1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 }; 60 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 61 62 /* 63 ** Delete all the content of a Select structure. Deallocate the structure 64 ** itself only if bFree is true. 65 */ 66 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 67 while( p ){ 68 Select *pPrior = p->pPrior; 69 sqlite3ExprListDelete(db, p->pEList); 70 sqlite3SrcListDelete(db, p->pSrc); 71 sqlite3ExprDelete(db, p->pWhere); 72 sqlite3ExprListDelete(db, p->pGroupBy); 73 sqlite3ExprDelete(db, p->pHaving); 74 sqlite3ExprListDelete(db, p->pOrderBy); 75 sqlite3ExprDelete(db, p->pLimit); 76 sqlite3ExprDelete(db, p->pOffset); 77 if( p->pWith ) sqlite3WithDelete(db, p->pWith); 78 if( bFree ) sqlite3DbFree(db, p); 79 p = pPrior; 80 bFree = 1; 81 } 82 } 83 84 /* 85 ** Initialize a SelectDest structure. 86 */ 87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 88 pDest->eDest = (u8)eDest; 89 pDest->iSDParm = iParm; 90 pDest->affSdst = 0; 91 pDest->iSdst = 0; 92 pDest->nSdst = 0; 93 } 94 95 96 /* 97 ** Allocate a new Select structure and return a pointer to that 98 ** structure. 99 */ 100 Select *sqlite3SelectNew( 101 Parse *pParse, /* Parsing context */ 102 ExprList *pEList, /* which columns to include in the result */ 103 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 104 Expr *pWhere, /* the WHERE clause */ 105 ExprList *pGroupBy, /* the GROUP BY clause */ 106 Expr *pHaving, /* the HAVING clause */ 107 ExprList *pOrderBy, /* the ORDER BY clause */ 108 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 109 Expr *pLimit, /* LIMIT value. NULL means not used */ 110 Expr *pOffset /* OFFSET value. NULL means no offset */ 111 ){ 112 Select *pNew; 113 Select standin; 114 sqlite3 *db = pParse->db; 115 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 116 if( pNew==0 ){ 117 assert( db->mallocFailed ); 118 pNew = &standin; 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0)); 122 } 123 pNew->pEList = pEList; 124 pNew->op = TK_SELECT; 125 pNew->selFlags = selFlags; 126 pNew->iLimit = 0; 127 pNew->iOffset = 0; 128 #if SELECTTRACE_ENABLED 129 pNew->zSelName[0] = 0; 130 #endif 131 pNew->addrOpenEphm[0] = -1; 132 pNew->addrOpenEphm[1] = -1; 133 pNew->nSelectRow = 0; 134 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 135 pNew->pSrc = pSrc; 136 pNew->pWhere = pWhere; 137 pNew->pGroupBy = pGroupBy; 138 pNew->pHaving = pHaving; 139 pNew->pOrderBy = pOrderBy; 140 pNew->pPrior = 0; 141 pNew->pNext = 0; 142 pNew->pLimit = pLimit; 143 pNew->pOffset = pOffset; 144 pNew->pWith = 0; 145 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 146 if( db->mallocFailed ) { 147 clearSelect(db, pNew, pNew!=&standin); 148 pNew = 0; 149 }else{ 150 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 151 } 152 assert( pNew!=&standin ); 153 return pNew; 154 } 155 156 #if SELECTTRACE_ENABLED 157 /* 158 ** Set the name of a Select object 159 */ 160 void sqlite3SelectSetName(Select *p, const char *zName){ 161 if( p && zName ){ 162 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 163 } 164 } 165 #endif 166 167 168 /* 169 ** Delete the given Select structure and all of its substructures. 170 */ 171 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 172 if( p ) clearSelect(db, p, 1); 173 } 174 175 /* 176 ** Return a pointer to the right-most SELECT statement in a compound. 177 */ 178 static Select *findRightmost(Select *p){ 179 while( p->pNext ) p = p->pNext; 180 return p; 181 } 182 183 /* 184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 185 ** type of join. Return an integer constant that expresses that type 186 ** in terms of the following bit values: 187 ** 188 ** JT_INNER 189 ** JT_CROSS 190 ** JT_OUTER 191 ** JT_NATURAL 192 ** JT_LEFT 193 ** JT_RIGHT 194 ** 195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 196 ** 197 ** If an illegal or unsupported join type is seen, then still return 198 ** a join type, but put an error in the pParse structure. 199 */ 200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 201 int jointype = 0; 202 Token *apAll[3]; 203 Token *p; 204 /* 0123456789 123456789 123456789 123 */ 205 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 206 static const struct { 207 u8 i; /* Beginning of keyword text in zKeyText[] */ 208 u8 nChar; /* Length of the keyword in characters */ 209 u8 code; /* Join type mask */ 210 } aKeyword[] = { 211 /* natural */ { 0, 7, JT_NATURAL }, 212 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 213 /* outer */ { 10, 5, JT_OUTER }, 214 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 215 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 216 /* inner */ { 23, 5, JT_INNER }, 217 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 218 }; 219 int i, j; 220 apAll[0] = pA; 221 apAll[1] = pB; 222 apAll[2] = pC; 223 for(i=0; i<3 && apAll[i]; i++){ 224 p = apAll[i]; 225 for(j=0; j<ArraySize(aKeyword); j++){ 226 if( p->n==aKeyword[j].nChar 227 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 228 jointype |= aKeyword[j].code; 229 break; 230 } 231 } 232 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 233 if( j>=ArraySize(aKeyword) ){ 234 jointype |= JT_ERROR; 235 break; 236 } 237 } 238 if( 239 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 240 (jointype & JT_ERROR)!=0 241 ){ 242 const char *zSp = " "; 243 assert( pB!=0 ); 244 if( pC==0 ){ zSp++; } 245 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 246 "%T %T%s%T", pA, pB, zSp, pC); 247 jointype = JT_INNER; 248 }else if( (jointype & JT_OUTER)!=0 249 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 250 sqlite3ErrorMsg(pParse, 251 "RIGHT and FULL OUTER JOINs are not currently supported"); 252 jointype = JT_INNER; 253 } 254 return jointype; 255 } 256 257 /* 258 ** Return the index of a column in a table. Return -1 if the column 259 ** is not contained in the table. 260 */ 261 static int columnIndex(Table *pTab, const char *zCol){ 262 int i; 263 for(i=0; i<pTab->nCol; i++){ 264 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 265 } 266 return -1; 267 } 268 269 /* 270 ** Search the first N tables in pSrc, from left to right, looking for a 271 ** table that has a column named zCol. 272 ** 273 ** When found, set *piTab and *piCol to the table index and column index 274 ** of the matching column and return TRUE. 275 ** 276 ** If not found, return FALSE. 277 */ 278 static int tableAndColumnIndex( 279 SrcList *pSrc, /* Array of tables to search */ 280 int N, /* Number of tables in pSrc->a[] to search */ 281 const char *zCol, /* Name of the column we are looking for */ 282 int *piTab, /* Write index of pSrc->a[] here */ 283 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 284 ){ 285 int i; /* For looping over tables in pSrc */ 286 int iCol; /* Index of column matching zCol */ 287 288 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 289 for(i=0; i<N; i++){ 290 iCol = columnIndex(pSrc->a[i].pTab, zCol); 291 if( iCol>=0 ){ 292 if( piTab ){ 293 *piTab = i; 294 *piCol = iCol; 295 } 296 return 1; 297 } 298 } 299 return 0; 300 } 301 302 /* 303 ** This function is used to add terms implied by JOIN syntax to the 304 ** WHERE clause expression of a SELECT statement. The new term, which 305 ** is ANDed with the existing WHERE clause, is of the form: 306 ** 307 ** (tab1.col1 = tab2.col2) 308 ** 309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 311 ** column iColRight of tab2. 312 */ 313 static void addWhereTerm( 314 Parse *pParse, /* Parsing context */ 315 SrcList *pSrc, /* List of tables in FROM clause */ 316 int iLeft, /* Index of first table to join in pSrc */ 317 int iColLeft, /* Index of column in first table */ 318 int iRight, /* Index of second table in pSrc */ 319 int iColRight, /* Index of column in second table */ 320 int isOuterJoin, /* True if this is an OUTER join */ 321 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 322 ){ 323 sqlite3 *db = pParse->db; 324 Expr *pE1; 325 Expr *pE2; 326 Expr *pEq; 327 328 assert( iLeft<iRight ); 329 assert( pSrc->nSrc>iRight ); 330 assert( pSrc->a[iLeft].pTab ); 331 assert( pSrc->a[iRight].pTab ); 332 333 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 334 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 335 336 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 337 if( pEq && isOuterJoin ){ 338 ExprSetProperty(pEq, EP_FromJoin); 339 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(pEq, EP_NoReduce); 341 pEq->iRightJoinTable = (i16)pE2->iTable; 342 } 343 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 344 } 345 346 /* 347 ** Set the EP_FromJoin property on all terms of the given expression. 348 ** And set the Expr.iRightJoinTable to iTable for every term in the 349 ** expression. 350 ** 351 ** The EP_FromJoin property is used on terms of an expression to tell 352 ** the LEFT OUTER JOIN processing logic that this term is part of the 353 ** join restriction specified in the ON or USING clause and not a part 354 ** of the more general WHERE clause. These terms are moved over to the 355 ** WHERE clause during join processing but we need to remember that they 356 ** originated in the ON or USING clause. 357 ** 358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 359 ** expression depends on table iRightJoinTable even if that table is not 360 ** explicitly mentioned in the expression. That information is needed 361 ** for cases like this: 362 ** 363 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 364 ** 365 ** The where clause needs to defer the handling of the t1.x=5 366 ** term until after the t2 loop of the join. In that way, a 367 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 368 ** defer the handling of t1.x=5, it will be processed immediately 369 ** after the t1 loop and rows with t1.x!=5 will never appear in 370 ** the output, which is incorrect. 371 */ 372 static void setJoinExpr(Expr *p, int iTable){ 373 while( p ){ 374 ExprSetProperty(p, EP_FromJoin); 375 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(p, EP_NoReduce); 377 p->iRightJoinTable = (i16)iTable; 378 if( p->op==TK_FUNCTION && p->x.pList ){ 379 int i; 380 for(i=0; i<p->x.pList->nExpr; i++){ 381 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 382 } 383 } 384 setJoinExpr(p->pLeft, iTable); 385 p = p->pRight; 386 } 387 } 388 389 /* 390 ** This routine processes the join information for a SELECT statement. 391 ** ON and USING clauses are converted into extra terms of the WHERE clause. 392 ** NATURAL joins also create extra WHERE clause terms. 393 ** 394 ** The terms of a FROM clause are contained in the Select.pSrc structure. 395 ** The left most table is the first entry in Select.pSrc. The right-most 396 ** table is the last entry. The join operator is held in the entry to 397 ** the left. Thus entry 0 contains the join operator for the join between 398 ** entries 0 and 1. Any ON or USING clauses associated with the join are 399 ** also attached to the left entry. 400 ** 401 ** This routine returns the number of errors encountered. 402 */ 403 static int sqliteProcessJoin(Parse *pParse, Select *p){ 404 SrcList *pSrc; /* All tables in the FROM clause */ 405 int i, j; /* Loop counters */ 406 struct SrcList_item *pLeft; /* Left table being joined */ 407 struct SrcList_item *pRight; /* Right table being joined */ 408 409 pSrc = p->pSrc; 410 pLeft = &pSrc->a[0]; 411 pRight = &pLeft[1]; 412 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 413 Table *pLeftTab = pLeft->pTab; 414 Table *pRightTab = pRight->pTab; 415 int isOuter; 416 417 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 418 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 419 420 /* When the NATURAL keyword is present, add WHERE clause terms for 421 ** every column that the two tables have in common. 422 */ 423 if( pRight->fg.jointype & JT_NATURAL ){ 424 if( pRight->pOn || pRight->pUsing ){ 425 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 426 "an ON or USING clause", 0); 427 return 1; 428 } 429 for(j=0; j<pRightTab->nCol; j++){ 430 char *zName; /* Name of column in the right table */ 431 int iLeft; /* Matching left table */ 432 int iLeftCol; /* Matching column in the left table */ 433 434 zName = pRightTab->aCol[j].zName; 435 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 436 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 437 isOuter, &p->pWhere); 438 } 439 } 440 } 441 442 /* Disallow both ON and USING clauses in the same join 443 */ 444 if( pRight->pOn && pRight->pUsing ){ 445 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 446 "clauses in the same join"); 447 return 1; 448 } 449 450 /* Add the ON clause to the end of the WHERE clause, connected by 451 ** an AND operator. 452 */ 453 if( pRight->pOn ){ 454 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 455 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 456 pRight->pOn = 0; 457 } 458 459 /* Create extra terms on the WHERE clause for each column named 460 ** in the USING clause. Example: If the two tables to be joined are 461 ** A and B and the USING clause names X, Y, and Z, then add this 462 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 463 ** Report an error if any column mentioned in the USING clause is 464 ** not contained in both tables to be joined. 465 */ 466 if( pRight->pUsing ){ 467 IdList *pList = pRight->pUsing; 468 for(j=0; j<pList->nId; j++){ 469 char *zName; /* Name of the term in the USING clause */ 470 int iLeft; /* Table on the left with matching column name */ 471 int iLeftCol; /* Column number of matching column on the left */ 472 int iRightCol; /* Column number of matching column on the right */ 473 474 zName = pList->a[j].zName; 475 iRightCol = columnIndex(pRightTab, zName); 476 if( iRightCol<0 477 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 478 ){ 479 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 480 "not present in both tables", zName); 481 return 1; 482 } 483 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 484 isOuter, &p->pWhere); 485 } 486 } 487 } 488 return 0; 489 } 490 491 /* Forward reference */ 492 static KeyInfo *keyInfoFromExprList( 493 Parse *pParse, /* Parsing context */ 494 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 495 int iStart, /* Begin with this column of pList */ 496 int nExtra /* Add this many extra columns to the end */ 497 ); 498 499 /* 500 ** Generate code that will push the record in registers regData 501 ** through regData+nData-1 onto the sorter. 502 */ 503 static void pushOntoSorter( 504 Parse *pParse, /* Parser context */ 505 SortCtx *pSort, /* Information about the ORDER BY clause */ 506 Select *pSelect, /* The whole SELECT statement */ 507 int regData, /* First register holding data to be sorted */ 508 int regOrigData, /* First register holding data before packing */ 509 int nData, /* Number of elements in the data array */ 510 int nPrefixReg /* No. of reg prior to regData available for use */ 511 ){ 512 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 513 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 514 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 515 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 516 int regBase; /* Regs for sorter record */ 517 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 518 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 519 int op; /* Opcode to add sorter record to sorter */ 520 int iLimit; /* LIMIT counter */ 521 522 assert( bSeq==0 || bSeq==1 ); 523 assert( nData==1 || regData==regOrigData ); 524 if( nPrefixReg ){ 525 assert( nPrefixReg==nExpr+bSeq ); 526 regBase = regData - nExpr - bSeq; 527 }else{ 528 regBase = pParse->nMem + 1; 529 pParse->nMem += nBase; 530 } 531 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 532 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 533 pSort->labelDone = sqlite3VdbeMakeLabel(v); 534 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 535 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); 536 if( bSeq ){ 537 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 538 } 539 if( nPrefixReg==0 ){ 540 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 541 } 542 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 543 if( nOBSat>0 ){ 544 int regPrevKey; /* The first nOBSat columns of the previous row */ 545 int addrFirst; /* Address of the OP_IfNot opcode */ 546 int addrJmp; /* Address of the OP_Jump opcode */ 547 VdbeOp *pOp; /* Opcode that opens the sorter */ 548 int nKey; /* Number of sorting key columns, including OP_Sequence */ 549 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 550 551 regPrevKey = pParse->nMem+1; 552 pParse->nMem += pSort->nOBSat; 553 nKey = nExpr - pSort->nOBSat + bSeq; 554 if( bSeq ){ 555 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 556 }else{ 557 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 558 } 559 VdbeCoverage(v); 560 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 561 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 562 if( pParse->db->mallocFailed ) return; 563 pOp->p2 = nKey + nData; 564 pKI = pOp->p4.pKeyInfo; 565 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 566 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 567 testcase( pKI->nXField>2 ); 568 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 569 pKI->nXField-1); 570 addrJmp = sqlite3VdbeCurrentAddr(v); 571 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 572 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 573 pSort->regReturn = ++pParse->nMem; 574 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 575 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 576 if( iLimit ){ 577 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 578 VdbeCoverage(v); 579 } 580 sqlite3VdbeJumpHere(v, addrFirst); 581 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 582 sqlite3VdbeJumpHere(v, addrJmp); 583 } 584 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 585 op = OP_SorterInsert; 586 }else{ 587 op = OP_IdxInsert; 588 } 589 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 590 if( iLimit ){ 591 int addr; 592 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); 593 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 594 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 595 sqlite3VdbeJumpHere(v, addr); 596 } 597 } 598 599 /* 600 ** Add code to implement the OFFSET 601 */ 602 static void codeOffset( 603 Vdbe *v, /* Generate code into this VM */ 604 int iOffset, /* Register holding the offset counter */ 605 int iContinue /* Jump here to skip the current record */ 606 ){ 607 if( iOffset>0 ){ 608 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 609 VdbeComment((v, "OFFSET")); 610 } 611 } 612 613 /* 614 ** Add code that will check to make sure the N registers starting at iMem 615 ** form a distinct entry. iTab is a sorting index that holds previously 616 ** seen combinations of the N values. A new entry is made in iTab 617 ** if the current N values are new. 618 ** 619 ** A jump to addrRepeat is made and the N+1 values are popped from the 620 ** stack if the top N elements are not distinct. 621 */ 622 static void codeDistinct( 623 Parse *pParse, /* Parsing and code generating context */ 624 int iTab, /* A sorting index used to test for distinctness */ 625 int addrRepeat, /* Jump to here if not distinct */ 626 int N, /* Number of elements */ 627 int iMem /* First element */ 628 ){ 629 Vdbe *v; 630 int r1; 631 632 v = pParse->pVdbe; 633 r1 = sqlite3GetTempReg(pParse); 634 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 635 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 636 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 637 sqlite3ReleaseTempReg(pParse, r1); 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* 642 ** Generate an error message when a SELECT is used within a subexpression 643 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 644 ** column. We do this in a subroutine because the error used to occur 645 ** in multiple places. (The error only occurs in one place now, but we 646 ** retain the subroutine to minimize code disruption.) 647 */ 648 static int checkForMultiColumnSelectError( 649 Parse *pParse, /* Parse context. */ 650 SelectDest *pDest, /* Destination of SELECT results */ 651 int nExpr /* Number of result columns returned by SELECT */ 652 ){ 653 int eDest = pDest->eDest; 654 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 655 sqlite3ErrorMsg(pParse, "only a single result allowed for " 656 "a SELECT that is part of an expression"); 657 return 1; 658 }else{ 659 return 0; 660 } 661 } 662 #endif 663 664 /* 665 ** This routine generates the code for the inside of the inner loop 666 ** of a SELECT. 667 ** 668 ** If srcTab is negative, then the pEList expressions 669 ** are evaluated in order to get the data for this row. If srcTab is 670 ** zero or more, then data is pulled from srcTab and pEList is used only 671 ** to get number columns and the datatype for each column. 672 */ 673 static void selectInnerLoop( 674 Parse *pParse, /* The parser context */ 675 Select *p, /* The complete select statement being coded */ 676 ExprList *pEList, /* List of values being extracted */ 677 int srcTab, /* Pull data from this table */ 678 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 679 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 680 SelectDest *pDest, /* How to dispose of the results */ 681 int iContinue, /* Jump here to continue with next row */ 682 int iBreak /* Jump here to break out of the inner loop */ 683 ){ 684 Vdbe *v = pParse->pVdbe; 685 int i; 686 int hasDistinct; /* True if the DISTINCT keyword is present */ 687 int regResult; /* Start of memory holding result set */ 688 int eDest = pDest->eDest; /* How to dispose of results */ 689 int iParm = pDest->iSDParm; /* First argument to disposal method */ 690 int nResultCol; /* Number of result columns */ 691 int nPrefixReg = 0; /* Number of extra registers before regResult */ 692 693 assert( v ); 694 assert( pEList!=0 ); 695 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 696 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 697 if( pSort==0 && !hasDistinct ){ 698 assert( iContinue!=0 ); 699 codeOffset(v, p->iOffset, iContinue); 700 } 701 702 /* Pull the requested columns. 703 */ 704 nResultCol = pEList->nExpr; 705 706 if( pDest->iSdst==0 ){ 707 if( pSort ){ 708 nPrefixReg = pSort->pOrderBy->nExpr; 709 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 710 pParse->nMem += nPrefixReg; 711 } 712 pDest->iSdst = pParse->nMem+1; 713 pParse->nMem += nResultCol; 714 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 715 /* This is an error condition that can result, for example, when a SELECT 716 ** on the right-hand side of an INSERT contains more result columns than 717 ** there are columns in the table on the left. The error will be caught 718 ** and reported later. But we need to make sure enough memory is allocated 719 ** to avoid other spurious errors in the meantime. */ 720 pParse->nMem += nResultCol; 721 } 722 pDest->nSdst = nResultCol; 723 regResult = pDest->iSdst; 724 if( srcTab>=0 ){ 725 for(i=0; i<nResultCol; i++){ 726 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 727 VdbeComment((v, "%s", pEList->a[i].zName)); 728 } 729 }else if( eDest!=SRT_Exists ){ 730 /* If the destination is an EXISTS(...) expression, the actual 731 ** values returned by the SELECT are not required. 732 */ 733 u8 ecelFlags; 734 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 735 ecelFlags = SQLITE_ECEL_DUP; 736 }else{ 737 ecelFlags = 0; 738 } 739 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); 740 } 741 742 /* If the DISTINCT keyword was present on the SELECT statement 743 ** and this row has been seen before, then do not make this row 744 ** part of the result. 745 */ 746 if( hasDistinct ){ 747 switch( pDistinct->eTnctType ){ 748 case WHERE_DISTINCT_ORDERED: { 749 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 750 int iJump; /* Jump destination */ 751 int regPrev; /* Previous row content */ 752 753 /* Allocate space for the previous row */ 754 regPrev = pParse->nMem+1; 755 pParse->nMem += nResultCol; 756 757 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 758 ** sets the MEM_Cleared bit on the first register of the 759 ** previous value. This will cause the OP_Ne below to always 760 ** fail on the first iteration of the loop even if the first 761 ** row is all NULLs. 762 */ 763 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 764 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 765 pOp->opcode = OP_Null; 766 pOp->p1 = 1; 767 pOp->p2 = regPrev; 768 769 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 770 for(i=0; i<nResultCol; i++){ 771 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 772 if( i<nResultCol-1 ){ 773 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 774 VdbeCoverage(v); 775 }else{ 776 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 777 VdbeCoverage(v); 778 } 779 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 780 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 781 } 782 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 783 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 784 break; 785 } 786 787 case WHERE_DISTINCT_UNIQUE: { 788 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 789 break; 790 } 791 792 default: { 793 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 794 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 795 regResult); 796 break; 797 } 798 } 799 if( pSort==0 ){ 800 codeOffset(v, p->iOffset, iContinue); 801 } 802 } 803 804 switch( eDest ){ 805 /* In this mode, write each query result to the key of the temporary 806 ** table iParm. 