xref: /sqlite-3.40.0/src/select.c (revision 5313f2e1)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 };
60 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
61 
62 /*
63 ** Delete all the content of a Select structure.  Deallocate the structure
64 ** itself only if bFree is true.
65 */
66 static void clearSelect(sqlite3 *db, Select *p, int bFree){
67   while( p ){
68     Select *pPrior = p->pPrior;
69     sqlite3ExprListDelete(db, p->pEList);
70     sqlite3SrcListDelete(db, p->pSrc);
71     sqlite3ExprDelete(db, p->pWhere);
72     sqlite3ExprListDelete(db, p->pGroupBy);
73     sqlite3ExprDelete(db, p->pHaving);
74     sqlite3ExprListDelete(db, p->pOrderBy);
75     sqlite3ExprDelete(db, p->pLimit);
76     sqlite3ExprDelete(db, p->pOffset);
77     if( p->pWith ) sqlite3WithDelete(db, p->pWith);
78     if( bFree ) sqlite3DbFree(db, p);
79     p = pPrior;
80     bFree = 1;
81   }
82 }
83 
84 /*
85 ** Initialize a SelectDest structure.
86 */
87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
88   pDest->eDest = (u8)eDest;
89   pDest->iSDParm = iParm;
90   pDest->affSdst = 0;
91   pDest->iSdst = 0;
92   pDest->nSdst = 0;
93 }
94 
95 
96 /*
97 ** Allocate a new Select structure and return a pointer to that
98 ** structure.
99 */
100 Select *sqlite3SelectNew(
101   Parse *pParse,        /* Parsing context */
102   ExprList *pEList,     /* which columns to include in the result */
103   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
104   Expr *pWhere,         /* the WHERE clause */
105   ExprList *pGroupBy,   /* the GROUP BY clause */
106   Expr *pHaving,        /* the HAVING clause */
107   ExprList *pOrderBy,   /* the ORDER BY clause */
108   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
109   Expr *pLimit,         /* LIMIT value.  NULL means not used */
110   Expr *pOffset         /* OFFSET value.  NULL means no offset */
111 ){
112   Select *pNew;
113   Select standin;
114   sqlite3 *db = pParse->db;
115   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
116   if( pNew==0 ){
117     assert( db->mallocFailed );
118     pNew = &standin;
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
122   }
123   pNew->pEList = pEList;
124   pNew->op = TK_SELECT;
125   pNew->selFlags = selFlags;
126   pNew->iLimit = 0;
127   pNew->iOffset = 0;
128 #if SELECTTRACE_ENABLED
129   pNew->zSelName[0] = 0;
130 #endif
131   pNew->addrOpenEphm[0] = -1;
132   pNew->addrOpenEphm[1] = -1;
133   pNew->nSelectRow = 0;
134   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
135   pNew->pSrc = pSrc;
136   pNew->pWhere = pWhere;
137   pNew->pGroupBy = pGroupBy;
138   pNew->pHaving = pHaving;
139   pNew->pOrderBy = pOrderBy;
140   pNew->pPrior = 0;
141   pNew->pNext = 0;
142   pNew->pLimit = pLimit;
143   pNew->pOffset = pOffset;
144   pNew->pWith = 0;
145   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
146   if( db->mallocFailed ) {
147     clearSelect(db, pNew, pNew!=&standin);
148     pNew = 0;
149   }else{
150     assert( pNew->pSrc!=0 || pParse->nErr>0 );
151   }
152   assert( pNew!=&standin );
153   return pNew;
154 }
155 
156 #if SELECTTRACE_ENABLED
157 /*
158 ** Set the name of a Select object
159 */
160 void sqlite3SelectSetName(Select *p, const char *zName){
161   if( p && zName ){
162     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
163   }
164 }
165 #endif
166 
167 
168 /*
169 ** Delete the given Select structure and all of its substructures.
170 */
171 void sqlite3SelectDelete(sqlite3 *db, Select *p){
172   if( p ) clearSelect(db, p, 1);
173 }
174 
175 /*
176 ** Return a pointer to the right-most SELECT statement in a compound.
177 */
178 static Select *findRightmost(Select *p){
179   while( p->pNext ) p = p->pNext;
180   return p;
181 }
182 
183 /*
184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
185 ** type of join.  Return an integer constant that expresses that type
186 ** in terms of the following bit values:
187 **
188 **     JT_INNER
189 **     JT_CROSS
190 **     JT_OUTER
191 **     JT_NATURAL
192 **     JT_LEFT
193 **     JT_RIGHT
194 **
195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
196 **
197 ** If an illegal or unsupported join type is seen, then still return
198 ** a join type, but put an error in the pParse structure.
199 */
200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
201   int jointype = 0;
202   Token *apAll[3];
203   Token *p;
204                              /*   0123456789 123456789 123456789 123 */
205   static const char zKeyText[] = "naturaleftouterightfullinnercross";
206   static const struct {
207     u8 i;        /* Beginning of keyword text in zKeyText[] */
208     u8 nChar;    /* Length of the keyword in characters */
209     u8 code;     /* Join type mask */
210   } aKeyword[] = {
211     /* natural */ { 0,  7, JT_NATURAL                },
212     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
213     /* outer   */ { 10, 5, JT_OUTER                  },
214     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
215     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
216     /* inner   */ { 23, 5, JT_INNER                  },
217     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
218   };
219   int i, j;
220   apAll[0] = pA;
221   apAll[1] = pB;
222   apAll[2] = pC;
223   for(i=0; i<3 && apAll[i]; i++){
224     p = apAll[i];
225     for(j=0; j<ArraySize(aKeyword); j++){
226       if( p->n==aKeyword[j].nChar
227           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
228         jointype |= aKeyword[j].code;
229         break;
230       }
231     }
232     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
233     if( j>=ArraySize(aKeyword) ){
234       jointype |= JT_ERROR;
235       break;
236     }
237   }
238   if(
239      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
240      (jointype & JT_ERROR)!=0
241   ){
242     const char *zSp = " ";
243     assert( pB!=0 );
244     if( pC==0 ){ zSp++; }
245     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
246        "%T %T%s%T", pA, pB, zSp, pC);
247     jointype = JT_INNER;
248   }else if( (jointype & JT_OUTER)!=0
249          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
250     sqlite3ErrorMsg(pParse,
251       "RIGHT and FULL OUTER JOINs are not currently supported");
252     jointype = JT_INNER;
253   }
254   return jointype;
255 }
256 
257 /*
258 ** Return the index of a column in a table.  Return -1 if the column
259 ** is not contained in the table.
260 */
261 static int columnIndex(Table *pTab, const char *zCol){
262   int i;
263   for(i=0; i<pTab->nCol; i++){
264     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
265   }
266   return -1;
267 }
268 
269 /*
270 ** Search the first N tables in pSrc, from left to right, looking for a
271 ** table that has a column named zCol.
272 **
273 ** When found, set *piTab and *piCol to the table index and column index
274 ** of the matching column and return TRUE.
275 **
276 ** If not found, return FALSE.
277 */
278 static int tableAndColumnIndex(
279   SrcList *pSrc,       /* Array of tables to search */
280   int N,               /* Number of tables in pSrc->a[] to search */
281   const char *zCol,    /* Name of the column we are looking for */
282   int *piTab,          /* Write index of pSrc->a[] here */
283   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
284 ){
285   int i;               /* For looping over tables in pSrc */
286   int iCol;            /* Index of column matching zCol */
287 
288   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
289   for(i=0; i<N; i++){
290     iCol = columnIndex(pSrc->a[i].pTab, zCol);
291     if( iCol>=0 ){
292       if( piTab ){
293         *piTab = i;
294         *piCol = iCol;
295       }
296       return 1;
297     }
298   }
299   return 0;
300 }
301 
302 /*
303 ** This function is used to add terms implied by JOIN syntax to the
304 ** WHERE clause expression of a SELECT statement. The new term, which
305 ** is ANDed with the existing WHERE clause, is of the form:
306 **
307 **    (tab1.col1 = tab2.col2)
308 **
309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
311 ** column iColRight of tab2.
312 */
313 static void addWhereTerm(
314   Parse *pParse,                  /* Parsing context */
315   SrcList *pSrc,                  /* List of tables in FROM clause */
316   int iLeft,                      /* Index of first table to join in pSrc */
317   int iColLeft,                   /* Index of column in first table */
318   int iRight,                     /* Index of second table in pSrc */
319   int iColRight,                  /* Index of column in second table */
320   int isOuterJoin,                /* True if this is an OUTER join */
321   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
322 ){
323   sqlite3 *db = pParse->db;
324   Expr *pE1;
325   Expr *pE2;
326   Expr *pEq;
327 
328   assert( iLeft<iRight );
329   assert( pSrc->nSrc>iRight );
330   assert( pSrc->a[iLeft].pTab );
331   assert( pSrc->a[iRight].pTab );
332 
333   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
334   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
335 
336   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
337   if( pEq && isOuterJoin ){
338     ExprSetProperty(pEq, EP_FromJoin);
339     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(pEq, EP_NoReduce);
341     pEq->iRightJoinTable = (i16)pE2->iTable;
342   }
343   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
344 }
345 
346 /*
347 ** Set the EP_FromJoin property on all terms of the given expression.
348 ** And set the Expr.iRightJoinTable to iTable for every term in the
349 ** expression.
350 **
351 ** The EP_FromJoin property is used on terms of an expression to tell
352 ** the LEFT OUTER JOIN processing logic that this term is part of the
353 ** join restriction specified in the ON or USING clause and not a part
354 ** of the more general WHERE clause.  These terms are moved over to the
355 ** WHERE clause during join processing but we need to remember that they
356 ** originated in the ON or USING clause.
357 **
358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
359 ** expression depends on table iRightJoinTable even if that table is not
360 ** explicitly mentioned in the expression.  That information is needed
361 ** for cases like this:
362 **
363 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
364 **
365 ** The where clause needs to defer the handling of the t1.x=5
366 ** term until after the t2 loop of the join.  In that way, a
367 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
368 ** defer the handling of t1.x=5, it will be processed immediately
369 ** after the t1 loop and rows with t1.x!=5 will never appear in
370 ** the output, which is incorrect.
371 */
372 static void setJoinExpr(Expr *p, int iTable){
373   while( p ){
374     ExprSetProperty(p, EP_FromJoin);
375     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
376     ExprSetVVAProperty(p, EP_NoReduce);
377     p->iRightJoinTable = (i16)iTable;
378     if( p->op==TK_FUNCTION && p->x.pList ){
379       int i;
380       for(i=0; i<p->x.pList->nExpr; i++){
381         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
382       }
383     }
384     setJoinExpr(p->pLeft, iTable);
385     p = p->pRight;
386   }
387 }
388 
389 /*
390 ** This routine processes the join information for a SELECT statement.
391 ** ON and USING clauses are converted into extra terms of the WHERE clause.
392 ** NATURAL joins also create extra WHERE clause terms.
393 **
394 ** The terms of a FROM clause are contained in the Select.pSrc structure.
395 ** The left most table is the first entry in Select.pSrc.  The right-most
396 ** table is the last entry.  The join operator is held in the entry to
397 ** the left.  Thus entry 0 contains the join operator for the join between
398 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
399 ** also attached to the left entry.
400 **
401 ** This routine returns the number of errors encountered.
402 */
403 static int sqliteProcessJoin(Parse *pParse, Select *p){
404   SrcList *pSrc;                  /* All tables in the FROM clause */
405   int i, j;                       /* Loop counters */
406   struct SrcList_item *pLeft;     /* Left table being joined */
407   struct SrcList_item *pRight;    /* Right table being joined */
408 
409   pSrc = p->pSrc;
410   pLeft = &pSrc->a[0];
411   pRight = &pLeft[1];
412   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
413     Table *pLeftTab = pLeft->pTab;
414     Table *pRightTab = pRight->pTab;
415     int isOuter;
416 
417     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
418     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
419 
420     /* When the NATURAL keyword is present, add WHERE clause terms for
421     ** every column that the two tables have in common.
422     */
423     if( pRight->fg.jointype & JT_NATURAL ){
424       if( pRight->pOn || pRight->pUsing ){
425         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
426            "an ON or USING clause", 0);
427         return 1;
428       }
429       for(j=0; j<pRightTab->nCol; j++){
430         char *zName;   /* Name of column in the right table */
431         int iLeft;     /* Matching left table */
432         int iLeftCol;  /* Matching column in the left table */
433 
434         zName = pRightTab->aCol[j].zName;
435         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
436           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
437                        isOuter, &p->pWhere);
438         }
439       }
440     }
441 
442     /* Disallow both ON and USING clauses in the same join
443     */
444     if( pRight->pOn && pRight->pUsing ){
445       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
446         "clauses in the same join");
447       return 1;
448     }
449 
450     /* Add the ON clause to the end of the WHERE clause, connected by
451     ** an AND operator.
452     */
453     if( pRight->pOn ){
454       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
455       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
456       pRight->pOn = 0;
457     }
458 
459     /* Create extra terms on the WHERE clause for each column named
460     ** in the USING clause.  Example: If the two tables to be joined are
461     ** A and B and the USING clause names X, Y, and Z, then add this
462     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
463     ** Report an error if any column mentioned in the USING clause is
464     ** not contained in both tables to be joined.
465     */
466     if( pRight->pUsing ){
467       IdList *pList = pRight->pUsing;
468       for(j=0; j<pList->nId; j++){
469         char *zName;     /* Name of the term in the USING clause */
470         int iLeft;       /* Table on the left with matching column name */
471         int iLeftCol;    /* Column number of matching column on the left */
472         int iRightCol;   /* Column number of matching column on the right */
473 
474         zName = pList->a[j].zName;
475         iRightCol = columnIndex(pRightTab, zName);
476         if( iRightCol<0
477          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
478         ){
479           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
480             "not present in both tables", zName);
481           return 1;
482         }
483         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
484                      isOuter, &p->pWhere);
485       }
486     }
487   }
488   return 0;
489 }
490 
491 /* Forward reference */
492 static KeyInfo *keyInfoFromExprList(
493   Parse *pParse,       /* Parsing context */
494   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
495   int iStart,          /* Begin with this column of pList */
496   int nExtra           /* Add this many extra columns to the end */
497 );
498 
499 /*
500 ** Generate code that will push the record in registers regData
501 ** through regData+nData-1 onto the sorter.
502 */
503 static void pushOntoSorter(
504   Parse *pParse,         /* Parser context */
505   SortCtx *pSort,        /* Information about the ORDER BY clause */
506   Select *pSelect,       /* The whole SELECT statement */
507   int regData,           /* First register holding data to be sorted */
508   int regOrigData,       /* First register holding data before packing */
509   int nData,             /* Number of elements in the data array */
510   int nPrefixReg         /* No. of reg prior to regData available for use */
511 ){
512   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
513   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
514   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
515   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
516   int regBase;                                     /* Regs for sorter record */
517   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
518   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
519   int op;                            /* Opcode to add sorter record to sorter */
520   int iLimit;                        /* LIMIT counter */
521 
522   assert( bSeq==0 || bSeq==1 );
523   assert( nData==1 || regData==regOrigData );
524   if( nPrefixReg ){
525     assert( nPrefixReg==nExpr+bSeq );
526     regBase = regData - nExpr - bSeq;
527   }else{
528     regBase = pParse->nMem + 1;
529     pParse->nMem += nBase;
530   }
531   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
532   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
533   pSort->labelDone = sqlite3VdbeMakeLabel(v);
534   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
535                           SQLITE_ECEL_DUP|SQLITE_ECEL_REF);
536   if( bSeq ){
537     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
538   }
539   if( nPrefixReg==0 ){
540     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
541   }
542   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
543   if( nOBSat>0 ){
544     int regPrevKey;   /* The first nOBSat columns of the previous row */
545     int addrFirst;    /* Address of the OP_IfNot opcode */
546     int addrJmp;      /* Address of the OP_Jump opcode */
547     VdbeOp *pOp;      /* Opcode that opens the sorter */
548     int nKey;         /* Number of sorting key columns, including OP_Sequence */
549     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
550 
551     regPrevKey = pParse->nMem+1;
552     pParse->nMem += pSort->nOBSat;
553     nKey = nExpr - pSort->nOBSat + bSeq;
554     if( bSeq ){
555       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
556     }else{
557       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
558     }
559     VdbeCoverage(v);
560     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
561     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
562     if( pParse->db->mallocFailed ) return;
563     pOp->p2 = nKey + nData;
564     pKI = pOp->p4.pKeyInfo;
565     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
566     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
567     testcase( pKI->nXField>2 );
568     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
569                                            pKI->nXField-1);
570     addrJmp = sqlite3VdbeCurrentAddr(v);
571     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
572     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
573     pSort->regReturn = ++pParse->nMem;
574     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
575     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
576     if( iLimit ){
577       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
578       VdbeCoverage(v);
579     }
580     sqlite3VdbeJumpHere(v, addrFirst);
581     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
582     sqlite3VdbeJumpHere(v, addrJmp);
583   }
584   if( pSort->sortFlags & SORTFLAG_UseSorter ){
585     op = OP_SorterInsert;
586   }else{
587     op = OP_IdxInsert;
588   }
589   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
590   if( iLimit ){
591     int addr;
592     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v);
593     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
594     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
595     sqlite3VdbeJumpHere(v, addr);
596   }
597 }
598 
599 /*
600 ** Add code to implement the OFFSET
601 */
602 static void codeOffset(
603   Vdbe *v,          /* Generate code into this VM */
604   int iOffset,      /* Register holding the offset counter */
605   int iContinue     /* Jump here to skip the current record */
606 ){
607   if( iOffset>0 ){
608     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
609     VdbeComment((v, "OFFSET"));
610   }
611 }
612 
613 /*
614 ** Add code that will check to make sure the N registers starting at iMem
615 ** form a distinct entry.  iTab is a sorting index that holds previously
616 ** seen combinations of the N values.  A new entry is made in iTab
617 ** if the current N values are new.
618 **
619 ** A jump to addrRepeat is made and the N+1 values are popped from the
620 ** stack if the top N elements are not distinct.
621 */
622 static void codeDistinct(
623   Parse *pParse,     /* Parsing and code generating context */
624   int iTab,          /* A sorting index used to test for distinctness */
625   int addrRepeat,    /* Jump to here if not distinct */
626   int N,             /* Number of elements */
627   int iMem           /* First element */
628 ){
629   Vdbe *v;
630   int r1;
631 
632   v = pParse->pVdbe;
633   r1 = sqlite3GetTempReg(pParse);
634   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
635   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
636   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
637   sqlite3ReleaseTempReg(pParse, r1);
638 }
639 
640 #ifndef SQLITE_OMIT_SUBQUERY
641 /*
642 ** Generate an error message when a SELECT is used within a subexpression
643 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
644 ** column.  We do this in a subroutine because the error used to occur
645 ** in multiple places.  (The error only occurs in one place now, but we
646 ** retain the subroutine to minimize code disruption.)
647 */
648 static int checkForMultiColumnSelectError(
649   Parse *pParse,       /* Parse context. */
650   SelectDest *pDest,   /* Destination of SELECT results */
651   int nExpr            /* Number of result columns returned by SELECT */
652 ){
653   int eDest = pDest->eDest;
654   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
655     sqlite3ErrorMsg(pParse, "only a single result allowed for "
656        "a SELECT that is part of an expression");
657     return 1;
658   }else{
659     return 0;
660   }
661 }
662 #endif
663 
664 /*
665 ** This routine generates the code for the inside of the inner loop
666 ** of a SELECT.
667 **
668 ** If srcTab is negative, then the pEList expressions
669 ** are evaluated in order to get the data for this row.  If srcTab is
670 ** zero or more, then data is pulled from srcTab and pEList is used only
671 ** to get number columns and the datatype for each column.
672 */
673 static void selectInnerLoop(
674   Parse *pParse,          /* The parser context */
675   Select *p,              /* The complete select statement being coded */
676   ExprList *pEList,       /* List of values being extracted */
677   int srcTab,             /* Pull data from this table */
678   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
679   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
680   SelectDest *pDest,      /* How to dispose of the results */
681   int iContinue,          /* Jump here to continue with next row */
682   int iBreak              /* Jump here to break out of the inner loop */
683 ){
684   Vdbe *v = pParse->pVdbe;
685   int i;
686   int hasDistinct;        /* True if the DISTINCT keyword is present */
687   int regResult;              /* Start of memory holding result set */
688   int eDest = pDest->eDest;   /* How to dispose of results */
689   int iParm = pDest->iSDParm; /* First argument to disposal method */
690   int nResultCol;             /* Number of result columns */
691   int nPrefixReg = 0;         /* Number of extra registers before regResult */
692 
693   assert( v );
694   assert( pEList!=0 );
695   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
696   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
697   if( pSort==0 && !hasDistinct ){
698     assert( iContinue!=0 );
699     codeOffset(v, p->iOffset, iContinue);
700   }
701 
702   /* Pull the requested columns.
703   */
704   nResultCol = pEList->nExpr;
705 
706   if( pDest->iSdst==0 ){
707     if( pSort ){
708       nPrefixReg = pSort->pOrderBy->nExpr;
709       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
710       pParse->nMem += nPrefixReg;
711     }
712     pDest->iSdst = pParse->nMem+1;
713     pParse->nMem += nResultCol;
714   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
715     /* This is an error condition that can result, for example, when a SELECT
716     ** on the right-hand side of an INSERT contains more result columns than
717     ** there are columns in the table on the left.  The error will be caught
718     ** and reported later.  But we need to make sure enough memory is allocated
719     ** to avoid other spurious errors in the meantime. */
720     pParse->nMem += nResultCol;
721   }
722   pDest->nSdst = nResultCol;
723   regResult = pDest->iSdst;
724   if( srcTab>=0 ){
725     for(i=0; i<nResultCol; i++){
726       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
727       VdbeComment((v, "%s", pEList->a[i].zName));
728     }
729   }else if( eDest!=SRT_Exists ){
730     /* If the destination is an EXISTS(...) expression, the actual
731     ** values returned by the SELECT are not required.
732     */
733     u8 ecelFlags;
734     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
735       ecelFlags = SQLITE_ECEL_DUP;
736     }else{
737       ecelFlags = 0;
738     }
739     sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags);
740   }
741 
742   /* If the DISTINCT keyword was present on the SELECT statement
743   ** and this row has been seen before, then do not make this row
744   ** part of the result.
