xref: /sqlite-3.40.0/src/select.c (revision 57fec54b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
57 };
58 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
59 
60 /*
61 ** Delete all the content of a Select structure.  Deallocate the structure
62 ** itself only if bFree is true.
63 */
64 static void clearSelect(sqlite3 *db, Select *p, int bFree){
65   while( p ){
66     Select *pPrior = p->pPrior;
67     sqlite3ExprListDelete(db, p->pEList);
68     sqlite3SrcListDelete(db, p->pSrc);
69     sqlite3ExprDelete(db, p->pWhere);
70     sqlite3ExprListDelete(db, p->pGroupBy);
71     sqlite3ExprDelete(db, p->pHaving);
72     sqlite3ExprListDelete(db, p->pOrderBy);
73     sqlite3ExprDelete(db, p->pLimit);
74     sqlite3ExprDelete(db, p->pOffset);
75     sqlite3WithDelete(db, p->pWith);
76     if( bFree ) sqlite3DbFree(db, p);
77     p = pPrior;
78     bFree = 1;
79   }
80 }
81 
82 /*
83 ** Initialize a SelectDest structure.
84 */
85 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
86   pDest->eDest = (u8)eDest;
87   pDest->iSDParm = iParm;
88   pDest->affSdst = 0;
89   pDest->iSdst = 0;
90   pDest->nSdst = 0;
91 }
92 
93 
94 /*
95 ** Allocate a new Select structure and return a pointer to that
96 ** structure.
97 */
98 Select *sqlite3SelectNew(
99   Parse *pParse,        /* Parsing context */
100   ExprList *pEList,     /* which columns to include in the result */
101   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
102   Expr *pWhere,         /* the WHERE clause */
103   ExprList *pGroupBy,   /* the GROUP BY clause */
104   Expr *pHaving,        /* the HAVING clause */
105   ExprList *pOrderBy,   /* the ORDER BY clause */
106   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
107   Expr *pLimit,         /* LIMIT value.  NULL means not used */
108   Expr *pOffset         /* OFFSET value.  NULL means no offset */
109 ){
110   Select *pNew;
111   Select standin;
112   sqlite3 *db = pParse->db;
113   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
114   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     setJoinExpr(p->pLeft, iTable);
370     p = p->pRight;
371   }
372 }
373 
374 /*
375 ** This routine processes the join information for a SELECT statement.
376 ** ON and USING clauses are converted into extra terms of the WHERE clause.
377 ** NATURAL joins also create extra WHERE clause terms.
378 **
379 ** The terms of a FROM clause are contained in the Select.pSrc structure.
380 ** The left most table is the first entry in Select.pSrc.  The right-most
381 ** table is the last entry.  The join operator is held in the entry to
382 ** the left.  Thus entry 0 contains the join operator for the join between
383 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
384 ** also attached to the left entry.
385 **
386 ** This routine returns the number of errors encountered.
387 */
388 static int sqliteProcessJoin(Parse *pParse, Select *p){
389   SrcList *pSrc;                  /* All tables in the FROM clause */
390   int i, j;                       /* Loop counters */
391   struct SrcList_item *pLeft;     /* Left table being joined */
392   struct SrcList_item *pRight;    /* Right table being joined */
393 
394   pSrc = p->pSrc;
395   pLeft = &pSrc->a[0];
396   pRight = &pLeft[1];
397   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
398     Table *pLeftTab = pLeft->pTab;
399     Table *pRightTab = pRight->pTab;
400     int isOuter;
401 
402     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
403     isOuter = (pRight->jointype & JT_OUTER)!=0;
404 
405     /* When the NATURAL keyword is present, add WHERE clause terms for
406     ** every column that the two tables have in common.
407     */
408     if( pRight->jointype & JT_NATURAL ){
409       if( pRight->pOn || pRight->pUsing ){
410         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
411            "an ON or USING clause", 0);
412         return 1;
413       }
414       for(j=0; j<pRightTab->nCol; j++){
415         char *zName;   /* Name of column in the right table */
416         int iLeft;     /* Matching left table */
417         int iLeftCol;  /* Matching column in the left table */
418 
419         zName = pRightTab->aCol[j].zName;
420         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
421           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
422                        isOuter, &p->pWhere);
423         }
424       }
425     }
426 
427     /* Disallow both ON and USING clauses in the same join
428     */
429     if( pRight->pOn && pRight->pUsing ){
430       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
431         "clauses in the same join");
432       return 1;
433     }
434 
435     /* Add the ON clause to the end of the WHERE clause, connected by
436     ** an AND operator.
437     */
438     if( pRight->pOn ){
439       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
440       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
441       pRight->pOn = 0;
442     }
443 
444     /* Create extra terms on the WHERE clause for each column named
445     ** in the USING clause.  Example: If the two tables to be joined are
446     ** A and B and the USING clause names X, Y, and Z, then add this
447     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
448     ** Report an error if any column mentioned in the USING clause is
449     ** not contained in both tables to be joined.
450     */
451     if( pRight->pUsing ){
452       IdList *pList = pRight->pUsing;
453       for(j=0; j<pList->nId; j++){
454         char *zName;     /* Name of the term in the USING clause */
455         int iLeft;       /* Table on the left with matching column name */
456         int iLeftCol;    /* Column number of matching column on the left */
457         int iRightCol;   /* Column number of matching column on the right */
458 
459         zName = pList->a[j].zName;
460         iRightCol = columnIndex(pRightTab, zName);
461         if( iRightCol<0
462          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
463         ){
464           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
465             "not present in both tables", zName);
466           return 1;
467         }
468         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
469                      isOuter, &p->pWhere);
470       }
471     }
472   }
473   return 0;
474 }
475 
476 /* Forward reference */
477 static KeyInfo *keyInfoFromExprList(
478   Parse *pParse,       /* Parsing context */
479   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
480   int iStart,          /* Begin with this column of pList */
481   int nExtra           /* Add this many extra columns to the end */
482 );
483 
484 /*
485 ** Generate code that will push the record in registers regData
486 ** through regData+nData-1 onto the sorter.
487 */
488 static void pushOntoSorter(
489   Parse *pParse,         /* Parser context */
490   SortCtx *pSort,        /* Information about the ORDER BY clause */
491   Select *pSelect,       /* The whole SELECT statement */
492   int regData,           /* First register holding data to be sorted */
493   int nData,             /* Number of elements in the data array */
494   int nPrefixReg         /* No. of reg prior to regData available for use */
495 ){
496   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
497   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
498   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
499   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
500   int regBase;                                     /* Regs for sorter record */
501   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
502   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
503   int op;                            /* Opcode to add sorter record to sorter */
504 
505   assert( bSeq==0 || bSeq==1 );
506   if( nPrefixReg ){
507     assert( nPrefixReg==nExpr+bSeq );
508     regBase = regData - nExpr - bSeq;
509   }else{
510     regBase = pParse->nMem + 1;
511     pParse->nMem += nBase;
512   }
513   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
514   if( bSeq ){
515     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
516   }
517   if( nPrefixReg==0 ){
518     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
519   }
520 
521   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
522   if( nOBSat>0 ){
523     int regPrevKey;   /* The first nOBSat columns of the previous row */
524     int addrFirst;    /* Address of the OP_IfNot opcode */
525     int addrJmp;      /* Address of the OP_Jump opcode */
526     VdbeOp *pOp;      /* Opcode that opens the sorter */
527     int nKey;         /* Number of sorting key columns, including OP_Sequence */
528     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
529 
530     regPrevKey = pParse->nMem+1;
531     pParse->nMem += pSort->nOBSat;
532     nKey = nExpr - pSort->nOBSat + bSeq;
533     if( bSeq ){
534       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
535     }else{
536       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
537     }
538     VdbeCoverage(v);
539     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
540     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
541     if( pParse->db->mallocFailed ) return;
542     pOp->p2 = nKey + nData;
543     pKI = pOp->p4.pKeyInfo;
544     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
545     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
546     testcase( pKI->nXField>2 );
547     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
548                                            pKI->nXField-1);
549     addrJmp = sqlite3VdbeCurrentAddr(v);
550     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
551     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
552     pSort->regReturn = ++pParse->nMem;
553     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
554     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
555     sqlite3VdbeJumpHere(v, addrFirst);
556     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
557     sqlite3VdbeJumpHere(v, addrJmp);
558   }
559   if( pSort->sortFlags & SORTFLAG_UseSorter ){
560     op = OP_SorterInsert;
561   }else{
562     op = OP_IdxInsert;
563   }
564   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
565   if( pSelect->iLimit ){
566     int addr1, addr2;
567     int iLimit;
568     if( pSelect->iOffset ){
569       iLimit = pSelect->iOffset+1;
570     }else{
571       iLimit = pSelect->iLimit;
572     }
573     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
574     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
575     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
576     sqlite3VdbeJumpHere(v, addr1);
577     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
578     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
579     sqlite3VdbeJumpHere(v, addr2);
580   }
581 }
582 
583 /*
584 ** Add code to implement the OFFSET
585 */
586 static void codeOffset(
587   Vdbe *v,          /* Generate code into this VM */
588   int iOffset,      /* Register holding the offset counter */
589   int iContinue     /* Jump here to skip the current record */
590 ){
591   if( iOffset>0 ){
592     int addr;
593     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
594     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
595     VdbeComment((v, "skip OFFSET records"));
596     sqlite3VdbeJumpHere(v, addr);
597   }
598 }
599 
600 /*
601 ** Add code that will check to make sure the N registers starting at iMem
602 ** form a distinct entry.  iTab is a sorting index that holds previously
603 ** seen combinations of the N values.  A new entry is made in iTab
604 ** if the current N values are new.
605 **
606 ** A jump to addrRepeat is made and the N+1 values are popped from the
607 ** stack if the top N elements are not distinct.
608 */
609 static void codeDistinct(
610   Parse *pParse,     /* Parsing and code generating context */
611   int iTab,          /* A sorting index used to test for distinctness */
612   int addrRepeat,    /* Jump to here if not distinct */
613   int N,             /* Number of elements */
614   int iMem           /* First element */
615 ){
616   Vdbe *v;
617   int r1;
618 
619   v = pParse->pVdbe;
620   r1 = sqlite3GetTempReg(pParse);
621   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
622   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
623   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
624   sqlite3ReleaseTempReg(pParse, r1);
625 }
626 
627 #ifndef SQLITE_OMIT_SUBQUERY
628 /*
629 ** Generate an error message when a SELECT is used within a subexpression
630 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
631 ** column.  We do this in a subroutine because the error used to occur
632 ** in multiple places.  (The error only occurs in one place now, but we
633 ** retain the subroutine to minimize code disruption.)
634 */
635 static int checkForMultiColumnSelectError(
636   Parse *pParse,       /* Parse context. */
637   SelectDest *pDest,   /* Destination of SELECT results */
638   int nExpr            /* Number of result columns returned by SELECT */
639 ){
640   int eDest = pDest->eDest;
641   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
642     sqlite3ErrorMsg(pParse, "only a single result allowed for "
643        "a SELECT that is part of an expression");
644     return 1;
645   }else{
646     return 0;
647   }
648 }
649 #endif
650 
651 /*
652 ** This routine generates the code for the inside of the inner loop
653 ** of a SELECT.
654 **
655 ** If srcTab is negative, then the pEList expressions
656 ** are evaluated in order to get the data for this row.  If srcTab is
657 ** zero or more, then data is pulled from srcTab and pEList is used only
658 ** to get number columns and the datatype for each column.
659 */
660 static void selectInnerLoop(
661   Parse *pParse,          /* The parser context */
662   Select *p,              /* The complete select statement being coded */
663   ExprList *pEList,       /* List of values being extracted */
664   int srcTab,             /* Pull data from this table */
665   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
666   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
667   SelectDest *pDest,      /* How to dispose of the results */
668   int iContinue,          /* Jump here to continue with next row */
669   int iBreak              /* Jump here to break out of the inner loop */
670 ){
671   Vdbe *v = pParse->pVdbe;
672   int i;
673   int hasDistinct;        /* True if the DISTINCT keyword is present */
674   int regResult;              /* Start of memory holding result set */
675   int eDest = pDest->eDest;   /* How to dispose of results */
676   int iParm = pDest->iSDParm; /* First argument to disposal method */
677   int nResultCol;             /* Number of result columns */
678   int nPrefixReg = 0;         /* Number of extra registers before regResult */
679 
680   assert( v );
681   assert( pEList!=0 );
682   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
683   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
684   if( pSort==0 && !hasDistinct ){
685     assert( iContinue!=0 );
686     codeOffset(v, p->iOffset, iContinue);
687   }
688 
689   /* Pull the requested columns.
690   */
691   nResultCol = pEList->nExpr;
692 
693   if( pDest->iSdst==0 ){
694     if( pSort ){
695       nPrefixReg = pSort->pOrderBy->nExpr;
696       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
697       pParse->nMem += nPrefixReg;
698     }
699     pDest->iSdst = pParse->nMem+1;
700     pParse->nMem += nResultCol;
701   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
702     /* This is an error condition that can result, for example, when a SELECT
703     ** on the right-hand side of an INSERT contains more result columns than
704     ** there are columns in the table on the left.  The error will be caught
705     ** and reported later.  But we need to make sure enough memory is allocated
706     ** to avoid other spurious errors in the meantime. */
707     pParse->nMem += nResultCol;
708   }
709   pDest->nSdst = nResultCol;
710   regResult = pDest->iSdst;
711   if( srcTab>=0 ){
712     for(i=0; i<nResultCol; i++){
713       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
714       VdbeComment((v, "%s", pEList->a[i].zName));
715     }
716   }else if( eDest!=SRT_Exists ){
717     /* If the destination is an EXISTS(...) expression, the actual
718     ** values returned by the SELECT are not required.
719     */
720     sqlite3ExprCodeExprList(pParse, pEList, regResult,
721                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
722   }
723 
724   /* If the DISTINCT keyword was present on the SELECT statement
725   ** and this row has been seen before, then do not make this row
726   ** part of the result.
727   */
728   if( hasDistinct ){
729     switch( pDistinct->eTnctType ){
730       case WHERE_DISTINCT_ORDERED: {
731         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
732         int iJump;              /* Jump destination */
733         int regPrev;            /* Previous row content */
734 
735         /* Allocate space for the previous row */
736         regPrev = pParse->nMem+1;
737         pParse->nMem += nResultCol;
738 
739         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
740         ** sets the MEM_Cleared bit on the first register of the
741         ** previous value.  This will cause the OP_Ne below to always
742         ** fail on the first iteration of the loop even if the first
743         ** row is all NULLs.
744         */
745         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
746         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
747         pOp->opcode = OP_Null;
748         pOp->p1 = 1;
749         pOp->p2 = regPrev;
750 
751         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
752         for(i=0; i<nResultCol; i++){
753           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
754           if( i<nResultCol-1 ){
755             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
756             VdbeCoverage(v);
757           }else{
758             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
759             VdbeCoverage(v);
760            }
761           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
762           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
763         }
764         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
765         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
766         break;
767       }
768 
769       case WHERE_DISTINCT_UNIQUE: {
770         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
771         break;
772       }
773 
774       default: {
775         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
776         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
777         break;
778       }
779     }
780     if( pSort==0 ){
781       codeOffset(v, p->iOffset, iContinue);
782     }
783   }
784 
785   switch( eDest ){
786     /* In this mode, write each query result to the key of the temporary
787     ** table iParm.
788     */
789 #ifndef SQLITE_OMIT_COMPOUND_SELECT
790     case SRT_Union: {
791       int r1;
792       r1 = sqlite3GetTempReg(pParse);
793       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
794       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
795       sqlite3ReleaseTempReg(pParse, r1);
796       break;
797     }
798 
799     /* Construct a record from the query result, but instead of
800     ** saving that record, use it as a key to delete elements from
801     ** the temporary table iParm.
802     */
803     case SRT_Except: {
804       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
805       break;
806     }
807 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
808 
809     /* Store the result as data using a unique key.
810     */
811     case SRT_Fifo:
812     case SRT_DistFifo:
813     case SRT_Table:
814     case SRT_EphemTab: {
815       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
816       testcase( eDest==SRT_Table );
817       testcase( eDest==SRT_EphemTab );
818       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
819 #ifndef SQLITE_OMIT_CTE
820       if( eDest==SRT_DistFifo ){
821         /* If the destination is DistFifo, then cursor (iParm+1) is open
822         ** on an ephemeral index. If the current row is already present
823         ** in the index, do not write it to the output. If not, add the
824         ** current row to the index and proceed with writing it to the
825         ** output table as well.  */
826         int addr = sqlite3VdbeCurrentAddr(v) + 4;
827         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
828         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
829         assert( pSort==0 );
830       }
831 #endif
832       if( pSort ){
833         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
834       }else{
835         int r2 = sqlite3GetTempReg(pParse);
836         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
837         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
838         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
839         sqlite3ReleaseTempReg(pParse, r2);
840       }
841       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
842       break;
843     }
844 
845 #ifndef SQLITE_OMIT_SUBQUERY
846     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
847     ** then there should be a single item on the stack.  Write this
848     ** item into the set table with bogus data.
849     */
850     case SRT_Set: {
851       assert( nResultCol==1 );
852       pDest->affSdst =
853                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
854       if( pSort ){
855         /* At first glance you would think we could optimize out the
856         ** ORDER BY in this case since the order of entries in the set
857         ** does not matter.  But there might be a LIMIT clause, in which
858         ** case the order does matter */
859         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
860       }else{
861         int r1 = sqlite3GetTempReg(pParse);
862         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
863         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
864         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
865         sqlite3ReleaseTempReg(pParse, r1);
866       }
867       break;
868     }
869 
870     /* If any row exist in the result set, record that fact and abort.
871     */
872     case SRT_Exists: {
873       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
874       /* The LIMIT clause will terminate the loop for us */
875       break;
876     }
877 
878     /* If this is a scalar select that is part of an expression, then
879     ** store the results in the appropriate memory cell and break out
880     ** of the scan loop.
881     */
882     case SRT_Mem: {
883       assert( nResultCol==1 );
884       if( pSort ){
885         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
886       }else{
887         assert( regResult==iParm );
888         /* The LIMIT clause will jump out of the loop for us */
889       }
890       break;
891     }
892 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
893 
894     case SRT_Coroutine:       /* Send data to a co-routine */
895     case SRT_Output: {        /* Return the results */
896       testcase( eDest==SRT_Coroutine );
897       testcase( eDest==SRT_Output );
898       if( pSort ){
899         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
900       }else if( eDest==SRT_Coroutine ){
901         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
902       }else{
903         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
904         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
905       }
906       break;
907     }
908 
909 #ifndef SQLITE_OMIT_CTE
910     /* Write the results into a priority queue that is order according to
911     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
912     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
913     ** pSO->nExpr columns, then make sure all keys are unique by adding a
914     ** final OP_Sequence column.  The last column is the record as a blob.
915     */
916     case SRT_DistQueue:
917     case SRT_Queue: {
918       int nKey;
919       int r1, r2, r3;
920       int addrTest = 0;
921       ExprList *pSO;
922       pSO = pDest->pOrderBy;
923       assert( pSO );
924       nKey = pSO->nExpr;
925       r1 = sqlite3GetTempReg(pParse);
926       r2 = sqlite3GetTempRange(pParse, nKey+2);
927       r3 = r2+nKey+1;
928       if( eDest==SRT_DistQueue ){
929         /* If the destination is DistQueue, then cursor (iParm+1) is open
930         ** on a second ephemeral index that holds all values every previously
931         ** added to the queue. */
932         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
933                                         regResult, nResultCol);
934         VdbeCoverage(v);
935       }
936       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
937       if( eDest==SRT_DistQueue ){
938         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
939         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
940       }
941       for(i=0; i<nKey; i++){
942         sqlite3VdbeAddOp2(v, OP_SCopy,
943                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
944                           r2+i);
945       }
946       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
947       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
948       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
949       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
950       sqlite3ReleaseTempReg(pParse, r1);
951       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
952       break;
953     }
954 #endif /* SQLITE_OMIT_CTE */
955 
956 
957 
958 #if !defined(SQLITE_OMIT_TRIGGER)
959     /* Discard the results.  This is used for SELECT statements inside
960     ** the body of a TRIGGER.  The purpose of such selects is to call
961     ** user-defined functions that have side effects.  We do not care
962     ** about the actual results of the select.
963     */
964     default: {
965       assert( eDest==SRT_Discard );
966       break;
967     }
968 #endif
969   }
970 
971   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
972   ** there is a sorter, in which case the sorter has already limited
973   ** the output for us.
974   */
975   if( pSort==0 && p->iLimit ){
976     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
977   }
978 }
979 
980 /*
981 ** Allocate a KeyInfo object sufficient for an index of N key columns and
982 ** X extra columns.
