1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.526 2009/08/01 15:09:58 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(sqlite3 *db, Select *p){ 25 sqlite3ExprListDelete(db, p->pEList); 26 sqlite3SrcListDelete(db, p->pSrc); 27 sqlite3ExprDelete(db, p->pWhere); 28 sqlite3ExprListDelete(db, p->pGroupBy); 29 sqlite3ExprDelete(db, p->pHaving); 30 sqlite3ExprListDelete(db, p->pOrderBy); 31 sqlite3SelectDelete(db, p->pPrior); 32 sqlite3ExprDelete(db, p->pLimit); 33 sqlite3ExprDelete(db, p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = (u8)eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 assert( pOffset==0 || pLimit!=0 ); 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( db->mallocFailed ) { 91 clearSelect(db, pNew); 92 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 93 pNew = 0; 94 } 95 return pNew; 96 } 97 98 /* 99 ** Delete the given Select structure and all of its substructures. 100 */ 101 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 102 if( p ){ 103 clearSelect(db, p); 104 sqlite3DbFree(db, p); 105 } 106 } 107 108 /* 109 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 110 ** type of join. Return an integer constant that expresses that type 111 ** in terms of the following bit values: 112 ** 113 ** JT_INNER 114 ** JT_CROSS 115 ** JT_OUTER 116 ** JT_NATURAL 117 ** JT_LEFT 118 ** JT_RIGHT 119 ** 120 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 121 ** 122 ** If an illegal or unsupported join type is seen, then still return 123 ** a join type, but put an error in the pParse structure. 124 */ 125 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 126 int jointype = 0; 127 Token *apAll[3]; 128 Token *p; 129 /* 0123456789 123456789 123456789 123 */ 130 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 131 static const struct { 132 u8 i; /* Beginning of keyword text in zKeyText[] */ 133 u8 nChar; /* Length of the keyword in characters */ 134 u8 code; /* Join type mask */ 135 } aKeyword[] = { 136 /* natural */ { 0, 7, JT_NATURAL }, 137 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 138 /* outer */ { 10, 5, JT_OUTER }, 139 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 140 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 141 /* inner */ { 23, 5, JT_INNER }, 142 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 143 }; 144 int i, j; 145 apAll[0] = pA; 146 apAll[1] = pB; 147 apAll[2] = pC; 148 for(i=0; i<3 && apAll[i]; i++){ 149 p = apAll[i]; 150 for(j=0; j<ArraySize(aKeyword); j++){ 151 if( p->n==aKeyword[j].nChar 152 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 153 jointype |= aKeyword[j].code; 154 break; 155 } 156 } 157 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 158 if( j>=ArraySize(aKeyword) ){ 159 jointype |= JT_ERROR; 160 break; 161 } 162 } 163 if( 164 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 165 (jointype & JT_ERROR)!=0 166 ){ 167 const char *zSp = " "; 168 assert( pB!=0 ); 169 if( pC==0 ){ zSp++; } 170 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 171 "%T %T%s%T", pA, pB, zSp, pC); 172 jointype = JT_INNER; 173 }else if( (jointype & JT_OUTER)!=0 174 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 175 sqlite3ErrorMsg(pParse, 176 "RIGHT and FULL OUTER JOINs are not currently supported"); 177 jointype = JT_INNER; 178 } 179 return jointype; 180 } 181 182 /* 183 ** Return the index of a column in a table. Return -1 if the column 184 ** is not contained in the table. 185 */ 186 static int columnIndex(Table *pTab, const char *zCol){ 187 int i; 188 for(i=0; i<pTab->nCol; i++){ 189 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 190 } 191 return -1; 192 } 193 194 /* 195 ** Create an expression node for an identifier with the name of zName 196 */ 197 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 198 return sqlite3Expr(pParse->db, TK_ID, zName); 199 } 200 201 /* 202 ** Add a term to the WHERE expression in *ppExpr that requires the 203 ** zCol column to be equal in the two tables pTab1 and pTab2. 204 */ 205 static void addWhereTerm( 206 Parse *pParse, /* Parsing context */ 207 const char *zCol, /* Name of the column */ 208 const Table *pTab1, /* First table */ 209 const char *zAlias1, /* Alias for first table. May be NULL */ 210 const Table *pTab2, /* Second table */ 211 const char *zAlias2, /* Alias for second table. May be NULL */ 212 int iRightJoinTable, /* VDBE cursor for the right table */ 213 Expr **ppExpr, /* Add the equality term to this expression */ 214 int isOuterJoin /* True if dealing with an OUTER join */ 215 ){ 216 Expr *pE1a, *pE1b, *pE1c; 217 Expr *pE2a, *pE2b, *pE2c; 218 Expr *pE; 219 220 pE1a = sqlite3CreateIdExpr(pParse, zCol); 221 pE2a = sqlite3CreateIdExpr(pParse, zCol); 222 if( zAlias1==0 ){ 223 zAlias1 = pTab1->zName; 224 } 225 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 226 if( zAlias2==0 ){ 227 zAlias2 = pTab2->zName; 228 } 229 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 230 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 231 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 232 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 233 if( pE && isOuterJoin ){ 234 ExprSetProperty(pE, EP_FromJoin); 235 assert( !ExprHasAnyProperty(pE, EP_TokenOnly|EP_Reduced) ); 236 ExprSetIrreducible(pE); 237 pE->iRightJoinTable = (i16)iRightJoinTable; 238 } 239 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 240 } 241 242 /* 243 ** Set the EP_FromJoin property on all terms of the given expression. 244 ** And set the Expr.iRightJoinTable to iTable for every term in the 245 ** expression. 246 ** 247 ** The EP_FromJoin property is used on terms of an expression to tell 248 ** the LEFT OUTER JOIN processing logic that this term is part of the 249 ** join restriction specified in the ON or USING clause and not a part 250 ** of the more general WHERE clause. These terms are moved over to the 251 ** WHERE clause during join processing but we need to remember that they 252 ** originated in the ON or USING clause. 253 ** 254 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 255 ** expression depends on table iRightJoinTable even if that table is not 256 ** explicitly mentioned in the expression. That information is needed 257 ** for cases like this: 258 ** 259 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 260 ** 261 ** The where clause needs to defer the handling of the t1.x=5 262 ** term until after the t2 loop of the join. In that way, a 263 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 264 ** defer the handling of t1.x=5, it will be processed immediately 265 ** after the t1 loop and rows with t1.x!=5 will never appear in 266 ** the output, which is incorrect. 267 */ 268 static void setJoinExpr(Expr *p, int iTable){ 269 while( p ){ 270 ExprSetProperty(p, EP_FromJoin); 271 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 272 ExprSetIrreducible(p); 273 p->iRightJoinTable = (i16)iTable; 274 setJoinExpr(p->pLeft, iTable); 275 p = p->pRight; 276 } 277 } 278 279 /* 280 ** This routine processes the join information for a SELECT statement. 281 ** ON and USING clauses are converted into extra terms of the WHERE clause. 282 ** NATURAL joins also create extra WHERE clause terms. 283 ** 284 ** The terms of a FROM clause are contained in the Select.pSrc structure. 285 ** The left most table is the first entry in Select.pSrc. The right-most 286 ** table is the last entry. The join operator is held in the entry to 287 ** the left. Thus entry 0 contains the join operator for the join between 288 ** entries 0 and 1. Any ON or USING clauses associated with the join are 289 ** also attached to the left entry. 290 ** 291 ** This routine returns the number of errors encountered. 292 */ 293 static int sqliteProcessJoin(Parse *pParse, Select *p){ 294 SrcList *pSrc; /* All tables in the FROM clause */ 295 int i, j; /* Loop counters */ 296 struct SrcList_item *pLeft; /* Left table being joined */ 297 struct SrcList_item *pRight; /* Right table being joined */ 298 299 pSrc = p->pSrc; 300 pLeft = &pSrc->a[0]; 301 pRight = &pLeft[1]; 302 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 303 Table *pLeftTab = pLeft->pTab; 304 Table *pRightTab = pRight->pTab; 305 int isOuter; 306 307 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 308 isOuter = (pRight->jointype & JT_OUTER)!=0; 309 310 /* When the NATURAL keyword is present, add WHERE clause terms for 311 ** every column that the two tables have in common. 312 */ 313 if( pRight->jointype & JT_NATURAL ){ 314 if( pRight->pOn || pRight->pUsing ){ 315 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 316 "an ON or USING clause", 0); 317 return 1; 318 } 319 for(j=0; j<pLeftTab->nCol; j++){ 320 char *zName = pLeftTab->aCol[j].zName; 321 if( columnIndex(pRightTab, zName)>=0 ){ 322 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 323 pRightTab, pRight->zAlias, 324 pRight->iCursor, &p->pWhere, isOuter); 325 326 } 327 } 328 } 329 330 /* Disallow both ON and USING clauses in the same join 331 */ 332 if( pRight->pOn && pRight->pUsing ){ 333 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 334 "clauses in the same join"); 335 return 1; 336 } 337 338 /* Add the ON clause to the end of the WHERE clause, connected by 339 ** an AND operator. 340 */ 341 if( pRight->pOn ){ 342 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 343 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 344 pRight->pOn = 0; 345 } 346 347 /* Create extra terms on the WHERE clause for each column named 348 ** in the USING clause. Example: If the two tables to be joined are 349 ** A and B and the USING clause names X, Y, and Z, then add this 350 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 351 ** Report an error if any column mentioned in the USING clause is 352 ** not contained in both tables to be joined. 353 */ 354 if( pRight->pUsing ){ 355 IdList *pList = pRight->pUsing; 356 for(j=0; j<pList->nId; j++){ 357 char *zName = pList->a[j].zName; 358 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 359 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 360 "not present in both tables", zName); 361 return 1; 362 } 363 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 364 pRightTab, pRight->zAlias, 365 pRight->iCursor, &p->pWhere, isOuter); 366 } 367 } 368 } 369 return 0; 370 } 371 372 /* 373 ** Insert code into "v" that will push the record on the top of the 374 ** stack into the sorter. 375 */ 376 static void pushOntoSorter( 377 Parse *pParse, /* Parser context */ 378 ExprList *pOrderBy, /* The ORDER BY clause */ 379 Select *pSelect, /* The whole SELECT statement */ 380 int regData /* Register holding data to be sorted */ 381 ){ 382 Vdbe *v = pParse->pVdbe; 383 int nExpr = pOrderBy->nExpr; 384 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 385 int regRecord = sqlite3GetTempReg(pParse); 386 sqlite3ExprCacheClear(pParse); 387 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 388 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 389 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 390 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 391 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 392 sqlite3ReleaseTempReg(pParse, regRecord); 393 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 394 if( pSelect->iLimit ){ 395 int addr1, addr2; 396 int iLimit; 397 if( pSelect->iOffset ){ 398 iLimit = pSelect->iOffset+1; 399 }else{ 400 iLimit = pSelect->iLimit; 401 } 402 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 403 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 404 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 405 sqlite3VdbeJumpHere(v, addr1); 406 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 407 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 408 sqlite3VdbeJumpHere(v, addr2); 409 pSelect->iLimit = 0; 410 } 411 } 412 413 /* 414 ** Add code to implement the OFFSET 415 */ 416 static void codeOffset( 417 Vdbe *v, /* Generate code into this VM */ 418 Select *p, /* The SELECT statement being coded */ 419 int iContinue /* Jump here to skip the current record */ 420 ){ 421 if( p->iOffset && iContinue!=0 ){ 422 int addr; 423 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 424 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 425 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 426 VdbeComment((v, "skip OFFSET records")); 427 sqlite3VdbeJumpHere(v, addr); 428 } 429 } 430 431 /* 432 ** Add code that will check to make sure the N registers starting at iMem 433 ** form a distinct entry. iTab is a sorting index that holds previously 434 ** seen combinations of the N values. A new entry is made in iTab 435 ** if the current N values are new. 436 ** 437 ** A jump to addrRepeat is made and the N+1 values are popped from the 438 ** stack if the top N elements are not distinct. 439 */ 440 static void codeDistinct( 441 Parse *pParse, /* Parsing and code generating context */ 442 int iTab, /* A sorting index used to test for distinctness */ 443 int addrRepeat, /* Jump to here if not distinct */ 444 int N, /* Number of elements */ 445 int iMem /* First element */ 446 ){ 447 Vdbe *v; 448 int r1; 449 450 v = pParse->pVdbe; 451 r1 = sqlite3GetTempReg(pParse); 452 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 453 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 454 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 455 sqlite3ReleaseTempReg(pParse, r1); 456 } 457 458 /* 459 ** Generate an error message when a SELECT is used within a subexpression 460 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 461 ** column. We do this in a subroutine because the error occurs in multiple 462 ** places. 463 */ 464 static int checkForMultiColumnSelectError( 465 Parse *pParse, /* Parse context. */ 466 SelectDest *pDest, /* Destination of SELECT results */ 467 int nExpr /* Number of result columns returned by SELECT */ 468 ){ 469 int eDest = pDest->eDest; 470 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 471 sqlite3ErrorMsg(pParse, "only a single result allowed for " 472 "a SELECT that is part of an expression"); 473 return 1; 474 }else{ 475 return 0; 476 } 477 } 478 479 /* 480 ** This routine generates the code for the inside of the inner loop 481 ** of a SELECT. 482 ** 483 ** If srcTab and nColumn are both zero, then the pEList expressions 484 ** are evaluated in order to get the data for this row. If nColumn>0 485 ** then data is pulled from srcTab and pEList is used only to get the 486 ** datatypes for each column. 487 */ 488 static void selectInnerLoop( 489 Parse *pParse, /* The parser context */ 490 Select *p, /* The complete select statement being coded */ 491 ExprList *pEList, /* List of values being extracted */ 492 int srcTab, /* Pull data from this table */ 493 int nColumn, /* Number of columns in the source table */ 494 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 495 int distinct, /* If >=0, make sure results are distinct */ 496 SelectDest *pDest, /* How to dispose of the results */ 497 int iContinue, /* Jump here to continue with next row */ 498 int iBreak /* Jump here to break out of the inner loop */ 499 ){ 500 Vdbe *v = pParse->pVdbe; 501 int i; 502 int hasDistinct; /* True if the DISTINCT keyword is present */ 503 int regResult; /* Start of memory holding result set */ 504 int eDest = pDest->eDest; /* How to dispose of results */ 505 int iParm = pDest->iParm; /* First argument to disposal method */ 506 int nResultCol; /* Number of result columns */ 507 508 assert( v ); 509 if( NEVER(v==0) ) return; 510 assert( pEList!=0 ); 511 hasDistinct = distinct>=0; 512 if( pOrderBy==0 && !hasDistinct ){ 513 codeOffset(v, p, iContinue); 514 } 515 516 /* Pull the requested columns. 517 */ 518 if( nColumn>0 ){ 519 nResultCol = nColumn; 520 }else{ 521 nResultCol = pEList->nExpr; 522 } 523 if( pDest->iMem==0 ){ 524 pDest->iMem = pParse->nMem+1; 525 pDest->nMem = nResultCol; 526 pParse->nMem += nResultCol; 527 }else{ 528 assert( pDest->nMem==nResultCol ); 529 } 530 regResult = pDest->iMem; 531 if( nColumn>0 ){ 532 for(i=0; i<nColumn; i++){ 533 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 534 } 535 }else if( eDest!=SRT_Exists ){ 536 /* If the destination is an EXISTS(...) expression, the actual 537 ** values returned by the SELECT are not required. 538 */ 539 sqlite3ExprCacheClear(pParse); 540 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 541 } 542 nColumn = nResultCol; 543 544 /* If the DISTINCT keyword was present on the SELECT statement 545 ** and this row has been seen before, then do not make this row 546 ** part of the result. 547 */ 548 if( hasDistinct ){ 549 assert( pEList!=0 ); 550 assert( pEList->nExpr==nColumn ); 551 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 552 if( pOrderBy==0 ){ 553 codeOffset(v, p, iContinue); 554 } 555 } 556 557 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 558 return; 559 } 560 561 switch( eDest ){ 562 /* In this mode, write each query result to the key of the temporary 563 ** table iParm. 564 */ 565 #ifndef SQLITE_OMIT_COMPOUND_SELECT 566 case SRT_Union: { 567 int r1; 568 r1 = sqlite3GetTempReg(pParse); 569 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 570 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 571 sqlite3ReleaseTempReg(pParse, r1); 572 break; 573 } 574 575 /* Construct a record from the query result, but instead of 576 ** saving that record, use it as a key to delete elements from 577 ** the temporary table iParm. 578 */ 579 case SRT_Except: { 580 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 581 break; 582 } 583 #endif 584 585 /* Store the result as data using a unique key. 586 */ 587 case SRT_Table: 588 case SRT_EphemTab: { 589 int r1 = sqlite3GetTempReg(pParse); 590 testcase( eDest==SRT_Table ); 591 testcase( eDest==SRT_EphemTab ); 592 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 593 if( pOrderBy ){ 594 pushOntoSorter(pParse, pOrderBy, p, r1); 595 }else{ 596 int r2 = sqlite3GetTempReg(pParse); 597 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 598 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 599 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 600 sqlite3ReleaseTempReg(pParse, r2); 601 } 602 sqlite3ReleaseTempReg(pParse, r1); 603 break; 604 } 605 606 #ifndef SQLITE_OMIT_SUBQUERY 607 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 608 ** then there should be a single item on the stack. Write this 609 ** item into the set table with bogus data. 610 */ 611 case SRT_Set: { 612 assert( nColumn==1 ); 613 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 614 if( pOrderBy ){ 615 /* At first glance you would think we could optimize out the 616 ** ORDER BY in this case since the order of entries in the set 617 ** does not matter. But there might be a LIMIT clause, in which 618 ** case the order does matter */ 619 pushOntoSorter(pParse, pOrderBy, p, regResult); 620 }else{ 621 int r1 = sqlite3GetTempReg(pParse); 622 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 623 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 624 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 625 sqlite3ReleaseTempReg(pParse, r1); 626 } 627 break; 628 } 629 630 /* If any row exist in the result set, record that fact and abort. 