745   */
746   if( hasDistinct ){
747     switch( pDistinct->eTnctType ){
748       case WHERE_DISTINCT_ORDERED: {
749         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
750         int iJump;              /* Jump destination */
751         int regPrev;            /* Previous row content */
752 
753         /* Allocate space for the previous row */
754         regPrev = pParse->nMem+1;
755         pParse->nMem += nResultCol;
756 
757         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
758         ** sets the MEM_Cleared bit on the first register of the
759         ** previous value.  This will cause the OP_Ne below to always
760         ** fail on the first iteration of the loop even if the first
761         ** row is all NULLs.
762         */
763         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
764         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
765         pOp->opcode = OP_Null;
766         pOp->p1 = 1;
767         pOp->p2 = regPrev;
768 
769         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
770         for(i=0; i<nResultCol; i++){
771           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
772           if( i<nResultCol-1 ){
773             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
774             VdbeCoverage(v);
775           }else{
776             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
777             VdbeCoverage(v);
778            }
779           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
780           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
781         }
782         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
783         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
784         break;
785       }
786 
787       case WHERE_DISTINCT_UNIQUE: {
788         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
789         break;
790       }
791 
792       default: {
793         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
794         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
795                      regResult);
796         break;
797       }
798     }
799     if( pSort==0 ){
800       codeOffset(v, p->iOffset, iContinue);
801     }
802   }
803 
804   switch( eDest ){
805     /* In this mode, write each query result to the key of the temporary
806     ** table iParm.
807     */
808 #ifndef SQLITE_OMIT_COMPOUND_SELECT
809     case SRT_Union: {
810       int r1;
811       r1 = sqlite3GetTempReg(pParse);
812       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
813       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
814       sqlite3ReleaseTempReg(pParse, r1);
815       break;
816     }
817 
818     /* Construct a record from the query result, but instead of
819     ** saving that record, use it as a key to delete elements from
820     ** the temporary table iParm.
821     */
822     case SRT_Except: {
823       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
824       break;
825     }
826 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
827 
828     /* Store the result as data using a unique key.
829     */
830     case SRT_Fifo:
831     case SRT_DistFifo:
832     case SRT_Table:
833     case SRT_EphemTab: {
834       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
835       testcase( eDest==SRT_Table );
836       testcase( eDest==SRT_EphemTab );
837       testcase( eDest==SRT_Fifo );
838       testcase( eDest==SRT_DistFifo );
839       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
840 #ifndef SQLITE_OMIT_CTE
841       if( eDest==SRT_DistFifo ){
842         /* If the destination is DistFifo, then cursor (iParm+1) is open
843         ** on an ephemeral index. If the current row is already present
844         ** in the index, do not write it to the output. If not, add the
845         ** current row to the index and proceed with writing it to the
846         ** output table as well.  */
847         int addr = sqlite3VdbeCurrentAddr(v) + 4;
848         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
849         VdbeCoverage(v);
850         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
851         assert( pSort==0 );
852       }
853 #endif
854       if( pSort ){
855         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
856       }else{
857         int r2 = sqlite3GetTempReg(pParse);
858         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
859         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
860         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
861         sqlite3ReleaseTempReg(pParse, r2);
862       }
863       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
864       break;
865     }
866 
867 #ifndef SQLITE_OMIT_SUBQUERY
868     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
869     ** then there should be a single item on the stack.  Write this
870     ** item into the set table with bogus data.
871     */
872     case SRT_Set: {
873       assert( nResultCol==1 );
874       pDest->affSdst =
875                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
876       if( pSort ){
877         /* At first glance you would think we could optimize out the
878         ** ORDER BY in this case since the order of entries in the set
879         ** does not matter.  But there might be a LIMIT clause, in which
880         ** case the order does matter */
881         pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
882       }else{
883         int r1 = sqlite3GetTempReg(pParse);
884         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
885         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
886         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
887         sqlite3ReleaseTempReg(pParse, r1);
888       }
889       break;
890     }
891 
892     /* If any row exist in the result set, record that fact and abort.
893     */
894     case SRT_Exists: {
895       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
896       /* The LIMIT clause will terminate the loop for us */
897       break;
898     }
899 
900     /* If this is a scalar select that is part of an expression, then
901     ** store the results in the appropriate memory cell and break out
902     ** of the scan loop.
903     */
904     case SRT_Mem: {
905       assert( nResultCol==1 );
906       if( pSort ){
907         pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
908       }else{
909         assert( regResult==iParm );
910         /* The LIMIT clause will jump out of the loop for us */
911       }
912       break;
913     }
914 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
915 
916     case SRT_Coroutine:       /* Send data to a co-routine */
917     case SRT_Output: {        /* Return the results */
918       testcase( eDest==SRT_Coroutine );
919       testcase( eDest==SRT_Output );
920       if( pSort ){
921         pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol,
922                        nPrefixReg);
923       }else if( eDest==SRT_Coroutine ){
924         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
925       }else{
926         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
927         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
928       }
929       break;
930     }
931 
932 #ifndef SQLITE_OMIT_CTE
933     /* Write the results into a priority queue that is order according to
934     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
935     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
936     ** pSO->nExpr columns, then make sure all keys are unique by adding a
937     ** final OP_Sequence column.  The last column is the record as a blob.
938     */
939     case SRT_DistQueue:
940     case SRT_Queue: {
941       int nKey;
942       int r1, r2, r3;
943       int addrTest = 0;
944       ExprList *pSO;
945       pSO = pDest->pOrderBy;
946       assert( pSO );
947       nKey = pSO->nExpr;
948       r1 = sqlite3GetTempReg(pParse);
949       r2 = sqlite3GetTempRange(pParse, nKey+2);
950       r3 = r2+nKey+1;
951       if( eDest==SRT_DistQueue ){
952         /* If the destination is DistQueue, then cursor (iParm+1) is open
953         ** on a second ephemeral index that holds all values every previously
954         ** added to the queue. */
955         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
956                                         regResult, nResultCol);
957         VdbeCoverage(v);
958       }
959       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
960       if( eDest==SRT_DistQueue ){
961         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
962         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
963       }
964       for(i=0; i<nKey; i++){
965         sqlite3VdbeAddOp2(v, OP_SCopy,
966                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
967                           r2+i);
968       }
969       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
970       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
971       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
972       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
973       sqlite3ReleaseTempReg(pParse, r1);
974       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
975       break;
976     }
977 #endif /* SQLITE_OMIT_CTE */
978 
979 
980 
981 #if !defined(SQLITE_OMIT_TRIGGER)
982     /* Discard the results.  This is used for SELECT statements inside
983     ** the body of a TRIGGER.  The purpose of such selects is to call
984     ** user-defined functions that have side effects.  We do not care
985     ** about the actual results of the select.
986     */
987     default: {
988       assert( eDest==SRT_Discard );
989       break;
990     }
991 #endif
992   }
993 
994   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
995   ** there is a sorter, in which case the sorter has already limited
996   ** the output for us.
997   */
998   if( pSort==0 && p->iLimit ){
999     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1000   }
1001 }
1002 
1003 /*
1004 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1005 ** X extra columns.
1006 */
1007 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1008   int nExtra = (N+X)*(sizeof(CollSeq*)+1);
1009   KeyInfo *p = sqlite3Malloc(sizeof(KeyInfo) + nExtra);
1010   if( p ){
1011     p->aSortOrder = (u8*)&p->aColl[N+X];
1012     p->nField = (u16)N;
1013     p->nXField = (u16)X;
1014     p->enc = ENC(db);
1015     p->db = db;
1016     p->nRef = 1;
1017     memset(&p[1], 0, nExtra);
1018   }else{
1019     sqlite3OomFault(db);
1020   }
1021   return p;
1022 }
1023 
1024 /*
1025 ** Deallocate a KeyInfo object
1026 */
1027 void sqlite3KeyInfoUnref(KeyInfo *p){
1028   if( p ){
1029     assert( p->nRef>0 );
1030     p->nRef--;
1031     if( p->nRef==0 ) sqlite3DbFree(0, p);
1032   }
1033 }
1034 
1035 /*
1036 ** Make a new pointer to a KeyInfo object
1037 */
1038 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1039   if( p ){
1040     assert( p->nRef>0 );
1041     p->nRef++;
1042   }
1043   return p;
1044 }
1045 
1046 #ifdef SQLITE_DEBUG
1047 /*
1048 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1049 ** can only be changed if this is just a single reference to the object.
1050 **
1051 ** This routine is used only inside of assert() statements.
1052 */
1053 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1054 #endif /* SQLITE_DEBUG */
1055 
1056 /*
1057 ** Given an expression list, generate a KeyInfo structure that records
1058 ** the collating sequence for each expression in that expression list.
1059 **
1060 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1061 ** KeyInfo structure is appropriate for initializing a virtual index to
1062 ** implement that clause.  If the ExprList is the result set of a SELECT
1063 ** then the KeyInfo structure is appropriate for initializing a virtual
1064 ** index to implement a DISTINCT test.
1065 **
1066 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1067 ** function is responsible for seeing that this structure is eventually
1068 ** freed.
1069 */
1070 static KeyInfo *keyInfoFromExprList(
1071   Parse *pParse,       /* Parsing context */
1072   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1073   int iStart,          /* Begin with this column of pList */
1074   int nExtra           /* Add this many extra columns to the end */
1075 ){
1076   int nExpr;
1077   KeyInfo *pInfo;
1078   struct ExprList_item *pItem;
1079   sqlite3 *db = pParse->db;
1080   int i;
1081 
1082   nExpr = pList->nExpr;
1083   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1084   if( pInfo ){
1085     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1086     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1087       CollSeq *pColl;
1088       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1089       if( !pColl ) pColl = db->pDfltColl;
1090       pInfo->aColl[i-iStart] = pColl;
1091       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1092     }
1093   }
1094   return pInfo;
1095 }
1096 
1097 /*
1098 ** Name of the connection operator, used for error messages.
1099 */
1100 static const char *selectOpName(int id){
1101   char *z;
1102   switch( id ){
1103     case TK_ALL:       z = "UNION ALL";   break;
1104     case TK_INTERSECT: z = "INTERSECT";   break;
1105     case TK_EXCEPT:    z = "EXCEPT";      break;
1106     default:           z = "UNION";       break;
1107   }
1108   return z;
1109 }
1110 
1111 #ifndef SQLITE_OMIT_EXPLAIN
1112 /*
1113 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1114 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1115 ** where the caption is of the form:
1116 **
1117 **   "USE TEMP B-TREE FOR xxx"
1118 **
1119 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1120 ** is determined by the zUsage argument.
1121 */
1122 static void explainTempTable(Parse *pParse, const char *zUsage){
1123   if( pParse->explain==2 ){
1124     Vdbe *v = pParse->pVdbe;
1125     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1126     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1127   }
1128 }
1129 
1130 /*
1131 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1132 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1133 ** in sqlite3Select() to assign values to structure member variables that
1134 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1135 ** code with #ifndef directives.
1136 */
1137 # define explainSetInteger(a, b) a = b
1138 
1139 #else
1140 /* No-op versions of the explainXXX() functions and macros. */
1141 # define explainTempTable(y,z)
1142 # define explainSetInteger(y,z)
1143 #endif
1144 
1145 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1146 /*
1147 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1148 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1149 ** where the caption is of one of the two forms:
1150 **
1151 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1152 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1153 **
1154 ** where iSub1 and iSub2 are the integers passed as the corresponding
1155 ** function parameters, and op is the text representation of the parameter
1156 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1157 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1158 ** false, or the second form if it is true.
1159 */
1160 static void explainComposite(
1161   Parse *pParse,                  /* Parse context */
1162   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1163   int iSub1,                      /* Subquery id 1 */
1164   int iSub2,                      /* Subquery id 2 */
1165   int bUseTmp                     /* True if a temp table was used */
1166 ){
1167   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1168   if( pParse->explain==2 ){
1169     Vdbe *v = pParse->pVdbe;
1170     char *zMsg = sqlite3MPrintf(
1171         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1172         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1173     );
1174     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1175   }
1176 }
1177 #else
1178 /* No-op versions of the explainXXX() functions and macros. */
1179 # define explainComposite(v,w,x,y,z)
1180 #endif
1181 
1182 /*
1183 ** If the inner loop was generated using a non-null pOrderBy argument,
1184 ** then the results were placed in a sorter.  After the loop is terminated
1185 ** we need to run the sorter and output the results.  The following
1186 ** routine generates the code needed to do that.
1187 */
1188 static void generateSortTail(
1189   Parse *pParse,    /* Parsing context */
1190   Select *p,        /* The SELECT statement */
1191   SortCtx *pSort,   /* Information on the ORDER BY clause */
1192   int nColumn,      /* Number of columns of data */
1193   SelectDest *pDest /* Write the sorted results here */
1194 ){
1195   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1196   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1197   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1198   int addr;
1199   int addrOnce = 0;
1200   int iTab;
1201   ExprList *pOrderBy = pSort->pOrderBy;
1202   int eDest = pDest->eDest;
1203   int iParm = pDest->iSDParm;
1204   int regRow;
1205   int regRowid;
1206   int nKey;
1207   int iSortTab;                   /* Sorter cursor to read from */
1208   int nSortData;                  /* Trailing values to read from sorter */
1209   int i;
1210   int bSeq;                       /* True if sorter record includes seq. no. */
1211 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1212   struct ExprList_item *aOutEx = p->pEList->a;
1213 #endif
1214 
1215   assert( addrBreak<0 );
1216   if( pSort->labelBkOut ){
1217     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1218     sqlite3VdbeGoto(v, addrBreak);
1219     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1220   }
1221   iTab = pSort->iECursor;
1222   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1223     regRowid = 0;
1224     regRow = pDest->iSdst;
1225     nSortData = nColumn;
1226   }else{
1227     regRowid = sqlite3GetTempReg(pParse);
1228     regRow = sqlite3GetTempReg(pParse);
1229     nSortData = 1;
1230   }
1231   nKey = pOrderBy->nExpr - pSort->nOBSat;
1232   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1233     int regSortOut = ++pParse->nMem;
1234     iSortTab = pParse->nTab++;
1235     if( pSort->labelBkOut ){
1236       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1237     }
1238     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1239     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1240     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1241     VdbeCoverage(v);
1242     codeOffset(v, p->iOffset, addrContinue);
1243     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1244     bSeq = 0;
1245   }else{
1246     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1247     codeOffset(v, p->iOffset, addrContinue);
1248     iSortTab = iTab;
1249     bSeq = 1;
1250   }
1251   for(i=0; i<nSortData; i++){
1252     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1253     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1254   }
1255   switch( eDest ){
1256     case SRT_EphemTab: {
1257       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1258       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1259       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1260       break;
1261     }
1262 #ifndef SQLITE_OMIT_SUBQUERY
1263     case SRT_Set: {
1264       assert( nColumn==1 );
1265       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1266                         &pDest->affSdst, 1);
1267       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1268       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1269       break;
1270     }
1271     case SRT_Mem: {
1272       assert( nColumn==1 );
1273       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1274       /* The LIMIT clause will terminate the loop for us */
1275       break;
1276     }
1277 #endif
1278     default: {
1279       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1280       testcase( eDest==SRT_Output );
1281       testcase( eDest==SRT_Coroutine );
1282       if( eDest==SRT_Output ){
1283         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1284         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1285       }else{
1286         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1287       }
1288       break;
1289     }
1290   }
1291   if( regRowid ){
1292     sqlite3ReleaseTempReg(pParse, regRow);
1293     sqlite3ReleaseTempReg(pParse, regRowid);
1294   }
1295   /* The bottom of the loop
1296   */
1297   sqlite3VdbeResolveLabel(v, addrContinue);
1298   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1299     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1300   }else{
1301     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1302   }
1303   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1304   sqlite3VdbeResolveLabel(v, addrBreak);
1305 }
1306 
1307 /*
1308 ** Return a pointer to a string containing the 'declaration type' of the
1309 ** expression pExpr. The string may be treated as static by the caller.
1310 **
1311 ** Also try to estimate the size of the returned value and return that
1312 ** result in *pEstWidth.
1313 **
1314 ** The declaration type is the exact datatype definition extracted from the
1315 ** original CREATE TABLE statement if the expression is a column. The
1316 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1317 ** is considered a column can be complex in the presence of subqueries. The
1318 ** result-set expression in all of the following SELECT statements is
1319 ** considered a column by this function.
1320 **
1321 **   SELECT col FROM tbl;
1322 **   SELECT (SELECT col FROM tbl;
1323 **   SELECT (SELECT col FROM tbl);
1324 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1325 **
1326 ** The declaration type for any expression other than a column is NULL.
1327 **
1328 ** This routine has either 3 or 6 parameters depending on whether or not
1329 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1330 */
1331 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1332 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1333 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1334 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1335 #endif
1336 static const char *columnTypeImpl(
1337   NameContext *pNC,
1338   Expr *pExpr,
1339 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1340   const char **pzOrigDb,
1341   const char **pzOrigTab,
1342   const char **pzOrigCol,
1343 #endif
1344   u8 *pEstWidth
1345 ){
1346   char const *zType = 0;
1347   int j;
1348   u8 estWidth = 1;
1349 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1350   char const *zOrigDb = 0;
1351   char const *zOrigTab = 0;
1352   char const *zOrigCol = 0;
1353 #endif
1354 
1355   assert( pExpr!=0 );
1356   assert( pNC->pSrcList!=0 );
1357   switch( pExpr->op ){
1358     case TK_AGG_COLUMN:
1359     case TK_COLUMN: {
1360       /* The expression is a column. Locate the table the column is being
1361       ** extracted from in NameContext.pSrcList. This table may be real
1362       ** database table or a subquery.
1363       */
1364       Table *pTab = 0;            /* Table structure column is extracted from */
1365       Select *pS = 0;             /* Select the column is extracted from */
1366       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1367       testcase( pExpr->op==TK_AGG_COLUMN );
1368       testcase( pExpr->op==TK_COLUMN );
1369       while( pNC && !pTab ){
1370         SrcList *pTabList = pNC->pSrcList;
1371         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1372         if( j<pTabList->nSrc ){
1373           pTab = pTabList->a[j].pTab;
1374           pS = pTabList->a[j].pSelect;
1375         }else{
1376           pNC = pNC->pNext;
1377         }
1378       }
1379 
1380       if( pTab==0 ){
1381         /* At one time, code such as "SELECT new.x" within a trigger would
1382         ** cause this condition to run.  Since then, we have restructured how
1383         ** trigger code is generated and so this condition is no longer
1384         ** possible. However, it can still be true for statements like
1385         ** the following:
1386         **
1387         **   CREATE TABLE t1(col INTEGER);
1388         **   SELECT (SELECT t1.col) FROM FROM t1;
1389         **
1390         ** when columnType() is called on the expression "t1.col" in the
1391         ** sub-select. In this case, set the column type to NULL, even
1392         ** though it should really be "INTEGER".
1393         **
1394         ** This is not a problem, as the column type of "t1.col" is never
1395         ** used. When columnType() is called on the expression
1396         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1397         ** branch below.  */
1398         break;
1399       }
1400 
1401       assert( pTab && pExpr->pTab==pTab );
1402       if( pS ){
1403         /* The "table" is actually a sub-select or a view in the FROM clause
1404         ** of the SELECT statement. Return the declaration type and origin
1405         ** data for the result-set column of the sub-select.
1406         */
1407         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1408           /* If iCol is less than zero, then the expression requests the
1409           ** rowid of the sub-select or view. This expression is legal (see
1410           ** test case misc2.2.2) - it always evaluates to NULL.
1411           **
1412           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1413           ** caught already by name resolution.
1414           */
1415           NameContext sNC;
1416           Expr *p = pS->pEList->a[iCol].pExpr;
1417           sNC.pSrcList = pS->pSrc;
1418           sNC.pNext = pNC;
1419           sNC.pParse = pNC->pParse;
1420           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1421         }
1422       }else if( pTab->pSchema ){
1423         /* A real table */
1424         assert( !pS );
1425         if( iCol<0 ) iCol = pTab->iPKey;
1426         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1427 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1428         if( iCol<0 ){
1429           zType = "INTEGER";
1430           zOrigCol = "rowid";
1431         }else{
1432           zOrigCol = pTab->aCol[iCol].zName;
1433           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1434           estWidth = pTab->aCol[iCol].szEst;
1435         }
1436         zOrigTab = pTab->zName;
1437         if( pNC->pParse ){
1438           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1439           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1440         }
1441 #else
1442         if( iCol<0 ){
1443           zType = "INTEGER";
1444         }else{
1445           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1446           estWidth = pTab->aCol[iCol].szEst;
1447         }
1448 #endif
1449       }
1450       break;
1451     }
1452 #ifndef SQLITE_OMIT_SUBQUERY
1453     case TK_SELECT: {
1454       /* The expression is a sub-select. Return the declaration type and
1455       ** origin info for the single column in the result set of the SELECT
1456       ** statement.
1457       */
1458       NameContext sNC;
1459       Select *pS = pExpr->x.pSelect;
1460       Expr *p = pS->pEList->a[0].pExpr;
1461       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1462       sNC.pSrcList = pS->pSrc;
1463       sNC.pNext = pNC;
1464       sNC.pParse = pNC->pParse;
1465       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1466       break;
1467     }
1468 #endif
1469   }
1470 
1471 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1472   if( pzOrigDb ){
1473     assert( pzOrigTab && pzOrigCol );
1474     *pzOrigDb = zOrigDb;
1475     *pzOrigTab = zOrigTab;
1476     *pzOrigCol = zOrigCol;
1477   }
1478 #endif
1479   if( pEstWidth ) *pEstWidth = estWidth;
1480   return zType;
1481 }
1482 
1483 /*
1484 ** Generate code that will tell the VDBE the declaration types of columns
1485 ** in the result set.
1486 */
1487 static void generateColumnTypes(
1488   Parse *pParse,      /* Parser context */
1489   SrcList *pTabList,  /* List of tables */
1490   ExprList *pEList    /* Expressions defining the result set */
1491 ){
1492 #ifndef SQLITE_OMIT_DECLTYPE
1493   Vdbe *v = pParse->pVdbe;
1494   int i;
1495   NameContext sNC;
1496   sNC.pSrcList = pTabList;
1497   sNC.pParse = pParse;
1498   for(i=0; i<pEList->nExpr; i++){
1499     Expr *p = pEList->a[i].pExpr;
1500     const char *zType;
1501 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1502     const char *zOrigDb = 0;
1503     const char *zOrigTab = 0;
1504     const char *zOrigCol = 0;
1505     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1506 
1507     /* The vdbe must make its own copy of the column-type and other
1508     ** column specific strings, in case the schema is reset before this
1509     ** virtual machine is deleted.
1510     */
1511     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1512     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1513     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1514 #else
1515     zType = columnType(&sNC, p, 0, 0, 0, 0);
1516 #endif
1517     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1518   }
1519 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1520 }
1521 
1522 /*
1523 ** Generate code that will tell the VDBE the names of columns
1524 ** in the result set.  This information is used to provide the
1525 ** azCol[] values in the callback.
