1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.352 2007/06/24 06:32:18 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 37 /* 38 ** Allocate a new Select structure and return a pointer to that 39 ** structure. 40 */ 41 Select *sqlite3SelectNew( 42 ExprList *pEList, /* which columns to include in the result */ 43 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 44 Expr *pWhere, /* the WHERE clause */ 45 ExprList *pGroupBy, /* the GROUP BY clause */ 46 Expr *pHaving, /* the HAVING clause */ 47 ExprList *pOrderBy, /* the ORDER BY clause */ 48 int isDistinct, /* true if the DISTINCT keyword is present */ 49 Expr *pLimit, /* LIMIT value. NULL means not used */ 50 Expr *pOffset /* OFFSET value. NULL means no offset */ 51 ){ 52 Select *pNew; 53 Select standin; 54 pNew = sqliteMalloc( sizeof(*pNew) ); 55 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 56 if( pNew==0 ){ 57 pNew = &standin; 58 memset(pNew, 0, sizeof(*pNew)); 59 } 60 if( pEList==0 ){ 61 pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); 62 } 63 pNew->pEList = pEList; 64 pNew->pSrc = pSrc; 65 pNew->pWhere = pWhere; 66 pNew->pGroupBy = pGroupBy; 67 pNew->pHaving = pHaving; 68 pNew->pOrderBy = pOrderBy; 69 pNew->isDistinct = isDistinct; 70 pNew->op = TK_SELECT; 71 assert( pOffset==0 || pLimit!=0 ); 72 pNew->pLimit = pLimit; 73 pNew->pOffset = pOffset; 74 pNew->iLimit = -1; 75 pNew->iOffset = -1; 76 pNew->addrOpenEphm[0] = -1; 77 pNew->addrOpenEphm[1] = -1; 78 pNew->addrOpenEphm[2] = -1; 79 if( pNew==&standin) { 80 clearSelect(pNew); 81 pNew = 0; 82 } 83 return pNew; 84 } 85 86 /* 87 ** Delete the given Select structure and all of its substructures. 88 */ 89 void sqlite3SelectDelete(Select *p){ 90 if( p ){ 91 clearSelect(p); 92 sqliteFree(p); 93 } 94 } 95 96 /* 97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 98 ** type of join. Return an integer constant that expresses that type 99 ** in terms of the following bit values: 100 ** 101 ** JT_INNER 102 ** JT_CROSS 103 ** JT_OUTER 104 ** JT_NATURAL 105 ** JT_LEFT 106 ** JT_RIGHT 107 ** 108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 109 ** 110 ** If an illegal or unsupported join type is seen, then still return 111 ** a join type, but put an error in the pParse structure. 112 */ 113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 114 int jointype = 0; 115 Token *apAll[3]; 116 Token *p; 117 static const struct { 118 const char zKeyword[8]; 119 u8 nChar; 120 u8 code; 121 } keywords[] = { 122 { "natural", 7, JT_NATURAL }, 123 { "left", 4, JT_LEFT|JT_OUTER }, 124 { "right", 5, JT_RIGHT|JT_OUTER }, 125 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 126 { "outer", 5, JT_OUTER }, 127 { "inner", 5, JT_INNER }, 128 { "cross", 5, JT_INNER|JT_CROSS }, 129 }; 130 int i, j; 131 apAll[0] = pA; 132 apAll[1] = pB; 133 apAll[2] = pC; 134 for(i=0; i<3 && apAll[i]; i++){ 135 p = apAll[i]; 136 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 137 if( p->n==keywords[j].nChar 138 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 139 jointype |= keywords[j].code; 140 break; 141 } 142 } 143 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 144 jointype |= JT_ERROR; 145 break; 146 } 147 } 148 if( 149 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 150 (jointype & JT_ERROR)!=0 151 ){ 152 const char *zSp1 = " "; 153 const char *zSp2 = " "; 154 if( pB==0 ){ zSp1++; } 155 if( pC==0 ){ zSp2++; } 156 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 157 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 158 jointype = JT_INNER; 159 }else if( jointype & JT_RIGHT ){ 160 sqlite3ErrorMsg(pParse, 161 "RIGHT and FULL OUTER JOINs are not currently supported"); 162 jointype = JT_INNER; 163 } 164 return jointype; 165 } 166 167 /* 168 ** Return the index of a column in a table. Return -1 if the column 169 ** is not contained in the table. 170 */ 171 static int columnIndex(Table *pTab, const char *zCol){ 172 int i; 173 for(i=0; i<pTab->nCol; i++){ 174 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 175 } 176 return -1; 177 } 178 179 /* 180 ** Set the value of a token to a '\000'-terminated string. 181 */ 182 static void setToken(Token *p, const char *z){ 183 p->z = (u8*)z; 184 p->n = z ? strlen(z) : 0; 185 p->dyn = 0; 186 } 187 188 /* 189 ** Set the token to the double-quoted and escaped version of the string pointed 190 ** to by z. For example; 191 ** 192 ** {a"bc} -> {"a""bc"} 193 */ 194 static void setQuotedToken(Token *p, const char *z){ 195 p->z = (u8 *)sqlite3MPrintf("\"%w\"", z); 196 p->dyn = 1; 197 if( p->z ){ 198 p->n = strlen((char *)p->z); 199 } 200 } 201 202 /* 203 ** Create an expression node for an identifier with the name of zName 204 */ 205 Expr *sqlite3CreateIdExpr(const char *zName){ 206 Token dummy; 207 setToken(&dummy, zName); 208 return sqlite3Expr(TK_ID, 0, 0, &dummy); 209 } 210 211 212 /* 213 ** Add a term to the WHERE expression in *ppExpr that requires the 214 ** zCol column to be equal in the two tables pTab1 and pTab2. 215 */ 216 static void addWhereTerm( 217 const char *zCol, /* Name of the column */ 218 const Table *pTab1, /* First table */ 219 const char *zAlias1, /* Alias for first table. May be NULL */ 220 const Table *pTab2, /* Second table */ 221 const char *zAlias2, /* Alias for second table. May be NULL */ 222 int iRightJoinTable, /* VDBE cursor for the right table */ 223 Expr **ppExpr /* Add the equality term to this expression */ 224 ){ 225 Expr *pE1a, *pE1b, *pE1c; 226 Expr *pE2a, *pE2b, *pE2c; 227 Expr *pE; 228 229 pE1a = sqlite3CreateIdExpr(zCol); 230 pE2a = sqlite3CreateIdExpr(zCol); 231 if( zAlias1==0 ){ 232 zAlias1 = pTab1->zName; 233 } 234 pE1b = sqlite3CreateIdExpr(zAlias1); 235 if( zAlias2==0 ){ 236 zAlias2 = pTab2->zName; 237 } 238 pE2b = sqlite3CreateIdExpr(zAlias2); 239 pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0); 240 pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0); 241 pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0); 242 if( pE ){ 243 ExprSetProperty(pE, EP_FromJoin); 244 pE->iRightJoinTable = iRightJoinTable; 245 } 246 pE = sqlite3ExprAnd(*ppExpr, pE); 247 if( pE ){ 248 *ppExpr = pE; 249 } 250 } 251 252 /* 253 ** Set the EP_FromJoin property on all terms of the given expression. 254 ** And set the Expr.iRightJoinTable to iTable for every term in the 255 ** expression. 256 ** 257 ** The EP_FromJoin property is used on terms of an expression to tell 258 ** the LEFT OUTER JOIN processing logic that this term is part of the 259 ** join restriction specified in the ON or USING clause and not a part 260 ** of the more general WHERE clause. These terms are moved over to the 261 ** WHERE clause during join processing but we need to remember that they 262 ** originated in the ON or USING clause. 263 ** 264 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 265 ** expression depends on table iRightJoinTable even if that table is not 266 ** explicitly mentioned in the expression. That information is needed 267 ** for cases like this: 268 ** 269 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 270 ** 271 ** The where clause needs to defer the handling of the t1.x=5 272 ** term until after the t2 loop of the join. In that way, a 273 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 274 ** defer the handling of t1.x=5, it will be processed immediately 275 ** after the t1 loop and rows with t1.x!=5 will never appear in 276 ** the output, which is incorrect. 277 */ 278 static void setJoinExpr(Expr *p, int iTable){ 279 while( p ){ 280 ExprSetProperty(p, EP_FromJoin); 281 p->iRightJoinTable = iTable; 282 setJoinExpr(p->pLeft, iTable); 283 p = p->pRight; 284 } 285 } 286 287 /* 288 ** This routine processes the join information for a SELECT statement. 289 ** ON and USING clauses are converted into extra terms of the WHERE clause. 290 ** NATURAL joins also create extra WHERE clause terms. 291 ** 292 ** The terms of a FROM clause are contained in the Select.pSrc structure. 293 ** The left most table is the first entry in Select.pSrc. The right-most 294 ** table is the last entry. The join operator is held in the entry to 295 ** the left. Thus entry 0 contains the join operator for the join between 296 ** entries 0 and 1. Any ON or USING clauses associated with the join are 297 ** also attached to the left entry. 298 ** 299 ** This routine returns the number of errors encountered. 300 */ 301 static int sqliteProcessJoin(Parse *pParse, Select *p){ 302 SrcList *pSrc; /* All tables in the FROM clause */ 303 int i, j; /* Loop counters */ 304 struct SrcList_item *pLeft; /* Left table being joined */ 305 struct SrcList_item *pRight; /* Right table being joined */ 306 307 pSrc = p->pSrc; 308 pLeft = &pSrc->a[0]; 309 pRight = &pLeft[1]; 310 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 311 Table *pLeftTab = pLeft->pTab; 312 Table *pRightTab = pRight->pTab; 313 314 if( pLeftTab==0 || pRightTab==0 ) continue; 315 316 /* When the NATURAL keyword is present, add WHERE clause terms for 317 ** every column that the two tables have in common. 318 */ 319 if( pRight->jointype & JT_NATURAL ){ 320 if( pRight->pOn || pRight->pUsing ){ 321 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 322 "an ON or USING clause", 0); 323 return 1; 324 } 325 for(j=0; j<pLeftTab->nCol; j++){ 326 char *zName = pLeftTab->aCol[j].zName; 327 if( columnIndex(pRightTab, zName)>=0 ){ 328 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 329 pRightTab, pRight->zAlias, 330 pRight->iCursor, &p->pWhere); 331 332 } 333 } 334 } 335 336 /* Disallow both ON and USING clauses in the same join 337 */ 338 if( pRight->pOn && pRight->pUsing ){ 339 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 340 "clauses in the same join"); 341 return 1; 342 } 343 344 /* Add the ON clause to the end of the WHERE clause, connected by 345 ** an AND operator. 346 */ 347 if( pRight->pOn ){ 348 setJoinExpr(pRight->pOn, pRight->iCursor); 349 p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn); 350 pRight->pOn = 0; 351 } 352 353 /* Create extra terms on the WHERE clause for each column named 354 ** in the USING clause. Example: If the two tables to be joined are 355 ** A and B and the USING clause names X, Y, and Z, then add this 356 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 357 ** Report an error if any column mentioned in the USING clause is 358 ** not contained in both tables to be joined. 359 */ 360 if( pRight->pUsing ){ 361 IdList *pList = pRight->pUsing; 362 for(j=0; j<pList->nId; j++){ 363 char *zName = pList->a[j].zName; 364 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 365 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 366 "not present in both tables", zName); 367 return 1; 368 } 369 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 370 pRightTab, pRight->zAlias, 371 pRight->iCursor, &p->pWhere); 372 } 373 } 374 } 375 return 0; 376 } 377 378 /* 379 ** Insert code into "v" that will push the record on the top of the 380 ** stack into the sorter. 381 */ 382 static void pushOntoSorter( 383 Parse *pParse, /* Parser context */ 384 ExprList *pOrderBy, /* The ORDER BY clause */ 385 Select *pSelect /* The whole SELECT statement */ 386 ){ 387 Vdbe *v = pParse->pVdbe; 388 sqlite3ExprCodeExprList(pParse, pOrderBy); 389 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); 390 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); 391 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); 392 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); 393 if( pSelect->iLimit>=0 ){ 394 int addr1, addr2; 395 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); 396 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); 397 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 398 sqlite3VdbeJumpHere(v, addr1); 399 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); 400 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); 401 sqlite3VdbeJumpHere(v, addr2); 402 pSelect->iLimit = -1; 403 } 404 } 405 406 /* 407 ** Add code to implement the OFFSET 408 */ 409 static void codeOffset( 410 Vdbe *v, /* Generate code into this VM */ 411 Select *p, /* The SELECT statement being coded */ 412 int iContinue, /* Jump here to skip the current record */ 413 int nPop /* Number of times to pop stack when jumping */ 414 ){ 415 if( p->iOffset>=0 && iContinue!=0 ){ 416 int addr; 417 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); 418 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); 419 if( nPop>0 ){ 420 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); 421 } 422 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); 423 VdbeComment((v, "# skip OFFSET records")); 424 sqlite3VdbeJumpHere(v, addr); 425 } 426 } 427 428 /* 429 ** Add code that will check to make sure the top N elements of the 430 ** stack are distinct. iTab is a sorting index that holds previously 431 ** seen combinations of the N values. A new entry is made in iTab 432 ** if the current N values are new. 433 ** 434 ** A jump to addrRepeat is made and the N+1 values are popped from the 435 ** stack if the top N elements are not distinct. 436 */ 437 static void codeDistinct( 438 Vdbe *v, /* Generate code into this VM */ 439 int iTab, /* A sorting index used to test for distinctness */ 440 int addrRepeat, /* Jump to here if not distinct */ 441 int N /* The top N elements of the stack must be distinct */ 442 ){ 443 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); 444 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); 445 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); 446 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); 447 VdbeComment((v, "# skip indistinct records")); 448 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); 449 } 450 451 /* 452 ** Generate an error message when a SELECT is used within a subexpression 453 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 454 ** column. We do this in a subroutine because the error occurs in multiple 455 ** places. 456 */ 457 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){ 458 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 459 sqlite3ErrorMsg(pParse, "only a single result allowed for " 460 "a SELECT that is part of an expression"); 461 return 1; 462 }else{ 463 return 0; 464 } 465 } 466 467 /* 468 ** This routine generates the code for the inside of the inner loop 469 ** of a SELECT. 470 ** 471 ** If srcTab and nColumn are both zero, then the pEList expressions 472 ** are evaluated in order to get the data for this row. If nColumn>0 473 ** then data is pulled from srcTab and pEList is used only to get the 474 ** datatypes for each column. 