xref: /sqlite-3.40.0/src/select.c (revision 52b1dbb5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 };
61 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
62 
63 /*
64 ** Delete all the content of a Select structure.  Deallocate the structure
65 ** itself only if bFree is true.
66 */
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68   while( p ){
69     Select *pPrior = p->pPrior;
70     sqlite3ExprListDelete(db, p->pEList);
71     sqlite3SrcListDelete(db, p->pSrc);
72     sqlite3ExprDelete(db, p->pWhere);
73     sqlite3ExprListDelete(db, p->pGroupBy);
74     sqlite3ExprDelete(db, p->pHaving);
75     sqlite3ExprListDelete(db, p->pOrderBy);
76     sqlite3ExprDelete(db, p->pLimit);
77     sqlite3ExprDelete(db, p->pOffset);
78     if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79     if( bFree ) sqlite3DbFree(db, p);
80     p = pPrior;
81     bFree = 1;
82   }
83 }
84 
85 /*
86 ** Initialize a SelectDest structure.
87 */
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89   pDest->eDest = (u8)eDest;
90   pDest->iSDParm = iParm;
91   pDest->affSdst = 0;
92   pDest->iSdst = 0;
93   pDest->nSdst = 0;
94 }
95 
96 
97 /*
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
100 */
101 Select *sqlite3SelectNew(
102   Parse *pParse,        /* Parsing context */
103   ExprList *pEList,     /* which columns to include in the result */
104   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
105   Expr *pWhere,         /* the WHERE clause */
106   ExprList *pGroupBy,   /* the GROUP BY clause */
107   Expr *pHaving,        /* the HAVING clause */
108   ExprList *pOrderBy,   /* the ORDER BY clause */
109   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
110   Expr *pLimit,         /* LIMIT value.  NULL means not used */
111   Expr *pOffset         /* OFFSET value.  NULL means no offset */
112 ){
113   Select *pNew;
114   Select standin;
115   sqlite3 *db = pParse->db;
116   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
117   if( pNew==0 ){
118     assert( db->mallocFailed );
119     pNew = &standin;
120   }
121   if( pEList==0 ){
122     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
123   }
124   pNew->pEList = pEList;
125   pNew->op = TK_SELECT;
126   pNew->selFlags = selFlags;
127   pNew->iLimit = 0;
128   pNew->iOffset = 0;
129 #if SELECTTRACE_ENABLED
130   pNew->zSelName[0] = 0;
131 #endif
132   pNew->addrOpenEphm[0] = -1;
133   pNew->addrOpenEphm[1] = -1;
134   pNew->nSelectRow = 0;
135   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
136   pNew->pSrc = pSrc;
137   pNew->pWhere = pWhere;
138   pNew->pGroupBy = pGroupBy;
139   pNew->pHaving = pHaving;
140   pNew->pOrderBy = pOrderBy;
141   pNew->pPrior = 0;
142   pNew->pNext = 0;
143   pNew->pLimit = pLimit;
144   pNew->pOffset = pOffset;
145   pNew->pWith = 0;
146   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
147   if( db->mallocFailed ) {
148     clearSelect(db, pNew, pNew!=&standin);
149     pNew = 0;
150   }else{
151     assert( pNew->pSrc!=0 || pParse->nErr>0 );
152   }
153   assert( pNew!=&standin );
154   return pNew;
155 }
156 
157 #if SELECTTRACE_ENABLED
158 /*
159 ** Set the name of a Select object
160 */
161 void sqlite3SelectSetName(Select *p, const char *zName){
162   if( p && zName ){
163     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
164   }
165 }
166 #endif
167 
168 
169 /*
170 ** Delete the given Select structure and all of its substructures.
171 */
172 void sqlite3SelectDelete(sqlite3 *db, Select *p){
173   if( p ) clearSelect(db, p, 1);
174 }
175 
176 /*
177 ** Return a pointer to the right-most SELECT statement in a compound.
178 */
179 static Select *findRightmost(Select *p){
180   while( p->pNext ) p = p->pNext;
181   return p;
182 }
183 
184 /*
185 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
186 ** type of join.  Return an integer constant that expresses that type
187 ** in terms of the following bit values:
188 **
189 **     JT_INNER
190 **     JT_CROSS
191 **     JT_OUTER
192 **     JT_NATURAL
193 **     JT_LEFT
194 **     JT_RIGHT
195 **
196 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
197 **
198 ** If an illegal or unsupported join type is seen, then still return
199 ** a join type, but put an error in the pParse structure.
200 */
201 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
202   int jointype = 0;
203   Token *apAll[3];
204   Token *p;
205                              /*   0123456789 123456789 123456789 123 */
206   static const char zKeyText[] = "naturaleftouterightfullinnercross";
207   static const struct {
208     u8 i;        /* Beginning of keyword text in zKeyText[] */
209     u8 nChar;    /* Length of the keyword in characters */
210     u8 code;     /* Join type mask */
211   } aKeyword[] = {
212     /* natural */ { 0,  7, JT_NATURAL                },
213     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
214     /* outer   */ { 10, 5, JT_OUTER                  },
215     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
216     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
217     /* inner   */ { 23, 5, JT_INNER                  },
218     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
219   };
220   int i, j;
221   apAll[0] = pA;
222   apAll[1] = pB;
223   apAll[2] = pC;
224   for(i=0; i<3 && apAll[i]; i++){
225     p = apAll[i];
226     for(j=0; j<ArraySize(aKeyword); j++){
227       if( p->n==aKeyword[j].nChar
228           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
229         jointype |= aKeyword[j].code;
230         break;
231       }
232     }
233     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
234     if( j>=ArraySize(aKeyword) ){
235       jointype |= JT_ERROR;
236       break;
237     }
238   }
239   if(
240      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
241      (jointype & JT_ERROR)!=0
242   ){
243     const char *zSp = " ";
244     assert( pB!=0 );
245     if( pC==0 ){ zSp++; }
246     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
247        "%T %T%s%T", pA, pB, zSp, pC);
248     jointype = JT_INNER;
249   }else if( (jointype & JT_OUTER)!=0
250          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
251     sqlite3ErrorMsg(pParse,
252       "RIGHT and FULL OUTER JOINs are not currently supported");
253     jointype = JT_INNER;
254   }
255   return jointype;
256 }
257 
258 /*
259 ** Return the index of a column in a table.  Return -1 if the column
260 ** is not contained in the table.
261 */
262 static int columnIndex(Table *pTab, const char *zCol){
263   int i;
264   for(i=0; i<pTab->nCol; i++){
265     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
266   }
267   return -1;
268 }
269 
270 /*
271 ** Search the first N tables in pSrc, from left to right, looking for a
272 ** table that has a column named zCol.
273 **
274 ** When found, set *piTab and *piCol to the table index and column index
275 ** of the matching column and return TRUE.
276 **
277 ** If not found, return FALSE.
278 */
279 static int tableAndColumnIndex(
280   SrcList *pSrc,       /* Array of tables to search */
281   int N,               /* Number of tables in pSrc->a[] to search */
282   const char *zCol,    /* Name of the column we are looking for */
283   int *piTab,          /* Write index of pSrc->a[] here */
284   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
285 ){
286   int i;               /* For looping over tables in pSrc */
287   int iCol;            /* Index of column matching zCol */
288 
289   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
290   for(i=0; i<N; i++){
291     iCol = columnIndex(pSrc->a[i].pTab, zCol);
292     if( iCol>=0 ){
293       if( piTab ){
294         *piTab = i;
295         *piCol = iCol;
296       }
297       return 1;
298     }
299   }
300   return 0;
301 }
302 
303 /*
304 ** This function is used to add terms implied by JOIN syntax to the
305 ** WHERE clause expression of a SELECT statement. The new term, which
306 ** is ANDed with the existing WHERE clause, is of the form:
307 **
308 **    (tab1.col1 = tab2.col2)
309 **
310 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
311 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
312 ** column iColRight of tab2.
313 */
314 static void addWhereTerm(
315   Parse *pParse,                  /* Parsing context */
316   SrcList *pSrc,                  /* List of tables in FROM clause */
317   int iLeft,                      /* Index of first table to join in pSrc */
318   int iColLeft,                   /* Index of column in first table */
319   int iRight,                     /* Index of second table in pSrc */
320   int iColRight,                  /* Index of column in second table */
321   int isOuterJoin,                /* True if this is an OUTER join */
322   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
323 ){
324   sqlite3 *db = pParse->db;
325   Expr *pE1;
326   Expr *pE2;
327   Expr *pEq;
328 
329   assert( iLeft<iRight );
330   assert( pSrc->nSrc>iRight );
331   assert( pSrc->a[iLeft].pTab );
332   assert( pSrc->a[iRight].pTab );
333 
334   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
335   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
336 
337   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
338   if( pEq && isOuterJoin ){
339     ExprSetProperty(pEq, EP_FromJoin);
340     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
341     ExprSetVVAProperty(pEq, EP_NoReduce);
342     pEq->iRightJoinTable = (i16)pE2->iTable;
343   }
344   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
345 }
346 
347 /*
348 ** Set the EP_FromJoin property on all terms of the given expression.
349 ** And set the Expr.iRightJoinTable to iTable for every term in the
350 ** expression.
351 **
352 ** The EP_FromJoin property is used on terms of an expression to tell
353 ** the LEFT OUTER JOIN processing logic that this term is part of the
354 ** join restriction specified in the ON or USING clause and not a part
355 ** of the more general WHERE clause.  These terms are moved over to the
356 ** WHERE clause during join processing but we need to remember that they
357 ** originated in the ON or USING clause.
358 **
359 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
360 ** expression depends on table iRightJoinTable even if that table is not
361 ** explicitly mentioned in the expression.  That information is needed
362 ** for cases like this:
363 **
364 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
365 **
366 ** The where clause needs to defer the handling of the t1.x=5
367 ** term until after the t2 loop of the join.  In that way, a
368 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
369 ** defer the handling of t1.x=5, it will be processed immediately
370 ** after the t1 loop and rows with t1.x!=5 will never appear in
371 ** the output, which is incorrect.
372 */
373 static void setJoinExpr(Expr *p, int iTable){
374   while( p ){
375     ExprSetProperty(p, EP_FromJoin);
376     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
377     ExprSetVVAProperty(p, EP_NoReduce);
378     p->iRightJoinTable = (i16)iTable;
379     if( p->op==TK_FUNCTION && p->x.pList ){
380       int i;
381       for(i=0; i<p->x.pList->nExpr; i++){
382         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
383       }
384     }
385     setJoinExpr(p->pLeft, iTable);
386     p = p->pRight;
387   }
388 }
389 
390 /*
391 ** This routine processes the join information for a SELECT statement.
392 ** ON and USING clauses are converted into extra terms of the WHERE clause.
393 ** NATURAL joins also create extra WHERE clause terms.
394 **
395 ** The terms of a FROM clause are contained in the Select.pSrc structure.
396 ** The left most table is the first entry in Select.pSrc.  The right-most
397 ** table is the last entry.  The join operator is held in the entry to
398 ** the left.  Thus entry 0 contains the join operator for the join between
399 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
400 ** also attached to the left entry.
401 **
402 ** This routine returns the number of errors encountered.
403 */
404 static int sqliteProcessJoin(Parse *pParse, Select *p){
405   SrcList *pSrc;                  /* All tables in the FROM clause */
406   int i, j;                       /* Loop counters */
407   struct SrcList_item *pLeft;     /* Left table being joined */
408   struct SrcList_item *pRight;    /* Right table being joined */
409 
410   pSrc = p->pSrc;
411   pLeft = &pSrc->a[0];
412   pRight = &pLeft[1];
413   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
414     Table *pLeftTab = pLeft->pTab;
415     Table *pRightTab = pRight->pTab;
416     int isOuter;
417 
418     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
419     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
420 
421     /* When the NATURAL keyword is present, add WHERE clause terms for
422     ** every column that the two tables have in common.
423     */
424     if( pRight->fg.jointype & JT_NATURAL ){
425       if( pRight->pOn || pRight->pUsing ){
426         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
427            "an ON or USING clause", 0);
428         return 1;
429       }
430       for(j=0; j<pRightTab->nCol; j++){
431         char *zName;   /* Name of column in the right table */
432         int iLeft;     /* Matching left table */
433         int iLeftCol;  /* Matching column in the left table */
434 
435         zName = pRightTab->aCol[j].zName;
436         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
437           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
438                        isOuter, &p->pWhere);
439         }
440       }
441     }
442 
443     /* Disallow both ON and USING clauses in the same join
444     */
445     if( pRight->pOn && pRight->pUsing ){
446       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
447         "clauses in the same join");
448       return 1;
449     }
450 
451     /* Add the ON clause to the end of the WHERE clause, connected by
452     ** an AND operator.
453     */
454     if( pRight->pOn ){
455       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
456       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
457       pRight->pOn = 0;
458     }
459 
460     /* Create extra terms on the WHERE clause for each column named
461     ** in the USING clause.  Example: If the two tables to be joined are
462     ** A and B and the USING clause names X, Y, and Z, then add this
463     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
464     ** Report an error if any column mentioned in the USING clause is
465     ** not contained in both tables to be joined.
466     */
467     if( pRight->pUsing ){
468       IdList *pList = pRight->pUsing;
469       for(j=0; j<pList->nId; j++){
470         char *zName;     /* Name of the term in the USING clause */
471         int iLeft;       /* Table on the left with matching column name */
472         int iLeftCol;    /* Column number of matching column on the left */
473         int iRightCol;   /* Column number of matching column on the right */
474 
475         zName = pList->a[j].zName;
476         iRightCol = columnIndex(pRightTab, zName);
477         if( iRightCol<0
478          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
479         ){
480           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
481             "not present in both tables", zName);
482           return 1;
483         }
484         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
485                      isOuter, &p->pWhere);
486       }
487     }
488   }
489   return 0;
490 }
491 
492 /* Forward reference */
493 static KeyInfo *keyInfoFromExprList(
494   Parse *pParse,       /* Parsing context */
495   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
496   int iStart,          /* Begin with this column of pList */
497   int nExtra           /* Add this many extra columns to the end */
498 );
499 
500 /*
501 ** Generate code that will push the record in registers regData
502 ** through regData+nData-1 onto the sorter.
503 */
504 static void pushOntoSorter(
505   Parse *pParse,         /* Parser context */
506   SortCtx *pSort,        /* Information about the ORDER BY clause */
507   Select *pSelect,       /* The whole SELECT statement */
508   int regData,           /* First register holding data to be sorted */
509   int regOrigData,       /* First register holding data before packing */
510   int nData,             /* Number of elements in the data array */
511   int nPrefixReg         /* No. of reg prior to regData available for use */
512 ){
513   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
514   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
515   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
516   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
517   int regBase;                                     /* Regs for sorter record */
518   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
519   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
520   int op;                            /* Opcode to add sorter record to sorter */
521   int iLimit;                        /* LIMIT counter */
522 
523   assert( bSeq==0 || bSeq==1 );
524   assert( nData==1 || regData==regOrigData );
525   if( nPrefixReg ){
526     assert( nPrefixReg==nExpr+bSeq );
527     regBase = regData - nExpr - bSeq;
528   }else{
529     regBase = pParse->nMem + 1;
530     pParse->nMem += nBase;
531   }
532   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
533   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
534   pSort->labelDone = sqlite3VdbeMakeLabel(v);
535   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
536                           SQLITE_ECEL_DUP|SQLITE_ECEL_REF);
537   if( bSeq ){
538     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
539   }
540   if( nPrefixReg==0 ){
541     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
542   }
543   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
544   if( nOBSat>0 ){
545     int regPrevKey;   /* The first nOBSat columns of the previous row */
546     int addrFirst;    /* Address of the OP_IfNot opcode */
547     int addrJmp;      /* Address of the OP_Jump opcode */
548     VdbeOp *pOp;      /* Opcode that opens the sorter */
549     int nKey;         /* Number of sorting key columns, including OP_Sequence */
550     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
551 
552     regPrevKey = pParse->nMem+1;
553     pParse->nMem += pSort->nOBSat;
554     nKey = nExpr - pSort->nOBSat + bSeq;
555     if( bSeq ){
556       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
557     }else{
558       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
559     }
560     VdbeCoverage(v);
561     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
562     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
563     if( pParse->db->mallocFailed ) return;
564     pOp->p2 = nKey + nData;
565     pKI = pOp->p4.pKeyInfo;
566     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
567     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
568     testcase( pKI->nXField>2 );
569     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
570                                            pKI->nXField-1);
571     addrJmp = sqlite3VdbeCurrentAddr(v);
572     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
573     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
574     pSort->regReturn = ++pParse->nMem;
575     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
576     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
577     if( iLimit ){
578       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
579       VdbeCoverage(v);
580     }
581     sqlite3VdbeJumpHere(v, addrFirst);
582     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
583     sqlite3VdbeJumpHere(v, addrJmp);
584   }
585   if( pSort->sortFlags & SORTFLAG_UseSorter ){
586     op = OP_SorterInsert;
587   }else{
588     op = OP_IdxInsert;
589   }
590   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
591   if( iLimit ){
592     int addr;
593     int r1 = 0;
594     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
595     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
596     ** fills up, delete the least entry in the sorter after each insert.
597     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v);
599     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
600     if( pSort->bOrderedInnerLoop ){
601       r1 = ++pParse->nMem;
602       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
603       VdbeComment((v, "seq"));
604     }
605     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
606     if( pSort->bOrderedInnerLoop ){
607       /* If the inner loop is driven by an index such that values from
608       ** the same iteration of the inner loop are in sorted order, then
609       ** immediately jump to the next iteration of an inner loop if the
610       ** entry from the current iteration does not fit into the top
611       ** LIMIT+OFFSET entries of the sorter. */
612       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
613       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
614       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
615       VdbeCoverage(v);
616     }
617     sqlite3VdbeJumpHere(v, addr);
618   }
619 }
620 
621 /*
622 ** Add code to implement the OFFSET
623 */
624 static void codeOffset(
625   Vdbe *v,          /* Generate code into this VM */
626   int iOffset,      /* Register holding the offset counter */
627   int iContinue     /* Jump here to skip the current record */
628 ){
629   if( iOffset>0 ){
630     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
631     VdbeComment((v, "OFFSET"));
632   }
633 }
634 
635 /*
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry.  iTab is a sorting index that holds previously
638 ** seen combinations of the N values.  A new entry is made in iTab
639 ** if the current N values are new.
640 **
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
643 */
644 static void codeDistinct(
645   Parse *pParse,     /* Parsing and code generating context */
646   int iTab,          /* A sorting index used to test for distinctness */
647   int addrRepeat,    /* Jump to here if not distinct */
648   int N,             /* Number of elements */
649   int iMem           /* First element */
650 ){
651   Vdbe *v;
652   int r1;
653 
654   v = pParse->pVdbe;
655   r1 = sqlite3GetTempReg(pParse);
656   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
657   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
658   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
659   sqlite3ReleaseTempReg(pParse, r1);
660 }
661 
662 #ifndef SQLITE_OMIT_SUBQUERY
663 /*
664 ** Generate an error message when a SELECT is used within a subexpression
665 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
666 ** column.  We do this in a subroutine because the error used to occur
667 ** in multiple places.  (The error only occurs in one place now, but we
668 ** retain the subroutine to minimize code disruption.)
669 */
670 static int checkForMultiColumnSelectError(
671   Parse *pParse,       /* Parse context. */
672   SelectDest *pDest,   /* Destination of SELECT results */
673   int nExpr            /* Number of result columns returned by SELECT */
674 ){
675   int eDest = pDest->eDest;
676   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
677     sqlite3ErrorMsg(pParse, "only a single result allowed for "
678        "a SELECT that is part of an expression");
679     return 1;
680   }else{
681     return 0;
682   }
683 }
684 #endif
685 
686 /*
687 ** This routine generates the code for the inside of the inner loop
688 ** of a SELECT.
689 **
690 ** If srcTab is negative, then the pEList expressions
691 ** are evaluated in order to get the data for this row.  If srcTab is
692 ** zero or more, then data is pulled from srcTab and pEList is used only
693 ** to get number columns and the datatype for each column.
694 */
695 static void selectInnerLoop(
696   Parse *pParse,          /* The parser context */
697   Select *p,              /* The complete select statement being coded */
698   ExprList *pEList,       /* List of values being extracted */
699   int srcTab,             /* Pull data from this table */
700   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
701   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
702   SelectDest *pDest,      /* How to dispose of the results */
703   int iContinue,          /* Jump here to continue with next row */
704   int iBreak              /* Jump here to break out of the inner loop */
705 ){
706   Vdbe *v = pParse->pVdbe;
707   int i;
708   int hasDistinct;        /* True if the DISTINCT keyword is present */
709   int regResult;              /* Start of memory holding result set */
710   int eDest = pDest->eDest;   /* How to dispose of results */
711   int iParm = pDest->iSDParm; /* First argument to disposal method */
712   int nResultCol;             /* Number of result columns */
713   int nPrefixReg = 0;         /* Number of extra registers before regResult */
714 
715   assert( v );
716   assert( pEList!=0 );
717   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
718   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
719   if( pSort==0 && !hasDistinct ){
720     assert( iContinue!=0 );
721     codeOffset(v, p->iOffset, iContinue);
722   }
723 
724   /* Pull the requested columns.
725   */
726   nResultCol = pEList->nExpr;
727 
728   if( pDest->iSdst==0 ){
729     if( pSort ){
730       nPrefixReg = pSort->pOrderBy->nExpr;
731       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
732       pParse->nMem += nPrefixReg;
733     }
734     pDest->iSdst = pParse->nMem+1;
735     pParse->nMem += nResultCol;
736   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
737     /* This is an error condition that can result, for example, when a SELECT
738     ** on the right-hand side of an INSERT contains more result columns than
739     ** there are columns in the table on the left.  The error will be caught
740     ** and reported later.  But we need to make sure enough memory is allocated
741     ** to avoid other spurious errors in the meantime. */
742     pParse->nMem += nResultCol;
743   }
744   pDest->nSdst = nResultCol;
745   regResult = pDest->iSdst;
746   if( srcTab>=0 ){
747     for(i=0; i<nResultCol; i++){
748       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
749       VdbeComment((v, "%s", pEList->a[i].zName));
750     }
751   }else if( eDest!=SRT_Exists ){
752     /* If the destination is an EXISTS(...) expression, the actual
753     ** values returned by the SELECT are not required.
754     */
755     u8 ecelFlags;
756     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
757       ecelFlags = SQLITE_ECEL_DUP;
758     }else{
759       ecelFlags = 0;
760     }
761     sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags);
762   }
763 
764   /* If the DISTINCT keyword was present on the SELECT statement
765   ** and this row has been seen before, then do not make this row
766   ** part of the result.