983 */
984 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
985   KeyInfo *p = sqlite3DbMallocZero(0,
986                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
987   if( p ){
988     p->aSortOrder = (u8*)&p->aColl[N+X];
989     p->nField = (u16)N;
990     p->nXField = (u16)X;
991     p->enc = ENC(db);
992     p->db = db;
993     p->nRef = 1;
994   }else{
995     db->mallocFailed = 1;
996   }
997   return p;
998 }
999 
1000 /*
1001 ** Deallocate a KeyInfo object
1002 */
1003 void sqlite3KeyInfoUnref(KeyInfo *p){
1004   if( p ){
1005     assert( p->nRef>0 );
1006     p->nRef--;
1007     if( p->nRef==0 ) sqlite3DbFree(0, p);
1008   }
1009 }
1010 
1011 /*
1012 ** Make a new pointer to a KeyInfo object
1013 */
1014 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1015   if( p ){
1016     assert( p->nRef>0 );
1017     p->nRef++;
1018   }
1019   return p;
1020 }
1021 
1022 #ifdef SQLITE_DEBUG
1023 /*
1024 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1025 ** can only be changed if this is just a single reference to the object.
1026 **
1027 ** This routine is used only inside of assert() statements.
1028 */
1029 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1030 #endif /* SQLITE_DEBUG */
1031 
1032 /*
1033 ** Given an expression list, generate a KeyInfo structure that records
1034 ** the collating sequence for each expression in that expression list.
1035 **
1036 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1037 ** KeyInfo structure is appropriate for initializing a virtual index to
1038 ** implement that clause.  If the ExprList is the result set of a SELECT
1039 ** then the KeyInfo structure is appropriate for initializing a virtual
1040 ** index to implement a DISTINCT test.
1041 **
1042 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1043 ** function is responsible for seeing that this structure is eventually
1044 ** freed.
1045 */
1046 static KeyInfo *keyInfoFromExprList(
1047   Parse *pParse,       /* Parsing context */
1048   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1049   int iStart,          /* Begin with this column of pList */
1050   int nExtra           /* Add this many extra columns to the end */
1051 ){
1052   int nExpr;
1053   KeyInfo *pInfo;
1054   struct ExprList_item *pItem;
1055   sqlite3 *db = pParse->db;
1056   int i;
1057 
1058   nExpr = pList->nExpr;
1059   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1060   if( pInfo ){
1061     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1062     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1063       CollSeq *pColl;
1064       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1065       if( !pColl ) pColl = db->pDfltColl;
1066       pInfo->aColl[i-iStart] = pColl;
1067       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1068     }
1069   }
1070   return pInfo;
1071 }
1072 
1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1074 /*
1075 ** Name of the connection operator, used for error messages.
1076 */
1077 static const char *selectOpName(int id){
1078   char *z;
1079   switch( id ){
1080     case TK_ALL:       z = "UNION ALL";   break;
1081     case TK_INTERSECT: z = "INTERSECT";   break;
1082     case TK_EXCEPT:    z = "EXCEPT";      break;
1083     default:           z = "UNION";       break;
1084   }
1085   return z;
1086 }
1087 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1088 
1089 #ifndef SQLITE_OMIT_EXPLAIN
1090 /*
1091 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1092 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1093 ** where the caption is of the form:
1094 **
1095 **   "USE TEMP B-TREE FOR xxx"
1096 **
1097 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1098 ** is determined by the zUsage argument.
1099 */
1100 static void explainTempTable(Parse *pParse, const char *zUsage){
1101   if( pParse->explain==2 ){
1102     Vdbe *v = pParse->pVdbe;
1103     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1104     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1105   }
1106 }
1107 
1108 /*
1109 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1110 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1111 ** in sqlite3Select() to assign values to structure member variables that
1112 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1113 ** code with #ifndef directives.
1114 */
1115 # define explainSetInteger(a, b) a = b
1116 
1117 #else
1118 /* No-op versions of the explainXXX() functions and macros. */
1119 # define explainTempTable(y,z)
1120 # define explainSetInteger(y,z)
1121 #endif
1122 
1123 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1124 /*
1125 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1126 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1127 ** where the caption is of one of the two forms:
1128 **
1129 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1130 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1131 **
1132 ** where iSub1 and iSub2 are the integers passed as the corresponding
1133 ** function parameters, and op is the text representation of the parameter
1134 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1135 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1136 ** false, or the second form if it is true.
1137 */
1138 static void explainComposite(
1139   Parse *pParse,                  /* Parse context */
1140   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1141   int iSub1,                      /* Subquery id 1 */
1142   int iSub2,                      /* Subquery id 2 */
1143   int bUseTmp                     /* True if a temp table was used */
1144 ){
1145   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1146   if( pParse->explain==2 ){
1147     Vdbe *v = pParse->pVdbe;
1148     char *zMsg = sqlite3MPrintf(
1149         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1150         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1151     );
1152     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1153   }
1154 }
1155 #else
1156 /* No-op versions of the explainXXX() functions and macros. */
1157 # define explainComposite(v,w,x,y,z)
1158 #endif
1159 
1160 /*
1161 ** If the inner loop was generated using a non-null pOrderBy argument,
1162 ** then the results were placed in a sorter.  After the loop is terminated
1163 ** we need to run the sorter and output the results.  The following
1164 ** routine generates the code needed to do that.
1165 */
1166 static void generateSortTail(
1167   Parse *pParse,    /* Parsing context */
1168   Select *p,        /* The SELECT statement */
1169   SortCtx *pSort,   /* Information on the ORDER BY clause */
1170   int nColumn,      /* Number of columns of data */
1171   SelectDest *pDest /* Write the sorted results here */
1172 ){
1173   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1174   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1175   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1176   int addr;
1177   int addrOnce = 0;
1178   int iTab;
1179   ExprList *pOrderBy = pSort->pOrderBy;
1180   int eDest = pDest->eDest;
1181   int iParm = pDest->iSDParm;
1182   int regRow;
1183   int regRowid;
1184   int nKey;
1185   int iSortTab;                   /* Sorter cursor to read from */
1186   int nSortData;                  /* Trailing values to read from sorter */
1187   int i;
1188   int bSeq;                       /* True if sorter record includes seq. no. */
1189 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1190   struct ExprList_item *aOutEx = p->pEList->a;
1191 #endif
1192 
1193   if( pSort->labelBkOut ){
1194     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1195     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1196     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1197   }
1198   iTab = pSort->iECursor;
1199   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1200     regRowid = 0;
1201     regRow = pDest->iSdst;
1202     nSortData = nColumn;
1203   }else{
1204     regRowid = sqlite3GetTempReg(pParse);
1205     regRow = sqlite3GetTempReg(pParse);
1206     nSortData = 1;
1207   }
1208   nKey = pOrderBy->nExpr - pSort->nOBSat;
1209   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1210     int regSortOut = ++pParse->nMem;
1211     iSortTab = pParse->nTab++;
1212     if( pSort->labelBkOut ){
1213       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1214     }
1215     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1216     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1217     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1218     VdbeCoverage(v);
1219     codeOffset(v, p->iOffset, addrContinue);
1220     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1221     bSeq = 0;
1222   }else{
1223     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1224     codeOffset(v, p->iOffset, addrContinue);
1225     iSortTab = iTab;
1226     bSeq = 1;
1227   }
1228   for(i=0; i<nSortData; i++){
1229     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1230     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1231   }
1232   switch( eDest ){
1233     case SRT_Table:
1234     case SRT_EphemTab: {
1235       testcase( eDest==SRT_Table );
1236       testcase( eDest==SRT_EphemTab );
1237       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1238       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1239       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1240       break;
1241     }
1242 #ifndef SQLITE_OMIT_SUBQUERY
1243     case SRT_Set: {
1244       assert( nColumn==1 );
1245       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1246                         &pDest->affSdst, 1);
1247       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1248       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1249       break;
1250     }
1251     case SRT_Mem: {
1252       assert( nColumn==1 );
1253       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1254       /* The LIMIT clause will terminate the loop for us */
1255       break;
1256     }
1257 #endif
1258     default: {
1259       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1260       testcase( eDest==SRT_Output );
1261       testcase( eDest==SRT_Coroutine );
1262       if( eDest==SRT_Output ){
1263         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1264         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1265       }else{
1266         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1267       }
1268       break;
1269     }
1270   }
1271   if( regRowid ){
1272     sqlite3ReleaseTempReg(pParse, regRow);
1273     sqlite3ReleaseTempReg(pParse, regRowid);
1274   }
1275   /* The bottom of the loop
1276   */
1277   sqlite3VdbeResolveLabel(v, addrContinue);
1278   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1279     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1280   }else{
1281     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1282   }
1283   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1284   sqlite3VdbeResolveLabel(v, addrBreak);
1285 }
1286 
1287 /*
1288 ** Return a pointer to a string containing the 'declaration type' of the
1289 ** expression pExpr. The string may be treated as static by the caller.
1290 **
1291 ** Also try to estimate the size of the returned value and return that
1292 ** result in *pEstWidth.
1293 **
1294 ** The declaration type is the exact datatype definition extracted from the
1295 ** original CREATE TABLE statement if the expression is a column. The
1296 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1297 ** is considered a column can be complex in the presence of subqueries. The
1298 ** result-set expression in all of the following SELECT statements is
1299 ** considered a column by this function.
1300 **
1301 **   SELECT col FROM tbl;
1302 **   SELECT (SELECT col FROM tbl;
1303 **   SELECT (SELECT col FROM tbl);
1304 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1305 **
1306 ** The declaration type for any expression other than a column is NULL.
1307 **
1308 ** This routine has either 3 or 6 parameters depending on whether or not
1309 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1310 */
1311 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1312 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1313 static const char *columnTypeImpl(
1314   NameContext *pNC,
1315   Expr *pExpr,
1316   const char **pzOrigDb,
1317   const char **pzOrigTab,
1318   const char **pzOrigCol,
1319   u8 *pEstWidth
1320 ){
1321   char const *zOrigDb = 0;
1322   char const *zOrigTab = 0;
1323   char const *zOrigCol = 0;
1324 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1325 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1326 static const char *columnTypeImpl(
1327   NameContext *pNC,
1328   Expr *pExpr,
1329   u8 *pEstWidth
1330 ){
1331 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1332   char const *zType = 0;
1333   int j;
1334   u8 estWidth = 1;
1335 
1336   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1337   switch( pExpr->op ){
1338     case TK_AGG_COLUMN:
1339     case TK_COLUMN: {
1340       /* The expression is a column. Locate the table the column is being
1341       ** extracted from in NameContext.pSrcList. This table may be real
1342       ** database table or a subquery.
1343       */
1344       Table *pTab = 0;            /* Table structure column is extracted from */
1345       Select *pS = 0;             /* Select the column is extracted from */
1346       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1347       testcase( pExpr->op==TK_AGG_COLUMN );
1348       testcase( pExpr->op==TK_COLUMN );
1349       while( pNC && !pTab ){
1350         SrcList *pTabList = pNC->pSrcList;
1351         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1352         if( j<pTabList->nSrc ){
1353           pTab = pTabList->a[j].pTab;
1354           pS = pTabList->a[j].pSelect;
1355         }else{
1356           pNC = pNC->pNext;
1357         }
1358       }
1359 
1360       if( pTab==0 ){
1361         /* At one time, code such as "SELECT new.x" within a trigger would
1362         ** cause this condition to run.  Since then, we have restructured how
1363         ** trigger code is generated and so this condition is no longer
1364         ** possible. However, it can still be true for statements like
1365         ** the following:
1366         **
1367         **   CREATE TABLE t1(col INTEGER);
1368         **   SELECT (SELECT t1.col) FROM FROM t1;
1369         **
1370         ** when columnType() is called on the expression "t1.col" in the
1371         ** sub-select. In this case, set the column type to NULL, even
1372         ** though it should really be "INTEGER".
1373         **
1374         ** This is not a problem, as the column type of "t1.col" is never
1375         ** used. When columnType() is called on the expression
1376         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1377         ** branch below.  */
1378         break;
1379       }
1380 
1381       assert( pTab && pExpr->pTab==pTab );
1382       if( pS ){
1383         /* The "table" is actually a sub-select or a view in the FROM clause
1384         ** of the SELECT statement. Return the declaration type and origin
1385         ** data for the result-set column of the sub-select.
1386         */
1387         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1388           /* If iCol is less than zero, then the expression requests the
1389           ** rowid of the sub-select or view. This expression is legal (see
1390           ** test case misc2.2.2) - it always evaluates to NULL.
1391           */
1392           NameContext sNC;
1393           Expr *p = pS->pEList->a[iCol].pExpr;
1394           sNC.pSrcList = pS->pSrc;
1395           sNC.pNext = pNC;
1396           sNC.pParse = pNC->pParse;
1397           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1398         }
1399       }else if( pTab->pSchema ){
1400         /* A real table */
1401         assert( !pS );
1402         if( iCol<0 ) iCol = pTab->iPKey;
1403         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1404 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1405         if( iCol<0 ){
1406           zType = "INTEGER";
1407           zOrigCol = "rowid";
1408         }else{
1409           zType = pTab->aCol[iCol].zType;
1410           zOrigCol = pTab->aCol[iCol].zName;
1411           estWidth = pTab->aCol[iCol].szEst;
1412         }
1413         zOrigTab = pTab->zName;
1414         if( pNC->pParse ){
1415           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1416           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1417         }
1418 #else
1419         if( iCol<0 ){
1420           zType = "INTEGER";
1421         }else{
1422           zType = pTab->aCol[iCol].zType;
1423           estWidth = pTab->aCol[iCol].szEst;
1424         }
1425 #endif
1426       }
1427       break;
1428     }
1429 #ifndef SQLITE_OMIT_SUBQUERY
1430     case TK_SELECT: {
1431       /* The expression is a sub-select. Return the declaration type and
1432       ** origin info for the single column in the result set of the SELECT
1433       ** statement.
1434       */
1435       NameContext sNC;
1436       Select *pS = pExpr->x.pSelect;
1437       Expr *p = pS->pEList->a[0].pExpr;
1438       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1439       sNC.pSrcList = pS->pSrc;
1440       sNC.pNext = pNC;
1441       sNC.pParse = pNC->pParse;
1442       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1443       break;
1444     }
1445 #endif
1446   }
1447 
1448 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1449   if( pzOrigDb ){
1450     assert( pzOrigTab && pzOrigCol );
1451     *pzOrigDb = zOrigDb;
1452     *pzOrigTab = zOrigTab;
1453     *pzOrigCol = zOrigCol;
1454   }
1455 #endif
1456   if( pEstWidth ) *pEstWidth = estWidth;
1457   return zType;
1458 }
1459 
1460 /*
1461 ** Generate code that will tell the VDBE the declaration types of columns
1462 ** in the result set.
1463 */
1464 static void generateColumnTypes(
1465   Parse *pParse,      /* Parser context */
1466   SrcList *pTabList,  /* List of tables */
1467   ExprList *pEList    /* Expressions defining the result set */
1468 ){
1469 #ifndef SQLITE_OMIT_DECLTYPE
1470   Vdbe *v = pParse->pVdbe;
1471   int i;
1472   NameContext sNC;
1473   sNC.pSrcList = pTabList;
1474   sNC.pParse = pParse;
1475   for(i=0; i<pEList->nExpr; i++){
1476     Expr *p = pEList->a[i].pExpr;
1477     const char *zType;
1478 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1479     const char *zOrigDb = 0;
1480     const char *zOrigTab = 0;
1481     const char *zOrigCol = 0;
1482     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1483 
1484     /* The vdbe must make its own copy of the column-type and other
1485     ** column specific strings, in case the schema is reset before this
1486     ** virtual machine is deleted.
1487     */
1488     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1489     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1490     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1491 #else
1492     zType = columnType(&sNC, p, 0, 0, 0, 0);
1493 #endif
1494     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1495   }
1496 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1497 }
1498 
1499 /*
1500 ** Generate code that will tell the VDBE the names of columns
1501 ** in the result set.  This information is used to provide the
1502 ** azCol[] values in the callback.
1503 */
1504 static void generateColumnNames(
1505   Parse *pParse,      /* Parser context */
1506   SrcList *pTabList,  /* List of tables */
1507   ExprList *pEList    /* Expressions defining the result set */
1508 ){
1509   Vdbe *v = pParse->pVdbe;
1510   int i, j;
1511   sqlite3 *db = pParse->db;
1512   int fullNames, shortNames;
1513 
1514 #ifndef SQLITE_OMIT_EXPLAIN
1515   /* If this is an EXPLAIN, skip this step */
1516   if( pParse->explain ){
1517     return;
1518   }
1519 #endif
1520 
1521   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1522   pParse->colNamesSet = 1;
1523   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1524   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1525   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1526   for(i=0; i<pEList->nExpr; i++){
1527     Expr *p;
1528     p = pEList->a[i].pExpr;
1529     if( NEVER(p==0) ) continue;
1530     if( pEList->a[i].zName ){
1531       char *zName = pEList->a[i].zName;
1532       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1533     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1534       Table *pTab;
1535       char *zCol;
1536       int iCol = p->iColumn;
1537       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1538         if( pTabList->a[j].iCursor==p->iTable ) break;
1539       }
1540       assert( j<pTabList->nSrc );
1541       pTab = pTabList->a[j].pTab;
1542       if( iCol<0 ) iCol = pTab->iPKey;
1543       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1544       if( iCol<0 ){
1545         zCol = "rowid";
1546       }else{
1547         zCol = pTab->aCol[iCol].zName;
1548       }
1549       if( !shortNames && !fullNames ){
1550         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1551             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1552       }else if( fullNames ){
1553         char *zName = 0;
1554         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1555         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1556       }else{
1557         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1558       }
1559     }else{
1560       const char *z = pEList->a[i].zSpan;
1561       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1562       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1563     }
1564   }
1565   generateColumnTypes(pParse, pTabList, pEList);
1566 }
1567 
1568 /*
1569 ** Given an expression list (which is really the list of expressions
1570 ** that form the result set of a SELECT statement) compute appropriate
1571 ** column names for a table that would hold the expression list.
1572 **
1573 ** All column names will be unique.
1574 **
1575 ** Only the column names are computed.  Column.zType, Column.zColl,
1576 ** and other fields of Column are zeroed.
1577 **
1578 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1579 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1580 */
1581 static int selectColumnsFromExprList(
1582   Parse *pParse,          /* Parsing context */
1583   ExprList *pEList,       /* Expr list from which to derive column names */
1584   i16 *pnCol,             /* Write the number of columns here */
1585   Column **paCol          /* Write the new column list here */
1586 ){
1587   sqlite3 *db = pParse->db;   /* Database connection */
1588   int i, j;                   /* Loop counters */
1589   int cnt;                    /* Index added to make the name unique */
1590   Column *aCol, *pCol;        /* For looping over result columns */
1591   int nCol;                   /* Number of columns in the result set */
1592   Expr *p;                    /* Expression for a single result column */
1593   char *zName;                /* Column name */
1594   int nName;                  /* Size of name in zName[] */
1595 
1596   if( pEList ){
1597     nCol = pEList->nExpr;
1598     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1599     testcase( aCol==0 );
1600   }else{
1601     nCol = 0;
1602     aCol = 0;
1603   }
1604   *pnCol = nCol;
1605   *paCol = aCol;
1606 
1607   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1608     /* Get an appropriate name for the column
1609     */
1610     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1611     if( (zName = pEList->a[i].zName)!=0 ){
1612       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1613       zName = sqlite3DbStrDup(db, zName);
1614     }else{
1615       Expr *pColExpr = p;  /* The expression that is the result column name */
1616       Table *pTab;         /* Table associated with this expression */
1617       while( pColExpr->op==TK_DOT ){
1618         pColExpr = pColExpr->pRight;
1619         assert( pColExpr!=0 );
1620       }
1621       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1622         /* For columns use the column name name */
1623         int iCol = pColExpr->iColumn;
1624         pTab = pColExpr->pTab;
1625         if( iCol<0 ) iCol = pTab->iPKey;
1626         zName = sqlite3MPrintf(db, "%s",
1627                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1628       }else if( pColExpr->op==TK_ID ){
1629         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1630         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1631       }else{
1632         /* Use the original text of the column expression as its name */
1633         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1634       }
1635     }
1636     if( db->mallocFailed ){
1637       sqlite3DbFree(db, zName);
1638       break;
1639     }
1640 
1641     /* Make sure the column name is unique.  If the name is not unique,
1642     ** append an integer to the name so that it becomes unique.
1643     */
1644     nName = sqlite3Strlen30(zName);
1645     for(j=cnt=0; j<i; j++){
1646       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1647         char *zNewName;
1648         int k;
1649         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1650         if( k>=0 && zName[k]==':' ) nName = k;
1651         zName[nName] = 0;
1652         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1653         sqlite3DbFree(db, zName);
1654         zName = zNewName;
1655         j = -1;
1656         if( zName==0 ) break;
1657       }
1658     }
1659     pCol->zName = zName;
1660   }
1661   if( db->mallocFailed ){
1662     for(j=0; j<i; j++){
1663       sqlite3DbFree(db, aCol[j].zName);
1664     }
1665     sqlite3DbFree(db, aCol);
1666     *paCol = 0;
1667     *pnCol = 0;
1668     return SQLITE_NOMEM;
1669   }
1670   return SQLITE_OK;
1671 }
1672 
1673 /*
1674 ** Add type and collation information to a column list based on
1675 ** a SELECT statement.
1676 **
1677 ** The column list presumably came from selectColumnNamesFromExprList().
1678 ** The column list has only names, not types or collations.  This
1679 ** routine goes through and adds the types and collations.
1680 **
1681 ** This routine requires that all identifiers in the SELECT
1682 ** statement be resolved.