1526 */
1527 static void generateColumnNames(
1528   Parse *pParse,      /* Parser context */
1529   SrcList *pTabList,  /* List of tables */
1530   ExprList *pEList    /* Expressions defining the result set */
1531 ){
1532   Vdbe *v = pParse->pVdbe;
1533   int i, j;
1534   sqlite3 *db = pParse->db;
1535   int fullNames, shortNames;
1536 
1537 #ifndef SQLITE_OMIT_EXPLAIN
1538   /* If this is an EXPLAIN, skip this step */
1539   if( pParse->explain ){
1540     return;
1541   }
1542 #endif
1543 
1544   if( pParse->colNamesSet || db->mallocFailed ) return;
1545   assert( v!=0 );
1546   assert( pTabList!=0 );
1547   pParse->colNamesSet = 1;
1548   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1549   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1550   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1551   for(i=0; i<pEList->nExpr; i++){
1552     Expr *p;
1553     p = pEList->a[i].pExpr;
1554     if( NEVER(p==0) ) continue;
1555     if( pEList->a[i].zName ){
1556       char *zName = pEList->a[i].zName;
1557       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1558     }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
1559       Table *pTab;
1560       char *zCol;
1561       int iCol = p->iColumn;
1562       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1563         if( pTabList->a[j].iCursor==p->iTable ) break;
1564       }
1565       assert( j<pTabList->nSrc );
1566       pTab = pTabList->a[j].pTab;
1567       if( iCol<0 ) iCol = pTab->iPKey;
1568       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1569       if( iCol<0 ){
1570         zCol = "rowid";
1571       }else{
1572         zCol = pTab->aCol[iCol].zName;
1573       }
1574       if( !shortNames && !fullNames ){
1575         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1576             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1577       }else if( fullNames ){
1578         char *zName = 0;
1579         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1580         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1581       }else{
1582         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1583       }
1584     }else{
1585       const char *z = pEList->a[i].zSpan;
1586       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1587       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1588     }
1589   }
1590   generateColumnTypes(pParse, pTabList, pEList);
1591 }
1592 
1593 /*
1594 ** Given an expression list (which is really the list of expressions
1595 ** that form the result set of a SELECT statement) compute appropriate
1596 ** column names for a table that would hold the expression list.
1597 **
1598 ** All column names will be unique.
1599 **
1600 ** Only the column names are computed.  Column.zType, Column.zColl,
1601 ** and other fields of Column are zeroed.
1602 **
1603 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1604 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1605 */
1606 int sqlite3ColumnsFromExprList(
1607   Parse *pParse,          /* Parsing context */
1608   ExprList *pEList,       /* Expr list from which to derive column names */
1609   i16 *pnCol,             /* Write the number of columns here */
1610   Column **paCol          /* Write the new column list here */
1611 ){
1612   sqlite3 *db = pParse->db;   /* Database connection */
1613   int i, j;                   /* Loop counters */
1614   u32 cnt;                    /* Index added to make the name unique */
1615   Column *aCol, *pCol;        /* For looping over result columns */
1616   int nCol;                   /* Number of columns in the result set */
1617   Expr *p;                    /* Expression for a single result column */
1618   char *zName;                /* Column name */
1619   int nName;                  /* Size of name in zName[] */
1620   Hash ht;                    /* Hash table of column names */
1621 
1622   sqlite3HashInit(&ht);
1623   if( pEList ){
1624     nCol = pEList->nExpr;
1625     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1626     testcase( aCol==0 );
1627   }else{
1628     nCol = 0;
1629     aCol = 0;
1630   }
1631   assert( nCol==(i16)nCol );
1632   *pnCol = nCol;
1633   *paCol = aCol;
1634 
1635   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1636     /* Get an appropriate name for the column
1637     */
1638     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1639     if( (zName = pEList->a[i].zName)!=0 ){
1640       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1641     }else{
1642       Expr *pColExpr = p;  /* The expression that is the result column name */
1643       Table *pTab;         /* Table associated with this expression */
1644       while( pColExpr->op==TK_DOT ){
1645         pColExpr = pColExpr->pRight;
1646         assert( pColExpr!=0 );
1647       }
1648       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1649         /* For columns use the column name name */
1650         int iCol = pColExpr->iColumn;
1651         pTab = pColExpr->pTab;
1652         if( iCol<0 ) iCol = pTab->iPKey;
1653         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1654       }else if( pColExpr->op==TK_ID ){
1655         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1656         zName = pColExpr->u.zToken;
1657       }else{
1658         /* Use the original text of the column expression as its name */
1659         zName = pEList->a[i].zSpan;
1660       }
1661     }
1662     zName = sqlite3MPrintf(db, "%s", zName);
1663 
1664     /* Make sure the column name is unique.  If the name is not unique,
1665     ** append an integer to the name so that it becomes unique.
1666     */
1667     cnt = 0;
1668     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1669       nName = sqlite3Strlen30(zName);
1670       if( nName>0 ){
1671         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1672         if( zName[j]==':' ) nName = j;
1673       }
1674       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1675       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1676     }
1677     pCol->zName = zName;
1678     sqlite3ColumnPropertiesFromName(0, pCol);
1679     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1680       sqlite3OomFault(db);
1681     }
1682   }
1683   sqlite3HashClear(&ht);
1684   if( db->mallocFailed ){
1685     for(j=0; j<i; j++){
1686       sqlite3DbFree(db, aCol[j].zName);
1687     }
1688     sqlite3DbFree(db, aCol);
1689     *paCol = 0;
1690     *pnCol = 0;
1691     return SQLITE_NOMEM_BKPT;
1692   }
1693   return SQLITE_OK;
1694 }
1695 
1696 /*
1697 ** Add type and collation information to a column list based on
1698 ** a SELECT statement.
1699 **
1700 ** The column list presumably came from selectColumnNamesFromExprList().
1701 ** The column list has only names, not types or collations.  This
1702 ** routine goes through and adds the types and collations.
1703 **
1704 ** This routine requires that all identifiers in the SELECT
1705 ** statement be resolved.
1706 */
1707 void sqlite3SelectAddColumnTypeAndCollation(
1708   Parse *pParse,        /* Parsing contexts */
1709   Table *pTab,          /* Add column type information to this table */
1710   Select *pSelect       /* SELECT used to determine types and collations */
1711 ){
1712   sqlite3 *db = pParse->db;
1713   NameContext sNC;
1714   Column *pCol;
1715   CollSeq *pColl;
1716   int i;
1717   Expr *p;
1718   struct ExprList_item *a;
1719   u64 szAll = 0;
1720 
1721   assert( pSelect!=0 );
1722   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1723   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1724   if( db->mallocFailed ) return;
1725   memset(&sNC, 0, sizeof(sNC));
1726   sNC.pSrcList = pSelect->pSrc;
1727   a = pSelect->pEList->a;
1728   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1729     const char *zType;
1730     int n, m;
1731     p = a[i].pExpr;
1732     zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1733     szAll += pCol->szEst;
1734     pCol->affinity = sqlite3ExprAffinity(p);
1735     if( zType && (m = sqlite3Strlen30(zType))>0 ){
1736       n = sqlite3Strlen30(pCol->zName);
1737       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1738       if( pCol->zName ){
1739         memcpy(&pCol->zName[n+1], zType, m+1);
1740         pCol->colFlags |= COLFLAG_HASTYPE;
1741       }
1742     }
1743     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1744     pColl = sqlite3ExprCollSeq(pParse, p);
1745     if( pColl && pCol->zColl==0 ){
1746       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1747     }
1748   }
1749   pTab->szTabRow = sqlite3LogEst(szAll*4);
1750 }
1751 
1752 /*
1753 ** Given a SELECT statement, generate a Table structure that describes
1754 ** the result set of that SELECT.
1755 */
1756 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1757   Table *pTab;
1758   sqlite3 *db = pParse->db;
1759   int savedFlags;
1760 
1761   savedFlags = db->flags;
1762   db->flags &= ~SQLITE_FullColNames;
1763   db->flags |= SQLITE_ShortColNames;
1764   sqlite3SelectPrep(pParse, pSelect, 0);
1765   if( pParse->nErr ) return 0;
1766   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1767   db->flags = savedFlags;
1768   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1769   if( pTab==0 ){
1770     return 0;
1771   }
1772   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1773   ** is disabled */
1774   assert( db->lookaside.bDisable );
1775   pTab->nRef = 1;
1776   pTab->zName = 0;
1777   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1778   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1779   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1780   pTab->iPKey = -1;
1781   if( db->mallocFailed ){
1782     sqlite3DeleteTable(db, pTab);
1783     return 0;
1784   }
1785   return pTab;
1786 }
1787 
1788 /*
1789 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1790 ** If an error occurs, return NULL and leave a message in pParse.
1791 */
1792 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
1793   Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1794   if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1795   if( pParse->pToplevel==0
1796    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1797   ){
1798     pParse->okConstFactor = 1;
1799   }
1800   return v;
1801 }
1802 Vdbe *sqlite3GetVdbe(Parse *pParse){
1803   Vdbe *v = pParse->pVdbe;
1804   return v ? v : allocVdbe(pParse);
1805 }
1806 
1807 
1808 /*
1809 ** Compute the iLimit and iOffset fields of the SELECT based on the
1810 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1811 ** that appear in the original SQL statement after the LIMIT and OFFSET
1812 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1813 ** are the integer memory register numbers for counters used to compute
1814 ** the limit and offset.  If there is no limit and/or offset, then
1815 ** iLimit and iOffset are negative.
1816 **
1817 ** This routine changes the values of iLimit and iOffset only if
1818 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1819 ** iOffset should have been preset to appropriate default values (zero)
1820 ** prior to calling this routine.
1821 **
1822 ** The iOffset register (if it exists) is initialized to the value
1823 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1824 ** iOffset+1 is initialized to LIMIT+OFFSET.
1825 **
1826 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1827 ** redefined.  The UNION ALL operator uses this property to force
1828 ** the reuse of the same limit and offset registers across multiple
1829 ** SELECT statements.
1830 */
1831 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1832   Vdbe *v = 0;
1833   int iLimit = 0;
1834   int iOffset;
1835   int n;
1836   if( p->iLimit ) return;
1837 
1838   /*
1839   ** "LIMIT -1" always shows all rows.  There is some
1840   ** controversy about what the correct behavior should be.
1841   ** The current implementation interprets "LIMIT 0" to mean
1842   ** no rows.
1843   */
1844   sqlite3ExprCacheClear(pParse);
1845   assert( p->pOffset==0 || p->pLimit!=0 );
1846   if( p->pLimit ){
1847     p->iLimit = iLimit = ++pParse->nMem;
1848     v = sqlite3GetVdbe(pParse);
1849     assert( v!=0 );
1850     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1851       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1852       VdbeComment((v, "LIMIT counter"));
1853       if( n==0 ){
1854         sqlite3VdbeGoto(v, iBreak);
1855       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1856         p->nSelectRow = sqlite3LogEst((u64)n);
1857         p->selFlags |= SF_FixedLimit;
1858       }
1859     }else{
1860       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1861       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1862       VdbeComment((v, "LIMIT counter"));
1863       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1864     }
1865     if( p->pOffset ){
1866       p->iOffset = iOffset = ++pParse->nMem;
1867       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1868       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1869       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1870       VdbeComment((v, "OFFSET counter"));
1871       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1872       VdbeComment((v, "LIMIT+OFFSET"));
1873     }
1874   }
1875 }
1876 
1877 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1878 /*
1879 ** Return the appropriate collating sequence for the iCol-th column of
1880 ** the result set for the compound-select statement "p".  Return NULL if
1881 ** the column has no default collating sequence.
1882 **
1883 ** The collating sequence for the compound select is taken from the
1884 ** left-most term of the select that has a collating sequence.
1885 */
1886 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1887   CollSeq *pRet;
1888   if( p->pPrior ){
1889     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1890   }else{
1891     pRet = 0;
1892   }
1893   assert( iCol>=0 );
1894   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1895   ** have been thrown during name resolution and we would not have gotten
1896   ** this far */
1897   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1898     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1899   }
1900   return pRet;
1901 }
1902 
1903 /*
1904 ** The select statement passed as the second parameter is a compound SELECT
1905 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1906 ** structure suitable for implementing the ORDER BY.
1907 **
1908 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1909 ** function is responsible for ensuring that this structure is eventually
1910 ** freed.
1911 */
1912 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1913   ExprList *pOrderBy = p->pOrderBy;
1914   int nOrderBy = p->pOrderBy->nExpr;
1915   sqlite3 *db = pParse->db;
1916   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1917   if( pRet ){
1918     int i;
1919     for(i=0; i<nOrderBy; i++){
1920       struct ExprList_item *pItem = &pOrderBy->a[i];
1921       Expr *pTerm = pItem->pExpr;
1922       CollSeq *pColl;
1923 
1924       if( pTerm->flags & EP_Collate ){
1925         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1926       }else{
1927         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1928         if( pColl==0 ) pColl = db->pDfltColl;
1929         pOrderBy->a[i].pExpr =
1930           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1931       }
1932       assert( sqlite3KeyInfoIsWriteable(pRet) );
1933       pRet->aColl[i] = pColl;
1934       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1935     }
1936   }
1937 
1938   return pRet;
1939 }
1940 
1941 #ifndef SQLITE_OMIT_CTE
1942 /*
1943 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1944 ** query of the form:
1945 **
1946 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1947 **                         \___________/             \_______________/
1948 **                           p->pPrior                      p
1949 **
1950 **
1951 ** There is exactly one reference to the recursive-table in the FROM clause
1952 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1953 **
1954 ** The setup-query runs once to generate an initial set of rows that go
1955 ** into a Queue table.  Rows are extracted from the Queue table one by
1956 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1957 ** extracted row (now in the iCurrent table) becomes the content of the
1958 ** recursive-table for a recursive-query run.  The output of the recursive-query
1959 ** is added back into the Queue table.  Then another row is extracted from Queue
1960 ** and the iteration continues until the Queue table is empty.
1961 **
1962 ** If the compound query operator is UNION then no duplicate rows are ever
1963 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1964 ** that have ever been inserted into Queue and causes duplicates to be
1965 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1966 **
1967 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1968 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1969 ** an ORDER BY, the Queue table is just a FIFO.
1970 **
1971 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1972 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1973 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1974 ** with a positive value, then the first OFFSET outputs are discarded rather
1975 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1976 ** rows have been skipped.
1977 */
1978 static void generateWithRecursiveQuery(
1979   Parse *pParse,        /* Parsing context */
1980   Select *p,            /* The recursive SELECT to be coded */
1981   SelectDest *pDest     /* What to do with query results */
1982 ){
1983   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1984   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1985   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1986   Select *pSetup = p->pPrior;   /* The setup query */
1987   int addrTop;                  /* Top of the loop */
1988   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1989   int iCurrent = 0;             /* The Current table */
1990   int regCurrent;               /* Register holding Current table */
1991   int iQueue;                   /* The Queue table */
1992   int iDistinct = 0;            /* To ensure unique results if UNION */
1993   int eDest = SRT_Fifo;         /* How to write to Queue */
1994   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1995   int i;                        /* Loop counter */
1996   int rc;                       /* Result code */
1997   ExprList *pOrderBy;           /* The ORDER BY clause */
1998   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1999   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2000 
2001   /* Obtain authorization to do a recursive query */
2002   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2003 
2004   /* Process the LIMIT and OFFSET clauses, if they exist */
2005   addrBreak = sqlite3VdbeMakeLabel(v);
2006   computeLimitRegisters(pParse, p, addrBreak);
2007   pLimit = p->pLimit;
2008   pOffset = p->pOffset;
2009   regLimit = p->iLimit;
2010   regOffset = p->iOffset;
2011   p->pLimit = p->pOffset = 0;
2012   p->iLimit = p->iOffset = 0;
2013   pOrderBy = p->pOrderBy;
2014 
2015   /* Locate the cursor number of the Current table */
2016   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2017     if( pSrc->a[i].fg.isRecursive ){
2018       iCurrent = pSrc->a[i].iCursor;
2019       break;
2020     }
2021   }
2022 
2023   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2024   ** the Distinct table must be exactly one greater than Queue in order
2025   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2026   iQueue = pParse->nTab++;
2027   if( p->op==TK_UNION ){
2028     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2029     iDistinct = pParse->nTab++;
2030   }else{
2031     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2032   }
2033   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2034 
2035   /* Allocate cursors for Current, Queue, and Distinct. */
2036   regCurrent = ++pParse->nMem;
2037   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2038   if( pOrderBy ){
2039     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2040     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2041                       (char*)pKeyInfo, P4_KEYINFO);
2042     destQueue.pOrderBy = pOrderBy;
2043   }else{
2044     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2045   }
2046   VdbeComment((v, "Queue table"));
2047   if( iDistinct ){
2048     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2049     p->selFlags |= SF_UsesEphemeral;
2050   }
2051 
2052   /* Detach the ORDER BY clause from the compound SELECT */
2053   p->pOrderBy = 0;
2054 
2055   /* Store the results of the setup-query in Queue. */
2056   pSetup->pNext = 0;
2057   rc = sqlite3Select(pParse, pSetup, &destQueue);
2058   pSetup->pNext = p;
2059   if( rc ) goto end_of_recursive_query;
2060 
2061   /* Find the next row in the Queue and output that row */
2062   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2063 
2064   /* Transfer the next row in Queue over to Current */
2065   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2066   if( pOrderBy ){
2067     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2068   }else{
2069     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2070   }
2071   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2072 
2073   /* Output the single row in Current */
2074   addrCont = sqlite3VdbeMakeLabel(v);
2075   codeOffset(v, regOffset, addrCont);
2076   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2077       0, 0, pDest, addrCont, addrBreak);
2078   if( regLimit ){
2079     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2080     VdbeCoverage(v);
2081   }
2082   sqlite3VdbeResolveLabel(v, addrCont);
2083 
2084   /* Execute the recursive SELECT taking the single row in Current as
2085   ** the value for the recursive-table. Store the results in the Queue.
2086   */
2087   if( p->selFlags & SF_Aggregate ){
2088     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2089   }else{
2090     p->pPrior = 0;
2091     sqlite3Select(pParse, p, &destQueue);
2092     assert( p->pPrior==0 );
2093     p->pPrior = pSetup;
2094   }
2095 
2096   /* Keep running the loop until the Queue is empty */
2097   sqlite3VdbeGoto(v, addrTop);
2098   sqlite3VdbeResolveLabel(v, addrBreak);
2099 
2100 end_of_recursive_query:
2101   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2102   p->pOrderBy = pOrderBy;
2103   p->pLimit = pLimit;
2104   p->pOffset = pOffset;
2105   return;
2106 }
2107 #endif /* SQLITE_OMIT_CTE */
2108 
2109 /* Forward references */
2110 static int multiSelectOrderBy(
2111   Parse *pParse,        /* Parsing context */
2112   Select *p,            /* The right-most of SELECTs to be coded */
2113   SelectDest *pDest     /* What to do with query results */
2114 );
2115 
2116 /*
2117 ** Handle the special case of a compound-select that originates from a
2118 ** VALUES clause.  By handling this as a special case, we avoid deep
2119 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2120 ** on a VALUES clause.
2121 **
2122 ** Because the Select object originates from a VALUES clause:
2123 **   (1) It has no LIMIT or OFFSET
2124 **   (2) All terms are UNION ALL
2125 **   (3) There is no ORDER BY clause
2126 */
2127 static int multiSelectValues(
2128   Parse *pParse,        /* Parsing context */
2129   Select *p,            /* The right-most of SELECTs to be coded */
2130   SelectDest *pDest     /* What to do with query results */
2131 ){
2132   Select *pPrior;
2133   int nRow = 1;
2134   int rc = 0;
2135   assert( p->selFlags & SF_MultiValue );
2136   do{
2137     assert( p->selFlags & SF_Values );
2138     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2139     assert( p->pLimit==0 );
2140     assert( p->pOffset==0 );
2141     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2142     if( p->pPrior==0 ) break;
2143     assert( p->pPrior->pNext==p );
2144     p = p->pPrior;
2145     nRow++;
2146   }while(1);
2147   while( p ){
2148     pPrior = p->pPrior;
2149     p->pPrior = 0;
2150     rc = sqlite3Select(pParse, p, pDest);
2151     p->pPrior = pPrior;
2152     if( rc ) break;
2153     p->nSelectRow = nRow;
2154     p = p->pNext;
2155   }
2156   return rc;
2157 }
2158 
2159 /*
2160 ** This routine is called to process a compound query form from
2161 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2162 ** INTERSECT
2163 **
2164 ** "p" points to the right-most of the two queries.  the query on the
2165 ** left is p->pPrior.  The left query could also be a compound query
2166 ** in which case this routine will be called recursively.
2167 **
2168 ** The results of the total query are to be written into a destination
2169 ** of type eDest with parameter iParm.
2170 **
2171 ** Example 1:  Consider a three-way compound SQL statement.
2172 **
2173 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2174 **
2175 ** This statement is parsed up as follows:
2176 **
2177 **     SELECT c FROM t3
2178 **      |
2179 **      `----->  SELECT b FROM t2
2180 **                |
2181 **                `------>  SELECT a FROM t1
2182 **
2183 ** The arrows in the diagram above represent the Select.pPrior pointer.
2184 ** So if this routine is called with p equal to the t3 query, then
2185 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2186 **
2187 ** Notice that because of the way SQLite parses compound SELECTs, the
2188 ** individual selects always group from left to right.
2189 */
2190 static int multiSelect(
2191   Parse *pParse,        /* Parsing context */
2192   Select *p,            /* The right-most of SELECTs to be coded */
2193   SelectDest *pDest     /* What to do with query results */
2194 ){
2195   int rc = SQLITE_OK;   /* Success code from a subroutine */
2196   Select *pPrior;       /* Another SELECT immediately to our left */
2197   Vdbe *v;              /* Generate code to this VDBE */
2198   SelectDest dest;      /* Alternative data destination */
2199   Select *pDelete = 0;  /* Chain of simple selects to delete */
2200   sqlite3 *db;          /* Database connection */
2201 #ifndef SQLITE_OMIT_EXPLAIN
2202   int iSub1 = 0;        /* EQP id of left-hand query */
2203   int iSub2 = 0;        /* EQP id of right-hand query */
2204 #endif
2205 
2206   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2207   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2208   */
2209   assert( p && p->pPrior );  /* Calling function guarantees this much */
2210   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2211   db = pParse->db;
2212   pPrior = p->pPrior;
2213   dest = *pDest;
2214   if( pPrior->pOrderBy ){
2215     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2216       selectOpName(p->op));
2217     rc = 1;
2218     goto multi_select_end;
2219   }
2220   if( pPrior->pLimit ){
2221     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2222       selectOpName(p->op));
2223     rc = 1;
2224     goto multi_select_end;
2225   }
2226 
2227   v = sqlite3GetVdbe(pParse);
2228   assert( v!=0 );  /* The VDBE already created by calling function */
2229 
2230   /* Create the destination temporary table if necessary
2231   */
2232   if( dest.eDest==SRT_EphemTab ){
2233     assert( p->pEList );
2234     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2235     dest.eDest = SRT_Table;
2236   }
2237 
2238   /* Special handling for a compound-select that originates as a VALUES clause.