475 */ 476 static int selectInnerLoop( 477 Parse *pParse, /* The parser context */ 478 Select *p, /* The complete select statement being coded */ 479 ExprList *pEList, /* List of values being extracted */ 480 int srcTab, /* Pull data from this table */ 481 int nColumn, /* Number of columns in the source table */ 482 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 483 int distinct, /* If >=0, make sure results are distinct */ 484 int eDest, /* How to dispose of the results */ 485 int iParm, /* An argument to the disposal method */ 486 int iContinue, /* Jump here to continue with next row */ 487 int iBreak, /* Jump here to break out of the inner loop */ 488 char *aff /* affinity string if eDest is SRT_Union */ 489 ){ 490 Vdbe *v = pParse->pVdbe; 491 int i; 492 int hasDistinct; /* True if the DISTINCT keyword is present */ 493 494 if( v==0 ) return 0; 495 assert( pEList!=0 ); 496 497 /* If there was a LIMIT clause on the SELECT statement, then do the check 498 ** to see if this row should be output. 499 */ 500 hasDistinct = distinct>=0 && pEList->nExpr>0; 501 if( pOrderBy==0 && !hasDistinct ){ 502 codeOffset(v, p, iContinue, 0); 503 } 504 505 /* Pull the requested columns. 506 */ 507 if( nColumn>0 ){ 508 for(i=0; i<nColumn; i++){ 509 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); 510 } 511 }else{ 512 nColumn = pEList->nExpr; 513 sqlite3ExprCodeExprList(pParse, pEList); 514 } 515 516 /* If the DISTINCT keyword was present on the SELECT statement 517 ** and this row has been seen before, then do not make this row 518 ** part of the result. 519 */ 520 if( hasDistinct ){ 521 assert( pEList!=0 ); 522 assert( pEList->nExpr==nColumn ); 523 codeDistinct(v, distinct, iContinue, nColumn); 524 if( pOrderBy==0 ){ 525 codeOffset(v, p, iContinue, nColumn); 526 } 527 } 528 529 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 530 return 0; 531 } 532 533 switch( eDest ){ 534 /* In this mode, write each query result to the key of the temporary 535 ** table iParm. 536 */ 537 #ifndef SQLITE_OMIT_COMPOUND_SELECT 538 case SRT_Union: { 539 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 540 if( aff ){ 541 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 542 } 543 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); 544 break; 545 } 546 547 /* Construct a record from the query result, but instead of 548 ** saving that record, use it as a key to delete elements from 549 ** the temporary table iParm. 550 */ 551 case SRT_Except: { 552 int addr; 553 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 554 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 555 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); 556 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); 557 break; 558 } 559 #endif 560 561 /* Store the result as data using a unique key. 562 */ 563 case SRT_Table: 564 case SRT_EphemTab: { 565 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 566 if( pOrderBy ){ 567 pushOntoSorter(pParse, pOrderBy, p); 568 }else{ 569 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 570 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 571 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 572 } 573 break; 574 } 575 576 #ifndef SQLITE_OMIT_SUBQUERY 577 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 578 ** then there should be a single item on the stack. Write this 579 ** item into the set table with bogus data. 580 */ 581 case SRT_Set: { 582 int addr1 = sqlite3VdbeCurrentAddr(v); 583 int addr2; 584 585 assert( nColumn==1 ); 586 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); 587 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 588 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 589 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff); 590 if( pOrderBy ){ 591 /* At first glance you would think we could optimize out the 592 ** ORDER BY in this case since the order of entries in the set 593 ** does not matter. But there might be a LIMIT clause, in which 594 ** case the order does matter */ 595 pushOntoSorter(pParse, pOrderBy, p); 596 }else{ 597 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 598 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 599 } 600 sqlite3VdbeJumpHere(v, addr2); 601 break; 602 } 603 604 /* If any row exist in the result set, record that fact and abort. 605 */ 606 case SRT_Exists: { 607 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); 608 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 609 /* The LIMIT clause will terminate the loop for us */ 610 break; 611 } 612 613 /* If this is a scalar select that is part of an expression, then 614 ** store the results in the appropriate memory cell and break out 615 ** of the scan loop. 616 */ 617 case SRT_Mem: { 618 assert( nColumn==1 ); 619 if( pOrderBy ){ 620 pushOntoSorter(pParse, pOrderBy, p); 621 }else{ 622 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 623 /* The LIMIT clause will jump out of the loop for us */ 624 } 625 break; 626 } 627 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 628 629 /* Send the data to the callback function or to a subroutine. In the 630 ** case of a subroutine, the subroutine itself is responsible for 631 ** popping the data from the stack. 632 */ 633 case SRT_Subroutine: 634 case SRT_Callback: { 635 if( pOrderBy ){ 636 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 637 pushOntoSorter(pParse, pOrderBy, p); 638 }else if( eDest==SRT_Subroutine ){ 639 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 640 }else{ 641 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 642 } 643 break; 644 } 645 646 #if !defined(SQLITE_OMIT_TRIGGER) 647 /* Discard the results. This is used for SELECT statements inside 648 ** the body of a TRIGGER. The purpose of such selects is to call 649 ** user-defined functions that have side effects. We do not care 650 ** about the actual results of the select. 651 */ 652 default: { 653 assert( eDest==SRT_Discard ); 654 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 655 break; 656 } 657 #endif 658 } 659 660 /* Jump to the end of the loop if the LIMIT is reached. 661 */ 662 if( p->iLimit>=0 && pOrderBy==0 ){ 663 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 664 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); 665 } 666 return 0; 667 } 668 669 /* 670 ** Given an expression list, generate a KeyInfo structure that records 671 ** the collating sequence for each expression in that expression list. 672 ** 673 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 674 ** KeyInfo structure is appropriate for initializing a virtual index to 675 ** implement that clause. If the ExprList is the result set of a SELECT 676 ** then the KeyInfo structure is appropriate for initializing a virtual 677 ** index to implement a DISTINCT test. 678 ** 679 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 680 ** function is responsible for seeing that this structure is eventually 681 ** freed. Add the KeyInfo structure to the P3 field of an opcode using 682 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. 683 */ 684 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 685 sqlite3 *db = pParse->db; 686 int nExpr; 687 KeyInfo *pInfo; 688 struct ExprList_item *pItem; 689 int i; 690 691 nExpr = pList->nExpr; 692 pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 693 if( pInfo ){ 694 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 695 pInfo->nField = nExpr; 696 pInfo->enc = ENC(db); 697 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 698 CollSeq *pColl; 699 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 700 if( !pColl ){ 701 pColl = db->pDfltColl; 702 } 703 pInfo->aColl[i] = pColl; 704 pInfo->aSortOrder[i] = pItem->sortOrder; 705 } 706 } 707 return pInfo; 708 } 709 710 711 /* 712 ** If the inner loop was generated using a non-null pOrderBy argument, 713 ** then the results were placed in a sorter. After the loop is terminated 714 ** we need to run the sorter and output the results. The following 715 ** routine generates the code needed to do that. 716 */ 717 static void generateSortTail( 718 Parse *pParse, /* Parsing context */ 719 Select *p, /* The SELECT statement */ 720 Vdbe *v, /* Generate code into this VDBE */ 721 int nColumn, /* Number of columns of data */ 722 int eDest, /* Write the sorted results here */ 723 int iParm /* Optional parameter associated with eDest */ 724 ){ 725 int brk = sqlite3VdbeMakeLabel(v); 726 int cont = sqlite3VdbeMakeLabel(v); 727 int addr; 728 int iTab; 729 int pseudoTab = 0; 730 ExprList *pOrderBy = p->pOrderBy; 731 732 iTab = pOrderBy->iECursor; 733 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 734 pseudoTab = pParse->nTab++; 735 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); 736 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); 737 } 738 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); 739 codeOffset(v, p, cont, 0); 740 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 741 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 742 } 743 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); 744 switch( eDest ){ 745 case SRT_Table: 746 case SRT_EphemTab: { 747 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 748 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 749 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 750 break; 751 } 752 #ifndef SQLITE_OMIT_SUBQUERY 753 case SRT_Set: { 754 assert( nColumn==1 ); 755 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 756 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 757 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 758 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 759 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 760 break; 761 } 762 case SRT_Mem: { 763 assert( nColumn==1 ); 764 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 765 /* The LIMIT clause will terminate the loop for us */ 766 break; 767 } 768 #endif 769 case SRT_Callback: 770 case SRT_Subroutine: { 771 int i; 772 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); 773 for(i=0; i<nColumn; i++){ 774 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); 775 } 776 if( eDest==SRT_Callback ){ 777 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 778 }else{ 779 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 780 } 781 break; 782 } 783 default: { 784 /* Do nothing */ 785 break; 786 } 787 } 788 789 /* Jump to the end of the loop when the LIMIT is reached 790 */ 791 if( p->iLimit>=0 ){ 792 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 793 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); 794 } 795 796 /* The bottom of the loop 797 */ 798 sqlite3VdbeResolveLabel(v, cont); 799 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); 800 sqlite3VdbeResolveLabel(v, brk); 801 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 802 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); 803 } 804 805 } 806 807 /* 808 ** Return a pointer to a string containing the 'declaration type' of the 809 ** expression pExpr. The string may be treated as static by the caller. 810 ** 811 ** The declaration type is the exact datatype definition extracted from the 812 ** original CREATE TABLE statement if the expression is a column. The 813 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 814 ** is considered a column can be complex in the presence of subqueries. The 815 ** result-set expression in all of the following SELECT statements is 816 ** considered a column by this function. 817 ** 818 ** SELECT col FROM tbl; 819 ** SELECT (SELECT col FROM tbl; 820 ** SELECT (SELECT col FROM tbl); 821 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 822 ** 823 ** The declaration type for any expression other than a column is NULL. 824 */ 825 static const char *columnType( 826 NameContext *pNC, 827 Expr *pExpr, 828 const char **pzOriginDb, 829 const char **pzOriginTab, 830 const char **pzOriginCol 831 ){ 832 char const *zType = 0; 833 char const *zOriginDb = 0; 834 char const *zOriginTab = 0; 835 char const *zOriginCol = 0; 836 int j; 837 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 838 839 switch( pExpr->op ){ 840 case TK_AGG_COLUMN: 841 case TK_COLUMN: { 842 /* The expression is a column. Locate the table the column is being 843 ** extracted from in NameContext.pSrcList. This table may be real 844 ** database table or a subquery. 845 */ 846 Table *pTab = 0; /* Table structure column is extracted from */ 847 Select *pS = 0; /* Select the column is extracted from */ 848 int iCol = pExpr->iColumn; /* Index of column in pTab */ 849 while( pNC && !pTab ){ 850 SrcList *pTabList = pNC->pSrcList; 851 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 852 if( j<pTabList->nSrc ){ 853 pTab = pTabList->a[j].pTab; 854 pS = pTabList->a[j].pSelect; 855 }else{ 856 pNC = pNC->pNext; 857 } 858 } 859 860 if( pTab==0 ){ 861 /* FIX ME: 862 ** This can occurs if you have something like "SELECT new.x;" inside 863 ** a trigger. In other words, if you reference the special "new" 864 ** table in the result set of a select. We do not have a good way 865 ** to find the actual table type, so call it "TEXT". This is really 866 ** something of a bug, but I do not know how to fix it. 867 ** 868 ** This code does not produce the correct answer - it just prevents 869 ** a segfault. See ticket #1229. 870 */ 871 zType = "TEXT"; 872 break; 873 } 874 875 assert( pTab ); 876 if( pS ){ 877 /* The "table" is actually a sub-select or a view in the FROM clause 878 ** of the SELECT statement. Return the declaration type and origin 879 ** data for the result-set column of the sub-select. 880 */ 881 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 882 /* If iCol is less than zero, then the expression requests the 883 ** rowid of the sub-select or view. This expression is legal (see 884 ** test case misc2.2.2) - it always evaluates to NULL. 885 */ 886 NameContext sNC; 887 Expr *p = pS->pEList->a[iCol].pExpr; 888 sNC.pSrcList = pS->pSrc; 889 sNC.pNext = 0; 890 sNC.pParse = pNC->pParse; 891 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 892 } 893 }else if( pTab->pSchema ){ 894 /* A real table */ 895 assert( !pS ); 896 if( iCol<0 ) iCol = pTab->iPKey; 897 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 898 if( iCol<0 ){ 899 zType = "INTEGER"; 900 zOriginCol = "rowid"; 901 }else{ 902 zType = pTab->aCol[iCol].zType; 903 zOriginCol = pTab->aCol[iCol].zName; 904 } 905 zOriginTab = pTab->zName; 906 if( pNC->pParse ){ 907 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 908 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 909 } 910 } 911 break; 912 } 913 #ifndef SQLITE_OMIT_SUBQUERY 914 case TK_SELECT: { 915 /* The expression is a sub-select. Return the declaration type and 916 ** origin info for the single column in the result set of the SELECT 917 ** statement. 