1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 sqlite3ExprDelete(db, p->pOffset); 78 if( p->pWith ) sqlite3WithDelete(db, p->pWith); 79 if( bFree ) sqlite3DbFree(db, p); 80 p = pPrior; 81 bFree = 1; 82 } 83 } 84 85 /* 86 ** Initialize a SelectDest structure. 87 */ 88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 89 pDest->eDest = (u8)eDest; 90 pDest->iSDParm = iParm; 91 pDest->affSdst = 0; 92 pDest->iSdst = 0; 93 pDest->nSdst = 0; 94 } 95 96 97 /* 98 ** Allocate a new Select structure and return a pointer to that 99 ** structure. 100 */ 101 Select *sqlite3SelectNew( 102 Parse *pParse, /* Parsing context */ 103 ExprList *pEList, /* which columns to include in the result */ 104 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 105 Expr *pWhere, /* the WHERE clause */ 106 ExprList *pGroupBy, /* the GROUP BY clause */ 107 Expr *pHaving, /* the HAVING clause */ 108 ExprList *pOrderBy, /* the ORDER BY clause */ 109 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 110 Expr *pLimit, /* LIMIT value. NULL means not used */ 111 Expr *pOffset /* OFFSET value. NULL means no offset */ 112 ){ 113 Select *pNew; 114 Select standin; 115 sqlite3 *db = pParse->db; 116 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 117 if( pNew==0 ){ 118 assert( db->mallocFailed ); 119 pNew = &standin; 120 } 121 if( pEList==0 ){ 122 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0)); 123 } 124 pNew->pEList = pEList; 125 pNew->op = TK_SELECT; 126 pNew->selFlags = selFlags; 127 pNew->iLimit = 0; 128 pNew->iOffset = 0; 129 #if SELECTTRACE_ENABLED 130 pNew->zSelName[0] = 0; 131 #endif 132 pNew->addrOpenEphm[0] = -1; 133 pNew->addrOpenEphm[1] = -1; 134 pNew->nSelectRow = 0; 135 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 136 pNew->pSrc = pSrc; 137 pNew->pWhere = pWhere; 138 pNew->pGroupBy = pGroupBy; 139 pNew->pHaving = pHaving; 140 pNew->pOrderBy = pOrderBy; 141 pNew->pPrior = 0; 142 pNew->pNext = 0; 143 pNew->pLimit = pLimit; 144 pNew->pOffset = pOffset; 145 pNew->pWith = 0; 146 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 147 if( db->mallocFailed ) { 148 clearSelect(db, pNew, pNew!=&standin); 149 pNew = 0; 150 }else{ 151 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 152 } 153 assert( pNew!=&standin ); 154 return pNew; 155 } 156 157 #if SELECTTRACE_ENABLED 158 /* 159 ** Set the name of a Select object 160 */ 161 void sqlite3SelectSetName(Select *p, const char *zName){ 162 if( p && zName ){ 163 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 164 } 165 } 166 #endif 167 168 169 /* 170 ** Delete the given Select structure and all of its substructures. 171 */ 172 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 173 if( p ) clearSelect(db, p, 1); 174 } 175 176 /* 177 ** Return a pointer to the right-most SELECT statement in a compound. 178 */ 179 static Select *findRightmost(Select *p){ 180 while( p->pNext ) p = p->pNext; 181 return p; 182 } 183 184 /* 185 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 186 ** type of join. Return an integer constant that expresses that type 187 ** in terms of the following bit values: 188 ** 189 ** JT_INNER 190 ** JT_CROSS 191 ** JT_OUTER 192 ** JT_NATURAL 193 ** JT_LEFT 194 ** JT_RIGHT 195 ** 196 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 197 ** 198 ** If an illegal or unsupported join type is seen, then still return 199 ** a join type, but put an error in the pParse structure. 200 */ 201 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 202 int jointype = 0; 203 Token *apAll[3]; 204 Token *p; 205 /* 0123456789 123456789 123456789 123 */ 206 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 207 static const struct { 208 u8 i; /* Beginning of keyword text in zKeyText[] */ 209 u8 nChar; /* Length of the keyword in characters */ 210 u8 code; /* Join type mask */ 211 } aKeyword[] = { 212 /* natural */ { 0, 7, JT_NATURAL }, 213 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 214 /* outer */ { 10, 5, JT_OUTER }, 215 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 216 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 217 /* inner */ { 23, 5, JT_INNER }, 218 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 219 }; 220 int i, j; 221 apAll[0] = pA; 222 apAll[1] = pB; 223 apAll[2] = pC; 224 for(i=0; i<3 && apAll[i]; i++){ 225 p = apAll[i]; 226 for(j=0; j<ArraySize(aKeyword); j++){ 227 if( p->n==aKeyword[j].nChar 228 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 229 jointype |= aKeyword[j].code; 230 break; 231 } 232 } 233 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 234 if( j>=ArraySize(aKeyword) ){ 235 jointype |= JT_ERROR; 236 break; 237 } 238 } 239 if( 240 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 241 (jointype & JT_ERROR)!=0 242 ){ 243 const char *zSp = " "; 244 assert( pB!=0 ); 245 if( pC==0 ){ zSp++; } 246 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 247 "%T %T%s%T", pA, pB, zSp, pC); 248 jointype = JT_INNER; 249 }else if( (jointype & JT_OUTER)!=0 250 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 251 sqlite3ErrorMsg(pParse, 252 "RIGHT and FULL OUTER JOINs are not currently supported"); 253 jointype = JT_INNER; 254 } 255 return jointype; 256 } 257 258 /* 259 ** Return the index of a column in a table. Return -1 if the column 260 ** is not contained in the table. 261 */ 262 static int columnIndex(Table *pTab, const char *zCol){ 263 int i; 264 for(i=0; i<pTab->nCol; i++){ 265 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 266 } 267 return -1; 268 } 269 270 /* 271 ** Search the first N tables in pSrc, from left to right, looking for a 272 ** table that has a column named zCol. 273 ** 274 ** When found, set *piTab and *piCol to the table index and column index 275 ** of the matching column and return TRUE. 276 ** 277 ** If not found, return FALSE. 278 */ 279 static int tableAndColumnIndex( 280 SrcList *pSrc, /* Array of tables to search */ 281 int N, /* Number of tables in pSrc->a[] to search */ 282 const char *zCol, /* Name of the column we are looking for */ 283 int *piTab, /* Write index of pSrc->a[] here */ 284 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 285 ){ 286 int i; /* For looping over tables in pSrc */ 287 int iCol; /* Index of column matching zCol */ 288 289 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 290 for(i=0; i<N; i++){ 291 iCol = columnIndex(pSrc->a[i].pTab, zCol); 292 if( iCol>=0 ){ 293 if( piTab ){ 294 *piTab = i; 295 *piCol = iCol; 296 } 297 return 1; 298 } 299 } 300 return 0; 301 } 302 303 /* 304 ** This function is used to add terms implied by JOIN syntax to the 305 ** WHERE clause expression of a SELECT statement. The new term, which 306 ** is ANDed with the existing WHERE clause, is of the form: 307 ** 308 ** (tab1.col1 = tab2.col2) 309 ** 310 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 311 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 312 ** column iColRight of tab2. 313 */ 314 static void addWhereTerm( 315 Parse *pParse, /* Parsing context */ 316 SrcList *pSrc, /* List of tables in FROM clause */ 317 int iLeft, /* Index of first table to join in pSrc */ 318 int iColLeft, /* Index of column in first table */ 319 int iRight, /* Index of second table in pSrc */ 320 int iColRight, /* Index of column in second table */ 321 int isOuterJoin, /* True if this is an OUTER join */ 322 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 323 ){ 324 sqlite3 *db = pParse->db; 325 Expr *pE1; 326 Expr *pE2; 327 Expr *pEq; 328 329 assert( iLeft<iRight ); 330 assert( pSrc->nSrc>iRight ); 331 assert( pSrc->a[iLeft].pTab ); 332 assert( pSrc->a[iRight].pTab ); 333 334 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 335 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 336 337 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 338 if( pEq && isOuterJoin ){ 339 ExprSetProperty(pEq, EP_FromJoin); 340 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 341 ExprSetVVAProperty(pEq, EP_NoReduce); 342 pEq->iRightJoinTable = (i16)pE2->iTable; 343 } 344 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 345 } 346 347 /* 348 ** Set the EP_FromJoin property on all terms of the given expression. 349 ** And set the Expr.iRightJoinTable to iTable for every term in the 350 ** expression. 351 ** 352 ** The EP_FromJoin property is used on terms of an expression to tell 353 ** the LEFT OUTER JOIN processing logic that this term is part of the 354 ** join restriction specified in the ON or USING clause and not a part 355 ** of the more general WHERE clause. These terms are moved over to the 356 ** WHERE clause during join processing but we need to remember that they 357 ** originated in the ON or USING clause. 358 ** 359 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 360 ** expression depends on table iRightJoinTable even if that table is not 361 ** explicitly mentioned in the expression. That information is needed 362 ** for cases like this: 363 ** 364 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 365 ** 366 ** The where clause needs to defer the handling of the t1.x=5 367 ** term until after the t2 loop of the join. In that way, a 368 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 369 ** defer the handling of t1.x=5, it will be processed immediately 370 ** after the t1 loop and rows with t1.x!=5 will never appear in 371 ** the output, which is incorrect. 372 */ 373 static void setJoinExpr(Expr *p, int iTable){ 374 while( p ){ 375 ExprSetProperty(p, EP_FromJoin); 376 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 377 ExprSetVVAProperty(p, EP_NoReduce); 378 p->iRightJoinTable = (i16)iTable; 379 if( p->op==TK_FUNCTION && p->x.pList ){ 380 int i; 381 for(i=0; i<p->x.pList->nExpr; i++){ 382 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 383 } 384 } 385 setJoinExpr(p->pLeft, iTable); 386 p = p->pRight; 387 } 388 } 389 390 /* 391 ** This routine processes the join information for a SELECT statement. 392 ** ON and USING clauses are converted into extra terms of the WHERE clause. 393 ** NATURAL joins also create extra WHERE clause terms. 394 ** 395 ** The terms of a FROM clause are contained in the Select.pSrc structure. 396 ** The left most table is the first entry in Select.pSrc. The right-most 397 ** table is the last entry. The join operator is held in the entry to 398 ** the left. Thus entry 0 contains the join operator for the join between 399 ** entries 0 and 1. Any ON or USING clauses associated with the join are 400 ** also attached to the left entry. 401 ** 402 ** This routine returns the number of errors encountered. 403 */ 404 static int sqliteProcessJoin(Parse *pParse, Select *p){ 405 SrcList *pSrc; /* All tables in the FROM clause */ 406 int i, j; /* Loop counters */ 407 struct SrcList_item *pLeft; /* Left table being joined */ 408 struct SrcList_item *pRight; /* Right table being joined */ 409 410 pSrc = p->pSrc; 411 pLeft = &pSrc->a[0]; 412 pRight = &pLeft[1]; 413 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 414 Table *pLeftTab = pLeft->pTab; 415 Table *pRightTab = pRight->pTab; 416 int isOuter; 417 418 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 419 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 420 421 /* When the NATURAL keyword is present, add WHERE clause terms for 422 ** every column that the two tables have in common. 423 */ 424 if( pRight->fg.jointype & JT_NATURAL ){ 425 if( pRight->pOn || pRight->pUsing ){ 426 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 427 "an ON or USING clause", 0); 428 return 1; 429 } 430 for(j=0; j<pRightTab->nCol; j++){ 431 char *zName; /* Name of column in the right table */ 432 int iLeft; /* Matching left table */ 433 int iLeftCol; /* Matching column in the left table */ 434 435 zName = pRightTab->aCol[j].zName; 436 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 437 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 438 isOuter, &p->pWhere); 439 } 440 } 441 } 442 443 /* Disallow both ON and USING clauses in the same join 444 */ 445 if( pRight->pOn && pRight->pUsing ){ 446 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 447 "clauses in the same join"); 448 return 1; 449 } 450 451 /* Add the ON clause to the end of the WHERE clause, connected by 452 ** an AND operator. 453 */ 454 if( pRight->pOn ){ 455 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 456 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 457 pRight->pOn = 0; 458 } 459 460 /* Create extra terms on the WHERE clause for each column named 461 ** in the USING clause. Example: If the two tables to be joined are 462 ** A and B and the USING clause names X, Y, and Z, then add this 463 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 464 ** Report an error if any column mentioned in the USING clause is 465 ** not contained in both tables to be joined. 466 */ 467 if( pRight->pUsing ){ 468 IdList *pList = pRight->pUsing; 469 for(j=0; j<pList->nId; j++){ 470 char *zName; /* Name of the term in the USING clause */ 471 int iLeft; /* Table on the left with matching column name */ 472 int iLeftCol; /* Column number of matching column on the left */ 473 int iRightCol; /* Column number of matching column on the right */ 474 475 zName = pList->a[j].zName; 476 iRightCol = columnIndex(pRightTab, zName); 477 if( iRightCol<0 478 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 479 ){ 480 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 481 "not present in both tables", zName); 482 return 1; 483 } 484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 485 isOuter, &p->pWhere); 486 } 487 } 488 } 489 return 0; 490 } 491 492 /* Forward reference */ 493 static KeyInfo *keyInfoFromExprList( 494 Parse *pParse, /* Parsing context */ 495 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 496 int iStart, /* Begin with this column of pList */ 497 int nExtra /* Add this many extra columns to the end */ 498 ); 499 500 /* 501 ** Generate code that will push the record in registers regData 502 ** through regData+nData-1 onto the sorter. 503 */ 504 static void pushOntoSorter( 505 Parse *pParse, /* Parser context */ 506 SortCtx *pSort, /* Information about the ORDER BY clause */ 507 Select *pSelect, /* The whole SELECT statement */ 508 int regData, /* First register holding data to be sorted */ 509 int regOrigData, /* First register holding data before packing */ 510 int nData, /* Number of elements in the data array */ 511 int nPrefixReg /* No. of reg prior to regData available for use */ 512 ){ 513 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 514 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 515 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 516 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 517 int regBase; /* Regs for sorter record */ 518 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 519 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 520 int op; /* Opcode to add sorter record to sorter */ 521 int iLimit; /* LIMIT counter */ 522 523 assert( bSeq==0 || bSeq==1 ); 524 assert( nData==1 || regData==regOrigData ); 525 if( nPrefixReg ){ 526 assert( nPrefixReg==nExpr+bSeq ); 527 regBase = regData - nExpr - bSeq; 528 }else{ 529 regBase = pParse->nMem + 1; 530 pParse->nMem += nBase; 531 } 532 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 533 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 534 pSort->labelDone = sqlite3VdbeMakeLabel(v); 535 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 536 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); 537 if( bSeq ){ 538 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 539 } 540 if( nPrefixReg==0 ){ 541 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 542 } 543 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 544 if( nOBSat>0 ){ 545 int regPrevKey; /* The first nOBSat columns of the previous row */ 546 int addrFirst; /* Address of the OP_IfNot opcode */ 547 int addrJmp; /* Address of the OP_Jump opcode */ 548 VdbeOp *pOp; /* Opcode that opens the sorter */ 549 int nKey; /* Number of sorting key columns, including OP_Sequence */ 550 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 551 552 regPrevKey = pParse->nMem+1; 553 pParse->nMem += pSort->nOBSat; 554 nKey = nExpr - pSort->nOBSat + bSeq; 555 if( bSeq ){ 556 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 557 }else{ 558 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 559 } 560 VdbeCoverage(v); 561 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 562 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 563 if( pParse->db->mallocFailed ) return; 564 pOp->p2 = nKey + nData; 565 pKI = pOp->p4.pKeyInfo; 566 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 567 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 568 testcase( pKI->nXField>2 ); 569 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 570 pKI->nXField-1); 571 addrJmp = sqlite3VdbeCurrentAddr(v); 572 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 573 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 574 pSort->regReturn = ++pParse->nMem; 575 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 576 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 577 if( iLimit ){ 578 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 579 VdbeCoverage(v); 580 } 581 sqlite3VdbeJumpHere(v, addrFirst); 582 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 583 sqlite3VdbeJumpHere(v, addrJmp); 584 } 585 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 586 op = OP_SorterInsert; 587 }else{ 588 op = OP_IdxInsert; 589 } 590 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 591 if( iLimit ){ 592 int addr; 593 int r1 = 0; 594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 596 ** fills up, delete the least entry in the sorter after each insert. 597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 598 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); 599 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 600 if( pSort->bOrderedInnerLoop ){ 601 r1 = ++pParse->nMem; 602 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 603 VdbeComment((v, "seq")); 604 } 605 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 606 if( pSort->bOrderedInnerLoop ){ 607 /* If the inner loop is driven by an index such that values from 608 ** the same iteration of the inner loop are in sorted order, then 609 ** immediately jump to the next iteration of an inner loop if the 610 ** entry from the current iteration does not fit into the top 611 ** LIMIT+OFFSET entries of the sorter. */ 612 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 613 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 614 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 615 VdbeCoverage(v); 616 } 617 sqlite3VdbeJumpHere(v, addr); 618 } 619 } 620 621 /* 622 ** Add code to implement the OFFSET 623 */ 624 static void codeOffset( 625 Vdbe *v, /* Generate code into this VM */ 626 int iOffset, /* Register holding the offset counter */ 627 int iContinue /* Jump here to skip the current record */ 628 ){ 629 if( iOffset>0 ){ 630 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 631 VdbeComment((v, "OFFSET")); 632 } 633 } 634 635 /* 636 ** Add code that will check to make sure the N registers starting at iMem 637 ** form a distinct entry. iTab is a sorting index that holds previously 638 ** seen combinations of the N values. A new entry is made in iTab 639 ** if the current N values are new. 640 ** 641 ** A jump to addrRepeat is made and the N+1 values are popped from the 642 ** stack if the top N elements are not distinct. 