2239   */
2240   if( p->selFlags & SF_MultiValue ){
2241     rc = multiSelectValues(pParse, p, &dest);
2242     goto multi_select_end;
2243   }
2244 
2245   /* Make sure all SELECTs in the statement have the same number of elements
2246   ** in their result sets.
2247   */
2248   assert( p->pEList && pPrior->pEList );
2249   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2250 
2251 #ifndef SQLITE_OMIT_CTE
2252   if( p->selFlags & SF_Recursive ){
2253     generateWithRecursiveQuery(pParse, p, &dest);
2254   }else
2255 #endif
2256 
2257   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2258   */
2259   if( p->pOrderBy ){
2260     return multiSelectOrderBy(pParse, p, pDest);
2261   }else
2262 
2263   /* Generate code for the left and right SELECT statements.
2264   */
2265   switch( p->op ){
2266     case TK_ALL: {
2267       int addr = 0;
2268       int nLimit;
2269       assert( !pPrior->pLimit );
2270       pPrior->iLimit = p->iLimit;
2271       pPrior->iOffset = p->iOffset;
2272       pPrior->pLimit = p->pLimit;
2273       pPrior->pOffset = p->pOffset;
2274       explainSetInteger(iSub1, pParse->iNextSelectId);
2275       rc = sqlite3Select(pParse, pPrior, &dest);
2276       p->pLimit = 0;
2277       p->pOffset = 0;
2278       if( rc ){
2279         goto multi_select_end;
2280       }
2281       p->pPrior = 0;
2282       p->iLimit = pPrior->iLimit;
2283       p->iOffset = pPrior->iOffset;
2284       if( p->iLimit ){
2285         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2286         VdbeComment((v, "Jump ahead if LIMIT reached"));
2287         if( p->iOffset ){
2288           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2289                             p->iLimit, p->iOffset+1, p->iOffset);
2290         }
2291       }
2292       explainSetInteger(iSub2, pParse->iNextSelectId);
2293       rc = sqlite3Select(pParse, p, &dest);
2294       testcase( rc!=SQLITE_OK );
2295       pDelete = p->pPrior;
2296       p->pPrior = pPrior;
2297       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2298       if( pPrior->pLimit
2299        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2300        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2301       ){
2302         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2303       }
2304       if( addr ){
2305         sqlite3VdbeJumpHere(v, addr);
2306       }
2307       break;
2308     }
2309     case TK_EXCEPT:
2310     case TK_UNION: {
2311       int unionTab;    /* Cursor number of the temporary table holding result */
2312       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2313       int priorOp;     /* The SRT_ operation to apply to prior selects */
2314       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2315       int addr;
2316       SelectDest uniondest;
2317 
2318       testcase( p->op==TK_EXCEPT );
2319       testcase( p->op==TK_UNION );
2320       priorOp = SRT_Union;
2321       if( dest.eDest==priorOp ){
2322         /* We can reuse a temporary table generated by a SELECT to our
2323         ** right.
2324         */
2325         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2326         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2327         unionTab = dest.iSDParm;
2328       }else{
2329         /* We will need to create our own temporary table to hold the
2330         ** intermediate results.
2331         */
2332         unionTab = pParse->nTab++;
2333         assert( p->pOrderBy==0 );
2334         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2335         assert( p->addrOpenEphm[0] == -1 );
2336         p->addrOpenEphm[0] = addr;
2337         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2338         assert( p->pEList );
2339       }
2340 
2341       /* Code the SELECT statements to our left
2342       */
2343       assert( !pPrior->pOrderBy );
2344       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2345       explainSetInteger(iSub1, pParse->iNextSelectId);
2346       rc = sqlite3Select(pParse, pPrior, &uniondest);
2347       if( rc ){
2348         goto multi_select_end;
2349       }
2350 
2351       /* Code the current SELECT statement
2352       */
2353       if( p->op==TK_EXCEPT ){
2354         op = SRT_Except;
2355       }else{
2356         assert( p->op==TK_UNION );
2357         op = SRT_Union;
2358       }
2359       p->pPrior = 0;
2360       pLimit = p->pLimit;
2361       p->pLimit = 0;
2362       pOffset = p->pOffset;
2363       p->pOffset = 0;
2364       uniondest.eDest = op;
2365       explainSetInteger(iSub2, pParse->iNextSelectId);
2366       rc = sqlite3Select(pParse, p, &uniondest);
2367       testcase( rc!=SQLITE_OK );
2368       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2369       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2370       sqlite3ExprListDelete(db, p->pOrderBy);
2371       pDelete = p->pPrior;
2372       p->pPrior = pPrior;
2373       p->pOrderBy = 0;
2374       if( p->op==TK_UNION ){
2375         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2376       }
2377       sqlite3ExprDelete(db, p->pLimit);
2378       p->pLimit = pLimit;
2379       p->pOffset = pOffset;
2380       p->iLimit = 0;
2381       p->iOffset = 0;
2382 
2383       /* Convert the data in the temporary table into whatever form
2384       ** it is that we currently need.
2385       */
2386       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2387       if( dest.eDest!=priorOp ){
2388         int iCont, iBreak, iStart;
2389         assert( p->pEList );
2390         if( dest.eDest==SRT_Output ){
2391           Select *pFirst = p;
2392           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2393           generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2394         }
2395         iBreak = sqlite3VdbeMakeLabel(v);
2396         iCont = sqlite3VdbeMakeLabel(v);
2397         computeLimitRegisters(pParse, p, iBreak);
2398         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2399         iStart = sqlite3VdbeCurrentAddr(v);
2400         selectInnerLoop(pParse, p, p->pEList, unionTab,
2401                         0, 0, &dest, iCont, iBreak);
2402         sqlite3VdbeResolveLabel(v, iCont);
2403         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2404         sqlite3VdbeResolveLabel(v, iBreak);
2405         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2406       }
2407       break;
2408     }
2409     default: assert( p->op==TK_INTERSECT ); {
2410       int tab1, tab2;
2411       int iCont, iBreak, iStart;
2412       Expr *pLimit, *pOffset;
2413       int addr;
2414       SelectDest intersectdest;
2415       int r1;
2416 
2417       /* INTERSECT is different from the others since it requires
2418       ** two temporary tables.  Hence it has its own case.  Begin
2419       ** by allocating the tables we will need.
2420       */
2421       tab1 = pParse->nTab++;
2422       tab2 = pParse->nTab++;
2423       assert( p->pOrderBy==0 );
2424 
2425       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2426       assert( p->addrOpenEphm[0] == -1 );
2427       p->addrOpenEphm[0] = addr;
2428       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2429       assert( p->pEList );
2430 
2431       /* Code the SELECTs to our left into temporary table "tab1".
2432       */
2433       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2434       explainSetInteger(iSub1, pParse->iNextSelectId);
2435       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2436       if( rc ){
2437         goto multi_select_end;
2438       }
2439 
2440       /* Code the current SELECT into temporary table "tab2"
2441       */
2442       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2443       assert( p->addrOpenEphm[1] == -1 );
2444       p->addrOpenEphm[1] = addr;
2445       p->pPrior = 0;
2446       pLimit = p->pLimit;
2447       p->pLimit = 0;
2448       pOffset = p->pOffset;
2449       p->pOffset = 0;
2450       intersectdest.iSDParm = tab2;
2451       explainSetInteger(iSub2, pParse->iNextSelectId);
2452       rc = sqlite3Select(pParse, p, &intersectdest);
2453       testcase( rc!=SQLITE_OK );
2454       pDelete = p->pPrior;
2455       p->pPrior = pPrior;
2456       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2457       sqlite3ExprDelete(db, p->pLimit);
2458       p->pLimit = pLimit;
2459       p->pOffset = pOffset;
2460 
2461       /* Generate code to take the intersection of the two temporary
2462       ** tables.
2463       */
2464       assert( p->pEList );
2465       if( dest.eDest==SRT_Output ){
2466         Select *pFirst = p;
2467         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2468         generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2469       }
2470       iBreak = sqlite3VdbeMakeLabel(v);
2471       iCont = sqlite3VdbeMakeLabel(v);
2472       computeLimitRegisters(pParse, p, iBreak);
2473       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2474       r1 = sqlite3GetTempReg(pParse);
2475       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2476       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2477       sqlite3ReleaseTempReg(pParse, r1);
2478       selectInnerLoop(pParse, p, p->pEList, tab1,
2479                       0, 0, &dest, iCont, iBreak);
2480       sqlite3VdbeResolveLabel(v, iCont);
2481       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2482       sqlite3VdbeResolveLabel(v, iBreak);
2483       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2484       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2485       break;
2486     }
2487   }
2488 
2489   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2490 
2491   /* Compute collating sequences used by
2492   ** temporary tables needed to implement the compound select.
2493   ** Attach the KeyInfo structure to all temporary tables.
2494   **
2495   ** This section is run by the right-most SELECT statement only.
2496   ** SELECT statements to the left always skip this part.  The right-most
2497   ** SELECT might also skip this part if it has no ORDER BY clause and
2498   ** no temp tables are required.
2499   */
2500   if( p->selFlags & SF_UsesEphemeral ){
2501     int i;                        /* Loop counter */
2502     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2503     Select *pLoop;                /* For looping through SELECT statements */
2504     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2505     int nCol;                     /* Number of columns in result set */
2506 
2507     assert( p->pNext==0 );
2508     nCol = p->pEList->nExpr;
2509     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2510     if( !pKeyInfo ){
2511       rc = SQLITE_NOMEM_BKPT;
2512       goto multi_select_end;
2513     }
2514     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2515       *apColl = multiSelectCollSeq(pParse, p, i);
2516       if( 0==*apColl ){
2517         *apColl = db->pDfltColl;
2518       }
2519     }
2520 
2521     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2522       for(i=0; i<2; i++){
2523         int addr = pLoop->addrOpenEphm[i];
2524         if( addr<0 ){
2525           /* If [0] is unused then [1] is also unused.  So we can
2526           ** always safely abort as soon as the first unused slot is found */
2527           assert( pLoop->addrOpenEphm[1]<0 );
2528           break;
2529         }
2530         sqlite3VdbeChangeP2(v, addr, nCol);
2531         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2532                             P4_KEYINFO);
2533         pLoop->addrOpenEphm[i] = -1;
2534       }
2535     }
2536     sqlite3KeyInfoUnref(pKeyInfo);
2537   }
2538 
2539 multi_select_end:
2540   pDest->iSdst = dest.iSdst;
2541   pDest->nSdst = dest.nSdst;
2542   sqlite3SelectDelete(db, pDelete);
2543   return rc;
2544 }
2545 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2546 
2547 /*
2548 ** Error message for when two or more terms of a compound select have different
2549 ** size result sets.
2550 */
2551 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2552   if( p->selFlags & SF_Values ){
2553     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2554   }else{
2555     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2556       " do not have the same number of result columns", selectOpName(p->op));
2557   }
2558 }
2559 
2560 /*
2561 ** Code an output subroutine for a coroutine implementation of a
2562 ** SELECT statment.
2563 **
2564 ** The data to be output is contained in pIn->iSdst.  There are
2565 ** pIn->nSdst columns to be output.  pDest is where the output should
2566 ** be sent.
2567 **
2568 ** regReturn is the number of the register holding the subroutine
2569 ** return address.
2570 **
2571 ** If regPrev>0 then it is the first register in a vector that
2572 ** records the previous output.  mem[regPrev] is a flag that is false
2573 ** if there has been no previous output.  If regPrev>0 then code is
2574 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2575 ** keys.
2576 **
2577 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2578 ** iBreak.
2579 */
2580 static int generateOutputSubroutine(
2581   Parse *pParse,          /* Parsing context */
2582   Select *p,              /* The SELECT statement */
2583   SelectDest *pIn,        /* Coroutine supplying data */
2584   SelectDest *pDest,      /* Where to send the data */
2585   int regReturn,          /* The return address register */
2586   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2587   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2588   int iBreak              /* Jump here if we hit the LIMIT */
2589 ){
2590   Vdbe *v = pParse->pVdbe;
2591   int iContinue;
2592   int addr;
2593 
2594   addr = sqlite3VdbeCurrentAddr(v);
2595   iContinue = sqlite3VdbeMakeLabel(v);
2596 
2597   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2598   */
2599   if( regPrev ){
2600     int addr1, addr2;
2601     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2602     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2603                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2604     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2605     sqlite3VdbeJumpHere(v, addr1);
2606     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2607     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2608   }
2609   if( pParse->db->mallocFailed ) return 0;
2610 
2611   /* Suppress the first OFFSET entries if there is an OFFSET clause
2612   */
2613   codeOffset(v, p->iOffset, iContinue);
2614 
2615   assert( pDest->eDest!=SRT_Exists );
2616   assert( pDest->eDest!=SRT_Table );
2617   switch( pDest->eDest ){
2618     /* Store the result as data using a unique key.
2619     */
2620     case SRT_EphemTab: {
2621       int r1 = sqlite3GetTempReg(pParse);
2622       int r2 = sqlite3GetTempReg(pParse);
2623       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2624       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2625       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2626       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2627       sqlite3ReleaseTempReg(pParse, r2);
2628       sqlite3ReleaseTempReg(pParse, r1);
2629       break;
2630     }
2631 
2632 #ifndef SQLITE_OMIT_SUBQUERY
2633     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2634     ** then there should be a single item on the stack.  Write this
2635     ** item into the set table with bogus data.
2636     */
2637     case SRT_Set: {
2638       int r1;
2639       assert( pIn->nSdst==1 || pParse->nErr>0 );
2640       pDest->affSdst =
2641          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2642       r1 = sqlite3GetTempReg(pParse);
2643       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2644       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2645       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2646       sqlite3ReleaseTempReg(pParse, r1);
2647       break;
2648     }
2649 
2650     /* If this is a scalar select that is part of an expression, then
2651     ** store the results in the appropriate memory cell and break out
2652     ** of the scan loop.
2653     */
2654     case SRT_Mem: {
2655       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2656       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2657       /* The LIMIT clause will jump out of the loop for us */
2658       break;
2659     }
2660 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2661 
2662     /* The results are stored in a sequence of registers
2663     ** starting at pDest->iSdst.  Then the co-routine yields.
2664     */
2665     case SRT_Coroutine: {
2666       if( pDest->iSdst==0 ){
2667         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2668         pDest->nSdst = pIn->nSdst;
2669       }
2670       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2671       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2672       break;
2673     }
2674 
2675     /* If none of the above, then the result destination must be
2676     ** SRT_Output.  This routine is never called with any other
2677     ** destination other than the ones handled above or SRT_Output.
2678     **
2679     ** For SRT_Output, results are stored in a sequence of registers.
2680     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2681     ** return the next row of result.
2682     */
2683     default: {
2684       assert( pDest->eDest==SRT_Output );
2685       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2686       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2687       break;
2688     }
2689   }
2690 
2691   /* Jump to the end of the loop if the LIMIT is reached.
2692   */
2693   if( p->iLimit ){
2694     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2695   }
2696 
2697   /* Generate the subroutine return
2698   */
2699   sqlite3VdbeResolveLabel(v, iContinue);
2700   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2701 
2702   return addr;
2703 }
2704 
2705 /*
2706 ** Alternative compound select code generator for cases when there
2707 ** is an ORDER BY clause.
2708 **
2709 ** We assume a query of the following form:
2710 **
2711 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2712 **
2713 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2714 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2715 ** co-routines.  Then run the co-routines in parallel and merge the results
2716 ** into the output.  In addition to the two coroutines (called selectA and
2717 ** selectB) there are 7 subroutines:
2718 **
2719 **    outA:    Move the output of the selectA coroutine into the output
2720 **             of the compound query.
2721 **
2722 **    outB:    Move the output of the selectB coroutine into the output
2723 **             of the compound query.  (Only generated for UNION and
2724 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2725 **             appears only in B.)
2726 **
2727 **    AltB:    Called when there is data from both coroutines and A<B.
2728 **
2729 **    AeqB:    Called when there is data from both coroutines and A==B.
2730 **
2731 **    AgtB:    Called when there is data from both coroutines and A>B.
2732 **
2733 **    EofA:    Called when data is exhausted from selectA.
2734 **
2735 **    EofB:    Called when data is exhausted from selectB.
2736 **
2737 ** The implementation of the latter five subroutines depend on which
2738 ** <operator> is used:
2739 **
2740 **
2741 **             UNION ALL         UNION            EXCEPT          INTERSECT
2742 **          -------------  -----------------  --------------  -----------------
2743 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2744 **
2745 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2746 **
2747 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2748 **
2749 **   EofA:   outB, nextB      outB, nextB          halt             halt
2750 **
2751 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2752 **
2753 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2754 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2755 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2756 ** following nextX causes a jump to the end of the select processing.
2757 **
2758 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2759 ** within the output subroutine.  The regPrev register set holds the previously
2760 ** output value.  A comparison is made against this value and the output
2761 ** is skipped if the next results would be the same as the previous.
2762 **
2763 ** The implementation plan is to implement the two coroutines and seven
2764 ** subroutines first, then put the control logic at the bottom.  Like this:
2765 **
2766 **          goto Init
2767 **     coA: coroutine for left query (A)
2768 **     coB: coroutine for right query (B)
2769 **    outA: output one row of A
2770 **    outB: output one row of B (UNION and UNION ALL only)
2771 **    EofA: ...
2772 **    EofB: ...
2773 **    AltB: ...
2774 **    AeqB: ...
2775 **    AgtB: ...
2776 **    Init: initialize coroutine registers
2777 **          yield coA
2778 **          if eof(A) goto EofA
2779 **          yield coB
2780 **          if eof(B) goto EofB
2781 **    Cmpr: Compare A, B
2782 **          Jump AltB, AeqB, AgtB
2783 **     End: ...
2784 **
2785 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2786 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2787 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2788 ** and AgtB jump to either L2 or to one of EofA or EofB.
2789 */
2790 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2791 static int multiSelectOrderBy(
2792   Parse *pParse,        /* Parsing context */
2793   Select *p,            /* The right-most of SELECTs to be coded */
2794   SelectDest *pDest     /* What to do with query results */
2795 ){
2796   int i, j;             /* Loop counters */
2797   Select *pPrior;       /* Another SELECT immediately to our left */
2798   Vdbe *v;              /* Generate code to this VDBE */
2799   SelectDest destA;     /* Destination for coroutine A */
2800   SelectDest destB;     /* Destination for coroutine B */
2801   int regAddrA;         /* Address register for select-A coroutine */
2802   int regAddrB;         /* Address register for select-B coroutine */
2803   int addrSelectA;      /* Address of the select-A coroutine */
2804   int addrSelectB;      /* Address of the select-B coroutine */
2805   int regOutA;          /* Address register for the output-A subroutine */
2806   int regOutB;          /* Address register for the output-B subroutine */
2807   int addrOutA;         /* Address of the output-A subroutine */
2808   int addrOutB = 0;     /* Address of the output-B subroutine */
2809   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2810   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2811   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2812   int addrAltB;         /* Address of the A<B subroutine */
2813   int addrAeqB;         /* Address of the A==B subroutine */
2814   int addrAgtB;         /* Address of the A>B subroutine */
2815   int regLimitA;        /* Limit register for select-A */
2816   int regLimitB;        /* Limit register for select-A */
2817   int regPrev;          /* A range of registers to hold previous output */
2818   int savedLimit;       /* Saved value of p->iLimit */
2819   int savedOffset;      /* Saved value of p->iOffset */
2820   int labelCmpr;        /* Label for the start of the merge algorithm */
2821   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2822   int addr1;            /* Jump instructions that get retargetted */
2823   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2824   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2825   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2826   sqlite3 *db;          /* Database connection */
2827   ExprList *pOrderBy;   /* The ORDER BY clause */
2828   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2829   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2830 #ifndef SQLITE_OMIT_EXPLAIN
2831   int iSub1;            /* EQP id of left-hand query */
2832   int iSub2;            /* EQP id of right-hand query */
2833 #endif
2834 
2835   assert( p->pOrderBy!=0 );
2836   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2837   db = pParse->db;
2838   v = pParse->pVdbe;
2839   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2840   labelEnd = sqlite3VdbeMakeLabel(v);
2841   labelCmpr = sqlite3VdbeMakeLabel(v);
2842 
2843 
2844   /* Patch up the ORDER BY clause
2845   */
2846   op = p->op;
2847   pPrior = p->pPrior;
2848   assert( pPrior->pOrderBy==0 );
2849   pOrderBy = p->pOrderBy;
2850   assert( pOrderBy );
2851   nOrderBy = pOrderBy->nExpr;
2852 
2853   /* For operators other than UNION ALL we have to make sure that
2854   ** the ORDER BY clause covers every term of the result set.  Add
2855   ** terms to the ORDER BY clause as necessary.
2856   */
2857   if( op!=TK_ALL ){
2858     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2859       struct ExprList_item *pItem;
2860       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2861         assert( pItem->u.x.iOrderByCol>0 );
2862         if( pItem->u.x.iOrderByCol==i ) break;
2863       }
2864       if( j==nOrderBy ){
2865         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2866         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2867         pNew->flags |= EP_IntValue;
2868         pNew->u.iValue = i;
2869         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2870         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2871       }
2872     }
2873   }
2874 
2875   /* Compute the comparison permutation and keyinfo that is used with
2876   ** the permutation used to determine if the next
2877   ** row of results comes from selectA or selectB.  Also add explicit
2878   ** collations to the ORDER BY clause terms so that when the subqueries
2879   ** to the right and the left are evaluated, they use the correct
2880   ** collation.
2881   */
2882   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2883   if( aPermute ){
2884     struct ExprList_item *pItem;
2885     aPermute[0] = nOrderBy;
2886     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2887       assert( pItem->u.x.iOrderByCol>0 );
2888       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2889       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2890     }
2891     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2892   }else{
2893     pKeyMerge = 0;
2894   }
2895 
2896   /* Reattach the ORDER BY clause to the query.
