xref: /sqlite-3.40.0/src/select.c (revision 5665b3ea)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.352 2007/06/24 06:32:18 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 
37 /*
38 ** Allocate a new Select structure and return a pointer to that
39 ** structure.
40 */
41 Select *sqlite3SelectNew(
42   ExprList *pEList,     /* which columns to include in the result */
43   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
44   Expr *pWhere,         /* the WHERE clause */
45   ExprList *pGroupBy,   /* the GROUP BY clause */
46   Expr *pHaving,        /* the HAVING clause */
47   ExprList *pOrderBy,   /* the ORDER BY clause */
48   int isDistinct,       /* true if the DISTINCT keyword is present */
49   Expr *pLimit,         /* LIMIT value.  NULL means not used */
50   Expr *pOffset         /* OFFSET value.  NULL means no offset */
51 ){
52   Select *pNew;
53   Select standin;
54   pNew = sqliteMalloc( sizeof(*pNew) );
55   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
56   if( pNew==0 ){
57     pNew = &standin;
58     memset(pNew, 0, sizeof(*pNew));
59   }
60   if( pEList==0 ){
61     pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
62   }
63   pNew->pEList = pEList;
64   pNew->pSrc = pSrc;
65   pNew->pWhere = pWhere;
66   pNew->pGroupBy = pGroupBy;
67   pNew->pHaving = pHaving;
68   pNew->pOrderBy = pOrderBy;
69   pNew->isDistinct = isDistinct;
70   pNew->op = TK_SELECT;
71   assert( pOffset==0 || pLimit!=0 );
72   pNew->pLimit = pLimit;
73   pNew->pOffset = pOffset;
74   pNew->iLimit = -1;
75   pNew->iOffset = -1;
76   pNew->addrOpenEphm[0] = -1;
77   pNew->addrOpenEphm[1] = -1;
78   pNew->addrOpenEphm[2] = -1;
79   if( pNew==&standin) {
80     clearSelect(pNew);
81     pNew = 0;
82   }
83   return pNew;
84 }
85 
86 /*
87 ** Delete the given Select structure and all of its substructures.
88 */
89 void sqlite3SelectDelete(Select *p){
90   if( p ){
91     clearSelect(p);
92     sqliteFree(p);
93   }
94 }
95 
96 /*
97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
98 ** type of join.  Return an integer constant that expresses that type
99 ** in terms of the following bit values:
100 **
101 **     JT_INNER
102 **     JT_CROSS
103 **     JT_OUTER
104 **     JT_NATURAL
105 **     JT_LEFT
106 **     JT_RIGHT
107 **
108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
109 **
110 ** If an illegal or unsupported join type is seen, then still return
111 ** a join type, but put an error in the pParse structure.
112 */
113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
114   int jointype = 0;
115   Token *apAll[3];
116   Token *p;
117   static const struct {
118     const char zKeyword[8];
119     u8 nChar;
120     u8 code;
121   } keywords[] = {
122     { "natural", 7, JT_NATURAL },
123     { "left",    4, JT_LEFT|JT_OUTER },
124     { "right",   5, JT_RIGHT|JT_OUTER },
125     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
126     { "outer",   5, JT_OUTER },
127     { "inner",   5, JT_INNER },
128     { "cross",   5, JT_INNER|JT_CROSS },
129   };
130   int i, j;
131   apAll[0] = pA;
132   apAll[1] = pB;
133   apAll[2] = pC;
134   for(i=0; i<3 && apAll[i]; i++){
135     p = apAll[i];
136     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
137       if( p->n==keywords[j].nChar
138           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
139         jointype |= keywords[j].code;
140         break;
141       }
142     }
143     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
144       jointype |= JT_ERROR;
145       break;
146     }
147   }
148   if(
149      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
150      (jointype & JT_ERROR)!=0
151   ){
152     const char *zSp1 = " ";
153     const char *zSp2 = " ";
154     if( pB==0 ){ zSp1++; }
155     if( pC==0 ){ zSp2++; }
156     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
157        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
158     jointype = JT_INNER;
159   }else if( jointype & JT_RIGHT ){
160     sqlite3ErrorMsg(pParse,
161       "RIGHT and FULL OUTER JOINs are not currently supported");
162     jointype = JT_INNER;
163   }
164   return jointype;
165 }
166 
167 /*
168 ** Return the index of a column in a table.  Return -1 if the column
169 ** is not contained in the table.
170 */
171 static int columnIndex(Table *pTab, const char *zCol){
172   int i;
173   for(i=0; i<pTab->nCol; i++){
174     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
175   }
176   return -1;
177 }
178 
179 /*
180 ** Set the value of a token to a '\000'-terminated string.
181 */
182 static void setToken(Token *p, const char *z){
183   p->z = (u8*)z;
184   p->n = z ? strlen(z) : 0;
185   p->dyn = 0;
186 }
187 
188 /*
189 ** Set the token to the double-quoted and escaped version of the string pointed
190 ** to by z. For example;
191 **
192 **    {a"bc}  ->  {"a""bc"}
193 */
194 static void setQuotedToken(Token *p, const char *z){
195   p->z = (u8 *)sqlite3MPrintf("\"%w\"", z);
196   p->dyn = 1;
197   if( p->z ){
198     p->n = strlen((char *)p->z);
199   }
200 }
201 
202 /*
203 ** Create an expression node for an identifier with the name of zName
204 */
205 Expr *sqlite3CreateIdExpr(const char *zName){
206   Token dummy;
207   setToken(&dummy, zName);
208   return sqlite3Expr(TK_ID, 0, 0, &dummy);
209 }
210 
211 
212 /*
213 ** Add a term to the WHERE expression in *ppExpr that requires the
214 ** zCol column to be equal in the two tables pTab1 and pTab2.
215 */
216 static void addWhereTerm(
217   const char *zCol,        /* Name of the column */
218   const Table *pTab1,      /* First table */
219   const char *zAlias1,     /* Alias for first table.  May be NULL */
220   const Table *pTab2,      /* Second table */
221   const char *zAlias2,     /* Alias for second table.  May be NULL */
222   int iRightJoinTable,     /* VDBE cursor for the right table */
223   Expr **ppExpr            /* Add the equality term to this expression */
224 ){
225   Expr *pE1a, *pE1b, *pE1c;
226   Expr *pE2a, *pE2b, *pE2c;
227   Expr *pE;
228 
229   pE1a = sqlite3CreateIdExpr(zCol);
230   pE2a = sqlite3CreateIdExpr(zCol);
231   if( zAlias1==0 ){
232     zAlias1 = pTab1->zName;
233   }
234   pE1b = sqlite3CreateIdExpr(zAlias1);
235   if( zAlias2==0 ){
236     zAlias2 = pTab2->zName;
237   }
238   pE2b = sqlite3CreateIdExpr(zAlias2);
239   pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
240   pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
241   pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
242   if( pE ){
243     ExprSetProperty(pE, EP_FromJoin);
244     pE->iRightJoinTable = iRightJoinTable;
245   }
246   pE = sqlite3ExprAnd(*ppExpr, pE);
247   if( pE ){
248     *ppExpr = pE;
249   }
250 }
251 
252 /*
253 ** Set the EP_FromJoin property on all terms of the given expression.
254 ** And set the Expr.iRightJoinTable to iTable for every term in the
255 ** expression.
256 **
257 ** The EP_FromJoin property is used on terms of an expression to tell
258 ** the LEFT OUTER JOIN processing logic that this term is part of the
259 ** join restriction specified in the ON or USING clause and not a part
260 ** of the more general WHERE clause.  These terms are moved over to the
261 ** WHERE clause during join processing but we need to remember that they
262 ** originated in the ON or USING clause.
263 **
264 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
265 ** expression depends on table iRightJoinTable even if that table is not
266 ** explicitly mentioned in the expression.  That information is needed
267 ** for cases like this:
268 **
269 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
270 **
271 ** The where clause needs to defer the handling of the t1.x=5
272 ** term until after the t2 loop of the join.  In that way, a
273 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
274 ** defer the handling of t1.x=5, it will be processed immediately
275 ** after the t1 loop and rows with t1.x!=5 will never appear in
276 ** the output, which is incorrect.
277 */
278 static void setJoinExpr(Expr *p, int iTable){
279   while( p ){
280     ExprSetProperty(p, EP_FromJoin);
281     p->iRightJoinTable = iTable;
282     setJoinExpr(p->pLeft, iTable);
283     p = p->pRight;
284   }
285 }
286 
287 /*
288 ** This routine processes the join information for a SELECT statement.
289 ** ON and USING clauses are converted into extra terms of the WHERE clause.
290 ** NATURAL joins also create extra WHERE clause terms.
291 **
292 ** The terms of a FROM clause are contained in the Select.pSrc structure.
293 ** The left most table is the first entry in Select.pSrc.  The right-most
294 ** table is the last entry.  The join operator is held in the entry to
295 ** the left.  Thus entry 0 contains the join operator for the join between
296 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
297 ** also attached to the left entry.
298 **
299 ** This routine returns the number of errors encountered.
300 */
301 static int sqliteProcessJoin(Parse *pParse, Select *p){
302   SrcList *pSrc;                  /* All tables in the FROM clause */
303   int i, j;                       /* Loop counters */
304   struct SrcList_item *pLeft;     /* Left table being joined */
305   struct SrcList_item *pRight;    /* Right table being joined */
306 
307   pSrc = p->pSrc;
308   pLeft = &pSrc->a[0];
309   pRight = &pLeft[1];
310   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
311     Table *pLeftTab = pLeft->pTab;
312     Table *pRightTab = pRight->pTab;
313 
314     if( pLeftTab==0 || pRightTab==0 ) continue;
315 
316     /* When the NATURAL keyword is present, add WHERE clause terms for
317     ** every column that the two tables have in common.
318     */
319     if( pRight->jointype & JT_NATURAL ){
320       if( pRight->pOn || pRight->pUsing ){
321         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
322            "an ON or USING clause", 0);
323         return 1;
324       }
325       for(j=0; j<pLeftTab->nCol; j++){
326         char *zName = pLeftTab->aCol[j].zName;
327         if( columnIndex(pRightTab, zName)>=0 ){
328           addWhereTerm(zName, pLeftTab, pLeft->zAlias,
329                               pRightTab, pRight->zAlias,
330                               pRight->iCursor, &p->pWhere);
331 
332         }
333       }
334     }
335 
336     /* Disallow both ON and USING clauses in the same join
337     */
338     if( pRight->pOn && pRight->pUsing ){
339       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
340         "clauses in the same join");
341       return 1;
342     }
343 
344     /* Add the ON clause to the end of the WHERE clause, connected by
345     ** an AND operator.
346     */
347     if( pRight->pOn ){
348       setJoinExpr(pRight->pOn, pRight->iCursor);
349       p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn);
350       pRight->pOn = 0;
351     }
352 
353     /* Create extra terms on the WHERE clause for each column named
354     ** in the USING clause.  Example: If the two tables to be joined are
355     ** A and B and the USING clause names X, Y, and Z, then add this
356     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
357     ** Report an error if any column mentioned in the USING clause is
358     ** not contained in both tables to be joined.
359     */
360     if( pRight->pUsing ){
361       IdList *pList = pRight->pUsing;
362       for(j=0; j<pList->nId; j++){
363         char *zName = pList->a[j].zName;
364         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
365           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
366             "not present in both tables", zName);
367           return 1;
368         }
369         addWhereTerm(zName, pLeftTab, pLeft->zAlias,
370                             pRightTab, pRight->zAlias,
371                             pRight->iCursor, &p->pWhere);
372       }
373     }
374   }
375   return 0;
376 }
377 
378 /*
379 ** Insert code into "v" that will push the record on the top of the
380 ** stack into the sorter.
381 */
382 static void pushOntoSorter(
383   Parse *pParse,         /* Parser context */
384   ExprList *pOrderBy,    /* The ORDER BY clause */
385   Select *pSelect        /* The whole SELECT statement */
386 ){
387   Vdbe *v = pParse->pVdbe;
388   sqlite3ExprCodeExprList(pParse, pOrderBy);
389   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
390   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
391   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
392   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
393   if( pSelect->iLimit>=0 ){
394     int addr1, addr2;
395     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
396     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
397     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
398     sqlite3VdbeJumpHere(v, addr1);
399     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
400     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
401     sqlite3VdbeJumpHere(v, addr2);
402     pSelect->iLimit = -1;
403   }
404 }
405 
406 /*
407 ** Add code to implement the OFFSET
408 */
409 static void codeOffset(
410   Vdbe *v,          /* Generate code into this VM */
411   Select *p,        /* The SELECT statement being coded */
412   int iContinue,    /* Jump here to skip the current record */
413   int nPop          /* Number of times to pop stack when jumping */
414 ){
415   if( p->iOffset>=0 && iContinue!=0 ){
416     int addr;
417     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
418     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
419     if( nPop>0 ){
420       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
421     }
422     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
423     VdbeComment((v, "# skip OFFSET records"));
424     sqlite3VdbeJumpHere(v, addr);
425   }
426 }
427 
428 /*
429 ** Add code that will check to make sure the top N elements of the
430 ** stack are distinct.  iTab is a sorting index that holds previously
431 ** seen combinations of the N values.  A new entry is made in iTab
432 ** if the current N values are new.
433 **
434 ** A jump to addrRepeat is made and the N+1 values are popped from the
435 ** stack if the top N elements are not distinct.
436 */
437 static void codeDistinct(
438   Vdbe *v,           /* Generate code into this VM */
439   int iTab,          /* A sorting index used to test for distinctness */
440   int addrRepeat,    /* Jump to here if not distinct */
441   int N              /* The top N elements of the stack must be distinct */
442 ){
443   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
444   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
445   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
446   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
447   VdbeComment((v, "# skip indistinct records"));
448   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
449 }
450 
451 /*
452 ** Generate an error message when a SELECT is used within a subexpression
453 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
454 ** column.  We do this in a subroutine because the error occurs in multiple
455 ** places.
456 */
457 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
458   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
459     sqlite3ErrorMsg(pParse, "only a single result allowed for "
460        "a SELECT that is part of an expression");
461     return 1;
462   }else{
463     return 0;
464   }
465 }
466 
467 /*
468 ** This routine generates the code for the inside of the inner loop
469 ** of a SELECT.
