xref: /sqlite-3.40.0/src/select.c (revision 5368f29a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.524 2009/06/12 03:27:27 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(sqlite3 *db, Select *p){
25   sqlite3ExprListDelete(db, p->pEList);
26   sqlite3SrcListDelete(db, p->pSrc);
27   sqlite3ExprDelete(db, p->pWhere);
28   sqlite3ExprListDelete(db, p->pGroupBy);
29   sqlite3ExprDelete(db, p->pHaving);
30   sqlite3ExprListDelete(db, p->pOrderBy);
31   sqlite3SelectDelete(db, p->pPrior);
32   sqlite3ExprDelete(db, p->pLimit);
33   sqlite3ExprDelete(db, p->pOffset);
34 }
35 
36 /*
37 ** Initialize a SelectDest structure.
38 */
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
40   pDest->eDest = (u8)eDest;
41   pDest->iParm = iParm;
42   pDest->affinity = 0;
43   pDest->iMem = 0;
44   pDest->nMem = 0;
45 }
46 
47 
48 /*
49 ** Allocate a new Select structure and return a pointer to that
50 ** structure.
51 */
52 Select *sqlite3SelectNew(
53   Parse *pParse,        /* Parsing context */
54   ExprList *pEList,     /* which columns to include in the result */
55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
56   Expr *pWhere,         /* the WHERE clause */
57   ExprList *pGroupBy,   /* the GROUP BY clause */
58   Expr *pHaving,        /* the HAVING clause */
59   ExprList *pOrderBy,   /* the ORDER BY clause */
60   int isDistinct,       /* true if the DISTINCT keyword is present */
61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
63 ){
64   Select *pNew;
65   Select standin;
66   sqlite3 *db = pParse->db;
67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
68   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
69   if( pNew==0 ){
70     pNew = &standin;
71     memset(pNew, 0, sizeof(*pNew));
72   }
73   if( pEList==0 ){
74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
75   }
76   pNew->pEList = pEList;
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   assert( pOffset==0 || pLimit!=0 );
87   pNew->addrOpenEphm[0] = -1;
88   pNew->addrOpenEphm[1] = -1;
89   pNew->addrOpenEphm[2] = -1;
90   if( db->mallocFailed ) {
91     clearSelect(db, pNew);
92     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
93     pNew = 0;
94   }
95   return pNew;
96 }
97 
98 /*
99 ** Delete the given Select structure and all of its substructures.
100 */
101 void sqlite3SelectDelete(sqlite3 *db, Select *p){
102   if( p ){
103     clearSelect(db, p);
104     sqlite3DbFree(db, p);
105   }
106 }
107 
108 /*
109 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
110 ** type of join.  Return an integer constant that expresses that type
111 ** in terms of the following bit values:
112 **
113 **     JT_INNER
114 **     JT_CROSS
115 **     JT_OUTER
116 **     JT_NATURAL
117 **     JT_LEFT
118 **     JT_RIGHT
119 **
120 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
121 **
122 ** If an illegal or unsupported join type is seen, then still return
123 ** a join type, but put an error in the pParse structure.
124 */
125 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
126   int jointype = 0;
127   Token *apAll[3];
128   Token *p;
129                              /*   0123456789 123456789 123456789 123 */
130   static const char zKeyText[] = "naturaleftouterightfullinnercross";
131   static const struct {
132     u8 i;        /* Beginning of keyword text in zKeyText[] */
133     u8 nChar;    /* Length of the keyword in characters */
134     u8 code;     /* Join type mask */
135   } aKeyword[] = {
136     /* natural */ { 0,  7, JT_NATURAL                },
137     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
138     /* outer   */ { 10, 5, JT_OUTER                  },
139     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
140     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
141     /* inner   */ { 23, 5, JT_INNER                  },
142     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
143   };
144   int i, j;
145   apAll[0] = pA;
146   apAll[1] = pB;
147   apAll[2] = pC;
148   for(i=0; i<3 && apAll[i]; i++){
149     p = apAll[i];
150     for(j=0; j<ArraySize(aKeyword); j++){
151       if( p->n==aKeyword[j].nChar
152           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
153         jointype |= aKeyword[j].code;
154         break;
155       }
156     }
157     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
158     if( j>=ArraySize(aKeyword) ){
159       jointype |= JT_ERROR;
160       break;
161     }
162   }
163   if(
164      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
165      (jointype & JT_ERROR)!=0
166   ){
167     const char *zSp = " ";
168     assert( pB!=0 );
169     if( pC==0 ){ zSp++; }
170     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
171        "%T %T%s%T", pA, pB, zSp, pC);
172     jointype = JT_INNER;
173   }else if( (jointype & JT_OUTER)!=0
174          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
175     sqlite3ErrorMsg(pParse,
176       "RIGHT and FULL OUTER JOINs are not currently supported");
177     jointype = JT_INNER;
178   }
179   return jointype;
180 }
181 
182 /*
183 ** Return the index of a column in a table.  Return -1 if the column
184 ** is not contained in the table.
185 */
186 static int columnIndex(Table *pTab, const char *zCol){
187   int i;
188   for(i=0; i<pTab->nCol; i++){
189     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
190   }
191   return -1;
192 }
193 
194 /*
195 ** Create an expression node for an identifier with the name of zName
196 */
197 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
198   return sqlite3Expr(pParse->db, TK_ID, zName);
199 }
200 
201 /*
202 ** Add a term to the WHERE expression in *ppExpr that requires the
203 ** zCol column to be equal in the two tables pTab1 and pTab2.
204 */
205 static void addWhereTerm(
206   Parse *pParse,           /* Parsing context */
207   const char *zCol,        /* Name of the column */
208   const Table *pTab1,      /* First table */
209   const char *zAlias1,     /* Alias for first table.  May be NULL */
210   const Table *pTab2,      /* Second table */
211   const char *zAlias2,     /* Alias for second table.  May be NULL */
212   int iRightJoinTable,     /* VDBE cursor for the right table */
213   Expr **ppExpr,           /* Add the equality term to this expression */
214   int isOuterJoin          /* True if dealing with an OUTER join */
215 ){
216   Expr *pE1a, *pE1b, *pE1c;
217   Expr *pE2a, *pE2b, *pE2c;
218   Expr *pE;
219 
220   pE1a = sqlite3CreateIdExpr(pParse, zCol);
221   pE2a = sqlite3CreateIdExpr(pParse, zCol);
222   if( zAlias1==0 ){
223     zAlias1 = pTab1->zName;
224   }
225   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
226   if( zAlias2==0 ){
227     zAlias2 = pTab2->zName;
228   }
229   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
230   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
231   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
232   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
233   if( pE && isOuterJoin ){
234     ExprSetProperty(pE, EP_FromJoin);
235     assert( !ExprHasAnyProperty(pE, EP_TokenOnly|EP_Reduced) );
236     ExprSetIrreducible(pE);
237     pE->iRightJoinTable = (i16)iRightJoinTable;
238   }
239   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
240 }
241 
242 /*
243 ** Set the EP_FromJoin property on all terms of the given expression.
244 ** And set the Expr.iRightJoinTable to iTable for every term in the
245 ** expression.
246 **
247 ** The EP_FromJoin property is used on terms of an expression to tell
248 ** the LEFT OUTER JOIN processing logic that this term is part of the
249 ** join restriction specified in the ON or USING clause and not a part
250 ** of the more general WHERE clause.  These terms are moved over to the
251 ** WHERE clause during join processing but we need to remember that they
252 ** originated in the ON or USING clause.
253 **
254 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
255 ** expression depends on table iRightJoinTable even if that table is not
256 ** explicitly mentioned in the expression.  That information is needed
257 ** for cases like this:
258 **
259 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
260 **
261 ** The where clause needs to defer the handling of the t1.x=5
262 ** term until after the t2 loop of the join.  In that way, a
263 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
264 ** defer the handling of t1.x=5, it will be processed immediately
265 ** after the t1 loop and rows with t1.x!=5 will never appear in
266 ** the output, which is incorrect.
267 */
268 static void setJoinExpr(Expr *p, int iTable){
269   while( p ){
270     ExprSetProperty(p, EP_FromJoin);
271     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
272     ExprSetIrreducible(p);
273     p->iRightJoinTable = (i16)iTable;
274     setJoinExpr(p->pLeft, iTable);
275     p = p->pRight;
276   }
277 }
278 
279 /*
280 ** This routine processes the join information for a SELECT statement.
281 ** ON and USING clauses are converted into extra terms of the WHERE clause.
282 ** NATURAL joins also create extra WHERE clause terms.
283 **
284 ** The terms of a FROM clause are contained in the Select.pSrc structure.
285 ** The left most table is the first entry in Select.pSrc.  The right-most
286 ** table is the last entry.  The join operator is held in the entry to
287 ** the left.  Thus entry 0 contains the join operator for the join between
288 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
289 ** also attached to the left entry.
290 **
291 ** This routine returns the number of errors encountered.
292 */
293 static int sqliteProcessJoin(Parse *pParse, Select *p){
294   SrcList *pSrc;                  /* All tables in the FROM clause */
295   int i, j;                       /* Loop counters */
296   struct SrcList_item *pLeft;     /* Left table being joined */
297   struct SrcList_item *pRight;    /* Right table being joined */
298 
299   pSrc = p->pSrc;
300   pLeft = &pSrc->a[0];
301   pRight = &pLeft[1];
302   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
303     Table *pLeftTab = pLeft->pTab;
304     Table *pRightTab = pRight->pTab;
305     int isOuter;
306 
307     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
308     isOuter = (pRight->jointype & JT_OUTER)!=0;
309 
310     /* When the NATURAL keyword is present, add WHERE clause terms for
311     ** every column that the two tables have in common.
312     */
313     if( pRight->jointype & JT_NATURAL ){
314       if( pRight->pOn || pRight->pUsing ){
315         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
316            "an ON or USING clause", 0);
317         return 1;
318       }
319       for(j=0; j<pLeftTab->nCol; j++){
320         char *zName = pLeftTab->aCol[j].zName;
321         if( columnIndex(pRightTab, zName)>=0 ){
322           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
323                               pRightTab, pRight->zAlias,
324                               pRight->iCursor, &p->pWhere, isOuter);
325 
326         }
327       }
328     }
329 
330     /* Disallow both ON and USING clauses in the same join
331     */
332     if( pRight->pOn && pRight->pUsing ){
333       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
334         "clauses in the same join");
335       return 1;
336     }
337 
338     /* Add the ON clause to the end of the WHERE clause, connected by
339     ** an AND operator.
340     */
341     if( pRight->pOn ){
342       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
343       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
344       pRight->pOn = 0;
345     }
346 
347     /* Create extra terms on the WHERE clause for each column named
348     ** in the USING clause.  Example: If the two tables to be joined are
349     ** A and B and the USING clause names X, Y, and Z, then add this
350     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
351     ** Report an error if any column mentioned in the USING clause is
352     ** not contained in both tables to be joined.
353     */
354     if( pRight->pUsing ){
355       IdList *pList = pRight->pUsing;
356       for(j=0; j<pList->nId; j++){
357         char *zName = pList->a[j].zName;
358         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
359           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
360             "not present in both tables", zName);
361           return 1;
362         }
363         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
364                             pRightTab, pRight->zAlias,
365                             pRight->iCursor, &p->pWhere, isOuter);
366       }
367     }
368   }
369   return 0;
370 }
371 
372 /*
373 ** Insert code into "v" that will push the record on the top of the
374 ** stack into the sorter.
375 */
376 static void pushOntoSorter(
377   Parse *pParse,         /* Parser context */
378   ExprList *pOrderBy,    /* The ORDER BY clause */
379   Select *pSelect,       /* The whole SELECT statement */
380   int regData            /* Register holding data to be sorted */
381 ){
382   Vdbe *v = pParse->pVdbe;
383   int nExpr = pOrderBy->nExpr;
384   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
385   int regRecord = sqlite3GetTempReg(pParse);
386   sqlite3ExprCacheClear(pParse);
387   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
388   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
389   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
390   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
391   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
392   sqlite3ReleaseTempReg(pParse, regRecord);
393   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
394   if( pSelect->iLimit ){
395     int addr1, addr2;
396     int iLimit;
397     if( pSelect->iOffset ){
398       iLimit = pSelect->iOffset+1;
399     }else{
400       iLimit = pSelect->iLimit;
401     }
402     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
403     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
404     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
405     sqlite3VdbeJumpHere(v, addr1);
406     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
407     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
408     sqlite3VdbeJumpHere(v, addr2);
409     pSelect->iLimit = 0;
410   }
411 }
412 
413 /*
414 ** Add code to implement the OFFSET
415 */
416 static void codeOffset(
417   Vdbe *v,          /* Generate code into this VM */
418   Select *p,        /* The SELECT statement being coded */
419   int iContinue     /* Jump here to skip the current record */
420 ){
421   if( p->iOffset && iContinue!=0 ){
422     int addr;
423     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
424     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
425     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
426     VdbeComment((v, "skip OFFSET records"));
427     sqlite3VdbeJumpHere(v, addr);
428   }
429 }
430 
431 /*
432 ** Add code that will check to make sure the N registers starting at iMem
433 ** form a distinct entry.  iTab is a sorting index that holds previously
434 ** seen combinations of the N values.  A new entry is made in iTab
435 ** if the current N values are new.
436 **
437 ** A jump to addrRepeat is made and the N+1 values are popped from the
438 ** stack if the top N elements are not distinct.
439 */
440 static void codeDistinct(
441   Parse *pParse,     /* Parsing and code generating context */
442   int iTab,          /* A sorting index used to test for distinctness */
443   int addrRepeat,    /* Jump to here if not distinct */
444   int N,             /* Number of elements */
445   int iMem           /* First element */
446 ){
447   Vdbe *v;
448   int r1;
449 
450   v = pParse->pVdbe;
451   r1 = sqlite3GetTempReg(pParse);
452   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
453   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
454   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
455   sqlite3ReleaseTempReg(pParse, r1);
456 }
457 
458 /*
459 ** Generate an error message when a SELECT is used within a subexpression
460 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
461 ** column.  We do this in a subroutine because the error occurs in multiple
462 ** places.
463 */
464 static int checkForMultiColumnSelectError(
465   Parse *pParse,       /* Parse context. */
466   SelectDest *pDest,   /* Destination of SELECT results */
467   int nExpr            /* Number of result columns returned by SELECT */
468 ){
469   int eDest = pDest->eDest;
470   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
471     sqlite3ErrorMsg(pParse, "only a single result allowed for "
472        "a SELECT that is part of an expression");
473     return 1;
474   }else{
475     return 0;
476   }
477 }
478 
479 /*
480 ** This routine generates the code for the inside of the inner loop
481 ** of a SELECT.
482 **
483 ** If srcTab and nColumn are both zero, then the pEList expressions
484 ** are evaluated in order to get the data for this row.  If nColumn>0
485 ** then data is pulled from srcTab and pEList is used only to get the
486 ** datatypes for each column.
487 */
488 static void selectInnerLoop(
489   Parse *pParse,          /* The parser context */
490   Select *p,              /* The complete select statement being coded */
491   ExprList *pEList,       /* List of values being extracted */
492   int srcTab,             /* Pull data from this table */
493   int nColumn,            /* Number of columns in the source table */
494   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
495   int distinct,           /* If >=0, make sure results are distinct */
496   SelectDest *pDest,      /* How to dispose of the results */
497   int iContinue,          /* Jump here to continue with next row */
498   int iBreak              /* Jump here to break out of the inner loop */
499 ){
500   Vdbe *v = pParse->pVdbe;
501   int i;
502   int hasDistinct;        /* True if the DISTINCT keyword is present */
503   int regResult;              /* Start of memory holding result set */
504   int eDest = pDest->eDest;   /* How to dispose of results */
505   int iParm = pDest->iParm;   /* First argument to disposal method */
506   int nResultCol;             /* Number of result columns */
507 
508   assert( v );
509   if( NEVER(v==0) ) return;
510   assert( pEList!=0 );
511   hasDistinct = distinct>=0;
512   if( pOrderBy==0 && !hasDistinct ){
513     codeOffset(v, p, iContinue);
514   }
515 
516   /* Pull the requested columns.
517   */
518   if( nColumn>0 ){
519     nResultCol = nColumn;
520   }else{
521     nResultCol = pEList->nExpr;
522   }
523   if( pDest->iMem==0 ){
524     pDest->iMem = pParse->nMem+1;
525     pDest->nMem = nResultCol;
526     pParse->nMem += nResultCol;
527   }else{
528     assert( pDest->nMem==nResultCol );
529   }
530   regResult = pDest->iMem;
531   if( nColumn>0 ){
532     for(i=0; i<nColumn; i++){
533       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
534     }
535   }else if( eDest!=SRT_Exists ){
536     /* If the destination is an EXISTS(...) expression, the actual
537     ** values returned by the SELECT are not required.
538     */
539     sqlite3ExprCacheClear(pParse);
540     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
541   }
542   nColumn = nResultCol;
543 
544   /* If the DISTINCT keyword was present on the SELECT statement
545   ** and this row has been seen before, then do not make this row
546   ** part of the result.