2897   */
2898   p->pOrderBy = pOrderBy;
2899   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2900 
2901   /* Allocate a range of temporary registers and the KeyInfo needed
2902   ** for the logic that removes duplicate result rows when the
2903   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2904   */
2905   if( op==TK_ALL ){
2906     regPrev = 0;
2907   }else{
2908     int nExpr = p->pEList->nExpr;
2909     assert( nOrderBy>=nExpr || db->mallocFailed );
2910     regPrev = pParse->nMem+1;
2911     pParse->nMem += nExpr+1;
2912     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2913     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2914     if( pKeyDup ){
2915       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2916       for(i=0; i<nExpr; i++){
2917         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2918         pKeyDup->aSortOrder[i] = 0;
2919       }
2920     }
2921   }
2922 
2923   /* Separate the left and the right query from one another
2924   */
2925   p->pPrior = 0;
2926   pPrior->pNext = 0;
2927   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2928   if( pPrior->pPrior==0 ){
2929     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2930   }
2931 
2932   /* Compute the limit registers */
2933   computeLimitRegisters(pParse, p, labelEnd);
2934   if( p->iLimit && op==TK_ALL ){
2935     regLimitA = ++pParse->nMem;
2936     regLimitB = ++pParse->nMem;
2937     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2938                                   regLimitA);
2939     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2940   }else{
2941     regLimitA = regLimitB = 0;
2942   }
2943   sqlite3ExprDelete(db, p->pLimit);
2944   p->pLimit = 0;
2945   sqlite3ExprDelete(db, p->pOffset);
2946   p->pOffset = 0;
2947 
2948   regAddrA = ++pParse->nMem;
2949   regAddrB = ++pParse->nMem;
2950   regOutA = ++pParse->nMem;
2951   regOutB = ++pParse->nMem;
2952   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2953   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2954 
2955   /* Generate a coroutine to evaluate the SELECT statement to the
2956   ** left of the compound operator - the "A" select.
2957   */
2958   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2959   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2960   VdbeComment((v, "left SELECT"));
2961   pPrior->iLimit = regLimitA;
2962   explainSetInteger(iSub1, pParse->iNextSelectId);
2963   sqlite3Select(pParse, pPrior, &destA);
2964   sqlite3VdbeEndCoroutine(v, regAddrA);
2965   sqlite3VdbeJumpHere(v, addr1);
2966 
2967   /* Generate a coroutine to evaluate the SELECT statement on
2968   ** the right - the "B" select
2969   */
2970   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2971   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2972   VdbeComment((v, "right SELECT"));
2973   savedLimit = p->iLimit;
2974   savedOffset = p->iOffset;
2975   p->iLimit = regLimitB;
2976   p->iOffset = 0;
2977   explainSetInteger(iSub2, pParse->iNextSelectId);
2978   sqlite3Select(pParse, p, &destB);
2979   p->iLimit = savedLimit;
2980   p->iOffset = savedOffset;
2981   sqlite3VdbeEndCoroutine(v, regAddrB);
2982 
2983   /* Generate a subroutine that outputs the current row of the A
2984   ** select as the next output row of the compound select.
2985   */
2986   VdbeNoopComment((v, "Output routine for A"));
2987   addrOutA = generateOutputSubroutine(pParse,
2988                  p, &destA, pDest, regOutA,
2989                  regPrev, pKeyDup, labelEnd);
2990 
2991   /* Generate a subroutine that outputs the current row of the B
2992   ** select as the next output row of the compound select.
2993   */
2994   if( op==TK_ALL || op==TK_UNION ){
2995     VdbeNoopComment((v, "Output routine for B"));
2996     addrOutB = generateOutputSubroutine(pParse,
2997                  p, &destB, pDest, regOutB,
2998                  regPrev, pKeyDup, labelEnd);
2999   }
3000   sqlite3KeyInfoUnref(pKeyDup);
3001 
3002   /* Generate a subroutine to run when the results from select A
3003   ** are exhausted and only data in select B remains.
3004   */
3005   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3006     addrEofA_noB = addrEofA = labelEnd;
3007   }else{
3008     VdbeNoopComment((v, "eof-A subroutine"));
3009     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3010     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3011                                      VdbeCoverage(v);
3012     sqlite3VdbeGoto(v, addrEofA);
3013     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3014   }
3015 
3016   /* Generate a subroutine to run when the results from select B
3017   ** are exhausted and only data in select A remains.
3018   */
3019   if( op==TK_INTERSECT ){
3020     addrEofB = addrEofA;
3021     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3022   }else{
3023     VdbeNoopComment((v, "eof-B subroutine"));
3024     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3025     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3026     sqlite3VdbeGoto(v, addrEofB);
3027   }
3028 
3029   /* Generate code to handle the case of A<B
3030   */
3031   VdbeNoopComment((v, "A-lt-B subroutine"));
3032   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3033   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3034   sqlite3VdbeGoto(v, labelCmpr);
3035 
3036   /* Generate code to handle the case of A==B
3037   */
3038   if( op==TK_ALL ){
3039     addrAeqB = addrAltB;
3040   }else if( op==TK_INTERSECT ){
3041     addrAeqB = addrAltB;
3042     addrAltB++;
3043   }else{
3044     VdbeNoopComment((v, "A-eq-B subroutine"));
3045     addrAeqB =
3046     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3047     sqlite3VdbeGoto(v, labelCmpr);
3048   }
3049 
3050   /* Generate code to handle the case of A>B
3051   */
3052   VdbeNoopComment((v, "A-gt-B subroutine"));
3053   addrAgtB = sqlite3VdbeCurrentAddr(v);
3054   if( op==TK_ALL || op==TK_UNION ){
3055     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3056   }
3057   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3058   sqlite3VdbeGoto(v, labelCmpr);
3059 
3060   /* This code runs once to initialize everything.
3061   */
3062   sqlite3VdbeJumpHere(v, addr1);
3063   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3064   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3065 
3066   /* Implement the main merge loop
3067   */
3068   sqlite3VdbeResolveLabel(v, labelCmpr);
3069   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3070   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3071                          (char*)pKeyMerge, P4_KEYINFO);
3072   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3073   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3074 
3075   /* Jump to the this point in order to terminate the query.
3076   */
3077   sqlite3VdbeResolveLabel(v, labelEnd);
3078 
3079   /* Set the number of output columns
3080   */
3081   if( pDest->eDest==SRT_Output ){
3082     Select *pFirst = pPrior;
3083     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3084     generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
3085   }
3086 
3087   /* Reassembly the compound query so that it will be freed correctly
3088   ** by the calling function */
3089   if( p->pPrior ){
3090     sqlite3SelectDelete(db, p->pPrior);
3091   }
3092   p->pPrior = pPrior;
3093   pPrior->pNext = p;
3094 
3095   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3096   **** subqueries ****/
3097   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3098   return pParse->nErr!=0;
3099 }
3100 #endif
3101 
3102 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3103 /* Forward Declarations */
3104 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3105 static void substSelect(sqlite3*, Select *, int, ExprList*, int);
3106 
3107 /*
3108 ** Scan through the expression pExpr.  Replace every reference to
3109 ** a column in table number iTable with a copy of the iColumn-th
3110 ** entry in pEList.  (But leave references to the ROWID column
3111 ** unchanged.)
3112 **
3113 ** This routine is part of the flattening procedure.  A subquery
3114 ** whose result set is defined by pEList appears as entry in the
3115 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3116 ** FORM clause entry is iTable.  This routine make the necessary
3117 ** changes to pExpr so that it refers directly to the source table
3118 ** of the subquery rather the result set of the subquery.
3119 */
3120 static Expr *substExpr(
3121   sqlite3 *db,        /* Report malloc errors to this connection */
3122   Expr *pExpr,        /* Expr in which substitution occurs */
3123   int iTable,         /* Table to be substituted */
3124   ExprList *pEList    /* Substitute expressions */
3125 ){
3126   if( pExpr==0 ) return 0;
3127   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3128     if( pExpr->iColumn<0 ){
3129       pExpr->op = TK_NULL;
3130     }else{
3131       Expr *pNew;
3132       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3133       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3134       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3135       sqlite3ExprDelete(db, pExpr);
3136       pExpr = pNew;
3137     }
3138   }else{
3139     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3140     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3141     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3142       substSelect(db, pExpr->x.pSelect, iTable, pEList, 1);
3143     }else{
3144       substExprList(db, pExpr->x.pList, iTable, pEList);
3145     }
3146   }
3147   return pExpr;
3148 }
3149 static void substExprList(
3150   sqlite3 *db,         /* Report malloc errors here */
3151   ExprList *pList,     /* List to scan and in which to make substitutes */
3152   int iTable,          /* Table to be substituted */
3153   ExprList *pEList     /* Substitute values */
3154 ){
3155   int i;
3156   if( pList==0 ) return;
3157   for(i=0; i<pList->nExpr; i++){
3158     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3159   }
3160 }
3161 static void substSelect(
3162   sqlite3 *db,         /* Report malloc errors here */
3163   Select *p,           /* SELECT statement in which to make substitutions */
3164   int iTable,          /* Table to be replaced */
3165   ExprList *pEList,    /* Substitute values */
3166   int doPrior          /* Do substitutes on p->pPrior too */
3167 ){
3168   SrcList *pSrc;
3169   struct SrcList_item *pItem;
3170   int i;
3171   if( !p ) return;
3172   do{
3173     substExprList(db, p->pEList, iTable, pEList);
3174     substExprList(db, p->pGroupBy, iTable, pEList);
3175     substExprList(db, p->pOrderBy, iTable, pEList);
3176     p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3177     p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3178     pSrc = p->pSrc;
3179     assert( pSrc!=0 );
3180     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3181       substSelect(db, pItem->pSelect, iTable, pEList, 1);
3182       if( pItem->fg.isTabFunc ){
3183         substExprList(db, pItem->u1.pFuncArg, iTable, pEList);
3184       }
3185     }
3186   }while( doPrior && (p = p->pPrior)!=0 );
3187 }
3188 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3189 
3190 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3191 /*
3192 ** This routine attempts to flatten subqueries as a performance optimization.
3193 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3194 **
3195 ** To understand the concept of flattening, consider the following
3196 ** query:
3197 **
3198 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3199 **
3200 ** The default way of implementing this query is to execute the
3201 ** subquery first and store the results in a temporary table, then
3202 ** run the outer query on that temporary table.  This requires two
3203 ** passes over the data.  Furthermore, because the temporary table
3204 ** has no indices, the WHERE clause on the outer query cannot be
3205 ** optimized.
3206 **
3207 ** This routine attempts to rewrite queries such as the above into
3208 ** a single flat select, like this:
3209 **
3210 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3211 **
3212 ** The code generated for this simplification gives the same result
3213 ** but only has to scan the data once.  And because indices might
3214 ** exist on the table t1, a complete scan of the data might be
3215 ** avoided.
3216 **
3217 ** Flattening is only attempted if all of the following are true:
3218 **
3219 **   (1)  The subquery and the outer query do not both use aggregates.
3220 **
3221 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3222 **        and (2b) the outer query does not use subqueries other than the one
3223 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3224 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3225 **
3226 **   (3)  The subquery is not the right operand of a left outer join
3227 **        (Originally ticket #306.  Strengthened by ticket #3300)
3228 **
3229 **   (4)  The subquery is not DISTINCT.
3230 **
3231 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3232 **        sub-queries that were excluded from this optimization. Restriction
3233 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3234 **
3235 **   (6)  The subquery does not use aggregates or the outer query is not
3236 **        DISTINCT.
3237 **
3238 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3239 **        A FROM clause, consider adding a FROM close with the special
3240 **        table sqlite_once that consists of a single row containing a
3241 **        single NULL.
3242 **
3243 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3244 **
3245 **   (9)  The subquery does not use LIMIT or the outer query does not use
3246 **        aggregates.
3247 **
3248 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3249 **        accidently carried the comment forward until 2014-09-15.  Original
3250 **        text: "The subquery does not use aggregates or the outer query
3251 **        does not use LIMIT."
3252 **
3253 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3254 **
3255 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3256 **        a separate restriction deriving from ticket #350.
3257 **
3258 **  (13)  The subquery and outer query do not both use LIMIT.
3259 **
3260 **  (14)  The subquery does not use OFFSET.
3261 **
3262 **  (15)  The outer query is not part of a compound select or the
3263 **        subquery does not have a LIMIT clause.
3264 **        (See ticket #2339 and ticket [02a8e81d44]).
3265 **
3266 **  (16)  The outer query is not an aggregate or the subquery does
3267 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3268 **        until we introduced the group_concat() function.
3269 **
3270 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3271 **        compound clause made up entirely of non-aggregate queries, and
3272 **        the parent query:
3273 **
3274 **          * is not itself part of a compound select,
3275 **          * is not an aggregate or DISTINCT query, and
3276 **          * is not a join
3277 **
3278 **        The parent and sub-query may contain WHERE clauses. Subject to
3279 **        rules (11), (13) and (14), they may also contain ORDER BY,
3280 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3281 **        operator other than UNION ALL because all the other compound
3282 **        operators have an implied DISTINCT which is disallowed by
3283 **        restriction (4).
3284 **
3285 **        Also, each component of the sub-query must return the same number
3286 **        of result columns. This is actually a requirement for any compound
3287 **        SELECT statement, but all the code here does is make sure that no
3288 **        such (illegal) sub-query is flattened. The caller will detect the
3289 **        syntax error and return a detailed message.
3290 **
3291 **  (18)  If the sub-query is a compound select, then all terms of the
3292 **        ORDER by clause of the parent must be simple references to
3293 **        columns of the sub-query.
3294 **
3295 **  (19)  The subquery does not use LIMIT or the outer query does not
3296 **        have a WHERE clause.
3297 **
3298 **  (20)  If the sub-query is a compound select, then it must not use
3299 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3300 **        somewhat by saying that the terms of the ORDER BY clause must
3301 **        appear as unmodified result columns in the outer query.  But we
3302 **        have other optimizations in mind to deal with that case.
3303 **
3304 **  (21)  The subquery does not use LIMIT or the outer query is not
3305 **        DISTINCT.  (See ticket [752e1646fc]).
3306 **
3307 **  (22)  The subquery is not a recursive CTE.
3308 **
3309 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3310 **        compound query. This restriction is because transforming the
3311 **        parent to a compound query confuses the code that handles
3312 **        recursive queries in multiSelect().
3313 **
3314 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3315 **        or max() functions.  (Without this restriction, a query like:
3316 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3317 **        return the value X for which Y was maximal.)
3318 **
3319 **
3320 ** In this routine, the "p" parameter is a pointer to the outer query.
3321 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3322 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3323 **
3324 ** If flattening is not attempted, this routine is a no-op and returns 0.
3325 ** If flattening is attempted this routine returns 1.
3326 **
3327 ** All of the expression analysis must occur on both the outer query and
3328 ** the subquery before this routine runs.
3329 */
3330 static int flattenSubquery(
3331   Parse *pParse,       /* Parsing context */
3332   Select *p,           /* The parent or outer SELECT statement */
3333   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3334   int isAgg,           /* True if outer SELECT uses aggregate functions */
3335   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3336 ){
3337   const char *zSavedAuthContext = pParse->zAuthContext;
3338   Select *pParent;    /* Current UNION ALL term of the other query */
3339   Select *pSub;       /* The inner query or "subquery" */
3340   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3341   SrcList *pSrc;      /* The FROM clause of the outer query */
3342   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3343   ExprList *pList;    /* The result set of the outer query */
3344   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3345   int i;              /* Loop counter */
3346   Expr *pWhere;                    /* The WHERE clause */
3347   struct SrcList_item *pSubitem;   /* The subquery */
3348   sqlite3 *db = pParse->db;
3349 
3350   /* Check to see if flattening is permitted.  Return 0 if not.
3351   */
3352   assert( p!=0 );
3353   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3354   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3355   pSrc = p->pSrc;
3356   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3357   pSubitem = &pSrc->a[iFrom];
3358   iParent = pSubitem->iCursor;
3359   pSub = pSubitem->pSelect;
3360   assert( pSub!=0 );
3361   if( subqueryIsAgg ){
3362     if( isAgg ) return 0;                                /* Restriction (1)   */
3363     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3364     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3365      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3366      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3367     ){
3368       return 0;                                          /* Restriction (2b)  */
3369     }
3370   }
3371 
3372   pSubSrc = pSub->pSrc;
3373   assert( pSubSrc );
3374   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3375   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3376   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3377   ** became arbitrary expressions, we were forced to add restrictions (13)
3378   ** and (14). */
3379   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3380   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3381   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3382     return 0;                                            /* Restriction (15) */
3383   }
3384   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3385   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3386   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3387      return 0;         /* Restrictions (8)(9) */
3388   }
3389   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3390      return 0;         /* Restriction (6)  */
3391   }
3392   if( p->pOrderBy && pSub->pOrderBy ){
3393      return 0;                                           /* Restriction (11) */
3394   }
3395   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3396   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3397   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3398      return 0;         /* Restriction (21) */
3399   }
3400   testcase( pSub->selFlags & SF_Recursive );
3401   testcase( pSub->selFlags & SF_MinMaxAgg );
3402   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3403     return 0; /* Restrictions (22) and (24) */
3404   }
3405   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3406     return 0; /* Restriction (23) */
3407   }
3408 
3409   /* OBSOLETE COMMENT 1:
3410   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3411   ** not used as the right operand of an outer join.  Examples of why this
3412   ** is not allowed:
3413   **
3414   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3415   **
3416   ** If we flatten the above, we would get
3417   **
3418   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3419   **
3420   ** which is not at all the same thing.
3421   **
3422   ** OBSOLETE COMMENT 2:
3423   ** Restriction 12:  If the subquery is the right operand of a left outer
3424   ** join, make sure the subquery has no WHERE clause.
3425   ** An examples of why this is not allowed:
3426   **
3427   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3428   **
3429   ** If we flatten the above, we would get
3430   **
3431   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3432   **
3433   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3434   ** effectively converts the OUTER JOIN into an INNER JOIN.
3435   **
3436   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3437   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3438   ** is fraught with danger.  Best to avoid the whole thing.  If the
3439   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3440   */
3441   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3442     return 0;
3443   }
3444 
3445   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3446   ** use only the UNION ALL operator. And none of the simple select queries
3447   ** that make up the compound SELECT are allowed to be aggregate or distinct
3448   ** queries.
3449   */
3450   if( pSub->pPrior ){
3451     if( pSub->pOrderBy ){
3452       return 0;  /* Restriction 20 */
3453     }
3454     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3455       return 0;
3456     }
3457     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3458       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3459       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3460       assert( pSub->pSrc!=0 );
3461       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3462       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3463        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3464        || pSub1->pSrc->nSrc<1
3465       ){
3466         return 0;
3467       }
3468       testcase( pSub1->pSrc->nSrc>1 );
3469     }
3470 
3471     /* Restriction 18. */
3472     if( p->pOrderBy ){
3473       int ii;
3474       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3475         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3476       }
3477     }
3478   }
3479 
3480   /***** If we reach this point, flattening is permitted. *****/
3481   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3482                    pSub->zSelName, pSub, iFrom));
3483 
3484   /* Authorize the subquery */
3485   pParse->zAuthContext = pSubitem->zName;
3486   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3487   testcase( i==SQLITE_DENY );
3488   pParse->zAuthContext = zSavedAuthContext;
3489 
3490   /* If the sub-query is a compound SELECT statement, then (by restrictions
3491   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3492   ** be of the form:
3493   **
3494   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3495   **
3496   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3497   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3498   ** OFFSET clauses and joins them to the left-hand-side of the original
3499   ** using UNION ALL operators. In this case N is the number of simple
3500   ** select statements in the compound sub-query.
3501   **
3502   ** Example:
3503   **
3504   **     SELECT a+1 FROM (
3505   **        SELECT x FROM tab
3506   **        UNION ALL
3507   **        SELECT y FROM tab
3508   **        UNION ALL
3509   **        SELECT abs(z*2) FROM tab2
3510   **     ) WHERE a!=5 ORDER BY 1
3511   **
3512   ** Transformed into:
3513   **
3514   **     SELECT x+1 FROM tab WHERE x+1!=5
3515   **     UNION ALL
3516   **     SELECT y+1 FROM tab WHERE y+1!=5
3517   **     UNION ALL
3518   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3519   **     ORDER BY 1
3520   **
3521   ** We call this the "compound-subquery flattening".
3522   */
3523   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3524     Select *pNew;
3525     ExprList *pOrderBy = p->pOrderBy;
3526     Expr *pLimit = p->pLimit;
3527     Expr *pOffset = p->pOffset;
3528     Select *pPrior = p->pPrior;
3529     p->pOrderBy = 0;
3530     p->pSrc = 0;
3531     p->pPrior = 0;
3532     p->pLimit = 0;
3533     p->pOffset = 0;
3534     pNew = sqlite3SelectDup(db, p, 0);
3535     sqlite3SelectSetName(pNew, pSub->zSelName);
3536     p->pOffset = pOffset;
3537     p->pLimit = pLimit;
3538     p->pOrderBy = pOrderBy;
3539     p->pSrc = pSrc;
3540     p->op = TK_ALL;
3541     if( pNew==0 ){
3542       p->pPrior = pPrior;
3543     }else{
3544       pNew->pPrior = pPrior;
3545       if( pPrior ) pPrior->pNext = pNew;
3546       pNew->pNext = p;
3547       p->pPrior = pNew;
3548       SELECTTRACE(2,pParse,p,
3549          ("compound-subquery flattener creates %s.%p as peer\n",
3550          pNew->zSelName, pNew));
3551     }
3552     if( db->mallocFailed ) return 1;
3553   }
3554 
3555   /* Begin flattening the iFrom-th entry of the FROM clause
3556   ** in the outer query.
3557   */
3558   pSub = pSub1 = pSubitem->pSelect;
3559 
3560   /* Delete the transient table structure associated with the
3561   ** subquery
3562   */
3563   sqlite3DbFree(db, pSubitem->zDatabase);
3564   sqlite3DbFree(db, pSubitem->zName);
3565   sqlite3DbFree(db, pSubitem->zAlias);
3566   pSubitem->zDatabase = 0;
3567   pSubitem->zName = 0;
3568   pSubitem->zAlias = 0;
3569   pSubitem->pSelect = 0;
3570 
3571   /* Defer deleting the Table object associated with the
3572   ** subquery until code generation is
3573   ** complete, since there may still exist Expr.pTab entries that
3574   ** refer to the subquery even after flattening.  Ticket #3346.