767   */
768   if( hasDistinct ){
769     switch( pDistinct->eTnctType ){
770       case WHERE_DISTINCT_ORDERED: {
771         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
772         int iJump;              /* Jump destination */
773         int regPrev;            /* Previous row content */
774 
775         /* Allocate space for the previous row */
776         regPrev = pParse->nMem+1;
777         pParse->nMem += nResultCol;
778 
779         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
780         ** sets the MEM_Cleared bit on the first register of the
781         ** previous value.  This will cause the OP_Ne below to always
782         ** fail on the first iteration of the loop even if the first
783         ** row is all NULLs.
784         */
785         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
786         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
787         pOp->opcode = OP_Null;
788         pOp->p1 = 1;
789         pOp->p2 = regPrev;
790 
791         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
792         for(i=0; i<nResultCol; i++){
793           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
794           if( i<nResultCol-1 ){
795             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
796             VdbeCoverage(v);
797           }else{
798             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
799             VdbeCoverage(v);
800            }
801           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
802           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
803         }
804         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
805         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
806         break;
807       }
808 
809       case WHERE_DISTINCT_UNIQUE: {
810         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
811         break;
812       }
813 
814       default: {
815         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
816         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
817                      regResult);
818         break;
819       }
820     }
821     if( pSort==0 ){
822       codeOffset(v, p->iOffset, iContinue);
823     }
824   }
825 
826   switch( eDest ){
827     /* In this mode, write each query result to the key of the temporary
828     ** table iParm.
829     */
830 #ifndef SQLITE_OMIT_COMPOUND_SELECT
831     case SRT_Union: {
832       int r1;
833       r1 = sqlite3GetTempReg(pParse);
834       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
835       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
836       sqlite3ReleaseTempReg(pParse, r1);
837       break;
838     }
839 
840     /* Construct a record from the query result, but instead of
841     ** saving that record, use it as a key to delete elements from
842     ** the temporary table iParm.
843     */
844     case SRT_Except: {
845       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
846       break;
847     }
848 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
849 
850     /* Store the result as data using a unique key.
851     */
852     case SRT_Fifo:
853     case SRT_DistFifo:
854     case SRT_Table:
855     case SRT_EphemTab: {
856       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
857       testcase( eDest==SRT_Table );
858       testcase( eDest==SRT_EphemTab );
859       testcase( eDest==SRT_Fifo );
860       testcase( eDest==SRT_DistFifo );
861       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
862 #ifndef SQLITE_OMIT_CTE
863       if( eDest==SRT_DistFifo ){
864         /* If the destination is DistFifo, then cursor (iParm+1) is open
865         ** on an ephemeral index. If the current row is already present
866         ** in the index, do not write it to the output. If not, add the
867         ** current row to the index and proceed with writing it to the
868         ** output table as well.  */
869         int addr = sqlite3VdbeCurrentAddr(v) + 4;
870         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
871         VdbeCoverage(v);
872         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
873         assert( pSort==0 );
874       }
875 #endif
876       if( pSort ){
877         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
878       }else{
879         int r2 = sqlite3GetTempReg(pParse);
880         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
881         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
882         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
883         sqlite3ReleaseTempReg(pParse, r2);
884       }
885       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
886       break;
887     }
888 
889 #ifndef SQLITE_OMIT_SUBQUERY
890     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
891     ** then there should be a single item on the stack.  Write this
892     ** item into the set table with bogus data.
893     */
894     case SRT_Set: {
895       assert( nResultCol==1 );
896       pDest->affSdst =
897                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
898       if( pSort ){
899         /* At first glance you would think we could optimize out the
900         ** ORDER BY in this case since the order of entries in the set
901         ** does not matter.  But there might be a LIMIT clause, in which
902         ** case the order does matter */
903         pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
904       }else{
905         int r1 = sqlite3GetTempReg(pParse);
906         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
907         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
908         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
909         sqlite3ReleaseTempReg(pParse, r1);
910       }
911       break;
912     }
913 
914     /* If any row exist in the result set, record that fact and abort.
915     */
916     case SRT_Exists: {
917       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
918       /* The LIMIT clause will terminate the loop for us */
919       break;
920     }
921 
922     /* If this is a scalar select that is part of an expression, then
923     ** store the results in the appropriate memory cell and break out
924     ** of the scan loop.
925     */
926     case SRT_Mem: {
927       assert( nResultCol==1 );
928       if( pSort ){
929         pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
930       }else{
931         assert( regResult==iParm );
932         /* The LIMIT clause will jump out of the loop for us */
933       }
934       break;
935     }
936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
937 
938     case SRT_Coroutine:       /* Send data to a co-routine */
939     case SRT_Output: {        /* Return the results */
940       testcase( eDest==SRT_Coroutine );
941       testcase( eDest==SRT_Output );
942       if( pSort ){
943         pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol,
944                        nPrefixReg);
945       }else if( eDest==SRT_Coroutine ){
946         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
947       }else{
948         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
949         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
950       }
951       break;
952     }
953 
954 #ifndef SQLITE_OMIT_CTE
955     /* Write the results into a priority queue that is order according to
956     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
957     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
958     ** pSO->nExpr columns, then make sure all keys are unique by adding a
959     ** final OP_Sequence column.  The last column is the record as a blob.
960     */
961     case SRT_DistQueue:
962     case SRT_Queue: {
963       int nKey;
964       int r1, r2, r3;
965       int addrTest = 0;
966       ExprList *pSO;
967       pSO = pDest->pOrderBy;
968       assert( pSO );
969       nKey = pSO->nExpr;
970       r1 = sqlite3GetTempReg(pParse);
971       r2 = sqlite3GetTempRange(pParse, nKey+2);
972       r3 = r2+nKey+1;
973       if( eDest==SRT_DistQueue ){
974         /* If the destination is DistQueue, then cursor (iParm+1) is open
975         ** on a second ephemeral index that holds all values every previously
976         ** added to the queue. */
977         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
978                                         regResult, nResultCol);
979         VdbeCoverage(v);
980       }
981       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
982       if( eDest==SRT_DistQueue ){
983         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
984         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
985       }
986       for(i=0; i<nKey; i++){
987         sqlite3VdbeAddOp2(v, OP_SCopy,
988                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
989                           r2+i);
990       }
991       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
992       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
993       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
994       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
995       sqlite3ReleaseTempReg(pParse, r1);
996       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
997       break;
998     }
999 #endif /* SQLITE_OMIT_CTE */
1000 
1001 
1002 
1003 #if !defined(SQLITE_OMIT_TRIGGER)
1004     /* Discard the results.  This is used for SELECT statements inside
1005     ** the body of a TRIGGER.  The purpose of such selects is to call
1006     ** user-defined functions that have side effects.  We do not care
1007     ** about the actual results of the select.
1008     */
1009     default: {
1010       assert( eDest==SRT_Discard );
1011       break;
1012     }
1013 #endif
1014   }
1015 
1016   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1017   ** there is a sorter, in which case the sorter has already limited
1018   ** the output for us.
1019   */
1020   if( pSort==0 && p->iLimit ){
1021     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1022   }
1023 }
1024 
1025 /*
1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1027 ** X extra columns.
1028 */
1029 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1030   int nExtra = (N+X)*(sizeof(CollSeq*)+1);
1031   KeyInfo *p = sqlite3DbMallocRaw(db, sizeof(KeyInfo) + nExtra);
1032   if( p ){
1033     p->aSortOrder = (u8*)&p->aColl[N+X];
1034     p->nField = (u16)N;
1035     p->nXField = (u16)X;
1036     p->enc = ENC(db);
1037     p->db = db;
1038     p->nRef = 1;
1039     memset(&p[1], 0, nExtra);
1040   }else{
1041     sqlite3OomFault(db);
1042   }
1043   return p;
1044 }
1045 
1046 /*
1047 ** Deallocate a KeyInfo object
1048 */
1049 void sqlite3KeyInfoUnref(KeyInfo *p){
1050   if( p ){
1051     assert( p->nRef>0 );
1052     p->nRef--;
1053     if( p->nRef==0 ) sqlite3DbFree(p->db, p);
1054   }
1055 }
1056 
1057 /*
1058 ** Make a new pointer to a KeyInfo object
1059 */
1060 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1061   if( p ){
1062     assert( p->nRef>0 );
1063     p->nRef++;
1064   }
1065   return p;
1066 }
1067 
1068 #ifdef SQLITE_DEBUG
1069 /*
1070 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1071 ** can only be changed if this is just a single reference to the object.
1072 **
1073 ** This routine is used only inside of assert() statements.
1074 */
1075 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1076 #endif /* SQLITE_DEBUG */
1077 
1078 /*
1079 ** Given an expression list, generate a KeyInfo structure that records
1080 ** the collating sequence for each expression in that expression list.
1081 **
1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1083 ** KeyInfo structure is appropriate for initializing a virtual index to
1084 ** implement that clause.  If the ExprList is the result set of a SELECT
1085 ** then the KeyInfo structure is appropriate for initializing a virtual
1086 ** index to implement a DISTINCT test.
1087 **
1088 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1089 ** function is responsible for seeing that this structure is eventually
1090 ** freed.
1091 */
1092 static KeyInfo *keyInfoFromExprList(
1093   Parse *pParse,       /* Parsing context */
1094   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1095   int iStart,          /* Begin with this column of pList */
1096   int nExtra           /* Add this many extra columns to the end */
1097 ){
1098   int nExpr;
1099   KeyInfo *pInfo;
1100   struct ExprList_item *pItem;
1101   sqlite3 *db = pParse->db;
1102   int i;
1103 
1104   nExpr = pList->nExpr;
1105   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1106   if( pInfo ){
1107     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1108     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1109       CollSeq *pColl;
1110       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1111       if( !pColl ) pColl = db->pDfltColl;
1112       pInfo->aColl[i-iStart] = pColl;
1113       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1114     }
1115   }
1116   return pInfo;
1117 }
1118 
1119 /*
1120 ** Name of the connection operator, used for error messages.
1121 */
1122 static const char *selectOpName(int id){
1123   char *z;
1124   switch( id ){
1125     case TK_ALL:       z = "UNION ALL";   break;
1126     case TK_INTERSECT: z = "INTERSECT";   break;
1127     case TK_EXCEPT:    z = "EXCEPT";      break;
1128     default:           z = "UNION";       break;
1129   }
1130   return z;
1131 }
1132 
1133 #ifndef SQLITE_OMIT_EXPLAIN
1134 /*
1135 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1136 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1137 ** where the caption is of the form:
1138 **
1139 **   "USE TEMP B-TREE FOR xxx"
1140 **
1141 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1142 ** is determined by the zUsage argument.
1143 */
1144 static void explainTempTable(Parse *pParse, const char *zUsage){
1145   if( pParse->explain==2 ){
1146     Vdbe *v = pParse->pVdbe;
1147     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1148     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1149   }
1150 }
1151 
1152 /*
1153 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1154 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1155 ** in sqlite3Select() to assign values to structure member variables that
1156 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1157 ** code with #ifndef directives.
1158 */
1159 # define explainSetInteger(a, b) a = b
1160 
1161 #else
1162 /* No-op versions of the explainXXX() functions and macros. */
1163 # define explainTempTable(y,z)
1164 # define explainSetInteger(y,z)
1165 #endif
1166 
1167 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1168 /*
1169 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1170 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1171 ** where the caption is of one of the two forms:
1172 **
1173 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1174 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1175 **
1176 ** where iSub1 and iSub2 are the integers passed as the corresponding
1177 ** function parameters, and op is the text representation of the parameter
1178 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1179 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1180 ** false, or the second form if it is true.
1181 */
1182 static void explainComposite(
1183   Parse *pParse,                  /* Parse context */
1184   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1185   int iSub1,                      /* Subquery id 1 */
1186   int iSub2,                      /* Subquery id 2 */
1187   int bUseTmp                     /* True if a temp table was used */
1188 ){
1189   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1190   if( pParse->explain==2 ){
1191     Vdbe *v = pParse->pVdbe;
1192     char *zMsg = sqlite3MPrintf(
1193         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1194         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1195     );
1196     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1197   }
1198 }
1199 #else
1200 /* No-op versions of the explainXXX() functions and macros. */
1201 # define explainComposite(v,w,x,y,z)
1202 #endif
1203 
1204 /*
1205 ** If the inner loop was generated using a non-null pOrderBy argument,
1206 ** then the results were placed in a sorter.  After the loop is terminated
1207 ** we need to run the sorter and output the results.  The following
1208 ** routine generates the code needed to do that.
1209 */
1210 static void generateSortTail(
1211   Parse *pParse,    /* Parsing context */
1212   Select *p,        /* The SELECT statement */
1213   SortCtx *pSort,   /* Information on the ORDER BY clause */
1214   int nColumn,      /* Number of columns of data */
1215   SelectDest *pDest /* Write the sorted results here */
1216 ){
1217   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1218   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1219   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1220   int addr;
1221   int addrOnce = 0;
1222   int iTab;
1223   ExprList *pOrderBy = pSort->pOrderBy;
1224   int eDest = pDest->eDest;
1225   int iParm = pDest->iSDParm;
1226   int regRow;
1227   int regRowid;
1228   int nKey;
1229   int iSortTab;                   /* Sorter cursor to read from */
1230   int nSortData;                  /* Trailing values to read from sorter */
1231   int i;
1232   int bSeq;                       /* True if sorter record includes seq. no. */
1233 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1234   struct ExprList_item *aOutEx = p->pEList->a;
1235 #endif
1236 
1237   assert( addrBreak<0 );
1238   if( pSort->labelBkOut ){
1239     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1240     sqlite3VdbeGoto(v, addrBreak);
1241     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1242   }
1243   iTab = pSort->iECursor;
1244   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1245     regRowid = 0;
1246     regRow = pDest->iSdst;
1247     nSortData = nColumn;
1248   }else{
1249     regRowid = sqlite3GetTempReg(pParse);
1250     regRow = sqlite3GetTempReg(pParse);
1251     nSortData = 1;
1252   }
1253   nKey = pOrderBy->nExpr - pSort->nOBSat;
1254   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1255     int regSortOut = ++pParse->nMem;
1256     iSortTab = pParse->nTab++;
1257     if( pSort->labelBkOut ){
1258       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1259     }
1260     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1261     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1262     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1263     VdbeCoverage(v);
1264     codeOffset(v, p->iOffset, addrContinue);
1265     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1266     bSeq = 0;
1267   }else{
1268     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1269     codeOffset(v, p->iOffset, addrContinue);
1270     iSortTab = iTab;
1271     bSeq = 1;
1272   }
1273   for(i=0; i<nSortData; i++){
1274     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1275     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1276   }
1277   switch( eDest ){
1278     case SRT_EphemTab: {
1279       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1280       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1281       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1282       break;
1283     }
1284 #ifndef SQLITE_OMIT_SUBQUERY
1285     case SRT_Set: {
1286       assert( nColumn==1 );
1287       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1288                         &pDest->affSdst, 1);
1289       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1290       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1291       break;
1292     }
1293     case SRT_Mem: {
1294       assert( nColumn==1 );
1295       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1296       /* The LIMIT clause will terminate the loop for us */
1297       break;
1298     }
1299 #endif
1300     default: {
1301       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1302       testcase( eDest==SRT_Output );
1303       testcase( eDest==SRT_Coroutine );
1304       if( eDest==SRT_Output ){
1305         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1306         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1307       }else{
1308         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1309       }
1310       break;
1311     }
1312   }
1313   if( regRowid ){
1314     sqlite3ReleaseTempReg(pParse, regRow);
1315     sqlite3ReleaseTempReg(pParse, regRowid);
1316   }
1317   /* The bottom of the loop
1318   */
1319   sqlite3VdbeResolveLabel(v, addrContinue);
1320   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1321     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1322   }else{
1323     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1324   }
1325   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1326   sqlite3VdbeResolveLabel(v, addrBreak);
1327 }
1328 
1329 /*
1330 ** Return a pointer to a string containing the 'declaration type' of the
1331 ** expression pExpr. The string may be treated as static by the caller.
1332 **
1333 ** Also try to estimate the size of the returned value and return that
1334 ** result in *pEstWidth.
1335 **
1336 ** The declaration type is the exact datatype definition extracted from the
1337 ** original CREATE TABLE statement if the expression is a column. The
1338 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1339 ** is considered a column can be complex in the presence of subqueries. The
1340 ** result-set expression in all of the following SELECT statements is
1341 ** considered a column by this function.
1342 **
1343 **   SELECT col FROM tbl;
1344 **   SELECT (SELECT col FROM tbl;
1345 **   SELECT (SELECT col FROM tbl);
1346 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1347 **
1348 ** The declaration type for any expression other than a column is NULL.
1349 **
1350 ** This routine has either 3 or 6 parameters depending on whether or not
1351 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1352 */
1353 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1354 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1355 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1356 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1357 #endif
1358 static const char *columnTypeImpl(
1359   NameContext *pNC,
1360   Expr *pExpr,
1361 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1362   const char **pzOrigDb,
1363   const char **pzOrigTab,
1364   const char **pzOrigCol,
1365 #endif
1366   u8 *pEstWidth
1367 ){
1368   char const *zType = 0;
1369   int j;
1370   u8 estWidth = 1;
1371 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1372   char const *zOrigDb = 0;
1373   char const *zOrigTab = 0;
1374   char const *zOrigCol = 0;
1375 #endif
1376 
1377   assert( pExpr!=0 );
1378   assert( pNC->pSrcList!=0 );
1379   switch( pExpr->op ){
1380     case TK_AGG_COLUMN:
1381     case TK_COLUMN: {
1382       /* The expression is a column. Locate the table the column is being
1383       ** extracted from in NameContext.pSrcList. This table may be real
1384       ** database table or a subquery.
1385       */
1386       Table *pTab = 0;            /* Table structure column is extracted from */
1387       Select *pS = 0;             /* Select the column is extracted from */
1388       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1389       testcase( pExpr->op==TK_AGG_COLUMN );
1390       testcase( pExpr->op==TK_COLUMN );
1391       while( pNC && !pTab ){
1392         SrcList *pTabList = pNC->pSrcList;
1393         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1394         if( j<pTabList->nSrc ){
1395           pTab = pTabList->a[j].pTab;
1396           pS = pTabList->a[j].pSelect;
1397         }else{
1398           pNC = pNC->pNext;
1399         }
1400       }
1401 
1402       if( pTab==0 ){
1403         /* At one time, code such as "SELECT new.x" within a trigger would
1404         ** cause this condition to run.  Since then, we have restructured how
1405         ** trigger code is generated and so this condition is no longer
1406         ** possible. However, it can still be true for statements like
1407         ** the following:
1408         **
1409         **   CREATE TABLE t1(col INTEGER);
1410         **   SELECT (SELECT t1.col) FROM FROM t1;
1411         **
1412         ** when columnType() is called on the expression "t1.col" in the
1413         ** sub-select. In this case, set the column type to NULL, even
1414         ** though it should really be "INTEGER".
1415         **
1416         ** This is not a problem, as the column type of "t1.col" is never
1417         ** used. When columnType() is called on the expression
1418         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1419         ** branch below.  */
1420         break;
1421       }
1422 
1423       assert( pTab && pExpr->pTab==pTab );
1424       if( pS ){
1425         /* The "table" is actually a sub-select or a view in the FROM clause
1426         ** of the SELECT statement. Return the declaration type and origin
1427         ** data for the result-set column of the sub-select.
1428         */
1429         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1430           /* If iCol is less than zero, then the expression requests the
1431           ** rowid of the sub-select or view. This expression is legal (see
1432           ** test case misc2.2.2) - it always evaluates to NULL.
1433           **
1434           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1435           ** caught already by name resolution.
1436           */
1437           NameContext sNC;
1438           Expr *p = pS->pEList->a[iCol].pExpr;
1439           sNC.pSrcList = pS->pSrc;
1440           sNC.pNext = pNC;
1441           sNC.pParse = pNC->pParse;
1442           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1443         }
1444       }else if( pTab->pSchema ){
1445         /* A real table */
1446         assert( !pS );
1447         if( iCol<0 ) iCol = pTab->iPKey;
1448         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1449 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1450         if( iCol<0 ){
1451           zType = "INTEGER";
1452           zOrigCol = "rowid";
1453         }else{
1454           zOrigCol = pTab->aCol[iCol].zName;
1455           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1456           estWidth = pTab->aCol[iCol].szEst;
1457         }
1458         zOrigTab = pTab->zName;
1459         if( pNC->pParse ){
1460           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1461           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1462         }
1463 #else
1464         if( iCol<0 ){
1465           zType = "INTEGER";
1466         }else{
1467           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1468           estWidth = pTab->aCol[iCol].szEst;
1469         }
1470 #endif
1471       }
1472       break;
1473     }
1474 #ifndef SQLITE_OMIT_SUBQUERY
1475     case TK_SELECT: {
1476       /* The expression is a sub-select. Return the declaration type and
1477       ** origin info for the single column in the result set of the SELECT
1478       ** statement.
1479       */
1480       NameContext sNC;
1481       Select *pS = pExpr->x.pSelect;
1482       Expr *p = pS->pEList->a[0].pExpr;
1483       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1484       sNC.pSrcList = pS->pSrc;
1485       sNC.pNext = pNC;
1486       sNC.pParse = pNC->pParse;
1487       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1488       break;
1489     }
1490 #endif
1491   }
1492 
1493 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1494   if( pzOrigDb ){
1495     assert( pzOrigTab && pzOrigCol );
1496     *pzOrigDb = zOrigDb;
1497     *pzOrigTab = zOrigTab;
1498     *pzOrigCol = zOrigCol;
1499   }
1500 #endif
1501   if( pEstWidth ) *pEstWidth = estWidth;
1502   return zType;
1503 }
1504 
1505 /*
1506 ** Generate code that will tell the VDBE the declaration types of columns
1507 ** in the result set.
1508 */
1509 static void generateColumnTypes(
1510   Parse *pParse,      /* Parser context */
1511   SrcList *pTabList,  /* List of tables */
1512   ExprList *pEList    /* Expressions defining the result set */
1513 ){
1514 #ifndef SQLITE_OMIT_DECLTYPE
1515   Vdbe *v = pParse->pVdbe;
1516   int i;
1517   NameContext sNC;
1518   sNC.pSrcList = pTabList;
1519   sNC.pParse = pParse;
1520   for(i=0; i<pEList->nExpr; i++){
1521     Expr *p = pEList->a[i].pExpr;
1522     const char *zType;
1523 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1524     const char *zOrigDb = 0;
1525     const char *zOrigTab = 0;
1526     const char *zOrigCol = 0;
1527     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1528 
1529     /* The vdbe must make its own copy of the column-type and other
1530     ** column specific strings, in case the schema is reset before this
1531     ** virtual machine is deleted.