547   */
548   if( hasDistinct ){
549     assert( pEList!=0 );
550     assert( pEList->nExpr==nColumn );
551     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
552     if( pOrderBy==0 ){
553       codeOffset(v, p, iContinue);
554     }
555   }
556 
557   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
558     return;
559   }
560 
561   switch( eDest ){
562     /* In this mode, write each query result to the key of the temporary
563     ** table iParm.
564     */
565 #ifndef SQLITE_OMIT_COMPOUND_SELECT
566     case SRT_Union: {
567       int r1;
568       r1 = sqlite3GetTempReg(pParse);
569       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
570       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
571       sqlite3ReleaseTempReg(pParse, r1);
572       break;
573     }
574 
575     /* Construct a record from the query result, but instead of
576     ** saving that record, use it as a key to delete elements from
577     ** the temporary table iParm.
578     */
579     case SRT_Except: {
580       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
581       break;
582     }
583 #endif
584 
585     /* Store the result as data using a unique key.
586     */
587     case SRT_Table:
588     case SRT_EphemTab: {
589       int r1 = sqlite3GetTempReg(pParse);
590       testcase( eDest==SRT_Table );
591       testcase( eDest==SRT_EphemTab );
592       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
593       if( pOrderBy ){
594         pushOntoSorter(pParse, pOrderBy, p, r1);
595       }else{
596         int r2 = sqlite3GetTempReg(pParse);
597         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
598         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
599         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
600         sqlite3ReleaseTempReg(pParse, r2);
601       }
602       sqlite3ReleaseTempReg(pParse, r1);
603       break;
604     }
605 
606 #ifndef SQLITE_OMIT_SUBQUERY
607     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
608     ** then there should be a single item on the stack.  Write this
609     ** item into the set table with bogus data.
610     */
611     case SRT_Set: {
612       assert( nColumn==1 );
613       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
614       if( pOrderBy ){
615         /* At first glance you would think we could optimize out the
616         ** ORDER BY in this case since the order of entries in the set
617         ** does not matter.  But there might be a LIMIT clause, in which
618         ** case the order does matter */
619         pushOntoSorter(pParse, pOrderBy, p, regResult);
620       }else{
621         int r1 = sqlite3GetTempReg(pParse);
622         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
623         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
624         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
625         sqlite3ReleaseTempReg(pParse, r1);
626       }
627       break;
628     }
629 
630     /* If any row exist in the result set, record that fact and abort.
631     */
632     case SRT_Exists: {
633       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
634       /* The LIMIT clause will terminate the loop for us */
635       break;
636     }
637 
638     /* If this is a scalar select that is part of an expression, then
639     ** store the results in the appropriate memory cell and break out
640     ** of the scan loop.
641     */
642     case SRT_Mem: {
643       assert( nColumn==1 );
644       if( pOrderBy ){
645         pushOntoSorter(pParse, pOrderBy, p, regResult);
646       }else{
647         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
648         /* The LIMIT clause will jump out of the loop for us */
649       }
650       break;
651     }
652 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
653 
654     /* Send the data to the callback function or to a subroutine.  In the
655     ** case of a subroutine, the subroutine itself is responsible for
656     ** popping the data from the stack.
657     */
658     case SRT_Coroutine:
659     case SRT_Output: {
660       testcase( eDest==SRT_Coroutine );
661       testcase( eDest==SRT_Output );
662       if( pOrderBy ){
663         int r1 = sqlite3GetTempReg(pParse);
664         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
665         pushOntoSorter(pParse, pOrderBy, p, r1);
666         sqlite3ReleaseTempReg(pParse, r1);
667       }else if( eDest==SRT_Coroutine ){
668         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
669       }else{
670         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
671         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
672       }
673       break;
674     }
675 
676 #if !defined(SQLITE_OMIT_TRIGGER)
677     /* Discard the results.  This is used for SELECT statements inside
678     ** the body of a TRIGGER.  The purpose of such selects is to call
679     ** user-defined functions that have side effects.  We do not care
680     ** about the actual results of the select.
681     */
682     default: {
683       assert( eDest==SRT_Discard );
684       break;
685     }
686 #endif
687   }
688 
689   /* Jump to the end of the loop if the LIMIT is reached.
690   */
691   if( p->iLimit ){
692     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
693                             ** pushOntoSorter() would have cleared p->iLimit */
694     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
695     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
696   }
697 }
698 
699 /*
700 ** Given an expression list, generate a KeyInfo structure that records
701 ** the collating sequence for each expression in that expression list.
702 **
703 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
704 ** KeyInfo structure is appropriate for initializing a virtual index to
705 ** implement that clause.  If the ExprList is the result set of a SELECT
706 ** then the KeyInfo structure is appropriate for initializing a virtual
707 ** index to implement a DISTINCT test.
708 **
709 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
710 ** function is responsible for seeing that this structure is eventually
711 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
712 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
713 */
714 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
715   sqlite3 *db = pParse->db;
716   int nExpr;
717   KeyInfo *pInfo;
718   struct ExprList_item *pItem;
719   int i;
720 
721   nExpr = pList->nExpr;
722   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
723   if( pInfo ){
724     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
725     pInfo->nField = (u16)nExpr;
726     pInfo->enc = ENC(db);
727     pInfo->db = db;
728     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
729       CollSeq *pColl;
730       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
731       if( !pColl ){
732         pColl = db->pDfltColl;
733       }
734       pInfo->aColl[i] = pColl;
735       pInfo->aSortOrder[i] = pItem->sortOrder;
736     }
737   }
738   return pInfo;
739 }
740 
741 
742 /*
743 ** If the inner loop was generated using a non-null pOrderBy argument,
744 ** then the results were placed in a sorter.  After the loop is terminated
745 ** we need to run the sorter and output the results.  The following
746 ** routine generates the code needed to do that.
747 */
748 static void generateSortTail(
749   Parse *pParse,    /* Parsing context */
750   Select *p,        /* The SELECT statement */
751   Vdbe *v,          /* Generate code into this VDBE */
752   int nColumn,      /* Number of columns of data */
753   SelectDest *pDest /* Write the sorted results here */
754 ){
755   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
756   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
757   int addr;
758   int iTab;
759   int pseudoTab = 0;
760   ExprList *pOrderBy = p->pOrderBy;
761 
762   int eDest = pDest->eDest;
763   int iParm = pDest->iParm;
764 
765   int regRow;
766   int regRowid;
767 
768   iTab = pOrderBy->iECursor;
769   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
770     pseudoTab = pParse->nTab++;
771     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn);
772   }
773   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
774   codeOffset(v, p, addrContinue);
775   regRow = sqlite3GetTempReg(pParse);
776   regRowid = sqlite3GetTempReg(pParse);
777   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
778   switch( eDest ){
779     case SRT_Table:
780     case SRT_EphemTab: {
781       testcase( eDest==SRT_Table );
782       testcase( eDest==SRT_EphemTab );
783       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
784       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
785       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
786       break;
787     }
788 #ifndef SQLITE_OMIT_SUBQUERY
789     case SRT_Set: {
790       assert( nColumn==1 );
791       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
792       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
793       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
794       break;
795     }
796     case SRT_Mem: {
797       assert( nColumn==1 );
798       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
799       /* The LIMIT clause will terminate the loop for us */
800       break;
801     }
802 #endif
803     default: {
804       int i;
805       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
806       testcase( eDest==SRT_Output );
807       testcase( eDest==SRT_Coroutine );
808       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
809       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
810       for(i=0; i<nColumn; i++){
811         assert( regRow!=pDest->iMem+i );
812         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
813       }
814       if( eDest==SRT_Output ){
815         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
816         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
817       }else{
818         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
819       }
820       break;
821     }
822   }
823   sqlite3ReleaseTempReg(pParse, regRow);
824   sqlite3ReleaseTempReg(pParse, regRowid);
825 
826   /* LIMIT has been implemented by the pushOntoSorter() routine.
827   */
828   assert( p->iLimit==0 );
829 
830   /* The bottom of the loop
831   */
832   sqlite3VdbeResolveLabel(v, addrContinue);
833   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
834   sqlite3VdbeResolveLabel(v, addrBreak);
835   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
836     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
837   }
838 }
839 
840 /*
841 ** Return a pointer to a string containing the 'declaration type' of the
842 ** expression pExpr. The string may be treated as static by the caller.
843 **
844 ** The declaration type is the exact datatype definition extracted from the
845 ** original CREATE TABLE statement if the expression is a column. The
846 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
847 ** is considered a column can be complex in the presence of subqueries. The
848 ** result-set expression in all of the following SELECT statements is
849 ** considered a column by this function.
850 **
851 **   SELECT col FROM tbl;
852 **   SELECT (SELECT col FROM tbl;
853 **   SELECT (SELECT col FROM tbl);
854 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
855 **
856 ** The declaration type for any expression other than a column is NULL.
857 */
858 static const char *columnType(
859   NameContext *pNC,
860   Expr *pExpr,
861   const char **pzOriginDb,
862   const char **pzOriginTab,
863   const char **pzOriginCol
864 ){
865   char const *zType = 0;
866   char const *zOriginDb = 0;
867   char const *zOriginTab = 0;
868   char const *zOriginCol = 0;
869   int j;
870   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
871 
872   switch( pExpr->op ){
873     case TK_AGG_COLUMN:
874     case TK_COLUMN: {
875       /* The expression is a column. Locate the table the column is being
876       ** extracted from in NameContext.pSrcList. This table may be real
877       ** database table or a subquery.
878       */
879       Table *pTab = 0;            /* Table structure column is extracted from */
880       Select *pS = 0;             /* Select the column is extracted from */
881       int iCol = pExpr->iColumn;  /* Index of column in pTab */
882       testcase( pExpr->op==TK_AGG_COLUMN );
883       testcase( pExpr->op==TK_COLUMN );
884       while( pNC && !pTab ){
885         SrcList *pTabList = pNC->pSrcList;
886         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
887         if( j<pTabList->nSrc ){
888           pTab = pTabList->a[j].pTab;
889           pS = pTabList->a[j].pSelect;
890         }else{
891           pNC = pNC->pNext;
892         }
893       }
894 
895       if( pTab==0 ){
896         /* FIX ME:
897         ** This can occurs if you have something like "SELECT new.x;" inside
898         ** a trigger.  In other words, if you reference the special "new"
899         ** table in the result set of a select.  We do not have a good way
900         ** to find the actual table type, so call it "TEXT".  This is really
901         ** something of a bug, but I do not know how to fix it.
902         **
903         ** This code does not produce the correct answer - it just prevents
904         ** a segfault.  See ticket #1229.
905         */
906         zType = "TEXT";
907         break;
908       }
909 
910       assert( pTab );
911       if( pS ){
912         /* The "table" is actually a sub-select or a view in the FROM clause
913         ** of the SELECT statement. Return the declaration type and origin
914         ** data for the result-set column of the sub-select.
915         */
916         if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){
917           /* If iCol is less than zero, then the expression requests the
918           ** rowid of the sub-select or view. This expression is legal (see
919           ** test case misc2.2.2) - it always evaluates to NULL.
920           */
921           NameContext sNC;
922           Expr *p = pS->pEList->a[iCol].pExpr;
923           sNC.pSrcList = pS->pSrc;
924           sNC.pNext = 0;
925           sNC.pParse = pNC->pParse;
926           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
927         }
928       }else if( ALWAYS(pTab->pSchema) ){
929         /* A real table */
930         assert( !pS );
931         if( iCol<0 ) iCol = pTab->iPKey;
932         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
933         if( iCol<0 ){
934           zType = "INTEGER";
935           zOriginCol = "rowid";
936         }else{
937           zType = pTab->aCol[iCol].zType;
938           zOriginCol = pTab->aCol[iCol].zName;
939         }
940         zOriginTab = pTab->zName;
941         if( pNC->pParse ){
942           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
943           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
944         }
945       }
946       break;
947     }
948 #ifndef SQLITE_OMIT_SUBQUERY
949     case TK_SELECT: {
950       /* The expression is a sub-select. Return the declaration type and
951       ** origin info for the single column in the result set of the SELECT
952       ** statement.
953       */
954       NameContext sNC;
955       Select *pS = pExpr->x.pSelect;
956       Expr *p = pS->pEList->a[0].pExpr;
957       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
958       sNC.pSrcList = pS->pSrc;
959       sNC.pNext = pNC;
960       sNC.pParse = pNC->pParse;
961       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
962       break;
963     }
964 #endif
965   }
966 
967   if( pzOriginDb ){
968     assert( pzOriginTab && pzOriginCol );
969     *pzOriginDb = zOriginDb;
970     *pzOriginTab = zOriginTab;
971     *pzOriginCol = zOriginCol;
972   }
973   return zType;
974 }
975 
976 /*
977 ** Generate code that will tell the VDBE the declaration types of columns
978 ** in the result set.
979 */
980 static void generateColumnTypes(
981   Parse *pParse,      /* Parser context */
982   SrcList *pTabList,  /* List of tables */
983   ExprList *pEList    /* Expressions defining the result set */
984 ){
985 #ifndef SQLITE_OMIT_DECLTYPE
986   Vdbe *v = pParse->pVdbe;
987   int i;
988   NameContext sNC;
989   sNC.pSrcList = pTabList;
990   sNC.pParse = pParse;
991   for(i=0; i<pEList->nExpr; i++){
992     Expr *p = pEList->a[i].pExpr;
993     const char *zType;
994 #ifdef SQLITE_ENABLE_COLUMN_METADATA
995     const char *zOrigDb = 0;
996     const char *zOrigTab = 0;
997     const char *zOrigCol = 0;
998     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
999 
1000     /* The vdbe must make its own copy of the column-type and other
1001     ** column specific strings, in case the schema is reset before this
1002     ** virtual machine is deleted.
1003     */
1004     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1005     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1006     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1007 #else
1008     zType = columnType(&sNC, p, 0, 0, 0);
1009 #endif
1010     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1011   }
1012 #endif /* SQLITE_OMIT_DECLTYPE */
1013 }
1014 
1015 /*
1016 ** Generate code that will tell the VDBE the names of columns
1017 ** in the result set.  This information is used to provide the
1018 ** azCol[] values in the callback.
1019 */
1020 static void generateColumnNames(
1021   Parse *pParse,      /* Parser context */
1022   SrcList *pTabList,  /* List of tables */
1023   ExprList *pEList    /* Expressions defining the result set */
1024 ){
1025   Vdbe *v = pParse->pVdbe;
1026   int i, j;
1027   sqlite3 *db = pParse->db;
1028   int fullNames, shortNames;
1029 
1030 #ifndef SQLITE_OMIT_EXPLAIN
1031   /* If this is an EXPLAIN, skip this step */
1032   if( pParse->explain ){
1033     return;
1034   }
1035 #endif
1036 
1037   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1038   pParse->colNamesSet = 1;
1039   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1040   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1041   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1042   for(i=0; i<pEList->nExpr; i++){
1043     Expr *p;
1044     p = pEList->a[i].pExpr;
1045     if( NEVER(p==0) ) continue;
1046     if( pEList->a[i].zName ){
1047       char *zName = pEList->a[i].zName;
1048       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1049     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1050       Table *pTab;
1051       char *zCol;
1052       int iCol = p->iColumn;
1053       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1054         if( pTabList->a[j].iCursor==p->iTable ) break;
1055       }
1056       assert( j<pTabList->nSrc );
1057       pTab = pTabList->a[j].pTab;
1058       if( iCol<0 ) iCol = pTab->iPKey;
1059       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1060       if( iCol<0 ){
1061         zCol = "rowid";
1062       }else{
1063         zCol = pTab->aCol[iCol].zName;
1064       }
1065       if( !shortNames && !fullNames ){
1066         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1067             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1068       }else if( fullNames ){
1069         char *zName = 0;
1070         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1071         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1072       }else{
1073         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1074       }
1075     }else{
1076       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1077           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1078     }
1079   }
1080   generateColumnTypes(pParse, pTabList, pEList);
1081 }
1082 
1083 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1084 /*
1085 ** Name of the connection operator, used for error messages.
1086 */
1087 static const char *selectOpName(int id){
1088   char *z;
1089   switch( id ){
1090     case TK_ALL:       z = "UNION ALL";   break;
1091     case TK_INTERSECT: z = "INTERSECT";   break;
1092     case TK_EXCEPT:    z = "EXCEPT";      break;
1093     default:           z = "UNION";       break;
1094   }
1095   return z;
1096 }
1097 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1098 
1099 /*
1100 ** Given a an expression list (which is really the list of expressions
1101 ** that form the result set of a SELECT statement) compute appropriate
1102 ** column names for a table that would hold the expression list.
1103 **
1104 ** All column names will be unique.
1105 **
1106 ** Only the column names are computed.  Column.zType, Column.zColl,
1107 ** and other fields of Column are zeroed.
