1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 57 }; 58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 59 60 /* 61 ** Delete all the content of a Select structure. Deallocate the structure 62 ** itself only if bFree is true. 63 */ 64 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 65 while( p ){ 66 Select *pPrior = p->pPrior; 67 sqlite3ExprListDelete(db, p->pEList); 68 sqlite3SrcListDelete(db, p->pSrc); 69 sqlite3ExprDelete(db, p->pWhere); 70 sqlite3ExprListDelete(db, p->pGroupBy); 71 sqlite3ExprDelete(db, p->pHaving); 72 sqlite3ExprListDelete(db, p->pOrderBy); 73 sqlite3ExprDelete(db, p->pLimit); 74 sqlite3ExprDelete(db, p->pOffset); 75 sqlite3WithDelete(db, p->pWith); 76 if( bFree ) sqlite3DbFree(db, p); 77 p = pPrior; 78 bFree = 1; 79 } 80 } 81 82 /* 83 ** Initialize a SelectDest structure. 84 */ 85 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 86 pDest->eDest = (u8)eDest; 87 pDest->iSDParm = iParm; 88 pDest->affSdst = 0; 89 pDest->iSdst = 0; 90 pDest->nSdst = 0; 91 } 92 93 94 /* 95 ** Allocate a new Select structure and return a pointer to that 96 ** structure. 97 */ 98 Select *sqlite3SelectNew( 99 Parse *pParse, /* Parsing context */ 100 ExprList *pEList, /* which columns to include in the result */ 101 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 102 Expr *pWhere, /* the WHERE clause */ 103 ExprList *pGroupBy, /* the GROUP BY clause */ 104 Expr *pHaving, /* the HAVING clause */ 105 ExprList *pOrderBy, /* the ORDER BY clause */ 106 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 107 Expr *pLimit, /* LIMIT value. NULL means not used */ 108 Expr *pOffset /* OFFSET value. NULL means no offset */ 109 ){ 110 Select *pNew; 111 Select standin; 112 sqlite3 *db = pParse->db; 113 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 114 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 setJoinExpr(p->pLeft, iTable); 370 p = p->pRight; 371 } 372 } 373 374 /* 375 ** This routine processes the join information for a SELECT statement. 376 ** ON and USING clauses are converted into extra terms of the WHERE clause. 377 ** NATURAL joins also create extra WHERE clause terms. 378 ** 379 ** The terms of a FROM clause are contained in the Select.pSrc structure. 380 ** The left most table is the first entry in Select.pSrc. The right-most 381 ** table is the last entry. The join operator is held in the entry to 382 ** the left. Thus entry 0 contains the join operator for the join between 383 ** entries 0 and 1. Any ON or USING clauses associated with the join are 384 ** also attached to the left entry. 385 ** 386 ** This routine returns the number of errors encountered. 387 */ 388 static int sqliteProcessJoin(Parse *pParse, Select *p){ 389 SrcList *pSrc; /* All tables in the FROM clause */ 390 int i, j; /* Loop counters */ 391 struct SrcList_item *pLeft; /* Left table being joined */ 392 struct SrcList_item *pRight; /* Right table being joined */ 393 394 pSrc = p->pSrc; 395 pLeft = &pSrc->a[0]; 396 pRight = &pLeft[1]; 397 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 398 Table *pLeftTab = pLeft->pTab; 399 Table *pRightTab = pRight->pTab; 400 int isOuter; 401 402 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 403 isOuter = (pRight->jointype & JT_OUTER)!=0; 404 405 /* When the NATURAL keyword is present, add WHERE clause terms for 406 ** every column that the two tables have in common. 407 */ 408 if( pRight->jointype & JT_NATURAL ){ 409 if( pRight->pOn || pRight->pUsing ){ 410 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 411 "an ON or USING clause", 0); 412 return 1; 413 } 414 for(j=0; j<pRightTab->nCol; j++){ 415 char *zName; /* Name of column in the right table */ 416 int iLeft; /* Matching left table */ 417 int iLeftCol; /* Matching column in the left table */ 418 419 zName = pRightTab->aCol[j].zName; 420 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 421 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 422 isOuter, &p->pWhere); 423 } 424 } 425 } 426 427 /* Disallow both ON and USING clauses in the same join 428 */ 429 if( pRight->pOn && pRight->pUsing ){ 430 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 431 "clauses in the same join"); 432 return 1; 433 } 434 435 /* Add the ON clause to the end of the WHERE clause, connected by 436 ** an AND operator. 437 */ 438 if( pRight->pOn ){ 439 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 440 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 441 pRight->pOn = 0; 442 } 443 444 /* Create extra terms on the WHERE clause for each column named 445 ** in the USING clause. Example: If the two tables to be joined are 446 ** A and B and the USING clause names X, Y, and Z, then add this 447 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 448 ** Report an error if any column mentioned in the USING clause is 449 ** not contained in both tables to be joined. 450 */ 451 if( pRight->pUsing ){ 452 IdList *pList = pRight->pUsing; 453 for(j=0; j<pList->nId; j++){ 454 char *zName; /* Name of the term in the USING clause */ 455 int iLeft; /* Table on the left with matching column name */ 456 int iLeftCol; /* Column number of matching column on the left */ 457 int iRightCol; /* Column number of matching column on the right */ 458 459 zName = pList->a[j].zName; 460 iRightCol = columnIndex(pRightTab, zName); 461 if( iRightCol<0 462 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 463 ){ 464 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 465 "not present in both tables", zName); 466 return 1; 467 } 468 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 469 isOuter, &p->pWhere); 470 } 471 } 472 } 473 return 0; 474 } 475 476 /* Forward reference */ 477 static KeyInfo *keyInfoFromExprList( 478 Parse *pParse, /* Parsing context */ 479 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 480 int iStart, /* Begin with this column of pList */ 481 int nExtra /* Add this many extra columns to the end */ 482 ); 483 484 /* 485 ** Generate code that will push the record in registers regData 486 ** through regData+nData-1 onto the sorter. 487 */ 488 static void pushOntoSorter( 489 Parse *pParse, /* Parser context */ 490 SortCtx *pSort, /* Information about the ORDER BY clause */ 491 Select *pSelect, /* The whole SELECT statement */ 492 int regData, /* First register holding data to be sorted */ 493 int nData, /* Number of elements in the data array */ 494 int nPrefixReg /* No. of reg prior to regData available for use */ 495 ){ 496 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 497 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 498 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 499 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 500 int regBase; /* Regs for sorter record */ 501 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 502 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 503 int op; /* Opcode to add sorter record to sorter */ 504 505 assert( bSeq==0 || bSeq==1 ); 506 if( nPrefixReg ){ 507 assert( nPrefixReg==nExpr+bSeq ); 508 regBase = regData - nExpr - bSeq; 509 }else{ 510 regBase = pParse->nMem + 1; 511 pParse->nMem += nBase; 512 } 513 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 514 if( bSeq ){ 515 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 516 } 517 if( nPrefixReg==0 ){ 518 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 519 } 520 521 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 522 if( nOBSat>0 ){ 523 int regPrevKey; /* The first nOBSat columns of the previous row */ 524 int addrFirst; /* Address of the OP_IfNot opcode */ 525 int addrJmp; /* Address of the OP_Jump opcode */ 526 VdbeOp *pOp; /* Opcode that opens the sorter */ 527 int nKey; /* Number of sorting key columns, including OP_Sequence */ 528 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 529 530 regPrevKey = pParse->nMem+1; 531 pParse->nMem += pSort->nOBSat; 532 nKey = nExpr - pSort->nOBSat + bSeq; 533 if( bSeq ){ 534 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 535 }else{ 536 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 537 } 538 VdbeCoverage(v); 539 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 540 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 541 if( pParse->db->mallocFailed ) return; 542 pOp->p2 = nKey + nData; 543 pKI = pOp->p4.pKeyInfo; 544 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 545 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 546 testcase( pKI->nXField>2 ); 547 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 548 pKI->nXField-1); 549 addrJmp = sqlite3VdbeCurrentAddr(v); 550 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 551 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 552 pSort->regReturn = ++pParse->nMem; 553 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 554 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 555 sqlite3VdbeJumpHere(v, addrFirst); 556 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 557 sqlite3VdbeJumpHere(v, addrJmp); 558 } 559 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 560 op = OP_SorterInsert; 561 }else{ 562 op = OP_IdxInsert; 563 } 564 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 565 if( pSelect->iLimit ){ 566 int addr1, addr2; 567 int iLimit; 568 if( pSelect->iOffset ){ 569 iLimit = pSelect->iOffset+1; 570 }else{ 571 iLimit = pSelect->iLimit; 572 } 573 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); 574 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 575 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 576 sqlite3VdbeJumpHere(v, addr1); 577 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 578 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 579 sqlite3VdbeJumpHere(v, addr2); 580 } 581 } 582 583 /* 584 ** Add code to implement the OFFSET 585 */ 586 static void codeOffset( 587 Vdbe *v, /* Generate code into this VM */ 588 int iOffset, /* Register holding the offset counter */ 589 int iContinue /* Jump here to skip the current record */ 590 ){ 591 if( iOffset>0 ){ 592 int addr; 593 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 594 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 595 VdbeComment((v, "skip OFFSET records")); 596 sqlite3VdbeJumpHere(v, addr); 597 } 598 } 599 600 /* 601 ** Add code that will check to make sure the N registers starting at iMem 602 ** form a distinct entry. iTab is a sorting index that holds previously 603 ** seen combinations of the N values. A new entry is made in iTab 604 ** if the current N values are new. 605 ** 606 ** A jump to addrRepeat is made and the N+1 values are popped from the 607 ** stack if the top N elements are not distinct. 608 */ 609 static void codeDistinct( 610 Parse *pParse, /* Parsing and code generating context */ 611 int iTab, /* A sorting index used to test for distinctness */ 612 int addrRepeat, /* Jump to here if not distinct */ 613 int N, /* Number of elements */ 614 int iMem /* First element */ 615 ){ 616 Vdbe *v; 617 int r1; 618 619 v = pParse->pVdbe; 620 r1 = sqlite3GetTempReg(pParse); 621 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 622 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 623 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 624 sqlite3ReleaseTempReg(pParse, r1); 625 } 626 627 #ifndef SQLITE_OMIT_SUBQUERY 628 /* 629 ** Generate an error message when a SELECT is used within a subexpression 630 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 631 ** column. We do this in a subroutine because the error used to occur 632 ** in multiple places. (The error only occurs in one place now, but we 633 ** retain the subroutine to minimize code disruption.) 634 */ 635 static int checkForMultiColumnSelectError( 636 Parse *pParse, /* Parse context. */ 637 SelectDest *pDest, /* Destination of SELECT results */ 638 int nExpr /* Number of result columns returned by SELECT */ 639 ){ 640 int eDest = pDest->eDest; 641 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 642 sqlite3ErrorMsg(pParse, "only a single result allowed for " 643 "a SELECT that is part of an expression"); 644 return 1; 645 }else{ 646 return 0; 647 } 648 } 649 #endif 650 651 /* 652 ** This routine generates the code for the inside of the inner loop 653 ** of a SELECT. 654 ** 655 ** If srcTab is negative, then the pEList expressions 656 ** are evaluated in order to get the data for this row. If srcTab is 657 ** zero or more, then data is pulled from srcTab and pEList is used only 658 ** to get number columns and the datatype for each column. 659 */ 660 static void selectInnerLoop( 661 Parse *pParse, /* The parser context */ 662 Select *p, /* The complete select statement being coded */ 663 ExprList *pEList, /* List of values being extracted */ 664 int srcTab, /* Pull data from this table */ 665 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 666 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 667 SelectDest *pDest, /* How to dispose of the results */ 668 int iContinue, /* Jump here to continue with next row */ 669 int iBreak /* Jump here to break out of the inner loop */ 670 ){ 671 Vdbe *v = pParse->pVdbe; 672 int i; 673 int hasDistinct; /* True if the DISTINCT keyword is present */ 674 int regResult; /* Start of memory holding result set */ 675 int eDest = pDest->eDest; /* How to dispose of results */ 676 int iParm = pDest->iSDParm; /* First argument to disposal method */ 677 int nResultCol; /* Number of result columns */ 678 int nPrefixReg = 0; /* Number of extra registers before regResult */ 679 680 assert( v ); 681 assert( pEList!=0 ); 682 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 683 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 684 if( pSort==0 && !hasDistinct ){ 685 assert( iContinue!=0 ); 686 codeOffset(v, p->iOffset, iContinue); 687 } 688 689 /* Pull the requested columns. 690 */ 691 nResultCol = pEList->nExpr; 692 693 if( pDest->iSdst==0 ){ 694 if( pSort ){ 695 nPrefixReg = pSort->pOrderBy->nExpr; 696 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 697 pParse->nMem += nPrefixReg; 698 } 699 pDest->iSdst = pParse->nMem+1; 700 pParse->nMem += nResultCol; 701 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 702 /* This is an error condition that can result, for example, when a SELECT 703 ** on the right-hand side of an INSERT contains more result columns than 704 ** there are columns in the table on the left. The error will be caught 705 ** and reported later. But we need to make sure enough memory is allocated 706 ** to avoid other spurious errors in the meantime. */ 707 pParse->nMem += nResultCol; 708 } 709 pDest->nSdst = nResultCol; 710 regResult = pDest->iSdst; 711 if( srcTab>=0 ){ 712 for(i=0; i<nResultCol; i++){ 713 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 714 VdbeComment((v, "%s", pEList->a[i].zName)); 715 } 716 }else if( eDest!=SRT_Exists ){ 717 /* If the destination is an EXISTS(...) expression, the actual 718 ** values returned by the SELECT are not required. 719 */ 720 sqlite3ExprCodeExprList(pParse, pEList, regResult, 721 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 722 } 723 724 /* If the DISTINCT keyword was present on the SELECT statement 725 ** and this row has been seen before, then do not make this row 726 ** part of the result. 727 */ 728 if( hasDistinct ){ 729 switch( pDistinct->eTnctType ){ 730 case WHERE_DISTINCT_ORDERED: { 731 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 732 int iJump; /* Jump destination */ 733 int regPrev; /* Previous row content */ 734 735 /* Allocate space for the previous row */ 736 regPrev = pParse->nMem+1; 737 pParse->nMem += nResultCol; 738 739 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 740 ** sets the MEM_Cleared bit on the first register of the 741 ** previous value. This will cause the OP_Ne below to always 742 ** fail on the first iteration of the loop even if the first 743 ** row is all NULLs. 744 */ 745 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 746 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 747 pOp->opcode = OP_Null; 748 pOp->p1 = 1; 749 pOp->p2 = regPrev; 750 751 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 752 for(i=0; i<nResultCol; i++){ 753 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 754 if( i<nResultCol-1 ){ 755 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 756 VdbeCoverage(v); 757 }else{ 758 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 759 VdbeCoverage(v); 760 } 761 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 762 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 763 } 764 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 765 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 766 break; 767 } 768 769 case WHERE_DISTINCT_UNIQUE: { 770 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 771 break; 772 } 773 774 default: { 775 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 776 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 777 break; 778 } 779 } 780 if( pSort==0 ){ 781 codeOffset(v, p->iOffset, iContinue); 782 } 783 } 784 785 switch( eDest ){ 786 /* In this mode, write each query result to the key of the temporary 787 ** table iParm. 788 */ 789 #ifndef SQLITE_OMIT_COMPOUND_SELECT 790 case SRT_Union: { 791 int r1; 792 r1 = sqlite3GetTempReg(pParse); 793 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 794 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 795 sqlite3ReleaseTempReg(pParse, r1); 796 break; 797 } 798 799 /* Construct a record from the query result, but instead of 800 ** saving that record, use it as a key to delete elements from 801 ** the temporary table iParm. 802 */ 803 case SRT_Except: { 804 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 805 break; 806 } 807 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 808 809 /* Store the result as data using a unique key. 810 */ 811 case SRT_Fifo: 812 case SRT_DistFifo: 813 case SRT_Table: 814 case SRT_EphemTab: { 815 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 816 testcase( eDest==SRT_Table ); 817 testcase( eDest==SRT_EphemTab ); 818 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 819 #ifndef SQLITE_OMIT_CTE 820 if( eDest==SRT_DistFifo ){ 821 /* If the destination is DistFifo, then cursor (iParm+1) is open 822 ** on an ephemeral index. If the current row is already present 823 ** in the index, do not write it to the output. If not, add the 824 ** current row to the index and proceed with writing it to the 825 ** output table as well. */ 826 int addr = sqlite3VdbeCurrentAddr(v) + 4; 827 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 828 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 829 assert( pSort==0 ); 830 } 831 #endif 832 if( pSort ){ 833 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 834 }else{ 835 int r2 = sqlite3GetTempReg(pParse); 836 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 837 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 838 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 839 sqlite3ReleaseTempReg(pParse, r2); 840 } 841 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 842 break; 843 } 844 845 #ifndef SQLITE_OMIT_SUBQUERY 846 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 847 ** then there should be a single item on the stack. Write this 848 ** item into the set table with bogus data. 849 */ 850 case SRT_Set: { 851 assert( nResultCol==1 ); 852 pDest->affSdst = 853 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 854 if( pSort ){ 855 /* At first glance you would think we could optimize out the 856 ** ORDER BY in this case since the order of entries in the set 857 ** does not matter. But there might be a LIMIT clause, in which 858 ** case the order does matter */ 859 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 860 }else{ 861 int r1 = sqlite3GetTempReg(pParse); 862 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 863 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 864 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 865 sqlite3ReleaseTempReg(pParse, r1); 866 } 867 break; 868 } 869 870 /* If any row exist in the result set, record that fact and abort. 871 */ 872 case SRT_Exists: { 873 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 874 /* The LIMIT clause will terminate the loop for us */ 875 break; 876 } 877 878 /* If this is a scalar select that is part of an expression, then 879 ** store the results in the appropriate memory cell and break out 880 ** of the scan loop. 881 */ 882 case SRT_Mem: { 883 assert( nResultCol==1 ); 884 if( pSort ){ 885 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 886 }else{ 887 assert( regResult==iParm ); 888 /* The LIMIT clause will jump out of the loop for us */ 889 } 890 break; 891 } 892 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 893 894 case SRT_Coroutine: /* Send data to a co-routine */ 895 case SRT_Output: { /* Return the results */ 896 testcase( eDest==SRT_Coroutine ); 897 testcase( eDest==SRT_Output ); 898 if( pSort ){ 899 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 900 }else if( eDest==SRT_Coroutine ){ 901 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 902 }else{ 903 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 904 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 905 } 906 break; 907 } 908 909 #ifndef SQLITE_OMIT_CTE 910 /* Write the results into a priority queue that is order according to 911 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 912 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 913 ** pSO->nExpr columns, then make sure all keys are unique by adding a 914 ** final OP_Sequence column. The last column is the record as a blob. 915 */ 916 case SRT_DistQueue: 917 case SRT_Queue: { 918 int nKey; 919 int r1, r2, r3; 920 int addrTest = 0; 921 ExprList *pSO; 922 pSO = pDest->pOrderBy; 923 assert( pSO ); 924 nKey = pSO->nExpr; 925 r1 = sqlite3GetTempReg(pParse); 926 r2 = sqlite3GetTempRange(pParse, nKey+2); 927 r3 = r2+nKey+1; 928 if( eDest==SRT_DistQueue ){ 929 /* If the destination is DistQueue, then cursor (iParm+1) is open 930 ** on a second ephemeral index that holds all values every previously 931 ** added to the queue. */ 932 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 933 regResult, nResultCol); 934 VdbeCoverage(v); 935 } 936 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 937 if( eDest==SRT_DistQueue ){ 938 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 939 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 940 } 941 for(i=0; i<nKey; i++){ 942 sqlite3VdbeAddOp2(v, OP_SCopy, 943 regResult + pSO->a[i].u.x.iOrderByCol - 1, 944 r2+i); 945 } 946 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 947 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 948 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 949 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 950 sqlite3ReleaseTempReg(pParse, r1); 951 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 952 break; 953 } 954 #endif /* SQLITE_OMIT_CTE */ 955 956 957 958 #if !defined(SQLITE_OMIT_TRIGGER) 959 /* Discard the results. This is used for SELECT statements inside 960 ** the body of a TRIGGER. The purpose of such selects is to call 961 ** user-defined functions that have side effects. We do not care 962 ** about the actual results of the select. 963 */ 964 default: { 965 assert( eDest==SRT_Discard ); 966 break; 967 } 968 #endif 969 } 970 971 /* Jump to the end of the loop if the LIMIT is reached. Except, if 972 ** there is a sorter, in which case the sorter has already limited 973 ** the output for us. 974 */ 975 if( pSort==0 && p->iLimit ){ 976 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 977 } 978 } 979 980 /* 981 ** Allocate a KeyInfo object sufficient for an index of N key columns and 982 ** X extra columns. 