807 */ 808 #ifndef SQLITE_OMIT_COMPOUND_SELECT 809 case SRT_Union: { 810 int r1; 811 r1 = sqlite3GetTempReg(pParse); 812 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 813 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 814 sqlite3ReleaseTempReg(pParse, r1); 815 break; 816 } 817 818 /* Construct a record from the query result, but instead of 819 ** saving that record, use it as a key to delete elements from 820 ** the temporary table iParm. 821 */ 822 case SRT_Except: { 823 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 824 break; 825 } 826 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 827 828 /* Store the result as data using a unique key. 829 */ 830 case SRT_Fifo: 831 case SRT_DistFifo: 832 case SRT_Table: 833 case SRT_EphemTab: { 834 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 835 testcase( eDest==SRT_Table ); 836 testcase( eDest==SRT_EphemTab ); 837 testcase( eDest==SRT_Fifo ); 838 testcase( eDest==SRT_DistFifo ); 839 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 840 #ifndef SQLITE_OMIT_CTE 841 if( eDest==SRT_DistFifo ){ 842 /* If the destination is DistFifo, then cursor (iParm+1) is open 843 ** on an ephemeral index. If the current row is already present 844 ** in the index, do not write it to the output. If not, add the 845 ** current row to the index and proceed with writing it to the 846 ** output table as well. */ 847 int addr = sqlite3VdbeCurrentAddr(v) + 4; 848 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 849 VdbeCoverage(v); 850 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 851 assert( pSort==0 ); 852 } 853 #endif 854 if( pSort ){ 855 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 856 }else{ 857 int r2 = sqlite3GetTempReg(pParse); 858 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 859 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 860 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 861 sqlite3ReleaseTempReg(pParse, r2); 862 } 863 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 864 break; 865 } 866 867 #ifndef SQLITE_OMIT_SUBQUERY 868 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 869 ** then there should be a single item on the stack. Write this 870 ** item into the set table with bogus data. 871 */ 872 case SRT_Set: { 873 assert( nResultCol==1 ); 874 pDest->affSdst = 875 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 876 if( pSort ){ 877 /* At first glance you would think we could optimize out the 878 ** ORDER BY in this case since the order of entries in the set 879 ** does not matter. But there might be a LIMIT clause, in which 880 ** case the order does matter */ 881 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 882 }else{ 883 int r1 = sqlite3GetTempReg(pParse); 884 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 885 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 886 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 887 sqlite3ReleaseTempReg(pParse, r1); 888 } 889 break; 890 } 891 892 /* If any row exist in the result set, record that fact and abort. 893 */ 894 case SRT_Exists: { 895 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 896 /* The LIMIT clause will terminate the loop for us */ 897 break; 898 } 899 900 /* If this is a scalar select that is part of an expression, then 901 ** store the results in the appropriate memory cell and break out 902 ** of the scan loop. 903 */ 904 case SRT_Mem: { 905 assert( nResultCol==1 ); 906 if( pSort ){ 907 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 908 }else{ 909 assert( regResult==iParm ); 910 /* The LIMIT clause will jump out of the loop for us */ 911 } 912 break; 913 } 914 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 915 916 case SRT_Coroutine: /* Send data to a co-routine */ 917 case SRT_Output: { /* Return the results */ 918 testcase( eDest==SRT_Coroutine ); 919 testcase( eDest==SRT_Output ); 920 if( pSort ){ 921 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, 922 nPrefixReg); 923 }else if( eDest==SRT_Coroutine ){ 924 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 925 }else{ 926 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 927 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 928 } 929 break; 930 } 931 932 #ifndef SQLITE_OMIT_CTE 933 /* Write the results into a priority queue that is order according to 934 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 935 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 936 ** pSO->nExpr columns, then make sure all keys are unique by adding a 937 ** final OP_Sequence column. The last column is the record as a blob. 938 */ 939 case SRT_DistQueue: 940 case SRT_Queue: { 941 int nKey; 942 int r1, r2, r3; 943 int addrTest = 0; 944 ExprList *pSO; 945 pSO = pDest->pOrderBy; 946 assert( pSO ); 947 nKey = pSO->nExpr; 948 r1 = sqlite3GetTempReg(pParse); 949 r2 = sqlite3GetTempRange(pParse, nKey+2); 950 r3 = r2+nKey+1; 951 if( eDest==SRT_DistQueue ){ 952 /* If the destination is DistQueue, then cursor (iParm+1) is open 953 ** on a second ephemeral index that holds all values every previously 954 ** added to the queue. */ 955 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 956 regResult, nResultCol); 957 VdbeCoverage(v); 958 } 959 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 960 if( eDest==SRT_DistQueue ){ 961 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 962 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 963 } 964 for(i=0; i<nKey; i++){ 965 sqlite3VdbeAddOp2(v, OP_SCopy, 966 regResult + pSO->a[i].u.x.iOrderByCol - 1, 967 r2+i); 968 } 969 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 970 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 971 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 972 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 973 sqlite3ReleaseTempReg(pParse, r1); 974 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 975 break; 976 } 977 #endif /* SQLITE_OMIT_CTE */ 978 979 980 981 #if !defined(SQLITE_OMIT_TRIGGER) 982 /* Discard the results. This is used for SELECT statements inside 983 ** the body of a TRIGGER. The purpose of such selects is to call 984 ** user-defined functions that have side effects. We do not care 985 ** about the actual results of the select. 986 */ 987 default: { 988 assert( eDest==SRT_Discard ); 989 break; 990 } 991 #endif 992 } 993 994 /* Jump to the end of the loop if the LIMIT is reached. Except, if 995 ** there is a sorter, in which case the sorter has already limited 996 ** the output for us. 997 */ 998 if( pSort==0 && p->iLimit ){ 999 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1000 } 1001 } 1002 1003 /* 1004 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1005 ** X extra columns. 1006 */ 1007 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1008 int nExtra = (N+X)*(sizeof(CollSeq*)+1); 1009 KeyInfo *p = sqlite3Malloc(sizeof(KeyInfo) + nExtra); 1010 if( p ){ 1011 p->aSortOrder = (u8*)&p->aColl[N+X]; 1012 p->nField = (u16)N; 1013 p->nXField = (u16)X; 1014 p->enc = ENC(db); 1015 p->db = db; 1016 p->nRef = 1; 1017 memset(&p[1], 0, nExtra); 1018 }else{ 1019 sqlite3OomFault(db); 1020 } 1021 return p; 1022 } 1023 1024 /* 1025 ** Deallocate a KeyInfo object 1026 */ 1027 void sqlite3KeyInfoUnref(KeyInfo *p){ 1028 if( p ){ 1029 assert( p->nRef>0 ); 1030 p->nRef--; 1031 if( p->nRef==0 ) sqlite3DbFree(0, p); 1032 } 1033 } 1034 1035 /* 1036 ** Make a new pointer to a KeyInfo object 1037 */ 1038 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1039 if( p ){ 1040 assert( p->nRef>0 ); 1041 p->nRef++; 1042 } 1043 return p; 1044 } 1045 1046 #ifdef SQLITE_DEBUG 1047 /* 1048 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1049 ** can only be changed if this is just a single reference to the object. 1050 ** 1051 ** This routine is used only inside of assert() statements. 1052 */ 1053 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1054 #endif /* SQLITE_DEBUG */ 1055 1056 /* 1057 ** Given an expression list, generate a KeyInfo structure that records 1058 ** the collating sequence for each expression in that expression list. 1059 ** 1060 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1061 ** KeyInfo structure is appropriate for initializing a virtual index to 1062 ** implement that clause. If the ExprList is the result set of a SELECT 1063 ** then the KeyInfo structure is appropriate for initializing a virtual 1064 ** index to implement a DISTINCT test. 1065 ** 1066 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1067 ** function is responsible for seeing that this structure is eventually 1068 ** freed. 1069 */ 1070 static KeyInfo *keyInfoFromExprList( 1071 Parse *pParse, /* Parsing context */ 1072 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1073 int iStart, /* Begin with this column of pList */ 1074 int nExtra /* Add this many extra columns to the end */ 1075 ){ 1076 int nExpr; 1077 KeyInfo *pInfo; 1078 struct ExprList_item *pItem; 1079 sqlite3 *db = pParse->db; 1080 int i; 1081 1082 nExpr = pList->nExpr; 1083 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1084 if( pInfo ){ 1085 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1086 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1087 CollSeq *pColl; 1088 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1089 if( !pColl ) pColl = db->pDfltColl; 1090 pInfo->aColl[i-iStart] = pColl; 1091 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1092 } 1093 } 1094 return pInfo; 1095 } 1096 1097 /* 1098 ** Name of the connection operator, used for error messages. 1099 */ 1100 static const char *selectOpName(int id){ 1101 char *z; 1102 switch( id ){ 1103 case TK_ALL: z = "UNION ALL"; break; 1104 case TK_INTERSECT: z = "INTERSECT"; break; 1105 case TK_EXCEPT: z = "EXCEPT"; break; 1106 default: z = "UNION"; break; 1107 } 1108 return z; 1109 } 1110 1111 #ifndef SQLITE_OMIT_EXPLAIN 1112 /* 1113 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1114 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1115 ** where the caption is of the form: 1116 ** 1117 ** "USE TEMP B-TREE FOR xxx" 1118 ** 1119 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1120 ** is determined by the zUsage argument. 1121 */ 1122 static void explainTempTable(Parse *pParse, const char *zUsage){ 1123 if( pParse->explain==2 ){ 1124 Vdbe *v = pParse->pVdbe; 1125 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1126 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1127 } 1128 } 1129 1130 /* 1131 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1132 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1133 ** in sqlite3Select() to assign values to structure member variables that 1134 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1135 ** code with #ifndef directives. 1136 */ 1137 # define explainSetInteger(a, b) a = b 1138 1139 #else 1140 /* No-op versions of the explainXXX() functions and macros. */ 1141 # define explainTempTable(y,z) 1142 # define explainSetInteger(y,z) 1143 #endif 1144 1145 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1146 /* 1147 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1148 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1149 ** where the caption is of one of the two forms: 1150 ** 1151 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1152 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1153 ** 1154 ** where iSub1 and iSub2 are the integers passed as the corresponding 1155 ** function parameters, and op is the text representation of the parameter 1156 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1157 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1158 ** false, or the second form if it is true. 1159 */ 1160 static void explainComposite( 1161 Parse *pParse, /* Parse context */ 1162 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1163 int iSub1, /* Subquery id 1 */ 1164 int iSub2, /* Subquery id 2 */ 1165 int bUseTmp /* True if a temp table was used */ 1166 ){ 1167 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1168 if( pParse->explain==2 ){ 1169 Vdbe *v = pParse->pVdbe; 1170 char *zMsg = sqlite3MPrintf( 1171 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1172 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1173 ); 1174 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1175 } 1176 } 1177 #else 1178 /* No-op versions of the explainXXX() functions and macros. */ 1179 # define explainComposite(v,w,x,y,z) 1180 #endif 1181 1182 /* 1183 ** If the inner loop was generated using a non-null pOrderBy argument, 1184 ** then the results were placed in a sorter. After the loop is terminated 1185 ** we need to run the sorter and output the results. The following 1186 ** routine generates the code needed to do that. 1187 */ 1188 static void generateSortTail( 1189 Parse *pParse, /* Parsing context */ 1190 Select *p, /* The SELECT statement */ 1191 SortCtx *pSort, /* Information on the ORDER BY clause */ 1192 int nColumn, /* Number of columns of data */ 1193 SelectDest *pDest /* Write the sorted results here */ 1194 ){ 1195 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1196 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1197 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1198 int addr; 1199 int addrOnce = 0; 1200 int iTab; 1201 ExprList *pOrderBy = pSort->pOrderBy; 1202 int eDest = pDest->eDest; 1203 int iParm = pDest->iSDParm; 1204 int regRow; 1205 int regRowid; 1206 int nKey; 1207 int iSortTab; /* Sorter cursor to read from */ 1208 int nSortData; /* Trailing values to read from sorter */ 1209 int i; 1210 int bSeq; /* True if sorter record includes seq. no. */ 1211 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1212 struct ExprList_item *aOutEx = p->pEList->a; 1213 #endif 1214 1215 assert( addrBreak<0 ); 1216 if( pSort->labelBkOut ){ 1217 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1218 sqlite3VdbeGoto(v, addrBreak); 1219 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1220 } 1221 iTab = pSort->iECursor; 1222 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1223 regRowid = 0; 1224 regRow = pDest->iSdst; 1225 nSortData = nColumn; 1226 }else{ 1227 regRowid = sqlite3GetTempReg(pParse); 1228 regRow = sqlite3GetTempReg(pParse); 1229 nSortData = 1; 1230 } 1231 nKey = pOrderBy->nExpr - pSort->nOBSat; 1232 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1233 int regSortOut = ++pParse->nMem; 1234 iSortTab = pParse->nTab++; 1235 if( pSort->labelBkOut ){ 1236 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1237 } 1238 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1239 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1240 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1241 VdbeCoverage(v); 1242 codeOffset(v, p->iOffset, addrContinue); 1243 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1244 bSeq = 0; 1245 }else{ 1246 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1247 codeOffset(v, p->iOffset, addrContinue); 1248 iSortTab = iTab; 1249 bSeq = 1; 1250 } 1251 for(i=0; i<nSortData; i++){ 1252 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1253 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1254 } 1255 switch( eDest ){ 1256 case SRT_EphemTab: { 1257 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1258 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1259 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1260 break; 1261 } 1262 #ifndef SQLITE_OMIT_SUBQUERY 1263 case SRT_Set: { 1264 assert( nColumn==1 ); 1265 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1266 &pDest->affSdst, 1); 1267 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1268 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1269 break; 1270 } 1271 case SRT_Mem: { 1272 assert( nColumn==1 ); 1273 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1274 /* The LIMIT clause will terminate the loop for us */ 1275 break; 1276 } 1277 #endif 1278 default: { 1279 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1280 testcase( eDest==SRT_Output ); 1281 testcase( eDest==SRT_Coroutine ); 1282 if( eDest==SRT_Output ){ 1283 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1284 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1285 }else{ 1286 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1287 } 1288 break; 1289 } 1290 } 1291 if( regRowid ){ 1292 sqlite3ReleaseTempReg(pParse, regRow); 1293 sqlite3ReleaseTempReg(pParse, regRowid); 1294 } 1295 /* The bottom of the loop 1296 */ 1297 sqlite3VdbeResolveLabel(v, addrContinue); 1298 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1299 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1300 }else{ 1301 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1302 } 1303 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1304 sqlite3VdbeResolveLabel(v, addrBreak); 1305 } 1306 1307 /* 1308 ** Return a pointer to a string containing the 'declaration type' of the 1309 ** expression pExpr. The string may be treated as static by the caller. 1310 ** 1311 ** Also try to estimate the size of the returned value and return that 1312 ** result in *pEstWidth. 1313 ** 1314 ** The declaration type is the exact datatype definition extracted from the 1315 ** original CREATE TABLE statement if the expression is a column. The 1316 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1317 ** is considered a column can be complex in the presence of subqueries. The 1318 ** result-set expression in all of the following SELECT statements is 1319 ** considered a column by this function. 1320 ** 1321 ** SELECT col FROM tbl; 1322 ** SELECT (SELECT col FROM tbl; 1323 ** SELECT (SELECT col FROM tbl); 1324 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1325 ** 1326 ** The declaration type for any expression other than a column is NULL. 1327 ** 1328 ** This routine has either 3 or 6 parameters depending on whether or not 1329 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1330 */ 1331 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1332 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1333 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1334 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1335 #endif 1336 static const char *columnTypeImpl( 1337 NameContext *pNC, 1338 Expr *pExpr, 1339 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1340 const char **pzOrigDb, 1341 const char **pzOrigTab, 1342 const char **pzOrigCol, 1343 #endif 1344 u8 *pEstWidth 1345 ){ 1346 char const *zType = 0; 1347 int j; 1348 u8 estWidth = 1; 1349 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1350 char const *zOrigDb = 0; 1351 char const *zOrigTab = 0; 1352 char const *zOrigCol = 0; 1353 #endif 1354 1355 assert( pExpr!=0 ); 1356 assert( pNC->pSrcList!=0 ); 1357 switch( pExpr->op ){ 1358 case TK_AGG_COLUMN: 1359 case TK_COLUMN: { 1360 /* The expression is a column. Locate the table the column is being 1361 ** extracted from in NameContext.pSrcList. This table may be real 1362 ** database table or a subquery. 1363 */ 1364 Table *pTab = 0; /* Table structure column is extracted from */ 1365 Select *pS = 0; /* Select the column is extracted from */ 1366 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1367 testcase( pExpr->op==TK_AGG_COLUMN ); 1368 testcase( pExpr->op==TK_COLUMN ); 1369 while( pNC && !pTab ){ 1370 SrcList *pTabList = pNC->pSrcList; 1371 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1372 if( j<pTabList->nSrc ){ 1373 pTab = pTabList->a[j].pTab; 1374 pS = pTabList->a[j].pSelect; 1375 }else{ 1376 pNC = pNC->pNext; 1377 } 1378 } 1379 1380 if( pTab==0 ){ 1381 /* At one time, code such as "SELECT new.x" within a trigger would 1382 ** cause this condition to run. Since then, we have restructured how 1383 ** trigger code is generated and so this condition is no longer 1384 ** possible. However, it can still be true for statements like 1385 ** the following: 1386 ** 1387 ** CREATE TABLE t1(col INTEGER); 1388 ** SELECT (SELECT t1.col) FROM FROM t1; 1389 ** 1390 ** when columnType() is called on the expression "t1.col" in the 1391 ** sub-select. In this case, set the column type to NULL, even 1392 ** though it should really be "INTEGER". 1393 ** 1394 ** This is not a problem, as the column type of "t1.col" is never 1395 ** used. When columnType() is called on the expression 1396 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1397 ** branch below. */ 1398 break; 1399 } 1400 1401 assert( pTab && pExpr->pTab==pTab ); 1402 if( pS ){ 1403 /* The "table" is actually a sub-select or a view in the FROM clause 1404 ** of the SELECT statement. Return the declaration type and origin 1405 ** data for the result-set column of the sub-select. 1406 */ 1407 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1408 /* If iCol is less than zero, then the expression requests the 1409 ** rowid of the sub-select or view. This expression is legal (see 1410 ** test case misc2.2.2) - it always evaluates to NULL. 1411 ** 1412 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1413 ** caught already by name resolution. 1414 */ 1415 NameContext sNC; 1416 Expr *p = pS->pEList->a[iCol].pExpr; 1417 sNC.pSrcList = pS->pSrc; 1418 sNC.pNext = pNC; 1419 sNC.pParse = pNC->pParse; 1420 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1421 } 1422 }else if( pTab->pSchema ){ 1423 /* A real table */ 1424 assert( !pS ); 1425 if( iCol<0 ) iCol = pTab->iPKey; 1426 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1427 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1428 if( iCol<0 ){ 1429 zType = "INTEGER"; 1430 zOrigCol = "rowid"; 1431 }else{ 1432 zOrigCol = pTab->aCol[iCol].zName; 1433 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1434 estWidth = pTab->aCol[iCol].szEst; 1435 } 1436 zOrigTab = pTab->zName; 1437 if( pNC->pParse ){ 1438 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1439 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1440 } 1441 #else 1442 if( iCol<0 ){ 1443 zType = "INTEGER"; 1444 }else{ 1445 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1446 estWidth = pTab->aCol[iCol].szEst; 1447 } 1448 #endif 1449 } 1450 break; 1451 } 1452 #ifndef SQLITE_OMIT_SUBQUERY 1453 case TK_SELECT: { 1454 /* The expression is a sub-select. Return the declaration type and 1455 ** origin info for the single column in the result set of the SELECT 1456 ** statement. 1457 */ 1458 NameContext sNC; 1459 Select *pS = pExpr->x.pSelect; 1460 Expr *p = pS->pEList->a[0].pExpr; 1461 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1462 sNC.pSrcList = pS->pSrc; 1463 sNC.pNext = pNC; 1464 sNC.pParse = pNC->pParse; 1465 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1466 break; 1467 } 1468 #endif 1469 } 1470 1471 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1472 if( pzOrigDb ){ 1473 assert( pzOrigTab && pzOrigCol ); 1474 *pzOrigDb = zOrigDb; 1475 *pzOrigTab = zOrigTab; 1476 *pzOrigCol = zOrigCol; 1477 } 1478 #endif 1479 if( pEstWidth ) *pEstWidth = estWidth; 1480 return zType; 1481 } 1482 1483 /* 1484 ** Generate code that will tell the VDBE the declaration types of columns 1485 ** in the result set. 1486 */ 1487 static void generateColumnTypes( 1488 Parse *pParse, /* Parser context */ 1489 SrcList *pTabList, /* List of tables */ 1490 ExprList *pEList /* Expressions defining the result set */ 1491 ){ 1492 #ifndef SQLITE_OMIT_DECLTYPE 1493 Vdbe *v = pParse->pVdbe; 1494 int i; 1495 NameContext sNC; 1496 sNC.pSrcList = pTabList; 1497 sNC.pParse = pParse; 1498 for(i=0; i<pEList->nExpr; i++){ 1499 Expr *p = pEList->a[i].pExpr; 1500 const char *zType; 1501 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1502 const char *zOrigDb = 0; 1503 const char *zOrigTab = 0; 1504 const char *zOrigCol = 0; 1505 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1506 1507 /* The vdbe must make its own copy of the column-type and other 1508 ** column specific strings, in case the schema is reset before this 1509 ** virtual machine is deleted. 1510 */ 1511 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1512 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1513 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1514 #else 1515 zType = columnType(&sNC, p, 0, 0, 0, 0); 1516 #endif 1517 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1518 } 1519 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1520 } 1521 1522 /* 1523 ** Generate code that will tell the VDBE the names of columns 1524 ** in the result set. This information is used to provide the 1525 ** azCol[] values in the callback. 