1532     */
1533     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1534     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1535     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1536 #else
1537     zType = columnType(&sNC, p, 0, 0, 0, 0);
1538 #endif
1539     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1540   }
1541 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1542 }
1543 
1544 /*
1545 ** Generate code that will tell the VDBE the names of columns
1546 ** in the result set.  This information is used to provide the
1547 ** azCol[] values in the callback.
1548 */
1549 static void generateColumnNames(
1550   Parse *pParse,      /* Parser context */
1551   SrcList *pTabList,  /* List of tables */
1552   ExprList *pEList    /* Expressions defining the result set */
1553 ){
1554   Vdbe *v = pParse->pVdbe;
1555   int i, j;
1556   sqlite3 *db = pParse->db;
1557   int fullNames, shortNames;
1558 
1559 #ifndef SQLITE_OMIT_EXPLAIN
1560   /* If this is an EXPLAIN, skip this step */
1561   if( pParse->explain ){
1562     return;
1563   }
1564 #endif
1565 
1566   if( pParse->colNamesSet || db->mallocFailed ) return;
1567   assert( v!=0 );
1568   assert( pTabList!=0 );
1569   pParse->colNamesSet = 1;
1570   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1571   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1572   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1573   for(i=0; i<pEList->nExpr; i++){
1574     Expr *p;
1575     p = pEList->a[i].pExpr;
1576     if( NEVER(p==0) ) continue;
1577     if( pEList->a[i].zName ){
1578       char *zName = pEList->a[i].zName;
1579       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1580     }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
1581       Table *pTab;
1582       char *zCol;
1583       int iCol = p->iColumn;
1584       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1585         if( pTabList->a[j].iCursor==p->iTable ) break;
1586       }
1587       assert( j<pTabList->nSrc );
1588       pTab = pTabList->a[j].pTab;
1589       if( iCol<0 ) iCol = pTab->iPKey;
1590       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1591       if( iCol<0 ){
1592         zCol = "rowid";
1593       }else{
1594         zCol = pTab->aCol[iCol].zName;
1595       }
1596       if( !shortNames && !fullNames ){
1597         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1598             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1599       }else if( fullNames ){
1600         char *zName = 0;
1601         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1602         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1603       }else{
1604         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1605       }
1606     }else{
1607       const char *z = pEList->a[i].zSpan;
1608       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1609       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1610     }
1611   }
1612   generateColumnTypes(pParse, pTabList, pEList);
1613 }
1614 
1615 /*
1616 ** Given an expression list (which is really the list of expressions
1617 ** that form the result set of a SELECT statement) compute appropriate
1618 ** column names for a table that would hold the expression list.
1619 **
1620 ** All column names will be unique.
1621 **
1622 ** Only the column names are computed.  Column.zType, Column.zColl,
1623 ** and other fields of Column are zeroed.
1624 **
1625 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1626 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1627 */
1628 int sqlite3ColumnsFromExprList(
1629   Parse *pParse,          /* Parsing context */
1630   ExprList *pEList,       /* Expr list from which to derive column names */
1631   i16 *pnCol,             /* Write the number of columns here */
1632   Column **paCol          /* Write the new column list here */
1633 ){
1634   sqlite3 *db = pParse->db;   /* Database connection */
1635   int i, j;                   /* Loop counters */
1636   u32 cnt;                    /* Index added to make the name unique */
1637   Column *aCol, *pCol;        /* For looping over result columns */
1638   int nCol;                   /* Number of columns in the result set */
1639   Expr *p;                    /* Expression for a single result column */
1640   char *zName;                /* Column name */
1641   int nName;                  /* Size of name in zName[] */
1642   Hash ht;                    /* Hash table of column names */
1643 
1644   sqlite3HashInit(&ht);
1645   if( pEList ){
1646     nCol = pEList->nExpr;
1647     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1648     testcase( aCol==0 );
1649   }else{
1650     nCol = 0;
1651     aCol = 0;
1652   }
1653   assert( nCol==(i16)nCol );
1654   *pnCol = nCol;
1655   *paCol = aCol;
1656 
1657   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1658     /* Get an appropriate name for the column
1659     */
1660     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1661     if( (zName = pEList->a[i].zName)!=0 ){
1662       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1663     }else{
1664       Expr *pColExpr = p;  /* The expression that is the result column name */
1665       Table *pTab;         /* Table associated with this expression */
1666       while( pColExpr->op==TK_DOT ){
1667         pColExpr = pColExpr->pRight;
1668         assert( pColExpr!=0 );
1669       }
1670       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1671         /* For columns use the column name name */
1672         int iCol = pColExpr->iColumn;
1673         pTab = pColExpr->pTab;
1674         if( iCol<0 ) iCol = pTab->iPKey;
1675         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1676       }else if( pColExpr->op==TK_ID ){
1677         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1678         zName = pColExpr->u.zToken;
1679       }else{
1680         /* Use the original text of the column expression as its name */
1681         zName = pEList->a[i].zSpan;
1682       }
1683     }
1684     zName = sqlite3MPrintf(db, "%s", zName);
1685 
1686     /* Make sure the column name is unique.  If the name is not unique,
1687     ** append an integer to the name so that it becomes unique.
1688     */
1689     cnt = 0;
1690     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1691       nName = sqlite3Strlen30(zName);
1692       if( nName>0 ){
1693         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1694         if( zName[j]==':' ) nName = j;
1695       }
1696       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1697       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1698     }
1699     pCol->zName = zName;
1700     sqlite3ColumnPropertiesFromName(0, pCol);
1701     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1702       sqlite3OomFault(db);
1703     }
1704   }
1705   sqlite3HashClear(&ht);
1706   if( db->mallocFailed ){
1707     for(j=0; j<i; j++){
1708       sqlite3DbFree(db, aCol[j].zName);
1709     }
1710     sqlite3DbFree(db, aCol);
1711     *paCol = 0;
1712     *pnCol = 0;
1713     return SQLITE_NOMEM_BKPT;
1714   }
1715   return SQLITE_OK;
1716 }
1717 
1718 /*
1719 ** Add type and collation information to a column list based on
1720 ** a SELECT statement.
1721 **
1722 ** The column list presumably came from selectColumnNamesFromExprList().
1723 ** The column list has only names, not types or collations.  This
1724 ** routine goes through and adds the types and collations.
1725 **
1726 ** This routine requires that all identifiers in the SELECT
1727 ** statement be resolved.
1728 */
1729 void sqlite3SelectAddColumnTypeAndCollation(
1730   Parse *pParse,        /* Parsing contexts */
1731   Table *pTab,          /* Add column type information to this table */
1732   Select *pSelect       /* SELECT used to determine types and collations */
1733 ){
1734   sqlite3 *db = pParse->db;
1735   NameContext sNC;
1736   Column *pCol;
1737   CollSeq *pColl;
1738   int i;
1739   Expr *p;
1740   struct ExprList_item *a;
1741   u64 szAll = 0;
1742 
1743   assert( pSelect!=0 );
1744   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1745   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1746   if( db->mallocFailed ) return;
1747   memset(&sNC, 0, sizeof(sNC));
1748   sNC.pSrcList = pSelect->pSrc;
1749   a = pSelect->pEList->a;
1750   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1751     const char *zType;
1752     int n, m;
1753     p = a[i].pExpr;
1754     zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1755     szAll += pCol->szEst;
1756     pCol->affinity = sqlite3ExprAffinity(p);
1757     if( zType && (m = sqlite3Strlen30(zType))>0 ){
1758       n = sqlite3Strlen30(pCol->zName);
1759       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1760       if( pCol->zName ){
1761         memcpy(&pCol->zName[n+1], zType, m+1);
1762         pCol->colFlags |= COLFLAG_HASTYPE;
1763       }
1764     }
1765     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1766     pColl = sqlite3ExprCollSeq(pParse, p);
1767     if( pColl && pCol->zColl==0 ){
1768       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1769     }
1770   }
1771   pTab->szTabRow = sqlite3LogEst(szAll*4);
1772 }
1773 
1774 /*
1775 ** Given a SELECT statement, generate a Table structure that describes
1776 ** the result set of that SELECT.
1777 */
1778 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1779   Table *pTab;
1780   sqlite3 *db = pParse->db;
1781   int savedFlags;
1782 
1783   savedFlags = db->flags;
1784   db->flags &= ~SQLITE_FullColNames;
1785   db->flags |= SQLITE_ShortColNames;
1786   sqlite3SelectPrep(pParse, pSelect, 0);
1787   if( pParse->nErr ) return 0;
1788   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1789   db->flags = savedFlags;
1790   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1791   if( pTab==0 ){
1792     return 0;
1793   }
1794   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1795   ** is disabled */
1796   assert( db->lookaside.bDisable );
1797   pTab->nRef = 1;
1798   pTab->zName = 0;
1799   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1800   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1801   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1802   pTab->iPKey = -1;
1803   if( db->mallocFailed ){
1804     sqlite3DeleteTable(db, pTab);
1805     return 0;
1806   }
1807   return pTab;
1808 }
1809 
1810 /*
1811 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1812 ** If an error occurs, return NULL and leave a message in pParse.
1813 */
1814 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
1815   Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1816   if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1817   if( pParse->pToplevel==0
1818    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1819   ){
1820     pParse->okConstFactor = 1;
1821   }
1822   return v;
1823 }
1824 Vdbe *sqlite3GetVdbe(Parse *pParse){
1825   Vdbe *v = pParse->pVdbe;
1826   return v ? v : allocVdbe(pParse);
1827 }
1828 
1829 
1830 /*
1831 ** Compute the iLimit and iOffset fields of the SELECT based on the
1832 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1833 ** that appear in the original SQL statement after the LIMIT and OFFSET
1834 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1835 ** are the integer memory register numbers for counters used to compute
1836 ** the limit and offset.  If there is no limit and/or offset, then
1837 ** iLimit and iOffset are negative.
1838 **
1839 ** This routine changes the values of iLimit and iOffset only if
1840 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1841 ** iOffset should have been preset to appropriate default values (zero)
1842 ** prior to calling this routine.
1843 **
1844 ** The iOffset register (if it exists) is initialized to the value
1845 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1846 ** iOffset+1 is initialized to LIMIT+OFFSET.
1847 **
1848 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1849 ** redefined.  The UNION ALL operator uses this property to force
1850 ** the reuse of the same limit and offset registers across multiple
1851 ** SELECT statements.
1852 */
1853 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1854   Vdbe *v = 0;
1855   int iLimit = 0;
1856   int iOffset;
1857   int n;
1858   if( p->iLimit ) return;
1859 
1860   /*
1861   ** "LIMIT -1" always shows all rows.  There is some
1862   ** controversy about what the correct behavior should be.
1863   ** The current implementation interprets "LIMIT 0" to mean
1864   ** no rows.
1865   */
1866   sqlite3ExprCacheClear(pParse);
1867   assert( p->pOffset==0 || p->pLimit!=0 );
1868   if( p->pLimit ){
1869     p->iLimit = iLimit = ++pParse->nMem;
1870     v = sqlite3GetVdbe(pParse);
1871     assert( v!=0 );
1872     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1873       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1874       VdbeComment((v, "LIMIT counter"));
1875       if( n==0 ){
1876         sqlite3VdbeGoto(v, iBreak);
1877       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1878         p->nSelectRow = sqlite3LogEst((u64)n);
1879         p->selFlags |= SF_FixedLimit;
1880       }
1881     }else{
1882       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1883       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1884       VdbeComment((v, "LIMIT counter"));
1885       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1886     }
1887     if( p->pOffset ){
1888       p->iOffset = iOffset = ++pParse->nMem;
1889       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1890       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1891       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1892       VdbeComment((v, "OFFSET counter"));
1893       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1894       VdbeComment((v, "LIMIT+OFFSET"));
1895     }
1896   }
1897 }
1898 
1899 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1900 /*
1901 ** Return the appropriate collating sequence for the iCol-th column of
1902 ** the result set for the compound-select statement "p".  Return NULL if
1903 ** the column has no default collating sequence.
1904 **
1905 ** The collating sequence for the compound select is taken from the
1906 ** left-most term of the select that has a collating sequence.
1907 */
1908 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1909   CollSeq *pRet;
1910   if( p->pPrior ){
1911     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1912   }else{
1913     pRet = 0;
1914   }
1915   assert( iCol>=0 );
1916   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1917   ** have been thrown during name resolution and we would not have gotten
1918   ** this far */
1919   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1920     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1921   }
1922   return pRet;
1923 }
1924 
1925 /*
1926 ** The select statement passed as the second parameter is a compound SELECT
1927 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1928 ** structure suitable for implementing the ORDER BY.
1929 **
1930 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1931 ** function is responsible for ensuring that this structure is eventually
1932 ** freed.
1933 */
1934 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1935   ExprList *pOrderBy = p->pOrderBy;
1936   int nOrderBy = p->pOrderBy->nExpr;
1937   sqlite3 *db = pParse->db;
1938   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1939   if( pRet ){
1940     int i;
1941     for(i=0; i<nOrderBy; i++){
1942       struct ExprList_item *pItem = &pOrderBy->a[i];
1943       Expr *pTerm = pItem->pExpr;
1944       CollSeq *pColl;
1945 
1946       if( pTerm->flags & EP_Collate ){
1947         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1948       }else{
1949         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1950         if( pColl==0 ) pColl = db->pDfltColl;
1951         pOrderBy->a[i].pExpr =
1952           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1953       }
1954       assert( sqlite3KeyInfoIsWriteable(pRet) );
1955       pRet->aColl[i] = pColl;
1956       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1957     }
1958   }
1959 
1960   return pRet;
1961 }
1962 
1963 #ifndef SQLITE_OMIT_CTE
1964 /*
1965 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1966 ** query of the form:
1967 **
1968 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1969 **                         \___________/             \_______________/
1970 **                           p->pPrior                      p
1971 **
1972 **
1973 ** There is exactly one reference to the recursive-table in the FROM clause
1974 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1975 **
1976 ** The setup-query runs once to generate an initial set of rows that go
1977 ** into a Queue table.  Rows are extracted from the Queue table one by
1978 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1979 ** extracted row (now in the iCurrent table) becomes the content of the
1980 ** recursive-table for a recursive-query run.  The output of the recursive-query
1981 ** is added back into the Queue table.  Then another row is extracted from Queue
1982 ** and the iteration continues until the Queue table is empty.
1983 **
1984 ** If the compound query operator is UNION then no duplicate rows are ever
1985 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1986 ** that have ever been inserted into Queue and causes duplicates to be
1987 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1988 **
1989 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1990 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1991 ** an ORDER BY, the Queue table is just a FIFO.
1992 **
1993 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1994 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1995 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1996 ** with a positive value, then the first OFFSET outputs are discarded rather
1997 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1998 ** rows have been skipped.
1999 */
2000 static void generateWithRecursiveQuery(
2001   Parse *pParse,        /* Parsing context */
2002   Select *p,            /* The recursive SELECT to be coded */
2003   SelectDest *pDest     /* What to do with query results */
2004 ){
2005   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2006   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2007   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2008   Select *pSetup = p->pPrior;   /* The setup query */
2009   int addrTop;                  /* Top of the loop */
2010   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2011   int iCurrent = 0;             /* The Current table */
2012   int regCurrent;               /* Register holding Current table */
2013   int iQueue;                   /* The Queue table */
2014   int iDistinct = 0;            /* To ensure unique results if UNION */
2015   int eDest = SRT_Fifo;         /* How to write to Queue */
2016   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2017   int i;                        /* Loop counter */
2018   int rc;                       /* Result code */
2019   ExprList *pOrderBy;           /* The ORDER BY clause */
2020   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
2021   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2022 
2023   /* Obtain authorization to do a recursive query */
2024   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2025 
2026   /* Process the LIMIT and OFFSET clauses, if they exist */
2027   addrBreak = sqlite3VdbeMakeLabel(v);
2028   computeLimitRegisters(pParse, p, addrBreak);
2029   pLimit = p->pLimit;
2030   pOffset = p->pOffset;
2031   regLimit = p->iLimit;
2032   regOffset = p->iOffset;
2033   p->pLimit = p->pOffset = 0;
2034   p->iLimit = p->iOffset = 0;
2035   pOrderBy = p->pOrderBy;
2036 
2037   /* Locate the cursor number of the Current table */
2038   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2039     if( pSrc->a[i].fg.isRecursive ){
2040       iCurrent = pSrc->a[i].iCursor;
2041       break;
2042     }
2043   }
2044 
2045   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2046   ** the Distinct table must be exactly one greater than Queue in order
2047   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2048   iQueue = pParse->nTab++;
2049   if( p->op==TK_UNION ){
2050     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2051     iDistinct = pParse->nTab++;
2052   }else{
2053     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2054   }
2055   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2056 
2057   /* Allocate cursors for Current, Queue, and Distinct. */
2058   regCurrent = ++pParse->nMem;
2059   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2060   if( pOrderBy ){
2061     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2062     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2063                       (char*)pKeyInfo, P4_KEYINFO);
2064     destQueue.pOrderBy = pOrderBy;
2065   }else{
2066     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2067   }
2068   VdbeComment((v, "Queue table"));
2069   if( iDistinct ){
2070     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2071     p->selFlags |= SF_UsesEphemeral;
2072   }
2073 
2074   /* Detach the ORDER BY clause from the compound SELECT */
2075   p->pOrderBy = 0;
2076 
2077   /* Store the results of the setup-query in Queue. */
2078   pSetup->pNext = 0;
2079   rc = sqlite3Select(pParse, pSetup, &destQueue);
2080   pSetup->pNext = p;
2081   if( rc ) goto end_of_recursive_query;
2082 
2083   /* Find the next row in the Queue and output that row */
2084   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2085 
2086   /* Transfer the next row in Queue over to Current */
2087   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2088   if( pOrderBy ){
2089     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2090   }else{
2091     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2092   }
2093   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2094 
2095   /* Output the single row in Current */
2096   addrCont = sqlite3VdbeMakeLabel(v);
2097   codeOffset(v, regOffset, addrCont);
2098   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2099       0, 0, pDest, addrCont, addrBreak);
2100   if( regLimit ){
2101     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2102     VdbeCoverage(v);
2103   }
2104   sqlite3VdbeResolveLabel(v, addrCont);
2105 
2106   /* Execute the recursive SELECT taking the single row in Current as
2107   ** the value for the recursive-table. Store the results in the Queue.
2108   */
2109   if( p->selFlags & SF_Aggregate ){
2110     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2111   }else{
2112     p->pPrior = 0;
2113     sqlite3Select(pParse, p, &destQueue);
2114     assert( p->pPrior==0 );
2115     p->pPrior = pSetup;
2116   }
2117 
2118   /* Keep running the loop until the Queue is empty */
2119   sqlite3VdbeGoto(v, addrTop);
2120   sqlite3VdbeResolveLabel(v, addrBreak);
2121 
2122 end_of_recursive_query:
2123   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2124   p->pOrderBy = pOrderBy;
2125   p->pLimit = pLimit;
2126   p->pOffset = pOffset;
2127   return;
2128 }
2129 #endif /* SQLITE_OMIT_CTE */
2130 
2131 /* Forward references */
2132 static int multiSelectOrderBy(
2133   Parse *pParse,        /* Parsing context */
2134   Select *p,            /* The right-most of SELECTs to be coded */
2135   SelectDest *pDest     /* What to do with query results */
2136 );
2137 
2138 /*
2139 ** Handle the special case of a compound-select that originates from a
2140 ** VALUES clause.  By handling this as a special case, we avoid deep
2141 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2142 ** on a VALUES clause.
2143 **
2144 ** Because the Select object originates from a VALUES clause:
2145 **   (1) It has no LIMIT or OFFSET
2146 **   (2) All terms are UNION ALL
2147 **   (3) There is no ORDER BY clause
2148 */
2149 static int multiSelectValues(
2150   Parse *pParse,        /* Parsing context */
2151   Select *p,            /* The right-most of SELECTs to be coded */
2152   SelectDest *pDest     /* What to do with query results */
2153 ){
2154   Select *pPrior;
2155   int nRow = 1;
2156   int rc = 0;
2157   assert( p->selFlags & SF_MultiValue );
2158   do{
2159     assert( p->selFlags & SF_Values );
2160     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2161     assert( p->pLimit==0 );
2162     assert( p->pOffset==0 );
2163     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2164     if( p->pPrior==0 ) break;
2165     assert( p->pPrior->pNext==p );
2166     p = p->pPrior;
2167     nRow++;
2168   }while(1);
2169   while( p ){
2170     pPrior = p->pPrior;
2171     p->pPrior = 0;
2172     rc = sqlite3Select(pParse, p, pDest);
2173     p->pPrior = pPrior;
2174     if( rc ) break;
2175     p->nSelectRow = nRow;
2176     p = p->pNext;
2177   }
2178   return rc;
2179 }
2180 
2181 /*
2182 ** This routine is called to process a compound query form from
2183 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2184 ** INTERSECT
2185 **
2186 ** "p" points to the right-most of the two queries.  the query on the
2187 ** left is p->pPrior.  The left query could also be a compound query
2188 ** in which case this routine will be called recursively.
2189 **
2190 ** The results of the total query are to be written into a destination
2191 ** of type eDest with parameter iParm.
2192 **
2193 ** Example 1:  Consider a three-way compound SQL statement.
2194 **
2195 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2196 **
2197 ** This statement is parsed up as follows:
2198 **
2199 **     SELECT c FROM t3
2200 **      |
2201 **      `----->  SELECT b FROM t2
2202 **                |
2203 **                `------>  SELECT a FROM t1
2204 **
2205 ** The arrows in the diagram above represent the Select.pPrior pointer.
2206 ** So if this routine is called with p equal to the t3 query, then
2207 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2208 **
2209 ** Notice that because of the way SQLite parses compound SELECTs, the
2210 ** individual selects always group from left to right.
2211 */
2212 static int multiSelect(
2213   Parse *pParse,        /* Parsing context */
2214   Select *p,            /* The right-most of SELECTs to be coded */
2215   SelectDest *pDest     /* What to do with query results */
2216 ){
2217   int rc = SQLITE_OK;   /* Success code from a subroutine */
2218   Select *pPrior;       /* Another SELECT immediately to our left */
2219   Vdbe *v;              /* Generate code to this VDBE */
2220   SelectDest dest;      /* Alternative data destination */
2221   Select *pDelete = 0;  /* Chain of simple selects to delete */
2222   sqlite3 *db;          /* Database connection */
2223 #ifndef SQLITE_OMIT_EXPLAIN
2224   int iSub1 = 0;        /* EQP id of left-hand query */
2225   int iSub2 = 0;        /* EQP id of right-hand query */
2226 #endif
2227 
2228   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2229   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2230   */
2231   assert( p && p->pPrior );  /* Calling function guarantees this much */
2232   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2233   db = pParse->db;
2234   pPrior = p->pPrior;
2235   dest = *pDest;
2236   if( pPrior->pOrderBy ){
2237     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2238       selectOpName(p->op));
2239     rc = 1;
2240     goto multi_select_end;
2241   }
2242   if( pPrior->pLimit ){
2243     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2244       selectOpName(p->op));
2245     rc = 1;
2246     goto multi_select_end;
2247   }
2248 
2249   v = sqlite3GetVdbe(pParse);
2250   assert( v!=0 );  /* The VDBE already created by calling function */
2251 
2252   /* Create the destination temporary table if necessary
2253   */
2254   if( dest.eDest==SRT_EphemTab ){
2255     assert( p->pEList );
2256     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2257     dest.eDest = SRT_Table;
2258   }
2259 
2260   /* Special handling for a compound-select that originates as a VALUES clause.