983 */ 984 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 985 KeyInfo *p = sqlite3DbMallocZero(0, 986 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 987 if( p ){ 988 p->aSortOrder = (u8*)&p->aColl[N+X]; 989 p->nField = (u16)N; 990 p->nXField = (u16)X; 991 p->enc = ENC(db); 992 p->db = db; 993 p->nRef = 1; 994 }else{ 995 db->mallocFailed = 1; 996 } 997 return p; 998 } 999 1000 /* 1001 ** Deallocate a KeyInfo object 1002 */ 1003 void sqlite3KeyInfoUnref(KeyInfo *p){ 1004 if( p ){ 1005 assert( p->nRef>0 ); 1006 p->nRef--; 1007 if( p->nRef==0 ) sqlite3DbFree(0, p); 1008 } 1009 } 1010 1011 /* 1012 ** Make a new pointer to a KeyInfo object 1013 */ 1014 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1015 if( p ){ 1016 assert( p->nRef>0 ); 1017 p->nRef++; 1018 } 1019 return p; 1020 } 1021 1022 #ifdef SQLITE_DEBUG 1023 /* 1024 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1025 ** can only be changed if this is just a single reference to the object. 1026 ** 1027 ** This routine is used only inside of assert() statements. 1028 */ 1029 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1030 #endif /* SQLITE_DEBUG */ 1031 1032 /* 1033 ** Given an expression list, generate a KeyInfo structure that records 1034 ** the collating sequence for each expression in that expression list. 1035 ** 1036 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1037 ** KeyInfo structure is appropriate for initializing a virtual index to 1038 ** implement that clause. If the ExprList is the result set of a SELECT 1039 ** then the KeyInfo structure is appropriate for initializing a virtual 1040 ** index to implement a DISTINCT test. 1041 ** 1042 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1043 ** function is responsible for seeing that this structure is eventually 1044 ** freed. 1045 */ 1046 static KeyInfo *keyInfoFromExprList( 1047 Parse *pParse, /* Parsing context */ 1048 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1049 int iStart, /* Begin with this column of pList */ 1050 int nExtra /* Add this many extra columns to the end */ 1051 ){ 1052 int nExpr; 1053 KeyInfo *pInfo; 1054 struct ExprList_item *pItem; 1055 sqlite3 *db = pParse->db; 1056 int i; 1057 1058 nExpr = pList->nExpr; 1059 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1060 if( pInfo ){ 1061 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1062 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1063 CollSeq *pColl; 1064 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1065 if( !pColl ) pColl = db->pDfltColl; 1066 pInfo->aColl[i-iStart] = pColl; 1067 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1068 } 1069 } 1070 return pInfo; 1071 } 1072 1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1074 /* 1075 ** Name of the connection operator, used for error messages. 1076 */ 1077 static const char *selectOpName(int id){ 1078 char *z; 1079 switch( id ){ 1080 case TK_ALL: z = "UNION ALL"; break; 1081 case TK_INTERSECT: z = "INTERSECT"; break; 1082 case TK_EXCEPT: z = "EXCEPT"; break; 1083 default: z = "UNION"; break; 1084 } 1085 return z; 1086 } 1087 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1088 1089 #ifndef SQLITE_OMIT_EXPLAIN 1090 /* 1091 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1092 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1093 ** where the caption is of the form: 1094 ** 1095 ** "USE TEMP B-TREE FOR xxx" 1096 ** 1097 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1098 ** is determined by the zUsage argument. 1099 */ 1100 static void explainTempTable(Parse *pParse, const char *zUsage){ 1101 if( pParse->explain==2 ){ 1102 Vdbe *v = pParse->pVdbe; 1103 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1104 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1105 } 1106 } 1107 1108 /* 1109 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1110 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1111 ** in sqlite3Select() to assign values to structure member variables that 1112 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1113 ** code with #ifndef directives. 1114 */ 1115 # define explainSetInteger(a, b) a = b 1116 1117 #else 1118 /* No-op versions of the explainXXX() functions and macros. */ 1119 # define explainTempTable(y,z) 1120 # define explainSetInteger(y,z) 1121 #endif 1122 1123 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1124 /* 1125 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1126 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1127 ** where the caption is of one of the two forms: 1128 ** 1129 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1130 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1131 ** 1132 ** where iSub1 and iSub2 are the integers passed as the corresponding 1133 ** function parameters, and op is the text representation of the parameter 1134 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1135 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1136 ** false, or the second form if it is true. 1137 */ 1138 static void explainComposite( 1139 Parse *pParse, /* Parse context */ 1140 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1141 int iSub1, /* Subquery id 1 */ 1142 int iSub2, /* Subquery id 2 */ 1143 int bUseTmp /* True if a temp table was used */ 1144 ){ 1145 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1146 if( pParse->explain==2 ){ 1147 Vdbe *v = pParse->pVdbe; 1148 char *zMsg = sqlite3MPrintf( 1149 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1150 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1151 ); 1152 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1153 } 1154 } 1155 #else 1156 /* No-op versions of the explainXXX() functions and macros. */ 1157 # define explainComposite(v,w,x,y,z) 1158 #endif 1159 1160 /* 1161 ** If the inner loop was generated using a non-null pOrderBy argument, 1162 ** then the results were placed in a sorter. After the loop is terminated 1163 ** we need to run the sorter and output the results. The following 1164 ** routine generates the code needed to do that. 1165 */ 1166 static void generateSortTail( 1167 Parse *pParse, /* Parsing context */ 1168 Select *p, /* The SELECT statement */ 1169 SortCtx *pSort, /* Information on the ORDER BY clause */ 1170 int nColumn, /* Number of columns of data */ 1171 SelectDest *pDest /* Write the sorted results here */ 1172 ){ 1173 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1174 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1175 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1176 int addr; 1177 int addrOnce = 0; 1178 int iTab; 1179 ExprList *pOrderBy = pSort->pOrderBy; 1180 int eDest = pDest->eDest; 1181 int iParm = pDest->iSDParm; 1182 int regRow; 1183 int regRowid; 1184 int nKey; 1185 int iSortTab; /* Sorter cursor to read from */ 1186 int nSortData; /* Trailing values to read from sorter */ 1187 int i; 1188 int bSeq; /* True if sorter record includes seq. no. */ 1189 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1190 struct ExprList_item *aOutEx = p->pEList->a; 1191 #endif 1192 1193 if( pSort->labelBkOut ){ 1194 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1195 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1196 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1197 } 1198 iTab = pSort->iECursor; 1199 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1200 regRowid = 0; 1201 regRow = pDest->iSdst; 1202 nSortData = nColumn; 1203 }else{ 1204 regRowid = sqlite3GetTempReg(pParse); 1205 regRow = sqlite3GetTempReg(pParse); 1206 nSortData = 1; 1207 } 1208 nKey = pOrderBy->nExpr - pSort->nOBSat; 1209 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1210 int regSortOut = ++pParse->nMem; 1211 iSortTab = pParse->nTab++; 1212 if( pSort->labelBkOut ){ 1213 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1214 } 1215 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1216 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1217 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1218 VdbeCoverage(v); 1219 codeOffset(v, p->iOffset, addrContinue); 1220 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1221 bSeq = 0; 1222 }else{ 1223 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1224 codeOffset(v, p->iOffset, addrContinue); 1225 iSortTab = iTab; 1226 bSeq = 1; 1227 } 1228 for(i=0; i<nSortData; i++){ 1229 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1230 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1231 } 1232 switch( eDest ){ 1233 case SRT_Table: 1234 case SRT_EphemTab: { 1235 testcase( eDest==SRT_Table ); 1236 testcase( eDest==SRT_EphemTab ); 1237 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1238 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1239 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1240 break; 1241 } 1242 #ifndef SQLITE_OMIT_SUBQUERY 1243 case SRT_Set: { 1244 assert( nColumn==1 ); 1245 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1246 &pDest->affSdst, 1); 1247 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1248 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1249 break; 1250 } 1251 case SRT_Mem: { 1252 assert( nColumn==1 ); 1253 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1254 /* The LIMIT clause will terminate the loop for us */ 1255 break; 1256 } 1257 #endif 1258 default: { 1259 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1260 testcase( eDest==SRT_Output ); 1261 testcase( eDest==SRT_Coroutine ); 1262 if( eDest==SRT_Output ){ 1263 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1264 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1265 }else{ 1266 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1267 } 1268 break; 1269 } 1270 } 1271 if( regRowid ){ 1272 sqlite3ReleaseTempReg(pParse, regRow); 1273 sqlite3ReleaseTempReg(pParse, regRowid); 1274 } 1275 /* The bottom of the loop 1276 */ 1277 sqlite3VdbeResolveLabel(v, addrContinue); 1278 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1279 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1280 }else{ 1281 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1282 } 1283 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1284 sqlite3VdbeResolveLabel(v, addrBreak); 1285 } 1286 1287 /* 1288 ** Return a pointer to a string containing the 'declaration type' of the 1289 ** expression pExpr. The string may be treated as static by the caller. 1290 ** 1291 ** Also try to estimate the size of the returned value and return that 1292 ** result in *pEstWidth. 1293 ** 1294 ** The declaration type is the exact datatype definition extracted from the 1295 ** original CREATE TABLE statement if the expression is a column. The 1296 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1297 ** is considered a column can be complex in the presence of subqueries. The 1298 ** result-set expression in all of the following SELECT statements is 1299 ** considered a column by this function. 1300 ** 1301 ** SELECT col FROM tbl; 1302 ** SELECT (SELECT col FROM tbl; 1303 ** SELECT (SELECT col FROM tbl); 1304 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1305 ** 1306 ** The declaration type for any expression other than a column is NULL. 1307 ** 1308 ** This routine has either 3 or 6 parameters depending on whether or not 1309 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1310 */ 1311 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1312 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1313 static const char *columnTypeImpl( 1314 NameContext *pNC, 1315 Expr *pExpr, 1316 const char **pzOrigDb, 1317 const char **pzOrigTab, 1318 const char **pzOrigCol, 1319 u8 *pEstWidth 1320 ){ 1321 char const *zOrigDb = 0; 1322 char const *zOrigTab = 0; 1323 char const *zOrigCol = 0; 1324 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1325 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1326 static const char *columnTypeImpl( 1327 NameContext *pNC, 1328 Expr *pExpr, 1329 u8 *pEstWidth 1330 ){ 1331 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1332 char const *zType = 0; 1333 int j; 1334 u8 estWidth = 1; 1335 1336 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1337 switch( pExpr->op ){ 1338 case TK_AGG_COLUMN: 1339 case TK_COLUMN: { 1340 /* The expression is a column. Locate the table the column is being 1341 ** extracted from in NameContext.pSrcList. This table may be real 1342 ** database table or a subquery. 1343 */ 1344 Table *pTab = 0; /* Table structure column is extracted from */ 1345 Select *pS = 0; /* Select the column is extracted from */ 1346 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1347 testcase( pExpr->op==TK_AGG_COLUMN ); 1348 testcase( pExpr->op==TK_COLUMN ); 1349 while( pNC && !pTab ){ 1350 SrcList *pTabList = pNC->pSrcList; 1351 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1352 if( j<pTabList->nSrc ){ 1353 pTab = pTabList->a[j].pTab; 1354 pS = pTabList->a[j].pSelect; 1355 }else{ 1356 pNC = pNC->pNext; 1357 } 1358 } 1359 1360 if( pTab==0 ){ 1361 /* At one time, code such as "SELECT new.x" within a trigger would 1362 ** cause this condition to run. Since then, we have restructured how 1363 ** trigger code is generated and so this condition is no longer 1364 ** possible. However, it can still be true for statements like 1365 ** the following: 1366 ** 1367 ** CREATE TABLE t1(col INTEGER); 1368 ** SELECT (SELECT t1.col) FROM FROM t1; 1369 ** 1370 ** when columnType() is called on the expression "t1.col" in the 1371 ** sub-select. In this case, set the column type to NULL, even 1372 ** though it should really be "INTEGER". 1373 ** 1374 ** This is not a problem, as the column type of "t1.col" is never 1375 ** used. When columnType() is called on the expression 1376 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1377 ** branch below. */ 1378 break; 1379 } 1380 1381 assert( pTab && pExpr->pTab==pTab ); 1382 if( pS ){ 1383 /* The "table" is actually a sub-select or a view in the FROM clause 1384 ** of the SELECT statement. Return the declaration type and origin 1385 ** data for the result-set column of the sub-select. 1386 */ 1387 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1388 /* If iCol is less than zero, then the expression requests the 1389 ** rowid of the sub-select or view. This expression is legal (see 1390 ** test case misc2.2.2) - it always evaluates to NULL. 1391 */ 1392 NameContext sNC; 1393 Expr *p = pS->pEList->a[iCol].pExpr; 1394 sNC.pSrcList = pS->pSrc; 1395 sNC.pNext = pNC; 1396 sNC.pParse = pNC->pParse; 1397 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1398 } 1399 }else if( pTab->pSchema ){ 1400 /* A real table */ 1401 assert( !pS ); 1402 if( iCol<0 ) iCol = pTab->iPKey; 1403 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1404 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1405 if( iCol<0 ){ 1406 zType = "INTEGER"; 1407 zOrigCol = "rowid"; 1408 }else{ 1409 zType = pTab->aCol[iCol].zType; 1410 zOrigCol = pTab->aCol[iCol].zName; 1411 estWidth = pTab->aCol[iCol].szEst; 1412 } 1413 zOrigTab = pTab->zName; 1414 if( pNC->pParse ){ 1415 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1416 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1417 } 1418 #else 1419 if( iCol<0 ){ 1420 zType = "INTEGER"; 1421 }else{ 1422 zType = pTab->aCol[iCol].zType; 1423 estWidth = pTab->aCol[iCol].szEst; 1424 } 1425 #endif 1426 } 1427 break; 1428 } 1429 #ifndef SQLITE_OMIT_SUBQUERY 1430 case TK_SELECT: { 1431 /* The expression is a sub-select. Return the declaration type and 1432 ** origin info for the single column in the result set of the SELECT 1433 ** statement. 1434 */ 1435 NameContext sNC; 1436 Select *pS = pExpr->x.pSelect; 1437 Expr *p = pS->pEList->a[0].pExpr; 1438 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1439 sNC.pSrcList = pS->pSrc; 1440 sNC.pNext = pNC; 1441 sNC.pParse = pNC->pParse; 1442 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1443 break; 1444 } 1445 #endif 1446 } 1447 1448 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1449 if( pzOrigDb ){ 1450 assert( pzOrigTab && pzOrigCol ); 1451 *pzOrigDb = zOrigDb; 1452 *pzOrigTab = zOrigTab; 1453 *pzOrigCol = zOrigCol; 1454 } 1455 #endif 1456 if( pEstWidth ) *pEstWidth = estWidth; 1457 return zType; 1458 } 1459 1460 /* 1461 ** Generate code that will tell the VDBE the declaration types of columns 1462 ** in the result set. 1463 */ 1464 static void generateColumnTypes( 1465 Parse *pParse, /* Parser context */ 1466 SrcList *pTabList, /* List of tables */ 1467 ExprList *pEList /* Expressions defining the result set */ 1468 ){ 1469 #ifndef SQLITE_OMIT_DECLTYPE 1470 Vdbe *v = pParse->pVdbe; 1471 int i; 1472 NameContext sNC; 1473 sNC.pSrcList = pTabList; 1474 sNC.pParse = pParse; 1475 for(i=0; i<pEList->nExpr; i++){ 1476 Expr *p = pEList->a[i].pExpr; 1477 const char *zType; 1478 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1479 const char *zOrigDb = 0; 1480 const char *zOrigTab = 0; 1481 const char *zOrigCol = 0; 1482 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1483 1484 /* The vdbe must make its own copy of the column-type and other 1485 ** column specific strings, in case the schema is reset before this 1486 ** virtual machine is deleted. 1487 */ 1488 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1489 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1490 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1491 #else 1492 zType = columnType(&sNC, p, 0, 0, 0, 0); 1493 #endif 1494 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1495 } 1496 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1497 } 1498 1499 /* 1500 ** Generate code that will tell the VDBE the names of columns 1501 ** in the result set. This information is used to provide the 1502 ** azCol[] values in the callback. 1503 */ 1504 static void generateColumnNames( 1505 Parse *pParse, /* Parser context */ 1506 SrcList *pTabList, /* List of tables */ 1507 ExprList *pEList /* Expressions defining the result set */ 1508 ){ 1509 Vdbe *v = pParse->pVdbe; 1510 int i, j; 1511 sqlite3 *db = pParse->db; 1512 int fullNames, shortNames; 1513 1514 #ifndef SQLITE_OMIT_EXPLAIN 1515 /* If this is an EXPLAIN, skip this step */ 1516 if( pParse->explain ){ 1517 return; 1518 } 1519 #endif 1520 1521 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1522 pParse->colNamesSet = 1; 1523 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1524 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1525 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1526 for(i=0; i<pEList->nExpr; i++){ 1527 Expr *p; 1528 p = pEList->a[i].pExpr; 1529 if( NEVER(p==0) ) continue; 1530 if( pEList->a[i].zName ){ 1531 char *zName = pEList->a[i].zName; 1532 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1533 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1534 Table *pTab; 1535 char *zCol; 1536 int iCol = p->iColumn; 1537 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1538 if( pTabList->a[j].iCursor==p->iTable ) break; 1539 } 1540 assert( j<pTabList->nSrc ); 1541 pTab = pTabList->a[j].pTab; 1542 if( iCol<0 ) iCol = pTab->iPKey; 1543 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1544 if( iCol<0 ){ 1545 zCol = "rowid"; 1546 }else{ 1547 zCol = pTab->aCol[iCol].zName; 1548 } 1549 if( !shortNames && !fullNames ){ 1550 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1551 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1552 }else if( fullNames ){ 1553 char *zName = 0; 1554 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1555 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1556 }else{ 1557 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1558 } 1559 }else{ 1560 const char *z = pEList->a[i].zSpan; 1561 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1562 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1563 } 1564 } 1565 generateColumnTypes(pParse, pTabList, pEList); 1566 } 1567 1568 /* 1569 ** Given an expression list (which is really the list of expressions 1570 ** that form the result set of a SELECT statement) compute appropriate 1571 ** column names for a table that would hold the expression list. 1572 ** 1573 ** All column names will be unique. 1574 ** 1575 ** Only the column names are computed. Column.zType, Column.zColl, 1576 ** and other fields of Column are zeroed. 1577 ** 1578 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1579 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1580 */ 1581 static int selectColumnsFromExprList( 1582 Parse *pParse, /* Parsing context */ 1583 ExprList *pEList, /* Expr list from which to derive column names */ 1584 i16 *pnCol, /* Write the number of columns here */ 1585 Column **paCol /* Write the new column list here */ 1586 ){ 1587 sqlite3 *db = pParse->db; /* Database connection */ 1588 int i, j; /* Loop counters */ 1589 int cnt; /* Index added to make the name unique */ 1590 Column *aCol, *pCol; /* For looping over result columns */ 1591 int nCol; /* Number of columns in the result set */ 1592 Expr *p; /* Expression for a single result column */ 1593 char *zName; /* Column name */ 1594 int nName; /* Size of name in zName[] */ 1595 1596 if( pEList ){ 1597 nCol = pEList->nExpr; 1598 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1599 testcase( aCol==0 ); 1600 }else{ 1601 nCol = 0; 1602 aCol = 0; 1603 } 1604 *pnCol = nCol; 1605 *paCol = aCol; 1606 1607 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1608 /* Get an appropriate name for the column 1609 */ 1610 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1611 if( (zName = pEList->a[i].zName)!=0 ){ 1612 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1613 zName = sqlite3DbStrDup(db, zName); 1614 }else{ 1615 Expr *pColExpr = p; /* The expression that is the result column name */ 1616 Table *pTab; /* Table associated with this expression */ 1617 while( pColExpr->op==TK_DOT ){ 1618 pColExpr = pColExpr->pRight; 1619 assert( pColExpr!=0 ); 1620 } 1621 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1622 /* For columns use the column name name */ 1623 int iCol = pColExpr->iColumn; 1624 pTab = pColExpr->pTab; 1625 if( iCol<0 ) iCol = pTab->iPKey; 1626 zName = sqlite3MPrintf(db, "%s", 1627 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1628 }else if( pColExpr->op==TK_ID ){ 1629 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1630 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1631 }else{ 1632 /* Use the original text of the column expression as its name */ 1633 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1634 } 1635 } 1636 if( db->mallocFailed ){ 1637 sqlite3DbFree(db, zName); 1638 break; 1639 } 1640 1641 /* Make sure the column name is unique. If the name is not unique, 1642 ** append an integer to the name so that it becomes unique. 1643 */ 1644 nName = sqlite3Strlen30(zName); 1645 for(j=cnt=0; j<i; j++){ 1646 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1647 char *zNewName; 1648 int k; 1649 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1650 if( k>=0 && zName[k]==':' ) nName = k; 1651 zName[nName] = 0; 1652 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1653 sqlite3DbFree(db, zName); 1654 zName = zNewName; 1655 j = -1; 1656 if( zName==0 ) break; 1657 } 1658 } 1659 pCol->zName = zName; 1660 } 1661 if( db->mallocFailed ){ 1662 for(j=0; j<i; j++){ 1663 sqlite3DbFree(db, aCol[j].zName); 1664 } 1665 sqlite3DbFree(db, aCol); 1666 *paCol = 0; 1667 *pnCol = 0; 1668 return SQLITE_NOMEM; 1669 } 1670 return SQLITE_OK; 1671 } 1672 1673 /* 1674 ** Add type and collation information to a column list based on 1675 ** a SELECT statement. 