1108 **
1109 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1110 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1111 */
1112 static int selectColumnsFromExprList(
1113   Parse *pParse,          /* Parsing context */
1114   ExprList *pEList,       /* Expr list from which to derive column names */
1115   int *pnCol,             /* Write the number of columns here */
1116   Column **paCol          /* Write the new column list here */
1117 ){
1118   sqlite3 *db = pParse->db;   /* Database connection */
1119   int i, j;                   /* Loop counters */
1120   int cnt;                    /* Index added to make the name unique */
1121   Column *aCol, *pCol;        /* For looping over result columns */
1122   int nCol;                   /* Number of columns in the result set */
1123   Expr *p;                    /* Expression for a single result column */
1124   char *zName;                /* Column name */
1125   int nName;                  /* Size of name in zName[] */
1126 
1127   *pnCol = nCol = pEList->nExpr;
1128   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1129   if( aCol==0 ) return SQLITE_NOMEM;
1130   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1131     /* Get an appropriate name for the column
1132     */
1133     p = pEList->a[i].pExpr;
1134     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1135                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1136     if( (zName = pEList->a[i].zName)!=0 ){
1137       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1138       zName = sqlite3DbStrDup(db, zName);
1139     }else{
1140       Expr *pColExpr = p;  /* The expression that is the result column name */
1141       Table *pTab;         /* Table associated with this expression */
1142       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1143       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1144         /* For columns use the column name name */
1145         int iCol = pColExpr->iColumn;
1146         pTab = pColExpr->pTab;
1147         if( iCol<0 ) iCol = pTab->iPKey;
1148         zName = sqlite3MPrintf(db, "%s",
1149                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1150       }else if( pColExpr->op==TK_ID ){
1151         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1152         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1153       }else{
1154         /* Use the original text of the column expression as its name */
1155         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1156       }
1157     }
1158     if( db->mallocFailed ){
1159       sqlite3DbFree(db, zName);
1160       break;
1161     }
1162 
1163     /* Make sure the column name is unique.  If the name is not unique,
1164     ** append a integer to the name so that it becomes unique.
1165     */
1166     nName = sqlite3Strlen30(zName);
1167     for(j=cnt=0; j<i; j++){
1168       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1169         char *zNewName;
1170         zName[nName] = 0;
1171         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1172         sqlite3DbFree(db, zName);
1173         zName = zNewName;
1174         j = -1;
1175         if( zName==0 ) break;
1176       }
1177     }
1178     pCol->zName = zName;
1179   }
1180   if( db->mallocFailed ){
1181     for(j=0; j<i; j++){
1182       sqlite3DbFree(db, aCol[j].zName);
1183     }
1184     sqlite3DbFree(db, aCol);
1185     *paCol = 0;
1186     *pnCol = 0;
1187     return SQLITE_NOMEM;
1188   }
1189   return SQLITE_OK;
1190 }
1191 
1192 /*
1193 ** Add type and collation information to a column list based on
1194 ** a SELECT statement.
1195 **
1196 ** The column list presumably came from selectColumnNamesFromExprList().
1197 ** The column list has only names, not types or collations.  This
1198 ** routine goes through and adds the types and collations.
1199 **
1200 ** This routine requires that all identifiers in the SELECT
1201 ** statement be resolved.
1202 */
1203 static void selectAddColumnTypeAndCollation(
1204   Parse *pParse,        /* Parsing contexts */
1205   int nCol,             /* Number of columns */
1206   Column *aCol,         /* List of columns */
1207   Select *pSelect       /* SELECT used to determine types and collations */
1208 ){
1209   sqlite3 *db = pParse->db;
1210   NameContext sNC;
1211   Column *pCol;
1212   CollSeq *pColl;
1213   int i;
1214   Expr *p;
1215   struct ExprList_item *a;
1216 
1217   assert( pSelect!=0 );
1218   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1219   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1220   if( db->mallocFailed ) return;
1221   memset(&sNC, 0, sizeof(sNC));
1222   sNC.pSrcList = pSelect->pSrc;
1223   a = pSelect->pEList->a;
1224   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1225     p = a[i].pExpr;
1226     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1227     pCol->affinity = sqlite3ExprAffinity(p);
1228     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1229     pColl = sqlite3ExprCollSeq(pParse, p);
1230     if( pColl ){
1231       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1232     }
1233   }
1234 }
1235 
1236 /*
1237 ** Given a SELECT statement, generate a Table structure that describes
1238 ** the result set of that SELECT.
1239 */
1240 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1241   Table *pTab;
1242   sqlite3 *db = pParse->db;
1243   int savedFlags;
1244 
1245   savedFlags = db->flags;
1246   db->flags &= ~SQLITE_FullColNames;
1247   db->flags |= SQLITE_ShortColNames;
1248   sqlite3SelectPrep(pParse, pSelect, 0);
1249   if( pParse->nErr ) return 0;
1250   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1251   db->flags = savedFlags;
1252   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1253   if( pTab==0 ){
1254     return 0;
1255   }
1256   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1257   ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */
1258   assert( db->lookaside.bEnabled==0 );
1259   pTab->dbMem = 0;
1260   pTab->nRef = 1;
1261   pTab->zName = 0;
1262   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1263   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1264   pTab->iPKey = -1;
1265   if( db->mallocFailed ){
1266     sqlite3DeleteTable(pTab);
1267     return 0;
1268   }
1269   return pTab;
1270 }
1271 
1272 /*
1273 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1274 ** If an error occurs, return NULL and leave a message in pParse.
1275 */
1276 Vdbe *sqlite3GetVdbe(Parse *pParse){
1277   Vdbe *v = pParse->pVdbe;
1278   if( v==0 ){
1279     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1280 #ifndef SQLITE_OMIT_TRACE
1281     if( v ){
1282       sqlite3VdbeAddOp0(v, OP_Trace);
1283     }
1284 #endif
1285   }
1286   return v;
1287 }
1288 
1289 
1290 /*
1291 ** Compute the iLimit and iOffset fields of the SELECT based on the
1292 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1293 ** that appear in the original SQL statement after the LIMIT and OFFSET
1294 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1295 ** are the integer memory register numbers for counters used to compute
1296 ** the limit and offset.  If there is no limit and/or offset, then
1297 ** iLimit and iOffset are negative.
1298 **
1299 ** This routine changes the values of iLimit and iOffset only if
1300 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1301 ** iOffset should have been preset to appropriate default values
1302 ** (usually but not always -1) prior to calling this routine.
1303 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1304 ** redefined.  The UNION ALL operator uses this property to force
1305 ** the reuse of the same limit and offset registers across multiple
1306 ** SELECT statements.
1307 */
1308 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1309   Vdbe *v = 0;
1310   int iLimit = 0;
1311   int iOffset;
1312   int addr1;
1313   if( p->iLimit ) return;
1314 
1315   /*
1316   ** "LIMIT -1" always shows all rows.  There is some
1317   ** contraversy about what the correct behavior should be.
1318   ** The current implementation interprets "LIMIT 0" to mean
1319   ** no rows.
1320   */
1321   sqlite3ExprCacheClear(pParse);
1322   assert( p->pOffset==0 || p->pLimit!=0 );
1323   if( p->pLimit ){
1324     p->iLimit = iLimit = ++pParse->nMem;
1325     v = sqlite3GetVdbe(pParse);
1326     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1327     sqlite3ExprCode(pParse, p->pLimit, iLimit);
1328     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1329     VdbeComment((v, "LIMIT counter"));
1330     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1331     if( p->pOffset ){
1332       p->iOffset = iOffset = ++pParse->nMem;
1333       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1334       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1335       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1336       VdbeComment((v, "OFFSET counter"));
1337       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1338       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1339       sqlite3VdbeJumpHere(v, addr1);
1340       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1341       VdbeComment((v, "LIMIT+OFFSET"));
1342       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1343       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1344       sqlite3VdbeJumpHere(v, addr1);
1345     }
1346   }
1347 }
1348 
1349 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1350 /*
1351 ** Return the appropriate collating sequence for the iCol-th column of
1352 ** the result set for the compound-select statement "p".  Return NULL if
1353 ** the column has no default collating sequence.
1354 **
1355 ** The collating sequence for the compound select is taken from the
1356 ** left-most term of the select that has a collating sequence.
1357 */
1358 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1359   CollSeq *pRet;
1360   if( p->pPrior ){
1361     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1362   }else{
1363     pRet = 0;
1364   }
1365   assert( iCol>=0 );
1366   if( pRet==0 && iCol<p->pEList->nExpr ){
1367     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1368   }
1369   return pRet;
1370 }
1371 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1372 
1373 /* Forward reference */
1374 static int multiSelectOrderBy(
1375   Parse *pParse,        /* Parsing context */
1376   Select *p,            /* The right-most of SELECTs to be coded */
1377   SelectDest *pDest     /* What to do with query results */
1378 );
1379 
1380 
1381 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1382 /*
1383 ** This routine is called to process a compound query form from
1384 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1385 ** INTERSECT
1386 **
1387 ** "p" points to the right-most of the two queries.  the query on the
1388 ** left is p->pPrior.  The left query could also be a compound query
1389 ** in which case this routine will be called recursively.
1390 **
1391 ** The results of the total query are to be written into a destination
1392 ** of type eDest with parameter iParm.
1393 **
1394 ** Example 1:  Consider a three-way compound SQL statement.
1395 **
1396 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1397 **
1398 ** This statement is parsed up as follows:
1399 **
1400 **     SELECT c FROM t3
1401 **      |
1402 **      `----->  SELECT b FROM t2
1403 **                |
1404 **                `------>  SELECT a FROM t1
1405 **
1406 ** The arrows in the diagram above represent the Select.pPrior pointer.
1407 ** So if this routine is called with p equal to the t3 query, then
1408 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1409 **
1410 ** Notice that because of the way SQLite parses compound SELECTs, the
1411 ** individual selects always group from left to right.
1412 */
1413 static int multiSelect(
1414   Parse *pParse,        /* Parsing context */
1415   Select *p,            /* The right-most of SELECTs to be coded */
1416   SelectDest *pDest     /* What to do with query results */
1417 ){
1418   int rc = SQLITE_OK;   /* Success code from a subroutine */
1419   Select *pPrior;       /* Another SELECT immediately to our left */
1420   Vdbe *v;              /* Generate code to this VDBE */
1421   SelectDest dest;      /* Alternative data destination */
1422   Select *pDelete = 0;  /* Chain of simple selects to delete */
1423   sqlite3 *db;          /* Database connection */
1424 
1425   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1426   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1427   */
1428   assert( p && p->pPrior );  /* Calling function guarantees this much */
1429   db = pParse->db;
1430   pPrior = p->pPrior;
1431   assert( pPrior->pRightmost!=pPrior );
1432   assert( pPrior->pRightmost==p->pRightmost );
1433   dest = *pDest;
1434   if( pPrior->pOrderBy ){
1435     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1436       selectOpName(p->op));
1437     rc = 1;
1438     goto multi_select_end;
1439   }
1440   if( pPrior->pLimit ){
1441     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1442       selectOpName(p->op));
1443     rc = 1;
1444     goto multi_select_end;
1445   }
1446 
1447   v = sqlite3GetVdbe(pParse);
1448   assert( v!=0 );  /* The VDBE already created by calling function */
1449 
1450   /* Create the destination temporary table if necessary
1451   */
1452   if( dest.eDest==SRT_EphemTab ){
1453     assert( p->pEList );
1454     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1455     dest.eDest = SRT_Table;
1456   }
1457 
1458   /* Make sure all SELECTs in the statement have the same number of elements
1459   ** in their result sets.
1460   */
1461   assert( p->pEList && pPrior->pEList );
1462   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1463     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1464       " do not have the same number of result columns", selectOpName(p->op));
1465     rc = 1;
1466     goto multi_select_end;
1467   }
1468 
1469   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1470   */
1471   if( p->pOrderBy ){
1472     return multiSelectOrderBy(pParse, p, pDest);
1473   }
1474 
1475   /* Generate code for the left and right SELECT statements.
1476   */
1477   switch( p->op ){
1478     case TK_ALL: {
1479       int addr = 0;
1480       assert( !pPrior->pLimit );
1481       pPrior->pLimit = p->pLimit;
1482       pPrior->pOffset = p->pOffset;
1483       rc = sqlite3Select(pParse, pPrior, &dest);
1484       p->pLimit = 0;
1485       p->pOffset = 0;
1486       if( rc ){
1487         goto multi_select_end;
1488       }
1489       p->pPrior = 0;
1490       p->iLimit = pPrior->iLimit;
1491       p->iOffset = pPrior->iOffset;
1492       if( p->iLimit ){
1493         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1494         VdbeComment((v, "Jump ahead if LIMIT reached"));
1495       }
1496       rc = sqlite3Select(pParse, p, &dest);
1497       testcase( rc!=SQLITE_OK );
1498       pDelete = p->pPrior;
1499       p->pPrior = pPrior;
1500       if( addr ){
1501         sqlite3VdbeJumpHere(v, addr);
1502       }
1503       break;
1504     }
1505     case TK_EXCEPT:
1506     case TK_UNION: {
1507       int unionTab;    /* Cursor number of the temporary table holding result */
1508       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1509       int priorOp;     /* The SRT_ operation to apply to prior selects */
1510       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1511       int addr;
1512       SelectDest uniondest;
1513 
1514       testcase( p->op==TK_EXCEPT );
1515       testcase( p->op==TK_UNION );
1516       priorOp = SRT_Union;
1517       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1518         /* We can reuse a temporary table generated by a SELECT to our
1519         ** right.
1520         */
1521         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1522                                      ** of a 3-way or more compound */
1523         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1524         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1525         unionTab = dest.iParm;
1526       }else{
1527         /* We will need to create our own temporary table to hold the
1528         ** intermediate results.
1529         */
1530         unionTab = pParse->nTab++;
1531         assert( p->pOrderBy==0 );
1532         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1533         assert( p->addrOpenEphm[0] == -1 );
1534         p->addrOpenEphm[0] = addr;
1535         p->pRightmost->selFlags |= SF_UsesEphemeral;
1536         assert( p->pEList );
1537       }
1538 
1539       /* Code the SELECT statements to our left
1540       */
1541       assert( !pPrior->pOrderBy );
1542       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1543       rc = sqlite3Select(pParse, pPrior, &uniondest);
1544       if( rc ){
1545         goto multi_select_end;
1546       }
1547 
1548       /* Code the current SELECT statement
1549       */
1550       if( p->op==TK_EXCEPT ){
1551         op = SRT_Except;
1552       }else{
1553         assert( p->op==TK_UNION );
1554         op = SRT_Union;
1555       }
1556       p->pPrior = 0;
1557       pLimit = p->pLimit;
1558       p->pLimit = 0;
1559       pOffset = p->pOffset;
1560       p->pOffset = 0;
1561       uniondest.eDest = op;
1562       rc = sqlite3Select(pParse, p, &uniondest);
1563       testcase( rc!=SQLITE_OK );
1564       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1565       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1566       sqlite3ExprListDelete(db, p->pOrderBy);
1567       pDelete = p->pPrior;
1568       p->pPrior = pPrior;
1569       p->pOrderBy = 0;
1570       sqlite3ExprDelete(db, p->pLimit);
1571       p->pLimit = pLimit;
1572       p->pOffset = pOffset;
1573       p->iLimit = 0;
1574       p->iOffset = 0;
1575 
1576       /* Convert the data in the temporary table into whatever form
1577       ** it is that we currently need.
1578       */
1579       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1580       if( dest.eDest!=priorOp ){
1581         int iCont, iBreak, iStart;
1582         assert( p->pEList );
1583         if( dest.eDest==SRT_Output ){
1584           Select *pFirst = p;
1585           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1586           generateColumnNames(pParse, 0, pFirst->pEList);
1587         }
1588         iBreak = sqlite3VdbeMakeLabel(v);
1589         iCont = sqlite3VdbeMakeLabel(v);
1590         computeLimitRegisters(pParse, p, iBreak);
1591         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1592         iStart = sqlite3VdbeCurrentAddr(v);
1593         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1594                         0, -1, &dest, iCont, iBreak);
1595         sqlite3VdbeResolveLabel(v, iCont);
1596         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1597         sqlite3VdbeResolveLabel(v, iBreak);
1598         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1599       }
1600       break;
1601     }
1602     default: assert( p->op==TK_INTERSECT ); {
1603       int tab1, tab2;
1604       int iCont, iBreak, iStart;
1605       Expr *pLimit, *pOffset;
1606       int addr;
1607       SelectDest intersectdest;
1608       int r1;
1609 
1610       /* INTERSECT is different from the others since it requires
1611       ** two temporary tables.  Hence it has its own case.  Begin
1612       ** by allocating the tables we will need.
1613       */
1614       tab1 = pParse->nTab++;
1615       tab2 = pParse->nTab++;
1616       assert( p->pOrderBy==0 );
1617 
1618       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1619       assert( p->addrOpenEphm[0] == -1 );
1620       p->addrOpenEphm[0] = addr;
1621       p->pRightmost->selFlags |= SF_UsesEphemeral;
1622       assert( p->pEList );
1623 
1624       /* Code the SELECTs to our left into temporary table "tab1".