1526 */ 1527 static void generateColumnNames( 1528 Parse *pParse, /* Parser context */ 1529 SrcList *pTabList, /* List of tables */ 1530 ExprList *pEList /* Expressions defining the result set */ 1531 ){ 1532 Vdbe *v = pParse->pVdbe; 1533 int i, j; 1534 sqlite3 *db = pParse->db; 1535 int fullNames, shortNames; 1536 1537 #ifndef SQLITE_OMIT_EXPLAIN 1538 /* If this is an EXPLAIN, skip this step */ 1539 if( pParse->explain ){ 1540 return; 1541 } 1542 #endif 1543 1544 if( pParse->colNamesSet || db->mallocFailed ) return; 1545 assert( v!=0 ); 1546 assert( pTabList!=0 ); 1547 pParse->colNamesSet = 1; 1548 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1549 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1550 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1551 for(i=0; i<pEList->nExpr; i++){ 1552 Expr *p; 1553 p = pEList->a[i].pExpr; 1554 if( NEVER(p==0) ) continue; 1555 if( pEList->a[i].zName ){ 1556 char *zName = pEList->a[i].zName; 1557 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1558 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){ 1559 Table *pTab; 1560 char *zCol; 1561 int iCol = p->iColumn; 1562 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1563 if( pTabList->a[j].iCursor==p->iTable ) break; 1564 } 1565 assert( j<pTabList->nSrc ); 1566 pTab = pTabList->a[j].pTab; 1567 if( iCol<0 ) iCol = pTab->iPKey; 1568 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1569 if( iCol<0 ){ 1570 zCol = "rowid"; 1571 }else{ 1572 zCol = pTab->aCol[iCol].zName; 1573 } 1574 if( !shortNames && !fullNames ){ 1575 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1576 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1577 }else if( fullNames ){ 1578 char *zName = 0; 1579 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1580 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1581 }else{ 1582 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1583 } 1584 }else{ 1585 const char *z = pEList->a[i].zSpan; 1586 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1587 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1588 } 1589 } 1590 generateColumnTypes(pParse, pTabList, pEList); 1591 } 1592 1593 /* 1594 ** Given an expression list (which is really the list of expressions 1595 ** that form the result set of a SELECT statement) compute appropriate 1596 ** column names for a table that would hold the expression list. 1597 ** 1598 ** All column names will be unique. 1599 ** 1600 ** Only the column names are computed. Column.zType, Column.zColl, 1601 ** and other fields of Column are zeroed. 1602 ** 1603 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1604 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1605 */ 1606 int sqlite3ColumnsFromExprList( 1607 Parse *pParse, /* Parsing context */ 1608 ExprList *pEList, /* Expr list from which to derive column names */ 1609 i16 *pnCol, /* Write the number of columns here */ 1610 Column **paCol /* Write the new column list here */ 1611 ){ 1612 sqlite3 *db = pParse->db; /* Database connection */ 1613 int i, j; /* Loop counters */ 1614 u32 cnt; /* Index added to make the name unique */ 1615 Column *aCol, *pCol; /* For looping over result columns */ 1616 int nCol; /* Number of columns in the result set */ 1617 Expr *p; /* Expression for a single result column */ 1618 char *zName; /* Column name */ 1619 int nName; /* Size of name in zName[] */ 1620 Hash ht; /* Hash table of column names */ 1621 1622 sqlite3HashInit(&ht); 1623 if( pEList ){ 1624 nCol = pEList->nExpr; 1625 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1626 testcase( aCol==0 ); 1627 }else{ 1628 nCol = 0; 1629 aCol = 0; 1630 } 1631 assert( nCol==(i16)nCol ); 1632 *pnCol = nCol; 1633 *paCol = aCol; 1634 1635 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1636 /* Get an appropriate name for the column 1637 */ 1638 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1639 if( (zName = pEList->a[i].zName)!=0 ){ 1640 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1641 }else{ 1642 Expr *pColExpr = p; /* The expression that is the result column name */ 1643 Table *pTab; /* Table associated with this expression */ 1644 while( pColExpr->op==TK_DOT ){ 1645 pColExpr = pColExpr->pRight; 1646 assert( pColExpr!=0 ); 1647 } 1648 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1649 /* For columns use the column name name */ 1650 int iCol = pColExpr->iColumn; 1651 pTab = pColExpr->pTab; 1652 if( iCol<0 ) iCol = pTab->iPKey; 1653 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1654 }else if( pColExpr->op==TK_ID ){ 1655 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1656 zName = pColExpr->u.zToken; 1657 }else{ 1658 /* Use the original text of the column expression as its name */ 1659 zName = pEList->a[i].zSpan; 1660 } 1661 } 1662 zName = sqlite3MPrintf(db, "%s", zName); 1663 1664 /* Make sure the column name is unique. If the name is not unique, 1665 ** append an integer to the name so that it becomes unique. 1666 */ 1667 cnt = 0; 1668 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1669 nName = sqlite3Strlen30(zName); 1670 if( nName>0 ){ 1671 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1672 if( zName[j]==':' ) nName = j; 1673 } 1674 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1675 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1676 } 1677 pCol->zName = zName; 1678 sqlite3ColumnPropertiesFromName(0, pCol); 1679 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1680 sqlite3OomFault(db); 1681 } 1682 } 1683 sqlite3HashClear(&ht); 1684 if( db->mallocFailed ){ 1685 for(j=0; j<i; j++){ 1686 sqlite3DbFree(db, aCol[j].zName); 1687 } 1688 sqlite3DbFree(db, aCol); 1689 *paCol = 0; 1690 *pnCol = 0; 1691 return SQLITE_NOMEM_BKPT; 1692 } 1693 return SQLITE_OK; 1694 } 1695 1696 /* 1697 ** Add type and collation information to a column list based on 1698 ** a SELECT statement. 1699 ** 1700 ** The column list presumably came from selectColumnNamesFromExprList(). 1701 ** The column list has only names, not types or collations. This 1702 ** routine goes through and adds the types and collations. 1703 ** 1704 ** This routine requires that all identifiers in the SELECT 1705 ** statement be resolved. 1706 */ 1707 void sqlite3SelectAddColumnTypeAndCollation( 1708 Parse *pParse, /* Parsing contexts */ 1709 Table *pTab, /* Add column type information to this table */ 1710 Select *pSelect /* SELECT used to determine types and collations */ 1711 ){ 1712 sqlite3 *db = pParse->db; 1713 NameContext sNC; 1714 Column *pCol; 1715 CollSeq *pColl; 1716 int i; 1717 Expr *p; 1718 struct ExprList_item *a; 1719 u64 szAll = 0; 1720 1721 assert( pSelect!=0 ); 1722 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1723 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1724 if( db->mallocFailed ) return; 1725 memset(&sNC, 0, sizeof(sNC)); 1726 sNC.pSrcList = pSelect->pSrc; 1727 a = pSelect->pEList->a; 1728 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1729 const char *zType; 1730 int n, m; 1731 p = a[i].pExpr; 1732 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1733 szAll += pCol->szEst; 1734 pCol->affinity = sqlite3ExprAffinity(p); 1735 if( zType && (m = sqlite3Strlen30(zType))>0 ){ 1736 n = sqlite3Strlen30(pCol->zName); 1737 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1738 if( pCol->zName ){ 1739 memcpy(&pCol->zName[n+1], zType, m+1); 1740 pCol->colFlags |= COLFLAG_HASTYPE; 1741 } 1742 } 1743 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1744 pColl = sqlite3ExprCollSeq(pParse, p); 1745 if( pColl && pCol->zColl==0 ){ 1746 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1747 } 1748 } 1749 pTab->szTabRow = sqlite3LogEst(szAll*4); 1750 } 1751 1752 /* 1753 ** Given a SELECT statement, generate a Table structure that describes 1754 ** the result set of that SELECT. 1755 */ 1756 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1757 Table *pTab; 1758 sqlite3 *db = pParse->db; 1759 int savedFlags; 1760 1761 savedFlags = db->flags; 1762 db->flags &= ~SQLITE_FullColNames; 1763 db->flags |= SQLITE_ShortColNames; 1764 sqlite3SelectPrep(pParse, pSelect, 0); 1765 if( pParse->nErr ) return 0; 1766 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1767 db->flags = savedFlags; 1768 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1769 if( pTab==0 ){ 1770 return 0; 1771 } 1772 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1773 ** is disabled */ 1774 assert( db->lookaside.bDisable ); 1775 pTab->nRef = 1; 1776 pTab->zName = 0; 1777 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1778 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1779 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1780 pTab->iPKey = -1; 1781 if( db->mallocFailed ){ 1782 sqlite3DeleteTable(db, pTab); 1783 return 0; 1784 } 1785 return pTab; 1786 } 1787 1788 /* 1789 ** Get a VDBE for the given parser context. Create a new one if necessary. 1790 ** If an error occurs, return NULL and leave a message in pParse. 1791 */ 1792 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){ 1793 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1794 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1795 if( pParse->pToplevel==0 1796 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1797 ){ 1798 pParse->okConstFactor = 1; 1799 } 1800 return v; 1801 } 1802 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1803 Vdbe *v = pParse->pVdbe; 1804 return v ? v : allocVdbe(pParse); 1805 } 1806 1807 1808 /* 1809 ** Compute the iLimit and iOffset fields of the SELECT based on the 1810 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1811 ** that appear in the original SQL statement after the LIMIT and OFFSET 1812 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1813 ** are the integer memory register numbers for counters used to compute 1814 ** the limit and offset. If there is no limit and/or offset, then 1815 ** iLimit and iOffset are negative. 1816 ** 1817 ** This routine changes the values of iLimit and iOffset only if 1818 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1819 ** iOffset should have been preset to appropriate default values (zero) 1820 ** prior to calling this routine. 1821 ** 1822 ** The iOffset register (if it exists) is initialized to the value 1823 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1824 ** iOffset+1 is initialized to LIMIT+OFFSET. 1825 ** 1826 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1827 ** redefined. The UNION ALL operator uses this property to force 1828 ** the reuse of the same limit and offset registers across multiple 1829 ** SELECT statements. 1830 */ 1831 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1832 Vdbe *v = 0; 1833 int iLimit = 0; 1834 int iOffset; 1835 int n; 1836 if( p->iLimit ) return; 1837 1838 /* 1839 ** "LIMIT -1" always shows all rows. There is some 1840 ** controversy about what the correct behavior should be. 1841 ** The current implementation interprets "LIMIT 0" to mean 1842 ** no rows. 1843 */ 1844 sqlite3ExprCacheClear(pParse); 1845 assert( p->pOffset==0 || p->pLimit!=0 ); 1846 if( p->pLimit ){ 1847 p->iLimit = iLimit = ++pParse->nMem; 1848 v = sqlite3GetVdbe(pParse); 1849 assert( v!=0 ); 1850 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1851 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1852 VdbeComment((v, "LIMIT counter")); 1853 if( n==0 ){ 1854 sqlite3VdbeGoto(v, iBreak); 1855 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1856 p->nSelectRow = sqlite3LogEst((u64)n); 1857 p->selFlags |= SF_FixedLimit; 1858 } 1859 }else{ 1860 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1861 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1862 VdbeComment((v, "LIMIT counter")); 1863 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1864 } 1865 if( p->pOffset ){ 1866 p->iOffset = iOffset = ++pParse->nMem; 1867 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1868 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1869 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1870 VdbeComment((v, "OFFSET counter")); 1871 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1872 VdbeComment((v, "LIMIT+OFFSET")); 1873 } 1874 } 1875 } 1876 1877 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1878 /* 1879 ** Return the appropriate collating sequence for the iCol-th column of 1880 ** the result set for the compound-select statement "p". Return NULL if 1881 ** the column has no default collating sequence. 1882 ** 1883 ** The collating sequence for the compound select is taken from the 1884 ** left-most term of the select that has a collating sequence. 1885 */ 1886 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1887 CollSeq *pRet; 1888 if( p->pPrior ){ 1889 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1890 }else{ 1891 pRet = 0; 1892 } 1893 assert( iCol>=0 ); 1894 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1895 ** have been thrown during name resolution and we would not have gotten 1896 ** this far */ 1897 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1898 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1899 } 1900 return pRet; 1901 } 1902 1903 /* 1904 ** The select statement passed as the second parameter is a compound SELECT 1905 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1906 ** structure suitable for implementing the ORDER BY. 1907 ** 1908 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1909 ** function is responsible for ensuring that this structure is eventually 1910 ** freed. 1911 */ 1912 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1913 ExprList *pOrderBy = p->pOrderBy; 1914 int nOrderBy = p->pOrderBy->nExpr; 1915 sqlite3 *db = pParse->db; 1916 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1917 if( pRet ){ 1918 int i; 1919 for(i=0; i<nOrderBy; i++){ 1920 struct ExprList_item *pItem = &pOrderBy->a[i]; 1921 Expr *pTerm = pItem->pExpr; 1922 CollSeq *pColl; 1923 1924 if( pTerm->flags & EP_Collate ){ 1925 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1926 }else{ 1927 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1928 if( pColl==0 ) pColl = db->pDfltColl; 1929 pOrderBy->a[i].pExpr = 1930 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1931 } 1932 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1933 pRet->aColl[i] = pColl; 1934 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1935 } 1936 } 1937 1938 return pRet; 1939 } 1940 1941 #ifndef SQLITE_OMIT_CTE 1942 /* 1943 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1944 ** query of the form: 1945 ** 1946 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1947 ** \___________/ \_______________/ 1948 ** p->pPrior p 1949 ** 1950 ** 1951 ** There is exactly one reference to the recursive-table in the FROM clause 1952 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1953 ** 1954 ** The setup-query runs once to generate an initial set of rows that go 1955 ** into a Queue table. Rows are extracted from the Queue table one by 1956 ** one. Each row extracted from Queue is output to pDest. Then the single 1957 ** extracted row (now in the iCurrent table) becomes the content of the 1958 ** recursive-table for a recursive-query run. The output of the recursive-query 1959 ** is added back into the Queue table. Then another row is extracted from Queue 1960 ** and the iteration continues until the Queue table is empty. 1961 ** 1962 ** If the compound query operator is UNION then no duplicate rows are ever 1963 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1964 ** that have ever been inserted into Queue and causes duplicates to be 1965 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1966 ** 1967 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1968 ** ORDER BY order and the first entry is extracted for each cycle. Without 1969 ** an ORDER BY, the Queue table is just a FIFO. 1970 ** 1971 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1972 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1973 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1974 ** with a positive value, then the first OFFSET outputs are discarded rather 1975 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1976 ** rows have been skipped. 1977 */ 1978 static void generateWithRecursiveQuery( 1979 Parse *pParse, /* Parsing context */ 1980 Select *p, /* The recursive SELECT to be coded */ 1981 SelectDest *pDest /* What to do with query results */ 1982 ){ 1983 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1984 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1985 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1986 Select *pSetup = p->pPrior; /* The setup query */ 1987 int addrTop; /* Top of the loop */ 1988 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1989 int iCurrent = 0; /* The Current table */ 1990 int regCurrent; /* Register holding Current table */ 1991 int iQueue; /* The Queue table */ 1992 int iDistinct = 0; /* To ensure unique results if UNION */ 1993 int eDest = SRT_Fifo; /* How to write to Queue */ 1994 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1995 int i; /* Loop counter */ 1996 int rc; /* Result code */ 1997 ExprList *pOrderBy; /* The ORDER BY clause */ 1998 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1999 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2000 2001 /* Obtain authorization to do a recursive query */ 2002 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2003 2004 /* Process the LIMIT and OFFSET clauses, if they exist */ 2005 addrBreak = sqlite3VdbeMakeLabel(v); 2006 computeLimitRegisters(pParse, p, addrBreak); 2007 pLimit = p->pLimit; 2008 pOffset = p->pOffset; 2009 regLimit = p->iLimit; 2010 regOffset = p->iOffset; 2011 p->pLimit = p->pOffset = 0; 2012 p->iLimit = p->iOffset = 0; 2013 pOrderBy = p->pOrderBy; 2014 2015 /* Locate the cursor number of the Current table */ 2016 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2017 if( pSrc->a[i].fg.isRecursive ){ 2018 iCurrent = pSrc->a[i].iCursor; 2019 break; 2020 } 2021 } 2022 2023 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2024 ** the Distinct table must be exactly one greater than Queue in order 2025 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2026 iQueue = pParse->nTab++; 2027 if( p->op==TK_UNION ){ 2028 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2029 iDistinct = pParse->nTab++; 2030 }else{ 2031 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2032 } 2033 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2034 2035 /* Allocate cursors for Current, Queue, and Distinct. */ 2036 regCurrent = ++pParse->nMem; 2037 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2038 if( pOrderBy ){ 2039 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2040 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2041 (char*)pKeyInfo, P4_KEYINFO); 2042 destQueue.pOrderBy = pOrderBy; 2043 }else{ 2044 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2045 } 2046 VdbeComment((v, "Queue table")); 2047 if( iDistinct ){ 2048 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2049 p->selFlags |= SF_UsesEphemeral; 2050 } 2051 2052 /* Detach the ORDER BY clause from the compound SELECT */ 2053 p->pOrderBy = 0; 2054 2055 /* Store the results of the setup-query in Queue. */ 2056 pSetup->pNext = 0; 2057 rc = sqlite3Select(pParse, pSetup, &destQueue); 2058 pSetup->pNext = p; 2059 if( rc ) goto end_of_recursive_query; 2060 2061 /* Find the next row in the Queue and output that row */ 2062 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2063 2064 /* Transfer the next row in Queue over to Current */ 2065 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2066 if( pOrderBy ){ 2067 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2068 }else{ 2069 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2070 } 2071 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2072 2073 /* Output the single row in Current */ 2074 addrCont = sqlite3VdbeMakeLabel(v); 2075 codeOffset(v, regOffset, addrCont); 2076 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2077 0, 0, pDest, addrCont, addrBreak); 2078 if( regLimit ){ 2079 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2080 VdbeCoverage(v); 2081 } 2082 sqlite3VdbeResolveLabel(v, addrCont); 2083 2084 /* Execute the recursive SELECT taking the single row in Current as 2085 ** the value for the recursive-table. Store the results in the Queue. 2086 */ 2087 if( p->selFlags & SF_Aggregate ){ 2088 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2089 }else{ 2090 p->pPrior = 0; 2091 sqlite3Select(pParse, p, &destQueue); 2092 assert( p->pPrior==0 ); 2093 p->pPrior = pSetup; 2094 } 2095 2096 /* Keep running the loop until the Queue is empty */ 2097 sqlite3VdbeGoto(v, addrTop); 2098 sqlite3VdbeResolveLabel(v, addrBreak); 2099 2100 end_of_recursive_query: 2101 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2102 p->pOrderBy = pOrderBy; 2103 p->pLimit = pLimit; 2104 p->pOffset = pOffset; 2105 return; 2106 } 2107 #endif /* SQLITE_OMIT_CTE */ 2108 2109 /* Forward references */ 2110 static int multiSelectOrderBy( 2111 Parse *pParse, /* Parsing context */ 2112 Select *p, /* The right-most of SELECTs to be coded */ 2113 SelectDest *pDest /* What to do with query results */ 2114 ); 2115 2116 /* 2117 ** Handle the special case of a compound-select that originates from a 2118 ** VALUES clause. By handling this as a special case, we avoid deep 2119 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2120 ** on a VALUES clause. 2121 ** 2122 ** Because the Select object originates from a VALUES clause: 2123 ** (1) It has no LIMIT or OFFSET 2124 ** (2) All terms are UNION ALL 2125 ** (3) There is no ORDER BY clause 2126 */ 2127 static int multiSelectValues( 2128 Parse *pParse, /* Parsing context */ 2129 Select *p, /* The right-most of SELECTs to be coded */ 2130 SelectDest *pDest /* What to do with query results */ 2131 ){ 2132 Select *pPrior; 2133 int nRow = 1; 2134 int rc = 0; 2135 assert( p->selFlags & SF_MultiValue ); 2136 do{ 2137 assert( p->selFlags & SF_Values ); 2138 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2139 assert( p->pLimit==0 ); 2140 assert( p->pOffset==0 ); 2141 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2142 if( p->pPrior==0 ) break; 2143 assert( p->pPrior->pNext==p ); 2144 p = p->pPrior; 2145 nRow++; 2146 }while(1); 2147 while( p ){ 2148 pPrior = p->pPrior; 2149 p->pPrior = 0; 2150 rc = sqlite3Select(pParse, p, pDest); 2151 p->pPrior = pPrior; 2152 if( rc ) break; 2153 p->nSelectRow = nRow; 2154 p = p->pNext; 2155 } 2156 return rc; 2157 } 2158 2159 /* 2160 ** This routine is called to process a compound query form from 2161 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2162 ** INTERSECT 2163 ** 2164 ** "p" points to the right-most of the two queries. the query on the 2165 ** left is p->pPrior. The left query could also be a compound query 2166 ** in which case this routine will be called recursively. 2167 ** 2168 ** The results of the total query are to be written into a destination 2169 ** of type eDest with parameter iParm. 2170 ** 2171 ** Example 1: Consider a three-way compound SQL statement. 2172 ** 2173 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2174 ** 2175 ** This statement is parsed up as follows: 2176 ** 2177 ** SELECT c FROM t3 2178 ** | 2179 ** `-----> SELECT b FROM t2 2180 ** | 2181 ** `------> SELECT a FROM t1 2182 ** 2183 ** The arrows in the diagram above represent the Select.pPrior pointer. 2184 ** So if this routine is called with p equal to the t3 query, then 2185 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2186 ** 2187 ** Notice that because of the way SQLite parses compound SELECTs, the 2188 ** individual selects always group from left to right. 2189 */ 2190 static int multiSelect( 2191 Parse *pParse, /* Parsing context */ 2192 Select *p, /* The right-most of SELECTs to be coded */ 2193 SelectDest *pDest /* What to do with query results */ 2194 ){ 2195 int rc = SQLITE_OK; /* Success code from a subroutine */ 2196 Select *pPrior; /* Another SELECT immediately to our left */ 2197 Vdbe *v; /* Generate code to this VDBE */ 2198 SelectDest dest; /* Alternative data destination */ 2199 Select *pDelete = 0; /* Chain of simple selects to delete */ 2200 sqlite3 *db; /* Database connection */ 2201 #ifndef SQLITE_OMIT_EXPLAIN 2202 int iSub1 = 0; /* EQP id of left-hand query */ 2203 int iSub2 = 0; /* EQP id of right-hand query */ 2204 #endif 2205 2206 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2207 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2208 */ 2209 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2210 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2211 db = pParse->db; 2212 pPrior = p->pPrior; 2213 dest = *pDest; 2214 if( pPrior->pOrderBy ){ 2215 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2216 selectOpName(p->op)); 2217 rc = 1; 2218 goto multi_select_end; 2219 } 2220 if( pPrior->pLimit ){ 2221 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2222 selectOpName(p->op)); 2223 rc = 1; 2224 goto multi_select_end; 2225 } 2226 2227 v = sqlite3GetVdbe(pParse); 2228 assert( v!=0 ); /* The VDBE already created by calling function */ 2229 2230 /* Create the destination temporary table if necessary 2231 */ 2232 if( dest.eDest==SRT_EphemTab ){ 2233 assert( p->pEList ); 2234 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2235 dest.eDest = SRT_Table; 2236 } 2237 2238 /* Special handling for a compound-select that originates as a VALUES clause. 