1676 ** 1677 ** The column list presumably came from selectColumnNamesFromExprList(). 1678 ** The column list has only names, not types or collations. This 1679 ** routine goes through and adds the types and collations. 1680 ** 1681 ** This routine requires that all identifiers in the SELECT 1682 ** statement be resolved. 1683 */ 1684 static void selectAddColumnTypeAndCollation( 1685 Parse *pParse, /* Parsing contexts */ 1686 Table *pTab, /* Add column type information to this table */ 1687 Select *pSelect /* SELECT used to determine types and collations */ 1688 ){ 1689 sqlite3 *db = pParse->db; 1690 NameContext sNC; 1691 Column *pCol; 1692 CollSeq *pColl; 1693 int i; 1694 Expr *p; 1695 struct ExprList_item *a; 1696 u64 szAll = 0; 1697 1698 assert( pSelect!=0 ); 1699 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1700 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1701 if( db->mallocFailed ) return; 1702 memset(&sNC, 0, sizeof(sNC)); 1703 sNC.pSrcList = pSelect->pSrc; 1704 a = pSelect->pEList->a; 1705 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1706 p = a[i].pExpr; 1707 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1708 szAll += pCol->szEst; 1709 pCol->affinity = sqlite3ExprAffinity(p); 1710 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1711 pColl = sqlite3ExprCollSeq(pParse, p); 1712 if( pColl ){ 1713 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1714 } 1715 } 1716 pTab->szTabRow = sqlite3LogEst(szAll*4); 1717 } 1718 1719 /* 1720 ** Given a SELECT statement, generate a Table structure that describes 1721 ** the result set of that SELECT. 1722 */ 1723 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1724 Table *pTab; 1725 sqlite3 *db = pParse->db; 1726 int savedFlags; 1727 1728 savedFlags = db->flags; 1729 db->flags &= ~SQLITE_FullColNames; 1730 db->flags |= SQLITE_ShortColNames; 1731 sqlite3SelectPrep(pParse, pSelect, 0); 1732 if( pParse->nErr ) return 0; 1733 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1734 db->flags = savedFlags; 1735 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1736 if( pTab==0 ){ 1737 return 0; 1738 } 1739 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1740 ** is disabled */ 1741 assert( db->lookaside.bEnabled==0 ); 1742 pTab->nRef = 1; 1743 pTab->zName = 0; 1744 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1745 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1746 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1747 pTab->iPKey = -1; 1748 if( db->mallocFailed ){ 1749 sqlite3DeleteTable(db, pTab); 1750 return 0; 1751 } 1752 return pTab; 1753 } 1754 1755 /* 1756 ** Get a VDBE for the given parser context. Create a new one if necessary. 1757 ** If an error occurs, return NULL and leave a message in pParse. 1758 */ 1759 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1760 Vdbe *v = pParse->pVdbe; 1761 if( v==0 ){ 1762 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1763 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1764 if( pParse->pToplevel==0 1765 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1766 ){ 1767 pParse->okConstFactor = 1; 1768 } 1769 1770 } 1771 return v; 1772 } 1773 1774 1775 /* 1776 ** Compute the iLimit and iOffset fields of the SELECT based on the 1777 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1778 ** that appear in the original SQL statement after the LIMIT and OFFSET 1779 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1780 ** are the integer memory register numbers for counters used to compute 1781 ** the limit and offset. If there is no limit and/or offset, then 1782 ** iLimit and iOffset are negative. 1783 ** 1784 ** This routine changes the values of iLimit and iOffset only if 1785 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1786 ** iOffset should have been preset to appropriate default values (zero) 1787 ** prior to calling this routine. 1788 ** 1789 ** The iOffset register (if it exists) is initialized to the value 1790 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1791 ** iOffset+1 is initialized to LIMIT+OFFSET. 1792 ** 1793 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1794 ** redefined. The UNION ALL operator uses this property to force 1795 ** the reuse of the same limit and offset registers across multiple 1796 ** SELECT statements. 1797 */ 1798 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1799 Vdbe *v = 0; 1800 int iLimit = 0; 1801 int iOffset; 1802 int addr1, n; 1803 if( p->iLimit ) return; 1804 1805 /* 1806 ** "LIMIT -1" always shows all rows. There is some 1807 ** controversy about what the correct behavior should be. 1808 ** The current implementation interprets "LIMIT 0" to mean 1809 ** no rows. 1810 */ 1811 sqlite3ExprCacheClear(pParse); 1812 assert( p->pOffset==0 || p->pLimit!=0 ); 1813 if( p->pLimit ){ 1814 p->iLimit = iLimit = ++pParse->nMem; 1815 v = sqlite3GetVdbe(pParse); 1816 assert( v!=0 ); 1817 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1818 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1819 VdbeComment((v, "LIMIT counter")); 1820 if( n==0 ){ 1821 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1822 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1823 p->nSelectRow = n; 1824 } 1825 }else{ 1826 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1827 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1828 VdbeComment((v, "LIMIT counter")); 1829 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); 1830 } 1831 if( p->pOffset ){ 1832 p->iOffset = iOffset = ++pParse->nMem; 1833 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1834 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1835 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1836 VdbeComment((v, "OFFSET counter")); 1837 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1838 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1839 sqlite3VdbeJumpHere(v, addr1); 1840 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1841 VdbeComment((v, "LIMIT+OFFSET")); 1842 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1843 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1844 sqlite3VdbeJumpHere(v, addr1); 1845 } 1846 } 1847 } 1848 1849 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1850 /* 1851 ** Return the appropriate collating sequence for the iCol-th column of 1852 ** the result set for the compound-select statement "p". Return NULL if 1853 ** the column has no default collating sequence. 1854 ** 1855 ** The collating sequence for the compound select is taken from the 1856 ** left-most term of the select that has a collating sequence. 1857 */ 1858 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1859 CollSeq *pRet; 1860 if( p->pPrior ){ 1861 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1862 }else{ 1863 pRet = 0; 1864 } 1865 assert( iCol>=0 ); 1866 if( pRet==0 && iCol<p->pEList->nExpr ){ 1867 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1868 } 1869 return pRet; 1870 } 1871 1872 /* 1873 ** The select statement passed as the second parameter is a compound SELECT 1874 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1875 ** structure suitable for implementing the ORDER BY. 1876 ** 1877 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1878 ** function is responsible for ensuring that this structure is eventually 1879 ** freed. 1880 */ 1881 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1882 ExprList *pOrderBy = p->pOrderBy; 1883 int nOrderBy = p->pOrderBy->nExpr; 1884 sqlite3 *db = pParse->db; 1885 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1886 if( pRet ){ 1887 int i; 1888 for(i=0; i<nOrderBy; i++){ 1889 struct ExprList_item *pItem = &pOrderBy->a[i]; 1890 Expr *pTerm = pItem->pExpr; 1891 CollSeq *pColl; 1892 1893 if( pTerm->flags & EP_Collate ){ 1894 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1895 }else{ 1896 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1897 if( pColl==0 ) pColl = db->pDfltColl; 1898 pOrderBy->a[i].pExpr = 1899 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1900 } 1901 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1902 pRet->aColl[i] = pColl; 1903 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1904 } 1905 } 1906 1907 return pRet; 1908 } 1909 1910 #ifndef SQLITE_OMIT_CTE 1911 /* 1912 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1913 ** query of the form: 1914 ** 1915 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1916 ** \___________/ \_______________/ 1917 ** p->pPrior p 1918 ** 1919 ** 1920 ** There is exactly one reference to the recursive-table in the FROM clause 1921 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1922 ** 1923 ** The setup-query runs once to generate an initial set of rows that go 1924 ** into a Queue table. Rows are extracted from the Queue table one by 1925 ** one. Each row extracted from Queue is output to pDest. Then the single 1926 ** extracted row (now in the iCurrent table) becomes the content of the 1927 ** recursive-table for a recursive-query run. The output of the recursive-query 1928 ** is added back into the Queue table. Then another row is extracted from Queue 1929 ** and the iteration continues until the Queue table is empty. 1930 ** 1931 ** If the compound query operator is UNION then no duplicate rows are ever 1932 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1933 ** that have ever been inserted into Queue and causes duplicates to be 1934 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1935 ** 1936 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1937 ** ORDER BY order and the first entry is extracted for each cycle. Without 1938 ** an ORDER BY, the Queue table is just a FIFO. 1939 ** 1940 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1941 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1942 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1943 ** with a positive value, then the first OFFSET outputs are discarded rather 1944 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1945 ** rows have been skipped. 1946 */ 1947 static void generateWithRecursiveQuery( 1948 Parse *pParse, /* Parsing context */ 1949 Select *p, /* The recursive SELECT to be coded */ 1950 SelectDest *pDest /* What to do with query results */ 1951 ){ 1952 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1953 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1954 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1955 Select *pSetup = p->pPrior; /* The setup query */ 1956 int addrTop; /* Top of the loop */ 1957 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1958 int iCurrent = 0; /* The Current table */ 1959 int regCurrent; /* Register holding Current table */ 1960 int iQueue; /* The Queue table */ 1961 int iDistinct = 0; /* To ensure unique results if UNION */ 1962 int eDest = SRT_Fifo; /* How to write to Queue */ 1963 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1964 int i; /* Loop counter */ 1965 int rc; /* Result code */ 1966 ExprList *pOrderBy; /* The ORDER BY clause */ 1967 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1968 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1969 1970 /* Obtain authorization to do a recursive query */ 1971 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1972 1973 /* Process the LIMIT and OFFSET clauses, if they exist */ 1974 addrBreak = sqlite3VdbeMakeLabel(v); 1975 computeLimitRegisters(pParse, p, addrBreak); 1976 pLimit = p->pLimit; 1977 pOffset = p->pOffset; 1978 regLimit = p->iLimit; 1979 regOffset = p->iOffset; 1980 p->pLimit = p->pOffset = 0; 1981 p->iLimit = p->iOffset = 0; 1982 pOrderBy = p->pOrderBy; 1983 1984 /* Locate the cursor number of the Current table */ 1985 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1986 if( pSrc->a[i].isRecursive ){ 1987 iCurrent = pSrc->a[i].iCursor; 1988 break; 1989 } 1990 } 1991 1992 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1993 ** the Distinct table must be exactly one greater than Queue in order 1994 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1995 iQueue = pParse->nTab++; 1996 if( p->op==TK_UNION ){ 1997 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1998 iDistinct = pParse->nTab++; 1999 }else{ 2000 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2001 } 2002 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2003 2004 /* Allocate cursors for Current, Queue, and Distinct. */ 2005 regCurrent = ++pParse->nMem; 2006 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2007 if( pOrderBy ){ 2008 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2009 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2010 (char*)pKeyInfo, P4_KEYINFO); 2011 destQueue.pOrderBy = pOrderBy; 2012 }else{ 2013 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2014 } 2015 VdbeComment((v, "Queue table")); 2016 if( iDistinct ){ 2017 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2018 p->selFlags |= SF_UsesEphemeral; 2019 } 2020 2021 /* Detach the ORDER BY clause from the compound SELECT */ 2022 p->pOrderBy = 0; 2023 2024 /* Store the results of the setup-query in Queue. */ 2025 pSetup->pNext = 0; 2026 rc = sqlite3Select(pParse, pSetup, &destQueue); 2027 pSetup->pNext = p; 2028 if( rc ) goto end_of_recursive_query; 2029 2030 /* Find the next row in the Queue and output that row */ 2031 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2032 2033 /* Transfer the next row in Queue over to Current */ 2034 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2035 if( pOrderBy ){ 2036 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2037 }else{ 2038 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2039 } 2040 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2041 2042 /* Output the single row in Current */ 2043 addrCont = sqlite3VdbeMakeLabel(v); 2044 codeOffset(v, regOffset, addrCont); 2045 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2046 0, 0, pDest, addrCont, addrBreak); 2047 if( regLimit ){ 2048 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 2049 VdbeCoverage(v); 2050 } 2051 sqlite3VdbeResolveLabel(v, addrCont); 2052 2053 /* Execute the recursive SELECT taking the single row in Current as 2054 ** the value for the recursive-table. Store the results in the Queue. 2055 */ 2056 p->pPrior = 0; 2057 sqlite3Select(pParse, p, &destQueue); 2058 assert( p->pPrior==0 ); 2059 p->pPrior = pSetup; 2060 2061 /* Keep running the loop until the Queue is empty */ 2062 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2063 sqlite3VdbeResolveLabel(v, addrBreak); 2064 2065 end_of_recursive_query: 2066 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2067 p->pOrderBy = pOrderBy; 2068 p->pLimit = pLimit; 2069 p->pOffset = pOffset; 2070 return; 2071 } 2072 #endif /* SQLITE_OMIT_CTE */ 2073 2074 /* Forward references */ 2075 static int multiSelectOrderBy( 2076 Parse *pParse, /* Parsing context */ 2077 Select *p, /* The right-most of SELECTs to be coded */ 2078 SelectDest *pDest /* What to do with query results */ 2079 ); 2080 2081 /* 2082 ** Error message for when two or more terms of a compound select have different 2083 ** size result sets. 2084 */ 2085 static void selectWrongNumTermsError(Parse *pParse, Select *p){ 2086 if( p->selFlags & SF_Values ){ 2087 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2088 }else{ 2089 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2090 " do not have the same number of result columns", selectOpName(p->op)); 2091 } 2092 } 2093 2094 /* 2095 ** Handle the special case of a compound-select that originates from a 2096 ** VALUES clause. By handling this as a special case, we avoid deep 2097 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2098 ** on a VALUES clause. 2099 ** 2100 ** Because the Select object originates from a VALUES clause: 2101 ** (1) It has no LIMIT or OFFSET 2102 ** (2) All terms are UNION ALL 2103 ** (3) There is no ORDER BY clause 2104 */ 2105 static int multiSelectValues( 2106 Parse *pParse, /* Parsing context */ 2107 Select *p, /* The right-most of SELECTs to be coded */ 2108 SelectDest *pDest /* What to do with query results */ 2109 ){ 2110 Select *pPrior; 2111 int nExpr = p->pEList->nExpr; 2112 int nRow = 1; 2113 int rc = 0; 2114 assert( p->pNext==0 ); 2115 assert( p->selFlags & SF_AllValues ); 2116 do{ 2117 assert( p->selFlags & SF_Values ); 2118 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2119 assert( p->pLimit==0 ); 2120 assert( p->pOffset==0 ); 2121 if( p->pEList->nExpr!=nExpr ){ 2122 selectWrongNumTermsError(pParse, p); 2123 return 1; 2124 } 2125 if( p->pPrior==0 ) break; 2126 assert( p->pPrior->pNext==p ); 2127 p = p->pPrior; 2128 nRow++; 2129 }while(1); 2130 while( p ){ 2131 pPrior = p->pPrior; 2132 p->pPrior = 0; 2133 rc = sqlite3Select(pParse, p, pDest); 2134 p->pPrior = pPrior; 2135 if( rc ) break; 2136 p->nSelectRow = nRow; 2137 p = p->pNext; 2138 } 2139 return rc; 2140 } 2141 2142 /* 2143 ** This routine is called to process a compound query form from 2144 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2145 ** INTERSECT 2146 ** 2147 ** "p" points to the right-most of the two queries. the query on the 2148 ** left is p->pPrior. The left query could also be a compound query 2149 ** in which case this routine will be called recursively. 2150 ** 2151 ** The results of the total query are to be written into a destination 2152 ** of type eDest with parameter iParm. 2153 ** 2154 ** Example 1: Consider a three-way compound SQL statement. 2155 ** 2156 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2157 ** 2158 ** This statement is parsed up as follows: 2159 ** 2160 ** SELECT c FROM t3 2161 ** | 2162 ** `-----> SELECT b FROM t2 2163 ** | 2164 ** `------> SELECT a FROM t1 2165 ** 2166 ** The arrows in the diagram above represent the Select.pPrior pointer. 2167 ** So if this routine is called with p equal to the t3 query, then 2168 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2169 ** 2170 ** Notice that because of the way SQLite parses compound SELECTs, the 2171 ** individual selects always group from left to right. 2172 */ 2173 static int multiSelect( 2174 Parse *pParse, /* Parsing context */ 2175 Select *p, /* The right-most of SELECTs to be coded */ 2176 SelectDest *pDest /* What to do with query results */ 2177 ){ 2178 int rc = SQLITE_OK; /* Success code from a subroutine */ 2179 Select *pPrior; /* Another SELECT immediately to our left */ 2180 Vdbe *v; /* Generate code to this VDBE */ 2181 SelectDest dest; /* Alternative data destination */ 2182 Select *pDelete = 0; /* Chain of simple selects to delete */ 2183 sqlite3 *db; /* Database connection */ 2184 #ifndef SQLITE_OMIT_EXPLAIN 2185 int iSub1 = 0; /* EQP id of left-hand query */ 2186 int iSub2 = 0; /* EQP id of right-hand query */ 2187 #endif 2188 2189 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2190 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2191 */ 2192 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2193 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2194 db = pParse->db; 2195 pPrior = p->pPrior; 2196 dest = *pDest; 2197 if( pPrior->pOrderBy ){ 2198 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2199 selectOpName(p->op)); 2200 rc = 1; 2201 goto multi_select_end; 2202 } 2203 if( pPrior->pLimit ){ 2204 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2205 selectOpName(p->op)); 2206 rc = 1; 2207 goto multi_select_end; 2208 } 2209 2210 v = sqlite3GetVdbe(pParse); 2211 assert( v!=0 ); /* The VDBE already created by calling function */ 2212 2213 /* Create the destination temporary table if necessary 2214 */ 2215 if( dest.eDest==SRT_EphemTab ){ 2216 assert( p->pEList ); 2217 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2218 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2219 dest.eDest = SRT_Table; 2220 } 2221 2222 /* Special handling for a compound-select that originates as a VALUES clause. 2223 */ 2224 if( p->selFlags & SF_AllValues ){ 2225 rc = multiSelectValues(pParse, p, &dest); 2226 goto multi_select_end; 2227 } 2228 2229 /* Make sure all SELECTs in the statement have the same number of elements 2230 ** in their result sets. 2231 */ 2232 assert( p->pEList && pPrior->pEList ); 2233 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2234 selectWrongNumTermsError(pParse, p); 2235 rc = 1; 2236 goto multi_select_end; 2237 } 2238 2239 #ifndef SQLITE_OMIT_CTE 2240 if( p->selFlags & SF_Recursive ){ 2241 generateWithRecursiveQuery(pParse, p, &dest); 2242 }else 2243 #endif 2244 2245 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2246 */ 2247 if( p->pOrderBy ){ 2248 return multiSelectOrderBy(pParse, p, pDest); 2249 }else 2250 2251 /* Generate code for the left and right SELECT statements. 2252 */ 2253 switch( p->op ){ 2254 case TK_ALL: { 2255 int addr = 0; 2256 int nLimit; 2257 assert( !pPrior->pLimit ); 2258 pPrior->iLimit = p->iLimit; 2259 pPrior->iOffset = p->iOffset; 2260 pPrior->pLimit = p->pLimit; 2261 pPrior->pOffset = p->pOffset; 2262 explainSetInteger(iSub1, pParse->iNextSelectId); 2263 rc = sqlite3Select(pParse, pPrior, &dest); 2264 p->pLimit = 0; 2265 p->pOffset = 0; 2266 if( rc ){ 2267 goto multi_select_end; 2268 } 2269 p->pPrior = 0; 2270 p->iLimit = pPrior->iLimit; 2271 p->iOffset = pPrior->iOffset; 2272 if( p->iLimit ){ 2273 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); 2274 VdbeComment((v, "Jump ahead if LIMIT reached")); 2275 } 2276 explainSetInteger(iSub2, pParse->iNextSelectId); 2277 rc = sqlite3Select(pParse, p, &dest); 2278 testcase( rc!=SQLITE_OK ); 2279 pDelete = p->pPrior; 2280 p->pPrior = pPrior; 2281 p->nSelectRow += pPrior->nSelectRow; 2282 if( pPrior->pLimit 2283 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2284 && nLimit>0 && p->nSelectRow > (u64)nLimit 2285 ){ 2286 p->nSelectRow = nLimit; 2287 } 2288 if( addr ){ 2289 sqlite3VdbeJumpHere(v, addr); 2290 } 2291 break; 2292 } 2293 case TK_EXCEPT: 2294 case TK_UNION: { 2295 int unionTab; /* Cursor number of the temporary table holding result */ 2296 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2297 int priorOp; /* The SRT_ operation to apply to prior selects */ 2298 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2299 int addr; 2300 SelectDest uniondest; 2301 2302 testcase( p->op==TK_EXCEPT ); 2303 testcase( p->op==TK_UNION ); 2304 priorOp = SRT_Union; 2305 if( dest.eDest==priorOp ){ 2306 /* We can reuse a temporary table generated by a SELECT to our 2307 ** right. 2308 */ 2309 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2310 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2311 unionTab = dest.iSDParm; 2312 }else{ 2313 /* We will need to create our own temporary table to hold the 2314 ** intermediate results. 2315 */ 2316 unionTab = pParse->nTab++; 2317 assert( p->pOrderBy==0 ); 2318 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2319 assert( p->addrOpenEphm[0] == -1 ); 2320 p->addrOpenEphm[0] = addr; 2321 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2322 assert( p->pEList ); 2323 } 2324 2325 /* Code the SELECT statements to our left 2326 */ 2327 assert( !pPrior->pOrderBy ); 2328 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2329 explainSetInteger(iSub1, pParse->iNextSelectId); 2330 rc = sqlite3Select(pParse, pPrior, &uniondest); 2331 if( rc ){ 2332 goto multi_select_end; 2333 } 2334 2335 /* Code the current SELECT statement 2336 */ 2337 if( p->op==TK_EXCEPT ){ 2338 op = SRT_Except; 2339 }else{ 2340 assert( p->op==TK_UNION ); 2341 op = SRT_Union; 2342 } 2343 p->pPrior = 0; 2344 pLimit = p->pLimit; 2345 p->pLimit = 0; 2346 pOffset = p->pOffset; 2347 p->pOffset = 0; 2348 uniondest.eDest = op; 2349 explainSetInteger(iSub2, pParse->iNextSelectId); 2350 rc = sqlite3Select(pParse, p, &uniondest); 2351 testcase( rc!