631 */ 632 case SRT_Exists: { 633 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 634 /* The LIMIT clause will terminate the loop for us */ 635 break; 636 } 637 638 /* If this is a scalar select that is part of an expression, then 639 ** store the results in the appropriate memory cell and break out 640 ** of the scan loop. 641 */ 642 case SRT_Mem: { 643 assert( nColumn==1 ); 644 if( pOrderBy ){ 645 pushOntoSorter(pParse, pOrderBy, p, regResult); 646 }else{ 647 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 648 /* The LIMIT clause will jump out of the loop for us */ 649 } 650 break; 651 } 652 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 653 654 /* Send the data to the callback function or to a subroutine. In the 655 ** case of a subroutine, the subroutine itself is responsible for 656 ** popping the data from the stack. 657 */ 658 case SRT_Coroutine: 659 case SRT_Output: { 660 testcase( eDest==SRT_Coroutine ); 661 testcase( eDest==SRT_Output ); 662 if( pOrderBy ){ 663 int r1 = sqlite3GetTempReg(pParse); 664 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 665 pushOntoSorter(pParse, pOrderBy, p, r1); 666 sqlite3ReleaseTempReg(pParse, r1); 667 }else if( eDest==SRT_Coroutine ){ 668 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 669 }else{ 670 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 671 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 672 } 673 break; 674 } 675 676 #if !defined(SQLITE_OMIT_TRIGGER) 677 /* Discard the results. This is used for SELECT statements inside 678 ** the body of a TRIGGER. The purpose of such selects is to call 679 ** user-defined functions that have side effects. We do not care 680 ** about the actual results of the select. 681 */ 682 default: { 683 assert( eDest==SRT_Discard ); 684 break; 685 } 686 #endif 687 } 688 689 /* Jump to the end of the loop if the LIMIT is reached. 690 */ 691 if( p->iLimit ){ 692 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 693 ** pushOntoSorter() would have cleared p->iLimit */ 694 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 695 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 696 } 697 } 698 699 /* 700 ** Given an expression list, generate a KeyInfo structure that records 701 ** the collating sequence for each expression in that expression list. 702 ** 703 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 704 ** KeyInfo structure is appropriate for initializing a virtual index to 705 ** implement that clause. If the ExprList is the result set of a SELECT 706 ** then the KeyInfo structure is appropriate for initializing a virtual 707 ** index to implement a DISTINCT test. 708 ** 709 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 710 ** function is responsible for seeing that this structure is eventually 711 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 712 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 713 */ 714 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 715 sqlite3 *db = pParse->db; 716 int nExpr; 717 KeyInfo *pInfo; 718 struct ExprList_item *pItem; 719 int i; 720 721 nExpr = pList->nExpr; 722 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 723 if( pInfo ){ 724 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 725 pInfo->nField = (u16)nExpr; 726 pInfo->enc = ENC(db); 727 pInfo->db = db; 728 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 729 CollSeq *pColl; 730 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 731 if( !pColl ){ 732 pColl = db->pDfltColl; 733 } 734 pInfo->aColl[i] = pColl; 735 pInfo->aSortOrder[i] = pItem->sortOrder; 736 } 737 } 738 return pInfo; 739 } 740 741 742 /* 743 ** If the inner loop was generated using a non-null pOrderBy argument, 744 ** then the results were placed in a sorter. After the loop is terminated 745 ** we need to run the sorter and output the results. The following 746 ** routine generates the code needed to do that. 747 */ 748 static void generateSortTail( 749 Parse *pParse, /* Parsing context */ 750 Select *p, /* The SELECT statement */ 751 Vdbe *v, /* Generate code into this VDBE */ 752 int nColumn, /* Number of columns of data */ 753 SelectDest *pDest /* Write the sorted results here */ 754 ){ 755 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 756 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 757 int addr; 758 int iTab; 759 int pseudoTab = 0; 760 ExprList *pOrderBy = p->pOrderBy; 761 762 int eDest = pDest->eDest; 763 int iParm = pDest->iParm; 764 765 int regRow; 766 int regRowid; 767 768 iTab = pOrderBy->iECursor; 769 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 770 pseudoTab = pParse->nTab++; 771 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn); 772 } 773 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 774 codeOffset(v, p, addrContinue); 775 regRow = sqlite3GetTempReg(pParse); 776 regRowid = sqlite3GetTempReg(pParse); 777 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 778 switch( eDest ){ 779 case SRT_Table: 780 case SRT_EphemTab: { 781 testcase( eDest==SRT_Table ); 782 testcase( eDest==SRT_EphemTab ); 783 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 784 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 785 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 786 break; 787 } 788 #ifndef SQLITE_OMIT_SUBQUERY 789 case SRT_Set: { 790 assert( nColumn==1 ); 791 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 792 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 793 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 794 break; 795 } 796 case SRT_Mem: { 797 assert( nColumn==1 ); 798 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 799 /* The LIMIT clause will terminate the loop for us */ 800 break; 801 } 802 #endif 803 default: { 804 int i; 805 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 806 testcase( eDest==SRT_Output ); 807 testcase( eDest==SRT_Coroutine ); 808 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); 809 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); 810 for(i=0; i<nColumn; i++){ 811 assert( regRow!=pDest->iMem+i ); 812 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 813 } 814 if( eDest==SRT_Output ){ 815 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 816 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 817 }else{ 818 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 819 } 820 break; 821 } 822 } 823 sqlite3ReleaseTempReg(pParse, regRow); 824 sqlite3ReleaseTempReg(pParse, regRowid); 825 826 /* LIMIT has been implemented by the pushOntoSorter() routine. 827 */ 828 assert( p->iLimit==0 ); 829 830 /* The bottom of the loop 831 */ 832 sqlite3VdbeResolveLabel(v, addrContinue); 833 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 834 sqlite3VdbeResolveLabel(v, addrBreak); 835 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 836 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 837 } 838 } 839 840 /* 841 ** Return a pointer to a string containing the 'declaration type' of the 842 ** expression pExpr. The string may be treated as static by the caller. 843 ** 844 ** The declaration type is the exact datatype definition extracted from the 845 ** original CREATE TABLE statement if the expression is a column. The 846 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 847 ** is considered a column can be complex in the presence of subqueries. The 848 ** result-set expression in all of the following SELECT statements is 849 ** considered a column by this function. 850 ** 851 ** SELECT col FROM tbl; 852 ** SELECT (SELECT col FROM tbl; 853 ** SELECT (SELECT col FROM tbl); 854 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 855 ** 856 ** The declaration type for any expression other than a column is NULL. 857 */ 858 static const char *columnType( 859 NameContext *pNC, 860 Expr *pExpr, 861 const char **pzOriginDb, 862 const char **pzOriginTab, 863 const char **pzOriginCol 864 ){ 865 char const *zType = 0; 866 char const *zOriginDb = 0; 867 char const *zOriginTab = 0; 868 char const *zOriginCol = 0; 869 int j; 870 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 871 872 switch( pExpr->op ){ 873 case TK_AGG_COLUMN: 874 case TK_COLUMN: { 875 /* The expression is a column. Locate the table the column is being 876 ** extracted from in NameContext.pSrcList. This table may be real 877 ** database table or a subquery. 878 */ 879 Table *pTab = 0; /* Table structure column is extracted from */ 880 Select *pS = 0; /* Select the column is extracted from */ 881 int iCol = pExpr->iColumn; /* Index of column in pTab */ 882 testcase( pExpr->op==TK_AGG_COLUMN ); 883 testcase( pExpr->op==TK_COLUMN ); 884 while( pNC && !pTab ){ 885 SrcList *pTabList = pNC->pSrcList; 886 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 887 if( j<pTabList->nSrc ){ 888 pTab = pTabList->a[j].pTab; 889 pS = pTabList->a[j].pSelect; 890 }else{ 891 pNC = pNC->pNext; 892 } 893 } 894 895 if( pTab==0 ){ 896 /* FIX ME: 897 ** This can occurs if you have something like "SELECT new.x;" inside 898 ** a trigger. In other words, if you reference the special "new" 899 ** table in the result set of a select. We do not have a good way 900 ** to find the actual table type, so call it "TEXT". This is really 901 ** something of a bug, but I do not know how to fix it. 902 ** 903 ** This code does not produce the correct answer - it just prevents 904 ** a segfault. See ticket #1229. 905 */ 906 zType = "TEXT"; 907 break; 908 } 909 910 assert( pTab ); 911 if( pS ){ 912 /* The "table" is actually a sub-select or a view in the FROM clause 913 ** of the SELECT statement. Return the declaration type and origin 914 ** data for the result-set column of the sub-select. 915 */ 916 if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){ 917 /* If iCol is less than zero, then the expression requests the 918 ** rowid of the sub-select or view. This expression is legal (see 919 ** test case misc2.2.2) - it always evaluates to NULL. 920 */ 921 NameContext sNC; 922 Expr *p = pS->pEList->a[iCol].pExpr; 923 sNC.pSrcList = pS->pSrc; 924 sNC.pNext = 0; 925 sNC.pParse = pNC->pParse; 926 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 927 } 928 }else if( ALWAYS(pTab->pSchema) ){ 929 /* A real table */ 930 assert( !pS ); 931 if( iCol<0 ) iCol = pTab->iPKey; 932 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 933 if( iCol<0 ){ 934 zType = "INTEGER"; 935 zOriginCol = "rowid"; 936 }else{ 937 zType = pTab->aCol[iCol].zType; 938 zOriginCol = pTab->aCol[iCol].zName; 939 } 940 zOriginTab = pTab->zName; 941 if( pNC->pParse ){ 942 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 943 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 944 } 945 } 946 break; 947 } 948 #ifndef SQLITE_OMIT_SUBQUERY 949 case TK_SELECT: { 950 /* The expression is a sub-select. Return the declaration type and 951 ** origin info for the single column in the result set of the SELECT 952 ** statement. 953 */ 954 NameContext sNC; 955 Select *pS = pExpr->x.pSelect; 956 Expr *p = pS->pEList->a[0].pExpr; 957 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 958 sNC.pSrcList = pS->pSrc; 959 sNC.pNext = pNC; 960 sNC.pParse = pNC->pParse; 961 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 962 break; 963 } 964 #endif 965 } 966 967 if( pzOriginDb ){ 968 assert( pzOriginTab && pzOriginCol ); 969 *pzOriginDb = zOriginDb; 970 *pzOriginTab = zOriginTab; 971 *pzOriginCol = zOriginCol; 972 } 973 return zType; 974 } 975 976 /* 977 ** Generate code that will tell the VDBE the declaration types of columns 978 ** in the result set. 979 */ 980 static void generateColumnTypes( 981 Parse *pParse, /* Parser context */ 982 SrcList *pTabList, /* List of tables */ 983 ExprList *pEList /* Expressions defining the result set */ 984 ){ 985 #ifndef SQLITE_OMIT_DECLTYPE 986 Vdbe *v = pParse->pVdbe; 987 int i; 988 NameContext sNC; 989 sNC.pSrcList = pTabList; 990 sNC.pParse = pParse; 991 for(i=0; i<pEList->nExpr; i++){ 992 Expr *p = pEList->a[i].pExpr; 993 const char *zType; 994 #ifdef SQLITE_ENABLE_COLUMN_METADATA 995 const char *zOrigDb = 0; 996 const char *zOrigTab = 0; 997 const char *zOrigCol = 0; 998 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 999 1000 /* The vdbe must make its own copy of the column-type and other 1001 ** column specific strings, in case the schema is reset before this 1002 ** virtual machine is deleted. 1003 */ 1004 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1005 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1006 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1007 #else 1008 zType = columnType(&sNC, p, 0, 0, 0); 1009 #endif 1010 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1011 } 1012 #endif /* SQLITE_OMIT_DECLTYPE */ 1013 } 1014 1015 /* 1016 ** Generate code that will tell the VDBE the names of columns 1017 ** in the result set. This information is used to provide the 1018 ** azCol[] values in the callback. 1019 */ 1020 static void generateColumnNames( 1021 Parse *pParse, /* Parser context */ 1022 SrcList *pTabList, /* List of tables */ 1023 ExprList *pEList /* Expressions defining the result set */ 1024 ){ 1025 Vdbe *v = pParse->pVdbe; 1026 int i, j; 1027 sqlite3 *db = pParse->db; 1028 int fullNames, shortNames; 1029 1030 #ifndef SQLITE_OMIT_EXPLAIN 1031 /* If this is an EXPLAIN, skip this step */ 1032 if( pParse->explain ){ 1033 return; 1034 } 1035 #endif 1036 1037 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1038 pParse->colNamesSet = 1; 1039 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1040 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1041 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1042 for(i=0; i<pEList->nExpr; i++){ 1043 Expr *p; 1044 p = pEList->a[i].pExpr; 1045 if( NEVER(p==0) ) continue; 1046 if( pEList->a[i].zName ){ 1047 char *zName = pEList->a[i].zName; 1048 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1049 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1050 Table *pTab; 1051 char *zCol; 1052 int iCol = p->iColumn; 1053 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1054 if( pTabList->a[j].iCursor==p->iTable ) break; 1055 } 1056 assert( j<pTabList->nSrc ); 1057 pTab = pTabList->a[j].pTab; 1058 if( iCol<0 ) iCol = pTab->iPKey; 1059 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1060 if( iCol<0 ){ 1061 zCol = "rowid"; 1062 }else{ 1063 zCol = pTab->aCol[iCol].zName; 1064 } 1065 if( !shortNames && !fullNames ){ 1066 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1067 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1068 }else if( fullNames ){ 1069 char *zName = 0; 1070 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1071 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1072 }else{ 1073 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1074 } 1075 }else{ 1076 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1077 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1078 } 1079 } 1080 generateColumnTypes(pParse, pTabList, pEList); 1081 } 1082 1083 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1084 /* 1085 ** Name of the connection operator, used for error messages. 1086 */ 1087 static const char *selectOpName(int id){ 1088 char *z; 1089 switch( id ){ 1090 case TK_ALL: z = "UNION ALL"; break; 1091 case TK_INTERSECT: z = "INTERSECT"; break; 1092 case TK_EXCEPT: z = "EXCEPT"; break; 1093 default: z = "UNION"; break; 1094 } 1095 return z; 1096 } 1097 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1098 1099 /* 1100 ** Given a an expression list (which is really the list of expressions 1101 ** that form the result set of a SELECT statement) compute appropriate 1102 ** column names for a table that would hold the expression list. 1103 ** 1104 ** All column names will be unique. 1105 ** 1106 ** Only the column names are computed. Column.zType, Column.zColl, 1107 ** and other fields of Column are zeroed. 1108 ** 1109 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1110 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1111 */ 1112 static int selectColumnsFromExprList( 1113 Parse *pParse, /* Parsing context */ 1114 ExprList *pEList, /* Expr list from which to derive column names */ 1115 int *pnCol, /* Write the number of columns here */ 1116 Column **paCol /* Write the new column list here */ 1117 ){ 1118 sqlite3 *db = pParse->db; /* Database connection */ 1119 int i, j; /* Loop counters */ 1120 int cnt; /* Index added to make the name unique */ 1121 Column *aCol, *pCol; /* For looping over result columns */ 1122 int nCol; /* Number of columns in the result set */ 1123 Expr *p; /* Expression for a single result column */ 1124 char *zName; /* Column name */ 1125 int nName; /* Size of name in zName[] */ 1126 1127 *pnCol = nCol = pEList->nExpr; 1128 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1129 if( aCol==0 ) return SQLITE_NOMEM; 1130 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1131 /* Get an appropriate name for the column 1132 */ 1133 p = pEList->a[i].pExpr; 1134 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1135 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1136 if( (zName = pEList->a[i].zName)!=0 ){ 1137 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1138 zName = sqlite3DbStrDup(db, zName); 1139 }else{ 1140 Expr *pColExpr = p; /* The expression that is the result column name */ 1141 Table *pTab; /* Table associated with this expression */ 1142 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1143 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1144 /* For columns use the column name name */ 1145 int iCol = pColExpr->iColumn; 1146 pTab = pColExpr->pTab; 1147 if( iCol<0 ) iCol = pTab->iPKey; 1148 zName = sqlite3MPrintf(db, "%s", 1149 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1150 }else if( pColExpr->op==TK_ID ){ 1151 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1152 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1153 }else{ 1154 /* Use the original text of the column expression as its name */ 1155 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1156 } 1157 } 1158 if( db->mallocFailed ){ 1159 sqlite3DbFree(db, zName); 1160 break; 1161 } 1162 1163 /* Make sure the column name is unique. If the name is not unique, 1164 ** append a integer to the name so that it becomes unique. 