2239 */ 2240 if( p->selFlags & SF_MultiValue ){ 2241 rc = multiSelectValues(pParse, p, &dest); 2242 goto multi_select_end; 2243 } 2244 2245 /* Make sure all SELECTs in the statement have the same number of elements 2246 ** in their result sets. 2247 */ 2248 assert( p->pEList && pPrior->pEList ); 2249 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2250 2251 #ifndef SQLITE_OMIT_CTE 2252 if( p->selFlags & SF_Recursive ){ 2253 generateWithRecursiveQuery(pParse, p, &dest); 2254 }else 2255 #endif 2256 2257 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2258 */ 2259 if( p->pOrderBy ){ 2260 return multiSelectOrderBy(pParse, p, pDest); 2261 }else 2262 2263 /* Generate code for the left and right SELECT statements. 2264 */ 2265 switch( p->op ){ 2266 case TK_ALL: { 2267 int addr = 0; 2268 int nLimit; 2269 assert( !pPrior->pLimit ); 2270 pPrior->iLimit = p->iLimit; 2271 pPrior->iOffset = p->iOffset; 2272 pPrior->pLimit = p->pLimit; 2273 pPrior->pOffset = p->pOffset; 2274 explainSetInteger(iSub1, pParse->iNextSelectId); 2275 rc = sqlite3Select(pParse, pPrior, &dest); 2276 p->pLimit = 0; 2277 p->pOffset = 0; 2278 if( rc ){ 2279 goto multi_select_end; 2280 } 2281 p->pPrior = 0; 2282 p->iLimit = pPrior->iLimit; 2283 p->iOffset = pPrior->iOffset; 2284 if( p->iLimit ){ 2285 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2286 VdbeComment((v, "Jump ahead if LIMIT reached")); 2287 if( p->iOffset ){ 2288 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2289 p->iLimit, p->iOffset+1, p->iOffset); 2290 } 2291 } 2292 explainSetInteger(iSub2, pParse->iNextSelectId); 2293 rc = sqlite3Select(pParse, p, &dest); 2294 testcase( rc!=SQLITE_OK ); 2295 pDelete = p->pPrior; 2296 p->pPrior = pPrior; 2297 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2298 if( pPrior->pLimit 2299 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2300 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2301 ){ 2302 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2303 } 2304 if( addr ){ 2305 sqlite3VdbeJumpHere(v, addr); 2306 } 2307 break; 2308 } 2309 case TK_EXCEPT: 2310 case TK_UNION: { 2311 int unionTab; /* Cursor number of the temporary table holding result */ 2312 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2313 int priorOp; /* The SRT_ operation to apply to prior selects */ 2314 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2315 int addr; 2316 SelectDest uniondest; 2317 2318 testcase( p->op==TK_EXCEPT ); 2319 testcase( p->op==TK_UNION ); 2320 priorOp = SRT_Union; 2321 if( dest.eDest==priorOp ){ 2322 /* We can reuse a temporary table generated by a SELECT to our 2323 ** right. 2324 */ 2325 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2326 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2327 unionTab = dest.iSDParm; 2328 }else{ 2329 /* We will need to create our own temporary table to hold the 2330 ** intermediate results. 2331 */ 2332 unionTab = pParse->nTab++; 2333 assert( p->pOrderBy==0 ); 2334 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2335 assert( p->addrOpenEphm[0] == -1 ); 2336 p->addrOpenEphm[0] = addr; 2337 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2338 assert( p->pEList ); 2339 } 2340 2341 /* Code the SELECT statements to our left 2342 */ 2343 assert( !pPrior->pOrderBy ); 2344 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2345 explainSetInteger(iSub1, pParse->iNextSelectId); 2346 rc = sqlite3Select(pParse, pPrior, &uniondest); 2347 if( rc ){ 2348 goto multi_select_end; 2349 } 2350 2351 /* Code the current SELECT statement 2352 */ 2353 if( p->op==TK_EXCEPT ){ 2354 op = SRT_Except; 2355 }else{ 2356 assert( p->op==TK_UNION ); 2357 op = SRT_Union; 2358 } 2359 p->pPrior = 0; 2360 pLimit = p->pLimit; 2361 p->pLimit = 0; 2362 pOffset = p->pOffset; 2363 p->pOffset = 0; 2364 uniondest.eDest = op; 2365 explainSetInteger(iSub2, pParse->iNextSelectId); 2366 rc = sqlite3Select(pParse, p, &uniondest); 2367 testcase( rc!=SQLITE_OK ); 2368 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2369 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2370 sqlite3ExprListDelete(db, p->pOrderBy); 2371 pDelete = p->pPrior; 2372 p->pPrior = pPrior; 2373 p->pOrderBy = 0; 2374 if( p->op==TK_UNION ){ 2375 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2376 } 2377 sqlite3ExprDelete(db, p->pLimit); 2378 p->pLimit = pLimit; 2379 p->pOffset = pOffset; 2380 p->iLimit = 0; 2381 p->iOffset = 0; 2382 2383 /* Convert the data in the temporary table into whatever form 2384 ** it is that we currently need. 2385 */ 2386 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2387 if( dest.eDest!=priorOp ){ 2388 int iCont, iBreak, iStart; 2389 assert( p->pEList ); 2390 if( dest.eDest==SRT_Output ){ 2391 Select *pFirst = p; 2392 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2393 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2394 } 2395 iBreak = sqlite3VdbeMakeLabel(v); 2396 iCont = sqlite3VdbeMakeLabel(v); 2397 computeLimitRegisters(pParse, p, iBreak); 2398 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2399 iStart = sqlite3VdbeCurrentAddr(v); 2400 selectInnerLoop(pParse, p, p->pEList, unionTab, 2401 0, 0, &dest, iCont, iBreak); 2402 sqlite3VdbeResolveLabel(v, iCont); 2403 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2404 sqlite3VdbeResolveLabel(v, iBreak); 2405 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2406 } 2407 break; 2408 } 2409 default: assert( p->op==TK_INTERSECT ); { 2410 int tab1, tab2; 2411 int iCont, iBreak, iStart; 2412 Expr *pLimit, *pOffset; 2413 int addr; 2414 SelectDest intersectdest; 2415 int r1; 2416 2417 /* INTERSECT is different from the others since it requires 2418 ** two temporary tables. Hence it has its own case. Begin 2419 ** by allocating the tables we will need. 2420 */ 2421 tab1 = pParse->nTab++; 2422 tab2 = pParse->nTab++; 2423 assert( p->pOrderBy==0 ); 2424 2425 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2426 assert( p->addrOpenEphm[0] == -1 ); 2427 p->addrOpenEphm[0] = addr; 2428 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2429 assert( p->pEList ); 2430 2431 /* Code the SELECTs to our left into temporary table "tab1". 2432 */ 2433 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2434 explainSetInteger(iSub1, pParse->iNextSelectId); 2435 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2436 if( rc ){ 2437 goto multi_select_end; 2438 } 2439 2440 /* Code the current SELECT into temporary table "tab2" 2441 */ 2442 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2443 assert( p->addrOpenEphm[1] == -1 ); 2444 p->addrOpenEphm[1] = addr; 2445 p->pPrior = 0; 2446 pLimit = p->pLimit; 2447 p->pLimit = 0; 2448 pOffset = p->pOffset; 2449 p->pOffset = 0; 2450 intersectdest.iSDParm = tab2; 2451 explainSetInteger(iSub2, pParse->iNextSelectId); 2452 rc = sqlite3Select(pParse, p, &intersectdest); 2453 testcase( rc!=SQLITE_OK ); 2454 pDelete = p->pPrior; 2455 p->pPrior = pPrior; 2456 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2457 sqlite3ExprDelete(db, p->pLimit); 2458 p->pLimit = pLimit; 2459 p->pOffset = pOffset; 2460 2461 /* Generate code to take the intersection of the two temporary 2462 ** tables. 2463 */ 2464 assert( p->pEList ); 2465 if( dest.eDest==SRT_Output ){ 2466 Select *pFirst = p; 2467 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2468 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2469 } 2470 iBreak = sqlite3VdbeMakeLabel(v); 2471 iCont = sqlite3VdbeMakeLabel(v); 2472 computeLimitRegisters(pParse, p, iBreak); 2473 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2474 r1 = sqlite3GetTempReg(pParse); 2475 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2476 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2477 sqlite3ReleaseTempReg(pParse, r1); 2478 selectInnerLoop(pParse, p, p->pEList, tab1, 2479 0, 0, &dest, iCont, iBreak); 2480 sqlite3VdbeResolveLabel(v, iCont); 2481 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2482 sqlite3VdbeResolveLabel(v, iBreak); 2483 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2484 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2485 break; 2486 } 2487 } 2488 2489 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2490 2491 /* Compute collating sequences used by 2492 ** temporary tables needed to implement the compound select. 2493 ** Attach the KeyInfo structure to all temporary tables. 2494 ** 2495 ** This section is run by the right-most SELECT statement only. 2496 ** SELECT statements to the left always skip this part. The right-most 2497 ** SELECT might also skip this part if it has no ORDER BY clause and 2498 ** no temp tables are required. 2499 */ 2500 if( p->selFlags & SF_UsesEphemeral ){ 2501 int i; /* Loop counter */ 2502 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2503 Select *pLoop; /* For looping through SELECT statements */ 2504 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2505 int nCol; /* Number of columns in result set */ 2506 2507 assert( p->pNext==0 ); 2508 nCol = p->pEList->nExpr; 2509 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2510 if( !pKeyInfo ){ 2511 rc = SQLITE_NOMEM_BKPT; 2512 goto multi_select_end; 2513 } 2514 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2515 *apColl = multiSelectCollSeq(pParse, p, i); 2516 if( 0==*apColl ){ 2517 *apColl = db->pDfltColl; 2518 } 2519 } 2520 2521 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2522 for(i=0; i<2; i++){ 2523 int addr = pLoop->addrOpenEphm[i]; 2524 if( addr<0 ){ 2525 /* If [0] is unused then [1] is also unused. So we can 2526 ** always safely abort as soon as the first unused slot is found */ 2527 assert( pLoop->addrOpenEphm[1]<0 ); 2528 break; 2529 } 2530 sqlite3VdbeChangeP2(v, addr, nCol); 2531 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2532 P4_KEYINFO); 2533 pLoop->addrOpenEphm[i] = -1; 2534 } 2535 } 2536 sqlite3KeyInfoUnref(pKeyInfo); 2537 } 2538 2539 multi_select_end: 2540 pDest->iSdst = dest.iSdst; 2541 pDest->nSdst = dest.nSdst; 2542 sqlite3SelectDelete(db, pDelete); 2543 return rc; 2544 } 2545 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2546 2547 /* 2548 ** Error message for when two or more terms of a compound select have different 2549 ** size result sets. 2550 */ 2551 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2552 if( p->selFlags & SF_Values ){ 2553 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2554 }else{ 2555 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2556 " do not have the same number of result columns", selectOpName(p->op)); 2557 } 2558 } 2559 2560 /* 2561 ** Code an output subroutine for a coroutine implementation of a 2562 ** SELECT statment. 2563 ** 2564 ** The data to be output is contained in pIn->iSdst. There are 2565 ** pIn->nSdst columns to be output. pDest is where the output should 2566 ** be sent. 2567 ** 2568 ** regReturn is the number of the register holding the subroutine 2569 ** return address. 2570 ** 2571 ** If regPrev>0 then it is the first register in a vector that 2572 ** records the previous output. mem[regPrev] is a flag that is false 2573 ** if there has been no previous output. If regPrev>0 then code is 2574 ** generated to suppress duplicates. pKeyInfo is used for comparing 2575 ** keys. 2576 ** 2577 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2578 ** iBreak. 2579 */ 2580 static int generateOutputSubroutine( 2581 Parse *pParse, /* Parsing context */ 2582 Select *p, /* The SELECT statement */ 2583 SelectDest *pIn, /* Coroutine supplying data */ 2584 SelectDest *pDest, /* Where to send the data */ 2585 int regReturn, /* The return address register */ 2586 int regPrev, /* Previous result register. No uniqueness if 0 */ 2587 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2588 int iBreak /* Jump here if we hit the LIMIT */ 2589 ){ 2590 Vdbe *v = pParse->pVdbe; 2591 int iContinue; 2592 int addr; 2593 2594 addr = sqlite3VdbeCurrentAddr(v); 2595 iContinue = sqlite3VdbeMakeLabel(v); 2596 2597 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2598 */ 2599 if( regPrev ){ 2600 int addr1, addr2; 2601 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2602 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2603 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2604 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2605 sqlite3VdbeJumpHere(v, addr1); 2606 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2607 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2608 } 2609 if( pParse->db->mallocFailed ) return 0; 2610 2611 /* Suppress the first OFFSET entries if there is an OFFSET clause 2612 */ 2613 codeOffset(v, p->iOffset, iContinue); 2614 2615 assert( pDest->eDest!=SRT_Exists ); 2616 assert( pDest->eDest!=SRT_Table ); 2617 switch( pDest->eDest ){ 2618 /* Store the result as data using a unique key. 2619 */ 2620 case SRT_EphemTab: { 2621 int r1 = sqlite3GetTempReg(pParse); 2622 int r2 = sqlite3GetTempReg(pParse); 2623 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2624 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2625 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2626 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2627 sqlite3ReleaseTempReg(pParse, r2); 2628 sqlite3ReleaseTempReg(pParse, r1); 2629 break; 2630 } 2631 2632 #ifndef SQLITE_OMIT_SUBQUERY 2633 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2634 ** then there should be a single item on the stack. Write this 2635 ** item into the set table with bogus data. 2636 */ 2637 case SRT_Set: { 2638 int r1; 2639 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2640 pDest->affSdst = 2641 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2642 r1 = sqlite3GetTempReg(pParse); 2643 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2644 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2645 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2646 sqlite3ReleaseTempReg(pParse, r1); 2647 break; 2648 } 2649 2650 /* If this is a scalar select that is part of an expression, then 2651 ** store the results in the appropriate memory cell and break out 2652 ** of the scan loop. 2653 */ 2654 case SRT_Mem: { 2655 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2656 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2657 /* The LIMIT clause will jump out of the loop for us */ 2658 break; 2659 } 2660 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2661 2662 /* The results are stored in a sequence of registers 2663 ** starting at pDest->iSdst. Then the co-routine yields. 2664 */ 2665 case SRT_Coroutine: { 2666 if( pDest->iSdst==0 ){ 2667 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2668 pDest->nSdst = pIn->nSdst; 2669 } 2670 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2671 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2672 break; 2673 } 2674 2675 /* If none of the above, then the result destination must be 2676 ** SRT_Output. This routine is never called with any other 2677 ** destination other than the ones handled above or SRT_Output. 2678 ** 2679 ** For SRT_Output, results are stored in a sequence of registers. 2680 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2681 ** return the next row of result. 2682 */ 2683 default: { 2684 assert( pDest->eDest==SRT_Output ); 2685 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2686 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2687 break; 2688 } 2689 } 2690 2691 /* Jump to the end of the loop if the LIMIT is reached. 2692 */ 2693 if( p->iLimit ){ 2694 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2695 } 2696 2697 /* Generate the subroutine return 2698 */ 2699 sqlite3VdbeResolveLabel(v, iContinue); 2700 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2701 2702 return addr; 2703 } 2704 2705 /* 2706 ** Alternative compound select code generator for cases when there 2707 ** is an ORDER BY clause. 2708 ** 2709 ** We assume a query of the following form: 2710 ** 2711 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2712 ** 2713 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2714 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2715 ** co-routines. Then run the co-routines in parallel and merge the results 2716 ** into the output. In addition to the two coroutines (called selectA and 2717 ** selectB) there are 7 subroutines: 2718 ** 2719 ** outA: Move the output of the selectA coroutine into the output 2720 ** of the compound query. 2721 ** 2722 ** outB: Move the output of the selectB coroutine into the output 2723 ** of the compound query. (Only generated for UNION and 2724 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2725 ** appears only in B.) 2726 ** 2727 ** AltB: Called when there is data from both coroutines and A<B. 2728 ** 2729 ** AeqB: Called when there is data from both coroutines and A==B. 2730 ** 2731 ** AgtB: Called when there is data from both coroutines and A>B. 2732 ** 2733 ** EofA: Called when data is exhausted from selectA. 2734 ** 2735 ** EofB: Called when data is exhausted from selectB. 2736 ** 2737 ** The implementation of the latter five subroutines depend on which 2738 ** <operator> is used: 2739 ** 2740 ** 2741 ** UNION ALL UNION EXCEPT INTERSECT 2742 ** ------------- ----------------- -------------- ----------------- 2743 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2744 ** 2745 ** AeqB: outA, nextA nextA nextA outA, nextA 2746 ** 2747 ** AgtB: outB, nextB outB, nextB nextB nextB 2748 ** 2749 ** EofA: outB, nextB outB, nextB halt halt 2750 ** 2751 ** EofB: outA, nextA outA, nextA outA, nextA halt 2752 ** 2753 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2754 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2755 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2756 ** following nextX causes a jump to the end of the select processing. 2757 ** 2758 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2759 ** within the output subroutine. The regPrev register set holds the previously 2760 ** output value. A comparison is made against this value and the output 2761 ** is skipped if the next results would be the same as the previous. 2762 ** 2763 ** The implementation plan is to implement the two coroutines and seven 2764 ** subroutines first, then put the control logic at the bottom. Like this: 2765 ** 2766 ** goto Init 2767 ** coA: coroutine for left query (A) 2768 ** coB: coroutine for right query (B) 2769 ** outA: output one row of A 2770 ** outB: output one row of B (UNION and UNION ALL only) 2771 ** EofA: ... 2772 ** EofB: ... 2773 ** AltB: ... 2774 ** AeqB: ... 2775 ** AgtB: ... 2776 ** Init: initialize coroutine registers 2777 ** yield coA 2778 ** if eof(A) goto EofA 2779 ** yield coB 2780 ** if eof(B) goto EofB 2781 ** Cmpr: Compare A, B 2782 ** Jump AltB, AeqB, AgtB 2783 ** End: ... 2784 ** 2785 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2786 ** actually called using Gosub and they do not Return. EofA and EofB loop 2787 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2788 ** and AgtB jump to either L2 or to one of EofA or EofB. 2789 */ 2790 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2791 static int multiSelectOrderBy( 2792 Parse *pParse, /* Parsing context */ 2793 Select *p, /* The right-most of SELECTs to be coded */ 2794 SelectDest *pDest /* What to do with query results */ 2795 ){ 2796 int i, j; /* Loop counters */ 2797 Select *pPrior; /* Another SELECT immediately to our left */ 2798 Vdbe *v; /* Generate code to this VDBE */ 2799 SelectDest destA; /* Destination for coroutine A */ 2800 SelectDest destB; /* Destination for coroutine B */ 2801 int regAddrA; /* Address register for select-A coroutine */ 2802 int regAddrB; /* Address register for select-B coroutine */ 2803 int addrSelectA; /* Address of the select-A coroutine */ 2804 int addrSelectB; /* Address of the select-B coroutine */ 2805 int regOutA; /* Address register for the output-A subroutine */ 2806 int regOutB; /* Address register for the output-B subroutine */ 2807 int addrOutA; /* Address of the output-A subroutine */ 2808 int addrOutB = 0; /* Address of the output-B subroutine */ 2809 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2810 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2811 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2812 int addrAltB; /* Address of the A<B subroutine */ 2813 int addrAeqB; /* Address of the A==B subroutine */ 2814 int addrAgtB; /* Address of the A>B subroutine */ 2815 int regLimitA; /* Limit register for select-A */ 2816 int regLimitB; /* Limit register for select-A */ 2817 int regPrev; /* A range of registers to hold previous output */ 2818 int savedLimit; /* Saved value of p->iLimit */ 2819 int savedOffset; /* Saved value of p->iOffset */ 2820 int labelCmpr; /* Label for the start of the merge algorithm */ 2821 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2822 int addr1; /* Jump instructions that get retargetted */ 2823 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2824 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2825 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2826 sqlite3 *db; /* Database connection */ 2827 ExprList *pOrderBy; /* The ORDER BY clause */ 2828 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2829 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2830 #ifndef SQLITE_OMIT_EXPLAIN 2831 int iSub1; /* EQP id of left-hand query */ 2832 int iSub2; /* EQP id of right-hand query */ 2833 #endif 2834 2835 assert( p->pOrderBy!=0 ); 2836 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2837 db = pParse->db; 2838 v = pParse->pVdbe; 2839 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2840 labelEnd = sqlite3VdbeMakeLabel(v); 2841 labelCmpr = sqlite3VdbeMakeLabel(v); 2842 2843 2844 /* Patch up the ORDER BY clause 2845 */ 2846 op = p->op; 2847 pPrior = p->pPrior; 2848 assert( pPrior->pOrderBy==0 ); 2849 pOrderBy = p->pOrderBy; 2850 assert( pOrderBy ); 2851 nOrderBy = pOrderBy->nExpr; 2852 2853 /* For operators other than UNION ALL we have to make sure that 2854 ** the ORDER BY clause covers every term of the result set. Add 2855 ** terms to the ORDER BY clause as necessary. 2856 */ 2857 if( op!=TK_ALL ){ 2858 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2859 struct ExprList_item *pItem; 2860 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2861 assert( pItem->u.x.iOrderByCol>0 ); 2862 if( pItem->u.x.iOrderByCol==i ) break; 2863 } 2864 if( j==nOrderBy ){ 2865 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2866 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2867 pNew->flags |= EP_IntValue; 2868 pNew->u.iValue = i; 2869 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2870 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2871 } 2872 } 2873 } 2874 2875 /* Compute the comparison permutation and keyinfo that is used with 2876 ** the permutation used to determine if the next 2877 ** row of results comes from selectA or selectB. Also add explicit 2878 ** collations to the ORDER BY clause terms so that when the subqueries 2879 ** to the right and the left are evaluated, they use the correct 2880 ** collation. 2881 */ 2882 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2883 if( aPermute ){ 2884 struct ExprList_item *pItem; 2885 aPermute[0] = nOrderBy; 2886 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2887 assert( pItem->u.x.iOrderByCol>0 ); 2888 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2889 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2890 } 2891 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2892 }else{ 2893 pKeyMerge = 0; 2894 } 2895 2896 /* Reattach the ORDER BY clause to the query. 2897 */ 2898 p->pOrderBy = pOrderBy; 2899 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2900 2901 /* Allocate a range of temporary registers and the KeyInfo needed 2902 ** for the logic that removes duplicate result rows when the 2903 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2904 */ 2905 if( op==TK_ALL ){ 2906 regPrev = 0; 2907 }else{ 2908 int nExpr = p->pEList->nExpr; 2909 assert( nOrderBy>=nExpr || db->mallocFailed ); 2910 regPrev = pParse->nMem+1; 2911 pParse->nMem += nExpr+1; 2912 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2913 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2914 if( pKeyDup ){ 2915 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2916 for(i=0; i<nExpr; i++){ 2917 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2918 pKeyDup->aSortOrder[i] = 0; 2919 } 2920 } 2921 } 2922 2923 /* Separate the left and the right query from one another 2924 */ 2925 p->pPrior = 0; 2926 pPrior->pNext = 0; 2927 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2928 if( pPrior->pPrior==0 ){ 2929 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2930 } 2931 2932 /* Compute the limit registers */ 2933 computeLimitRegisters(pParse, p, labelEnd); 2934 if( p->iLimit && op==TK_ALL ){ 2935 regLimitA = ++pParse->nMem; 2936 regLimitB = ++pParse->nMem; 2937 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2938 regLimitA); 2939 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2940 }else{ 2941 regLimitA = regLimitB = 0; 2942 } 2943 sqlite3ExprDelete(db, p->pLimit); 2944 p->pLimit = 0; 2945 sqlite3ExprDelete(db, p->pOffset); 2946 p->pOffset = 0; 2947 2948 regAddrA = ++pParse->nMem; 2949 regAddrB = ++pParse->nMem; 2950 regOutA = ++pParse->nMem; 2951 regOutB = ++pParse->nMem; 2952 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2953 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2954 2955 /* Generate a coroutine to evaluate the SELECT statement to the 2956 ** left of the compound operator - the "A" select. 