2261   */
2262   if( p->selFlags & SF_MultiValue ){
2263     rc = multiSelectValues(pParse, p, &dest);
2264     goto multi_select_end;
2265   }
2266 
2267   /* Make sure all SELECTs in the statement have the same number of elements
2268   ** in their result sets.
2269   */
2270   assert( p->pEList && pPrior->pEList );
2271   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2272 
2273 #ifndef SQLITE_OMIT_CTE
2274   if( p->selFlags & SF_Recursive ){
2275     generateWithRecursiveQuery(pParse, p, &dest);
2276   }else
2277 #endif
2278 
2279   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2280   */
2281   if( p->pOrderBy ){
2282     return multiSelectOrderBy(pParse, p, pDest);
2283   }else
2284 
2285   /* Generate code for the left and right SELECT statements.
2286   */
2287   switch( p->op ){
2288     case TK_ALL: {
2289       int addr = 0;
2290       int nLimit;
2291       assert( !pPrior->pLimit );
2292       pPrior->iLimit = p->iLimit;
2293       pPrior->iOffset = p->iOffset;
2294       pPrior->pLimit = p->pLimit;
2295       pPrior->pOffset = p->pOffset;
2296       explainSetInteger(iSub1, pParse->iNextSelectId);
2297       rc = sqlite3Select(pParse, pPrior, &dest);
2298       p->pLimit = 0;
2299       p->pOffset = 0;
2300       if( rc ){
2301         goto multi_select_end;
2302       }
2303       p->pPrior = 0;
2304       p->iLimit = pPrior->iLimit;
2305       p->iOffset = pPrior->iOffset;
2306       if( p->iLimit ){
2307         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2308         VdbeComment((v, "Jump ahead if LIMIT reached"));
2309         if( p->iOffset ){
2310           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2311                             p->iLimit, p->iOffset+1, p->iOffset);
2312         }
2313       }
2314       explainSetInteger(iSub2, pParse->iNextSelectId);
2315       rc = sqlite3Select(pParse, p, &dest);
2316       testcase( rc!=SQLITE_OK );
2317       pDelete = p->pPrior;
2318       p->pPrior = pPrior;
2319       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2320       if( pPrior->pLimit
2321        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2322        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2323       ){
2324         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2325       }
2326       if( addr ){
2327         sqlite3VdbeJumpHere(v, addr);
2328       }
2329       break;
2330     }
2331     case TK_EXCEPT:
2332     case TK_UNION: {
2333       int unionTab;    /* Cursor number of the temporary table holding result */
2334       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2335       int priorOp;     /* The SRT_ operation to apply to prior selects */
2336       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2337       int addr;
2338       SelectDest uniondest;
2339 
2340       testcase( p->op==TK_EXCEPT );
2341       testcase( p->op==TK_UNION );
2342       priorOp = SRT_Union;
2343       if( dest.eDest==priorOp ){
2344         /* We can reuse a temporary table generated by a SELECT to our
2345         ** right.
2346         */
2347         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2348         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2349         unionTab = dest.iSDParm;
2350       }else{
2351         /* We will need to create our own temporary table to hold the
2352         ** intermediate results.
2353         */
2354         unionTab = pParse->nTab++;
2355         assert( p->pOrderBy==0 );
2356         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2357         assert( p->addrOpenEphm[0] == -1 );
2358         p->addrOpenEphm[0] = addr;
2359         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2360         assert( p->pEList );
2361       }
2362 
2363       /* Code the SELECT statements to our left
2364       */
2365       assert( !pPrior->pOrderBy );
2366       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2367       explainSetInteger(iSub1, pParse->iNextSelectId);
2368       rc = sqlite3Select(pParse, pPrior, &uniondest);
2369       if( rc ){
2370         goto multi_select_end;
2371       }
2372 
2373       /* Code the current SELECT statement
2374       */
2375       if( p->op==TK_EXCEPT ){
2376         op = SRT_Except;
2377       }else{
2378         assert( p->op==TK_UNION );
2379         op = SRT_Union;
2380       }
2381       p->pPrior = 0;
2382       pLimit = p->pLimit;
2383       p->pLimit = 0;
2384       pOffset = p->pOffset;
2385       p->pOffset = 0;
2386       uniondest.eDest = op;
2387       explainSetInteger(iSub2, pParse->iNextSelectId);
2388       rc = sqlite3Select(pParse, p, &uniondest);
2389       testcase( rc!=SQLITE_OK );
2390       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2391       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2392       sqlite3ExprListDelete(db, p->pOrderBy);
2393       pDelete = p->pPrior;
2394       p->pPrior = pPrior;
2395       p->pOrderBy = 0;
2396       if( p->op==TK_UNION ){
2397         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2398       }
2399       sqlite3ExprDelete(db, p->pLimit);
2400       p->pLimit = pLimit;
2401       p->pOffset = pOffset;
2402       p->iLimit = 0;
2403       p->iOffset = 0;
2404 
2405       /* Convert the data in the temporary table into whatever form
2406       ** it is that we currently need.
2407       */
2408       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2409       if( dest.eDest!=priorOp ){
2410         int iCont, iBreak, iStart;
2411         assert( p->pEList );
2412         if( dest.eDest==SRT_Output ){
2413           Select *pFirst = p;
2414           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2415           generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2416         }
2417         iBreak = sqlite3VdbeMakeLabel(v);
2418         iCont = sqlite3VdbeMakeLabel(v);
2419         computeLimitRegisters(pParse, p, iBreak);
2420         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2421         iStart = sqlite3VdbeCurrentAddr(v);
2422         selectInnerLoop(pParse, p, p->pEList, unionTab,
2423                         0, 0, &dest, iCont, iBreak);
2424         sqlite3VdbeResolveLabel(v, iCont);
2425         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2426         sqlite3VdbeResolveLabel(v, iBreak);
2427         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2428       }
2429       break;
2430     }
2431     default: assert( p->op==TK_INTERSECT ); {
2432       int tab1, tab2;
2433       int iCont, iBreak, iStart;
2434       Expr *pLimit, *pOffset;
2435       int addr;
2436       SelectDest intersectdest;
2437       int r1;
2438 
2439       /* INTERSECT is different from the others since it requires
2440       ** two temporary tables.  Hence it has its own case.  Begin
2441       ** by allocating the tables we will need.
2442       */
2443       tab1 = pParse->nTab++;
2444       tab2 = pParse->nTab++;
2445       assert( p->pOrderBy==0 );
2446 
2447       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2448       assert( p->addrOpenEphm[0] == -1 );
2449       p->addrOpenEphm[0] = addr;
2450       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2451       assert( p->pEList );
2452 
2453       /* Code the SELECTs to our left into temporary table "tab1".
2454       */
2455       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2456       explainSetInteger(iSub1, pParse->iNextSelectId);
2457       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2458       if( rc ){
2459         goto multi_select_end;
2460       }
2461 
2462       /* Code the current SELECT into temporary table "tab2"
2463       */
2464       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2465       assert( p->addrOpenEphm[1] == -1 );
2466       p->addrOpenEphm[1] = addr;
2467       p->pPrior = 0;
2468       pLimit = p->pLimit;
2469       p->pLimit = 0;
2470       pOffset = p->pOffset;
2471       p->pOffset = 0;
2472       intersectdest.iSDParm = tab2;
2473       explainSetInteger(iSub2, pParse->iNextSelectId);
2474       rc = sqlite3Select(pParse, p, &intersectdest);
2475       testcase( rc!=SQLITE_OK );
2476       pDelete = p->pPrior;
2477       p->pPrior = pPrior;
2478       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2479       sqlite3ExprDelete(db, p->pLimit);
2480       p->pLimit = pLimit;
2481       p->pOffset = pOffset;
2482 
2483       /* Generate code to take the intersection of the two temporary
2484       ** tables.
2485       */
2486       assert( p->pEList );
2487       if( dest.eDest==SRT_Output ){
2488         Select *pFirst = p;
2489         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2490         generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2491       }
2492       iBreak = sqlite3VdbeMakeLabel(v);
2493       iCont = sqlite3VdbeMakeLabel(v);
2494       computeLimitRegisters(pParse, p, iBreak);
2495       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2496       r1 = sqlite3GetTempReg(pParse);
2497       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2498       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2499       sqlite3ReleaseTempReg(pParse, r1);
2500       selectInnerLoop(pParse, p, p->pEList, tab1,
2501                       0, 0, &dest, iCont, iBreak);
2502       sqlite3VdbeResolveLabel(v, iCont);
2503       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2504       sqlite3VdbeResolveLabel(v, iBreak);
2505       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2506       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2507       break;
2508     }
2509   }
2510 
2511   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2512 
2513   /* Compute collating sequences used by
2514   ** temporary tables needed to implement the compound select.
2515   ** Attach the KeyInfo structure to all temporary tables.
2516   **
2517   ** This section is run by the right-most SELECT statement only.
2518   ** SELECT statements to the left always skip this part.  The right-most
2519   ** SELECT might also skip this part if it has no ORDER BY clause and
2520   ** no temp tables are required.
2521   */
2522   if( p->selFlags & SF_UsesEphemeral ){
2523     int i;                        /* Loop counter */
2524     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2525     Select *pLoop;                /* For looping through SELECT statements */
2526     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2527     int nCol;                     /* Number of columns in result set */
2528 
2529     assert( p->pNext==0 );
2530     nCol = p->pEList->nExpr;
2531     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2532     if( !pKeyInfo ){
2533       rc = SQLITE_NOMEM_BKPT;
2534       goto multi_select_end;
2535     }
2536     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2537       *apColl = multiSelectCollSeq(pParse, p, i);
2538       if( 0==*apColl ){
2539         *apColl = db->pDfltColl;
2540       }
2541     }
2542 
2543     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2544       for(i=0; i<2; i++){
2545         int addr = pLoop->addrOpenEphm[i];
2546         if( addr<0 ){
2547           /* If [0] is unused then [1] is also unused.  So we can
2548           ** always safely abort as soon as the first unused slot is found */
2549           assert( pLoop->addrOpenEphm[1]<0 );
2550           break;
2551         }
2552         sqlite3VdbeChangeP2(v, addr, nCol);
2553         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2554                             P4_KEYINFO);
2555         pLoop->addrOpenEphm[i] = -1;
2556       }
2557     }
2558     sqlite3KeyInfoUnref(pKeyInfo);
2559   }
2560 
2561 multi_select_end:
2562   pDest->iSdst = dest.iSdst;
2563   pDest->nSdst = dest.nSdst;
2564   sqlite3SelectDelete(db, pDelete);
2565   return rc;
2566 }
2567 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2568 
2569 /*
2570 ** Error message for when two or more terms of a compound select have different
2571 ** size result sets.
2572 */
2573 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2574   if( p->selFlags & SF_Values ){
2575     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2576   }else{
2577     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2578       " do not have the same number of result columns", selectOpName(p->op));
2579   }
2580 }
2581 
2582 /*
2583 ** Code an output subroutine for a coroutine implementation of a
2584 ** SELECT statment.
2585 **
2586 ** The data to be output is contained in pIn->iSdst.  There are
2587 ** pIn->nSdst columns to be output.  pDest is where the output should
2588 ** be sent.
2589 **
2590 ** regReturn is the number of the register holding the subroutine
2591 ** return address.
2592 **
2593 ** If regPrev>0 then it is the first register in a vector that
2594 ** records the previous output.  mem[regPrev] is a flag that is false
2595 ** if there has been no previous output.  If regPrev>0 then code is
2596 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2597 ** keys.
2598 **
2599 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2600 ** iBreak.
2601 */
2602 static int generateOutputSubroutine(
2603   Parse *pParse,          /* Parsing context */
2604   Select *p,              /* The SELECT statement */
2605   SelectDest *pIn,        /* Coroutine supplying data */
2606   SelectDest *pDest,      /* Where to send the data */
2607   int regReturn,          /* The return address register */
2608   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2609   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2610   int iBreak              /* Jump here if we hit the LIMIT */
2611 ){
2612   Vdbe *v = pParse->pVdbe;
2613   int iContinue;
2614   int addr;
2615 
2616   addr = sqlite3VdbeCurrentAddr(v);
2617   iContinue = sqlite3VdbeMakeLabel(v);
2618 
2619   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2620   */
2621   if( regPrev ){
2622     int addr1, addr2;
2623     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2624     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2625                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2626     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2627     sqlite3VdbeJumpHere(v, addr1);
2628     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2629     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2630   }
2631   if( pParse->db->mallocFailed ) return 0;
2632 
2633   /* Suppress the first OFFSET entries if there is an OFFSET clause
2634   */
2635   codeOffset(v, p->iOffset, iContinue);
2636 
2637   assert( pDest->eDest!=SRT_Exists );
2638   assert( pDest->eDest!=SRT_Table );
2639   switch( pDest->eDest ){
2640     /* Store the result as data using a unique key.
2641     */
2642     case SRT_EphemTab: {
2643       int r1 = sqlite3GetTempReg(pParse);
2644       int r2 = sqlite3GetTempReg(pParse);
2645       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2646       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2647       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2648       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2649       sqlite3ReleaseTempReg(pParse, r2);
2650       sqlite3ReleaseTempReg(pParse, r1);
2651       break;
2652     }
2653 
2654 #ifndef SQLITE_OMIT_SUBQUERY
2655     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2656     ** then there should be a single item on the stack.  Write this
2657     ** item into the set table with bogus data.
2658     */
2659     case SRT_Set: {
2660       int r1;
2661       assert( pIn->nSdst==1 || pParse->nErr>0 );
2662       pDest->affSdst =
2663          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2664       r1 = sqlite3GetTempReg(pParse);
2665       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2666       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2667       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2668       sqlite3ReleaseTempReg(pParse, r1);
2669       break;
2670     }
2671 
2672     /* If this is a scalar select that is part of an expression, then
2673     ** store the results in the appropriate memory cell and break out
2674     ** of the scan loop.
2675     */
2676     case SRT_Mem: {
2677       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2678       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2679       /* The LIMIT clause will jump out of the loop for us */
2680       break;
2681     }
2682 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2683 
2684     /* The results are stored in a sequence of registers
2685     ** starting at pDest->iSdst.  Then the co-routine yields.
2686     */
2687     case SRT_Coroutine: {
2688       if( pDest->iSdst==0 ){
2689         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2690         pDest->nSdst = pIn->nSdst;
2691       }
2692       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2693       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2694       break;
2695     }
2696 
2697     /* If none of the above, then the result destination must be
2698     ** SRT_Output.  This routine is never called with any other
2699     ** destination other than the ones handled above or SRT_Output.
2700     **
2701     ** For SRT_Output, results are stored in a sequence of registers.
2702     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2703     ** return the next row of result.
2704     */
2705     default: {
2706       assert( pDest->eDest==SRT_Output );
2707       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2708       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2709       break;
2710     }
2711   }
2712 
2713   /* Jump to the end of the loop if the LIMIT is reached.
2714   */
2715   if( p->iLimit ){
2716     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2717   }
2718 
2719   /* Generate the subroutine return
2720   */
2721   sqlite3VdbeResolveLabel(v, iContinue);
2722   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2723 
2724   return addr;
2725 }
2726 
2727 /*
2728 ** Alternative compound select code generator for cases when there
2729 ** is an ORDER BY clause.
2730 **
2731 ** We assume a query of the following form:
2732 **
2733 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2734 **
2735 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2736 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2737 ** co-routines.  Then run the co-routines in parallel and merge the results
2738 ** into the output.  In addition to the two coroutines (called selectA and
2739 ** selectB) there are 7 subroutines:
2740 **
2741 **    outA:    Move the output of the selectA coroutine into the output
2742 **             of the compound query.
2743 **
2744 **    outB:    Move the output of the selectB coroutine into the output
2745 **             of the compound query.  (Only generated for UNION and
2746 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2747 **             appears only in B.)
2748 **
2749 **    AltB:    Called when there is data from both coroutines and A<B.
2750 **
2751 **    AeqB:    Called when there is data from both coroutines and A==B.
2752 **
2753 **    AgtB:    Called when there is data from both coroutines and A>B.
2754 **
2755 **    EofA:    Called when data is exhausted from selectA.
2756 **
2757 **    EofB:    Called when data is exhausted from selectB.
2758 **
2759 ** The implementation of the latter five subroutines depend on which
2760 ** <operator> is used:
2761 **
2762 **
2763 **             UNION ALL         UNION            EXCEPT          INTERSECT
2764 **          -------------  -----------------  --------------  -----------------
2765 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2766 **
2767 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2768 **
2769 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2770 **
2771 **   EofA:   outB, nextB      outB, nextB          halt             halt
2772 **
2773 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2774 **
2775 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2776 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2777 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2778 ** following nextX causes a jump to the end of the select processing.
2779 **
2780 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2781 ** within the output subroutine.  The regPrev register set holds the previously
2782 ** output value.  A comparison is made against this value and the output
2783 ** is skipped if the next results would be the same as the previous.
2784 **
2785 ** The implementation plan is to implement the two coroutines and seven
2786 ** subroutines first, then put the control logic at the bottom.  Like this:
2787 **
2788 **          goto Init
2789 **     coA: coroutine for left query (A)
2790 **     coB: coroutine for right query (B)
2791 **    outA: output one row of A
2792 **    outB: output one row of B (UNION and UNION ALL only)
2793 **    EofA: ...
2794 **    EofB: ...
2795 **    AltB: ...
2796 **    AeqB: ...
2797 **    AgtB: ...
2798 **    Init: initialize coroutine registers
2799 **          yield coA
2800 **          if eof(A) goto EofA
2801 **          yield coB
2802 **          if eof(B) goto EofB
2803 **    Cmpr: Compare A, B
2804 **          Jump AltB, AeqB, AgtB
2805 **     End: ...
2806 **
2807 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2808 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2809 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2810 ** and AgtB jump to either L2 or to one of EofA or EofB.
2811 */
2812 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2813 static int multiSelectOrderBy(
2814   Parse *pParse,        /* Parsing context */
2815   Select *p,            /* The right-most of SELECTs to be coded */
2816   SelectDest *pDest     /* What to do with query results */
2817 ){
2818   int i, j;             /* Loop counters */
2819   Select *pPrior;       /* Another SELECT immediately to our left */
2820   Vdbe *v;              /* Generate code to this VDBE */
2821   SelectDest destA;     /* Destination for coroutine A */
2822   SelectDest destB;     /* Destination for coroutine B */
2823   int regAddrA;         /* Address register for select-A coroutine */
2824   int regAddrB;         /* Address register for select-B coroutine */
2825   int addrSelectA;      /* Address of the select-A coroutine */
2826   int addrSelectB;      /* Address of the select-B coroutine */
2827   int regOutA;          /* Address register for the output-A subroutine */
2828   int regOutB;          /* Address register for the output-B subroutine */
2829   int addrOutA;         /* Address of the output-A subroutine */
2830   int addrOutB = 0;     /* Address of the output-B subroutine */
2831   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2832   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2833   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2834   int addrAltB;         /* Address of the A<B subroutine */
2835   int addrAeqB;         /* Address of the A==B subroutine */
2836   int addrAgtB;         /* Address of the A>B subroutine */
2837   int regLimitA;        /* Limit register for select-A */
2838   int regLimitB;        /* Limit register for select-A */
2839   int regPrev;          /* A range of registers to hold previous output */
2840   int savedLimit;       /* Saved value of p->iLimit */
2841   int savedOffset;      /* Saved value of p->iOffset */
2842   int labelCmpr;        /* Label for the start of the merge algorithm */
2843   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2844   int addr1;            /* Jump instructions that get retargetted */
2845   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2846   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2847   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2848   sqlite3 *db;          /* Database connection */
2849   ExprList *pOrderBy;   /* The ORDER BY clause */
2850   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2851   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2852 #ifndef SQLITE_OMIT_EXPLAIN
2853   int iSub1;            /* EQP id of left-hand query */
2854   int iSub2;            /* EQP id of right-hand query */
2855 #endif
2856 
2857   assert( p->pOrderBy!=0 );
2858   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2859   db = pParse->db;
2860   v = pParse->pVdbe;
2861   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2862   labelEnd = sqlite3VdbeMakeLabel(v);
2863   labelCmpr = sqlite3VdbeMakeLabel(v);
2864 
2865 
2866   /* Patch up the ORDER BY clause
2867   */
2868   op = p->op;
2869   pPrior = p->pPrior;
2870   assert( pPrior->pOrderBy==0 );
2871   pOrderBy = p->pOrderBy;
2872   assert( pOrderBy );
2873   nOrderBy = pOrderBy->nExpr;
2874 
2875   /* For operators other than UNION ALL we have to make sure that
2876   ** the ORDER BY clause covers every term of the result set.  Add
2877   ** terms to the ORDER BY clause as necessary.
2878   */
2879   if( op!=TK_ALL ){
2880     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2881       struct ExprList_item *pItem;
2882       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2883         assert( pItem->u.x.iOrderByCol>0 );
2884         if( pItem->u.x.iOrderByCol==i ) break;
2885       }
2886       if( j==nOrderBy ){
2887         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2888         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2889         pNew->flags |= EP_IntValue;
2890         pNew->u.iValue = i;
2891         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2892         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2893       }
2894     }
2895   }
2896 
2897   /* Compute the comparison permutation and keyinfo that is used with
2898   ** the permutation used to determine if the next
2899   ** row of results comes from selectA or selectB.  Also add explicit
2900   ** collations to the ORDER BY clause terms so that when the subqueries
2901   ** to the right and the left are evaluated, they use the correct
2902   ** collation.
2903   */
2904   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2905   if( aPermute ){
2906     struct ExprList_item *pItem;
2907     aPermute[0] = nOrderBy;
2908     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2909       assert( pItem->u.x.iOrderByCol>0 );
2910       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2911       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2912     }
2913     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2914   }else{
2915     pKeyMerge = 0;
2916   }
2917 
2918   /* Reattach the ORDER BY clause to the query.