1165 */ 1166 nName = sqlite3Strlen30(zName); 1167 for(j=cnt=0; j<i; j++){ 1168 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1169 char *zNewName; 1170 zName[nName] = 0; 1171 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1172 sqlite3DbFree(db, zName); 1173 zName = zNewName; 1174 j = -1; 1175 if( zName==0 ) break; 1176 } 1177 } 1178 pCol->zName = zName; 1179 } 1180 if( db->mallocFailed ){ 1181 for(j=0; j<i; j++){ 1182 sqlite3DbFree(db, aCol[j].zName); 1183 } 1184 sqlite3DbFree(db, aCol); 1185 *paCol = 0; 1186 *pnCol = 0; 1187 return SQLITE_NOMEM; 1188 } 1189 return SQLITE_OK; 1190 } 1191 1192 /* 1193 ** Add type and collation information to a column list based on 1194 ** a SELECT statement. 1195 ** 1196 ** The column list presumably came from selectColumnNamesFromExprList(). 1197 ** The column list has only names, not types or collations. This 1198 ** routine goes through and adds the types and collations. 1199 ** 1200 ** This routine requires that all identifiers in the SELECT 1201 ** statement be resolved. 1202 */ 1203 static void selectAddColumnTypeAndCollation( 1204 Parse *pParse, /* Parsing contexts */ 1205 int nCol, /* Number of columns */ 1206 Column *aCol, /* List of columns */ 1207 Select *pSelect /* SELECT used to determine types and collations */ 1208 ){ 1209 sqlite3 *db = pParse->db; 1210 NameContext sNC; 1211 Column *pCol; 1212 CollSeq *pColl; 1213 int i; 1214 Expr *p; 1215 struct ExprList_item *a; 1216 1217 assert( pSelect!=0 ); 1218 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1219 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1220 if( db->mallocFailed ) return; 1221 memset(&sNC, 0, sizeof(sNC)); 1222 sNC.pSrcList = pSelect->pSrc; 1223 a = pSelect->pEList->a; 1224 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1225 p = a[i].pExpr; 1226 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1227 pCol->affinity = sqlite3ExprAffinity(p); 1228 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1229 pColl = sqlite3ExprCollSeq(pParse, p); 1230 if( pColl ){ 1231 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1232 } 1233 } 1234 } 1235 1236 /* 1237 ** Given a SELECT statement, generate a Table structure that describes 1238 ** the result set of that SELECT. 1239 */ 1240 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1241 Table *pTab; 1242 sqlite3 *db = pParse->db; 1243 int savedFlags; 1244 1245 savedFlags = db->flags; 1246 db->flags &= ~SQLITE_FullColNames; 1247 db->flags |= SQLITE_ShortColNames; 1248 sqlite3SelectPrep(pParse, pSelect, 0); 1249 if( pParse->nErr ) return 0; 1250 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1251 db->flags = savedFlags; 1252 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1253 if( pTab==0 ){ 1254 return 0; 1255 } 1256 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1257 ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */ 1258 assert( db->lookaside.bEnabled==0 ); 1259 pTab->dbMem = 0; 1260 pTab->nRef = 1; 1261 pTab->zName = 0; 1262 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1263 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1264 pTab->iPKey = -1; 1265 if( db->mallocFailed ){ 1266 sqlite3DeleteTable(pTab); 1267 return 0; 1268 } 1269 return pTab; 1270 } 1271 1272 /* 1273 ** Get a VDBE for the given parser context. Create a new one if necessary. 1274 ** If an error occurs, return NULL and leave a message in pParse. 1275 */ 1276 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1277 Vdbe *v = pParse->pVdbe; 1278 if( v==0 ){ 1279 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1280 #ifndef SQLITE_OMIT_TRACE 1281 if( v ){ 1282 sqlite3VdbeAddOp0(v, OP_Trace); 1283 } 1284 #endif 1285 } 1286 return v; 1287 } 1288 1289 1290 /* 1291 ** Compute the iLimit and iOffset fields of the SELECT based on the 1292 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1293 ** that appear in the original SQL statement after the LIMIT and OFFSET 1294 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1295 ** are the integer memory register numbers for counters used to compute 1296 ** the limit and offset. If there is no limit and/or offset, then 1297 ** iLimit and iOffset are negative. 1298 ** 1299 ** This routine changes the values of iLimit and iOffset only if 1300 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1301 ** iOffset should have been preset to appropriate default values 1302 ** (usually but not always -1) prior to calling this routine. 1303 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1304 ** redefined. The UNION ALL operator uses this property to force 1305 ** the reuse of the same limit and offset registers across multiple 1306 ** SELECT statements. 1307 */ 1308 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1309 Vdbe *v = 0; 1310 int iLimit = 0; 1311 int iOffset; 1312 int addr1; 1313 if( p->iLimit ) return; 1314 1315 /* 1316 ** "LIMIT -1" always shows all rows. There is some 1317 ** contraversy about what the correct behavior should be. 1318 ** The current implementation interprets "LIMIT 0" to mean 1319 ** no rows. 1320 */ 1321 sqlite3ExprCacheClear(pParse); 1322 assert( p->pOffset==0 || p->pLimit!=0 ); 1323 if( p->pLimit ){ 1324 p->iLimit = iLimit = ++pParse->nMem; 1325 v = sqlite3GetVdbe(pParse); 1326 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1327 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1328 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1329 VdbeComment((v, "LIMIT counter")); 1330 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1331 if( p->pOffset ){ 1332 p->iOffset = iOffset = ++pParse->nMem; 1333 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1334 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1335 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1336 VdbeComment((v, "OFFSET counter")); 1337 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1338 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1339 sqlite3VdbeJumpHere(v, addr1); 1340 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1341 VdbeComment((v, "LIMIT+OFFSET")); 1342 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1343 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1344 sqlite3VdbeJumpHere(v, addr1); 1345 } 1346 } 1347 } 1348 1349 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1350 /* 1351 ** Return the appropriate collating sequence for the iCol-th column of 1352 ** the result set for the compound-select statement "p". Return NULL if 1353 ** the column has no default collating sequence. 1354 ** 1355 ** The collating sequence for the compound select is taken from the 1356 ** left-most term of the select that has a collating sequence. 1357 */ 1358 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1359 CollSeq *pRet; 1360 if( p->pPrior ){ 1361 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1362 }else{ 1363 pRet = 0; 1364 } 1365 assert( iCol>=0 ); 1366 if( pRet==0 && iCol<p->pEList->nExpr ){ 1367 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1368 } 1369 return pRet; 1370 } 1371 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1372 1373 /* Forward reference */ 1374 static int multiSelectOrderBy( 1375 Parse *pParse, /* Parsing context */ 1376 Select *p, /* The right-most of SELECTs to be coded */ 1377 SelectDest *pDest /* What to do with query results */ 1378 ); 1379 1380 1381 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1382 /* 1383 ** This routine is called to process a compound query form from 1384 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1385 ** INTERSECT 1386 ** 1387 ** "p" points to the right-most of the two queries. the query on the 1388 ** left is p->pPrior. The left query could also be a compound query 1389 ** in which case this routine will be called recursively. 1390 ** 1391 ** The results of the total query are to be written into a destination 1392 ** of type eDest with parameter iParm. 1393 ** 1394 ** Example 1: Consider a three-way compound SQL statement. 1395 ** 1396 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1397 ** 1398 ** This statement is parsed up as follows: 1399 ** 1400 ** SELECT c FROM t3 1401 ** | 1402 ** `-----> SELECT b FROM t2 1403 ** | 1404 ** `------> SELECT a FROM t1 1405 ** 1406 ** The arrows in the diagram above represent the Select.pPrior pointer. 1407 ** So if this routine is called with p equal to the t3 query, then 1408 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1409 ** 1410 ** Notice that because of the way SQLite parses compound SELECTs, the 1411 ** individual selects always group from left to right. 1412 */ 1413 static int multiSelect( 1414 Parse *pParse, /* Parsing context */ 1415 Select *p, /* The right-most of SELECTs to be coded */ 1416 SelectDest *pDest /* What to do with query results */ 1417 ){ 1418 int rc = SQLITE_OK; /* Success code from a subroutine */ 1419 Select *pPrior; /* Another SELECT immediately to our left */ 1420 Vdbe *v; /* Generate code to this VDBE */ 1421 SelectDest dest; /* Alternative data destination */ 1422 Select *pDelete = 0; /* Chain of simple selects to delete */ 1423 sqlite3 *db; /* Database connection */ 1424 1425 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1426 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1427 */ 1428 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1429 db = pParse->db; 1430 pPrior = p->pPrior; 1431 assert( pPrior->pRightmost!=pPrior ); 1432 assert( pPrior->pRightmost==p->pRightmost ); 1433 dest = *pDest; 1434 if( pPrior->pOrderBy ){ 1435 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1436 selectOpName(p->op)); 1437 rc = 1; 1438 goto multi_select_end; 1439 } 1440 if( pPrior->pLimit ){ 1441 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1442 selectOpName(p->op)); 1443 rc = 1; 1444 goto multi_select_end; 1445 } 1446 1447 v = sqlite3GetVdbe(pParse); 1448 assert( v!=0 ); /* The VDBE already created by calling function */ 1449 1450 /* Create the destination temporary table if necessary 1451 */ 1452 if( dest.eDest==SRT_EphemTab ){ 1453 assert( p->pEList ); 1454 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1455 dest.eDest = SRT_Table; 1456 } 1457 1458 /* Make sure all SELECTs in the statement have the same number of elements 1459 ** in their result sets. 1460 */ 1461 assert( p->pEList && pPrior->pEList ); 1462 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1463 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1464 " do not have the same number of result columns", selectOpName(p->op)); 1465 rc = 1; 1466 goto multi_select_end; 1467 } 1468 1469 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1470 */ 1471 if( p->pOrderBy ){ 1472 return multiSelectOrderBy(pParse, p, pDest); 1473 } 1474 1475 /* Generate code for the left and right SELECT statements. 1476 */ 1477 switch( p->op ){ 1478 case TK_ALL: { 1479 int addr = 0; 1480 assert( !pPrior->pLimit ); 1481 pPrior->pLimit = p->pLimit; 1482 pPrior->pOffset = p->pOffset; 1483 rc = sqlite3Select(pParse, pPrior, &dest); 1484 p->pLimit = 0; 1485 p->pOffset = 0; 1486 if( rc ){ 1487 goto multi_select_end; 1488 } 1489 p->pPrior = 0; 1490 p->iLimit = pPrior->iLimit; 1491 p->iOffset = pPrior->iOffset; 1492 if( p->iLimit ){ 1493 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1494 VdbeComment((v, "Jump ahead if LIMIT reached")); 1495 } 1496 rc = sqlite3Select(pParse, p, &dest); 1497 testcase( rc!=SQLITE_OK ); 1498 pDelete = p->pPrior; 1499 p->pPrior = pPrior; 1500 if( addr ){ 1501 sqlite3VdbeJumpHere(v, addr); 1502 } 1503 break; 1504 } 1505 case TK_EXCEPT: 1506 case TK_UNION: { 1507 int unionTab; /* Cursor number of the temporary table holding result */ 1508 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1509 int priorOp; /* The SRT_ operation to apply to prior selects */ 1510 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1511 int addr; 1512 SelectDest uniondest; 1513 1514 testcase( p->op==TK_EXCEPT ); 1515 testcase( p->op==TK_UNION ); 1516 priorOp = SRT_Union; 1517 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1518 /* We can reuse a temporary table generated by a SELECT to our 1519 ** right. 1520 */ 1521 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1522 ** of a 3-way or more compound */ 1523 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1524 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1525 unionTab = dest.iParm; 1526 }else{ 1527 /* We will need to create our own temporary table to hold the 1528 ** intermediate results. 1529 */ 1530 unionTab = pParse->nTab++; 1531 assert( p->pOrderBy==0 ); 1532 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1533 assert( p->addrOpenEphm[0] == -1 ); 1534 p->addrOpenEphm[0] = addr; 1535 p->pRightmost->selFlags |= SF_UsesEphemeral; 1536 assert( p->pEList ); 1537 } 1538 1539 /* Code the SELECT statements to our left 1540 */ 1541 assert( !pPrior->pOrderBy ); 1542 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1543 rc = sqlite3Select(pParse, pPrior, &uniondest); 1544 if( rc ){ 1545 goto multi_select_end; 1546 } 1547 1548 /* Code the current SELECT statement 1549 */ 1550 if( p->op==TK_EXCEPT ){ 1551 op = SRT_Except; 1552 }else{ 1553 assert( p->op==TK_UNION ); 1554 op = SRT_Union; 1555 } 1556 p->pPrior = 0; 1557 pLimit = p->pLimit; 1558 p->pLimit = 0; 1559 pOffset = p->pOffset; 1560 p->pOffset = 0; 1561 uniondest.eDest = op; 1562 rc = sqlite3Select(pParse, p, &uniondest); 1563 testcase( rc!=SQLITE_OK ); 1564 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1565 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1566 sqlite3ExprListDelete(db, p->pOrderBy); 1567 pDelete = p->pPrior; 1568 p->pPrior = pPrior; 1569 p->pOrderBy = 0; 1570 sqlite3ExprDelete(db, p->pLimit); 1571 p->pLimit = pLimit; 1572 p->pOffset = pOffset; 1573 p->iLimit = 0; 1574 p->iOffset = 0; 1575 1576 /* Convert the data in the temporary table into whatever form 1577 ** it is that we currently need. 1578 */ 1579 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1580 if( dest.eDest!=priorOp ){ 1581 int iCont, iBreak, iStart; 1582 assert( p->pEList ); 1583 if( dest.eDest==SRT_Output ){ 1584 Select *pFirst = p; 1585 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1586 generateColumnNames(pParse, 0, pFirst->pEList); 1587 } 1588 iBreak = sqlite3VdbeMakeLabel(v); 1589 iCont = sqlite3VdbeMakeLabel(v); 1590 computeLimitRegisters(pParse, p, iBreak); 1591 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1592 iStart = sqlite3VdbeCurrentAddr(v); 1593 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1594 0, -1, &dest, iCont, iBreak); 1595 sqlite3VdbeResolveLabel(v, iCont); 1596 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1597 sqlite3VdbeResolveLabel(v, iBreak); 1598 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1599 } 1600 break; 1601 } 1602 default: assert( p->op==TK_INTERSECT ); { 1603 int tab1, tab2; 1604 int iCont, iBreak, iStart; 1605 Expr *pLimit, *pOffset; 1606 int addr; 1607 SelectDest intersectdest; 1608 int r1; 1609 1610 /* INTERSECT is different from the others since it requires 1611 ** two temporary tables. Hence it has its own case. Begin 1612 ** by allocating the tables we will need. 1613 */ 1614 tab1 = pParse->nTab++; 1615 tab2 = pParse->nTab++; 1616 assert( p->pOrderBy==0 ); 1617 1618 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1619 assert( p->addrOpenEphm[0] == -1 ); 1620 p->addrOpenEphm[0] = addr; 1621 p->pRightmost->selFlags |= SF_UsesEphemeral; 1622 assert( p->pEList ); 1623 1624 /* Code the SELECTs to our left into temporary table "tab1". 1625 */ 1626 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1627 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1628 if( rc ){ 1629 goto multi_select_end; 1630 } 1631 1632 /* Code the current SELECT into temporary table "tab2" 1633 */ 1634 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1635 assert( p->addrOpenEphm[1] == -1 ); 1636 p->addrOpenEphm[1] = addr; 1637 p->pPrior = 0; 1638 pLimit = p->pLimit; 1639 p->pLimit = 0; 1640 pOffset = p->pOffset; 1641 p->pOffset = 0; 1642 intersectdest.iParm = tab2; 1643 rc = sqlite3Select(pParse, p, &intersectdest); 1644 testcase( rc!=SQLITE_OK ); 1645 pDelete = p->pPrior; 1646 p->pPrior = pPrior; 1647 sqlite3ExprDelete(db, p->pLimit); 1648 p->pLimit = pLimit; 1649 p->pOffset = pOffset; 1650 1651 /* Generate code to take the intersection of the two temporary 1652 ** tables. 1653 */ 1654 assert( p->pEList ); 1655 if( dest.eDest==SRT_Output ){ 1656 Select *pFirst = p; 1657 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1658 generateColumnNames(pParse, 0, pFirst->pEList); 1659 } 1660 iBreak = sqlite3VdbeMakeLabel(v); 1661 iCont = sqlite3VdbeMakeLabel(v); 1662 computeLimitRegisters(pParse, p, iBreak); 1663 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1664 r1 = sqlite3GetTempReg(pParse); 1665 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1666 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 1667 sqlite3ReleaseTempReg(pParse, r1); 1668 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1669 0, -1, &dest, iCont, iBreak); 1670 sqlite3VdbeResolveLabel(v, iCont); 1671 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1672 sqlite3VdbeResolveLabel(v, iBreak); 1673 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1674 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1675 break; 1676 } 1677 } 1678 1679 /* Compute collating sequences used by 1680 ** temporary tables needed to implement the compound select. 1681 ** Attach the KeyInfo structure to all temporary tables. 1682 ** 1683 ** This section is run by the right-most SELECT statement only. 1684 ** SELECT statements to the left always skip this part. The right-most 1685 ** SELECT might also skip this part if it has no ORDER BY clause and 1686 ** no temp tables are required. 