=SQLITE_OK ); 2352 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2353 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2354 sqlite3ExprListDelete(db, p->pOrderBy); 2355 pDelete = p->pPrior; 2356 p->pPrior = pPrior; 2357 p->pOrderBy = 0; 2358 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2359 sqlite3ExprDelete(db, p->pLimit); 2360 p->pLimit = pLimit; 2361 p->pOffset = pOffset; 2362 p->iLimit = 0; 2363 p->iOffset = 0; 2364 2365 /* Convert the data in the temporary table into whatever form 2366 ** it is that we currently need. 2367 */ 2368 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2369 if( dest.eDest!=priorOp ){ 2370 int iCont, iBreak, iStart; 2371 assert( p->pEList ); 2372 if( dest.eDest==SRT_Output ){ 2373 Select *pFirst = p; 2374 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2375 generateColumnNames(pParse, 0, pFirst->pEList); 2376 } 2377 iBreak = sqlite3VdbeMakeLabel(v); 2378 iCont = sqlite3VdbeMakeLabel(v); 2379 computeLimitRegisters(pParse, p, iBreak); 2380 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2381 iStart = sqlite3VdbeCurrentAddr(v); 2382 selectInnerLoop(pParse, p, p->pEList, unionTab, 2383 0, 0, &dest, iCont, iBreak); 2384 sqlite3VdbeResolveLabel(v, iCont); 2385 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2386 sqlite3VdbeResolveLabel(v, iBreak); 2387 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2388 } 2389 break; 2390 } 2391 default: assert( p->op==TK_INTERSECT ); { 2392 int tab1, tab2; 2393 int iCont, iBreak, iStart; 2394 Expr *pLimit, *pOffset; 2395 int addr; 2396 SelectDest intersectdest; 2397 int r1; 2398 2399 /* INTERSECT is different from the others since it requires 2400 ** two temporary tables. Hence it has its own case. Begin 2401 ** by allocating the tables we will need. 2402 */ 2403 tab1 = pParse->nTab++; 2404 tab2 = pParse->nTab++; 2405 assert( p->pOrderBy==0 ); 2406 2407 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2408 assert( p->addrOpenEphm[0] == -1 ); 2409 p->addrOpenEphm[0] = addr; 2410 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2411 assert( p->pEList ); 2412 2413 /* Code the SELECTs to our left into temporary table "tab1". 2414 */ 2415 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2416 explainSetInteger(iSub1, pParse->iNextSelectId); 2417 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2418 if( rc ){ 2419 goto multi_select_end; 2420 } 2421 2422 /* Code the current SELECT into temporary table "tab2" 2423 */ 2424 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2425 assert( p->addrOpenEphm[1] == -1 ); 2426 p->addrOpenEphm[1] = addr; 2427 p->pPrior = 0; 2428 pLimit = p->pLimit; 2429 p->pLimit = 0; 2430 pOffset = p->pOffset; 2431 p->pOffset = 0; 2432 intersectdest.iSDParm = tab2; 2433 explainSetInteger(iSub2, pParse->iNextSelectId); 2434 rc = sqlite3Select(pParse, p, &intersectdest); 2435 testcase( rc!=SQLITE_OK ); 2436 pDelete = p->pPrior; 2437 p->pPrior = pPrior; 2438 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2439 sqlite3ExprDelete(db, p->pLimit); 2440 p->pLimit = pLimit; 2441 p->pOffset = pOffset; 2442 2443 /* Generate code to take the intersection of the two temporary 2444 ** tables. 2445 */ 2446 assert( p->pEList ); 2447 if( dest.eDest==SRT_Output ){ 2448 Select *pFirst = p; 2449 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2450 generateColumnNames(pParse, 0, pFirst->pEList); 2451 } 2452 iBreak = sqlite3VdbeMakeLabel(v); 2453 iCont = sqlite3VdbeMakeLabel(v); 2454 computeLimitRegisters(pParse, p, iBreak); 2455 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2456 r1 = sqlite3GetTempReg(pParse); 2457 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2458 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2459 sqlite3ReleaseTempReg(pParse, r1); 2460 selectInnerLoop(pParse, p, p->pEList, tab1, 2461 0, 0, &dest, iCont, iBreak); 2462 sqlite3VdbeResolveLabel(v, iCont); 2463 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2464 sqlite3VdbeResolveLabel(v, iBreak); 2465 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2466 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2467 break; 2468 } 2469 } 2470 2471 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2472 2473 /* Compute collating sequences used by 2474 ** temporary tables needed to implement the compound select. 2475 ** Attach the KeyInfo structure to all temporary tables. 2476 ** 2477 ** This section is run by the right-most SELECT statement only. 2478 ** SELECT statements to the left always skip this part. The right-most 2479 ** SELECT might also skip this part if it has no ORDER BY clause and 2480 ** no temp tables are required. 2481 */ 2482 if( p->selFlags & SF_UsesEphemeral ){ 2483 int i; /* Loop counter */ 2484 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2485 Select *pLoop; /* For looping through SELECT statements */ 2486 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2487 int nCol; /* Number of columns in result set */ 2488 2489 assert( p->pNext==0 ); 2490 nCol = p->pEList->nExpr; 2491 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2492 if( !pKeyInfo ){ 2493 rc = SQLITE_NOMEM; 2494 goto multi_select_end; 2495 } 2496 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2497 *apColl = multiSelectCollSeq(pParse, p, i); 2498 if( 0==*apColl ){ 2499 *apColl = db->pDfltColl; 2500 } 2501 } 2502 2503 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2504 for(i=0; i<2; i++){ 2505 int addr = pLoop->addrOpenEphm[i]; 2506 if( addr<0 ){ 2507 /* If [0] is unused then [1] is also unused. So we can 2508 ** always safely abort as soon as the first unused slot is found */ 2509 assert( pLoop->addrOpenEphm[1]<0 ); 2510 break; 2511 } 2512 sqlite3VdbeChangeP2(v, addr, nCol); 2513 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2514 P4_KEYINFO); 2515 pLoop->addrOpenEphm[i] = -1; 2516 } 2517 } 2518 sqlite3KeyInfoUnref(pKeyInfo); 2519 } 2520 2521 multi_select_end: 2522 pDest->iSdst = dest.iSdst; 2523 pDest->nSdst = dest.nSdst; 2524 sqlite3SelectDelete(db, pDelete); 2525 return rc; 2526 } 2527 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2528 2529 /* 2530 ** Code an output subroutine for a coroutine implementation of a 2531 ** SELECT statment. 2532 ** 2533 ** The data to be output is contained in pIn->iSdst. There are 2534 ** pIn->nSdst columns to be output. pDest is where the output should 2535 ** be sent. 2536 ** 2537 ** regReturn is the number of the register holding the subroutine 2538 ** return address. 2539 ** 2540 ** If regPrev>0 then it is the first register in a vector that 2541 ** records the previous output. mem[regPrev] is a flag that is false 2542 ** if there has been no previous output. If regPrev>0 then code is 2543 ** generated to suppress duplicates. pKeyInfo is used for comparing 2544 ** keys. 2545 ** 2546 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2547 ** iBreak. 2548 */ 2549 static int generateOutputSubroutine( 2550 Parse *pParse, /* Parsing context */ 2551 Select *p, /* The SELECT statement */ 2552 SelectDest *pIn, /* Coroutine supplying data */ 2553 SelectDest *pDest, /* Where to send the data */ 2554 int regReturn, /* The return address register */ 2555 int regPrev, /* Previous result register. No uniqueness if 0 */ 2556 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2557 int iBreak /* Jump here if we hit the LIMIT */ 2558 ){ 2559 Vdbe *v = pParse->pVdbe; 2560 int iContinue; 2561 int addr; 2562 2563 addr = sqlite3VdbeCurrentAddr(v); 2564 iContinue = sqlite3VdbeMakeLabel(v); 2565 2566 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2567 */ 2568 if( regPrev ){ 2569 int j1, j2; 2570 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2571 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2572 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2573 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2574 sqlite3VdbeJumpHere(v, j1); 2575 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2576 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2577 } 2578 if( pParse->db->mallocFailed ) return 0; 2579 2580 /* Suppress the first OFFSET entries if there is an OFFSET clause 2581 */ 2582 codeOffset(v, p->iOffset, iContinue); 2583 2584 switch( pDest->eDest ){ 2585 /* Store the result as data using a unique key. 2586 */ 2587 case SRT_Table: 2588 case SRT_EphemTab: { 2589 int r1 = sqlite3GetTempReg(pParse); 2590 int r2 = sqlite3GetTempReg(pParse); 2591 testcase( pDest->eDest==SRT_Table ); 2592 testcase( pDest->eDest==SRT_EphemTab ); 2593 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2594 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2595 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2596 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2597 sqlite3ReleaseTempReg(pParse, r2); 2598 sqlite3ReleaseTempReg(pParse, r1); 2599 break; 2600 } 2601 2602 #ifndef SQLITE_OMIT_SUBQUERY 2603 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2604 ** then there should be a single item on the stack. Write this 2605 ** item into the set table with bogus data. 2606 */ 2607 case SRT_Set: { 2608 int r1; 2609 assert( pIn->nSdst==1 ); 2610 pDest->affSdst = 2611 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2612 r1 = sqlite3GetTempReg(pParse); 2613 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2614 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2615 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2616 sqlite3ReleaseTempReg(pParse, r1); 2617 break; 2618 } 2619 2620 #if 0 /* Never occurs on an ORDER BY query */ 2621 /* If any row exist in the result set, record that fact and abort. 2622 */ 2623 case SRT_Exists: { 2624 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2625 /* The LIMIT clause will terminate the loop for us */ 2626 break; 2627 } 2628 #endif 2629 2630 /* If this is a scalar select that is part of an expression, then 2631 ** store the results in the appropriate memory cell and break out 2632 ** of the scan loop. 2633 */ 2634 case SRT_Mem: { 2635 assert( pIn->nSdst==1 ); 2636 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2637 /* The LIMIT clause will jump out of the loop for us */ 2638 break; 2639 } 2640 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2641 2642 /* The results are stored in a sequence of registers 2643 ** starting at pDest->iSdst. Then the co-routine yields. 2644 */ 2645 case SRT_Coroutine: { 2646 if( pDest->iSdst==0 ){ 2647 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2648 pDest->nSdst = pIn->nSdst; 2649 } 2650 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2651 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2652 break; 2653 } 2654 2655 /* If none of the above, then the result destination must be 2656 ** SRT_Output. This routine is never called with any other 2657 ** destination other than the ones handled above or SRT_Output. 2658 ** 2659 ** For SRT_Output, results are stored in a sequence of registers. 2660 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2661 ** return the next row of result. 2662 */ 2663 default: { 2664 assert( pDest->eDest==SRT_Output ); 2665 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2666 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2667 break; 2668 } 2669 } 2670 2671 /* Jump to the end of the loop if the LIMIT is reached. 2672 */ 2673 if( p->iLimit ){ 2674 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 2675 } 2676 2677 /* Generate the subroutine return 2678 */ 2679 sqlite3VdbeResolveLabel(v, iContinue); 2680 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2681 2682 return addr; 2683 } 2684 2685 /* 2686 ** Alternative compound select code generator for cases when there 2687 ** is an ORDER BY clause. 2688 ** 2689 ** We assume a query of the following form: 2690 ** 2691 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2692 ** 2693 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2694 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2695 ** co-routines. Then run the co-routines in parallel and merge the results 2696 ** into the output. In addition to the two coroutines (called selectA and 2697 ** selectB) there are 7 subroutines: 2698 ** 2699 ** outA: Move the output of the selectA coroutine into the output 2700 ** of the compound query. 2701 ** 2702 ** outB: Move the output of the selectB coroutine into the output 2703 ** of the compound query. (Only generated for UNION and 2704 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2705 ** appears only in B.) 2706 ** 2707 ** AltB: Called when there is data from both coroutines and A<B. 2708 ** 2709 ** AeqB: Called when there is data from both coroutines and A==B. 2710 ** 2711 ** AgtB: Called when there is data from both coroutines and A>B. 2712 ** 2713 ** EofA: Called when data is exhausted from selectA. 2714 ** 2715 ** EofB: Called when data is exhausted from selectB. 2716 ** 2717 ** The implementation of the latter five subroutines depend on which 2718 ** <operator> is used: 2719 ** 2720 ** 2721 ** UNION ALL UNION EXCEPT INTERSECT 2722 ** ------------- ----------------- -------------- ----------------- 2723 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2724 ** 2725 ** AeqB: outA, nextA nextA nextA outA, nextA 2726 ** 2727 ** AgtB: outB, nextB outB, nextB nextB nextB 2728 ** 2729 ** EofA: outB, nextB outB, nextB halt halt 2730 ** 2731 ** EofB: outA, nextA outA, nextA outA, nextA halt 2732 ** 2733 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2734 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2735 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2736 ** following nextX causes a jump to the end of the select processing. 2737 ** 2738 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2739 ** within the output subroutine. The regPrev register set holds the previously 2740 ** output value. A comparison is made against this value and the output 2741 ** is skipped if the next results would be the same as the previous. 2742 ** 2743 ** The implementation plan is to implement the two coroutines and seven 2744 ** subroutines first, then put the control logic at the bottom. Like this: 2745 ** 2746 ** goto Init 2747 ** coA: coroutine for left query (A) 2748 ** coB: coroutine for right query (B) 2749 ** outA: output one row of A 2750 ** outB: output one row of B (UNION and UNION ALL only) 2751 ** EofA: ... 2752 ** EofB: ... 2753 ** AltB: ... 2754 ** AeqB: ... 2755 ** AgtB: ... 2756 ** Init: initialize coroutine registers 2757 ** yield coA 2758 ** if eof(A) goto EofA 2759 ** yield coB 2760 ** if eof(B) goto EofB 2761 ** Cmpr: Compare A, B 2762 ** Jump AltB, AeqB, AgtB 2763 ** End: ... 2764 ** 2765 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2766 ** actually called using Gosub and they do not Return. EofA and EofB loop 2767 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2768 ** and AgtB jump to either L2 or to one of EofA or EofB. 2769 */ 2770 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2771 static int multiSelectOrderBy( 2772 Parse *pParse, /* Parsing context */ 2773 Select *p, /* The right-most of SELECTs to be coded */ 2774 SelectDest *pDest /* What to do with query results */ 2775 ){ 2776 int i, j; /* Loop counters */ 2777 Select *pPrior; /* Another SELECT immediately to our left */ 2778 Vdbe *v; /* Generate code to this VDBE */ 2779 SelectDest destA; /* Destination for coroutine A */ 2780 SelectDest destB; /* Destination for coroutine B */ 2781 int regAddrA; /* Address register for select-A coroutine */ 2782 int regAddrB; /* Address register for select-B coroutine */ 2783 int addrSelectA; /* Address of the select-A coroutine */ 2784 int addrSelectB; /* Address of the select-B coroutine */ 2785 int regOutA; /* Address register for the output-A subroutine */ 2786 int regOutB; /* Address register for the output-B subroutine */ 2787 int addrOutA; /* Address of the output-A subroutine */ 2788 int addrOutB = 0; /* Address of the output-B subroutine */ 2789 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2790 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2791 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2792 int addrAltB; /* Address of the A<B subroutine */ 2793 int addrAeqB; /* Address of the A==B subroutine */ 2794 int addrAgtB; /* Address of the A>B subroutine */ 2795 int regLimitA; /* Limit register for select-A */ 2796 int regLimitB; /* Limit register for select-A */ 2797 int regPrev; /* A range of registers to hold previous output */ 2798 int savedLimit; /* Saved value of p->iLimit */ 2799 int savedOffset; /* Saved value of p->iOffset */ 2800 int labelCmpr; /* Label for the start of the merge algorithm */ 2801 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2802 int j1; /* Jump instructions that get retargetted */ 2803 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2804 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2805 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2806 sqlite3 *db; /* Database connection */ 2807 ExprList *pOrderBy; /* The ORDER BY clause */ 2808 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2809 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2810 #ifndef SQLITE_OMIT_EXPLAIN 2811 int iSub1; /* EQP id of left-hand query */ 2812 int iSub2; /* EQP id of right-hand query */ 2813 #endif 2814 2815 assert( p->pOrderBy!=0 ); 2816 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2817 db = pParse->db; 2818 v = pParse->pVdbe; 2819 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2820 labelEnd = sqlite3VdbeMakeLabel(v); 2821 labelCmpr = sqlite3VdbeMakeLabel(v); 2822 2823 2824 /* Patch up the ORDER BY clause 2825 */ 2826 op = p->op; 2827 pPrior = p->pPrior; 2828 assert( pPrior->pOrderBy==0 ); 2829 pOrderBy = p->pOrderBy; 2830 assert( pOrderBy ); 2831 nOrderBy = pOrderBy->nExpr; 2832 2833 /* For operators other than UNION ALL we have to make sure that 2834 ** the ORDER BY clause covers every term of the result set. Add 2835 ** terms to the ORDER BY clause as necessary. 2836 */ 2837 if( op!=TK_ALL ){ 2838 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2839 struct ExprList_item *pItem; 2840 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2841 assert( pItem->u.x.iOrderByCol>0 ); 2842 if( pItem->u.x.iOrderByCol==i ) break; 2843 } 2844 if( j==nOrderBy ){ 2845 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2846 if( pNew==0 ) return SQLITE_NOMEM; 2847 pNew->flags |= EP_IntValue; 2848 pNew->u.iValue = i; 2849 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2850 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2851 } 2852 } 2853 } 2854 2855 /* Compute the comparison permutation and keyinfo that is used with 2856 ** the permutation used to determine if the next 2857 ** row of results comes from selectA or selectB. Also add explicit 2858 ** collations to the ORDER BY clause terms so that when the subqueries 2859 ** to the right and the left are evaluated, they use the correct 2860 ** collation. 2861 */ 2862 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2863 if( aPermute ){ 2864 struct ExprList_item *pItem; 2865 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2866 assert( pItem->u.x.iOrderByCol>0 2867 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2868 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2869 } 2870 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2871 }else{ 2872 pKeyMerge = 0; 2873 } 2874 2875 /* Reattach the ORDER BY clause to the query. 2876 */ 2877 p->pOrderBy = pOrderBy; 2878 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2879 2880 /* Allocate a range of temporary registers and the KeyInfo needed 2881 ** for the logic that removes duplicate result rows when the 2882 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2883 */ 2884 if( op==TK_ALL ){ 2885 regPrev = 0; 2886 }else{ 2887 int nExpr = p->pEList->nExpr; 2888 assert( nOrderBy>=nExpr || db->mallocFailed ); 2889 regPrev = pParse->nMem+1; 2890 pParse->nMem += nExpr+1; 2891 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2892 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2893 if( pKeyDup ){ 2894 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2895 for(i=0; i<nExpr; i++){ 2896 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2897 pKeyDup->aSortOrder[i] = 0; 2898 } 2899 } 2900 } 2901 2902 /* Separate the left and the right query from one another 2903 */ 2904 p->pPrior = 0; 2905 pPrior->pNext = 0; 2906 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2907 if( pPrior->pPrior==0 ){ 2908 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2909 } 2910 2911 /* Compute the limit registers */ 2912 computeLimitRegisters(pParse, p, labelEnd); 2913 if( p->iLimit && op==TK_ALL ){ 2914 regLimitA = ++pParse->nMem; 2915 regLimitB = ++pParse->nMem; 2916 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2917 regLimitA); 2918 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2919 }else{ 2920 regLimitA = regLimitB = 0; 2921 } 2922 sqlite3ExprDelete(db, p->pLimit); 2923 p->pLimit = 0; 2924 sqlite3ExprDelete(db, p->pOffset); 2925 p->pOffset = 0; 2926 2927 regAddrA = ++pParse->nMem; 2928 regAddrB = ++pParse->nMem; 2929 regOutA = ++pParse->nMem; 2930 regOutB = ++pParse->nMem; 2931 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2932 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2933 2934 /* Generate a coroutine to evaluate the SELECT statement to the 2935 ** left of the compound operator - the "A" select. 2936 */ 2937 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2938 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2939 VdbeComment((v, "left SELECT")); 2940 pPrior->iLimit = regLimitA; 2941 explainSetInteger(iSub1, pParse->iNextSelectId); 2942 sqlite3Select(pParse, pPrior, &destA); 2943 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2944 sqlite3VdbeJumpHere(v, j1); 2945 2946 /* Generate a coroutine to evaluate the SELECT statement on 2947 ** the right - the "B" select 2948 */ 2949 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2950 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2951 VdbeComment((v, "right SELECT")); 2952 savedLimit = p->iLimit; 2953 savedOffset = p->iOffset; 2954 p->iLimit = regLimitB; 2955 p->iOffset = 0; 2956 explainSetInteger(iSub2, pParse->iNextSelectId); 2957 sqlite3Select(pParse, p, &destB); 2958 p->iLimit = savedLimit; 2959 p->iOffset = savedOffset; 2960 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2961 2962 /* Generate a subroutine that outputs the current row of the A 2963 ** select as the next output row of the compound select. 2964 */ 2965 VdbeNoopComment((v, "Output routine for A")); 2966 addrOutA = generateOutputSubroutine(pParse, 2967 p, &destA, pDest, regOutA, 2968 regPrev, pKeyDup, labelEnd); 2969 2970 /* Generate a subroutine that outputs the current row of the B 2971 ** select as the next output row of the compound select. 2972 */ 2973 if( op==TK_ALL || op==TK_UNION ){ 2974 VdbeNoopComment((v, "Output routine for B")); 2975 addrOutB = generateOutputSubroutine(pParse, 2976 p, &destB, pDest, regOutB, 2977 regPrev, pKeyDup, labelEnd); 2978 } 2979 sqlite3KeyInfoUnref(pKeyDup); 2980 2981 /* Generate a subroutine to run when the results from select A 2982 ** are exhausted and only data in select B remains. 2983 */ 2984 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2985 addrEofA_noB = addrEofA = labelEnd; 2986 }else{ 2987 VdbeNoopComment((v, "eof-A subroutine")); 2988 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2989 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2990 VdbeCoverage(v); 2991 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2992 p->nSelectRow += pPrior->nSelectRow; 2993 } 2994 2995 /* Generate a subroutine to run when the results from select B 2996 ** are exhausted and only data in select A remains. 