2919   */
2920   p->pOrderBy = pOrderBy;
2921   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2922 
2923   /* Allocate a range of temporary registers and the KeyInfo needed
2924   ** for the logic that removes duplicate result rows when the
2925   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2926   */
2927   if( op==TK_ALL ){
2928     regPrev = 0;
2929   }else{
2930     int nExpr = p->pEList->nExpr;
2931     assert( nOrderBy>=nExpr || db->mallocFailed );
2932     regPrev = pParse->nMem+1;
2933     pParse->nMem += nExpr+1;
2934     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2935     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2936     if( pKeyDup ){
2937       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2938       for(i=0; i<nExpr; i++){
2939         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2940         pKeyDup->aSortOrder[i] = 0;
2941       }
2942     }
2943   }
2944 
2945   /* Separate the left and the right query from one another
2946   */
2947   p->pPrior = 0;
2948   pPrior->pNext = 0;
2949   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2950   if( pPrior->pPrior==0 ){
2951     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2952   }
2953 
2954   /* Compute the limit registers */
2955   computeLimitRegisters(pParse, p, labelEnd);
2956   if( p->iLimit && op==TK_ALL ){
2957     regLimitA = ++pParse->nMem;
2958     regLimitB = ++pParse->nMem;
2959     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2960                                   regLimitA);
2961     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2962   }else{
2963     regLimitA = regLimitB = 0;
2964   }
2965   sqlite3ExprDelete(db, p->pLimit);
2966   p->pLimit = 0;
2967   sqlite3ExprDelete(db, p->pOffset);
2968   p->pOffset = 0;
2969 
2970   regAddrA = ++pParse->nMem;
2971   regAddrB = ++pParse->nMem;
2972   regOutA = ++pParse->nMem;
2973   regOutB = ++pParse->nMem;
2974   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2975   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2976 
2977   /* Generate a coroutine to evaluate the SELECT statement to the
2978   ** left of the compound operator - the "A" select.
2979   */
2980   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2981   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2982   VdbeComment((v, "left SELECT"));
2983   pPrior->iLimit = regLimitA;
2984   explainSetInteger(iSub1, pParse->iNextSelectId);
2985   sqlite3Select(pParse, pPrior, &destA);
2986   sqlite3VdbeEndCoroutine(v, regAddrA);
2987   sqlite3VdbeJumpHere(v, addr1);
2988 
2989   /* Generate a coroutine to evaluate the SELECT statement on
2990   ** the right - the "B" select
2991   */
2992   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2993   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2994   VdbeComment((v, "right SELECT"));
2995   savedLimit = p->iLimit;
2996   savedOffset = p->iOffset;
2997   p->iLimit = regLimitB;
2998   p->iOffset = 0;
2999   explainSetInteger(iSub2, pParse->iNextSelectId);
3000   sqlite3Select(pParse, p, &destB);
3001   p->iLimit = savedLimit;
3002   p->iOffset = savedOffset;
3003   sqlite3VdbeEndCoroutine(v, regAddrB);
3004 
3005   /* Generate a subroutine that outputs the current row of the A
3006   ** select as the next output row of the compound select.
3007   */
3008   VdbeNoopComment((v, "Output routine for A"));
3009   addrOutA = generateOutputSubroutine(pParse,
3010                  p, &destA, pDest, regOutA,
3011                  regPrev, pKeyDup, labelEnd);
3012 
3013   /* Generate a subroutine that outputs the current row of the B
3014   ** select as the next output row of the compound select.
3015   */
3016   if( op==TK_ALL || op==TK_UNION ){
3017     VdbeNoopComment((v, "Output routine for B"));
3018     addrOutB = generateOutputSubroutine(pParse,
3019                  p, &destB, pDest, regOutB,
3020                  regPrev, pKeyDup, labelEnd);
3021   }
3022   sqlite3KeyInfoUnref(pKeyDup);
3023 
3024   /* Generate a subroutine to run when the results from select A
3025   ** are exhausted and only data in select B remains.
3026   */
3027   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3028     addrEofA_noB = addrEofA = labelEnd;
3029   }else{
3030     VdbeNoopComment((v, "eof-A subroutine"));
3031     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3032     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3033                                      VdbeCoverage(v);
3034     sqlite3VdbeGoto(v, addrEofA);
3035     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3036   }
3037 
3038   /* Generate a subroutine to run when the results from select B
3039   ** are exhausted and only data in select A remains.
3040   */
3041   if( op==TK_INTERSECT ){
3042     addrEofB = addrEofA;
3043     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3044   }else{
3045     VdbeNoopComment((v, "eof-B subroutine"));
3046     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3047     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3048     sqlite3VdbeGoto(v, addrEofB);
3049   }
3050 
3051   /* Generate code to handle the case of A<B
3052   */
3053   VdbeNoopComment((v, "A-lt-B subroutine"));
3054   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3055   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3056   sqlite3VdbeGoto(v, labelCmpr);
3057 
3058   /* Generate code to handle the case of A==B
3059   */
3060   if( op==TK_ALL ){
3061     addrAeqB = addrAltB;
3062   }else if( op==TK_INTERSECT ){
3063     addrAeqB = addrAltB;
3064     addrAltB++;
3065   }else{
3066     VdbeNoopComment((v, "A-eq-B subroutine"));
3067     addrAeqB =
3068     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3069     sqlite3VdbeGoto(v, labelCmpr);
3070   }
3071 
3072   /* Generate code to handle the case of A>B
3073   */
3074   VdbeNoopComment((v, "A-gt-B subroutine"));
3075   addrAgtB = sqlite3VdbeCurrentAddr(v);
3076   if( op==TK_ALL || op==TK_UNION ){
3077     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3078   }
3079   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3080   sqlite3VdbeGoto(v, labelCmpr);
3081 
3082   /* This code runs once to initialize everything.
3083   */
3084   sqlite3VdbeJumpHere(v, addr1);
3085   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3086   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3087 
3088   /* Implement the main merge loop
3089   */
3090   sqlite3VdbeResolveLabel(v, labelCmpr);
3091   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3092   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3093                          (char*)pKeyMerge, P4_KEYINFO);
3094   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3095   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3096 
3097   /* Jump to the this point in order to terminate the query.
3098   */
3099   sqlite3VdbeResolveLabel(v, labelEnd);
3100 
3101   /* Set the number of output columns
3102   */
3103   if( pDest->eDest==SRT_Output ){
3104     Select *pFirst = pPrior;
3105     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3106     generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
3107   }
3108 
3109   /* Reassembly the compound query so that it will be freed correctly
3110   ** by the calling function */
3111   if( p->pPrior ){
3112     sqlite3SelectDelete(db, p->pPrior);
3113   }
3114   p->pPrior = pPrior;
3115   pPrior->pNext = p;
3116 
3117   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3118   **** subqueries ****/
3119   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3120   return pParse->nErr!=0;
3121 }
3122 #endif
3123 
3124 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3125 /* Forward Declarations */
3126 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3127 static void substSelect(sqlite3*, Select *, int, ExprList*, int);
3128 
3129 /*
3130 ** Scan through the expression pExpr.  Replace every reference to
3131 ** a column in table number iTable with a copy of the iColumn-th
3132 ** entry in pEList.  (But leave references to the ROWID column
3133 ** unchanged.)
3134 **
3135 ** This routine is part of the flattening procedure.  A subquery
3136 ** whose result set is defined by pEList appears as entry in the
3137 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3138 ** FORM clause entry is iTable.  This routine make the necessary
3139 ** changes to pExpr so that it refers directly to the source table
3140 ** of the subquery rather the result set of the subquery.
3141 */
3142 static Expr *substExpr(
3143   sqlite3 *db,        /* Report malloc errors to this connection */
3144   Expr *pExpr,        /* Expr in which substitution occurs */
3145   int iTable,         /* Table to be substituted */
3146   ExprList *pEList    /* Substitute expressions */
3147 ){
3148   if( pExpr==0 ) return 0;
3149   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3150     if( pExpr->iColumn<0 ){
3151       pExpr->op = TK_NULL;
3152     }else{
3153       Expr *pNew;
3154       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3155       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3156       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3157       sqlite3ExprDelete(db, pExpr);
3158       pExpr = pNew;
3159     }
3160   }else{
3161     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3162     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3163     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3164       substSelect(db, pExpr->x.pSelect, iTable, pEList, 1);
3165     }else{
3166       substExprList(db, pExpr->x.pList, iTable, pEList);
3167     }
3168   }
3169   return pExpr;
3170 }
3171 static void substExprList(
3172   sqlite3 *db,         /* Report malloc errors here */
3173   ExprList *pList,     /* List to scan and in which to make substitutes */
3174   int iTable,          /* Table to be substituted */
3175   ExprList *pEList     /* Substitute values */
3176 ){
3177   int i;
3178   if( pList==0 ) return;
3179   for(i=0; i<pList->nExpr; i++){
3180     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3181   }
3182 }
3183 static void substSelect(
3184   sqlite3 *db,         /* Report malloc errors here */
3185   Select *p,           /* SELECT statement in which to make substitutions */
3186   int iTable,          /* Table to be replaced */
3187   ExprList *pEList,    /* Substitute values */
3188   int doPrior          /* Do substitutes on p->pPrior too */
3189 ){
3190   SrcList *pSrc;
3191   struct SrcList_item *pItem;
3192   int i;
3193   if( !p ) return;
3194   do{
3195     substExprList(db, p->pEList, iTable, pEList);
3196     substExprList(db, p->pGroupBy, iTable, pEList);
3197     substExprList(db, p->pOrderBy, iTable, pEList);
3198     p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3199     p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3200     pSrc = p->pSrc;
3201     assert( pSrc!=0 );
3202     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3203       substSelect(db, pItem->pSelect, iTable, pEList, 1);
3204       if( pItem->fg.isTabFunc ){
3205         substExprList(db, pItem->u1.pFuncArg, iTable, pEList);
3206       }
3207     }
3208   }while( doPrior && (p = p->pPrior)!=0 );
3209 }
3210 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3211 
3212 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3213 /*
3214 ** This routine attempts to flatten subqueries as a performance optimization.
3215 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3216 **
3217 ** To understand the concept of flattening, consider the following
3218 ** query:
3219 **
3220 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3221 **
3222 ** The default way of implementing this query is to execute the
3223 ** subquery first and store the results in a temporary table, then
3224 ** run the outer query on that temporary table.  This requires two
3225 ** passes over the data.  Furthermore, because the temporary table
3226 ** has no indices, the WHERE clause on the outer query cannot be
3227 ** optimized.
3228 **
3229 ** This routine attempts to rewrite queries such as the above into
3230 ** a single flat select, like this:
3231 **
3232 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3233 **
3234 ** The code generated for this simplification gives the same result
3235 ** but only has to scan the data once.  And because indices might
3236 ** exist on the table t1, a complete scan of the data might be
3237 ** avoided.
3238 **
3239 ** Flattening is only attempted if all of the following are true:
3240 **
3241 **   (1)  The subquery and the outer query do not both use aggregates.
3242 **
3243 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3244 **        and (2b) the outer query does not use subqueries other than the one
3245 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3246 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3247 **
3248 **   (3)  The subquery is not the right operand of a left outer join
3249 **        (Originally ticket #306.  Strengthened by ticket #3300)
3250 **
3251 **   (4)  The subquery is not DISTINCT.
3252 **
3253 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3254 **        sub-queries that were excluded from this optimization. Restriction
3255 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3256 **
3257 **   (6)  The subquery does not use aggregates or the outer query is not
3258 **        DISTINCT.
3259 **
3260 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3261 **        A FROM clause, consider adding a FROM close with the special
3262 **        table sqlite_once that consists of a single row containing a
3263 **        single NULL.
3264 **
3265 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3266 **
3267 **   (9)  The subquery does not use LIMIT or the outer query does not use
3268 **        aggregates.
3269 **
3270 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3271 **        accidently carried the comment forward until 2014-09-15.  Original
3272 **        text: "The subquery does not use aggregates or the outer query
3273 **        does not use LIMIT."
3274 **
3275 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3276 **
3277 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3278 **        a separate restriction deriving from ticket #350.
3279 **
3280 **  (13)  The subquery and outer query do not both use LIMIT.
3281 **
3282 **  (14)  The subquery does not use OFFSET.
3283 **
3284 **  (15)  The outer query is not part of a compound select or the
3285 **        subquery does not have a LIMIT clause.
3286 **        (See ticket #2339 and ticket [02a8e81d44]).
3287 **
3288 **  (16)  The outer query is not an aggregate or the subquery does
3289 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3290 **        until we introduced the group_concat() function.
3291 **
3292 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3293 **        compound clause made up entirely of non-aggregate queries, and
3294 **        the parent query:
3295 **
3296 **          * is not itself part of a compound select,
3297 **          * is not an aggregate or DISTINCT query, and
3298 **          * is not a join
3299 **
3300 **        The parent and sub-query may contain WHERE clauses. Subject to
3301 **        rules (11), (13) and (14), they may also contain ORDER BY,
3302 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3303 **        operator other than UNION ALL because all the other compound
3304 **        operators have an implied DISTINCT which is disallowed by
3305 **        restriction (4).
3306 **
3307 **        Also, each component of the sub-query must return the same number
3308 **        of result columns. This is actually a requirement for any compound
3309 **        SELECT statement, but all the code here does is make sure that no
3310 **        such (illegal) sub-query is flattened. The caller will detect the
3311 **        syntax error and return a detailed message.
3312 **
3313 **  (18)  If the sub-query is a compound select, then all terms of the
3314 **        ORDER by clause of the parent must be simple references to
3315 **        columns of the sub-query.
3316 **
3317 **  (19)  The subquery does not use LIMIT or the outer query does not
3318 **        have a WHERE clause.
3319 **
3320 **  (20)  If the sub-query is a compound select, then it must not use
3321 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3322 **        somewhat by saying that the terms of the ORDER BY clause must
3323 **        appear as unmodified result columns in the outer query.  But we
3324 **        have other optimizations in mind to deal with that case.
3325 **
3326 **  (21)  The subquery does not use LIMIT or the outer query is not
3327 **        DISTINCT.  (See ticket [752e1646fc]).
3328 **
3329 **  (22)  The subquery is not a recursive CTE.
3330 **
3331 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3332 **        compound query. This restriction is because transforming the
3333 **        parent to a compound query confuses the code that handles
3334 **        recursive queries in multiSelect().
3335 **
3336 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3337 **        or max() functions.  (Without this restriction, a query like:
3338 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3339 **        return the value X for which Y was maximal.)
3340 **
3341 **
3342 ** In this routine, the "p" parameter is a pointer to the outer query.
3343 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3344 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3345 **
3346 ** If flattening is not attempted, this routine is a no-op and returns 0.
3347 ** If flattening is attempted this routine returns 1.
3348 **
3349 ** All of the expression analysis must occur on both the outer query and
3350 ** the subquery before this routine runs.
3351 */
3352 static int flattenSubquery(
3353   Parse *pParse,       /* Parsing context */
3354   Select *p,           /* The parent or outer SELECT statement */
3355   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3356   int isAgg,           /* True if outer SELECT uses aggregate functions */
3357   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3358 ){
3359   const char *zSavedAuthContext = pParse->zAuthContext;
3360   Select *pParent;    /* Current UNION ALL term of the other query */
3361   Select *pSub;       /* The inner query or "subquery" */
3362   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3363   SrcList *pSrc;      /* The FROM clause of the outer query */
3364   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3365   ExprList *pList;    /* The result set of the outer query */
3366   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3367   int i;              /* Loop counter */
3368   Expr *pWhere;                    /* The WHERE clause */
3369   struct SrcList_item *pSubitem;   /* The subquery */
3370   sqlite3 *db = pParse->db;
3371 
3372   /* Check to see if flattening is permitted.  Return 0 if not.
3373   */
3374   assert( p!=0 );
3375   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3376   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3377   pSrc = p->pSrc;
3378   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3379   pSubitem = &pSrc->a[iFrom];
3380   iParent = pSubitem->iCursor;
3381   pSub = pSubitem->pSelect;
3382   assert( pSub!=0 );
3383   if( subqueryIsAgg ){
3384     if( isAgg ) return 0;                                /* Restriction (1)   */
3385     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3386     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3387      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3388      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3389     ){
3390       return 0;                                          /* Restriction (2b)  */
3391     }
3392   }
3393 
3394   pSubSrc = pSub->pSrc;
3395   assert( pSubSrc );
3396   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3397   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3398   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3399   ** became arbitrary expressions, we were forced to add restrictions (13)
3400   ** and (14). */
3401   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3402   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3403   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3404     return 0;                                            /* Restriction (15) */
3405   }
3406   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3407   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3408   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3409      return 0;         /* Restrictions (8)(9) */
3410   }
3411   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3412      return 0;         /* Restriction (6)  */
3413   }
3414   if( p->pOrderBy && pSub->pOrderBy ){
3415      return 0;                                           /* Restriction (11) */
3416   }
3417   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3418   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3419   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3420      return 0;         /* Restriction (21) */
3421   }
3422   testcase( pSub->selFlags & SF_Recursive );
3423   testcase( pSub->selFlags & SF_MinMaxAgg );
3424   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3425     return 0; /* Restrictions (22) and (24) */
3426   }
3427   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3428     return 0; /* Restriction (23) */
3429   }
3430 
3431   /* OBSOLETE COMMENT 1:
3432   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3433   ** not used as the right operand of an outer join.  Examples of why this
3434   ** is not allowed:
3435   **
3436   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3437   **
3438   ** If we flatten the above, we would get
3439   **
3440   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3441   **
3442   ** which is not at all the same thing.
3443   **
3444   ** OBSOLETE COMMENT 2:
3445   ** Restriction 12:  If the subquery is the right operand of a left outer
3446   ** join, make sure the subquery has no WHERE clause.
3447   ** An examples of why this is not allowed:
3448   **
3449   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3450   **
3451   ** If we flatten the above, we would get
3452   **
3453   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3454   **
3455   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3456   ** effectively converts the OUTER JOIN into an INNER JOIN.
3457   **
3458   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3459   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3460   ** is fraught with danger.  Best to avoid the whole thing.  If the
3461   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3462   */
3463   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3464     return 0;
3465   }
3466 
3467   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3468   ** use only the UNION ALL operator. And none of the simple select queries
3469   ** that make up the compound SELECT are allowed to be aggregate or distinct
3470   ** queries.
3471   */
3472   if( pSub->pPrior ){
3473     if( pSub->pOrderBy ){
3474       return 0;  /* Restriction 20 */
3475     }
3476     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3477       return 0;
3478     }
3479     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3480       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3481       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3482       assert( pSub->pSrc!=0 );
3483       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3484       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3485        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3486        || pSub1->pSrc->nSrc<1
3487       ){
3488         return 0;
3489       }
3490       testcase( pSub1->pSrc->nSrc>1 );
3491     }
3492 
3493     /* Restriction 18. */
3494     if( p->pOrderBy ){
3495       int ii;
3496       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3497         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3498       }
3499     }
3500   }
3501 
3502   /***** If we reach this point, flattening is permitted. *****/
3503   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3504                    pSub->zSelName, pSub, iFrom));
3505 
3506   /* Authorize the subquery */
3507   pParse->zAuthContext = pSubitem->zName;
3508   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3509   testcase( i==SQLITE_DENY );
3510   pParse->zAuthContext = zSavedAuthContext;
3511 
3512   /* If the sub-query is a compound SELECT statement, then (by restrictions
3513   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3514   ** be of the form:
3515   **
3516   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3517   **
3518   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3519   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3520   ** OFFSET clauses and joins them to the left-hand-side of the original
3521   ** using UNION ALL operators. In this case N is the number of simple
3522   ** select statements in the compound sub-query.
3523   **
3524   ** Example:
3525   **
3526   **     SELECT a+1 FROM (
3527   **        SELECT x FROM tab
3528   **        UNION ALL
3529   **        SELECT y FROM tab
3530   **        UNION ALL
3531   **        SELECT abs(z*2) FROM tab2
3532   **     ) WHERE a!=5 ORDER BY 1
3533   **
3534   ** Transformed into:
3535   **
3536   **     SELECT x+1 FROM tab WHERE x+1!=5
3537   **     UNION ALL
3538   **     SELECT y+1 FROM tab WHERE y+1!=5
3539   **     UNION ALL
3540   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3541   **     ORDER BY 1
3542   **
3543   ** We call this the "compound-subquery flattening".
3544   */
3545   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3546     Select *pNew;
3547     ExprList *pOrderBy = p->pOrderBy;
3548     Expr *pLimit = p->pLimit;
3549     Expr *pOffset = p->pOffset;
3550     Select *pPrior = p->pPrior;
3551     p->pOrderBy = 0;
3552     p->pSrc = 0;
3553     p->pPrior = 0;
3554     p->pLimit = 0;
3555     p->pOffset = 0;
3556     pNew = sqlite3SelectDup(db, p, 0);
3557     sqlite3SelectSetName(pNew, pSub->zSelName);
3558     p->pOffset = pOffset;
3559     p->pLimit = pLimit;
3560     p->pOrderBy = pOrderBy;
3561     p->pSrc = pSrc;
3562     p->op = TK_ALL;
3563     if( pNew==0 ){
3564       p->pPrior = pPrior;
3565     }else{
3566       pNew->pPrior = pPrior;
3567       if( pPrior ) pPrior->pNext = pNew;
3568       pNew->pNext = p;
3569       p->pPrior = pNew;
3570       SELECTTRACE(2,pParse,p,
3571          ("compound-subquery flattener creates %s.%p as peer\n",
3572          pNew->zSelName, pNew));
3573     }
3574     if( db->mallocFailed ) return 1;
3575   }
3576 
3577   /* Begin flattening the iFrom-th entry of the FROM clause
3578   ** in the outer query.
3579   */
3580   pSub = pSub1 = pSubitem->pSelect;
3581 
3582   /* Delete the transient table structure associated with the
3583   ** subquery
3584   */
3585   sqlite3DbFree(db, pSubitem->zDatabase);
3586   sqlite3DbFree(db, pSubitem->zName);
3587   sqlite3DbFree(db, pSubitem->zAlias);
3588   pSubitem->zDatabase = 0;
3589   pSubitem->zName = 0;
3590   pSubitem->zAlias = 0;
3591   pSubitem->pSelect = 0;
3592 
3593   /* Defer deleting the Table object associated with the
3594   ** subquery until code generation is
3595   ** complete, since there may still exist Expr.pTab entries that
3596   ** refer to the subquery even after flattening.  Ticket #3346.