1683 */
1684 static void selectAddColumnTypeAndCollation(
1685   Parse *pParse,        /* Parsing contexts */
1686   Table *pTab,          /* Add column type information to this table */
1687   Select *pSelect       /* SELECT used to determine types and collations */
1688 ){
1689   sqlite3 *db = pParse->db;
1690   NameContext sNC;
1691   Column *pCol;
1692   CollSeq *pColl;
1693   int i;
1694   Expr *p;
1695   struct ExprList_item *a;
1696   u64 szAll = 0;
1697 
1698   assert( pSelect!=0 );
1699   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1700   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1701   if( db->mallocFailed ) return;
1702   memset(&sNC, 0, sizeof(sNC));
1703   sNC.pSrcList = pSelect->pSrc;
1704   a = pSelect->pEList->a;
1705   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1706     p = a[i].pExpr;
1707     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1708     szAll += pCol->szEst;
1709     pCol->affinity = sqlite3ExprAffinity(p);
1710     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1711     pColl = sqlite3ExprCollSeq(pParse, p);
1712     if( pColl ){
1713       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1714     }
1715   }
1716   pTab->szTabRow = sqlite3LogEst(szAll*4);
1717 }
1718 
1719 /*
1720 ** Given a SELECT statement, generate a Table structure that describes
1721 ** the result set of that SELECT.
1722 */
1723 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1724   Table *pTab;
1725   sqlite3 *db = pParse->db;
1726   int savedFlags;
1727 
1728   savedFlags = db->flags;
1729   db->flags &= ~SQLITE_FullColNames;
1730   db->flags |= SQLITE_ShortColNames;
1731   sqlite3SelectPrep(pParse, pSelect, 0);
1732   if( pParse->nErr ) return 0;
1733   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1734   db->flags = savedFlags;
1735   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1736   if( pTab==0 ){
1737     return 0;
1738   }
1739   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1740   ** is disabled */
1741   assert( db->lookaside.bEnabled==0 );
1742   pTab->nRef = 1;
1743   pTab->zName = 0;
1744   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1745   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1746   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1747   pTab->iPKey = -1;
1748   if( db->mallocFailed ){
1749     sqlite3DeleteTable(db, pTab);
1750     return 0;
1751   }
1752   return pTab;
1753 }
1754 
1755 /*
1756 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1757 ** If an error occurs, return NULL and leave a message in pParse.
1758 */
1759 Vdbe *sqlite3GetVdbe(Parse *pParse){
1760   Vdbe *v = pParse->pVdbe;
1761   if( v==0 ){
1762     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1763     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1764     if( pParse->pToplevel==0
1765      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1766     ){
1767       pParse->okConstFactor = 1;
1768     }
1769 
1770   }
1771   return v;
1772 }
1773 
1774 
1775 /*
1776 ** Compute the iLimit and iOffset fields of the SELECT based on the
1777 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1778 ** that appear in the original SQL statement after the LIMIT and OFFSET
1779 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1780 ** are the integer memory register numbers for counters used to compute
1781 ** the limit and offset.  If there is no limit and/or offset, then
1782 ** iLimit and iOffset are negative.
1783 **
1784 ** This routine changes the values of iLimit and iOffset only if
1785 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1786 ** iOffset should have been preset to appropriate default values (zero)
1787 ** prior to calling this routine.
1788 **
1789 ** The iOffset register (if it exists) is initialized to the value
1790 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1791 ** iOffset+1 is initialized to LIMIT+OFFSET.
1792 **
1793 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1794 ** redefined.  The UNION ALL operator uses this property to force
1795 ** the reuse of the same limit and offset registers across multiple
1796 ** SELECT statements.
1797 */
1798 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1799   Vdbe *v = 0;
1800   int iLimit = 0;
1801   int iOffset;
1802   int addr1, n;
1803   if( p->iLimit ) return;
1804 
1805   /*
1806   ** "LIMIT -1" always shows all rows.  There is some
1807   ** controversy about what the correct behavior should be.
1808   ** The current implementation interprets "LIMIT 0" to mean
1809   ** no rows.
1810   */
1811   sqlite3ExprCacheClear(pParse);
1812   assert( p->pOffset==0 || p->pLimit!=0 );
1813   if( p->pLimit ){
1814     p->iLimit = iLimit = ++pParse->nMem;
1815     v = sqlite3GetVdbe(pParse);
1816     assert( v!=0 );
1817     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1818       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1819       VdbeComment((v, "LIMIT counter"));
1820       if( n==0 ){
1821         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1822       }else if( n>=0 && p->nSelectRow>(u64)n ){
1823         p->nSelectRow = n;
1824       }
1825     }else{
1826       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1827       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1828       VdbeComment((v, "LIMIT counter"));
1829       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1830     }
1831     if( p->pOffset ){
1832       p->iOffset = iOffset = ++pParse->nMem;
1833       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1834       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1835       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1836       VdbeComment((v, "OFFSET counter"));
1837       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1838       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1839       sqlite3VdbeJumpHere(v, addr1);
1840       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1841       VdbeComment((v, "LIMIT+OFFSET"));
1842       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1843       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1844       sqlite3VdbeJumpHere(v, addr1);
1845     }
1846   }
1847 }
1848 
1849 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1850 /*
1851 ** Return the appropriate collating sequence for the iCol-th column of
1852 ** the result set for the compound-select statement "p".  Return NULL if
1853 ** the column has no default collating sequence.
1854 **
1855 ** The collating sequence for the compound select is taken from the
1856 ** left-most term of the select that has a collating sequence.
1857 */
1858 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1859   CollSeq *pRet;
1860   if( p->pPrior ){
1861     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1862   }else{
1863     pRet = 0;
1864   }
1865   assert( iCol>=0 );
1866   if( pRet==0 && iCol<p->pEList->nExpr ){
1867     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1868   }
1869   return pRet;
1870 }
1871 
1872 /*
1873 ** The select statement passed as the second parameter is a compound SELECT
1874 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1875 ** structure suitable for implementing the ORDER BY.
1876 **
1877 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1878 ** function is responsible for ensuring that this structure is eventually
1879 ** freed.
1880 */
1881 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1882   ExprList *pOrderBy = p->pOrderBy;
1883   int nOrderBy = p->pOrderBy->nExpr;
1884   sqlite3 *db = pParse->db;
1885   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1886   if( pRet ){
1887     int i;
1888     for(i=0; i<nOrderBy; i++){
1889       struct ExprList_item *pItem = &pOrderBy->a[i];
1890       Expr *pTerm = pItem->pExpr;
1891       CollSeq *pColl;
1892 
1893       if( pTerm->flags & EP_Collate ){
1894         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1895       }else{
1896         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1897         if( pColl==0 ) pColl = db->pDfltColl;
1898         pOrderBy->a[i].pExpr =
1899           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1900       }
1901       assert( sqlite3KeyInfoIsWriteable(pRet) );
1902       pRet->aColl[i] = pColl;
1903       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1904     }
1905   }
1906 
1907   return pRet;
1908 }
1909 
1910 #ifndef SQLITE_OMIT_CTE
1911 /*
1912 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1913 ** query of the form:
1914 **
1915 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1916 **                         \___________/             \_______________/
1917 **                           p->pPrior                      p
1918 **
1919 **
1920 ** There is exactly one reference to the recursive-table in the FROM clause
1921 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1922 **
1923 ** The setup-query runs once to generate an initial set of rows that go
1924 ** into a Queue table.  Rows are extracted from the Queue table one by
1925 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1926 ** extracted row (now in the iCurrent table) becomes the content of the
1927 ** recursive-table for a recursive-query run.  The output of the recursive-query
1928 ** is added back into the Queue table.  Then another row is extracted from Queue
1929 ** and the iteration continues until the Queue table is empty.
1930 **
1931 ** If the compound query operator is UNION then no duplicate rows are ever
1932 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1933 ** that have ever been inserted into Queue and causes duplicates to be
1934 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1935 **
1936 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1937 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1938 ** an ORDER BY, the Queue table is just a FIFO.
1939 **
1940 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1941 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1942 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1943 ** with a positive value, then the first OFFSET outputs are discarded rather
1944 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1945 ** rows have been skipped.
1946 */
1947 static void generateWithRecursiveQuery(
1948   Parse *pParse,        /* Parsing context */
1949   Select *p,            /* The recursive SELECT to be coded */
1950   SelectDest *pDest     /* What to do with query results */
1951 ){
1952   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1953   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1954   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1955   Select *pSetup = p->pPrior;   /* The setup query */
1956   int addrTop;                  /* Top of the loop */
1957   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1958   int iCurrent = 0;             /* The Current table */
1959   int regCurrent;               /* Register holding Current table */
1960   int iQueue;                   /* The Queue table */
1961   int iDistinct = 0;            /* To ensure unique results if UNION */
1962   int eDest = SRT_Fifo;         /* How to write to Queue */
1963   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1964   int i;                        /* Loop counter */
1965   int rc;                       /* Result code */
1966   ExprList *pOrderBy;           /* The ORDER BY clause */
1967   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1968   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1969 
1970   /* Obtain authorization to do a recursive query */
1971   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1972 
1973   /* Process the LIMIT and OFFSET clauses, if they exist */
1974   addrBreak = sqlite3VdbeMakeLabel(v);
1975   computeLimitRegisters(pParse, p, addrBreak);
1976   pLimit = p->pLimit;
1977   pOffset = p->pOffset;
1978   regLimit = p->iLimit;
1979   regOffset = p->iOffset;
1980   p->pLimit = p->pOffset = 0;
1981   p->iLimit = p->iOffset = 0;
1982   pOrderBy = p->pOrderBy;
1983 
1984   /* Locate the cursor number of the Current table */
1985   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1986     if( pSrc->a[i].isRecursive ){
1987       iCurrent = pSrc->a[i].iCursor;
1988       break;
1989     }
1990   }
1991 
1992   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1993   ** the Distinct table must be exactly one greater than Queue in order
1994   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1995   iQueue = pParse->nTab++;
1996   if( p->op==TK_UNION ){
1997     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1998     iDistinct = pParse->nTab++;
1999   }else{
2000     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2001   }
2002   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2003 
2004   /* Allocate cursors for Current, Queue, and Distinct. */
2005   regCurrent = ++pParse->nMem;
2006   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2007   if( pOrderBy ){
2008     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2009     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2010                       (char*)pKeyInfo, P4_KEYINFO);
2011     destQueue.pOrderBy = pOrderBy;
2012   }else{
2013     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2014   }
2015   VdbeComment((v, "Queue table"));
2016   if( iDistinct ){
2017     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2018     p->selFlags |= SF_UsesEphemeral;
2019   }
2020 
2021   /* Detach the ORDER BY clause from the compound SELECT */
2022   p->pOrderBy = 0;
2023 
2024   /* Store the results of the setup-query in Queue. */
2025   pSetup->pNext = 0;
2026   rc = sqlite3Select(pParse, pSetup, &destQueue);
2027   pSetup->pNext = p;
2028   if( rc ) goto end_of_recursive_query;
2029 
2030   /* Find the next row in the Queue and output that row */
2031   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2032 
2033   /* Transfer the next row in Queue over to Current */
2034   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2035   if( pOrderBy ){
2036     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2037   }else{
2038     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2039   }
2040   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2041 
2042   /* Output the single row in Current */
2043   addrCont = sqlite3VdbeMakeLabel(v);
2044   codeOffset(v, regOffset, addrCont);
2045   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2046       0, 0, pDest, addrCont, addrBreak);
2047   if( regLimit ){
2048     sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
2049     VdbeCoverage(v);
2050   }
2051   sqlite3VdbeResolveLabel(v, addrCont);
2052 
2053   /* Execute the recursive SELECT taking the single row in Current as
2054   ** the value for the recursive-table. Store the results in the Queue.
2055   */
2056   p->pPrior = 0;
2057   sqlite3Select(pParse, p, &destQueue);
2058   assert( p->pPrior==0 );
2059   p->pPrior = pSetup;
2060 
2061   /* Keep running the loop until the Queue is empty */
2062   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2063   sqlite3VdbeResolveLabel(v, addrBreak);
2064 
2065 end_of_recursive_query:
2066   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2067   p->pOrderBy = pOrderBy;
2068   p->pLimit = pLimit;
2069   p->pOffset = pOffset;
2070   return;
2071 }
2072 #endif /* SQLITE_OMIT_CTE */
2073 
2074 /* Forward references */
2075 static int multiSelectOrderBy(
2076   Parse *pParse,        /* Parsing context */
2077   Select *p,            /* The right-most of SELECTs to be coded */
2078   SelectDest *pDest     /* What to do with query results */
2079 );
2080 
2081 /*
2082 ** Error message for when two or more terms of a compound select have different
2083 ** size result sets.
2084 */
2085 static void selectWrongNumTermsError(Parse *pParse, Select *p){
2086   if( p->selFlags & SF_Values ){
2087     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2088   }else{
2089     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2090       " do not have the same number of result columns", selectOpName(p->op));
2091   }
2092 }
2093 
2094 /*
2095 ** Handle the special case of a compound-select that originates from a
2096 ** VALUES clause.  By handling this as a special case, we avoid deep
2097 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2098 ** on a VALUES clause.
2099 **
2100 ** Because the Select object originates from a VALUES clause:
2101 **   (1) It has no LIMIT or OFFSET
2102 **   (2) All terms are UNION ALL
2103 **   (3) There is no ORDER BY clause
2104 */
2105 static int multiSelectValues(
2106   Parse *pParse,        /* Parsing context */
2107   Select *p,            /* The right-most of SELECTs to be coded */
2108   SelectDest *pDest     /* What to do with query results */
2109 ){
2110   Select *pPrior;
2111   int nExpr = p->pEList->nExpr;
2112   int nRow = 1;
2113   int rc = 0;
2114   assert( p->pNext==0 );
2115   assert( p->selFlags & SF_AllValues );
2116   do{
2117     assert( p->selFlags & SF_Values );
2118     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2119     assert( p->pLimit==0 );
2120     assert( p->pOffset==0 );
2121     if( p->pEList->nExpr!=nExpr ){
2122       selectWrongNumTermsError(pParse, p);
2123       return 1;
2124     }
2125     if( p->pPrior==0 ) break;
2126     assert( p->pPrior->pNext==p );
2127     p = p->pPrior;
2128     nRow++;
2129   }while(1);
2130   while( p ){
2131     pPrior = p->pPrior;
2132     p->pPrior = 0;
2133     rc = sqlite3Select(pParse, p, pDest);
2134     p->pPrior = pPrior;
2135     if( rc ) break;
2136     p->nSelectRow = nRow;
2137     p = p->pNext;
2138   }
2139   return rc;
2140 }
2141 
2142 /*
2143 ** This routine is called to process a compound query form from
2144 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2145 ** INTERSECT
2146 **
2147 ** "p" points to the right-most of the two queries.  the query on the
2148 ** left is p->pPrior.  The left query could also be a compound query
2149 ** in which case this routine will be called recursively.
2150 **
2151 ** The results of the total query are to be written into a destination
2152 ** of type eDest with parameter iParm.
2153 **
2154 ** Example 1:  Consider a three-way compound SQL statement.
2155 **
2156 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2157 **
2158 ** This statement is parsed up as follows:
2159 **
2160 **     SELECT c FROM t3
2161 **      |
2162 **      `----->  SELECT b FROM t2
2163 **                |
2164 **                `------>  SELECT a FROM t1
2165 **
2166 ** The arrows in the diagram above represent the Select.pPrior pointer.
2167 ** So if this routine is called with p equal to the t3 query, then
2168 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2169 **
2170 ** Notice that because of the way SQLite parses compound SELECTs, the
2171 ** individual selects always group from left to right.
2172 */
2173 static int multiSelect(
2174   Parse *pParse,        /* Parsing context */
2175   Select *p,            /* The right-most of SELECTs to be coded */
2176   SelectDest *pDest     /* What to do with query results */
2177 ){
2178   int rc = SQLITE_OK;   /* Success code from a subroutine */
2179   Select *pPrior;       /* Another SELECT immediately to our left */
2180   Vdbe *v;              /* Generate code to this VDBE */
2181   SelectDest dest;      /* Alternative data destination */
2182   Select *pDelete = 0;  /* Chain of simple selects to delete */
2183   sqlite3 *db;          /* Database connection */
2184 #ifndef SQLITE_OMIT_EXPLAIN
2185   int iSub1 = 0;        /* EQP id of left-hand query */
2186   int iSub2 = 0;        /* EQP id of right-hand query */
2187 #endif
2188 
2189   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2190   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2191   */
2192   assert( p && p->pPrior );  /* Calling function guarantees this much */
2193   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2194   db = pParse->db;
2195   pPrior = p->pPrior;
2196   dest = *pDest;
2197   if( pPrior->pOrderBy ){
2198     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2199       selectOpName(p->op));
2200     rc = 1;
2201     goto multi_select_end;
2202   }
2203   if( pPrior->pLimit ){
2204     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2205       selectOpName(p->op));
2206     rc = 1;
2207     goto multi_select_end;
2208   }
2209 
2210   v = sqlite3GetVdbe(pParse);
2211   assert( v!=0 );  /* The VDBE already created by calling function */
2212 
2213   /* Create the destination temporary table if necessary
2214   */
2215   if( dest.eDest==SRT_EphemTab ){
2216     assert( p->pEList );
2217     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2218     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2219     dest.eDest = SRT_Table;
2220   }
2221 
2222   /* Special handling for a compound-select that originates as a VALUES clause.
2223   */
2224   if( p->selFlags & SF_AllValues ){
2225     rc = multiSelectValues(pParse, p, &dest);
2226     goto multi_select_end;
2227   }
2228 
2229   /* Make sure all SELECTs in the statement have the same number of elements
2230   ** in their result sets.
2231   */
2232   assert( p->pEList && pPrior->pEList );
2233   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2234     selectWrongNumTermsError(pParse, p);
2235     rc = 1;
2236     goto multi_select_end;
2237   }
2238 
2239 #ifndef SQLITE_OMIT_CTE
2240   if( p->selFlags & SF_Recursive ){
2241     generateWithRecursiveQuery(pParse, p, &dest);
2242   }else
2243 #endif
2244 
2245   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2246   */
2247   if( p->pOrderBy ){
2248     return multiSelectOrderBy(pParse, p, pDest);
2249   }else
2250 
2251   /* Generate code for the left and right SELECT statements.
2252   */
2253   switch( p->op ){
2254     case TK_ALL: {
2255       int addr = 0;
2256       int nLimit;
2257       assert( !pPrior->pLimit );
2258       pPrior->iLimit = p->iLimit;
2259       pPrior->iOffset = p->iOffset;
2260       pPrior->pLimit = p->pLimit;
2261       pPrior->pOffset = p->pOffset;
2262       explainSetInteger(iSub1, pParse->iNextSelectId);
2263       rc = sqlite3Select(pParse, pPrior, &dest);
2264       p->pLimit = 0;
2265       p->pOffset = 0;
2266       if( rc ){
2267         goto multi_select_end;
2268       }
2269       p->pPrior = 0;
2270       p->iLimit = pPrior->iLimit;
2271       p->iOffset = pPrior->iOffset;
2272       if( p->iLimit ){
2273         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
2274         VdbeComment((v, "Jump ahead if LIMIT reached"));
2275       }
2276       explainSetInteger(iSub2, pParse->iNextSelectId);
2277       rc = sqlite3Select(pParse, p, &dest);
2278       testcase( rc!=SQLITE_OK );
2279       pDelete = p->pPrior;
2280       p->pPrior = pPrior;
2281       p->nSelectRow += pPrior->nSelectRow;
2282       if( pPrior->pLimit
2283        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2284        && nLimit>0 && p->nSelectRow > (u64)nLimit
2285       ){
2286         p->nSelectRow = nLimit;
2287       }
2288       if( addr ){
2289         sqlite3VdbeJumpHere(v, addr);
2290       }
2291       break;
2292     }
2293     case TK_EXCEPT:
2294     case TK_UNION: {
2295       int unionTab;    /* Cursor number of the temporary table holding result */
2296       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2297       int priorOp;     /* The SRT_ operation to apply to prior selects */
2298       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2299       int addr;
2300       SelectDest uniondest;
2301 
2302       testcase( p->op==TK_EXCEPT );
2303       testcase( p->op==TK_UNION );
2304       priorOp = SRT_Union;
2305       if( dest.eDest==priorOp ){
2306         /* We can reuse a temporary table generated by a SELECT to our
2307         ** right.
2308         */
2309         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2310         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2311         unionTab = dest.iSDParm;
2312       }else{
2313         /* We will need to create our own temporary table to hold the
2314         ** intermediate results.