1687 */ 1688 if( p->selFlags & SF_UsesEphemeral ){ 1689 int i; /* Loop counter */ 1690 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1691 Select *pLoop; /* For looping through SELECT statements */ 1692 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1693 int nCol; /* Number of columns in result set */ 1694 1695 assert( p->pRightmost==p ); 1696 nCol = p->pEList->nExpr; 1697 pKeyInfo = sqlite3DbMallocZero(db, 1698 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1699 if( !pKeyInfo ){ 1700 rc = SQLITE_NOMEM; 1701 goto multi_select_end; 1702 } 1703 1704 pKeyInfo->enc = ENC(db); 1705 pKeyInfo->nField = (u16)nCol; 1706 1707 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1708 *apColl = multiSelectCollSeq(pParse, p, i); 1709 if( 0==*apColl ){ 1710 *apColl = db->pDfltColl; 1711 } 1712 } 1713 1714 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1715 for(i=0; i<2; i++){ 1716 int addr = pLoop->addrOpenEphm[i]; 1717 if( addr<0 ){ 1718 /* If [0] is unused then [1] is also unused. So we can 1719 ** always safely abort as soon as the first unused slot is found */ 1720 assert( pLoop->addrOpenEphm[1]<0 ); 1721 break; 1722 } 1723 sqlite3VdbeChangeP2(v, addr, nCol); 1724 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1725 pLoop->addrOpenEphm[i] = -1; 1726 } 1727 } 1728 sqlite3DbFree(db, pKeyInfo); 1729 } 1730 1731 multi_select_end: 1732 pDest->iMem = dest.iMem; 1733 pDest->nMem = dest.nMem; 1734 sqlite3SelectDelete(db, pDelete); 1735 return rc; 1736 } 1737 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1738 1739 /* 1740 ** Code an output subroutine for a coroutine implementation of a 1741 ** SELECT statment. 1742 ** 1743 ** The data to be output is contained in pIn->iMem. There are 1744 ** pIn->nMem columns to be output. pDest is where the output should 1745 ** be sent. 1746 ** 1747 ** regReturn is the number of the register holding the subroutine 1748 ** return address. 1749 ** 1750 ** If regPrev>0 then it is a the first register in a vector that 1751 ** records the previous output. mem[regPrev] is a flag that is false 1752 ** if there has been no previous output. If regPrev>0 then code is 1753 ** generated to suppress duplicates. pKeyInfo is used for comparing 1754 ** keys. 1755 ** 1756 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1757 ** iBreak. 1758 */ 1759 static int generateOutputSubroutine( 1760 Parse *pParse, /* Parsing context */ 1761 Select *p, /* The SELECT statement */ 1762 SelectDest *pIn, /* Coroutine supplying data */ 1763 SelectDest *pDest, /* Where to send the data */ 1764 int regReturn, /* The return address register */ 1765 int regPrev, /* Previous result register. No uniqueness if 0 */ 1766 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1767 int p4type, /* The p4 type for pKeyInfo */ 1768 int iBreak /* Jump here if we hit the LIMIT */ 1769 ){ 1770 Vdbe *v = pParse->pVdbe; 1771 int iContinue; 1772 int addr; 1773 1774 addr = sqlite3VdbeCurrentAddr(v); 1775 iContinue = sqlite3VdbeMakeLabel(v); 1776 1777 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1778 */ 1779 if( regPrev ){ 1780 int j1, j2; 1781 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1782 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1783 (char*)pKeyInfo, p4type); 1784 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1785 sqlite3VdbeJumpHere(v, j1); 1786 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1787 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1788 } 1789 if( pParse->db->mallocFailed ) return 0; 1790 1791 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1792 */ 1793 codeOffset(v, p, iContinue); 1794 1795 switch( pDest->eDest ){ 1796 /* Store the result as data using a unique key. 1797 */ 1798 case SRT_Table: 1799 case SRT_EphemTab: { 1800 int r1 = sqlite3GetTempReg(pParse); 1801 int r2 = sqlite3GetTempReg(pParse); 1802 testcase( pDest->eDest==SRT_Table ); 1803 testcase( pDest->eDest==SRT_EphemTab ); 1804 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1805 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1806 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1807 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1808 sqlite3ReleaseTempReg(pParse, r2); 1809 sqlite3ReleaseTempReg(pParse, r1); 1810 break; 1811 } 1812 1813 #ifndef SQLITE_OMIT_SUBQUERY 1814 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1815 ** then there should be a single item on the stack. Write this 1816 ** item into the set table with bogus data. 1817 */ 1818 case SRT_Set: { 1819 int r1; 1820 assert( pIn->nMem==1 ); 1821 p->affinity = 1822 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1823 r1 = sqlite3GetTempReg(pParse); 1824 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1825 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1826 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1827 sqlite3ReleaseTempReg(pParse, r1); 1828 break; 1829 } 1830 1831 #if 0 /* Never occurs on an ORDER BY query */ 1832 /* If any row exist in the result set, record that fact and abort. 1833 */ 1834 case SRT_Exists: { 1835 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1836 /* The LIMIT clause will terminate the loop for us */ 1837 break; 1838 } 1839 #endif 1840 1841 /* If this is a scalar select that is part of an expression, then 1842 ** store the results in the appropriate memory cell and break out 1843 ** of the scan loop. 1844 */ 1845 case SRT_Mem: { 1846 assert( pIn->nMem==1 ); 1847 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1848 /* The LIMIT clause will jump out of the loop for us */ 1849 break; 1850 } 1851 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1852 1853 /* The results are stored in a sequence of registers 1854 ** starting at pDest->iMem. Then the co-routine yields. 1855 */ 1856 case SRT_Coroutine: { 1857 if( pDest->iMem==0 ){ 1858 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1859 pDest->nMem = pIn->nMem; 1860 } 1861 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1862 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1863 break; 1864 } 1865 1866 /* If none of the above, then the result destination must be 1867 ** SRT_Output. This routine is never called with any other 1868 ** destination other than the ones handled above or SRT_Output. 1869 ** 1870 ** For SRT_Output, results are stored in a sequence of registers. 1871 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 1872 ** return the next row of result. 1873 */ 1874 default: { 1875 assert( pDest->eDest==SRT_Output ); 1876 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1877 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1878 break; 1879 } 1880 } 1881 1882 /* Jump to the end of the loop if the LIMIT is reached. 1883 */ 1884 if( p->iLimit ){ 1885 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1886 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 1887 } 1888 1889 /* Generate the subroutine return 1890 */ 1891 sqlite3VdbeResolveLabel(v, iContinue); 1892 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1893 1894 return addr; 1895 } 1896 1897 /* 1898 ** Alternative compound select code generator for cases when there 1899 ** is an ORDER BY clause. 1900 ** 1901 ** We assume a query of the following form: 1902 ** 1903 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1904 ** 1905 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1906 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1907 ** co-routines. Then run the co-routines in parallel and merge the results 1908 ** into the output. In addition to the two coroutines (called selectA and 1909 ** selectB) there are 7 subroutines: 1910 ** 1911 ** outA: Move the output of the selectA coroutine into the output 1912 ** of the compound query. 1913 ** 1914 ** outB: Move the output of the selectB coroutine into the output 1915 ** of the compound query. (Only generated for UNION and 1916 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1917 ** appears only in B.) 1918 ** 1919 ** AltB: Called when there is data from both coroutines and A<B. 1920 ** 1921 ** AeqB: Called when there is data from both coroutines and A==B. 1922 ** 1923 ** AgtB: Called when there is data from both coroutines and A>B. 1924 ** 1925 ** EofA: Called when data is exhausted from selectA. 1926 ** 1927 ** EofB: Called when data is exhausted from selectB. 1928 ** 1929 ** The implementation of the latter five subroutines depend on which 1930 ** <operator> is used: 1931 ** 1932 ** 1933 ** UNION ALL UNION EXCEPT INTERSECT 1934 ** ------------- ----------------- -------------- ----------------- 1935 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1936 ** 1937 ** AeqB: outA, nextA nextA nextA outA, nextA 1938 ** 1939 ** AgtB: outB, nextB outB, nextB nextB nextB 1940 ** 1941 ** EofA: outB, nextB outB, nextB halt halt 1942 ** 1943 ** EofB: outA, nextA outA, nextA outA, nextA halt 1944 ** 1945 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1946 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1947 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1948 ** following nextX causes a jump to the end of the select processing. 1949 ** 1950 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1951 ** within the output subroutine. The regPrev register set holds the previously 1952 ** output value. A comparison is made against this value and the output 1953 ** is skipped if the next results would be the same as the previous. 1954 ** 1955 ** The implementation plan is to implement the two coroutines and seven 1956 ** subroutines first, then put the control logic at the bottom. Like this: 1957 ** 1958 ** goto Init 1959 ** coA: coroutine for left query (A) 1960 ** coB: coroutine for right query (B) 1961 ** outA: output one row of A 1962 ** outB: output one row of B (UNION and UNION ALL only) 1963 ** EofA: ... 1964 ** EofB: ... 1965 ** AltB: ... 1966 ** AeqB: ... 1967 ** AgtB: ... 1968 ** Init: initialize coroutine registers 1969 ** yield coA 1970 ** if eof(A) goto EofA 1971 ** yield coB 1972 ** if eof(B) goto EofB 1973 ** Cmpr: Compare A, B 1974 ** Jump AltB, AeqB, AgtB 1975 ** End: ... 1976 ** 1977 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 1978 ** actually called using Gosub and they do not Return. EofA and EofB loop 1979 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 1980 ** and AgtB jump to either L2 or to one of EofA or EofB. 1981 */ 1982 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1983 static int multiSelectOrderBy( 1984 Parse *pParse, /* Parsing context */ 1985 Select *p, /* The right-most of SELECTs to be coded */ 1986 SelectDest *pDest /* What to do with query results */ 1987 ){ 1988 int i, j; /* Loop counters */ 1989 Select *pPrior; /* Another SELECT immediately to our left */ 1990 Vdbe *v; /* Generate code to this VDBE */ 1991 SelectDest destA; /* Destination for coroutine A */ 1992 SelectDest destB; /* Destination for coroutine B */ 1993 int regAddrA; /* Address register for select-A coroutine */ 1994 int regEofA; /* Flag to indicate when select-A is complete */ 1995 int regAddrB; /* Address register for select-B coroutine */ 1996 int regEofB; /* Flag to indicate when select-B is complete */ 1997 int addrSelectA; /* Address of the select-A coroutine */ 1998 int addrSelectB; /* Address of the select-B coroutine */ 1999 int regOutA; /* Address register for the output-A subroutine */ 2000 int regOutB; /* Address register for the output-B subroutine */ 2001 int addrOutA; /* Address of the output-A subroutine */ 2002 int addrOutB = 0; /* Address of the output-B subroutine */ 2003 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2004 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2005 int addrAltB; /* Address of the A<B subroutine */ 2006 int addrAeqB; /* Address of the A==B subroutine */ 2007 int addrAgtB; /* Address of the A>B subroutine */ 2008 int regLimitA; /* Limit register for select-A */ 2009 int regLimitB; /* Limit register for select-A */ 2010 int regPrev; /* A range of registers to hold previous output */ 2011 int savedLimit; /* Saved value of p->iLimit */ 2012 int savedOffset; /* Saved value of p->iOffset */ 2013 int labelCmpr; /* Label for the start of the merge algorithm */ 2014 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2015 int j1; /* Jump instructions that get retargetted */ 2016 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2017 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2018 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2019 sqlite3 *db; /* Database connection */ 2020 ExprList *pOrderBy; /* The ORDER BY clause */ 2021 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2022 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2023 2024 assert( p->pOrderBy!=0 ); 2025 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2026 db = pParse->db; 2027 v = pParse->pVdbe; 2028 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2029 labelEnd = sqlite3VdbeMakeLabel(v); 2030 labelCmpr = sqlite3VdbeMakeLabel(v); 2031 2032 2033 /* Patch up the ORDER BY clause 2034 */ 2035 op = p->op; 2036 pPrior = p->pPrior; 2037 assert( pPrior->pOrderBy==0 ); 2038 pOrderBy = p->pOrderBy; 2039 assert( pOrderBy ); 2040 nOrderBy = pOrderBy->nExpr; 2041 2042 /* For operators other than UNION ALL we have to make sure that 2043 ** the ORDER BY clause covers every term of the result set. Add 2044 ** terms to the ORDER BY clause as necessary. 2045 */ 2046 if( op!=TK_ALL ){ 2047 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2048 struct ExprList_item *pItem; 2049 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2050 assert( pItem->iCol>0 ); 2051 if( pItem->iCol==i ) break; 2052 } 2053 if( j==nOrderBy ){ 2054 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2055 if( pNew==0 ) return SQLITE_NOMEM; 2056 pNew->flags |= EP_IntValue; 2057 pNew->u.iValue = i; 2058 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2059 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2060 } 2061 } 2062 } 2063 2064 /* Compute the comparison permutation and keyinfo that is used with 2065 ** the permutation used to determine if the next 2066 ** row of results comes from selectA or selectB. Also add explicit 2067 ** collations to the ORDER BY clause terms so that when the subqueries 2068 ** to the right and the left are evaluated, they use the correct 2069 ** collation. 2070 */ 2071 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2072 if( aPermute ){ 2073 struct ExprList_item *pItem; 2074 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2075 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2076 aPermute[i] = pItem->iCol - 1; 2077 } 2078 pKeyMerge = 2079 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2080 if( pKeyMerge ){ 2081 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2082 pKeyMerge->nField = (u16)nOrderBy; 2083 pKeyMerge->enc = ENC(db); 2084 for(i=0; i<nOrderBy; i++){ 2085 CollSeq *pColl; 2086 Expr *pTerm = pOrderBy->a[i].pExpr; 2087 if( pTerm->flags & EP_ExpCollate ){ 2088 pColl = pTerm->pColl; 2089 }else{ 2090 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2091 pTerm->flags |= EP_ExpCollate; 2092 pTerm->pColl = pColl; 2093 } 2094 pKeyMerge->aColl[i] = pColl; 2095 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2096 } 2097 } 2098 }else{ 2099 pKeyMerge = 0; 2100 } 2101 2102 /* Reattach the ORDER BY clause to the query. 2103 */ 2104 p->pOrderBy = pOrderBy; 2105 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2106 2107 /* Allocate a range of temporary registers and the KeyInfo needed 2108 ** for the logic that removes duplicate result rows when the 2109 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2110 */ 2111 if( op==TK_ALL ){ 2112 regPrev = 0; 2113 }else{ 2114 int nExpr = p->pEList->nExpr; 2115 assert( nOrderBy>=nExpr || db->mallocFailed ); 2116 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2117 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2118 pKeyDup = sqlite3DbMallocZero(db, 2119 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2120 if( pKeyDup ){ 2121 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2122 pKeyDup->nField = (u16)nExpr; 2123 pKeyDup->enc = ENC(db); 2124 for(i=0; i<nExpr; i++){ 2125 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2126 pKeyDup->aSortOrder[i] = 0; 2127 } 2128 } 2129 } 2130 2131 /* Separate the left and the right query from one another 2132 */ 2133 p->pPrior = 0; 2134 pPrior->pRightmost = 0; 2135 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2136 if( pPrior->pPrior==0 ){ 2137 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2138 } 2139 2140 /* Compute the limit registers */ 2141 computeLimitRegisters(pParse, p, labelEnd); 2142 if( p->iLimit && op==TK_ALL ){ 2143 regLimitA = ++pParse->nMem; 2144 regLimitB = ++pParse->nMem; 2145 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2146 regLimitA); 2147 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2148 }else{ 2149 regLimitA = regLimitB = 0; 2150 } 2151 sqlite3ExprDelete(db, p->pLimit); 2152 p->pLimit = 0; 2153 sqlite3ExprDelete(db, p->pOffset); 2154 p->pOffset = 0; 2155 2156 regAddrA = ++pParse->nMem; 2157 regEofA = ++pParse->nMem; 2158 regAddrB = ++pParse->nMem; 2159 regEofB = ++pParse->nMem; 2160 regOutA = ++pParse->nMem; 2161 regOutB = ++pParse->nMem; 2162 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2163 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2164 2165 /* Jump past the various subroutines and coroutines to the main 2166 ** merge loop 2167 */ 2168 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2169 addrSelectA = sqlite3VdbeCurrentAddr(v); 2170 2171 2172 /* Generate a coroutine to evaluate the SELECT statement to the 2173 ** left of the compound operator - the "A" select. 2174 */ 2175 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2176 pPrior->iLimit = regLimitA; 2177 sqlite3Select(pParse, pPrior, &destA); 2178 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2179 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2180 VdbeNoopComment((v, "End coroutine for left SELECT")); 2181 2182 /* Generate a coroutine to evaluate the SELECT statement on 2183 ** the right - the "B" select 2184 */ 2185 addrSelectB = sqlite3VdbeCurrentAddr(v); 2186 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2187 savedLimit = p->iLimit; 2188 savedOffset = p->iOffset; 2189 p->iLimit = regLimitB; 2190 p->iOffset = 0; 2191 sqlite3Select(pParse, p, &destB); 2192 p->iLimit = savedLimit; 2193 p->iOffset = savedOffset; 2194 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2195 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2196 VdbeNoopComment((v, "End coroutine for right SELECT")); 2197 2198 /* Generate a subroutine that outputs the current row of the A 2199 ** select as the next output row of the compound select. 