3597   **
3598   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3599   */
3600   if( ALWAYS(pSubitem->pTab!=0) ){
3601     Table *pTabToDel = pSubitem->pTab;
3602     if( pTabToDel->nRef==1 ){
3603       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3604       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3605       pToplevel->pZombieTab = pTabToDel;
3606     }else{
3607       pTabToDel->nRef--;
3608     }
3609     pSubitem->pTab = 0;
3610   }
3611 
3612   /* The following loop runs once for each term in a compound-subquery
3613   ** flattening (as described above).  If we are doing a different kind
3614   ** of flattening - a flattening other than a compound-subquery flattening -
3615   ** then this loop only runs once.
3616   **
3617   ** This loop moves all of the FROM elements of the subquery into the
3618   ** the FROM clause of the outer query.  Before doing this, remember
3619   ** the cursor number for the original outer query FROM element in
3620   ** iParent.  The iParent cursor will never be used.  Subsequent code
3621   ** will scan expressions looking for iParent references and replace
3622   ** those references with expressions that resolve to the subquery FROM
3623   ** elements we are now copying in.
3624   */
3625   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3626     int nSubSrc;
3627     u8 jointype = 0;
3628     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3629     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3630     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3631 
3632     if( pSrc ){
3633       assert( pParent==p );  /* First time through the loop */
3634       jointype = pSubitem->fg.jointype;
3635     }else{
3636       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3637       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3638       if( pSrc==0 ){
3639         assert( db->mallocFailed );
3640         break;
3641       }
3642     }
3643 
3644     /* The subquery uses a single slot of the FROM clause of the outer
3645     ** query.  If the subquery has more than one element in its FROM clause,
3646     ** then expand the outer query to make space for it to hold all elements
3647     ** of the subquery.
3648     **
3649     ** Example:
3650     **
3651     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3652     **
3653     ** The outer query has 3 slots in its FROM clause.  One slot of the
3654     ** outer query (the middle slot) is used by the subquery.  The next
3655     ** block of code will expand the outer query FROM clause to 4 slots.
3656     ** The middle slot is expanded to two slots in order to make space
3657     ** for the two elements in the FROM clause of the subquery.
3658     */
3659     if( nSubSrc>1 ){
3660       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3661       if( db->mallocFailed ){
3662         break;
3663       }
3664     }
3665 
3666     /* Transfer the FROM clause terms from the subquery into the
3667     ** outer query.
3668     */
3669     for(i=0; i<nSubSrc; i++){
3670       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3671       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3672       pSrc->a[i+iFrom] = pSubSrc->a[i];
3673       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3674     }
3675     pSrc->a[iFrom].fg.jointype = jointype;
3676 
3677     /* Now begin substituting subquery result set expressions for
3678     ** references to the iParent in the outer query.
3679     **
3680     ** Example:
3681     **
3682     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3683     **   \                     \_____________ subquery __________/          /
3684     **    \_____________________ outer query ______________________________/
3685     **
3686     ** We look at every expression in the outer query and every place we see
3687     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3688     */
3689     pList = pParent->pEList;
3690     for(i=0; i<pList->nExpr; i++){
3691       if( pList->a[i].zName==0 ){
3692         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3693         sqlite3Dequote(zName);
3694         pList->a[i].zName = zName;
3695       }
3696     }
3697     if( pSub->pOrderBy ){
3698       /* At this point, any non-zero iOrderByCol values indicate that the
3699       ** ORDER BY column expression is identical to the iOrderByCol'th
3700       ** expression returned by SELECT statement pSub. Since these values
3701       ** do not necessarily correspond to columns in SELECT statement pParent,
3702       ** zero them before transfering the ORDER BY clause.
3703       **
3704       ** Not doing this may cause an error if a subsequent call to this
3705       ** function attempts to flatten a compound sub-query into pParent
3706       ** (the only way this can happen is if the compound sub-query is
3707       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3708       ExprList *pOrderBy = pSub->pOrderBy;
3709       for(i=0; i<pOrderBy->nExpr; i++){
3710         pOrderBy->a[i].u.x.iOrderByCol = 0;
3711       }
3712       assert( pParent->pOrderBy==0 );
3713       assert( pSub->pPrior==0 );
3714       pParent->pOrderBy = pOrderBy;
3715       pSub->pOrderBy = 0;
3716     }
3717     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3718     if( subqueryIsAgg ){
3719       assert( pParent->pHaving==0 );
3720       pParent->pHaving = pParent->pWhere;
3721       pParent->pWhere = pWhere;
3722       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3723                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3724       assert( pParent->pGroupBy==0 );
3725       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3726     }else{
3727       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3728     }
3729     substSelect(db, pParent, iParent, pSub->pEList, 0);
3730 
3731     /* The flattened query is distinct if either the inner or the
3732     ** outer query is distinct.
3733     */
3734     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3735 
3736     /*
3737     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3738     **
3739     ** One is tempted to try to add a and b to combine the limits.  But this
3740     ** does not work if either limit is negative.
3741     */
3742     if( pSub->pLimit ){
3743       pParent->pLimit = pSub->pLimit;
3744       pSub->pLimit = 0;
3745     }
3746   }
3747 
3748   /* Finially, delete what is left of the subquery and return
3749   ** success.
3750   */
3751   sqlite3SelectDelete(db, pSub1);
3752 
3753 #if SELECTTRACE_ENABLED
3754   if( sqlite3SelectTrace & 0x100 ){
3755     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3756     sqlite3TreeViewSelect(0, p, 0);
3757   }
3758 #endif
3759 
3760   return 1;
3761 }
3762 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3763 
3764 
3765 
3766 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3767 /*
3768 ** Make copies of relevant WHERE clause terms of the outer query into
3769 ** the WHERE clause of subquery.  Example:
3770 **
3771 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3772 **
3773 ** Transformed into:
3774 **
3775 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3776 **     WHERE x=5 AND y=10;
3777 **
3778 ** The hope is that the terms added to the inner query will make it more
3779 ** efficient.
3780 **
3781 ** Do not attempt this optimization if:
3782 **
3783 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3784 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3785 **       inner query.  But they probably won't help there so do not bother.)
3786 **
3787 **   (2) The inner query is the recursive part of a common table expression.
3788 **
3789 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3790 **       close would change the meaning of the LIMIT).
3791 **
3792 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3793 **       enforces this restriction since this routine does not have enough
3794 **       information to know.)
3795 **
3796 **   (5) The WHERE clause expression originates in the ON or USING clause
3797 **       of a LEFT JOIN.
3798 **
3799 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3800 ** terms are duplicated into the subquery.
3801 */
3802 static int pushDownWhereTerms(
3803   sqlite3 *db,          /* The database connection (for malloc()) */
3804   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3805   Expr *pWhere,         /* The WHERE clause of the outer query */
3806   int iCursor           /* Cursor number of the subquery */
3807 ){
3808   Expr *pNew;
3809   int nChng = 0;
3810   Select *pX;           /* For looping over compound SELECTs in pSubq */
3811   if( pWhere==0 ) return 0;
3812   for(pX=pSubq; pX; pX=pX->pPrior){
3813     if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3814       testcase( pX->selFlags & SF_Aggregate );
3815       testcase( pX->selFlags & SF_Recursive );
3816       testcase( pX!=pSubq );
3817       return 0; /* restrictions (1) and (2) */
3818     }
3819   }
3820   if( pSubq->pLimit!=0 ){
3821     return 0; /* restriction (3) */
3822   }
3823   while( pWhere->op==TK_AND ){
3824     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3825     pWhere = pWhere->pLeft;
3826   }
3827   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3828   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3829     nChng++;
3830     while( pSubq ){
3831       pNew = sqlite3ExprDup(db, pWhere, 0);
3832       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3833       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3834       pSubq = pSubq->pPrior;
3835     }
3836   }
3837   return nChng;
3838 }
3839 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3840 
3841 /*
3842 ** Based on the contents of the AggInfo structure indicated by the first
3843 ** argument, this function checks if the following are true:
3844 **
3845 **    * the query contains just a single aggregate function,
3846 **    * the aggregate function is either min() or max(), and
3847 **    * the argument to the aggregate function is a column value.
3848 **
3849 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3850 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3851 ** list of arguments passed to the aggregate before returning.
3852 **
3853 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3854 ** WHERE_ORDERBY_NORMAL is returned.
3855 */
3856 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3857   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3858 
3859   *ppMinMax = 0;
3860   if( pAggInfo->nFunc==1 ){
3861     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3862     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3863 
3864     assert( pExpr->op==TK_AGG_FUNCTION );
3865     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3866       const char *zFunc = pExpr->u.zToken;
3867       if( sqlite3StrICmp(zFunc, "min")==0 ){
3868         eRet = WHERE_ORDERBY_MIN;
3869         *ppMinMax = pEList;
3870       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3871         eRet = WHERE_ORDERBY_MAX;
3872         *ppMinMax = pEList;
3873       }
3874     }
3875   }
3876 
3877   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3878   return eRet;
3879 }
3880 
3881 /*
3882 ** The select statement passed as the first argument is an aggregate query.
3883 ** The second argument is the associated aggregate-info object. This
3884 ** function tests if the SELECT is of the form:
3885 **
3886 **   SELECT count(*) FROM <tbl>
3887 **
3888 ** where table is a database table, not a sub-select or view. If the query
3889 ** does match this pattern, then a pointer to the Table object representing
3890 ** <tbl> is returned. Otherwise, 0 is returned.
3891 */
3892 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3893   Table *pTab;
3894   Expr *pExpr;
3895 
3896   assert( !p->pGroupBy );
3897 
3898   if( p->pWhere || p->pEList->nExpr!=1
3899    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3900   ){
3901     return 0;
3902   }
3903   pTab = p->pSrc->a[0].pTab;
3904   pExpr = p->pEList->a[0].pExpr;
3905   assert( pTab && !pTab->pSelect && pExpr );
3906 
3907   if( IsVirtual(pTab) ) return 0;
3908   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3909   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3910   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3911   if( pExpr->flags&EP_Distinct ) return 0;
3912 
3913   return pTab;
3914 }
3915 
3916 /*
3917 ** If the source-list item passed as an argument was augmented with an
3918 ** INDEXED BY clause, then try to locate the specified index. If there
3919 ** was such a clause and the named index cannot be found, return
3920 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3921 ** pFrom->pIndex and return SQLITE_OK.
3922 */
3923 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3924   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3925     Table *pTab = pFrom->pTab;
3926     char *zIndexedBy = pFrom->u1.zIndexedBy;
3927     Index *pIdx;
3928     for(pIdx=pTab->pIndex;
3929         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3930         pIdx=pIdx->pNext
3931     );
3932     if( !pIdx ){
3933       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3934       pParse->checkSchema = 1;
3935       return SQLITE_ERROR;
3936     }
3937     pFrom->pIBIndex = pIdx;
3938   }
3939   return SQLITE_OK;
3940 }
3941 /*
3942 ** Detect compound SELECT statements that use an ORDER BY clause with
3943 ** an alternative collating sequence.
3944 **
3945 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3946 **
3947 ** These are rewritten as a subquery:
3948 **
3949 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3950 **     ORDER BY ... COLLATE ...
3951 **
3952 ** This transformation is necessary because the multiSelectOrderBy() routine
3953 ** above that generates the code for a compound SELECT with an ORDER BY clause
3954 ** uses a merge algorithm that requires the same collating sequence on the
3955 ** result columns as on the ORDER BY clause.  See ticket
3956 ** http://www.sqlite.org/src/info/6709574d2a
3957 **
3958 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3959 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3960 ** there are COLLATE terms in the ORDER BY.
3961 */
3962 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3963   int i;
3964   Select *pNew;
3965   Select *pX;
3966   sqlite3 *db;
3967   struct ExprList_item *a;
3968   SrcList *pNewSrc;
3969   Parse *pParse;
3970   Token dummy;
3971 
3972   if( p->pPrior==0 ) return WRC_Continue;
3973   if( p->pOrderBy==0 ) return WRC_Continue;
3974   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3975   if( pX==0 ) return WRC_Continue;
3976   a = p->pOrderBy->a;
3977   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3978     if( a[i].pExpr->flags & EP_Collate ) break;
3979   }
3980   if( i<0 ) return WRC_Continue;
3981 
3982   /* If we reach this point, that means the transformation is required. */
3983 
3984   pParse = pWalker->pParse;
3985   db = pParse->db;
3986   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3987   if( pNew==0 ) return WRC_Abort;
3988   memset(&dummy, 0, sizeof(dummy));
3989   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3990   if( pNewSrc==0 ) return WRC_Abort;
3991   *pNew = *p;
3992   p->pSrc = pNewSrc;
3993   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
3994   p->op = TK_SELECT;
3995   p->pWhere = 0;
3996   pNew->pGroupBy = 0;
3997   pNew->pHaving = 0;
3998   pNew->pOrderBy = 0;
3999   p->pPrior = 0;
4000   p->pNext = 0;
4001   p->pWith = 0;
4002   p->selFlags &= ~SF_Compound;
4003   assert( (p->selFlags & SF_Converted)==0 );
4004   p->selFlags |= SF_Converted;
4005   assert( pNew->pPrior!=0 );
4006   pNew->pPrior->pNext = pNew;
4007   pNew->pLimit = 0;
4008   pNew->pOffset = 0;
4009   return WRC_Continue;
4010 }
4011 
4012 /*
4013 ** Check to see if the FROM clause term pFrom has table-valued function
4014 ** arguments.  If it does, leave an error message in pParse and return
4015 ** non-zero, since pFrom is not allowed to be a table-valued function.
4016 */
4017 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4018   if( pFrom->fg.isTabFunc ){
4019     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4020     return 1;
4021   }
4022   return 0;
4023 }
4024 
4025 #ifndef SQLITE_OMIT_CTE
4026 /*
4027 ** Argument pWith (which may be NULL) points to a linked list of nested
4028 ** WITH contexts, from inner to outermost. If the table identified by
4029 ** FROM clause element pItem is really a common-table-expression (CTE)
4030 ** then return a pointer to the CTE definition for that table. Otherwise
4031 ** return NULL.
4032 **
4033 ** If a non-NULL value is returned, set *ppContext to point to the With
4034 ** object that the returned CTE belongs to.
4035 */
4036 static struct Cte *searchWith(
4037   With *pWith,                    /* Current innermost WITH clause */
4038   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4039   With **ppContext                /* OUT: WITH clause return value belongs to */
4040 ){
4041   const char *zName;
4042   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4043     With *p;
4044     for(p=pWith; p; p=p->pOuter){
4045       int i;
4046       for(i=0; i<p->nCte; i++){
4047         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4048           *ppContext = p;
4049           return &p->a[i];
4050         }
4051       }
4052     }
4053   }
4054   return 0;
4055 }
4056 
4057 /* The code generator maintains a stack of active WITH clauses
4058 ** with the inner-most WITH clause being at the top of the stack.
4059 **
4060 ** This routine pushes the WITH clause passed as the second argument
4061 ** onto the top of the stack. If argument bFree is true, then this
4062 ** WITH clause will never be popped from the stack. In this case it
4063 ** should be freed along with the Parse object. In other cases, when
4064 ** bFree==0, the With object will be freed along with the SELECT
4065 ** statement with which it is associated.
4066 */
4067 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4068   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4069   if( pWith ){
4070     assert( pParse->pWith!=pWith );
4071     pWith->pOuter = pParse->pWith;
4072     pParse->pWith = pWith;
4073     if( bFree ) pParse->pWithToFree = pWith;
4074   }
4075 }
4076 
4077 /*
4078 ** This function checks if argument pFrom refers to a CTE declared by
4079 ** a WITH clause on the stack currently maintained by the parser. And,
4080 ** if currently processing a CTE expression, if it is a recursive
4081 ** reference to the current CTE.
4082 **
4083 ** If pFrom falls into either of the two categories above, pFrom->pTab
4084 ** and other fields are populated accordingly. The caller should check
4085 ** (pFrom->pTab!=0) to determine whether or not a successful match
4086 ** was found.
4087 **
4088 ** Whether or not a match is found, SQLITE_OK is returned if no error
4089 ** occurs. If an error does occur, an error message is stored in the
4090 ** parser and some error code other than SQLITE_OK returned.
4091 */
4092 static int withExpand(
4093   Walker *pWalker,
4094   struct SrcList_item *pFrom
4095 ){
4096   Parse *pParse = pWalker->pParse;
4097   sqlite3 *db = pParse->db;
4098   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4099   With *pWith;                    /* WITH clause that pCte belongs to */
4100 
4101   assert( pFrom->pTab==0 );
4102 
4103   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4104   if( pCte ){
4105     Table *pTab;
4106     ExprList *pEList;
4107     Select *pSel;
4108     Select *pLeft;                /* Left-most SELECT statement */
4109     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4110     With *pSavedWith;             /* Initial value of pParse->pWith */
4111 
4112     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4113     ** recursive reference to CTE pCte. Leave an error in pParse and return
4114     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4115     ** In this case, proceed.  */
4116     if( pCte->zCteErr ){
4117       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4118       return SQLITE_ERROR;
4119     }
4120     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4121 
4122     assert( pFrom->pTab==0 );
4123     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4124     if( pTab==0 ) return WRC_Abort;
4125     pTab->nRef = 1;
4126     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4127     pTab->iPKey = -1;
4128     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4129     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4130     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4131     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4132     assert( pFrom->pSelect );
4133 
4134     /* Check if this is a recursive CTE. */
4135     pSel = pFrom->pSelect;
4136     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4137     if( bMayRecursive ){
4138       int i;
4139       SrcList *pSrc = pFrom->pSelect->pSrc;
4140       for(i=0; i<pSrc->nSrc; i++){
4141         struct SrcList_item *pItem = &pSrc->a[i];
4142         if( pItem->zDatabase==0
4143          && pItem->zName!=0
4144          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4145           ){
4146           pItem->pTab = pTab;
4147           pItem->fg.isRecursive = 1;
4148           pTab->nRef++;
4149           pSel->selFlags |= SF_Recursive;
4150         }
4151       }
4152     }
4153 
4154     /* Only one recursive reference is permitted. */
4155     if( pTab->nRef>2 ){
4156       sqlite3ErrorMsg(
4157           pParse, "multiple references to recursive table: %s", pCte->zName
4158       );
4159       return SQLITE_ERROR;
4160     }
4161     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4162 
4163     pCte->zCteErr = "circular reference: %s";
4164     pSavedWith = pParse->pWith;
4165     pParse->pWith = pWith;
4166     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4167     pParse->pWith = pWith;
4168 
4169     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4170     pEList = pLeft->pEList;
4171     if( pCte->pCols ){
4172       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4173         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4174             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4175         );
4176         pParse->pWith = pSavedWith;
4177         return SQLITE_ERROR;
4178       }
4179       pEList = pCte->pCols;
4180     }
4181 
4182     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4183     if( bMayRecursive ){
4184       if( pSel->selFlags & SF_Recursive ){
4185         pCte->zCteErr = "multiple recursive references: %s";
4186       }else{
4187         pCte->zCteErr = "recursive reference in a subquery: %s";
4188       }
4189       sqlite3WalkSelect(pWalker, pSel);
4190     }
4191     pCte->zCteErr = 0;
4192     pParse->pWith = pSavedWith;
4193   }
4194 
4195   return SQLITE_OK;
4196 }
4197 #endif
4198 
4199 #ifndef SQLITE_OMIT_CTE
4200 /*
4201 ** If the SELECT passed as the second argument has an associated WITH
4202 ** clause, pop it from the stack stored as part of the Parse object.
4203 **
4204 ** This function is used as the xSelectCallback2() callback by
4205 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4206 ** names and other FROM clause elements.
4207 */
4208 static void selectPopWith(Walker *pWalker, Select *p){
4209   Parse *pParse = pWalker->pParse;
4210   With *pWith = findRightmost(p)->pWith;
4211   if( pWith!=0 ){
4212     assert( pParse->pWith==pWith );
4213     pParse->pWith = pWith->pOuter;
4214   }
4215 }
4216 #else
4217 #define selectPopWith 0
4218 #endif
4219 
4220 /*
4221 ** This routine is a Walker callback for "expanding" a SELECT statement.
4222 ** "Expanding" means to do the following:
4223 **
4224 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4225 **         element of the FROM clause.
4226 **
4227 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4228 **         defines FROM clause.  When views appear in the FROM clause,
4229 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4230 **         that implements the view.  A copy is made of the view's SELECT
4231 **         statement so that we can freely modify or delete that statement
4232 **         without worrying about messing up the persistent representation
4233 **         of the view.
4234 **
4235 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4236 **         on joins and the ON and USING clause of joins.
4237 **
4238 **    (4)  Scan the list of columns in the result set (pEList) looking
4239 **         for instances of the "*" operator or the TABLE.* operator.
4240 **         If found, expand each "*" to be every column in every table
4241 **         and TABLE.* to be every column in TABLE.
4242 **
4243 */
4244 static int selectExpander(Walker *pWalker, Select *p){
4245   Parse *pParse = pWalker->pParse;
4246   int i, j, k;
4247   SrcList *pTabList;
4248   ExprList *pEList;
4249   struct SrcList_item *pFrom;
4250   sqlite3 *db = pParse->db;
4251   Expr *pE, *pRight, *pExpr;
4252   u16 selFlags = p->selFlags;
4253 
4254   p->selFlags |= SF_Expanded;
4255   if( db->mallocFailed  ){
4256     return WRC_Abort;
4257   }
4258   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4259     return WRC_Prune;
4260   }
4261   pTabList = p->pSrc;
4262   pEList = p->pEList;
4263   if( pWalker->xSelectCallback2==selectPopWith ){
4264     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4265   }
4266 
4267   /* Make sure cursor numbers have been assigned to all entries in
4268   ** the FROM clause of the SELECT statement.
4269   */
4270   sqlite3SrcListAssignCursors(pParse, pTabList);
4271 
4272   /* Look up every table named in the FROM clause of the select.  If
4273   ** an entry of the FROM clause is a subquery instead of a table or view,
4274   ** then create a transient table structure to describe the subquery.