1625       */
1626       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1627       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1628       if( rc ){
1629         goto multi_select_end;
1630       }
1631 
1632       /* Code the current SELECT into temporary table "tab2"
1633       */
1634       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1635       assert( p->addrOpenEphm[1] == -1 );
1636       p->addrOpenEphm[1] = addr;
1637       p->pPrior = 0;
1638       pLimit = p->pLimit;
1639       p->pLimit = 0;
1640       pOffset = p->pOffset;
1641       p->pOffset = 0;
1642       intersectdest.iParm = tab2;
1643       rc = sqlite3Select(pParse, p, &intersectdest);
1644       testcase( rc!=SQLITE_OK );
1645       pDelete = p->pPrior;
1646       p->pPrior = pPrior;
1647       sqlite3ExprDelete(db, p->pLimit);
1648       p->pLimit = pLimit;
1649       p->pOffset = pOffset;
1650 
1651       /* Generate code to take the intersection of the two temporary
1652       ** tables.
1653       */
1654       assert( p->pEList );
1655       if( dest.eDest==SRT_Output ){
1656         Select *pFirst = p;
1657         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1658         generateColumnNames(pParse, 0, pFirst->pEList);
1659       }
1660       iBreak = sqlite3VdbeMakeLabel(v);
1661       iCont = sqlite3VdbeMakeLabel(v);
1662       computeLimitRegisters(pParse, p, iBreak);
1663       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1664       r1 = sqlite3GetTempReg(pParse);
1665       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1666       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
1667       sqlite3ReleaseTempReg(pParse, r1);
1668       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1669                       0, -1, &dest, iCont, iBreak);
1670       sqlite3VdbeResolveLabel(v, iCont);
1671       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1672       sqlite3VdbeResolveLabel(v, iBreak);
1673       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1674       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1675       break;
1676     }
1677   }
1678 
1679   /* Compute collating sequences used by
1680   ** temporary tables needed to implement the compound select.
1681   ** Attach the KeyInfo structure to all temporary tables.
1682   **
1683   ** This section is run by the right-most SELECT statement only.
1684   ** SELECT statements to the left always skip this part.  The right-most
1685   ** SELECT might also skip this part if it has no ORDER BY clause and
1686   ** no temp tables are required.
1687   */
1688   if( p->selFlags & SF_UsesEphemeral ){
1689     int i;                        /* Loop counter */
1690     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1691     Select *pLoop;                /* For looping through SELECT statements */
1692     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1693     int nCol;                     /* Number of columns in result set */
1694 
1695     assert( p->pRightmost==p );
1696     nCol = p->pEList->nExpr;
1697     pKeyInfo = sqlite3DbMallocZero(db,
1698                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1699     if( !pKeyInfo ){
1700       rc = SQLITE_NOMEM;
1701       goto multi_select_end;
1702     }
1703 
1704     pKeyInfo->enc = ENC(db);
1705     pKeyInfo->nField = (u16)nCol;
1706 
1707     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1708       *apColl = multiSelectCollSeq(pParse, p, i);
1709       if( 0==*apColl ){
1710         *apColl = db->pDfltColl;
1711       }
1712     }
1713 
1714     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1715       for(i=0; i<2; i++){
1716         int addr = pLoop->addrOpenEphm[i];
1717         if( addr<0 ){
1718           /* If [0] is unused then [1] is also unused.  So we can
1719           ** always safely abort as soon as the first unused slot is found */
1720           assert( pLoop->addrOpenEphm[1]<0 );
1721           break;
1722         }
1723         sqlite3VdbeChangeP2(v, addr, nCol);
1724         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1725         pLoop->addrOpenEphm[i] = -1;
1726       }
1727     }
1728     sqlite3DbFree(db, pKeyInfo);
1729   }
1730 
1731 multi_select_end:
1732   pDest->iMem = dest.iMem;
1733   pDest->nMem = dest.nMem;
1734   sqlite3SelectDelete(db, pDelete);
1735   return rc;
1736 }
1737 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1738 
1739 /*
1740 ** Code an output subroutine for a coroutine implementation of a
1741 ** SELECT statment.
1742 **
1743 ** The data to be output is contained in pIn->iMem.  There are
1744 ** pIn->nMem columns to be output.  pDest is where the output should
1745 ** be sent.
1746 **
1747 ** regReturn is the number of the register holding the subroutine
1748 ** return address.
1749 **
1750 ** If regPrev>0 then it is a the first register in a vector that
1751 ** records the previous output.  mem[regPrev] is a flag that is false
1752 ** if there has been no previous output.  If regPrev>0 then code is
1753 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1754 ** keys.
1755 **
1756 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1757 ** iBreak.
1758 */
1759 static int generateOutputSubroutine(
1760   Parse *pParse,          /* Parsing context */
1761   Select *p,              /* The SELECT statement */
1762   SelectDest *pIn,        /* Coroutine supplying data */
1763   SelectDest *pDest,      /* Where to send the data */
1764   int regReturn,          /* The return address register */
1765   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1766   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1767   int p4type,             /* The p4 type for pKeyInfo */
1768   int iBreak              /* Jump here if we hit the LIMIT */
1769 ){
1770   Vdbe *v = pParse->pVdbe;
1771   int iContinue;
1772   int addr;
1773 
1774   addr = sqlite3VdbeCurrentAddr(v);
1775   iContinue = sqlite3VdbeMakeLabel(v);
1776 
1777   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1778   */
1779   if( regPrev ){
1780     int j1, j2;
1781     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1782     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1783                               (char*)pKeyInfo, p4type);
1784     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1785     sqlite3VdbeJumpHere(v, j1);
1786     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1787     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1788   }
1789   if( pParse->db->mallocFailed ) return 0;
1790 
1791   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1792   */
1793   codeOffset(v, p, iContinue);
1794 
1795   switch( pDest->eDest ){
1796     /* Store the result as data using a unique key.
1797     */
1798     case SRT_Table:
1799     case SRT_EphemTab: {
1800       int r1 = sqlite3GetTempReg(pParse);
1801       int r2 = sqlite3GetTempReg(pParse);
1802       testcase( pDest->eDest==SRT_Table );
1803       testcase( pDest->eDest==SRT_EphemTab );
1804       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1805       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1806       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1807       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1808       sqlite3ReleaseTempReg(pParse, r2);
1809       sqlite3ReleaseTempReg(pParse, r1);
1810       break;
1811     }
1812 
1813 #ifndef SQLITE_OMIT_SUBQUERY
1814     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1815     ** then there should be a single item on the stack.  Write this
1816     ** item into the set table with bogus data.
1817     */
1818     case SRT_Set: {
1819       int r1;
1820       assert( pIn->nMem==1 );
1821       p->affinity =
1822          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1823       r1 = sqlite3GetTempReg(pParse);
1824       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1825       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1826       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1827       sqlite3ReleaseTempReg(pParse, r1);
1828       break;
1829     }
1830 
1831 #if 0  /* Never occurs on an ORDER BY query */
1832     /* If any row exist in the result set, record that fact and abort.
1833     */
1834     case SRT_Exists: {
1835       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1836       /* The LIMIT clause will terminate the loop for us */
1837       break;
1838     }
1839 #endif
1840 
1841     /* If this is a scalar select that is part of an expression, then
1842     ** store the results in the appropriate memory cell and break out
1843     ** of the scan loop.
1844     */
1845     case SRT_Mem: {
1846       assert( pIn->nMem==1 );
1847       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1848       /* The LIMIT clause will jump out of the loop for us */
1849       break;
1850     }
1851 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1852 
1853     /* The results are stored in a sequence of registers
1854     ** starting at pDest->iMem.  Then the co-routine yields.
1855     */
1856     case SRT_Coroutine: {
1857       if( pDest->iMem==0 ){
1858         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1859         pDest->nMem = pIn->nMem;
1860       }
1861       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1862       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1863       break;
1864     }
1865 
1866     /* If none of the above, then the result destination must be
1867     ** SRT_Output.  This routine is never called with any other
1868     ** destination other than the ones handled above or SRT_Output.
1869     **
1870     ** For SRT_Output, results are stored in a sequence of registers.
1871     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
1872     ** return the next row of result.
1873     */
1874     default: {
1875       assert( pDest->eDest==SRT_Output );
1876       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1877       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1878       break;
1879     }
1880   }
1881 
1882   /* Jump to the end of the loop if the LIMIT is reached.
1883   */
1884   if( p->iLimit ){
1885     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1886     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
1887   }
1888 
1889   /* Generate the subroutine return
1890   */
1891   sqlite3VdbeResolveLabel(v, iContinue);
1892   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1893 
1894   return addr;
1895 }
1896 
1897 /*
1898 ** Alternative compound select code generator for cases when there
1899 ** is an ORDER BY clause.
1900 **
1901 ** We assume a query of the following form:
1902 **
1903 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
1904 **
1905 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
1906 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1907 ** co-routines.  Then run the co-routines in parallel and merge the results
1908 ** into the output.  In addition to the two coroutines (called selectA and
1909 ** selectB) there are 7 subroutines:
1910 **
1911 **    outA:    Move the output of the selectA coroutine into the output
1912 **             of the compound query.
1913 **
1914 **    outB:    Move the output of the selectB coroutine into the output
1915 **             of the compound query.  (Only generated for UNION and
1916 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
1917 **             appears only in B.)
1918 **
1919 **    AltB:    Called when there is data from both coroutines and A<B.
1920 **
1921 **    AeqB:    Called when there is data from both coroutines and A==B.
1922 **
1923 **    AgtB:    Called when there is data from both coroutines and A>B.
1924 **
1925 **    EofA:    Called when data is exhausted from selectA.
1926 **
1927 **    EofB:    Called when data is exhausted from selectB.
1928 **
1929 ** The implementation of the latter five subroutines depend on which
1930 ** <operator> is used:
1931 **
1932 **
1933 **             UNION ALL         UNION            EXCEPT          INTERSECT
1934 **          -------------  -----------------  --------------  -----------------
1935 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
1936 **
1937 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
1938 **
1939 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
1940 **
1941 **   EofA:   outB, nextB      outB, nextB          halt             halt
1942 **
1943 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
1944 **
1945 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1946 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1947 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
1948 ** following nextX causes a jump to the end of the select processing.
1949 **
1950 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
1951 ** within the output subroutine.  The regPrev register set holds the previously
1952 ** output value.  A comparison is made against this value and the output
1953 ** is skipped if the next results would be the same as the previous.
1954 **
1955 ** The implementation plan is to implement the two coroutines and seven
1956 ** subroutines first, then put the control logic at the bottom.  Like this:
1957 **
1958 **          goto Init
1959 **     coA: coroutine for left query (A)
1960 **     coB: coroutine for right query (B)
1961 **    outA: output one row of A
1962 **    outB: output one row of B (UNION and UNION ALL only)
1963 **    EofA: ...
1964 **    EofB: ...
1965 **    AltB: ...
1966 **    AeqB: ...
1967 **    AgtB: ...
1968 **    Init: initialize coroutine registers
1969 **          yield coA
1970 **          if eof(A) goto EofA
1971 **          yield coB
1972 **          if eof(B) goto EofB
1973 **    Cmpr: Compare A, B
1974 **          Jump AltB, AeqB, AgtB
1975 **     End: ...
1976 **
1977 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
1978 ** actually called using Gosub and they do not Return.  EofA and EofB loop
1979 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
1980 ** and AgtB jump to either L2 or to one of EofA or EofB.
1981 */
1982 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1983 static int multiSelectOrderBy(
1984   Parse *pParse,        /* Parsing context */
1985   Select *p,            /* The right-most of SELECTs to be coded */
1986   SelectDest *pDest     /* What to do with query results */
1987 ){
1988   int i, j;             /* Loop counters */
1989   Select *pPrior;       /* Another SELECT immediately to our left */
1990   Vdbe *v;              /* Generate code to this VDBE */
1991   SelectDest destA;     /* Destination for coroutine A */
1992   SelectDest destB;     /* Destination for coroutine B */
1993   int regAddrA;         /* Address register for select-A coroutine */
1994   int regEofA;          /* Flag to indicate when select-A is complete */
1995   int regAddrB;         /* Address register for select-B coroutine */
1996   int regEofB;          /* Flag to indicate when select-B is complete */
1997   int addrSelectA;      /* Address of the select-A coroutine */
1998   int addrSelectB;      /* Address of the select-B coroutine */
1999   int regOutA;          /* Address register for the output-A subroutine */
2000   int regOutB;          /* Address register for the output-B subroutine */
2001   int addrOutA;         /* Address of the output-A subroutine */
2002   int addrOutB = 0;     /* Address of the output-B subroutine */
2003   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2004   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2005   int addrAltB;         /* Address of the A<B subroutine */
2006   int addrAeqB;         /* Address of the A==B subroutine */
2007   int addrAgtB;         /* Address of the A>B subroutine */
2008   int regLimitA;        /* Limit register for select-A */
2009   int regLimitB;        /* Limit register for select-A */
2010   int regPrev;          /* A range of registers to hold previous output */
2011   int savedLimit;       /* Saved value of p->iLimit */
2012   int savedOffset;      /* Saved value of p->iOffset */
2013   int labelCmpr;        /* Label for the start of the merge algorithm */
2014   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2015   int j1;               /* Jump instructions that get retargetted */
2016   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2017   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2018   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2019   sqlite3 *db;          /* Database connection */
2020   ExprList *pOrderBy;   /* The ORDER BY clause */
2021   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2022   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2023 
2024   assert( p->pOrderBy!=0 );
2025   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2026   db = pParse->db;
2027   v = pParse->pVdbe;
2028   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2029   labelEnd = sqlite3VdbeMakeLabel(v);
2030   labelCmpr = sqlite3VdbeMakeLabel(v);
2031 
2032 
2033   /* Patch up the ORDER BY clause
2034   */
2035   op = p->op;
2036   pPrior = p->pPrior;
2037   assert( pPrior->pOrderBy==0 );
2038   pOrderBy = p->pOrderBy;
2039   assert( pOrderBy );
2040   nOrderBy = pOrderBy->nExpr;
2041 
2042   /* For operators other than UNION ALL we have to make sure that
2043   ** the ORDER BY clause covers every term of the result set.  Add
2044   ** terms to the ORDER BY clause as necessary.
2045   */
2046   if( op!=TK_ALL ){
2047     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2048       struct ExprList_item *pItem;
2049       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2050         assert( pItem->iCol>0 );
2051         if( pItem->iCol==i ) break;
2052       }
2053       if( j==nOrderBy ){
2054         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2055         if( pNew==0 ) return SQLITE_NOMEM;
2056         pNew->flags |= EP_IntValue;
2057         pNew->u.iValue = i;
2058         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2059         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2060       }
2061     }
2062   }
2063 
2064   /* Compute the comparison permutation and keyinfo that is used with
2065   ** the permutation used to determine if the next
2066   ** row of results comes from selectA or selectB.  Also add explicit
2067   ** collations to the ORDER BY clause terms so that when the subqueries
2068   ** to the right and the left are evaluated, they use the correct
2069   ** collation.
2070   */
2071   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2072   if( aPermute ){
2073     struct ExprList_item *pItem;
2074     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2075       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2076       aPermute[i] = pItem->iCol - 1;
2077     }
2078     pKeyMerge =
2079       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2080     if( pKeyMerge ){
2081       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2082       pKeyMerge->nField = (u16)nOrderBy;
2083       pKeyMerge->enc = ENC(db);
2084       for(i=0; i<nOrderBy; i++){
2085         CollSeq *pColl;
2086         Expr *pTerm = pOrderBy->a[i].pExpr;
2087         if( pTerm->flags & EP_ExpCollate ){
2088           pColl = pTerm->pColl;
2089         }else{
2090           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2091           pTerm->flags |= EP_ExpCollate;
2092           pTerm->pColl = pColl;
2093         }
2094         pKeyMerge->aColl[i] = pColl;
2095         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2096       }
2097     }
2098   }else{
2099     pKeyMerge = 0;
2100   }
2101 
2102   /* Reattach the ORDER BY clause to the query.