2200 */ 2201 VdbeNoopComment((v, "Output routine for A")); 2202 addrOutA = generateOutputSubroutine(pParse, 2203 p, &destA, pDest, regOutA, 2204 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2205 2206 /* Generate a subroutine that outputs the current row of the B 2207 ** select as the next output row of the compound select. 2208 */ 2209 if( op==TK_ALL || op==TK_UNION ){ 2210 VdbeNoopComment((v, "Output routine for B")); 2211 addrOutB = generateOutputSubroutine(pParse, 2212 p, &destB, pDest, regOutB, 2213 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2214 } 2215 2216 /* Generate a subroutine to run when the results from select A 2217 ** are exhausted and only data in select B remains. 2218 */ 2219 VdbeNoopComment((v, "eof-A subroutine")); 2220 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2221 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2222 }else{ 2223 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2224 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2225 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2226 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2227 } 2228 2229 /* Generate a subroutine to run when the results from select B 2230 ** are exhausted and only data in select A remains. 2231 */ 2232 if( op==TK_INTERSECT ){ 2233 addrEofB = addrEofA; 2234 }else{ 2235 VdbeNoopComment((v, "eof-B subroutine")); 2236 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2237 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2238 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2239 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2240 } 2241 2242 /* Generate code to handle the case of A<B 2243 */ 2244 VdbeNoopComment((v, "A-lt-B subroutine")); 2245 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2246 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2247 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2248 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2249 2250 /* Generate code to handle the case of A==B 2251 */ 2252 if( op==TK_ALL ){ 2253 addrAeqB = addrAltB; 2254 }else if( op==TK_INTERSECT ){ 2255 addrAeqB = addrAltB; 2256 addrAltB++; 2257 }else{ 2258 VdbeNoopComment((v, "A-eq-B subroutine")); 2259 addrAeqB = 2260 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2261 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2262 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2263 } 2264 2265 /* Generate code to handle the case of A>B 2266 */ 2267 VdbeNoopComment((v, "A-gt-B subroutine")); 2268 addrAgtB = sqlite3VdbeCurrentAddr(v); 2269 if( op==TK_ALL || op==TK_UNION ){ 2270 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2271 } 2272 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2273 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2274 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2275 2276 /* This code runs once to initialize everything. 2277 */ 2278 sqlite3VdbeJumpHere(v, j1); 2279 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2280 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2281 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2282 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2283 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2284 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2285 2286 /* Implement the main merge loop 2287 */ 2288 sqlite3VdbeResolveLabel(v, labelCmpr); 2289 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2290 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2291 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2292 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2293 2294 /* Release temporary registers 2295 */ 2296 if( regPrev ){ 2297 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2298 } 2299 2300 /* Jump to the this point in order to terminate the query. 2301 */ 2302 sqlite3VdbeResolveLabel(v, labelEnd); 2303 2304 /* Set the number of output columns 2305 */ 2306 if( pDest->eDest==SRT_Output ){ 2307 Select *pFirst = pPrior; 2308 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2309 generateColumnNames(pParse, 0, pFirst->pEList); 2310 } 2311 2312 /* Reassembly the compound query so that it will be freed correctly 2313 ** by the calling function */ 2314 if( p->pPrior ){ 2315 sqlite3SelectDelete(db, p->pPrior); 2316 } 2317 p->pPrior = pPrior; 2318 2319 /*** TBD: Insert subroutine calls to close cursors on incomplete 2320 **** subqueries ****/ 2321 return SQLITE_OK; 2322 } 2323 #endif 2324 2325 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2326 /* Forward Declarations */ 2327 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2328 static void substSelect(sqlite3*, Select *, int, ExprList *); 2329 2330 /* 2331 ** Scan through the expression pExpr. Replace every reference to 2332 ** a column in table number iTable with a copy of the iColumn-th 2333 ** entry in pEList. (But leave references to the ROWID column 2334 ** unchanged.) 2335 ** 2336 ** This routine is part of the flattening procedure. A subquery 2337 ** whose result set is defined by pEList appears as entry in the 2338 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2339 ** FORM clause entry is iTable. This routine make the necessary 2340 ** changes to pExpr so that it refers directly to the source table 2341 ** of the subquery rather the result set of the subquery. 2342 */ 2343 static Expr *substExpr( 2344 sqlite3 *db, /* Report malloc errors to this connection */ 2345 Expr *pExpr, /* Expr in which substitution occurs */ 2346 int iTable, /* Table to be substituted */ 2347 ExprList *pEList /* Substitute expressions */ 2348 ){ 2349 if( pExpr==0 ) return 0; 2350 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2351 if( pExpr->iColumn<0 ){ 2352 pExpr->op = TK_NULL; 2353 }else{ 2354 Expr *pNew; 2355 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2356 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2357 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2358 if( pNew && pExpr->pColl ){ 2359 pNew->pColl = pExpr->pColl; 2360 } 2361 sqlite3ExprDelete(db, pExpr); 2362 pExpr = pNew; 2363 } 2364 }else{ 2365 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2366 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2367 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2368 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2369 }else{ 2370 substExprList(db, pExpr->x.pList, iTable, pEList); 2371 } 2372 } 2373 return pExpr; 2374 } 2375 static void substExprList( 2376 sqlite3 *db, /* Report malloc errors here */ 2377 ExprList *pList, /* List to scan and in which to make substitutes */ 2378 int iTable, /* Table to be substituted */ 2379 ExprList *pEList /* Substitute values */ 2380 ){ 2381 int i; 2382 if( pList==0 ) return; 2383 for(i=0; i<pList->nExpr; i++){ 2384 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2385 } 2386 } 2387 static void substSelect( 2388 sqlite3 *db, /* Report malloc errors here */ 2389 Select *p, /* SELECT statement in which to make substitutions */ 2390 int iTable, /* Table to be replaced */ 2391 ExprList *pEList /* Substitute values */ 2392 ){ 2393 SrcList *pSrc; 2394 struct SrcList_item *pItem; 2395 int i; 2396 if( !p ) return; 2397 substExprList(db, p->pEList, iTable, pEList); 2398 substExprList(db, p->pGroupBy, iTable, pEList); 2399 substExprList(db, p->pOrderBy, iTable, pEList); 2400 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2401 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2402 substSelect(db, p->pPrior, iTable, pEList); 2403 pSrc = p->pSrc; 2404 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2405 if( ALWAYS(pSrc) ){ 2406 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2407 substSelect(db, pItem->pSelect, iTable, pEList); 2408 } 2409 } 2410 } 2411 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2412 2413 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2414 /* 2415 ** This routine attempts to flatten subqueries in order to speed 2416 ** execution. It returns 1 if it makes changes and 0 if no flattening 2417 ** occurs. 2418 ** 2419 ** To understand the concept of flattening, consider the following 2420 ** query: 2421 ** 2422 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2423 ** 2424 ** The default way of implementing this query is to execute the 2425 ** subquery first and store the results in a temporary table, then 2426 ** run the outer query on that temporary table. This requires two 2427 ** passes over the data. Furthermore, because the temporary table 2428 ** has no indices, the WHERE clause on the outer query cannot be 2429 ** optimized. 2430 ** 2431 ** This routine attempts to rewrite queries such as the above into 2432 ** a single flat select, like this: 2433 ** 2434 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2435 ** 2436 ** The code generated for this simpification gives the same result 2437 ** but only has to scan the data once. And because indices might 2438 ** exist on the table t1, a complete scan of the data might be 2439 ** avoided. 2440 ** 2441 ** Flattening is only attempted if all of the following are true: 2442 ** 2443 ** (1) The subquery and the outer query do not both use aggregates. 2444 ** 2445 ** (2) The subquery is not an aggregate or the outer query is not a join. 2446 ** 2447 ** (3) The subquery is not the right operand of a left outer join 2448 ** (Originally ticket #306. Strenghtened by ticket #3300) 2449 ** 2450 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2451 ** 2452 ** (5) The subquery is not DISTINCT or the outer query does not use 2453 ** aggregates. 2454 ** 2455 ** (6) The subquery does not use aggregates or the outer query is not 2456 ** DISTINCT. 2457 ** 2458 ** (7) The subquery has a FROM clause. 2459 ** 2460 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2461 ** 2462 ** (9) The subquery does not use LIMIT or the outer query does not use 2463 ** aggregates. 2464 ** 2465 ** (10) The subquery does not use aggregates or the outer query does not 2466 ** use LIMIT. 2467 ** 2468 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2469 ** 2470 ** (12) Not implemented. Subsumed into restriction (3). Was previously 2471 ** a separate restriction deriving from ticket #350. 2472 ** 2473 ** (13) The subquery and outer query do not both use LIMIT 2474 ** 2475 ** (14) The subquery does not use OFFSET 2476 ** 2477 ** (15) The outer query is not part of a compound select or the 2478 ** subquery does not have both an ORDER BY and a LIMIT clause. 2479 ** (See ticket #2339) 2480 ** 2481 ** (16) The outer query is not an aggregate or the subquery does 2482 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2483 ** until we introduced the group_concat() function. 2484 ** 2485 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2486 ** compound clause made up entirely of non-aggregate queries, and 2487 ** the parent query: 2488 ** 2489 ** * is not itself part of a compound select, 2490 ** * is not an aggregate or DISTINCT query, and 2491 ** * has no other tables or sub-selects in the FROM clause. 2492 ** 2493 ** The parent and sub-query may contain WHERE clauses. Subject to 2494 ** rules (11), (13) and (14), they may also contain ORDER BY, 2495 ** LIMIT and OFFSET clauses. 2496 ** 2497 ** (18) If the sub-query is a compound select, then all terms of the 2498 ** ORDER by clause of the parent must be simple references to 2499 ** columns of the sub-query. 2500 ** 2501 ** (19) The subquery does not use LIMIT or the outer query does not 2502 ** have a WHERE clause. 2503 ** 2504 ** (20) If the sub-query is a compound select, then it must not use 2505 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2506 ** somewhat by saying that the terms of the ORDER BY clause must 2507 ** appear as unmodified result columns in the outer query. But 2508 ** have other optimizations in mind to deal with that case. 2509 ** 2510 ** In this routine, the "p" parameter is a pointer to the outer query. 2511 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2512 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2513 ** 2514 ** If flattening is not attempted, this routine is a no-op and returns 0. 2515 ** If flattening is attempted this routine returns 1. 2516 ** 2517 ** All of the expression analysis must occur on both the outer query and 2518 ** the subquery before this routine runs. 2519 */ 2520 static int flattenSubquery( 2521 Parse *pParse, /* Parsing context */ 2522 Select *p, /* The parent or outer SELECT statement */ 2523 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2524 int isAgg, /* True if outer SELECT uses aggregate functions */ 2525 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2526 ){ 2527 const char *zSavedAuthContext = pParse->zAuthContext; 2528 Select *pParent; 2529 Select *pSub; /* The inner query or "subquery" */ 2530 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2531 SrcList *pSrc; /* The FROM clause of the outer query */ 2532 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2533 ExprList *pList; /* The result set of the outer query */ 2534 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2535 int i; /* Loop counter */ 2536 Expr *pWhere; /* The WHERE clause */ 2537 struct SrcList_item *pSubitem; /* The subquery */ 2538 sqlite3 *db = pParse->db; 2539 2540 /* Check to see if flattening is permitted. Return 0 if not. 2541 */ 2542 assert( p!=0 ); 2543 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2544 pSrc = p->pSrc; 2545 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2546 pSubitem = &pSrc->a[iFrom]; 2547 iParent = pSubitem->iCursor; 2548 pSub = pSubitem->pSelect; 2549 assert( pSub!=0 ); 2550 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2551 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2552 pSubSrc = pSub->pSrc; 2553 assert( pSubSrc ); 2554 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2555 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2556 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2557 ** became arbitrary expressions, we were forced to add restrictions (13) 2558 ** and (14). */ 2559 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2560 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2561 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2562 return 0; /* Restriction (15) */ 2563 } 2564 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2565 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2566 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2567 return 0; 2568 } 2569 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2570 return 0; /* Restriction (6) */ 2571 } 2572 if( p->pOrderBy && pSub->pOrderBy ){ 2573 return 0; /* Restriction (11) */ 2574 } 2575 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2576 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2577 2578 /* OBSOLETE COMMENT 1: 2579 ** Restriction 3: If the subquery is a join, make sure the subquery is 2580 ** not used as the right operand of an outer join. Examples of why this 2581 ** is not allowed: 2582 ** 2583 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2584 ** 2585 ** If we flatten the above, we would get 2586 ** 2587 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2588 ** 2589 ** which is not at all the same thing. 2590 ** 2591 ** OBSOLETE COMMENT 2: 2592 ** Restriction 12: If the subquery is the right operand of a left outer 2593 ** join, make sure the subquery has no WHERE clause. 2594 ** An examples of why this is not allowed: 2595 ** 2596 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2597 ** 2598 ** If we flatten the above, we would get 2599 ** 2600 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2601 ** 2602 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2603 ** effectively converts the OUTER JOIN into an INNER JOIN. 2604 ** 2605 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2606 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2607 ** is fraught with danger. Best to avoid the whole thing. If the 2608 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2609 */ 2610 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2611 return 0; 2612 } 2613 2614 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2615 ** use only the UNION ALL operator. And none of the simple select queries 2616 ** that make up the compound SELECT are allowed to be aggregate or distinct 2617 ** queries. 2618 */ 2619 if( pSub->pPrior ){ 2620 if( pSub->pOrderBy ){ 2621 return 0; /* Restriction 20 */ 2622 } 2623 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2624 return 0; 2625 } 2626 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2627 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2628 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2629 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2630 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2631 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 2632 ){ 2633 return 0; 2634 } 2635 } 2636 2637 /* Restriction 18. */ 2638 if( p->pOrderBy ){ 2639 int ii; 2640 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2641 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2642 } 2643 } 2644 } 2645 2646 /***** If we reach this point, flattening is permitted. *****/ 2647 2648 /* Authorize the subquery */ 2649 pParse->zAuthContext = pSubitem->zName; 2650 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2651 pParse->zAuthContext = zSavedAuthContext; 2652 2653 /* If the sub-query is a compound SELECT statement, then (by restrictions 2654 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2655 ** be of the form: 2656 ** 2657 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2658 ** 2659 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2660 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2661 ** OFFSET clauses and joins them to the left-hand-side of the original 2662 ** using UNION ALL operators. In this case N is the number of simple 2663 ** select statements in the compound sub-query. 2664 ** 2665 ** Example: 2666 ** 2667 ** SELECT a+1 FROM ( 2668 ** SELECT x FROM tab 2669 ** UNION ALL 2670 ** SELECT y FROM tab 2671 ** UNION ALL 2672 ** SELECT abs(z*2) FROM tab2 2673 ** ) WHERE a!=5 ORDER BY 1 2674 ** 2675 ** Transformed into: 2676 ** 2677 ** SELECT x+1 FROM tab WHERE x+1!=5 2678 ** UNION ALL 2679 ** SELECT y+1 FROM tab WHERE y+1!=5 2680 ** UNION ALL 2681 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2682 ** ORDER BY 1 2683 ** 2684 ** We call this the "compound-subquery flattening". 