4275   */
4276   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4277     Table *pTab;
4278     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4279     if( pFrom->fg.isRecursive ) continue;
4280     assert( pFrom->pTab==0 );
4281 #ifndef SQLITE_OMIT_CTE
4282     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4283     if( pFrom->pTab ) {} else
4284 #endif
4285     if( pFrom->zName==0 ){
4286 #ifndef SQLITE_OMIT_SUBQUERY
4287       Select *pSel = pFrom->pSelect;
4288       /* A sub-query in the FROM clause of a SELECT */
4289       assert( pSel!=0 );
4290       assert( pFrom->pTab==0 );
4291       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4292       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4293       if( pTab==0 ) return WRC_Abort;
4294       pTab->nRef = 1;
4295       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4296       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4297       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4298       pTab->iPKey = -1;
4299       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4300       pTab->tabFlags |= TF_Ephemeral;
4301 #endif
4302     }else{
4303       /* An ordinary table or view name in the FROM clause */
4304       assert( pFrom->pTab==0 );
4305       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4306       if( pTab==0 ) return WRC_Abort;
4307       if( pTab->nRef==0xffff ){
4308         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4309            pTab->zName);
4310         pFrom->pTab = 0;
4311         return WRC_Abort;
4312       }
4313       pTab->nRef++;
4314       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4315         return WRC_Abort;
4316       }
4317 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4318       if( IsVirtual(pTab) || pTab->pSelect ){
4319         i16 nCol;
4320         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4321         assert( pFrom->pSelect==0 );
4322         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4323         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4324         nCol = pTab->nCol;
4325         pTab->nCol = -1;
4326         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4327         pTab->nCol = nCol;
4328       }
4329 #endif
4330     }
4331 
4332     /* Locate the index named by the INDEXED BY clause, if any. */
4333     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4334       return WRC_Abort;
4335     }
4336   }
4337 
4338   /* Process NATURAL keywords, and ON and USING clauses of joins.
4339   */
4340   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4341     return WRC_Abort;
4342   }
4343 
4344   /* For every "*" that occurs in the column list, insert the names of
4345   ** all columns in all tables.  And for every TABLE.* insert the names
4346   ** of all columns in TABLE.  The parser inserted a special expression
4347   ** with the TK_ASTERISK operator for each "*" that it found in the column
4348   ** list.  The following code just has to locate the TK_ASTERISK
4349   ** expressions and expand each one to the list of all columns in
4350   ** all tables.
4351   **
4352   ** The first loop just checks to see if there are any "*" operators
4353   ** that need expanding.
4354   */
4355   for(k=0; k<pEList->nExpr; k++){
4356     pE = pEList->a[k].pExpr;
4357     if( pE->op==TK_ASTERISK ) break;
4358     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4359     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4360     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4361   }
4362   if( k<pEList->nExpr ){
4363     /*
4364     ** If we get here it means the result set contains one or more "*"
4365     ** operators that need to be expanded.  Loop through each expression
4366     ** in the result set and expand them one by one.
4367     */
4368     struct ExprList_item *a = pEList->a;
4369     ExprList *pNew = 0;
4370     int flags = pParse->db->flags;
4371     int longNames = (flags & SQLITE_FullColNames)!=0
4372                       && (flags & SQLITE_ShortColNames)==0;
4373 
4374     for(k=0; k<pEList->nExpr; k++){
4375       pE = a[k].pExpr;
4376       pRight = pE->pRight;
4377       assert( pE->op!=TK_DOT || pRight!=0 );
4378       if( pE->op!=TK_ASTERISK
4379        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4380       ){
4381         /* This particular expression does not need to be expanded.
4382         */
4383         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4384         if( pNew ){
4385           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4386           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4387           a[k].zName = 0;
4388           a[k].zSpan = 0;
4389         }
4390         a[k].pExpr = 0;
4391       }else{
4392         /* This expression is a "*" or a "TABLE.*" and needs to be
4393         ** expanded. */
4394         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4395         char *zTName = 0;       /* text of name of TABLE */
4396         if( pE->op==TK_DOT ){
4397           assert( pE->pLeft!=0 );
4398           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4399           zTName = pE->pLeft->u.zToken;
4400         }
4401         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4402           Table *pTab = pFrom->pTab;
4403           Select *pSub = pFrom->pSelect;
4404           char *zTabName = pFrom->zAlias;
4405           const char *zSchemaName = 0;
4406           int iDb;
4407           if( zTabName==0 ){
4408             zTabName = pTab->zName;
4409           }
4410           if( db->mallocFailed ) break;
4411           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4412             pSub = 0;
4413             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4414               continue;
4415             }
4416             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4417             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4418           }
4419           for(j=0; j<pTab->nCol; j++){
4420             char *zName = pTab->aCol[j].zName;
4421             char *zColname;  /* The computed column name */
4422             char *zToFree;   /* Malloced string that needs to be freed */
4423             Token sColname;  /* Computed column name as a token */
4424 
4425             assert( zName );
4426             if( zTName && pSub
4427              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4428             ){
4429               continue;
4430             }
4431 
4432             /* If a column is marked as 'hidden', omit it from the expanded
4433             ** result-set list unless the SELECT has the SF_IncludeHidden
4434             ** bit set.
4435             */
4436             if( (p->selFlags & SF_IncludeHidden)==0
4437              && IsHiddenColumn(&pTab->aCol[j])
4438             ){
4439               continue;
4440             }
4441             tableSeen = 1;
4442 
4443             if( i>0 && zTName==0 ){
4444               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4445                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4446               ){
4447                 /* In a NATURAL join, omit the join columns from the
4448                 ** table to the right of the join */
4449                 continue;
4450               }
4451               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4452                 /* In a join with a USING clause, omit columns in the
4453                 ** using clause from the table on the right. */
4454                 continue;
4455               }
4456             }
4457             pRight = sqlite3Expr(db, TK_ID, zName);
4458             zColname = zName;
4459             zToFree = 0;
4460             if( longNames || pTabList->nSrc>1 ){
4461               Expr *pLeft;
4462               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4463               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4464               if( zSchemaName ){
4465                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4466                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4467               }
4468               if( longNames ){
4469                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4470                 zToFree = zColname;
4471               }
4472             }else{
4473               pExpr = pRight;
4474             }
4475             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4476             sqlite3TokenInit(&sColname, zColname);
4477             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4478             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4479               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4480               if( pSub ){
4481                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4482                 testcase( pX->zSpan==0 );
4483               }else{
4484                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4485                                            zSchemaName, zTabName, zColname);
4486                 testcase( pX->zSpan==0 );
4487               }
4488               pX->bSpanIsTab = 1;
4489             }
4490             sqlite3DbFree(db, zToFree);
4491           }
4492         }
4493         if( !tableSeen ){
4494           if( zTName ){
4495             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4496           }else{
4497             sqlite3ErrorMsg(pParse, "no tables specified");
4498           }
4499         }
4500       }
4501     }
4502     sqlite3ExprListDelete(db, pEList);
4503     p->pEList = pNew;
4504   }
4505 #if SQLITE_MAX_COLUMN
4506   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4507     sqlite3ErrorMsg(pParse, "too many columns in result set");
4508     return WRC_Abort;
4509   }
4510 #endif
4511   return WRC_Continue;
4512 }
4513 
4514 /*
4515 ** No-op routine for the parse-tree walker.
4516 **
4517 ** When this routine is the Walker.xExprCallback then expression trees
4518 ** are walked without any actions being taken at each node.  Presumably,
4519 ** when this routine is used for Walker.xExprCallback then
4520 ** Walker.xSelectCallback is set to do something useful for every
4521 ** subquery in the parser tree.
4522 */
4523 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4524   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4525   return WRC_Continue;
4526 }
4527 
4528 /*
4529 ** This routine "expands" a SELECT statement and all of its subqueries.
4530 ** For additional information on what it means to "expand" a SELECT
4531 ** statement, see the comment on the selectExpand worker callback above.
4532 **
4533 ** Expanding a SELECT statement is the first step in processing a
4534 ** SELECT statement.  The SELECT statement must be expanded before
4535 ** name resolution is performed.
4536 **
4537 ** If anything goes wrong, an error message is written into pParse.
4538 ** The calling function can detect the problem by looking at pParse->nErr
4539 ** and/or pParse->db->mallocFailed.
4540 */
4541 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4542   Walker w;
4543   memset(&w, 0, sizeof(w));
4544   w.xExprCallback = sqlite3ExprWalkNoop;
4545   w.pParse = pParse;
4546   if( pParse->hasCompound ){
4547     w.xSelectCallback = convertCompoundSelectToSubquery;
4548     sqlite3WalkSelect(&w, pSelect);
4549   }
4550   w.xSelectCallback = selectExpander;
4551   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4552     w.xSelectCallback2 = selectPopWith;
4553   }
4554   sqlite3WalkSelect(&w, pSelect);
4555 }
4556 
4557 
4558 #ifndef SQLITE_OMIT_SUBQUERY
4559 /*
4560 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4561 ** interface.
4562 **
4563 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4564 ** information to the Table structure that represents the result set
4565 ** of that subquery.
4566 **
4567 ** The Table structure that represents the result set was constructed
4568 ** by selectExpander() but the type and collation information was omitted
4569 ** at that point because identifiers had not yet been resolved.  This
4570 ** routine is called after identifier resolution.
4571 */
4572 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4573   Parse *pParse;
4574   int i;
4575   SrcList *pTabList;
4576   struct SrcList_item *pFrom;
4577 
4578   assert( p->selFlags & SF_Resolved );
4579   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4580   p->selFlags |= SF_HasTypeInfo;
4581   pParse = pWalker->pParse;
4582   pTabList = p->pSrc;
4583   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4584     Table *pTab = pFrom->pTab;
4585     assert( pTab!=0 );
4586     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4587       /* A sub-query in the FROM clause of a SELECT */
4588       Select *pSel = pFrom->pSelect;
4589       if( pSel ){
4590         while( pSel->pPrior ) pSel = pSel->pPrior;
4591         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4592       }
4593     }
4594   }
4595 }
4596 #endif
4597 
4598 
4599 /*
4600 ** This routine adds datatype and collating sequence information to
4601 ** the Table structures of all FROM-clause subqueries in a
4602 ** SELECT statement.
4603 **
4604 ** Use this routine after name resolution.
4605 */
4606 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4607 #ifndef SQLITE_OMIT_SUBQUERY
4608   Walker w;
4609   memset(&w, 0, sizeof(w));
4610   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4611   w.xExprCallback = sqlite3ExprWalkNoop;
4612   w.pParse = pParse;
4613   sqlite3WalkSelect(&w, pSelect);
4614 #endif
4615 }
4616 
4617 
4618 /*
4619 ** This routine sets up a SELECT statement for processing.  The
4620 ** following is accomplished:
4621 **
4622 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4623 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4624 **     *  ON and USING clauses are shifted into WHERE statements
4625 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4626 **     *  Identifiers in expression are matched to tables.
4627 **
4628 ** This routine acts recursively on all subqueries within the SELECT.
4629 */
4630 void sqlite3SelectPrep(
4631   Parse *pParse,         /* The parser context */
4632   Select *p,             /* The SELECT statement being coded. */
4633   NameContext *pOuterNC  /* Name context for container */
4634 ){
4635   sqlite3 *db;
4636   if( NEVER(p==0) ) return;
4637   db = pParse->db;
4638   if( db->mallocFailed ) return;
4639   if( p->selFlags & SF_HasTypeInfo ) return;
4640   sqlite3SelectExpand(pParse, p);
4641   if( pParse->nErr || db->mallocFailed ) return;
4642   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4643   if( pParse->nErr || db->mallocFailed ) return;
4644   sqlite3SelectAddTypeInfo(pParse, p);
4645 }
4646 
4647 /*
4648 ** Reset the aggregate accumulator.
4649 **
4650 ** The aggregate accumulator is a set of memory cells that hold
4651 ** intermediate results while calculating an aggregate.  This
4652 ** routine generates code that stores NULLs in all of those memory
4653 ** cells.
4654 */
4655 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4656   Vdbe *v = pParse->pVdbe;
4657   int i;
4658   struct AggInfo_func *pFunc;
4659   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4660   if( nReg==0 ) return;
4661 #ifdef SQLITE_DEBUG
4662   /* Verify that all AggInfo registers are within the range specified by
4663   ** AggInfo.mnReg..AggInfo.mxReg */
4664   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4665   for(i=0; i<pAggInfo->nColumn; i++){
4666     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4667          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4668   }
4669   for(i=0; i<pAggInfo->nFunc; i++){
4670     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4671          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4672   }
4673 #endif
4674   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4675   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4676     if( pFunc->iDistinct>=0 ){
4677       Expr *pE = pFunc->pExpr;
4678       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4679       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4680         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4681            "argument");
4682         pFunc->iDistinct = -1;
4683       }else{
4684         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4685         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4686                           (char*)pKeyInfo, P4_KEYINFO);
4687       }
4688     }
4689   }
4690 }
4691 
4692 /*
4693 ** Invoke the OP_AggFinalize opcode for every aggregate function
4694 ** in the AggInfo structure.
4695 */
4696 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4697   Vdbe *v = pParse->pVdbe;
4698   int i;
4699   struct AggInfo_func *pF;
4700   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4701     ExprList *pList = pF->pExpr->x.pList;
4702     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4703     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4704                       (void*)pF->pFunc, P4_FUNCDEF);
4705   }
4706 }
4707 
4708 /*
4709 ** Update the accumulator memory cells for an aggregate based on
4710 ** the current cursor position.
4711 */
4712 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4713   Vdbe *v = pParse->pVdbe;
4714   int i;
4715   int regHit = 0;
4716   int addrHitTest = 0;
4717   struct AggInfo_func *pF;
4718   struct AggInfo_col *pC;
4719 
4720   pAggInfo->directMode = 1;
4721   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4722     int nArg;
4723     int addrNext = 0;
4724     int regAgg;
4725     ExprList *pList = pF->pExpr->x.pList;
4726     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4727     if( pList ){
4728       nArg = pList->nExpr;
4729       regAgg = sqlite3GetTempRange(pParse, nArg);
4730       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4731     }else{
4732       nArg = 0;
4733       regAgg = 0;
4734     }
4735     if( pF->iDistinct>=0 ){
4736       addrNext = sqlite3VdbeMakeLabel(v);
4737       testcase( nArg==0 );  /* Error condition */
4738       testcase( nArg>1 );   /* Also an error */
4739       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4740     }
4741     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4742       CollSeq *pColl = 0;
4743       struct ExprList_item *pItem;
4744       int j;
4745       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4746       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4747         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4748       }
4749       if( !pColl ){
4750         pColl = pParse->db->pDfltColl;
4751       }
4752       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4753       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4754     }
4755     sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4756                       (void*)pF->pFunc, P4_FUNCDEF);
4757     sqlite3VdbeChangeP5(v, (u8)nArg);
4758     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4759     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4760     if( addrNext ){
4761       sqlite3VdbeResolveLabel(v, addrNext);
4762       sqlite3ExprCacheClear(pParse);
4763     }
4764   }
4765 
4766   /* Before populating the accumulator registers, clear the column cache.
4767   ** Otherwise, if any of the required column values are already present
4768   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4769   ** to pC->iMem. But by the time the value is used, the original register
4770   ** may have been used, invalidating the underlying buffer holding the
4771   ** text or blob value. See ticket [883034dcb5].
4772   **
4773   ** Another solution would be to change the OP_SCopy used to copy cached
4774   ** values to an OP_Copy.
4775   */
4776   if( regHit ){
4777     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4778   }
4779   sqlite3ExprCacheClear(pParse);
4780   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4781     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4782   }
4783   pAggInfo->directMode = 0;
4784   sqlite3ExprCacheClear(pParse);
4785   if( addrHitTest ){
4786     sqlite3VdbeJumpHere(v, addrHitTest);
4787   }
4788 }
4789 
4790 /*
4791 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4792 ** count(*) query ("SELECT count(*) FROM pTab").
4793 */
4794 #ifndef SQLITE_OMIT_EXPLAIN
4795 static void explainSimpleCount(
4796   Parse *pParse,                  /* Parse context */
4797   Table *pTab,                    /* Table being queried */
4798   Index *pIdx                     /* Index used to optimize scan, or NULL */
4799 ){
4800   if( pParse->explain==2 ){
4801     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4802     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4803         pTab->zName,
4804         bCover ? " USING COVERING INDEX " : "",
4805         bCover ? pIdx->zName : ""
4806     );
4807     sqlite3VdbeAddOp4(
4808         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4809     );
4810   }
4811 }
4812 #else
4813 # define explainSimpleCount(a,b,c)
4814 #endif
4815 
4816 /*
4817 ** Generate code for the SELECT statement given in the p argument.
4818 **
4819 ** The results are returned according to the SelectDest structure.
4820 ** See comments in sqliteInt.h for further information.
4821 **
4822 ** This routine returns the number of errors.  If any errors are
4823 ** encountered, then an appropriate error message is left in
4824 ** pParse->zErrMsg.
4825 **
4826 ** This routine does NOT free the Select structure passed in.  The
4827 ** calling function needs to do that.
4828 */
4829 int sqlite3Select(
4830   Parse *pParse,         /* The parser context */
4831   Select *p,             /* The SELECT statement being coded. */
4832   SelectDest *pDest      /* What to do with the query results */
4833 ){
4834   int i, j;              /* Loop counters */
4835   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4836   Vdbe *v;               /* The virtual machine under construction */
4837   int isAgg;             /* True for select lists like "count(*)" */
4838   ExprList *pEList = 0;  /* List of columns to extract. */
4839   SrcList *pTabList;     /* List of tables to select from */
4840   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4841   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4842   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4843   int rc = 1;            /* Value to return from this function */
4844   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4845   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4846   AggInfo sAggInfo;      /* Information used by aggregate queries */
4847   int iEnd;              /* Address of the end of the query */
4848   sqlite3 *db;           /* The database connection */
4849 
4850 #ifndef SQLITE_OMIT_EXPLAIN
4851   int iRestoreSelectId = pParse->iSelectId;
4852   pParse->iSelectId = pParse->iNextSelectId++;
4853 #endif
4854 
4855   db = pParse->db;
4856   if( p==0 || db->mallocFailed || pParse->nErr ){
4857     return 1;
4858   }
4859   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4860   memset(&sAggInfo, 0, sizeof(sAggInfo));
4861 #if SELECTTRACE_ENABLED
4862   pParse->nSelectIndent++;
4863   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4864   if( sqlite3SelectTrace & 0x100 ){
4865     sqlite3TreeViewSelect(0, p, 0);
4866   }
4867 #endif
4868 
4869   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4870   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4871   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4872   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4873   if( IgnorableOrderby(pDest) ){
4874     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4875            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4876            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4877            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4878     /* If ORDER BY makes no difference in the output then neither does
4879     ** DISTINCT so it can be removed too. */
4880     sqlite3ExprListDelete(db, p->pOrderBy);
4881     p->pOrderBy = 0;
4882     p->selFlags &= ~SF_Distinct;
4883   }
4884   sqlite3SelectPrep(pParse, p, 0);
4885   memset(&sSort, 0, sizeof(sSort));
4886   sSort.pOrderBy = p->pOrderBy;
4887   pTabList = p->pSrc;
4888   if( pParse->nErr || db->mallocFailed ){
4889     goto select_end;
4890   }
4891   assert( p->pEList!=0 );
4892   isAgg = (p->selFlags & SF_Aggregate)!=0;
4893 #if SELECTTRACE_ENABLED
4894   if( sqlite3SelectTrace & 0x100 ){
4895     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4896     sqlite3TreeViewSelect(0, p, 0);
4897   }
4898 #endif
4899 
4900 
4901   /* If writing to memory or generating a set
4902   ** only a single column may be output.
4903   */
4904 #ifndef SQLITE_OMIT_SUBQUERY
4905   if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4906     goto select_end;
4907   }
4908 #endif
4909 
4910   /* Try to flatten subqueries in the FROM clause up into the main query
4911   */
4912 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4913   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4914     struct SrcList_item *pItem = &pTabList->a[i];
4915     Select *pSub = pItem->pSelect;
4916     int isAggSub;
4917     Table *pTab = pItem->pTab;
4918     if( pSub==0 ) continue;
4919 
4920     /* Catch mismatch in the declared columns of a view and the number of
4921     ** columns in the SELECT on the RHS */
4922     if( pTab->nCol!=pSub->pEList->nExpr ){
4923       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
4924                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
4925       goto select_end;
4926     }
4927 
4928     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4929     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4930       /* This subquery can be absorbed into its parent. */
4931       if( isAggSub ){
4932         isAgg = 1;
4933         p->selFlags |= SF_Aggregate;
4934       }
4935       i = -1;
4936     }
4937     pTabList = p->pSrc;
4938     if( db->mallocFailed ) goto select_end;
4939     if( !IgnorableOrderby(pDest) ){
4940       sSort.pOrderBy = p->pOrderBy;
4941     }
4942   }
4943 #endif
4944 
4945   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4946   ** does not already exist */
4947   v = sqlite3GetVdbe(pParse);
4948   if( v==0 ) goto select_end;
4949 
4950 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4951   /* Handle compound SELECT statements using the separate multiSelect()
4952   ** procedure.
4953   */
4954   if( p->pPrior ){
4955     rc = multiSelect(pParse, p, pDest);
4956     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4957 #if SELECTTRACE_ENABLED
4958     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4959     pParse->nSelectIndent--;
4960 #endif
4961     return rc;
4962   }
4963 #endif
4964 
4965   /* Generate code for all sub-queries in the FROM clause
4966   */
4967 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4968   for(i=0; i<pTabList->nSrc; i++){
4969     struct SrcList_item *pItem = &pTabList->a[i];
4970     SelectDest dest;
4971     Select *pSub = pItem->pSelect;
4972     if( pSub==0 ) continue;
4973 
4974     /* Sometimes the code for a subquery will be generated more than
4975     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4976     ** for example.  In that case, do not regenerate the code to manifest
4977     ** a view or the co-routine to implement a view.  The first instance
4978     ** is sufficient, though the subroutine to manifest the view does need
4979     ** to be invoked again. */
4980     if( pItem->addrFillSub ){
4981       if( pItem->fg.viaCoroutine==0 ){
4982         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4983       }
4984       continue;
4985     }
4986 
4987     /* Increment Parse.nHeight by the height of the largest expression
4988     ** tree referred to by this, the parent select. The child select
4989     ** may contain expression trees of at most
4990     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4991     ** more conservative than necessary, but much easier than enforcing
4992     ** an exact limit.
4993     */
4994     pParse->nHeight += sqlite3SelectExprHeight(p);
4995 
4996     /* Make copies of constant WHERE-clause terms in the outer query down
4997     ** inside the subquery.  This can help the subquery to run more efficiently.
4998     */
4999     if( (pItem->fg.jointype & JT_OUTER)==0
5000      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
5001     ){
5002 #if SELECTTRACE_ENABLED
5003       if( sqlite3SelectTrace & 0x100 ){
5004         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5005         sqlite3TreeViewSelect(0, p, 0);
5006       }
5007 #endif
5008     }
5009 
5010     /* Generate code to implement the subquery
5011     **
5012     ** The subquery is implemented as a co-routine if all of these are true:
5013     **   (1)  The subquery is guaranteed to be the outer loop (so that it
5014     **        does not need to be computed more than once)
5015     **   (2)  The ALL keyword after SELECT is omitted.  (Applications are
5016     **        allowed to say "SELECT ALL" instead of just "SELECT" to disable
5017     **        the use of co-routines.)