2997 */ 2998 if( op==TK_INTERSECT ){ 2999 addrEofB = addrEofA; 3000 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3001 }else{ 3002 VdbeNoopComment((v, "eof-B subroutine")); 3003 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3004 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3005 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 3006 } 3007 3008 /* Generate code to handle the case of A<B 3009 */ 3010 VdbeNoopComment((v, "A-lt-B subroutine")); 3011 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3012 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3013 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3014 3015 /* Generate code to handle the case of A==B 3016 */ 3017 if( op==TK_ALL ){ 3018 addrAeqB = addrAltB; 3019 }else if( op==TK_INTERSECT ){ 3020 addrAeqB = addrAltB; 3021 addrAltB++; 3022 }else{ 3023 VdbeNoopComment((v, "A-eq-B subroutine")); 3024 addrAeqB = 3025 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3026 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3027 } 3028 3029 /* Generate code to handle the case of A>B 3030 */ 3031 VdbeNoopComment((v, "A-gt-B subroutine")); 3032 addrAgtB = sqlite3VdbeCurrentAddr(v); 3033 if( op==TK_ALL || op==TK_UNION ){ 3034 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3035 } 3036 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3037 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3038 3039 /* This code runs once to initialize everything. 3040 */ 3041 sqlite3VdbeJumpHere(v, j1); 3042 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3043 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3044 3045 /* Implement the main merge loop 3046 */ 3047 sqlite3VdbeResolveLabel(v, labelCmpr); 3048 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3049 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3050 (char*)pKeyMerge, P4_KEYINFO); 3051 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3052 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3053 3054 /* Jump to the this point in order to terminate the query. 3055 */ 3056 sqlite3VdbeResolveLabel(v, labelEnd); 3057 3058 /* Set the number of output columns 3059 */ 3060 if( pDest->eDest==SRT_Output ){ 3061 Select *pFirst = pPrior; 3062 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3063 generateColumnNames(pParse, 0, pFirst->pEList); 3064 } 3065 3066 /* Reassembly the compound query so that it will be freed correctly 3067 ** by the calling function */ 3068 if( p->pPrior ){ 3069 sqlite3SelectDelete(db, p->pPrior); 3070 } 3071 p->pPrior = pPrior; 3072 pPrior->pNext = p; 3073 3074 /*** TBD: Insert subroutine calls to close cursors on incomplete 3075 **** subqueries ****/ 3076 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3077 return SQLITE_OK; 3078 } 3079 #endif 3080 3081 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3082 /* Forward Declarations */ 3083 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3084 static void substSelect(sqlite3*, Select *, int, ExprList *); 3085 3086 /* 3087 ** Scan through the expression pExpr. Replace every reference to 3088 ** a column in table number iTable with a copy of the iColumn-th 3089 ** entry in pEList. (But leave references to the ROWID column 3090 ** unchanged.) 3091 ** 3092 ** This routine is part of the flattening procedure. A subquery 3093 ** whose result set is defined by pEList appears as entry in the 3094 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3095 ** FORM clause entry is iTable. This routine make the necessary 3096 ** changes to pExpr so that it refers directly to the source table 3097 ** of the subquery rather the result set of the subquery. 3098 */ 3099 static Expr *substExpr( 3100 sqlite3 *db, /* Report malloc errors to this connection */ 3101 Expr *pExpr, /* Expr in which substitution occurs */ 3102 int iTable, /* Table to be substituted */ 3103 ExprList *pEList /* Substitute expressions */ 3104 ){ 3105 if( pExpr==0 ) return 0; 3106 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3107 if( pExpr->iColumn<0 ){ 3108 pExpr->op = TK_NULL; 3109 }else{ 3110 Expr *pNew; 3111 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3112 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3113 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3114 sqlite3ExprDelete(db, pExpr); 3115 pExpr = pNew; 3116 } 3117 }else{ 3118 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3119 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3120 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3121 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3122 }else{ 3123 substExprList(db, pExpr->x.pList, iTable, pEList); 3124 } 3125 } 3126 return pExpr; 3127 } 3128 static void substExprList( 3129 sqlite3 *db, /* Report malloc errors here */ 3130 ExprList *pList, /* List to scan and in which to make substitutes */ 3131 int iTable, /* Table to be substituted */ 3132 ExprList *pEList /* Substitute values */ 3133 ){ 3134 int i; 3135 if( pList==0 ) return; 3136 for(i=0; i<pList->nExpr; i++){ 3137 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3138 } 3139 } 3140 static void substSelect( 3141 sqlite3 *db, /* Report malloc errors here */ 3142 Select *p, /* SELECT statement in which to make substitutions */ 3143 int iTable, /* Table to be replaced */ 3144 ExprList *pEList /* Substitute values */ 3145 ){ 3146 SrcList *pSrc; 3147 struct SrcList_item *pItem; 3148 int i; 3149 if( !p ) return; 3150 substExprList(db, p->pEList, iTable, pEList); 3151 substExprList(db, p->pGroupBy, iTable, pEList); 3152 substExprList(db, p->pOrderBy, iTable, pEList); 3153 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3154 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3155 substSelect(db, p->pPrior, iTable, pEList); 3156 pSrc = p->pSrc; 3157 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3158 if( ALWAYS(pSrc) ){ 3159 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3160 substSelect(db, pItem->pSelect, iTable, pEList); 3161 } 3162 } 3163 } 3164 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3165 3166 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3167 /* 3168 ** This routine attempts to flatten subqueries as a performance optimization. 3169 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3170 ** 3171 ** To understand the concept of flattening, consider the following 3172 ** query: 3173 ** 3174 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3175 ** 3176 ** The default way of implementing this query is to execute the 3177 ** subquery first and store the results in a temporary table, then 3178 ** run the outer query on that temporary table. This requires two 3179 ** passes over the data. Furthermore, because the temporary table 3180 ** has no indices, the WHERE clause on the outer query cannot be 3181 ** optimized. 3182 ** 3183 ** This routine attempts to rewrite queries such as the above into 3184 ** a single flat select, like this: 3185 ** 3186 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3187 ** 3188 ** The code generated for this simplification gives the same result 3189 ** but only has to scan the data once. And because indices might 3190 ** exist on the table t1, a complete scan of the data might be 3191 ** avoided. 3192 ** 3193 ** Flattening is only attempted if all of the following are true: 3194 ** 3195 ** (1) The subquery and the outer query do not both use aggregates. 3196 ** 3197 ** (2) The subquery is not an aggregate or the outer query is not a join. 3198 ** 3199 ** (3) The subquery is not the right operand of a left outer join 3200 ** (Originally ticket #306. Strengthened by ticket #3300) 3201 ** 3202 ** (4) The subquery is not DISTINCT. 3203 ** 3204 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3205 ** sub-queries that were excluded from this optimization. Restriction 3206 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3207 ** 3208 ** (6) The subquery does not use aggregates or the outer query is not 3209 ** DISTINCT. 3210 ** 3211 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3212 ** A FROM clause, consider adding a FROM close with the special 3213 ** table sqlite_once that consists of a single row containing a 3214 ** single NULL. 3215 ** 3216 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3217 ** 3218 ** (9) The subquery does not use LIMIT or the outer query does not use 3219 ** aggregates. 3220 ** 3221 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3222 ** accidently carried the comment forward until 2014-09-15. Original 3223 ** text: "The subquery does not use aggregates or the outer query does not 3224 ** use LIMIT." 3225 ** 3226 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3227 ** 3228 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3229 ** a separate restriction deriving from ticket #350. 3230 ** 3231 ** (13) The subquery and outer query do not both use LIMIT. 3232 ** 3233 ** (14) The subquery does not use OFFSET. 3234 ** 3235 ** (15) The outer query is not part of a compound select or the 3236 ** subquery does not have a LIMIT clause. 3237 ** (See ticket #2339 and ticket [02a8e81d44]). 3238 ** 3239 ** (16) The outer query is not an aggregate or the subquery does 3240 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3241 ** until we introduced the group_concat() function. 3242 ** 3243 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3244 ** compound clause made up entirely of non-aggregate queries, and 3245 ** the parent query: 3246 ** 3247 ** * is not itself part of a compound select, 3248 ** * is not an aggregate or DISTINCT query, and 3249 ** * is not a join 3250 ** 3251 ** The parent and sub-query may contain WHERE clauses. Subject to 3252 ** rules (11), (13) and (14), they may also contain ORDER BY, 3253 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3254 ** operator other than UNION ALL because all the other compound 3255 ** operators have an implied DISTINCT which is disallowed by 3256 ** restriction (4). 3257 ** 3258 ** Also, each component of the sub-query must return the same number 3259 ** of result columns. This is actually a requirement for any compound 3260 ** SELECT statement, but all the code here does is make sure that no 3261 ** such (illegal) sub-query is flattened. The caller will detect the 3262 ** syntax error and return a detailed message. 3263 ** 3264 ** (18) If the sub-query is a compound select, then all terms of the 3265 ** ORDER by clause of the parent must be simple references to 3266 ** columns of the sub-query. 3267 ** 3268 ** (19) The subquery does not use LIMIT or the outer query does not 3269 ** have a WHERE clause. 3270 ** 3271 ** (20) If the sub-query is a compound select, then it must not use 3272 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3273 ** somewhat by saying that the terms of the ORDER BY clause must 3274 ** appear as unmodified result columns in the outer query. But we 3275 ** have other optimizations in mind to deal with that case. 3276 ** 3277 ** (21) The subquery does not use LIMIT or the outer query is not 3278 ** DISTINCT. (See ticket [752e1646fc]). 3279 ** 3280 ** (22) The subquery is not a recursive CTE. 3281 ** 3282 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3283 ** compound query. This restriction is because transforming the 3284 ** parent to a compound query confuses the code that handles 3285 ** recursive queries in multiSelect(). 3286 ** 3287 ** (24) The subquery is not an aggregate that uses the built-in min() or 3288 ** or max() functions. (Without this restriction, a query like: 3289 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3290 ** return the value X for which Y was maximal.) 3291 ** 3292 ** 3293 ** In this routine, the "p" parameter is a pointer to the outer query. 3294 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3295 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3296 ** 3297 ** If flattening is not attempted, this routine is a no-op and returns 0. 3298 ** If flattening is attempted this routine returns 1. 3299 ** 3300 ** All of the expression analysis must occur on both the outer query and 3301 ** the subquery before this routine runs. 3302 */ 3303 static int flattenSubquery( 3304 Parse *pParse, /* Parsing context */ 3305 Select *p, /* The parent or outer SELECT statement */ 3306 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3307 int isAgg, /* True if outer SELECT uses aggregate functions */ 3308 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3309 ){ 3310 const char *zSavedAuthContext = pParse->zAuthContext; 3311 Select *pParent; 3312 Select *pSub; /* The inner query or "subquery" */ 3313 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3314 SrcList *pSrc; /* The FROM clause of the outer query */ 3315 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3316 ExprList *pList; /* The result set of the outer query */ 3317 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3318 int i; /* Loop counter */ 3319 Expr *pWhere; /* The WHERE clause */ 3320 struct SrcList_item *pSubitem; /* The subquery */ 3321 sqlite3 *db = pParse->db; 3322 3323 /* Check to see if flattening is permitted. Return 0 if not. 3324 */ 3325 assert( p!=0 ); 3326 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3327 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3328 pSrc = p->pSrc; 3329 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3330 pSubitem = &pSrc->a[iFrom]; 3331 iParent = pSubitem->iCursor; 3332 pSub = pSubitem->pSelect; 3333 assert( pSub!=0 ); 3334 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3335 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3336 pSubSrc = pSub->pSrc; 3337 assert( pSubSrc ); 3338 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3339 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3340 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3341 ** became arbitrary expressions, we were forced to add restrictions (13) 3342 ** and (14). */ 3343 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3344 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3345 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3346 return 0; /* Restriction (15) */ 3347 } 3348 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3349 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3350 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3351 return 0; /* Restrictions (8)(9) */ 3352 } 3353 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3354 return 0; /* Restriction (6) */ 3355 } 3356 if( p->pOrderBy && pSub->pOrderBy ){ 3357 return 0; /* Restriction (11) */ 3358 } 3359 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3360 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3361 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3362 return 0; /* Restriction (21) */ 3363 } 3364 testcase( pSub->selFlags & SF_Recursive ); 3365 testcase( pSub->selFlags & SF_MinMaxAgg ); 3366 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3367 return 0; /* Restrictions (22) and (24) */ 3368 } 3369 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3370 return 0; /* Restriction (23) */ 3371 } 3372 3373 /* OBSOLETE COMMENT 1: 3374 ** Restriction 3: If the subquery is a join, make sure the subquery is 3375 ** not used as the right operand of an outer join. Examples of why this 3376 ** is not allowed: 3377 ** 3378 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3379 ** 3380 ** If we flatten the above, we would get 3381 ** 3382 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3383 ** 3384 ** which is not at all the same thing. 3385 ** 3386 ** OBSOLETE COMMENT 2: 3387 ** Restriction 12: If the subquery is the right operand of a left outer 3388 ** join, make sure the subquery has no WHERE clause. 3389 ** An examples of why this is not allowed: 3390 ** 3391 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3392 ** 3393 ** If we flatten the above, we would get 3394 ** 3395 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3396 ** 3397 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3398 ** effectively converts the OUTER JOIN into an INNER JOIN. 3399 ** 3400 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3401 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3402 ** is fraught with danger. Best to avoid the whole thing. If the 3403 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3404 */ 3405 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3406 return 0; 3407 } 3408 3409 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3410 ** use only the UNION ALL operator. And none of the simple select queries 3411 ** that make up the compound SELECT are allowed to be aggregate or distinct 3412 ** queries. 3413 */ 3414 if( pSub->pPrior ){ 3415 if( pSub->pOrderBy ){ 3416 return 0; /* Restriction 20 */ 3417 } 3418 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3419 return 0; 3420 } 3421 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3422 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3423 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3424 assert( pSub->pSrc!=0 ); 3425 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3426 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3427 || pSub1->pSrc->nSrc<1 3428 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3429 ){ 3430 return 0; 3431 } 3432 testcase( pSub1->pSrc->nSrc>1 ); 3433 } 3434 3435 /* Restriction 18. */ 3436 if( p->pOrderBy ){ 3437 int ii; 3438 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3439 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3440 } 3441 } 3442 } 3443 3444 /***** If we reach this point, flattening is permitted. *****/ 3445 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3446 pSub->zSelName, pSub, iFrom)); 3447 3448 /* Authorize the subquery */ 3449 pParse->zAuthContext = pSubitem->zName; 3450 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3451 testcase( i==SQLITE_DENY ); 3452 pParse->zAuthContext = zSavedAuthContext; 3453 3454 /* If the sub-query is a compound SELECT statement, then (by restrictions 3455 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3456 ** be of the form: 3457 ** 3458 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3459 ** 3460 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3461 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3462 ** OFFSET clauses and joins them to the left-hand-side of the original 3463 ** using UNION ALL operators. In this case N is the number of simple 3464 ** select statements in the compound sub-query. 3465 ** 3466 ** Example: 3467 ** 3468 ** SELECT a+1 FROM ( 3469 ** SELECT x FROM tab 3470 ** UNION ALL 3471 ** SELECT y FROM tab 3472 ** UNION ALL 3473 ** SELECT abs(z*2) FROM tab2 3474 ** ) WHERE a!=5 ORDER BY 1 3475 ** 3476 ** Transformed into: 3477 ** 3478 ** SELECT x+1 FROM tab WHERE x+1!=5 3479 ** UNION ALL 3480 ** SELECT y+1 FROM tab WHERE y+1!=5 3481 ** UNION ALL 3482 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3483 ** ORDER BY 1 3484 ** 3485 ** We call this the "compound-subquery flattening". 3486 */ 3487 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3488 Select *pNew; 3489 ExprList *pOrderBy = p->pOrderBy; 3490 Expr *pLimit = p->pLimit; 3491 Expr *pOffset = p->pOffset; 3492 Select *pPrior = p->pPrior; 3493 p->pOrderBy = 0; 3494 p->pSrc = 0; 3495 p->pPrior = 0; 3496 p->pLimit = 0; 3497 p->pOffset = 0; 3498 pNew = sqlite3SelectDup(db, p, 0); 3499 sqlite3SelectSetName(pNew, pSub->zSelName); 3500 p->pOffset = pOffset; 3501 p->pLimit = pLimit; 3502 p->pOrderBy = pOrderBy; 3503 p->pSrc = pSrc; 3504 p->op = TK_ALL; 3505 if( pNew==0 ){ 3506 p->pPrior = pPrior; 3507 }else{ 3508 pNew->pPrior = pPrior; 3509 if( pPrior ) pPrior->pNext = pNew; 3510 pNew->pNext = p; 3511 p->pPrior = pNew; 3512 SELECTTRACE(2,pParse,p, 3513 ("compound-subquery flattener creates %s.%p as peer\n", 3514 pNew->zSelName, pNew)); 3515 } 3516 if( db->mallocFailed ) return 1; 3517 } 3518 3519 /* Begin flattening the iFrom-th entry of the FROM clause 3520 ** in the outer query. 3521 */ 3522 pSub = pSub1 = pSubitem->pSelect; 3523 3524 /* Delete the transient table structure associated with the 3525 ** subquery 3526 */ 3527 sqlite3DbFree(db, pSubitem->zDatabase); 3528 sqlite3DbFree(db, pSubitem->zName); 3529 sqlite3DbFree(db, pSubitem->zAlias); 3530 pSubitem->zDatabase = 0; 3531 pSubitem->zName = 0; 3532 pSubitem->zAlias = 0; 3533 pSubitem->pSelect = 0; 3534 3535 /* Defer deleting the Table object associated with the 3536 ** subquery until code generation is 3537 ** complete, since there may still exist Expr.pTab entries that 3538 ** refer to the subquery even after flattening. Ticket #3346. 3539 ** 3540 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3541 */ 3542 if( ALWAYS(pSubitem->pTab!=0) ){ 3543 Table *pTabToDel = pSubitem->pTab; 3544 if( pTabToDel->nRef==1 ){ 3545 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3546 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3547 pToplevel->pZombieTab = pTabToDel; 3548 }else{ 3549 pTabToDel->nRef--; 3550 } 3551 pSubitem->pTab = 0; 3552 } 3553 3554 /* The following loop runs once for each term in a compound-subquery 3555 ** flattening (as described above). If we are doing a different kind 3556 ** of flattening - a flattening other than a compound-subquery flattening - 3557 ** then this loop only runs once. 3558 ** 3559 ** This loop moves all of the FROM elements of the subquery into the 3560 ** the FROM clause of the outer query. Before doing this, remember 3561 ** the cursor number for the original outer query FROM element in 3562 ** iParent. The iParent cursor will never be used. Subsequent code 3563 ** will scan expressions looking for iParent references and replace 3564 ** those references with expressions that resolve to the subquery FROM 3565 ** elements we are now copying in. 3566 */ 3567 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3568 int nSubSrc; 3569 u8 jointype = 0; 3570 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3571 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3572 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3573 3574 if( pSrc ){ 3575 assert( pParent==p ); /* First time through the loop */ 3576 jointype = pSubitem->jointype; 3577 }else{ 3578 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3579 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3580 if( pSrc==0 ){ 3581 assert( db->mallocFailed ); 3582 break; 3583 } 3584 } 3585 3586 /* The subquery uses a single slot of the FROM clause of the outer 3587 ** query. If the subquery has more than one element in its FROM clause, 3588 ** then expand the outer query to make space for it to hold all elements 3589 ** of the subquery. 3590 ** 3591 ** Example: 3592 ** 3593 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3594 ** 3595 ** The outer query has 3 slots in its FROM clause. One slot of the 3596 ** outer query (the middle slot) is used by the subquery. The next 3597 ** block of code will expand the out query to 4 slots. The middle 3598 ** slot is expanded to two slots in order to make space for the 3599 ** two elements in the FROM clause of the subquery. 3600 */ 3601 if( nSubSrc>1 ){ 3602 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3603 if( db->mallocFailed ){ 3604 break; 3605 } 3606 } 3607 3608 /* Transfer the FROM clause terms from the subquery into the 3609 ** outer query. 3610 */ 3611 for(i=0; i<nSubSrc; i++){ 3612 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3613 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3614 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3615 } 3616 pSrc->a[iFrom].jointype = jointype; 3617 3618 /* Now begin substituting subquery result set expressions for 3619 ** references to the iParent in the outer query. 