3575   **
3576   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3577   */
3578   if( ALWAYS(pSubitem->pTab!=0) ){
3579     Table *pTabToDel = pSubitem->pTab;
3580     if( pTabToDel->nRef==1 ){
3581       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3582       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3583       pToplevel->pZombieTab = pTabToDel;
3584     }else{
3585       pTabToDel->nRef--;
3586     }
3587     pSubitem->pTab = 0;
3588   }
3589 
3590   /* The following loop runs once for each term in a compound-subquery
3591   ** flattening (as described above).  If we are doing a different kind
3592   ** of flattening - a flattening other than a compound-subquery flattening -
3593   ** then this loop only runs once.
3594   **
3595   ** This loop moves all of the FROM elements of the subquery into the
3596   ** the FROM clause of the outer query.  Before doing this, remember
3597   ** the cursor number for the original outer query FROM element in
3598   ** iParent.  The iParent cursor will never be used.  Subsequent code
3599   ** will scan expressions looking for iParent references and replace
3600   ** those references with expressions that resolve to the subquery FROM
3601   ** elements we are now copying in.
3602   */
3603   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3604     int nSubSrc;
3605     u8 jointype = 0;
3606     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3607     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3608     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3609 
3610     if( pSrc ){
3611       assert( pParent==p );  /* First time through the loop */
3612       jointype = pSubitem->fg.jointype;
3613     }else{
3614       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3615       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3616       if( pSrc==0 ){
3617         assert( db->mallocFailed );
3618         break;
3619       }
3620     }
3621 
3622     /* The subquery uses a single slot of the FROM clause of the outer
3623     ** query.  If the subquery has more than one element in its FROM clause,
3624     ** then expand the outer query to make space for it to hold all elements
3625     ** of the subquery.
3626     **
3627     ** Example:
3628     **
3629     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3630     **
3631     ** The outer query has 3 slots in its FROM clause.  One slot of the
3632     ** outer query (the middle slot) is used by the subquery.  The next
3633     ** block of code will expand the outer query FROM clause to 4 slots.
3634     ** The middle slot is expanded to two slots in order to make space
3635     ** for the two elements in the FROM clause of the subquery.
3636     */
3637     if( nSubSrc>1 ){
3638       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3639       if( db->mallocFailed ){
3640         break;
3641       }
3642     }
3643 
3644     /* Transfer the FROM clause terms from the subquery into the
3645     ** outer query.
3646     */
3647     for(i=0; i<nSubSrc; i++){
3648       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3649       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3650       pSrc->a[i+iFrom] = pSubSrc->a[i];
3651       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3652     }
3653     pSrc->a[iFrom].fg.jointype = jointype;
3654 
3655     /* Now begin substituting subquery result set expressions for
3656     ** references to the iParent in the outer query.
3657     **
3658     ** Example:
3659     **
3660     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3661     **   \                     \_____________ subquery __________/          /
3662     **    \_____________________ outer query ______________________________/
3663     **
3664     ** We look at every expression in the outer query and every place we see
3665     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3666     */
3667     pList = pParent->pEList;
3668     for(i=0; i<pList->nExpr; i++){
3669       if( pList->a[i].zName==0 ){
3670         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3671         sqlite3Dequote(zName);
3672         pList->a[i].zName = zName;
3673       }
3674     }
3675     if( pSub->pOrderBy ){
3676       /* At this point, any non-zero iOrderByCol values indicate that the
3677       ** ORDER BY column expression is identical to the iOrderByCol'th
3678       ** expression returned by SELECT statement pSub. Since these values
3679       ** do not necessarily correspond to columns in SELECT statement pParent,
3680       ** zero them before transfering the ORDER BY clause.
3681       **
3682       ** Not doing this may cause an error if a subsequent call to this
3683       ** function attempts to flatten a compound sub-query into pParent
3684       ** (the only way this can happen is if the compound sub-query is
3685       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3686       ExprList *pOrderBy = pSub->pOrderBy;
3687       for(i=0; i<pOrderBy->nExpr; i++){
3688         pOrderBy->a[i].u.x.iOrderByCol = 0;
3689       }
3690       assert( pParent->pOrderBy==0 );
3691       assert( pSub->pPrior==0 );
3692       pParent->pOrderBy = pOrderBy;
3693       pSub->pOrderBy = 0;
3694     }
3695     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3696     if( subqueryIsAgg ){
3697       assert( pParent->pHaving==0 );
3698       pParent->pHaving = pParent->pWhere;
3699       pParent->pWhere = pWhere;
3700       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3701                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3702       assert( pParent->pGroupBy==0 );
3703       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3704     }else{
3705       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3706     }
3707     substSelect(db, pParent, iParent, pSub->pEList, 0);
3708 
3709     /* The flattened query is distinct if either the inner or the
3710     ** outer query is distinct.
3711     */
3712     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3713 
3714     /*
3715     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3716     **
3717     ** One is tempted to try to add a and b to combine the limits.  But this
3718     ** does not work if either limit is negative.
3719     */
3720     if( pSub->pLimit ){
3721       pParent->pLimit = pSub->pLimit;
3722       pSub->pLimit = 0;
3723     }
3724   }
3725 
3726   /* Finially, delete what is left of the subquery and return
3727   ** success.
3728   */
3729   sqlite3SelectDelete(db, pSub1);
3730 
3731 #if SELECTTRACE_ENABLED
3732   if( sqlite3SelectTrace & 0x100 ){
3733     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3734     sqlite3TreeViewSelect(0, p, 0);
3735   }
3736 #endif
3737 
3738   return 1;
3739 }
3740 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3741 
3742 
3743 
3744 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3745 /*
3746 ** Make copies of relevant WHERE clause terms of the outer query into
3747 ** the WHERE clause of subquery.  Example:
3748 **
3749 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3750 **
3751 ** Transformed into:
3752 **
3753 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3754 **     WHERE x=5 AND y=10;
3755 **
3756 ** The hope is that the terms added to the inner query will make it more
3757 ** efficient.
3758 **
3759 ** Do not attempt this optimization if:
3760 **
3761 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3762 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3763 **       inner query.  But they probably won't help there so do not bother.)
3764 **
3765 **   (2) The inner query is the recursive part of a common table expression.
3766 **
3767 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3768 **       close would change the meaning of the LIMIT).
3769 **
3770 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3771 **       enforces this restriction since this routine does not have enough
3772 **       information to know.)
3773 **
3774 **   (5) The WHERE clause expression originates in the ON or USING clause
3775 **       of a LEFT JOIN.
3776 **
3777 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3778 ** terms are duplicated into the subquery.
3779 */
3780 static int pushDownWhereTerms(
3781   sqlite3 *db,          /* The database connection (for malloc()) */
3782   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3783   Expr *pWhere,         /* The WHERE clause of the outer query */
3784   int iCursor           /* Cursor number of the subquery */
3785 ){
3786   Expr *pNew;
3787   int nChng = 0;
3788   if( pWhere==0 ) return 0;
3789   if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3790      testcase( pSubq->selFlags & SF_Aggregate );
3791      testcase( pSubq->selFlags & SF_Recursive );
3792      return 0; /* restrictions (1) and (2) */
3793   }
3794   if( pSubq->pLimit!=0 ){
3795      return 0; /* restriction (3) */
3796   }
3797   while( pWhere->op==TK_AND ){
3798     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3799     pWhere = pWhere->pLeft;
3800   }
3801   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3802   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3803     nChng++;
3804     while( pSubq ){
3805       pNew = sqlite3ExprDup(db, pWhere, 0);
3806       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3807       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3808       pSubq = pSubq->pPrior;
3809     }
3810   }
3811   return nChng;
3812 }
3813 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3814 
3815 /*
3816 ** Based on the contents of the AggInfo structure indicated by the first
3817 ** argument, this function checks if the following are true:
3818 **
3819 **    * the query contains just a single aggregate function,
3820 **    * the aggregate function is either min() or max(), and
3821 **    * the argument to the aggregate function is a column value.
3822 **
3823 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3824 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3825 ** list of arguments passed to the aggregate before returning.
3826 **
3827 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3828 ** WHERE_ORDERBY_NORMAL is returned.
3829 */
3830 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3831   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3832 
3833   *ppMinMax = 0;
3834   if( pAggInfo->nFunc==1 ){
3835     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3836     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3837 
3838     assert( pExpr->op==TK_AGG_FUNCTION );
3839     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3840       const char *zFunc = pExpr->u.zToken;
3841       if( sqlite3StrICmp(zFunc, "min")==0 ){
3842         eRet = WHERE_ORDERBY_MIN;
3843         *ppMinMax = pEList;
3844       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3845         eRet = WHERE_ORDERBY_MAX;
3846         *ppMinMax = pEList;
3847       }
3848     }
3849   }
3850 
3851   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3852   return eRet;
3853 }
3854 
3855 /*
3856 ** The select statement passed as the first argument is an aggregate query.
3857 ** The second argument is the associated aggregate-info object. This
3858 ** function tests if the SELECT is of the form:
3859 **
3860 **   SELECT count(*) FROM <tbl>
3861 **
3862 ** where table is a database table, not a sub-select or view. If the query
3863 ** does match this pattern, then a pointer to the Table object representing
3864 ** <tbl> is returned. Otherwise, 0 is returned.
3865 */
3866 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3867   Table *pTab;
3868   Expr *pExpr;
3869 
3870   assert( !p->pGroupBy );
3871 
3872   if( p->pWhere || p->pEList->nExpr!=1
3873    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3874   ){
3875     return 0;
3876   }
3877   pTab = p->pSrc->a[0].pTab;
3878   pExpr = p->pEList->a[0].pExpr;
3879   assert( pTab && !pTab->pSelect && pExpr );
3880 
3881   if( IsVirtual(pTab) ) return 0;
3882   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3883   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3884   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3885   if( pExpr->flags&EP_Distinct ) return 0;
3886 
3887   return pTab;
3888 }
3889 
3890 /*
3891 ** If the source-list item passed as an argument was augmented with an
3892 ** INDEXED BY clause, then try to locate the specified index. If there
3893 ** was such a clause and the named index cannot be found, return
3894 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3895 ** pFrom->pIndex and return SQLITE_OK.
3896 */
3897 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3898   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3899     Table *pTab = pFrom->pTab;
3900     char *zIndexedBy = pFrom->u1.zIndexedBy;
3901     Index *pIdx;
3902     for(pIdx=pTab->pIndex;
3903         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3904         pIdx=pIdx->pNext
3905     );
3906     if( !pIdx ){
3907       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3908       pParse->checkSchema = 1;
3909       return SQLITE_ERROR;
3910     }
3911     pFrom->pIBIndex = pIdx;
3912   }
3913   return SQLITE_OK;
3914 }
3915 /*
3916 ** Detect compound SELECT statements that use an ORDER BY clause with
3917 ** an alternative collating sequence.
3918 **
3919 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3920 **
3921 ** These are rewritten as a subquery:
3922 **
3923 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3924 **     ORDER BY ... COLLATE ...
3925 **
3926 ** This transformation is necessary because the multiSelectOrderBy() routine
3927 ** above that generates the code for a compound SELECT with an ORDER BY clause
3928 ** uses a merge algorithm that requires the same collating sequence on the
3929 ** result columns as on the ORDER BY clause.  See ticket
3930 ** http://www.sqlite.org/src/info/6709574d2a
3931 **
3932 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3933 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3934 ** there are COLLATE terms in the ORDER BY.
3935 */
3936 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3937   int i;
3938   Select *pNew;
3939   Select *pX;
3940   sqlite3 *db;
3941   struct ExprList_item *a;
3942   SrcList *pNewSrc;
3943   Parse *pParse;
3944   Token dummy;
3945 
3946   if( p->pPrior==0 ) return WRC_Continue;
3947   if( p->pOrderBy==0 ) return WRC_Continue;
3948   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3949   if( pX==0 ) return WRC_Continue;
3950   a = p->pOrderBy->a;
3951   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3952     if( a[i].pExpr->flags & EP_Collate ) break;
3953   }
3954   if( i<0 ) return WRC_Continue;
3955 
3956   /* If we reach this point, that means the transformation is required. */
3957 
3958   pParse = pWalker->pParse;
3959   db = pParse->db;
3960   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3961   if( pNew==0 ) return WRC_Abort;
3962   memset(&dummy, 0, sizeof(dummy));
3963   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3964   if( pNewSrc==0 ) return WRC_Abort;
3965   *pNew = *p;
3966   p->pSrc = pNewSrc;
3967   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
3968   p->op = TK_SELECT;
3969   p->pWhere = 0;
3970   pNew->pGroupBy = 0;
3971   pNew->pHaving = 0;
3972   pNew->pOrderBy = 0;
3973   p->pPrior = 0;
3974   p->pNext = 0;
3975   p->pWith = 0;
3976   p->selFlags &= ~SF_Compound;
3977   assert( (p->selFlags & SF_Converted)==0 );
3978   p->selFlags |= SF_Converted;
3979   assert( pNew->pPrior!=0 );
3980   pNew->pPrior->pNext = pNew;
3981   pNew->pLimit = 0;
3982   pNew->pOffset = 0;
3983   return WRC_Continue;
3984 }
3985 
3986 /*
3987 ** Check to see if the FROM clause term pFrom has table-valued function
3988 ** arguments.  If it does, leave an error message in pParse and return
3989 ** non-zero, since pFrom is not allowed to be a table-valued function.
3990 */
3991 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
3992   if( pFrom->fg.isTabFunc ){
3993     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
3994     return 1;
3995   }
3996   return 0;
3997 }
3998 
3999 #ifndef SQLITE_OMIT_CTE
4000 /*
4001 ** Argument pWith (which may be NULL) points to a linked list of nested
4002 ** WITH contexts, from inner to outermost. If the table identified by
4003 ** FROM clause element pItem is really a common-table-expression (CTE)
4004 ** then return a pointer to the CTE definition for that table. Otherwise
4005 ** return NULL.
4006 **
4007 ** If a non-NULL value is returned, set *ppContext to point to the With
4008 ** object that the returned CTE belongs to.
4009 */
4010 static struct Cte *searchWith(
4011   With *pWith,                    /* Current innermost WITH clause */
4012   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4013   With **ppContext                /* OUT: WITH clause return value belongs to */
4014 ){
4015   const char *zName;
4016   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4017     With *p;
4018     for(p=pWith; p; p=p->pOuter){
4019       int i;
4020       for(i=0; i<p->nCte; i++){
4021         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4022           *ppContext = p;
4023           return &p->a[i];
4024         }
4025       }
4026     }
4027   }
4028   return 0;
4029 }
4030 
4031 /* The code generator maintains a stack of active WITH clauses
4032 ** with the inner-most WITH clause being at the top of the stack.
4033 **
4034 ** This routine pushes the WITH clause passed as the second argument
4035 ** onto the top of the stack. If argument bFree is true, then this
4036 ** WITH clause will never be popped from the stack. In this case it
4037 ** should be freed along with the Parse object. In other cases, when
4038 ** bFree==0, the With object will be freed along with the SELECT
4039 ** statement with which it is associated.
4040 */
4041 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4042   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4043   if( pWith ){
4044     assert( pParse->pWith!=pWith );
4045     pWith->pOuter = pParse->pWith;
4046     pParse->pWith = pWith;
4047     if( bFree ) pParse->pWithToFree = pWith;
4048   }
4049 }
4050 
4051 /*
4052 ** This function checks if argument pFrom refers to a CTE declared by
4053 ** a WITH clause on the stack currently maintained by the parser. And,
4054 ** if currently processing a CTE expression, if it is a recursive
4055 ** reference to the current CTE.
4056 **
4057 ** If pFrom falls into either of the two categories above, pFrom->pTab
4058 ** and other fields are populated accordingly. The caller should check
4059 ** (pFrom->pTab!=0) to determine whether or not a successful match
4060 ** was found.
4061 **
4062 ** Whether or not a match is found, SQLITE_OK is returned if no error
4063 ** occurs. If an error does occur, an error message is stored in the
4064 ** parser and some error code other than SQLITE_OK returned.
4065 */
4066 static int withExpand(
4067   Walker *pWalker,
4068   struct SrcList_item *pFrom
4069 ){
4070   Parse *pParse = pWalker->pParse;
4071   sqlite3 *db = pParse->db;
4072   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4073   With *pWith;                    /* WITH clause that pCte belongs to */
4074 
4075   assert( pFrom->pTab==0 );
4076 
4077   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4078   if( pCte ){
4079     Table *pTab;
4080     ExprList *pEList;
4081     Select *pSel;
4082     Select *pLeft;                /* Left-most SELECT statement */
4083     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4084     With *pSavedWith;             /* Initial value of pParse->pWith */
4085 
4086     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4087     ** recursive reference to CTE pCte. Leave an error in pParse and return
4088     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4089     ** In this case, proceed.  */
4090     if( pCte->zCteErr ){
4091       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4092       return SQLITE_ERROR;
4093     }
4094     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4095 
4096     assert( pFrom->pTab==0 );
4097     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4098     if( pTab==0 ) return WRC_Abort;
4099     pTab->nRef = 1;
4100     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4101     pTab->iPKey = -1;
4102     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4103     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4104     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4105     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4106     assert( pFrom->pSelect );
4107 
4108     /* Check if this is a recursive CTE. */
4109     pSel = pFrom->pSelect;
4110     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4111     if( bMayRecursive ){
4112       int i;
4113       SrcList *pSrc = pFrom->pSelect->pSrc;
4114       for(i=0; i<pSrc->nSrc; i++){
4115         struct SrcList_item *pItem = &pSrc->a[i];
4116         if( pItem->zDatabase==0
4117          && pItem->zName!=0
4118          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4119           ){
4120           pItem->pTab = pTab;
4121           pItem->fg.isRecursive = 1;
4122           pTab->nRef++;
4123           pSel->selFlags |= SF_Recursive;
4124         }
4125       }
4126     }
4127 
4128     /* Only one recursive reference is permitted. */
4129     if( pTab->nRef>2 ){
4130       sqlite3ErrorMsg(
4131           pParse, "multiple references to recursive table: %s", pCte->zName
4132       );
4133       return SQLITE_ERROR;
4134     }
4135     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4136 
4137     pCte->zCteErr = "circular reference: %s";
4138     pSavedWith = pParse->pWith;
4139     pParse->pWith = pWith;
4140     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4141     pParse->pWith = pWith;
4142 
4143     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4144     pEList = pLeft->pEList;
4145     if( pCte->pCols ){
4146       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4147         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4148             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4149         );
4150         pParse->pWith = pSavedWith;
4151         return SQLITE_ERROR;
4152       }
4153       pEList = pCte->pCols;
4154     }
4155 
4156     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4157     if( bMayRecursive ){
4158       if( pSel->selFlags & SF_Recursive ){
4159         pCte->zCteErr = "multiple recursive references: %s";
4160       }else{
4161         pCte->zCteErr = "recursive reference in a subquery: %s";
4162       }
4163       sqlite3WalkSelect(pWalker, pSel);
4164     }
4165     pCte->zCteErr = 0;
4166     pParse->pWith = pSavedWith;
4167   }
4168 
4169   return SQLITE_OK;
4170 }
4171 #endif
4172 
4173 #ifndef SQLITE_OMIT_CTE
4174 /*
4175 ** If the SELECT passed as the second argument has an associated WITH
4176 ** clause, pop it from the stack stored as part of the Parse object.
4177 **
4178 ** This function is used as the xSelectCallback2() callback by
4179 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4180 ** names and other FROM clause elements.
4181 */
4182 static void selectPopWith(Walker *pWalker, Select *p){
4183   Parse *pParse = pWalker->pParse;
4184   With *pWith = findRightmost(p)->pWith;
4185   if( pWith!=0 ){
4186     assert( pParse->pWith==pWith );
4187     pParse->pWith = pWith->pOuter;
4188   }
4189 }
4190 #else
4191 #define selectPopWith 0
4192 #endif
4193 
4194 /*
4195 ** This routine is a Walker callback for "expanding" a SELECT statement.
4196 ** "Expanding" means to do the following:
4197 **
4198 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4199 **         element of the FROM clause.
4200 **
4201 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4202 **         defines FROM clause.  When views appear in the FROM clause,
4203 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4204 **         that implements the view.  A copy is made of the view's SELECT
4205 **         statement so that we can freely modify or delete that statement
4206 **         without worrying about messing up the persistent representation
4207 **         of the view.
4208 **
4209 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4210 **         on joins and the ON and USING clause of joins.
4211 **
4212 **    (4)  Scan the list of columns in the result set (pEList) looking
4213 **         for instances of the "*" operator or the TABLE.* operator.
4214 **         If found, expand each "*" to be every column in every table
4215 **         and TABLE.* to be every column in TABLE.
4216 **
4217 */
4218 static int selectExpander(Walker *pWalker, Select *p){
4219   Parse *pParse = pWalker->pParse;
4220   int i, j, k;
4221   SrcList *pTabList;
4222   ExprList *pEList;
4223   struct SrcList_item *pFrom;
4224   sqlite3 *db = pParse->db;
4225   Expr *pE, *pRight, *pExpr;
4226   u16 selFlags = p->selFlags;
4227 
4228   p->selFlags |= SF_Expanded;
4229   if( db->mallocFailed  ){
4230     return WRC_Abort;
4231   }
4232   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4233     return WRC_Prune;
4234   }
4235   pTabList = p->pSrc;
4236   pEList = p->pEList;
4237   if( pWalker->xSelectCallback2==selectPopWith ){
4238     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4239   }
4240 
4241   /* Make sure cursor numbers have been assigned to all entries in
4242   ** the FROM clause of the SELECT statement.
4243   */
4244   sqlite3SrcListAssignCursors(pParse, pTabList);
4245 
4246   /* Look up every table named in the FROM clause of the select.  If
4247   ** an entry of the FROM clause is a subquery instead of a table or view,
4248   ** then create a transient table structure to describe the subquery.
4249   */
4250   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4251     Table *pTab;
4252     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4253     if( pFrom->fg.isRecursive ) continue;
4254     assert( pFrom->pTab==0 );
4255 #ifndef SQLITE_OMIT_CTE
4256     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4257     if( pFrom->pTab ) {} else
4258 #endif
4259     if( pFrom->zName==0 ){
4260 #ifndef SQLITE_OMIT_SUBQUERY
4261       Select *pSel = pFrom->pSelect;
4262       /* A sub-query in the FROM clause of a SELECT */
4263       assert( pSel!=0 );
4264       assert( pFrom->pTab==0 );
4265       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4266       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4267       if( pTab==0 ) return WRC_Abort;
4268       pTab->nRef = 1;
4269       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4270       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4271       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4272       pTab->iPKey = -1;
4273       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4274       pTab->tabFlags |= TF_Ephemeral;
4275 #endif
4276     }else{
4277       /* An ordinary table or view name in the FROM clause */
4278       assert( pFrom->pTab==0 );
4279       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4280       if( pTab==0 ) return WRC_Abort;
4281       if( pTab->nRef==0xffff ){
4282         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4283            pTab->zName);
4284         pFrom->pTab = 0;
4285         return WRC_Abort;
4286       }
4287       pTab->nRef++;
4288       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4289         return WRC_Abort;
4290       }
4291 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4292       if( IsVirtual(pTab) || pTab->pSelect ){
4293         i16 nCol;
4294         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4295         assert( pFrom->pSelect==0 );
4296         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4297         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4298         nCol = pTab->nCol;
4299         pTab->nCol = -1;
4300         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4301         pTab->nCol = nCol;
4302       }
4303 #endif
4304     }
4305 
4306     /* Locate the index named by the INDEXED BY clause, if any. */
4307     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4308       return WRC_Abort;
4309     }
4310   }
4311 
4312   /* Process NATURAL keywords, and ON and USING clauses of joins.