643 */ 644 static void codeDistinct( 645 Parse *pParse, /* Parsing and code generating context */ 646 int iTab, /* A sorting index used to test for distinctness */ 647 int addrRepeat, /* Jump to here if not distinct */ 648 int N, /* Number of elements */ 649 int iMem /* First element */ 650 ){ 651 Vdbe *v; 652 int r1; 653 654 v = pParse->pVdbe; 655 r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 657 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 659 sqlite3ReleaseTempReg(pParse, r1); 660 } 661 662 #ifndef SQLITE_OMIT_SUBQUERY 663 /* 664 ** Generate an error message when a SELECT is used within a subexpression 665 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 666 ** column. We do this in a subroutine because the error used to occur 667 ** in multiple places. (The error only occurs in one place now, but we 668 ** retain the subroutine to minimize code disruption.) 669 */ 670 static int checkForMultiColumnSelectError( 671 Parse *pParse, /* Parse context. */ 672 SelectDest *pDest, /* Destination of SELECT results */ 673 int nExpr /* Number of result columns returned by SELECT */ 674 ){ 675 int eDest = pDest->eDest; 676 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 677 sqlite3ErrorMsg(pParse, "only a single result allowed for " 678 "a SELECT that is part of an expression"); 679 return 1; 680 }else{ 681 return 0; 682 } 683 } 684 #endif 685 686 /* 687 ** This routine generates the code for the inside of the inner loop 688 ** of a SELECT. 689 ** 690 ** If srcTab is negative, then the pEList expressions 691 ** are evaluated in order to get the data for this row. If srcTab is 692 ** zero or more, then data is pulled from srcTab and pEList is used only 693 ** to get number columns and the datatype for each column. 694 */ 695 static void selectInnerLoop( 696 Parse *pParse, /* The parser context */ 697 Select *p, /* The complete select statement being coded */ 698 ExprList *pEList, /* List of values being extracted */ 699 int srcTab, /* Pull data from this table */ 700 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 701 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 702 SelectDest *pDest, /* How to dispose of the results */ 703 int iContinue, /* Jump here to continue with next row */ 704 int iBreak /* Jump here to break out of the inner loop */ 705 ){ 706 Vdbe *v = pParse->pVdbe; 707 int i; 708 int hasDistinct; /* True if the DISTINCT keyword is present */ 709 int regResult; /* Start of memory holding result set */ 710 int eDest = pDest->eDest; /* How to dispose of results */ 711 int iParm = pDest->iSDParm; /* First argument to disposal method */ 712 int nResultCol; /* Number of result columns */ 713 int nPrefixReg = 0; /* Number of extra registers before regResult */ 714 715 assert( v ); 716 assert( pEList!=0 ); 717 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 718 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 719 if( pSort==0 && !hasDistinct ){ 720 assert( iContinue!=0 ); 721 codeOffset(v, p->iOffset, iContinue); 722 } 723 724 /* Pull the requested columns. 725 */ 726 nResultCol = pEList->nExpr; 727 728 if( pDest->iSdst==0 ){ 729 if( pSort ){ 730 nPrefixReg = pSort->pOrderBy->nExpr; 731 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 732 pParse->nMem += nPrefixReg; 733 } 734 pDest->iSdst = pParse->nMem+1; 735 pParse->nMem += nResultCol; 736 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 737 /* This is an error condition that can result, for example, when a SELECT 738 ** on the right-hand side of an INSERT contains more result columns than 739 ** there are columns in the table on the left. The error will be caught 740 ** and reported later. But we need to make sure enough memory is allocated 741 ** to avoid other spurious errors in the meantime. */ 742 pParse->nMem += nResultCol; 743 } 744 pDest->nSdst = nResultCol; 745 regResult = pDest->iSdst; 746 if( srcTab>=0 ){ 747 for(i=0; i<nResultCol; i++){ 748 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 749 VdbeComment((v, "%s", pEList->a[i].zName)); 750 } 751 }else if( eDest!=SRT_Exists ){ 752 /* If the destination is an EXISTS(...) expression, the actual 753 ** values returned by the SELECT are not required. 754 */ 755 u8 ecelFlags; 756 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 757 ecelFlags = SQLITE_ECEL_DUP; 758 }else{ 759 ecelFlags = 0; 760 } 761 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); 762 } 763 764 /* If the DISTINCT keyword was present on the SELECT statement 765 ** and this row has been seen before, then do not make this row 766 ** part of the result. 767 */ 768 if( hasDistinct ){ 769 switch( pDistinct->eTnctType ){ 770 case WHERE_DISTINCT_ORDERED: { 771 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 772 int iJump; /* Jump destination */ 773 int regPrev; /* Previous row content */ 774 775 /* Allocate space for the previous row */ 776 regPrev = pParse->nMem+1; 777 pParse->nMem += nResultCol; 778 779 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 780 ** sets the MEM_Cleared bit on the first register of the 781 ** previous value. This will cause the OP_Ne below to always 782 ** fail on the first iteration of the loop even if the first 783 ** row is all NULLs. 784 */ 785 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 786 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 787 pOp->opcode = OP_Null; 788 pOp->p1 = 1; 789 pOp->p2 = regPrev; 790 791 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 792 for(i=0; i<nResultCol; i++){ 793 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 794 if( i<nResultCol-1 ){ 795 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 796 VdbeCoverage(v); 797 }else{ 798 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 799 VdbeCoverage(v); 800 } 801 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 802 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 803 } 804 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 805 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 806 break; 807 } 808 809 case WHERE_DISTINCT_UNIQUE: { 810 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 811 break; 812 } 813 814 default: { 815 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 816 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 817 regResult); 818 break; 819 } 820 } 821 if( pSort==0 ){ 822 codeOffset(v, p->iOffset, iContinue); 823 } 824 } 825 826 switch( eDest ){ 827 /* In this mode, write each query result to the key of the temporary 828 ** table iParm. 829 */ 830 #ifndef SQLITE_OMIT_COMPOUND_SELECT 831 case SRT_Union: { 832 int r1; 833 r1 = sqlite3GetTempReg(pParse); 834 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 835 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 836 sqlite3ReleaseTempReg(pParse, r1); 837 break; 838 } 839 840 /* Construct a record from the query result, but instead of 841 ** saving that record, use it as a key to delete elements from 842 ** the temporary table iParm. 843 */ 844 case SRT_Except: { 845 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 846 break; 847 } 848 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 849 850 /* Store the result as data using a unique key. 851 */ 852 case SRT_Fifo: 853 case SRT_DistFifo: 854 case SRT_Table: 855 case SRT_EphemTab: { 856 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 857 testcase( eDest==SRT_Table ); 858 testcase( eDest==SRT_EphemTab ); 859 testcase( eDest==SRT_Fifo ); 860 testcase( eDest==SRT_DistFifo ); 861 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 862 #ifndef SQLITE_OMIT_CTE 863 if( eDest==SRT_DistFifo ){ 864 /* If the destination is DistFifo, then cursor (iParm+1) is open 865 ** on an ephemeral index. If the current row is already present 866 ** in the index, do not write it to the output. If not, add the 867 ** current row to the index and proceed with writing it to the 868 ** output table as well. */ 869 int addr = sqlite3VdbeCurrentAddr(v) + 4; 870 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 871 VdbeCoverage(v); 872 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 873 assert( pSort==0 ); 874 } 875 #endif 876 if( pSort ){ 877 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 878 }else{ 879 int r2 = sqlite3GetTempReg(pParse); 880 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 881 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 882 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 883 sqlite3ReleaseTempReg(pParse, r2); 884 } 885 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 886 break; 887 } 888 889 #ifndef SQLITE_OMIT_SUBQUERY 890 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 891 ** then there should be a single item on the stack. Write this 892 ** item into the set table with bogus data. 893 */ 894 case SRT_Set: { 895 assert( nResultCol==1 ); 896 pDest->affSdst = 897 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 898 if( pSort ){ 899 /* At first glance you would think we could optimize out the 900 ** ORDER BY in this case since the order of entries in the set 901 ** does not matter. But there might be a LIMIT clause, in which 902 ** case the order does matter */ 903 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 904 }else{ 905 int r1 = sqlite3GetTempReg(pParse); 906 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 907 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 908 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 909 sqlite3ReleaseTempReg(pParse, r1); 910 } 911 break; 912 } 913 914 /* If any row exist in the result set, record that fact and abort. 915 */ 916 case SRT_Exists: { 917 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 918 /* The LIMIT clause will terminate the loop for us */ 919 break; 920 } 921 922 /* If this is a scalar select that is part of an expression, then 923 ** store the results in the appropriate memory cell and break out 924 ** of the scan loop. 925 */ 926 case SRT_Mem: { 927 assert( nResultCol==1 ); 928 if( pSort ){ 929 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 930 }else{ 931 assert( regResult==iParm ); 932 /* The LIMIT clause will jump out of the loop for us */ 933 } 934 break; 935 } 936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 937 938 case SRT_Coroutine: /* Send data to a co-routine */ 939 case SRT_Output: { /* Return the results */ 940 testcase( eDest==SRT_Coroutine ); 941 testcase( eDest==SRT_Output ); 942 if( pSort ){ 943 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, 944 nPrefixReg); 945 }else if( eDest==SRT_Coroutine ){ 946 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 947 }else{ 948 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 949 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 950 } 951 break; 952 } 953 954 #ifndef SQLITE_OMIT_CTE 955 /* Write the results into a priority queue that is order according to 956 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 957 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 958 ** pSO->nExpr columns, then make sure all keys are unique by adding a 959 ** final OP_Sequence column. The last column is the record as a blob. 960 */ 961 case SRT_DistQueue: 962 case SRT_Queue: { 963 int nKey; 964 int r1, r2, r3; 965 int addrTest = 0; 966 ExprList *pSO; 967 pSO = pDest->pOrderBy; 968 assert( pSO ); 969 nKey = pSO->nExpr; 970 r1 = sqlite3GetTempReg(pParse); 971 r2 = sqlite3GetTempRange(pParse, nKey+2); 972 r3 = r2+nKey+1; 973 if( eDest==SRT_DistQueue ){ 974 /* If the destination is DistQueue, then cursor (iParm+1) is open 975 ** on a second ephemeral index that holds all values every previously 976 ** added to the queue. */ 977 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 978 regResult, nResultCol); 979 VdbeCoverage(v); 980 } 981 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 982 if( eDest==SRT_DistQueue ){ 983 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 984 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 985 } 986 for(i=0; i<nKey; i++){ 987 sqlite3VdbeAddOp2(v, OP_SCopy, 988 regResult + pSO->a[i].u.x.iOrderByCol - 1, 989 r2+i); 990 } 991 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 992 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 993 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 994 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 995 sqlite3ReleaseTempReg(pParse, r1); 996 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 997 break; 998 } 999 #endif /* SQLITE_OMIT_CTE */ 1000 1001 1002 1003 #if !defined(SQLITE_OMIT_TRIGGER) 1004 /* Discard the results. This is used for SELECT statements inside 1005 ** the body of a TRIGGER. The purpose of such selects is to call 1006 ** user-defined functions that have side effects. We do not care 1007 ** about the actual results of the select. 1008 */ 1009 default: { 1010 assert( eDest==SRT_Discard ); 1011 break; 1012 } 1013 #endif 1014 } 1015 1016 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1017 ** there is a sorter, in which case the sorter has already limited 1018 ** the output for us. 1019 */ 1020 if( pSort==0 && p->iLimit ){ 1021 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1022 } 1023 } 1024 1025 /* 1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1027 ** X extra columns. 1028 */ 1029 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1030 int nExtra = (N+X)*(sizeof(CollSeq*)+1); 1031 KeyInfo *p = sqlite3DbMallocRaw(db, sizeof(KeyInfo) + nExtra); 1032 if( p ){ 1033 p->aSortOrder = (u8*)&p->aColl[N+X]; 1034 p->nField = (u16)N; 1035 p->nXField = (u16)X; 1036 p->enc = ENC(db); 1037 p->db = db; 1038 p->nRef = 1; 1039 memset(&p[1], 0, nExtra); 1040 }else{ 1041 sqlite3OomFault(db); 1042 } 1043 return p; 1044 } 1045 1046 /* 1047 ** Deallocate a KeyInfo object 1048 */ 1049 void sqlite3KeyInfoUnref(KeyInfo *p){ 1050 if( p ){ 1051 assert( p->nRef>0 ); 1052 p->nRef--; 1053 if( p->nRef==0 ) sqlite3DbFree(p->db, p); 1054 } 1055 } 1056 1057 /* 1058 ** Make a new pointer to a KeyInfo object 1059 */ 1060 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1061 if( p ){ 1062 assert( p->nRef>0 ); 1063 p->nRef++; 1064 } 1065 return p; 1066 } 1067 1068 #ifdef SQLITE_DEBUG 1069 /* 1070 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1071 ** can only be changed if this is just a single reference to the object. 1072 ** 1073 ** This routine is used only inside of assert() statements. 1074 */ 1075 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1076 #endif /* SQLITE_DEBUG */ 1077 1078 /* 1079 ** Given an expression list, generate a KeyInfo structure that records 1080 ** the collating sequence for each expression in that expression list. 1081 ** 1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1083 ** KeyInfo structure is appropriate for initializing a virtual index to 1084 ** implement that clause. If the ExprList is the result set of a SELECT 1085 ** then the KeyInfo structure is appropriate for initializing a virtual 1086 ** index to implement a DISTINCT test. 1087 ** 1088 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1089 ** function is responsible for seeing that this structure is eventually 1090 ** freed. 1091 */ 1092 static KeyInfo *keyInfoFromExprList( 1093 Parse *pParse, /* Parsing context */ 1094 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1095 int iStart, /* Begin with this column of pList */ 1096 int nExtra /* Add this many extra columns to the end */ 1097 ){ 1098 int nExpr; 1099 KeyInfo *pInfo; 1100 struct ExprList_item *pItem; 1101 sqlite3 *db = pParse->db; 1102 int i; 1103 1104 nExpr = pList->nExpr; 1105 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1106 if( pInfo ){ 1107 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1108 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1109 CollSeq *pColl; 1110 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1111 if( !pColl ) pColl = db->pDfltColl; 1112 pInfo->aColl[i-iStart] = pColl; 1113 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1114 } 1115 } 1116 return pInfo; 1117 } 1118 1119 /* 1120 ** Name of the connection operator, used for error messages. 1121 */ 1122 static const char *selectOpName(int id){ 1123 char *z; 1124 switch( id ){ 1125 case TK_ALL: z = "UNION ALL"; break; 1126 case TK_INTERSECT: z = "INTERSECT"; break; 1127 case TK_EXCEPT: z = "EXCEPT"; break; 1128 default: z = "UNION"; break; 1129 } 1130 return z; 1131 } 1132 1133 #ifndef SQLITE_OMIT_EXPLAIN 1134 /* 1135 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1136 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1137 ** where the caption is of the form: 1138 ** 1139 ** "USE TEMP B-TREE FOR xxx" 1140 ** 1141 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1142 ** is determined by the zUsage argument. 1143 */ 1144 static void explainTempTable(Parse *pParse, const char *zUsage){ 1145 if( pParse->explain==2 ){ 1146 Vdbe *v = pParse->pVdbe; 1147 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1148 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1149 } 1150 } 1151 1152 /* 1153 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1154 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1155 ** in sqlite3Select() to assign values to structure member variables that 1156 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1157 ** code with #ifndef directives. 