918 */ 919 NameContext sNC; 920 Select *pS = pExpr->pSelect; 921 Expr *p = pS->pEList->a[0].pExpr; 922 sNC.pSrcList = pS->pSrc; 923 sNC.pNext = pNC; 924 sNC.pParse = pNC->pParse; 925 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 926 break; 927 } 928 #endif 929 } 930 931 if( pzOriginDb ){ 932 assert( pzOriginTab && pzOriginCol ); 933 *pzOriginDb = zOriginDb; 934 *pzOriginTab = zOriginTab; 935 *pzOriginCol = zOriginCol; 936 } 937 return zType; 938 } 939 940 /* 941 ** Generate code that will tell the VDBE the declaration types of columns 942 ** in the result set. 943 */ 944 static void generateColumnTypes( 945 Parse *pParse, /* Parser context */ 946 SrcList *pTabList, /* List of tables */ 947 ExprList *pEList /* Expressions defining the result set */ 948 ){ 949 Vdbe *v = pParse->pVdbe; 950 int i; 951 NameContext sNC; 952 sNC.pSrcList = pTabList; 953 sNC.pParse = pParse; 954 for(i=0; i<pEList->nExpr; i++){ 955 Expr *p = pEList->a[i].pExpr; 956 const char *zOrigDb = 0; 957 const char *zOrigTab = 0; 958 const char *zOrigCol = 0; 959 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 960 961 /* The vdbe must make it's own copy of the column-type and other 962 ** column specific strings, in case the schema is reset before this 963 ** virtual machine is deleted. 964 */ 965 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); 966 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); 967 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); 968 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); 969 } 970 } 971 972 /* 973 ** Generate code that will tell the VDBE the names of columns 974 ** in the result set. This information is used to provide the 975 ** azCol[] values in the callback. 976 */ 977 static void generateColumnNames( 978 Parse *pParse, /* Parser context */ 979 SrcList *pTabList, /* List of tables */ 980 ExprList *pEList /* Expressions defining the result set */ 981 ){ 982 Vdbe *v = pParse->pVdbe; 983 int i, j; 984 sqlite3 *db = pParse->db; 985 int fullNames, shortNames; 986 987 #ifndef SQLITE_OMIT_EXPLAIN 988 /* If this is an EXPLAIN, skip this step */ 989 if( pParse->explain ){ 990 return; 991 } 992 #endif 993 994 assert( v!=0 ); 995 if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return; 996 pParse->colNamesSet = 1; 997 fullNames = (db->flags & SQLITE_FullColNames)!=0; 998 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 999 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1000 for(i=0; i<pEList->nExpr; i++){ 1001 Expr *p; 1002 p = pEList->a[i].pExpr; 1003 if( p==0 ) continue; 1004 if( pEList->a[i].zName ){ 1005 char *zName = pEList->a[i].zName; 1006 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 1007 continue; 1008 } 1009 if( p->op==TK_COLUMN && pTabList ){ 1010 Table *pTab; 1011 char *zCol; 1012 int iCol = p->iColumn; 1013 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1014 assert( j<pTabList->nSrc ); 1015 pTab = pTabList->a[j].pTab; 1016 if( iCol<0 ) iCol = pTab->iPKey; 1017 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1018 if( iCol<0 ){ 1019 zCol = "rowid"; 1020 }else{ 1021 zCol = pTab->aCol[iCol].zName; 1022 } 1023 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ 1024 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1025 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1026 char *zName = 0; 1027 char *zTab; 1028 1029 zTab = pTabList->a[j].zAlias; 1030 if( fullNames || zTab==0 ) zTab = pTab->zName; 1031 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); 1032 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); 1033 }else{ 1034 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1035 } 1036 }else if( p->span.z && p->span.z[0] ){ 1037 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1038 /* sqlite3VdbeCompressSpace(v, addr); */ 1039 }else{ 1040 char zName[30]; 1041 assert( p->op!=TK_COLUMN || pTabList==0 ); 1042 sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); 1043 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); 1044 } 1045 } 1046 generateColumnTypes(pParse, pTabList, pEList); 1047 } 1048 1049 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1050 /* 1051 ** Name of the connection operator, used for error messages. 1052 */ 1053 static const char *selectOpName(int id){ 1054 char *z; 1055 switch( id ){ 1056 case TK_ALL: z = "UNION ALL"; break; 1057 case TK_INTERSECT: z = "INTERSECT"; break; 1058 case TK_EXCEPT: z = "EXCEPT"; break; 1059 default: z = "UNION"; break; 1060 } 1061 return z; 1062 } 1063 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1064 1065 /* 1066 ** Forward declaration 1067 */ 1068 static int prepSelectStmt(Parse*, Select*); 1069 1070 /* 1071 ** Given a SELECT statement, generate a Table structure that describes 1072 ** the result set of that SELECT. 1073 */ 1074 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1075 Table *pTab; 1076 int i, j; 1077 ExprList *pEList; 1078 Column *aCol, *pCol; 1079 1080 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1081 if( prepSelectStmt(pParse, pSelect) ){ 1082 return 0; 1083 } 1084 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ 1085 return 0; 1086 } 1087 pTab = sqliteMalloc( sizeof(Table) ); 1088 if( pTab==0 ){ 1089 return 0; 1090 } 1091 pTab->nRef = 1; 1092 pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; 1093 pEList = pSelect->pEList; 1094 pTab->nCol = pEList->nExpr; 1095 assert( pTab->nCol>0 ); 1096 pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); 1097 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1098 Expr *p, *pR; 1099 char *zType; 1100 char *zName; 1101 int nName; 1102 CollSeq *pColl; 1103 int cnt; 1104 NameContext sNC; 1105 1106 /* Get an appropriate name for the column 1107 */ 1108 p = pEList->a[i].pExpr; 1109 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1110 if( (zName = pEList->a[i].zName)!=0 ){ 1111 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1112 zName = sqliteStrDup(zName); 1113 }else if( p->op==TK_DOT 1114 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ 1115 /* For columns of the from A.B use B as the name */ 1116 zName = sqlite3MPrintf("%T", &pR->token); 1117 }else if( p->span.z && p->span.z[0] ){ 1118 /* Use the original text of the column expression as its name */ 1119 zName = sqlite3MPrintf("%T", &p->span); 1120 }else{ 1121 /* If all else fails, make up a name */ 1122 zName = sqlite3MPrintf("column%d", i+1); 1123 } 1124 sqlite3Dequote(zName); 1125 if( sqlite3MallocFailed() ){ 1126 sqliteFree(zName); 1127 sqlite3DeleteTable(pTab); 1128 return 0; 1129 } 1130 1131 /* Make sure the column name is unique. If the name is not unique, 1132 ** append a integer to the name so that it becomes unique. 1133 */ 1134 nName = strlen(zName); 1135 for(j=cnt=0; j<i; j++){ 1136 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1137 zName[nName] = 0; 1138 zName = sqlite3MPrintf("%z:%d", zName, ++cnt); 1139 j = -1; 1140 if( zName==0 ) break; 1141 } 1142 } 1143 pCol->zName = zName; 1144 1145 /* Get the typename, type affinity, and collating sequence for the 1146 ** column. 1147 */ 1148 memset(&sNC, 0, sizeof(sNC)); 1149 sNC.pSrcList = pSelect->pSrc; 1150 zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0)); 1151 pCol->zType = zType; 1152 pCol->affinity = sqlite3ExprAffinity(p); 1153 pColl = sqlite3ExprCollSeq(pParse, p); 1154 if( pColl ){ 1155 pCol->zColl = sqliteStrDup(pColl->zName); 1156 } 1157 } 1158 pTab->iPKey = -1; 1159 return pTab; 1160 } 1161 1162 /* 1163 ** Prepare a SELECT statement for processing by doing the following 1164 ** things: 1165 ** 1166 ** (1) Make sure VDBE cursor numbers have been assigned to every 1167 ** element of the FROM clause. 1168 ** 1169 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1170 ** defines FROM clause. When views appear in the FROM clause, 1171 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1172 ** that implements the view. A copy is made of the view's SELECT 1173 ** statement so that we can freely modify or delete that statement 1174 ** without worrying about messing up the presistent representation 1175 ** of the view. 1176 ** 1177 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1178 ** on joins and the ON and USING clause of joins. 1179 ** 1180 ** (4) Scan the list of columns in the result set (pEList) looking 1181 ** for instances of the "*" operator or the TABLE.* operator. 1182 ** If found, expand each "*" to be every column in every table 1183 ** and TABLE.* to be every column in TABLE. 1184 ** 1185 ** Return 0 on success. If there are problems, leave an error message 1186 ** in pParse and return non-zero. 1187 */ 1188 static int prepSelectStmt(Parse *pParse, Select *p){ 1189 int i, j, k, rc; 1190 SrcList *pTabList; 1191 ExprList *pEList; 1192 struct SrcList_item *pFrom; 1193 1194 if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){ 1195 return 1; 1196 } 1197 pTabList = p->pSrc; 1198 pEList = p->pEList; 1199 1200 /* Make sure cursor numbers have been assigned to all entries in 1201 ** the FROM clause of the SELECT statement. 1202 */ 1203 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1204 1205 /* Look up every table named in the FROM clause of the select. If 1206 ** an entry of the FROM clause is a subquery instead of a table or view, 1207 ** then create a transient table structure to describe the subquery. 1208 */ 1209 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1210 Table *pTab; 1211 if( pFrom->pTab!=0 ){ 1212 /* This statement has already been prepared. There is no need 1213 ** to go further. */ 1214 assert( i==0 ); 1215 return 0; 1216 } 1217 if( pFrom->zName==0 ){ 1218 #ifndef SQLITE_OMIT_SUBQUERY 1219 /* A sub-query in the FROM clause of a SELECT */ 1220 assert( pFrom->pSelect!=0 ); 1221 if( pFrom->zAlias==0 ){ 1222 pFrom->zAlias = 1223 sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); 1224 } 1225 assert( pFrom->pTab==0 ); 1226 pFrom->pTab = pTab = 1227 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1228 if( pTab==0 ){ 1229 return 1; 1230 } 1231 /* The isEphem flag indicates that the Table structure has been 1232 ** dynamically allocated and may be freed at any time. In other words, 1233 ** pTab is not pointing to a persistent table structure that defines 1234 ** part of the schema. */ 1235 pTab->isEphem = 1; 1236 #endif 1237 }else{ 1238 /* An ordinary table or view name in the FROM clause */ 1239 assert( pFrom->pTab==0 ); 1240 pFrom->pTab = pTab = 1241 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); 1242 if( pTab==0 ){ 1243 return 1; 1244 } 1245 pTab->nRef++; 1246 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1247 if( pTab->pSelect || IsVirtual(pTab) ){ 1248 /* We reach here if the named table is a really a view */ 1249 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1250 return 1; 1251 } 1252 /* If pFrom->pSelect!=0 it means we are dealing with a 1253 ** view within a view. The SELECT structure has already been 1254 ** copied by the outer view so we can skip the copy step here 1255 ** in the inner view. 1256 */ 1257 if( pFrom->pSelect==0 ){ 1258 pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); 1259 } 1260 } 1261 #endif 1262 } 1263 } 1264 1265 /* Process NATURAL keywords, and ON and USING clauses of joins. 1266 */ 1267 if( sqliteProcessJoin(pParse, p) ) return 1; 1268 1269 /* For every "*" that occurs in the column list, insert the names of 1270 ** all columns in all tables. And for every TABLE.* insert the names 1271 ** of all columns in TABLE. The parser inserted a special expression 1272 ** with the TK_ALL operator for each "*" that it found in the column list. 1273 ** The following code just has to locate the TK_ALL expressions and expand 1274 ** each one to the list of all columns in all tables. 1275 ** 1276 ** The first loop just checks to see if there are any "*" operators 1277 ** that need expanding. 1278 */ 1279 for(k=0; k<pEList->nExpr; k++){ 1280 Expr *pE = pEList->a[k].pExpr; 1281 if( pE->op==TK_ALL ) break; 1282 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1283 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1284 } 1285 rc = 0; 1286 if( k<pEList->nExpr ){ 1287 /* 1288 ** If we get here it means the result set contains one or more "*" 1289 ** operators that need to be expanded. Loop through each expression 1290 ** in the result set and expand them one by one. 1291 */ 1292 struct ExprList_item *a = pEList->a; 1293 ExprList *pNew = 0; 1294 int flags = pParse->db->flags; 1295 int longNames = (flags & SQLITE_FullColNames)!=0 && 1296 (flags & SQLITE_ShortColNames)==0; 1297 1298 for(k=0; k<pEList->nExpr; k++){ 1299 Expr *pE = a[k].pExpr; 1300 if( pE->op!=TK_ALL && 1301 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1302 /* This particular expression does not need to be expanded. 1303 */ 1304 pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); 1305 if( pNew ){ 1306 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1307 }else{ 1308 rc = 1; 1309 } 1310 a[k].pExpr = 0; 1311 a[k].zName = 0; 1312 }else{ 1313 /* This expression is a "*" or a "TABLE.*" and needs to be 1314 ** expanded. */ 1315 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1316 char *zTName; /* text of name of TABLE */ 1317 if( pE->op==TK_DOT && pE->pLeft ){ 1318 zTName = sqlite3NameFromToken(&pE->pLeft->token); 1319 }else{ 1320 zTName = 0; 1321 } 1322 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1323 Table *pTab = pFrom->pTab; 1324 char *zTabName = pFrom->zAlias; 1325 if( zTabName==0 || zTabName[0]==0 ){ 1326 zTabName = pTab->zName; 1327 } 1328 if( zTName && (zTabName==0 || zTabName[0]==0 || 1329 sqlite3StrICmp(zTName, zTabName)!=0) ){ 1330 continue; 1331 } 1332 tableSeen = 1; 1333 for(j=0; j<pTab->nCol; j++){ 1334 Expr *pExpr, *pRight; 1335 char *zName = pTab->aCol[j].zName; 1336 1337 if( i>0 ){ 1338 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1339 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1340 columnIndex(pLeft->pTab, zName)>=0 ){ 1341 /* In a NATURAL join, omit the join columns from the 1342 ** table on the right */ 1343 continue; 1344 } 1345 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1346 /* In a join with a USING clause, omit columns in the 1347 ** using clause from the table on the right. */ 1348 continue; 1349 } 1350 } 1351 pRight = sqlite3Expr(TK_ID, 0, 0, 0); 1352 if( pRight==0 ) break; 1353 setQuotedToken(&pRight->token, zName); 1354 if( zTabName && (longNames || pTabList->nSrc>1) ){ 1355 Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0); 1356 pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); 1357 if( pExpr==0 ) break; 1358 setQuotedToken(&pLeft->token, zTabName); 1359 setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); 1360 pExpr->span.dyn = 1; 1361 pExpr->token.z = 0; 1362 pExpr->token.n = 0; 1363 pExpr->token.dyn = 0; 1364 }else{ 1365 pExpr = pRight; 1366 pExpr->span = pExpr->token; 1367 pExpr->span.dyn = 0; 1368 } 1369 if( longNames ){ 1370 pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span); 1371 }else{ 1372 pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token); 1373 } 1374 } 1375 } 1376 if( !tableSeen ){ 1377 if( zTName ){ 1378 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1379 }else{ 1380 sqlite3ErrorMsg(pParse, "no tables specified"); 1381 } 1382 rc = 1; 1383 } 1384 sqliteFree(zTName); 1385 } 1386 } 1387 sqlite3ExprListDelete(pEList); 1388 p->pEList = pNew; 1389 } 1390 if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){ 1391 sqlite3ErrorMsg(pParse, "too many columns in result set"); 1392 rc = SQLITE_ERROR; 1393 } 1394 if( sqlite3MallocFailed() ){ 1395 rc = SQLITE_NOMEM; 1396 } 1397 return rc; 1398 } 1399 1400 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1401 /* 1402 ** This routine associates entries in an ORDER BY expression list with 1403 ** columns in a result. For each ORDER BY expression, the opcode of 1404 ** the top-level node is changed to TK_COLUMN and the iColumn value of 1405 ** the top-level node is filled in with column number and the iTable 1406 ** value of the top-level node is filled with iTable parameter. 