470 **
471 ** If srcTab and nColumn are both zero, then the pEList expressions
472 ** are evaluated in order to get the data for this row.  If nColumn>0
473 ** then data is pulled from srcTab and pEList is used only to get the
474 ** datatypes for each column.
475 */
476 static int selectInnerLoop(
477   Parse *pParse,          /* The parser context */
478   Select *p,              /* The complete select statement being coded */
479   ExprList *pEList,       /* List of values being extracted */
480   int srcTab,             /* Pull data from this table */
481   int nColumn,            /* Number of columns in the source table */
482   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
483   int distinct,           /* If >=0, make sure results are distinct */
484   int eDest,              /* How to dispose of the results */
485   int iParm,              /* An argument to the disposal method */
486   int iContinue,          /* Jump here to continue with next row */
487   int iBreak,             /* Jump here to break out of the inner loop */
488   char *aff               /* affinity string if eDest is SRT_Union */
489 ){
490   Vdbe *v = pParse->pVdbe;
491   int i;
492   int hasDistinct;        /* True if the DISTINCT keyword is present */
493 
494   if( v==0 ) return 0;
495   assert( pEList!=0 );
496 
497   /* If there was a LIMIT clause on the SELECT statement, then do the check
498   ** to see if this row should be output.
499   */
500   hasDistinct = distinct>=0 && pEList->nExpr>0;
501   if( pOrderBy==0 && !hasDistinct ){
502     codeOffset(v, p, iContinue, 0);
503   }
504 
505   /* Pull the requested columns.
506   */
507   if( nColumn>0 ){
508     for(i=0; i<nColumn; i++){
509       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
510     }
511   }else{
512     nColumn = pEList->nExpr;
513     sqlite3ExprCodeExprList(pParse, pEList);
514   }
515 
516   /* If the DISTINCT keyword was present on the SELECT statement
517   ** and this row has been seen before, then do not make this row
518   ** part of the result.
519   */
520   if( hasDistinct ){
521     assert( pEList!=0 );
522     assert( pEList->nExpr==nColumn );
523     codeDistinct(v, distinct, iContinue, nColumn);
524     if( pOrderBy==0 ){
525       codeOffset(v, p, iContinue, nColumn);
526     }
527   }
528 
529   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
530     return 0;
531   }
532 
533   switch( eDest ){
534     /* In this mode, write each query result to the key of the temporary
535     ** table iParm.
536     */
537 #ifndef SQLITE_OMIT_COMPOUND_SELECT
538     case SRT_Union: {
539       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
540       if( aff ){
541         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
542       }
543       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
544       break;
545     }
546 
547     /* Construct a record from the query result, but instead of
548     ** saving that record, use it as a key to delete elements from
549     ** the temporary table iParm.
550     */
551     case SRT_Except: {
552       int addr;
553       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
554       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
555       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
556       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
557       break;
558     }
559 #endif
560 
561     /* Store the result as data using a unique key.
562     */
563     case SRT_Table:
564     case SRT_EphemTab: {
565       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
566       if( pOrderBy ){
567         pushOntoSorter(pParse, pOrderBy, p);
568       }else{
569         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
570         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
571         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
572       }
573       break;
574     }
575 
576 #ifndef SQLITE_OMIT_SUBQUERY
577     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
578     ** then there should be a single item on the stack.  Write this
579     ** item into the set table with bogus data.
580     */
581     case SRT_Set: {
582       int addr1 = sqlite3VdbeCurrentAddr(v);
583       int addr2;
584 
585       assert( nColumn==1 );
586       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
587       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
588       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
589       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
590       if( pOrderBy ){
591         /* At first glance you would think we could optimize out the
592         ** ORDER BY in this case since the order of entries in the set
593         ** does not matter.  But there might be a LIMIT clause, in which
594         ** case the order does matter */
595         pushOntoSorter(pParse, pOrderBy, p);
596       }else{
597         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
598         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
599       }
600       sqlite3VdbeJumpHere(v, addr2);
601       break;
602     }
603 
604     /* If any row exist in the result set, record that fact and abort.
605     */
606     case SRT_Exists: {
607       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
608       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
609       /* The LIMIT clause will terminate the loop for us */
610       break;
611     }
612 
613     /* If this is a scalar select that is part of an expression, then
614     ** store the results in the appropriate memory cell and break out
615     ** of the scan loop.
616     */
617     case SRT_Mem: {
618       assert( nColumn==1 );
619       if( pOrderBy ){
620         pushOntoSorter(pParse, pOrderBy, p);
621       }else{
622         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
623         /* The LIMIT clause will jump out of the loop for us */
624       }
625       break;
626     }
627 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
628 
629     /* Send the data to the callback function or to a subroutine.  In the
630     ** case of a subroutine, the subroutine itself is responsible for
631     ** popping the data from the stack.
632     */
633     case SRT_Subroutine:
634     case SRT_Callback: {
635       if( pOrderBy ){
636         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
637         pushOntoSorter(pParse, pOrderBy, p);
638       }else if( eDest==SRT_Subroutine ){
639         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
640       }else{
641         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
642       }
643       break;
644     }
645 
646 #if !defined(SQLITE_OMIT_TRIGGER)
647     /* Discard the results.  This is used for SELECT statements inside
648     ** the body of a TRIGGER.  The purpose of such selects is to call
649     ** user-defined functions that have side effects.  We do not care
650     ** about the actual results of the select.
651     */
652     default: {
653       assert( eDest==SRT_Discard );
654       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
655       break;
656     }
657 #endif
658   }
659 
660   /* Jump to the end of the loop if the LIMIT is reached.
661   */
662   if( p->iLimit>=0 && pOrderBy==0 ){
663     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
664     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
665   }
666   return 0;
667 }
668 
669 /*
670 ** Given an expression list, generate a KeyInfo structure that records
671 ** the collating sequence for each expression in that expression list.
672 **
673 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
674 ** KeyInfo structure is appropriate for initializing a virtual index to
675 ** implement that clause.  If the ExprList is the result set of a SELECT
676 ** then the KeyInfo structure is appropriate for initializing a virtual
677 ** index to implement a DISTINCT test.
678 **
679 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
680 ** function is responsible for seeing that this structure is eventually
681 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
682 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
683 */
684 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
685   sqlite3 *db = pParse->db;
686   int nExpr;
687   KeyInfo *pInfo;
688   struct ExprList_item *pItem;
689   int i;
690 
691   nExpr = pList->nExpr;
692   pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
693   if( pInfo ){
694     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
695     pInfo->nField = nExpr;
696     pInfo->enc = ENC(db);
697     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
698       CollSeq *pColl;
699       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
700       if( !pColl ){
701         pColl = db->pDfltColl;
702       }
703       pInfo->aColl[i] = pColl;
704       pInfo->aSortOrder[i] = pItem->sortOrder;
705     }
706   }
707   return pInfo;
708 }
709 
710 
711 /*
712 ** If the inner loop was generated using a non-null pOrderBy argument,
713 ** then the results were placed in a sorter.  After the loop is terminated
714 ** we need to run the sorter and output the results.  The following
715 ** routine generates the code needed to do that.
716 */
717 static void generateSortTail(
718   Parse *pParse,   /* Parsing context */
719   Select *p,       /* The SELECT statement */
720   Vdbe *v,         /* Generate code into this VDBE */
721   int nColumn,     /* Number of columns of data */
722   int eDest,       /* Write the sorted results here */
723   int iParm        /* Optional parameter associated with eDest */
724 ){
725   int brk = sqlite3VdbeMakeLabel(v);
726   int cont = sqlite3VdbeMakeLabel(v);
727   int addr;
728   int iTab;
729   int pseudoTab = 0;
730   ExprList *pOrderBy = p->pOrderBy;
731 
732   iTab = pOrderBy->iECursor;
733   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
734     pseudoTab = pParse->nTab++;
735     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
736     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
737   }
738   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
739   codeOffset(v, p, cont, 0);
740   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
741     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
742   }
743   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
744   switch( eDest ){
745     case SRT_Table:
746     case SRT_EphemTab: {
747       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
748       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
749       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
750       break;
751     }
752 #ifndef SQLITE_OMIT_SUBQUERY
753     case SRT_Set: {
754       assert( nColumn==1 );
755       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
756       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
757       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
758       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
759       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
760       break;
761     }
762     case SRT_Mem: {
763       assert( nColumn==1 );
764       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
765       /* The LIMIT clause will terminate the loop for us */
766       break;
767     }
768 #endif
769     case SRT_Callback:
770     case SRT_Subroutine: {
771       int i;
772       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
773       for(i=0; i<nColumn; i++){
774         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
775       }
776       if( eDest==SRT_Callback ){
777         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
778       }else{
779         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
780       }
781       break;
782     }
783     default: {
784       /* Do nothing */
785       break;
786     }
787   }
788 
789   /* Jump to the end of the loop when the LIMIT is reached
790   */
791   if( p->iLimit>=0 ){
792     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
793     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
794   }
795 
796   /* The bottom of the loop
797   */
798   sqlite3VdbeResolveLabel(v, cont);
799   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
800   sqlite3VdbeResolveLabel(v, brk);
801   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
802     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
803   }
804 
805 }
806 
807 /*
808 ** Return a pointer to a string containing the 'declaration type' of the
809 ** expression pExpr. The string may be treated as static by the caller.
810 **
811 ** The declaration type is the exact datatype definition extracted from the
812 ** original CREATE TABLE statement if the expression is a column. The
813 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
814 ** is considered a column can be complex in the presence of subqueries. The
815 ** result-set expression in all of the following SELECT statements is
816 ** considered a column by this function.
817 **
818 **   SELECT col FROM tbl;
819 **   SELECT (SELECT col FROM tbl;
820 **   SELECT (SELECT col FROM tbl);
821 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
822 **
823 ** The declaration type for any expression other than a column is NULL.
824 */
825 static const char *columnType(
826   NameContext *pNC,
827   Expr *pExpr,
828   const char **pzOriginDb,
829   const char **pzOriginTab,
830   const char **pzOriginCol
831 ){
832   char const *zType = 0;
833   char const *zOriginDb = 0;
834   char const *zOriginTab = 0;
835   char const *zOriginCol = 0;
836   int j;
837   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
838 
839   switch( pExpr->op ){
840     case TK_AGG_COLUMN:
841     case TK_COLUMN: {
842       /* The expression is a column. Locate the table the column is being
843       ** extracted from in NameContext.pSrcList. This table may be real
844       ** database table or a subquery.
845       */
846       Table *pTab = 0;            /* Table structure column is extracted from */
847       Select *pS = 0;             /* Select the column is extracted from */
848       int iCol = pExpr->iColumn;  /* Index of column in pTab */
849       while( pNC && !pTab ){
850         SrcList *pTabList = pNC->pSrcList;
851         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
852         if( j<pTabList->nSrc ){
853           pTab = pTabList->a[j].pTab;
854           pS = pTabList->a[j].pSelect;
855         }else{
856           pNC = pNC->pNext;
857         }
858       }
859 
860       if( pTab==0 ){
861         /* FIX ME:
862         ** This can occurs if you have something like "SELECT new.x;" inside
863         ** a trigger.  In other words, if you reference the special "new"
864         ** table in the result set of a select.  We do not have a good way
865         ** to find the actual table type, so call it "TEXT".  This is really
866         ** something of a bug, but I do not know how to fix it.
867         **
868         ** This code does not produce the correct answer - it just prevents
869         ** a segfault.  See ticket #1229.
870         */
871         zType = "TEXT";
872         break;
873       }
874 
875       assert( pTab );
876       if( pS ){
877         /* The "table" is actually a sub-select or a view in the FROM clause
878         ** of the SELECT statement. Return the declaration type and origin
879         ** data for the result-set column of the sub-select.
880         */
881         if( iCol>=0 && iCol<pS->pEList->nExpr ){
882           /* If iCol is less than zero, then the expression requests the
883           ** rowid of the sub-select or view. This expression is legal (see
884           ** test case misc2.2.2) - it always evaluates to NULL.
885           */
886           NameContext sNC;
887           Expr *p = pS->pEList->a[iCol].pExpr;
888           sNC.pSrcList = pS->pSrc;
889           sNC.pNext = 0;
890           sNC.pParse = pNC->pParse;
891           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
892         }
893       }else if( pTab->pSchema ){
894         /* A real table */
895         assert( !pS );
896         if( iCol<0 ) iCol = pTab->iPKey;
897         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
898         if( iCol<0 ){
899           zType = "INTEGER";
900           zOriginCol = "rowid";
901         }else{
902           zType = pTab->aCol[iCol].zType;
903           zOriginCol = pTab->aCol[iCol].zName;
904         }
905         zOriginTab = pTab->zName;
906         if( pNC->pParse ){
907           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
908           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
909         }
910       }
911       break;
912     }
913 #ifndef SQLITE_OMIT_SUBQUERY
914     case TK_SELECT: {
915       /* The expression is a sub-select. Return the declaration type and
916       ** origin info for the single column in the result set of the SELECT
917       ** statement.
918       */
919       NameContext sNC;
920       Select *pS = pExpr->pSelect;
921       Expr *p = pS->pEList->a[0].pExpr;
922       sNC.pSrcList = pS->pSrc;
923       sNC.pNext = pNC;
924       sNC.pParse = pNC->pParse;
925       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
926       break;
927     }
928 #endif
929   }
930 
931   if( pzOriginDb ){
932     assert( pzOriginTab && pzOriginCol );
933     *pzOriginDb = zOriginDb;
934     *pzOriginTab = zOriginTab;
935     *pzOriginCol = zOriginCol;
936   }
937   return zType;
938 }
939 
940 /*
941 ** Generate code that will tell the VDBE the declaration types of columns
942 ** in the result set.