2315         */
2316         unionTab = pParse->nTab++;
2317         assert( p->pOrderBy==0 );
2318         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2319         assert( p->addrOpenEphm[0] == -1 );
2320         p->addrOpenEphm[0] = addr;
2321         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2322         assert( p->pEList );
2323       }
2324 
2325       /* Code the SELECT statements to our left
2326       */
2327       assert( !pPrior->pOrderBy );
2328       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2329       explainSetInteger(iSub1, pParse->iNextSelectId);
2330       rc = sqlite3Select(pParse, pPrior, &uniondest);
2331       if( rc ){
2332         goto multi_select_end;
2333       }
2334 
2335       /* Code the current SELECT statement
2336       */
2337       if( p->op==TK_EXCEPT ){
2338         op = SRT_Except;
2339       }else{
2340         assert( p->op==TK_UNION );
2341         op = SRT_Union;
2342       }
2343       p->pPrior = 0;
2344       pLimit = p->pLimit;
2345       p->pLimit = 0;
2346       pOffset = p->pOffset;
2347       p->pOffset = 0;
2348       uniondest.eDest = op;
2349       explainSetInteger(iSub2, pParse->iNextSelectId);
2350       rc = sqlite3Select(pParse, p, &uniondest);
2351       testcase( rc!=SQLITE_OK );
2352       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2353       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2354       sqlite3ExprListDelete(db, p->pOrderBy);
2355       pDelete = p->pPrior;
2356       p->pPrior = pPrior;
2357       p->pOrderBy = 0;
2358       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2359       sqlite3ExprDelete(db, p->pLimit);
2360       p->pLimit = pLimit;
2361       p->pOffset = pOffset;
2362       p->iLimit = 0;
2363       p->iOffset = 0;
2364 
2365       /* Convert the data in the temporary table into whatever form
2366       ** it is that we currently need.
2367       */
2368       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2369       if( dest.eDest!=priorOp ){
2370         int iCont, iBreak, iStart;
2371         assert( p->pEList );
2372         if( dest.eDest==SRT_Output ){
2373           Select *pFirst = p;
2374           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2375           generateColumnNames(pParse, 0, pFirst->pEList);
2376         }
2377         iBreak = sqlite3VdbeMakeLabel(v);
2378         iCont = sqlite3VdbeMakeLabel(v);
2379         computeLimitRegisters(pParse, p, iBreak);
2380         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2381         iStart = sqlite3VdbeCurrentAddr(v);
2382         selectInnerLoop(pParse, p, p->pEList, unionTab,
2383                         0, 0, &dest, iCont, iBreak);
2384         sqlite3VdbeResolveLabel(v, iCont);
2385         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2386         sqlite3VdbeResolveLabel(v, iBreak);
2387         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2388       }
2389       break;
2390     }
2391     default: assert( p->op==TK_INTERSECT ); {
2392       int tab1, tab2;
2393       int iCont, iBreak, iStart;
2394       Expr *pLimit, *pOffset;
2395       int addr;
2396       SelectDest intersectdest;
2397       int r1;
2398 
2399       /* INTERSECT is different from the others since it requires
2400       ** two temporary tables.  Hence it has its own case.  Begin
2401       ** by allocating the tables we will need.
2402       */
2403       tab1 = pParse->nTab++;
2404       tab2 = pParse->nTab++;
2405       assert( p->pOrderBy==0 );
2406 
2407       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2408       assert( p->addrOpenEphm[0] == -1 );
2409       p->addrOpenEphm[0] = addr;
2410       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2411       assert( p->pEList );
2412 
2413       /* Code the SELECTs to our left into temporary table "tab1".
2414       */
2415       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2416       explainSetInteger(iSub1, pParse->iNextSelectId);
2417       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2418       if( rc ){
2419         goto multi_select_end;
2420       }
2421 
2422       /* Code the current SELECT into temporary table "tab2"
2423       */
2424       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2425       assert( p->addrOpenEphm[1] == -1 );
2426       p->addrOpenEphm[1] = addr;
2427       p->pPrior = 0;
2428       pLimit = p->pLimit;
2429       p->pLimit = 0;
2430       pOffset = p->pOffset;
2431       p->pOffset = 0;
2432       intersectdest.iSDParm = tab2;
2433       explainSetInteger(iSub2, pParse->iNextSelectId);
2434       rc = sqlite3Select(pParse, p, &intersectdest);
2435       testcase( rc!=SQLITE_OK );
2436       pDelete = p->pPrior;
2437       p->pPrior = pPrior;
2438       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2439       sqlite3ExprDelete(db, p->pLimit);
2440       p->pLimit = pLimit;
2441       p->pOffset = pOffset;
2442 
2443       /* Generate code to take the intersection of the two temporary
2444       ** tables.
2445       */
2446       assert( p->pEList );
2447       if( dest.eDest==SRT_Output ){
2448         Select *pFirst = p;
2449         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2450         generateColumnNames(pParse, 0, pFirst->pEList);
2451       }
2452       iBreak = sqlite3VdbeMakeLabel(v);
2453       iCont = sqlite3VdbeMakeLabel(v);
2454       computeLimitRegisters(pParse, p, iBreak);
2455       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2456       r1 = sqlite3GetTempReg(pParse);
2457       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2458       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2459       sqlite3ReleaseTempReg(pParse, r1);
2460       selectInnerLoop(pParse, p, p->pEList, tab1,
2461                       0, 0, &dest, iCont, iBreak);
2462       sqlite3VdbeResolveLabel(v, iCont);
2463       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2464       sqlite3VdbeResolveLabel(v, iBreak);
2465       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2466       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2467       break;
2468     }
2469   }
2470 
2471   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2472 
2473   /* Compute collating sequences used by
2474   ** temporary tables needed to implement the compound select.
2475   ** Attach the KeyInfo structure to all temporary tables.
2476   **
2477   ** This section is run by the right-most SELECT statement only.
2478   ** SELECT statements to the left always skip this part.  The right-most
2479   ** SELECT might also skip this part if it has no ORDER BY clause and
2480   ** no temp tables are required.
2481   */
2482   if( p->selFlags & SF_UsesEphemeral ){
2483     int i;                        /* Loop counter */
2484     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2485     Select *pLoop;                /* For looping through SELECT statements */
2486     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2487     int nCol;                     /* Number of columns in result set */
2488 
2489     assert( p->pNext==0 );
2490     nCol = p->pEList->nExpr;
2491     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2492     if( !pKeyInfo ){
2493       rc = SQLITE_NOMEM;
2494       goto multi_select_end;
2495     }
2496     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2497       *apColl = multiSelectCollSeq(pParse, p, i);
2498       if( 0==*apColl ){
2499         *apColl = db->pDfltColl;
2500       }
2501     }
2502 
2503     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2504       for(i=0; i<2; i++){
2505         int addr = pLoop->addrOpenEphm[i];
2506         if( addr<0 ){
2507           /* If [0] is unused then [1] is also unused.  So we can
2508           ** always safely abort as soon as the first unused slot is found */
2509           assert( pLoop->addrOpenEphm[1]<0 );
2510           break;
2511         }
2512         sqlite3VdbeChangeP2(v, addr, nCol);
2513         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2514                             P4_KEYINFO);
2515         pLoop->addrOpenEphm[i] = -1;
2516       }
2517     }
2518     sqlite3KeyInfoUnref(pKeyInfo);
2519   }
2520 
2521 multi_select_end:
2522   pDest->iSdst = dest.iSdst;
2523   pDest->nSdst = dest.nSdst;
2524   sqlite3SelectDelete(db, pDelete);
2525   return rc;
2526 }
2527 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2528 
2529 /*
2530 ** Code an output subroutine for a coroutine implementation of a
2531 ** SELECT statment.
2532 **
2533 ** The data to be output is contained in pIn->iSdst.  There are
2534 ** pIn->nSdst columns to be output.  pDest is where the output should
2535 ** be sent.
2536 **
2537 ** regReturn is the number of the register holding the subroutine
2538 ** return address.
2539 **
2540 ** If regPrev>0 then it is the first register in a vector that
2541 ** records the previous output.  mem[regPrev] is a flag that is false
2542 ** if there has been no previous output.  If regPrev>0 then code is
2543 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2544 ** keys.
2545 **
2546 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2547 ** iBreak.
2548 */
2549 static int generateOutputSubroutine(
2550   Parse *pParse,          /* Parsing context */
2551   Select *p,              /* The SELECT statement */
2552   SelectDest *pIn,        /* Coroutine supplying data */
2553   SelectDest *pDest,      /* Where to send the data */
2554   int regReturn,          /* The return address register */
2555   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2556   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2557   int iBreak              /* Jump here if we hit the LIMIT */
2558 ){
2559   Vdbe *v = pParse->pVdbe;
2560   int iContinue;
2561   int addr;
2562 
2563   addr = sqlite3VdbeCurrentAddr(v);
2564   iContinue = sqlite3VdbeMakeLabel(v);
2565 
2566   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2567   */
2568   if( regPrev ){
2569     int j1, j2;
2570     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2571     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2572                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2573     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2574     sqlite3VdbeJumpHere(v, j1);
2575     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2576     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2577   }
2578   if( pParse->db->mallocFailed ) return 0;
2579 
2580   /* Suppress the first OFFSET entries if there is an OFFSET clause
2581   */
2582   codeOffset(v, p->iOffset, iContinue);
2583 
2584   switch( pDest->eDest ){
2585     /* Store the result as data using a unique key.
2586     */
2587     case SRT_Table:
2588     case SRT_EphemTab: {
2589       int r1 = sqlite3GetTempReg(pParse);
2590       int r2 = sqlite3GetTempReg(pParse);
2591       testcase( pDest->eDest==SRT_Table );
2592       testcase( pDest->eDest==SRT_EphemTab );
2593       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2594       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2595       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2596       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2597       sqlite3ReleaseTempReg(pParse, r2);
2598       sqlite3ReleaseTempReg(pParse, r1);
2599       break;
2600     }
2601 
2602 #ifndef SQLITE_OMIT_SUBQUERY
2603     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2604     ** then there should be a single item on the stack.  Write this
2605     ** item into the set table with bogus data.
2606     */
2607     case SRT_Set: {
2608       int r1;
2609       assert( pIn->nSdst==1 );
2610       pDest->affSdst =
2611          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2612       r1 = sqlite3GetTempReg(pParse);
2613       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2614       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2615       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2616       sqlite3ReleaseTempReg(pParse, r1);
2617       break;
2618     }
2619 
2620 #if 0  /* Never occurs on an ORDER BY query */
2621     /* If any row exist in the result set, record that fact and abort.
2622     */
2623     case SRT_Exists: {
2624       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2625       /* The LIMIT clause will terminate the loop for us */
2626       break;
2627     }
2628 #endif
2629 
2630     /* If this is a scalar select that is part of an expression, then
2631     ** store the results in the appropriate memory cell and break out
2632     ** of the scan loop.
2633     */
2634     case SRT_Mem: {
2635       assert( pIn->nSdst==1 );
2636       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2637       /* The LIMIT clause will jump out of the loop for us */
2638       break;
2639     }
2640 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2641 
2642     /* The results are stored in a sequence of registers
2643     ** starting at pDest->iSdst.  Then the co-routine yields.
2644     */
2645     case SRT_Coroutine: {
2646       if( pDest->iSdst==0 ){
2647         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2648         pDest->nSdst = pIn->nSdst;
2649       }
2650       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2651       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2652       break;
2653     }
2654 
2655     /* If none of the above, then the result destination must be
2656     ** SRT_Output.  This routine is never called with any other
2657     ** destination other than the ones handled above or SRT_Output.
2658     **
2659     ** For SRT_Output, results are stored in a sequence of registers.
2660     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2661     ** return the next row of result.
2662     */
2663     default: {
2664       assert( pDest->eDest==SRT_Output );
2665       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2666       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2667       break;
2668     }
2669   }
2670 
2671   /* Jump to the end of the loop if the LIMIT is reached.
2672   */
2673   if( p->iLimit ){
2674     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2675   }
2676 
2677   /* Generate the subroutine return
2678   */
2679   sqlite3VdbeResolveLabel(v, iContinue);
2680   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2681 
2682   return addr;
2683 }
2684 
2685 /*
2686 ** Alternative compound select code generator for cases when there
2687 ** is an ORDER BY clause.
2688 **
2689 ** We assume a query of the following form:
2690 **
2691 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2692 **
2693 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2694 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2695 ** co-routines.  Then run the co-routines in parallel and merge the results
2696 ** into the output.  In addition to the two coroutines (called selectA and
2697 ** selectB) there are 7 subroutines:
2698 **
2699 **    outA:    Move the output of the selectA coroutine into the output
2700 **             of the compound query.
2701 **
2702 **    outB:    Move the output of the selectB coroutine into the output
2703 **             of the compound query.  (Only generated for UNION and
2704 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2705 **             appears only in B.)
2706 **
2707 **    AltB:    Called when there is data from both coroutines and A<B.
2708 **
2709 **    AeqB:    Called when there is data from both coroutines and A==B.
2710 **
2711 **    AgtB:    Called when there is data from both coroutines and A>B.
2712 **
2713 **    EofA:    Called when data is exhausted from selectA.
2714 **
2715 **    EofB:    Called when data is exhausted from selectB.
2716 **
2717 ** The implementation of the latter five subroutines depend on which
2718 ** <operator> is used:
2719 **
2720 **
2721 **             UNION ALL         UNION            EXCEPT          INTERSECT
2722 **          -------------  -----------------  --------------  -----------------
2723 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2724 **
2725 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2726 **
2727 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2728 **
2729 **   EofA:   outB, nextB      outB, nextB          halt             halt
2730 **
2731 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2732 **
2733 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2734 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2735 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2736 ** following nextX causes a jump to the end of the select processing.
2737 **
2738 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2739 ** within the output subroutine.  The regPrev register set holds the previously
2740 ** output value.  A comparison is made against this value and the output
2741 ** is skipped if the next results would be the same as the previous.
2742 **
2743 ** The implementation plan is to implement the two coroutines and seven
2744 ** subroutines first, then put the control logic at the bottom.  Like this:
2745 **
2746 **          goto Init
2747 **     coA: coroutine for left query (A)
2748 **     coB: coroutine for right query (B)
2749 **    outA: output one row of A
2750 **    outB: output one row of B (UNION and UNION ALL only)
2751 **    EofA: ...
2752 **    EofB: ...
2753 **    AltB: ...
2754 **    AeqB: ...
2755 **    AgtB: ...
2756 **    Init: initialize coroutine registers
2757 **          yield coA
2758 **          if eof(A) goto EofA
2759 **          yield coB
2760 **          if eof(B) goto EofB
2761 **    Cmpr: Compare A, B
2762 **          Jump AltB, AeqB, AgtB
2763 **     End: ...
2764 **
2765 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2766 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2767 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2768 ** and AgtB jump to either L2 or to one of EofA or EofB.
2769 */
2770 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2771 static int multiSelectOrderBy(
2772   Parse *pParse,        /* Parsing context */
2773   Select *p,            /* The right-most of SELECTs to be coded */
2774   SelectDest *pDest     /* What to do with query results */
2775 ){
2776   int i, j;             /* Loop counters */
2777   Select *pPrior;       /* Another SELECT immediately to our left */
2778   Vdbe *v;              /* Generate code to this VDBE */
2779   SelectDest destA;     /* Destination for coroutine A */
2780   SelectDest destB;     /* Destination for coroutine B */
2781   int regAddrA;         /* Address register for select-A coroutine */
2782   int regAddrB;         /* Address register for select-B coroutine */
2783   int addrSelectA;      /* Address of the select-A coroutine */
2784   int addrSelectB;      /* Address of the select-B coroutine */
2785   int regOutA;          /* Address register for the output-A subroutine */
2786   int regOutB;          /* Address register for the output-B subroutine */
2787   int addrOutA;         /* Address of the output-A subroutine */
2788   int addrOutB = 0;     /* Address of the output-B subroutine */
2789   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2790   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2791   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2792   int addrAltB;         /* Address of the A<B subroutine */
2793   int addrAeqB;         /* Address of the A==B subroutine */
2794   int addrAgtB;         /* Address of the A>B subroutine */
2795   int regLimitA;        /* Limit register for select-A */
2796   int regLimitB;        /* Limit register for select-A */
2797   int regPrev;          /* A range of registers to hold previous output */
2798   int savedLimit;       /* Saved value of p->iLimit */
2799   int savedOffset;      /* Saved value of p->iOffset */
2800   int labelCmpr;        /* Label for the start of the merge algorithm */
2801   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2802   int j1;               /* Jump instructions that get retargetted */
2803   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2804   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2805   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2806   sqlite3 *db;          /* Database connection */
2807   ExprList *pOrderBy;   /* The ORDER BY clause */
2808   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2809   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2810 #ifndef SQLITE_OMIT_EXPLAIN
2811   int iSub1;            /* EQP id of left-hand query */
2812   int iSub2;            /* EQP id of right-hand query */
2813 #endif
2814 
2815   assert( p->pOrderBy!=0 );
2816   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2817   db = pParse->db;
2818   v = pParse->pVdbe;
2819   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2820   labelEnd = sqlite3VdbeMakeLabel(v);
2821   labelCmpr = sqlite3VdbeMakeLabel(v);
2822 
2823 
2824   /* Patch up the ORDER BY clause
2825   */
2826   op = p->op;
2827   pPrior = p->pPrior;
2828   assert( pPrior->pOrderBy==0 );
2829   pOrderBy = p->pOrderBy;
2830   assert( pOrderBy );
2831   nOrderBy = pOrderBy->nExpr;
2832 
2833   /* For operators other than UNION ALL we have to make sure that
2834   ** the ORDER BY clause covers every term of the result set.  Add
2835   ** terms to the ORDER BY clause as necessary.
2836   */
2837   if( op!=TK_ALL ){
2838     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2839       struct ExprList_item *pItem;
2840       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2841         assert( pItem->u.x.iOrderByCol>0 );
2842         if( pItem->u.x.iOrderByCol==i ) break;
2843       }
2844       if( j==nOrderBy ){
2845         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2846         if( pNew==0 ) return SQLITE_NOMEM;
2847         pNew->flags |= EP_IntValue;
2848         pNew->u.iValue = i;
2849         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2850         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2851       }
2852     }
2853   }
2854 
2855   /* Compute the comparison permutation and keyinfo that is used with
2856   ** the permutation used to determine if the next
2857   ** row of results comes from selectA or selectB.  Also add explicit
2858   ** collations to the ORDER BY clause terms so that when the subqueries
2859   ** to the right and the left are evaluated, they use the correct
2860   ** collation.
2861   */
2862   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2863   if( aPermute ){
2864     struct ExprList_item *pItem;
2865     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2866       assert( pItem->u.x.iOrderByCol>0
2867           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2868       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2869     }
2870     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2871   }else{
2872     pKeyMerge = 0;
2873   }
2874 
2875   /* Reattach the ORDER BY clause to the query.
2876   */
2877   p->pOrderBy = pOrderBy;
2878   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2879 
2880   /* Allocate a range of temporary registers and the KeyInfo needed
2881   ** for the logic that removes duplicate result rows when the
2882   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2883   */
2884   if( op==TK_ALL ){
2885     regPrev = 0;
2886   }else{
2887     int nExpr = p->pEList->nExpr;
2888     assert( nOrderBy>=nExpr || db->mallocFailed );
2889     regPrev = pParse->nMem+1;
2890     pParse->nMem += nExpr+1;
2891     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2892     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2893     if( pKeyDup ){
2894       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2895       for(i=0; i<nExpr; i++){
2896         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2897         pKeyDup->aSortOrder[i] = 0;
2898       }
2899     }
2900   }
2901 
2902   /* Separate the left and the right query from one another
2903   */
2904   p->pPrior = 0;
2905   pPrior->pNext = 0;
2906   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2907   if( pPrior->pPrior==0 ){
2908     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2909   }
2910 
2911   /* Compute the limit registers */
2912   computeLimitRegisters(pParse, p, labelEnd);
2913   if( p->iLimit && op==TK_ALL ){
2914     regLimitA = ++pParse->nMem;
2915     regLimitB = ++pParse->nMem;
2916     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2917                                   regLimitA);
2918     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2919   }else{
2920     regLimitA = regLimitB = 0;
2921   }
2922   sqlite3ExprDelete(db, p->pLimit);
2923   p->pLimit = 0;
2924   sqlite3ExprDelete(db, p->pOffset);
2925   p->pOffset = 0;
2926 
2927   regAddrA = ++pParse->nMem;
2928   regAddrB = ++pParse->nMem;
2929   regOutA = ++pParse->nMem;
2930   regOutB = ++pParse->nMem;
2931   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2932   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2933 
2934   /* Generate a coroutine to evaluate the SELECT statement to the
2935   ** left of the compound operator - the "A" select.
2936   */
2937   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2938   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2939   VdbeComment((v, "left SELECT"));
2940   pPrior->iLimit = regLimitA;
2941   explainSetInteger(iSub1, pParse->iNextSelectId);
2942   sqlite3Select(pParse, pPrior, &destA);
2943   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2944   sqlite3VdbeJumpHere(v, j1);
2945 
2946   /* Generate a coroutine to evaluate the SELECT statement on
2947   ** the right - the "B" select
2948   */
2949   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2950   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2951   VdbeComment((v, "right SELECT"));
2952   savedLimit = p->iLimit;
2953   savedOffset = p->iOffset;
2954   p->iLimit = regLimitB;
2955   p->iOffset = 0;
2956   explainSetInteger(iSub2, pParse->iNextSelectId);
2957   sqlite3Select(pParse, p, &destB);
2958   p->iLimit = savedLimit;
2959   p->iOffset = savedOffset;
2960   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2961 
2962   /* Generate a subroutine that outputs the current row of the A
2963   ** select as the next output row of the compound select.
2964   */
2965   VdbeNoopComment((v, "Output routine for A"));
2966   addrOutA = generateOutputSubroutine(pParse,
2967                  p, &destA, pDest, regOutA,
2968                  regPrev, pKeyDup, labelEnd);
2969 
2970   /* Generate a subroutine that outputs the current row of the B
2971   ** select as the next output row of the compound select.