4313   */
4314   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4315     return WRC_Abort;
4316   }
4317 
4318   /* For every "*" that occurs in the column list, insert the names of
4319   ** all columns in all tables.  And for every TABLE.* insert the names
4320   ** of all columns in TABLE.  The parser inserted a special expression
4321   ** with the TK_ASTERISK operator for each "*" that it found in the column
4322   ** list.  The following code just has to locate the TK_ASTERISK
4323   ** expressions and expand each one to the list of all columns in
4324   ** all tables.
4325   **
4326   ** The first loop just checks to see if there are any "*" operators
4327   ** that need expanding.
4328   */
4329   for(k=0; k<pEList->nExpr; k++){
4330     pE = pEList->a[k].pExpr;
4331     if( pE->op==TK_ASTERISK ) break;
4332     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4333     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4334     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4335   }
4336   if( k<pEList->nExpr ){
4337     /*
4338     ** If we get here it means the result set contains one or more "*"
4339     ** operators that need to be expanded.  Loop through each expression
4340     ** in the result set and expand them one by one.
4341     */
4342     struct ExprList_item *a = pEList->a;
4343     ExprList *pNew = 0;
4344     int flags = pParse->db->flags;
4345     int longNames = (flags & SQLITE_FullColNames)!=0
4346                       && (flags & SQLITE_ShortColNames)==0;
4347 
4348     for(k=0; k<pEList->nExpr; k++){
4349       pE = a[k].pExpr;
4350       pRight = pE->pRight;
4351       assert( pE->op!=TK_DOT || pRight!=0 );
4352       if( pE->op!=TK_ASTERISK
4353        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4354       ){
4355         /* This particular expression does not need to be expanded.
4356         */
4357         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4358         if( pNew ){
4359           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4360           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4361           a[k].zName = 0;
4362           a[k].zSpan = 0;
4363         }
4364         a[k].pExpr = 0;
4365       }else{
4366         /* This expression is a "*" or a "TABLE.*" and needs to be
4367         ** expanded. */
4368         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4369         char *zTName = 0;       /* text of name of TABLE */
4370         if( pE->op==TK_DOT ){
4371           assert( pE->pLeft!=0 );
4372           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4373           zTName = pE->pLeft->u.zToken;
4374         }
4375         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4376           Table *pTab = pFrom->pTab;
4377           Select *pSub = pFrom->pSelect;
4378           char *zTabName = pFrom->zAlias;
4379           const char *zSchemaName = 0;
4380           int iDb;
4381           if( zTabName==0 ){
4382             zTabName = pTab->zName;
4383           }
4384           if( db->mallocFailed ) break;
4385           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4386             pSub = 0;
4387             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4388               continue;
4389             }
4390             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4391             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4392           }
4393           for(j=0; j<pTab->nCol; j++){
4394             char *zName = pTab->aCol[j].zName;
4395             char *zColname;  /* The computed column name */
4396             char *zToFree;   /* Malloced string that needs to be freed */
4397             Token sColname;  /* Computed column name as a token */
4398 
4399             assert( zName );
4400             if( zTName && pSub
4401              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4402             ){
4403               continue;
4404             }
4405 
4406             /* If a column is marked as 'hidden', omit it from the expanded
4407             ** result-set list unless the SELECT has the SF_IncludeHidden
4408             ** bit set.
4409             */
4410             if( (p->selFlags & SF_IncludeHidden)==0
4411              && IsHiddenColumn(&pTab->aCol[j])
4412             ){
4413               continue;
4414             }
4415             tableSeen = 1;
4416 
4417             if( i>0 && zTName==0 ){
4418               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4419                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4420               ){
4421                 /* In a NATURAL join, omit the join columns from the
4422                 ** table to the right of the join */
4423                 continue;
4424               }
4425               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4426                 /* In a join with a USING clause, omit columns in the
4427                 ** using clause from the table on the right. */
4428                 continue;
4429               }
4430             }
4431             pRight = sqlite3Expr(db, TK_ID, zName);
4432             zColname = zName;
4433             zToFree = 0;
4434             if( longNames || pTabList->nSrc>1 ){
4435               Expr *pLeft;
4436               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4437               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4438               if( zSchemaName ){
4439                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4440                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4441               }
4442               if( longNames ){
4443                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4444                 zToFree = zColname;
4445               }
4446             }else{
4447               pExpr = pRight;
4448             }
4449             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4450             sqlite3TokenInit(&sColname, zColname);
4451             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4452             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4453               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4454               if( pSub ){
4455                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4456                 testcase( pX->zSpan==0 );
4457               }else{
4458                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4459                                            zSchemaName, zTabName, zColname);
4460                 testcase( pX->zSpan==0 );
4461               }
4462               pX->bSpanIsTab = 1;
4463             }
4464             sqlite3DbFree(db, zToFree);
4465           }
4466         }
4467         if( !tableSeen ){
4468           if( zTName ){
4469             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4470           }else{
4471             sqlite3ErrorMsg(pParse, "no tables specified");
4472           }
4473         }
4474       }
4475     }
4476     sqlite3ExprListDelete(db, pEList);
4477     p->pEList = pNew;
4478   }
4479 #if SQLITE_MAX_COLUMN
4480   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4481     sqlite3ErrorMsg(pParse, "too many columns in result set");
4482     return WRC_Abort;
4483   }
4484 #endif
4485   return WRC_Continue;
4486 }
4487 
4488 /*
4489 ** No-op routine for the parse-tree walker.
4490 **
4491 ** When this routine is the Walker.xExprCallback then expression trees
4492 ** are walked without any actions being taken at each node.  Presumably,
4493 ** when this routine is used for Walker.xExprCallback then
4494 ** Walker.xSelectCallback is set to do something useful for every
4495 ** subquery in the parser tree.
4496 */
4497 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4498   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4499   return WRC_Continue;
4500 }
4501 
4502 /*
4503 ** This routine "expands" a SELECT statement and all of its subqueries.
4504 ** For additional information on what it means to "expand" a SELECT
4505 ** statement, see the comment on the selectExpand worker callback above.
4506 **
4507 ** Expanding a SELECT statement is the first step in processing a
4508 ** SELECT statement.  The SELECT statement must be expanded before
4509 ** name resolution is performed.
4510 **
4511 ** If anything goes wrong, an error message is written into pParse.
4512 ** The calling function can detect the problem by looking at pParse->nErr
4513 ** and/or pParse->db->mallocFailed.
4514 */
4515 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4516   Walker w;
4517   memset(&w, 0, sizeof(w));
4518   w.xExprCallback = sqlite3ExprWalkNoop;
4519   w.pParse = pParse;
4520   if( pParse->hasCompound ){
4521     w.xSelectCallback = convertCompoundSelectToSubquery;
4522     sqlite3WalkSelect(&w, pSelect);
4523   }
4524   w.xSelectCallback = selectExpander;
4525   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4526     w.xSelectCallback2 = selectPopWith;
4527   }
4528   sqlite3WalkSelect(&w, pSelect);
4529 }
4530 
4531 
4532 #ifndef SQLITE_OMIT_SUBQUERY
4533 /*
4534 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4535 ** interface.
4536 **
4537 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4538 ** information to the Table structure that represents the result set
4539 ** of that subquery.
4540 **
4541 ** The Table structure that represents the result set was constructed
4542 ** by selectExpander() but the type and collation information was omitted
4543 ** at that point because identifiers had not yet been resolved.  This
4544 ** routine is called after identifier resolution.
4545 */
4546 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4547   Parse *pParse;
4548   int i;
4549   SrcList *pTabList;
4550   struct SrcList_item *pFrom;
4551 
4552   assert( p->selFlags & SF_Resolved );
4553   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4554   p->selFlags |= SF_HasTypeInfo;
4555   pParse = pWalker->pParse;
4556   pTabList = p->pSrc;
4557   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4558     Table *pTab = pFrom->pTab;
4559     assert( pTab!=0 );
4560     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4561       /* A sub-query in the FROM clause of a SELECT */
4562       Select *pSel = pFrom->pSelect;
4563       if( pSel ){
4564         while( pSel->pPrior ) pSel = pSel->pPrior;
4565         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4566       }
4567     }
4568   }
4569 }
4570 #endif
4571 
4572 
4573 /*
4574 ** This routine adds datatype and collating sequence information to
4575 ** the Table structures of all FROM-clause subqueries in a
4576 ** SELECT statement.
4577 **
4578 ** Use this routine after name resolution.
4579 */
4580 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4581 #ifndef SQLITE_OMIT_SUBQUERY
4582   Walker w;
4583   memset(&w, 0, sizeof(w));
4584   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4585   w.xExprCallback = sqlite3ExprWalkNoop;
4586   w.pParse = pParse;
4587   sqlite3WalkSelect(&w, pSelect);
4588 #endif
4589 }
4590 
4591 
4592 /*
4593 ** This routine sets up a SELECT statement for processing.  The
4594 ** following is accomplished:
4595 **
4596 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4597 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4598 **     *  ON and USING clauses are shifted into WHERE statements
4599 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4600 **     *  Identifiers in expression are matched to tables.
4601 **
4602 ** This routine acts recursively on all subqueries within the SELECT.
4603 */
4604 void sqlite3SelectPrep(
4605   Parse *pParse,         /* The parser context */
4606   Select *p,             /* The SELECT statement being coded. */
4607   NameContext *pOuterNC  /* Name context for container */
4608 ){
4609   sqlite3 *db;
4610   if( NEVER(p==0) ) return;
4611   db = pParse->db;
4612   if( db->mallocFailed ) return;
4613   if( p->selFlags & SF_HasTypeInfo ) return;
4614   sqlite3SelectExpand(pParse, p);
4615   if( pParse->nErr || db->mallocFailed ) return;
4616   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4617   if( pParse->nErr || db->mallocFailed ) return;
4618   sqlite3SelectAddTypeInfo(pParse, p);
4619 }
4620 
4621 /*
4622 ** Reset the aggregate accumulator.
4623 **
4624 ** The aggregate accumulator is a set of memory cells that hold
4625 ** intermediate results while calculating an aggregate.  This
4626 ** routine generates code that stores NULLs in all of those memory
4627 ** cells.
4628 */
4629 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4630   Vdbe *v = pParse->pVdbe;
4631   int i;
4632   struct AggInfo_func *pFunc;
4633   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4634   if( nReg==0 ) return;
4635 #ifdef SQLITE_DEBUG
4636   /* Verify that all AggInfo registers are within the range specified by
4637   ** AggInfo.mnReg..AggInfo.mxReg */
4638   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4639   for(i=0; i<pAggInfo->nColumn; i++){
4640     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4641          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4642   }
4643   for(i=0; i<pAggInfo->nFunc; i++){
4644     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4645          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4646   }
4647 #endif
4648   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4649   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4650     if( pFunc->iDistinct>=0 ){
4651       Expr *pE = pFunc->pExpr;
4652       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4653       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4654         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4655            "argument");
4656         pFunc->iDistinct = -1;
4657       }else{
4658         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4659         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4660                           (char*)pKeyInfo, P4_KEYINFO);
4661       }
4662     }
4663   }
4664 }
4665 
4666 /*
4667 ** Invoke the OP_AggFinalize opcode for every aggregate function
4668 ** in the AggInfo structure.
4669 */
4670 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4671   Vdbe *v = pParse->pVdbe;
4672   int i;
4673   struct AggInfo_func *pF;
4674   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4675     ExprList *pList = pF->pExpr->x.pList;
4676     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4677     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4678                       (void*)pF->pFunc, P4_FUNCDEF);
4679   }
4680 }
4681 
4682 /*
4683 ** Update the accumulator memory cells for an aggregate based on
4684 ** the current cursor position.
4685 */
4686 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4687   Vdbe *v = pParse->pVdbe;
4688   int i;
4689   int regHit = 0;
4690   int addrHitTest = 0;
4691   struct AggInfo_func *pF;
4692   struct AggInfo_col *pC;
4693 
4694   pAggInfo->directMode = 1;
4695   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4696     int nArg;
4697     int addrNext = 0;
4698     int regAgg;
4699     ExprList *pList = pF->pExpr->x.pList;
4700     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4701     if( pList ){
4702       nArg = pList->nExpr;
4703       regAgg = sqlite3GetTempRange(pParse, nArg);
4704       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4705     }else{
4706       nArg = 0;
4707       regAgg = 0;
4708     }
4709     if( pF->iDistinct>=0 ){
4710       addrNext = sqlite3VdbeMakeLabel(v);
4711       testcase( nArg==0 );  /* Error condition */
4712       testcase( nArg>1 );   /* Also an error */
4713       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4714     }
4715     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4716       CollSeq *pColl = 0;
4717       struct ExprList_item *pItem;
4718       int j;
4719       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4720       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4721         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4722       }
4723       if( !pColl ){
4724         pColl = pParse->db->pDfltColl;
4725       }
4726       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4727       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4728     }
4729     sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4730                       (void*)pF->pFunc, P4_FUNCDEF);
4731     sqlite3VdbeChangeP5(v, (u8)nArg);
4732     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4733     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4734     if( addrNext ){
4735       sqlite3VdbeResolveLabel(v, addrNext);
4736       sqlite3ExprCacheClear(pParse);
4737     }
4738   }
4739 
4740   /* Before populating the accumulator registers, clear the column cache.
4741   ** Otherwise, if any of the required column values are already present
4742   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4743   ** to pC->iMem. But by the time the value is used, the original register
4744   ** may have been used, invalidating the underlying buffer holding the
4745   ** text or blob value. See ticket [883034dcb5].
4746   **
4747   ** Another solution would be to change the OP_SCopy used to copy cached
4748   ** values to an OP_Copy.
4749   */
4750   if( regHit ){
4751     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4752   }
4753   sqlite3ExprCacheClear(pParse);
4754   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4755     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4756   }
4757   pAggInfo->directMode = 0;
4758   sqlite3ExprCacheClear(pParse);
4759   if( addrHitTest ){
4760     sqlite3VdbeJumpHere(v, addrHitTest);
4761   }
4762 }
4763 
4764 /*
4765 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4766 ** count(*) query ("SELECT count(*) FROM pTab").
4767 */
4768 #ifndef SQLITE_OMIT_EXPLAIN
4769 static void explainSimpleCount(
4770   Parse *pParse,                  /* Parse context */
4771   Table *pTab,                    /* Table being queried */
4772   Index *pIdx                     /* Index used to optimize scan, or NULL */
4773 ){
4774   if( pParse->explain==2 ){
4775     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4776     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4777         pTab->zName,
4778         bCover ? " USING COVERING INDEX " : "",
4779         bCover ? pIdx->zName : ""
4780     );
4781     sqlite3VdbeAddOp4(
4782         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4783     );
4784   }
4785 }
4786 #else
4787 # define explainSimpleCount(a,b,c)
4788 #endif
4789 
4790 /*
4791 ** Generate code for the SELECT statement given in the p argument.
4792 **
4793 ** The results are returned according to the SelectDest structure.
4794 ** See comments in sqliteInt.h for further information.
4795 **
4796 ** This routine returns the number of errors.  If any errors are
4797 ** encountered, then an appropriate error message is left in
4798 ** pParse->zErrMsg.
4799 **
4800 ** This routine does NOT free the Select structure passed in.  The
4801 ** calling function needs to do that.
4802 */
4803 int sqlite3Select(
4804   Parse *pParse,         /* The parser context */
4805   Select *p,             /* The SELECT statement being coded. */
4806   SelectDest *pDest      /* What to do with the query results */
4807 ){
4808   int i, j;              /* Loop counters */
4809   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4810   Vdbe *v;               /* The virtual machine under construction */
4811   int isAgg;             /* True for select lists like "count(*)" */
4812   ExprList *pEList = 0;  /* List of columns to extract. */
4813   SrcList *pTabList;     /* List of tables to select from */
4814   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4815   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4816   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4817   int rc = 1;            /* Value to return from this function */
4818   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4819   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4820   AggInfo sAggInfo;      /* Information used by aggregate queries */
4821   int iEnd;              /* Address of the end of the query */
4822   sqlite3 *db;           /* The database connection */
4823 
4824 #ifndef SQLITE_OMIT_EXPLAIN
4825   int iRestoreSelectId = pParse->iSelectId;
4826   pParse->iSelectId = pParse->iNextSelectId++;
4827 #endif
4828 
4829   db = pParse->db;
4830   if( p==0 || db->mallocFailed || pParse->nErr ){
4831     return 1;
4832   }
4833   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4834   memset(&sAggInfo, 0, sizeof(sAggInfo));
4835 #if SELECTTRACE_ENABLED
4836   pParse->nSelectIndent++;
4837   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4838   if( sqlite3SelectTrace & 0x100 ){
4839     sqlite3TreeViewSelect(0, p, 0);
4840   }
4841 #endif
4842 
4843   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4844   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4845   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4846   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4847   if( IgnorableOrderby(pDest) ){
4848     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4849            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4850            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4851            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4852     /* If ORDER BY makes no difference in the output then neither does
4853     ** DISTINCT so it can be removed too. */
4854     sqlite3ExprListDelete(db, p->pOrderBy);
4855     p->pOrderBy = 0;
4856     p->selFlags &= ~SF_Distinct;
4857   }
4858   sqlite3SelectPrep(pParse, p, 0);
4859   memset(&sSort, 0, sizeof(sSort));
4860   sSort.pOrderBy = p->pOrderBy;
4861   pTabList = p->pSrc;
4862   if( pParse->nErr || db->mallocFailed ){
4863     goto select_end;
4864   }
4865   assert( p->pEList!=0 );
4866   isAgg = (p->selFlags & SF_Aggregate)!=0;
4867 #if SELECTTRACE_ENABLED
4868   if( sqlite3SelectTrace & 0x100 ){
4869     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4870     sqlite3TreeViewSelect(0, p, 0);
4871   }
4872 #endif
4873 
4874 
4875   /* If writing to memory or generating a set
4876   ** only a single column may be output.
4877   */
4878 #ifndef SQLITE_OMIT_SUBQUERY
4879   if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4880     goto select_end;
4881   }
4882 #endif
4883 
4884   /* Try to flatten subqueries in the FROM clause up into the main query
4885   */
4886 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4887   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4888     struct SrcList_item *pItem = &pTabList->a[i];
4889     Select *pSub = pItem->pSelect;
4890     int isAggSub;
4891     Table *pTab = pItem->pTab;
4892     if( pSub==0 ) continue;
4893 
4894     /* Catch mismatch in the declared columns of a view and the number of
4895     ** columns in the SELECT on the RHS */
4896     if( pTab->nCol!=pSub->pEList->nExpr ){
4897       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
4898                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
4899       goto select_end;
4900     }
4901 
4902     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4903     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4904       /* This subquery can be absorbed into its parent. */
4905       if( isAggSub ){
4906         isAgg = 1;
4907         p->selFlags |= SF_Aggregate;
4908       }
4909       i = -1;
4910     }
4911     pTabList = p->pSrc;
4912     if( db->mallocFailed ) goto select_end;
4913     if( !IgnorableOrderby(pDest) ){
4914       sSort.pOrderBy = p->pOrderBy;
4915     }
4916   }
4917 #endif
4918 
4919   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4920   ** does not already exist */
4921   v = sqlite3GetVdbe(pParse);
4922   if( v==0 ) goto select_end;
4923 
4924 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4925   /* Handle compound SELECT statements using the separate multiSelect()
4926   ** procedure.
4927   */
4928   if( p->pPrior ){
4929     rc = multiSelect(pParse, p, pDest);
4930     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4931 #if SELECTTRACE_ENABLED
4932     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4933     pParse->nSelectIndent--;
4934 #endif
4935     return rc;
4936   }
4937 #endif
4938 
4939   /* Generate code for all sub-queries in the FROM clause
4940   */
4941 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4942   for(i=0; i<pTabList->nSrc; i++){
4943     struct SrcList_item *pItem = &pTabList->a[i];
4944     SelectDest dest;
4945     Select *pSub = pItem->pSelect;
4946     if( pSub==0 ) continue;
4947 
4948     /* Sometimes the code for a subquery will be generated more than
4949     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4950     ** for example.  In that case, do not regenerate the code to manifest
4951     ** a view or the co-routine to implement a view.  The first instance
4952     ** is sufficient, though the subroutine to manifest the view does need
4953     ** to be invoked again. */
4954     if( pItem->addrFillSub ){
4955       if( pItem->fg.viaCoroutine==0 ){
4956         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4957       }
4958       continue;
4959     }
4960 
4961     /* Increment Parse.nHeight by the height of the largest expression
4962     ** tree referred to by this, the parent select. The child select
4963     ** may contain expression trees of at most
4964     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4965     ** more conservative than necessary, but much easier than enforcing
4966     ** an exact limit.
4967     */
4968     pParse->nHeight += sqlite3SelectExprHeight(p);
4969 
4970     /* Make copies of constant WHERE-clause terms in the outer query down
4971     ** inside the subquery.  This can help the subquery to run more efficiently.
4972     */
4973     if( (pItem->fg.jointype & JT_OUTER)==0
4974      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4975     ){
4976 #if SELECTTRACE_ENABLED
4977       if( sqlite3SelectTrace & 0x100 ){
4978         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4979         sqlite3TreeViewSelect(0, p, 0);
4980       }
4981 #endif
4982     }
4983 
4984     /* Generate code to implement the subquery
4985     **
4986     ** The subquery is implemented as a co-routine if all of these are true:
4987     **   (1)  The subquery is guaranteed to be the outer loop (so that it
4988     **        does not need to be computed more than once)
4989     **   (2)  The ALL keyword after SELECT is omitted.  (Applications are
4990     **        allowed to say "SELECT ALL" instead of just "SELECT" to disable
4991     **        the use of co-routines.)
4992     **   (3)  Co-routines are not disabled using sqlite3_test_control()
4993     **        with SQLITE_TESTCTRL_OPTIMIZATIONS.