943 */
944 static void generateColumnTypes(
945   Parse *pParse,      /* Parser context */
946   SrcList *pTabList,  /* List of tables */
947   ExprList *pEList    /* Expressions defining the result set */
948 ){
949   Vdbe *v = pParse->pVdbe;
950   int i;
951   NameContext sNC;
952   sNC.pSrcList = pTabList;
953   sNC.pParse = pParse;
954   for(i=0; i<pEList->nExpr; i++){
955     Expr *p = pEList->a[i].pExpr;
956     const char *zOrigDb = 0;
957     const char *zOrigTab = 0;
958     const char *zOrigCol = 0;
959     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
960 
961     /* The vdbe must make it's own copy of the column-type and other
962     ** column specific strings, in case the schema is reset before this
963     ** virtual machine is deleted.
964     */
965     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
966     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
967     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
968     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
969   }
970 }
971 
972 /*
973 ** Generate code that will tell the VDBE the names of columns
974 ** in the result set.  This information is used to provide the
975 ** azCol[] values in the callback.
976 */
977 static void generateColumnNames(
978   Parse *pParse,      /* Parser context */
979   SrcList *pTabList,  /* List of tables */
980   ExprList *pEList    /* Expressions defining the result set */
981 ){
982   Vdbe *v = pParse->pVdbe;
983   int i, j;
984   sqlite3 *db = pParse->db;
985   int fullNames, shortNames;
986 
987 #ifndef SQLITE_OMIT_EXPLAIN
988   /* If this is an EXPLAIN, skip this step */
989   if( pParse->explain ){
990     return;
991   }
992 #endif
993 
994   assert( v!=0 );
995   if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
996   pParse->colNamesSet = 1;
997   fullNames = (db->flags & SQLITE_FullColNames)!=0;
998   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
999   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1000   for(i=0; i<pEList->nExpr; i++){
1001     Expr *p;
1002     p = pEList->a[i].pExpr;
1003     if( p==0 ) continue;
1004     if( pEList->a[i].zName ){
1005       char *zName = pEList->a[i].zName;
1006       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
1007       continue;
1008     }
1009     if( p->op==TK_COLUMN && pTabList ){
1010       Table *pTab;
1011       char *zCol;
1012       int iCol = p->iColumn;
1013       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1014       assert( j<pTabList->nSrc );
1015       pTab = pTabList->a[j].pTab;
1016       if( iCol<0 ) iCol = pTab->iPKey;
1017       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1018       if( iCol<0 ){
1019         zCol = "rowid";
1020       }else{
1021         zCol = pTab->aCol[iCol].zName;
1022       }
1023       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
1024         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1025       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1026         char *zName = 0;
1027         char *zTab;
1028 
1029         zTab = pTabList->a[j].zAlias;
1030         if( fullNames || zTab==0 ) zTab = pTab->zName;
1031         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
1032         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
1033       }else{
1034         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1035       }
1036     }else if( p->span.z && p->span.z[0] ){
1037       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1038       /* sqlite3VdbeCompressSpace(v, addr); */
1039     }else{
1040       char zName[30];
1041       assert( p->op!=TK_COLUMN || pTabList==0 );
1042       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
1043       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
1044     }
1045   }
1046   generateColumnTypes(pParse, pTabList, pEList);
1047 }
1048 
1049 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1050 /*
1051 ** Name of the connection operator, used for error messages.
1052 */
1053 static const char *selectOpName(int id){
1054   char *z;
1055   switch( id ){
1056     case TK_ALL:       z = "UNION ALL";   break;
1057     case TK_INTERSECT: z = "INTERSECT";   break;
1058     case TK_EXCEPT:    z = "EXCEPT";      break;
1059     default:           z = "UNION";       break;
1060   }
1061   return z;
1062 }
1063 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1064 
1065 /*
1066 ** Forward declaration
1067 */
1068 static int prepSelectStmt(Parse*, Select*);
1069 
1070 /*
1071 ** Given a SELECT statement, generate a Table structure that describes
1072 ** the result set of that SELECT.
1073 */
1074 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1075   Table *pTab;
1076   int i, j;
1077   ExprList *pEList;
1078   Column *aCol, *pCol;
1079 
1080   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1081   if( prepSelectStmt(pParse, pSelect) ){
1082     return 0;
1083   }
1084   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
1085     return 0;
1086   }
1087   pTab = sqliteMalloc( sizeof(Table) );
1088   if( pTab==0 ){
1089     return 0;
1090   }
1091   pTab->nRef = 1;
1092   pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
1093   pEList = pSelect->pEList;
1094   pTab->nCol = pEList->nExpr;
1095   assert( pTab->nCol>0 );
1096   pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
1097   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1098     Expr *p, *pR;
1099     char *zType;
1100     char *zName;
1101     int nName;
1102     CollSeq *pColl;
1103     int cnt;
1104     NameContext sNC;
1105 
1106     /* Get an appropriate name for the column
1107     */
1108     p = pEList->a[i].pExpr;
1109     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1110     if( (zName = pEList->a[i].zName)!=0 ){
1111       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1112       zName = sqliteStrDup(zName);
1113     }else if( p->op==TK_DOT
1114               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
1115       /* For columns of the from A.B use B as the name */
1116       zName = sqlite3MPrintf("%T", &pR->token);
1117     }else if( p->span.z && p->span.z[0] ){
1118       /* Use the original text of the column expression as its name */
1119       zName = sqlite3MPrintf("%T", &p->span);
1120     }else{
1121       /* If all else fails, make up a name */
1122       zName = sqlite3MPrintf("column%d", i+1);
1123     }
1124     sqlite3Dequote(zName);
1125     if( sqlite3MallocFailed() ){
1126       sqliteFree(zName);
1127       sqlite3DeleteTable(pTab);
1128       return 0;
1129     }
1130 
1131     /* Make sure the column name is unique.  If the name is not unique,
1132     ** append a integer to the name so that it becomes unique.
1133     */
1134     nName = strlen(zName);
1135     for(j=cnt=0; j<i; j++){
1136       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1137         zName[nName] = 0;
1138         zName = sqlite3MPrintf("%z:%d", zName, ++cnt);
1139         j = -1;
1140         if( zName==0 ) break;
1141       }
1142     }
1143     pCol->zName = zName;
1144 
1145     /* Get the typename, type affinity, and collating sequence for the
1146     ** column.
1147     */
1148     memset(&sNC, 0, sizeof(sNC));
1149     sNC.pSrcList = pSelect->pSrc;
1150     zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
1151     pCol->zType = zType;
1152     pCol->affinity = sqlite3ExprAffinity(p);
1153     pColl = sqlite3ExprCollSeq(pParse, p);
1154     if( pColl ){
1155       pCol->zColl = sqliteStrDup(pColl->zName);
1156     }
1157   }
1158   pTab->iPKey = -1;
1159   return pTab;
1160 }
1161 
1162 /*
1163 ** Prepare a SELECT statement for processing by doing the following
1164 ** things:
1165 **
1166 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1167 **         element of the FROM clause.
1168 **
1169 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1170 **         defines FROM clause.  When views appear in the FROM clause,
1171 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1172 **         that implements the view.  A copy is made of the view's SELECT
1173 **         statement so that we can freely modify or delete that statement
1174 **         without worrying about messing up the presistent representation
1175 **         of the view.
1176 **
1177 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1178 **         on joins and the ON and USING clause of joins.
1179 **
1180 **    (4)  Scan the list of columns in the result set (pEList) looking
1181 **         for instances of the "*" operator or the TABLE.* operator.
1182 **         If found, expand each "*" to be every column in every table
1183 **         and TABLE.* to be every column in TABLE.
1184 **
1185 ** Return 0 on success.  If there are problems, leave an error message
1186 ** in pParse and return non-zero.
1187 */
1188 static int prepSelectStmt(Parse *pParse, Select *p){
1189   int i, j, k, rc;
1190   SrcList *pTabList;
1191   ExprList *pEList;
1192   struct SrcList_item *pFrom;
1193 
1194   if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
1195     return 1;
1196   }
1197   pTabList = p->pSrc;
1198   pEList = p->pEList;
1199 
1200   /* Make sure cursor numbers have been assigned to all entries in
1201   ** the FROM clause of the SELECT statement.
1202   */
1203   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1204 
1205   /* Look up every table named in the FROM clause of the select.  If
1206   ** an entry of the FROM clause is a subquery instead of a table or view,
1207   ** then create a transient table structure to describe the subquery.
1208   */
1209   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1210     Table *pTab;
1211     if( pFrom->pTab!=0 ){
1212       /* This statement has already been prepared.  There is no need
1213       ** to go further. */
1214       assert( i==0 );
1215       return 0;
1216     }
1217     if( pFrom->zName==0 ){
1218 #ifndef SQLITE_OMIT_SUBQUERY
1219       /* A sub-query in the FROM clause of a SELECT */
1220       assert( pFrom->pSelect!=0 );
1221       if( pFrom->zAlias==0 ){
1222         pFrom->zAlias =
1223           sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
1224       }
1225       assert( pFrom->pTab==0 );
1226       pFrom->pTab = pTab =
1227         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1228       if( pTab==0 ){
1229         return 1;
1230       }
1231       /* The isEphem flag indicates that the Table structure has been
1232       ** dynamically allocated and may be freed at any time.  In other words,
1233       ** pTab is not pointing to a persistent table structure that defines
1234       ** part of the schema. */
1235       pTab->isEphem = 1;
1236 #endif
1237     }else{
1238       /* An ordinary table or view name in the FROM clause */
1239       assert( pFrom->pTab==0 );
1240       pFrom->pTab = pTab =
1241         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1242       if( pTab==0 ){
1243         return 1;
1244       }
1245       pTab->nRef++;
1246 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1247       if( pTab->pSelect || IsVirtual(pTab) ){
1248         /* We reach here if the named table is a really a view */
1249         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1250           return 1;
1251         }
1252         /* If pFrom->pSelect!=0 it means we are dealing with a
1253         ** view within a view.  The SELECT structure has already been
1254         ** copied by the outer view so we can skip the copy step here
1255         ** in the inner view.
1256         */
1257         if( pFrom->pSelect==0 ){
1258           pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
1259         }
1260       }
1261 #endif
1262     }
1263   }
1264 
1265   /* Process NATURAL keywords, and ON and USING clauses of joins.
1266   */
1267   if( sqliteProcessJoin(pParse, p) ) return 1;
1268 
1269   /* For every "*" that occurs in the column list, insert the names of
1270   ** all columns in all tables.  And for every TABLE.* insert the names
1271   ** of all columns in TABLE.  The parser inserted a special expression
1272   ** with the TK_ALL operator for each "*" that it found in the column list.
1273   ** The following code just has to locate the TK_ALL expressions and expand
1274   ** each one to the list of all columns in all tables.
1275   **
1276   ** The first loop just checks to see if there are any "*" operators
1277   ** that need expanding.
1278   */
1279   for(k=0; k<pEList->nExpr; k++){
1280     Expr *pE = pEList->a[k].pExpr;
1281     if( pE->op==TK_ALL ) break;
1282     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1283          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1284   }
1285   rc = 0;
1286   if( k<pEList->nExpr ){
1287     /*
1288     ** If we get here it means the result set contains one or more "*"
1289     ** operators that need to be expanded.  Loop through each expression
1290     ** in the result set and expand them one by one.
1291     */
1292     struct ExprList_item *a = pEList->a;
1293     ExprList *pNew = 0;
1294     int flags = pParse->db->flags;
1295     int longNames = (flags & SQLITE_FullColNames)!=0 &&
1296                       (flags & SQLITE_ShortColNames)==0;
1297 
1298     for(k=0; k<pEList->nExpr; k++){
1299       Expr *pE = a[k].pExpr;
1300       if( pE->op!=TK_ALL &&
1301            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1302         /* This particular expression does not need to be expanded.
1303         */
1304         pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
1305         if( pNew ){
1306           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1307         }else{
1308           rc = 1;
1309         }
1310         a[k].pExpr = 0;
1311         a[k].zName = 0;
1312       }else{
1313         /* This expression is a "*" or a "TABLE.*" and needs to be
1314         ** expanded. */
1315         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1316         char *zTName;            /* text of name of TABLE */
1317         if( pE->op==TK_DOT && pE->pLeft ){
1318           zTName = sqlite3NameFromToken(&pE->pLeft->token);
1319         }else{
1320           zTName = 0;
1321         }
1322         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1323           Table *pTab = pFrom->pTab;
1324           char *zTabName = pFrom->zAlias;
1325           if( zTabName==0 || zTabName[0]==0 ){
1326             zTabName = pTab->zName;
1327           }
1328           if( zTName && (zTabName==0 || zTabName[0]==0 ||
1329                  sqlite3StrICmp(zTName, zTabName)!=0) ){
1330             continue;
1331           }
1332           tableSeen = 1;
1333           for(j=0; j<pTab->nCol; j++){
1334             Expr *pExpr, *pRight;
1335             char *zName = pTab->aCol[j].zName;
1336 
1337             if( i>0 ){
1338               struct SrcList_item *pLeft = &pTabList->a[i-1];
1339               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1340                         columnIndex(pLeft->pTab, zName)>=0 ){
1341                 /* In a NATURAL join, omit the join columns from the
1342                 ** table on the right */
1343                 continue;
1344               }
1345               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1346                 /* In a join with a USING clause, omit columns in the
1347                 ** using clause from the table on the right. */
1348                 continue;
1349               }
1350             }
1351             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
1352             if( pRight==0 ) break;
1353             setQuotedToken(&pRight->token, zName);
1354             if( zTabName && (longNames || pTabList->nSrc>1) ){
1355               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
1356               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
1357               if( pExpr==0 ) break;
1358               setQuotedToken(&pLeft->token, zTabName);
1359               setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
1360               pExpr->span.dyn = 1;
1361               pExpr->token.z = 0;
1362               pExpr->token.n = 0;
1363               pExpr->token.dyn = 0;
1364             }else{
1365               pExpr = pRight;
1366               pExpr->span = pExpr->token;
1367               pExpr->span.dyn = 0;
1368             }
1369             if( longNames ){
1370               pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
1371             }else{
1372               pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
1373             }
1374           }
1375         }
1376         if( !tableSeen ){
1377           if( zTName ){
1378             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1379           }else{
1380             sqlite3ErrorMsg(pParse, "no tables specified");
1381           }
1382           rc = 1;
1383         }
1384         sqliteFree(zTName);
1385       }
1386     }
1387     sqlite3ExprListDelete(pEList);
1388     p->pEList = pNew;
1389   }
1390   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
1391     sqlite3ErrorMsg(pParse, "too many columns in result set");
1392     rc = SQLITE_ERROR;
1393   }
1394   if( sqlite3MallocFailed() ){
1395     rc = SQLITE_NOMEM;
1396   }
1397   return rc;
1398 }
1399 
1400 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1401 /*
1402 ** This routine associates entries in an ORDER BY expression list with
1403 ** columns in a result.  For each ORDER BY expression, the opcode of
1404 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1405 ** the top-level node is filled in with column number and the iTable
1406 ** value of the top-level node is filled with iTable parameter.