2103   */
2104   p->pOrderBy = pOrderBy;
2105   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2106 
2107   /* Allocate a range of temporary registers and the KeyInfo needed
2108   ** for the logic that removes duplicate result rows when the
2109   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2110   */
2111   if( op==TK_ALL ){
2112     regPrev = 0;
2113   }else{
2114     int nExpr = p->pEList->nExpr;
2115     assert( nOrderBy>=nExpr || db->mallocFailed );
2116     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2117     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2118     pKeyDup = sqlite3DbMallocZero(db,
2119                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2120     if( pKeyDup ){
2121       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2122       pKeyDup->nField = (u16)nExpr;
2123       pKeyDup->enc = ENC(db);
2124       for(i=0; i<nExpr; i++){
2125         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2126         pKeyDup->aSortOrder[i] = 0;
2127       }
2128     }
2129   }
2130 
2131   /* Separate the left and the right query from one another
2132   */
2133   p->pPrior = 0;
2134   pPrior->pRightmost = 0;
2135   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2136   if( pPrior->pPrior==0 ){
2137     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2138   }
2139 
2140   /* Compute the limit registers */
2141   computeLimitRegisters(pParse, p, labelEnd);
2142   if( p->iLimit && op==TK_ALL ){
2143     regLimitA = ++pParse->nMem;
2144     regLimitB = ++pParse->nMem;
2145     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2146                                   regLimitA);
2147     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2148   }else{
2149     regLimitA = regLimitB = 0;
2150   }
2151   sqlite3ExprDelete(db, p->pLimit);
2152   p->pLimit = 0;
2153   sqlite3ExprDelete(db, p->pOffset);
2154   p->pOffset = 0;
2155 
2156   regAddrA = ++pParse->nMem;
2157   regEofA = ++pParse->nMem;
2158   regAddrB = ++pParse->nMem;
2159   regEofB = ++pParse->nMem;
2160   regOutA = ++pParse->nMem;
2161   regOutB = ++pParse->nMem;
2162   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2163   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2164 
2165   /* Jump past the various subroutines and coroutines to the main
2166   ** merge loop
2167   */
2168   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2169   addrSelectA = sqlite3VdbeCurrentAddr(v);
2170 
2171 
2172   /* Generate a coroutine to evaluate the SELECT statement to the
2173   ** left of the compound operator - the "A" select.
2174   */
2175   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2176   pPrior->iLimit = regLimitA;
2177   sqlite3Select(pParse, pPrior, &destA);
2178   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2179   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2180   VdbeNoopComment((v, "End coroutine for left SELECT"));
2181 
2182   /* Generate a coroutine to evaluate the SELECT statement on
2183   ** the right - the "B" select
2184   */
2185   addrSelectB = sqlite3VdbeCurrentAddr(v);
2186   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2187   savedLimit = p->iLimit;
2188   savedOffset = p->iOffset;
2189   p->iLimit = regLimitB;
2190   p->iOffset = 0;
2191   sqlite3Select(pParse, p, &destB);
2192   p->iLimit = savedLimit;
2193   p->iOffset = savedOffset;
2194   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2195   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2196   VdbeNoopComment((v, "End coroutine for right SELECT"));
2197 
2198   /* Generate a subroutine that outputs the current row of the A
2199   ** select as the next output row of the compound select.
2200   */
2201   VdbeNoopComment((v, "Output routine for A"));
2202   addrOutA = generateOutputSubroutine(pParse,
2203                  p, &destA, pDest, regOutA,
2204                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2205 
2206   /* Generate a subroutine that outputs the current row of the B
2207   ** select as the next output row of the compound select.
2208   */
2209   if( op==TK_ALL || op==TK_UNION ){
2210     VdbeNoopComment((v, "Output routine for B"));
2211     addrOutB = generateOutputSubroutine(pParse,
2212                  p, &destB, pDest, regOutB,
2213                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2214   }
2215 
2216   /* Generate a subroutine to run when the results from select A
2217   ** are exhausted and only data in select B remains.
2218   */
2219   VdbeNoopComment((v, "eof-A subroutine"));
2220   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2221     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2222   }else{
2223     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2224     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2225     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2226     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2227   }
2228 
2229   /* Generate a subroutine to run when the results from select B
2230   ** are exhausted and only data in select A remains.
2231   */
2232   if( op==TK_INTERSECT ){
2233     addrEofB = addrEofA;
2234   }else{
2235     VdbeNoopComment((v, "eof-B subroutine"));
2236     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2237     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2238     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2239     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2240   }
2241 
2242   /* Generate code to handle the case of A<B
2243   */
2244   VdbeNoopComment((v, "A-lt-B subroutine"));
2245   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2246   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2247   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2248   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2249 
2250   /* Generate code to handle the case of A==B
2251   */
2252   if( op==TK_ALL ){
2253     addrAeqB = addrAltB;
2254   }else if( op==TK_INTERSECT ){
2255     addrAeqB = addrAltB;
2256     addrAltB++;
2257   }else{
2258     VdbeNoopComment((v, "A-eq-B subroutine"));
2259     addrAeqB =
2260     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2261     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2262     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2263   }
2264 
2265   /* Generate code to handle the case of A>B
2266   */
2267   VdbeNoopComment((v, "A-gt-B subroutine"));
2268   addrAgtB = sqlite3VdbeCurrentAddr(v);
2269   if( op==TK_ALL || op==TK_UNION ){
2270     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2271   }
2272   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2273   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2274   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2275 
2276   /* This code runs once to initialize everything.
2277   */
2278   sqlite3VdbeJumpHere(v, j1);
2279   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2280   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2281   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2282   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2283   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2284   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2285 
2286   /* Implement the main merge loop
2287   */
2288   sqlite3VdbeResolveLabel(v, labelCmpr);
2289   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2290   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2291                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2292   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2293 
2294   /* Release temporary registers
2295   */
2296   if( regPrev ){
2297     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2298   }
2299 
2300   /* Jump to the this point in order to terminate the query.
2301   */
2302   sqlite3VdbeResolveLabel(v, labelEnd);
2303 
2304   /* Set the number of output columns
2305   */
2306   if( pDest->eDest==SRT_Output ){
2307     Select *pFirst = pPrior;
2308     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2309     generateColumnNames(pParse, 0, pFirst->pEList);
2310   }
2311 
2312   /* Reassembly the compound query so that it will be freed correctly
2313   ** by the calling function */
2314   if( p->pPrior ){
2315     sqlite3SelectDelete(db, p->pPrior);
2316   }
2317   p->pPrior = pPrior;
2318 
2319   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2320   **** subqueries ****/
2321   return SQLITE_OK;
2322 }
2323 #endif
2324 
2325 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2326 /* Forward Declarations */
2327 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2328 static void substSelect(sqlite3*, Select *, int, ExprList *);
2329 
2330 /*
2331 ** Scan through the expression pExpr.  Replace every reference to
2332 ** a column in table number iTable with a copy of the iColumn-th
2333 ** entry in pEList.  (But leave references to the ROWID column
2334 ** unchanged.)
2335 **
2336 ** This routine is part of the flattening procedure.  A subquery
2337 ** whose result set is defined by pEList appears as entry in the
2338 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2339 ** FORM clause entry is iTable.  This routine make the necessary
2340 ** changes to pExpr so that it refers directly to the source table
2341 ** of the subquery rather the result set of the subquery.
2342 */
2343 static Expr *substExpr(
2344   sqlite3 *db,        /* Report malloc errors to this connection */
2345   Expr *pExpr,        /* Expr in which substitution occurs */
2346   int iTable,         /* Table to be substituted */
2347   ExprList *pEList    /* Substitute expressions */
2348 ){
2349   if( pExpr==0 ) return 0;
2350   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2351     if( pExpr->iColumn<0 ){
2352       pExpr->op = TK_NULL;
2353     }else{
2354       Expr *pNew;
2355       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2356       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2357       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2358       sqlite3ExprDelete(db, pExpr);
2359       pExpr = pNew;
2360     }
2361   }else{
2362     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2363     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2364     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2365       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2366     }else{
2367       substExprList(db, pExpr->x.pList, iTable, pEList);
2368     }
2369   }
2370   return pExpr;
2371 }
2372 static void substExprList(
2373   sqlite3 *db,         /* Report malloc errors here */
2374   ExprList *pList,     /* List to scan and in which to make substitutes */
2375   int iTable,          /* Table to be substituted */
2376   ExprList *pEList     /* Substitute values */
2377 ){
2378   int i;
2379   if( pList==0 ) return;
2380   for(i=0; i<pList->nExpr; i++){
2381     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2382   }
2383 }
2384 static void substSelect(
2385   sqlite3 *db,         /* Report malloc errors here */
2386   Select *p,           /* SELECT statement in which to make substitutions */
2387   int iTable,          /* Table to be replaced */
2388   ExprList *pEList     /* Substitute values */
2389 ){
2390   SrcList *pSrc;
2391   struct SrcList_item *pItem;
2392   int i;
2393   if( !p ) return;
2394   substExprList(db, p->pEList, iTable, pEList);
2395   substExprList(db, p->pGroupBy, iTable, pEList);
2396   substExprList(db, p->pOrderBy, iTable, pEList);
2397   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2398   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2399   substSelect(db, p->pPrior, iTable, pEList);
2400   pSrc = p->pSrc;
2401   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2402   if( ALWAYS(pSrc) ){
2403     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2404       substSelect(db, pItem->pSelect, iTable, pEList);
2405     }
2406   }
2407 }
2408 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2409 
2410 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2411 /*
2412 ** This routine attempts to flatten subqueries in order to speed
2413 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2414 ** occurs.
2415 **
2416 ** To understand the concept of flattening, consider the following
2417 ** query:
2418 **
2419 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2420 **
2421 ** The default way of implementing this query is to execute the
2422 ** subquery first and store the results in a temporary table, then
2423 ** run the outer query on that temporary table.  This requires two
2424 ** passes over the data.  Furthermore, because the temporary table
2425 ** has no indices, the WHERE clause on the outer query cannot be
2426 ** optimized.
2427 **
2428 ** This routine attempts to rewrite queries such as the above into
2429 ** a single flat select, like this:
2430 **
2431 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2432 **
2433 ** The code generated for this simpification gives the same result
2434 ** but only has to scan the data once.  And because indices might
2435 ** exist on the table t1, a complete scan of the data might be
2436 ** avoided.
2437 **
2438 ** Flattening is only attempted if all of the following are true:
2439 **
2440 **   (1)  The subquery and the outer query do not both use aggregates.
2441 **
2442 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2443 **
2444 **   (3)  The subquery is not the right operand of a left outer join
2445 **        (Originally ticket #306.  Strenghtened by ticket #3300)
2446 **
2447 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2448 **
2449 **   (5)  The subquery is not DISTINCT or the outer query does not use
2450 **        aggregates.
2451 **
2452 **   (6)  The subquery does not use aggregates or the outer query is not
2453 **        DISTINCT.
2454 **
2455 **   (7)  The subquery has a FROM clause.
2456 **
2457 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2458 **
2459 **   (9)  The subquery does not use LIMIT or the outer query does not use
2460 **        aggregates.
2461 **
2462 **  (10)  The subquery does not use aggregates or the outer query does not
2463 **        use LIMIT.
2464 **
2465 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2466 **
2467 **  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
2468 **        a separate restriction deriving from ticket #350.
2469 **
2470 **  (13)  The subquery and outer query do not both use LIMIT
2471 **
2472 **  (14)  The subquery does not use OFFSET
2473 **
2474 **  (15)  The outer query is not part of a compound select or the
2475 **        subquery does not have both an ORDER BY and a LIMIT clause.
2476 **        (See ticket #2339)
2477 **
2478 **  (16)  The outer query is not an aggregate or the subquery does
2479 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2480 **        until we introduced the group_concat() function.
2481 **
2482 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2483 **        compound clause made up entirely of non-aggregate queries, and
2484 **        the parent query:
2485 **
2486 **          * is not itself part of a compound select,
2487 **          * is not an aggregate or DISTINCT query, and
2488 **          * has no other tables or sub-selects in the FROM clause.
2489 **
2490 **        The parent and sub-query may contain WHERE clauses. Subject to
2491 **        rules (11), (13) and (14), they may also contain ORDER BY,
2492 **        LIMIT and OFFSET clauses.
2493 **
2494 **  (18)  If the sub-query is a compound select, then all terms of the
2495 **        ORDER by clause of the parent must be simple references to
2496 **        columns of the sub-query.
2497 **
2498 **  (19)  The subquery does not use LIMIT or the outer query does not
2499 **        have a WHERE clause.
2500 **
2501 **  (20)  If the sub-query is a compound select, then it must not use
2502 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2503 **        somewhat by saying that the terms of the ORDER BY clause must
2504 **        appear as unmodified result columns in the outer query.  But
2505 **        have other optimizations in mind to deal with that case.
2506 **
2507 ** In this routine, the "p" parameter is a pointer to the outer query.
2508 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2509 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2510 **
2511 ** If flattening is not attempted, this routine is a no-op and returns 0.
2512 ** If flattening is attempted this routine returns 1.
2513 **
2514 ** All of the expression analysis must occur on both the outer query and
2515 ** the subquery before this routine runs.
2516 */
2517 static int flattenSubquery(
2518   Parse *pParse,       /* Parsing context */
2519   Select *p,           /* The parent or outer SELECT statement */
2520   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2521   int isAgg,           /* True if outer SELECT uses aggregate functions */
2522   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2523 ){
2524   const char *zSavedAuthContext = pParse->zAuthContext;
2525   Select *pParent;
2526   Select *pSub;       /* The inner query or "subquery" */
2527   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2528   SrcList *pSrc;      /* The FROM clause of the outer query */
2529   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2530   ExprList *pList;    /* The result set of the outer query */
2531   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2532   int i;              /* Loop counter */
2533   Expr *pWhere;                    /* The WHERE clause */
2534   struct SrcList_item *pSubitem;   /* The subquery */
2535   sqlite3 *db = pParse->db;
2536 
2537   /* Check to see if flattening is permitted.  Return 0 if not.
2538   */
2539   assert( p!=0 );
2540   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2541   pSrc = p->pSrc;
2542   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2543   pSubitem = &pSrc->a[iFrom];
2544   iParent = pSubitem->iCursor;
2545   pSub = pSubitem->pSelect;
2546   assert( pSub!=0 );
2547   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2548   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2549   pSubSrc = pSub->pSrc;
2550   assert( pSubSrc );
2551   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2552   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2553   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2554   ** became arbitrary expressions, we were forced to add restrictions (13)
2555   ** and (14). */
2556   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2557   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2558   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2559     return 0;                                            /* Restriction (15) */
2560   }
2561   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2562   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
2563          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2564      return 0;
2565   }
2566   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2567      return 0;         /* Restriction (6)  */
2568   }
2569   if( p->pOrderBy && pSub->pOrderBy ){
2570      return 0;                                           /* Restriction (11) */
2571   }
2572   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2573   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2574 
2575   /* OBSOLETE COMMENT 1:
2576   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2577   ** not used as the right operand of an outer join.  Examples of why this
2578   ** is not allowed:
2579   **
2580   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2581   **
2582   ** If we flatten the above, we would get
2583   **
2584   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2585   **
2586   ** which is not at all the same thing.
2587   **
2588   ** OBSOLETE COMMENT 2:
2589   ** Restriction 12:  If the subquery is the right operand of a left outer
2590   ** join, make sure the subquery has no WHERE clause.
2591   ** An examples of why this is not allowed:
2592   **
2593   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2594   **
2595   ** If we flatten the above, we would get
2596   **
2597   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2598   **
2599   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2600   ** effectively converts the OUTER JOIN into an INNER JOIN.
2601   **
2602   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2603   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2604   ** is fraught with danger.  Best to avoid the whole thing.  If the
2605   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2606   */
2607   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2608     return 0;
2609   }
2610 
2611   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2612   ** use only the UNION ALL operator. And none of the simple select queries
2613   ** that make up the compound SELECT are allowed to be aggregate or distinct
2614   ** queries.
2615   */
2616   if( pSub->pPrior ){
2617     if( pSub->pOrderBy ){
2618       return 0;  /* Restriction 20 */
2619     }
2620     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2621       return 0;
2622     }
2623     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2624       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2625       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2626       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2627        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2628        || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
2629       ){
2630         return 0;
2631       }
2632     }
2633 
2634     /* Restriction 18. */
2635     if( p->pOrderBy ){
2636       int ii;
2637       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2638         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2639       }
2640     }
2641   }
2642 
2643   /***** If we reach this point, flattening is permitted. *****/
2644 
2645   /* Authorize the subquery */
2646   pParse->zAuthContext = pSubitem->zName;
2647   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2648   pParse->zAuthContext = zSavedAuthContext;
2649 
2650   /* If the sub-query is a compound SELECT statement, then (by restrictions
2651   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2652   ** be of the form:
2653   **
2654   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2655   **
2656   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2657   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2658   ** OFFSET clauses and joins them to the left-hand-side of the original
2659   ** using UNION ALL operators. In this case N is the number of simple
2660   ** select statements in the compound sub-query.
2661   **
2662   ** Example:
2663   **
2664   **     SELECT a+1 FROM (
2665   **        SELECT x FROM tab
2666   **        UNION ALL
2667   **        SELECT y FROM tab
2668   **        UNION ALL
2669   **        SELECT abs(z*2) FROM tab2
2670   **     ) WHERE a!=5 ORDER BY 1
2671   **
2672   ** Transformed into:
2673   **
2674   **     SELECT x+1 FROM tab WHERE x+1!=5
2675   **     UNION ALL
2676   **     SELECT y+1 FROM tab WHERE y+1!=5
2677   **     UNION ALL
2678   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2679   **     ORDER BY 1
2680   **
2681   ** We call this the "compound-subquery flattening".
