 5796 ); 5797 }else{ 5798 sSort.addrSortIndex = -1; 5799 } 5800 5801 /* If the output is destined for a temporary table, open that table. 5802 */ 5803 if( pDest->eDest==SRT_EphemTab ){ 5804 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5805 } 5806 5807 /* Set the limiter. 5808 */ 5809 iEnd = sqlite3VdbeMakeLabel(v); 5810 if( (p->selFlags & SF_FixedLimit)==0 ){ 5811 p->nSelectRow = 320; /* 4 billion rows */ 5812 } 5813 computeLimitRegisters(pParse, p, iEnd); 5814 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5815 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5816 sSort.sortFlags |= SORTFLAG_UseSorter; 5817 } 5818 5819 /* Open an ephemeral index to use for the distinct set. 5820 */ 5821 if( p->selFlags & SF_Distinct ){ 5822 sDistinct.tabTnct = pParse->nTab++; 5823 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5824 sDistinct.tabTnct, 0, 0, 5825 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5826 P4_KEYINFO); 5827 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5828 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5829 }else{ 5830 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5831 } 5832 5833 if( !isAgg && pGroupBy==0 ){ 5834 /* No aggregate functions and no GROUP BY clause */ 5835 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5836 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5837 wctrlFlags |= p->selFlags & SF_FixedLimit; 5838 5839 /* Begin the database scan. */ 5840 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 5841 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5842 p->pEList, wctrlFlags, p->nSelectRow); 5843 if( pWInfo==0 ) goto select_end; 5844 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5845 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5846 } 5847 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5848 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5849 } 5850 if( sSort.pOrderBy ){ 5851 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5852 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5853 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5854 sSort.pOrderBy = 0; 5855 } 5856 } 5857 5858 /* If sorting index that was created by a prior OP_OpenEphemeral 5859 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5860 ** into an OP_Noop. 5861 */ 5862 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5863 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5864 } 5865 5866 /* Use the standard inner loop. */ 5867 assert( p->pEList==pEList ); 5868 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5869 sqlite3WhereContinueLabel(pWInfo), 5870 sqlite3WhereBreakLabel(pWInfo)); 5871 5872 /* End the database scan loop. 5873 */ 5874 sqlite3WhereEnd(pWInfo); 5875 }else{ 5876 /* This case when there exist aggregate functions or a GROUP BY clause 5877 ** or both */ 5878 NameContext sNC; /* Name context for processing aggregate information */ 5879 int iAMem; /* First Mem address for storing current GROUP BY */ 5880 int iBMem; /* First Mem address for previous GROUP BY */ 5881 int iUseFlag; /* Mem address holding flag indicating that at least 5882 ** one row of the input to the aggregator has been 5883 ** processed */ 5884 int iAbortFlag; /* Mem address which causes query abort if positive */ 5885 int groupBySort; /* Rows come from source in GROUP BY order */ 5886 int addrEnd; /* End of processing for this SELECT */ 5887 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5888 int sortOut = 0; /* Output register from the sorter */ 5889 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5890 5891 /* Remove any and all aliases between the result set and the 5892 ** GROUP BY clause. 5893 */ 5894 if( pGroupBy ){ 5895 int k; /* Loop counter */ 5896 struct ExprList_item *pItem; /* For looping over expression in a list */ 5897 5898 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5899 pItem->u.x.iAlias = 0; 5900 } 5901 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5902 pItem->u.x.iAlias = 0; 5903 } 5904 assert( 66==sqlite3LogEst(100) ); 5905 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5906 }else{ 5907 assert( 0==sqlite3LogEst(1) ); 5908 p->nSelectRow = 0; 5909 } 5910 5911 /* If there is both a GROUP BY and an ORDER BY clause and they are 5912 ** identical, then it may be possible to disable the ORDER BY clause 5913 ** on the grounds that the GROUP BY will cause elements to come out 5914 ** in the correct order. It also may not - the GROUP BY might use a 5915 ** database index that causes rows to be grouped together as required 5916 ** but not actually sorted. Either way, record the fact that the 5917 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5918 ** variable. */ 5919 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5920 orderByGrp = 1; 5921 } 5922 5923 /* Create a label to jump to when we want to abort the query */ 5924 addrEnd = sqlite3VdbeMakeLabel(v); 5925 5926 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5927 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5928 ** SELECT statement. 