2972   */
2973   if( op==TK_ALL || op==TK_UNION ){
2974     VdbeNoopComment((v, "Output routine for B"));
2975     addrOutB = generateOutputSubroutine(pParse,
2976                  p, &destB, pDest, regOutB,
2977                  regPrev, pKeyDup, labelEnd);
2978   }
2979   sqlite3KeyInfoUnref(pKeyDup);
2980 
2981   /* Generate a subroutine to run when the results from select A
2982   ** are exhausted and only data in select B remains.
2983   */
2984   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2985     addrEofA_noB = addrEofA = labelEnd;
2986   }else{
2987     VdbeNoopComment((v, "eof-A subroutine"));
2988     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2989     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2990                                      VdbeCoverage(v);
2991     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2992     p->nSelectRow += pPrior->nSelectRow;
2993   }
2994 
2995   /* Generate a subroutine to run when the results from select B
2996   ** are exhausted and only data in select A remains.
2997   */
2998   if( op==TK_INTERSECT ){
2999     addrEofB = addrEofA;
3000     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3001   }else{
3002     VdbeNoopComment((v, "eof-B subroutine"));
3003     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3004     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3005     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
3006   }
3007 
3008   /* Generate code to handle the case of A<B
3009   */
3010   VdbeNoopComment((v, "A-lt-B subroutine"));
3011   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3012   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3013   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3014 
3015   /* Generate code to handle the case of A==B
3016   */
3017   if( op==TK_ALL ){
3018     addrAeqB = addrAltB;
3019   }else if( op==TK_INTERSECT ){
3020     addrAeqB = addrAltB;
3021     addrAltB++;
3022   }else{
3023     VdbeNoopComment((v, "A-eq-B subroutine"));
3024     addrAeqB =
3025     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3026     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3027   }
3028 
3029   /* Generate code to handle the case of A>B
3030   */
3031   VdbeNoopComment((v, "A-gt-B subroutine"));
3032   addrAgtB = sqlite3VdbeCurrentAddr(v);
3033   if( op==TK_ALL || op==TK_UNION ){
3034     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3035   }
3036   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3037   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3038 
3039   /* This code runs once to initialize everything.
3040   */
3041   sqlite3VdbeJumpHere(v, j1);
3042   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3043   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3044 
3045   /* Implement the main merge loop
3046   */
3047   sqlite3VdbeResolveLabel(v, labelCmpr);
3048   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3049   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3050                          (char*)pKeyMerge, P4_KEYINFO);
3051   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3052   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3053 
3054   /* Jump to the this point in order to terminate the query.
3055   */
3056   sqlite3VdbeResolveLabel(v, labelEnd);
3057 
3058   /* Set the number of output columns
3059   */
3060   if( pDest->eDest==SRT_Output ){
3061     Select *pFirst = pPrior;
3062     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3063     generateColumnNames(pParse, 0, pFirst->pEList);
3064   }
3065 
3066   /* Reassembly the compound query so that it will be freed correctly
3067   ** by the calling function */
3068   if( p->pPrior ){
3069     sqlite3SelectDelete(db, p->pPrior);
3070   }
3071   p->pPrior = pPrior;
3072   pPrior->pNext = p;
3073 
3074   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3075   **** subqueries ****/
3076   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3077   return SQLITE_OK;
3078 }
3079 #endif
3080 
3081 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3082 /* Forward Declarations */
3083 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3084 static void substSelect(sqlite3*, Select *, int, ExprList *);
3085 
3086 /*
3087 ** Scan through the expression pExpr.  Replace every reference to
3088 ** a column in table number iTable with a copy of the iColumn-th
3089 ** entry in pEList.  (But leave references to the ROWID column
3090 ** unchanged.)
3091 **
3092 ** This routine is part of the flattening procedure.  A subquery
3093 ** whose result set is defined by pEList appears as entry in the
3094 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3095 ** FORM clause entry is iTable.  This routine make the necessary
3096 ** changes to pExpr so that it refers directly to the source table
3097 ** of the subquery rather the result set of the subquery.
3098 */
3099 static Expr *substExpr(
3100   sqlite3 *db,        /* Report malloc errors to this connection */
3101   Expr *pExpr,        /* Expr in which substitution occurs */
3102   int iTable,         /* Table to be substituted */
3103   ExprList *pEList    /* Substitute expressions */
3104 ){
3105   if( pExpr==0 ) return 0;
3106   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3107     if( pExpr->iColumn<0 ){
3108       pExpr->op = TK_NULL;
3109     }else{
3110       Expr *pNew;
3111       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3112       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3113       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3114       sqlite3ExprDelete(db, pExpr);
3115       pExpr = pNew;
3116     }
3117   }else{
3118     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3119     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3120     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3121       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3122     }else{
3123       substExprList(db, pExpr->x.pList, iTable, pEList);
3124     }
3125   }
3126   return pExpr;
3127 }
3128 static void substExprList(
3129   sqlite3 *db,         /* Report malloc errors here */
3130   ExprList *pList,     /* List to scan and in which to make substitutes */
3131   int iTable,          /* Table to be substituted */
3132   ExprList *pEList     /* Substitute values */
3133 ){
3134   int i;
3135   if( pList==0 ) return;
3136   for(i=0; i<pList->nExpr; i++){
3137     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3138   }
3139 }
3140 static void substSelect(
3141   sqlite3 *db,         /* Report malloc errors here */
3142   Select *p,           /* SELECT statement in which to make substitutions */
3143   int iTable,          /* Table to be replaced */
3144   ExprList *pEList     /* Substitute values */
3145 ){
3146   SrcList *pSrc;
3147   struct SrcList_item *pItem;
3148   int i;
3149   if( !p ) return;
3150   substExprList(db, p->pEList, iTable, pEList);
3151   substExprList(db, p->pGroupBy, iTable, pEList);
3152   substExprList(db, p->pOrderBy, iTable, pEList);
3153   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3154   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3155   substSelect(db, p->pPrior, iTable, pEList);
3156   pSrc = p->pSrc;
3157   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3158   if( ALWAYS(pSrc) ){
3159     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3160       substSelect(db, pItem->pSelect, iTable, pEList);
3161     }
3162   }
3163 }
3164 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3165 
3166 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3167 /*
3168 ** This routine attempts to flatten subqueries as a performance optimization.
3169 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3170 **
3171 ** To understand the concept of flattening, consider the following
3172 ** query:
3173 **
3174 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3175 **
3176 ** The default way of implementing this query is to execute the
3177 ** subquery first and store the results in a temporary table, then
3178 ** run the outer query on that temporary table.  This requires two
3179 ** passes over the data.  Furthermore, because the temporary table
3180 ** has no indices, the WHERE clause on the outer query cannot be
3181 ** optimized.
3182 **
3183 ** This routine attempts to rewrite queries such as the above into
3184 ** a single flat select, like this:
3185 **
3186 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3187 **
3188 ** The code generated for this simplification gives the same result
3189 ** but only has to scan the data once.  And because indices might
3190 ** exist on the table t1, a complete scan of the data might be
3191 ** avoided.
3192 **
3193 ** Flattening is only attempted if all of the following are true:
3194 **
3195 **   (1)  The subquery and the outer query do not both use aggregates.
3196 **
3197 **   (2)  The subquery is not an aggregate or the outer query is not a join.
3198 **
3199 **   (3)  The subquery is not the right operand of a left outer join
3200 **        (Originally ticket #306.  Strengthened by ticket #3300)
3201 **
3202 **   (4)  The subquery is not DISTINCT.
3203 **
3204 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3205 **        sub-queries that were excluded from this optimization. Restriction
3206 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3207 **
3208 **   (6)  The subquery does not use aggregates or the outer query is not
3209 **        DISTINCT.
3210 **
3211 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3212 **        A FROM clause, consider adding a FROM close with the special
3213 **        table sqlite_once that consists of a single row containing a
3214 **        single NULL.
3215 **
3216 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3217 **
3218 **   (9)  The subquery does not use LIMIT or the outer query does not use
3219 **        aggregates.
3220 **
3221 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3222 **        accidently carried the comment forward until 2014-09-15.  Original
3223 **        text: "The subquery does not use aggregates or the outer query does not
3224 **        use LIMIT."
3225 **
3226 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3227 **
3228 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3229 **        a separate restriction deriving from ticket #350.
3230 **
3231 **  (13)  The subquery and outer query do not both use LIMIT.
3232 **
3233 **  (14)  The subquery does not use OFFSET.
3234 **
3235 **  (15)  The outer query is not part of a compound select or the
3236 **        subquery does not have a LIMIT clause.
3237 **        (See ticket #2339 and ticket [02a8e81d44]).
3238 **
3239 **  (16)  The outer query is not an aggregate or the subquery does
3240 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3241 **        until we introduced the group_concat() function.
3242 **
3243 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3244 **        compound clause made up entirely of non-aggregate queries, and
3245 **        the parent query:
3246 **
3247 **          * is not itself part of a compound select,
3248 **          * is not an aggregate or DISTINCT query, and
3249 **          * is not a join
3250 **
3251 **        The parent and sub-query may contain WHERE clauses. Subject to
3252 **        rules (11), (13) and (14), they may also contain ORDER BY,
3253 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3254 **        operator other than UNION ALL because all the other compound
3255 **        operators have an implied DISTINCT which is disallowed by
3256 **        restriction (4).
3257 **
3258 **        Also, each component of the sub-query must return the same number
3259 **        of result columns. This is actually a requirement for any compound
3260 **        SELECT statement, but all the code here does is make sure that no
3261 **        such (illegal) sub-query is flattened. The caller will detect the
3262 **        syntax error and return a detailed message.
3263 **
3264 **  (18)  If the sub-query is a compound select, then all terms of the
3265 **        ORDER by clause of the parent must be simple references to
3266 **        columns of the sub-query.
3267 **
3268 **  (19)  The subquery does not use LIMIT or the outer query does not
3269 **        have a WHERE clause.
3270 **
3271 **  (20)  If the sub-query is a compound select, then it must not use
3272 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3273 **        somewhat by saying that the terms of the ORDER BY clause must
3274 **        appear as unmodified result columns in the outer query.  But we
3275 **        have other optimizations in mind to deal with that case.
3276 **
3277 **  (21)  The subquery does not use LIMIT or the outer query is not
3278 **        DISTINCT.  (See ticket [752e1646fc]).
3279 **
3280 **  (22)  The subquery is not a recursive CTE.
3281 **
3282 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3283 **        compound query. This restriction is because transforming the
3284 **        parent to a compound query confuses the code that handles
3285 **        recursive queries in multiSelect().
3286 **
3287 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3288 **        or max() functions.  (Without this restriction, a query like:
3289 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3290 **        return the value X for which Y was maximal.)
3291 **
3292 **
3293 ** In this routine, the "p" parameter is a pointer to the outer query.
3294 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3295 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3296 **
3297 ** If flattening is not attempted, this routine is a no-op and returns 0.
3298 ** If flattening is attempted this routine returns 1.
3299 **
3300 ** All of the expression analysis must occur on both the outer query and
3301 ** the subquery before this routine runs.
3302 */
3303 static int flattenSubquery(
3304   Parse *pParse,       /* Parsing context */
3305   Select *p,           /* The parent or outer SELECT statement */
3306   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3307   int isAgg,           /* True if outer SELECT uses aggregate functions */
3308   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3309 ){
3310   const char *zSavedAuthContext = pParse->zAuthContext;
3311   Select *pParent;
3312   Select *pSub;       /* The inner query or "subquery" */
3313   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3314   SrcList *pSrc;      /* The FROM clause of the outer query */
3315   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3316   ExprList *pList;    /* The result set of the outer query */
3317   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3318   int i;              /* Loop counter */
3319   Expr *pWhere;                    /* The WHERE clause */
3320   struct SrcList_item *pSubitem;   /* The subquery */
3321   sqlite3 *db = pParse->db;
3322 
3323   /* Check to see if flattening is permitted.  Return 0 if not.
3324   */
3325   assert( p!=0 );
3326   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3327   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3328   pSrc = p->pSrc;
3329   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3330   pSubitem = &pSrc->a[iFrom];
3331   iParent = pSubitem->iCursor;
3332   pSub = pSubitem->pSelect;
3333   assert( pSub!=0 );
3334   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3335   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3336   pSubSrc = pSub->pSrc;
3337   assert( pSubSrc );
3338   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3339   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3340   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3341   ** became arbitrary expressions, we were forced to add restrictions (13)
3342   ** and (14). */
3343   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3344   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3345   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3346     return 0;                                            /* Restriction (15) */
3347   }
3348   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3349   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3350   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3351      return 0;         /* Restrictions (8)(9) */
3352   }
3353   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3354      return 0;         /* Restriction (6)  */
3355   }
3356   if( p->pOrderBy && pSub->pOrderBy ){
3357      return 0;                                           /* Restriction (11) */
3358   }
3359   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3360   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3361   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3362      return 0;         /* Restriction (21) */
3363   }
3364   testcase( pSub->selFlags & SF_Recursive );
3365   testcase( pSub->selFlags & SF_MinMaxAgg );
3366   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3367     return 0; /* Restrictions (22) and (24) */
3368   }
3369   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3370     return 0; /* Restriction (23) */
3371   }
3372 
3373   /* OBSOLETE COMMENT 1:
3374   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3375   ** not used as the right operand of an outer join.  Examples of why this
3376   ** is not allowed:
3377   **
3378   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3379   **
3380   ** If we flatten the above, we would get
3381   **
3382   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3383   **
3384   ** which is not at all the same thing.
3385   **
3386   ** OBSOLETE COMMENT 2:
3387   ** Restriction 12:  If the subquery is the right operand of a left outer
3388   ** join, make sure the subquery has no WHERE clause.
3389   ** An examples of why this is not allowed:
3390   **
3391   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3392   **
3393   ** If we flatten the above, we would get
3394   **
3395   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3396   **
3397   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3398   ** effectively converts the OUTER JOIN into an INNER JOIN.
3399   **
3400   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3401   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3402   ** is fraught with danger.  Best to avoid the whole thing.  If the
3403   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3404   */
3405   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3406     return 0;
3407   }
3408 
3409   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3410   ** use only the UNION ALL operator. And none of the simple select queries
3411   ** that make up the compound SELECT are allowed to be aggregate or distinct
3412   ** queries.
3413   */
3414   if( pSub->pPrior ){
3415     if( pSub->pOrderBy ){
3416       return 0;  /* Restriction 20 */
3417     }
3418     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3419       return 0;
3420     }
3421     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3422       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3423       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3424       assert( pSub->pSrc!=0 );
3425       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3426        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3427        || pSub1->pSrc->nSrc<1
3428        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3429       ){
3430         return 0;
3431       }
3432       testcase( pSub1->pSrc->nSrc>1 );
3433     }
3434 
3435     /* Restriction 18. */
3436     if( p->pOrderBy ){
3437       int ii;
3438       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3439         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3440       }
3441     }
3442   }
3443 
3444   /***** If we reach this point, flattening is permitted. *****/
3445   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3446                    pSub->zSelName, pSub, iFrom));
3447 
3448   /* Authorize the subquery */
3449   pParse->zAuthContext = pSubitem->zName;
3450   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3451   testcase( i==SQLITE_DENY );
3452   pParse->zAuthContext = zSavedAuthContext;
3453 
3454   /* If the sub-query is a compound SELECT statement, then (by restrictions
3455   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3456   ** be of the form:
3457   **
3458   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3459   **
3460   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3461   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3462   ** OFFSET clauses and joins them to the left-hand-side of the original
3463   ** using UNION ALL operators. In this case N is the number of simple
3464   ** select statements in the compound sub-query.
3465   **
3466   ** Example:
3467   **
3468   **     SELECT a+1 FROM (
3469   **        SELECT x FROM tab
3470   **        UNION ALL
3471   **        SELECT y FROM tab
3472   **        UNION ALL
3473   **        SELECT abs(z*2) FROM tab2
3474   **     ) WHERE a!=5 ORDER BY 1
3475   **
3476   ** Transformed into:
3477   **
3478   **     SELECT x+1 FROM tab WHERE x+1!=5
3479   **     UNION ALL
3480   **     SELECT y+1 FROM tab WHERE y+1!=5
3481   **     UNION ALL
3482   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3483   **     ORDER BY 1
3484   **
3485   ** We call this the "compound-subquery flattening".
3486   */
3487   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3488     Select *pNew;
3489     ExprList *pOrderBy = p->pOrderBy;
3490     Expr *pLimit = p->pLimit;
3491     Expr *pOffset = p->pOffset;
3492     Select *pPrior = p->pPrior;
3493     p->pOrderBy = 0;
3494     p->pSrc = 0;
3495     p->pPrior = 0;
3496     p->pLimit = 0;
3497     p->pOffset = 0;
3498     pNew = sqlite3SelectDup(db, p, 0);
3499     sqlite3SelectSetName(pNew, pSub->zSelName);
3500     p->pOffset = pOffset;
3501     p->pLimit = pLimit;
3502     p->pOrderBy = pOrderBy;
3503     p->pSrc = pSrc;
3504     p->op = TK_ALL;
3505     if( pNew==0 ){
3506       p->pPrior = pPrior;
3507     }else{
3508       pNew->pPrior = pPrior;
3509       if( pPrior ) pPrior->pNext = pNew;
3510       pNew->pNext = p;
3511       p->pPrior = pNew;
3512       SELECTTRACE(2,pParse,p,
3513          ("compound-subquery flattener creates %s.%p as peer\n",
3514          pNew->zSelName, pNew));
3515     }
3516     if( db->mallocFailed ) return 1;
3517   }
3518 
3519   /* Begin flattening the iFrom-th entry of the FROM clause
3520   ** in the outer query.
3521   */
3522   pSub = pSub1 = pSubitem->pSelect;
3523 
3524   /* Delete the transient table structure associated with the
3525   ** subquery
3526   */
3527   sqlite3DbFree(db, pSubitem->zDatabase);
3528   sqlite3DbFree(db, pSubitem->zName);
3529   sqlite3DbFree(db, pSubitem->zAlias);
3530   pSubitem->zDatabase = 0;
3531   pSubitem->zName = 0;
3532   pSubitem->zAlias = 0;
3533   pSubitem->pSelect = 0;
3534 
3535   /* Defer deleting the Table object associated with the
3536   ** subquery until code generation is
3537   ** complete, since there may still exist Expr.pTab entries that
3538   ** refer to the subquery even after flattening.  Ticket #3346.
3539   **
3540   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3541   */
3542   if( ALWAYS(pSubitem->pTab!=0) ){
3543     Table *pTabToDel = pSubitem->pTab;
3544     if( pTabToDel->nRef==1 ){
3545       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3546       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3547       pToplevel->pZombieTab = pTabToDel;
3548     }else{
3549       pTabToDel->nRef--;
3550     }
3551     pSubitem->pTab = 0;
3552   }
3553 
3554   /* The following loop runs once for each term in a compound-subquery
3555   ** flattening (as described above).  If we are doing a different kind
3556   ** of flattening - a flattening other than a compound-subquery flattening -
3557   ** then this loop only runs once.
3558   **
3559   ** This loop moves all of the FROM elements of the subquery into the
3560   ** the FROM clause of the outer query.  Before doing this, remember
3561   ** the cursor number for the original outer query FROM element in
3562   ** iParent.  The iParent cursor will never be used.  Subsequent code
3563   ** will scan expressions looking for iParent references and replace
3564   ** those references with expressions that resolve to the subquery FROM
3565   ** elements we are now copying in.
3566   */
3567   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3568     int nSubSrc;
3569     u8 jointype = 0;
3570     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3571     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3572     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3573 
3574     if( pSrc ){
3575       assert( pParent==p );  /* First time through the loop */
3576       jointype = pSubitem->jointype;
3577     }else{
3578       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3579       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3580       if( pSrc==0 ){
3581         assert( db->mallocFailed );
3582         break;
3583       }
3584     }
3585 
3586     /* The subquery uses a single slot of the FROM clause of the outer
3587     ** query.  If the subquery has more than one element in its FROM clause,
3588     ** then expand the outer query to make space for it to hold all elements
3589     ** of the subquery.
3590     **
3591     ** Example:
3592     **
3593     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3594     **
3595     ** The outer query has 3 slots in its FROM clause.  One slot of the
3596     ** outer query (the middle slot) is used by the subquery.  The next
3597     ** block of code will expand the out query to 4 slots.  The middle
3598     ** slot is expanded to two slots in order to make space for the
3599     ** two elements in the FROM clause of the subquery.
3600     */
3601     if( nSubSrc>1 ){
3602       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3603       if( db->mallocFailed ){
3604         break;
3605       }
3606     }
3607 
3608     /* Transfer the FROM clause terms from the subquery into the
3609     ** outer query.
3610     */
3611     for(i=0; i<nSubSrc; i++){
3612       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3613       pSrc->a[i+iFrom] = pSubSrc->a[i];
3614       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3615     }
3616     pSrc->a[iFrom].jointype = jointype;
3617 
3618     /* Now begin substituting subquery result set expressions for
3619     ** references to the iParent in the outer query.