1407 ** 1408 ** If there are prior SELECT clauses, they are processed first. A match 1409 ** in an earlier SELECT takes precedence over a later SELECT. 1410 ** 1411 ** Any entry that does not match is flagged as an error. The number 1412 ** of errors is returned. 1413 */ 1414 static int matchOrderbyToColumn( 1415 Parse *pParse, /* A place to leave error messages */ 1416 Select *pSelect, /* Match to result columns of this SELECT */ 1417 ExprList *pOrderBy, /* The ORDER BY values to match against columns */ 1418 int iTable, /* Insert this value in iTable */ 1419 int mustComplete /* If TRUE all ORDER BYs must match */ 1420 ){ 1421 int nErr = 0; 1422 int i, j; 1423 ExprList *pEList; 1424 1425 if( pSelect==0 || pOrderBy==0 ) return 1; 1426 if( mustComplete ){ 1427 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } 1428 } 1429 if( prepSelectStmt(pParse, pSelect) ){ 1430 return 1; 1431 } 1432 if( pSelect->pPrior ){ 1433 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ 1434 return 1; 1435 } 1436 } 1437 pEList = pSelect->pEList; 1438 for(i=0; i<pOrderBy->nExpr; i++){ 1439 struct ExprList_item *pItem; 1440 Expr *pE = pOrderBy->a[i].pExpr; 1441 int iCol = -1; 1442 char *zLabel; 1443 1444 if( pOrderBy->a[i].done ) continue; 1445 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1446 if( iCol<=0 || iCol>pEList->nExpr ){ 1447 sqlite3ErrorMsg(pParse, 1448 "ORDER BY position %d should be between 1 and %d", 1449 iCol, pEList->nExpr); 1450 nErr++; 1451 break; 1452 } 1453 if( !mustComplete ) continue; 1454 iCol--; 1455 } 1456 if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){ 1457 for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){ 1458 char *zName; 1459 int isMatch; 1460 if( pItem->zName ){ 1461 zName = sqlite3StrDup(pItem->zName); 1462 }else{ 1463 zName = sqlite3NameFromToken(&pItem->pExpr->token); 1464 } 1465 isMatch = zName && sqlite3StrICmp(zName, zLabel)==0; 1466 sqliteFree(zName); 1467 if( isMatch ){ 1468 iCol = j; 1469 break; 1470 } 1471 } 1472 sqliteFree(zLabel); 1473 } 1474 if( iCol>=0 ){ 1475 pE->op = TK_COLUMN; 1476 pE->iColumn = iCol; 1477 pE->iTable = iTable; 1478 pE->iAgg = -1; 1479 pOrderBy->a[i].done = 1; 1480 }else if( mustComplete ){ 1481 sqlite3ErrorMsg(pParse, 1482 "ORDER BY term number %d does not match any result column", i+1); 1483 nErr++; 1484 break; 1485 } 1486 } 1487 return nErr; 1488 } 1489 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ 1490 1491 /* 1492 ** Get a VDBE for the given parser context. Create a new one if necessary. 1493 ** If an error occurs, return NULL and leave a message in pParse. 1494 */ 1495 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1496 Vdbe *v = pParse->pVdbe; 1497 if( v==0 ){ 1498 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1499 } 1500 return v; 1501 } 1502 1503 1504 /* 1505 ** Compute the iLimit and iOffset fields of the SELECT based on the 1506 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1507 ** that appear in the original SQL statement after the LIMIT and OFFSET 1508 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1509 ** are the integer memory register numbers for counters used to compute 1510 ** the limit and offset. If there is no limit and/or offset, then 1511 ** iLimit and iOffset are negative. 1512 ** 1513 ** This routine changes the values of iLimit and iOffset only if 1514 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1515 ** iOffset should have been preset to appropriate default values 1516 ** (usually but not always -1) prior to calling this routine. 1517 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1518 ** redefined. The UNION ALL operator uses this property to force 1519 ** the reuse of the same limit and offset registers across multiple 1520 ** SELECT statements. 1521 */ 1522 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1523 Vdbe *v = 0; 1524 int iLimit = 0; 1525 int iOffset; 1526 int addr1, addr2; 1527 1528 /* 1529 ** "LIMIT -1" always shows all rows. There is some 1530 ** contraversy about what the correct behavior should be. 1531 ** The current implementation interprets "LIMIT 0" to mean 1532 ** no rows. 1533 */ 1534 if( p->pLimit ){ 1535 p->iLimit = iLimit = pParse->nMem; 1536 pParse->nMem += 2; 1537 v = sqlite3GetVdbe(pParse); 1538 if( v==0 ) return; 1539 sqlite3ExprCode(pParse, p->pLimit); 1540 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1541 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1); 1542 VdbeComment((v, "# LIMIT counter")); 1543 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); 1544 sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0); 1545 } 1546 if( p->pOffset ){ 1547 p->iOffset = iOffset = pParse->nMem++; 1548 v = sqlite3GetVdbe(pParse); 1549 if( v==0 ) return; 1550 sqlite3ExprCode(pParse, p->pOffset); 1551 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1552 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); 1553 VdbeComment((v, "# OFFSET counter")); 1554 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); 1555 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1556 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1557 sqlite3VdbeJumpHere(v, addr1); 1558 if( p->pLimit ){ 1559 sqlite3VdbeAddOp(v, OP_Add, 0, 0); 1560 } 1561 } 1562 if( p->pLimit ){ 1563 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); 1564 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1565 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); 1566 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1567 sqlite3VdbeJumpHere(v, addr1); 1568 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); 1569 VdbeComment((v, "# LIMIT+OFFSET")); 1570 sqlite3VdbeJumpHere(v, addr2); 1571 } 1572 } 1573 1574 /* 1575 ** Allocate a virtual index to use for sorting. 1576 */ 1577 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ 1578 if( pOrderBy ){ 1579 int addr; 1580 assert( pOrderBy->iECursor==0 ); 1581 pOrderBy->iECursor = pParse->nTab++; 1582 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, 1583 pOrderBy->iECursor, pOrderBy->nExpr+1); 1584 assert( p->addrOpenEphm[2] == -1 ); 1585 p->addrOpenEphm[2] = addr; 1586 } 1587 } 1588 1589 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1590 /* 1591 ** Return the appropriate collating sequence for the iCol-th column of 1592 ** the result set for the compound-select statement "p". Return NULL if 1593 ** the column has no default collating sequence. 1594 ** 1595 ** The collating sequence for the compound select is taken from the 1596 ** left-most term of the select that has a collating sequence. 1597 */ 1598 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1599 CollSeq *pRet; 1600 if( p->pPrior ){ 1601 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1602 }else{ 1603 pRet = 0; 1604 } 1605 if( pRet==0 ){ 1606 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1607 } 1608 return pRet; 1609 } 1610 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1611 1612 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1613 /* 1614 ** This routine is called to process a query that is really the union 1615 ** or intersection of two or more separate queries. 1616 ** 1617 ** "p" points to the right-most of the two queries. the query on the 1618 ** left is p->pPrior. The left query could also be a compound query 1619 ** in which case this routine will be called recursively. 1620 ** 1621 ** The results of the total query are to be written into a destination 1622 ** of type eDest with parameter iParm. 1623 ** 1624 ** Example 1: Consider a three-way compound SQL statement. 1625 ** 1626 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1627 ** 1628 ** This statement is parsed up as follows: 1629 ** 1630 ** SELECT c FROM t3 1631 ** | 1632 ** `-----> SELECT b FROM t2 1633 ** | 1634 ** `------> SELECT a FROM t1 1635 ** 1636 ** The arrows in the diagram above represent the Select.pPrior pointer. 1637 ** So if this routine is called with p equal to the t3 query, then 1638 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1639 ** 1640 ** Notice that because of the way SQLite parses compound SELECTs, the 1641 ** individual selects always group from left to right. 1642 */ 1643 static int multiSelect( 1644 Parse *pParse, /* Parsing context */ 1645 Select *p, /* The right-most of SELECTs to be coded */ 1646 int eDest, /* \___ Store query results as specified */ 1647 int iParm, /* / by these two parameters. */ 1648 char *aff /* If eDest is SRT_Union, the affinity string */ 1649 ){ 1650 int rc = SQLITE_OK; /* Success code from a subroutine */ 1651 Select *pPrior; /* Another SELECT immediately to our left */ 1652 Vdbe *v; /* Generate code to this VDBE */ 1653 int nCol; /* Number of columns in the result set */ 1654 ExprList *pOrderBy; /* The ORDER BY clause on p */ 1655 int aSetP2[2]; /* Set P2 value of these op to number of columns */ 1656 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ 1657 1658 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1659 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1660 */ 1661 if( p==0 || p->pPrior==0 ){ 1662 rc = 1; 1663 goto multi_select_end; 1664 } 1665 pPrior = p->pPrior; 1666 assert( pPrior->pRightmost!=pPrior ); 1667 assert( pPrior->pRightmost==p->pRightmost ); 1668 if( pPrior->pOrderBy ){ 1669 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1670 selectOpName(p->op)); 1671 rc = 1; 1672 goto multi_select_end; 1673 } 1674 if( pPrior->pLimit ){ 1675 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1676 selectOpName(p->op)); 1677 rc = 1; 1678 goto multi_select_end; 1679 } 1680 1681 /* Make sure we have a valid query engine. If not, create a new one. 1682 */ 1683 v = sqlite3GetVdbe(pParse); 1684 if( v==0 ){ 1685 rc = 1; 1686 goto multi_select_end; 1687 } 1688 1689 /* Create the destination temporary table if necessary 1690 */ 1691 if( eDest==SRT_EphemTab ){ 1692 assert( p->pEList ); 1693 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1694 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); 1695 eDest = SRT_Table; 1696 } 1697 1698 /* Generate code for the left and right SELECT statements. 1699 */ 1700 pOrderBy = p->pOrderBy; 1701 switch( p->op ){ 1702 case TK_ALL: { 1703 if( pOrderBy==0 ){ 1704 int addr = 0; 1705 assert( !pPrior->pLimit ); 1706 pPrior->pLimit = p->pLimit; 1707 pPrior->pOffset = p->pOffset; 1708 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); 1709 p->pLimit = 0; 1710 p->pOffset = 0; 1711 if( rc ){ 1712 goto multi_select_end; 1713 } 1714 p->pPrior = 0; 1715 p->iLimit = pPrior->iLimit; 1716 p->iOffset = pPrior->iOffset; 1717 if( p->iLimit>=0 ){ 1718 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); 1719 VdbeComment((v, "# Jump ahead if LIMIT reached")); 1720 } 1721 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); 1722 p->pPrior = pPrior; 1723 if( rc ){ 1724 goto multi_select_end; 1725 } 1726 if( addr ){ 1727 sqlite3VdbeJumpHere(v, addr); 1728 } 1729 break; 1730 } 1731 /* For UNION ALL ... ORDER BY fall through to the next case */ 1732 } 1733 case TK_EXCEPT: 1734 case TK_UNION: { 1735 int unionTab; /* Cursor number of the temporary table holding result */ 1736 int op = 0; /* One of the SRT_ operations to apply to self */ 1737 int priorOp; /* The SRT_ operation to apply to prior selects */ 1738 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1739 int addr; 1740 1741 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; 1742 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ 1743 /* We can reuse a temporary table generated by a SELECT to our 1744 ** right. 1745 */ 1746 unionTab = iParm; 1747 }else{ 1748 /* We will need to create our own temporary table to hold the 1749 ** intermediate results. 1750 */ 1751 unionTab = pParse->nTab++; 1752 if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ 1753 rc = 1; 1754 goto multi_select_end; 1755 } 1756 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); 1757 if( priorOp==SRT_Table ){ 1758 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1759 aSetP2[nSetP2++] = addr; 1760 }else{ 1761 assert( p->addrOpenEphm[0] == -1 ); 1762 p->addrOpenEphm[0] = addr; 1763 p->pRightmost->usesEphm = 1; 1764 } 1765 createSortingIndex(pParse, p, pOrderBy); 1766 assert( p->pEList ); 1767 } 1768 1769 /* Code the SELECT statements to our left 1770 */ 1771 assert( !pPrior->pOrderBy ); 1772 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); 1773 if( rc ){ 1774 goto multi_select_end; 1775 } 1776 1777 /* Code the current SELECT statement 1778 */ 1779 switch( p->op ){ 1780 case TK_EXCEPT: op = SRT_Except; break; 1781 case TK_UNION: op = SRT_Union; break; 1782 case TK_ALL: op = SRT_Table; break; 1783 } 1784 p->pPrior = 0; 1785 p->pOrderBy = 0; 1786 p->disallowOrderBy = pOrderBy!=0; 1787 pLimit = p->pLimit; 1788 p->pLimit = 0; 1789 pOffset = p->pOffset; 1790 p->pOffset = 0; 1791 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); 1792 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1793 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1794 sqlite3ExprListDelete(p->pOrderBy); 1795 p->pPrior = pPrior; 1796 p->pOrderBy = pOrderBy; 1797 sqlite3ExprDelete(p->pLimit); 1798 p->pLimit = pLimit; 1799 p->pOffset = pOffset; 1800 p->iLimit = -1; 1801 p->iOffset = -1; 1802 if( rc ){ 1803 goto multi_select_end; 1804 } 1805 1806 1807 /* Convert the data in the temporary table into whatever form 1808 ** it is that we currently need. 1809 */ 1810 if( eDest!=priorOp || unionTab!