5929 */ 5930 memset(&sNC, 0, sizeof(sNC)); 5931 sNC.pParse = pParse; 5932 sNC.pSrcList = pTabList; 5933 sNC.uNC.pAggInfo = &sAggInfo; 5934 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 5935 sAggInfo.mnReg = pParse->nMem+1; 5936 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5937 sAggInfo.pGroupBy = pGroupBy; 5938 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5939 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5940 if( pHaving ){ 5941 if( pGroupBy ){ 5942 assert( pWhere==p->pWhere ); 5943 assert( pHaving==p->pHaving ); 5944 assert( pGroupBy==p->pGroupBy ); 5945 havingToWhere(pParse, p); 5946 pWhere = p->pWhere; 5947 } 5948 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5949 } 5950 sAggInfo.nAccumulator = sAggInfo.nColumn; 5951 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 5952 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 5953 }else{ 5954 minMaxFlag = WHERE_ORDERBY_NORMAL; 5955 } 5956 for(i=0; i<sAggInfo.nFunc; i++){ 5957 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5958 sNC.ncFlags |= NC_InAggFunc; 5959 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5960 sNC.ncFlags &= ~NC_InAggFunc; 5961 } 5962 sAggInfo.mxReg = pParse->nMem; 5963 if( db->mallocFailed ) goto select_end; 5964 #if SELECTTRACE_ENABLED 5965 if( sqlite3SelectTrace & 0x400 ){ 5966 int ii; 5967 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 5968 sqlite3TreeViewSelect(0, p, 0); 5969 for(ii=0; ii<sAggInfo.nColumn; ii++){ 5970 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 5971 ii, sAggInfo.aCol[ii].iMem); 5972 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 5973 } 5974 for(ii=0; ii<sAggInfo.nFunc; ii++){ 5975 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 5976 ii, sAggInfo.aFunc[ii].iMem); 5977 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 5978 } 5979 } 5980 #endif 5981 5982 5983 /* Processing for aggregates with GROUP BY is very different and 5984 ** much more complex than aggregates without a GROUP BY. 5985 */ 5986 if( pGroupBy ){ 5987 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5988 int addr1; /* A-vs-B comparision jump */ 5989 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5990 int regOutputRow; /* Return address register for output subroutine */ 5991 int addrSetAbort; /* Set the abort flag and return */ 5992 int addrTopOfLoop; /* Top of the input loop */ 5993 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5994 int addrReset; /* Subroutine for resetting the accumulator */ 5995 int regReset; /* Return address register for reset subroutine */ 5996 5997 /* If there is a GROUP BY clause we might need a sorting index to 5998 ** implement it. Allocate that sorting index now. If it turns out 5999 ** that we do not need it after all, the OP_SorterOpen instruction 6000 ** will be converted into a Noop. 6001 */ 6002 sAggInfo.sortingIdx = pParse->nTab++; 6003 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 6004 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6005 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6006 0, (char*)pKeyInfo, P4_KEYINFO); 6007 6008 /* Initialize memory locations used by GROUP BY aggregate processing 6009 */ 6010 iUseFlag = ++pParse->nMem; 6011 iAbortFlag = ++pParse->nMem; 6012 regOutputRow = ++pParse->nMem; 6013 addrOutputRow = sqlite3VdbeMakeLabel(v); 6014 regReset = ++pParse->nMem; 6015 addrReset = sqlite3VdbeMakeLabel(v); 6016 iAMem = pParse->nMem + 1; 6017 pParse->nMem += pGroupBy->nExpr; 6018 iBMem = pParse->nMem + 1; 6019 pParse->nMem += pGroupBy->nExpr; 6020 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6021 VdbeComment((v, "clear abort flag")); 6022 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6023 VdbeComment((v, "indicate accumulator empty")); 6024 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6025 6026 /* Begin a loop that will extract all source rows in GROUP BY order. 6027 ** This might involve two separate loops with an OP_Sort in between, or 6028 ** it might be a single loop that uses an index to extract information 6029 ** in the right order to begin with. 6030 */ 6031 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6032 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6033 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6034 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6035 ); 6036 if( pWInfo==0 ) goto select_end; 6037 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6038 /* The optimizer is able to deliver rows in group by order so 6039 ** we do not have to sort. The OP_OpenEphemeral table will be 6040 ** cancelled later because we still need to use the pKeyInfo 6041 */ 6042 groupBySort = 0; 6043 }else{ 6044 /* Rows are coming out in undetermined order. We have to push 6045 ** each row into a sorting index, terminate the first loop, 6046 ** then loop over the sorting index in order to get the output 6047 ** in sorted order 6048 */ 6049 int regBase; 6050 int regRecord; 6051 int nCol; 6052 int nGroupBy; 6053 6054 explainTempTable(pParse, 6055 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6056 "DISTINCT" : "GROUP BY"); 6057 6058 groupBySort = 1; 6059 nGroupBy = pGroupBy->nExpr; 6060 nCol = nGroupBy; 6061 j = nGroupBy; 6062 for(i=0; i<sAggInfo.nColumn; i++){ 6063 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6064 nCol++; 6065 j++; 6066 } 6067 } 6068 regBase = sqlite3GetTempRange(pParse, nCol); 6069 sqlite3ExprCacheClear(pParse); 6070 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6071 j = nGroupBy; 6072 for(i=0; i<sAggInfo.nColumn; i++){ 6073 