5018     **   (3)  Co-routines are not disabled using sqlite3_test_control()
5019     **        with SQLITE_TESTCTRL_OPTIMIZATIONS.
5020     **
5021     ** TODO: Are there other reasons beside (1) to use a co-routine
5022     ** implementation?
5023     */
5024     if( i==0
5025      && (pTabList->nSrc==1
5026             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5027      && (p->selFlags & SF_All)==0                                   /* (2) */
5028      && OptimizationEnabled(db, SQLITE_SubqCoroutine)               /* (3) */
5029     ){
5030       /* Implement a co-routine that will return a single row of the result
5031       ** set on each invocation.
5032       */
5033       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5034       pItem->regReturn = ++pParse->nMem;
5035       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5036       VdbeComment((v, "%s", pItem->pTab->zName));
5037       pItem->addrFillSub = addrTop;
5038       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5039       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5040       sqlite3Select(pParse, pSub, &dest);
5041       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5042       pItem->fg.viaCoroutine = 1;
5043       pItem->regResult = dest.iSdst;
5044       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5045       sqlite3VdbeJumpHere(v, addrTop-1);
5046       sqlite3ClearTempRegCache(pParse);
5047     }else{
5048       /* Generate a subroutine that will fill an ephemeral table with
5049       ** the content of this subquery.  pItem->addrFillSub will point
5050       ** to the address of the generated subroutine.  pItem->regReturn
5051       ** is a register allocated to hold the subroutine return address
5052       */
5053       int topAddr;
5054       int onceAddr = 0;
5055       int retAddr;
5056       assert( pItem->addrFillSub==0 );
5057       pItem->regReturn = ++pParse->nMem;
5058       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5059       pItem->addrFillSub = topAddr+1;
5060       if( pItem->fg.isCorrelated==0 ){
5061         /* If the subquery is not correlated and if we are not inside of
5062         ** a trigger, then we only need to compute the value of the subquery
5063         ** once. */
5064         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
5065         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5066       }else{
5067         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5068       }
5069       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5070       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5071       sqlite3Select(pParse, pSub, &dest);
5072       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5073       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5074       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5075       VdbeComment((v, "end %s", pItem->pTab->zName));
5076       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5077       sqlite3ClearTempRegCache(pParse);
5078     }
5079     if( db->mallocFailed ) goto select_end;
5080     pParse->nHeight -= sqlite3SelectExprHeight(p);
5081   }
5082 #endif
5083 
5084   /* Various elements of the SELECT copied into local variables for
5085   ** convenience */
5086   pEList = p->pEList;
5087   pWhere = p->pWhere;
5088   pGroupBy = p->pGroupBy;
5089   pHaving = p->pHaving;
5090   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5091 
5092 #if SELECTTRACE_ENABLED
5093   if( sqlite3SelectTrace & 0x400 ){
5094     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5095     sqlite3TreeViewSelect(0, p, 0);
5096   }
5097 #endif
5098 
5099   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5100   ** if the select-list is the same as the ORDER BY list, then this query
5101   ** can be rewritten as a GROUP BY. In other words, this:
5102   **
5103   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5104   **
5105   ** is transformed to:
5106   **
5107   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5108   **
5109   ** The second form is preferred as a single index (or temp-table) may be
5110   ** used for both the ORDER BY and DISTINCT processing. As originally
5111   ** written the query must use a temp-table for at least one of the ORDER
5112   ** BY and DISTINCT, and an index or separate temp-table for the other.
5113   */
5114   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5115    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5116   ){
5117     p->selFlags &= ~SF_Distinct;
5118     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5119     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5120     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5121     ** original setting of the SF_Distinct flag, not the current setting */
5122     assert( sDistinct.isTnct );
5123 
5124 #if SELECTTRACE_ENABLED
5125     if( sqlite3SelectTrace & 0x400 ){
5126       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5127       sqlite3TreeViewSelect(0, p, 0);
5128     }
5129 #endif
5130   }
5131 
5132   /* If there is an ORDER BY clause, then create an ephemeral index to
5133   ** do the sorting.  But this sorting ephemeral index might end up
5134   ** being unused if the data can be extracted in pre-sorted order.
5135   ** If that is the case, then the OP_OpenEphemeral instruction will be
5136   ** changed to an OP_Noop once we figure out that the sorting index is
5137   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5138   ** that change.
5139   */
5140   if( sSort.pOrderBy ){
5141     KeyInfo *pKeyInfo;
5142     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5143     sSort.iECursor = pParse->nTab++;
5144     sSort.addrSortIndex =
5145       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5146           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5147           (char*)pKeyInfo, P4_KEYINFO
5148       );
5149   }else{
5150     sSort.addrSortIndex = -1;
5151   }
5152 
5153   /* If the output is destined for a temporary table, open that table.
5154   */
5155   if( pDest->eDest==SRT_EphemTab ){
5156     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5157   }
5158 
5159   /* Set the limiter.
5160   */
5161   iEnd = sqlite3VdbeMakeLabel(v);
5162   p->nSelectRow = 320;  /* 4 billion rows */
5163   computeLimitRegisters(pParse, p, iEnd);
5164   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5165     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5166     sSort.sortFlags |= SORTFLAG_UseSorter;
5167   }
5168 
5169   /* Open an ephemeral index to use for the distinct set.
5170   */
5171   if( p->selFlags & SF_Distinct ){
5172     sDistinct.tabTnct = pParse->nTab++;
5173     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5174                              sDistinct.tabTnct, 0, 0,
5175                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5176                              P4_KEYINFO);
5177     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5178     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5179   }else{
5180     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5181   }
5182 
5183   if( !isAgg && pGroupBy==0 ){
5184     /* No aggregate functions and no GROUP BY clause */
5185     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5186     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5187     wctrlFlags |= p->selFlags & SF_FixedLimit;
5188 
5189     /* Begin the database scan. */
5190     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5191                                p->pEList, wctrlFlags, p->nSelectRow);
5192     if( pWInfo==0 ) goto select_end;
5193     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5194       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5195     }
5196     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5197       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5198     }
5199     if( sSort.pOrderBy ){
5200       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5201       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5202       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5203         sSort.pOrderBy = 0;
5204       }
5205     }
5206 
5207     /* If sorting index that was created by a prior OP_OpenEphemeral
5208     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5209     ** into an OP_Noop.
5210     */
5211     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5212       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5213     }
5214 
5215     /* Use the standard inner loop. */
5216     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5217                     sqlite3WhereContinueLabel(pWInfo),
5218                     sqlite3WhereBreakLabel(pWInfo));
5219 
5220     /* End the database scan loop.
5221     */
5222     sqlite3WhereEnd(pWInfo);
5223   }else{
5224     /* This case when there exist aggregate functions or a GROUP BY clause
5225     ** or both */
5226     NameContext sNC;    /* Name context for processing aggregate information */
5227     int iAMem;          /* First Mem address for storing current GROUP BY */
5228     int iBMem;          /* First Mem address for previous GROUP BY */
5229     int iUseFlag;       /* Mem address holding flag indicating that at least
5230                         ** one row of the input to the aggregator has been
5231                         ** processed */
5232     int iAbortFlag;     /* Mem address which causes query abort if positive */
5233     int groupBySort;    /* Rows come from source in GROUP BY order */
5234     int addrEnd;        /* End of processing for this SELECT */
5235     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5236     int sortOut = 0;    /* Output register from the sorter */
5237     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5238 
5239     /* Remove any and all aliases between the result set and the
5240     ** GROUP BY clause.
5241     */
5242     if( pGroupBy ){
5243       int k;                        /* Loop counter */
5244       struct ExprList_item *pItem;  /* For looping over expression in a list */
5245 
5246       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5247         pItem->u.x.iAlias = 0;
5248       }
5249       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5250         pItem->u.x.iAlias = 0;
5251       }
5252       assert( 66==sqlite3LogEst(100) );
5253       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5254     }else{
5255       assert( 0==sqlite3LogEst(1) );
5256       p->nSelectRow = 0;
5257     }
5258 
5259     /* If there is both a GROUP BY and an ORDER BY clause and they are
5260     ** identical, then it may be possible to disable the ORDER BY clause
5261     ** on the grounds that the GROUP BY will cause elements to come out
5262     ** in the correct order. It also may not - the GROUP BY might use a
5263     ** database index that causes rows to be grouped together as required
5264     ** but not actually sorted. Either way, record the fact that the
5265     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5266     ** variable.  */
5267     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5268       orderByGrp = 1;
5269     }
5270 
5271     /* Create a label to jump to when we want to abort the query */
5272     addrEnd = sqlite3VdbeMakeLabel(v);
5273 
5274     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5275     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5276     ** SELECT statement.
5277     */
5278     memset(&sNC, 0, sizeof(sNC));
5279     sNC.pParse = pParse;
5280     sNC.pSrcList = pTabList;
5281     sNC.pAggInfo = &sAggInfo;
5282     sAggInfo.mnReg = pParse->nMem+1;
5283     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5284     sAggInfo.pGroupBy = pGroupBy;
5285     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5286     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5287     if( pHaving ){
5288       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5289     }
5290     sAggInfo.nAccumulator = sAggInfo.nColumn;
5291     for(i=0; i<sAggInfo.nFunc; i++){
5292       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5293       sNC.ncFlags |= NC_InAggFunc;
5294       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5295       sNC.ncFlags &= ~NC_InAggFunc;
5296     }
5297     sAggInfo.mxReg = pParse->nMem;
5298     if( db->mallocFailed ) goto select_end;
5299 
5300     /* Processing for aggregates with GROUP BY is very different and
5301     ** much more complex than aggregates without a GROUP BY.
5302     */
5303     if( pGroupBy ){
5304       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5305       int addr1;          /* A-vs-B comparision jump */
5306       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5307       int regOutputRow;   /* Return address register for output subroutine */
5308       int addrSetAbort;   /* Set the abort flag and return */
5309       int addrTopOfLoop;  /* Top of the input loop */
5310       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5311       int addrReset;      /* Subroutine for resetting the accumulator */
5312       int regReset;       /* Return address register for reset subroutine */
5313 
5314       /* If there is a GROUP BY clause we might need a sorting index to
5315       ** implement it.  Allocate that sorting index now.  If it turns out
5316       ** that we do not need it after all, the OP_SorterOpen instruction
5317       ** will be converted into a Noop.
5318       */
5319       sAggInfo.sortingIdx = pParse->nTab++;
5320       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5321       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5322           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5323           0, (char*)pKeyInfo, P4_KEYINFO);
5324 
5325       /* Initialize memory locations used by GROUP BY aggregate processing
5326       */
5327       iUseFlag = ++pParse->nMem;
5328       iAbortFlag = ++pParse->nMem;
5329       regOutputRow = ++pParse->nMem;
5330       addrOutputRow = sqlite3VdbeMakeLabel(v);
5331       regReset = ++pParse->nMem;
5332       addrReset = sqlite3VdbeMakeLabel(v);
5333       iAMem = pParse->nMem + 1;
5334       pParse->nMem += pGroupBy->nExpr;
5335       iBMem = pParse->nMem + 1;
5336       pParse->nMem += pGroupBy->nExpr;
5337       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5338       VdbeComment((v, "clear abort flag"));
5339       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5340       VdbeComment((v, "indicate accumulator empty"));
5341       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5342 
5343       /* Begin a loop that will extract all source rows in GROUP BY order.
5344       ** This might involve two separate loops with an OP_Sort in between, or
5345       ** it might be a single loop that uses an index to extract information
5346       ** in the right order to begin with.
5347       */
5348       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5349       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5350           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5351       );
5352       if( pWInfo==0 ) goto select_end;
5353       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5354         /* The optimizer is able to deliver rows in group by order so
5355         ** we do not have to sort.  The OP_OpenEphemeral table will be
5356         ** cancelled later because we still need to use the pKeyInfo
5357         */
5358         groupBySort = 0;
5359       }else{
5360         /* Rows are coming out in undetermined order.  We have to push
5361         ** each row into a sorting index, terminate the first loop,
5362         ** then loop over the sorting index in order to get the output
5363         ** in sorted order
5364         */
5365         int regBase;
5366         int regRecord;
5367         int nCol;
5368         int nGroupBy;
5369 
5370         explainTempTable(pParse,
5371             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5372                     "DISTINCT" : "GROUP BY");
5373 
5374         groupBySort = 1;
5375         nGroupBy = pGroupBy->nExpr;
5376         nCol = nGroupBy;
5377         j = nGroupBy;
5378         for(i=0; i<sAggInfo.nColumn; i++){
5379           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5380             nCol++;
5381             j++;
5382           }
5383         }
5384         regBase = sqlite3GetTempRange(pParse, nCol);
5385         sqlite3ExprCacheClear(pParse);
5386         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5387         j = nGroupBy;
5388         for(i=0; i<sAggInfo.nColumn; i++){
5389           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5390           if( pCol->iSorterColumn>=j ){
5391             int r1 = j + regBase;
5392             sqlite3ExprCodeGetColumnToReg(pParse,
5393                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5394             j++;
5395           }
5396         }
5397         regRecord = sqlite3GetTempReg(pParse);
5398         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5399         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5400         sqlite3ReleaseTempReg(pParse, regRecord);
5401         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5402         sqlite3WhereEnd(pWInfo);
5403         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5404         sortOut = sqlite3GetTempReg(pParse);
5405         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5406         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5407         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5408         sAggInfo.useSortingIdx = 1;
5409         sqlite3ExprCacheClear(pParse);
5410 
5411       }
5412 
5413       /* If the index or temporary table used by the GROUP BY sort
5414       ** will naturally deliver rows in the order required by the ORDER BY
5415       ** clause, cancel the ephemeral table open coded earlier.
5416       **
5417       ** This is an optimization - the correct answer should result regardless.
5418       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5419       ** disable this optimization for testing purposes.  */
5420       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5421        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5422       ){
5423         sSort.pOrderBy = 0;
5424         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5425       }
5426 
5427       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5428       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5429       ** Then compare the current GROUP BY terms against the GROUP BY terms
5430       ** from the previous row currently stored in a0, a1, a2...
5431       */
5432       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5433       sqlite3ExprCacheClear(pParse);
5434       if( groupBySort ){
5435         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5436                           sortOut, sortPTab);
5437       }
5438       for(j=0; j<pGroupBy->nExpr; j++){
5439         if( groupBySort ){
5440           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5441         }else{
5442           sAggInfo.directMode = 1;
5443           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5444         }
5445       }
5446       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5447                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5448       addr1 = sqlite3VdbeCurrentAddr(v);
5449       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5450 
5451       /* Generate code that runs whenever the GROUP BY changes.
5452       ** Changes in the GROUP BY are detected by the previous code
5453       ** block.  If there were no changes, this block is skipped.
5454       **
5455       ** This code copies current group by terms in b0,b1,b2,...
5456       ** over to a0,a1,a2.  It then calls the output subroutine
5457       ** and resets the aggregate accumulator registers in preparation
5458       ** for the next GROUP BY batch.
5459       */
5460       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5461       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5462       VdbeComment((v, "output one row"));
5463       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5464       VdbeComment((v, "check abort flag"));
5465       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5466       VdbeComment((v, "reset accumulator"));
5467 
5468       /* Update the aggregate accumulators based on the content of
5469       ** the current row
5470       */
5471       sqlite3VdbeJumpHere(v, addr1);
5472       updateAccumulator(pParse, &sAggInfo);
5473       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5474       VdbeComment((v, "indicate data in accumulator"));
5475 
5476       /* End of the loop
5477       */
5478       if( groupBySort ){
5479         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5480         VdbeCoverage(v);
5481       }else{
5482         sqlite3WhereEnd(pWInfo);
5483         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5484       }
5485 
5486       /* Output the final row of result
5487       */
5488       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5489       VdbeComment((v, "output final row"));
5490 
5491       /* Jump over the subroutines
5492       */
5493       sqlite3VdbeGoto(v, addrEnd);
5494 
5495       /* Generate a subroutine that outputs a single row of the result
5496       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5497       ** is less than or equal to zero, the subroutine is a no-op.  If
5498       ** the processing calls for the query to abort, this subroutine
5499       ** increments the iAbortFlag memory location before returning in
5500       ** order to signal the caller to abort.
5501       */
5502       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5503       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5504       VdbeComment((v, "set abort flag"));
5505       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5506       sqlite3VdbeResolveLabel(v, addrOutputRow);
5507       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5508       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5509       VdbeCoverage(v);
5510       VdbeComment((v, "Groupby result generator entry point"));
5511       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5512       finalizeAggFunctions(pParse, &sAggInfo);
5513       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5514       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5515                       &sDistinct, pDest,
5516                       addrOutputRow+1, addrSetAbort);
5517       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5518       VdbeComment((v, "end groupby result generator"));
5519 
5520       /* Generate a subroutine that will reset the group-by accumulator
5521       */
5522       sqlite3VdbeResolveLabel(v, addrReset);
5523       resetAccumulator(pParse, &sAggInfo);
5524       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5525 
5526     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5527     else {
5528       ExprList *pDel = 0;
5529 #ifndef SQLITE_OMIT_BTREECOUNT
5530       Table *pTab;
5531       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5532         /* If isSimpleCount() returns a pointer to a Table structure, then
5533         ** the SQL statement is of the form:
5534         **
5535         **   SELECT count(*) FROM <tbl>
5536         **
5537         ** where the Table structure returned represents table <tbl>.
5538         **
5539         ** This statement is so common that it is optimized specially. The
5540         ** OP_Count instruction is executed either on the intkey table that
5541         ** contains the data for table <tbl> or on one of its indexes. It
5542         ** is better to execute the op on an index, as indexes are almost
5543         ** always spread across less pages than their corresponding tables.
5544         */
5545         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5546         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5547         Index *pIdx;                         /* Iterator variable */
5548         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5549         Index *pBest = 0;                    /* Best index found so far */
5550         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5551 
5552         sqlite3CodeVerifySchema(pParse, iDb);
5553         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5554 
5555         /* Search for the index that has the lowest scan cost.
5556         **
5557         ** (2011-04-15) Do not do a full scan of an unordered index.
5558         **
5559         ** (2013-10-03) Do not count the entries in a partial index.
5560         **
5561         ** In practice the KeyInfo structure will not be used. It is only
5562         ** passed to keep OP_OpenRead happy.
5563         */
5564         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5565         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5566           if( pIdx->bUnordered==0
5567            && pIdx->szIdxRow<pTab->szTabRow
5568            && pIdx->pPartIdxWhere==0
5569            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5570           ){
5571             pBest = pIdx;
5572           }
5573         }
5574         if( pBest ){
5575           iRoot = pBest->tnum;
5576           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5577         }
5578 
5579         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5580         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5581         if( pKeyInfo ){
5582           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5583         }
5584         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5585         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5586         explainSimpleCount(pParse, pTab, pBest);
5587       }else
5588 #endif /* SQLITE_OMIT_BTREECOUNT */
5589       {
5590         /* Check if the query is of one of the following forms:
5591         **
5592         **   SELECT min(x) FROM ...
5593         **   SELECT max(x) FROM ...
5594         **
5595         ** If it is, then ask the code in where.c to attempt to sort results
5596         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5597         ** If where.c is able to produce results sorted in this order, then
5598         ** add vdbe code to break out of the processing loop after the
5599         ** first iteration (since the first iteration of the loop is
5600         ** guaranteed to operate on the row with the minimum or maximum
5601         ** value of x, the only row required).
5602         **
5603         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5604         ** modify behavior as follows:
5605         **
5606         **   + If the query is a "SELECT min(x)", then the loop coded by
5607         **     where.c should not iterate over any values with a NULL value
5608         **     for x.
5609         **
5610         **   + The optimizer code in where.c (the thing that decides which
5611         **     index or indices to use) should place a different priority on
5612         **     satisfying the 'ORDER BY' clause than it does in other cases.
5613         **     Refer to code and comments in where.c for details.
5614         */
5615         ExprList *pMinMax = 0;
5616         u8 flag = WHERE_ORDERBY_NORMAL;
5617 
5618         assert( p->pGroupBy==0 );
5619         assert( flag==0 );
5620         if( p->pHaving==0 ){
5621           flag = minMaxQuery(&sAggInfo, &pMinMax);
5622         }
5623         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5624 
5625         if( flag ){
5626           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5627           pDel = pMinMax;
5628           assert( db->mallocFailed || pMinMax!=0 );
5629           if( !db->mallocFailed ){
5630             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5631             pMinMax->a[0].pExpr->op = TK_COLUMN;
5632           }
5633         }
5634 
5635         /* This case runs if the aggregate has no GROUP BY clause.  The
5636         ** processing is much simpler since there is only a single row
5637         ** of output.
5638         */
5639         resetAccumulator(pParse, &sAggInfo);
5640         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5641         if( pWInfo==0 ){
5642           sqlite3ExprListDelete(db, pDel);
5643           goto select_end;
5644         }
5645         updateAccumulator(pParse, &sAggInfo);
5646         assert( pMinMax==0 || pMinMax->nExpr==1 );
5647         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5648           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5649           VdbeComment((v, "%s() by index",
5650                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5651         }
5652         sqlite3WhereEnd(pWInfo);
5653         finalizeAggFunctions(pParse, &sAggInfo);
5654       }
5655 
5656       sSort.pOrderBy = 0;
5657       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5658       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5659                       pDest, addrEnd, addrEnd);
5660       sqlite3ExprListDelete(db, pDel);
5661     }
5662     sqlite3VdbeResolveLabel(v, addrEnd);
5663 
5664   } /* endif aggregate query */
5665 
5666   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5667     explainTempTable(pParse, "DISTINCT");
5668   }
5669 
5670   /* If there is an ORDER BY clause, then we need to sort the results
5671   ** and send them to the callback one by one.
5672   */
5673   if( sSort.pOrderBy ){
5674     explainTempTable(pParse,
5675                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5676     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5677   }
5678 
5679   /* Jump here to skip this query
5680   */
5681   sqlite3VdbeResolveLabel(v, iEnd);
5682 
5683   /* The SELECT has been coded. If there is an error in the Parse structure,
5684   ** set the return code to 1. Otherwise 0. */
5685   rc = (pParse->nErr>0);
5686 
5687   /* Control jumps to here if an error is encountered above, or upon
5688   ** successful coding of the SELECT.
5689   */
5690 select_end:
5691   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5692 
5693   /* Identify column names if results of the SELECT are to be output.
5694   */
5695   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5696     generateColumnNames(pParse, pTabList, pEList);
5697   }
5698 
5699   sqlite3DbFree(db, sAggInfo.aCol);
5700   sqlite3DbFree(db, sAggInfo.aFunc);
5701 #if SELECTTRACE_ENABLED
5702   SELECTTRACE(1,pParse,p,("end processing\n"));
5703   pParse->nSelectIndent--;
5704 #endif
5705   return rc;
5706 }
5707