1158 */ 1159 # define explainSetInteger(a, b) a = b 1160 1161 #else 1162 /* No-op versions of the explainXXX() functions and macros. */ 1163 # define explainTempTable(y,z) 1164 # define explainSetInteger(y,z) 1165 #endif 1166 1167 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1168 /* 1169 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1170 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1171 ** where the caption is of one of the two forms: 1172 ** 1173 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1174 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1175 ** 1176 ** where iSub1 and iSub2 are the integers passed as the corresponding 1177 ** function parameters, and op is the text representation of the parameter 1178 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1179 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1180 ** false, or the second form if it is true. 1181 */ 1182 static void explainComposite( 1183 Parse *pParse, /* Parse context */ 1184 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1185 int iSub1, /* Subquery id 1 */ 1186 int iSub2, /* Subquery id 2 */ 1187 int bUseTmp /* True if a temp table was used */ 1188 ){ 1189 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1190 if( pParse->explain==2 ){ 1191 Vdbe *v = pParse->pVdbe; 1192 char *zMsg = sqlite3MPrintf( 1193 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1194 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1195 ); 1196 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1197 } 1198 } 1199 #else 1200 /* No-op versions of the explainXXX() functions and macros. */ 1201 # define explainComposite(v,w,x,y,z) 1202 #endif 1203 1204 /* 1205 ** If the inner loop was generated using a non-null pOrderBy argument, 1206 ** then the results were placed in a sorter. After the loop is terminated 1207 ** we need to run the sorter and output the results. The following 1208 ** routine generates the code needed to do that. 1209 */ 1210 static void generateSortTail( 1211 Parse *pParse, /* Parsing context */ 1212 Select *p, /* The SELECT statement */ 1213 SortCtx *pSort, /* Information on the ORDER BY clause */ 1214 int nColumn, /* Number of columns of data */ 1215 SelectDest *pDest /* Write the sorted results here */ 1216 ){ 1217 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1218 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1219 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1220 int addr; 1221 int addrOnce = 0; 1222 int iTab; 1223 ExprList *pOrderBy = pSort->pOrderBy; 1224 int eDest = pDest->eDest; 1225 int iParm = pDest->iSDParm; 1226 int regRow; 1227 int regRowid; 1228 int nKey; 1229 int iSortTab; /* Sorter cursor to read from */ 1230 int nSortData; /* Trailing values to read from sorter */ 1231 int i; 1232 int bSeq; /* True if sorter record includes seq. no. */ 1233 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1234 struct ExprList_item *aOutEx = p->pEList->a; 1235 #endif 1236 1237 assert( addrBreak<0 ); 1238 if( pSort->labelBkOut ){ 1239 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1240 sqlite3VdbeGoto(v, addrBreak); 1241 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1242 } 1243 iTab = pSort->iECursor; 1244 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1245 regRowid = 0; 1246 regRow = pDest->iSdst; 1247 nSortData = nColumn; 1248 }else{ 1249 regRowid = sqlite3GetTempReg(pParse); 1250 regRow = sqlite3GetTempReg(pParse); 1251 nSortData = 1; 1252 } 1253 nKey = pOrderBy->nExpr - pSort->nOBSat; 1254 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1255 int regSortOut = ++pParse->nMem; 1256 iSortTab = pParse->nTab++; 1257 if( pSort->labelBkOut ){ 1258 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1259 } 1260 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1261 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1262 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1263 VdbeCoverage(v); 1264 codeOffset(v, p->iOffset, addrContinue); 1265 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1266 bSeq = 0; 1267 }else{ 1268 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1269 codeOffset(v, p->iOffset, addrContinue); 1270 iSortTab = iTab; 1271 bSeq = 1; 1272 } 1273 for(i=0; i<nSortData; i++){ 1274 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1275 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1276 } 1277 switch( eDest ){ 1278 case SRT_EphemTab: { 1279 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1280 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1281 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1282 break; 1283 } 1284 #ifndef SQLITE_OMIT_SUBQUERY 1285 case SRT_Set: { 1286 assert( nColumn==1 ); 1287 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1288 &pDest->affSdst, 1); 1289 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1290 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1291 break; 1292 } 1293 case SRT_Mem: { 1294 assert( nColumn==1 ); 1295 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1296 /* The LIMIT clause will terminate the loop for us */ 1297 break; 1298 } 1299 #endif 1300 default: { 1301 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1302 testcase( eDest==SRT_Output ); 1303 testcase( eDest==SRT_Coroutine ); 1304 if( eDest==SRT_Output ){ 1305 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1306 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1307 }else{ 1308 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1309 } 1310 break; 1311 } 1312 } 1313 if( regRowid ){ 1314 sqlite3ReleaseTempReg(pParse, regRow); 1315 sqlite3ReleaseTempReg(pParse, regRowid); 1316 } 1317 /* The bottom of the loop 1318 */ 1319 sqlite3VdbeResolveLabel(v, addrContinue); 1320 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1321 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1322 }else{ 1323 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1324 } 1325 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1326 sqlite3VdbeResolveLabel(v, addrBreak); 1327 } 1328 1329 /* 1330 ** Return a pointer to a string containing the 'declaration type' of the 1331 ** expression pExpr. The string may be treated as static by the caller. 1332 ** 1333 ** Also try to estimate the size of the returned value and return that 1334 ** result in *pEstWidth. 1335 ** 1336 ** The declaration type is the exact datatype definition extracted from the 1337 ** original CREATE TABLE statement if the expression is a column. The 1338 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1339 ** is considered a column can be complex in the presence of subqueries. The 1340 ** result-set expression in all of the following SELECT statements is 1341 ** considered a column by this function. 1342 ** 1343 ** SELECT col FROM tbl; 1344 ** SELECT (SELECT col FROM tbl; 1345 ** SELECT (SELECT col FROM tbl); 1346 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1347 ** 1348 ** The declaration type for any expression other than a column is NULL. 1349 ** 1350 ** This routine has either 3 or 6 parameters depending on whether or not 1351 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1352 */ 1353 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1354 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1355 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1356 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1357 #endif 1358 static const char *columnTypeImpl( 1359 NameContext *pNC, 1360 Expr *pExpr, 1361 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1362 const char **pzOrigDb, 1363 const char **pzOrigTab, 1364 const char **pzOrigCol, 1365 #endif 1366 u8 *pEstWidth 1367 ){ 1368 char const *zType = 0; 1369 int j; 1370 u8 estWidth = 1; 1371 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1372 char const *zOrigDb = 0; 1373 char const *zOrigTab = 0; 1374 char const *zOrigCol = 0; 1375 #endif 1376 1377 assert( pExpr!=0 ); 1378 assert( pNC->pSrcList!=0 ); 1379 switch( pExpr->op ){ 1380 case TK_AGG_COLUMN: 1381 case TK_COLUMN: { 1382 /* The expression is a column. Locate the table the column is being 1383 ** extracted from in NameContext.pSrcList. This table may be real 1384 ** database table or a subquery. 1385 */ 1386 Table *pTab = 0; /* Table structure column is extracted from */ 1387 Select *pS = 0; /* Select the column is extracted from */ 1388 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1389 testcase( pExpr->op==TK_AGG_COLUMN ); 1390 testcase( pExpr->op==TK_COLUMN ); 1391 while( pNC && !pTab ){ 1392 SrcList *pTabList = pNC->pSrcList; 1393 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1394 if( j<pTabList->nSrc ){ 1395 pTab = pTabList->a[j].pTab; 1396 pS = pTabList->a[j].pSelect; 1397 }else{ 1398 pNC = pNC->pNext; 1399 } 1400 } 1401 1402 if( pTab==0 ){ 1403 /* At one time, code such as "SELECT new.x" within a trigger would 1404 ** cause this condition to run. Since then, we have restructured how 1405 ** trigger code is generated and so this condition is no longer 1406 ** possible. However, it can still be true for statements like 1407 ** the following: 1408 ** 1409 ** CREATE TABLE t1(col INTEGER); 1410 ** SELECT (SELECT t1.col) FROM FROM t1; 1411 ** 1412 ** when columnType() is called on the expression "t1.col" in the 1413 ** sub-select. In this case, set the column type to NULL, even 1414 ** though it should really be "INTEGER". 1415 ** 1416 ** This is not a problem, as the column type of "t1.col" is never 1417 ** used. When columnType() is called on the expression 1418 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1419 ** branch below. */ 1420 break; 1421 } 1422 1423 assert( pTab && pExpr->pTab==pTab ); 1424 if( pS ){ 1425 /* The "table" is actually a sub-select or a view in the FROM clause 1426 ** of the SELECT statement. Return the declaration type and origin 1427 ** data for the result-set column of the sub-select. 1428 */ 1429 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1430 /* If iCol is less than zero, then the expression requests the 1431 ** rowid of the sub-select or view. This expression is legal (see 1432 ** test case misc2.2.2) - it always evaluates to NULL. 1433 ** 1434 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1435 ** caught already by name resolution. 1436 */ 1437 NameContext sNC; 1438 Expr *p = pS->pEList->a[iCol].pExpr; 1439 sNC.pSrcList = pS->pSrc; 1440 sNC.pNext = pNC; 1441 sNC.pParse = pNC->pParse; 1442 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1443 } 1444 }else if( pTab->pSchema ){ 1445 /* A real table */ 1446 assert( !pS ); 1447 if( iCol<0 ) iCol = pTab->iPKey; 1448 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1449 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1450 if( iCol<0 ){ 1451 zType = "INTEGER"; 1452 zOrigCol = "rowid"; 1453 }else{ 1454 zOrigCol = pTab->aCol[iCol].zName; 1455 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1456 estWidth = pTab->aCol[iCol].szEst; 1457 } 1458 zOrigTab = pTab->zName; 1459 if( pNC->pParse ){ 1460 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1461 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1462 } 1463 #else 1464 if( iCol<0 ){ 1465 zType = "INTEGER"; 1466 }else{ 1467 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1468 estWidth = pTab->aCol[iCol].szEst; 1469 } 1470 #endif 1471 } 1472 break; 1473 } 1474 #ifndef SQLITE_OMIT_SUBQUERY 1475 case TK_SELECT: { 1476 /* The expression is a sub-select. Return the declaration type and 1477 ** origin info for the single column in the result set of the SELECT 1478 ** statement. 1479 */ 1480 NameContext sNC; 1481 Select *pS = pExpr->x.pSelect; 1482 Expr *p = pS->pEList->a[0].pExpr; 1483 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1484 sNC.pSrcList = pS->pSrc; 1485 sNC.pNext = pNC; 1486 sNC.pParse = pNC->pParse; 1487 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1488 break; 1489 } 1490 #endif 1491 } 1492 1493 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1494 if( pzOrigDb ){ 1495 assert( pzOrigTab && pzOrigCol ); 1496 *pzOrigDb = zOrigDb; 1497 *pzOrigTab = zOrigTab; 1498 *pzOrigCol = zOrigCol; 1499 } 1500 #endif 1501 if( pEstWidth ) *pEstWidth = estWidth; 1502 return zType; 1503 } 1504 1505 /* 1506 ** Generate code that will tell the VDBE the declaration types of columns 1507 ** in the result set. 1508 */ 1509 static void generateColumnTypes( 1510 Parse *pParse, /* Parser context */ 1511 SrcList *pTabList, /* List of tables */ 1512 ExprList *pEList /* Expressions defining the result set */ 1513 ){ 1514 #ifndef SQLITE_OMIT_DECLTYPE 1515 Vdbe *v = pParse->pVdbe; 1516 int i; 1517 NameContext sNC; 1518 sNC.pSrcList = pTabList; 1519 sNC.pParse = pParse; 1520 for(i=0; i<pEList->nExpr; i++){ 1521 Expr *p = pEList->a[i].pExpr; 1522 const char *zType; 1523 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1524 const char *zOrigDb = 0; 1525 const char *zOrigTab = 0; 1526 const char *zOrigCol = 0; 1527 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1528 1529 /* The vdbe must make its own copy of the column-type and other 1530 ** column specific strings, in case the schema is reset before this 1531 ** virtual machine is deleted. 1532 */ 1533 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1534 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1535 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1536 #else 1537 zType = columnType(&sNC, p, 0, 0, 0, 0); 1538 #endif 1539 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1540 } 1541 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1542 } 1543 1544 /* 1545 ** Generate code that will tell the VDBE the names of columns 1546 ** in the result set. This information is used to provide the 1547 ** azCol[] values in the callback. 1548 */ 1549 static void generateColumnNames( 1550 Parse *pParse, /* Parser context */ 1551 SrcList *pTabList, /* List of tables */ 1552 ExprList *pEList /* Expressions defining the result set */ 1553 ){ 1554 Vdbe *v = pParse->pVdbe; 1555 int i, j; 1556 sqlite3 *db = pParse->db; 1557 int fullNames, shortNames; 1558 1559 #ifndef SQLITE_OMIT_EXPLAIN 1560 /* If this is an EXPLAIN, skip this step */ 1561 if( pParse->explain ){ 1562 return; 1563 } 1564 #endif 1565 1566 if( pParse->colNamesSet || db->mallocFailed ) return; 1567 assert( v!=0 ); 1568 assert( pTabList!=0 ); 1569 pParse->colNamesSet = 1; 1570 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1571 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1572 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1573 for(i=0; i<pEList->nExpr; i++){ 1574 Expr *p; 1575 p = pEList->a[i].pExpr; 1576 if( NEVER(p==0) ) continue; 1577 if( pEList->a[i].zName ){ 1578 char *zName = pEList->a[i].zName; 1579 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1580 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){ 1581 Table *pTab; 1582 char *zCol; 1583 int iCol = p->iColumn; 1584 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1585 if( pTabList->a[j].iCursor==p->iTable ) break; 1586 } 1587 assert( j<pTabList->nSrc ); 1588 pTab = pTabList->a[j].pTab; 1589 if( iCol<0 ) iCol = pTab->iPKey; 1590 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1591 if( iCol<0 ){ 1592 zCol = "rowid"; 1593 }else{ 1594 zCol = pTab->aCol[iCol].zName; 1595 } 1596 if( !shortNames && !fullNames ){ 1597 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1598 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1599 }else if( fullNames ){ 1600 char *zName = 0; 1601 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1602 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1603 }else{ 1604 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1605 } 1606 }else{ 1607 const char *z = pEList->a[i].zSpan; 1608 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1609 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1610 } 1611 } 1612 generateColumnTypes(pParse, pTabList, pEList); 1613 } 1614 1615 /* 1616 ** Given an expression list (which is really the list of expressions 1617 ** that form the result set of a SELECT statement) compute appropriate 1618 ** column names for a table that would hold the expression list. 1619 ** 1620 ** All column names will be unique. 1621 ** 1622 ** Only the column names are computed. Column.zType, Column.zColl, 1623 ** and other fields of Column are zeroed. 1624 ** 1625 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1626 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1627 */ 1628 int sqlite3ColumnsFromExprList( 1629 Parse *pParse, /* Parsing context */ 1630 ExprList *pEList, /* Expr list from which to derive column names */ 1631 i16 *pnCol, /* Write the number of columns here */ 1632 Column **paCol /* Write the new column list here */ 1633 ){ 1634 sqlite3 *db = pParse->db; /* Database connection */ 1635 int i, j; /* Loop counters */ 1636 u32 cnt; /* Index added to make the name unique */ 1637 Column *aCol, *pCol; /* For looping over result columns */ 1638 int nCol; /* Number of columns in the result set */ 1639 Expr *p; /* Expression for a single result column */ 1640 char *zName; /* Column name */ 1641 int nName; /* Size of name in zName[] */ 1642 Hash ht; /* Hash table of column names */ 1643 1644 sqlite3HashInit(&ht); 1645 if( pEList ){ 1646 nCol = pEList->nExpr; 1647 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1648 testcase( aCol==0 ); 1649 }else{ 1650 nCol = 0; 1651 aCol = 0; 1652 } 1653 assert( nCol==(i16)nCol ); 1654 *pnCol = nCol; 1655 *paCol = aCol; 1656 1657 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1658 /* Get an appropriate name for the column 1659 */ 1660 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1661 if( (zName = pEList->a[i].zName)!=0 ){ 1662 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1663 }else{ 1664 Expr *pColExpr = p; /* The expression that is the result column name */ 1665 Table *pTab; /* Table associated with this expression */ 1666 while( pColExpr->op==TK_DOT ){ 1667 pColExpr = pColExpr->pRight; 1668 assert( pColExpr!=0 ); 1669 } 1670 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1671 /* For columns use the column name name */ 1672 int iCol = pColExpr->iColumn; 1673 pTab = pColExpr->pTab; 1674 if( iCol<0 ) iCol = pTab->iPKey; 1675 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1676 }else if( pColExpr->op==TK_ID ){ 1677 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1678 zName = pColExpr->u.zToken; 1679 }else{ 1680 /* Use the original text of the column expression as its name */ 1681 zName = pEList->a[i].zSpan; 1682 } 1683 } 1684 zName = sqlite3MPrintf(db, "%s", zName); 1685 1686 /* Make sure the column name is unique. If the name is not unique, 1687 ** append an integer to the name so that it becomes unique. 1688 */ 1689 cnt = 0; 1690 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1691 nName = sqlite3Strlen30(zName); 1692 if( nName>0 ){ 1693 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1694 if( zName[j]==':' ) nName = j; 1695 } 1696 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1697 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1698 } 1699 pCol->zName = zName; 1700 sqlite3ColumnPropertiesFromName(0, pCol); 1701 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1702 sqlite3OomFault(db); 1703 } 1704 } 1705 sqlite3HashClear(&ht); 1706 if( db->mallocFailed ){ 1707 for(j=0; j<i; j++){ 1708 sqlite3DbFree(db, aCol[j].zName); 1709 } 1710 sqlite3DbFree(db, aCol); 1711 *paCol = 0; 1712 *pnCol = 0; 1713 return SQLITE_NOMEM_BKPT; 1714 } 1715 return SQLITE_OK; 1716 } 1717 1718 /* 1719 ** Add type and collation information to a column list based on 1720 ** a SELECT statement. 1721 ** 1722 ** The column list presumably came from selectColumnNamesFromExprList(). 1723 ** The column list has only names, not types or collations. This 1724 ** routine goes through and adds the types and collations. 1725 ** 1726 ** This routine requires that all identifiers in the SELECT 1727 ** statement be resolved. 