1407 **
1408 ** If there are prior SELECT clauses, they are processed first.  A match
1409 ** in an earlier SELECT takes precedence over a later SELECT.
1410 **
1411 ** Any entry that does not match is flagged as an error.  The number
1412 ** of errors is returned.
1413 */
1414 static int matchOrderbyToColumn(
1415   Parse *pParse,          /* A place to leave error messages */
1416   Select *pSelect,        /* Match to result columns of this SELECT */
1417   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
1418   int iTable,             /* Insert this value in iTable */
1419   int mustComplete        /* If TRUE all ORDER BYs must match */
1420 ){
1421   int nErr = 0;
1422   int i, j;
1423   ExprList *pEList;
1424 
1425   if( pSelect==0 || pOrderBy==0 ) return 1;
1426   if( mustComplete ){
1427     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1428   }
1429   if( prepSelectStmt(pParse, pSelect) ){
1430     return 1;
1431   }
1432   if( pSelect->pPrior ){
1433     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1434       return 1;
1435     }
1436   }
1437   pEList = pSelect->pEList;
1438   for(i=0; i<pOrderBy->nExpr; i++){
1439     struct ExprList_item *pItem;
1440     Expr *pE = pOrderBy->a[i].pExpr;
1441     int iCol = -1;
1442     char *zLabel;
1443 
1444     if( pOrderBy->a[i].done ) continue;
1445     if( sqlite3ExprIsInteger(pE, &iCol) ){
1446       if( iCol<=0 || iCol>pEList->nExpr ){
1447         sqlite3ErrorMsg(pParse,
1448           "ORDER BY position %d should be between 1 and %d",
1449           iCol, pEList->nExpr);
1450         nErr++;
1451         break;
1452       }
1453       if( !mustComplete ) continue;
1454       iCol--;
1455     }
1456     if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){
1457       for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){
1458         char *zName;
1459         int isMatch;
1460         if( pItem->zName ){
1461           zName = sqlite3StrDup(pItem->zName);
1462         }else{
1463           zName = sqlite3NameFromToken(&pItem->pExpr->token);
1464         }
1465         isMatch = zName && sqlite3StrICmp(zName, zLabel)==0;
1466         sqliteFree(zName);
1467         if( isMatch ){
1468           iCol = j;
1469           break;
1470         }
1471       }
1472       sqliteFree(zLabel);
1473     }
1474     if( iCol>=0 ){
1475       pE->op = TK_COLUMN;
1476       pE->iColumn = iCol;
1477       pE->iTable = iTable;
1478       pE->iAgg = -1;
1479       pOrderBy->a[i].done = 1;
1480     }else if( mustComplete ){
1481       sqlite3ErrorMsg(pParse,
1482         "ORDER BY term number %d does not match any result column", i+1);
1483       nErr++;
1484       break;
1485     }
1486   }
1487   return nErr;
1488 }
1489 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1490 
1491 /*
1492 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1493 ** If an error occurs, return NULL and leave a message in pParse.
1494 */
1495 Vdbe *sqlite3GetVdbe(Parse *pParse){
1496   Vdbe *v = pParse->pVdbe;
1497   if( v==0 ){
1498     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1499   }
1500   return v;
1501 }
1502 
1503 
1504 /*
1505 ** Compute the iLimit and iOffset fields of the SELECT based on the
1506 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1507 ** that appear in the original SQL statement after the LIMIT and OFFSET
1508 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1509 ** are the integer memory register numbers for counters used to compute
1510 ** the limit and offset.  If there is no limit and/or offset, then
1511 ** iLimit and iOffset are negative.
1512 **
1513 ** This routine changes the values of iLimit and iOffset only if
1514 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1515 ** iOffset should have been preset to appropriate default values
1516 ** (usually but not always -1) prior to calling this routine.
1517 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1518 ** redefined.  The UNION ALL operator uses this property to force
1519 ** the reuse of the same limit and offset registers across multiple
1520 ** SELECT statements.
1521 */
1522 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1523   Vdbe *v = 0;
1524   int iLimit = 0;
1525   int iOffset;
1526   int addr1, addr2;
1527 
1528   /*
1529   ** "LIMIT -1" always shows all rows.  There is some
1530   ** contraversy about what the correct behavior should be.
1531   ** The current implementation interprets "LIMIT 0" to mean
1532   ** no rows.
1533   */
1534   if( p->pLimit ){
1535     p->iLimit = iLimit = pParse->nMem;
1536     pParse->nMem += 2;
1537     v = sqlite3GetVdbe(pParse);
1538     if( v==0 ) return;
1539     sqlite3ExprCode(pParse, p->pLimit);
1540     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1541     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
1542     VdbeComment((v, "# LIMIT counter"));
1543     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
1544     sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
1545   }
1546   if( p->pOffset ){
1547     p->iOffset = iOffset = pParse->nMem++;
1548     v = sqlite3GetVdbe(pParse);
1549     if( v==0 ) return;
1550     sqlite3ExprCode(pParse, p->pOffset);
1551     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1552     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
1553     VdbeComment((v, "# OFFSET counter"));
1554     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
1555     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1556     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
1557     sqlite3VdbeJumpHere(v, addr1);
1558     if( p->pLimit ){
1559       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
1560     }
1561   }
1562   if( p->pLimit ){
1563     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
1564     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1565     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
1566     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1567     sqlite3VdbeJumpHere(v, addr1);
1568     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
1569     VdbeComment((v, "# LIMIT+OFFSET"));
1570     sqlite3VdbeJumpHere(v, addr2);
1571   }
1572 }
1573 
1574 /*
1575 ** Allocate a virtual index to use for sorting.
1576 */
1577 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
1578   if( pOrderBy ){
1579     int addr;
1580     assert( pOrderBy->iECursor==0 );
1581     pOrderBy->iECursor = pParse->nTab++;
1582     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
1583                             pOrderBy->iECursor, pOrderBy->nExpr+1);
1584     assert( p->addrOpenEphm[2] == -1 );
1585     p->addrOpenEphm[2] = addr;
1586   }
1587 }
1588 
1589 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1590 /*
1591 ** Return the appropriate collating sequence for the iCol-th column of
1592 ** the result set for the compound-select statement "p".  Return NULL if
1593 ** the column has no default collating sequence.
1594 **
1595 ** The collating sequence for the compound select is taken from the
1596 ** left-most term of the select that has a collating sequence.
1597 */
1598 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1599   CollSeq *pRet;
1600   if( p->pPrior ){
1601     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1602   }else{
1603     pRet = 0;
1604   }
1605   if( pRet==0 ){
1606     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1607   }
1608   return pRet;
1609 }
1610 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1611 
1612 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1613 /*
1614 ** This routine is called to process a query that is really the union
1615 ** or intersection of two or more separate queries.
1616 **
1617 ** "p" points to the right-most of the two queries.  the query on the
1618 ** left is p->pPrior.  The left query could also be a compound query
1619 ** in which case this routine will be called recursively.
1620 **
1621 ** The results of the total query are to be written into a destination
1622 ** of type eDest with parameter iParm.
1623 **
1624 ** Example 1:  Consider a three-way compound SQL statement.
1625 **
1626 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1627 **
1628 ** This statement is parsed up as follows:
1629 **
1630 **     SELECT c FROM t3
1631 **      |
1632 **      `----->  SELECT b FROM t2
1633 **                |
1634 **                `------>  SELECT a FROM t1
1635 **
1636 ** The arrows in the diagram above represent the Select.pPrior pointer.
1637 ** So if this routine is called with p equal to the t3 query, then
1638 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1639 **
1640 ** Notice that because of the way SQLite parses compound SELECTs, the
1641 ** individual selects always group from left to right.
1642 */
1643 static int multiSelect(
1644   Parse *pParse,        /* Parsing context */
1645   Select *p,            /* The right-most of SELECTs to be coded */
1646   int eDest,            /* \___  Store query results as specified */
1647   int iParm,            /* /     by these two parameters.         */
1648   char *aff             /* If eDest is SRT_Union, the affinity string */
1649 ){
1650   int rc = SQLITE_OK;   /* Success code from a subroutine */
1651   Select *pPrior;       /* Another SELECT immediately to our left */
1652   Vdbe *v;              /* Generate code to this VDBE */
1653   int nCol;             /* Number of columns in the result set */
1654   ExprList *pOrderBy;   /* The ORDER BY clause on p */
1655   int aSetP2[2];        /* Set P2 value of these op to number of columns */
1656   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
1657 
1658   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1659   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1660   */
1661   if( p==0 || p->pPrior==0 ){
1662     rc = 1;
1663     goto multi_select_end;
1664   }
1665   pPrior = p->pPrior;
1666   assert( pPrior->pRightmost!=pPrior );
1667   assert( pPrior->pRightmost==p->pRightmost );
1668   if( pPrior->pOrderBy ){
1669     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1670       selectOpName(p->op));
1671     rc = 1;
1672     goto multi_select_end;
1673   }
1674   if( pPrior->pLimit ){
1675     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1676       selectOpName(p->op));
1677     rc = 1;
1678     goto multi_select_end;
1679   }
1680 
1681   /* Make sure we have a valid query engine.  If not, create a new one.
1682   */
1683   v = sqlite3GetVdbe(pParse);
1684   if( v==0 ){
1685     rc = 1;
1686     goto multi_select_end;
1687   }
1688 
1689   /* Create the destination temporary table if necessary
1690   */
1691   if( eDest==SRT_EphemTab ){
1692     assert( p->pEList );
1693     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1694     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
1695     eDest = SRT_Table;
1696   }
1697 
1698   /* Generate code for the left and right SELECT statements.
1699   */
1700   pOrderBy = p->pOrderBy;
1701   switch( p->op ){
1702     case TK_ALL: {
1703       if( pOrderBy==0 ){
1704         int addr = 0;
1705         assert( !pPrior->pLimit );
1706         pPrior->pLimit = p->pLimit;
1707         pPrior->pOffset = p->pOffset;
1708         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1709         p->pLimit = 0;
1710         p->pOffset = 0;
1711         if( rc ){
1712           goto multi_select_end;
1713         }
1714         p->pPrior = 0;
1715         p->iLimit = pPrior->iLimit;
1716         p->iOffset = pPrior->iOffset;
1717         if( p->iLimit>=0 ){
1718           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
1719           VdbeComment((v, "# Jump ahead if LIMIT reached"));
1720         }
1721         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1722         p->pPrior = pPrior;
1723         if( rc ){
1724           goto multi_select_end;
1725         }
1726         if( addr ){
1727           sqlite3VdbeJumpHere(v, addr);
1728         }
1729         break;
1730       }
1731       /* For UNION ALL ... ORDER BY fall through to the next case */
1732     }
1733     case TK_EXCEPT:
1734     case TK_UNION: {
1735       int unionTab;    /* Cursor number of the temporary table holding result */
1736       int op = 0;      /* One of the SRT_ operations to apply to self */
1737       int priorOp;     /* The SRT_ operation to apply to prior selects */
1738       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1739       int addr;
1740 
1741       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1742       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
1743         /* We can reuse a temporary table generated by a SELECT to our
1744         ** right.
1745         */
1746         unionTab = iParm;
1747       }else{
1748         /* We will need to create our own temporary table to hold the
1749         ** intermediate results.
1750         */
1751         unionTab = pParse->nTab++;
1752         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
1753           rc = 1;
1754           goto multi_select_end;
1755         }
1756         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
1757         if( priorOp==SRT_Table ){
1758           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1759           aSetP2[nSetP2++] = addr;
1760         }else{
1761           assert( p->addrOpenEphm[0] == -1 );
1762           p->addrOpenEphm[0] = addr;
1763           p->pRightmost->usesEphm = 1;
1764         }
1765         createSortingIndex(pParse, p, pOrderBy);
1766         assert( p->pEList );
1767       }
1768 
1769       /* Code the SELECT statements to our left
1770       */
1771       assert( !pPrior->pOrderBy );
1772       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1773       if( rc ){
1774         goto multi_select_end;
1775       }
1776 
1777       /* Code the current SELECT statement
1778       */
1779       switch( p->op ){
1780          case TK_EXCEPT:  op = SRT_Except;   break;
1781          case TK_UNION:   op = SRT_Union;    break;
1782          case TK_ALL:     op = SRT_Table;    break;
1783       }
1784       p->pPrior = 0;
1785       p->pOrderBy = 0;
1786       p->disallowOrderBy = pOrderBy!=0;
1787       pLimit = p->pLimit;
1788       p->pLimit = 0;
1789       pOffset = p->pOffset;
1790       p->pOffset = 0;
1791       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1792       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1793       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1794       sqlite3ExprListDelete(p->pOrderBy);
1795       p->pPrior = pPrior;
1796       p->pOrderBy = pOrderBy;
1797       sqlite3ExprDelete(p->pLimit);
1798       p->pLimit = pLimit;
1799       p->pOffset = pOffset;
1800       p->iLimit = -1;
1801       p->iOffset = -1;
1802       if( rc ){
1803         goto multi_select_end;
1804       }
1805 
1806 
1807       /* Convert the data in the temporary table into whatever form
1808       ** it is that we currently need.