3620 ** 3621 ** Example: 3622 ** 3623 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3624 ** \ \_____________ subquery __________/ / 3625 ** \_____________________ outer query ______________________________/ 3626 ** 3627 ** We look at every expression in the outer query and every place we see 3628 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3629 */ 3630 pList = pParent->pEList; 3631 for(i=0; i<pList->nExpr; i++){ 3632 if( pList->a[i].zName==0 ){ 3633 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3634 sqlite3Dequote(zName); 3635 pList->a[i].zName = zName; 3636 } 3637 } 3638 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3639 if( isAgg ){ 3640 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3641 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3642 } 3643 if( pSub->pOrderBy ){ 3644 /* At this point, any non-zero iOrderByCol values indicate that the 3645 ** ORDER BY column expression is identical to the iOrderByCol'th 3646 ** expression returned by SELECT statement pSub. Since these values 3647 ** do not necessarily correspond to columns in SELECT statement pParent, 3648 ** zero them before transfering the ORDER BY clause. 3649 ** 3650 ** Not doing this may cause an error if a subsequent call to this 3651 ** function attempts to flatten a compound sub-query into pParent 3652 ** (the only way this can happen is if the compound sub-query is 3653 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3654 ExprList *pOrderBy = pSub->pOrderBy; 3655 for(i=0; i<pOrderBy->nExpr; i++){ 3656 pOrderBy->a[i].u.x.iOrderByCol = 0; 3657 } 3658 assert( pParent->pOrderBy==0 ); 3659 assert( pSub->pPrior==0 ); 3660 pParent->pOrderBy = pOrderBy; 3661 pSub->pOrderBy = 0; 3662 }else if( pParent->pOrderBy ){ 3663 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3664 } 3665 if( pSub->pWhere ){ 3666 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3667 }else{ 3668 pWhere = 0; 3669 } 3670 if( subqueryIsAgg ){ 3671 assert( pParent->pHaving==0 ); 3672 pParent->pHaving = pParent->pWhere; 3673 pParent->pWhere = pWhere; 3674 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3675 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3676 sqlite3ExprDup(db, pSub->pHaving, 0)); 3677 assert( pParent->pGroupBy==0 ); 3678 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3679 }else{ 3680 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3681 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3682 } 3683 3684 /* The flattened query is distinct if either the inner or the 3685 ** outer query is distinct. 3686 */ 3687 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3688 3689 /* 3690 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3691 ** 3692 ** One is tempted to try to add a and b to combine the limits. But this 3693 ** does not work if either limit is negative. 3694 */ 3695 if( pSub->pLimit ){ 3696 pParent->pLimit = pSub->pLimit; 3697 pSub->pLimit = 0; 3698 } 3699 } 3700 3701 /* Finially, delete what is left of the subquery and return 3702 ** success. 3703 */ 3704 sqlite3SelectDelete(db, pSub1); 3705 3706 #if SELECTTRACE_ENABLED 3707 if( sqlite3SelectTrace & 0x100 ){ 3708 sqlite3DebugPrintf("After flattening:\n"); 3709 sqlite3TreeViewSelect(0, p, 0); 3710 } 3711 #endif 3712 3713 return 1; 3714 } 3715 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3716 3717 /* 3718 ** Based on the contents of the AggInfo structure indicated by the first 3719 ** argument, this function checks if the following are true: 3720 ** 3721 ** * the query contains just a single aggregate function, 3722 ** * the aggregate function is either min() or max(), and 3723 ** * the argument to the aggregate function is a column value. 3724 ** 3725 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3726 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3727 ** list of arguments passed to the aggregate before returning. 3728 ** 3729 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3730 ** WHERE_ORDERBY_NORMAL is returned. 3731 */ 3732 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3733 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3734 3735 *ppMinMax = 0; 3736 if( pAggInfo->nFunc==1 ){ 3737 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3738 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3739 3740 assert( pExpr->op==TK_AGG_FUNCTION ); 3741 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3742 const char *zFunc = pExpr->u.zToken; 3743 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3744 eRet = WHERE_ORDERBY_MIN; 3745 *ppMinMax = pEList; 3746 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3747 eRet = WHERE_ORDERBY_MAX; 3748 *ppMinMax = pEList; 3749 } 3750 } 3751 } 3752 3753 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3754 return eRet; 3755 } 3756 3757 /* 3758 ** The select statement passed as the first argument is an aggregate query. 3759 ** The second argument is the associated aggregate-info object. This 3760 ** function tests if the SELECT is of the form: 3761 ** 3762 ** SELECT count(*) FROM <tbl> 3763 ** 3764 ** where table is a database table, not a sub-select or view. If the query 3765 ** does match this pattern, then a pointer to the Table object representing 3766 ** <tbl> is returned. Otherwise, 0 is returned. 3767 */ 3768 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3769 Table *pTab; 3770 Expr *pExpr; 3771 3772 assert( !p->pGroupBy ); 3773 3774 if( p->pWhere || p->pEList->nExpr!=1 3775 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3776 ){ 3777 return 0; 3778 } 3779 pTab = p->pSrc->a[0].pTab; 3780 pExpr = p->pEList->a[0].pExpr; 3781 assert( pTab && !pTab->pSelect && pExpr ); 3782 3783 if( IsVirtual(pTab) ) return 0; 3784 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3785 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3786 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3787 if( pExpr->flags&EP_Distinct ) return 0; 3788 3789 return pTab; 3790 } 3791 3792 /* 3793 ** If the source-list item passed as an argument was augmented with an 3794 ** INDEXED BY clause, then try to locate the specified index. If there 3795 ** was such a clause and the named index cannot be found, return 3796 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3797 ** pFrom->pIndex and return SQLITE_OK. 3798 */ 3799 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3800 if( pFrom->pTab && pFrom->zIndex ){ 3801 Table *pTab = pFrom->pTab; 3802 char *zIndex = pFrom->zIndex; 3803 Index *pIdx; 3804 for(pIdx=pTab->pIndex; 3805 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3806 pIdx=pIdx->pNext 3807 ); 3808 if( !pIdx ){ 3809 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3810 pParse->checkSchema = 1; 3811 return SQLITE_ERROR; 3812 } 3813 pFrom->pIndex = pIdx; 3814 } 3815 return SQLITE_OK; 3816 } 3817 /* 3818 ** Detect compound SELECT statements that use an ORDER BY clause with 3819 ** an alternative collating sequence. 3820 ** 3821 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3822 ** 3823 ** These are rewritten as a subquery: 3824 ** 3825 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3826 ** ORDER BY ... COLLATE ... 3827 ** 3828 ** This transformation is necessary because the multiSelectOrderBy() routine 3829 ** above that generates the code for a compound SELECT with an ORDER BY clause 3830 ** uses a merge algorithm that requires the same collating sequence on the 3831 ** result columns as on the ORDER BY clause. See ticket 3832 ** http://www.sqlite.org/src/info/6709574d2a 3833 ** 3834 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3835 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3836 ** there are COLLATE terms in the ORDER BY. 3837 */ 3838 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3839 int i; 3840 Select *pNew; 3841 Select *pX; 3842 sqlite3 *db; 3843 struct ExprList_item *a; 3844 SrcList *pNewSrc; 3845 Parse *pParse; 3846 Token dummy; 3847 3848 if( p->pPrior==0 ) return WRC_Continue; 3849 if( p->pOrderBy==0 ) return WRC_Continue; 3850 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3851 if( pX==0 ) return WRC_Continue; 3852 a = p->pOrderBy->a; 3853 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3854 if( a[i].pExpr->flags & EP_Collate ) break; 3855 } 3856 if( i<0 ) return WRC_Continue; 3857 3858 /* If we reach this point, that means the transformation is required. */ 3859 3860 pParse = pWalker->pParse; 3861 db = pParse->db; 3862 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3863 if( pNew==0 ) return WRC_Abort; 3864 memset(&dummy, 0, sizeof(dummy)); 3865 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3866 if( pNewSrc==0 ) return WRC_Abort; 3867 *pNew = *p; 3868 p->pSrc = pNewSrc; 3869 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3870 p->op = TK_SELECT; 3871 p->pWhere = 0; 3872 pNew->pGroupBy = 0; 3873 pNew->pHaving = 0; 3874 pNew->pOrderBy = 0; 3875 p->pPrior = 0; 3876 p->pNext = 0; 3877 p->selFlags &= ~SF_Compound; 3878 assert( pNew->pPrior!=0 ); 3879 pNew->pPrior->pNext = pNew; 3880 pNew->pLimit = 0; 3881 pNew->pOffset = 0; 3882 return WRC_Continue; 3883 } 3884 3885 #ifndef SQLITE_OMIT_CTE 3886 /* 3887 ** Argument pWith (which may be NULL) points to a linked list of nested 3888 ** WITH contexts, from inner to outermost. If the table identified by 3889 ** FROM clause element pItem is really a common-table-expression (CTE) 3890 ** then return a pointer to the CTE definition for that table. Otherwise 3891 ** return NULL. 3892 ** 3893 ** If a non-NULL value is returned, set *ppContext to point to the With 3894 ** object that the returned CTE belongs to. 3895 */ 3896 static struct Cte *searchWith( 3897 With *pWith, /* Current outermost WITH clause */ 3898 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3899 With **ppContext /* OUT: WITH clause return value belongs to */ 3900 ){ 3901 const char *zName; 3902 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3903 With *p; 3904 for(p=pWith; p; p=p->pOuter){ 3905 int i; 3906 for(i=0; i<p->nCte; i++){ 3907 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3908 *ppContext = p; 3909 return &p->a[i]; 3910 } 3911 } 3912 } 3913 } 3914 return 0; 3915 } 3916 3917 /* The code generator maintains a stack of active WITH clauses 3918 ** with the inner-most WITH clause being at the top of the stack. 3919 ** 3920 ** This routine pushes the WITH clause passed as the second argument 3921 ** onto the top of the stack. If argument bFree is true, then this 3922 ** WITH clause will never be popped from the stack. In this case it 3923 ** should be freed along with the Parse object. In other cases, when 3924 ** bFree==0, the With object will be freed along with the SELECT 3925 ** statement with which it is associated. 3926 */ 3927 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3928 assert( bFree==0 || pParse->pWith==0 ); 3929 if( pWith ){ 3930 pWith->pOuter = pParse->pWith; 3931 pParse->pWith = pWith; 3932 pParse->bFreeWith = bFree; 3933 } 3934 } 3935 3936 /* 3937 ** This function checks if argument pFrom refers to a CTE declared by 3938 ** a WITH clause on the stack currently maintained by the parser. And, 3939 ** if currently processing a CTE expression, if it is a recursive 3940 ** reference to the current CTE. 3941 ** 3942 ** If pFrom falls into either of the two categories above, pFrom->pTab 3943 ** and other fields are populated accordingly. The caller should check 3944 ** (pFrom->pTab!=0) to determine whether or not a successful match 3945 ** was found. 3946 ** 3947 ** Whether or not a match is found, SQLITE_OK is returned if no error 3948 ** occurs. If an error does occur, an error message is stored in the 3949 ** parser and some error code other than SQLITE_OK returned. 3950 */ 3951 static int withExpand( 3952 Walker *pWalker, 3953 struct SrcList_item *pFrom 3954 ){ 3955 Parse *pParse = pWalker->pParse; 3956 sqlite3 *db = pParse->db; 3957 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3958 With *pWith; /* WITH clause that pCte belongs to */ 3959 3960 assert( pFrom->pTab==0 ); 3961 3962 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3963 if( pCte ){ 3964 Table *pTab; 3965 ExprList *pEList; 3966 Select *pSel; 3967 Select *pLeft; /* Left-most SELECT statement */ 3968 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3969 With *pSavedWith; /* Initial value of pParse->pWith */ 3970 3971 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3972 ** recursive reference to CTE pCte. Leave an error in pParse and return 3973 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3974 ** In this case, proceed. */ 3975 if( pCte->zErr ){ 3976 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3977 return SQLITE_ERROR; 3978 } 3979 3980 assert( pFrom->pTab==0 ); 3981 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3982 if( pTab==0 ) return WRC_Abort; 3983 pTab->nRef = 1; 3984 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3985 pTab->iPKey = -1; 3986 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 3987 pTab->tabFlags |= TF_Ephemeral; 3988 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3989 if( db->mallocFailed ) return SQLITE_NOMEM; 3990 assert( pFrom->pSelect ); 3991 3992 /* Check if this is a recursive CTE. */ 3993 pSel = pFrom->pSelect; 3994 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3995 if( bMayRecursive ){ 3996 int i; 3997 SrcList *pSrc = pFrom->pSelect->pSrc; 3998 for(i=0; i<pSrc->nSrc; i++){ 3999 struct SrcList_item *pItem = &pSrc->a[i]; 4000 if( pItem->zDatabase==0 4001 && pItem->zName!=0 4002 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4003 ){ 4004 pItem->pTab = pTab; 4005 pItem->isRecursive = 1; 4006 pTab->nRef++; 4007 pSel->selFlags |= SF_Recursive; 4008 } 4009 } 4010 } 4011 4012 /* Only one recursive reference is permitted. */ 4013 if( pTab->nRef>2 ){ 4014 sqlite3ErrorMsg( 4015 pParse, "multiple references to recursive table: %s", pCte->zName 4016 ); 4017 return SQLITE_ERROR; 4018 } 4019 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4020 4021 pCte->zErr = "circular reference: %s"; 4022 pSavedWith = pParse->pWith; 4023 pParse->pWith = pWith; 4024 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4025 4026 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4027 pEList = pLeft->pEList; 4028 if( pCte->pCols ){ 4029 if( pEList->nExpr!=pCte->pCols->nExpr ){ 4030 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4031 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4032 ); 4033 pParse->pWith = pSavedWith; 4034 return SQLITE_ERROR; 4035 } 4036 pEList = pCte->pCols; 4037 } 4038 4039 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4040 if( bMayRecursive ){ 4041 if( pSel->selFlags & SF_Recursive ){ 4042 pCte->zErr = "multiple recursive references: %s"; 4043 }else{ 4044 pCte->zErr = "recursive reference in a subquery: %s"; 4045 } 4046 sqlite3WalkSelect(pWalker, pSel); 4047 } 4048 pCte->zErr = 0; 4049 pParse->pWith = pSavedWith; 4050 } 4051 4052 return SQLITE_OK; 4053 } 4054 #endif 4055 4056 #ifndef SQLITE_OMIT_CTE 4057 /* 4058 ** If the SELECT passed as the second argument has an associated WITH 4059 ** clause, pop it from the stack stored as part of the Parse object. 4060 ** 4061 ** This function is used as the xSelectCallback2() callback by 4062 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4063 ** names and other FROM clause elements. 4064 */ 4065 static void selectPopWith(Walker *pWalker, Select *p){ 4066 Parse *pParse = pWalker->pParse; 4067 With *pWith = findRightmost(p)->pWith; 4068 if( pWith!=0 ){ 4069 assert( pParse->pWith==pWith ); 4070 pParse->pWith = pWith->pOuter; 4071 } 4072 } 4073 #else 4074 #define selectPopWith 0 4075 #endif 4076 4077 /* 4078 ** This routine is a Walker callback for "expanding" a SELECT statement. 4079 ** "Expanding" means to do the following: 4080 ** 4081 ** (1) Make sure VDBE cursor numbers have been assigned to every 4082 ** element of the FROM clause. 4083 ** 4084 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4085 ** defines FROM clause. When views appear in the FROM clause, 4086 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4087 ** that implements the view. A copy is made of the view's SELECT 4088 ** statement so that we can freely modify or delete that statement 4089 ** without worrying about messing up the persistent representation 4090 ** of the view. 4091 ** 4092 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4093 ** on joins and the ON and USING clause of joins. 4094 ** 4095 ** (4) Scan the list of columns in the result set (pEList) looking 4096 ** for instances of the "*" operator or the TABLE.* operator. 4097 ** If found, expand each "*" to be every column in every table 4098 ** and TABLE.* to be every column in TABLE. 4099 ** 4100 */ 4101 static int selectExpander(Walker *pWalker, Select *p){ 4102 Parse *pParse = pWalker->pParse; 4103 int i, j, k; 4104 SrcList *pTabList; 4105 ExprList *pEList; 4106 struct SrcList_item *pFrom; 4107 sqlite3 *db = pParse->db; 4108 Expr *pE, *pRight, *pExpr; 4109 u16 selFlags = p->selFlags; 4110 4111 p->selFlags |= SF_Expanded; 4112 if( db->mallocFailed ){ 4113 return WRC_Abort; 4114 } 4115 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4116 return WRC_Prune; 4117 } 4118 pTabList = p->pSrc; 4119 pEList = p->pEList; 4120 if( pWalker->xSelectCallback2==selectPopWith ){ 4121 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4122 } 4123 4124 /* Make sure cursor numbers have been assigned to all entries in 4125 ** the FROM clause of the SELECT statement. 4126 */ 4127 sqlite3SrcListAssignCursors(pParse, pTabList); 4128 4129 /* Look up every table named in the FROM clause of the select. If 4130 ** an entry of the FROM clause is a subquery instead of a table or view, 4131 ** then create a transient table structure to describe the subquery. 4132 */ 4133 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4134 Table *pTab; 4135 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4136 if( pFrom->isRecursive ) continue; 4137 if( pFrom->pTab!=0 ){ 4138 /* This statement has already been prepared. There is no need 4139 ** to go further. */ 4140 assert( i==0 ); 4141 #ifndef SQLITE_OMIT_CTE 4142 selectPopWith(pWalker, p); 4143 #endif 4144 return WRC_Prune; 4145 } 4146 #ifndef SQLITE_OMIT_CTE 4147 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4148 if( pFrom->pTab ) {} else 4149 #endif 4150 if( pFrom->zName==0 ){ 4151 #ifndef SQLITE_OMIT_SUBQUERY 4152 Select *pSel = pFrom->pSelect; 4153 /* A sub-query in the FROM clause of a SELECT */ 4154 assert( pSel!=0 ); 4155 assert( pFrom->pTab==0 ); 4156 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4157 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4158 if( pTab==0 ) return WRC_Abort; 4159 pTab->nRef = 1; 4160 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4161 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4162 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4163 pTab->iPKey = -1; 4164 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4165 pTab->tabFlags |= TF_Ephemeral; 4166 #endif 4167 }else{ 4168 /* An ordinary table or view name in the FROM clause */ 4169 assert( pFrom->pTab==0 ); 4170 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4171 if( pTab==0 ) return WRC_Abort; 4172 if( pTab->nRef==0xffff ){ 4173 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4174 pTab->zName); 4175 pFrom->pTab = 0; 4176 return WRC_Abort; 4177 } 4178 pTab->nRef++; 4179 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4180 if( pTab->pSelect || IsVirtual(pTab) ){ 4181 /* We reach here if the named table is a really a view */ 4182 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4183 assert( pFrom->pSelect==0 ); 4184 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4185 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4186 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4187 } 4188 #endif 4189 } 4190 4191 /* Locate the index named by the INDEXED BY clause, if any. */ 4192 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4193 return WRC_Abort; 4194 } 4195 } 4196 4197 /* Process NATURAL keywords, and ON and USING clauses of joins. 4198 */ 4199 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4200 return WRC_Abort; 4201 } 4202 4203 /* For every "*" that occurs in the column list, insert the names of 4204 ** all columns in all tables. And for every TABLE.* insert the names 4205 ** of all columns in TABLE. The parser inserted a special expression 4206 ** with the TK_ALL operator for each "*" that it found in the column list. 4207 ** The following code just has to locate the TK_ALL expressions and expand 4208 ** each one to the list of all columns in all tables. 4209 ** 4210 ** The first loop just checks to see if there are any "*" operators 4211 ** that need expanding. 4212 */ 4213 for(k=0; k<pEList->nExpr; k++){ 4214 pE = pEList->a[k].pExpr; 4215 if( pE->op==TK_ALL ) break; 4216 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4217 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4218 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4219 } 4220 if( k<pEList->nExpr ){ 4221 /* 4222 ** If we get here it means the result set contains one or more "*" 4223 ** operators that need to be expanded. Loop through each expression 4224 ** in the result set and expand them one by one. 4225 */ 4226 struct ExprList_item *a = pEList->a; 4227 ExprList *pNew = 0; 4228 int flags = pParse->db->flags; 4229 int longNames = (flags & SQLITE_FullColNames)!=0 4230 && (flags & SQLITE_ShortColNames)==0; 4231 4232 /* When processing FROM-clause subqueries, it is always the case 4233 ** that full_column_names=OFF and short_column_names=ON. The 4234 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4235 assert( (p->selFlags & SF_NestedFrom)==0 4236 || ((flags & SQLITE_FullColNames)==0 && 4237 (flags & SQLITE_ShortColNames)!=0) ); 4238 4239 for(k=0; k<pEList->nExpr; k++){ 4240 pE = a[k].pExpr; 4241 pRight = pE->pRight; 4242 assert( pE->op!=TK_DOT || pRight!=0 ); 4243 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4244 /* This particular expression does not need to be expanded. 4245 */ 4246 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4247 if( pNew ){ 4248 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4249 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4250 a[k].zName = 0; 4251 a[k].zSpan = 0; 4252 } 4253 a[k].pExpr = 0; 4254 }else{ 4255 /* This expression is a "*" or a "TABLE.*" and needs to be 4256 ** expanded. */ 4257 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4258 char *zTName = 0; /* text of name of TABLE */ 4259 if( pE->op==TK_DOT ){ 4260 assert( pE->pLeft!=0 ); 4261 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4262 zTName = pE->pLeft->u.zToken; 4263 } 4264 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4265 Table *pTab = pFrom->pTab; 4266 Select *pSub = pFrom->pSelect; 4267 char *zTabName = pFrom->zAlias; 4268 const char *zSchemaName = 0; 4269 int iDb; 4270 if( zTabName==0 ){ 4271 zTabName = pTab->zName; 4272 } 4273 if( db->mallocFailed ) break; 4274 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4275 pSub = 0; 4276 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4277 continue; 4278 } 4279 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4280 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4281 } 4282 for(j=0; j<pTab->nCol; j++){ 4283 char *zName = pTab->aCol[j].zName; 4284 char *zColname; /* The computed column name */ 4285 char *zToFree; /* Malloced string that needs to be freed */ 4286 Token sColname; /* Computed column name as a token */ 4287 4288 assert( zName ); 4289 if( zTName && pSub 4290 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4291 ){ 4292 continue; 4293 } 4294 4295 /* If a column is marked as 'hidden' (currently only possible 4296 ** for virtual tables), do not include it in the expanded 4297 ** result-set list. 4298 */ 4299 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4300 assert(IsVirtual(pTab)); 4301 continue; 4302 } 4303 tableSeen = 1; 4304 4305 if( i>0 && zTName==0 ){ 4306 if( (pFrom->jointype & JT_NATURAL)!