1728 */ 1729 void sqlite3SelectAddColumnTypeAndCollation( 1730 Parse *pParse, /* Parsing contexts */ 1731 Table *pTab, /* Add column type information to this table */ 1732 Select *pSelect /* SELECT used to determine types and collations */ 1733 ){ 1734 sqlite3 *db = pParse->db; 1735 NameContext sNC; 1736 Column *pCol; 1737 CollSeq *pColl; 1738 int i; 1739 Expr *p; 1740 struct ExprList_item *a; 1741 u64 szAll = 0; 1742 1743 assert( pSelect!=0 ); 1744 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1745 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1746 if( db->mallocFailed ) return; 1747 memset(&sNC, 0, sizeof(sNC)); 1748 sNC.pSrcList = pSelect->pSrc; 1749 a = pSelect->pEList->a; 1750 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1751 const char *zType; 1752 int n, m; 1753 p = a[i].pExpr; 1754 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1755 szAll += pCol->szEst; 1756 pCol->affinity = sqlite3ExprAffinity(p); 1757 if( zType && (m = sqlite3Strlen30(zType))>0 ){ 1758 n = sqlite3Strlen30(pCol->zName); 1759 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1760 if( pCol->zName ){ 1761 memcpy(&pCol->zName[n+1], zType, m+1); 1762 pCol->colFlags |= COLFLAG_HASTYPE; 1763 } 1764 } 1765 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1766 pColl = sqlite3ExprCollSeq(pParse, p); 1767 if( pColl && pCol->zColl==0 ){ 1768 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1769 } 1770 } 1771 pTab->szTabRow = sqlite3LogEst(szAll*4); 1772 } 1773 1774 /* 1775 ** Given a SELECT statement, generate a Table structure that describes 1776 ** the result set of that SELECT. 1777 */ 1778 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1779 Table *pTab; 1780 sqlite3 *db = pParse->db; 1781 int savedFlags; 1782 1783 savedFlags = db->flags; 1784 db->flags &= ~SQLITE_FullColNames; 1785 db->flags |= SQLITE_ShortColNames; 1786 sqlite3SelectPrep(pParse, pSelect, 0); 1787 if( pParse->nErr ) return 0; 1788 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1789 db->flags = savedFlags; 1790 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1791 if( pTab==0 ){ 1792 return 0; 1793 } 1794 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1795 ** is disabled */ 1796 assert( db->lookaside.bDisable ); 1797 pTab->nRef = 1; 1798 pTab->zName = 0; 1799 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1800 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1801 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1802 pTab->iPKey = -1; 1803 if( db->mallocFailed ){ 1804 sqlite3DeleteTable(db, pTab); 1805 return 0; 1806 } 1807 return pTab; 1808 } 1809 1810 /* 1811 ** Get a VDBE for the given parser context. Create a new one if necessary. 1812 ** If an error occurs, return NULL and leave a message in pParse. 1813 */ 1814 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){ 1815 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1816 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1817 if( pParse->pToplevel==0 1818 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1819 ){ 1820 pParse->okConstFactor = 1; 1821 } 1822 return v; 1823 } 1824 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1825 Vdbe *v = pParse->pVdbe; 1826 return v ? v : allocVdbe(pParse); 1827 } 1828 1829 1830 /* 1831 ** Compute the iLimit and iOffset fields of the SELECT based on the 1832 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1833 ** that appear in the original SQL statement after the LIMIT and OFFSET 1834 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1835 ** are the integer memory register numbers for counters used to compute 1836 ** the limit and offset. If there is no limit and/or offset, then 1837 ** iLimit and iOffset are negative. 1838 ** 1839 ** This routine changes the values of iLimit and iOffset only if 1840 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1841 ** iOffset should have been preset to appropriate default values (zero) 1842 ** prior to calling this routine. 1843 ** 1844 ** The iOffset register (if it exists) is initialized to the value 1845 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1846 ** iOffset+1 is initialized to LIMIT+OFFSET. 1847 ** 1848 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1849 ** redefined. The UNION ALL operator uses this property to force 1850 ** the reuse of the same limit and offset registers across multiple 1851 ** SELECT statements. 1852 */ 1853 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1854 Vdbe *v = 0; 1855 int iLimit = 0; 1856 int iOffset; 1857 int n; 1858 if( p->iLimit ) return; 1859 1860 /* 1861 ** "LIMIT -1" always shows all rows. There is some 1862 ** controversy about what the correct behavior should be. 1863 ** The current implementation interprets "LIMIT 0" to mean 1864 ** no rows. 1865 */ 1866 sqlite3ExprCacheClear(pParse); 1867 assert( p->pOffset==0 || p->pLimit!=0 ); 1868 if( p->pLimit ){ 1869 p->iLimit = iLimit = ++pParse->nMem; 1870 v = sqlite3GetVdbe(pParse); 1871 assert( v!=0 ); 1872 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1873 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1874 VdbeComment((v, "LIMIT counter")); 1875 if( n==0 ){ 1876 sqlite3VdbeGoto(v, iBreak); 1877 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1878 p->nSelectRow = sqlite3LogEst((u64)n); 1879 p->selFlags |= SF_FixedLimit; 1880 } 1881 }else{ 1882 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1883 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1884 VdbeComment((v, "LIMIT counter")); 1885 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1886 } 1887 if( p->pOffset ){ 1888 p->iOffset = iOffset = ++pParse->nMem; 1889 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1890 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1891 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1892 VdbeComment((v, "OFFSET counter")); 1893 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1894 VdbeComment((v, "LIMIT+OFFSET")); 1895 } 1896 } 1897 } 1898 1899 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1900 /* 1901 ** Return the appropriate collating sequence for the iCol-th column of 1902 ** the result set for the compound-select statement "p". Return NULL if 1903 ** the column has no default collating sequence. 1904 ** 1905 ** The collating sequence for the compound select is taken from the 1906 ** left-most term of the select that has a collating sequence. 1907 */ 1908 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1909 CollSeq *pRet; 1910 if( p->pPrior ){ 1911 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1912 }else{ 1913 pRet = 0; 1914 } 1915 assert( iCol>=0 ); 1916 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1917 ** have been thrown during name resolution and we would not have gotten 1918 ** this far */ 1919 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1920 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1921 } 1922 return pRet; 1923 } 1924 1925 /* 1926 ** The select statement passed as the second parameter is a compound SELECT 1927 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1928 ** structure suitable for implementing the ORDER BY. 1929 ** 1930 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1931 ** function is responsible for ensuring that this structure is eventually 1932 ** freed. 1933 */ 1934 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1935 ExprList *pOrderBy = p->pOrderBy; 1936 int nOrderBy = p->pOrderBy->nExpr; 1937 sqlite3 *db = pParse->db; 1938 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1939 if( pRet ){ 1940 int i; 1941 for(i=0; i<nOrderBy; i++){ 1942 struct ExprList_item *pItem = &pOrderBy->a[i]; 1943 Expr *pTerm = pItem->pExpr; 1944 CollSeq *pColl; 1945 1946 if( pTerm->flags & EP_Collate ){ 1947 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1948 }else{ 1949 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1950 if( pColl==0 ) pColl = db->pDfltColl; 1951 pOrderBy->a[i].pExpr = 1952 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1953 } 1954 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1955 pRet->aColl[i] = pColl; 1956 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1957 } 1958 } 1959 1960 return pRet; 1961 } 1962 1963 #ifndef SQLITE_OMIT_CTE 1964 /* 1965 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1966 ** query of the form: 1967 ** 1968 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1969 ** \___________/ \_______________/ 1970 ** p->pPrior p 1971 ** 1972 ** 1973 ** There is exactly one reference to the recursive-table in the FROM clause 1974 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1975 ** 1976 ** The setup-query runs once to generate an initial set of rows that go 1977 ** into a Queue table. Rows are extracted from the Queue table one by 1978 ** one. Each row extracted from Queue is output to pDest. Then the single 1979 ** extracted row (now in the iCurrent table) becomes the content of the 1980 ** recursive-table for a recursive-query run. The output of the recursive-query 1981 ** is added back into the Queue table. Then another row is extracted from Queue 1982 ** and the iteration continues until the Queue table is empty. 1983 ** 1984 ** If the compound query operator is UNION then no duplicate rows are ever 1985 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1986 ** that have ever been inserted into Queue and causes duplicates to be 1987 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1988 ** 1989 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1990 ** ORDER BY order and the first entry is extracted for each cycle. Without 1991 ** an ORDER BY, the Queue table is just a FIFO. 1992 ** 1993 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1994 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1995 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1996 ** with a positive value, then the first OFFSET outputs are discarded rather 1997 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1998 ** rows have been skipped. 1999 */ 2000 static void generateWithRecursiveQuery( 2001 Parse *pParse, /* Parsing context */ 2002 Select *p, /* The recursive SELECT to be coded */ 2003 SelectDest *pDest /* What to do with query results */ 2004 ){ 2005 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2006 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2007 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2008 Select *pSetup = p->pPrior; /* The setup query */ 2009 int addrTop; /* Top of the loop */ 2010 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2011 int iCurrent = 0; /* The Current table */ 2012 int regCurrent; /* Register holding Current table */ 2013 int iQueue; /* The Queue table */ 2014 int iDistinct = 0; /* To ensure unique results if UNION */ 2015 int eDest = SRT_Fifo; /* How to write to Queue */ 2016 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2017 int i; /* Loop counter */ 2018 int rc; /* Result code */ 2019 ExprList *pOrderBy; /* The ORDER BY clause */ 2020 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 2021 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2022 2023 /* Obtain authorization to do a recursive query */ 2024 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2025 2026 /* Process the LIMIT and OFFSET clauses, if they exist */ 2027 addrBreak = sqlite3VdbeMakeLabel(v); 2028 computeLimitRegisters(pParse, p, addrBreak); 2029 pLimit = p->pLimit; 2030 pOffset = p->pOffset; 2031 regLimit = p->iLimit; 2032 regOffset = p->iOffset; 2033 p->pLimit = p->pOffset = 0; 2034 p->iLimit = p->iOffset = 0; 2035 pOrderBy = p->pOrderBy; 2036 2037 /* Locate the cursor number of the Current table */ 2038 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2039 if( pSrc->a[i].fg.isRecursive ){ 2040 iCurrent = pSrc->a[i].iCursor; 2041 break; 2042 } 2043 } 2044 2045 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2046 ** the Distinct table must be exactly one greater than Queue in order 2047 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2048 iQueue = pParse->nTab++; 2049 if( p->op==TK_UNION ){ 2050 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2051 iDistinct = pParse->nTab++; 2052 }else{ 2053 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2054 } 2055 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2056 2057 /* Allocate cursors for Current, Queue, and Distinct. */ 2058 regCurrent = ++pParse->nMem; 2059 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2060 if( pOrderBy ){ 2061 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2062 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2063 (char*)pKeyInfo, P4_KEYINFO); 2064 destQueue.pOrderBy = pOrderBy; 2065 }else{ 2066 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2067 } 2068 VdbeComment((v, "Queue table")); 2069 if( iDistinct ){ 2070 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2071 p->selFlags |= SF_UsesEphemeral; 2072 } 2073 2074 /* Detach the ORDER BY clause from the compound SELECT */ 2075 p->pOrderBy = 0; 2076 2077 /* Store the results of the setup-query in Queue. */ 2078 pSetup->pNext = 0; 2079 rc = sqlite3Select(pParse, pSetup, &destQueue); 2080 pSetup->pNext = p; 2081 if( rc ) goto end_of_recursive_query; 2082 2083 /* Find the next row in the Queue and output that row */ 2084 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2085 2086 /* Transfer the next row in Queue over to Current */ 2087 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2088 if( pOrderBy ){ 2089 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2090 }else{ 2091 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2092 } 2093 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2094 2095 /* Output the single row in Current */ 2096 addrCont = sqlite3VdbeMakeLabel(v); 2097 codeOffset(v, regOffset, addrCont); 2098 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2099 0, 0, pDest, addrCont, addrBreak); 2100 if( regLimit ){ 2101 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2102 VdbeCoverage(v); 2103 } 2104 sqlite3VdbeResolveLabel(v, addrCont); 2105 2106 /* Execute the recursive SELECT taking the single row in Current as 2107 ** the value for the recursive-table. Store the results in the Queue. 2108 */ 2109 if( p->selFlags & SF_Aggregate ){ 2110 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2111 }else{ 2112 p->pPrior = 0; 2113 sqlite3Select(pParse, p, &destQueue); 2114 assert( p->pPrior==0 ); 2115 p->pPrior = pSetup; 2116 } 2117 2118 /* Keep running the loop until the Queue is empty */ 2119 sqlite3VdbeGoto(v, addrTop); 2120 sqlite3VdbeResolveLabel(v, addrBreak); 2121 2122 end_of_recursive_query: 2123 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2124 p->pOrderBy = pOrderBy; 2125 p->pLimit = pLimit; 2126 p->pOffset = pOffset; 2127 return; 2128 } 2129 #endif /* SQLITE_OMIT_CTE */ 2130 2131 /* Forward references */ 2132 static int multiSelectOrderBy( 2133 Parse *pParse, /* Parsing context */ 2134 Select *p, /* The right-most of SELECTs to be coded */ 2135 SelectDest *pDest /* What to do with query results */ 2136 ); 2137 2138 /* 2139 ** Handle the special case of a compound-select that originates from a 2140 ** VALUES clause. By handling this as a special case, we avoid deep 2141 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2142 ** on a VALUES clause. 2143 ** 2144 ** Because the Select object originates from a VALUES clause: 2145 ** (1) It has no LIMIT or OFFSET 2146 ** (2) All terms are UNION ALL 2147 ** (3) There is no ORDER BY clause 2148 */ 2149 static int multiSelectValues( 2150 Parse *pParse, /* Parsing context */ 2151 Select *p, /* The right-most of SELECTs to be coded */ 2152 SelectDest *pDest /* What to do with query results */ 2153 ){ 2154 Select *pPrior; 2155 int nRow = 1; 2156 int rc = 0; 2157 assert( p->selFlags & SF_MultiValue ); 2158 do{ 2159 assert( p->selFlags & SF_Values ); 2160 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2161 assert( p->pLimit==0 ); 2162 assert( p->pOffset==0 ); 2163 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2164 if( p->pPrior==0 ) break; 2165 assert( p->pPrior->pNext==p ); 2166 p = p->pPrior; 2167 nRow++; 2168 }while(1); 2169 while( p ){ 2170 pPrior = p->pPrior; 2171 p->pPrior = 0; 2172 rc = sqlite3Select(pParse, p, pDest); 2173 p->pPrior = pPrior; 2174 if( rc ) break; 2175 p->nSelectRow = nRow; 2176 p = p->pNext; 2177 } 2178 return rc; 2179 } 2180 2181 /* 2182 ** This routine is called to process a compound query form from 2183 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2184 ** INTERSECT 2185 ** 2186 ** "p" points to the right-most of the two queries. the query on the 2187 ** left is p->pPrior. The left query could also be a compound query 2188 ** in which case this routine will be called recursively. 2189 ** 2190 ** The results of the total query are to be written into a destination 2191 ** of type eDest with parameter iParm. 2192 ** 2193 ** Example 1: Consider a three-way compound SQL statement. 2194 ** 2195 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2196 ** 2197 ** This statement is parsed up as follows: 2198 ** 2199 ** SELECT c FROM t3 2200 ** | 2201 ** `-----> SELECT b FROM t2 2202 ** | 2203 ** `------> SELECT a FROM t1 2204 ** 2205 ** The arrows in the diagram above represent the Select.pPrior pointer. 2206 ** So if this routine is called with p equal to the t3 query, then 2207 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2208 ** 2209 ** Notice that because of the way SQLite parses compound SELECTs, the 2210 ** individual selects always group from left to right. 2211 */ 2212 static int multiSelect( 2213 Parse *pParse, /* Parsing context */ 2214 Select *p, /* The right-most of SELECTs to be coded */ 2215 SelectDest *pDest /* What to do with query results */ 2216 ){ 2217 int rc = SQLITE_OK; /* Success code from a subroutine */ 2218 Select *pPrior; /* Another SELECT immediately to our left */ 2219 Vdbe *v; /* Generate code to this VDBE */ 2220 SelectDest dest; /* Alternative data destination */ 2221 Select *pDelete = 0; /* Chain of simple selects to delete */ 2222 sqlite3 *db; /* Database connection */ 2223 #ifndef SQLITE_OMIT_EXPLAIN 2224 int iSub1 = 0; /* EQP id of left-hand query */ 2225 int iSub2 = 0; /* EQP id of right-hand query */ 2226 #endif 2227 2228 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2229 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2230 */ 2231 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2232 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2233 db = pParse->db; 2234 pPrior = p->pPrior; 2235 dest = *pDest; 2236 if( pPrior->pOrderBy ){ 2237 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2238 selectOpName(p->op)); 2239 rc = 1; 2240 goto multi_select_end; 2241 } 2242 if( pPrior->pLimit ){ 2243 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2244 selectOpName(p->op)); 2245 rc = 1; 2246 goto multi_select_end; 2247 } 2248 2249 v = sqlite3GetVdbe(pParse); 2250 assert( v!