=iParm ){ 1811 int iCont, iBreak, iStart; 1812 assert( p->pEList ); 1813 if( eDest==SRT_Callback ){ 1814 Select *pFirst = p; 1815 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1816 generateColumnNames(pParse, 0, pFirst->pEList); 1817 } 1818 iBreak = sqlite3VdbeMakeLabel(v); 1819 iCont = sqlite3VdbeMakeLabel(v); 1820 computeLimitRegisters(pParse, p, iBreak); 1821 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); 1822 iStart = sqlite3VdbeCurrentAddr(v); 1823 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1824 pOrderBy, -1, eDest, iParm, 1825 iCont, iBreak, 0); 1826 if( rc ){ 1827 rc = 1; 1828 goto multi_select_end; 1829 } 1830 sqlite3VdbeResolveLabel(v, iCont); 1831 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); 1832 sqlite3VdbeResolveLabel(v, iBreak); 1833 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); 1834 } 1835 break; 1836 } 1837 case TK_INTERSECT: { 1838 int tab1, tab2; 1839 int iCont, iBreak, iStart; 1840 Expr *pLimit, *pOffset; 1841 int addr; 1842 1843 /* INTERSECT is different from the others since it requires 1844 ** two temporary tables. Hence it has its own case. Begin 1845 ** by allocating the tables we will need. 1846 */ 1847 tab1 = pParse->nTab++; 1848 tab2 = pParse->nTab++; 1849 if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ 1850 rc = 1; 1851 goto multi_select_end; 1852 } 1853 createSortingIndex(pParse, p, pOrderBy); 1854 1855 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); 1856 assert( p->addrOpenEphm[0] == -1 ); 1857 p->addrOpenEphm[0] = addr; 1858 p->pRightmost->usesEphm = 1; 1859 assert( p->pEList ); 1860 1861 /* Code the SELECTs to our left into temporary table "tab1". 1862 */ 1863 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); 1864 if( rc ){ 1865 goto multi_select_end; 1866 } 1867 1868 /* Code the current SELECT into temporary table "tab2" 1869 */ 1870 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); 1871 assert( p->addrOpenEphm[1] == -1 ); 1872 p->addrOpenEphm[1] = addr; 1873 p->pPrior = 0; 1874 pLimit = p->pLimit; 1875 p->pLimit = 0; 1876 pOffset = p->pOffset; 1877 p->pOffset = 0; 1878 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); 1879 p->pPrior = pPrior; 1880 sqlite3ExprDelete(p->pLimit); 1881 p->pLimit = pLimit; 1882 p->pOffset = pOffset; 1883 if( rc ){ 1884 goto multi_select_end; 1885 } 1886 1887 /* Generate code to take the intersection of the two temporary 1888 ** tables. 1889 */ 1890 assert( p->pEList ); 1891 if( eDest==SRT_Callback ){ 1892 Select *pFirst = p; 1893 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1894 generateColumnNames(pParse, 0, pFirst->pEList); 1895 } 1896 iBreak = sqlite3VdbeMakeLabel(v); 1897 iCont = sqlite3VdbeMakeLabel(v); 1898 computeLimitRegisters(pParse, p, iBreak); 1899 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); 1900 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); 1901 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); 1902 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1903 pOrderBy, -1, eDest, iParm, 1904 iCont, iBreak, 0); 1905 if( rc ){ 1906 rc = 1; 1907 goto multi_select_end; 1908 } 1909 sqlite3VdbeResolveLabel(v, iCont); 1910 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); 1911 sqlite3VdbeResolveLabel(v, iBreak); 1912 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); 1913 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); 1914 break; 1915 } 1916 } 1917 1918 /* Make sure all SELECTs in the statement have the same number of elements 1919 ** in their result sets. 1920 */ 1921 assert( p->pEList && pPrior->pEList ); 1922 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1923 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1924 " do not have the same number of result columns", selectOpName(p->op)); 1925 rc = 1; 1926 goto multi_select_end; 1927 } 1928 1929 /* Set the number of columns in temporary tables 1930 */ 1931 nCol = p->pEList->nExpr; 1932 while( nSetP2 ){ 1933 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); 1934 } 1935 1936 /* Compute collating sequences used by either the ORDER BY clause or 1937 ** by any temporary tables needed to implement the compound select. 1938 ** Attach the KeyInfo structure to all temporary tables. Invoke the 1939 ** ORDER BY processing if there is an ORDER BY clause. 1940 ** 1941 ** This section is run by the right-most SELECT statement only. 1942 ** SELECT statements to the left always skip this part. The right-most 1943 ** SELECT might also skip this part if it has no ORDER BY clause and 1944 ** no temp tables are required. 1945 */ 1946 if( pOrderBy || p->usesEphm ){ 1947 int i; /* Loop counter */ 1948 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1949 Select *pLoop; /* For looping through SELECT statements */ 1950 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ 1951 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1952 CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ 1953 1954 assert( p->pRightmost==p ); 1955 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); 1956 pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); 1957 if( !pKeyInfo ){ 1958 rc = SQLITE_NOMEM; 1959 goto multi_select_end; 1960 } 1961 1962 pKeyInfo->enc = ENC(pParse->db); 1963 pKeyInfo->nField = nCol; 1964 1965 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1966 *apColl = multiSelectCollSeq(pParse, p, i); 1967 if( 0==*apColl ){ 1968 *apColl = pParse->db->pDfltColl; 1969 } 1970 } 1971 1972 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1973 for(i=0; i<2; i++){ 1974 int addr = pLoop->addrOpenEphm[i]; 1975 if( addr<0 ){ 1976 /* If [0] is unused then [1] is also unused. So we can 1977 ** always safely abort as soon as the first unused slot is found */ 1978 assert( pLoop->addrOpenEphm[1]<0 ); 1979 break; 1980 } 1981 sqlite3VdbeChangeP2(v, addr, nCol); 1982 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); 1983 pLoop->addrOpenEphm[i] = -1; 1984 } 1985 } 1986 1987 if( pOrderBy ){ 1988 struct ExprList_item *pOTerm = pOrderBy->a; 1989 int nOrderByExpr = pOrderBy->nExpr; 1990 int addr; 1991 u8 *pSortOrder; 1992 1993 /* Reuse the same pKeyInfo for the ORDER BY as was used above for 1994 ** the compound select statements. Except we have to change out the 1995 ** pKeyInfo->aColl[] values. Some of the aColl[] values will be 1996 ** reused when constructing the pKeyInfo for the ORDER BY, so make 1997 ** a copy. Sufficient space to hold both the nCol entries for 1998 ** the compound select and the nOrderbyExpr entries for the ORDER BY 1999 ** was allocated above. But we need to move the compound select 2000 ** entries out of the way before constructing the ORDER BY entries. 2001 ** Move the compound select entries into aCopy[] where they can be 2002 ** accessed and reused when constructing the ORDER BY entries. 2003 ** Because nCol might be greater than or less than nOrderByExpr 2004 ** we have to use memmove() when doing the copy. 2005 */ 2006 aCopy = &pKeyInfo->aColl[nOrderByExpr]; 2007 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; 2008 memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); 2009 2010 apColl = pKeyInfo->aColl; 2011 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ 2012 Expr *pExpr = pOTerm->pExpr; 2013 if( (pExpr->flags & EP_ExpCollate) ){ 2014 assert( pExpr->pColl!=0 ); 2015 *apColl = pExpr->pColl; 2016 }else{ 2017 *apColl = aCopy[pExpr->iColumn]; 2018 } 2019 *pSortOrder = pOTerm->sortOrder; 2020 } 2021 assert( p->pRightmost==p ); 2022 assert( p->addrOpenEphm[2]>=0 ); 2023 addr = p->addrOpenEphm[2]; 2024 sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2); 2025 pKeyInfo->nField = nOrderByExpr; 2026 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2027 pKeyInfo = 0; 2028 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); 2029 } 2030 2031 sqliteFree(pKeyInfo); 2032 } 2033 2034 multi_select_end: 2035 return rc; 2036 } 2037 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2038 2039 #ifndef SQLITE_OMIT_VIEW 2040 /* 2041 ** Scan through the expression pExpr. Replace every reference to 2042 ** a column in table number iTable with a copy of the iColumn-th 2043 ** entry in pEList. (But leave references to the ROWID column 2044 ** unchanged.) 2045 ** 2046 ** This routine is part of the flattening procedure. A subquery 2047 ** whose result set is defined by pEList appears as entry in the 2048 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2049 ** FORM clause entry is iTable. This routine make the necessary 2050 ** changes to pExpr so that it refers directly to the source table 2051 ** of the subquery rather the result set of the subquery. 2052 */ 2053 static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ 2054 static void substSelect(Select *, int, ExprList *); /* Forward Decl */ 2055 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ 2056 if( pExpr==0 ) return; 2057 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2058 if( pExpr->iColumn<0 ){ 2059 pExpr->op = TK_NULL; 2060 }else{ 2061 Expr *pNew; 2062 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2063 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2064 pNew = pEList->a[pExpr->iColumn].pExpr; 2065 assert( pNew!=0 ); 2066 pExpr->op = pNew->op; 2067 assert( pExpr->pLeft==0 ); 2068 pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); 2069 assert( pExpr->pRight==0 ); 2070 pExpr->pRight = sqlite3ExprDup(pNew->pRight); 2071 assert( pExpr->pList==0 ); 2072 pExpr->pList = sqlite3ExprListDup(pNew->pList); 2073 pExpr->iTable = pNew->iTable; 2074 pExpr->pTab = pNew->pTab; 2075 pExpr->iColumn = pNew->iColumn; 2076 pExpr->iAgg = pNew->iAgg; 2077 sqlite3TokenCopy(&pExpr->token, &pNew->token); 2078 sqlite3TokenCopy(&pExpr->span, &pNew->span); 2079 pExpr->pSelect = sqlite3SelectDup(pNew->pSelect); 2080 pExpr->flags = pNew->flags; 2081 } 2082 }else{ 2083 substExpr(pExpr->pLeft, iTable, pEList); 2084 substExpr(pExpr->pRight, iTable, pEList); 2085 substSelect(pExpr->pSelect, iTable, pEList); 2086 substExprList(pExpr->pList, iTable, pEList); 2087 } 2088 } 2089 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ 2090 int i; 2091 if( pList==0 ) return; 2092 for(i=0; i<pList->nExpr; i++){ 2093 substExpr(pList->a[i].pExpr, iTable, pEList); 2094 } 2095 } 2096 static void substSelect(Select *p, int iTable, ExprList *pEList){ 2097 if( !p ) return; 2098 substExprList(p->pEList, iTable, pEList); 2099 substExprList(p->pGroupBy, iTable, pEList); 2100 substExprList(p->pOrderBy, iTable, pEList); 2101 substExpr(p->pHaving, iTable, pEList); 2102 substExpr(p->pWhere, iTable, pEList); 2103 substSelect(p->pPrior, iTable, pEList); 2104 } 2105 #endif /* !defined(SQLITE_OMIT_VIEW) */ 2106 2107 #ifndef SQLITE_OMIT_VIEW 2108 /* 2109 ** This routine attempts to flatten subqueries in order to speed 2110 ** execution. It returns 1 if it makes changes and 0 if no flattening 2111 ** occurs. 2112 ** 2113 ** To understand the concept of flattening, consider the following 2114 ** query: 2115 ** 2116 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2117 ** 2118 ** The default way of implementing this query is to execute the 2119 ** subquery first and store the results in a temporary table, then 2120 ** run the outer query on that temporary table. This requires two 2121 ** passes over the data. Furthermore, because the temporary table 2122 ** has no indices, the WHERE clause on the outer query cannot be 2123 ** optimized. 2124 ** 2125 ** This routine attempts to rewrite queries such as the above into 2126 ** a single flat select, like this: 2127 ** 2128 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2129 ** 2130 ** The code generated for this simpification gives the same result 2131 ** but only has to scan the data once. And because indices might 2132 ** exist on the table t1, a complete scan of the data might be 2133 ** avoided. 2134 ** 2135 ** Flattening is only attempted if all of the following are true: 2136 ** 2137 ** (1) The subquery and the outer query do not both use aggregates. 2138 ** 2139 ** (2) The subquery is not an aggregate or the outer query is not a join. 2140 ** 2141 ** (3) The subquery is not the right operand of a left outer join, or 2142 ** the subquery is not itself a join. (Ticket #306) 2143 ** 2144 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2145 ** 2146 ** (5) The subquery is not DISTINCT or the outer query does not use 2147 ** aggregates. 2148 ** 2149 ** (6) The subquery does not use aggregates or the outer query is not 2150 ** DISTINCT. 2151 ** 2152 ** (7) The subquery has a FROM clause. 2153 ** 2154 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2155 ** 2156 ** (9) The subquery does not use LIMIT or the outer query does not use 2157 ** aggregates. 2158 ** 2159 ** (10) The subquery does not use aggregates or the outer query does not 2160 ** use LIMIT. 2161 ** 2162 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2163 ** 2164 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2165 ** subquery has no WHERE clause. (added by ticket #350) 2166 ** 2167 ** (13) The subquery and outer query do not both use LIMIT 2168 ** 2169 ** (14) The subquery does not use OFFSET 2170 ** 2171 ** (15) The outer query is not part of a compound select or the 2172 ** subquery does not have both an ORDER BY and a LIMIT clause. 2173 ** (See ticket #2339) 2174 ** 2175 ** In this routine, the "p" parameter is a pointer to the outer query. 2176 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2177 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2178 ** 2179 ** If flattening is not attempted, this routine is a no-op and returns 0. 2180 ** If flattening is attempted this routine returns 1. 2181 ** 2182 ** All of the expression analysis must occur on both the outer query and 2183 ** the subquery before this routine runs. 2184 */ 2185 static int flattenSubquery( 2186 Select *p, /* The parent or outer SELECT statement */ 2187 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2188 int isAgg, /* True if outer SELECT uses aggregate functions */ 2189 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2190 ){ 2191 Select *pSub; /* The inner query or "subquery" */ 2192 SrcList *pSrc; /* The FROM clause of the outer query */ 2193 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2194 ExprList *pList; /* The result set of the outer query */ 2195 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2196 int i; /* Loop counter */ 2197 Expr *pWhere; /* The WHERE clause */ 2198 struct SrcList_item *pSubitem; /* The subquery */ 2199 2200 /* Check to see if flattening is permitted. Return 0 if not. 2201 */ 2202 if( p==0 ) return 0; 2203 pSrc = p->pSrc; 2204 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2205 pSubitem = &pSrc->a[iFrom]; 2206 pSub = pSubitem->pSelect; 2207 assert( pSub!