=0 4307 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4308 ){ 4309 /* In a NATURAL join, omit the join columns from the 4310 ** table to the right of the join */ 4311 continue; 4312 } 4313 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4314 /* In a join with a USING clause, omit columns in the 4315 ** using clause from the table on the right. */ 4316 continue; 4317 } 4318 } 4319 pRight = sqlite3Expr(db, TK_ID, zName); 4320 zColname = zName; 4321 zToFree = 0; 4322 if( longNames || pTabList->nSrc>1 ){ 4323 Expr *pLeft; 4324 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4325 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4326 if( zSchemaName ){ 4327 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4328 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4329 } 4330 if( longNames ){ 4331 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4332 zToFree = zColname; 4333 } 4334 }else{ 4335 pExpr = pRight; 4336 } 4337 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4338 sColname.z = zColname; 4339 sColname.n = sqlite3Strlen30(zColname); 4340 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4341 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4342 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4343 if( pSub ){ 4344 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4345 testcase( pX->zSpan==0 ); 4346 }else{ 4347 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4348 zSchemaName, zTabName, zColname); 4349 testcase( pX->zSpan==0 ); 4350 } 4351 pX->bSpanIsTab = 1; 4352 } 4353 sqlite3DbFree(db, zToFree); 4354 } 4355 } 4356 if( !tableSeen ){ 4357 if( zTName ){ 4358 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4359 }else{ 4360 sqlite3ErrorMsg(pParse, "no tables specified"); 4361 } 4362 } 4363 } 4364 } 4365 sqlite3ExprListDelete(db, pEList); 4366 p->pEList = pNew; 4367 } 4368 #if SQLITE_MAX_COLUMN 4369 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4370 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4371 } 4372 #endif 4373 return WRC_Continue; 4374 } 4375 4376 /* 4377 ** No-op routine for the parse-tree walker. 4378 ** 4379 ** When this routine is the Walker.xExprCallback then expression trees 4380 ** are walked without any actions being taken at each node. Presumably, 4381 ** when this routine is used for Walker.xExprCallback then 4382 ** Walker.xSelectCallback is set to do something useful for every 4383 ** subquery in the parser tree. 4384 */ 4385 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4386 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4387 return WRC_Continue; 4388 } 4389 4390 /* 4391 ** This routine "expands" a SELECT statement and all of its subqueries. 4392 ** For additional information on what it means to "expand" a SELECT 4393 ** statement, see the comment on the selectExpand worker callback above. 4394 ** 4395 ** Expanding a SELECT statement is the first step in processing a 4396 ** SELECT statement. The SELECT statement must be expanded before 4397 ** name resolution is performed. 4398 ** 4399 ** If anything goes wrong, an error message is written into pParse. 4400 ** The calling function can detect the problem by looking at pParse->nErr 4401 ** and/or pParse->db->mallocFailed. 4402 */ 4403 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4404 Walker w; 4405 memset(&w, 0, sizeof(w)); 4406 w.xExprCallback = exprWalkNoop; 4407 w.pParse = pParse; 4408 if( pParse->hasCompound ){ 4409 w.xSelectCallback = convertCompoundSelectToSubquery; 4410 sqlite3WalkSelect(&w, pSelect); 4411 } 4412 w.xSelectCallback = selectExpander; 4413 if( (pSelect->selFlags & SF_AllValues)==0 ){ 4414 w.xSelectCallback2 = selectPopWith; 4415 } 4416 sqlite3WalkSelect(&w, pSelect); 4417 } 4418 4419 4420 #ifndef SQLITE_OMIT_SUBQUERY 4421 /* 4422 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4423 ** interface. 4424 ** 4425 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4426 ** information to the Table structure that represents the result set 4427 ** of that subquery. 4428 ** 4429 ** The Table structure that represents the result set was constructed 4430 ** by selectExpander() but the type and collation information was omitted 4431 ** at that point because identifiers had not yet been resolved. This 4432 ** routine is called after identifier resolution. 4433 */ 4434 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4435 Parse *pParse; 4436 int i; 4437 SrcList *pTabList; 4438 struct SrcList_item *pFrom; 4439 4440 assert( p->selFlags & SF_Resolved ); 4441 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4442 p->selFlags |= SF_HasTypeInfo; 4443 pParse = pWalker->pParse; 4444 pTabList = p->pSrc; 4445 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4446 Table *pTab = pFrom->pTab; 4447 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4448 /* A sub-query in the FROM clause of a SELECT */ 4449 Select *pSel = pFrom->pSelect; 4450 if( pSel ){ 4451 while( pSel->pPrior ) pSel = pSel->pPrior; 4452 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4453 } 4454 } 4455 } 4456 } 4457 } 4458 #endif 4459 4460 4461 /* 4462 ** This routine adds datatype and collating sequence information to 4463 ** the Table structures of all FROM-clause subqueries in a 4464 ** SELECT statement. 4465 ** 4466 ** Use this routine after name resolution. 4467 */ 4468 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4469 #ifndef SQLITE_OMIT_SUBQUERY 4470 Walker w; 4471 memset(&w, 0, sizeof(w)); 4472 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4473 w.xExprCallback = exprWalkNoop; 4474 w.pParse = pParse; 4475 sqlite3WalkSelect(&w, pSelect); 4476 #endif 4477 } 4478 4479 4480 /* 4481 ** This routine sets up a SELECT statement for processing. The 4482 ** following is accomplished: 4483 ** 4484 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4485 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4486 ** * ON and USING clauses are shifted into WHERE statements 4487 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4488 ** * Identifiers in expression are matched to tables. 4489 ** 4490 ** This routine acts recursively on all subqueries within the SELECT. 4491 */ 4492 void sqlite3SelectPrep( 4493 Parse *pParse, /* The parser context */ 4494 Select *p, /* The SELECT statement being coded. */ 4495 NameContext *pOuterNC /* Name context for container */ 4496 ){ 4497 sqlite3 *db; 4498 if( NEVER(p==0) ) return; 4499 db = pParse->db; 4500 if( db->mallocFailed ) return; 4501 if( p->selFlags & SF_HasTypeInfo ) return; 4502 sqlite3SelectExpand(pParse, p); 4503 if( pParse->nErr || db->mallocFailed ) return; 4504 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4505 if( pParse->nErr || db->mallocFailed ) return; 4506 sqlite3SelectAddTypeInfo(pParse, p); 4507 } 4508 4509 /* 4510 ** Reset the aggregate accumulator. 4511 ** 4512 ** The aggregate accumulator is a set of memory cells that hold 4513 ** intermediate results while calculating an aggregate. This 4514 ** routine generates code that stores NULLs in all of those memory 4515 ** cells. 4516 */ 4517 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4518 Vdbe *v = pParse->pVdbe; 4519 int i; 4520 struct AggInfo_func *pFunc; 4521 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4522 if( nReg==0 ) return; 4523 #ifdef SQLITE_DEBUG 4524 /* Verify that all AggInfo registers are within the range specified by 4525 ** AggInfo.mnReg..AggInfo.mxReg */ 4526 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4527 for(i=0; i<pAggInfo->nColumn; i++){ 4528 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4529 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4530 } 4531 for(i=0; i<pAggInfo->nFunc; i++){ 4532 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4533 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4534 } 4535 #endif 4536 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4537 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4538 if( pFunc->iDistinct>=0 ){ 4539 Expr *pE = pFunc->pExpr; 4540 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4541 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4542 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4543 "argument"); 4544 pFunc->iDistinct = -1; 4545 }else{ 4546 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4547 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4548 (char*)pKeyInfo, P4_KEYINFO); 4549 } 4550 } 4551 } 4552 } 4553 4554 /* 4555 ** Invoke the OP_AggFinalize opcode for every aggregate function 4556 ** in the AggInfo structure. 4557 */ 4558 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4559 Vdbe *v = pParse->pVdbe; 4560 int i; 4561 struct AggInfo_func *pF; 4562 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4563 ExprList *pList = pF->pExpr->x.pList; 4564 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4565 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4566 (void*)pF->pFunc, P4_FUNCDEF); 4567 } 4568 } 4569 4570 /* 4571 ** Update the accumulator memory cells for an aggregate based on 4572 ** the current cursor position. 4573 */ 4574 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4575 Vdbe *v = pParse->pVdbe; 4576 int i; 4577 int regHit = 0; 4578 int addrHitTest = 0; 4579 struct AggInfo_func *pF; 4580 struct AggInfo_col *pC; 4581 4582 pAggInfo->directMode = 1; 4583 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4584 int nArg; 4585 int addrNext = 0; 4586 int regAgg; 4587 ExprList *pList = pF->pExpr->x.pList; 4588 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4589 if( pList ){ 4590 nArg = pList->nExpr; 4591 regAgg = sqlite3GetTempRange(pParse, nArg); 4592 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4593 }else{ 4594 nArg = 0; 4595 regAgg = 0; 4596 } 4597 if( pF->iDistinct>=0 ){ 4598 addrNext = sqlite3VdbeMakeLabel(v); 4599 assert( nArg==1 ); 4600 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4601 } 4602 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4603 CollSeq *pColl = 0; 4604 struct ExprList_item *pItem; 4605 int j; 4606 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4607 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4608 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4609 } 4610 if( !pColl ){ 4611 pColl = pParse->db->pDfltColl; 4612 } 4613 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4614 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4615 } 4616 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4617 (void*)pF->pFunc, P4_FUNCDEF); 4618 sqlite3VdbeChangeP5(v, (u8)nArg); 4619 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4620 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4621 if( addrNext ){ 4622 sqlite3VdbeResolveLabel(v, addrNext); 4623 sqlite3ExprCacheClear(pParse); 4624 } 4625 } 4626 4627 /* Before populating the accumulator registers, clear the column cache. 4628 ** Otherwise, if any of the required column values are already present 4629 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4630 ** to pC->iMem. But by the time the value is used, the original register 4631 ** may have been used, invalidating the underlying buffer holding the 4632 ** text or blob value. See ticket [883034dcb5]. 4633 ** 4634 ** Another solution would be to change the OP_SCopy used to copy cached 4635 ** values to an OP_Copy. 4636 */ 4637 if( regHit ){ 4638 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4639 } 4640 sqlite3ExprCacheClear(pParse); 4641 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4642 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4643 } 4644 pAggInfo->directMode = 0; 4645 sqlite3ExprCacheClear(pParse); 4646 if( addrHitTest ){ 4647 sqlite3VdbeJumpHere(v, addrHitTest); 4648 } 4649 } 4650 4651 /* 4652 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4653 ** count(*) query ("SELECT count(*) FROM pTab"). 4654 */ 4655 #ifndef SQLITE_OMIT_EXPLAIN 4656 static void explainSimpleCount( 4657 Parse *pParse, /* Parse context */ 4658 Table *pTab, /* Table being queried */ 4659 Index *pIdx /* Index used to optimize scan, or NULL */ 4660 ){ 4661 if( pParse->explain==2 ){ 4662 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4663 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4664 pTab->zName, 4665 bCover ? " USING COVERING INDEX " : "", 4666 bCover ? pIdx->zName : "" 4667 ); 4668 sqlite3VdbeAddOp4( 4669 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4670 ); 4671 } 4672 } 4673 #else 4674 # define explainSimpleCount(a,b,c) 4675 #endif 4676 4677 /* 4678 ** Generate code for the SELECT statement given in the p argument. 4679 ** 4680 ** The results are returned according to the SelectDest structure. 4681 ** See comments in sqliteInt.h for further information. 4682 ** 4683 ** This routine returns the number of errors. If any errors are 4684 ** encountered, then an appropriate error message is left in 4685 ** pParse->zErrMsg. 4686 ** 4687 ** This routine does NOT free the Select structure passed in. The 4688 ** calling function needs to do that. 4689 */ 4690 int sqlite3Select( 4691 Parse *pParse, /* The parser context */ 4692 Select *p, /* The SELECT statement being coded. */ 4693 SelectDest *pDest /* What to do with the query results */ 4694 ){ 4695 int i, j; /* Loop counters */ 4696 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4697 Vdbe *v; /* The virtual machine under construction */ 4698 int isAgg; /* True for select lists like "count(*)" */ 4699 ExprList *pEList; /* List of columns to extract. */ 4700 SrcList *pTabList; /* List of tables to select from */ 4701 Expr *pWhere; /* The WHERE clause. May be NULL */ 4702 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4703 Expr *pHaving; /* The HAVING clause. May be NULL */ 4704 int rc = 1; /* Value to return from this function */ 4705 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4706 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4707 AggInfo sAggInfo; /* Information used by aggregate queries */ 4708 int iEnd; /* Address of the end of the query */ 4709 sqlite3 *db; /* The database connection */ 4710 4711 #ifndef SQLITE_OMIT_EXPLAIN 4712 int iRestoreSelectId = pParse->iSelectId; 4713 pParse->iSelectId = pParse->iNextSelectId++; 4714 #endif 4715 4716 db = pParse->db; 4717 if( p==0 || db->mallocFailed || pParse->nErr ){ 4718 return 1; 4719 } 4720 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4721 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4722 #if SELECTTRACE_ENABLED 4723 pParse->nSelectIndent++; 4724 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4725 if( sqlite3SelectTrace & 0x100 ){ 4726 sqlite3TreeViewSelect(0, p, 0); 4727 } 4728 #endif 4729 4730 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4731 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4732 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4733 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4734 if( IgnorableOrderby(pDest) ){ 4735 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4736 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4737 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4738 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4739 /* If ORDER BY makes no difference in the output then neither does 4740 ** DISTINCT so it can be removed too. */ 4741 sqlite3ExprListDelete(db, p->pOrderBy); 4742 p->pOrderBy = 0; 4743 p->selFlags &= ~SF_Distinct; 4744 } 4745 sqlite3SelectPrep(pParse, p, 0); 4746 memset(&sSort, 0, sizeof(sSort)); 4747 sSort.pOrderBy = p->pOrderBy; 4748 pTabList = p->pSrc; 4749 pEList = p->pEList; 4750 if( pParse->nErr || db->mallocFailed ){ 4751 goto select_end; 4752 } 4753 isAgg = (p->selFlags & SF_Aggregate)!=0; 4754 assert( pEList!=0 ); 4755 4756 /* Begin generating code. 4757 */ 4758 v = sqlite3GetVdbe(pParse); 4759 if( v==0 ) goto select_end; 4760 4761 /* If writing to memory or generating a set 4762 ** only a single column may be output. 4763 */ 4764 #ifndef SQLITE_OMIT_SUBQUERY 4765 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4766 goto select_end; 4767 } 4768 #endif 4769 4770 /* Generate code for all sub-queries in the FROM clause 4771 */ 4772 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4773 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4774 struct SrcList_item *pItem = &pTabList->a[i]; 4775 SelectDest dest; 4776 Select *pSub = pItem->pSelect; 4777 int isAggSub; 4778 4779 if( pSub==0 ) continue; 4780 4781 /* Sometimes the code for a subquery will be generated more than 4782 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4783 ** for example. In that case, do not regenerate the code to manifest 4784 ** a view or the co-routine to implement a view. The first instance 4785 ** is sufficient, though the subroutine to manifest the view does need 4786 ** to be invoked again. */ 4787 if( pItem->addrFillSub ){ 4788 if( pItem->viaCoroutine==0 ){ 4789 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4790 } 4791 continue; 4792 } 4793 4794 /* Increment Parse.nHeight by the height of the largest expression 4795 ** tree referred to by this, the parent select. The child select 4796 ** may contain expression trees of at most 4797 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4798 ** more conservative than necessary, but much easier than enforcing 4799 ** an exact limit. 4800 */ 4801 pParse->nHeight += sqlite3SelectExprHeight(p); 4802 4803 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4804 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4805 /* This subquery can be absorbed into its parent. */ 4806 if( isAggSub ){ 4807 isAgg = 1; 4808 p->selFlags |= SF_Aggregate; 4809 } 4810 i = -1; 4811 }else if( pTabList->nSrc==1 4812 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4813 ){ 4814 /* Implement a co-routine that will return a single row of the result 4815 ** set on each invocation. 4816 */ 4817 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4818 pItem->regReturn = ++pParse->nMem; 4819 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4820 VdbeComment((v, "%s", pItem->pTab->zName)); 4821 pItem->addrFillSub = addrTop; 4822 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4823 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4824 sqlite3Select(pParse, pSub, &dest); 4825 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4826 pItem->viaCoroutine = 1; 4827 pItem->regResult = dest.iSdst; 4828 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4829 sqlite3VdbeJumpHere(v, addrTop-1); 4830 sqlite3ClearTempRegCache(pParse); 4831 }else{ 4832 /* Generate a subroutine that will fill an ephemeral table with 4833 ** the content of this subquery. pItem->addrFillSub will point 4834 ** to the address of the generated subroutine. pItem->regReturn 4835 ** is a register allocated to hold the subroutine return address 4836 */ 4837 int topAddr; 4838 int onceAddr = 0; 4839 int retAddr; 4840 assert( pItem->addrFillSub==0 ); 4841 pItem->regReturn = ++pParse->nMem; 4842 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4843 pItem->addrFillSub = topAddr+1; 4844 if( pItem->isCorrelated==0 ){ 4845 /* If the subquery is not correlated and if we are not inside of 4846 ** a trigger, then we only need to compute the value of the subquery 4847 ** once. */ 4848 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4849 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4850 }else{ 4851 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4852 } 4853 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4854 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4855 sqlite3Select(pParse, pSub, &dest); 4856 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4857 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4858 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4859 VdbeComment((v, "end %s", pItem->pTab->zName)); 4860 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4861 sqlite3ClearTempRegCache(pParse); 4862 } 4863 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4864 goto select_end; 4865 } 4866 pParse->nHeight -= sqlite3SelectExprHeight(p); 4867 pTabList = p->pSrc; 4868 if( !IgnorableOrderby(pDest) ){ 4869 sSort.pOrderBy = p->pOrderBy; 4870 } 4871 } 4872 pEList = p->pEList; 4873 #endif 4874 pWhere = p->pWhere; 4875 pGroupBy = p->pGroupBy; 4876 pHaving = p->pHaving; 4877 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4878 4879 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4880 /* If there is are a sequence of queries, do the earlier ones first. 4881 */ 4882 if( p->pPrior ){ 4883 rc = multiSelect(pParse, p, pDest); 4884 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4885 #if SELECTTRACE_ENABLED 4886 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4887 pParse->nSelectIndent--; 4888 #endif 4889 return rc; 4890 } 4891 #endif 4892 4893 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4894 ** if the select-list is the same as the ORDER BY list, then this query 4895 ** can be rewritten as a GROUP BY. In other words, this: 4896 ** 4897 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4898 ** 4899 ** is transformed to: 4900 ** 4901 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 4902 ** 4903 ** The second form is preferred as a single index (or temp-table) may be 4904 ** used for both the ORDER BY and DISTINCT processing. As originally 4905 ** written the query must use a temp-table for at least one of the ORDER 4906 ** BY and DISTINCT, and an index or separate temp-table for the other. 4907 */ 4908 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4909 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4910 ){ 4911 p->selFlags &= ~SF_Distinct; 4912 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4913 pGroupBy = p->pGroupBy; 4914 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4915 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4916 ** original setting of the SF_Distinct flag, not the current setting */ 4917 assert( sDistinct.isTnct ); 4918 } 4919 4920 /* If there is an ORDER BY clause, then this sorting 4921 ** index might end up being unused if the data can be 4922 ** extracted in pre-sorted order. If that is the case, then the 4923 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4924 ** we figure out that the sorting index is not needed. The addrSortIndex 4925 ** variable is used to facilitate that change. 4926 */ 4927 if( sSort.pOrderBy ){ 4928 KeyInfo *pKeyInfo; 4929 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 4930 sSort.iECursor = pParse->nTab++; 4931 sSort.addrSortIndex = 4932 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4933 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 4934 (char*)pKeyInfo, P4_KEYINFO 4935 ); 4936 }else{ 4937 sSort.addrSortIndex = -1; 4938 } 4939 4940 /* If the output is destined for a temporary table, open that table. 4941 */ 4942 if( pDest->eDest==SRT_EphemTab ){ 4943 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4944 } 4945 4946 /* Set the limiter. 