1809       */
1810       if( eDest!=priorOp || unionTab!=iParm ){
1811         int iCont, iBreak, iStart;
1812         assert( p->pEList );
1813         if( eDest==SRT_Callback ){
1814           Select *pFirst = p;
1815           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1816           generateColumnNames(pParse, 0, pFirst->pEList);
1817         }
1818         iBreak = sqlite3VdbeMakeLabel(v);
1819         iCont = sqlite3VdbeMakeLabel(v);
1820         computeLimitRegisters(pParse, p, iBreak);
1821         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1822         iStart = sqlite3VdbeCurrentAddr(v);
1823         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1824                              pOrderBy, -1, eDest, iParm,
1825                              iCont, iBreak, 0);
1826         if( rc ){
1827           rc = 1;
1828           goto multi_select_end;
1829         }
1830         sqlite3VdbeResolveLabel(v, iCont);
1831         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1832         sqlite3VdbeResolveLabel(v, iBreak);
1833         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1834       }
1835       break;
1836     }
1837     case TK_INTERSECT: {
1838       int tab1, tab2;
1839       int iCont, iBreak, iStart;
1840       Expr *pLimit, *pOffset;
1841       int addr;
1842 
1843       /* INTERSECT is different from the others since it requires
1844       ** two temporary tables.  Hence it has its own case.  Begin
1845       ** by allocating the tables we will need.
1846       */
1847       tab1 = pParse->nTab++;
1848       tab2 = pParse->nTab++;
1849       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
1850         rc = 1;
1851         goto multi_select_end;
1852       }
1853       createSortingIndex(pParse, p, pOrderBy);
1854 
1855       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
1856       assert( p->addrOpenEphm[0] == -1 );
1857       p->addrOpenEphm[0] = addr;
1858       p->pRightmost->usesEphm = 1;
1859       assert( p->pEList );
1860 
1861       /* Code the SELECTs to our left into temporary table "tab1".
1862       */
1863       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1864       if( rc ){
1865         goto multi_select_end;
1866       }
1867 
1868       /* Code the current SELECT into temporary table "tab2"
1869       */
1870       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
1871       assert( p->addrOpenEphm[1] == -1 );
1872       p->addrOpenEphm[1] = addr;
1873       p->pPrior = 0;
1874       pLimit = p->pLimit;
1875       p->pLimit = 0;
1876       pOffset = p->pOffset;
1877       p->pOffset = 0;
1878       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1879       p->pPrior = pPrior;
1880       sqlite3ExprDelete(p->pLimit);
1881       p->pLimit = pLimit;
1882       p->pOffset = pOffset;
1883       if( rc ){
1884         goto multi_select_end;
1885       }
1886 
1887       /* Generate code to take the intersection of the two temporary
1888       ** tables.
1889       */
1890       assert( p->pEList );
1891       if( eDest==SRT_Callback ){
1892         Select *pFirst = p;
1893         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1894         generateColumnNames(pParse, 0, pFirst->pEList);
1895       }
1896       iBreak = sqlite3VdbeMakeLabel(v);
1897       iCont = sqlite3VdbeMakeLabel(v);
1898       computeLimitRegisters(pParse, p, iBreak);
1899       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1900       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1901       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1902       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1903                              pOrderBy, -1, eDest, iParm,
1904                              iCont, iBreak, 0);
1905       if( rc ){
1906         rc = 1;
1907         goto multi_select_end;
1908       }
1909       sqlite3VdbeResolveLabel(v, iCont);
1910       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1911       sqlite3VdbeResolveLabel(v, iBreak);
1912       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1913       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1914       break;
1915     }
1916   }
1917 
1918   /* Make sure all SELECTs in the statement have the same number of elements
1919   ** in their result sets.
1920   */
1921   assert( p->pEList && pPrior->pEList );
1922   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1923     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1924       " do not have the same number of result columns", selectOpName(p->op));
1925     rc = 1;
1926     goto multi_select_end;
1927   }
1928 
1929   /* Set the number of columns in temporary tables
1930   */
1931   nCol = p->pEList->nExpr;
1932   while( nSetP2 ){
1933     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
1934   }
1935 
1936   /* Compute collating sequences used by either the ORDER BY clause or
1937   ** by any temporary tables needed to implement the compound select.
1938   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
1939   ** ORDER BY processing if there is an ORDER BY clause.
1940   **
1941   ** This section is run by the right-most SELECT statement only.
1942   ** SELECT statements to the left always skip this part.  The right-most
1943   ** SELECT might also skip this part if it has no ORDER BY clause and
1944   ** no temp tables are required.
1945   */
1946   if( pOrderBy || p->usesEphm ){
1947     int i;                        /* Loop counter */
1948     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1949     Select *pLoop;                /* For looping through SELECT statements */
1950     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
1951     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1952     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
1953 
1954     assert( p->pRightmost==p );
1955     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
1956     pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
1957     if( !pKeyInfo ){
1958       rc = SQLITE_NOMEM;
1959       goto multi_select_end;
1960     }
1961 
1962     pKeyInfo->enc = ENC(pParse->db);
1963     pKeyInfo->nField = nCol;
1964 
1965     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1966       *apColl = multiSelectCollSeq(pParse, p, i);
1967       if( 0==*apColl ){
1968         *apColl = pParse->db->pDfltColl;
1969       }
1970     }
1971 
1972     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1973       for(i=0; i<2; i++){
1974         int addr = pLoop->addrOpenEphm[i];
1975         if( addr<0 ){
1976           /* If [0] is unused then [1] is also unused.  So we can
1977           ** always safely abort as soon as the first unused slot is found */
1978           assert( pLoop->addrOpenEphm[1]<0 );
1979           break;
1980         }
1981         sqlite3VdbeChangeP2(v, addr, nCol);
1982         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
1983         pLoop->addrOpenEphm[i] = -1;
1984       }
1985     }
1986 
1987     if( pOrderBy ){
1988       struct ExprList_item *pOTerm = pOrderBy->a;
1989       int nOrderByExpr = pOrderBy->nExpr;
1990       int addr;
1991       u8 *pSortOrder;
1992 
1993       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
1994       ** the compound select statements.  Except we have to change out the
1995       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
1996       ** reused when constructing the pKeyInfo for the ORDER BY, so make
1997       ** a copy.  Sufficient space to hold both the nCol entries for
1998       ** the compound select and the nOrderbyExpr entries for the ORDER BY
1999       ** was allocated above.  But we need to move the compound select
2000       ** entries out of the way before constructing the ORDER BY entries.
2001       ** Move the compound select entries into aCopy[] where they can be
2002       ** accessed and reused when constructing the ORDER BY entries.
2003       ** Because nCol might be greater than or less than nOrderByExpr
2004       ** we have to use memmove() when doing the copy.
2005       */
2006       aCopy = &pKeyInfo->aColl[nOrderByExpr];
2007       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
2008       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
2009 
2010       apColl = pKeyInfo->aColl;
2011       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
2012         Expr *pExpr = pOTerm->pExpr;
2013         if( (pExpr->flags & EP_ExpCollate) ){
2014           assert( pExpr->pColl!=0 );
2015           *apColl = pExpr->pColl;
2016         }else{
2017           *apColl = aCopy[pExpr->iColumn];
2018         }
2019         *pSortOrder = pOTerm->sortOrder;
2020       }
2021       assert( p->pRightmost==p );
2022       assert( p->addrOpenEphm[2]>=0 );
2023       addr = p->addrOpenEphm[2];
2024       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
2025       pKeyInfo->nField = nOrderByExpr;
2026       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2027       pKeyInfo = 0;
2028       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
2029     }
2030 
2031     sqliteFree(pKeyInfo);
2032   }
2033 
2034 multi_select_end:
2035   return rc;
2036 }
2037 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2038 
2039 #ifndef SQLITE_OMIT_VIEW
2040 /*
2041 ** Scan through the expression pExpr.  Replace every reference to
2042 ** a column in table number iTable with a copy of the iColumn-th
2043 ** entry in pEList.  (But leave references to the ROWID column
2044 ** unchanged.)
2045 **
2046 ** This routine is part of the flattening procedure.  A subquery
2047 ** whose result set is defined by pEList appears as entry in the
2048 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2049 ** FORM clause entry is iTable.  This routine make the necessary
2050 ** changes to pExpr so that it refers directly to the source table
2051 ** of the subquery rather the result set of the subquery.
2052 */
2053 static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
2054 static void substSelect(Select *, int, ExprList *);  /* Forward Decl */
2055 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
2056   if( pExpr==0 ) return;
2057   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2058     if( pExpr->iColumn<0 ){
2059       pExpr->op = TK_NULL;
2060     }else{
2061       Expr *pNew;
2062       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2063       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2064       pNew = pEList->a[pExpr->iColumn].pExpr;
2065       assert( pNew!=0 );
2066       pExpr->op = pNew->op;
2067       assert( pExpr->pLeft==0 );
2068       pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
2069       assert( pExpr->pRight==0 );
2070       pExpr->pRight = sqlite3ExprDup(pNew->pRight);
2071       assert( pExpr->pList==0 );
2072       pExpr->pList = sqlite3ExprListDup(pNew->pList);
2073       pExpr->iTable = pNew->iTable;
2074       pExpr->pTab = pNew->pTab;
2075       pExpr->iColumn = pNew->iColumn;
2076       pExpr->iAgg = pNew->iAgg;
2077       sqlite3TokenCopy(&pExpr->token, &pNew->token);
2078       sqlite3TokenCopy(&pExpr->span, &pNew->span);
2079       pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
2080       pExpr->flags = pNew->flags;
2081     }
2082   }else{
2083     substExpr(pExpr->pLeft, iTable, pEList);
2084     substExpr(pExpr->pRight, iTable, pEList);
2085     substSelect(pExpr->pSelect, iTable, pEList);
2086     substExprList(pExpr->pList, iTable, pEList);
2087   }
2088 }
2089 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
2090   int i;
2091   if( pList==0 ) return;
2092   for(i=0; i<pList->nExpr; i++){
2093     substExpr(pList->a[i].pExpr, iTable, pEList);
2094   }
2095 }
2096 static void substSelect(Select *p, int iTable, ExprList *pEList){
2097   if( !p ) return;
2098   substExprList(p->pEList, iTable, pEList);
2099   substExprList(p->pGroupBy, iTable, pEList);
2100   substExprList(p->pOrderBy, iTable, pEList);
2101   substExpr(p->pHaving, iTable, pEList);
2102   substExpr(p->pWhere, iTable, pEList);
2103   substSelect(p->pPrior, iTable, pEList);
2104 }
2105 #endif /* !defined(SQLITE_OMIT_VIEW) */
2106 
2107 #ifndef SQLITE_OMIT_VIEW
2108 /*
2109 ** This routine attempts to flatten subqueries in order to speed
2110 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2111 ** occurs.
2112 **
2113 ** To understand the concept of flattening, consider the following
2114 ** query:
2115 **
2116 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2117 **
2118 ** The default way of implementing this query is to execute the
2119 ** subquery first and store the results in a temporary table, then
2120 ** run the outer query on that temporary table.  This requires two
2121 ** passes over the data.  Furthermore, because the temporary table
2122 ** has no indices, the WHERE clause on the outer query cannot be
2123 ** optimized.
2124 **
2125 ** This routine attempts to rewrite queries such as the above into
2126 ** a single flat select, like this:
2127 **
2128 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2129 **
2130 ** The code generated for this simpification gives the same result
2131 ** but only has to scan the data once.  And because indices might
2132 ** exist on the table t1, a complete scan of the data might be
2133 ** avoided.
2134 **
2135 ** Flattening is only attempted if all of the following are true:
2136 **
2137 **   (1)  The subquery and the outer query do not both use aggregates.
2138 **
2139 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2140 **
2141 **   (3)  The subquery is not the right operand of a left outer join, or
2142 **        the subquery is not itself a join.  (Ticket #306)
2143 **
2144 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2145 **
2146 **   (5)  The subquery is not DISTINCT or the outer query does not use
2147 **        aggregates.
2148 **
2149 **   (6)  The subquery does not use aggregates or the outer query is not
2150 **        DISTINCT.
2151 **
2152 **   (7)  The subquery has a FROM clause.
2153 **
2154 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2155 **
2156 **   (9)  The subquery does not use LIMIT or the outer query does not use
2157 **        aggregates.
2158 **
2159 **  (10)  The subquery does not use aggregates or the outer query does not
2160 **        use LIMIT.
2161 **
2162 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2163 **
2164 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2165 **        subquery has no WHERE clause.  (added by ticket #350)
2166 **
2167 **  (13)  The subquery and outer query do not both use LIMIT
2168 **
2169 **  (14)  The subquery does not use OFFSET
2170 **
2171 **  (15)  The outer query is not part of a compound select or the
2172 **        subquery does not have both an ORDER BY and a LIMIT clause.
2173 **        (See ticket #2339)
2174 **
2175 ** In this routine, the "p" parameter is a pointer to the outer query.
2176 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2177 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2178 **
2179 ** If flattening is not attempted, this routine is a no-op and returns 0.
2180 ** If flattening is attempted this routine returns 1.
2181 **
2182 ** All of the expression analysis must occur on both the outer query and
2183 ** the subquery before this routine runs.
2184 */
2185 static int flattenSubquery(
2186   Select *p,           /* The parent or outer SELECT statement */
2187   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2188   int isAgg,           /* True if outer SELECT uses aggregate functions */
2189   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2190 ){
2191   Select *pSub;       /* The inner query or "subquery" */
2192   SrcList *pSrc;      /* The FROM clause of the outer query */
2193   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2194   ExprList *pList;    /* The result set of the outer query */
2195   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2196   int i;              /* Loop counter */
2197   Expr *pWhere;                    /* The WHERE clause */
2198   struct SrcList_item *pSubitem;   /* The subquery */
2199 
2200   /* Check to see if flattening is permitted.  Return 0 if not.
2201   */
2202   if( p==0 ) return 0;
2203   pSrc = p->pSrc;
2204   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2205   pSubitem = &pSrc->a[iFrom];
2206   pSub = pSubitem->pSelect;
2207   assert( pSub!=0 );
2208   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2209   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2210   pSubSrc = pSub->pSrc;
2211   assert( pSubSrc );
2212   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2213   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2214   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2215   ** became arbitrary expressions, we were forced to add restrictions (13)
2216   ** and (14). */
2217   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2218   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2219   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2220     return 0;                                            /* Restriction (15) */
2221   }
2222   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2223   if( (pSub->isDistinct || pSub->pLimit)
2224          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2225      return 0;
2226   }
2227   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
2228   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
2229      return 0;                                           /* Restriction (11) */
2230   }
2231 
2232   /* Restriction 3:  If the subquery is a join, make sure the subquery is
2233   ** not used as the right operand of an outer join.  Examples of why this
2234   ** is not allowed:
2235   **
2236   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2237   **
2238   ** If we flatten the above, we would get
2239   **
2240   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2241   **
2242   ** which is not at all the same thing.