2682   */
2683   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2684     Select *pNew;
2685     ExprList *pOrderBy = p->pOrderBy;
2686     Expr *pLimit = p->pLimit;
2687     Select *pPrior = p->pPrior;
2688     p->pOrderBy = 0;
2689     p->pSrc = 0;
2690     p->pPrior = 0;
2691     p->pLimit = 0;
2692     pNew = sqlite3SelectDup(db, p, 0);
2693     p->pLimit = pLimit;
2694     p->pOrderBy = pOrderBy;
2695     p->pSrc = pSrc;
2696     p->op = TK_ALL;
2697     p->pRightmost = 0;
2698     if( pNew==0 ){
2699       pNew = pPrior;
2700     }else{
2701       pNew->pPrior = pPrior;
2702       pNew->pRightmost = 0;
2703     }
2704     p->pPrior = pNew;
2705     if( db->mallocFailed ) return 1;
2706   }
2707 
2708   /* Begin flattening the iFrom-th entry of the FROM clause
2709   ** in the outer query.
2710   */
2711   pSub = pSub1 = pSubitem->pSelect;
2712 
2713   /* Delete the transient table structure associated with the
2714   ** subquery
2715   */
2716   sqlite3DbFree(db, pSubitem->zDatabase);
2717   sqlite3DbFree(db, pSubitem->zName);
2718   sqlite3DbFree(db, pSubitem->zAlias);
2719   pSubitem->zDatabase = 0;
2720   pSubitem->zName = 0;
2721   pSubitem->zAlias = 0;
2722   pSubitem->pSelect = 0;
2723 
2724   /* Defer deleting the Table object associated with the
2725   ** subquery until code generation is
2726   ** complete, since there may still exist Expr.pTab entries that
2727   ** refer to the subquery even after flattening.  Ticket #3346.
2728   **
2729   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2730   */
2731   if( ALWAYS(pSubitem->pTab!=0) ){
2732     Table *pTabToDel = pSubitem->pTab;
2733     if( pTabToDel->nRef==1 ){
2734       pTabToDel->pNextZombie = pParse->pZombieTab;
2735       pParse->pZombieTab = pTabToDel;
2736     }else{
2737       pTabToDel->nRef--;
2738     }
2739     pSubitem->pTab = 0;
2740   }
2741 
2742   /* The following loop runs once for each term in a compound-subquery
2743   ** flattening (as described above).  If we are doing a different kind
2744   ** of flattening - a flattening other than a compound-subquery flattening -
2745   ** then this loop only runs once.
2746   **
2747   ** This loop moves all of the FROM elements of the subquery into the
2748   ** the FROM clause of the outer query.  Before doing this, remember
2749   ** the cursor number for the original outer query FROM element in
2750   ** iParent.  The iParent cursor will never be used.  Subsequent code
2751   ** will scan expressions looking for iParent references and replace
2752   ** those references with expressions that resolve to the subquery FROM
2753   ** elements we are now copying in.
2754   */
2755   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2756     int nSubSrc;
2757     u8 jointype = 0;
2758     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2759     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2760     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2761 
2762     if( pSrc ){
2763       assert( pParent==p );  /* First time through the loop */
2764       jointype = pSubitem->jointype;
2765     }else{
2766       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2767       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2768       if( pSrc==0 ){
2769         assert( db->mallocFailed );
2770         break;
2771       }
2772     }
2773 
2774     /* The subquery uses a single slot of the FROM clause of the outer
2775     ** query.  If the subquery has more than one element in its FROM clause,
2776     ** then expand the outer query to make space for it to hold all elements
2777     ** of the subquery.
2778     **
2779     ** Example:
2780     **
2781     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2782     **
2783     ** The outer query has 3 slots in its FROM clause.  One slot of the
2784     ** outer query (the middle slot) is used by the subquery.  The next
2785     ** block of code will expand the out query to 4 slots.  The middle
2786     ** slot is expanded to two slots in order to make space for the
2787     ** two elements in the FROM clause of the subquery.
2788     */
2789     if( nSubSrc>1 ){
2790       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2791       if( db->mallocFailed ){
2792         break;
2793       }
2794     }
2795 
2796     /* Transfer the FROM clause terms from the subquery into the
2797     ** outer query.
2798     */
2799     for(i=0; i<nSubSrc; i++){
2800       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
2801       pSrc->a[i+iFrom] = pSubSrc->a[i];
2802       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2803     }
2804     pSrc->a[iFrom].jointype = jointype;
2805 
2806     /* Now begin substituting subquery result set expressions for
2807     ** references to the iParent in the outer query.
2808     **
2809     ** Example:
2810     **
2811     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2812     **   \                     \_____________ subquery __________/          /
2813     **    \_____________________ outer query ______________________________/
2814     **
2815     ** We look at every expression in the outer query and every place we see
2816     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2817     */
2818     pList = pParent->pEList;
2819     for(i=0; i<pList->nExpr; i++){
2820       if( pList->a[i].zName==0 ){
2821         const char *zSpan = pList->a[i].zSpan;
2822         if( ALWAYS(zSpan) ){
2823           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
2824         }
2825       }
2826     }
2827     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2828     if( isAgg ){
2829       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2830       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2831     }
2832     if( pSub->pOrderBy ){
2833       assert( pParent->pOrderBy==0 );
2834       pParent->pOrderBy = pSub->pOrderBy;
2835       pSub->pOrderBy = 0;
2836     }else if( pParent->pOrderBy ){
2837       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2838     }
2839     if( pSub->pWhere ){
2840       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
2841     }else{
2842       pWhere = 0;
2843     }
2844     if( subqueryIsAgg ){
2845       assert( pParent->pHaving==0 );
2846       pParent->pHaving = pParent->pWhere;
2847       pParent->pWhere = pWhere;
2848       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2849       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2850                                   sqlite3ExprDup(db, pSub->pHaving, 0));
2851       assert( pParent->pGroupBy==0 );
2852       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
2853     }else{
2854       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2855       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2856     }
2857 
2858     /* The flattened query is distinct if either the inner or the
2859     ** outer query is distinct.
2860     */
2861     pParent->selFlags |= pSub->selFlags & SF_Distinct;
2862 
2863     /*
2864     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2865     **
2866     ** One is tempted to try to add a and b to combine the limits.  But this
2867     ** does not work if either limit is negative.
2868     */
2869     if( pSub->pLimit ){
2870       pParent->pLimit = pSub->pLimit;
2871       pSub->pLimit = 0;
2872     }
2873   }
2874 
2875   /* Finially, delete what is left of the subquery and return
2876   ** success.
2877   */
2878   sqlite3SelectDelete(db, pSub1);
2879 
2880   return 1;
2881 }
2882 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2883 
2884 /*
2885 ** Analyze the SELECT statement passed as an argument to see if it
2886 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2887 ** it is, or 0 otherwise. At present, a query is considered to be
2888 ** a min()/max() query if:
2889 **
2890 **   1. There is a single object in the FROM clause.
2891 **
2892 **   2. There is a single expression in the result set, and it is
2893 **      either min(x) or max(x), where x is a column reference.
2894 */
2895 static u8 minMaxQuery(Select *p){
2896   Expr *pExpr;
2897   ExprList *pEList = p->pEList;
2898 
2899   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2900   pExpr = pEList->a[0].pExpr;
2901   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2902   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
2903   pEList = pExpr->x.pList;
2904   if( pEList==0 || pEList->nExpr!=1 ) return 0;
2905   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2906   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2907   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
2908     return WHERE_ORDERBY_MIN;
2909   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
2910     return WHERE_ORDERBY_MAX;
2911   }
2912   return WHERE_ORDERBY_NORMAL;
2913 }
2914 
2915 /*
2916 ** The select statement passed as the first argument is an aggregate query.
2917 ** The second argment is the associated aggregate-info object. This
2918 ** function tests if the SELECT is of the form:
2919 **
2920 **   SELECT count(*) FROM <tbl>
2921 **
2922 ** where table is a database table, not a sub-select or view. If the query
2923 ** does match this pattern, then a pointer to the Table object representing
2924 ** <tbl> is returned. Otherwise, 0 is returned.
2925 */
2926 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
2927   Table *pTab;
2928   Expr *pExpr;
2929 
2930   assert( !p->pGroupBy );
2931 
2932   if( p->pWhere || p->pEList->nExpr!=1
2933    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
2934   ){
2935     return 0;
2936   }
2937   pTab = p->pSrc->a[0].pTab;
2938   pExpr = p->pEList->a[0].pExpr;
2939   assert( pTab && !pTab->pSelect && pExpr );
2940 
2941   if( IsVirtual(pTab) ) return 0;
2942   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2943   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
2944   if( pExpr->flags&EP_Distinct ) return 0;
2945 
2946   return pTab;
2947 }
2948 
2949 /*
2950 ** If the source-list item passed as an argument was augmented with an
2951 ** INDEXED BY clause, then try to locate the specified index. If there
2952 ** was such a clause and the named index cannot be found, return
2953 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
2954 ** pFrom->pIndex and return SQLITE_OK.
2955 */
2956 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
2957   if( pFrom->pTab && pFrom->zIndex ){
2958     Table *pTab = pFrom->pTab;
2959     char *zIndex = pFrom->zIndex;
2960     Index *pIdx;
2961     for(pIdx=pTab->pIndex;
2962         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
2963         pIdx=pIdx->pNext
2964     );
2965     if( !pIdx ){
2966       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
2967       return SQLITE_ERROR;
2968     }
2969     pFrom->pIndex = pIdx;
2970   }
2971   return SQLITE_OK;
2972 }
2973 
2974 /*
2975 ** This routine is a Walker callback for "expanding" a SELECT statement.
2976 ** "Expanding" means to do the following:
2977 **
2978 **    (1)  Make sure VDBE cursor numbers have been assigned to every
2979 **         element of the FROM clause.
2980 **
2981 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
2982 **         defines FROM clause.  When views appear in the FROM clause,
2983 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
2984 **         that implements the view.  A copy is made of the view's SELECT
2985 **         statement so that we can freely modify or delete that statement
2986 **         without worrying about messing up the presistent representation
2987 **         of the view.
2988 **
2989 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
2990 **         on joins and the ON and USING clause of joins.
2991 **
2992 **    (4)  Scan the list of columns in the result set (pEList) looking
2993 **         for instances of the "*" operator or the TABLE.* operator.
2994 **         If found, expand each "*" to be every column in every table
2995 **         and TABLE.* to be every column in TABLE.
2996 **
2997 */
2998 static int selectExpander(Walker *pWalker, Select *p){
2999   Parse *pParse = pWalker->pParse;
3000   int i, j, k;
3001   SrcList *pTabList;
3002   ExprList *pEList;
3003   struct SrcList_item *pFrom;
3004   sqlite3 *db = pParse->db;
3005 
3006   if( db->mallocFailed  ){
3007     return WRC_Abort;
3008   }
3009   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3010     return WRC_Prune;
3011   }
3012   p->selFlags |= SF_Expanded;
3013   pTabList = p->pSrc;
3014   pEList = p->pEList;
3015 
3016   /* Make sure cursor numbers have been assigned to all entries in
3017   ** the FROM clause of the SELECT statement.
3018   */
3019   sqlite3SrcListAssignCursors(pParse, pTabList);
3020 
3021   /* Look up every table named in the FROM clause of the select.  If
3022   ** an entry of the FROM clause is a subquery instead of a table or view,
3023   ** then create a transient table structure to describe the subquery.
3024   */
3025   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3026     Table *pTab;
3027     if( pFrom->pTab!=0 ){
3028       /* This statement has already been prepared.  There is no need
3029       ** to go further. */
3030       assert( i==0 );
3031       return WRC_Prune;
3032     }
3033     if( pFrom->zName==0 ){
3034 #ifndef SQLITE_OMIT_SUBQUERY
3035       Select *pSel = pFrom->pSelect;
3036       /* A sub-query in the FROM clause of a SELECT */
3037       assert( pSel!=0 );
3038       assert( pFrom->pTab==0 );
3039       sqlite3WalkSelect(pWalker, pSel);
3040       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3041       if( pTab==0 ) return WRC_Abort;
3042       pTab->dbMem = db->lookaside.bEnabled ? db : 0;
3043       pTab->nRef = 1;
3044       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3045       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3046       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3047       pTab->iPKey = -1;
3048       pTab->tabFlags |= TF_Ephemeral;
3049 #endif
3050     }else{
3051       /* An ordinary table or view name in the FROM clause */
3052       assert( pFrom->pTab==0 );
3053       pFrom->pTab = pTab =
3054         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3055       if( pTab==0 ) return WRC_Abort;
3056       pTab->nRef++;
3057 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3058       if( pTab->pSelect || IsVirtual(pTab) ){
3059         /* We reach here if the named table is a really a view */
3060         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3061         assert( pFrom->pSelect==0 );
3062         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3063         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3064       }
3065 #endif
3066     }
3067 
3068     /* Locate the index named by the INDEXED BY clause, if any. */
3069     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3070       return WRC_Abort;
3071     }
3072   }
3073 
3074   /* Process NATURAL keywords, and ON and USING clauses of joins.
3075   */
3076   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3077     return WRC_Abort;
3078   }
3079 
3080   /* For every "*" that occurs in the column list, insert the names of
3081   ** all columns in all tables.  And for every TABLE.* insert the names
3082   ** of all columns in TABLE.  The parser inserted a special expression
3083   ** with the TK_ALL operator for each "*" that it found in the column list.
3084   ** The following code just has to locate the TK_ALL expressions and expand
3085   ** each one to the list of all columns in all tables.
3086   **
3087   ** The first loop just checks to see if there are any "*" operators
3088   ** that need expanding.
3089   */
3090   for(k=0; k<pEList->nExpr; k++){
3091     Expr *pE = pEList->a[k].pExpr;
3092     if( pE->op==TK_ALL ) break;
3093     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3094     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3095     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3096   }
3097   if( k<pEList->nExpr ){
3098     /*
3099     ** If we get here it means the result set contains one or more "*"
3100     ** operators that need to be expanded.  Loop through each expression
3101     ** in the result set and expand them one by one.
3102     */
3103     struct ExprList_item *a = pEList->a;
3104     ExprList *pNew = 0;
3105     int flags = pParse->db->flags;
3106     int longNames = (flags & SQLITE_FullColNames)!=0
3107                       && (flags & SQLITE_ShortColNames)==0;
3108 
3109     for(k=0; k<pEList->nExpr; k++){
3110       Expr *pE = a[k].pExpr;
3111       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3112       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3113         /* This particular expression does not need to be expanded.
3114         */
3115         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3116         if( pNew ){
3117           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3118           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3119           a[k].zName = 0;
3120           a[k].zSpan = 0;
3121         }
3122         a[k].pExpr = 0;
3123       }else{
3124         /* This expression is a "*" or a "TABLE.*" and needs to be
3125         ** expanded. */
3126         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3127         char *zTName;            /* text of name of TABLE */
3128         if( pE->op==TK_DOT ){
3129           assert( pE->pLeft!=0 );
3130           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3131           zTName = pE->pLeft->u.zToken;
3132         }else{
3133           zTName = 0;
3134         }
3135         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3136           Table *pTab = pFrom->pTab;
3137           char *zTabName = pFrom->zAlias;
3138           if( zTabName==0 ){
3139             zTabName = pTab->zName;
3140           }
3141           if( db->mallocFailed ) break;
3142           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3143             continue;
3144           }
3145           tableSeen = 1;
3146           for(j=0; j<pTab->nCol; j++){
3147             Expr *pExpr, *pRight;
3148             char *zName = pTab->aCol[j].zName;
3149             char *zColname;  /* The computed column name */
3150             char *zToFree;   /* Malloced string that needs to be freed */
3151             Token sColname;  /* Computed column name as a token */
3152 
3153             /* If a column is marked as 'hidden' (currently only possible
3154             ** for virtual tables), do not include it in the expanded
3155             ** result-set list.
3156             */
3157             if( IsHiddenColumn(&pTab->aCol[j]) ){
3158               assert(IsVirtual(pTab));
3159               continue;
3160             }
3161 
3162             if( i>0 && zTName==0 ){
3163               struct SrcList_item *pLeft = &pTabList->a[i-1];
3164               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
3165                         columnIndex(pLeft->pTab, zName)>=0 ){
3166                 /* In a NATURAL join, omit the join columns from the
3167                 ** table on the right */
3168                 continue;
3169               }
3170               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
3171                 /* In a join with a USING clause, omit columns in the
3172                 ** using clause from the table on the right. */
3173                 continue;
3174               }
3175             }
3176             pRight = sqlite3Expr(db, TK_ID, zName);
3177             zColname = zName;
3178             zToFree = 0;
3179             if( longNames || pTabList->nSrc>1 ){
3180               Expr *pLeft;
3181               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3182               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3183               if( longNames ){
3184                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3185                 zToFree = zColname;
3186               }
3187             }else{
3188               pExpr = pRight;
3189             }
3190             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3191             sColname.z = zColname;
3192             sColname.n = sqlite3Strlen30(zColname);
3193             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3194             sqlite3DbFree(db, zToFree);
3195           }
3196         }
3197         if( !tableSeen ){
3198           if( zTName ){
3199             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3200           }else{
3201             sqlite3ErrorMsg(pParse, "no tables specified");
3202           }
3203         }
3204       }
3205     }
3206     sqlite3ExprListDelete(db, pEList);
3207     p->pEList = pNew;
3208   }
3209 #if SQLITE_MAX_COLUMN
3210   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3211     sqlite3ErrorMsg(pParse, "too many columns in result set");
3212   }
3213 #endif
3214   return WRC_Continue;
3215 }
3216 
3217 /*
3218 ** No-op routine for the parse-tree walker.