2685 */ 2686 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2687 Select *pNew; 2688 ExprList *pOrderBy = p->pOrderBy; 2689 Expr *pLimit = p->pLimit; 2690 Select *pPrior = p->pPrior; 2691 p->pOrderBy = 0; 2692 p->pSrc = 0; 2693 p->pPrior = 0; 2694 p->pLimit = 0; 2695 pNew = sqlite3SelectDup(db, p, 0); 2696 p->pLimit = pLimit; 2697 p->pOrderBy = pOrderBy; 2698 p->pSrc = pSrc; 2699 p->op = TK_ALL; 2700 p->pRightmost = 0; 2701 if( pNew==0 ){ 2702 pNew = pPrior; 2703 }else{ 2704 pNew->pPrior = pPrior; 2705 pNew->pRightmost = 0; 2706 } 2707 p->pPrior = pNew; 2708 if( db->mallocFailed ) return 1; 2709 } 2710 2711 /* Begin flattening the iFrom-th entry of the FROM clause 2712 ** in the outer query. 2713 */ 2714 pSub = pSub1 = pSubitem->pSelect; 2715 2716 /* Delete the transient table structure associated with the 2717 ** subquery 2718 */ 2719 sqlite3DbFree(db, pSubitem->zDatabase); 2720 sqlite3DbFree(db, pSubitem->zName); 2721 sqlite3DbFree(db, pSubitem->zAlias); 2722 pSubitem->zDatabase = 0; 2723 pSubitem->zName = 0; 2724 pSubitem->zAlias = 0; 2725 pSubitem->pSelect = 0; 2726 2727 /* Defer deleting the Table object associated with the 2728 ** subquery until code generation is 2729 ** complete, since there may still exist Expr.pTab entries that 2730 ** refer to the subquery even after flattening. Ticket #3346. 2731 ** 2732 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2733 */ 2734 if( ALWAYS(pSubitem->pTab!=0) ){ 2735 Table *pTabToDel = pSubitem->pTab; 2736 if( pTabToDel->nRef==1 ){ 2737 pTabToDel->pNextZombie = pParse->pZombieTab; 2738 pParse->pZombieTab = pTabToDel; 2739 }else{ 2740 pTabToDel->nRef--; 2741 } 2742 pSubitem->pTab = 0; 2743 } 2744 2745 /* The following loop runs once for each term in a compound-subquery 2746 ** flattening (as described above). If we are doing a different kind 2747 ** of flattening - a flattening other than a compound-subquery flattening - 2748 ** then this loop only runs once. 2749 ** 2750 ** This loop moves all of the FROM elements of the subquery into the 2751 ** the FROM clause of the outer query. Before doing this, remember 2752 ** the cursor number for the original outer query FROM element in 2753 ** iParent. The iParent cursor will never be used. Subsequent code 2754 ** will scan expressions looking for iParent references and replace 2755 ** those references with expressions that resolve to the subquery FROM 2756 ** elements we are now copying in. 2757 */ 2758 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2759 int nSubSrc; 2760 u8 jointype = 0; 2761 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2762 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2763 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2764 2765 if( pSrc ){ 2766 assert( pParent==p ); /* First time through the loop */ 2767 jointype = pSubitem->jointype; 2768 }else{ 2769 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2770 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2771 if( pSrc==0 ){ 2772 assert( db->mallocFailed ); 2773 break; 2774 } 2775 } 2776 2777 /* The subquery uses a single slot of the FROM clause of the outer 2778 ** query. If the subquery has more than one element in its FROM clause, 2779 ** then expand the outer query to make space for it to hold all elements 2780 ** of the subquery. 2781 ** 2782 ** Example: 2783 ** 2784 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2785 ** 2786 ** The outer query has 3 slots in its FROM clause. One slot of the 2787 ** outer query (the middle slot) is used by the subquery. The next 2788 ** block of code will expand the out query to 4 slots. The middle 2789 ** slot is expanded to two slots in order to make space for the 2790 ** two elements in the FROM clause of the subquery. 2791 */ 2792 if( nSubSrc>1 ){ 2793 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2794 if( db->mallocFailed ){ 2795 break; 2796 } 2797 } 2798 2799 /* Transfer the FROM clause terms from the subquery into the 2800 ** outer query. 2801 */ 2802 for(i=0; i<nSubSrc; i++){ 2803 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 2804 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2805 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2806 } 2807 pSrc->a[iFrom].jointype = jointype; 2808 2809 /* Now begin substituting subquery result set expressions for 2810 ** references to the iParent in the outer query. 2811 ** 2812 ** Example: 2813 ** 2814 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2815 ** \ \_____________ subquery __________/ / 2816 ** \_____________________ outer query ______________________________/ 2817 ** 2818 ** We look at every expression in the outer query and every place we see 2819 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2820 */ 2821 pList = pParent->pEList; 2822 for(i=0; i<pList->nExpr; i++){ 2823 if( pList->a[i].zName==0 ){ 2824 const char *zSpan = pList->a[i].zSpan; 2825 if( ALWAYS(zSpan) ){ 2826 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 2827 } 2828 } 2829 } 2830 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2831 if( isAgg ){ 2832 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2833 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2834 } 2835 if( pSub->pOrderBy ){ 2836 assert( pParent->pOrderBy==0 ); 2837 pParent->pOrderBy = pSub->pOrderBy; 2838 pSub->pOrderBy = 0; 2839 }else if( pParent->pOrderBy ){ 2840 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2841 } 2842 if( pSub->pWhere ){ 2843 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2844 }else{ 2845 pWhere = 0; 2846 } 2847 if( subqueryIsAgg ){ 2848 assert( pParent->pHaving==0 ); 2849 pParent->pHaving = pParent->pWhere; 2850 pParent->pWhere = pWhere; 2851 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2852 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2853 sqlite3ExprDup(db, pSub->pHaving, 0)); 2854 assert( pParent->pGroupBy==0 ); 2855 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 2856 }else{ 2857 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2858 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2859 } 2860 2861 /* The flattened query is distinct if either the inner or the 2862 ** outer query is distinct. 2863 */ 2864 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2865 2866 /* 2867 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2868 ** 2869 ** One is tempted to try to add a and b to combine the limits. But this 2870 ** does not work if either limit is negative. 2871 */ 2872 if( pSub->pLimit ){ 2873 pParent->pLimit = pSub->pLimit; 2874 pSub->pLimit = 0; 2875 } 2876 } 2877 2878 /* Finially, delete what is left of the subquery and return 2879 ** success. 2880 */ 2881 sqlite3SelectDelete(db, pSub1); 2882 2883 return 1; 2884 } 2885 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2886 2887 /* 2888 ** Analyze the SELECT statement passed as an argument to see if it 2889 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2890 ** it is, or 0 otherwise. At present, a query is considered to be 2891 ** a min()/max() query if: 2892 ** 2893 ** 1. There is a single object in the FROM clause. 2894 ** 2895 ** 2. There is a single expression in the result set, and it is 2896 ** either min(x) or max(x), where x is a column reference. 2897 */ 2898 static u8 minMaxQuery(Select *p){ 2899 Expr *pExpr; 2900 ExprList *pEList = p->pEList; 2901 2902 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2903 pExpr = pEList->a[0].pExpr; 2904 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2905 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 2906 pEList = pExpr->x.pList; 2907 if( pEList==0 || pEList->nExpr!=1 ) return 0; 2908 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2909 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2910 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 2911 return WHERE_ORDERBY_MIN; 2912 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 2913 return WHERE_ORDERBY_MAX; 2914 } 2915 return WHERE_ORDERBY_NORMAL; 2916 } 2917 2918 /* 2919 ** The select statement passed as the first argument is an aggregate query. 2920 ** The second argment is the associated aggregate-info object. This 2921 ** function tests if the SELECT is of the form: 2922 ** 2923 ** SELECT count(*) FROM <tbl> 2924 ** 2925 ** where table is a database table, not a sub-select or view. If the query 2926 ** does match this pattern, then a pointer to the Table object representing 2927 ** <tbl> is returned. Otherwise, 0 is returned. 2928 */ 2929 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 2930 Table *pTab; 2931 Expr *pExpr; 2932 2933 assert( !p->pGroupBy ); 2934 2935 if( p->pWhere || p->pEList->nExpr!=1 2936 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 2937 ){ 2938 return 0; 2939 } 2940 pTab = p->pSrc->a[0].pTab; 2941 pExpr = p->pEList->a[0].pExpr; 2942 assert( pTab && !pTab->pSelect && pExpr ); 2943 2944 if( IsVirtual(pTab) ) return 0; 2945 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2946 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 2947 if( pExpr->flags&EP_Distinct ) return 0; 2948 2949 return pTab; 2950 } 2951 2952 /* 2953 ** If the source-list item passed as an argument was augmented with an 2954 ** INDEXED BY clause, then try to locate the specified index. If there 2955 ** was such a clause and the named index cannot be found, return 2956 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 2957 ** pFrom->pIndex and return SQLITE_OK. 2958 */ 2959 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 2960 if( pFrom->pTab && pFrom->zIndex ){ 2961 Table *pTab = pFrom->pTab; 2962 char *zIndex = pFrom->zIndex; 2963 Index *pIdx; 2964 for(pIdx=pTab->pIndex; 2965 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 2966 pIdx=pIdx->pNext 2967 ); 2968 if( !pIdx ){ 2969 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 2970 return SQLITE_ERROR; 2971 } 2972 pFrom->pIndex = pIdx; 2973 } 2974 return SQLITE_OK; 2975 } 2976 2977 /* 2978 ** This routine is a Walker callback for "expanding" a SELECT statement. 2979 ** "Expanding" means to do the following: 2980 ** 2981 ** (1) Make sure VDBE cursor numbers have been assigned to every 2982 ** element of the FROM clause. 2983 ** 2984 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 2985 ** defines FROM clause. When views appear in the FROM clause, 2986 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 2987 ** that implements the view. A copy is made of the view's SELECT 2988 ** statement so that we can freely modify or delete that statement 2989 ** without worrying about messing up the presistent representation 2990 ** of the view. 2991 ** 2992 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 2993 ** on joins and the ON and USING clause of joins. 2994 ** 2995 ** (4) Scan the list of columns in the result set (pEList) looking 2996 ** for instances of the "*" operator or the TABLE.* operator. 2997 ** If found, expand each "*" to be every column in every table 2998 ** and TABLE.* to be every column in TABLE. 2999 ** 3000 */ 3001 static int selectExpander(Walker *pWalker, Select *p){ 3002 Parse *pParse = pWalker->pParse; 3003 int i, j, k; 3004 SrcList *pTabList; 3005 ExprList *pEList; 3006 struct SrcList_item *pFrom; 3007 sqlite3 *db = pParse->db; 3008 3009 if( db->mallocFailed ){ 3010 return WRC_Abort; 3011 } 3012 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3013 return WRC_Prune; 3014 } 3015 p->selFlags |= SF_Expanded; 3016 pTabList = p->pSrc; 3017 pEList = p->pEList; 3018 3019 /* Make sure cursor numbers have been assigned to all entries in 3020 ** the FROM clause of the SELECT statement. 3021 */ 3022 sqlite3SrcListAssignCursors(pParse, pTabList); 3023 3024 /* Look up every table named in the FROM clause of the select. If 3025 ** an entry of the FROM clause is a subquery instead of a table or view, 3026 ** then create a transient table structure to describe the subquery. 3027 */ 3028 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3029 Table *pTab; 3030 if( pFrom->pTab!=0 ){ 3031 /* This statement has already been prepared. There is no need 3032 ** to go further. */ 3033 assert( i==0 ); 3034 return WRC_Prune; 3035 } 3036 if( pFrom->zName==0 ){ 3037 #ifndef SQLITE_OMIT_SUBQUERY 3038 Select *pSel = pFrom->pSelect; 3039 /* A sub-query in the FROM clause of a SELECT */ 3040 assert( pSel!=0 ); 3041 assert( pFrom->pTab==0 ); 3042 sqlite3WalkSelect(pWalker, pSel); 3043 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3044 if( pTab==0 ) return WRC_Abort; 3045 pTab->dbMem = db->lookaside.bEnabled ? db : 0; 3046 pTab->nRef = 1; 3047 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3048 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3049 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3050 pTab->iPKey = -1; 3051 pTab->tabFlags |= TF_Ephemeral; 3052 #endif 3053 }else{ 3054 /* An ordinary table or view name in the FROM clause */ 3055 assert( pFrom->pTab==0 ); 3056 pFrom->pTab = pTab = 3057 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3058 if( pTab==0 ) return WRC_Abort; 3059 pTab->nRef++; 3060 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3061 if( pTab->pSelect || IsVirtual(pTab) ){ 3062 /* We reach here if the named table is a really a view */ 3063 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3064 assert( pFrom->pSelect==0 ); 3065 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3066 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3067 } 3068 #endif 3069 } 3070 3071 /* Locate the index named by the INDEXED BY clause, if any. */ 3072 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3073 return WRC_Abort; 3074 } 3075 } 3076 3077 /* Process NATURAL keywords, and ON and USING clauses of joins. 3078 */ 3079 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3080 return WRC_Abort; 3081 } 3082 3083 /* For every "*" that occurs in the column list, insert the names of 3084 ** all columns in all tables. And for every TABLE.* insert the names 3085 ** of all columns in TABLE. The parser inserted a special expression 3086 ** with the TK_ALL operator for each "*" that it found in the column list. 3087 ** The following code just has to locate the TK_ALL expressions and expand 3088 ** each one to the list of all columns in all tables. 3089 ** 3090 ** The first loop just checks to see if there are any "*" operators 3091 ** that need expanding. 3092 */ 3093 for(k=0; k<pEList->nExpr; k++){ 3094 Expr *pE = pEList->a[k].pExpr; 3095 if( pE->op==TK_ALL ) break; 3096 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3097 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3098 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3099 } 3100 if( k<pEList->nExpr ){ 3101 /* 3102 ** If we get here it means the result set contains one or more "*" 3103 ** operators that need to be expanded. Loop through each expression 3104 ** in the result set and expand them one by one. 3105 */ 3106 struct ExprList_item *a = pEList->a; 3107 ExprList *pNew = 0; 3108 int flags = pParse->db->flags; 3109 int longNames = (flags & SQLITE_FullColNames)!=0 3110 && (flags & SQLITE_ShortColNames)==0; 3111 3112 for(k=0; k<pEList->nExpr; k++){ 3113 Expr *pE = a[k].pExpr; 3114 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3115 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3116 /* This particular expression does not need to be expanded. 3117 */ 3118 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3119 if( pNew ){ 3120 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3121 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3122 a[k].zName = 0; 3123 a[k].zSpan = 0; 3124 } 3125 a[k].pExpr = 0; 3126 }else{ 3127 /* This expression is a "*" or a "TABLE.*" and needs to be 3128 ** expanded. */ 3129 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3130 char *zTName; /* text of name of TABLE */ 3131 if( pE->op==TK_DOT ){ 3132 assert( pE->pLeft!=0 ); 3133 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3134 zTName = pE->pLeft->u.zToken; 3135 }else{ 3136 zTName = 0; 3137 } 3138 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3139 Table *pTab = pFrom->pTab; 3140 char *zTabName = pFrom->zAlias; 3141 if( zTabName==0 ){ 3142 zTabName = pTab->zName; 3143 } 3144 if( db->mallocFailed ) break; 3145 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3146 continue; 3147 } 3148 tableSeen = 1; 3149 for(j=0; j<pTab->nCol; j++){ 3150 Expr *pExpr, *pRight; 3151 char *zName = pTab->aCol[j].zName; 3152 char *zColname; /* The computed column name */ 3153 char *zToFree; /* Malloced string that needs to be freed */ 3154 Token sColname; /* Computed column name as a token */ 3155 3156 /* If a column is marked as 'hidden' (currently only possible 3157 ** for virtual tables), do not include it in the expanded 3158 ** result-set list. 3159 */ 3160 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3161 assert(IsVirtual(pTab)); 3162 continue; 3163 } 3164 3165 if( i>0 && zTName==0 ){ 3166 struct SrcList_item *pLeft = &pTabList->a[i-1]; 3167 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 3168 columnIndex(pLeft->pTab, zName)>=0 ){ 3169 /* In a NATURAL join, omit the join columns from the 3170 ** table on the right */ 3171 continue; 3172 } 3173 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 3174 /* In a join with a USING clause, omit columns in the 3175 ** using clause from the table on the right. */ 3176 continue; 3177 } 3178 } 3179 pRight = sqlite3Expr(db, TK_ID, zName); 3180 zColname = zName; 3181 zToFree = 0; 3182 if( longNames || pTabList->nSrc>1 ){ 3183 Expr *pLeft; 3184 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3185 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3186 if( longNames ){ 3187 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3188 zToFree = zColname; 3189 } 3190 }else{ 3191 pExpr = pRight; 3192 } 3193 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3194 sColname.z = zColname; 3195 sColname.n = sqlite3Strlen30(zColname); 3196 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3197 sqlite3DbFree(db, zToFree); 3198 } 3199 } 3200 if( !tableSeen ){ 3201 if( zTName ){ 3202 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3203 }else{ 3204 sqlite3ErrorMsg(pParse, "no tables specified"); 3205 } 3206 } 3207 } 3208 } 3209 sqlite3ExprListDelete(db, pEList); 3210 p->pEList = pNew; 3211 } 3212 #if SQLITE_MAX_COLUMN 3213 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3214 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3215 } 3216 #endif 3217 return WRC_Continue; 3218 } 3219 3220 /* 3221 ** No-op routine for the parse-tree walker. 