2243   */
2244   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
2245     return 0;
2246   }
2247 
2248   /* Restriction 12:  If the subquery is the right operand of a left outer
2249   ** join, make sure the subquery has no WHERE clause.
2250   ** An examples of why this is not allowed:
2251   **
2252   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2253   **
2254   ** If we flatten the above, we would get
2255   **
2256   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2257   **
2258   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2259   ** effectively converts the OUTER JOIN into an INNER JOIN.
2260   */
2261   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
2262     return 0;
2263   }
2264 
2265   /* If we reach this point, it means flattening is permitted for the
2266   ** iFrom-th entry of the FROM clause in the outer query.
2267   */
2268 
2269   /* Move all of the FROM elements of the subquery into the
2270   ** the FROM clause of the outer query.  Before doing this, remember
2271   ** the cursor number for the original outer query FROM element in
2272   ** iParent.  The iParent cursor will never be used.  Subsequent code
2273   ** will scan expressions looking for iParent references and replace
2274   ** those references with expressions that resolve to the subquery FROM
2275   ** elements we are now copying in.
2276   */
2277   iParent = pSubitem->iCursor;
2278   {
2279     int nSubSrc = pSubSrc->nSrc;
2280     int jointype = pSubitem->jointype;
2281 
2282     sqlite3DeleteTable(pSubitem->pTab);
2283     sqliteFree(pSubitem->zDatabase);
2284     sqliteFree(pSubitem->zName);
2285     sqliteFree(pSubitem->zAlias);
2286     if( nSubSrc>1 ){
2287       int extra = nSubSrc - 1;
2288       for(i=1; i<nSubSrc; i++){
2289         pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
2290       }
2291       p->pSrc = pSrc;
2292       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2293         pSrc->a[i] = pSrc->a[i-extra];
2294       }
2295     }
2296     for(i=0; i<nSubSrc; i++){
2297       pSrc->a[i+iFrom] = pSubSrc->a[i];
2298       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2299     }
2300     pSrc->a[iFrom].jointype = jointype;
2301   }
2302 
2303   /* Now begin substituting subquery result set expressions for
2304   ** references to the iParent in the outer query.
2305   **
2306   ** Example:
2307   **
2308   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2309   **   \                     \_____________ subquery __________/          /
2310   **    \_____________________ outer query ______________________________/
2311   **
2312   ** We look at every expression in the outer query and every place we see
2313   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2314   */
2315   pList = p->pEList;
2316   for(i=0; i<pList->nExpr; i++){
2317     Expr *pExpr;
2318     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2319       pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
2320     }
2321   }
2322   substExprList(p->pEList, iParent, pSub->pEList);
2323   if( isAgg ){
2324     substExprList(p->pGroupBy, iParent, pSub->pEList);
2325     substExpr(p->pHaving, iParent, pSub->pEList);
2326   }
2327   if( pSub->pOrderBy ){
2328     assert( p->pOrderBy==0 );
2329     p->pOrderBy = pSub->pOrderBy;
2330     pSub->pOrderBy = 0;
2331   }else if( p->pOrderBy ){
2332     substExprList(p->pOrderBy, iParent, pSub->pEList);
2333   }
2334   if( pSub->pWhere ){
2335     pWhere = sqlite3ExprDup(pSub->pWhere);
2336   }else{
2337     pWhere = 0;
2338   }
2339   if( subqueryIsAgg ){
2340     assert( p->pHaving==0 );
2341     p->pHaving = p->pWhere;
2342     p->pWhere = pWhere;
2343     substExpr(p->pHaving, iParent, pSub->pEList);
2344     p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
2345     assert( p->pGroupBy==0 );
2346     p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
2347   }else{
2348     substExpr(p->pWhere, iParent, pSub->pEList);
2349     p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
2350   }
2351 
2352   /* The flattened query is distinct if either the inner or the
2353   ** outer query is distinct.
2354   */
2355   p->isDistinct = p->isDistinct || pSub->isDistinct;
2356 
2357   /*
2358   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2359   **
2360   ** One is tempted to try to add a and b to combine the limits.  But this
2361   ** does not work if either limit is negative.
2362   */
2363   if( pSub->pLimit ){
2364     p->pLimit = pSub->pLimit;
2365     pSub->pLimit = 0;
2366   }
2367 
2368   /* Finially, delete what is left of the subquery and return
2369   ** success.
2370   */
2371   sqlite3SelectDelete(pSub);
2372   return 1;
2373 }
2374 #endif /* SQLITE_OMIT_VIEW */
2375 
2376 /*
2377 ** Analyze the SELECT statement passed in as an argument to see if it
2378 ** is a simple min() or max() query.  If it is and this query can be
2379 ** satisfied using a single seek to the beginning or end of an index,
2380 ** then generate the code for this SELECT and return 1.  If this is not a
2381 ** simple min() or max() query, then return 0;
2382 **
2383 ** A simply min() or max() query looks like this:
2384 **
2385 **    SELECT min(a) FROM table;
2386 **    SELECT max(a) FROM table;
2387 **
2388 ** The query may have only a single table in its FROM argument.  There
2389 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
2390 ** be the min() or max() of a single column of the table.  The column
2391 ** in the min() or max() function must be indexed.
2392 **
2393 ** The parameters to this routine are the same as for sqlite3Select().
2394 ** See the header comment on that routine for additional information.
2395 */
2396 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2397   Expr *pExpr;
2398   int iCol;
2399   Table *pTab;
2400   Index *pIdx;
2401   int base;
2402   Vdbe *v;
2403   int seekOp;
2404   ExprList *pEList, *pList, eList;
2405   struct ExprList_item eListItem;
2406   SrcList *pSrc;
2407   int brk;
2408   int iDb;
2409 
2410   /* Check to see if this query is a simple min() or max() query.  Return
2411   ** zero if it is  not.
2412   */
2413   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2414   pSrc = p->pSrc;
2415   if( pSrc->nSrc!=1 ) return 0;
2416   pEList = p->pEList;
2417   if( pEList->nExpr!=1 ) return 0;
2418   pExpr = pEList->a[0].pExpr;
2419   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2420   pList = pExpr->pList;
2421   if( pList==0 || pList->nExpr!=1 ) return 0;
2422   if( pExpr->token.n!=3 ) return 0;
2423   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2424     seekOp = OP_Rewind;
2425   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2426     seekOp = OP_Last;
2427   }else{
2428     return 0;
2429   }
2430   pExpr = pList->a[0].pExpr;
2431   if( pExpr->op!=TK_COLUMN ) return 0;
2432   iCol = pExpr->iColumn;
2433   pTab = pSrc->a[0].pTab;
2434 
2435   /* This optimization cannot be used with virtual tables. */
2436   if( IsVirtual(pTab) ) return 0;
2437 
2438   /* If we get to here, it means the query is of the correct form.
2439   ** Check to make sure we have an index and make pIdx point to the
2440   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
2441   ** key column, no index is necessary so set pIdx to NULL.  If no
2442   ** usable index is found, return 0.
2443   */
2444   if( iCol<0 ){
2445     pIdx = 0;
2446   }else{
2447     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2448     if( pColl==0 ) return 0;
2449     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2450       assert( pIdx->nColumn>=1 );
2451       if( pIdx->aiColumn[0]==iCol &&
2452           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
2453         break;
2454       }
2455     }
2456     if( pIdx==0 ) return 0;
2457   }
2458 
2459   /* Identify column types if we will be using the callback.  This
2460   ** step is skipped if the output is going to a table or a memory cell.
2461   ** The column names have already been generated in the calling function.
2462   */
2463   v = sqlite3GetVdbe(pParse);
2464   if( v==0 ) return 0;
2465 
2466   /* If the output is destined for a temporary table, open that table.
2467   */
2468   if( eDest==SRT_EphemTab ){
2469     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
2470   }
2471 
2472   /* Generating code to find the min or the max.  Basically all we have
2473   ** to do is find the first or the last entry in the chosen index.  If
2474   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2475   ** or last entry in the main table.
2476   */
2477   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2478   assert( iDb>=0 || pTab->isEphem );
2479   sqlite3CodeVerifySchema(pParse, iDb);
2480   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2481   base = pSrc->a[0].iCursor;
2482   brk = sqlite3VdbeMakeLabel(v);
2483   computeLimitRegisters(pParse, p, brk);
2484   if( pSrc->a[0].pSelect==0 ){
2485     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
2486   }
2487   if( pIdx==0 ){
2488     sqlite3VdbeAddOp(v, seekOp, base, 0);
2489   }else{
2490     /* Even though the cursor used to open the index here is closed
2491     ** as soon as a single value has been read from it, allocate it
2492     ** using (pParse->nTab++) to prevent the cursor id from being
2493     ** reused. This is important for statements of the form
2494     ** "INSERT INTO x SELECT max() FROM x".
2495     */
2496     int iIdx;
2497     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
2498     iIdx = pParse->nTab++;
2499     assert( pIdx->pSchema==pTab->pSchema );
2500     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2501     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2502         (char*)pKey, P3_KEYINFO_HANDOFF);
2503     if( seekOp==OP_Rewind ){
2504       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2505       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2506       seekOp = OP_MoveGt;
2507     }
2508     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2509     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2510     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2511     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2512   }
2513   eList.nExpr = 1;
2514   memset(&eListItem, 0, sizeof(eListItem));
2515   eList.a = &eListItem;
2516   eList.a[0].pExpr = pExpr;
2517   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
2518   sqlite3VdbeResolveLabel(v, brk);
2519   sqlite3VdbeAddOp(v, OP_Close, base, 0);
2520 
2521   return 1;
2522 }
2523 
2524 /*
2525 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
2526 ** the number of errors seen.
2527 **
2528 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
2529 ** is an integer constant, then that expression is replaced by the
2530 ** corresponding entry in the result set.
2531 */
2532 static int processOrderGroupBy(
2533   NameContext *pNC,     /* Name context of the SELECT statement. */
2534   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
2535   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
2536 ){
2537   int i;
2538   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
2539   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
2540   assert( pEList );
2541 
2542   if( pOrderBy==0 ) return 0;
2543   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
2544     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
2545     return 1;
2546   }
2547   for(i=0; i<pOrderBy->nExpr; i++){
2548     int iCol;
2549     Expr *pE = pOrderBy->a[i].pExpr;
2550     if( sqlite3ExprIsInteger(pE, &iCol) ){
2551       if( iCol>0 && iCol<=pEList->nExpr ){
2552         CollSeq *pColl = pE->pColl;
2553         int flags = pE->flags & EP_ExpCollate;
2554         sqlite3ExprDelete(pE);
2555         pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
2556         if( pColl && flags ){
2557           pE->pColl = pColl;
2558           pE->flags |= flags;
2559         }
2560       }else{
2561         sqlite3ErrorMsg(pParse,
2562            "%s BY column number %d out of range - should be "
2563            "between 1 and %d", zType, iCol, pEList->nExpr);
2564         return 1;
2565       }
2566     }
2567     if( sqlite3ExprResolveNames(pNC, pE) ){
2568       return 1;
2569     }
2570   }
2571   return 0;
2572 }
2573 
2574 /*
2575 ** This routine resolves any names used in the result set of the
2576 ** supplied SELECT statement. If the SELECT statement being resolved
2577 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2578 ** of the parent SELECT.
2579 */
2580 int sqlite3SelectResolve(
2581   Parse *pParse,         /* The parser context */
2582   Select *p,             /* The SELECT statement being coded. */
2583   NameContext *pOuterNC  /* The outer name context. May be NULL. */
2584 ){
2585   ExprList *pEList;          /* Result set. */
2586   int i;                     /* For-loop variable used in multiple places */
2587   NameContext sNC;           /* Local name-context */
2588   ExprList *pGroupBy;        /* The group by clause */
2589 
2590   /* If this routine has run before, return immediately. */
2591   if( p->isResolved ){
2592     assert( !pOuterNC );
2593     return SQLITE_OK;
2594   }
2595   p->isResolved = 1;
2596 
2597   /* If there have already been errors, do nothing. */
2598   if( pParse->nErr>0 ){
2599     return SQLITE_ERROR;
2600   }
2601 
2602   /* Prepare the select statement. This call will allocate all cursors
2603   ** required to handle the tables and subqueries in the FROM clause.
2604   */
2605   if( prepSelectStmt(pParse, p) ){
2606     return SQLITE_ERROR;
2607   }
2608 
2609   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2610   ** are not allowed to refer to any names, so pass an empty NameContext.
2611   */
2612   memset(&sNC, 0, sizeof(sNC));
2613   sNC.pParse = pParse;
2614   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2615       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2616     return SQLITE_ERROR;
2617   }
2618 
2619   /* Set up the local name-context to pass to ExprResolveNames() to
2620   ** resolve the expression-list.
2621   */
2622   sNC.allowAgg = 1;
2623   sNC.pSrcList = p->pSrc;
2624   sNC.pNext = pOuterNC;
2625 
2626   /* Resolve names in the result set. */
2627   pEList = p->pEList;
2628   if( !pEList ) return SQLITE_ERROR;
2629   for(i=0; i<pEList->nExpr; i++){
2630     Expr *pX = pEList->a[i].pExpr;
2631     if( sqlite3ExprResolveNames(&sNC, pX) ){
2632       return SQLITE_ERROR;
2633     }
2634   }
2635 
2636   /* If there are no aggregate functions in the result-set, and no GROUP BY
2637   ** expression, do not allow aggregates in any of the other expressions.
2638   */
2639   assert( !p->isAgg );
2640   pGroupBy = p->pGroupBy;
2641   if( pGroupBy || sNC.hasAgg ){
2642     p->isAgg = 1;
2643   }else{
2644     sNC.allowAgg = 0;
2645   }
2646 
2647   /* If a HAVING clause is present, then there must be a GROUP BY clause.