=0 ); 2208 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2209 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2210 pSubSrc = pSub->pSrc; 2211 assert( pSubSrc ); 2212 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2213 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2214 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2215 ** became arbitrary expressions, we were forced to add restrictions (13) 2216 ** and (14). */ 2217 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2218 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2219 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2220 return 0; /* Restriction (15) */ 2221 } 2222 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2223 if( (pSub->isDistinct || pSub->pLimit) 2224 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2225 return 0; 2226 } 2227 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 2228 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 2229 return 0; /* Restriction (11) */ 2230 } 2231 2232 /* Restriction 3: If the subquery is a join, make sure the subquery is 2233 ** not used as the right operand of an outer join. Examples of why this 2234 ** is not allowed: 2235 ** 2236 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2237 ** 2238 ** If we flatten the above, we would get 2239 ** 2240 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2241 ** 2242 ** which is not at all the same thing. 2243 */ 2244 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 2245 return 0; 2246 } 2247 2248 /* Restriction 12: If the subquery is the right operand of a left outer 2249 ** join, make sure the subquery has no WHERE clause. 2250 ** An examples of why this is not allowed: 2251 ** 2252 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2253 ** 2254 ** If we flatten the above, we would get 2255 ** 2256 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2257 ** 2258 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2259 ** effectively converts the OUTER JOIN into an INNER JOIN. 2260 */ 2261 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 2262 return 0; 2263 } 2264 2265 /* If we reach this point, it means flattening is permitted for the 2266 ** iFrom-th entry of the FROM clause in the outer query. 2267 */ 2268 2269 /* Move all of the FROM elements of the subquery into the 2270 ** the FROM clause of the outer query. Before doing this, remember 2271 ** the cursor number for the original outer query FROM element in 2272 ** iParent. The iParent cursor will never be used. Subsequent code 2273 ** will scan expressions looking for iParent references and replace 2274 ** those references with expressions that resolve to the subquery FROM 2275 ** elements we are now copying in. 2276 */ 2277 iParent = pSubitem->iCursor; 2278 { 2279 int nSubSrc = pSubSrc->nSrc; 2280 int jointype = pSubitem->jointype; 2281 2282 sqlite3DeleteTable(pSubitem->pTab); 2283 sqliteFree(pSubitem->zDatabase); 2284 sqliteFree(pSubitem->zName); 2285 sqliteFree(pSubitem->zAlias); 2286 if( nSubSrc>1 ){ 2287 int extra = nSubSrc - 1; 2288 for(i=1; i<nSubSrc; i++){ 2289 pSrc = sqlite3SrcListAppend(pSrc, 0, 0); 2290 } 2291 p->pSrc = pSrc; 2292 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2293 pSrc->a[i] = pSrc->a[i-extra]; 2294 } 2295 } 2296 for(i=0; i<nSubSrc; i++){ 2297 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2298 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2299 } 2300 pSrc->a[iFrom].jointype = jointype; 2301 } 2302 2303 /* Now begin substituting subquery result set expressions for 2304 ** references to the iParent in the outer query. 2305 ** 2306 ** Example: 2307 ** 2308 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2309 ** \ \_____________ subquery __________/ / 2310 ** \_____________________ outer query ______________________________/ 2311 ** 2312 ** We look at every expression in the outer query and every place we see 2313 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2314 */ 2315 pList = p->pEList; 2316 for(i=0; i<pList->nExpr; i++){ 2317 Expr *pExpr; 2318 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2319 pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n); 2320 } 2321 } 2322 substExprList(p->pEList, iParent, pSub->pEList); 2323 if( isAgg ){ 2324 substExprList(p->pGroupBy, iParent, pSub->pEList); 2325 substExpr(p->pHaving, iParent, pSub->pEList); 2326 } 2327 if( pSub->pOrderBy ){ 2328 assert( p->pOrderBy==0 ); 2329 p->pOrderBy = pSub->pOrderBy; 2330 pSub->pOrderBy = 0; 2331 }else if( p->pOrderBy ){ 2332 substExprList(p->pOrderBy, iParent, pSub->pEList); 2333 } 2334 if( pSub->pWhere ){ 2335 pWhere = sqlite3ExprDup(pSub->pWhere); 2336 }else{ 2337 pWhere = 0; 2338 } 2339 if( subqueryIsAgg ){ 2340 assert( p->pHaving==0 ); 2341 p->pHaving = p->pWhere; 2342 p->pWhere = pWhere; 2343 substExpr(p->pHaving, iParent, pSub->pEList); 2344 p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); 2345 assert( p->pGroupBy==0 ); 2346 p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); 2347 }else{ 2348 substExpr(p->pWhere, iParent, pSub->pEList); 2349 p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); 2350 } 2351 2352 /* The flattened query is distinct if either the inner or the 2353 ** outer query is distinct. 2354 */ 2355 p->isDistinct = p->isDistinct || pSub->isDistinct; 2356 2357 /* 2358 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2359 ** 2360 ** One is tempted to try to add a and b to combine the limits. But this 2361 ** does not work if either limit is negative. 2362 */ 2363 if( pSub->pLimit ){ 2364 p->pLimit = pSub->pLimit; 2365 pSub->pLimit = 0; 2366 } 2367 2368 /* Finially, delete what is left of the subquery and return 2369 ** success. 2370 */ 2371 sqlite3SelectDelete(pSub); 2372 return 1; 2373 } 2374 #endif /* SQLITE_OMIT_VIEW */ 2375 2376 /* 2377 ** Analyze the SELECT statement passed in as an argument to see if it 2378 ** is a simple min() or max() query. If it is and this query can be 2379 ** satisfied using a single seek to the beginning or end of an index, 2380 ** then generate the code for this SELECT and return 1. If this is not a 2381 ** simple min() or max() query, then return 0; 2382 ** 2383 ** A simply min() or max() query looks like this: 2384 ** 2385 ** SELECT min(a) FROM table; 2386 ** SELECT max(a) FROM table; 2387 ** 2388 ** The query may have only a single table in its FROM argument. There 2389 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must 2390 ** be the min() or max() of a single column of the table. The column 2391 ** in the min() or max() function must be indexed. 2392 ** 2393 ** The parameters to this routine are the same as for sqlite3Select(). 2394 ** See the header comment on that routine for additional information. 2395 */ 2396 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ 2397 Expr *pExpr; 2398 int iCol; 2399 Table *pTab; 2400 Index *pIdx; 2401 int base; 2402 Vdbe *v; 2403 int seekOp; 2404 ExprList *pEList, *pList, eList; 2405 struct ExprList_item eListItem; 2406 SrcList *pSrc; 2407 int brk; 2408 int iDb; 2409 2410 /* Check to see if this query is a simple min() or max() query. Return 2411 ** zero if it is not. 2412 */ 2413 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; 2414 pSrc = p->pSrc; 2415 if( pSrc->nSrc!=1 ) return 0; 2416 pEList = p->pEList; 2417 if( pEList->nExpr!=1 ) return 0; 2418 pExpr = pEList->a[0].pExpr; 2419 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2420 pList = pExpr->pList; 2421 if( pList==0 || pList->nExpr!=1 ) return 0; 2422 if( pExpr->token.n!=3 ) return 0; 2423 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2424 seekOp = OP_Rewind; 2425 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2426 seekOp = OP_Last; 2427 }else{ 2428 return 0; 2429 } 2430 pExpr = pList->a[0].pExpr; 2431 if( pExpr->op!=TK_COLUMN ) return 0; 2432 iCol = pExpr->iColumn; 2433 pTab = pSrc->a[0].pTab; 2434 2435 /* This optimization cannot be used with virtual tables. */ 2436 if( IsVirtual(pTab) ) return 0; 2437 2438 /* If we get to here, it means the query is of the correct form. 2439 ** Check to make sure we have an index and make pIdx point to the 2440 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY 2441 ** key column, no index is necessary so set pIdx to NULL. If no 2442 ** usable index is found, return 0. 2443 */ 2444 if( iCol<0 ){ 2445 pIdx = 0; 2446 }else{ 2447 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2448 if( pColl==0 ) return 0; 2449 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2450 assert( pIdx->nColumn>=1 ); 2451 if( pIdx->aiColumn[0]==iCol && 2452 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ 2453 break; 2454 } 2455 } 2456 if( pIdx==0 ) return 0; 2457 } 2458 2459 /* Identify column types if we will be using the callback. This 2460 ** step is skipped if the output is going to a table or a memory cell. 2461 ** The column names have already been generated in the calling function. 2462 */ 2463 v = sqlite3GetVdbe(pParse); 2464 if( v==0 ) return 0; 2465 2466 /* If the output is destined for a temporary table, open that table. 2467 */ 2468 if( eDest==SRT_EphemTab ){ 2469 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); 2470 } 2471 2472 /* Generating code to find the min or the max. Basically all we have 2473 ** to do is find the first or the last entry in the chosen index. If 2474 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first 2475 ** or last entry in the main table. 2476 */ 2477 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2478 assert( iDb>=0 || pTab->isEphem ); 2479 sqlite3CodeVerifySchema(pParse, iDb); 2480 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2481 base = pSrc->a[0].iCursor; 2482 brk = sqlite3VdbeMakeLabel(v); 2483 computeLimitRegisters(pParse, p, brk); 2484 if( pSrc->a[0].pSelect==0 ){ 2485 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); 2486 } 2487 if( pIdx==0 ){ 2488 sqlite3VdbeAddOp(v, seekOp, base, 0); 2489 }else{ 2490 /* Even though the cursor used to open the index here is closed 2491 ** as soon as a single value has been read from it, allocate it 2492 ** using (pParse->nTab++) to prevent the cursor id from being 2493 ** reused. This is important for statements of the form 2494 ** "INSERT INTO x SELECT max() FROM x". 2495 */ 2496 int iIdx; 2497 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 2498 iIdx = pParse->nTab++; 2499 assert( pIdx->pSchema==pTab->pSchema ); 2500 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2501 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 2502 (char*)pKey, P3_KEYINFO_HANDOFF); 2503 if( seekOp==OP_Rewind ){ 2504 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2505 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); 2506 seekOp = OP_MoveGt; 2507 } 2508 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); 2509 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); 2510 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2511 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 2512 } 2513 eList.nExpr = 1; 2514 memset(&eListItem, 0, sizeof(eListItem)); 2515 eList.a = &eListItem; 2516 eList.a[0].pExpr = pExpr; 2517 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); 2518 sqlite3VdbeResolveLabel(v, brk); 2519 sqlite3VdbeAddOp(v, OP_Close, base, 0); 2520 2521 return 1; 2522 } 2523 2524 /* 2525 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 2526 ** the number of errors seen. 2527 ** 2528 ** An ORDER BY or GROUP BY is a list of expressions. If any expression 2529 ** is an integer constant, then that expression is replaced by the 2530 ** corresponding entry in the result set. 2531 */ 2532 static int processOrderGroupBy( 2533 NameContext *pNC, /* Name context of the SELECT statement. */ 2534 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 2535 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ 2536 ){ 2537 int i; 2538 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ 2539 Parse *pParse = pNC->pParse; /* The result set of the SELECT */ 2540 assert( pEList ); 2541 2542 if( pOrderBy==0 ) return 0; 2543 if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){ 2544 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); 2545 return 1; 2546 } 2547 for(i=0; i<pOrderBy->nExpr; i++){ 2548 int iCol; 2549 Expr *pE = pOrderBy->a[i].pExpr; 2550 if( sqlite3ExprIsInteger(pE, &iCol) ){ 2551 if( iCol>0 && iCol<=pEList->nExpr ){ 2552 CollSeq *pColl = pE->pColl; 2553 int flags = pE->flags & EP_ExpCollate; 2554 sqlite3ExprDelete(pE); 2555 pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); 2556 if( pColl && flags ){ 2557 pE->pColl = pColl; 2558 pE->flags |= flags; 2559 } 2560 }else{ 2561 sqlite3ErrorMsg(pParse, 2562 "%s BY column number %d out of range - should be " 2563 "between 1 and %d", zType, iCol, pEList->nExpr); 2564 return 1; 2565 } 2566 } 2567 if( sqlite3ExprResolveNames(pNC, pE) ){ 2568 return 1; 2569 } 2570 } 2571 return 0; 2572 } 2573 2574 /* 2575 ** This routine resolves any names used in the result set of the 2576 ** supplied SELECT statement. If the SELECT statement being resolved 2577 ** is a sub-select, then pOuterNC is a pointer to the NameContext 2578 ** of the parent SELECT. 2579 */ 2580 int sqlite3SelectResolve( 2581 Parse *pParse, /* The parser context */ 2582 Select *p, /* The SELECT statement being coded. */ 2583 NameContext *pOuterNC /* The outer name context. May be NULL. */ 2584 ){ 2585 ExprList *pEList; /* Result set. */ 2586 int i; /* For-loop variable used in multiple places */ 2587 NameContext sNC; /* Local name-context */ 2588 ExprList *pGroupBy; /* The group by clause */ 2589 2590 /* If this routine has run before, return immediately. */ 2591 if( p->isResolved ){ 2592 assert( !pOuterNC ); 2593 return SQLITE_OK; 2594 } 2595 p->isResolved = 1; 2596 2597 /* If there have already been errors, do nothing. */ 2598 if( pParse->nErr>0 ){ 2599 return SQLITE_ERROR; 2600 } 2601 2602 /* Prepare the select statement. This call will allocate all cursors 2603 ** required to handle the tables and subqueries in the FROM clause. 2604 */ 2605 if( prepSelectStmt(pParse, p) ){ 2606 return SQLITE_ERROR; 2607 } 2608 2609 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 2610 ** are not allowed to refer to any names, so pass an empty NameContext. 2611 */ 2612 memset(&sNC, 0, sizeof(sNC)); 2613 sNC.pParse = pParse; 2614 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 2615 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 2616 return SQLITE_ERROR; 2617 } 2618 2619 /* Set up the local name-context to pass to ExprResolveNames() to 2620 ** resolve the expression-list. 2621 */ 2622 sNC.allowAgg = 1; 2623 sNC.pSrcList = p->pSrc; 2624 sNC.pNext = pOuterNC; 2625 2626 /* Resolve names in the result set. */ 2627 pEList = p->pEList; 2628 if( !pEList ) return SQLITE_ERROR; 2629 for(i=0; i<pEList->nExpr; i++){ 2630 Expr *pX = pEList->a[i].pExpr; 2631 if( sqlite3ExprResolveNames(&sNC, pX) ){ 2632 return SQLITE_ERROR; 2633 } 2634 } 2635 2636 /* If there are no aggregate functions in the result-set, and no GROUP BY 2637 ** expression, do not allow aggregates in any of the other expressions. 2638 */ 2639 assert( !p->isAgg ); 2640 pGroupBy = p->pGroupBy; 2641 if( pGroupBy || sNC.hasAgg ){ 2642 p->isAgg = 1; 2643 }else{ 2644 sNC.allowAgg = 0; 2645 } 2646 2647 /* If a HAVING clause is present, then there must be a GROUP BY clause. 