3222 ** 3223 ** When this routine is the Walker.xExprCallback then expression trees 3224 ** are walked without any actions being taken at each node. Presumably, 3225 ** when this routine is used for Walker.xExprCallback then 3226 ** Walker.xSelectCallback is set to do something useful for every 3227 ** subquery in the parser tree. 3228 */ 3229 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3230 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3231 return WRC_Continue; 3232 } 3233 3234 /* 3235 ** This routine "expands" a SELECT statement and all of its subqueries. 3236 ** For additional information on what it means to "expand" a SELECT 3237 ** statement, see the comment on the selectExpand worker callback above. 3238 ** 3239 ** Expanding a SELECT statement is the first step in processing a 3240 ** SELECT statement. The SELECT statement must be expanded before 3241 ** name resolution is performed. 3242 ** 3243 ** If anything goes wrong, an error message is written into pParse. 3244 ** The calling function can detect the problem by looking at pParse->nErr 3245 ** and/or pParse->db->mallocFailed. 3246 */ 3247 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3248 Walker w; 3249 w.xSelectCallback = selectExpander; 3250 w.xExprCallback = exprWalkNoop; 3251 w.pParse = pParse; 3252 sqlite3WalkSelect(&w, pSelect); 3253 } 3254 3255 3256 #ifndef SQLITE_OMIT_SUBQUERY 3257 /* 3258 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3259 ** interface. 3260 ** 3261 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3262 ** information to the Table structure that represents the result set 3263 ** of that subquery. 3264 ** 3265 ** The Table structure that represents the result set was constructed 3266 ** by selectExpander() but the type and collation information was omitted 3267 ** at that point because identifiers had not yet been resolved. This 3268 ** routine is called after identifier resolution. 3269 */ 3270 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3271 Parse *pParse; 3272 int i; 3273 SrcList *pTabList; 3274 struct SrcList_item *pFrom; 3275 3276 assert( p->selFlags & SF_Resolved ); 3277 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 3278 p->selFlags |= SF_HasTypeInfo; 3279 pParse = pWalker->pParse; 3280 pTabList = p->pSrc; 3281 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3282 Table *pTab = pFrom->pTab; 3283 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3284 /* A sub-query in the FROM clause of a SELECT */ 3285 Select *pSel = pFrom->pSelect; 3286 assert( pSel ); 3287 while( pSel->pPrior ) pSel = pSel->pPrior; 3288 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3289 } 3290 } 3291 return WRC_Continue; 3292 } 3293 #endif 3294 3295 3296 /* 3297 ** This routine adds datatype and collating sequence information to 3298 ** the Table structures of all FROM-clause subqueries in a 3299 ** SELECT statement. 3300 ** 3301 ** Use this routine after name resolution. 3302 */ 3303 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3304 #ifndef SQLITE_OMIT_SUBQUERY 3305 Walker w; 3306 w.xSelectCallback = selectAddSubqueryTypeInfo; 3307 w.xExprCallback = exprWalkNoop; 3308 w.pParse = pParse; 3309 sqlite3WalkSelect(&w, pSelect); 3310 #endif 3311 } 3312 3313 3314 /* 3315 ** This routine sets of a SELECT statement for processing. The 3316 ** following is accomplished: 3317 ** 3318 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3319 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3320 ** * ON and USING clauses are shifted into WHERE statements 3321 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3322 ** * Identifiers in expression are matched to tables. 3323 ** 3324 ** This routine acts recursively on all subqueries within the SELECT. 3325 */ 3326 void sqlite3SelectPrep( 3327 Parse *pParse, /* The parser context */ 3328 Select *p, /* The SELECT statement being coded. */ 3329 NameContext *pOuterNC /* Name context for container */ 3330 ){ 3331 sqlite3 *db; 3332 if( NEVER(p==0) ) return; 3333 db = pParse->db; 3334 if( p->selFlags & SF_HasTypeInfo ) return; 3335 sqlite3SelectExpand(pParse, p); 3336 if( pParse->nErr || db->mallocFailed ) return; 3337 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3338 if( pParse->nErr || db->mallocFailed ) return; 3339 sqlite3SelectAddTypeInfo(pParse, p); 3340 } 3341 3342 /* 3343 ** Reset the aggregate accumulator. 3344 ** 3345 ** The aggregate accumulator is a set of memory cells that hold 3346 ** intermediate results while calculating an aggregate. This 3347 ** routine simply stores NULLs in all of those memory cells. 3348 */ 3349 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3350 Vdbe *v = pParse->pVdbe; 3351 int i; 3352 struct AggInfo_func *pFunc; 3353 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3354 return; 3355 } 3356 for(i=0; i<pAggInfo->nColumn; i++){ 3357 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3358 } 3359 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3360 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3361 if( pFunc->iDistinct>=0 ){ 3362 Expr *pE = pFunc->pExpr; 3363 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3364 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3365 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3366 "argument"); 3367 pFunc->iDistinct = -1; 3368 }else{ 3369 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3370 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3371 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3372 } 3373 } 3374 } 3375 } 3376 3377 /* 3378 ** Invoke the OP_AggFinalize opcode for every aggregate function 3379 ** in the AggInfo structure. 3380 */ 3381 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3382 Vdbe *v = pParse->pVdbe; 3383 int i; 3384 struct AggInfo_func *pF; 3385 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3386 ExprList *pList = pF->pExpr->x.pList; 3387 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3388 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3389 (void*)pF->pFunc, P4_FUNCDEF); 3390 } 3391 } 3392 3393 /* 3394 ** Update the accumulator memory cells for an aggregate based on 3395 ** the current cursor position. 3396 */ 3397 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3398 Vdbe *v = pParse->pVdbe; 3399 int i; 3400 struct AggInfo_func *pF; 3401 struct AggInfo_col *pC; 3402 3403 pAggInfo->directMode = 1; 3404 sqlite3ExprCacheClear(pParse); 3405 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3406 int nArg; 3407 int addrNext = 0; 3408 int regAgg; 3409 ExprList *pList = pF->pExpr->x.pList; 3410 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3411 if( pList ){ 3412 nArg = pList->nExpr; 3413 regAgg = sqlite3GetTempRange(pParse, nArg); 3414 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3415 }else{ 3416 nArg = 0; 3417 regAgg = 0; 3418 } 3419 if( pF->iDistinct>=0 ){ 3420 addrNext = sqlite3VdbeMakeLabel(v); 3421 assert( nArg==1 ); 3422 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3423 } 3424 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3425 CollSeq *pColl = 0; 3426 struct ExprList_item *pItem; 3427 int j; 3428 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3429 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3430 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3431 } 3432 if( !pColl ){ 3433 pColl = pParse->db->pDfltColl; 3434 } 3435 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3436 } 3437 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3438 (void*)pF->pFunc, P4_FUNCDEF); 3439 sqlite3VdbeChangeP5(v, (u8)nArg); 3440 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3441 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3442 if( addrNext ){ 3443 sqlite3VdbeResolveLabel(v, addrNext); 3444 sqlite3ExprCacheClear(pParse); 3445 } 3446 } 3447 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3448 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3449 } 3450 pAggInfo->directMode = 0; 3451 sqlite3ExprCacheClear(pParse); 3452 } 3453 3454 /* 3455 ** Generate code for the SELECT statement given in the p argument. 3456 ** 3457 ** The results are distributed in various ways depending on the 3458 ** contents of the SelectDest structure pointed to by argument pDest 3459 ** as follows: 3460 ** 3461 ** pDest->eDest Result 3462 ** ------------ ------------------------------------------- 3463 ** SRT_Output Generate a row of output (using the OP_ResultRow 3464 ** opcode) for each row in the result set. 3465 ** 3466 ** SRT_Mem Only valid if the result is a single column. 3467 ** Store the first column of the first result row 3468 ** in register pDest->iParm then abandon the rest 3469 ** of the query. This destination implies "LIMIT 1". 3470 ** 3471 ** SRT_Set The result must be a single column. Store each 3472 ** row of result as the key in table pDest->iParm. 3473 ** Apply the affinity pDest->affinity before storing 3474 ** results. Used to implement "IN (SELECT ...)". 3475 ** 3476 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3477 ** 3478 ** SRT_Except Remove results from the temporary table pDest->iParm. 3479 ** 3480 ** SRT_Table Store results in temporary table pDest->iParm. 3481 ** This is like SRT_EphemTab except that the table 3482 ** is assumed to already be open. 3483 ** 3484 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3485 ** the result there. The cursor is left open after 3486 ** returning. This is like SRT_Table except that 3487 ** this destination uses OP_OpenEphemeral to create 3488 ** the table first. 3489 ** 3490 ** SRT_Coroutine Generate a co-routine that returns a new row of 3491 ** results each time it is invoked. The entry point 3492 ** of the co-routine is stored in register pDest->iParm. 3493 ** 3494 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3495 ** set is not empty. 3496 ** 3497 ** SRT_Discard Throw the results away. This is used by SELECT 3498 ** statements within triggers whose only purpose is 3499 ** the side-effects of functions. 3500 ** 3501 ** This routine returns the number of errors. If any errors are 3502 ** encountered, then an appropriate error message is left in 3503 ** pParse->zErrMsg. 3504 ** 3505 ** This routine does NOT free the Select structure passed in. The 3506 ** calling function needs to do that. 3507 */ 3508 int sqlite3Select( 3509 Parse *pParse, /* The parser context */ 3510 Select *p, /* The SELECT statement being coded. */ 3511 SelectDest *pDest /* What to do with the query results */ 3512 ){ 3513 int i, j; /* Loop counters */ 3514 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3515 Vdbe *v; /* The virtual machine under construction */ 3516 int isAgg; /* True for select lists like "count(*)" */ 3517 ExprList *pEList; /* List of columns to extract. */ 3518 SrcList *pTabList; /* List of tables to select from */ 3519 Expr *pWhere; /* The WHERE clause. May be NULL */ 3520 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3521 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3522 Expr *pHaving; /* The HAVING clause. May be NULL */ 3523 int isDistinct; /* True if the DISTINCT keyword is present */ 3524 int distinct; /* Table to use for the distinct set */ 3525 int rc = 1; /* Value to return from this function */ 3526 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3527 AggInfo sAggInfo; /* Information used by aggregate queries */ 3528 int iEnd; /* Address of the end of the query */ 3529 sqlite3 *db; /* The database connection */ 3530 3531 db = pParse->db; 3532 if( p==0 || db->mallocFailed || pParse->nErr ){ 3533 return 1; 3534 } 3535 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3536 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3537 3538 if( IgnorableOrderby(pDest) ){ 3539 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3540 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3541 /* If ORDER BY makes no difference in the output then neither does 3542 ** DISTINCT so it can be removed too. */ 3543 sqlite3ExprListDelete(db, p->pOrderBy); 3544 p->pOrderBy = 0; 3545 p->selFlags &= ~SF_Distinct; 3546 } 3547 sqlite3SelectPrep(pParse, p, 0); 3548 pOrderBy = p->pOrderBy; 3549 pTabList = p->pSrc; 3550 pEList = p->pEList; 3551 if( pParse->nErr || db->mallocFailed ){ 3552 goto select_end; 3553 } 3554 isAgg = (p->selFlags & SF_Aggregate)!=0; 3555 assert( pEList!=0 ); 3556 3557 /* Begin generating code. 3558 */ 3559 v = sqlite3GetVdbe(pParse); 3560 if( v==0 ) goto select_end; 3561 3562 /* Generate code for all sub-queries in the FROM clause 3563 */ 3564 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3565 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3566 struct SrcList_item *pItem = &pTabList->a[i]; 3567 SelectDest dest; 3568 Select *pSub = pItem->pSelect; 3569 int isAggSub; 3570 3571 if( pSub==0 || pItem->isPopulated ) continue; 3572 3573 /* Increment Parse.nHeight by the height of the largest expression 3574 ** tree refered to by this, the parent select. The child select 3575 ** may contain expression trees of at most 3576 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3577 ** more conservative than necessary, but much easier than enforcing 3578 ** an exact limit. 3579 */ 3580 pParse->nHeight += sqlite3SelectExprHeight(p); 3581 3582 /* Check to see if the subquery can be absorbed into the parent. */ 3583 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3584 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3585 if( isAggSub ){ 3586 isAgg = 1; 3587 p->selFlags |= SF_Aggregate; 3588 } 3589 i = -1; 3590 }else{ 3591 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3592 assert( pItem->isPopulated==0 ); 3593 sqlite3Select(pParse, pSub, &dest); 3594 pItem->isPopulated = 1; 3595 } 3596 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3597 goto select_end; 3598 } 3599 pParse->nHeight -= sqlite3SelectExprHeight(p); 3600 pTabList = p->pSrc; 3601 if( !IgnorableOrderby(pDest) ){ 3602 pOrderBy = p->pOrderBy; 3603 } 3604 } 3605 pEList = p->pEList; 3606 #endif 3607 pWhere = p->pWhere; 3608 pGroupBy = p->pGroupBy; 3609 pHaving = p->pHaving; 3610 isDistinct = (p->selFlags & SF_Distinct)!=0; 3611 3612 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3613 /* If there is are a sequence of queries, do the earlier ones first. 3614 */ 3615 if( p->pPrior ){ 3616 if( p->pRightmost==0 ){ 3617 Select *pLoop, *pRight = 0; 3618 int cnt = 0; 3619 int mxSelect; 3620 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3621 pLoop->pRightmost = p; 3622 pLoop->pNext = pRight; 3623 pRight = pLoop; 3624 } 3625 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3626 if( mxSelect && cnt>mxSelect ){ 3627 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3628 return 1; 3629 } 3630 } 3631 return multiSelect(pParse, p, pDest); 3632 } 3633 #endif 3634 3635 /* If writing to memory or generating a set 3636 ** only a single column may be output. 3637 */ 3638 #ifndef SQLITE_OMIT_SUBQUERY 3639 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3640 goto select_end; 3641 } 3642 #endif 3643 3644 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3645 ** GROUP BY might use an index, DISTINCT never does. 3646 */ 3647 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 3648 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 3649 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3650 pGroupBy = p->pGroupBy; 3651 p->selFlags &= ~SF_Distinct; 3652 isDistinct = 0; 3653 } 3654 3655 /* If there is an ORDER BY clause, then this sorting 3656 ** index might end up being unused if the data can be 3657 ** extracted in pre-sorted order. If that is the case, then the 3658 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3659 ** we figure out that the sorting index is not needed. The addrSortIndex 3660 ** variable is used to facilitate that change. 3661 */ 3662 if( pOrderBy ){ 3663 KeyInfo *pKeyInfo; 3664 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3665 pOrderBy->iECursor = pParse->nTab++; 3666 p->addrOpenEphm[2] = addrSortIndex = 3667 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3668 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3669 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3670 }else{ 3671 addrSortIndex = -1; 3672 } 3673 3674 /* If the output is destined for a temporary table, open that table. 3675 */ 3676 if( pDest->eDest==SRT_EphemTab ){ 3677 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3678 } 3679 3680 /* Set the limiter. 3681 */ 3682 iEnd = sqlite3VdbeMakeLabel(v); 3683 computeLimitRegisters(pParse, p, iEnd); 3684 3685 /* Open a virtual index to use for the distinct set. 3686 */ 3687 if( isDistinct ){ 3688 KeyInfo *pKeyInfo; 3689 assert( isAgg || pGroupBy ); 3690 distinct = pParse->nTab++; 3691 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3692 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3693 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3694 }else{ 3695 distinct = -1; 3696 } 3697 3698 /* Aggregate and non-aggregate queries are handled differently */ 3699 if( !isAgg && pGroupBy==0 ){ 3700 /* This case is for non-aggregate queries 3701 ** Begin the database scan 3702 */ 3703 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3704 if( pWInfo==0 ) goto select_end; 3705 3706 /* If sorting index that was created by a prior OP_OpenEphemeral 3707 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3708 ** into an OP_Noop. 3709 */ 3710 if( addrSortIndex>=0 && pOrderBy==0 ){ 3711 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3712 p->addrOpenEphm[2] = -1; 3713 } 3714 3715 /* Use the standard inner loop 3716 */ 3717 assert(!isDistinct); 3718 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3719 pWInfo->iContinue, pWInfo->iBreak); 3720 3721 /* End the database scan loop. 3722 */ 3723 sqlite3WhereEnd(pWInfo); 3724 }else{ 3725 /* This is the processing for aggregate queries */ 3726 NameContext sNC; /* Name context for processing aggregate information */ 3727 int iAMem; /* First Mem address for storing current GROUP BY */ 3728 int iBMem; /* First Mem address for previous GROUP BY */ 3729 int iUseFlag; /* Mem address holding flag indicating that at least 3730 ** one row of the input to the aggregator has been 3731 ** processed */ 3732 int iAbortFlag; /* Mem address which causes query abort if positive */ 3733 int groupBySort; /* Rows come from source in GROUP BY order */ 3734 int addrEnd; /* End of processing for this SELECT */ 3735 3736 /* Remove any and all aliases between the result set and the 3737 ** GROUP BY clause. 