2648   */
2649   if( p->pHaving && !pGroupBy ){
2650     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2651     return SQLITE_ERROR;
2652   }
2653 
2654   /* Add the expression list to the name-context before parsing the
2655   ** other expressions in the SELECT statement. This is so that
2656   ** expressions in the WHERE clause (etc.) can refer to expressions by
2657   ** aliases in the result set.
2658   **
2659   ** Minor point: If this is the case, then the expression will be
2660   ** re-evaluated for each reference to it.
2661   */
2662   sNC.pEList = p->pEList;
2663   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2664      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
2665     return SQLITE_ERROR;
2666   }
2667   if( p->pPrior==0 ){
2668     if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2669         processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){
2670       return SQLITE_ERROR;
2671     }
2672   }
2673 
2674   if( sqlite3MallocFailed() ){
2675     return SQLITE_NOMEM;
2676   }
2677 
2678   /* Make sure the GROUP BY clause does not contain aggregate functions.
2679   */
2680   if( pGroupBy ){
2681     struct ExprList_item *pItem;
2682 
2683     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
2684       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
2685         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
2686             "the GROUP BY clause");
2687         return SQLITE_ERROR;
2688       }
2689     }
2690   }
2691 
2692   /* If this is one SELECT of a compound, be sure to resolve names
2693   ** in the other SELECTs.
2694   */
2695   if( p->pPrior ){
2696     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
2697   }else{
2698     return SQLITE_OK;
2699   }
2700 }
2701 
2702 /*
2703 ** Reset the aggregate accumulator.
2704 **
2705 ** The aggregate accumulator is a set of memory cells that hold
2706 ** intermediate results while calculating an aggregate.  This
2707 ** routine simply stores NULLs in all of those memory cells.
2708 */
2709 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
2710   Vdbe *v = pParse->pVdbe;
2711   int i;
2712   struct AggInfo_func *pFunc;
2713   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
2714     return;
2715   }
2716   for(i=0; i<pAggInfo->nColumn; i++){
2717     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
2718   }
2719   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
2720     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
2721     if( pFunc->iDistinct>=0 ){
2722       Expr *pE = pFunc->pExpr;
2723       if( pE->pList==0 || pE->pList->nExpr!=1 ){
2724         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
2725            "by an expression");
2726         pFunc->iDistinct = -1;
2727       }else{
2728         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
2729         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
2730                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2731       }
2732     }
2733   }
2734 }
2735 
2736 /*
2737 ** Invoke the OP_AggFinalize opcode for every aggregate function
2738 ** in the AggInfo structure.
2739 */
2740 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
2741   Vdbe *v = pParse->pVdbe;
2742   int i;
2743   struct AggInfo_func *pF;
2744   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2745     ExprList *pList = pF->pExpr->pList;
2746     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
2747                       (void*)pF->pFunc, P3_FUNCDEF);
2748   }
2749 }
2750 
2751 /*
2752 ** Update the accumulator memory cells for an aggregate based on
2753 ** the current cursor position.
2754 */
2755 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
2756   Vdbe *v = pParse->pVdbe;
2757   int i;
2758   struct AggInfo_func *pF;
2759   struct AggInfo_col *pC;
2760 
2761   pAggInfo->directMode = 1;
2762   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2763     int nArg;
2764     int addrNext = 0;
2765     ExprList *pList = pF->pExpr->pList;
2766     if( pList ){
2767       nArg = pList->nExpr;
2768       sqlite3ExprCodeExprList(pParse, pList);
2769     }else{
2770       nArg = 0;
2771     }
2772     if( pF->iDistinct>=0 ){
2773       addrNext = sqlite3VdbeMakeLabel(v);
2774       assert( nArg==1 );
2775       codeDistinct(v, pF->iDistinct, addrNext, 1);
2776     }
2777     if( pF->pFunc->needCollSeq ){
2778       CollSeq *pColl = 0;
2779       struct ExprList_item *pItem;
2780       int j;
2781       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
2782       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
2783         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
2784       }
2785       if( !pColl ){
2786         pColl = pParse->db->pDfltColl;
2787       }
2788       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2789     }
2790     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
2791     if( addrNext ){
2792       sqlite3VdbeResolveLabel(v, addrNext);
2793     }
2794   }
2795   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
2796     sqlite3ExprCode(pParse, pC->pExpr);
2797     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
2798   }
2799   pAggInfo->directMode = 0;
2800 }
2801 
2802 
2803 /*
2804 ** Generate code for the given SELECT statement.
2805 **
2806 ** The results are distributed in various ways depending on the
2807 ** value of eDest and iParm.
2808 **
2809 **     eDest Value       Result
2810 **     ------------    -------------------------------------------
2811 **     SRT_Callback    Invoke the callback for each row of the result.
2812 **
2813 **     SRT_Mem         Store first result in memory cell iParm
2814 **
2815 **     SRT_Set         Store results as keys of table iParm.
2816 **
2817 **     SRT_Union       Store results as a key in a temporary table iParm
2818 **
2819 **     SRT_Except      Remove results from the temporary table iParm.
2820 **
2821 **     SRT_Table       Store results in temporary table iParm
2822 **
2823 ** The table above is incomplete.  Additional eDist value have be added
2824 ** since this comment was written.  See the selectInnerLoop() function for
2825 ** a complete listing of the allowed values of eDest and their meanings.
2826 **
2827 ** This routine returns the number of errors.  If any errors are
2828 ** encountered, then an appropriate error message is left in
2829 ** pParse->zErrMsg.
2830 **
2831 ** This routine does NOT free the Select structure passed in.  The
2832 ** calling function needs to do that.
2833 **
2834 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2835 ** SELECT is a subquery.  This routine may try to combine this SELECT
2836 ** with its parent to form a single flat query.  In so doing, it might
2837 ** change the parent query from a non-aggregate to an aggregate query.
2838 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2839 ** can be changed.
2840 **
2841 ** Example 1:   The meaning of the pParent parameter.
2842 **
2843 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2844 **    \                      \_______ subquery _______/        /
2845 **     \                                                      /
2846 **      \____________________ outer query ___________________/
2847 **
2848 ** This routine is called for the outer query first.   For that call,
2849 ** pParent will be NULL.  During the processing of the outer query, this
2850 ** routine is called recursively to handle the subquery.  For the recursive
2851 ** call, pParent will point to the outer query.  Because the subquery is
2852 ** the second element in a three-way join, the parentTab parameter will
2853 ** be 1 (the 2nd value of a 0-indexed array.)
2854 */
2855 int sqlite3Select(
2856   Parse *pParse,         /* The parser context */
2857   Select *p,             /* The SELECT statement being coded. */
2858   int eDest,             /* How to dispose of the results */
2859   int iParm,             /* A parameter used by the eDest disposal method */
2860   Select *pParent,       /* Another SELECT for which this is a sub-query */
2861   int parentTab,         /* Index in pParent->pSrc of this query */
2862   int *pParentAgg,       /* True if pParent uses aggregate functions */
2863   char *aff              /* If eDest is SRT_Union, the affinity string */
2864 ){
2865   int i, j;              /* Loop counters */
2866   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
2867   Vdbe *v;               /* The virtual machine under construction */
2868   int isAgg;             /* True for select lists like "count(*)" */
2869   ExprList *pEList;      /* List of columns to extract. */
2870   SrcList *pTabList;     /* List of tables to select from */
2871   Expr *pWhere;          /* The WHERE clause.  May be NULL */
2872   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
2873   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
2874   Expr *pHaving;         /* The HAVING clause.  May be NULL */
2875   int isDistinct;        /* True if the DISTINCT keyword is present */
2876   int distinct;          /* Table to use for the distinct set */
2877   int rc = 1;            /* Value to return from this function */
2878   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
2879   AggInfo sAggInfo;      /* Information used by aggregate queries */
2880   int iEnd;              /* Address of the end of the query */
2881 
2882   if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
2883     return 1;
2884   }
2885   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2886   memset(&sAggInfo, 0, sizeof(sAggInfo));
2887 
2888 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2889   /* If there is are a sequence of queries, do the earlier ones first.
2890   */
2891   if( p->pPrior ){
2892     if( p->pRightmost==0 ){
2893       Select *pLoop;
2894       int cnt = 0;
2895       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
2896         pLoop->pRightmost = p;
2897       }
2898       if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
2899         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
2900         return 1;
2901       }
2902     }
2903     return multiSelect(pParse, p, eDest, iParm, aff);
2904   }
2905 #endif
2906 
2907   pOrderBy = p->pOrderBy;
2908   if( IgnorableOrderby(eDest) ){
2909     p->pOrderBy = 0;
2910   }
2911   if( sqlite3SelectResolve(pParse, p, 0) ){
2912     goto select_end;
2913   }
2914   p->pOrderBy = pOrderBy;
2915 
2916   /* Make local copies of the parameters for this query.
2917   */
2918   pTabList = p->pSrc;
2919   pWhere = p->pWhere;
2920   pGroupBy = p->pGroupBy;
2921   pHaving = p->pHaving;
2922   isAgg = p->isAgg;
2923   isDistinct = p->isDistinct;
2924   pEList = p->pEList;
2925   if( pEList==0 ) goto select_end;
2926 
2927   /*
2928   ** Do not even attempt to generate any code if we have already seen
2929   ** errors before this routine starts.
2930   */
2931   if( pParse->nErr>0 ) goto select_end;
2932 
2933   /* If writing to memory or generating a set
2934   ** only a single column may be output.
2935   */
2936 #ifndef SQLITE_OMIT_SUBQUERY
2937   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
2938     goto select_end;
2939   }
2940 #endif
2941 
2942   /* ORDER BY is ignored for some destinations.
2943   */
2944   if( IgnorableOrderby(eDest) ){
2945     pOrderBy = 0;
2946   }
2947 
2948   /* Begin generating code.
2949   */
2950   v = sqlite3GetVdbe(pParse);
2951   if( v==0 ) goto select_end;
2952 
2953   /* Generate code for all sub-queries in the FROM clause
2954   */
2955 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2956   for(i=0; i<pTabList->nSrc; i++){
2957     const char *zSavedAuthContext = 0;
2958     int needRestoreContext;
2959     struct SrcList_item *pItem = &pTabList->a[i];
2960 
2961     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
2962     if( pItem->zName!=0 ){
2963       zSavedAuthContext = pParse->zAuthContext;
2964       pParse->zAuthContext = pItem->zName;
2965       needRestoreContext = 1;
2966     }else{
2967       needRestoreContext = 0;
2968     }
2969 #if SQLITE_MAX_EXPR_DEPTH>0
2970     /* Increment Parse.nHeight by the height of the largest expression
2971     ** tree refered to by this, the parent select. The child select
2972     ** may contain expression trees of at most
2973     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
2974     ** more conservative than necessary, but much easier than enforcing
2975     ** an exact limit.
2976     */
2977     pParse->nHeight += sqlite3SelectExprHeight(p);
2978 #endif
2979     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
2980                  pItem->iCursor, p, i, &isAgg, 0);
2981 #if SQLITE_MAX_EXPR_DEPTH>0
2982     pParse->nHeight -= sqlite3SelectExprHeight(p);
2983 #endif
2984     if( needRestoreContext ){
2985       pParse->zAuthContext = zSavedAuthContext;
2986     }
2987     pTabList = p->pSrc;
2988     pWhere = p->pWhere;
2989     if( !IgnorableOrderby(eDest) ){
2990       pOrderBy = p->pOrderBy;
2991     }
2992     pGroupBy = p->pGroupBy;
2993     pHaving = p->pHaving;
2994     isDistinct = p->isDistinct;
2995   }
2996 #endif
2997 
2998   /* Check for the special case of a min() or max() function by itself
2999   ** in the result set.
3000   */
3001   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
3002     rc = 0;
3003     goto select_end;
3004   }
3005 
3006   /* Check to see if this is a subquery that can be "flattened" into its parent.
3007   ** If flattening is a possiblity, do so and return immediately.
3008   */
3009 #ifndef SQLITE_OMIT_VIEW
3010   if( pParent && pParentAgg &&
3011       flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
3012     if( isAgg ) *pParentAgg = 1;
3013     goto select_end;
3014   }
3015 #endif
3016 
3017   /* If there is an ORDER BY clause, then this sorting
3018   ** index might end up being unused if the data can be
3019   ** extracted in pre-sorted order.  If that is the case, then the
3020   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3021   ** we figure out that the sorting index is not needed.  The addrSortIndex
3022   ** variable is used to facilitate that change.
3023   */
3024   if( pOrderBy ){
3025     KeyInfo *pKeyInfo;
3026     if( pParse->nErr ){
3027       goto select_end;
3028     }
3029     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3030     pOrderBy->iECursor = pParse->nTab++;
3031     p->addrOpenEphm[2] = addrSortIndex =
3032       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3033   }else{
3034     addrSortIndex = -1;
3035   }
3036 
3037   /* If the output is destined for a temporary table, open that table.
3038   */
3039   if( eDest==SRT_EphemTab ){
3040     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
3041   }
3042 
3043   /* Set the limiter.
3044   */
3045   iEnd = sqlite3VdbeMakeLabel(v);
3046   computeLimitRegisters(pParse, p, iEnd);
3047 
3048   /* Open a virtual index to use for the distinct set.
3049   */
3050   if( isDistinct ){
3051     KeyInfo *pKeyInfo;
3052     distinct = pParse->nTab++;
3053     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3054     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
3055                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3056   }else{
3057     distinct = -1;
3058   }
3059 
3060   /* Aggregate and non-aggregate queries are handled differently */
3061   if( !isAgg && pGroupBy==0 ){
3062     /* This case is for non-aggregate queries
3063     ** Begin the database scan
3064     */
3065     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
3066     if( pWInfo==0 ) goto select_end;
3067 
3068     /* If sorting index that was created by a prior OP_OpenEphemeral
3069     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3070     ** into an OP_Noop.
3071     */
3072     if( addrSortIndex>=0 && pOrderBy==0 ){
3073       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3074       p->addrOpenEphm[2] = -1;
3075     }
3076 
3077     /* Use the standard inner loop
3078     */
3079     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
3080                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
3081        goto select_end;
3082     }
3083 
3084     /* End the database scan loop.