3219 **
3220 ** When this routine is the Walker.xExprCallback then expression trees
3221 ** are walked without any actions being taken at each node.  Presumably,
3222 ** when this routine is used for Walker.xExprCallback then
3223 ** Walker.xSelectCallback is set to do something useful for every
3224 ** subquery in the parser tree.
3225 */
3226 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3227   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3228   return WRC_Continue;
3229 }
3230 
3231 /*
3232 ** This routine "expands" a SELECT statement and all of its subqueries.
3233 ** For additional information on what it means to "expand" a SELECT
3234 ** statement, see the comment on the selectExpand worker callback above.
3235 **
3236 ** Expanding a SELECT statement is the first step in processing a
3237 ** SELECT statement.  The SELECT statement must be expanded before
3238 ** name resolution is performed.
3239 **
3240 ** If anything goes wrong, an error message is written into pParse.
3241 ** The calling function can detect the problem by looking at pParse->nErr
3242 ** and/or pParse->db->mallocFailed.
3243 */
3244 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3245   Walker w;
3246   w.xSelectCallback = selectExpander;
3247   w.xExprCallback = exprWalkNoop;
3248   w.pParse = pParse;
3249   sqlite3WalkSelect(&w, pSelect);
3250 }
3251 
3252 
3253 #ifndef SQLITE_OMIT_SUBQUERY
3254 /*
3255 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3256 ** interface.
3257 **
3258 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3259 ** information to the Table structure that represents the result set
3260 ** of that subquery.
3261 **
3262 ** The Table structure that represents the result set was constructed
3263 ** by selectExpander() but the type and collation information was omitted
3264 ** at that point because identifiers had not yet been resolved.  This
3265 ** routine is called after identifier resolution.
3266 */
3267 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3268   Parse *pParse;
3269   int i;
3270   SrcList *pTabList;
3271   struct SrcList_item *pFrom;
3272 
3273   assert( p->selFlags & SF_Resolved );
3274   assert( (p->selFlags & SF_HasTypeInfo)==0 );
3275   p->selFlags |= SF_HasTypeInfo;
3276   pParse = pWalker->pParse;
3277   pTabList = p->pSrc;
3278   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3279     Table *pTab = pFrom->pTab;
3280     if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3281       /* A sub-query in the FROM clause of a SELECT */
3282       Select *pSel = pFrom->pSelect;
3283       assert( pSel );
3284       while( pSel->pPrior ) pSel = pSel->pPrior;
3285       selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3286     }
3287   }
3288   return WRC_Continue;
3289 }
3290 #endif
3291 
3292 
3293 /*
3294 ** This routine adds datatype and collating sequence information to
3295 ** the Table structures of all FROM-clause subqueries in a
3296 ** SELECT statement.
3297 **
3298 ** Use this routine after name resolution.
3299 */
3300 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3301 #ifndef SQLITE_OMIT_SUBQUERY
3302   Walker w;
3303   w.xSelectCallback = selectAddSubqueryTypeInfo;
3304   w.xExprCallback = exprWalkNoop;
3305   w.pParse = pParse;
3306   sqlite3WalkSelect(&w, pSelect);
3307 #endif
3308 }
3309 
3310 
3311 /*
3312 ** This routine sets of a SELECT statement for processing.  The
3313 ** following is accomplished:
3314 **
3315 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3316 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3317 **     *  ON and USING clauses are shifted into WHERE statements
3318 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3319 **     *  Identifiers in expression are matched to tables.
3320 **
3321 ** This routine acts recursively on all subqueries within the SELECT.
3322 */
3323 void sqlite3SelectPrep(
3324   Parse *pParse,         /* The parser context */
3325   Select *p,             /* The SELECT statement being coded. */
3326   NameContext *pOuterNC  /* Name context for container */
3327 ){
3328   sqlite3 *db;
3329   if( NEVER(p==0) ) return;
3330   db = pParse->db;
3331   if( p->selFlags & SF_HasTypeInfo ) return;
3332   sqlite3SelectExpand(pParse, p);
3333   if( pParse->nErr || db->mallocFailed ) return;
3334   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3335   if( pParse->nErr || db->mallocFailed ) return;
3336   sqlite3SelectAddTypeInfo(pParse, p);
3337 }
3338 
3339 /*
3340 ** Reset the aggregate accumulator.
3341 **
3342 ** The aggregate accumulator is a set of memory cells that hold
3343 ** intermediate results while calculating an aggregate.  This
3344 ** routine simply stores NULLs in all of those memory cells.
3345 */
3346 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3347   Vdbe *v = pParse->pVdbe;
3348   int i;
3349   struct AggInfo_func *pFunc;
3350   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3351     return;
3352   }
3353   for(i=0; i<pAggInfo->nColumn; i++){
3354     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3355   }
3356   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3357     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3358     if( pFunc->iDistinct>=0 ){
3359       Expr *pE = pFunc->pExpr;
3360       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3361       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3362         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3363            "argument");
3364         pFunc->iDistinct = -1;
3365       }else{
3366         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3367         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3368                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3369       }
3370     }
3371   }
3372 }
3373 
3374 /*
3375 ** Invoke the OP_AggFinalize opcode for every aggregate function
3376 ** in the AggInfo structure.
3377 */
3378 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3379   Vdbe *v = pParse->pVdbe;
3380   int i;
3381   struct AggInfo_func *pF;
3382   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3383     ExprList *pList = pF->pExpr->x.pList;
3384     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3385     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3386                       (void*)pF->pFunc, P4_FUNCDEF);
3387   }
3388 }
3389 
3390 /*
3391 ** Update the accumulator memory cells for an aggregate based on
3392 ** the current cursor position.
3393 */
3394 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3395   Vdbe *v = pParse->pVdbe;
3396   int i;
3397   struct AggInfo_func *pF;
3398   struct AggInfo_col *pC;
3399 
3400   pAggInfo->directMode = 1;
3401   sqlite3ExprCacheClear(pParse);
3402   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3403     int nArg;
3404     int addrNext = 0;
3405     int regAgg;
3406     ExprList *pList = pF->pExpr->x.pList;
3407     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3408     if( pList ){
3409       nArg = pList->nExpr;
3410       regAgg = sqlite3GetTempRange(pParse, nArg);
3411       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3412     }else{
3413       nArg = 0;
3414       regAgg = 0;
3415     }
3416     if( pF->iDistinct>=0 ){
3417       addrNext = sqlite3VdbeMakeLabel(v);
3418       assert( nArg==1 );
3419       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3420     }
3421     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3422       CollSeq *pColl = 0;
3423       struct ExprList_item *pItem;
3424       int j;
3425       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3426       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3427         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3428       }
3429       if( !pColl ){
3430         pColl = pParse->db->pDfltColl;
3431       }
3432       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3433     }
3434     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3435                       (void*)pF->pFunc, P4_FUNCDEF);
3436     sqlite3VdbeChangeP5(v, (u8)nArg);
3437     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3438     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3439     if( addrNext ){
3440       sqlite3VdbeResolveLabel(v, addrNext);
3441       sqlite3ExprCacheClear(pParse);
3442     }
3443   }
3444   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3445     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3446   }
3447   pAggInfo->directMode = 0;
3448   sqlite3ExprCacheClear(pParse);
3449 }
3450 
3451 /*
3452 ** Generate code for the SELECT statement given in the p argument.
3453 **
3454 ** The results are distributed in various ways depending on the
3455 ** contents of the SelectDest structure pointed to by argument pDest
3456 ** as follows:
3457 **
3458 **     pDest->eDest    Result
3459 **     ------------    -------------------------------------------
3460 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3461 **                     opcode) for each row in the result set.
3462 **
3463 **     SRT_Mem         Only valid if the result is a single column.
3464 **                     Store the first column of the first result row
3465 **                     in register pDest->iParm then abandon the rest
3466 **                     of the query.  This destination implies "LIMIT 1".
3467 **
3468 **     SRT_Set         The result must be a single column.  Store each
3469 **                     row of result as the key in table pDest->iParm.
3470 **                     Apply the affinity pDest->affinity before storing
3471 **                     results.  Used to implement "IN (SELECT ...)".
3472 **
3473 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3474 **
3475 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3476 **
3477 **     SRT_Table       Store results in temporary table pDest->iParm.
3478 **                     This is like SRT_EphemTab except that the table
3479 **                     is assumed to already be open.
3480 **
3481 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3482 **                     the result there. The cursor is left open after
3483 **                     returning.  This is like SRT_Table except that
3484 **                     this destination uses OP_OpenEphemeral to create
3485 **                     the table first.
3486 **
3487 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3488 **                     results each time it is invoked.  The entry point
3489 **                     of the co-routine is stored in register pDest->iParm.
3490 **
3491 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3492 **                     set is not empty.
3493 **
3494 **     SRT_Discard     Throw the results away.  This is used by SELECT
3495 **                     statements within triggers whose only purpose is
3496 **                     the side-effects of functions.
3497 **
3498 ** This routine returns the number of errors.  If any errors are
3499 ** encountered, then an appropriate error message is left in
3500 ** pParse->zErrMsg.
3501 **
3502 ** This routine does NOT free the Select structure passed in.  The
3503 ** calling function needs to do that.
3504 */
3505 int sqlite3Select(
3506   Parse *pParse,         /* The parser context */
3507   Select *p,             /* The SELECT statement being coded. */
3508   SelectDest *pDest      /* What to do with the query results */
3509 ){
3510   int i, j;              /* Loop counters */
3511   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3512   Vdbe *v;               /* The virtual machine under construction */
3513   int isAgg;             /* True for select lists like "count(*)" */
3514   ExprList *pEList;      /* List of columns to extract. */
3515   SrcList *pTabList;     /* List of tables to select from */
3516   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3517   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3518   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3519   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3520   int isDistinct;        /* True if the DISTINCT keyword is present */
3521   int distinct;          /* Table to use for the distinct set */
3522   int rc = 1;            /* Value to return from this function */
3523   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3524   AggInfo sAggInfo;      /* Information used by aggregate queries */
3525   int iEnd;              /* Address of the end of the query */
3526   sqlite3 *db;           /* The database connection */
3527 
3528   db = pParse->db;
3529   if( p==0 || db->mallocFailed || pParse->nErr ){
3530     return 1;
3531   }
3532   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3533   memset(&sAggInfo, 0, sizeof(sAggInfo));
3534 
3535   if( IgnorableOrderby(pDest) ){
3536     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3537            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3538     /* If ORDER BY makes no difference in the output then neither does
3539     ** DISTINCT so it can be removed too. */
3540     sqlite3ExprListDelete(db, p->pOrderBy);
3541     p->pOrderBy = 0;
3542     p->selFlags &= ~SF_Distinct;
3543   }
3544   sqlite3SelectPrep(pParse, p, 0);
3545   pOrderBy = p->pOrderBy;
3546   pTabList = p->pSrc;
3547   pEList = p->pEList;
3548   if( pParse->nErr || db->mallocFailed ){
3549     goto select_end;
3550   }
3551   isAgg = (p->selFlags & SF_Aggregate)!=0;
3552   assert( pEList!=0 );
3553 
3554   /* Begin generating code.
3555   */
3556   v = sqlite3GetVdbe(pParse);
3557   if( v==0 ) goto select_end;
3558 
3559   /* Generate code for all sub-queries in the FROM clause
3560   */
3561 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3562   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3563     struct SrcList_item *pItem = &pTabList->a[i];
3564     SelectDest dest;
3565     Select *pSub = pItem->pSelect;
3566     int isAggSub;
3567 
3568     if( pSub==0 || pItem->isPopulated ) continue;
3569 
3570     /* Increment Parse.nHeight by the height of the largest expression
3571     ** tree refered to by this, the parent select. The child select
3572     ** may contain expression trees of at most
3573     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3574     ** more conservative than necessary, but much easier than enforcing
3575     ** an exact limit.
3576     */
3577     pParse->nHeight += sqlite3SelectExprHeight(p);
3578 
3579     /* Check to see if the subquery can be absorbed into the parent. */
3580     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3581     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3582       if( isAggSub ){
3583         isAgg = 1;
3584         p->selFlags |= SF_Aggregate;
3585       }
3586       i = -1;
3587     }else{
3588       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3589       assert( pItem->isPopulated==0 );
3590       sqlite3Select(pParse, pSub, &dest);
3591       pItem->isPopulated = 1;
3592     }
3593     if( /*pParse->nErr ||*/ db->mallocFailed ){
3594       goto select_end;
3595     }
3596     pParse->nHeight -= sqlite3SelectExprHeight(p);
3597     pTabList = p->pSrc;
3598     if( !IgnorableOrderby(pDest) ){
3599       pOrderBy = p->pOrderBy;
3600     }
3601   }
3602   pEList = p->pEList;
3603 #endif
3604   pWhere = p->pWhere;
3605   pGroupBy = p->pGroupBy;
3606   pHaving = p->pHaving;
3607   isDistinct = (p->selFlags & SF_Distinct)!=0;
3608 
3609 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3610   /* If there is are a sequence of queries, do the earlier ones first.
3611   */
3612   if( p->pPrior ){
3613     if( p->pRightmost==0 ){
3614       Select *pLoop, *pRight = 0;
3615       int cnt = 0;
3616       int mxSelect;
3617       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3618         pLoop->pRightmost = p;
3619         pLoop->pNext = pRight;
3620         pRight = pLoop;
3621       }
3622       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3623       if( mxSelect && cnt>mxSelect ){
3624         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3625         return 1;
3626       }
3627     }
3628     return multiSelect(pParse, p, pDest);
3629   }
3630 #endif
3631 
3632   /* If writing to memory or generating a set
3633   ** only a single column may be output.
3634   */
3635 #ifndef SQLITE_OMIT_SUBQUERY
3636   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3637     goto select_end;
3638   }
3639 #endif
3640 
3641   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3642   ** GROUP BY might use an index, DISTINCT never does.
3643   */
3644   assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
3645   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
3646     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3647     pGroupBy = p->pGroupBy;
3648     p->selFlags &= ~SF_Distinct;
3649     isDistinct = 0;
3650   }
3651 
3652   /* If there is an ORDER BY clause, then this sorting
3653   ** index might end up being unused if the data can be
3654   ** extracted in pre-sorted order.  If that is the case, then the
3655   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3656   ** we figure out that the sorting index is not needed.  The addrSortIndex
3657   ** variable is used to facilitate that change.
3658   */
3659   if( pOrderBy ){
3660     KeyInfo *pKeyInfo;
3661     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3662     pOrderBy->iECursor = pParse->nTab++;
3663     p->addrOpenEphm[2] = addrSortIndex =
3664       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3665                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3666                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3667   }else{
3668     addrSortIndex = -1;
3669   }
3670 
3671   /* If the output is destined for a temporary table, open that table.
3672   */
3673   if( pDest->eDest==SRT_EphemTab ){
3674     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3675   }
3676 
3677   /* Set the limiter.
3678   */
3679   iEnd = sqlite3VdbeMakeLabel(v);
3680   computeLimitRegisters(pParse, p, iEnd);
3681 
3682   /* Open a virtual index to use for the distinct set.
3683   */
3684   if( isDistinct ){
3685     KeyInfo *pKeyInfo;
3686     assert( isAgg || pGroupBy );
3687     distinct = pParse->nTab++;
3688     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3689     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3690                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3691   }else{
3692     distinct = -1;
3693   }
3694 
3695   /* Aggregate and non-aggregate queries are handled differently */
3696   if( !isAgg && pGroupBy==0 ){
3697     /* This case is for non-aggregate queries
3698     ** Begin the database scan
3699     */
3700     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3701     if( pWInfo==0 ) goto select_end;
3702 
3703     /* If sorting index that was created by a prior OP_OpenEphemeral
3704     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3705     ** into an OP_Noop.
3706     */
3707     if( addrSortIndex>=0 && pOrderBy==0 ){
3708       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3709       p->addrOpenEphm[2] = -1;
3710     }
3711 
3712     /* Use the standard inner loop
3713     */
3714     assert(!isDistinct);
3715     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3716                     pWInfo->iContinue, pWInfo->iBreak);
3717 
3718     /* End the database scan loop.
3719     */
3720     sqlite3WhereEnd(pWInfo);
3721   }else{
3722     /* This is the processing for aggregate queries */
3723     NameContext sNC;    /* Name context for processing aggregate information */
3724     int iAMem;          /* First Mem address for storing current GROUP BY */
3725     int iBMem;          /* First Mem address for previous GROUP BY */
3726     int iUseFlag;       /* Mem address holding flag indicating that at least
3727                         ** one row of the input to the aggregator has been
3728                         ** processed */
3729     int iAbortFlag;     /* Mem address which causes query abort if positive */
3730     int groupBySort;    /* Rows come from source in GROUP BY order */
3731     int addrEnd;        /* End of processing for this SELECT */
3732 
3733     /* Remove any and all aliases between the result set and the
3734     ** GROUP BY clause.