2648 */ 2649 if( p->pHaving && !pGroupBy ){ 2650 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 2651 return SQLITE_ERROR; 2652 } 2653 2654 /* Add the expression list to the name-context before parsing the 2655 ** other expressions in the SELECT statement. This is so that 2656 ** expressions in the WHERE clause (etc.) can refer to expressions by 2657 ** aliases in the result set. 2658 ** 2659 ** Minor point: If this is the case, then the expression will be 2660 ** re-evaluated for each reference to it. 2661 */ 2662 sNC.pEList = p->pEList; 2663 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 2664 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ 2665 return SQLITE_ERROR; 2666 } 2667 if( p->pPrior==0 ){ 2668 if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || 2669 processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){ 2670 return SQLITE_ERROR; 2671 } 2672 } 2673 2674 if( sqlite3MallocFailed() ){ 2675 return SQLITE_NOMEM; 2676 } 2677 2678 /* Make sure the GROUP BY clause does not contain aggregate functions. 2679 */ 2680 if( pGroupBy ){ 2681 struct ExprList_item *pItem; 2682 2683 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 2684 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 2685 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 2686 "the GROUP BY clause"); 2687 return SQLITE_ERROR; 2688 } 2689 } 2690 } 2691 2692 /* If this is one SELECT of a compound, be sure to resolve names 2693 ** in the other SELECTs. 2694 */ 2695 if( p->pPrior ){ 2696 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 2697 }else{ 2698 return SQLITE_OK; 2699 } 2700 } 2701 2702 /* 2703 ** Reset the aggregate accumulator. 2704 ** 2705 ** The aggregate accumulator is a set of memory cells that hold 2706 ** intermediate results while calculating an aggregate. This 2707 ** routine simply stores NULLs in all of those memory cells. 2708 */ 2709 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2710 Vdbe *v = pParse->pVdbe; 2711 int i; 2712 struct AggInfo_func *pFunc; 2713 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 2714 return; 2715 } 2716 for(i=0; i<pAggInfo->nColumn; i++){ 2717 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); 2718 } 2719 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 2720 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); 2721 if( pFunc->iDistinct>=0 ){ 2722 Expr *pE = pFunc->pExpr; 2723 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 2724 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 2725 "by an expression"); 2726 pFunc->iDistinct = -1; 2727 }else{ 2728 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 2729 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 2730 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2731 } 2732 } 2733 } 2734 } 2735 2736 /* 2737 ** Invoke the OP_AggFinalize opcode for every aggregate function 2738 ** in the AggInfo structure. 2739 */ 2740 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 2741 Vdbe *v = pParse->pVdbe; 2742 int i; 2743 struct AggInfo_func *pF; 2744 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2745 ExprList *pList = pF->pExpr->pList; 2746 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 2747 (void*)pF->pFunc, P3_FUNCDEF); 2748 } 2749 } 2750 2751 /* 2752 ** Update the accumulator memory cells for an aggregate based on 2753 ** the current cursor position. 2754 */ 2755 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2756 Vdbe *v = pParse->pVdbe; 2757 int i; 2758 struct AggInfo_func *pF; 2759 struct AggInfo_col *pC; 2760 2761 pAggInfo->directMode = 1; 2762 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2763 int nArg; 2764 int addrNext = 0; 2765 ExprList *pList = pF->pExpr->pList; 2766 if( pList ){ 2767 nArg = pList->nExpr; 2768 sqlite3ExprCodeExprList(pParse, pList); 2769 }else{ 2770 nArg = 0; 2771 } 2772 if( pF->iDistinct>=0 ){ 2773 addrNext = sqlite3VdbeMakeLabel(v); 2774 assert( nArg==1 ); 2775 codeDistinct(v, pF->iDistinct, addrNext, 1); 2776 } 2777 if( pF->pFunc->needCollSeq ){ 2778 CollSeq *pColl = 0; 2779 struct ExprList_item *pItem; 2780 int j; 2781 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 2782 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 2783 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 2784 } 2785 if( !pColl ){ 2786 pColl = pParse->db->pDfltColl; 2787 } 2788 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2789 } 2790 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); 2791 if( addrNext ){ 2792 sqlite3VdbeResolveLabel(v, addrNext); 2793 } 2794 } 2795 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 2796 sqlite3ExprCode(pParse, pC->pExpr); 2797 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); 2798 } 2799 pAggInfo->directMode = 0; 2800 } 2801 2802 2803 /* 2804 ** Generate code for the given SELECT statement. 2805 ** 2806 ** The results are distributed in various ways depending on the 2807 ** value of eDest and iParm. 2808 ** 2809 ** eDest Value Result 2810 ** ------------ ------------------------------------------- 2811 ** SRT_Callback Invoke the callback for each row of the result. 2812 ** 2813 ** SRT_Mem Store first result in memory cell iParm 2814 ** 2815 ** SRT_Set Store results as keys of table iParm. 2816 ** 2817 ** SRT_Union Store results as a key in a temporary table iParm 2818 ** 2819 ** SRT_Except Remove results from the temporary table iParm. 2820 ** 2821 ** SRT_Table Store results in temporary table iParm 2822 ** 2823 ** The table above is incomplete. Additional eDist value have be added 2824 ** since this comment was written. See the selectInnerLoop() function for 2825 ** a complete listing of the allowed values of eDest and their meanings. 2826 ** 2827 ** This routine returns the number of errors. If any errors are 2828 ** encountered, then an appropriate error message is left in 2829 ** pParse->zErrMsg. 2830 ** 2831 ** This routine does NOT free the Select structure passed in. The 2832 ** calling function needs to do that. 2833 ** 2834 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 2835 ** SELECT is a subquery. This routine may try to combine this SELECT 2836 ** with its parent to form a single flat query. In so doing, it might 2837 ** change the parent query from a non-aggregate to an aggregate query. 2838 ** For that reason, the pParentAgg flag is passed as a pointer, so it 2839 ** can be changed. 2840 ** 2841 ** Example 1: The meaning of the pParent parameter. 2842 ** 2843 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 2844 ** \ \_______ subquery _______/ / 2845 ** \ / 2846 ** \____________________ outer query ___________________/ 2847 ** 2848 ** This routine is called for the outer query first. For that call, 2849 ** pParent will be NULL. During the processing of the outer query, this 2850 ** routine is called recursively to handle the subquery. For the recursive 2851 ** call, pParent will point to the outer query. Because the subquery is 2852 ** the second element in a three-way join, the parentTab parameter will 2853 ** be 1 (the 2nd value of a 0-indexed array.) 2854 */ 2855 int sqlite3Select( 2856 Parse *pParse, /* The parser context */ 2857 Select *p, /* The SELECT statement being coded. */ 2858 int eDest, /* How to dispose of the results */ 2859 int iParm, /* A parameter used by the eDest disposal method */ 2860 Select *pParent, /* Another SELECT for which this is a sub-query */ 2861 int parentTab, /* Index in pParent->pSrc of this query */ 2862 int *pParentAgg, /* True if pParent uses aggregate functions */ 2863 char *aff /* If eDest is SRT_Union, the affinity string */ 2864 ){ 2865 int i, j; /* Loop counters */ 2866 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 2867 Vdbe *v; /* The virtual machine under construction */ 2868 int isAgg; /* True for select lists like "count(*)" */ 2869 ExprList *pEList; /* List of columns to extract. */ 2870 SrcList *pTabList; /* List of tables to select from */ 2871 Expr *pWhere; /* The WHERE clause. May be NULL */ 2872 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 2873 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 2874 Expr *pHaving; /* The HAVING clause. May be NULL */ 2875 int isDistinct; /* True if the DISTINCT keyword is present */ 2876 int distinct; /* Table to use for the distinct set */ 2877 int rc = 1; /* Value to return from this function */ 2878 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 2879 AggInfo sAggInfo; /* Information used by aggregate queries */ 2880 int iEnd; /* Address of the end of the query */ 2881 2882 if( p==0 || sqlite3MallocFailed() || pParse->nErr ){ 2883 return 1; 2884 } 2885 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 2886 memset(&sAggInfo, 0, sizeof(sAggInfo)); 2887 2888 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2889 /* If there is are a sequence of queries, do the earlier ones first. 2890 */ 2891 if( p->pPrior ){ 2892 if( p->pRightmost==0 ){ 2893 Select *pLoop; 2894 int cnt = 0; 2895 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 2896 pLoop->pRightmost = p; 2897 } 2898 if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){ 2899 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 2900 return 1; 2901 } 2902 } 2903 return multiSelect(pParse, p, eDest, iParm, aff); 2904 } 2905 #endif 2906 2907 pOrderBy = p->pOrderBy; 2908 if( IgnorableOrderby(eDest) ){ 2909 p->pOrderBy = 0; 2910 } 2911 if( sqlite3SelectResolve(pParse, p, 0) ){ 2912 goto select_end; 2913 } 2914 p->pOrderBy = pOrderBy; 2915 2916 /* Make local copies of the parameters for this query. 2917 */ 2918 pTabList = p->pSrc; 2919 pWhere = p->pWhere; 2920 pGroupBy = p->pGroupBy; 2921 pHaving = p->pHaving; 2922 isAgg = p->isAgg; 2923 isDistinct = p->isDistinct; 2924 pEList = p->pEList; 2925 if( pEList==0 ) goto select_end; 2926 2927 /* 2928 ** Do not even attempt to generate any code if we have already seen 2929 ** errors before this routine starts. 2930 */ 2931 if( pParse->nErr>0 ) goto select_end; 2932 2933 /* If writing to memory or generating a set 2934 ** only a single column may be output. 2935 */ 2936 #ifndef SQLITE_OMIT_SUBQUERY 2937 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 2938 goto select_end; 2939 } 2940 #endif 2941 2942 /* ORDER BY is ignored for some destinations. 2943 */ 2944 if( IgnorableOrderby(eDest) ){ 2945 pOrderBy = 0; 2946 } 2947 2948 /* Begin generating code. 2949 */ 2950 v = sqlite3GetVdbe(pParse); 2951 if( v==0 ) goto select_end; 2952 2953 /* Generate code for all sub-queries in the FROM clause 2954 */ 2955 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2956 for(i=0; i<pTabList->nSrc; i++){ 2957 const char *zSavedAuthContext = 0; 2958 int needRestoreContext; 2959 struct SrcList_item *pItem = &pTabList->a[i]; 2960 2961 if( pItem->pSelect==0 || pItem->isPopulated ) continue; 2962 if( pItem->zName!=0 ){ 2963 zSavedAuthContext = pParse->zAuthContext; 2964 pParse->zAuthContext = pItem->zName; 2965 needRestoreContext = 1; 2966 }else{ 2967 needRestoreContext = 0; 2968 } 2969 #if SQLITE_MAX_EXPR_DEPTH>0 2970 /* Increment Parse.nHeight by the height of the largest expression 2971 ** tree refered to by this, the parent select. The child select 2972 ** may contain expression trees of at most 2973 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 2974 ** more conservative than necessary, but much easier than enforcing 2975 ** an exact limit. 2976 */ 2977 pParse->nHeight += sqlite3SelectExprHeight(p); 2978 #endif 2979 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 2980 pItem->iCursor, p, i, &isAgg, 0); 2981 #if SQLITE_MAX_EXPR_DEPTH>0 2982 pParse->nHeight -= sqlite3SelectExprHeight(p); 2983 #endif 2984 if( needRestoreContext ){ 2985 pParse->zAuthContext = zSavedAuthContext; 2986 } 2987 pTabList = p->pSrc; 2988 pWhere = p->pWhere; 2989 if( !IgnorableOrderby(eDest) ){ 2990 pOrderBy = p->pOrderBy; 2991 } 2992 pGroupBy = p->pGroupBy; 2993 pHaving = p->pHaving; 2994 isDistinct = p->isDistinct; 2995 } 2996 #endif 2997 2998 /* Check for the special case of a min() or max() function by itself 2999 ** in the result set. 3000 */ 3001 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ 3002 rc = 0; 3003 goto select_end; 3004 } 3005 3006 /* Check to see if this is a subquery that can be "flattened" into its parent. 3007 ** If flattening is a possiblity, do so and return immediately. 3008 */ 3009 #ifndef SQLITE_OMIT_VIEW 3010 if( pParent && pParentAgg && 3011 flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){ 3012 if( isAgg ) *pParentAgg = 1; 3013 goto select_end; 3014 } 3015 #endif 3016 3017 /* If there is an ORDER BY clause, then this sorting 3018 ** index might end up being unused if the data can be 3019 ** extracted in pre-sorted order. If that is the case, then the 3020 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3021 ** we figure out that the sorting index is not needed. The addrSortIndex 3022 ** variable is used to facilitate that change. 3023 */ 3024 if( pOrderBy ){ 3025 KeyInfo *pKeyInfo; 3026 if( pParse->nErr ){ 3027 goto select_end; 3028 } 3029 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3030 pOrderBy->iECursor = pParse->nTab++; 3031 p->addrOpenEphm[2] = addrSortIndex = 3032 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3033 }else{ 3034 addrSortIndex = -1; 3035 } 3036 3037 /* If the output is destined for a temporary table, open that table. 3038 */ 3039 if( eDest==SRT_EphemTab ){ 3040 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); 3041 } 3042 3043 /* Set the limiter. 3044 */ 3045 iEnd = sqlite3VdbeMakeLabel(v); 3046 computeLimitRegisters(pParse, p, iEnd); 3047 3048 /* Open a virtual index to use for the distinct set. 3049 */ 3050 if( isDistinct ){ 3051 KeyInfo *pKeyInfo; 3052 distinct = pParse->nTab++; 3053 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3054 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 3055 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3056 }else{ 3057 distinct = -1; 3058 } 3059 3060 /* Aggregate and non-aggregate queries are handled differently */ 3061 if( !isAgg && pGroupBy==0 ){ 3062 /* This case is for non-aggregate queries 3063 ** Begin the database scan 3064 */ 3065 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); 3066 if( pWInfo==0 ) goto select_end; 3067 3068 /* If sorting index that was created by a prior OP_OpenEphemeral 3069 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3070 ** into an OP_Noop. 3071 */ 3072 if( addrSortIndex>=0 && pOrderBy==0 ){ 3073 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3074 p->addrOpenEphm[2] = -1; 3075 } 3076 3077 /* Use the standard inner loop 3078 */ 3079 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, 3080 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ 3081 goto select_end; 3082 } 3083 3084 /* End the database scan loop. 3085 */ 3086 sqlite3WhereEnd(pWInfo); 3087 }else{ 3088 /* This is the processing for aggregate queries */ 3089 NameContext sNC; /* Name context for processing aggregate information */ 3090 int iAMem; /* First Mem address for storing current GROUP BY */ 3091 int iBMem; /* First Mem address for previous GROUP BY */ 3092 int iUseFlag; /* Mem address holding flag indicating that at least 3093 ** one row of the input to the aggregator has been 3094 ** processed */ 3095 int iAbortFlag; /* Mem address which causes query abort if positive */ 3096 int groupBySort; /* Rows come from source in GROUP BY order */ 3097 3098 3099 /* The following variables hold addresses or labels for parts of the 3100 ** virtual machine program we are putting together */ 3101 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3102 int addrSetAbort; /* Set the abort flag and return */ 3103 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3104 int addrTopOfLoop; /* Top of the input loop */ 3105 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ 3106 int addrProcessRow; /* Code to process a single input row */ 3107 int addrEnd; /* End of all processing */ 3108 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3109 int addrReset; /* Subroutine for resetting the accumulator */ 3110 3111 addrEnd = sqlite3VdbeMakeLabel(v); 3112 3113 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3114 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3115 ** SELECT statement. 