=0 ); /* The VDBE already created by calling function */ 2251 2252 /* Create the destination temporary table if necessary 2253 */ 2254 if( dest.eDest==SRT_EphemTab ){ 2255 assert( p->pEList ); 2256 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2257 dest.eDest = SRT_Table; 2258 } 2259 2260 /* Special handling for a compound-select that originates as a VALUES clause. 2261 */ 2262 if( p->selFlags & SF_MultiValue ){ 2263 rc = multiSelectValues(pParse, p, &dest); 2264 goto multi_select_end; 2265 } 2266 2267 /* Make sure all SELECTs in the statement have the same number of elements 2268 ** in their result sets. 2269 */ 2270 assert( p->pEList && pPrior->pEList ); 2271 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2272 2273 #ifndef SQLITE_OMIT_CTE 2274 if( p->selFlags & SF_Recursive ){ 2275 generateWithRecursiveQuery(pParse, p, &dest); 2276 }else 2277 #endif 2278 2279 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2280 */ 2281 if( p->pOrderBy ){ 2282 return multiSelectOrderBy(pParse, p, pDest); 2283 }else 2284 2285 /* Generate code for the left and right SELECT statements. 2286 */ 2287 switch( p->op ){ 2288 case TK_ALL: { 2289 int addr = 0; 2290 int nLimit; 2291 assert( !pPrior->pLimit ); 2292 pPrior->iLimit = p->iLimit; 2293 pPrior->iOffset = p->iOffset; 2294 pPrior->pLimit = p->pLimit; 2295 pPrior->pOffset = p->pOffset; 2296 explainSetInteger(iSub1, pParse->iNextSelectId); 2297 rc = sqlite3Select(pParse, pPrior, &dest); 2298 p->pLimit = 0; 2299 p->pOffset = 0; 2300 if( rc ){ 2301 goto multi_select_end; 2302 } 2303 p->pPrior = 0; 2304 p->iLimit = pPrior->iLimit; 2305 p->iOffset = pPrior->iOffset; 2306 if( p->iLimit ){ 2307 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2308 VdbeComment((v, "Jump ahead if LIMIT reached")); 2309 if( p->iOffset ){ 2310 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2311 p->iLimit, p->iOffset+1, p->iOffset); 2312 } 2313 } 2314 explainSetInteger(iSub2, pParse->iNextSelectId); 2315 rc = sqlite3Select(pParse, p, &dest); 2316 testcase( rc!=SQLITE_OK ); 2317 pDelete = p->pPrior; 2318 p->pPrior = pPrior; 2319 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2320 if( pPrior->pLimit 2321 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2322 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2323 ){ 2324 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2325 } 2326 if( addr ){ 2327 sqlite3VdbeJumpHere(v, addr); 2328 } 2329 break; 2330 } 2331 case TK_EXCEPT: 2332 case TK_UNION: { 2333 int unionTab; /* Cursor number of the temporary table holding result */ 2334 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2335 int priorOp; /* The SRT_ operation to apply to prior selects */ 2336 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2337 int addr; 2338 SelectDest uniondest; 2339 2340 testcase( p->op==TK_EXCEPT ); 2341 testcase( p->op==TK_UNION ); 2342 priorOp = SRT_Union; 2343 if( dest.eDest==priorOp ){ 2344 /* We can reuse a temporary table generated by a SELECT to our 2345 ** right. 2346 */ 2347 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2348 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2349 unionTab = dest.iSDParm; 2350 }else{ 2351 /* We will need to create our own temporary table to hold the 2352 ** intermediate results. 2353 */ 2354 unionTab = pParse->nTab++; 2355 assert( p->pOrderBy==0 ); 2356 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2357 assert( p->addrOpenEphm[0] == -1 ); 2358 p->addrOpenEphm[0] = addr; 2359 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2360 assert( p->pEList ); 2361 } 2362 2363 /* Code the SELECT statements to our left 2364 */ 2365 assert( !pPrior->pOrderBy ); 2366 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2367 explainSetInteger(iSub1, pParse->iNextSelectId); 2368 rc = sqlite3Select(pParse, pPrior, &uniondest); 2369 if( rc ){ 2370 goto multi_select_end; 2371 } 2372 2373 /* Code the current SELECT statement 2374 */ 2375 if( p->op==TK_EXCEPT ){ 2376 op = SRT_Except; 2377 }else{ 2378 assert( p->op==TK_UNION ); 2379 op = SRT_Union; 2380 } 2381 p->pPrior = 0; 2382 pLimit = p->pLimit; 2383 p->pLimit = 0; 2384 pOffset = p->pOffset; 2385 p->pOffset = 0; 2386 uniondest.eDest = op; 2387 explainSetInteger(iSub2, pParse->iNextSelectId); 2388 rc = sqlite3Select(pParse, p, &uniondest); 2389 testcase( rc!=SQLITE_OK ); 2390 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2391 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2392 sqlite3ExprListDelete(db, p->pOrderBy); 2393 pDelete = p->pPrior; 2394 p->pPrior = pPrior; 2395 p->pOrderBy = 0; 2396 if( p->op==TK_UNION ){ 2397 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2398 } 2399 sqlite3ExprDelete(db, p->pLimit); 2400 p->pLimit = pLimit; 2401 p->pOffset = pOffset; 2402 p->iLimit = 0; 2403 p->iOffset = 0; 2404 2405 /* Convert the data in the temporary table into whatever form 2406 ** it is that we currently need. 2407 */ 2408 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2409 if( dest.eDest!=priorOp ){ 2410 int iCont, iBreak, iStart; 2411 assert( p->pEList ); 2412 if( dest.eDest==SRT_Output ){ 2413 Select *pFirst = p; 2414 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2415 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2416 } 2417 iBreak = sqlite3VdbeMakeLabel(v); 2418 iCont = sqlite3VdbeMakeLabel(v); 2419 computeLimitRegisters(pParse, p, iBreak); 2420 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2421 iStart = sqlite3VdbeCurrentAddr(v); 2422 selectInnerLoop(pParse, p, p->pEList, unionTab, 2423 0, 0, &dest, iCont, iBreak); 2424 sqlite3VdbeResolveLabel(v, iCont); 2425 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2426 sqlite3VdbeResolveLabel(v, iBreak); 2427 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2428 } 2429 break; 2430 } 2431 default: assert( p->op==TK_INTERSECT ); { 2432 int tab1, tab2; 2433 int iCont, iBreak, iStart; 2434 Expr *pLimit, *pOffset; 2435 int addr; 2436 SelectDest intersectdest; 2437 int r1; 2438 2439 /* INTERSECT is different from the others since it requires 2440 ** two temporary tables. Hence it has its own case. Begin 2441 ** by allocating the tables we will need. 2442 */ 2443 tab1 = pParse->nTab++; 2444 tab2 = pParse->nTab++; 2445 assert( p->pOrderBy==0 ); 2446 2447 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2448 assert( p->addrOpenEphm[0] == -1 ); 2449 p->addrOpenEphm[0] = addr; 2450 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2451 assert( p->pEList ); 2452 2453 /* Code the SELECTs to our left into temporary table "tab1". 2454 */ 2455 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2456 explainSetInteger(iSub1, pParse->iNextSelectId); 2457 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2458 if( rc ){ 2459 goto multi_select_end; 2460 } 2461 2462 /* Code the current SELECT into temporary table "tab2" 2463 */ 2464 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2465 assert( p->addrOpenEphm[1] == -1 ); 2466 p->addrOpenEphm[1] = addr; 2467 p->pPrior = 0; 2468 pLimit = p->pLimit; 2469 p->pLimit = 0; 2470 pOffset = p->pOffset; 2471 p->pOffset = 0; 2472 intersectdest.iSDParm = tab2; 2473 explainSetInteger(iSub2, pParse->iNextSelectId); 2474 rc = sqlite3Select(pParse, p, &intersectdest); 2475 testcase( rc!=SQLITE_OK ); 2476 pDelete = p->pPrior; 2477 p->pPrior = pPrior; 2478 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2479 sqlite3ExprDelete(db, p->pLimit); 2480 p->pLimit = pLimit; 2481 p->pOffset = pOffset; 2482 2483 /* Generate code to take the intersection of the two temporary 2484 ** tables. 2485 */ 2486 assert( p->pEList ); 2487 if( dest.eDest==SRT_Output ){ 2488 Select *pFirst = p; 2489 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2490 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2491 } 2492 iBreak = sqlite3VdbeMakeLabel(v); 2493 iCont = sqlite3VdbeMakeLabel(v); 2494 computeLimitRegisters(pParse, p, iBreak); 2495 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2496 r1 = sqlite3GetTempReg(pParse); 2497 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2498 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2499 sqlite3ReleaseTempReg(pParse, r1); 2500 selectInnerLoop(pParse, p, p->pEList, tab1, 2501 0, 0, &dest, iCont, iBreak); 2502 sqlite3VdbeResolveLabel(v, iCont); 2503 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2504 sqlite3VdbeResolveLabel(v, iBreak); 2505 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2506 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2507 break; 2508 } 2509 } 2510 2511 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2512 2513 /* Compute collating sequences used by 2514 ** temporary tables needed to implement the compound select. 2515 ** Attach the KeyInfo structure to all temporary tables. 2516 ** 2517 ** This section is run by the right-most SELECT statement only. 2518 ** SELECT statements to the left always skip this part. The right-most 2519 ** SELECT might also skip this part if it has no ORDER BY clause and 2520 ** no temp tables are required. 2521 */ 2522 if( p->selFlags & SF_UsesEphemeral ){ 2523 int i; /* Loop counter */ 2524 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2525 Select *pLoop; /* For looping through SELECT statements */ 2526 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2527 int nCol; /* Number of columns in result set */ 2528 2529 assert( p->pNext==0 ); 2530 nCol = p->pEList->nExpr; 2531 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2532 if( !pKeyInfo ){ 2533 rc = SQLITE_NOMEM_BKPT; 2534 goto multi_select_end; 2535 } 2536 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2537 *apColl = multiSelectCollSeq(pParse, p, i); 2538 if( 0==*apColl ){ 2539 *apColl = db->pDfltColl; 2540 } 2541 } 2542 2543 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2544 for(i=0; i<2; i++){ 2545 int addr = pLoop->addrOpenEphm[i]; 2546 if( addr<0 ){ 2547 /* If [0] is unused then [1] is also unused. So we can 2548 ** always safely abort as soon as the first unused slot is found */ 2549 assert( pLoop->addrOpenEphm[1]<0 ); 2550 break; 2551 } 2552 sqlite3VdbeChangeP2(v, addr, nCol); 2553 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2554 P4_KEYINFO); 2555 pLoop->addrOpenEphm[i] = -1; 2556 } 2557 } 2558 sqlite3KeyInfoUnref(pKeyInfo); 2559 } 2560 2561 multi_select_end: 2562 pDest->iSdst = dest.iSdst; 2563 pDest->nSdst = dest.nSdst; 2564 sqlite3SelectDelete(db, pDelete); 2565 return rc; 2566 } 2567 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2568 2569 /* 2570 ** Error message for when two or more terms of a compound select have different 2571 ** size result sets. 2572 */ 2573 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2574 if( p->selFlags & SF_Values ){ 2575 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2576 }else{ 2577 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2578 " do not have the same number of result columns", selectOpName(p->op)); 2579 } 2580 } 2581 2582 /* 2583 ** Code an output subroutine for a coroutine implementation of a 2584 ** SELECT statment. 2585 ** 2586 ** The data to be output is contained in pIn->iSdst. There are 2587 ** pIn->nSdst columns to be output. pDest is where the output should 2588 ** be sent. 2589 ** 2590 ** regReturn is the number of the register holding the subroutine 2591 ** return address. 2592 ** 2593 ** If regPrev>0 then it is the first register in a vector that 2594 ** records the previous output. mem[regPrev] is a flag that is false 2595 ** if there has been no previous output. If regPrev>0 then code is 2596 ** generated to suppress duplicates. pKeyInfo is used for comparing 2597 ** keys. 2598 ** 2599 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2600 ** iBreak. 2601 */ 2602 static int generateOutputSubroutine( 2603 Parse *pParse, /* Parsing context */ 2604 Select *p, /* The SELECT statement */ 2605 SelectDest *pIn, /* Coroutine supplying data */ 2606 SelectDest *pDest, /* Where to send the data */ 2607 int regReturn, /* The return address register */ 2608 int regPrev, /* Previous result register. No uniqueness if 0 */ 2609 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2610 int iBreak /* Jump here if we hit the LIMIT */ 2611 ){ 2612 Vdbe *v = pParse->pVdbe; 2613 int iContinue; 2614 int addr; 2615 2616 addr = sqlite3VdbeCurrentAddr(v); 2617 iContinue = sqlite3VdbeMakeLabel(v); 2618 2619 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2620 */ 2621 if( regPrev ){ 2622 int addr1, addr2; 2623 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2624 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2625 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2626 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2627 sqlite3VdbeJumpHere(v, addr1); 2628 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2629 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2630 } 2631 if( pParse->db->mallocFailed ) return 0; 2632 2633 /* Suppress the first OFFSET entries if there is an OFFSET clause 2634 */ 2635 codeOffset(v, p->iOffset, iContinue); 2636 2637 assert( pDest->eDest!=SRT_Exists ); 2638 assert( pDest->eDest!=SRT_Table ); 2639 switch( pDest->eDest ){ 2640 /* Store the result as data using a unique key. 2641 */ 2642 case SRT_EphemTab: { 2643 int r1 = sqlite3GetTempReg(pParse); 2644 int r2 = sqlite3GetTempReg(pParse); 2645 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2646 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2647 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2648 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2649 sqlite3ReleaseTempReg(pParse, r2); 2650 sqlite3ReleaseTempReg(pParse, r1); 2651 break; 2652 } 2653 2654 #ifndef SQLITE_OMIT_SUBQUERY 2655 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2656 ** then there should be a single item on the stack. Write this 2657 ** item into the set table with bogus data. 2658 */ 2659 case SRT_Set: { 2660 int r1; 2661 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2662 pDest->affSdst = 2663 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2664 r1 = sqlite3GetTempReg(pParse); 2665 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2666 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2667 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2668 sqlite3ReleaseTempReg(pParse, r1); 2669 break; 2670 } 2671 2672 /* If this is a scalar select that is part of an expression, then 2673 ** store the results in the appropriate memory cell and break out 2674 ** of the scan loop. 2675 */ 2676 case SRT_Mem: { 2677 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2678 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2679 /* The LIMIT clause will jump out of the loop for us */ 2680 break; 2681 } 2682 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2683 2684 /* The results are stored in a sequence of registers 2685 ** starting at pDest->iSdst. Then the co-routine yields. 2686 */ 2687 case SRT_Coroutine: { 2688 if( pDest->iSdst==0 ){ 2689 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2690 pDest->nSdst = pIn->nSdst; 2691 } 2692 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2693 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2694 break; 2695 } 2696 2697 /* If none of the above, then the result destination must be 2698 ** SRT_Output. This routine is never called with any other 2699 ** destination other than the ones handled above or SRT_Output. 2700 ** 2701 ** For SRT_Output, results are stored in a sequence of registers. 2702 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2703 ** return the next row of result. 2704 */ 2705 default: { 2706 assert( pDest->eDest==SRT_Output ); 2707 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2708 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2709 break; 2710 } 2711 } 2712 2713 /* Jump to the end of the loop if the LIMIT is reached. 2714 */ 2715 if( p->iLimit ){ 2716 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2717 } 2718 2719 /* Generate the subroutine return 2720 */ 2721 sqlite3VdbeResolveLabel(v, iContinue); 2722 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2723 2724 return addr; 2725 } 2726 2727 /* 2728 ** Alternative compound select code generator for cases when there 2729 ** is an ORDER BY clause. 2730 ** 2731 ** We assume a query of the following form: 2732 ** 2733 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2734 ** 2735 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2736 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2737 ** co-routines. Then run the co-routines in parallel and merge the results 2738 ** into the output. In addition to the two coroutines (called selectA and 2739 ** selectB) there are 7 subroutines: 2740 ** 2741 ** outA: Move the output of the selectA coroutine into the output 2742 ** of the compound query. 2743 ** 2744 ** outB: Move the output of the selectB coroutine into the output 2745 ** of the compound query. (Only generated for UNION and 2746 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2747 ** appears only in B.) 2748 ** 2749 ** AltB: Called when there is data from both coroutines and A<B. 2750 ** 2751 ** AeqB: Called when there is data from both coroutines and A==B. 2752 ** 2753 ** AgtB: Called when there is data from both coroutines and A>B. 2754 ** 2755 ** EofA: Called when data is exhausted from selectA. 2756 ** 2757 ** EofB: Called when data is exhausted from selectB. 2758 ** 2759 ** The implementation of the latter five subroutines depend on which 2760 ** <operator> is used: 2761 ** 2762 ** 2763 ** UNION ALL UNION EXCEPT INTERSECT 2764 ** ------------- ----------------- -------------- ----------------- 2765 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2766 ** 2767 ** AeqB: outA, nextA nextA nextA outA, nextA 2768 ** 2769 ** AgtB: outB, nextB outB, nextB nextB nextB 2770 ** 2771 ** EofA: outB, nextB outB, nextB halt halt 2772 ** 2773 ** EofB: outA, nextA outA, nextA outA, nextA halt 2774 ** 2775 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2776 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2777 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2778 ** following nextX causes a jump to the end of the select processing. 2779 ** 2780 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2781 ** within the output subroutine. The regPrev register set holds the previously 2782 ** output value. A comparison is made against this value and the output 2783 ** is skipped if the next results would be the same as the previous. 2784 ** 2785 ** The implementation plan is to implement the two coroutines and seven 2786 ** subroutines first, then put the control logic at the bottom. Like this: 2787 ** 2788 ** goto Init 2789 ** coA: coroutine for left query (A) 2790 ** coB: coroutine for right query (B) 2791 ** outA: output one row of A 2792 ** outB: output one row of B (UNION and UNION ALL only) 2793 ** EofA: ... 2794 ** EofB: ... 2795 ** AltB: ... 2796 ** AeqB: ... 2797 ** AgtB: ... 2798 ** Init: initialize coroutine registers 2799 ** yield coA 2800 ** if eof(A) goto EofA 2801 ** yield coB 2802 ** if eof(B) goto EofB 2803 ** Cmpr: Compare A, B 2804 ** Jump AltB, AeqB, AgtB 2805 ** End: ... 