3735     */
3736     if( pGroupBy ){
3737       int k;                        /* Loop counter */
3738       struct ExprList_item *pItem;  /* For looping over expression in a list */
3739 
3740       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3741         pItem->iAlias = 0;
3742       }
3743       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3744         pItem->iAlias = 0;
3745       }
3746     }
3747 
3748 
3749     /* Create a label to jump to when we want to abort the query */
3750     addrEnd = sqlite3VdbeMakeLabel(v);
3751 
3752     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3753     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3754     ** SELECT statement.
3755     */
3756     memset(&sNC, 0, sizeof(sNC));
3757     sNC.pParse = pParse;
3758     sNC.pSrcList = pTabList;
3759     sNC.pAggInfo = &sAggInfo;
3760     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3761     sAggInfo.pGroupBy = pGroupBy;
3762     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3763     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3764     if( pHaving ){
3765       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3766     }
3767     sAggInfo.nAccumulator = sAggInfo.nColumn;
3768     for(i=0; i<sAggInfo.nFunc; i++){
3769       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3770       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3771     }
3772     if( db->mallocFailed ) goto select_end;
3773 
3774     /* Processing for aggregates with GROUP BY is very different and
3775     ** much more complex than aggregates without a GROUP BY.
3776     */
3777     if( pGroupBy ){
3778       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3779       int j1;             /* A-vs-B comparision jump */
3780       int addrOutputRow;  /* Start of subroutine that outputs a result row */
3781       int regOutputRow;   /* Return address register for output subroutine */
3782       int addrSetAbort;   /* Set the abort flag and return */
3783       int addrTopOfLoop;  /* Top of the input loop */
3784       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3785       int addrReset;      /* Subroutine for resetting the accumulator */
3786       int regReset;       /* Return address register for reset subroutine */
3787 
3788       /* If there is a GROUP BY clause we might need a sorting index to
3789       ** implement it.  Allocate that sorting index now.  If it turns out
3790       ** that we do not need it after all, the OpenEphemeral instruction
3791       ** will be converted into a Noop.
3792       */
3793       sAggInfo.sortingIdx = pParse->nTab++;
3794       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3795       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3796           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3797           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3798 
3799       /* Initialize memory locations used by GROUP BY aggregate processing
3800       */
3801       iUseFlag = ++pParse->nMem;
3802       iAbortFlag = ++pParse->nMem;
3803       regOutputRow = ++pParse->nMem;
3804       addrOutputRow = sqlite3VdbeMakeLabel(v);
3805       regReset = ++pParse->nMem;
3806       addrReset = sqlite3VdbeMakeLabel(v);
3807       iAMem = pParse->nMem + 1;
3808       pParse->nMem += pGroupBy->nExpr;
3809       iBMem = pParse->nMem + 1;
3810       pParse->nMem += pGroupBy->nExpr;
3811       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3812       VdbeComment((v, "clear abort flag"));
3813       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3814       VdbeComment((v, "indicate accumulator empty"));
3815 
3816       /* Begin a loop that will extract all source rows in GROUP BY order.
3817       ** This might involve two separate loops with an OP_Sort in between, or
3818       ** it might be a single loop that uses an index to extract information
3819       ** in the right order to begin with.
3820       */
3821       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3822       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3823       if( pWInfo==0 ) goto select_end;
3824       if( pGroupBy==0 ){
3825         /* The optimizer is able to deliver rows in group by order so
3826         ** we do not have to sort.  The OP_OpenEphemeral table will be
3827         ** cancelled later because we still need to use the pKeyInfo
3828         */
3829         pGroupBy = p->pGroupBy;
3830         groupBySort = 0;
3831       }else{
3832         /* Rows are coming out in undetermined order.  We have to push
3833         ** each row into a sorting index, terminate the first loop,
3834         ** then loop over the sorting index in order to get the output
3835         ** in sorted order
3836         */
3837         int regBase;
3838         int regRecord;
3839         int nCol;
3840         int nGroupBy;
3841 
3842         groupBySort = 1;
3843         nGroupBy = pGroupBy->nExpr;
3844         nCol = nGroupBy + 1;
3845         j = nGroupBy+1;
3846         for(i=0; i<sAggInfo.nColumn; i++){
3847           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3848             nCol++;
3849             j++;
3850           }
3851         }
3852         regBase = sqlite3GetTempRange(pParse, nCol);
3853         sqlite3ExprCacheClear(pParse);
3854         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3855         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3856         j = nGroupBy+1;
3857         for(i=0; i<sAggInfo.nColumn; i++){
3858           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3859           if( pCol->iSorterColumn>=j ){
3860             int r1 = j + regBase;
3861             int r2;
3862 
3863             r2 = sqlite3ExprCodeGetColumn(pParse,
3864                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
3865             if( r1!=r2 ){
3866               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3867             }
3868             j++;
3869           }
3870         }
3871         regRecord = sqlite3GetTempReg(pParse);
3872         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3873         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3874         sqlite3ReleaseTempReg(pParse, regRecord);
3875         sqlite3ReleaseTempRange(pParse, regBase, nCol);
3876         sqlite3WhereEnd(pWInfo);
3877         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3878         VdbeComment((v, "GROUP BY sort"));
3879         sAggInfo.useSortingIdx = 1;
3880         sqlite3ExprCacheClear(pParse);
3881       }
3882 
3883       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3884       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3885       ** Then compare the current GROUP BY terms against the GROUP BY terms
3886       ** from the previous row currently stored in a0, a1, a2...
3887       */
3888       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3889       sqlite3ExprCacheClear(pParse);
3890       for(j=0; j<pGroupBy->nExpr; j++){
3891         if( groupBySort ){
3892           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3893         }else{
3894           sAggInfo.directMode = 1;
3895           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3896         }
3897       }
3898       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3899                           (char*)pKeyInfo, P4_KEYINFO);
3900       j1 = sqlite3VdbeCurrentAddr(v);
3901       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3902 
3903       /* Generate code that runs whenever the GROUP BY changes.
3904       ** Changes in the GROUP BY are detected by the previous code
3905       ** block.  If there were no changes, this block is skipped.
3906       **
3907       ** This code copies current group by terms in b0,b1,b2,...
3908       ** over to a0,a1,a2.  It then calls the output subroutine
3909       ** and resets the aggregate accumulator registers in preparation
3910       ** for the next GROUP BY batch.
3911       */
3912       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3913       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3914       VdbeComment((v, "output one row"));
3915       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3916       VdbeComment((v, "check abort flag"));
3917       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3918       VdbeComment((v, "reset accumulator"));
3919 
3920       /* Update the aggregate accumulators based on the content of
3921       ** the current row
3922       */
3923       sqlite3VdbeJumpHere(v, j1);
3924       updateAccumulator(pParse, &sAggInfo);
3925       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
3926       VdbeComment((v, "indicate data in accumulator"));
3927 
3928       /* End of the loop
3929       */
3930       if( groupBySort ){
3931         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3932       }else{
3933         sqlite3WhereEnd(pWInfo);
3934         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3935       }
3936 
3937       /* Output the final row of result
3938       */
3939       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3940       VdbeComment((v, "output final row"));
3941 
3942       /* Jump over the subroutines
3943       */
3944       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
3945 
3946       /* Generate a subroutine that outputs a single row of the result
3947       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3948       ** is less than or equal to zero, the subroutine is a no-op.  If
3949       ** the processing calls for the query to abort, this subroutine
3950       ** increments the iAbortFlag memory location before returning in
3951       ** order to signal the caller to abort.
3952       */
3953       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3954       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
3955       VdbeComment((v, "set abort flag"));
3956       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3957       sqlite3VdbeResolveLabel(v, addrOutputRow);
3958       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3959       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
3960       VdbeComment((v, "Groupby result generator entry point"));
3961       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3962       finalizeAggFunctions(pParse, &sAggInfo);
3963       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
3964       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3965                       distinct, pDest,
3966                       addrOutputRow+1, addrSetAbort);
3967       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3968       VdbeComment((v, "end groupby result generator"));
3969 
3970       /* Generate a subroutine that will reset the group-by accumulator
3971       */
3972       sqlite3VdbeResolveLabel(v, addrReset);
3973       resetAccumulator(pParse, &sAggInfo);
3974       sqlite3VdbeAddOp1(v, OP_Return, regReset);
3975 
3976     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
3977     else {
3978       ExprList *pDel = 0;
3979 #ifndef SQLITE_OMIT_BTREECOUNT
3980       Table *pTab;
3981       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
3982         /* If isSimpleCount() returns a pointer to a Table structure, then
3983         ** the SQL statement is of the form:
3984         **
3985         **   SELECT count(*) FROM <tbl>
3986         **
3987         ** where the Table structure returned represents table <tbl>.
3988         **
3989         ** This statement is so common that it is optimized specially. The
3990         ** OP_Count instruction is executed either on the intkey table that
3991         ** contains the data for table <tbl> or on one of its indexes. It
3992         ** is better to execute the op on an index, as indexes are almost
3993         ** always spread across less pages than their corresponding tables.
3994         */
3995         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3996         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
3997         Index *pIdx;                         /* Iterator variable */
3998         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
3999         Index *pBest = 0;                    /* Best index found so far */
4000         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4001 
4002         sqlite3CodeVerifySchema(pParse, iDb);
4003         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4004 
4005         /* Search for the index that has the least amount of columns. If
4006         ** there is such an index, and it has less columns than the table
4007         ** does, then we can assume that it consumes less space on disk and
4008         ** will therefore be cheaper to scan to determine the query result.
4009         ** In this case set iRoot to the root page number of the index b-tree
4010         ** and pKeyInfo to the KeyInfo structure required to navigate the
4011         ** index.
4012         **
4013         ** In practice the KeyInfo structure will not be used. It is only
4014         ** passed to keep OP_OpenRead happy.
4015         */
4016         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4017           if( !pBest || pIdx->nColumn<pBest->nColumn ){
4018             pBest = pIdx;
4019           }
4020         }
4021         if( pBest && pBest->nColumn<pTab->nCol ){
4022           iRoot = pBest->tnum;
4023           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4024         }
4025 
4026         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4027         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4028         if( pKeyInfo ){
4029           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4030         }
4031         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4032         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4033       }else
4034 #endif /* SQLITE_OMIT_BTREECOUNT */
4035       {
4036         /* Check if the query is of one of the following forms:
4037         **
4038         **   SELECT min(x) FROM ...
4039         **   SELECT max(x) FROM ...
4040         **
4041         ** If it is, then ask the code in where.c to attempt to sort results
4042         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4043         ** If where.c is able to produce results sorted in this order, then
4044         ** add vdbe code to break out of the processing loop after the
4045         ** first iteration (since the first iteration of the loop is
4046         ** guaranteed to operate on the row with the minimum or maximum
4047         ** value of x, the only row required).
4048         **
4049         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4050         ** modify behaviour as follows:
4051         **
4052         **   + If the query is a "SELECT min(x)", then the loop coded by
4053         **     where.c should not iterate over any values with a NULL value
4054         **     for x.
4055         **
4056         **   + The optimizer code in where.c (the thing that decides which
4057         **     index or indices to use) should place a different priority on
4058         **     satisfying the 'ORDER BY' clause than it does in other cases.
4059         **     Refer to code and comments in where.c for details.
4060         */
4061         ExprList *pMinMax = 0;
4062         u8 flag = minMaxQuery(p);
4063         if( flag ){
4064           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4065           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4066           pDel = pMinMax;
4067           if( pMinMax && !db->mallocFailed ){
4068             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4069             pMinMax->a[0].pExpr->op = TK_COLUMN;
4070           }
4071         }
4072 
4073         /* This case runs if the aggregate has no GROUP BY clause.  The
4074         ** processing is much simpler since there is only a single row
4075         ** of output.
4076         */
4077         resetAccumulator(pParse, &sAggInfo);
4078         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4079         if( pWInfo==0 ){
4080           sqlite3ExprListDelete(db, pDel);
4081           goto select_end;
4082         }
4083         updateAccumulator(pParse, &sAggInfo);
4084         if( !pMinMax && flag ){
4085           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4086           VdbeComment((v, "%s() by index",
4087                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4088         }
4089         sqlite3WhereEnd(pWInfo);
4090         finalizeAggFunctions(pParse, &sAggInfo);
4091       }
4092 
4093       pOrderBy = 0;
4094       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4095       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4096                       pDest, addrEnd, addrEnd);
4097       sqlite3ExprListDelete(db, pDel);
4098     }
4099     sqlite3VdbeResolveLabel(v, addrEnd);
4100 
4101   } /* endif aggregate query */
4102 
4103   /* If there is an ORDER BY clause, then we need to sort the results
4104   ** and send them to the callback one by one.
4105   */
4106   if( pOrderBy ){
4107     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4108   }
4109 
4110   /* Jump here to skip this query
4111   */
4112   sqlite3VdbeResolveLabel(v, iEnd);
4113 
4114   /* The SELECT was successfully coded.   Set the return code to 0
4115   ** to indicate no errors.
4116   */
4117   rc = 0;
4118 
4119   /* Control jumps to here if an error is encountered above, or upon
4120   ** successful coding of the SELECT.
4121   */
4122 select_end:
4123 
4124   /* Identify column names if results of the SELECT are to be output.
4125   */
4126   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4127     generateColumnNames(pParse, pTabList, pEList);
4128   }
4129 
4130   sqlite3DbFree(db, sAggInfo.aCol);
4131   sqlite3DbFree(db, sAggInfo.aFunc);
4132   return rc;
4133 }
4134 
4135 #if defined(SQLITE_DEBUG)
4136 /*
4137 *******************************************************************************
4138 ** The following code is used for testing and debugging only.  The code
4139 ** that follows does not appear in normal builds.
4140 **
4141 ** These routines are used to print out the content of all or part of a
4142 ** parse structures such as Select or Expr.  Such printouts are useful
4143 ** for helping to understand what is happening inside the code generator
4144 ** during the execution of complex SELECT statements.
4145 **
4146 ** These routine are not called anywhere from within the normal
4147 ** code base.  Then are intended to be called from within the debugger
4148 ** or from temporary "printf" statements inserted for debugging.
4149 */
4150 void sqlite3PrintExpr(Expr *p){
4151   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
4152     sqlite3DebugPrintf("(%s", p->u.zToken);
4153   }else{
4154     sqlite3DebugPrintf("(%d", p->op);
4155   }
4156   if( p->pLeft ){
4157     sqlite3DebugPrintf(" ");
4158     sqlite3PrintExpr(p->pLeft);
4159   }
4160   if( p->pRight ){
4161     sqlite3DebugPrintf(" ");
4162     sqlite3PrintExpr(p->pRight);
4163   }
4164   sqlite3DebugPrintf(")");
4165 }
4166 void sqlite3PrintExprList(ExprList *pList){
4167   int i;
4168   for(i=0; i<pList->nExpr; i++){
4169     sqlite3PrintExpr(pList->a[i].pExpr);
4170     if( i<pList->nExpr-1 ){
4171       sqlite3DebugPrintf(", ");
4172     }
4173   }
4174 }
4175 void sqlite3PrintSelect(Select *p, int indent){
4176   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4177   sqlite3PrintExprList(p->pEList);
4178   sqlite3DebugPrintf("\n");
4179   if( p->pSrc ){
4180     char *zPrefix;
4181     int i;
4182     zPrefix = "FROM";
4183     for(i=0; i<p->pSrc->nSrc; i++){
4184       struct SrcList_item *pItem = &p->pSrc->a[i];
4185       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4186       zPrefix = "";
4187       if( pItem->pSelect ){
4188         sqlite3DebugPrintf("(\n");
4189         sqlite3PrintSelect(pItem->pSelect, indent+10);
4190         sqlite3DebugPrintf("%*s)", indent+8, "");
4191       }else if( pItem->zName ){
4192         sqlite3DebugPrintf("%s", pItem->zName);
4193       }
4194       if( pItem->pTab ){
4195         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4196       }
4197       if( pItem->zAlias ){
4198         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4199       }
4200       if( i<p->pSrc->nSrc-1 ){
4201         sqlite3DebugPrintf(",");
4202       }
4203       sqlite3DebugPrintf("\n");
4204     }
4205   }
4206   if( p->pWhere ){
4207     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4208     sqlite3PrintExpr(p->pWhere);
4209     sqlite3DebugPrintf("\n");
4210   }
4211   if( p->pGroupBy ){
4212     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4213     sqlite3PrintExprList(p->pGroupBy);
4214     sqlite3DebugPrintf("\n");
4215   }
4216   if( p->pHaving ){
4217     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4218     sqlite3PrintExpr(p->pHaving);
4219     sqlite3DebugPrintf("\n");
4220   }
4221   if( p->pOrderBy ){
4222     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4223     sqlite3PrintExprList(p->pOrderBy);
4224     sqlite3DebugPrintf("\n");
4225   }
4226 }
4227 /* End of the structure debug printing code
4228 *****************************************************************************/
4229 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4230