3620     **
3621     ** Example:
3622     **
3623     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3624     **   \                     \_____________ subquery __________/          /
3625     **    \_____________________ outer query ______________________________/
3626     **
3627     ** We look at every expression in the outer query and every place we see
3628     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3629     */
3630     pList = pParent->pEList;
3631     for(i=0; i<pList->nExpr; i++){
3632       if( pList->a[i].zName==0 ){
3633         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3634         sqlite3Dequote(zName);
3635         pList->a[i].zName = zName;
3636       }
3637     }
3638     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3639     if( isAgg ){
3640       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3641       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3642     }
3643     if( pSub->pOrderBy ){
3644       /* At this point, any non-zero iOrderByCol values indicate that the
3645       ** ORDER BY column expression is identical to the iOrderByCol'th
3646       ** expression returned by SELECT statement pSub. Since these values
3647       ** do not necessarily correspond to columns in SELECT statement pParent,
3648       ** zero them before transfering the ORDER BY clause.
3649       **
3650       ** Not doing this may cause an error if a subsequent call to this
3651       ** function attempts to flatten a compound sub-query into pParent
3652       ** (the only way this can happen is if the compound sub-query is
3653       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3654       ExprList *pOrderBy = pSub->pOrderBy;
3655       for(i=0; i<pOrderBy->nExpr; i++){
3656         pOrderBy->a[i].u.x.iOrderByCol = 0;
3657       }
3658       assert( pParent->pOrderBy==0 );
3659       assert( pSub->pPrior==0 );
3660       pParent->pOrderBy = pOrderBy;
3661       pSub->pOrderBy = 0;
3662     }else if( pParent->pOrderBy ){
3663       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3664     }
3665     if( pSub->pWhere ){
3666       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3667     }else{
3668       pWhere = 0;
3669     }
3670     if( subqueryIsAgg ){
3671       assert( pParent->pHaving==0 );
3672       pParent->pHaving = pParent->pWhere;
3673       pParent->pWhere = pWhere;
3674       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3675       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3676                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3677       assert( pParent->pGroupBy==0 );
3678       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3679     }else{
3680       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3681       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3682     }
3683 
3684     /* The flattened query is distinct if either the inner or the
3685     ** outer query is distinct.
3686     */
3687     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3688 
3689     /*
3690     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3691     **
3692     ** One is tempted to try to add a and b to combine the limits.  But this
3693     ** does not work if either limit is negative.
3694     */
3695     if( pSub->pLimit ){
3696       pParent->pLimit = pSub->pLimit;
3697       pSub->pLimit = 0;
3698     }
3699   }
3700 
3701   /* Finially, delete what is left of the subquery and return
3702   ** success.
3703   */
3704   sqlite3SelectDelete(db, pSub1);
3705 
3706 #if SELECTTRACE_ENABLED
3707   if( sqlite3SelectTrace & 0x100 ){
3708     sqlite3DebugPrintf("After flattening:\n");
3709     sqlite3TreeViewSelect(0, p, 0);
3710   }
3711 #endif
3712 
3713   return 1;
3714 }
3715 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3716 
3717 /*
3718 ** Based on the contents of the AggInfo structure indicated by the first
3719 ** argument, this function checks if the following are true:
3720 **
3721 **    * the query contains just a single aggregate function,
3722 **    * the aggregate function is either min() or max(), and
3723 **    * the argument to the aggregate function is a column value.
3724 **
3725 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3726 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3727 ** list of arguments passed to the aggregate before returning.
3728 **
3729 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3730 ** WHERE_ORDERBY_NORMAL is returned.
3731 */
3732 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3733   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3734 
3735   *ppMinMax = 0;
3736   if( pAggInfo->nFunc==1 ){
3737     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3738     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3739 
3740     assert( pExpr->op==TK_AGG_FUNCTION );
3741     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3742       const char *zFunc = pExpr->u.zToken;
3743       if( sqlite3StrICmp(zFunc, "min")==0 ){
3744         eRet = WHERE_ORDERBY_MIN;
3745         *ppMinMax = pEList;
3746       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3747         eRet = WHERE_ORDERBY_MAX;
3748         *ppMinMax = pEList;
3749       }
3750     }
3751   }
3752 
3753   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3754   return eRet;
3755 }
3756 
3757 /*
3758 ** The select statement passed as the first argument is an aggregate query.
3759 ** The second argument is the associated aggregate-info object. This
3760 ** function tests if the SELECT is of the form:
3761 **
3762 **   SELECT count(*) FROM <tbl>
3763 **
3764 ** where table is a database table, not a sub-select or view. If the query
3765 ** does match this pattern, then a pointer to the Table object representing
3766 ** <tbl> is returned. Otherwise, 0 is returned.
3767 */
3768 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3769   Table *pTab;
3770   Expr *pExpr;
3771 
3772   assert( !p->pGroupBy );
3773 
3774   if( p->pWhere || p->pEList->nExpr!=1
3775    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3776   ){
3777     return 0;
3778   }
3779   pTab = p->pSrc->a[0].pTab;
3780   pExpr = p->pEList->a[0].pExpr;
3781   assert( pTab && !pTab->pSelect && pExpr );
3782 
3783   if( IsVirtual(pTab) ) return 0;
3784   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3785   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3786   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3787   if( pExpr->flags&EP_Distinct ) return 0;
3788 
3789   return pTab;
3790 }
3791 
3792 /*
3793 ** If the source-list item passed as an argument was augmented with an
3794 ** INDEXED BY clause, then try to locate the specified index. If there
3795 ** was such a clause and the named index cannot be found, return
3796 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3797 ** pFrom->pIndex and return SQLITE_OK.
3798 */
3799 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3800   if( pFrom->pTab && pFrom->zIndex ){
3801     Table *pTab = pFrom->pTab;
3802     char *zIndex = pFrom->zIndex;
3803     Index *pIdx;
3804     for(pIdx=pTab->pIndex;
3805         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3806         pIdx=pIdx->pNext
3807     );
3808     if( !pIdx ){
3809       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3810       pParse->checkSchema = 1;
3811       return SQLITE_ERROR;
3812     }
3813     pFrom->pIndex = pIdx;
3814   }
3815   return SQLITE_OK;
3816 }
3817 /*
3818 ** Detect compound SELECT statements that use an ORDER BY clause with
3819 ** an alternative collating sequence.
3820 **
3821 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3822 **
3823 ** These are rewritten as a subquery:
3824 **
3825 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3826 **     ORDER BY ... COLLATE ...
3827 **
3828 ** This transformation is necessary because the multiSelectOrderBy() routine
3829 ** above that generates the code for a compound SELECT with an ORDER BY clause
3830 ** uses a merge algorithm that requires the same collating sequence on the
3831 ** result columns as on the ORDER BY clause.  See ticket
3832 ** http://www.sqlite.org/src/info/6709574d2a
3833 **
3834 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3835 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3836 ** there are COLLATE terms in the ORDER BY.
3837 */
3838 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3839   int i;
3840   Select *pNew;
3841   Select *pX;
3842   sqlite3 *db;
3843   struct ExprList_item *a;
3844   SrcList *pNewSrc;
3845   Parse *pParse;
3846   Token dummy;
3847 
3848   if( p->pPrior==0 ) return WRC_Continue;
3849   if( p->pOrderBy==0 ) return WRC_Continue;
3850   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3851   if( pX==0 ) return WRC_Continue;
3852   a = p->pOrderBy->a;
3853   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3854     if( a[i].pExpr->flags & EP_Collate ) break;
3855   }
3856   if( i<0 ) return WRC_Continue;
3857 
3858   /* If we reach this point, that means the transformation is required. */
3859 
3860   pParse = pWalker->pParse;
3861   db = pParse->db;
3862   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3863   if( pNew==0 ) return WRC_Abort;
3864   memset(&dummy, 0, sizeof(dummy));
3865   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3866   if( pNewSrc==0 ) return WRC_Abort;
3867   *pNew = *p;
3868   p->pSrc = pNewSrc;
3869   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3870   p->op = TK_SELECT;
3871   p->pWhere = 0;
3872   pNew->pGroupBy = 0;
3873   pNew->pHaving = 0;
3874   pNew->pOrderBy = 0;
3875   p->pPrior = 0;
3876   p->pNext = 0;
3877   p->selFlags &= ~SF_Compound;
3878   assert( pNew->pPrior!=0 );
3879   pNew->pPrior->pNext = pNew;
3880   pNew->pLimit = 0;
3881   pNew->pOffset = 0;
3882   return WRC_Continue;
3883 }
3884 
3885 #ifndef SQLITE_OMIT_CTE
3886 /*
3887 ** Argument pWith (which may be NULL) points to a linked list of nested
3888 ** WITH contexts, from inner to outermost. If the table identified by
3889 ** FROM clause element pItem is really a common-table-expression (CTE)
3890 ** then return a pointer to the CTE definition for that table. Otherwise
3891 ** return NULL.
3892 **
3893 ** If a non-NULL value is returned, set *ppContext to point to the With
3894 ** object that the returned CTE belongs to.
3895 */
3896 static struct Cte *searchWith(
3897   With *pWith,                    /* Current outermost WITH clause */
3898   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3899   With **ppContext                /* OUT: WITH clause return value belongs to */
3900 ){
3901   const char *zName;
3902   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3903     With *p;
3904     for(p=pWith; p; p=p->pOuter){
3905       int i;
3906       for(i=0; i<p->nCte; i++){
3907         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3908           *ppContext = p;
3909           return &p->a[i];
3910         }
3911       }
3912     }
3913   }
3914   return 0;
3915 }
3916 
3917 /* The code generator maintains a stack of active WITH clauses
3918 ** with the inner-most WITH clause being at the top of the stack.
3919 **
3920 ** This routine pushes the WITH clause passed as the second argument
3921 ** onto the top of the stack. If argument bFree is true, then this
3922 ** WITH clause will never be popped from the stack. In this case it
3923 ** should be freed along with the Parse object. In other cases, when
3924 ** bFree==0, the With object will be freed along with the SELECT
3925 ** statement with which it is associated.
3926 */
3927 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3928   assert( bFree==0 || pParse->pWith==0 );
3929   if( pWith ){
3930     pWith->pOuter = pParse->pWith;
3931     pParse->pWith = pWith;
3932     pParse->bFreeWith = bFree;
3933   }
3934 }
3935 
3936 /*
3937 ** This function checks if argument pFrom refers to a CTE declared by
3938 ** a WITH clause on the stack currently maintained by the parser. And,
3939 ** if currently processing a CTE expression, if it is a recursive
3940 ** reference to the current CTE.
3941 **
3942 ** If pFrom falls into either of the two categories above, pFrom->pTab
3943 ** and other fields are populated accordingly. The caller should check
3944 ** (pFrom->pTab!=0) to determine whether or not a successful match
3945 ** was found.
3946 **
3947 ** Whether or not a match is found, SQLITE_OK is returned if no error
3948 ** occurs. If an error does occur, an error message is stored in the
3949 ** parser and some error code other than SQLITE_OK returned.
3950 */
3951 static int withExpand(
3952   Walker *pWalker,
3953   struct SrcList_item *pFrom
3954 ){
3955   Parse *pParse = pWalker->pParse;
3956   sqlite3 *db = pParse->db;
3957   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3958   With *pWith;                    /* WITH clause that pCte belongs to */
3959 
3960   assert( pFrom->pTab==0 );
3961 
3962   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3963   if( pCte ){
3964     Table *pTab;
3965     ExprList *pEList;
3966     Select *pSel;
3967     Select *pLeft;                /* Left-most SELECT statement */
3968     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3969     With *pSavedWith;             /* Initial value of pParse->pWith */
3970 
3971     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3972     ** recursive reference to CTE pCte. Leave an error in pParse and return
3973     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3974     ** In this case, proceed.  */
3975     if( pCte->zErr ){
3976       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3977       return SQLITE_ERROR;
3978     }
3979 
3980     assert( pFrom->pTab==0 );
3981     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3982     if( pTab==0 ) return WRC_Abort;
3983     pTab->nRef = 1;
3984     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3985     pTab->iPKey = -1;
3986     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3987     pTab->tabFlags |= TF_Ephemeral;
3988     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3989     if( db->mallocFailed ) return SQLITE_NOMEM;
3990     assert( pFrom->pSelect );
3991 
3992     /* Check if this is a recursive CTE. */
3993     pSel = pFrom->pSelect;
3994     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3995     if( bMayRecursive ){
3996       int i;
3997       SrcList *pSrc = pFrom->pSelect->pSrc;
3998       for(i=0; i<pSrc->nSrc; i++){
3999         struct SrcList_item *pItem = &pSrc->a[i];
4000         if( pItem->zDatabase==0
4001          && pItem->zName!=0
4002          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4003           ){
4004           pItem->pTab = pTab;
4005           pItem->isRecursive = 1;
4006           pTab->nRef++;
4007           pSel->selFlags |= SF_Recursive;
4008         }
4009       }
4010     }
4011 
4012     /* Only one recursive reference is permitted. */
4013     if( pTab->nRef>2 ){
4014       sqlite3ErrorMsg(
4015           pParse, "multiple references to recursive table: %s", pCte->zName
4016       );
4017       return SQLITE_ERROR;
4018     }
4019     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4020 
4021     pCte->zErr = "circular reference: %s";
4022     pSavedWith = pParse->pWith;
4023     pParse->pWith = pWith;
4024     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4025 
4026     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4027     pEList = pLeft->pEList;
4028     if( pCte->pCols ){
4029       if( pEList->nExpr!=pCte->pCols->nExpr ){
4030         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4031             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4032         );
4033         pParse->pWith = pSavedWith;
4034         return SQLITE_ERROR;
4035       }
4036       pEList = pCte->pCols;
4037     }
4038 
4039     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4040     if( bMayRecursive ){
4041       if( pSel->selFlags & SF_Recursive ){
4042         pCte->zErr = "multiple recursive references: %s";
4043       }else{
4044         pCte->zErr = "recursive reference in a subquery: %s";
4045       }
4046       sqlite3WalkSelect(pWalker, pSel);
4047     }
4048     pCte->zErr = 0;
4049     pParse->pWith = pSavedWith;
4050   }
4051 
4052   return SQLITE_OK;
4053 }
4054 #endif
4055 
4056 #ifndef SQLITE_OMIT_CTE
4057 /*
4058 ** If the SELECT passed as the second argument has an associated WITH
4059 ** clause, pop it from the stack stored as part of the Parse object.
4060 **
4061 ** This function is used as the xSelectCallback2() callback by
4062 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4063 ** names and other FROM clause elements.
4064 */
4065 static void selectPopWith(Walker *pWalker, Select *p){
4066   Parse *pParse = pWalker->pParse;
4067   With *pWith = findRightmost(p)->pWith;
4068   if( pWith!=0 ){
4069     assert( pParse->pWith==pWith );
4070     pParse->pWith = pWith->pOuter;
4071   }
4072 }
4073 #else
4074 #define selectPopWith 0
4075 #endif
4076 
4077 /*
4078 ** This routine is a Walker callback for "expanding" a SELECT statement.
4079 ** "Expanding" means to do the following:
4080 **
4081 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4082 **         element of the FROM clause.
4083 **
4084 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4085 **         defines FROM clause.  When views appear in the FROM clause,
4086 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4087 **         that implements the view.  A copy is made of the view's SELECT
4088 **         statement so that we can freely modify or delete that statement
4089 **         without worrying about messing up the persistent representation
4090 **         of the view.
4091 **
4092 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4093 **         on joins and the ON and USING clause of joins.
4094 **
4095 **    (4)  Scan the list of columns in the result set (pEList) looking
4096 **         for instances of the "*" operator or the TABLE.* operator.
4097 **         If found, expand each "*" to be every column in every table
4098 **         and TABLE.* to be every column in TABLE.
4099 **
4100 */
4101 static int selectExpander(Walker *pWalker, Select *p){
4102   Parse *pParse = pWalker->pParse;
4103   int i, j, k;
4104   SrcList *pTabList;
4105   ExprList *pEList;
4106   struct SrcList_item *pFrom;
4107   sqlite3 *db = pParse->db;
4108   Expr *pE, *pRight, *pExpr;
4109   u16 selFlags = p->selFlags;
4110 
4111   p->selFlags |= SF_Expanded;
4112   if( db->mallocFailed  ){
4113     return WRC_Abort;
4114   }
4115   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4116     return WRC_Prune;
4117   }
4118   pTabList = p->pSrc;
4119   pEList = p->pEList;
4120   if( pWalker->xSelectCallback2==selectPopWith ){
4121     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4122   }
4123 
4124   /* Make sure cursor numbers have been assigned to all entries in
4125   ** the FROM clause of the SELECT statement.
4126   */
4127   sqlite3SrcListAssignCursors(pParse, pTabList);
4128 
4129   /* Look up every table named in the FROM clause of the select.  If
4130   ** an entry of the FROM clause is a subquery instead of a table or view,
4131   ** then create a transient table structure to describe the subquery.
4132   */
4133   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4134     Table *pTab;
4135     assert( pFrom->isRecursive==0 || pFrom->pTab );
4136     if( pFrom->isRecursive ) continue;
4137     if( pFrom->pTab!=0 ){
4138       /* This statement has already been prepared.  There is no need
4139       ** to go further. */
4140       assert( i==0 );
4141 #ifndef SQLITE_OMIT_CTE
4142       selectPopWith(pWalker, p);
4143 #endif
4144       return WRC_Prune;
4145     }
4146 #ifndef SQLITE_OMIT_CTE
4147     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4148     if( pFrom->pTab ) {} else
4149 #endif
4150     if( pFrom->zName==0 ){
4151 #ifndef SQLITE_OMIT_SUBQUERY
4152       Select *pSel = pFrom->pSelect;
4153       /* A sub-query in the FROM clause of a SELECT */
4154       assert( pSel!=0 );
4155       assert( pFrom->pTab==0 );
4156       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4157       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4158       if( pTab==0 ) return WRC_Abort;
4159       pTab->nRef = 1;
4160       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4161       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4162       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4163       pTab->iPKey = -1;
4164       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4165       pTab->tabFlags |= TF_Ephemeral;
4166 #endif
4167     }else{
4168       /* An ordinary table or view name in the FROM clause */
4169       assert( pFrom->pTab==0 );
4170       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4171       if( pTab==0 ) return WRC_Abort;
4172       if( pTab->nRef==0xffff ){
4173         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4174            pTab->zName);
4175         pFrom->pTab = 0;
4176         return WRC_Abort;
4177       }
4178       pTab->nRef++;
4179 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4180       if( pTab->pSelect || IsVirtual(pTab) ){
4181         /* We reach here if the named table is a really a view */
4182         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4183         assert( pFrom->pSelect==0 );
4184         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4185         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4186         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4187       }
4188 #endif
4189     }
4190 
4191     /* Locate the index named by the INDEXED BY clause, if any. */
4192     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4193       return WRC_Abort;
4194     }
4195   }
4196 
4197   /* Process NATURAL keywords, and ON and USING clauses of joins.
4198   */
4199   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4200     return WRC_Abort;
4201   }
4202 
4203   /* For every "*" that occurs in the column list, insert the names of
4204   ** all columns in all tables.  And for every TABLE.* insert the names
4205   ** of all columns in TABLE.  The parser inserted a special expression
4206   ** with the TK_ALL operator for each "*" that it found in the column list.
4207   ** The following code just has to locate the TK_ALL expressions and expand
4208   ** each one to the list of all columns in all tables.
4209   **
4210   ** The first loop just checks to see if there are any "*" operators
4211   ** that need expanding.
4212   */
4213   for(k=0; k<pEList->nExpr; k++){
4214     pE = pEList->a[k].pExpr;
4215     if( pE->op==TK_ALL ) break;
4216     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4217     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4218     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4219   }
4220   if( k<pEList->nExpr ){
4221     /*
4222     ** If we get here it means the result set contains one or more "*"
4223     ** operators that need to be expanded.  Loop through each expression
4224     ** in the result set and expand them one by one.
4225     */
4226     struct ExprList_item *a = pEList->a;
4227     ExprList *pNew = 0;
4228     int flags = pParse->db->flags;
4229     int longNames = (flags & SQLITE_FullColNames)!=0
4230                       && (flags & SQLITE_ShortColNames)==0;
4231 
4232     /* When processing FROM-clause subqueries, it is always the case
4233     ** that full_column_names=OFF and short_column_names=ON.  The
4234     ** sqlite3ResultSetOfSelect() routine makes it so. */
4235     assert( (p->selFlags & SF_NestedFrom)==0
4236           || ((flags & SQLITE_FullColNames)==0 &&
4237               (flags & SQLITE_ShortColNames)!=0) );
4238 
4239     for(k=0; k<pEList->nExpr; k++){
4240       pE = a[k].pExpr;
4241       pRight = pE->pRight;
4242       assert( pE->op!=TK_DOT || pRight!=0 );
4243       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4244         /* This particular expression does not need to be expanded.