2806 ** 2807 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2808 ** actually called using Gosub and they do not Return. EofA and EofB loop 2809 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2810 ** and AgtB jump to either L2 or to one of EofA or EofB. 2811 */ 2812 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2813 static int multiSelectOrderBy( 2814 Parse *pParse, /* Parsing context */ 2815 Select *p, /* The right-most of SELECTs to be coded */ 2816 SelectDest *pDest /* What to do with query results */ 2817 ){ 2818 int i, j; /* Loop counters */ 2819 Select *pPrior; /* Another SELECT immediately to our left */ 2820 Vdbe *v; /* Generate code to this VDBE */ 2821 SelectDest destA; /* Destination for coroutine A */ 2822 SelectDest destB; /* Destination for coroutine B */ 2823 int regAddrA; /* Address register for select-A coroutine */ 2824 int regAddrB; /* Address register for select-B coroutine */ 2825 int addrSelectA; /* Address of the select-A coroutine */ 2826 int addrSelectB; /* Address of the select-B coroutine */ 2827 int regOutA; /* Address register for the output-A subroutine */ 2828 int regOutB; /* Address register for the output-B subroutine */ 2829 int addrOutA; /* Address of the output-A subroutine */ 2830 int addrOutB = 0; /* Address of the output-B subroutine */ 2831 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2832 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2833 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2834 int addrAltB; /* Address of the A<B subroutine */ 2835 int addrAeqB; /* Address of the A==B subroutine */ 2836 int addrAgtB; /* Address of the A>B subroutine */ 2837 int regLimitA; /* Limit register for select-A */ 2838 int regLimitB; /* Limit register for select-A */ 2839 int regPrev; /* A range of registers to hold previous output */ 2840 int savedLimit; /* Saved value of p->iLimit */ 2841 int savedOffset; /* Saved value of p->iOffset */ 2842 int labelCmpr; /* Label for the start of the merge algorithm */ 2843 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2844 int addr1; /* Jump instructions that get retargetted */ 2845 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2846 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2847 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2848 sqlite3 *db; /* Database connection */ 2849 ExprList *pOrderBy; /* The ORDER BY clause */ 2850 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2851 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2852 #ifndef SQLITE_OMIT_EXPLAIN 2853 int iSub1; /* EQP id of left-hand query */ 2854 int iSub2; /* EQP id of right-hand query */ 2855 #endif 2856 2857 assert( p->pOrderBy!=0 ); 2858 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2859 db = pParse->db; 2860 v = pParse->pVdbe; 2861 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2862 labelEnd = sqlite3VdbeMakeLabel(v); 2863 labelCmpr = sqlite3VdbeMakeLabel(v); 2864 2865 2866 /* Patch up the ORDER BY clause 2867 */ 2868 op = p->op; 2869 pPrior = p->pPrior; 2870 assert( pPrior->pOrderBy==0 ); 2871 pOrderBy = p->pOrderBy; 2872 assert( pOrderBy ); 2873 nOrderBy = pOrderBy->nExpr; 2874 2875 /* For operators other than UNION ALL we have to make sure that 2876 ** the ORDER BY clause covers every term of the result set. Add 2877 ** terms to the ORDER BY clause as necessary. 2878 */ 2879 if( op!=TK_ALL ){ 2880 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2881 struct ExprList_item *pItem; 2882 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2883 assert( pItem->u.x.iOrderByCol>0 ); 2884 if( pItem->u.x.iOrderByCol==i ) break; 2885 } 2886 if( j==nOrderBy ){ 2887 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2888 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2889 pNew->flags |= EP_IntValue; 2890 pNew->u.iValue = i; 2891 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2892 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2893 } 2894 } 2895 } 2896 2897 /* Compute the comparison permutation and keyinfo that is used with 2898 ** the permutation used to determine if the next 2899 ** row of results comes from selectA or selectB. Also add explicit 2900 ** collations to the ORDER BY clause terms so that when the subqueries 2901 ** to the right and the left are evaluated, they use the correct 2902 ** collation. 2903 */ 2904 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2905 if( aPermute ){ 2906 struct ExprList_item *pItem; 2907 aPermute[0] = nOrderBy; 2908 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2909 assert( pItem->u.x.iOrderByCol>0 ); 2910 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2911 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2912 } 2913 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2914 }else{ 2915 pKeyMerge = 0; 2916 } 2917 2918 /* Reattach the ORDER BY clause to the query. 2919 */ 2920 p->pOrderBy = pOrderBy; 2921 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2922 2923 /* Allocate a range of temporary registers and the KeyInfo needed 2924 ** for the logic that removes duplicate result rows when the 2925 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2926 */ 2927 if( op==TK_ALL ){ 2928 regPrev = 0; 2929 }else{ 2930 int nExpr = p->pEList->nExpr; 2931 assert( nOrderBy>=nExpr || db->mallocFailed ); 2932 regPrev = pParse->nMem+1; 2933 pParse->nMem += nExpr+1; 2934 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2935 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2936 if( pKeyDup ){ 2937 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2938 for(i=0; i<nExpr; i++){ 2939 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2940 pKeyDup->aSortOrder[i] = 0; 2941 } 2942 } 2943 } 2944 2945 /* Separate the left and the right query from one another 2946 */ 2947 p->pPrior = 0; 2948 pPrior->pNext = 0; 2949 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2950 if( pPrior->pPrior==0 ){ 2951 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2952 } 2953 2954 /* Compute the limit registers */ 2955 computeLimitRegisters(pParse, p, labelEnd); 2956 if( p->iLimit && op==TK_ALL ){ 2957 regLimitA = ++pParse->nMem; 2958 regLimitB = ++pParse->nMem; 2959 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2960 regLimitA); 2961 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2962 }else{ 2963 regLimitA = regLimitB = 0; 2964 } 2965 sqlite3ExprDelete(db, p->pLimit); 2966 p->pLimit = 0; 2967 sqlite3ExprDelete(db, p->pOffset); 2968 p->pOffset = 0; 2969 2970 regAddrA = ++pParse->nMem; 2971 regAddrB = ++pParse->nMem; 2972 regOutA = ++pParse->nMem; 2973 regOutB = ++pParse->nMem; 2974 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2975 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2976 2977 /* Generate a coroutine to evaluate the SELECT statement to the 2978 ** left of the compound operator - the "A" select. 2979 */ 2980 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2981 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2982 VdbeComment((v, "left SELECT")); 2983 pPrior->iLimit = regLimitA; 2984 explainSetInteger(iSub1, pParse->iNextSelectId); 2985 sqlite3Select(pParse, pPrior, &destA); 2986 sqlite3VdbeEndCoroutine(v, regAddrA); 2987 sqlite3VdbeJumpHere(v, addr1); 2988 2989 /* Generate a coroutine to evaluate the SELECT statement on 2990 ** the right - the "B" select 2991 */ 2992 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2993 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2994 VdbeComment((v, "right SELECT")); 2995 savedLimit = p->iLimit; 2996 savedOffset = p->iOffset; 2997 p->iLimit = regLimitB; 2998 p->iOffset = 0; 2999 explainSetInteger(iSub2, pParse->iNextSelectId); 3000 sqlite3Select(pParse, p, &destB); 3001 p->iLimit = savedLimit; 3002 p->iOffset = savedOffset; 3003 sqlite3VdbeEndCoroutine(v, regAddrB); 3004 3005 /* Generate a subroutine that outputs the current row of the A 3006 ** select as the next output row of the compound select. 3007 */ 3008 VdbeNoopComment((v, "Output routine for A")); 3009 addrOutA = generateOutputSubroutine(pParse, 3010 p, &destA, pDest, regOutA, 3011 regPrev, pKeyDup, labelEnd); 3012 3013 /* Generate a subroutine that outputs the current row of the B 3014 ** select as the next output row of the compound select. 3015 */ 3016 if( op==TK_ALL || op==TK_UNION ){ 3017 VdbeNoopComment((v, "Output routine for B")); 3018 addrOutB = generateOutputSubroutine(pParse, 3019 p, &destB, pDest, regOutB, 3020 regPrev, pKeyDup, labelEnd); 3021 } 3022 sqlite3KeyInfoUnref(pKeyDup); 3023 3024 /* Generate a subroutine to run when the results from select A 3025 ** are exhausted and only data in select B remains. 3026 */ 3027 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3028 addrEofA_noB = addrEofA = labelEnd; 3029 }else{ 3030 VdbeNoopComment((v, "eof-A subroutine")); 3031 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3032 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3033 VdbeCoverage(v); 3034 sqlite3VdbeGoto(v, addrEofA); 3035 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3036 } 3037 3038 /* Generate a subroutine to run when the results from select B 3039 ** are exhausted and only data in select A remains. 3040 */ 3041 if( op==TK_INTERSECT ){ 3042 addrEofB = addrEofA; 3043 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3044 }else{ 3045 VdbeNoopComment((v, "eof-B subroutine")); 3046 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3047 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3048 sqlite3VdbeGoto(v, addrEofB); 3049 } 3050 3051 /* Generate code to handle the case of A<B 3052 */ 3053 VdbeNoopComment((v, "A-lt-B subroutine")); 3054 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3055 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3056 sqlite3VdbeGoto(v, labelCmpr); 3057 3058 /* Generate code to handle the case of A==B 3059 */ 3060 if( op==TK_ALL ){ 3061 addrAeqB = addrAltB; 3062 }else if( op==TK_INTERSECT ){ 3063 addrAeqB = addrAltB; 3064 addrAltB++; 3065 }else{ 3066 VdbeNoopComment((v, "A-eq-B subroutine")); 3067 addrAeqB = 3068 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3069 sqlite3VdbeGoto(v, labelCmpr); 3070 } 3071 3072 /* Generate code to handle the case of A>B 3073 */ 3074 VdbeNoopComment((v, "A-gt-B subroutine")); 3075 addrAgtB = sqlite3VdbeCurrentAddr(v); 3076 if( op==TK_ALL || op==TK_UNION ){ 3077 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3078 } 3079 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3080 sqlite3VdbeGoto(v, labelCmpr); 3081 3082 /* This code runs once to initialize everything. 3083 */ 3084 sqlite3VdbeJumpHere(v, addr1); 3085 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3086 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3087 3088 /* Implement the main merge loop 3089 */ 3090 sqlite3VdbeResolveLabel(v, labelCmpr); 3091 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3092 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3093 (char*)pKeyMerge, P4_KEYINFO); 3094 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3095 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3096 3097 /* Jump to the this point in order to terminate the query. 3098 */ 3099 sqlite3VdbeResolveLabel(v, labelEnd); 3100 3101 /* Set the number of output columns 3102 */ 3103 if( pDest->eDest==SRT_Output ){ 3104 Select *pFirst = pPrior; 3105 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3106 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3107 } 3108 3109 /* Reassembly the compound query so that it will be freed correctly 3110 ** by the calling function */ 3111 if( p->pPrior ){ 3112 sqlite3SelectDelete(db, p->pPrior); 3113 } 3114 p->pPrior = pPrior; 3115 pPrior->pNext = p; 3116 3117 /*** TBD: Insert subroutine calls to close cursors on incomplete 3118 **** subqueries ****/ 3119 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3120 return pParse->nErr!=0; 3121 } 3122 #endif 3123 3124 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3125 /* Forward Declarations */ 3126 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3127 static void substSelect(sqlite3*, Select *, int, ExprList*, int); 3128 3129 /* 3130 ** Scan through the expression pExpr. Replace every reference to 3131 ** a column in table number iTable with a copy of the iColumn-th 3132 ** entry in pEList. (But leave references to the ROWID column 3133 ** unchanged.) 3134 ** 3135 ** This routine is part of the flattening procedure. A subquery 3136 ** whose result set is defined by pEList appears as entry in the 3137 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3138 ** FORM clause entry is iTable. This routine make the necessary 3139 ** changes to pExpr so that it refers directly to the source table 3140 ** of the subquery rather the result set of the subquery. 3141 */ 3142 static Expr *substExpr( 3143 sqlite3 *db, /* Report malloc errors to this connection */ 3144 Expr *pExpr, /* Expr in which substitution occurs */ 3145 int iTable, /* Table to be substituted */ 3146 ExprList *pEList /* Substitute expressions */ 3147 ){ 3148 if( pExpr==0 ) return 0; 3149 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3150 if( pExpr->iColumn<0 ){ 3151 pExpr->op = TK_NULL; 3152 }else{ 3153 Expr *pNew; 3154 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3155 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3156 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3157 sqlite3ExprDelete(db, pExpr); 3158 pExpr = pNew; 3159 } 3160 }else{ 3161 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3162 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3163 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3164 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1); 3165 }else{ 3166 substExprList(db, pExpr->x.pList, iTable, pEList); 3167 } 3168 } 3169 return pExpr; 3170 } 3171 static void substExprList( 3172 sqlite3 *db, /* Report malloc errors here */ 3173 ExprList *pList, /* List to scan and in which to make substitutes */ 3174 int iTable, /* Table to be substituted */ 3175 ExprList *pEList /* Substitute values */ 3176 ){ 3177 int i; 3178 if( pList==0 ) return; 3179 for(i=0; i<pList->nExpr; i++){ 3180 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3181 } 3182 } 3183 static void substSelect( 3184 sqlite3 *db, /* Report malloc errors here */ 3185 Select *p, /* SELECT statement in which to make substitutions */ 3186 int iTable, /* Table to be replaced */ 3187 ExprList *pEList, /* Substitute values */ 3188 int doPrior /* Do substitutes on p->pPrior too */ 3189 ){ 3190 SrcList *pSrc; 3191 struct SrcList_item *pItem; 3192 int i; 3193 if( !p ) return; 3194 do{ 3195 substExprList(db, p->pEList, iTable, pEList); 3196 substExprList(db, p->pGroupBy, iTable, pEList); 3197 substExprList(db, p->pOrderBy, iTable, pEList); 3198 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3199 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3200 pSrc = p->pSrc; 3201 assert( pSrc!=0 ); 3202 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3203 substSelect(db, pItem->pSelect, iTable, pEList, 1); 3204 if( pItem->fg.isTabFunc ){ 3205 substExprList(db, pItem->u1.pFuncArg, iTable, pEList); 3206 } 3207 } 3208 }while( doPrior && (p = p->pPrior)!=0 ); 3209 } 3210 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3211 3212 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3213 /* 3214 ** This routine attempts to flatten subqueries as a performance optimization. 3215 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3216 ** 3217 ** To understand the concept of flattening, consider the following 3218 ** query: 3219 ** 3220 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3221 ** 3222 ** The default way of implementing this query is to execute the 3223 ** subquery first and store the results in a temporary table, then 3224 ** run the outer query on that temporary table. This requires two 3225 ** passes over the data. Furthermore, because the temporary table 3226 ** has no indices, the WHERE clause on the outer query cannot be 3227 ** optimized. 3228 ** 3229 ** This routine attempts to rewrite queries such as the above into 3230 ** a single flat select, like this: 3231 ** 3232 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3233 ** 3234 ** The code generated for this simplification gives the same result 3235 ** but only has to scan the data once. And because indices might 3236 ** exist on the table t1, a complete scan of the data might be 3237 ** avoided. 3238 ** 3239 ** Flattening is only attempted if all of the following are true: 3240 ** 3241 ** (1) The subquery and the outer query do not both use aggregates. 3242 ** 3243 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3244 ** and (2b) the outer query does not use subqueries other than the one 3245 ** FROM-clause subquery that is a candidate for flattening. (2b is 3246 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3247 ** 3248 ** (3) The subquery is not the right operand of a left outer join 3249 ** (Originally ticket #306. Strengthened by ticket #3300) 3250 ** 3251 ** (4) The subquery is not DISTINCT. 3252 ** 3253 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3254 ** sub-queries that were excluded from this optimization. Restriction 3255 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3256 ** 3257 ** (6) The subquery does not use aggregates or the outer query is not 3258 ** DISTINCT. 3259 ** 3260 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3261 ** A FROM clause, consider adding a FROM close with the special 3262 ** table sqlite_once that consists of a single row containing a 3263 ** single NULL. 3264 ** 3265 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3266 ** 3267 ** (9) The subquery does not use LIMIT or the outer query does not use 3268 ** aggregates. 3269 ** 3270 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3271 ** accidently carried the comment forward until 2014-09-15. Original 3272 ** text: "The subquery does not use aggregates or the outer query 3273 ** does not use LIMIT." 3274 ** 3275 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3276 ** 3277 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3278 ** a separate restriction deriving from ticket #350. 3279 ** 3280 ** (13) The subquery and outer query do not both use LIMIT. 3281 ** 3282 ** (14) The subquery does not use OFFSET. 3283 ** 3284 ** (15) The outer query is not part of a compound select or the 3285 ** subquery does not have a LIMIT clause. 3286 ** (See ticket #2339 and ticket [02a8e81d44]). 3287 ** 3288 ** (16) The outer query is not an aggregate or the subquery does 3289 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3290 ** until we introduced the group_concat() function. 