2957 */ 2958 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2959 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2960 VdbeComment((v, "left SELECT")); 2961 pPrior->iLimit = regLimitA; 2962 explainSetInteger(iSub1, pParse->iNextSelectId); 2963 sqlite3Select(pParse, pPrior, &destA); 2964 sqlite3VdbeEndCoroutine(v, regAddrA); 2965 sqlite3VdbeJumpHere(v, addr1); 2966 2967 /* Generate a coroutine to evaluate the SELECT statement on 2968 ** the right - the "B" select 2969 */ 2970 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2971 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2972 VdbeComment((v, "right SELECT")); 2973 savedLimit = p->iLimit; 2974 savedOffset = p->iOffset; 2975 p->iLimit = regLimitB; 2976 p->iOffset = 0; 2977 explainSetInteger(iSub2, pParse->iNextSelectId); 2978 sqlite3Select(pParse, p, &destB); 2979 p->iLimit = savedLimit; 2980 p->iOffset = savedOffset; 2981 sqlite3VdbeEndCoroutine(v, regAddrB); 2982 2983 /* Generate a subroutine that outputs the current row of the A 2984 ** select as the next output row of the compound select. 2985 */ 2986 VdbeNoopComment((v, "Output routine for A")); 2987 addrOutA = generateOutputSubroutine(pParse, 2988 p, &destA, pDest, regOutA, 2989 regPrev, pKeyDup, labelEnd); 2990 2991 /* Generate a subroutine that outputs the current row of the B 2992 ** select as the next output row of the compound select. 2993 */ 2994 if( op==TK_ALL || op==TK_UNION ){ 2995 VdbeNoopComment((v, "Output routine for B")); 2996 addrOutB = generateOutputSubroutine(pParse, 2997 p, &destB, pDest, regOutB, 2998 regPrev, pKeyDup, labelEnd); 2999 } 3000 sqlite3KeyInfoUnref(pKeyDup); 3001 3002 /* Generate a subroutine to run when the results from select A 3003 ** are exhausted and only data in select B remains. 3004 */ 3005 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3006 addrEofA_noB = addrEofA = labelEnd; 3007 }else{ 3008 VdbeNoopComment((v, "eof-A subroutine")); 3009 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3010 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3011 VdbeCoverage(v); 3012 sqlite3VdbeGoto(v, addrEofA); 3013 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3014 } 3015 3016 /* Generate a subroutine to run when the results from select B 3017 ** are exhausted and only data in select A remains. 3018 */ 3019 if( op==TK_INTERSECT ){ 3020 addrEofB = addrEofA; 3021 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3022 }else{ 3023 VdbeNoopComment((v, "eof-B subroutine")); 3024 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3025 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3026 sqlite3VdbeGoto(v, addrEofB); 3027 } 3028 3029 /* Generate code to handle the case of A<B 3030 */ 3031 VdbeNoopComment((v, "A-lt-B subroutine")); 3032 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3033 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3034 sqlite3VdbeGoto(v, labelCmpr); 3035 3036 /* Generate code to handle the case of A==B 3037 */ 3038 if( op==TK_ALL ){ 3039 addrAeqB = addrAltB; 3040 }else if( op==TK_INTERSECT ){ 3041 addrAeqB = addrAltB; 3042 addrAltB++; 3043 }else{ 3044 VdbeNoopComment((v, "A-eq-B subroutine")); 3045 addrAeqB = 3046 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3047 sqlite3VdbeGoto(v, labelCmpr); 3048 } 3049 3050 /* Generate code to handle the case of A>B 3051 */ 3052 VdbeNoopComment((v, "A-gt-B subroutine")); 3053 addrAgtB = sqlite3VdbeCurrentAddr(v); 3054 if( op==TK_ALL || op==TK_UNION ){ 3055 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3056 } 3057 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3058 sqlite3VdbeGoto(v, labelCmpr); 3059 3060 /* This code runs once to initialize everything. 3061 */ 3062 sqlite3VdbeJumpHere(v, addr1); 3063 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3064 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3065 3066 /* Implement the main merge loop 3067 */ 3068 sqlite3VdbeResolveLabel(v, labelCmpr); 3069 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3070 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3071 (char*)pKeyMerge, P4_KEYINFO); 3072 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3073 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3074 3075 /* Jump to the this point in order to terminate the query. 3076 */ 3077 sqlite3VdbeResolveLabel(v, labelEnd); 3078 3079 /* Set the number of output columns 3080 */ 3081 if( pDest->eDest==SRT_Output ){ 3082 Select *pFirst = pPrior; 3083 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3084 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3085 } 3086 3087 /* Reassembly the compound query so that it will be freed correctly 3088 ** by the calling function */ 3089 if( p->pPrior ){ 3090 sqlite3SelectDelete(db, p->pPrior); 3091 } 3092 p->pPrior = pPrior; 3093 pPrior->pNext = p; 3094 3095 /*** TBD: Insert subroutine calls to close cursors on incomplete 3096 **** subqueries ****/ 3097 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3098 return pParse->nErr!=0; 3099 } 3100 #endif 3101 3102 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3103 /* Forward Declarations */ 3104 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3105 static void substSelect(sqlite3*, Select *, int, ExprList*, int); 3106 3107 /* 3108 ** Scan through the expression pExpr. Replace every reference to 3109 ** a column in table number iTable with a copy of the iColumn-th 3110 ** entry in pEList. (But leave references to the ROWID column 3111 ** unchanged.) 3112 ** 3113 ** This routine is part of the flattening procedure. A subquery 3114 ** whose result set is defined by pEList appears as entry in the 3115 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3116 ** FORM clause entry is iTable. This routine make the necessary 3117 ** changes to pExpr so that it refers directly to the source table 3118 ** of the subquery rather the result set of the subquery. 3119 */ 3120 static Expr *substExpr( 3121 sqlite3 *db, /* Report malloc errors to this connection */ 3122 Expr *pExpr, /* Expr in which substitution occurs */ 3123 int iTable, /* Table to be substituted */ 3124 ExprList *pEList /* Substitute expressions */ 3125 ){ 3126 if( pExpr==0 ) return 0; 3127 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3128 if( pExpr->iColumn<0 ){ 3129 pExpr->op = TK_NULL; 3130 }else{ 3131 Expr *pNew; 3132 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3133 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3134 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3135 sqlite3ExprDelete(db, pExpr); 3136 pExpr = pNew; 3137 } 3138 }else{ 3139 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3140 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3141 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3142 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1); 3143 }else{ 3144 substExprList(db, pExpr->x.pList, iTable, pEList); 3145 } 3146 } 3147 return pExpr; 3148 } 3149 static void substExprList( 3150 sqlite3 *db, /* Report malloc errors here */ 3151 ExprList *pList, /* List to scan and in which to make substitutes */ 3152 int iTable, /* Table to be substituted */ 3153 ExprList *pEList /* Substitute values */ 3154 ){ 3155 int i; 3156 if( pList==0 ) return; 3157 for(i=0; i<pList->nExpr; i++){ 3158 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3159 } 3160 } 3161 static void substSelect( 3162 sqlite3 *db, /* Report malloc errors here */ 3163 Select *p, /* SELECT statement in which to make substitutions */ 3164 int iTable, /* Table to be replaced */ 3165 ExprList *pEList, /* Substitute values */ 3166 int doPrior /* Do substitutes on p->pPrior too */ 3167 ){ 3168 SrcList *pSrc; 3169 struct SrcList_item *pItem; 3170 int i; 3171 if( !p ) return; 3172 do{ 3173 substExprList(db, p->pEList, iTable, pEList); 3174 substExprList(db, p->pGroupBy, iTable, pEList); 3175 substExprList(db, p->pOrderBy, iTable, pEList); 3176 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3177 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3178 pSrc = p->pSrc; 3179 assert( pSrc!=0 ); 3180 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3181 substSelect(db, pItem->pSelect, iTable, pEList, 1); 3182 if( pItem->fg.isTabFunc ){ 3183 substExprList(db, pItem->u1.pFuncArg, iTable, pEList); 3184 } 3185 } 3186 }while( doPrior && (p = p->pPrior)!=0 ); 3187 } 3188 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3189 3190 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3191 /* 3192 ** This routine attempts to flatten subqueries as a performance optimization. 3193 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3194 ** 3195 ** To understand the concept of flattening, consider the following 3196 ** query: 3197 ** 3198 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3199 ** 3200 ** The default way of implementing this query is to execute the 3201 ** subquery first and store the results in a temporary table, then 3202 ** run the outer query on that temporary table. This requires two 3203 ** passes over the data. Furthermore, because the temporary table 3204 ** has no indices, the WHERE clause on the outer query cannot be 3205 ** optimized. 3206 ** 3207 ** This routine attempts to rewrite queries such as the above into 3208 ** a single flat select, like this: 3209 ** 3210 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3211 ** 3212 ** The code generated for this simplification gives the same result 3213 ** but only has to scan the data once. And because indices might 3214 ** exist on the table t1, a complete scan of the data might be 3215 ** avoided. 3216 ** 3217 ** Flattening is only attempted if all of the following are true: 3218 ** 3219 ** (1) The subquery and the outer query do not both use aggregates. 3220 ** 3221 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3222 ** and (2b) the outer query does not use subqueries other than the one 3223 ** FROM-clause subquery that is a candidate for flattening. (2b is 3224 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3225 ** 3226 ** (3) The subquery is not the right operand of a left outer join 3227 ** (Originally ticket #306. Strengthened by ticket #3300) 3228 ** 3229 ** (4) The subquery is not DISTINCT. 3230 ** 3231 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3232 ** sub-queries that were excluded from this optimization. Restriction 3233 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3234 ** 3235 ** (6) The subquery does not use aggregates or the outer query is not 3236 ** DISTINCT. 3237 ** 3238 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3239 ** A FROM clause, consider adding a FROM close with the special 3240 ** table sqlite_once that consists of a single row containing a 3241 ** single NULL. 3242 ** 3243 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3244 ** 3245 ** (9) The subquery does not use LIMIT or the outer query does not use 3246 ** aggregates. 3247 ** 3248 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3249 ** accidently carried the comment forward until 2014-09-15. Original 3250 ** text: "The subquery does not use aggregates or the outer query 3251 ** does not use LIMIT." 3252 ** 3253 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3254 ** 3255 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3256 ** a separate restriction deriving from ticket #350. 3257 ** 3258 ** (13) The subquery and outer query do not both use LIMIT. 3259 ** 3260 ** (14) The subquery does not use OFFSET. 3261 ** 3262 ** (15) The outer query is not part of a compound select or the 3263 ** subquery does not have a LIMIT clause. 3264 ** (See ticket #2339 and ticket [02a8e81d44]). 3265 ** 3266 ** (16) The outer query is not an aggregate or the subquery does 3267 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3268 ** until we introduced the group_concat() function. 3269 ** 3270 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3271 ** compound clause made up entirely of non-aggregate queries, and 3272 ** the parent query: 3273 ** 3274 ** * is not itself part of a compound select, 3275 ** * is not an aggregate or DISTINCT query, and 3276 ** * is not a join 3277 ** 3278 ** The parent and sub-query may contain WHERE clauses. Subject to 3279 ** rules (11), (13) and (14), they may also contain ORDER BY, 3280 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3281 ** operator other than UNION ALL because all the other compound 3282 ** operators have an implied DISTINCT which is disallowed by 3283 ** restriction (4). 3284 ** 3285 ** Also, each component of the sub-query must return the same number 3286 ** of result columns. This is actually a requirement for any compound 3287 ** SELECT statement, but all the code here does is make sure that no 3288 ** such (illegal) sub-query is flattened. The caller will detect the 3289 ** syntax error and return a detailed message. 3290 ** 3291 ** (18) If the sub-query is a compound select, then all terms of the 3292 ** ORDER by clause of the parent must be simple references to 3293 ** columns of the sub-query. 3294 ** 3295 ** (19) The subquery does not use LIMIT or the outer query does not 3296 ** have a WHERE clause. 3297 ** 3298 ** (20) If the sub-query is a compound select, then it must not use 3299 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3300 ** somewhat by saying that the terms of the ORDER BY clause must 3301 ** appear as unmodified result columns in the outer query. But we 3302 ** have other optimizations in mind to deal with that case. 3303 ** 3304 ** (21) The subquery does not use LIMIT or the outer query is not 3305 ** DISTINCT. (See ticket [752e1646fc]). 3306 ** 3307 ** (22) The subquery is not a recursive CTE. 3308 ** 3309 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3310 ** compound query. This restriction is because transforming the 3311 ** parent to a compound query confuses the code that handles 3312 ** recursive queries in multiSelect(). 3313 ** 3314 ** (24) The subquery is not an aggregate that uses the built-in min() or 3315 ** or max() functions. (Without this restriction, a query like: 3316 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3317 ** return the value X for which Y was maximal.) 3318 ** 3319 ** 3320 ** In this routine, the "p" parameter is a pointer to the outer query. 3321 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3322 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3323 ** 3324 ** If flattening is not attempted, this routine is a no-op and returns 0. 3325 ** If flattening is attempted this routine returns 1. 3326 ** 3327 ** All of the expression analysis must occur on both the outer query and 3328 ** the subquery before this routine runs. 3329 */ 3330 static int flattenSubquery( 3331 Parse *pParse, /* Parsing context */ 3332 Select *p, /* The parent or outer SELECT statement */ 3333 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3334 int isAgg, /* True if outer SELECT uses aggregate functions */ 3335 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3336 ){ 3337 const char *zSavedAuthContext = pParse->zAuthContext; 3338 Select *pParent; /* Current UNION ALL term of the other query */ 3339 Select *pSub; /* The inner query or "subquery" */ 3340 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3341 SrcList *pSrc; /* The FROM clause of the outer query */ 3342 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3343 ExprList *pList; /* The result set of the outer query */ 3344 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3345 int i; /* Loop counter */ 3346 Expr *pWhere; /* The WHERE clause */ 3347 struct SrcList_item *pSubitem; /* The subquery */ 3348 sqlite3 *db = pParse->db; 3349 3350 /* Check to see if flattening is permitted. Return 0 if not. 3351 */ 3352 assert( p!=0 ); 3353 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3354 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3355 pSrc = p->pSrc; 3356 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3357 pSubitem = &pSrc->a[iFrom]; 3358 iParent = pSubitem->iCursor; 3359 pSub = pSubitem->pSelect; 3360 assert( pSub!=0 ); 3361 if( subqueryIsAgg ){ 3362 if( isAgg ) return 0; /* Restriction (1) */ 3363 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3364 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3365 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3366 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3367 ){ 3368 return 0; /* Restriction (2b) */ 3369 } 3370 } 3371 3372 pSubSrc = pSub->pSrc; 3373 assert( pSubSrc ); 3374 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3375 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3376 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3377 ** became arbitrary expressions, we were forced to add restrictions (13) 3378 ** and (14). */ 3379 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3380 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3381 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3382 return 0; /* Restriction (15) */ 3383 } 3384 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3385 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3386 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3387 return 0; /* Restrictions (8)(9) */ 3388 } 3389 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3390 return 0; /* Restriction (6) */ 3391 } 3392 if( p->pOrderBy && pSub->pOrderBy ){ 3393 return 0; /* Restriction (11) */ 3394 } 3395 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3396 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3397 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3398 return 0; /* Restriction (21) */ 3399 } 3400 testcase( pSub->selFlags & SF_Recursive ); 3401 testcase( pSub->selFlags & SF_MinMaxAgg ); 3402 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3403 return 0; /* Restrictions (22) and (24) */ 3404 } 3405 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3406 return 0; /* Restriction (23) */ 3407 } 3408 3409 /* OBSOLETE COMMENT 1: 3410 ** Restriction 3: If the subquery is a join, make sure the subquery is 3411 ** not used as the right operand of an outer join. Examples of why this 3412 ** is not allowed: 3413 ** 3414 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3415 ** 3416 ** If we flatten the above, we would get 3417 ** 3418 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3419 ** 3420 ** which is not at all the same thing. 3421 ** 3422 ** OBSOLETE COMMENT 2: 3423 ** Restriction 12: If the subquery is the right operand of a left outer 3424 ** join, make sure the subquery has no WHERE clause. 3425 ** An examples of why this is not allowed: 3426 ** 3427 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3428 ** 3429 ** If we flatten the above, we would get 3430 ** 3431 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3432 ** 3433 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3434 ** effectively converts the OUTER JOIN into an INNER JOIN. 3435 ** 3436 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3437 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3438 ** is fraught with danger. Best to avoid the whole thing. If the 3439 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3440 */ 3441 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3442 return 0; 3443 } 3444 3445 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3446 ** use only the UNION ALL operator. And none of the simple select queries 3447 ** that make up the compound SELECT are allowed to be aggregate or distinct 3448 ** queries. 3449 */ 3450 if( pSub->pPrior ){ 3451 if( pSub->pOrderBy ){ 3452 return 0; /* Restriction 20 */ 3453 } 3454 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3455 return 0; 3456 } 3457 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3458 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3459 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3460 assert( pSub->pSrc!=0 ); 3461 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3462 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3463 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3464 || pSub1->pSrc->nSrc<1 3465 ){ 3466 return 0; 3467 } 3468 testcase( pSub1->pSrc->nSrc>1 ); 3469 } 3470 3471 /* Restriction 18. */ 3472 if( p->pOrderBy ){ 3473 int ii; 3474 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3475 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3476 } 3477 } 3478 } 3479 3480 /***** If we reach this point, flattening is permitted. *****/ 3481 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3482 pSub->zSelName, pSub, iFrom)); 3483 3484 /* Authorize the subquery */ 3485 pParse->zAuthContext = pSubitem->zName; 3486 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3487 testcase( i==SQLITE_DENY ); 3488 pParse->zAuthContext = zSavedAuthContext; 3489 3490 /* If the sub-query is a compound SELECT statement, then (by restrictions 3491 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3492 ** be of the form: 3493 ** 3494 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3495 ** 3496 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3497 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3498 ** OFFSET clauses and joins them to the left-hand-side of the original 3499 ** using UNION ALL operators. In this case N is the number of simple 3500 ** select statements in the compound sub-query. 3501 ** 3502 ** Example: 3503 ** 3504 ** SELECT a+1 FROM ( 3505 ** SELECT x FROM tab 3506 ** UNION ALL 3507 ** SELECT y FROM tab 3508 ** UNION ALL 3509 ** SELECT abs(z*2) FROM tab2 3510 ** ) WHERE a!=5 ORDER BY 1 3511 ** 3512 ** Transformed into: 3513 ** 3514 ** SELECT x+1 FROM tab WHERE x+1!=5 3515 ** UNION ALL 3516 ** SELECT y+1 FROM tab WHERE y+1!=5 3517 ** UNION ALL 3518 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3519 ** ORDER BY 1 3520 ** 3521 ** We call this the "compound-subquery flattening". 3522 */ 3523 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3524 Select *pNew; 3525 ExprList *pOrderBy = p->pOrderBy; 3526 Expr *pLimit = p->pLimit; 3527 Expr *pOffset = p->pOffset; 3528 Select *pPrior = p->pPrior; 3529 p->pOrderBy = 0; 3530 p->pSrc = 0; 3531 p->pPrior = 0; 3532 p->pLimit = 0; 3533 p->pOffset = 0; 3534 pNew = sqlite3SelectDup(db, p, 0); 3535 sqlite3SelectSetName(pNew, pSub->zSelName); 3536 p->pOffset = pOffset; 3537 p->pLimit = pLimit; 3538 p->pOrderBy = pOrderBy; 3539 p->pSrc = pSrc; 3540 p->op = TK_ALL; 3541 if( pNew==0 ){ 3542 p->pPrior = pPrior; 3543 }else{ 3544 pNew->pPrior = pPrior; 3545 if( pPrior ) pPrior->pNext = pNew; 3546 pNew->pNext = p; 3547 p->pPrior = pNew; 3548 SELECTTRACE(2,pParse,p, 3549 ("compound-subquery flattener creates %s.%p as peer\n", 3550 pNew->zSelName, pNew)); 3551 } 3552 if( db->mallocFailed ) return 1; 3553 } 3554 3555 /* Begin flattening the iFrom-th entry of the FROM clause 3556 ** in the outer query. 3557 */ 3558 pSub = pSub1 = pSubitem->pSelect; 3559 3560 /* Delete the transient table structure associated with the 3561 ** subquery 3562 */ 3563 sqlite3DbFree(db, pSubitem->zDatabase); 3564 sqlite3DbFree(db, pSubitem->zName); 3565 sqlite3DbFree(db, pSubitem->zAlias); 3566 pSubitem->zDatabase = 0; 3567 pSubitem->zName = 0; 3568 pSubitem->zAlias = 0; 3569 pSubitem->pSelect = 0; 3570 3571 /* Defer deleting the Table object associated with the 3572 ** subquery until code generation is 3573 ** complete, since there may still exist Expr.pTab entries that 3574 ** refer to the subquery even after flattening. Ticket #3346. 3575 ** 3576 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3577 */ 3578 if( ALWAYS(pSubitem->pTab!=0) ){ 3579 Table *pTabToDel = pSubitem->pTab; 3580 if( pTabToDel->nRef==1 ){ 3581 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3582 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3583 pToplevel->pZombieTab = pTabToDel; 3584 }else{ 3585 pTabToDel->nRef--; 3586 } 3587 pSubitem->pTab = 0; 3588 } 3589 3590 /* The following loop runs once for each term in a compound-subquery 3591 ** flattening (as described above). If we are doing a different kind 3592 ** of flattening - a flattening other than a compound-subquery flattening - 3593 ** then this loop only runs once. 3594 ** 3595 ** This loop moves all of the FROM elements of the subquery into the 3596 ** the FROM clause of the outer query. Before doing this, remember 3597 ** the cursor number for the original outer query FROM element in 3598 ** iParent. The iParent cursor will never be used. Subsequent code 3599 ** will scan expressions looking for iParent references and replace 3600 ** those references with expressions that resolve to the subquery FROM 3601 ** elements we are now copying in. 3602 */ 3603 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3604 int nSubSrc; 3605 u8 jointype = 0; 3606 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3607 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3608 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3609 3610 if( pSrc ){ 3611 assert( pParent==p ); /* First time through the loop */ 3612 jointype = pSubitem->fg.jointype; 3613 }else{ 3614 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3615 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3616 if( pSrc==0 ){ 3617 assert( db->mallocFailed ); 3618 break; 3619 } 3620 } 3621 3622 /* The subquery uses a single slot of the FROM clause of the outer 3623 ** query. If the subquery has more than one element in its FROM clause, 3624 ** then expand the outer query to make space for it to hold all elements 3625 ** of the subquery. 