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6074 if( pCol->iSorterColumn>=j ){ 6075 int r1 = j + regBase; 6076 sqlite3ExprCodeGetColumnToReg(pParse, 6077 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 6078 j++; 6079 } 6080 } 6081 regRecord = sqlite3GetTempReg(pParse); 6082 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6083 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6084 sqlite3ReleaseTempReg(pParse, regRecord); 6085 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6086 sqlite3WhereEnd(pWInfo); 6087 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6088 sortOut = sqlite3GetTempReg(pParse); 6089 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6090 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6091 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6092 sAggInfo.useSortingIdx = 1; 6093 sqlite3ExprCacheClear(pParse); 6094 6095 } 6096 6097 /* If the index or temporary table used by the GROUP BY sort 6098 ** will naturally deliver rows in the order required by the ORDER BY 6099 ** clause, cancel the ephemeral table open coded earlier. 6100 ** 6101 ** This is an optimization - the correct answer should result regardless. 6102 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6103 ** disable this optimization for testing purposes. */ 6104 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6105 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6106 ){ 6107 sSort.pOrderBy = 0; 6108 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6109 } 6110 6111 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6112 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6113 ** Then compare the current GROUP BY terms against the GROUP BY terms 6114 ** from the previous row currently stored in a0, a1, a2... 6115 */ 6116 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6117 sqlite3ExprCacheClear(pParse); 6118 if( groupBySort ){ 6119 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6120 sortOut, sortPTab); 6121 } 6122 for(j=0; j<pGroupBy->nExpr; j++){ 6123 if( groupBySort ){ 6124 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6125 }else{ 6126 sAggInfo.directMode = 1; 6127 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6128 } 6129 } 6130 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6131 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6132 addr1 = sqlite3VdbeCurrentAddr(v); 6133 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6134 6135 /* Generate code that runs whenever the GROUP BY changes. 6136 ** Changes in the GROUP BY are detected by the previous code 6137 ** block. If there were no changes, this block is skipped. 6138 ** 6139 ** This code copies current group by terms in b0,b1,b2,... 6140 ** over to a0,a1,a2. It then calls the output subroutine 6141 ** and resets the aggregate accumulator registers in preparation 6142 ** for the next GROUP BY batch. 6143 */ 6144 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6145 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6146 VdbeComment((v, "output one row")); 6147 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6148 VdbeComment((v, "check abort flag")); 6149 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6150 VdbeComment((v, "reset accumulator")); 6151 6152 /* Update the aggregate accumulators based on the content of 6153 ** the current row 6154 */ 6155 sqlite3VdbeJumpHere(v, addr1); 6156 updateAccumulator(pParse, &sAggInfo); 6157 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6158 VdbeComment((v, "indicate data in accumulator")); 6159 6160 /* End of the loop 6161 */ 6162 if( groupBySort ){ 6163 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6164 VdbeCoverage(v); 6165 }else{ 6166 sqlite3WhereEnd(pWInfo); 6167 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6168 } 6169 6170 /* Output the final row of result 6171 */ 6172 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6173 VdbeComment((v, "output final row")); 6174 6175 /* Jump over the subroutines 6176 */ 6177 sqlite3VdbeGoto(v, addrEnd); 6178 6179 /* Generate a subroutine that outputs a single row of the result 6180 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6181 ** is less than or equal to zero, the subroutine is a no-op. If 6182 ** the processing calls for the query to abort, this subroutine 6183 ** increments the iAbortFlag memory location before returning in 6184 ** order to signal the caller to abort. 6185 */ 6186 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6187 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6188 VdbeComment((v, "set abort flag")); 6189 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6190 sqlite3VdbeResolveLabel(v, addrOutputRow); 6191 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6192 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6193 VdbeCoverage(v); 6194 VdbeComment((v, "Groupby result generator entry point")); 6195 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6196 finalizeAggFunctions(pParse, &sAggInfo); 6197 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6198 selectInnerLoop(pParse, p, -1, &sSort, 6199 &sDistinct, pDest, 6200 addrOutputRow+1, addrSetAbort); 6201 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6202 VdbeComment((v, "end groupby result generator")); 6203 6204 /* Generate a subroutine that will reset the group-by accumulator 6205 */ 6206 sqlite3VdbeResolveLabel(v, addrReset); 6207 resetAccumulator(pParse, &sAggInfo); 6208 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6209 6210 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6211 else { 6212 #ifndef SQLITE_OMIT_BTREECOUNT 6213 Table *pTab; 6214 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6215 /* If isSimpleCount() returns a pointer to a Table structure, then 6216 ** the SQL statement is of the form: 6217 ** 6218 ** SELECT count(*) FROM <tbl> 6219 ** 6220 ** where the Table structure returned represents table <tbl>. 