3738 */ 3739 if( pGroupBy ){ 3740 int k; /* Loop counter */ 3741 struct ExprList_item *pItem; /* For looping over expression in a list */ 3742 3743 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3744 pItem->iAlias = 0; 3745 } 3746 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3747 pItem->iAlias = 0; 3748 } 3749 } 3750 3751 3752 /* Create a label to jump to when we want to abort the query */ 3753 addrEnd = sqlite3VdbeMakeLabel(v); 3754 3755 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3756 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3757 ** SELECT statement. 3758 */ 3759 memset(&sNC, 0, sizeof(sNC)); 3760 sNC.pParse = pParse; 3761 sNC.pSrcList = pTabList; 3762 sNC.pAggInfo = &sAggInfo; 3763 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3764 sAggInfo.pGroupBy = pGroupBy; 3765 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3766 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3767 if( pHaving ){ 3768 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3769 } 3770 sAggInfo.nAccumulator = sAggInfo.nColumn; 3771 for(i=0; i<sAggInfo.nFunc; i++){ 3772 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3773 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3774 } 3775 if( db->mallocFailed ) goto select_end; 3776 3777 /* Processing for aggregates with GROUP BY is very different and 3778 ** much more complex than aggregates without a GROUP BY. 3779 */ 3780 if( pGroupBy ){ 3781 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3782 int j1; /* A-vs-B comparision jump */ 3783 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3784 int regOutputRow; /* Return address register for output subroutine */ 3785 int addrSetAbort; /* Set the abort flag and return */ 3786 int addrTopOfLoop; /* Top of the input loop */ 3787 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3788 int addrReset; /* Subroutine for resetting the accumulator */ 3789 int regReset; /* Return address register for reset subroutine */ 3790 3791 /* If there is a GROUP BY clause we might need a sorting index to 3792 ** implement it. Allocate that sorting index now. If it turns out 3793 ** that we do not need it after all, the OpenEphemeral instruction 3794 ** will be converted into a Noop. 3795 */ 3796 sAggInfo.sortingIdx = pParse->nTab++; 3797 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3798 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3799 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3800 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3801 3802 /* Initialize memory locations used by GROUP BY aggregate processing 3803 */ 3804 iUseFlag = ++pParse->nMem; 3805 iAbortFlag = ++pParse->nMem; 3806 regOutputRow = ++pParse->nMem; 3807 addrOutputRow = sqlite3VdbeMakeLabel(v); 3808 regReset = ++pParse->nMem; 3809 addrReset = sqlite3VdbeMakeLabel(v); 3810 iAMem = pParse->nMem + 1; 3811 pParse->nMem += pGroupBy->nExpr; 3812 iBMem = pParse->nMem + 1; 3813 pParse->nMem += pGroupBy->nExpr; 3814 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3815 VdbeComment((v, "clear abort flag")); 3816 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3817 VdbeComment((v, "indicate accumulator empty")); 3818 3819 /* Begin a loop that will extract all source rows in GROUP BY order. 3820 ** This might involve two separate loops with an OP_Sort in between, or 3821 ** it might be a single loop that uses an index to extract information 3822 ** in the right order to begin with. 3823 */ 3824 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3825 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3826 if( pWInfo==0 ) goto select_end; 3827 if( pGroupBy==0 ){ 3828 /* The optimizer is able to deliver rows in group by order so 3829 ** we do not have to sort. The OP_OpenEphemeral table will be 3830 ** cancelled later because we still need to use the pKeyInfo 3831 */ 3832 pGroupBy = p->pGroupBy; 3833 groupBySort = 0; 3834 }else{ 3835 /* Rows are coming out in undetermined order. We have to push 3836 ** each row into a sorting index, terminate the first loop, 3837 ** then loop over the sorting index in order to get the output 3838 ** in sorted order 3839 */ 3840 int regBase; 3841 int regRecord; 3842 int nCol; 3843 int nGroupBy; 3844 3845 groupBySort = 1; 3846 nGroupBy = pGroupBy->nExpr; 3847 nCol = nGroupBy + 1; 3848 j = nGroupBy+1; 3849 for(i=0; i<sAggInfo.nColumn; i++){ 3850 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3851 nCol++; 3852 j++; 3853 } 3854 } 3855 regBase = sqlite3GetTempRange(pParse, nCol); 3856 sqlite3ExprCacheClear(pParse); 3857 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3858 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3859 j = nGroupBy+1; 3860 for(i=0; i<sAggInfo.nColumn; i++){ 3861 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3862 if( pCol->iSorterColumn>=j ){ 3863 int r1 = j + regBase; 3864 int r2; 3865 3866 r2 = sqlite3ExprCodeGetColumn(pParse, 3867 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 3868 if( r1!=r2 ){ 3869 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3870 } 3871 j++; 3872 } 3873 } 3874 regRecord = sqlite3GetTempReg(pParse); 3875 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3876 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3877 sqlite3ReleaseTempReg(pParse, regRecord); 3878 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3879 sqlite3WhereEnd(pWInfo); 3880 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3881 VdbeComment((v, "GROUP BY sort")); 3882 sAggInfo.useSortingIdx = 1; 3883 sqlite3ExprCacheClear(pParse); 3884 } 3885 3886 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3887 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3888 ** Then compare the current GROUP BY terms against the GROUP BY terms 3889 ** from the previous row currently stored in a0, a1, a2... 3890 */ 3891 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3892 sqlite3ExprCacheClear(pParse); 3893 for(j=0; j<pGroupBy->nExpr; j++){ 3894 if( groupBySort ){ 3895 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3896 }else{ 3897 sAggInfo.directMode = 1; 3898 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3899 } 3900 } 3901 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3902 (char*)pKeyInfo, P4_KEYINFO); 3903 j1 = sqlite3VdbeCurrentAddr(v); 3904 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3905 3906 /* Generate code that runs whenever the GROUP BY changes. 3907 ** Changes in the GROUP BY are detected by the previous code 3908 ** block. If there were no changes, this block is skipped. 3909 ** 3910 ** This code copies current group by terms in b0,b1,b2,... 3911 ** over to a0,a1,a2. It then calls the output subroutine 3912 ** and resets the aggregate accumulator registers in preparation 3913 ** for the next GROUP BY batch. 3914 */ 3915 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3916 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3917 VdbeComment((v, "output one row")); 3918 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3919 VdbeComment((v, "check abort flag")); 3920 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3921 VdbeComment((v, "reset accumulator")); 3922 3923 /* Update the aggregate accumulators based on the content of 3924 ** the current row 3925 */ 3926 sqlite3VdbeJumpHere(v, j1); 3927 updateAccumulator(pParse, &sAggInfo); 3928 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 3929 VdbeComment((v, "indicate data in accumulator")); 3930 3931 /* End of the loop 3932 */ 3933 if( groupBySort ){ 3934 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3935 }else{ 3936 sqlite3WhereEnd(pWInfo); 3937 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3938 } 3939 3940 /* Output the final row of result 3941 */ 3942 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3943 VdbeComment((v, "output final row")); 3944 3945 /* Jump over the subroutines 3946 */ 3947 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 3948 3949 /* Generate a subroutine that outputs a single row of the result 3950 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3951 ** is less than or equal to zero, the subroutine is a no-op. If 3952 ** the processing calls for the query to abort, this subroutine 3953 ** increments the iAbortFlag memory location before returning in 3954 ** order to signal the caller to abort. 3955 */ 3956 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3957 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 3958 VdbeComment((v, "set abort flag")); 3959 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3960 sqlite3VdbeResolveLabel(v, addrOutputRow); 3961 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3962 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 3963 VdbeComment((v, "Groupby result generator entry point")); 3964 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3965 finalizeAggFunctions(pParse, &sAggInfo); 3966 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 3967 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3968 distinct, pDest, 3969 addrOutputRow+1, addrSetAbort); 3970 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3971 VdbeComment((v, "end groupby result generator")); 3972 3973 /* Generate a subroutine that will reset the group-by accumulator 3974 */ 3975 sqlite3VdbeResolveLabel(v, addrReset); 3976 resetAccumulator(pParse, &sAggInfo); 3977 sqlite3VdbeAddOp1(v, OP_Return, regReset); 3978 3979 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 3980 else { 3981 ExprList *pDel = 0; 3982 #ifndef SQLITE_OMIT_BTREECOUNT 3983 Table *pTab; 3984 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 3985 /* If isSimpleCount() returns a pointer to a Table structure, then 3986 ** the SQL statement is of the form: 3987 ** 3988 ** SELECT count(*) FROM <tbl> 3989 ** 3990 ** where the Table structure returned represents table <tbl>. 3991 ** 3992 ** This statement is so common that it is optimized specially. The 3993 ** OP_Count instruction is executed either on the intkey table that 3994 ** contains the data for table <tbl> or on one of its indexes. It 3995 ** is better to execute the op on an index, as indexes are almost 3996 ** always spread across less pages than their corresponding tables. 3997 */ 3998 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3999 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4000 Index *pIdx; /* Iterator variable */ 4001 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4002 Index *pBest = 0; /* Best index found so far */ 4003 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4004 4005 sqlite3CodeVerifySchema(pParse, iDb); 4006 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4007 4008 /* Search for the index that has the least amount of columns. If 4009 ** there is such an index, and it has less columns than the table 4010 ** does, then we can assume that it consumes less space on disk and 4011 ** will therefore be cheaper to scan to determine the query result. 4012 ** In this case set iRoot to the root page number of the index b-tree 4013 ** and pKeyInfo to the KeyInfo structure required to navigate the 4014 ** index. 4015 ** 4016 ** In practice the KeyInfo structure will not be used. It is only 4017 ** passed to keep OP_OpenRead happy. 4018 */ 4019 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4020 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4021 pBest = pIdx; 4022 } 4023 } 4024 if( pBest && pBest->nColumn<pTab->nCol ){ 4025 iRoot = pBest->tnum; 4026 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4027 } 4028 4029 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4030 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4031 if( pKeyInfo ){ 4032 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4033 } 4034 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4035 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4036 }else 4037 #endif /* SQLITE_OMIT_BTREECOUNT */ 4038 { 4039 /* Check if the query is of one of the following forms: 4040 ** 4041 ** SELECT min(x) FROM ... 4042 ** SELECT max(x) FROM ... 4043 ** 4044 ** If it is, then ask the code in where.c to attempt to sort results 4045 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4046 ** If where.c is able to produce results sorted in this order, then 4047 ** add vdbe code to break out of the processing loop after the 4048 ** first iteration (since the first iteration of the loop is 4049 ** guaranteed to operate on the row with the minimum or maximum 4050 ** value of x, the only row required). 4051 ** 4052 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4053 ** modify behaviour as follows: 4054 ** 4055 ** + If the query is a "SELECT min(x)", then the loop coded by 4056 ** where.c should not iterate over any values with a NULL value 4057 ** for x. 4058 ** 4059 ** + The optimizer code in where.c (the thing that decides which 4060 ** index or indices to use) should place a different priority on 4061 ** satisfying the 'ORDER BY' clause than it does in other cases. 4062 ** Refer to code and comments in where.c for details. 4063 */ 4064 ExprList *pMinMax = 0; 4065 u8 flag = minMaxQuery(p); 4066 if( flag ){ 4067 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4068 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4069 pDel = pMinMax; 4070 if( pMinMax && !db->mallocFailed ){ 4071 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4072 pMinMax->a[0].pExpr->op = TK_COLUMN; 4073 } 4074 } 4075 4076 /* This case runs if the aggregate has no GROUP BY clause. The 4077 ** processing is much simpler since there is only a single row 4078 ** of output. 4079 */ 4080 resetAccumulator(pParse, &sAggInfo); 4081 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4082 if( pWInfo==0 ){ 4083 sqlite3ExprListDelete(db, pDel); 4084 goto select_end; 4085 } 4086 updateAccumulator(pParse, &sAggInfo); 4087 if( !pMinMax && flag ){ 4088 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4089 VdbeComment((v, "%s() by index", 4090 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4091 } 4092 sqlite3WhereEnd(pWInfo); 4093 finalizeAggFunctions(pParse, &sAggInfo); 4094 } 4095 4096 pOrderBy = 0; 4097 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4098 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4099 pDest, addrEnd, addrEnd); 4100 sqlite3ExprListDelete(db, pDel); 4101 } 4102 sqlite3VdbeResolveLabel(v, addrEnd); 4103 4104 } /* endif aggregate query */ 4105 4106 /* If there is an ORDER BY clause, then we need to sort the results 4107 ** and send them to the callback one by one. 4108 */ 4109 if( pOrderBy ){ 4110 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4111 } 4112 4113 /* Jump here to skip this query 4114 */ 4115 sqlite3VdbeResolveLabel(v, iEnd); 4116 4117 /* The SELECT was successfully coded. Set the return code to 0 4118 ** to indicate no errors. 4119 */ 4120 rc = 0; 4121 4122 /* Control jumps to here if an error is encountered above, or upon 4123 ** successful coding of the SELECT. 4124 */ 4125 select_end: 4126 4127 /* Identify column names if results of the SELECT are to be output. 4128 */ 4129 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4130 generateColumnNames(pParse, pTabList, pEList); 4131 } 4132 4133 sqlite3DbFree(db, sAggInfo.aCol); 4134 sqlite3DbFree(db, sAggInfo.aFunc); 4135 return rc; 4136 } 4137 4138 #if defined(SQLITE_DEBUG) 4139 /* 4140 ******************************************************************************* 4141 ** The following code is used for testing and debugging only. The code 4142 ** that follows does not appear in normal builds. 4143 ** 4144 ** These routines are used to print out the content of all or part of a 4145 ** parse structures such as Select or Expr. Such printouts are useful 4146 ** for helping to understand what is happening inside the code generator 4147 ** during the execution of complex SELECT statements. 4148 ** 4149 ** These routine are not called anywhere from within the normal 4150 ** code base. Then are intended to be called from within the debugger 4151 ** or from temporary "printf" statements inserted for debugging. 4152 */ 4153 void sqlite3PrintExpr(Expr *p){ 4154 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 4155 sqlite3DebugPrintf("(%s", p->u.zToken); 4156 }else{ 4157 sqlite3DebugPrintf("(%d", p->op); 4158 } 4159 if( p->pLeft ){ 4160 sqlite3DebugPrintf(" "); 4161 sqlite3PrintExpr(p->pLeft); 4162 } 4163 if( p->pRight ){ 4164 sqlite3DebugPrintf(" "); 4165 sqlite3PrintExpr(p->pRight); 4166 } 4167 sqlite3DebugPrintf(")"); 4168 } 4169 void sqlite3PrintExprList(ExprList *pList){ 4170 int i; 4171 for(i=0; i<pList->nExpr; i++){ 4172 sqlite3PrintExpr(pList->a[i].pExpr); 4173 if( i<pList->nExpr-1 ){ 4174 sqlite3DebugPrintf(", "); 4175 } 4176 } 4177 } 4178 void sqlite3PrintSelect(Select *p, int indent){ 4179 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4180 sqlite3PrintExprList(p->pEList); 4181 sqlite3DebugPrintf("\n"); 4182 if( p->pSrc ){ 4183 char *zPrefix; 4184 int i; 4185 zPrefix = "FROM"; 4186 for(i=0; i<p->pSrc->nSrc; i++){ 4187 struct SrcList_item *pItem = &p->pSrc->a[i]; 4188 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4189 zPrefix = ""; 4190 if( pItem->pSelect ){ 4191 sqlite3DebugPrintf("(\n"); 4192 sqlite3PrintSelect(pItem->pSelect, indent+10); 4193 sqlite3DebugPrintf("%*s)", indent+8, ""); 4194 }else if( pItem->zName ){ 4195 sqlite3DebugPrintf("%s", pItem->zName); 4196 } 4197 if( pItem->pTab ){ 4198 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4199 } 4200 if( pItem->zAlias ){ 4201 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4202 } 4203 if( i<p->pSrc->nSrc-1 ){ 4204 sqlite3DebugPrintf(","); 4205 } 4206 sqlite3DebugPrintf("\n"); 4207 } 4208 } 4209 if( p->pWhere ){ 4210 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4211 sqlite3PrintExpr(p->pWhere); 4212 sqlite3DebugPrintf("\n"); 4213 } 4214 if( p->pGroupBy ){ 4215 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4216 sqlite3PrintExprList(p->pGroupBy); 4217 sqlite3DebugPrintf("\n"); 4218 } 4219 if( p->pHaving ){ 4220 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4221 sqlite3PrintExpr(p->pHaving); 4222 sqlite3DebugPrintf("\n"); 4223 } 4224 if( p->pOrderBy ){ 4225 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4226 sqlite3PrintExprList(p->pOrderBy); 4227 sqlite3DebugPrintf("\n"); 4228 } 4229 } 4230 /* End of the structure debug printing code 4231 *****************************************************************************/ 4232 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4233