3626 ** 3627 ** Example: 3628 ** 3629 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3630 ** 3631 ** The outer query has 3 slots in its FROM clause. One slot of the 3632 ** outer query (the middle slot) is used by the subquery. The next 3633 ** block of code will expand the outer query FROM clause to 4 slots. 3634 ** The middle slot is expanded to two slots in order to make space 3635 ** for the two elements in the FROM clause of the subquery. 3636 */ 3637 if( nSubSrc>1 ){ 3638 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3639 if( db->mallocFailed ){ 3640 break; 3641 } 3642 } 3643 3644 /* Transfer the FROM clause terms from the subquery into the 3645 ** outer query. 3646 */ 3647 for(i=0; i<nSubSrc; i++){ 3648 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3649 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3650 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3651 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3652 } 3653 pSrc->a[iFrom].fg.jointype = jointype; 3654 3655 /* Now begin substituting subquery result set expressions for 3656 ** references to the iParent in the outer query. 3657 ** 3658 ** Example: 3659 ** 3660 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3661 ** \ \_____________ subquery __________/ / 3662 ** \_____________________ outer query ______________________________/ 3663 ** 3664 ** We look at every expression in the outer query and every place we see 3665 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3666 */ 3667 pList = pParent->pEList; 3668 for(i=0; i<pList->nExpr; i++){ 3669 if( pList->a[i].zName==0 ){ 3670 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3671 sqlite3Dequote(zName); 3672 pList->a[i].zName = zName; 3673 } 3674 } 3675 if( pSub->pOrderBy ){ 3676 /* At this point, any non-zero iOrderByCol values indicate that the 3677 ** ORDER BY column expression is identical to the iOrderByCol'th 3678 ** expression returned by SELECT statement pSub. Since these values 3679 ** do not necessarily correspond to columns in SELECT statement pParent, 3680 ** zero them before transfering the ORDER BY clause. 3681 ** 3682 ** Not doing this may cause an error if a subsequent call to this 3683 ** function attempts to flatten a compound sub-query into pParent 3684 ** (the only way this can happen is if the compound sub-query is 3685 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3686 ExprList *pOrderBy = pSub->pOrderBy; 3687 for(i=0; i<pOrderBy->nExpr; i++){ 3688 pOrderBy->a[i].u.x.iOrderByCol = 0; 3689 } 3690 assert( pParent->pOrderBy==0 ); 3691 assert( pSub->pPrior==0 ); 3692 pParent->pOrderBy = pOrderBy; 3693 pSub->pOrderBy = 0; 3694 } 3695 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3696 if( subqueryIsAgg ){ 3697 assert( pParent->pHaving==0 ); 3698 pParent->pHaving = pParent->pWhere; 3699 pParent->pWhere = pWhere; 3700 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3701 sqlite3ExprDup(db, pSub->pHaving, 0)); 3702 assert( pParent->pGroupBy==0 ); 3703 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3704 }else{ 3705 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3706 } 3707 substSelect(db, pParent, iParent, pSub->pEList, 0); 3708 3709 /* The flattened query is distinct if either the inner or the 3710 ** outer query is distinct. 3711 */ 3712 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3713 3714 /* 3715 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3716 ** 3717 ** One is tempted to try to add a and b to combine the limits. But this 3718 ** does not work if either limit is negative. 3719 */ 3720 if( pSub->pLimit ){ 3721 pParent->pLimit = pSub->pLimit; 3722 pSub->pLimit = 0; 3723 } 3724 } 3725 3726 /* Finially, delete what is left of the subquery and return 3727 ** success. 3728 */ 3729 sqlite3SelectDelete(db, pSub1); 3730 3731 #if SELECTTRACE_ENABLED 3732 if( sqlite3SelectTrace & 0x100 ){ 3733 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3734 sqlite3TreeViewSelect(0, p, 0); 3735 } 3736 #endif 3737 3738 return 1; 3739 } 3740 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3741 3742 3743 3744 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3745 /* 3746 ** Make copies of relevant WHERE clause terms of the outer query into 3747 ** the WHERE clause of subquery. Example: 3748 ** 3749 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3750 ** 3751 ** Transformed into: 3752 ** 3753 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3754 ** WHERE x=5 AND y=10; 3755 ** 3756 ** The hope is that the terms added to the inner query will make it more 3757 ** efficient. 3758 ** 3759 ** Do not attempt this optimization if: 3760 ** 3761 ** (1) The inner query is an aggregate. (In that case, we'd really want 3762 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3763 ** inner query. But they probably won't help there so do not bother.) 3764 ** 3765 ** (2) The inner query is the recursive part of a common table expression. 3766 ** 3767 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3768 ** close would change the meaning of the LIMIT). 3769 ** 3770 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3771 ** enforces this restriction since this routine does not have enough 3772 ** information to know.) 3773 ** 3774 ** (5) The WHERE clause expression originates in the ON or USING clause 3775 ** of a LEFT JOIN. 3776 ** 3777 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3778 ** terms are duplicated into the subquery. 3779 */ 3780 static int pushDownWhereTerms( 3781 sqlite3 *db, /* The database connection (for malloc()) */ 3782 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3783 Expr *pWhere, /* The WHERE clause of the outer query */ 3784 int iCursor /* Cursor number of the subquery */ 3785 ){ 3786 Expr *pNew; 3787 int nChng = 0; 3788 if( pWhere==0 ) return 0; 3789 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3790 testcase( pSubq->selFlags & SF_Aggregate ); 3791 testcase( pSubq->selFlags & SF_Recursive ); 3792 return 0; /* restrictions (1) and (2) */ 3793 } 3794 if( pSubq->pLimit!=0 ){ 3795 return 0; /* restriction (3) */ 3796 } 3797 while( pWhere->op==TK_AND ){ 3798 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3799 pWhere = pWhere->pLeft; 3800 } 3801 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3802 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3803 nChng++; 3804 while( pSubq ){ 3805 pNew = sqlite3ExprDup(db, pWhere, 0); 3806 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3807 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3808 pSubq = pSubq->pPrior; 3809 } 3810 } 3811 return nChng; 3812 } 3813 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3814 3815 /* 3816 ** Based on the contents of the AggInfo structure indicated by the first 3817 ** argument, this function checks if the following are true: 3818 ** 3819 ** * the query contains just a single aggregate function, 3820 ** * the aggregate function is either min() or max(), and 3821 ** * the argument to the aggregate function is a column value. 3822 ** 3823 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3824 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3825 ** list of arguments passed to the aggregate before returning. 3826 ** 3827 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3828 ** WHERE_ORDERBY_NORMAL is returned. 3829 */ 3830 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3831 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3832 3833 *ppMinMax = 0; 3834 if( pAggInfo->nFunc==1 ){ 3835 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3836 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3837 3838 assert( pExpr->op==TK_AGG_FUNCTION ); 3839 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3840 const char *zFunc = pExpr->u.zToken; 3841 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3842 eRet = WHERE_ORDERBY_MIN; 3843 *ppMinMax = pEList; 3844 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3845 eRet = WHERE_ORDERBY_MAX; 3846 *ppMinMax = pEList; 3847 } 3848 } 3849 } 3850 3851 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3852 return eRet; 3853 } 3854 3855 /* 3856 ** The select statement passed as the first argument is an aggregate query. 3857 ** The second argument is the associated aggregate-info object. This 3858 ** function tests if the SELECT is of the form: 3859 ** 3860 ** SELECT count(*) FROM <tbl> 3861 ** 3862 ** where table is a database table, not a sub-select or view. If the query 3863 ** does match this pattern, then a pointer to the Table object representing 3864 ** <tbl> is returned. Otherwise, 0 is returned. 3865 */ 3866 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3867 Table *pTab; 3868 Expr *pExpr; 3869 3870 assert( !p->pGroupBy ); 3871 3872 if( p->pWhere || p->pEList->nExpr!=1 3873 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3874 ){ 3875 return 0; 3876 } 3877 pTab = p->pSrc->a[0].pTab; 3878 pExpr = p->pEList->a[0].pExpr; 3879 assert( pTab && !pTab->pSelect && pExpr ); 3880 3881 if( IsVirtual(pTab) ) return 0; 3882 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3883 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3884 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3885 if( pExpr->flags&EP_Distinct ) return 0; 3886 3887 return pTab; 3888 } 3889 3890 /* 3891 ** If the source-list item passed as an argument was augmented with an 3892 ** INDEXED BY clause, then try to locate the specified index. If there 3893 ** was such a clause and the named index cannot be found, return 3894 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3895 ** pFrom->pIndex and return SQLITE_OK. 3896 */ 3897 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3898 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3899 Table *pTab = pFrom->pTab; 3900 char *zIndexedBy = pFrom->u1.zIndexedBy; 3901 Index *pIdx; 3902 for(pIdx=pTab->pIndex; 3903 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3904 pIdx=pIdx->pNext 3905 ); 3906 if( !pIdx ){ 3907 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3908 pParse->checkSchema = 1; 3909 return SQLITE_ERROR; 3910 } 3911 pFrom->pIBIndex = pIdx; 3912 } 3913 return SQLITE_OK; 3914 } 3915 /* 3916 ** Detect compound SELECT statements that use an ORDER BY clause with 3917 ** an alternative collating sequence. 3918 ** 3919 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3920 ** 3921 ** These are rewritten as a subquery: 3922 ** 3923 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3924 ** ORDER BY ... COLLATE ... 3925 ** 3926 ** This transformation is necessary because the multiSelectOrderBy() routine 3927 ** above that generates the code for a compound SELECT with an ORDER BY clause 3928 ** uses a merge algorithm that requires the same collating sequence on the 3929 ** result columns as on the ORDER BY clause. See ticket 3930 ** http://www.sqlite.org/src/info/6709574d2a 3931 ** 3932 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3933 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3934 ** there are COLLATE terms in the ORDER BY. 3935 */ 3936 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3937 int i; 3938 Select *pNew; 3939 Select *pX; 3940 sqlite3 *db; 3941 struct ExprList_item *a; 3942 SrcList *pNewSrc; 3943 Parse *pParse; 3944 Token dummy; 3945 3946 if( p->pPrior==0 ) return WRC_Continue; 3947 if( p->pOrderBy==0 ) return WRC_Continue; 3948 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3949 if( pX==0 ) return WRC_Continue; 3950 a = p->pOrderBy->a; 3951 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3952 if( a[i].pExpr->flags & EP_Collate ) break; 3953 } 3954 if( i<0 ) return WRC_Continue; 3955 3956 /* If we reach this point, that means the transformation is required. */ 3957 3958 pParse = pWalker->pParse; 3959 db = pParse->db; 3960 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3961 if( pNew==0 ) return WRC_Abort; 3962 memset(&dummy, 0, sizeof(dummy)); 3963 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3964 if( pNewSrc==0 ) return WRC_Abort; 3965 *pNew = *p; 3966 p->pSrc = pNewSrc; 3967 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 3968 p->op = TK_SELECT; 3969 p->pWhere = 0; 3970 pNew->pGroupBy = 0; 3971 pNew->pHaving = 0; 3972 pNew->pOrderBy = 0; 3973 p->pPrior = 0; 3974 p->pNext = 0; 3975 p->pWith = 0; 3976 p->selFlags &= ~SF_Compound; 3977 assert( (p->selFlags & SF_Converted)==0 ); 3978 p->selFlags |= SF_Converted; 3979 assert( pNew->pPrior!=0 ); 3980 pNew->pPrior->pNext = pNew; 3981 pNew->pLimit = 0; 3982 pNew->pOffset = 0; 3983 return WRC_Continue; 3984 } 3985 3986 /* 3987 ** Check to see if the FROM clause term pFrom has table-valued function 3988 ** arguments. If it does, leave an error message in pParse and return 3989 ** non-zero, since pFrom is not allowed to be a table-valued function. 3990 */ 3991 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 3992 if( pFrom->fg.isTabFunc ){ 3993 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 3994 return 1; 3995 } 3996 return 0; 3997 } 3998 3999 #ifndef SQLITE_OMIT_CTE 4000 /* 4001 ** Argument pWith (which may be NULL) points to a linked list of nested 4002 ** WITH contexts, from inner to outermost. If the table identified by 4003 ** FROM clause element pItem is really a common-table-expression (CTE) 4004 ** then return a pointer to the CTE definition for that table. Otherwise 4005 ** return NULL. 4006 ** 4007 ** If a non-NULL value is returned, set *ppContext to point to the With 4008 ** object that the returned CTE belongs to. 4009 */ 4010 static struct Cte *searchWith( 4011 With *pWith, /* Current innermost WITH clause */ 4012 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4013 With **ppContext /* OUT: WITH clause return value belongs to */ 4014 ){ 4015 const char *zName; 4016 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4017 With *p; 4018 for(p=pWith; p; p=p->pOuter){ 4019 int i; 4020 for(i=0; i<p->nCte; i++){ 4021 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4022 *ppContext = p; 4023 return &p->a[i]; 4024 } 4025 } 4026 } 4027 } 4028 return 0; 4029 } 4030 4031 /* The code generator maintains a stack of active WITH clauses 4032 ** with the inner-most WITH clause being at the top of the stack. 4033 ** 4034 ** This routine pushes the WITH clause passed as the second argument 4035 ** onto the top of the stack. If argument bFree is true, then this 4036 ** WITH clause will never be popped from the stack. In this case it 4037 ** should be freed along with the Parse object. In other cases, when 4038 ** bFree==0, the With object will be freed along with the SELECT 4039 ** statement with which it is associated. 4040 */ 4041 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4042 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4043 if( pWith ){ 4044 assert( pParse->pWith!=pWith ); 4045 pWith->pOuter = pParse->pWith; 4046 pParse->pWith = pWith; 4047 if( bFree ) pParse->pWithToFree = pWith; 4048 } 4049 } 4050 4051 /* 4052 ** This function checks if argument pFrom refers to a CTE declared by 4053 ** a WITH clause on the stack currently maintained by the parser. And, 4054 ** if currently processing a CTE expression, if it is a recursive 4055 ** reference to the current CTE. 4056 ** 4057 ** If pFrom falls into either of the two categories above, pFrom->pTab 4058 ** and other fields are populated accordingly. The caller should check 4059 ** (pFrom->pTab!=0) to determine whether or not a successful match 4060 ** was found. 4061 ** 4062 ** Whether or not a match is found, SQLITE_OK is returned if no error 4063 ** occurs. If an error does occur, an error message is stored in the 4064 ** parser and some error code other than SQLITE_OK returned. 4065 */ 4066 static int withExpand( 4067 Walker *pWalker, 4068 struct SrcList_item *pFrom 4069 ){ 4070 Parse *pParse = pWalker->pParse; 4071 sqlite3 *db = pParse->db; 4072 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4073 With *pWith; /* WITH clause that pCte belongs to */ 4074 4075 assert( pFrom->pTab==0 ); 4076 4077 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4078 if( pCte ){ 4079 Table *pTab; 4080 ExprList *pEList; 4081 Select *pSel; 4082 Select *pLeft; /* Left-most SELECT statement */ 4083 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4084 With *pSavedWith; /* Initial value of pParse->pWith */ 4085 4086 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4087 ** recursive reference to CTE pCte. Leave an error in pParse and return 4088 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4089 ** In this case, proceed. */ 4090 if( pCte->zCteErr ){ 4091 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4092 return SQLITE_ERROR; 4093 } 4094 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4095 4096 assert( pFrom->pTab==0 ); 4097 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4098 if( pTab==0 ) return WRC_Abort; 4099 pTab->nRef = 1; 4100 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4101 pTab->iPKey = -1; 4102 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4103 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4104 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4105 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4106 assert( pFrom->pSelect ); 4107 4108 /* Check if this is a recursive CTE. */ 4109 pSel = pFrom->pSelect; 4110 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4111 if( bMayRecursive ){ 4112 int i; 4113 SrcList *pSrc = pFrom->pSelect->pSrc; 4114 for(i=0; i<pSrc->nSrc; i++){ 4115 struct SrcList_item *pItem = &pSrc->a[i]; 4116 if( pItem->zDatabase==0 4117 && pItem->zName!=0 4118 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4119 ){ 4120 pItem->pTab = pTab; 4121 pItem->fg.isRecursive = 1; 4122 pTab->nRef++; 4123 pSel->selFlags |= SF_Recursive; 4124 } 4125 } 4126 } 4127 4128 /* Only one recursive reference is permitted. */ 4129 if( pTab->nRef>2 ){ 4130 sqlite3ErrorMsg( 4131 pParse, "multiple references to recursive table: %s", pCte->zName 4132 ); 4133 return SQLITE_ERROR; 4134 } 4135 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4136 4137 pCte->zCteErr = "circular reference: %s"; 4138 pSavedWith = pParse->pWith; 4139 pParse->pWith = pWith; 4140 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4141 pParse->pWith = pWith; 4142 4143 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4144 pEList = pLeft->pEList; 4145 if( pCte->pCols ){ 4146 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4147 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4148 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4149 ); 4150 pParse->pWith = pSavedWith; 4151 return SQLITE_ERROR; 4152 } 4153 pEList = pCte->pCols; 4154 } 4155 4156 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4157 if( bMayRecursive ){ 4158 if( pSel->selFlags & SF_Recursive ){ 4159 pCte->zCteErr = "multiple recursive references: %s"; 4160 }else{ 4161 pCte->zCteErr = "recursive reference in a subquery: %s"; 4162 } 4163 sqlite3WalkSelect(pWalker, pSel); 4164 } 4165 pCte->zCteErr = 0; 4166 pParse->pWith = pSavedWith; 4167 } 4168 4169 return SQLITE_OK; 4170 } 4171 #endif 4172 4173 #ifndef SQLITE_OMIT_CTE 4174 /* 4175 ** If the SELECT passed as the second argument has an associated WITH 4176 ** clause, pop it from the stack stored as part of the Parse object. 4177 ** 4178 ** This function is used as the xSelectCallback2() callback by 4179 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4180 ** names and other FROM clause elements. 4181 */ 4182 static void selectPopWith(Walker *pWalker, Select *p){ 4183 Parse *pParse = pWalker->pParse; 4184 With *pWith = findRightmost(p)->pWith; 4185 if( pWith!=0 ){ 4186 assert( pParse->pWith==pWith ); 4187 pParse->pWith = pWith->pOuter; 4188 } 4189 } 4190 #else 4191 #define selectPopWith 0 4192 #endif 4193 4194 /* 4195 ** This routine is a Walker callback for "expanding" a SELECT statement. 4196 ** "Expanding" means to do the following: 4197 ** 4198 ** (1) Make sure VDBE cursor numbers have been assigned to every 4199 ** element of the FROM clause. 4200 ** 4201 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4202 ** defines FROM clause. When views appear in the FROM clause, 4203 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4204 ** that implements the view. A copy is made of the view's SELECT 4205 ** statement so that we can freely modify or delete that statement 4206 ** without worrying about messing up the persistent representation 4207 ** of the view. 4208 ** 4209 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4210 ** on joins and the ON and USING clause of joins. 4211 ** 4212 ** (4) Scan the list of columns in the result set (pEList) looking 4213 ** for instances of the "*" operator or the TABLE.* operator. 4214 ** If found, expand each "*" to be every column in every table 4215 ** and TABLE.* to be every column in TABLE. 4216 ** 4217 */ 4218 static int selectExpander(Walker *pWalker, Select *p){ 4219 Parse *pParse = pWalker->pParse; 4220 int i, j, k; 4221 SrcList *pTabList; 4222 ExprList *pEList; 4223 struct SrcList_item *pFrom; 4224 sqlite3 *db = pParse->db; 4225 Expr *pE, *pRight, *pExpr; 4226 u16 selFlags = p->selFlags; 4227 4228 p->selFlags |= SF_Expanded; 4229 if( db->mallocFailed ){ 4230 return WRC_Abort; 4231 } 4232 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4233 return WRC_Prune; 4234 } 4235 pTabList = p->pSrc; 4236 pEList = p->pEList; 4237 if( pWalker->xSelectCallback2==selectPopWith ){ 4238 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4239 } 4240 4241 /* Make sure cursor numbers have been assigned to all entries in 4242 ** the FROM clause of the SELECT statement. 4243 */ 4244 sqlite3SrcListAssignCursors(pParse, pTabList); 4245 4246 /* Look up every table named in the FROM clause of the select. If 4247 ** an entry of the FROM clause is a subquery instead of a table or view, 4248 ** then create a transient table structure to describe the subquery. 4249 */ 4250 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4251 Table *pTab; 4252 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4253 if( pFrom->fg.isRecursive ) continue; 4254 assert( pFrom->pTab==0 ); 4255 #ifndef SQLITE_OMIT_CTE 4256 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4257 if( pFrom->pTab ) {} else 4258 #endif 4259 if( pFrom->zName==0 ){ 4260 #ifndef SQLITE_OMIT_SUBQUERY 4261 Select *pSel = pFrom->pSelect; 4262 /* A sub-query in the FROM clause of a SELECT */ 4263 assert( pSel!=0 ); 4264 assert( pFrom->pTab==0 ); 4265 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4266 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4267 if( pTab==0 ) return WRC_Abort; 4268 pTab->nRef = 1; 4269 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4270 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4271 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4272 pTab->iPKey = -1; 4273 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4274 pTab->tabFlags |= TF_Ephemeral; 4275 #endif 4276 }else{ 4277 /* An ordinary table or view name in the FROM clause */ 4278 assert( pFrom->pTab==0 ); 4279 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4280 if( pTab==0 ) return WRC_Abort; 4281 if( pTab->nRef==0xffff ){ 4282 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4283 pTab->zName); 4284 pFrom->pTab = 0; 4285 return WRC_Abort; 4286 } 4287 pTab->nRef++; 4288 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4289 return WRC_Abort; 4290 } 4291 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4292 if( IsVirtual(pTab) || pTab->pSelect ){ 4293 i16 nCol; 4294 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4295 assert( pFrom->pSelect==0 ); 4296 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4297 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4298 nCol = pTab->nCol; 4299 pTab->nCol = -1; 4300 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4301 pTab->nCol = nCol; 4302 } 4303 #endif 4304 } 4305 4306 /* Locate the index named by the INDEXED BY clause, if any. */ 4307 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4308 return WRC_Abort; 4309 } 4310 } 4311 4312 /* Process NATURAL keywords, and ON and USING clauses of joins. 