3116 */ 3117 memset(&sNC, 0, sizeof(sNC)); 3118 sNC.pParse = pParse; 3119 sNC.pSrcList = pTabList; 3120 sNC.pAggInfo = &sAggInfo; 3121 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3122 sAggInfo.pGroupBy = pGroupBy; 3123 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ 3124 goto select_end; 3125 } 3126 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ 3127 goto select_end; 3128 } 3129 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ 3130 goto select_end; 3131 } 3132 sAggInfo.nAccumulator = sAggInfo.nColumn; 3133 for(i=0; i<sAggInfo.nFunc; i++){ 3134 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ 3135 goto select_end; 3136 } 3137 } 3138 if( sqlite3MallocFailed() ) goto select_end; 3139 3140 /* Processing for aggregates with GROUP BY is very different and 3141 ** much more complex tha aggregates without a GROUP BY. 3142 */ 3143 if( pGroupBy ){ 3144 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3145 3146 /* Create labels that we will be needing 3147 */ 3148 3149 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3150 addrGroupByChange = sqlite3VdbeMakeLabel(v); 3151 addrProcessRow = sqlite3VdbeMakeLabel(v); 3152 3153 /* If there is a GROUP BY clause we might need a sorting index to 3154 ** implement it. Allocate that sorting index now. If it turns out 3155 ** that we do not need it after all, the OpenEphemeral instruction 3156 ** will be converted into a Noop. 3157 */ 3158 sAggInfo.sortingIdx = pParse->nTab++; 3159 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3160 addrSortingIdx = 3161 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, 3162 sAggInfo.nSortingColumn, 3163 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3164 3165 /* Initialize memory locations used by GROUP BY aggregate processing 3166 */ 3167 iUseFlag = pParse->nMem++; 3168 iAbortFlag = pParse->nMem++; 3169 iAMem = pParse->nMem; 3170 pParse->nMem += pGroupBy->nExpr; 3171 iBMem = pParse->nMem; 3172 pParse->nMem += pGroupBy->nExpr; 3173 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); 3174 VdbeComment((v, "# clear abort flag")); 3175 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); 3176 VdbeComment((v, "# indicate accumulator empty")); 3177 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); 3178 3179 /* Generate a subroutine that outputs a single row of the result 3180 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3181 ** is less than or equal to zero, the subroutine is a no-op. If 3182 ** the processing calls for the query to abort, this subroutine 3183 ** increments the iAbortFlag memory location before returning in 3184 ** order to signal the caller to abort. 3185 */ 3186 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3187 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); 3188 VdbeComment((v, "# set abort flag")); 3189 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3190 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3191 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); 3192 VdbeComment((v, "# Groupby result generator entry point")); 3193 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3194 finalizeAggFunctions(pParse, &sAggInfo); 3195 if( pHaving ){ 3196 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); 3197 } 3198 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3199 distinct, eDest, iParm, 3200 addrOutputRow+1, addrSetAbort, aff); 3201 if( rc ){ 3202 goto select_end; 3203 } 3204 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3205 VdbeComment((v, "# end groupby result generator")); 3206 3207 /* Generate a subroutine that will reset the group-by accumulator 3208 */ 3209 addrReset = sqlite3VdbeCurrentAddr(v); 3210 resetAccumulator(pParse, &sAggInfo); 3211 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3212 3213 /* Begin a loop that will extract all source rows in GROUP BY order. 3214 ** This might involve two separate loops with an OP_Sort in between, or 3215 ** it might be a single loop that uses an index to extract information 3216 ** in the right order to begin with. 3217 */ 3218 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3219 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3220 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); 3221 if( pWInfo==0 ) goto select_end; 3222 if( pGroupBy==0 ){ 3223 /* The optimizer is able to deliver rows in group by order so 3224 ** we do not have to sort. The OP_OpenEphemeral table will be 3225 ** cancelled later because we still need to use the pKeyInfo 3226 */ 3227 pGroupBy = p->pGroupBy; 3228 groupBySort = 0; 3229 }else{ 3230 /* Rows are coming out in undetermined order. We have to push 3231 ** each row into a sorting index, terminate the first loop, 3232 ** then loop over the sorting index in order to get the output 3233 ** in sorted order 3234 */ 3235 groupBySort = 1; 3236 sqlite3ExprCodeExprList(pParse, pGroupBy); 3237 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); 3238 j = pGroupBy->nExpr+1; 3239 for(i=0; i<sAggInfo.nColumn; i++){ 3240 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3241 if( pCol->iSorterColumn<j ) continue; 3242 sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable); 3243 j++; 3244 } 3245 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); 3246 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); 3247 sqlite3WhereEnd(pWInfo); 3248 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3249 VdbeComment((v, "# GROUP BY sort")); 3250 sAggInfo.useSortingIdx = 1; 3251 } 3252 3253 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3254 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3255 ** Then compare the current GROUP BY terms against the GROUP BY terms 3256 ** from the previous row currently stored in a0, a1, a2... 3257 */ 3258 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3259 for(j=0; j<pGroupBy->nExpr; j++){ 3260 if( groupBySort ){ 3261 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); 3262 }else{ 3263 sAggInfo.directMode = 1; 3264 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); 3265 } 3266 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); 3267 } 3268 for(j=pGroupBy->nExpr-1; j>=0; j--){ 3269 if( j<pGroupBy->nExpr-1 ){ 3270 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); 3271 } 3272 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); 3273 if( j==0 ){ 3274 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); 3275 }else{ 3276 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); 3277 } 3278 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); 3279 } 3280 3281 /* Generate code that runs whenever the GROUP BY changes. 3282 ** Change in the GROUP BY are detected by the previous code 3283 ** block. If there were no changes, this block is skipped. 3284 ** 3285 ** This code copies current group by terms in b0,b1,b2,... 3286 ** over to a0,a1,a2. It then calls the output subroutine 3287 ** and resets the aggregate accumulator registers in preparation 3288 ** for the next GROUP BY batch. 3289 */ 3290 sqlite3VdbeResolveLabel(v, addrGroupByChange); 3291 for(j=0; j<pGroupBy->nExpr; j++){ 3292 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); 3293 } 3294 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3295 VdbeComment((v, "# output one row")); 3296 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); 3297 VdbeComment((v, "# check abort flag")); 3298 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3299 VdbeComment((v, "# reset accumulator")); 3300 3301 /* Update the aggregate accumulators based on the content of 3302 ** the current row 3303 */ 3304 sqlite3VdbeResolveLabel(v, addrProcessRow); 3305 updateAccumulator(pParse, &sAggInfo); 3306 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); 3307 VdbeComment((v, "# indicate data in accumulator")); 3308 3309 /* End of the loop 3310 */ 3311 if( groupBySort ){ 3312 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3313 }else{ 3314 sqlite3WhereEnd(pWInfo); 3315 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3316 } 3317 3318 /* Output the final row of result 3319 */ 3320 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3321 VdbeComment((v, "# output final row")); 3322 3323 } /* endif pGroupBy */ 3324 else { 3325 /* This case runs if the aggregate has no GROUP BY clause. The 3326 ** processing is much simpler since there is only a single row 3327 ** of output. 3328 */ 3329 resetAccumulator(pParse, &sAggInfo); 3330 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); 3331 if( pWInfo==0 ) goto select_end; 3332 updateAccumulator(pParse, &sAggInfo); 3333 sqlite3WhereEnd(pWInfo); 3334 finalizeAggFunctions(pParse, &sAggInfo); 3335 pOrderBy = 0; 3336 if( pHaving ){ 3337 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); 3338 } 3339 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3340 eDest, iParm, addrEnd, addrEnd, aff); 3341 } 3342 sqlite3VdbeResolveLabel(v, addrEnd); 3343 3344 } /* endif aggregate query */ 3345 3346 /* If there is an ORDER BY clause, then we need to sort the results 3347 ** and send them to the callback one by one. 3348 */ 3349 if( pOrderBy ){ 3350 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); 3351 } 3352 3353 #ifndef SQLITE_OMIT_SUBQUERY 3354 /* If this was a subquery, we have now converted the subquery into a 3355 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 3356 ** this subquery from being evaluated again and to force the use of 3357 ** the temporary table. 3358 */ 3359 if( pParent ){ 3360 assert( pParent->pSrc->nSrc>parentTab ); 3361 assert( pParent->pSrc->a[parentTab].pSelect==p ); 3362 pParent->pSrc->a[parentTab].isPopulated = 1; 3363 } 3364 #endif 3365 3366 /* Jump here to skip this query 3367 */ 3368 sqlite3VdbeResolveLabel(v, iEnd); 3369 3370 /* The SELECT was successfully coded. Set the return code to 0 3371 ** to indicate no errors. 3372 */ 3373 rc = 0; 3374 3375 /* Control jumps to here if an error is encountered above, or upon 3376 ** successful coding of the SELECT. 3377 */ 3378 select_end: 3379 3380 /* Identify column names if we will be using them in a callback. This 3381 ** step is skipped if the output is going to some other destination. 3382 */ 3383 if( rc==SQLITE_OK && eDest==SRT_Callback ){ 3384 generateColumnNames(pParse, pTabList, pEList); 3385 } 3386 3387 sqliteFree(sAggInfo.aCol); 3388 sqliteFree(sAggInfo.aFunc); 3389 return rc; 3390 } 3391 3392 #if defined(SQLITE_DEBUG) 3393 /* 3394 ******************************************************************************* 3395 ** The following code is used for testing and debugging only. The code 3396 ** that follows does not appear in normal builds. 3397 ** 3398 ** These routines are used to print out the content of all or part of a 3399 ** parse structures such as Select or Expr. Such printouts are useful 3400 ** for helping to understand what is happening inside the code generator 3401 ** during the execution of complex SELECT statements. 3402 ** 3403 ** These routine are not called anywhere from within the normal 3404 ** code base. Then are intended to be called from within the debugger 3405 ** or from temporary "printf" statements inserted for debugging. 3406 */ 3407 void sqlite3PrintExpr(Expr *p){ 3408 if( p->token.z && p->token.n>0 ){ 3409 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 3410 }else{ 3411 sqlite3DebugPrintf("(%d", p->op); 3412 } 3413 if( p->pLeft ){ 3414 sqlite3DebugPrintf(" "); 3415 sqlite3PrintExpr(p->pLeft); 3416 } 3417 if( p->pRight ){ 3418 sqlite3DebugPrintf(" "); 3419 sqlite3PrintExpr(p->pRight); 3420 } 3421 sqlite3DebugPrintf(")"); 3422 } 3423 void sqlite3PrintExprList(ExprList *pList){ 3424 int i; 3425 for(i=0; i<pList->nExpr; i++){ 3426 sqlite3PrintExpr(pList->a[i].pExpr); 3427 if( i<pList->nExpr-1 ){ 3428 sqlite3DebugPrintf(", "); 3429 } 3430 } 3431 } 3432 void sqlite3PrintSelect(Select *p, int indent){ 3433 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 3434 sqlite3PrintExprList(p->pEList); 3435 sqlite3DebugPrintf("\n"); 3436 if( p->pSrc ){ 3437 char *zPrefix; 3438 int i; 3439 zPrefix = "FROM"; 3440 for(i=0; i<p->pSrc->nSrc; i++){ 3441 struct SrcList_item *pItem = &p->pSrc->a[i]; 3442 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 3443 zPrefix = ""; 3444 if( pItem->pSelect ){ 3445 sqlite3DebugPrintf("(\n"); 3446 sqlite3PrintSelect(pItem->pSelect, indent+10); 3447 sqlite3DebugPrintf("%*s)", indent+8, ""); 3448 }else if( pItem->zName ){ 3449 sqlite3DebugPrintf("%s", pItem->zName); 3450 } 3451 if( pItem->pTab ){ 3452 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 3453 } 3454 if( pItem->zAlias ){ 3455 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 3456 } 3457 if( i<p->pSrc->nSrc-1 ){ 3458 sqlite3DebugPrintf(","); 3459 } 3460 sqlite3DebugPrintf("\n"); 3461 } 3462 } 3463 if( p->pWhere ){ 3464 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 3465 sqlite3PrintExpr(p->pWhere); 3466 sqlite3DebugPrintf("\n"); 3467 } 3468 if( p->pGroupBy ){ 3469 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 3470 sqlite3PrintExprList(p->pGroupBy); 3471 sqlite3DebugPrintf("\n"); 3472 } 3473 if( p->pHaving ){ 3474 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 3475 sqlite3PrintExpr(p->pHaving); 3476 sqlite3DebugPrintf("\n"); 3477 } 3478 if( p->pOrderBy ){ 3479 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 3480 sqlite3PrintExprList(p->pOrderBy); 3481 sqlite3DebugPrintf("\n"); 3482 } 3483 } 3484 /* End of the structure debug printing code 3485 *****************************************************************************/ 3486 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 3487