4245         */
4246         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4247         if( pNew ){
4248           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4249           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4250           a[k].zName = 0;
4251           a[k].zSpan = 0;
4252         }
4253         a[k].pExpr = 0;
4254       }else{
4255         /* This expression is a "*" or a "TABLE.*" and needs to be
4256         ** expanded. */
4257         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4258         char *zTName = 0;       /* text of name of TABLE */
4259         if( pE->op==TK_DOT ){
4260           assert( pE->pLeft!=0 );
4261           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4262           zTName = pE->pLeft->u.zToken;
4263         }
4264         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4265           Table *pTab = pFrom->pTab;
4266           Select *pSub = pFrom->pSelect;
4267           char *zTabName = pFrom->zAlias;
4268           const char *zSchemaName = 0;
4269           int iDb;
4270           if( zTabName==0 ){
4271             zTabName = pTab->zName;
4272           }
4273           if( db->mallocFailed ) break;
4274           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4275             pSub = 0;
4276             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4277               continue;
4278             }
4279             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4280             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4281           }
4282           for(j=0; j<pTab->nCol; j++){
4283             char *zName = pTab->aCol[j].zName;
4284             char *zColname;  /* The computed column name */
4285             char *zToFree;   /* Malloced string that needs to be freed */
4286             Token sColname;  /* Computed column name as a token */
4287 
4288             assert( zName );
4289             if( zTName && pSub
4290              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4291             ){
4292               continue;
4293             }
4294 
4295             /* If a column is marked as 'hidden' (currently only possible
4296             ** for virtual tables), do not include it in the expanded
4297             ** result-set list.
4298             */
4299             if( IsHiddenColumn(&pTab->aCol[j]) ){
4300               assert(IsVirtual(pTab));
4301               continue;
4302             }
4303             tableSeen = 1;
4304 
4305             if( i>0 && zTName==0 ){
4306               if( (pFrom->jointype & JT_NATURAL)!=0
4307                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4308               ){
4309                 /* In a NATURAL join, omit the join columns from the
4310                 ** table to the right of the join */
4311                 continue;
4312               }
4313               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4314                 /* In a join with a USING clause, omit columns in the
4315                 ** using clause from the table on the right. */
4316                 continue;
4317               }
4318             }
4319             pRight = sqlite3Expr(db, TK_ID, zName);
4320             zColname = zName;
4321             zToFree = 0;
4322             if( longNames || pTabList->nSrc>1 ){
4323               Expr *pLeft;
4324               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4325               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4326               if( zSchemaName ){
4327                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4328                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4329               }
4330               if( longNames ){
4331                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4332                 zToFree = zColname;
4333               }
4334             }else{
4335               pExpr = pRight;
4336             }
4337             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4338             sColname.z = zColname;
4339             sColname.n = sqlite3Strlen30(zColname);
4340             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4341             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4342               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4343               if( pSub ){
4344                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4345                 testcase( pX->zSpan==0 );
4346               }else{
4347                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4348                                            zSchemaName, zTabName, zColname);
4349                 testcase( pX->zSpan==0 );
4350               }
4351               pX->bSpanIsTab = 1;
4352             }
4353             sqlite3DbFree(db, zToFree);
4354           }
4355         }
4356         if( !tableSeen ){
4357           if( zTName ){
4358             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4359           }else{
4360             sqlite3ErrorMsg(pParse, "no tables specified");
4361           }
4362         }
4363       }
4364     }
4365     sqlite3ExprListDelete(db, pEList);
4366     p->pEList = pNew;
4367   }
4368 #if SQLITE_MAX_COLUMN
4369   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4370     sqlite3ErrorMsg(pParse, "too many columns in result set");
4371   }
4372 #endif
4373   return WRC_Continue;
4374 }
4375 
4376 /*
4377 ** No-op routine for the parse-tree walker.
4378 **
4379 ** When this routine is the Walker.xExprCallback then expression trees
4380 ** are walked without any actions being taken at each node.  Presumably,
4381 ** when this routine is used for Walker.xExprCallback then
4382 ** Walker.xSelectCallback is set to do something useful for every
4383 ** subquery in the parser tree.
4384 */
4385 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4386   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4387   return WRC_Continue;
4388 }
4389 
4390 /*
4391 ** This routine "expands" a SELECT statement and all of its subqueries.
4392 ** For additional information on what it means to "expand" a SELECT
4393 ** statement, see the comment on the selectExpand worker callback above.
4394 **
4395 ** Expanding a SELECT statement is the first step in processing a
4396 ** SELECT statement.  The SELECT statement must be expanded before
4397 ** name resolution is performed.
4398 **
4399 ** If anything goes wrong, an error message is written into pParse.
4400 ** The calling function can detect the problem by looking at pParse->nErr
4401 ** and/or pParse->db->mallocFailed.
4402 */
4403 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4404   Walker w;
4405   memset(&w, 0, sizeof(w));
4406   w.xExprCallback = exprWalkNoop;
4407   w.pParse = pParse;
4408   if( pParse->hasCompound ){
4409     w.xSelectCallback = convertCompoundSelectToSubquery;
4410     sqlite3WalkSelect(&w, pSelect);
4411   }
4412   w.xSelectCallback = selectExpander;
4413   if( (pSelect->selFlags & SF_AllValues)==0 ){
4414     w.xSelectCallback2 = selectPopWith;
4415   }
4416   sqlite3WalkSelect(&w, pSelect);
4417 }
4418 
4419 
4420 #ifndef SQLITE_OMIT_SUBQUERY
4421 /*
4422 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4423 ** interface.
4424 **
4425 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4426 ** information to the Table structure that represents the result set
4427 ** of that subquery.
4428 **
4429 ** The Table structure that represents the result set was constructed
4430 ** by selectExpander() but the type and collation information was omitted
4431 ** at that point because identifiers had not yet been resolved.  This
4432 ** routine is called after identifier resolution.
4433 */
4434 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4435   Parse *pParse;
4436   int i;
4437   SrcList *pTabList;
4438   struct SrcList_item *pFrom;
4439 
4440   assert( p->selFlags & SF_Resolved );
4441   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4442     p->selFlags |= SF_HasTypeInfo;
4443     pParse = pWalker->pParse;
4444     pTabList = p->pSrc;
4445     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4446       Table *pTab = pFrom->pTab;
4447       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4448         /* A sub-query in the FROM clause of a SELECT */
4449         Select *pSel = pFrom->pSelect;
4450         if( pSel ){
4451           while( pSel->pPrior ) pSel = pSel->pPrior;
4452           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4453         }
4454       }
4455     }
4456   }
4457 }
4458 #endif
4459 
4460 
4461 /*
4462 ** This routine adds datatype and collating sequence information to
4463 ** the Table structures of all FROM-clause subqueries in a
4464 ** SELECT statement.
4465 **
4466 ** Use this routine after name resolution.
4467 */
4468 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4469 #ifndef SQLITE_OMIT_SUBQUERY
4470   Walker w;
4471   memset(&w, 0, sizeof(w));
4472   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4473   w.xExprCallback = exprWalkNoop;
4474   w.pParse = pParse;
4475   sqlite3WalkSelect(&w, pSelect);
4476 #endif
4477 }
4478 
4479 
4480 /*
4481 ** This routine sets up a SELECT statement for processing.  The
4482 ** following is accomplished:
4483 **
4484 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4485 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4486 **     *  ON and USING clauses are shifted into WHERE statements
4487 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4488 **     *  Identifiers in expression are matched to tables.
4489 **
4490 ** This routine acts recursively on all subqueries within the SELECT.
4491 */
4492 void sqlite3SelectPrep(
4493   Parse *pParse,         /* The parser context */
4494   Select *p,             /* The SELECT statement being coded. */
4495   NameContext *pOuterNC  /* Name context for container */
4496 ){
4497   sqlite3 *db;
4498   if( NEVER(p==0) ) return;
4499   db = pParse->db;
4500   if( db->mallocFailed ) return;
4501   if( p->selFlags & SF_HasTypeInfo ) return;
4502   sqlite3SelectExpand(pParse, p);
4503   if( pParse->nErr || db->mallocFailed ) return;
4504   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4505   if( pParse->nErr || db->mallocFailed ) return;
4506   sqlite3SelectAddTypeInfo(pParse, p);
4507 }
4508 
4509 /*
4510 ** Reset the aggregate accumulator.
4511 **
4512 ** The aggregate accumulator is a set of memory cells that hold
4513 ** intermediate results while calculating an aggregate.  This
4514 ** routine generates code that stores NULLs in all of those memory
4515 ** cells.
4516 */
4517 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4518   Vdbe *v = pParse->pVdbe;
4519   int i;
4520   struct AggInfo_func *pFunc;
4521   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4522   if( nReg==0 ) return;
4523 #ifdef SQLITE_DEBUG
4524   /* Verify that all AggInfo registers are within the range specified by
4525   ** AggInfo.mnReg..AggInfo.mxReg */
4526   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4527   for(i=0; i<pAggInfo->nColumn; i++){
4528     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4529          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4530   }
4531   for(i=0; i<pAggInfo->nFunc; i++){
4532     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4533          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4534   }
4535 #endif
4536   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4537   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4538     if( pFunc->iDistinct>=0 ){
4539       Expr *pE = pFunc->pExpr;
4540       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4541       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4542         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4543            "argument");
4544         pFunc->iDistinct = -1;
4545       }else{
4546         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4547         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4548                           (char*)pKeyInfo, P4_KEYINFO);
4549       }
4550     }
4551   }
4552 }
4553 
4554 /*
4555 ** Invoke the OP_AggFinalize opcode for every aggregate function
4556 ** in the AggInfo structure.
4557 */
4558 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4559   Vdbe *v = pParse->pVdbe;
4560   int i;
4561   struct AggInfo_func *pF;
4562   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4563     ExprList *pList = pF->pExpr->x.pList;
4564     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4565     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4566                       (void*)pF->pFunc, P4_FUNCDEF);
4567   }
4568 }
4569 
4570 /*
4571 ** Update the accumulator memory cells for an aggregate based on
4572 ** the current cursor position.
4573 */
4574 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4575   Vdbe *v = pParse->pVdbe;
4576   int i;
4577   int regHit = 0;
4578   int addrHitTest = 0;
4579   struct AggInfo_func *pF;
4580   struct AggInfo_col *pC;
4581 
4582   pAggInfo->directMode = 1;
4583   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4584     int nArg;
4585     int addrNext = 0;
4586     int regAgg;
4587     ExprList *pList = pF->pExpr->x.pList;
4588     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4589     if( pList ){
4590       nArg = pList->nExpr;
4591       regAgg = sqlite3GetTempRange(pParse, nArg);
4592       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4593     }else{
4594       nArg = 0;
4595       regAgg = 0;
4596     }
4597     if( pF->iDistinct>=0 ){
4598       addrNext = sqlite3VdbeMakeLabel(v);
4599       assert( nArg==1 );
4600       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4601     }
4602     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4603       CollSeq *pColl = 0;
4604       struct ExprList_item *pItem;
4605       int j;
4606       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4607       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4608         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4609       }
4610       if( !pColl ){
4611         pColl = pParse->db->pDfltColl;
4612       }
4613       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4614       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4615     }
4616     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4617                       (void*)pF->pFunc, P4_FUNCDEF);
4618     sqlite3VdbeChangeP5(v, (u8)nArg);
4619     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4620     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4621     if( addrNext ){
4622       sqlite3VdbeResolveLabel(v, addrNext);
4623       sqlite3ExprCacheClear(pParse);
4624     }
4625   }
4626 
4627   /* Before populating the accumulator registers, clear the column cache.
4628   ** Otherwise, if any of the required column values are already present
4629   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4630   ** to pC->iMem. But by the time the value is used, the original register
4631   ** may have been used, invalidating the underlying buffer holding the
4632   ** text or blob value. See ticket [883034dcb5].
4633   **
4634   ** Another solution would be to change the OP_SCopy used to copy cached
4635   ** values to an OP_Copy.
4636   */
4637   if( regHit ){
4638     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4639   }
4640   sqlite3ExprCacheClear(pParse);
4641   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4642     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4643   }
4644   pAggInfo->directMode = 0;
4645   sqlite3ExprCacheClear(pParse);
4646   if( addrHitTest ){
4647     sqlite3VdbeJumpHere(v, addrHitTest);
4648   }
4649 }
4650 
4651 /*
4652 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4653 ** count(*) query ("SELECT count(*) FROM pTab").
4654 */
4655 #ifndef SQLITE_OMIT_EXPLAIN
4656 static void explainSimpleCount(
4657   Parse *pParse,                  /* Parse context */
4658   Table *pTab,                    /* Table being queried */
4659   Index *pIdx                     /* Index used to optimize scan, or NULL */
4660 ){
4661   if( pParse->explain==2 ){
4662     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4663     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4664         pTab->zName,
4665         bCover ? " USING COVERING INDEX " : "",
4666         bCover ? pIdx->zName : ""
4667     );
4668     sqlite3VdbeAddOp4(
4669         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4670     );
4671   }
4672 }
4673 #else
4674 # define explainSimpleCount(a,b,c)
4675 #endif
4676 
4677 /*
4678 ** Generate code for the SELECT statement given in the p argument.
4679 **
4680 ** The results are returned according to the SelectDest structure.
4681 ** See comments in sqliteInt.h for further information.
4682 **
4683 ** This routine returns the number of errors.  If any errors are
4684 ** encountered, then an appropriate error message is left in
4685 ** pParse->zErrMsg.
4686 **
4687 ** This routine does NOT free the Select structure passed in.  The
4688 ** calling function needs to do that.
4689 */
4690 int sqlite3Select(
4691   Parse *pParse,         /* The parser context */
4692   Select *p,             /* The SELECT statement being coded. */
4693   SelectDest *pDest      /* What to do with the query results */
4694 ){
4695   int i, j;              /* Loop counters */
4696   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4697   Vdbe *v;               /* The virtual machine under construction */
4698   int isAgg;             /* True for select lists like "count(*)" */
4699   ExprList *pEList;      /* List of columns to extract. */
4700   SrcList *pTabList;     /* List of tables to select from */
4701   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4702   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4703   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4704   int rc = 1;            /* Value to return from this function */
4705   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4706   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4707   AggInfo sAggInfo;      /* Information used by aggregate queries */
4708   int iEnd;              /* Address of the end of the query */
4709   sqlite3 *db;           /* The database connection */
4710 
4711 #ifndef SQLITE_OMIT_EXPLAIN
4712   int iRestoreSelectId = pParse->iSelectId;
4713   pParse->iSelectId = pParse->iNextSelectId++;
4714 #endif
4715 
4716   db = pParse->db;
4717   if( p==0 || db->mallocFailed || pParse->nErr ){
4718     return 1;
4719   }
4720   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4721   memset(&sAggInfo, 0, sizeof(sAggInfo));
4722 #if SELECTTRACE_ENABLED
4723   pParse->nSelectIndent++;
4724   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4725   if( sqlite3SelectTrace & 0x100 ){
4726     sqlite3TreeViewSelect(0, p, 0);
4727   }
4728 #endif
4729 
4730   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4731   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4732   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4733   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4734   if( IgnorableOrderby(pDest) ){
4735     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4736            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4737            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4738            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4739     /* If ORDER BY makes no difference in the output then neither does
4740     ** DISTINCT so it can be removed too. */
4741     sqlite3ExprListDelete(db, p->pOrderBy);
4742     p->pOrderBy = 0;
4743     p->selFlags &= ~SF_Distinct;
4744   }
4745   sqlite3SelectPrep(pParse, p, 0);
4746   memset(&sSort, 0, sizeof(sSort));
4747   sSort.pOrderBy = p->pOrderBy;
4748   pTabList = p->pSrc;
4749   pEList = p->pEList;
4750   if( pParse->nErr || db->mallocFailed ){
4751     goto select_end;
4752   }
4753   isAgg = (p->selFlags & SF_Aggregate)!=0;
4754   assert( pEList!=0 );
4755 
4756   /* Begin generating code.
4757   */
4758   v = sqlite3GetVdbe(pParse);
4759   if( v==0 ) goto select_end;
4760 
4761   /* If writing to memory or generating a set
4762   ** only a single column may be output.
4763   */
4764 #ifndef SQLITE_OMIT_SUBQUERY
4765   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4766     goto select_end;
4767   }
4768 #endif
4769 
4770   /* Generate code for all sub-queries in the FROM clause
4771   */
4772 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4773   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4774     struct SrcList_item *pItem = &pTabList->a[i];
4775     SelectDest dest;
4776     Select *pSub = pItem->pSelect;
4777     int isAggSub;
4778 
4779     if( pSub==0 ) continue;
4780 
4781     /* Sometimes the code for a subquery will be generated more than
4782     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4783     ** for example.  In that case, do not regenerate the code to manifest
4784     ** a view or the co-routine to implement a view.  The first instance
4785     ** is sufficient, though the subroutine to manifest the view does need
4786     ** to be invoked again. */
4787     if( pItem->addrFillSub ){
4788       if( pItem->viaCoroutine==0 ){
4789         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4790       }
4791       continue;
4792     }
4793 
4794     /* Increment Parse.nHeight by the height of the largest expression
4795     ** tree referred to by this, the parent select. The child select
4796     ** may contain expression trees of at most
4797     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4798     ** more conservative than necessary, but much easier than enforcing
4799     ** an exact limit.
4800     */
4801     pParse->nHeight += sqlite3SelectExprHeight(p);
4802 
4803     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4804     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4805       /* This subquery can be absorbed into its parent. */
4806       if( isAggSub ){
4807         isAgg = 1;
4808         p->selFlags |= SF_Aggregate;
4809       }
4810       i = -1;
4811     }else if( pTabList->nSrc==1
4812            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4813     ){
4814       /* Implement a co-routine that will return a single row of the result
4815       ** set on each invocation.
4816       */
4817       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4818       pItem->regReturn = ++pParse->nMem;
4819       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4820       VdbeComment((v, "%s", pItem->pTab->zName));
4821       pItem->addrFillSub = addrTop;
4822       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4823       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4824       sqlite3Select(pParse, pSub, &dest);
4825       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4826       pItem->viaCoroutine = 1;
4827       pItem->regResult = dest.iSdst;
4828       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4829       sqlite3VdbeJumpHere(v, addrTop-1);
4830       sqlite3ClearTempRegCache(pParse);
4831     }else{
4832       /* Generate a subroutine that will fill an ephemeral table with
4833       ** the content of this subquery.  pItem->addrFillSub will point
4834       ** to the address of the generated subroutine.  pItem->regReturn
4835       ** is a register allocated to hold the subroutine return address
4836       */
4837       int topAddr;
4838       int onceAddr = 0;
4839       int retAddr;
4840       assert( pItem->addrFillSub==0 );
4841       pItem->regReturn = ++pParse->nMem;
4842       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4843       pItem->addrFillSub = topAddr+1;
4844       if( pItem->isCorrelated==0 ){
4845         /* If the subquery is not correlated and if we are not inside of
4846         ** a trigger, then we only need to compute the value of the subquery
4847         ** once. */
4848         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4849         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4850       }else{
4851         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4852       }
4853       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4854       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4855       sqlite3Select(pParse, pSub, &dest);
4856       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4857       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4858       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4859       VdbeComment((v, "end %s", pItem->pTab->zName));
4860       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4861       sqlite3ClearTempRegCache(pParse);
4862     }
4863     if( /*pParse->nErr ||*/ db->mallocFailed ){
4864       goto select_end;
4865     }
4866     pParse->nHeight -= sqlite3SelectExprHeight(p);
4867     pTabList = p->pSrc;
4868     if( !IgnorableOrderby(pDest) ){
4869       sSort.pOrderBy = p->pOrderBy;
4870     }
4871   }
4872   pEList = p->pEList;
4873 #endif
4874   pWhere = p->pWhere;
4875   pGroupBy = p->pGroupBy;
4876   pHaving = p->pHaving;
4877   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4878 
4879 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4880   /* If there is are a sequence of queries, do the earlier ones first.
4881   */
4882   if( p->pPrior ){
4883     rc = multiSelect(pParse, p, pDest);
4884     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4885 #if SELECTTRACE_ENABLED
4886     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4887     pParse->nSelectIndent--;
4888 #endif
4889     return rc;
4890   }
4891 #endif
4892 
4893   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4894   ** if the select-list is the same as the ORDER BY list, then this query
4895   ** can be rewritten as a GROUP BY. In other words, this:
4896   **
4897   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4898   **
4899   ** is transformed to:
4900   **
4901   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
4902   **
4903   ** The second form is preferred as a single index (or temp-table) may be
4904   ** used for both the ORDER BY and DISTINCT processing. As originally
4905   ** written the query must use a temp-table for at least one of the ORDER
4906   ** BY and DISTINCT, and an index or separate temp-table for the other.
4907   */
4908   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4909    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4910   ){
4911     p->selFlags &= ~SF_Distinct;
4912     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4913     pGroupBy = p->pGroupBy;
4914     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4915     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4916     ** original setting of the SF_Distinct flag, not the current setting */
4917     assert( sDistinct.isTnct );
4918   }
4919 
4920   /* If there is an ORDER BY clause, then this sorting
4921   ** index might end up being unused if the data can be
4922   ** extracted in pre-sorted order.  If that is the case, then the
4923   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4924   ** we figure out that the sorting index is not needed.  The addrSortIndex
4925   ** variable is used to facilitate that change.
4926   */
4927   if( sSort.pOrderBy ){
4928     KeyInfo *pKeyInfo;
4929     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
4930     sSort.iECursor = pParse->nTab++;
4931     sSort.addrSortIndex =
4932       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4933           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
4934           (char*)pKeyInfo, P4_KEYINFO
4935       );
4936   }else{
4937     sSort.addrSortIndex = -1;
4938   }
4939 
4940   /* If the output is destined for a temporary table, open that table.