4313 */ 4314 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4315 return WRC_Abort; 4316 } 4317 4318 /* For every "*" that occurs in the column list, insert the names of 4319 ** all columns in all tables. And for every TABLE.* insert the names 4320 ** of all columns in TABLE. The parser inserted a special expression 4321 ** with the TK_ASTERISK operator for each "*" that it found in the column 4322 ** list. The following code just has to locate the TK_ASTERISK 4323 ** expressions and expand each one to the list of all columns in 4324 ** all tables. 4325 ** 4326 ** The first loop just checks to see if there are any "*" operators 4327 ** that need expanding. 4328 */ 4329 for(k=0; k<pEList->nExpr; k++){ 4330 pE = pEList->a[k].pExpr; 4331 if( pE->op==TK_ASTERISK ) break; 4332 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4333 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4334 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4335 } 4336 if( k<pEList->nExpr ){ 4337 /* 4338 ** If we get here it means the result set contains one or more "*" 4339 ** operators that need to be expanded. Loop through each expression 4340 ** in the result set and expand them one by one. 4341 */ 4342 struct ExprList_item *a = pEList->a; 4343 ExprList *pNew = 0; 4344 int flags = pParse->db->flags; 4345 int longNames = (flags & SQLITE_FullColNames)!=0 4346 && (flags & SQLITE_ShortColNames)==0; 4347 4348 for(k=0; k<pEList->nExpr; k++){ 4349 pE = a[k].pExpr; 4350 pRight = pE->pRight; 4351 assert( pE->op!=TK_DOT || pRight!=0 ); 4352 if( pE->op!=TK_ASTERISK 4353 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4354 ){ 4355 /* This particular expression does not need to be expanded. 4356 */ 4357 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4358 if( pNew ){ 4359 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4360 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4361 a[k].zName = 0; 4362 a[k].zSpan = 0; 4363 } 4364 a[k].pExpr = 0; 4365 }else{ 4366 /* This expression is a "*" or a "TABLE.*" and needs to be 4367 ** expanded. */ 4368 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4369 char *zTName = 0; /* text of name of TABLE */ 4370 if( pE->op==TK_DOT ){ 4371 assert( pE->pLeft!=0 ); 4372 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4373 zTName = pE->pLeft->u.zToken; 4374 } 4375 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4376 Table *pTab = pFrom->pTab; 4377 Select *pSub = pFrom->pSelect; 4378 char *zTabName = pFrom->zAlias; 4379 const char *zSchemaName = 0; 4380 int iDb; 4381 if( zTabName==0 ){ 4382 zTabName = pTab->zName; 4383 } 4384 if( db->mallocFailed ) break; 4385 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4386 pSub = 0; 4387 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4388 continue; 4389 } 4390 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4391 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4392 } 4393 for(j=0; j<pTab->nCol; j++){ 4394 char *zName = pTab->aCol[j].zName; 4395 char *zColname; /* The computed column name */ 4396 char *zToFree; /* Malloced string that needs to be freed */ 4397 Token sColname; /* Computed column name as a token */ 4398 4399 assert( zName ); 4400 if( zTName && pSub 4401 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4402 ){ 4403 continue; 4404 } 4405 4406 /* If a column is marked as 'hidden', omit it from the expanded 4407 ** result-set list unless the SELECT has the SF_IncludeHidden 4408 ** bit set. 4409 */ 4410 if( (p->selFlags & SF_IncludeHidden)==0 4411 && IsHiddenColumn(&pTab->aCol[j]) 4412 ){ 4413 continue; 4414 } 4415 tableSeen = 1; 4416 4417 if( i>0 && zTName==0 ){ 4418 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4419 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4420 ){ 4421 /* In a NATURAL join, omit the join columns from the 4422 ** table to the right of the join */ 4423 continue; 4424 } 4425 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4426 /* In a join with a USING clause, omit columns in the 4427 ** using clause from the table on the right. */ 4428 continue; 4429 } 4430 } 4431 pRight = sqlite3Expr(db, TK_ID, zName); 4432 zColname = zName; 4433 zToFree = 0; 4434 if( longNames || pTabList->nSrc>1 ){ 4435 Expr *pLeft; 4436 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4437 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4438 if( zSchemaName ){ 4439 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4440 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4441 } 4442 if( longNames ){ 4443 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4444 zToFree = zColname; 4445 } 4446 }else{ 4447 pExpr = pRight; 4448 } 4449 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4450 sqlite3TokenInit(&sColname, zColname); 4451 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4452 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4453 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4454 if( pSub ){ 4455 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4456 testcase( pX->zSpan==0 ); 4457 }else{ 4458 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4459 zSchemaName, zTabName, zColname); 4460 testcase( pX->zSpan==0 ); 4461 } 4462 pX->bSpanIsTab = 1; 4463 } 4464 sqlite3DbFree(db, zToFree); 4465 } 4466 } 4467 if( !tableSeen ){ 4468 if( zTName ){ 4469 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4470 }else{ 4471 sqlite3ErrorMsg(pParse, "no tables specified"); 4472 } 4473 } 4474 } 4475 } 4476 sqlite3ExprListDelete(db, pEList); 4477 p->pEList = pNew; 4478 } 4479 #if SQLITE_MAX_COLUMN 4480 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4481 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4482 return WRC_Abort; 4483 } 4484 #endif 4485 return WRC_Continue; 4486 } 4487 4488 /* 4489 ** No-op routine for the parse-tree walker. 4490 ** 4491 ** When this routine is the Walker.xExprCallback then expression trees 4492 ** are walked without any actions being taken at each node. Presumably, 4493 ** when this routine is used for Walker.xExprCallback then 4494 ** Walker.xSelectCallback is set to do something useful for every 4495 ** subquery in the parser tree. 4496 */ 4497 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4498 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4499 return WRC_Continue; 4500 } 4501 4502 /* 4503 ** This routine "expands" a SELECT statement and all of its subqueries. 4504 ** For additional information on what it means to "expand" a SELECT 4505 ** statement, see the comment on the selectExpand worker callback above. 4506 ** 4507 ** Expanding a SELECT statement is the first step in processing a 4508 ** SELECT statement. The SELECT statement must be expanded before 4509 ** name resolution is performed. 4510 ** 4511 ** If anything goes wrong, an error message is written into pParse. 4512 ** The calling function can detect the problem by looking at pParse->nErr 4513 ** and/or pParse->db->mallocFailed. 4514 */ 4515 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4516 Walker w; 4517 memset(&w, 0, sizeof(w)); 4518 w.xExprCallback = sqlite3ExprWalkNoop; 4519 w.pParse = pParse; 4520 if( pParse->hasCompound ){ 4521 w.xSelectCallback = convertCompoundSelectToSubquery; 4522 sqlite3WalkSelect(&w, pSelect); 4523 } 4524 w.xSelectCallback = selectExpander; 4525 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4526 w.xSelectCallback2 = selectPopWith; 4527 } 4528 sqlite3WalkSelect(&w, pSelect); 4529 } 4530 4531 4532 #ifndef SQLITE_OMIT_SUBQUERY 4533 /* 4534 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4535 ** interface. 4536 ** 4537 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4538 ** information to the Table structure that represents the result set 4539 ** of that subquery. 4540 ** 4541 ** The Table structure that represents the result set was constructed 4542 ** by selectExpander() but the type and collation information was omitted 4543 ** at that point because identifiers had not yet been resolved. This 4544 ** routine is called after identifier resolution. 4545 */ 4546 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4547 Parse *pParse; 4548 int i; 4549 SrcList *pTabList; 4550 struct SrcList_item *pFrom; 4551 4552 assert( p->selFlags & SF_Resolved ); 4553 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4554 p->selFlags |= SF_HasTypeInfo; 4555 pParse = pWalker->pParse; 4556 pTabList = p->pSrc; 4557 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4558 Table *pTab = pFrom->pTab; 4559 assert( pTab!=0 ); 4560 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4561 /* A sub-query in the FROM clause of a SELECT */ 4562 Select *pSel = pFrom->pSelect; 4563 if( pSel ){ 4564 while( pSel->pPrior ) pSel = pSel->pPrior; 4565 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4566 } 4567 } 4568 } 4569 } 4570 #endif 4571 4572 4573 /* 4574 ** This routine adds datatype and collating sequence information to 4575 ** the Table structures of all FROM-clause subqueries in a 4576 ** SELECT statement. 4577 ** 4578 ** Use this routine after name resolution. 4579 */ 4580 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4581 #ifndef SQLITE_OMIT_SUBQUERY 4582 Walker w; 4583 memset(&w, 0, sizeof(w)); 4584 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4585 w.xExprCallback = sqlite3ExprWalkNoop; 4586 w.pParse = pParse; 4587 sqlite3WalkSelect(&w, pSelect); 4588 #endif 4589 } 4590 4591 4592 /* 4593 ** This routine sets up a SELECT statement for processing. The 4594 ** following is accomplished: 4595 ** 4596 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4597 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4598 ** * ON and USING clauses are shifted into WHERE statements 4599 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4600 ** * Identifiers in expression are matched to tables. 4601 ** 4602 ** This routine acts recursively on all subqueries within the SELECT. 4603 */ 4604 void sqlite3SelectPrep( 4605 Parse *pParse, /* The parser context */ 4606 Select *p, /* The SELECT statement being coded. */ 4607 NameContext *pOuterNC /* Name context for container */ 4608 ){ 4609 sqlite3 *db; 4610 if( NEVER(p==0) ) return; 4611 db = pParse->db; 4612 if( db->mallocFailed ) return; 4613 if( p->selFlags & SF_HasTypeInfo ) return; 4614 sqlite3SelectExpand(pParse, p); 4615 if( pParse->nErr || db->mallocFailed ) return; 4616 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4617 if( pParse->nErr || db->mallocFailed ) return; 4618 sqlite3SelectAddTypeInfo(pParse, p); 4619 } 4620 4621 /* 4622 ** Reset the aggregate accumulator. 4623 ** 4624 ** The aggregate accumulator is a set of memory cells that hold 4625 ** intermediate results while calculating an aggregate. This 4626 ** routine generates code that stores NULLs in all of those memory 4627 ** cells. 4628 */ 4629 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4630 Vdbe *v = pParse->pVdbe; 4631 int i; 4632 struct AggInfo_func *pFunc; 4633 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4634 if( nReg==0 ) return; 4635 #ifdef SQLITE_DEBUG 4636 /* Verify that all AggInfo registers are within the range specified by 4637 ** AggInfo.mnReg..AggInfo.mxReg */ 4638 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4639 for(i=0; i<pAggInfo->nColumn; i++){ 4640 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4641 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4642 } 4643 for(i=0; i<pAggInfo->nFunc; i++){ 4644 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4645 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4646 } 4647 #endif 4648 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4649 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4650 if( pFunc->iDistinct>=0 ){ 4651 Expr *pE = pFunc->pExpr; 4652 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4653 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4654 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4655 "argument"); 4656 pFunc->iDistinct = -1; 4657 }else{ 4658 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4659 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4660 (char*)pKeyInfo, P4_KEYINFO); 4661 } 4662 } 4663 } 4664 } 4665 4666 /* 4667 ** Invoke the OP_AggFinalize opcode for every aggregate function 4668 ** in the AggInfo structure. 4669 */ 4670 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4671 Vdbe *v = pParse->pVdbe; 4672 int i; 4673 struct AggInfo_func *pF; 4674 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4675 ExprList *pList = pF->pExpr->x.pList; 4676 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4677 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4678 (void*)pF->pFunc, P4_FUNCDEF); 4679 } 4680 } 4681 4682 /* 4683 ** Update the accumulator memory cells for an aggregate based on 4684 ** the current cursor position. 4685 */ 4686 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4687 Vdbe *v = pParse->pVdbe; 4688 int i; 4689 int regHit = 0; 4690 int addrHitTest = 0; 4691 struct AggInfo_func *pF; 4692 struct AggInfo_col *pC; 4693 4694 pAggInfo->directMode = 1; 4695 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4696 int nArg; 4697 int addrNext = 0; 4698 int regAgg; 4699 ExprList *pList = pF->pExpr->x.pList; 4700 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4701 if( pList ){ 4702 nArg = pList->nExpr; 4703 regAgg = sqlite3GetTempRange(pParse, nArg); 4704 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4705 }else{ 4706 nArg = 0; 4707 regAgg = 0; 4708 } 4709 if( pF->iDistinct>=0 ){ 4710 addrNext = sqlite3VdbeMakeLabel(v); 4711 testcase( nArg==0 ); /* Error condition */ 4712 testcase( nArg>1 ); /* Also an error */ 4713 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4714 } 4715 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4716 CollSeq *pColl = 0; 4717 struct ExprList_item *pItem; 4718 int j; 4719 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4720 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4721 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4722 } 4723 if( !pColl ){ 4724 pColl = pParse->db->pDfltColl; 4725 } 4726 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4727 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4728 } 4729 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4730 (void*)pF->pFunc, P4_FUNCDEF); 4731 sqlite3VdbeChangeP5(v, (u8)nArg); 4732 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4733 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4734 if( addrNext ){ 4735 sqlite3VdbeResolveLabel(v, addrNext); 4736 sqlite3ExprCacheClear(pParse); 4737 } 4738 } 4739 4740 /* Before populating the accumulator registers, clear the column cache. 4741 ** Otherwise, if any of the required column values are already present 4742 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4743 ** to pC->iMem. But by the time the value is used, the original register 4744 ** may have been used, invalidating the underlying buffer holding the 4745 ** text or blob value. See ticket [883034dcb5]. 4746 ** 4747 ** Another solution would be to change the OP_SCopy used to copy cached 4748 ** values to an OP_Copy. 4749 */ 4750 if( regHit ){ 4751 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4752 } 4753 sqlite3ExprCacheClear(pParse); 4754 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4755 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4756 } 4757 pAggInfo->directMode = 0; 4758 sqlite3ExprCacheClear(pParse); 4759 if( addrHitTest ){ 4760 sqlite3VdbeJumpHere(v, addrHitTest); 4761 } 4762 } 4763 4764 /* 4765 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4766 ** count(*) query ("SELECT count(*) FROM pTab"). 4767 */ 4768 #ifndef SQLITE_OMIT_EXPLAIN 4769 static void explainSimpleCount( 4770 Parse *pParse, /* Parse context */ 4771 Table *pTab, /* Table being queried */ 4772 Index *pIdx /* Index used to optimize scan, or NULL */ 4773 ){ 4774 if( pParse->explain==2 ){ 4775 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4776 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4777 pTab->zName, 4778 bCover ? " USING COVERING INDEX " : "", 4779 bCover ? pIdx->zName : "" 4780 ); 4781 sqlite3VdbeAddOp4( 4782 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4783 ); 4784 } 4785 } 4786 #else 4787 # define explainSimpleCount(a,b,c) 4788 #endif 4789 4790 /* 4791 ** Generate code for the SELECT statement given in the p argument. 4792 ** 4793 ** The results are returned according to the SelectDest structure. 4794 ** See comments in sqliteInt.h for further information. 4795 ** 4796 ** This routine returns the number of errors. If any errors are 4797 ** encountered, then an appropriate error message is left in 4798 ** pParse->zErrMsg. 4799 ** 4800 ** This routine does NOT free the Select structure passed in. The 4801 ** calling function needs to do that. 4802 */ 4803 int sqlite3Select( 4804 Parse *pParse, /* The parser context */ 4805 Select *p, /* The SELECT statement being coded. */ 4806 SelectDest *pDest /* What to do with the query results */ 4807 ){ 4808 int i, j; /* Loop counters */ 4809 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4810 Vdbe *v; /* The virtual machine under construction */ 4811 int isAgg; /* True for select lists like "count(*)" */ 4812 ExprList *pEList = 0; /* List of columns to extract. */ 4813 SrcList *pTabList; /* List of tables to select from */ 4814 Expr *pWhere; /* The WHERE clause. May be NULL */ 4815 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4816 Expr *pHaving; /* The HAVING clause. May be NULL */ 4817 int rc = 1; /* Value to return from this function */ 4818 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4819 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4820 AggInfo sAggInfo; /* Information used by aggregate queries */ 4821 int iEnd; /* Address of the end of the query */ 4822 sqlite3 *db; /* The database connection */ 4823 4824 #ifndef SQLITE_OMIT_EXPLAIN 4825 int iRestoreSelectId = pParse->iSelectId; 4826 pParse->iSelectId = pParse->iNextSelectId++; 4827 #endif 4828 4829 db = pParse->db; 4830 if( p==0 || db->mallocFailed || pParse->nErr ){ 4831 return 1; 4832 } 4833 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4834 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4835 #if SELECTTRACE_ENABLED 4836 pParse->nSelectIndent++; 4837 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4838 if( sqlite3SelectTrace & 0x100 ){ 4839 sqlite3TreeViewSelect(0, p, 0); 4840 } 4841 #endif 4842 4843 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4844 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4845 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4846 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4847 if( IgnorableOrderby(pDest) ){ 4848 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4849 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4850 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4851 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4852 /* If ORDER BY makes no difference in the output then neither does 4853 ** DISTINCT so it can be removed too. */ 4854 sqlite3ExprListDelete(db, p->pOrderBy); 4855 p->pOrderBy = 0; 4856 p->selFlags &= ~SF_Distinct; 4857 } 4858 sqlite3SelectPrep(pParse, p, 0); 4859 memset(&sSort, 0, sizeof(sSort)); 4860 sSort.pOrderBy = p->pOrderBy; 4861 pTabList = p->pSrc; 4862 if( pParse->nErr || db->mallocFailed ){ 4863 goto select_end; 4864 } 4865 assert( p->pEList!=0 ); 4866 isAgg = (p->selFlags & SF_Aggregate)!=0; 4867 #if SELECTTRACE_ENABLED 4868 if( sqlite3SelectTrace & 0x100 ){ 4869 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4870 sqlite3TreeViewSelect(0, p, 0); 4871 } 4872 #endif 4873 4874 4875 /* If writing to memory or generating a set 4876 ** only a single column may be output. 4877 */ 4878 #ifndef SQLITE_OMIT_SUBQUERY 4879 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4880 goto select_end; 4881 } 4882 #endif 4883 4884 /* Try to flatten subqueries in the FROM clause up into the main query 4885 */ 4886 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4887 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4888 struct SrcList_item *pItem = &pTabList->a[i]; 4889 Select *pSub = pItem->pSelect; 4890 int isAggSub; 4891 Table *pTab = pItem->pTab; 4892 if( pSub==0 ) continue; 4893 4894 /* Catch mismatch in the declared columns of a view and the number of 4895 ** columns in the SELECT on the RHS */ 4896 if( pTab->nCol!=pSub->pEList->nExpr ){ 4897 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4898 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4899 goto select_end; 4900 } 4901 4902 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4903 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4904 /* This subquery can be absorbed into its parent. */ 4905 if( isAggSub ){ 4906 isAgg = 1; 4907 p->selFlags |= SF_Aggregate; 4908 } 4909 i = -1; 4910 } 4911 pTabList = p->pSrc; 4912 if( db->mallocFailed ) goto select_end; 4913 if( !IgnorableOrderby(pDest) ){ 4914 sSort.pOrderBy = p->pOrderBy; 4915 } 4916 } 4917 #endif 4918 4919 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4920 ** does not already exist */ 4921 v = sqlite3GetVdbe(pParse); 4922 if( v==0 ) goto select_end; 4923 4924 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4925 /* Handle compound SELECT statements using the separate multiSelect() 4926 ** procedure. 4927 */ 4928 if( p->pPrior ){ 4929 rc = multiSelect(pParse, p, pDest); 4930 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4931 #if SELECTTRACE_ENABLED 4932 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4933 pParse->nSelectIndent--; 4934 #endif 4935 return rc; 4936 } 4937 #endif 4938 4939 /* Generate code for all sub-queries in the FROM clause 4940 */ 4941 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4942 for(i=0; i<pTabList->nSrc; i++){ 4943 struct SrcList_item *pItem = &pTabList->a[i]; 4944 SelectDest dest; 4945 Select *pSub = pItem->pSelect; 4946 if( pSub==0 ) continue; 4947 4948 /* Sometimes the code for a subquery will be generated more than 4949 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4950 ** for example. In that case, do not regenerate the code to manifest 4951 ** a view or the co-routine to implement a view. The first instance 4952 ** is sufficient, though the subroutine to manifest the view does need 4953 ** to be invoked again. */ 4954 if( pItem->addrFillSub ){ 4955 if( pItem->fg.viaCoroutine==0 ){ 4956 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4957 } 4958 continue; 4959 } 4960 4961 /* Increment Parse.nHeight by the height of the largest expression 4962 ** tree referred to by this, the parent select. The child select 4963 ** may contain expression trees of at most 4964 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4965 ** more conservative than necessary, but much easier than enforcing 4966 ** an exact limit. 4967 */ 4968 pParse->nHeight += sqlite3SelectExprHeight(p); 4969 4970 /* Make copies of constant WHERE-clause terms in the outer query down 4971 ** inside the subquery. This can help the subquery to run more efficiently. 4972 */ 4973 if( (pItem->fg.jointype & JT_OUTER)==0 4974 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4975 ){ 4976 #if SELECTTRACE_ENABLED 4977 if( sqlite3SelectTrace & 0x100 ){ 4978 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4979 sqlite3TreeViewSelect(0, p, 0); 4980 } 4981 #endif 4982 } 4983 4984 /* Generate code to implement the subquery 4985 ** 4986 ** The subquery is implemented as a co-routine if all of these are true: 4987 ** (1) The subquery is guaranteed to be the outer loop (so that it 4988 ** does not need to be computed more than once) 4989 ** (2) The ALL keyword after SELECT is omitted. (Applications are 4990 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 4991 ** the use of co-routines.) 4992 ** (3) Co-routines are not disabled using sqlite3_test_control() 4993 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 4994 ** 4995 ** TODO: Are there other reasons beside (1) to use a co-routine 4996 ** implementation? 4997 */ 4998 if( i==0 4999 && (pTabList->nSrc==1 5000 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5001 && (p->selFlags & SF_All)==0 /* (2) */ 5002 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 5003 ){ 5004 /* Implement a co-routine that will return a single row of the result 5005 ** set on each invocation. 