3291 ** 3292 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3293 ** compound clause made up entirely of non-aggregate queries, and 3294 ** the parent query: 3295 ** 3296 ** * is not itself part of a compound select, 3297 ** * is not an aggregate or DISTINCT query, and 3298 ** * is not a join 3299 ** 3300 ** The parent and sub-query may contain WHERE clauses. Subject to 3301 ** rules (11), (13) and (14), they may also contain ORDER BY, 3302 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3303 ** operator other than UNION ALL because all the other compound 3304 ** operators have an implied DISTINCT which is disallowed by 3305 ** restriction (4). 3306 ** 3307 ** Also, each component of the sub-query must return the same number 3308 ** of result columns. This is actually a requirement for any compound 3309 ** SELECT statement, but all the code here does is make sure that no 3310 ** such (illegal) sub-query is flattened. The caller will detect the 3311 ** syntax error and return a detailed message. 3312 ** 3313 ** (18) If the sub-query is a compound select, then all terms of the 3314 ** ORDER by clause of the parent must be simple references to 3315 ** columns of the sub-query. 3316 ** 3317 ** (19) The subquery does not use LIMIT or the outer query does not 3318 ** have a WHERE clause. 3319 ** 3320 ** (20) If the sub-query is a compound select, then it must not use 3321 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3322 ** somewhat by saying that the terms of the ORDER BY clause must 3323 ** appear as unmodified result columns in the outer query. But we 3324 ** have other optimizations in mind to deal with that case. 3325 ** 3326 ** (21) The subquery does not use LIMIT or the outer query is not 3327 ** DISTINCT. (See ticket [752e1646fc]). 3328 ** 3329 ** (22) The subquery is not a recursive CTE. 3330 ** 3331 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3332 ** compound query. This restriction is because transforming the 3333 ** parent to a compound query confuses the code that handles 3334 ** recursive queries in multiSelect(). 3335 ** 3336 ** (24) The subquery is not an aggregate that uses the built-in min() or 3337 ** or max() functions. (Without this restriction, a query like: 3338 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3339 ** return the value X for which Y was maximal.) 3340 ** 3341 ** 3342 ** In this routine, the "p" parameter is a pointer to the outer query. 3343 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3344 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3345 ** 3346 ** If flattening is not attempted, this routine is a no-op and returns 0. 3347 ** If flattening is attempted this routine returns 1. 3348 ** 3349 ** All of the expression analysis must occur on both the outer query and 3350 ** the subquery before this routine runs. 3351 */ 3352 static int flattenSubquery( 3353 Parse *pParse, /* Parsing context */ 3354 Select *p, /* The parent or outer SELECT statement */ 3355 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3356 int isAgg, /* True if outer SELECT uses aggregate functions */ 3357 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3358 ){ 3359 const char *zSavedAuthContext = pParse->zAuthContext; 3360 Select *pParent; /* Current UNION ALL term of the other query */ 3361 Select *pSub; /* The inner query or "subquery" */ 3362 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3363 SrcList *pSrc; /* The FROM clause of the outer query */ 3364 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3365 ExprList *pList; /* The result set of the outer query */ 3366 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3367 int i; /* Loop counter */ 3368 Expr *pWhere; /* The WHERE clause */ 3369 struct SrcList_item *pSubitem; /* The subquery */ 3370 sqlite3 *db = pParse->db; 3371 3372 /* Check to see if flattening is permitted. Return 0 if not. 3373 */ 3374 assert( p!=0 ); 3375 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3376 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3377 pSrc = p->pSrc; 3378 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3379 pSubitem = &pSrc->a[iFrom]; 3380 iParent = pSubitem->iCursor; 3381 pSub = pSubitem->pSelect; 3382 assert( pSub!=0 ); 3383 if( subqueryIsAgg ){ 3384 if( isAgg ) return 0; /* Restriction (1) */ 3385 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3386 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3387 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3388 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3389 ){ 3390 return 0; /* Restriction (2b) */ 3391 } 3392 } 3393 3394 pSubSrc = pSub->pSrc; 3395 assert( pSubSrc ); 3396 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3397 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3398 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3399 ** became arbitrary expressions, we were forced to add restrictions (13) 3400 ** and (14). */ 3401 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3402 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3403 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3404 return 0; /* Restriction (15) */ 3405 } 3406 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3407 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3408 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3409 return 0; /* Restrictions (8)(9) */ 3410 } 3411 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3412 return 0; /* Restriction (6) */ 3413 } 3414 if( p->pOrderBy && pSub->pOrderBy ){ 3415 return 0; /* Restriction (11) */ 3416 } 3417 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3418 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3419 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3420 return 0; /* Restriction (21) */ 3421 } 3422 testcase( pSub->selFlags & SF_Recursive ); 3423 testcase( pSub->selFlags & SF_MinMaxAgg ); 3424 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3425 return 0; /* Restrictions (22) and (24) */ 3426 } 3427 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3428 return 0; /* Restriction (23) */ 3429 } 3430 3431 /* OBSOLETE COMMENT 1: 3432 ** Restriction 3: If the subquery is a join, make sure the subquery is 3433 ** not used as the right operand of an outer join. Examples of why this 3434 ** is not allowed: 3435 ** 3436 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3437 ** 3438 ** If we flatten the above, we would get 3439 ** 3440 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3441 ** 3442 ** which is not at all the same thing. 3443 ** 3444 ** OBSOLETE COMMENT 2: 3445 ** Restriction 12: If the subquery is the right operand of a left outer 3446 ** join, make sure the subquery has no WHERE clause. 3447 ** An examples of why this is not allowed: 3448 ** 3449 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3450 ** 3451 ** If we flatten the above, we would get 3452 ** 3453 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3454 ** 3455 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3456 ** effectively converts the OUTER JOIN into an INNER JOIN. 3457 ** 3458 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3459 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3460 ** is fraught with danger. Best to avoid the whole thing. If the 3461 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3462 */ 3463 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3464 return 0; 3465 } 3466 3467 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3468 ** use only the UNION ALL operator. And none of the simple select queries 3469 ** that make up the compound SELECT are allowed to be aggregate or distinct 3470 ** queries. 3471 */ 3472 if( pSub->pPrior ){ 3473 if( pSub->pOrderBy ){ 3474 return 0; /* Restriction 20 */ 3475 } 3476 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3477 return 0; 3478 } 3479 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3480 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3481 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3482 assert( pSub->pSrc!=0 ); 3483 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3484 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3485 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3486 || pSub1->pSrc->nSrc<1 3487 ){ 3488 return 0; 3489 } 3490 testcase( pSub1->pSrc->nSrc>1 ); 3491 } 3492 3493 /* Restriction 18. */ 3494 if( p->pOrderBy ){ 3495 int ii; 3496 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3497 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3498 } 3499 } 3500 } 3501 3502 /***** If we reach this point, flattening is permitted. *****/ 3503 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3504 pSub->zSelName, pSub, iFrom)); 3505 3506 /* Authorize the subquery */ 3507 pParse->zAuthContext = pSubitem->zName; 3508 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3509 testcase( i==SQLITE_DENY ); 3510 pParse->zAuthContext = zSavedAuthContext; 3511 3512 /* If the sub-query is a compound SELECT statement, then (by restrictions 3513 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3514 ** be of the form: 3515 ** 3516 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3517 ** 3518 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3519 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3520 ** OFFSET clauses and joins them to the left-hand-side of the original 3521 ** using UNION ALL operators. In this case N is the number of simple 3522 ** select statements in the compound sub-query. 3523 ** 3524 ** Example: 3525 ** 3526 ** SELECT a+1 FROM ( 3527 ** SELECT x FROM tab 3528 ** UNION ALL 3529 ** SELECT y FROM tab 3530 ** UNION ALL 3531 ** SELECT abs(z*2) FROM tab2 3532 ** ) WHERE a!=5 ORDER BY 1 3533 ** 3534 ** Transformed into: 3535 ** 3536 ** SELECT x+1 FROM tab WHERE x+1!=5 3537 ** UNION ALL 3538 ** SELECT y+1 FROM tab WHERE y+1!=5 3539 ** UNION ALL 3540 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3541 ** ORDER BY 1 3542 ** 3543 ** We call this the "compound-subquery flattening". 3544 */ 3545 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3546 Select *pNew; 3547 ExprList *pOrderBy = p->pOrderBy; 3548 Expr *pLimit = p->pLimit; 3549 Expr *pOffset = p->pOffset; 3550 Select *pPrior = p->pPrior; 3551 p->pOrderBy = 0; 3552 p->pSrc = 0; 3553 p->pPrior = 0; 3554 p->pLimit = 0; 3555 p->pOffset = 0; 3556 pNew = sqlite3SelectDup(db, p, 0); 3557 sqlite3SelectSetName(pNew, pSub->zSelName); 3558 p->pOffset = pOffset; 3559 p->pLimit = pLimit; 3560 p->pOrderBy = pOrderBy; 3561 p->pSrc = pSrc; 3562 p->op = TK_ALL; 3563 if( pNew==0 ){ 3564 p->pPrior = pPrior; 3565 }else{ 3566 pNew->pPrior = pPrior; 3567 if( pPrior ) pPrior->pNext = pNew; 3568 pNew->pNext = p; 3569 p->pPrior = pNew; 3570 SELECTTRACE(2,pParse,p, 3571 ("compound-subquery flattener creates %s.%p as peer\n", 3572 pNew->zSelName, pNew)); 3573 } 3574 if( db->mallocFailed ) return 1; 3575 } 3576 3577 /* Begin flattening the iFrom-th entry of the FROM clause 3578 ** in the outer query. 3579 */ 3580 pSub = pSub1 = pSubitem->pSelect; 3581 3582 /* Delete the transient table structure associated with the 3583 ** subquery 3584 */ 3585 sqlite3DbFree(db, pSubitem->zDatabase); 3586 sqlite3DbFree(db, pSubitem->zName); 3587 sqlite3DbFree(db, pSubitem->zAlias); 3588 pSubitem->zDatabase = 0; 3589 pSubitem->zName = 0; 3590 pSubitem->zAlias = 0; 3591 pSubitem->pSelect = 0; 3592 3593 /* Defer deleting the Table object associated with the 3594 ** subquery until code generation is 3595 ** complete, since there may still exist Expr.pTab entries that 3596 ** refer to the subquery even after flattening. Ticket #3346. 3597 ** 3598 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3599 */ 3600 if( ALWAYS(pSubitem->pTab!=0) ){ 3601 Table *pTabToDel = pSubitem->pTab; 3602 if( pTabToDel->nRef==1 ){ 3603 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3604 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3605 pToplevel->pZombieTab = pTabToDel; 3606 }else{ 3607 pTabToDel->nRef--; 3608 } 3609 pSubitem->pTab = 0; 3610 } 3611 3612 /* The following loop runs once for each term in a compound-subquery 3613 ** flattening (as described above). If we are doing a different kind 3614 ** of flattening - a flattening other than a compound-subquery flattening - 3615 ** then this loop only runs once. 3616 ** 3617 ** This loop moves all of the FROM elements of the subquery into the 3618 ** the FROM clause of the outer query. Before doing this, remember 3619 ** the cursor number for the original outer query FROM element in 3620 ** iParent. The iParent cursor will never be used. Subsequent code 3621 ** will scan expressions looking for iParent references and replace 3622 ** those references with expressions that resolve to the subquery FROM 3623 ** elements we are now copying in. 3624 */ 3625 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3626 int nSubSrc; 3627 u8 jointype = 0; 3628 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3629 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3630 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3631 3632 if( pSrc ){ 3633 assert( pParent==p ); /* First time through the loop */ 3634 jointype = pSubitem->fg.jointype; 3635 }else{ 3636 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3637 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3638 if( pSrc==0 ){ 3639 assert( db->mallocFailed ); 3640 break; 3641 } 3642 } 3643 3644 /* The subquery uses a single slot of the FROM clause of the outer 3645 ** query. If the subquery has more than one element in its FROM clause, 3646 ** then expand the outer query to make space for it to hold all elements 3647 ** of the subquery. 3648 ** 3649 ** Example: 3650 ** 3651 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3652 ** 3653 ** The outer query has 3 slots in its FROM clause. One slot of the 3654 ** outer query (the middle slot) is used by the subquery. The next 3655 ** block of code will expand the outer query FROM clause to 4 slots. 3656 ** The middle slot is expanded to two slots in order to make space 3657 ** for the two elements in the FROM clause of the subquery. 3658 */ 3659 if( nSubSrc>1 ){ 3660 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3661 if( db->mallocFailed ){ 3662 break; 3663 } 3664 } 3665 3666 /* Transfer the FROM clause terms from the subquery into the 3667 ** outer query. 3668 */ 3669 for(i=0; i<nSubSrc; i++){ 3670 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3671 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3672 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3673 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3674 } 3675 pSrc->a[iFrom].fg.jointype = jointype; 3676 3677 /* Now begin substituting subquery result set expressions for 3678 ** references to the iParent in the outer query. 3679 ** 3680 ** Example: 3681 ** 3682 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3683 ** \ \_____________ subquery __________/ / 3684 ** \_____________________ outer query ______________________________/ 3685 ** 3686 ** We look at every expression in the outer query and every place we see 3687 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3688 */ 3689 pList = pParent->pEList; 3690 for(i=0; i<pList->nExpr; i++){ 3691 if( pList->a[i].zName==0 ){ 3692 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3693 sqlite3Dequote(zName); 3694 pList->a[i].zName = zName; 3695 } 3696 } 3697 if( pSub->pOrderBy ){ 3698 /* At this point, any non-zero iOrderByCol values indicate that the 3699 ** ORDER BY column expression is identical to the iOrderByCol'th 3700 ** expression returned by SELECT statement pSub. Since these values 3701 ** do not necessarily correspond to columns in SELECT statement pParent, 3702 ** zero them before transfering the ORDER BY clause. 3703 ** 3704 ** Not doing this may cause an error if a subsequent call to this 3705 ** function attempts to flatten a compound sub-query into pParent 3706 ** (the only way this can happen is if the compound sub-query is 3707 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3708 ExprList *pOrderBy = pSub->pOrderBy; 3709 for(i=0; i<pOrderBy->nExpr; i++){ 3710 pOrderBy->a[i].u.x.iOrderByCol = 0; 3711 } 3712 assert( pParent->pOrderBy==0 ); 3713 assert( pSub->pPrior==0 ); 3714 pParent->pOrderBy = pOrderBy; 3715 pSub->pOrderBy = 0; 3716 } 3717 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3718 if( subqueryIsAgg ){ 3719 assert( pParent->pHaving==0 ); 3720 pParent->pHaving = pParent->pWhere; 3721 pParent->pWhere = pWhere; 3722 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3723 sqlite3ExprDup(db, pSub->pHaving, 0)); 3724 assert( pParent->pGroupBy==0 ); 3725 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3726 }else{ 3727 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3728 } 3729 substSelect(db, pParent, iParent, pSub->pEList, 0); 3730 3731 /* The flattened query is distinct if either the inner or the 3732 ** outer query is distinct. 3733 */ 3734 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3735 3736 /* 3737 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3738 ** 3739 ** One is tempted to try to add a and b to combine the limits. But this 3740 ** does not work if either limit is negative. 3741 */ 3742 if( pSub->pLimit ){ 3743 pParent->pLimit = pSub->pLimit; 3744 pSub->pLimit = 0; 3745 } 3746 } 3747 3748 /* Finially, delete what is left of the subquery and return 3749 ** success. 3750 */ 3751 sqlite3SelectDelete(db, pSub1); 3752 3753 #if SELECTTRACE_ENABLED 3754 if( sqlite3SelectTrace & 0x100 ){ 3755 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3756 sqlite3TreeViewSelect(0, p, 0); 3757 } 3758 #endif 3759 3760 return 1; 3761 } 3762 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3763 3764 3765 3766 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3767 /* 3768 ** Make copies of relevant WHERE clause terms of the outer query into 3769 ** the WHERE clause of subquery. Example: 3770 ** 3771 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3772 ** 3773 ** Transformed into: 3774 ** 3775 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3776 ** WHERE x=5 AND y=10; 3777 ** 3778 ** The hope is that the terms added to the inner query will make it more 3779 ** efficient. 3780 ** 3781 ** Do not attempt this optimization if: 3782 ** 3783 ** (1) The inner query is an aggregate. (In that case, we'd really want 3784 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3785 ** inner query. But they probably won't help there so do not bother.) 3786 ** 3787 ** (2) The inner query is the recursive part of a common table expression. 3788 ** 3789 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3790 ** close would change the meaning of the LIMIT). 3791 ** 3792 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3793 ** enforces this restriction since this routine does not have enough 3794 ** information to know.) 3795 ** 3796 ** (5) The WHERE clause expression originates in the ON or USING clause 3797 ** of a LEFT JOIN. 3798 ** 3799 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3800 ** terms are duplicated into the subquery. 