3085     */
3086     sqlite3WhereEnd(pWInfo);
3087   }else{
3088     /* This is the processing for aggregate queries */
3089     NameContext sNC;    /* Name context for processing aggregate information */
3090     int iAMem;          /* First Mem address for storing current GROUP BY */
3091     int iBMem;          /* First Mem address for previous GROUP BY */
3092     int iUseFlag;       /* Mem address holding flag indicating that at least
3093                         ** one row of the input to the aggregator has been
3094                         ** processed */
3095     int iAbortFlag;     /* Mem address which causes query abort if positive */
3096     int groupBySort;    /* Rows come from source in GROUP BY order */
3097 
3098 
3099     /* The following variables hold addresses or labels for parts of the
3100     ** virtual machine program we are putting together */
3101     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3102     int addrSetAbort;       /* Set the abort flag and return */
3103     int addrInitializeLoop; /* Start of code that initializes the input loop */
3104     int addrTopOfLoop;      /* Top of the input loop */
3105     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
3106     int addrProcessRow;     /* Code to process a single input row */
3107     int addrEnd;            /* End of all processing */
3108     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3109     int addrReset;          /* Subroutine for resetting the accumulator */
3110 
3111     addrEnd = sqlite3VdbeMakeLabel(v);
3112 
3113     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3114     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3115     ** SELECT statement.
3116     */
3117     memset(&sNC, 0, sizeof(sNC));
3118     sNC.pParse = pParse;
3119     sNC.pSrcList = pTabList;
3120     sNC.pAggInfo = &sAggInfo;
3121     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3122     sAggInfo.pGroupBy = pGroupBy;
3123     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
3124       goto select_end;
3125     }
3126     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
3127       goto select_end;
3128     }
3129     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
3130       goto select_end;
3131     }
3132     sAggInfo.nAccumulator = sAggInfo.nColumn;
3133     for(i=0; i<sAggInfo.nFunc; i++){
3134       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
3135         goto select_end;
3136       }
3137     }
3138     if( sqlite3MallocFailed() ) goto select_end;
3139 
3140     /* Processing for aggregates with GROUP BY is very different and
3141     ** much more complex tha aggregates without a GROUP BY.
3142     */
3143     if( pGroupBy ){
3144       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3145 
3146       /* Create labels that we will be needing
3147       */
3148 
3149       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3150       addrGroupByChange = sqlite3VdbeMakeLabel(v);
3151       addrProcessRow = sqlite3VdbeMakeLabel(v);
3152 
3153       /* If there is a GROUP BY clause we might need a sorting index to
3154       ** implement it.  Allocate that sorting index now.  If it turns out
3155       ** that we do not need it after all, the OpenEphemeral instruction
3156       ** will be converted into a Noop.
3157       */
3158       sAggInfo.sortingIdx = pParse->nTab++;
3159       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3160       addrSortingIdx =
3161           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
3162                          sAggInfo.nSortingColumn,
3163                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3164 
3165       /* Initialize memory locations used by GROUP BY aggregate processing
3166       */
3167       iUseFlag = pParse->nMem++;
3168       iAbortFlag = pParse->nMem++;
3169       iAMem = pParse->nMem;
3170       pParse->nMem += pGroupBy->nExpr;
3171       iBMem = pParse->nMem;
3172       pParse->nMem += pGroupBy->nExpr;
3173       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
3174       VdbeComment((v, "# clear abort flag"));
3175       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
3176       VdbeComment((v, "# indicate accumulator empty"));
3177       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
3178 
3179       /* Generate a subroutine that outputs a single row of the result
3180       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3181       ** is less than or equal to zero, the subroutine is a no-op.  If
3182       ** the processing calls for the query to abort, this subroutine
3183       ** increments the iAbortFlag memory location before returning in
3184       ** order to signal the caller to abort.
3185       */
3186       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3187       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
3188       VdbeComment((v, "# set abort flag"));
3189       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3190       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3191       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
3192       VdbeComment((v, "# Groupby result generator entry point"));
3193       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3194       finalizeAggFunctions(pParse, &sAggInfo);
3195       if( pHaving ){
3196         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
3197       }
3198       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3199                            distinct, eDest, iParm,
3200                            addrOutputRow+1, addrSetAbort, aff);
3201       if( rc ){
3202         goto select_end;
3203       }
3204       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3205       VdbeComment((v, "# end groupby result generator"));
3206 
3207       /* Generate a subroutine that will reset the group-by accumulator
3208       */
3209       addrReset = sqlite3VdbeCurrentAddr(v);
3210       resetAccumulator(pParse, &sAggInfo);
3211       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3212 
3213       /* Begin a loop that will extract all source rows in GROUP BY order.
3214       ** This might involve two separate loops with an OP_Sort in between, or
3215       ** it might be a single loop that uses an index to extract information
3216       ** in the right order to begin with.
3217       */
3218       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3219       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3220       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
3221       if( pWInfo==0 ) goto select_end;
3222       if( pGroupBy==0 ){
3223         /* The optimizer is able to deliver rows in group by order so
3224         ** we do not have to sort.  The OP_OpenEphemeral table will be
3225         ** cancelled later because we still need to use the pKeyInfo
3226         */
3227         pGroupBy = p->pGroupBy;
3228         groupBySort = 0;
3229       }else{
3230         /* Rows are coming out in undetermined order.  We have to push
3231         ** each row into a sorting index, terminate the first loop,
3232         ** then loop over the sorting index in order to get the output
3233         ** in sorted order
3234         */
3235         groupBySort = 1;
3236         sqlite3ExprCodeExprList(pParse, pGroupBy);
3237         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
3238         j = pGroupBy->nExpr+1;
3239         for(i=0; i<sAggInfo.nColumn; i++){
3240           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3241           if( pCol->iSorterColumn<j ) continue;
3242           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
3243           j++;
3244         }
3245         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
3246         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
3247         sqlite3WhereEnd(pWInfo);
3248         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3249         VdbeComment((v, "# GROUP BY sort"));
3250         sAggInfo.useSortingIdx = 1;
3251       }
3252 
3253       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3254       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3255       ** Then compare the current GROUP BY terms against the GROUP BY terms
3256       ** from the previous row currently stored in a0, a1, a2...
3257       */
3258       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3259       for(j=0; j<pGroupBy->nExpr; j++){
3260         if( groupBySort ){
3261           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
3262         }else{
3263           sAggInfo.directMode = 1;
3264           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
3265         }
3266         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
3267       }
3268       for(j=pGroupBy->nExpr-1; j>=0; j--){
3269         if( j<pGroupBy->nExpr-1 ){
3270           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
3271         }
3272         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
3273         if( j==0 ){
3274           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
3275         }else{
3276           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
3277         }
3278         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
3279       }
3280 
3281       /* Generate code that runs whenever the GROUP BY changes.
3282       ** Change in the GROUP BY are detected by the previous code
3283       ** block.  If there were no changes, this block is skipped.
3284       **
3285       ** This code copies current group by terms in b0,b1,b2,...
3286       ** over to a0,a1,a2.  It then calls the output subroutine
3287       ** and resets the aggregate accumulator registers in preparation
3288       ** for the next GROUP BY batch.
3289       */
3290       sqlite3VdbeResolveLabel(v, addrGroupByChange);
3291       for(j=0; j<pGroupBy->nExpr; j++){
3292         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
3293       }
3294       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3295       VdbeComment((v, "# output one row"));
3296       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
3297       VdbeComment((v, "# check abort flag"));
3298       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3299       VdbeComment((v, "# reset accumulator"));
3300 
3301       /* Update the aggregate accumulators based on the content of
3302       ** the current row
3303       */
3304       sqlite3VdbeResolveLabel(v, addrProcessRow);
3305       updateAccumulator(pParse, &sAggInfo);
3306       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
3307       VdbeComment((v, "# indicate data in accumulator"));
3308 
3309       /* End of the loop
3310       */
3311       if( groupBySort ){
3312         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3313       }else{
3314         sqlite3WhereEnd(pWInfo);
3315         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3316       }
3317 
3318       /* Output the final row of result
3319       */
3320       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3321       VdbeComment((v, "# output final row"));
3322 
3323     } /* endif pGroupBy */
3324     else {
3325       /* This case runs if the aggregate has no GROUP BY clause.  The
3326       ** processing is much simpler since there is only a single row
3327       ** of output.
3328       */
3329       resetAccumulator(pParse, &sAggInfo);
3330       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
3331       if( pWInfo==0 ) goto select_end;
3332       updateAccumulator(pParse, &sAggInfo);
3333       sqlite3WhereEnd(pWInfo);
3334       finalizeAggFunctions(pParse, &sAggInfo);
3335       pOrderBy = 0;
3336       if( pHaving ){
3337         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
3338       }
3339       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3340                       eDest, iParm, addrEnd, addrEnd, aff);
3341     }
3342     sqlite3VdbeResolveLabel(v, addrEnd);
3343 
3344   } /* endif aggregate query */
3345 
3346   /* If there is an ORDER BY clause, then we need to sort the results
3347   ** and send them to the callback one by one.
3348   */
3349   if( pOrderBy ){
3350     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
3351   }
3352 
3353 #ifndef SQLITE_OMIT_SUBQUERY
3354   /* If this was a subquery, we have now converted the subquery into a
3355   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
3356   ** this subquery from being evaluated again and to force the use of
3357   ** the temporary table.
3358   */
3359   if( pParent ){
3360     assert( pParent->pSrc->nSrc>parentTab );
3361     assert( pParent->pSrc->a[parentTab].pSelect==p );
3362     pParent->pSrc->a[parentTab].isPopulated = 1;
3363   }
3364 #endif
3365 
3366   /* Jump here to skip this query
3367   */
3368   sqlite3VdbeResolveLabel(v, iEnd);
3369 
3370   /* The SELECT was successfully coded.   Set the return code to 0
3371   ** to indicate no errors.
3372   */
3373   rc = 0;
3374 
3375   /* Control jumps to here if an error is encountered above, or upon
3376   ** successful coding of the SELECT.
3377   */
3378 select_end:
3379 
3380   /* Identify column names if we will be using them in a callback.  This
3381   ** step is skipped if the output is going to some other destination.
3382   */
3383   if( rc==SQLITE_OK && eDest==SRT_Callback ){
3384     generateColumnNames(pParse, pTabList, pEList);
3385   }
3386 
3387   sqliteFree(sAggInfo.aCol);
3388   sqliteFree(sAggInfo.aFunc);
3389   return rc;
3390 }
3391 
3392 #if defined(SQLITE_DEBUG)
3393 /*
3394 *******************************************************************************
3395 ** The following code is used for testing and debugging only.  The code
3396 ** that follows does not appear in normal builds.
3397 **
3398 ** These routines are used to print out the content of all or part of a
3399 ** parse structures such as Select or Expr.  Such printouts are useful
3400 ** for helping to understand what is happening inside the code generator
3401 ** during the execution of complex SELECT statements.
3402 **
3403 ** These routine are not called anywhere from within the normal
3404 ** code base.  Then are intended to be called from within the debugger
3405 ** or from temporary "printf" statements inserted for debugging.
3406 */
3407 void sqlite3PrintExpr(Expr *p){
3408   if( p->token.z && p->token.n>0 ){
3409     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
3410   }else{
3411     sqlite3DebugPrintf("(%d", p->op);
3412   }
3413   if( p->pLeft ){
3414     sqlite3DebugPrintf(" ");
3415     sqlite3PrintExpr(p->pLeft);
3416   }
3417   if( p->pRight ){
3418     sqlite3DebugPrintf(" ");
3419     sqlite3PrintExpr(p->pRight);
3420   }
3421   sqlite3DebugPrintf(")");
3422 }
3423 void sqlite3PrintExprList(ExprList *pList){
3424   int i;
3425   for(i=0; i<pList->nExpr; i++){
3426     sqlite3PrintExpr(pList->a[i].pExpr);
3427     if( i<pList->nExpr-1 ){
3428       sqlite3DebugPrintf(", ");
3429     }
3430   }
3431 }
3432 void sqlite3PrintSelect(Select *p, int indent){
3433   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
3434   sqlite3PrintExprList(p->pEList);
3435   sqlite3DebugPrintf("\n");
3436   if( p->pSrc ){
3437     char *zPrefix;
3438     int i;
3439     zPrefix = "FROM";
3440     for(i=0; i<p->pSrc->nSrc; i++){
3441       struct SrcList_item *pItem = &p->pSrc->a[i];
3442       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
3443       zPrefix = "";
3444       if( pItem->pSelect ){
3445         sqlite3DebugPrintf("(\n");
3446         sqlite3PrintSelect(pItem->pSelect, indent+10);
3447         sqlite3DebugPrintf("%*s)", indent+8, "");
3448       }else if( pItem->zName ){
3449         sqlite3DebugPrintf("%s", pItem->zName);
3450       }
3451       if( pItem->pTab ){
3452         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
3453       }
3454       if( pItem->zAlias ){
3455         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
3456       }
3457       if( i<p->pSrc->nSrc-1 ){
3458         sqlite3DebugPrintf(",");
3459       }
3460       sqlite3DebugPrintf("\n");
3461     }
3462   }
3463   if( p->pWhere ){
3464     sqlite3DebugPrintf("%*s WHERE ", indent, "");
3465     sqlite3PrintExpr(p->pWhere);
3466     sqlite3DebugPrintf("\n");
3467   }
3468   if( p->pGroupBy ){
3469     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
3470     sqlite3PrintExprList(p->pGroupBy);
3471     sqlite3DebugPrintf("\n");
3472   }
3473   if( p->pHaving ){
3474     sqlite3DebugPrintf("%*s HAVING ", indent, "");
3475     sqlite3PrintExpr(p->pHaving);
3476     sqlite3DebugPrintf("\n");
3477   }
3478   if( p->pOrderBy ){
3479     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
3480     sqlite3PrintExprList(p->pOrderBy);
3481     sqlite3DebugPrintf("\n");
3482   }
3483 }
3484 /* End of the structure debug printing code
3485 *****************************************************************************/
3486 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
3487