5006 */ 5007 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5008 pItem->regReturn = ++pParse->nMem; 5009 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5010 VdbeComment((v, "%s", pItem->pTab->zName)); 5011 pItem->addrFillSub = addrTop; 5012 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5013 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5014 sqlite3Select(pParse, pSub, &dest); 5015 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5016 pItem->fg.viaCoroutine = 1; 5017 pItem->regResult = dest.iSdst; 5018 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5019 sqlite3VdbeJumpHere(v, addrTop-1); 5020 sqlite3ClearTempRegCache(pParse); 5021 }else{ 5022 /* Generate a subroutine that will fill an ephemeral table with 5023 ** the content of this subquery. pItem->addrFillSub will point 5024 ** to the address of the generated subroutine. pItem->regReturn 5025 ** is a register allocated to hold the subroutine return address 5026 */ 5027 int topAddr; 5028 int onceAddr = 0; 5029 int retAddr; 5030 assert( pItem->addrFillSub==0 ); 5031 pItem->regReturn = ++pParse->nMem; 5032 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5033 pItem->addrFillSub = topAddr+1; 5034 if( pItem->fg.isCorrelated==0 ){ 5035 /* If the subquery is not correlated and if we are not inside of 5036 ** a trigger, then we only need to compute the value of the subquery 5037 ** once. */ 5038 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 5039 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5040 }else{ 5041 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5042 } 5043 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5044 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5045 sqlite3Select(pParse, pSub, &dest); 5046 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5047 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5048 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5049 VdbeComment((v, "end %s", pItem->pTab->zName)); 5050 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5051 sqlite3ClearTempRegCache(pParse); 5052 } 5053 if( db->mallocFailed ) goto select_end; 5054 pParse->nHeight -= sqlite3SelectExprHeight(p); 5055 } 5056 #endif 5057 5058 /* Various elements of the SELECT copied into local variables for 5059 ** convenience */ 5060 pEList = p->pEList; 5061 pWhere = p->pWhere; 5062 pGroupBy = p->pGroupBy; 5063 pHaving = p->pHaving; 5064 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5065 5066 #if SELECTTRACE_ENABLED 5067 if( sqlite3SelectTrace & 0x400 ){ 5068 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5069 sqlite3TreeViewSelect(0, p, 0); 5070 } 5071 #endif 5072 5073 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5074 ** if the select-list is the same as the ORDER BY list, then this query 5075 ** can be rewritten as a GROUP BY. In other words, this: 5076 ** 5077 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5078 ** 5079 ** is transformed to: 5080 ** 5081 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5082 ** 5083 ** The second form is preferred as a single index (or temp-table) may be 5084 ** used for both the ORDER BY and DISTINCT processing. As originally 5085 ** written the query must use a temp-table for at least one of the ORDER 5086 ** BY and DISTINCT, and an index or separate temp-table for the other. 5087 */ 5088 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5089 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5090 ){ 5091 p->selFlags &= ~SF_Distinct; 5092 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5093 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5094 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5095 ** original setting of the SF_Distinct flag, not the current setting */ 5096 assert( sDistinct.isTnct ); 5097 5098 #if SELECTTRACE_ENABLED 5099 if( sqlite3SelectTrace & 0x400 ){ 5100 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5101 sqlite3TreeViewSelect(0, p, 0); 5102 } 5103 #endif 5104 } 5105 5106 /* If there is an ORDER BY clause, then create an ephemeral index to 5107 ** do the sorting. But this sorting ephemeral index might end up 5108 ** being unused if the data can be extracted in pre-sorted order. 5109 ** If that is the case, then the OP_OpenEphemeral instruction will be 5110 ** changed to an OP_Noop once we figure out that the sorting index is 5111 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5112 ** that change. 5113 */ 5114 if( sSort.pOrderBy ){ 5115 KeyInfo *pKeyInfo; 5116 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5117 sSort.iECursor = pParse->nTab++; 5118 sSort.addrSortIndex = 5119 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5120 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5121 (char*)pKeyInfo, P4_KEYINFO 5122 ); 5123 }else{ 5124 sSort.addrSortIndex = -1; 5125 } 5126 5127 /* If the output is destined for a temporary table, open that table. 5128 */ 5129 if( pDest->eDest==SRT_EphemTab ){ 5130 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5131 } 5132 5133 /* Set the limiter. 5134 */ 5135 iEnd = sqlite3VdbeMakeLabel(v); 5136 p->nSelectRow = 320; /* 4 billion rows */ 5137 computeLimitRegisters(pParse, p, iEnd); 5138 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5139 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5140 sSort.sortFlags |= SORTFLAG_UseSorter; 5141 } 5142 5143 /* Open an ephemeral index to use for the distinct set. 5144 */ 5145 if( p->selFlags & SF_Distinct ){ 5146 sDistinct.tabTnct = pParse->nTab++; 5147 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5148 sDistinct.tabTnct, 0, 0, 5149 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5150 P4_KEYINFO); 5151 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5152 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5153 }else{ 5154 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5155 } 5156 5157 if( !isAgg && pGroupBy==0 ){ 5158 /* No aggregate functions and no GROUP BY clause */ 5159 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5160 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5161 wctrlFlags |= p->selFlags & SF_FixedLimit; 5162 5163 /* Begin the database scan. */ 5164 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5165 p->pEList, wctrlFlags, p->nSelectRow); 5166 if( pWInfo==0 ) goto select_end; 5167 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5168 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5169 } 5170 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5171 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5172 } 5173 if( sSort.pOrderBy ){ 5174 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5175 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5176 sSort.pOrderBy = 0; 5177 } 5178 } 5179 5180 /* If sorting index that was created by a prior OP_OpenEphemeral 5181 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5182 ** into an OP_Noop. 5183 */ 5184 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5185 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5186 } 5187 5188 /* Use the standard inner loop. */ 5189 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5190 sqlite3WhereContinueLabel(pWInfo), 5191 sqlite3WhereBreakLabel(pWInfo)); 5192 5193 /* End the database scan loop. 5194 */ 5195 sqlite3WhereEnd(pWInfo); 5196 }else{ 5197 /* This case when there exist aggregate functions or a GROUP BY clause 5198 ** or both */ 5199 NameContext sNC; /* Name context for processing aggregate information */ 5200 int iAMem; /* First Mem address for storing current GROUP BY */ 5201 int iBMem; /* First Mem address for previous GROUP BY */ 5202 int iUseFlag; /* Mem address holding flag indicating that at least 5203 ** one row of the input to the aggregator has been 5204 ** processed */ 5205 int iAbortFlag; /* Mem address which causes query abort if positive */ 5206 int groupBySort; /* Rows come from source in GROUP BY order */ 5207 int addrEnd; /* End of processing for this SELECT */ 5208 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5209 int sortOut = 0; /* Output register from the sorter */ 5210 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5211 5212 /* Remove any and all aliases between the result set and the 5213 ** GROUP BY clause. 5214 */ 5215 if( pGroupBy ){ 5216 int k; /* Loop counter */ 5217 struct ExprList_item *pItem; /* For looping over expression in a list */ 5218 5219 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5220 pItem->u.x.iAlias = 0; 5221 } 5222 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5223 pItem->u.x.iAlias = 0; 5224 } 5225 assert( 66==sqlite3LogEst(100) ); 5226 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5227 }else{ 5228 assert( 0==sqlite3LogEst(1) ); 5229 p->nSelectRow = 0; 5230 } 5231 5232 /* If there is both a GROUP BY and an ORDER BY clause and they are 5233 ** identical, then it may be possible to disable the ORDER BY clause 5234 ** on the grounds that the GROUP BY will cause elements to come out 5235 ** in the correct order. It also may not - the GROUP BY might use a 5236 ** database index that causes rows to be grouped together as required 5237 ** but not actually sorted. Either way, record the fact that the 5238 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5239 ** variable. */ 5240 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5241 orderByGrp = 1; 5242 } 5243 5244 /* Create a label to jump to when we want to abort the query */ 5245 addrEnd = sqlite3VdbeMakeLabel(v); 5246 5247 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5248 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5249 ** SELECT statement. 5250 */ 5251 memset(&sNC, 0, sizeof(sNC)); 5252 sNC.pParse = pParse; 5253 sNC.pSrcList = pTabList; 5254 sNC.pAggInfo = &sAggInfo; 5255 sAggInfo.mnReg = pParse->nMem+1; 5256 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5257 sAggInfo.pGroupBy = pGroupBy; 5258 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5259 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5260 if( pHaving ){ 5261 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5262 } 5263 sAggInfo.nAccumulator = sAggInfo.nColumn; 5264 for(i=0; i<sAggInfo.nFunc; i++){ 5265 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5266 sNC.ncFlags |= NC_InAggFunc; 5267 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5268 sNC.ncFlags &= ~NC_InAggFunc; 5269 } 5270 sAggInfo.mxReg = pParse->nMem; 5271 if( db->mallocFailed ) goto select_end; 5272 5273 /* Processing for aggregates with GROUP BY is very different and 5274 ** much more complex than aggregates without a GROUP BY. 5275 */ 5276 if( pGroupBy ){ 5277 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5278 int addr1; /* A-vs-B comparision jump */ 5279 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5280 int regOutputRow; /* Return address register for output subroutine */ 5281 int addrSetAbort; /* Set the abort flag and return */ 5282 int addrTopOfLoop; /* Top of the input loop */ 5283 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5284 int addrReset; /* Subroutine for resetting the accumulator */ 5285 int regReset; /* Return address register for reset subroutine */ 5286 5287 /* If there is a GROUP BY clause we might need a sorting index to 5288 ** implement it. Allocate that sorting index now. If it turns out 5289 ** that we do not need it after all, the OP_SorterOpen instruction 5290 ** will be converted into a Noop. 5291 */ 5292 sAggInfo.sortingIdx = pParse->nTab++; 5293 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5294 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5295 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5296 0, (char*)pKeyInfo, P4_KEYINFO); 5297 5298 /* Initialize memory locations used by GROUP BY aggregate processing 5299 */ 5300 iUseFlag = ++pParse->nMem; 5301 iAbortFlag = ++pParse->nMem; 5302 regOutputRow = ++pParse->nMem; 5303 addrOutputRow = sqlite3VdbeMakeLabel(v); 5304 regReset = ++pParse->nMem; 5305 addrReset = sqlite3VdbeMakeLabel(v); 5306 iAMem = pParse->nMem + 1; 5307 pParse->nMem += pGroupBy->nExpr; 5308 iBMem = pParse->nMem + 1; 5309 pParse->nMem += pGroupBy->nExpr; 5310 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5311 VdbeComment((v, "clear abort flag")); 5312 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5313 VdbeComment((v, "indicate accumulator empty")); 5314 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5315 5316 /* Begin a loop that will extract all source rows in GROUP BY order. 5317 ** This might involve two separate loops with an OP_Sort in between, or 5318 ** it might be a single loop that uses an index to extract information 5319 ** in the right order to begin with. 5320 */ 5321 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5322 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5323 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5324 ); 5325 if( pWInfo==0 ) goto select_end; 5326 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5327 /* The optimizer is able to deliver rows in group by order so 5328 ** we do not have to sort. The OP_OpenEphemeral table will be 5329 ** cancelled later because we still need to use the pKeyInfo 5330 */ 5331 groupBySort = 0; 5332 }else{ 5333 /* Rows are coming out in undetermined order. We have to push 5334 ** each row into a sorting index, terminate the first loop, 5335 ** then loop over the sorting index in order to get the output 5336 ** in sorted order 5337 */ 5338 int regBase; 5339 int regRecord; 5340 int nCol; 5341 int nGroupBy; 5342 5343 explainTempTable(pParse, 5344 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5345 "DISTINCT" : "GROUP BY"); 5346 5347 groupBySort = 1; 5348 nGroupBy = pGroupBy->nExpr; 5349 nCol = nGroupBy; 5350 j = nGroupBy; 5351 for(i=0; i<sAggInfo.nColumn; i++){ 5352 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5353 nCol++; 5354 j++; 5355 } 5356 } 5357 regBase = sqlite3GetTempRange(pParse, nCol); 5358 sqlite3ExprCacheClear(pParse); 5359 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5360 j = nGroupBy; 5361 for(i=0; i<sAggInfo.nColumn; i++){ 5362 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5363 if( pCol->iSorterColumn>=j ){ 5364 int r1 = j + regBase; 5365 sqlite3ExprCodeGetColumnToReg(pParse, 5366 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5367 j++; 5368 } 5369 } 5370 regRecord = sqlite3GetTempReg(pParse); 5371 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5372 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5373 sqlite3ReleaseTempReg(pParse, regRecord); 5374 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5375 sqlite3WhereEnd(pWInfo); 5376 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5377 sortOut = sqlite3GetTempReg(pParse); 5378 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5379 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5380 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5381 sAggInfo.useSortingIdx = 1; 5382 sqlite3ExprCacheClear(pParse); 5383 5384 } 5385 5386 /* If the index or temporary table used by the GROUP BY sort 5387 ** will naturally deliver rows in the order required by the ORDER BY 5388 ** clause, cancel the ephemeral table open coded earlier. 5389 ** 5390 ** This is an optimization - the correct answer should result regardless. 5391 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5392 ** disable this optimization for testing purposes. */ 5393 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5394 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5395 ){ 5396 sSort.pOrderBy = 0; 5397 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5398 } 5399 5400 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5401 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5402 ** Then compare the current GROUP BY terms against the GROUP BY terms 5403 ** from the previous row currently stored in a0, a1, a2... 5404 */ 5405 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5406 sqlite3ExprCacheClear(pParse); 5407 if( groupBySort ){ 5408 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5409 sortOut, sortPTab); 5410 } 5411 for(j=0; j<pGroupBy->nExpr; j++){ 5412 if( groupBySort ){ 5413 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5414 }else{ 5415 sAggInfo.directMode = 1; 5416 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5417 } 5418 } 5419 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5420 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5421 addr1 = sqlite3VdbeCurrentAddr(v); 5422 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5423 5424 /* Generate code that runs whenever the GROUP BY changes. 5425 ** Changes in the GROUP BY are detected by the previous code 5426 ** block. If there were no changes, this block is skipped. 5427 ** 5428 ** This code copies current group by terms in b0,b1,b2,... 5429 ** over to a0,a1,a2. It then calls the output subroutine 5430 ** and resets the aggregate accumulator registers in preparation 5431 ** for the next GROUP BY batch. 5432 */ 5433 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5434 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5435 VdbeComment((v, "output one row")); 5436 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5437 VdbeComment((v, "check abort flag")); 5438 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5439 VdbeComment((v, "reset accumulator")); 5440 5441 /* Update the aggregate accumulators based on the content of 5442 ** the current row 5443 */ 5444 sqlite3VdbeJumpHere(v, addr1); 5445 updateAccumulator(pParse, &sAggInfo); 5446 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5447 VdbeComment((v, "indicate data in accumulator")); 5448 5449 /* End of the loop 5450 */ 5451 if( groupBySort ){ 5452 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5453 VdbeCoverage(v); 5454 }else{ 5455 sqlite3WhereEnd(pWInfo); 5456 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5457 } 5458 5459 /* Output the final row of result 5460 */ 5461 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5462 VdbeComment((v, "output final row")); 5463 5464 /* Jump over the subroutines 5465 */ 5466 sqlite3VdbeGoto(v, addrEnd); 5467 5468 /* Generate a subroutine that outputs a single row of the result 5469 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5470 ** is less than or equal to zero, the subroutine is a no-op. If 5471 ** the processing calls for the query to abort, this subroutine 5472 ** increments the iAbortFlag memory location before returning in 5473 ** order to signal the caller to abort. 5474 */ 5475 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5476 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5477 VdbeComment((v, "set abort flag")); 5478 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5479 sqlite3VdbeResolveLabel(v, addrOutputRow); 5480 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5481 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5482 VdbeCoverage(v); 5483 VdbeComment((v, "Groupby result generator entry point")); 5484 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5485 finalizeAggFunctions(pParse, &sAggInfo); 5486 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5487 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5488 &sDistinct, pDest, 5489 addrOutputRow+1, addrSetAbort); 5490 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5491 VdbeComment((v, "end groupby result generator")); 5492 5493 /* Generate a subroutine that will reset the group-by accumulator 5494 */ 5495 sqlite3VdbeResolveLabel(v, addrReset); 5496 resetAccumulator(pParse, &sAggInfo); 5497 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5498 5499 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5500 else { 5501 ExprList *pDel = 0; 5502 #ifndef SQLITE_OMIT_BTREECOUNT 5503 Table *pTab; 5504 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5505 /* If isSimpleCount() returns a pointer to a Table structure, then 5506 ** the SQL statement is of the form: 5507 ** 5508 ** SELECT count(*) FROM <tbl> 5509 ** 5510 ** where the Table structure returned represents table <tbl>. 5511 ** 5512 ** This statement is so common that it is optimized specially. The 5513 ** OP_Count instruction is executed either on the intkey table that 5514 ** contains the data for table <tbl> or on one of its indexes. It 5515 ** is better to execute the op on an index, as indexes are almost 5516 ** always spread across less pages than their corresponding tables. 5517 */ 5518 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5519 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5520 Index *pIdx; /* Iterator variable */ 5521 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5522 Index *pBest = 0; /* Best index found so far */ 5523 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5524 5525 sqlite3CodeVerifySchema(pParse, iDb); 5526 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5527 5528 /* Search for the index that has the lowest scan cost. 5529 ** 5530 ** (2011-04-15) Do not do a full scan of an unordered index. 5531 ** 5532 ** (2013-10-03) Do not count the entries in a partial index. 5533 ** 5534 ** In practice the KeyInfo structure will not be used. It is only 5535 ** passed to keep OP_OpenRead happy. 5536 */ 5537 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5538 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5539 if( pIdx->bUnordered==0 5540 && pIdx->szIdxRow<pTab->szTabRow 5541 && pIdx->pPartIdxWhere==0 5542 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5543 ){ 5544 pBest = pIdx; 5545 } 5546 } 5547 if( pBest ){ 5548 iRoot = pBest->tnum; 5549 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5550 } 5551 5552 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5553 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5554 if( pKeyInfo ){ 5555 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5556 } 5557 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5558 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5559 explainSimpleCount(pParse, pTab, pBest); 5560 }else 5561 #endif /* SQLITE_OMIT_BTREECOUNT */ 5562 { 5563 /* Check if the query is of one of the following forms: 5564 ** 5565 ** SELECT min(x) FROM ... 5566 ** SELECT max(x) FROM ... 5567 ** 5568 ** If it is, then ask the code in where.c to attempt to sort results 5569 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5570 ** If where.c is able to produce results sorted in this order, then 5571 ** add vdbe code to break out of the processing loop after the 5572 ** first iteration (since the first iteration of the loop is 5573 ** guaranteed to operate on the row with the minimum or maximum 5574 ** value of x, the only row required). 5575 ** 5576 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5577 ** modify behavior as follows: 5578 ** 5579 ** + If the query is a "SELECT min(x)", then the loop coded by 5580 ** where.c should not iterate over any values with a NULL value 5581 ** for x. 5582 ** 5583 ** + The optimizer code in where.c (the thing that decides which 5584 ** index or indices to use) should place a different priority on 5585 ** satisfying the 'ORDER BY' clause than it does in other cases. 5586 ** Refer to code and comments in where.c for details. 5587 */ 5588 ExprList *pMinMax = 0; 5589 u8 flag = WHERE_ORDERBY_NORMAL; 5590 5591 assert( p->pGroupBy==0 ); 5592 assert( flag==0 ); 5593 if( p->pHaving==0 ){ 5594 flag = minMaxQuery(&sAggInfo, &pMinMax); 5595 } 5596 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5597 5598 if( flag ){ 5599 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5600 pDel = pMinMax; 5601 assert( db->mallocFailed || pMinMax!=0 ); 5602 if( !db->mallocFailed ){ 5603 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5604 pMinMax->a[0].pExpr->op = TK_COLUMN; 5605 } 5606 } 5607 5608 /* This case runs if the aggregate has no GROUP BY clause. The 5609 ** processing is much simpler since there is only a single row 5610 ** of output. 5611 */ 5612 resetAccumulator(pParse, &sAggInfo); 5613 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5614 if( pWInfo==0 ){ 5615 sqlite3ExprListDelete(db, pDel); 5616 goto select_end; 5617 } 5618 updateAccumulator(pParse, &sAggInfo); 5619 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5620 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5621 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5622 VdbeComment((v, "%s() by index", 5623 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5624 } 5625 sqlite3WhereEnd(pWInfo); 5626 finalizeAggFunctions(pParse, &sAggInfo); 5627 } 5628 5629 sSort.pOrderBy = 0; 5630 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5631 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5632 pDest, addrEnd, addrEnd); 5633 sqlite3ExprListDelete(db, pDel); 5634 } 5635 sqlite3VdbeResolveLabel(v, addrEnd); 5636 5637 } /* endif aggregate query */ 5638 5639 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5640 explainTempTable(pParse, "DISTINCT"); 5641 } 5642 5643 /* If there is an ORDER BY clause, then we need to sort the results 5644 ** and send them to the callback one by one. 5645 */ 5646 if( sSort.pOrderBy ){ 5647 explainTempTable(pParse, 5648 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5649 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5650 } 5651 5652 /* Jump here to skip this query 5653 */ 5654 sqlite3VdbeResolveLabel(v, iEnd); 5655 5656 /* The SELECT has been coded. If there is an error in the Parse structure, 5657 ** set the return code to 1. Otherwise 0. */ 5658 rc = (pParse->nErr>0); 5659 5660 /* Control jumps to here if an error is encountered above, or upon 5661 ** successful coding of the SELECT. 5662 */ 5663 select_end: 5664 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5665 5666 /* Identify column names if results of the SELECT are to be output. 5667 */ 5668 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5669 generateColumnNames(pParse, pTabList, pEList); 5670 } 5671 5672 sqlite3DbFree(db, sAggInfo.aCol); 5673 sqlite3DbFree(db, sAggInfo.aFunc); 5674 #if SELECTTRACE_ENABLED 5675 SELECTTRACE(1,pParse,p,("end processing\n")); 5676 pParse->nSelectIndent--; 5677 #endif 5678 return rc; 5679 } 5680