4947 */ 4948 iEnd = sqlite3VdbeMakeLabel(v); 4949 p->nSelectRow = LARGEST_INT64; 4950 computeLimitRegisters(pParse, p, iEnd); 4951 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4952 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4953 sSort.sortFlags |= SORTFLAG_UseSorter; 4954 } 4955 4956 /* Open a virtual index to use for the distinct set. 4957 */ 4958 if( p->selFlags & SF_Distinct ){ 4959 sDistinct.tabTnct = pParse->nTab++; 4960 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4961 sDistinct.tabTnct, 0, 0, 4962 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4963 P4_KEYINFO); 4964 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4965 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4966 }else{ 4967 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4968 } 4969 4970 if( !isAgg && pGroupBy==0 ){ 4971 /* No aggregate functions and no GROUP BY clause */ 4972 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4973 4974 /* Begin the database scan. */ 4975 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4976 p->pEList, wctrlFlags, 0); 4977 if( pWInfo==0 ) goto select_end; 4978 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4979 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4980 } 4981 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4982 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4983 } 4984 if( sSort.pOrderBy ){ 4985 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 4986 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 4987 sSort.pOrderBy = 0; 4988 } 4989 } 4990 4991 /* If sorting index that was created by a prior OP_OpenEphemeral 4992 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4993 ** into an OP_Noop. 4994 */ 4995 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 4996 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 4997 } 4998 4999 /* Use the standard inner loop. */ 5000 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5001 sqlite3WhereContinueLabel(pWInfo), 5002 sqlite3WhereBreakLabel(pWInfo)); 5003 5004 /* End the database scan loop. 5005 */ 5006 sqlite3WhereEnd(pWInfo); 5007 }else{ 5008 /* This case when there exist aggregate functions or a GROUP BY clause 5009 ** or both */ 5010 NameContext sNC; /* Name context for processing aggregate information */ 5011 int iAMem; /* First Mem address for storing current GROUP BY */ 5012 int iBMem; /* First Mem address for previous GROUP BY */ 5013 int iUseFlag; /* Mem address holding flag indicating that at least 5014 ** one row of the input to the aggregator has been 5015 ** processed */ 5016 int iAbortFlag; /* Mem address which causes query abort if positive */ 5017 int groupBySort; /* Rows come from source in GROUP BY order */ 5018 int addrEnd; /* End of processing for this SELECT */ 5019 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5020 int sortOut = 0; /* Output register from the sorter */ 5021 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5022 5023 /* Remove any and all aliases between the result set and the 5024 ** GROUP BY clause. 5025 */ 5026 if( pGroupBy ){ 5027 int k; /* Loop counter */ 5028 struct ExprList_item *pItem; /* For looping over expression in a list */ 5029 5030 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5031 pItem->u.x.iAlias = 0; 5032 } 5033 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5034 pItem->u.x.iAlias = 0; 5035 } 5036 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5037 }else{ 5038 p->nSelectRow = 1; 5039 } 5040 5041 5042 /* If there is both a GROUP BY and an ORDER BY clause and they are 5043 ** identical, then it may be possible to disable the ORDER BY clause 5044 ** on the grounds that the GROUP BY will cause elements to come out 5045 ** in the correct order. It also may not - the GROUP BY may use a 5046 ** database index that causes rows to be grouped together as required 5047 ** but not actually sorted. Either way, record the fact that the 5048 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5049 ** variable. */ 5050 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5051 orderByGrp = 1; 5052 } 5053 5054 /* Create a label to jump to when we want to abort the query */ 5055 addrEnd = sqlite3VdbeMakeLabel(v); 5056 5057 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5058 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5059 ** SELECT statement. 5060 */ 5061 memset(&sNC, 0, sizeof(sNC)); 5062 sNC.pParse = pParse; 5063 sNC.pSrcList = pTabList; 5064 sNC.pAggInfo = &sAggInfo; 5065 sAggInfo.mnReg = pParse->nMem+1; 5066 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5067 sAggInfo.pGroupBy = pGroupBy; 5068 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5069 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5070 if( pHaving ){ 5071 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5072 } 5073 sAggInfo.nAccumulator = sAggInfo.nColumn; 5074 for(i=0; i<sAggInfo.nFunc; i++){ 5075 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5076 sNC.ncFlags |= NC_InAggFunc; 5077 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5078 sNC.ncFlags &= ~NC_InAggFunc; 5079 } 5080 sAggInfo.mxReg = pParse->nMem; 5081 if( db->mallocFailed ) goto select_end; 5082 5083 /* Processing for aggregates with GROUP BY is very different and 5084 ** much more complex than aggregates without a GROUP BY. 5085 */ 5086 if( pGroupBy ){ 5087 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5088 int j1; /* A-vs-B comparision jump */ 5089 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5090 int regOutputRow; /* Return address register for output subroutine */ 5091 int addrSetAbort; /* Set the abort flag and return */ 5092 int addrTopOfLoop; /* Top of the input loop */ 5093 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5094 int addrReset; /* Subroutine for resetting the accumulator */ 5095 int regReset; /* Return address register for reset subroutine */ 5096 5097 /* If there is a GROUP BY clause we might need a sorting index to 5098 ** implement it. Allocate that sorting index now. If it turns out 5099 ** that we do not need it after all, the OP_SorterOpen instruction 5100 ** will be converted into a Noop. 5101 */ 5102 sAggInfo.sortingIdx = pParse->nTab++; 5103 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5104 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5105 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5106 0, (char*)pKeyInfo, P4_KEYINFO); 5107 5108 /* Initialize memory locations used by GROUP BY aggregate processing 5109 */ 5110 iUseFlag = ++pParse->nMem; 5111 iAbortFlag = ++pParse->nMem; 5112 regOutputRow = ++pParse->nMem; 5113 addrOutputRow = sqlite3VdbeMakeLabel(v); 5114 regReset = ++pParse->nMem; 5115 addrReset = sqlite3VdbeMakeLabel(v); 5116 iAMem = pParse->nMem + 1; 5117 pParse->nMem += pGroupBy->nExpr; 5118 iBMem = pParse->nMem + 1; 5119 pParse->nMem += pGroupBy->nExpr; 5120 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5121 VdbeComment((v, "clear abort flag")); 5122 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5123 VdbeComment((v, "indicate accumulator empty")); 5124 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5125 5126 /* Begin a loop that will extract all source rows in GROUP BY order. 5127 ** This might involve two separate loops with an OP_Sort in between, or 5128 ** it might be a single loop that uses an index to extract information 5129 ** in the right order to begin with. 5130 */ 5131 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5132 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5133 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5134 ); 5135 if( pWInfo==0 ) goto select_end; 5136 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5137 /* The optimizer is able to deliver rows in group by order so 5138 ** we do not have to sort. The OP_OpenEphemeral table will be 5139 ** cancelled later because we still need to use the pKeyInfo 5140 */ 5141 groupBySort = 0; 5142 }else{ 5143 /* Rows are coming out in undetermined order. We have to push 5144 ** each row into a sorting index, terminate the first loop, 5145 ** then loop over the sorting index in order to get the output 5146 ** in sorted order 5147 */ 5148 int regBase; 5149 int regRecord; 5150 int nCol; 5151 int nGroupBy; 5152 5153 explainTempTable(pParse, 5154 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5155 "DISTINCT" : "GROUP BY"); 5156 5157 groupBySort = 1; 5158 nGroupBy = pGroupBy->nExpr; 5159 nCol = nGroupBy; 5160 j = nGroupBy; 5161 for(i=0; i<sAggInfo.nColumn; i++){ 5162 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5163 nCol++; 5164 j++; 5165 } 5166 } 5167 regBase = sqlite3GetTempRange(pParse, nCol); 5168 sqlite3ExprCacheClear(pParse); 5169 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5170 j = nGroupBy; 5171 for(i=0; i<sAggInfo.nColumn; i++){ 5172 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5173 if( pCol->iSorterColumn>=j ){ 5174 int r1 = j + regBase; 5175 int r2; 5176 5177 r2 = sqlite3ExprCodeGetColumn(pParse, 5178 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5179 if( r1!=r2 ){ 5180 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5181 } 5182 j++; 5183 } 5184 } 5185 regRecord = sqlite3GetTempReg(pParse); 5186 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5187 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5188 sqlite3ReleaseTempReg(pParse, regRecord); 5189 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5190 sqlite3WhereEnd(pWInfo); 5191 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5192 sortOut = sqlite3GetTempReg(pParse); 5193 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5194 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5195 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5196 sAggInfo.useSortingIdx = 1; 5197 sqlite3ExprCacheClear(pParse); 5198 5199 } 5200 5201 /* If the index or temporary table used by the GROUP BY sort 5202 ** will naturally deliver rows in the order required by the ORDER BY 5203 ** clause, cancel the ephemeral table open coded earlier. 5204 ** 5205 ** This is an optimization - the correct answer should result regardless. 5206 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5207 ** disable this optimization for testing purposes. */ 5208 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5209 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5210 ){ 5211 sSort.pOrderBy = 0; 5212 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5213 } 5214 5215 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5216 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5217 ** Then compare the current GROUP BY terms against the GROUP BY terms 5218 ** from the previous row currently stored in a0, a1, a2... 5219 */ 5220 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5221 sqlite3ExprCacheClear(pParse); 5222 if( groupBySort ){ 5223 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab); 5224 } 5225 for(j=0; j<pGroupBy->nExpr; j++){ 5226 if( groupBySort ){ 5227 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5228 }else{ 5229 sAggInfo.directMode = 1; 5230 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5231 } 5232 } 5233 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5234 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5235 j1 = sqlite3VdbeCurrentAddr(v); 5236 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5237 5238 /* Generate code that runs whenever the GROUP BY changes. 5239 ** Changes in the GROUP BY are detected by the previous code 5240 ** block. If there were no changes, this block is skipped. 5241 ** 5242 ** This code copies current group by terms in b0,b1,b2,... 5243 ** over to a0,a1,a2. It then calls the output subroutine 5244 ** and resets the aggregate accumulator registers in preparation 5245 ** for the next GROUP BY batch. 5246 */ 5247 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5248 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5249 VdbeComment((v, "output one row")); 5250 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5251 VdbeComment((v, "check abort flag")); 5252 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5253 VdbeComment((v, "reset accumulator")); 5254 5255 /* Update the aggregate accumulators based on the content of 5256 ** the current row 5257 */ 5258 sqlite3VdbeJumpHere(v, j1); 5259 updateAccumulator(pParse, &sAggInfo); 5260 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5261 VdbeComment((v, "indicate data in accumulator")); 5262 5263 /* End of the loop 5264 */ 5265 if( groupBySort ){ 5266 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5267 VdbeCoverage(v); 5268 }else{ 5269 sqlite3WhereEnd(pWInfo); 5270 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5271 } 5272 5273 /* Output the final row of result 5274 */ 5275 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5276 VdbeComment((v, "output final row")); 5277 5278 /* Jump over the subroutines 5279 */ 5280 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5281 5282 /* Generate a subroutine that outputs a single row of the result 5283 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5284 ** is less than or equal to zero, the subroutine is a no-op. If 5285 ** the processing calls for the query to abort, this subroutine 5286 ** increments the iAbortFlag memory location before returning in 5287 ** order to signal the caller to abort. 5288 */ 5289 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5290 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5291 VdbeComment((v, "set abort flag")); 5292 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5293 sqlite3VdbeResolveLabel(v, addrOutputRow); 5294 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5295 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5296 VdbeComment((v, "Groupby result generator entry point")); 5297 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5298 finalizeAggFunctions(pParse, &sAggInfo); 5299 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5300 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5301 &sDistinct, pDest, 5302 addrOutputRow+1, addrSetAbort); 5303 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5304 VdbeComment((v, "end groupby result generator")); 5305 5306 /* Generate a subroutine that will reset the group-by accumulator 5307 */ 5308 sqlite3VdbeResolveLabel(v, addrReset); 5309 resetAccumulator(pParse, &sAggInfo); 5310 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5311 5312 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5313 else { 5314 ExprList *pDel = 0; 5315 #ifndef SQLITE_OMIT_BTREECOUNT 5316 Table *pTab; 5317 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5318 /* If isSimpleCount() returns a pointer to a Table structure, then 5319 ** the SQL statement is of the form: 5320 ** 5321 ** SELECT count(*) FROM <tbl> 5322 ** 5323 ** where the Table structure returned represents table <tbl>. 5324 ** 5325 ** This statement is so common that it is optimized specially. The 5326 ** OP_Count instruction is executed either on the intkey table that 5327 ** contains the data for table <tbl> or on one of its indexes. It 5328 ** is better to execute the op on an index, as indexes are almost 5329 ** always spread across less pages than their corresponding tables. 5330 */ 5331 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5332 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5333 Index *pIdx; /* Iterator variable */ 5334 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5335 Index *pBest = 0; /* Best index found so far */ 5336 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5337 5338 sqlite3CodeVerifySchema(pParse, iDb); 5339 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5340 5341 /* Search for the index that has the lowest scan cost. 5342 ** 5343 ** (2011-04-15) Do not do a full scan of an unordered index. 5344 ** 5345 ** (2013-10-03) Do not count the entries in a partial index. 5346 ** 5347 ** In practice the KeyInfo structure will not be used. It is only 5348 ** passed to keep OP_OpenRead happy. 5349 */ 5350 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5351 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5352 if( pIdx->bUnordered==0 5353 && pIdx->szIdxRow<pTab->szTabRow 5354 && pIdx->pPartIdxWhere==0 5355 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5356 ){ 5357 pBest = pIdx; 5358 } 5359 } 5360 if( pBest ){ 5361 iRoot = pBest->tnum; 5362 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5363 } 5364 5365 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5366 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5367 if( pKeyInfo ){ 5368 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5369 } 5370 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5371 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5372 explainSimpleCount(pParse, pTab, pBest); 5373 }else 5374 #endif /* SQLITE_OMIT_BTREECOUNT */ 5375 { 5376 /* Check if the query is of one of the following forms: 5377 ** 5378 ** SELECT min(x) FROM ... 5379 ** SELECT max(x) FROM ... 5380 ** 5381 ** If it is, then ask the code in where.c to attempt to sort results 5382 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5383 ** If where.c is able to produce results sorted in this order, then 5384 ** add vdbe code to break out of the processing loop after the 5385 ** first iteration (since the first iteration of the loop is 5386 ** guaranteed to operate on the row with the minimum or maximum 5387 ** value of x, the only row required). 5388 ** 5389 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5390 ** modify behavior as follows: 5391 ** 5392 ** + If the query is a "SELECT min(x)", then the loop coded by 5393 ** where.c should not iterate over any values with a NULL value 5394 ** for x. 5395 ** 5396 ** + The optimizer code in where.c (the thing that decides which 5397 ** index or indices to use) should place a different priority on 5398 ** satisfying the 'ORDER BY' clause than it does in other cases. 5399 ** Refer to code and comments in where.c for details. 5400 */ 5401 ExprList *pMinMax = 0; 5402 u8 flag = WHERE_ORDERBY_NORMAL; 5403 5404 assert( p->pGroupBy==0 ); 5405 assert( flag==0 ); 5406 if( p->pHaving==0 ){ 5407 flag = minMaxQuery(&sAggInfo, &pMinMax); 5408 } 5409 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5410 5411 if( flag ){ 5412 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5413 pDel = pMinMax; 5414 if( pMinMax && !db->mallocFailed ){ 5415 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5416 pMinMax->a[0].pExpr->op = TK_COLUMN; 5417 } 5418 } 5419 5420 /* This case runs if the aggregate has no GROUP BY clause. The 5421 ** processing is much simpler since there is only a single row 5422 ** of output. 5423 */ 5424 resetAccumulator(pParse, &sAggInfo); 5425 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5426 if( pWInfo==0 ){ 5427 sqlite3ExprListDelete(db, pDel); 5428 goto select_end; 5429 } 5430 updateAccumulator(pParse, &sAggInfo); 5431 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5432 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5433 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5434 VdbeComment((v, "%s() by index", 5435 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5436 } 5437 sqlite3WhereEnd(pWInfo); 5438 finalizeAggFunctions(pParse, &sAggInfo); 5439 } 5440 5441 sSort.pOrderBy = 0; 5442 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5443 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5444 pDest, addrEnd, addrEnd); 5445 sqlite3ExprListDelete(db, pDel); 5446 } 5447 sqlite3VdbeResolveLabel(v, addrEnd); 5448 5449 } /* endif aggregate query */ 5450 5451 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5452 explainTempTable(pParse, "DISTINCT"); 5453 } 5454 5455 /* If there is an ORDER BY clause, then we need to sort the results 5456 ** and send them to the callback one by one. 5457 */ 5458 if( sSort.pOrderBy ){ 5459 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5460 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5461 } 5462 5463 /* Jump here to skip this query 5464 */ 5465 sqlite3VdbeResolveLabel(v, iEnd); 5466 5467 /* The SELECT was successfully coded. Set the return code to 0 5468 ** to indicate no errors. 5469 */ 5470 rc = 0; 5471 5472 /* Control jumps to here if an error is encountered above, or upon 5473 ** successful coding of the SELECT. 5474 */ 5475 select_end: 5476 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5477 5478 /* Identify column names if results of the SELECT are to be output. 5479 */ 5480 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5481 generateColumnNames(pParse, pTabList, pEList); 5482 } 5483 5484 sqlite3DbFree(db, sAggInfo.aCol); 5485 sqlite3DbFree(db, sAggInfo.aFunc); 5486 #if SELECTTRACE_ENABLED 5487 SELECTTRACE(1,pParse,p,("end processing\n")); 5488 pParse->nSelectIndent--; 5489 #endif 5490 return rc; 5491 } 5492 5493 #ifdef SQLITE_DEBUG 5494 /* 5495 ** Generate a human-readable description of a the Select object. 5496 */ 5497 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ 5498 int n = 0; 5499 pView = sqlite3TreeViewPush(pView, moreToFollow); 5500 sqlite3TreeViewLine(pView, "SELECT%s%s", 5501 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), 5502 ((p->selFlags & SF_Aggregate) ? " agg_flag" : "") 5503 ); 5504 if( p->pSrc && p->pSrc->nSrc ) n++; 5505 if( p->pWhere ) n++; 5506 if( p->pGroupBy ) n++; 5507 if( p->pHaving ) n++; 5508 if( p->pOrderBy ) n++; 5509 if( p->pLimit ) n++; 5510 if( p->pOffset ) n++; 5511 if( p->pPrior ) n++; 5512 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); 5513 if( p->pSrc && p->pSrc->nSrc ){ 5514 int i; 5515 pView = sqlite3TreeViewPush(pView, (n--)>0); 5516 sqlite3TreeViewLine(pView, "FROM"); 5517 for(i=0; i<p->pSrc->nSrc; i++){ 5518 struct SrcList_item *pItem = &p->pSrc->a[i]; 5519 StrAccum x; 5520 char zLine[100]; 5521 sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); 5522 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); 5523 if( pItem->zDatabase ){ 5524 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); 5525 }else if( pItem->zName ){ 5526 sqlite3XPrintf(&x, 0, " %s", pItem->zName); 5527 } 5528 if( pItem->pTab ){ 5529 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); 5530 } 5531 if( pItem->zAlias ){ 5532 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); 5533 } 5534 if( pItem->jointype & JT_LEFT ){ 5535 sqlite3XPrintf(&x, 0, " LEFT-JOIN"); 5536 } 5537 sqlite3StrAccumFinish(&x); 5538 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 5539 if( pItem->pSelect ){ 5540 sqlite3TreeViewSelect(pView, pItem->pSelect, 0); 5541 } 5542 sqlite3TreeViewPop(pView); 5543 } 5544 sqlite3TreeViewPop(pView); 5545 } 5546 if( p->pWhere ){ 5547 sqlite3TreeViewItem(pView, "WHERE", (n--)>0); 5548 sqlite3TreeViewExpr(pView, p->pWhere, 0); 5549 sqlite3TreeViewPop(pView); 5550 } 5551 if( p->pGroupBy ){ 5552 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); 5553 } 5554 if( p->pHaving ){ 5555 sqlite3TreeViewItem(pView, "HAVING", (n--)>0); 5556 sqlite3TreeViewExpr(pView, p->pHaving, 0); 5557 sqlite3TreeViewPop(pView); 5558 } 5559 if( p->pOrderBy ){ 5560 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); 5561 } 5562 if( p->pLimit ){ 5563 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); 5564 sqlite3TreeViewExpr(pView, p->pLimit, 0); 5565 sqlite3TreeViewPop(pView); 5566 } 5567 if( p->pOffset ){ 5568 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); 5569 sqlite3TreeViewExpr(pView, p->pOffset, 0); 5570 sqlite3TreeViewPop(pView); 5571 } 5572 if( p->pPrior ){ 5573 const char *zOp = "UNION"; 5574 switch( p->op ){ 5575 case TK_ALL: zOp = "UNION ALL"; break; 5576 case TK_INTERSECT: zOp = "INTERSECT"; break; 5577 case TK_EXCEPT: zOp = "EXCEPT"; break; 5578 } 5579 sqlite3TreeViewItem(pView, zOp, (n--)>0); 5580 sqlite3TreeViewSelect(pView, p->pPrior, 0); 5581 sqlite3TreeViewPop(pView); 5582 } 5583 sqlite3TreeViewPop(pView); 5584 } 5585 #endif /* SQLITE_DEBUG */ 5586