6221 ** 6222 ** This statement is so common that it is optimized specially. The 6223 ** OP_Count instruction is executed either on the intkey table that 6224 ** contains the data for table <tbl> or on one of its indexes. It 6225 ** is better to execute the op on an index, as indexes are almost 6226 ** always spread across less pages than their corresponding tables. 6227 */ 6228 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6229 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6230 Index *pIdx; /* Iterator variable */ 6231 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6232 Index *pBest = 0; /* Best index found so far */ 6233 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6234 6235 sqlite3CodeVerifySchema(pParse, iDb); 6236 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6237 6238 /* Search for the index that has the lowest scan cost. 6239 ** 6240 ** (2011-04-15) Do not do a full scan of an unordered index. 6241 ** 6242 ** (2013-10-03) Do not count the entries in a partial index. 6243 ** 6244 ** In practice the KeyInfo structure will not be used. It is only 6245 ** passed to keep OP_OpenRead happy. 6246 */ 6247 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6248 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6249 if( pIdx->bUnordered==0 6250 && pIdx->szIdxRow<pTab->szTabRow 6251 && pIdx->pPartIdxWhere==0 6252 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6253 ){ 6254 pBest = pIdx; 6255 } 6256 } 6257 if( pBest ){ 6258 iRoot = pBest->tnum; 6259 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6260 } 6261 6262 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6263 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6264 if( pKeyInfo ){ 6265 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6266 } 6267 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6268 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6269 explainSimpleCount(pParse, pTab, pBest); 6270 }else 6271 #endif /* SQLITE_OMIT_BTREECOUNT */ 6272 { 6273 /* This case runs if the aggregate has no GROUP BY clause. The 6274 ** processing is much simpler since there is only a single row 6275 ** of output. 6276 */ 6277 assert( p->pGroupBy==0 ); 6278 resetAccumulator(pParse, &sAggInfo); 6279 6280 /* If this query is a candidate for the min/max optimization, then 6281 ** minMaxFlag will have been previously set to either 6282 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6283 ** be an appropriate ORDER BY expression for the optimization. 6284 */ 6285 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6286 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6287 6288 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6289 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6290 0, minMaxFlag, 0); 6291 if( pWInfo==0 ){ 6292 goto select_end; 6293 } 6294 updateAccumulator(pParse, &sAggInfo); 6295 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6296 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6297 VdbeComment((v, "%s() by index", 6298 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6299 } 6300 sqlite3WhereEnd(pWInfo); 6301 finalizeAggFunctions(pParse, &sAggInfo); 6302 } 6303 6304 sSort.pOrderBy = 0; 6305 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6306 selectInnerLoop(pParse, p, -1, 0, 0, 6307 pDest, addrEnd, addrEnd); 6308 } 6309 sqlite3VdbeResolveLabel(v, addrEnd); 6310 6311 } /* endif aggregate query */ 6312 6313 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6314 explainTempTable(pParse, "DISTINCT"); 6315 } 6316 6317 /* If there is an ORDER BY clause, then we need to sort the results 6318 ** and send them to the callback one by one. 6319 */ 6320 if( sSort.pOrderBy ){ 6321 explainTempTable(pParse, 6322 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6323 assert( p->pEList==pEList ); 6324 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6325 } 6326 6327 /* Jump here to skip this query 6328 */ 6329 sqlite3VdbeResolveLabel(v, iEnd); 6330 6331 /* The SELECT has been coded. If there is an error in the Parse structure, 6332 ** set the return code to 1. Otherwise 0. */ 6333 rc = (pParse->nErr>0); 6334 6335 /* Control jumps to here if an error is encountered above, or upon 6336 ** successful coding of the SELECT. 6337 */ 6338 select_end: 6339 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6340 sqlite3DbFree(db, sAggInfo.aCol); 6341 sqlite3DbFree(db, sAggInfo.aFunc); 6342 #if SELECTTRACE_ENABLED 6343 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6344 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6345 sqlite3TreeViewSelect(0, p, 0); 6346 } 6347 #endif 6348 ExplainQueryPlanPop(pParse); 6349 return rc; 6350 } 6351