4941   */
4942   if( pDest->eDest==SRT_EphemTab ){
4943     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4944   }
4945 
4946   /* Set the limiter.
4947   */
4948   iEnd = sqlite3VdbeMakeLabel(v);
4949   p->nSelectRow = LARGEST_INT64;
4950   computeLimitRegisters(pParse, p, iEnd);
4951   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4952     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4953     sSort.sortFlags |= SORTFLAG_UseSorter;
4954   }
4955 
4956   /* Open a virtual index to use for the distinct set.
4957   */
4958   if( p->selFlags & SF_Distinct ){
4959     sDistinct.tabTnct = pParse->nTab++;
4960     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4961                                 sDistinct.tabTnct, 0, 0,
4962                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4963                                 P4_KEYINFO);
4964     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4965     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4966   }else{
4967     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4968   }
4969 
4970   if( !isAgg && pGroupBy==0 ){
4971     /* No aggregate functions and no GROUP BY clause */
4972     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4973 
4974     /* Begin the database scan. */
4975     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4976                                p->pEList, wctrlFlags, 0);
4977     if( pWInfo==0 ) goto select_end;
4978     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4979       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4980     }
4981     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4982       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4983     }
4984     if( sSort.pOrderBy ){
4985       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4986       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4987         sSort.pOrderBy = 0;
4988       }
4989     }
4990 
4991     /* If sorting index that was created by a prior OP_OpenEphemeral
4992     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4993     ** into an OP_Noop.
4994     */
4995     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
4996       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4997     }
4998 
4999     /* Use the standard inner loop. */
5000     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5001                     sqlite3WhereContinueLabel(pWInfo),
5002                     sqlite3WhereBreakLabel(pWInfo));
5003 
5004     /* End the database scan loop.
5005     */
5006     sqlite3WhereEnd(pWInfo);
5007   }else{
5008     /* This case when there exist aggregate functions or a GROUP BY clause
5009     ** or both */
5010     NameContext sNC;    /* Name context for processing aggregate information */
5011     int iAMem;          /* First Mem address for storing current GROUP BY */
5012     int iBMem;          /* First Mem address for previous GROUP BY */
5013     int iUseFlag;       /* Mem address holding flag indicating that at least
5014                         ** one row of the input to the aggregator has been
5015                         ** processed */
5016     int iAbortFlag;     /* Mem address which causes query abort if positive */
5017     int groupBySort;    /* Rows come from source in GROUP BY order */
5018     int addrEnd;        /* End of processing for this SELECT */
5019     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5020     int sortOut = 0;    /* Output register from the sorter */
5021     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5022 
5023     /* Remove any and all aliases between the result set and the
5024     ** GROUP BY clause.
5025     */
5026     if( pGroupBy ){
5027       int k;                        /* Loop counter */
5028       struct ExprList_item *pItem;  /* For looping over expression in a list */
5029 
5030       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5031         pItem->u.x.iAlias = 0;
5032       }
5033       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5034         pItem->u.x.iAlias = 0;
5035       }
5036       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5037     }else{
5038       p->nSelectRow = 1;
5039     }
5040 
5041 
5042     /* If there is both a GROUP BY and an ORDER BY clause and they are
5043     ** identical, then it may be possible to disable the ORDER BY clause
5044     ** on the grounds that the GROUP BY will cause elements to come out
5045     ** in the correct order. It also may not - the GROUP BY may use a
5046     ** database index that causes rows to be grouped together as required
5047     ** but not actually sorted. Either way, record the fact that the
5048     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5049     ** variable.  */
5050     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5051       orderByGrp = 1;
5052     }
5053 
5054     /* Create a label to jump to when we want to abort the query */
5055     addrEnd = sqlite3VdbeMakeLabel(v);
5056 
5057     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5058     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5059     ** SELECT statement.
5060     */
5061     memset(&sNC, 0, sizeof(sNC));
5062     sNC.pParse = pParse;
5063     sNC.pSrcList = pTabList;
5064     sNC.pAggInfo = &sAggInfo;
5065     sAggInfo.mnReg = pParse->nMem+1;
5066     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5067     sAggInfo.pGroupBy = pGroupBy;
5068     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5069     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5070     if( pHaving ){
5071       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5072     }
5073     sAggInfo.nAccumulator = sAggInfo.nColumn;
5074     for(i=0; i<sAggInfo.nFunc; i++){
5075       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5076       sNC.ncFlags |= NC_InAggFunc;
5077       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5078       sNC.ncFlags &= ~NC_InAggFunc;
5079     }
5080     sAggInfo.mxReg = pParse->nMem;
5081     if( db->mallocFailed ) goto select_end;
5082 
5083     /* Processing for aggregates with GROUP BY is very different and
5084     ** much more complex than aggregates without a GROUP BY.
5085     */
5086     if( pGroupBy ){
5087       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5088       int j1;             /* A-vs-B comparision jump */
5089       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5090       int regOutputRow;   /* Return address register for output subroutine */
5091       int addrSetAbort;   /* Set the abort flag and return */
5092       int addrTopOfLoop;  /* Top of the input loop */
5093       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5094       int addrReset;      /* Subroutine for resetting the accumulator */
5095       int regReset;       /* Return address register for reset subroutine */
5096 
5097       /* If there is a GROUP BY clause we might need a sorting index to
5098       ** implement it.  Allocate that sorting index now.  If it turns out
5099       ** that we do not need it after all, the OP_SorterOpen instruction
5100       ** will be converted into a Noop.
5101       */
5102       sAggInfo.sortingIdx = pParse->nTab++;
5103       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5104       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5105           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5106           0, (char*)pKeyInfo, P4_KEYINFO);
5107 
5108       /* Initialize memory locations used by GROUP BY aggregate processing
5109       */
5110       iUseFlag = ++pParse->nMem;
5111       iAbortFlag = ++pParse->nMem;
5112       regOutputRow = ++pParse->nMem;
5113       addrOutputRow = sqlite3VdbeMakeLabel(v);
5114       regReset = ++pParse->nMem;
5115       addrReset = sqlite3VdbeMakeLabel(v);
5116       iAMem = pParse->nMem + 1;
5117       pParse->nMem += pGroupBy->nExpr;
5118       iBMem = pParse->nMem + 1;
5119       pParse->nMem += pGroupBy->nExpr;
5120       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5121       VdbeComment((v, "clear abort flag"));
5122       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5123       VdbeComment((v, "indicate accumulator empty"));
5124       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5125 
5126       /* Begin a loop that will extract all source rows in GROUP BY order.
5127       ** This might involve two separate loops with an OP_Sort in between, or
5128       ** it might be a single loop that uses an index to extract information
5129       ** in the right order to begin with.
5130       */
5131       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5132       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5133           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5134       );
5135       if( pWInfo==0 ) goto select_end;
5136       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5137         /* The optimizer is able to deliver rows in group by order so
5138         ** we do not have to sort.  The OP_OpenEphemeral table will be
5139         ** cancelled later because we still need to use the pKeyInfo
5140         */
5141         groupBySort = 0;
5142       }else{
5143         /* Rows are coming out in undetermined order.  We have to push
5144         ** each row into a sorting index, terminate the first loop,
5145         ** then loop over the sorting index in order to get the output
5146         ** in sorted order
5147         */
5148         int regBase;
5149         int regRecord;
5150         int nCol;
5151         int nGroupBy;
5152 
5153         explainTempTable(pParse,
5154             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5155                     "DISTINCT" : "GROUP BY");
5156 
5157         groupBySort = 1;
5158         nGroupBy = pGroupBy->nExpr;
5159         nCol = nGroupBy;
5160         j = nGroupBy;
5161         for(i=0; i<sAggInfo.nColumn; i++){
5162           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5163             nCol++;
5164             j++;
5165           }
5166         }
5167         regBase = sqlite3GetTempRange(pParse, nCol);
5168         sqlite3ExprCacheClear(pParse);
5169         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5170         j = nGroupBy;
5171         for(i=0; i<sAggInfo.nColumn; i++){
5172           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5173           if( pCol->iSorterColumn>=j ){
5174             int r1 = j + regBase;
5175             int r2;
5176 
5177             r2 = sqlite3ExprCodeGetColumn(pParse,
5178                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5179             if( r1!=r2 ){
5180               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5181             }
5182             j++;
5183           }
5184         }
5185         regRecord = sqlite3GetTempReg(pParse);
5186         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5187         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5188         sqlite3ReleaseTempReg(pParse, regRecord);
5189         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5190         sqlite3WhereEnd(pWInfo);
5191         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5192         sortOut = sqlite3GetTempReg(pParse);
5193         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5194         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5195         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5196         sAggInfo.useSortingIdx = 1;
5197         sqlite3ExprCacheClear(pParse);
5198 
5199       }
5200 
5201       /* If the index or temporary table used by the GROUP BY sort
5202       ** will naturally deliver rows in the order required by the ORDER BY
5203       ** clause, cancel the ephemeral table open coded earlier.
5204       **
5205       ** This is an optimization - the correct answer should result regardless.
5206       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5207       ** disable this optimization for testing purposes.  */
5208       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5209        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5210       ){
5211         sSort.pOrderBy = 0;
5212         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5213       }
5214 
5215       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5216       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5217       ** Then compare the current GROUP BY terms against the GROUP BY terms
5218       ** from the previous row currently stored in a0, a1, a2...
5219       */
5220       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5221       sqlite3ExprCacheClear(pParse);
5222       if( groupBySort ){
5223         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab);
5224       }
5225       for(j=0; j<pGroupBy->nExpr; j++){
5226         if( groupBySort ){
5227           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5228         }else{
5229           sAggInfo.directMode = 1;
5230           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5231         }
5232       }
5233       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5234                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5235       j1 = sqlite3VdbeCurrentAddr(v);
5236       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5237 
5238       /* Generate code that runs whenever the GROUP BY changes.
5239       ** Changes in the GROUP BY are detected by the previous code
5240       ** block.  If there were no changes, this block is skipped.
5241       **
5242       ** This code copies current group by terms in b0,b1,b2,...
5243       ** over to a0,a1,a2.  It then calls the output subroutine
5244       ** and resets the aggregate accumulator registers in preparation
5245       ** for the next GROUP BY batch.
5246       */
5247       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5248       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5249       VdbeComment((v, "output one row"));
5250       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5251       VdbeComment((v, "check abort flag"));
5252       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5253       VdbeComment((v, "reset accumulator"));
5254 
5255       /* Update the aggregate accumulators based on the content of
5256       ** the current row
5257       */
5258       sqlite3VdbeJumpHere(v, j1);
5259       updateAccumulator(pParse, &sAggInfo);
5260       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5261       VdbeComment((v, "indicate data in accumulator"));
5262 
5263       /* End of the loop
5264       */
5265       if( groupBySort ){
5266         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5267         VdbeCoverage(v);
5268       }else{
5269         sqlite3WhereEnd(pWInfo);
5270         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5271       }
5272 
5273       /* Output the final row of result
5274       */
5275       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5276       VdbeComment((v, "output final row"));
5277 
5278       /* Jump over the subroutines
5279       */
5280       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5281 
5282       /* Generate a subroutine that outputs a single row of the result
5283       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5284       ** is less than or equal to zero, the subroutine is a no-op.  If
5285       ** the processing calls for the query to abort, this subroutine
5286       ** increments the iAbortFlag memory location before returning in
5287       ** order to signal the caller to abort.
5288       */
5289       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5290       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5291       VdbeComment((v, "set abort flag"));
5292       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5293       sqlite3VdbeResolveLabel(v, addrOutputRow);
5294       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5295       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5296       VdbeComment((v, "Groupby result generator entry point"));
5297       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5298       finalizeAggFunctions(pParse, &sAggInfo);
5299       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5300       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5301                       &sDistinct, pDest,
5302                       addrOutputRow+1, addrSetAbort);
5303       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5304       VdbeComment((v, "end groupby result generator"));
5305 
5306       /* Generate a subroutine that will reset the group-by accumulator
5307       */
5308       sqlite3VdbeResolveLabel(v, addrReset);
5309       resetAccumulator(pParse, &sAggInfo);
5310       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5311 
5312     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5313     else {
5314       ExprList *pDel = 0;
5315 #ifndef SQLITE_OMIT_BTREECOUNT
5316       Table *pTab;
5317       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5318         /* If isSimpleCount() returns a pointer to a Table structure, then
5319         ** the SQL statement is of the form:
5320         **
5321         **   SELECT count(*) FROM <tbl>
5322         **
5323         ** where the Table structure returned represents table <tbl>.
5324         **
5325         ** This statement is so common that it is optimized specially. The
5326         ** OP_Count instruction is executed either on the intkey table that
5327         ** contains the data for table <tbl> or on one of its indexes. It
5328         ** is better to execute the op on an index, as indexes are almost
5329         ** always spread across less pages than their corresponding tables.
5330         */
5331         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5332         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5333         Index *pIdx;                         /* Iterator variable */
5334         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5335         Index *pBest = 0;                    /* Best index found so far */
5336         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5337 
5338         sqlite3CodeVerifySchema(pParse, iDb);
5339         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5340 
5341         /* Search for the index that has the lowest scan cost.
5342         **
5343         ** (2011-04-15) Do not do a full scan of an unordered index.
5344         **
5345         ** (2013-10-03) Do not count the entries in a partial index.
5346         **
5347         ** In practice the KeyInfo structure will not be used. It is only
5348         ** passed to keep OP_OpenRead happy.
5349         */
5350         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5351         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5352           if( pIdx->bUnordered==0
5353            && pIdx->szIdxRow<pTab->szTabRow
5354            && pIdx->pPartIdxWhere==0
5355            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5356           ){
5357             pBest = pIdx;
5358           }
5359         }
5360         if( pBest ){
5361           iRoot = pBest->tnum;
5362           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5363         }
5364 
5365         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5366         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5367         if( pKeyInfo ){
5368           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5369         }
5370         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5371         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5372         explainSimpleCount(pParse, pTab, pBest);
5373       }else
5374 #endif /* SQLITE_OMIT_BTREECOUNT */
5375       {
5376         /* Check if the query is of one of the following forms:
5377         **
5378         **   SELECT min(x) FROM ...
5379         **   SELECT max(x) FROM ...
5380         **
5381         ** If it is, then ask the code in where.c to attempt to sort results
5382         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5383         ** If where.c is able to produce results sorted in this order, then
5384         ** add vdbe code to break out of the processing loop after the
5385         ** first iteration (since the first iteration of the loop is
5386         ** guaranteed to operate on the row with the minimum or maximum
5387         ** value of x, the only row required).
5388         **
5389         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5390         ** modify behavior as follows:
5391         **
5392         **   + If the query is a "SELECT min(x)", then the loop coded by
5393         **     where.c should not iterate over any values with a NULL value
5394         **     for x.
5395         **
5396         **   + The optimizer code in where.c (the thing that decides which
5397         **     index or indices to use) should place a different priority on
5398         **     satisfying the 'ORDER BY' clause than it does in other cases.
5399         **     Refer to code and comments in where.c for details.
5400         */
5401         ExprList *pMinMax = 0;
5402         u8 flag = WHERE_ORDERBY_NORMAL;
5403 
5404         assert( p->pGroupBy==0 );
5405         assert( flag==0 );
5406         if( p->pHaving==0 ){
5407           flag = minMaxQuery(&sAggInfo, &pMinMax);
5408         }
5409         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5410 
5411         if( flag ){
5412           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5413           pDel = pMinMax;
5414           if( pMinMax && !db->mallocFailed ){
5415             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5416             pMinMax->a[0].pExpr->op = TK_COLUMN;
5417           }
5418         }
5419 
5420         /* This case runs if the aggregate has no GROUP BY clause.  The
5421         ** processing is much simpler since there is only a single row
5422         ** of output.
5423         */
5424         resetAccumulator(pParse, &sAggInfo);
5425         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5426         if( pWInfo==0 ){
5427           sqlite3ExprListDelete(db, pDel);
5428           goto select_end;
5429         }
5430         updateAccumulator(pParse, &sAggInfo);
5431         assert( pMinMax==0 || pMinMax->nExpr==1 );
5432         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5433           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5434           VdbeComment((v, "%s() by index",
5435                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5436         }
5437         sqlite3WhereEnd(pWInfo);
5438         finalizeAggFunctions(pParse, &sAggInfo);
5439       }
5440 
5441       sSort.pOrderBy = 0;
5442       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5443       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5444                       pDest, addrEnd, addrEnd);
5445       sqlite3ExprListDelete(db, pDel);
5446     }
5447     sqlite3VdbeResolveLabel(v, addrEnd);
5448 
5449   } /* endif aggregate query */
5450 
5451   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5452     explainTempTable(pParse, "DISTINCT");
5453   }
5454 
5455   /* If there is an ORDER BY clause, then we need to sort the results
5456   ** and send them to the callback one by one.
5457   */
5458   if( sSort.pOrderBy ){
5459     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5460     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5461   }
5462 
5463   /* Jump here to skip this query
5464   */
5465   sqlite3VdbeResolveLabel(v, iEnd);
5466 
5467   /* The SELECT was successfully coded.   Set the return code to 0
5468   ** to indicate no errors.
5469   */
5470   rc = 0;
5471 
5472   /* Control jumps to here if an error is encountered above, or upon
5473   ** successful coding of the SELECT.
5474   */
5475 select_end:
5476   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5477 
5478   /* Identify column names if results of the SELECT are to be output.
5479   */
5480   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5481     generateColumnNames(pParse, pTabList, pEList);
5482   }
5483 
5484   sqlite3DbFree(db, sAggInfo.aCol);
5485   sqlite3DbFree(db, sAggInfo.aFunc);
5486 #if SELECTTRACE_ENABLED
5487   SELECTTRACE(1,pParse,p,("end processing\n"));
5488   pParse->nSelectIndent--;
5489 #endif
5490   return rc;
5491 }
5492 
5493 #ifdef SQLITE_DEBUG
5494 /*
5495 ** Generate a human-readable description of a the Select object.
5496 */
5497 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
5498   int n = 0;
5499   pView = sqlite3TreeViewPush(pView, moreToFollow);
5500   sqlite3TreeViewLine(pView, "SELECT%s%s",
5501     ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
5502     ((p->selFlags & SF_Aggregate) ? " agg_flag" : "")
5503   );
5504   if( p->pSrc && p->pSrc->nSrc ) n++;
5505   if( p->pWhere ) n++;
5506   if( p->pGroupBy ) n++;
5507   if( p->pHaving ) n++;
5508   if( p->pOrderBy ) n++;
5509   if( p->pLimit ) n++;
5510   if( p->pOffset ) n++;
5511   if( p->pPrior ) n++;
5512   sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
5513   if( p->pSrc && p->pSrc->nSrc ){
5514     int i;
5515     pView = sqlite3TreeViewPush(pView, (n--)>0);
5516     sqlite3TreeViewLine(pView, "FROM");
5517     for(i=0; i<p->pSrc->nSrc; i++){
5518       struct SrcList_item *pItem = &p->pSrc->a[i];
5519       StrAccum x;
5520       char zLine[100];
5521       sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0);
5522       sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
5523       if( pItem->zDatabase ){
5524         sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
5525       }else if( pItem->zName ){
5526         sqlite3XPrintf(&x, 0, " %s", pItem->zName);
5527       }
5528       if( pItem->pTab ){
5529         sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
5530       }
5531       if( pItem->zAlias ){
5532         sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
5533       }
5534       if( pItem->jointype & JT_LEFT ){
5535         sqlite3XPrintf(&x, 0, " LEFT-JOIN");
5536       }
5537       sqlite3StrAccumFinish(&x);
5538       sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1);
5539       if( pItem->pSelect ){
5540         sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
5541       }
5542       sqlite3TreeViewPop(pView);
5543     }
5544     sqlite3TreeViewPop(pView);
5545   }
5546   if( p->pWhere ){
5547     sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
5548     sqlite3TreeViewExpr(pView, p->pWhere, 0);
5549     sqlite3TreeViewPop(pView);
5550   }
5551   if( p->pGroupBy ){
5552     sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
5553   }
5554   if( p->pHaving ){
5555     sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
5556     sqlite3TreeViewExpr(pView, p->pHaving, 0);
5557     sqlite3TreeViewPop(pView);
5558   }
5559   if( p->pOrderBy ){
5560     sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
5561   }
5562   if( p->pLimit ){
5563     sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
5564     sqlite3TreeViewExpr(pView, p->pLimit, 0);
5565     sqlite3TreeViewPop(pView);
5566   }
5567   if( p->pOffset ){
5568     sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
5569     sqlite3TreeViewExpr(pView, p->pOffset, 0);
5570     sqlite3TreeViewPop(pView);
5571   }
5572   if( p->pPrior ){
5573     const char *zOp = "UNION";
5574     switch( p->op ){
5575       case TK_ALL:         zOp = "UNION ALL";  break;
5576       case TK_INTERSECT:   zOp = "INTERSECT";  break;
5577       case TK_EXCEPT:      zOp = "EXCEPT";     break;
5578     }
5579     sqlite3TreeViewItem(pView, zOp, (n--)>0);
5580     sqlite3TreeViewSelect(pView, p->pPrior, 0);
5581     sqlite3TreeViewPop(pView);
5582   }
5583   sqlite3TreeViewPop(pView);
5584 }
5585 #endif /* SQLITE_DEBUG */
5586