4994     **
4995     ** TODO: Are there other reasons beside (1) to use a co-routine
4996     ** implementation?
4997     */
4998     if( i==0
4999      && (pTabList->nSrc==1
5000             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5001      && (p->selFlags & SF_All)==0                                   /* (2) */
5002      && OptimizationEnabled(db, SQLITE_SubqCoroutine)               /* (3) */
5003     ){
5004       /* Implement a co-routine that will return a single row of the result
5005       ** set on each invocation.
5006       */
5007       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5008       pItem->regReturn = ++pParse->nMem;
5009       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5010       VdbeComment((v, "%s", pItem->pTab->zName));
5011       pItem->addrFillSub = addrTop;
5012       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5013       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5014       sqlite3Select(pParse, pSub, &dest);
5015       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5016       pItem->fg.viaCoroutine = 1;
5017       pItem->regResult = dest.iSdst;
5018       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5019       sqlite3VdbeJumpHere(v, addrTop-1);
5020       sqlite3ClearTempRegCache(pParse);
5021     }else{
5022       /* Generate a subroutine that will fill an ephemeral table with
5023       ** the content of this subquery.  pItem->addrFillSub will point
5024       ** to the address of the generated subroutine.  pItem->regReturn
5025       ** is a register allocated to hold the subroutine return address
5026       */
5027       int topAddr;
5028       int onceAddr = 0;
5029       int retAddr;
5030       assert( pItem->addrFillSub==0 );
5031       pItem->regReturn = ++pParse->nMem;
5032       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5033       pItem->addrFillSub = topAddr+1;
5034       if( pItem->fg.isCorrelated==0 ){
5035         /* If the subquery is not correlated and if we are not inside of
5036         ** a trigger, then we only need to compute the value of the subquery
5037         ** once. */
5038         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
5039         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5040       }else{
5041         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5042       }
5043       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5044       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5045       sqlite3Select(pParse, pSub, &dest);
5046       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5047       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5048       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5049       VdbeComment((v, "end %s", pItem->pTab->zName));
5050       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5051       sqlite3ClearTempRegCache(pParse);
5052     }
5053     if( db->mallocFailed ) goto select_end;
5054     pParse->nHeight -= sqlite3SelectExprHeight(p);
5055   }
5056 #endif
5057 
5058   /* Various elements of the SELECT copied into local variables for
5059   ** convenience */
5060   pEList = p->pEList;
5061   pWhere = p->pWhere;
5062   pGroupBy = p->pGroupBy;
5063   pHaving = p->pHaving;
5064   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5065 
5066 #if SELECTTRACE_ENABLED
5067   if( sqlite3SelectTrace & 0x400 ){
5068     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5069     sqlite3TreeViewSelect(0, p, 0);
5070   }
5071 #endif
5072 
5073   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5074   ** if the select-list is the same as the ORDER BY list, then this query
5075   ** can be rewritten as a GROUP BY. In other words, this:
5076   **
5077   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5078   **
5079   ** is transformed to:
5080   **
5081   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5082   **
5083   ** The second form is preferred as a single index (or temp-table) may be
5084   ** used for both the ORDER BY and DISTINCT processing. As originally
5085   ** written the query must use a temp-table for at least one of the ORDER
5086   ** BY and DISTINCT, and an index or separate temp-table for the other.
5087   */
5088   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5089    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5090   ){
5091     p->selFlags &= ~SF_Distinct;
5092     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5093     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5094     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5095     ** original setting of the SF_Distinct flag, not the current setting */
5096     assert( sDistinct.isTnct );
5097 
5098 #if SELECTTRACE_ENABLED
5099     if( sqlite3SelectTrace & 0x400 ){
5100       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5101       sqlite3TreeViewSelect(0, p, 0);
5102     }
5103 #endif
5104   }
5105 
5106   /* If there is an ORDER BY clause, then create an ephemeral index to
5107   ** do the sorting.  But this sorting ephemeral index might end up
5108   ** being unused if the data can be extracted in pre-sorted order.
5109   ** If that is the case, then the OP_OpenEphemeral instruction will be
5110   ** changed to an OP_Noop once we figure out that the sorting index is
5111   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5112   ** that change.
5113   */
5114   if( sSort.pOrderBy ){
5115     KeyInfo *pKeyInfo;
5116     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5117     sSort.iECursor = pParse->nTab++;
5118     sSort.addrSortIndex =
5119       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5120           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5121           (char*)pKeyInfo, P4_KEYINFO
5122       );
5123   }else{
5124     sSort.addrSortIndex = -1;
5125   }
5126 
5127   /* If the output is destined for a temporary table, open that table.
5128   */
5129   if( pDest->eDest==SRT_EphemTab ){
5130     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5131   }
5132 
5133   /* Set the limiter.
5134   */
5135   iEnd = sqlite3VdbeMakeLabel(v);
5136   p->nSelectRow = 320;  /* 4 billion rows */
5137   computeLimitRegisters(pParse, p, iEnd);
5138   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5139     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5140     sSort.sortFlags |= SORTFLAG_UseSorter;
5141   }
5142 
5143   /* Open an ephemeral index to use for the distinct set.
5144   */
5145   if( p->selFlags & SF_Distinct ){
5146     sDistinct.tabTnct = pParse->nTab++;
5147     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5148                              sDistinct.tabTnct, 0, 0,
5149                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5150                              P4_KEYINFO);
5151     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5152     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5153   }else{
5154     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5155   }
5156 
5157   if( !isAgg && pGroupBy==0 ){
5158     /* No aggregate functions and no GROUP BY clause */
5159     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5160     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5161     wctrlFlags |= p->selFlags & SF_FixedLimit;
5162 
5163     /* Begin the database scan. */
5164     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5165                                p->pEList, wctrlFlags, p->nSelectRow);
5166     if( pWInfo==0 ) goto select_end;
5167     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5168       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5169     }
5170     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5171       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5172     }
5173     if( sSort.pOrderBy ){
5174       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5175       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5176         sSort.pOrderBy = 0;
5177       }
5178     }
5179 
5180     /* If sorting index that was created by a prior OP_OpenEphemeral
5181     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5182     ** into an OP_Noop.
5183     */
5184     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5185       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5186     }
5187 
5188     /* Use the standard inner loop. */
5189     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5190                     sqlite3WhereContinueLabel(pWInfo),
5191                     sqlite3WhereBreakLabel(pWInfo));
5192 
5193     /* End the database scan loop.
5194     */
5195     sqlite3WhereEnd(pWInfo);
5196   }else{
5197     /* This case when there exist aggregate functions or a GROUP BY clause
5198     ** or both */
5199     NameContext sNC;    /* Name context for processing aggregate information */
5200     int iAMem;          /* First Mem address for storing current GROUP BY */
5201     int iBMem;          /* First Mem address for previous GROUP BY */
5202     int iUseFlag;       /* Mem address holding flag indicating that at least
5203                         ** one row of the input to the aggregator has been
5204                         ** processed */
5205     int iAbortFlag;     /* Mem address which causes query abort if positive */
5206     int groupBySort;    /* Rows come from source in GROUP BY order */
5207     int addrEnd;        /* End of processing for this SELECT */
5208     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5209     int sortOut = 0;    /* Output register from the sorter */
5210     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5211 
5212     /* Remove any and all aliases between the result set and the
5213     ** GROUP BY clause.
5214     */
5215     if( pGroupBy ){
5216       int k;                        /* Loop counter */
5217       struct ExprList_item *pItem;  /* For looping over expression in a list */
5218 
5219       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5220         pItem->u.x.iAlias = 0;
5221       }
5222       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5223         pItem->u.x.iAlias = 0;
5224       }
5225       assert( 66==sqlite3LogEst(100) );
5226       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5227     }else{
5228       assert( 0==sqlite3LogEst(1) );
5229       p->nSelectRow = 0;
5230     }
5231 
5232     /* If there is both a GROUP BY and an ORDER BY clause and they are
5233     ** identical, then it may be possible to disable the ORDER BY clause
5234     ** on the grounds that the GROUP BY will cause elements to come out
5235     ** in the correct order. It also may not - the GROUP BY might use a
5236     ** database index that causes rows to be grouped together as required
5237     ** but not actually sorted. Either way, record the fact that the
5238     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5239     ** variable.  */
5240     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5241       orderByGrp = 1;
5242     }
5243 
5244     /* Create a label to jump to when we want to abort the query */
5245     addrEnd = sqlite3VdbeMakeLabel(v);
5246 
5247     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5248     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5249     ** SELECT statement.
5250     */
5251     memset(&sNC, 0, sizeof(sNC));
5252     sNC.pParse = pParse;
5253     sNC.pSrcList = pTabList;
5254     sNC.pAggInfo = &sAggInfo;
5255     sAggInfo.mnReg = pParse->nMem+1;
5256     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5257     sAggInfo.pGroupBy = pGroupBy;
5258     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5259     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5260     if( pHaving ){
5261       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5262     }
5263     sAggInfo.nAccumulator = sAggInfo.nColumn;
5264     for(i=0; i<sAggInfo.nFunc; i++){
5265       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5266       sNC.ncFlags |= NC_InAggFunc;
5267       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5268       sNC.ncFlags &= ~NC_InAggFunc;
5269     }
5270     sAggInfo.mxReg = pParse->nMem;
5271     if( db->mallocFailed ) goto select_end;
5272 
5273     /* Processing for aggregates with GROUP BY is very different and
5274     ** much more complex than aggregates without a GROUP BY.
5275     */
5276     if( pGroupBy ){
5277       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5278       int addr1;          /* A-vs-B comparision jump */
5279       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5280       int regOutputRow;   /* Return address register for output subroutine */
5281       int addrSetAbort;   /* Set the abort flag and return */
5282       int addrTopOfLoop;  /* Top of the input loop */
5283       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5284       int addrReset;      /* Subroutine for resetting the accumulator */
5285       int regReset;       /* Return address register for reset subroutine */
5286 
5287       /* If there is a GROUP BY clause we might need a sorting index to
5288       ** implement it.  Allocate that sorting index now.  If it turns out
5289       ** that we do not need it after all, the OP_SorterOpen instruction
5290       ** will be converted into a Noop.
5291       */
5292       sAggInfo.sortingIdx = pParse->nTab++;
5293       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5294       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5295           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5296           0, (char*)pKeyInfo, P4_KEYINFO);
5297 
5298       /* Initialize memory locations used by GROUP BY aggregate processing
5299       */
5300       iUseFlag = ++pParse->nMem;
5301       iAbortFlag = ++pParse->nMem;
5302       regOutputRow = ++pParse->nMem;
5303       addrOutputRow = sqlite3VdbeMakeLabel(v);
5304       regReset = ++pParse->nMem;
5305       addrReset = sqlite3VdbeMakeLabel(v);
5306       iAMem = pParse->nMem + 1;
5307       pParse->nMem += pGroupBy->nExpr;
5308       iBMem = pParse->nMem + 1;
5309       pParse->nMem += pGroupBy->nExpr;
5310       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5311       VdbeComment((v, "clear abort flag"));
5312       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5313       VdbeComment((v, "indicate accumulator empty"));
5314       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5315 
5316       /* Begin a loop that will extract all source rows in GROUP BY order.
5317       ** This might involve two separate loops with an OP_Sort in between, or
5318       ** it might be a single loop that uses an index to extract information
5319       ** in the right order to begin with.
5320       */
5321       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5322       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5323           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5324       );
5325       if( pWInfo==0 ) goto select_end;
5326       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5327         /* The optimizer is able to deliver rows in group by order so
5328         ** we do not have to sort.  The OP_OpenEphemeral table will be
5329         ** cancelled later because we still need to use the pKeyInfo
5330         */
5331         groupBySort = 0;
5332       }else{
5333         /* Rows are coming out in undetermined order.  We have to push
5334         ** each row into a sorting index, terminate the first loop,
5335         ** then loop over the sorting index in order to get the output
5336         ** in sorted order
5337         */
5338         int regBase;
5339         int regRecord;
5340         int nCol;
5341         int nGroupBy;
5342 
5343         explainTempTable(pParse,
5344             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5345                     "DISTINCT" : "GROUP BY");
5346 
5347         groupBySort = 1;
5348         nGroupBy = pGroupBy->nExpr;
5349         nCol = nGroupBy;
5350         j = nGroupBy;
5351         for(i=0; i<sAggInfo.nColumn; i++){
5352           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5353             nCol++;
5354             j++;
5355           }
5356         }
5357         regBase = sqlite3GetTempRange(pParse, nCol);
5358         sqlite3ExprCacheClear(pParse);
5359         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5360         j = nGroupBy;
5361         for(i=0; i<sAggInfo.nColumn; i++){
5362           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5363           if( pCol->iSorterColumn>=j ){
5364             int r1 = j + regBase;
5365             sqlite3ExprCodeGetColumnToReg(pParse,
5366                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5367             j++;
5368           }
5369         }
5370         regRecord = sqlite3GetTempReg(pParse);
5371         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5372         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5373         sqlite3ReleaseTempReg(pParse, regRecord);
5374         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5375         sqlite3WhereEnd(pWInfo);
5376         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5377         sortOut = sqlite3GetTempReg(pParse);
5378         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5379         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5380         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5381         sAggInfo.useSortingIdx = 1;
5382         sqlite3ExprCacheClear(pParse);
5383 
5384       }
5385 
5386       /* If the index or temporary table used by the GROUP BY sort
5387       ** will naturally deliver rows in the order required by the ORDER BY
5388       ** clause, cancel the ephemeral table open coded earlier.
5389       **
5390       ** This is an optimization - the correct answer should result regardless.
5391       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5392       ** disable this optimization for testing purposes.  */
5393       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5394        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5395       ){
5396         sSort.pOrderBy = 0;
5397         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5398       }
5399 
5400       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5401       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5402       ** Then compare the current GROUP BY terms against the GROUP BY terms
5403       ** from the previous row currently stored in a0, a1, a2...
5404       */
5405       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5406       sqlite3ExprCacheClear(pParse);
5407       if( groupBySort ){
5408         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5409                           sortOut, sortPTab);
5410       }
5411       for(j=0; j<pGroupBy->nExpr; j++){
5412         if( groupBySort ){
5413           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5414         }else{
5415           sAggInfo.directMode = 1;
5416           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5417         }
5418       }
5419       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5420                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5421       addr1 = sqlite3VdbeCurrentAddr(v);
5422       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5423 
5424       /* Generate code that runs whenever the GROUP BY changes.
5425       ** Changes in the GROUP BY are detected by the previous code
5426       ** block.  If there were no changes, this block is skipped.
5427       **
5428       ** This code copies current group by terms in b0,b1,b2,...
5429       ** over to a0,a1,a2.  It then calls the output subroutine
5430       ** and resets the aggregate accumulator registers in preparation
5431       ** for the next GROUP BY batch.
5432       */
5433       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5434       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5435       VdbeComment((v, "output one row"));
5436       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5437       VdbeComment((v, "check abort flag"));
5438       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5439       VdbeComment((v, "reset accumulator"));
5440 
5441       /* Update the aggregate accumulators based on the content of
5442       ** the current row
5443       */
5444       sqlite3VdbeJumpHere(v, addr1);
5445       updateAccumulator(pParse, &sAggInfo);
5446       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5447       VdbeComment((v, "indicate data in accumulator"));
5448 
5449       /* End of the loop
5450       */
5451       if( groupBySort ){
5452         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5453         VdbeCoverage(v);
5454       }else{
5455         sqlite3WhereEnd(pWInfo);
5456         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5457       }
5458 
5459       /* Output the final row of result
5460       */
5461       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5462       VdbeComment((v, "output final row"));
5463 
5464       /* Jump over the subroutines
5465       */
5466       sqlite3VdbeGoto(v, addrEnd);
5467 
5468       /* Generate a subroutine that outputs a single row of the result
5469       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5470       ** is less than or equal to zero, the subroutine is a no-op.  If
5471       ** the processing calls for the query to abort, this subroutine
5472       ** increments the iAbortFlag memory location before returning in
5473       ** order to signal the caller to abort.
5474       */
5475       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5476       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5477       VdbeComment((v, "set abort flag"));
5478       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5479       sqlite3VdbeResolveLabel(v, addrOutputRow);
5480       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5481       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5482       VdbeCoverage(v);
5483       VdbeComment((v, "Groupby result generator entry point"));
5484       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5485       finalizeAggFunctions(pParse, &sAggInfo);
5486       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5487       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5488                       &sDistinct, pDest,
5489                       addrOutputRow+1, addrSetAbort);
5490       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5491       VdbeComment((v, "end groupby result generator"));
5492 
5493       /* Generate a subroutine that will reset the group-by accumulator
5494       */
5495       sqlite3VdbeResolveLabel(v, addrReset);
5496       resetAccumulator(pParse, &sAggInfo);
5497       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5498 
5499     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5500     else {
5501       ExprList *pDel = 0;
5502 #ifndef SQLITE_OMIT_BTREECOUNT
5503       Table *pTab;
5504       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5505         /* If isSimpleCount() returns a pointer to a Table structure, then
5506         ** the SQL statement is of the form:
5507         **
5508         **   SELECT count(*) FROM <tbl>
5509         **
5510         ** where the Table structure returned represents table <tbl>.
5511         **
5512         ** This statement is so common that it is optimized specially. The
5513         ** OP_Count instruction is executed either on the intkey table that
5514         ** contains the data for table <tbl> or on one of its indexes. It
5515         ** is better to execute the op on an index, as indexes are almost
5516         ** always spread across less pages than their corresponding tables.
5517         */
5518         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5519         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5520         Index *pIdx;                         /* Iterator variable */
5521         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5522         Index *pBest = 0;                    /* Best index found so far */
5523         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5524 
5525         sqlite3CodeVerifySchema(pParse, iDb);
5526         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5527 
5528         /* Search for the index that has the lowest scan cost.
5529         **
5530         ** (2011-04-15) Do not do a full scan of an unordered index.
5531         **
5532         ** (2013-10-03) Do not count the entries in a partial index.
5533         **
5534         ** In practice the KeyInfo structure will not be used. It is only
5535         ** passed to keep OP_OpenRead happy.
5536         */
5537         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5538         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5539           if( pIdx->bUnordered==0
5540            && pIdx->szIdxRow<pTab->szTabRow
5541            && pIdx->pPartIdxWhere==0
5542            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5543           ){
5544             pBest = pIdx;
5545           }
5546         }
5547         if( pBest ){
5548           iRoot = pBest->tnum;
5549           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5550         }
5551 
5552         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5553         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5554         if( pKeyInfo ){
5555           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5556         }
5557         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5558         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5559         explainSimpleCount(pParse, pTab, pBest);
5560       }else
5561 #endif /* SQLITE_OMIT_BTREECOUNT */
5562       {
5563         /* Check if the query is of one of the following forms:
5564         **
5565         **   SELECT min(x) FROM ...
5566         **   SELECT max(x) FROM ...
5567         **
5568         ** If it is, then ask the code in where.c to attempt to sort results
5569         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5570         ** If where.c is able to produce results sorted in this order, then
5571         ** add vdbe code to break out of the processing loop after the
5572         ** first iteration (since the first iteration of the loop is
5573         ** guaranteed to operate on the row with the minimum or maximum
5574         ** value of x, the only row required).
5575         **
5576         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5577         ** modify behavior as follows:
5578         **
5579         **   + If the query is a "SELECT min(x)", then the loop coded by
5580         **     where.c should not iterate over any values with a NULL value
5581         **     for x.
5582         **
5583         **   + The optimizer code in where.c (the thing that decides which
5584         **     index or indices to use) should place a different priority on
5585         **     satisfying the 'ORDER BY' clause than it does in other cases.
5586         **     Refer to code and comments in where.c for details.
5587         */
5588         ExprList *pMinMax = 0;
5589         u8 flag = WHERE_ORDERBY_NORMAL;
5590 
5591         assert( p->pGroupBy==0 );
5592         assert( flag==0 );
5593         if( p->pHaving==0 ){
5594           flag = minMaxQuery(&sAggInfo, &pMinMax);
5595         }
5596         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5597 
5598         if( flag ){
5599           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5600           pDel = pMinMax;
5601           assert( db->mallocFailed || pMinMax!=0 );
5602           if( !db->mallocFailed ){
5603             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5604             pMinMax->a[0].pExpr->op = TK_COLUMN;
5605           }
5606         }
5607 
5608         /* This case runs if the aggregate has no GROUP BY clause.  The
5609         ** processing is much simpler since there is only a single row
5610         ** of output.
5611         */
5612         resetAccumulator(pParse, &sAggInfo);
5613         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5614         if( pWInfo==0 ){
5615           sqlite3ExprListDelete(db, pDel);
5616           goto select_end;
5617         }
5618         updateAccumulator(pParse, &sAggInfo);
5619         assert( pMinMax==0 || pMinMax->nExpr==1 );
5620         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5621           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5622           VdbeComment((v, "%s() by index",
5623                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5624         }
5625         sqlite3WhereEnd(pWInfo);
5626         finalizeAggFunctions(pParse, &sAggInfo);
5627       }
5628 
5629       sSort.pOrderBy = 0;
5630       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5631       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5632                       pDest, addrEnd, addrEnd);
5633       sqlite3ExprListDelete(db, pDel);
5634     }
5635     sqlite3VdbeResolveLabel(v, addrEnd);
5636 
5637   } /* endif aggregate query */
5638 
5639   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5640     explainTempTable(pParse, "DISTINCT");
5641   }
5642 
5643   /* If there is an ORDER BY clause, then we need to sort the results
5644   ** and send them to the callback one by one.
5645   */
5646   if( sSort.pOrderBy ){
5647     explainTempTable(pParse,
5648                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5649     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5650   }
5651 
5652   /* Jump here to skip this query
5653   */
5654   sqlite3VdbeResolveLabel(v, iEnd);
5655 
5656   /* The SELECT has been coded. If there is an error in the Parse structure,
5657   ** set the return code to 1. Otherwise 0. */
5658   rc = (pParse->nErr>0);
5659 
5660   /* Control jumps to here if an error is encountered above, or upon
5661   ** successful coding of the SELECT.
5662   */
5663 select_end:
5664   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5665 
5666   /* Identify column names if results of the SELECT are to be output.
5667   */
5668   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5669     generateColumnNames(pParse, pTabList, pEList);
5670   }
5671 
5672   sqlite3DbFree(db, sAggInfo.aCol);
5673   sqlite3DbFree(db, sAggInfo.aFunc);
5674 #if SELECTTRACE_ENABLED
5675   SELECTTRACE(1,pParse,p,("end processing\n"));
5676   pParse->nSelectIndent--;
5677 #endif
5678   return rc;
5679 }
5680