3801 */ 3802 static int pushDownWhereTerms( 3803 sqlite3 *db, /* The database connection (for malloc()) */ 3804 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3805 Expr *pWhere, /* The WHERE clause of the outer query */ 3806 int iCursor /* Cursor number of the subquery */ 3807 ){ 3808 Expr *pNew; 3809 int nChng = 0; 3810 Select *pX; /* For looping over compound SELECTs in pSubq */ 3811 if( pWhere==0 ) return 0; 3812 for(pX=pSubq; pX; pX=pX->pPrior){ 3813 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3814 testcase( pX->selFlags & SF_Aggregate ); 3815 testcase( pX->selFlags & SF_Recursive ); 3816 testcase( pX!=pSubq ); 3817 return 0; /* restrictions (1) and (2) */ 3818 } 3819 } 3820 if( pSubq->pLimit!=0 ){ 3821 return 0; /* restriction (3) */ 3822 } 3823 while( pWhere->op==TK_AND ){ 3824 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3825 pWhere = pWhere->pLeft; 3826 } 3827 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3828 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3829 nChng++; 3830 while( pSubq ){ 3831 pNew = sqlite3ExprDup(db, pWhere, 0); 3832 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3833 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3834 pSubq = pSubq->pPrior; 3835 } 3836 } 3837 return nChng; 3838 } 3839 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3840 3841 /* 3842 ** Based on the contents of the AggInfo structure indicated by the first 3843 ** argument, this function checks if the following are true: 3844 ** 3845 ** * the query contains just a single aggregate function, 3846 ** * the aggregate function is either min() or max(), and 3847 ** * the argument to the aggregate function is a column value. 3848 ** 3849 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3850 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3851 ** list of arguments passed to the aggregate before returning. 3852 ** 3853 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3854 ** WHERE_ORDERBY_NORMAL is returned. 3855 */ 3856 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3857 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3858 3859 *ppMinMax = 0; 3860 if( pAggInfo->nFunc==1 ){ 3861 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3862 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3863 3864 assert( pExpr->op==TK_AGG_FUNCTION ); 3865 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3866 const char *zFunc = pExpr->u.zToken; 3867 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3868 eRet = WHERE_ORDERBY_MIN; 3869 *ppMinMax = pEList; 3870 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3871 eRet = WHERE_ORDERBY_MAX; 3872 *ppMinMax = pEList; 3873 } 3874 } 3875 } 3876 3877 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3878 return eRet; 3879 } 3880 3881 /* 3882 ** The select statement passed as the first argument is an aggregate query. 3883 ** The second argument is the associated aggregate-info object. This 3884 ** function tests if the SELECT is of the form: 3885 ** 3886 ** SELECT count(*) FROM <tbl> 3887 ** 3888 ** where table is a database table, not a sub-select or view. If the query 3889 ** does match this pattern, then a pointer to the Table object representing 3890 ** <tbl> is returned. Otherwise, 0 is returned. 3891 */ 3892 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3893 Table *pTab; 3894 Expr *pExpr; 3895 3896 assert( !p->pGroupBy ); 3897 3898 if( p->pWhere || p->pEList->nExpr!=1 3899 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3900 ){ 3901 return 0; 3902 } 3903 pTab = p->pSrc->a[0].pTab; 3904 pExpr = p->pEList->a[0].pExpr; 3905 assert( pTab && !pTab->pSelect && pExpr ); 3906 3907 if( IsVirtual(pTab) ) return 0; 3908 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3909 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3910 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3911 if( pExpr->flags&EP_Distinct ) return 0; 3912 3913 return pTab; 3914 } 3915 3916 /* 3917 ** If the source-list item passed as an argument was augmented with an 3918 ** INDEXED BY clause, then try to locate the specified index. If there 3919 ** was such a clause and the named index cannot be found, return 3920 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3921 ** pFrom->pIndex and return SQLITE_OK. 3922 */ 3923 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3924 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3925 Table *pTab = pFrom->pTab; 3926 char *zIndexedBy = pFrom->u1.zIndexedBy; 3927 Index *pIdx; 3928 for(pIdx=pTab->pIndex; 3929 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3930 pIdx=pIdx->pNext 3931 ); 3932 if( !pIdx ){ 3933 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3934 pParse->checkSchema = 1; 3935 return SQLITE_ERROR; 3936 } 3937 pFrom->pIBIndex = pIdx; 3938 } 3939 return SQLITE_OK; 3940 } 3941 /* 3942 ** Detect compound SELECT statements that use an ORDER BY clause with 3943 ** an alternative collating sequence. 3944 ** 3945 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3946 ** 3947 ** These are rewritten as a subquery: 3948 ** 3949 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3950 ** ORDER BY ... COLLATE ... 3951 ** 3952 ** This transformation is necessary because the multiSelectOrderBy() routine 3953 ** above that generates the code for a compound SELECT with an ORDER BY clause 3954 ** uses a merge algorithm that requires the same collating sequence on the 3955 ** result columns as on the ORDER BY clause. See ticket 3956 ** http://www.sqlite.org/src/info/6709574d2a 3957 ** 3958 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3959 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3960 ** there are COLLATE terms in the ORDER BY. 3961 */ 3962 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3963 int i; 3964 Select *pNew; 3965 Select *pX; 3966 sqlite3 *db; 3967 struct ExprList_item *a; 3968 SrcList *pNewSrc; 3969 Parse *pParse; 3970 Token dummy; 3971 3972 if( p->pPrior==0 ) return WRC_Continue; 3973 if( p->pOrderBy==0 ) return WRC_Continue; 3974 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3975 if( pX==0 ) return WRC_Continue; 3976 a = p->pOrderBy->a; 3977 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3978 if( a[i].pExpr->flags & EP_Collate ) break; 3979 } 3980 if( i<0 ) return WRC_Continue; 3981 3982 /* If we reach this point, that means the transformation is required. */ 3983 3984 pParse = pWalker->pParse; 3985 db = pParse->db; 3986 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3987 if( pNew==0 ) return WRC_Abort; 3988 memset(&dummy, 0, sizeof(dummy)); 3989 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3990 if( pNewSrc==0 ) return WRC_Abort; 3991 *pNew = *p; 3992 p->pSrc = pNewSrc; 3993 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 3994 p->op = TK_SELECT; 3995 p->pWhere = 0; 3996 pNew->pGroupBy = 0; 3997 pNew->pHaving = 0; 3998 pNew->pOrderBy = 0; 3999 p->pPrior = 0; 4000 p->pNext = 0; 4001 p->pWith = 0; 4002 p->selFlags &= ~SF_Compound; 4003 assert( (p->selFlags & SF_Converted)==0 ); 4004 p->selFlags |= SF_Converted; 4005 assert( pNew->pPrior!=0 ); 4006 pNew->pPrior->pNext = pNew; 4007 pNew->pLimit = 0; 4008 pNew->pOffset = 0; 4009 return WRC_Continue; 4010 } 4011 4012 /* 4013 ** Check to see if the FROM clause term pFrom has table-valued function 4014 ** arguments. If it does, leave an error message in pParse and return 4015 ** non-zero, since pFrom is not allowed to be a table-valued function. 4016 */ 4017 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4018 if( pFrom->fg.isTabFunc ){ 4019 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4020 return 1; 4021 } 4022 return 0; 4023 } 4024 4025 #ifndef SQLITE_OMIT_CTE 4026 /* 4027 ** Argument pWith (which may be NULL) points to a linked list of nested 4028 ** WITH contexts, from inner to outermost. If the table identified by 4029 ** FROM clause element pItem is really a common-table-expression (CTE) 4030 ** then return a pointer to the CTE definition for that table. Otherwise 4031 ** return NULL. 4032 ** 4033 ** If a non-NULL value is returned, set *ppContext to point to the With 4034 ** object that the returned CTE belongs to. 4035 */ 4036 static struct Cte *searchWith( 4037 With *pWith, /* Current innermost WITH clause */ 4038 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4039 With **ppContext /* OUT: WITH clause return value belongs to */ 4040 ){ 4041 const char *zName; 4042 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4043 With *p; 4044 for(p=pWith; p; p=p->pOuter){ 4045 int i; 4046 for(i=0; i<p->nCte; i++){ 4047 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4048 *ppContext = p; 4049 return &p->a[i]; 4050 } 4051 } 4052 } 4053 } 4054 return 0; 4055 } 4056 4057 /* The code generator maintains a stack of active WITH clauses 4058 ** with the inner-most WITH clause being at the top of the stack. 4059 ** 4060 ** This routine pushes the WITH clause passed as the second argument 4061 ** onto the top of the stack. If argument bFree is true, then this 4062 ** WITH clause will never be popped from the stack. In this case it 4063 ** should be freed along with the Parse object. In other cases, when 4064 ** bFree==0, the With object will be freed along with the SELECT 4065 ** statement with which it is associated. 4066 */ 4067 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4068 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4069 if( pWith ){ 4070 assert( pParse->pWith!=pWith ); 4071 pWith->pOuter = pParse->pWith; 4072 pParse->pWith = pWith; 4073 if( bFree ) pParse->pWithToFree = pWith; 4074 } 4075 } 4076 4077 /* 4078 ** This function checks if argument pFrom refers to a CTE declared by 4079 ** a WITH clause on the stack currently maintained by the parser. And, 4080 ** if currently processing a CTE expression, if it is a recursive 4081 ** reference to the current CTE. 4082 ** 4083 ** If pFrom falls into either of the two categories above, pFrom->pTab 4084 ** and other fields are populated accordingly. The caller should check 4085 ** (pFrom->pTab!=0) to determine whether or not a successful match 4086 ** was found. 4087 ** 4088 ** Whether or not a match is found, SQLITE_OK is returned if no error 4089 ** occurs. If an error does occur, an error message is stored in the 4090 ** parser and some error code other than SQLITE_OK returned. 4091 */ 4092 static int withExpand( 4093 Walker *pWalker, 4094 struct SrcList_item *pFrom 4095 ){ 4096 Parse *pParse = pWalker->pParse; 4097 sqlite3 *db = pParse->db; 4098 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4099 With *pWith; /* WITH clause that pCte belongs to */ 4100 4101 assert( pFrom->pTab==0 ); 4102 4103 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4104 if( pCte ){ 4105 Table *pTab; 4106 ExprList *pEList; 4107 Select *pSel; 4108 Select *pLeft; /* Left-most SELECT statement */ 4109 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4110 With *pSavedWith; /* Initial value of pParse->pWith */ 4111 4112 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4113 ** recursive reference to CTE pCte. Leave an error in pParse and return 4114 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4115 ** In this case, proceed. */ 4116 if( pCte->zCteErr ){ 4117 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4118 return SQLITE_ERROR; 4119 } 4120 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4121 4122 assert( pFrom->pTab==0 ); 4123 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4124 if( pTab==0 ) return WRC_Abort; 4125 pTab->nRef = 1; 4126 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4127 pTab->iPKey = -1; 4128 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4129 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4130 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4131 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4132 assert( pFrom->pSelect ); 4133 4134 /* Check if this is a recursive CTE. */ 4135 pSel = pFrom->pSelect; 4136 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4137 if( bMayRecursive ){ 4138 int i; 4139 SrcList *pSrc = pFrom->pSelect->pSrc; 4140 for(i=0; i<pSrc->nSrc; i++){ 4141 struct SrcList_item *pItem = &pSrc->a[i]; 4142 if( pItem->zDatabase==0 4143 && pItem->zName!=0 4144 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4145 ){ 4146 pItem->pTab = pTab; 4147 pItem->fg.isRecursive = 1; 4148 pTab->nRef++; 4149 pSel->selFlags |= SF_Recursive; 4150 } 4151 } 4152 } 4153 4154 /* Only one recursive reference is permitted. */ 4155 if( pTab->nRef>2 ){ 4156 sqlite3ErrorMsg( 4157 pParse, "multiple references to recursive table: %s", pCte->zName 4158 ); 4159 return SQLITE_ERROR; 4160 } 4161 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4162 4163 pCte->zCteErr = "circular reference: %s"; 4164 pSavedWith = pParse->pWith; 4165 pParse->pWith = pWith; 4166 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4167 pParse->pWith = pWith; 4168 4169 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4170 pEList = pLeft->pEList; 4171 if( pCte->pCols ){ 4172 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4173 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4174 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4175 ); 4176 pParse->pWith = pSavedWith; 4177 return SQLITE_ERROR; 4178 } 4179 pEList = pCte->pCols; 4180 } 4181 4182 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4183 if( bMayRecursive ){ 4184 if( pSel->selFlags & SF_Recursive ){ 4185 pCte->zCteErr = "multiple recursive references: %s"; 4186 }else{ 4187 pCte->zCteErr = "recursive reference in a subquery: %s"; 4188 } 4189 sqlite3WalkSelect(pWalker, pSel); 4190 } 4191 pCte->zCteErr = 0; 4192 pParse->pWith = pSavedWith; 4193 } 4194 4195 return SQLITE_OK; 4196 } 4197 #endif 4198 4199 #ifndef SQLITE_OMIT_CTE 4200 /* 4201 ** If the SELECT passed as the second argument has an associated WITH 4202 ** clause, pop it from the stack stored as part of the Parse object. 4203 ** 4204 ** This function is used as the xSelectCallback2() callback by 4205 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4206 ** names and other FROM clause elements. 4207 */ 4208 static void selectPopWith(Walker *pWalker, Select *p){ 4209 Parse *pParse = pWalker->pParse; 4210 With *pWith = findRightmost(p)->pWith; 4211 if( pWith!=0 ){ 4212 assert( pParse->pWith==pWith ); 4213 pParse->pWith = pWith->pOuter; 4214 } 4215 } 4216 #else 4217 #define selectPopWith 0 4218 #endif 4219 4220 /* 4221 ** This routine is a Walker callback for "expanding" a SELECT statement. 4222 ** "Expanding" means to do the following: 4223 ** 4224 ** (1) Make sure VDBE cursor numbers have been assigned to every 4225 ** element of the FROM clause. 4226 ** 4227 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4228 ** defines FROM clause. When views appear in the FROM clause, 4229 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4230 ** that implements the view. A copy is made of the view's SELECT 4231 ** statement so that we can freely modify or delete that statement 4232 ** without worrying about messing up the persistent representation 4233 ** of the view. 4234 ** 4235 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4236 ** on joins and the ON and USING clause of joins. 4237 ** 4238 ** (4) Scan the list of columns in the result set (pEList) looking 4239 ** for instances of the "*" operator or the TABLE.* operator. 4240 ** If found, expand each "*" to be every column in every table 4241 ** and TABLE.* to be every column in TABLE. 4242 ** 4243 */ 4244 static int selectExpander(Walker *pWalker, Select *p){ 4245 Parse *pParse = pWalker->pParse; 4246 int i, j, k; 4247 SrcList *pTabList; 4248 ExprList *pEList; 4249 struct SrcList_item *pFrom; 4250 sqlite3 *db = pParse->db; 4251 Expr *pE, *pRight, *pExpr; 4252 u16 selFlags = p->selFlags; 4253 4254 p->selFlags |= SF_Expanded; 4255 if( db->mallocFailed ){ 4256 return WRC_Abort; 4257 } 4258 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4259 return WRC_Prune; 4260 } 4261 pTabList = p->pSrc; 4262 pEList = p->pEList; 4263 if( pWalker->xSelectCallback2==selectPopWith ){ 4264 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4265 } 4266 4267 /* Make sure cursor numbers have been assigned to all entries in 4268 ** the FROM clause of the SELECT statement. 4269 */ 4270 sqlite3SrcListAssignCursors(pParse, pTabList); 4271 4272 /* Look up every table named in the FROM clause of the select. If 4273 ** an entry of the FROM clause is a subquery instead of a table or view, 4274 ** then create a transient table structure to describe the subquery. 4275 */ 4276 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4277 Table *pTab; 4278 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4279 if( pFrom->fg.isRecursive ) continue; 4280 assert( pFrom->pTab==0 ); 4281 #ifndef SQLITE_OMIT_CTE 4282 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4283 if( pFrom->pTab ) {} else 4284 #endif 4285 if( pFrom->zName==0 ){ 4286 #ifndef SQLITE_OMIT_SUBQUERY 4287 Select *pSel = pFrom->pSelect; 4288 /* A sub-query in the FROM clause of a SELECT */ 4289 assert( pSel!=0 ); 4290 assert( pFrom->pTab==0 ); 4291 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4292 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4293 if( pTab==0 ) return WRC_Abort; 4294 pTab->nRef = 1; 4295 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4296 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4297 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4298 pTab->iPKey = -1; 4299 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4300 pTab->tabFlags |= TF_Ephemeral; 4301 #endif 4302 }else{ 4303 /* An ordinary table or view name in the FROM clause */ 4304 assert( pFrom->pTab==0 ); 4305 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4306 if( pTab==0 ) return WRC_Abort; 4307 if( pTab->nRef==0xffff ){ 4308 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4309 pTab->zName); 4310 pFrom->pTab = 0; 4311 return WRC_Abort; 4312 } 4313 pTab->nRef++; 4314 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4315 return WRC_Abort; 4316 } 4317 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4318 if( IsVirtual(pTab) || pTab->pSelect ){ 4319 i16 nCol; 4320 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4321 assert( pFrom->pSelect==0 ); 4322 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4323 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4324 nCol = pTab->nCol; 4325 pTab->nCol = -1; 4326 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4327 pTab->nCol = nCol; 4328 } 4329 #endif 4330 } 4331 4332 /* Locate the index named by the INDEXED BY clause, if any. */ 4333 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4334 return WRC_Abort; 4335 } 4336 } 4337 4338 /* Process NATURAL keywords, and ON and USING clauses of joins. 4339 */ 4340 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4341 return WRC_Abort; 4342 } 4343 4344 /* For every "*" that occurs in the column list, insert the names of 4345 ** all columns in all tables. And for every TABLE.* insert the names 4346 ** of all columns in TABLE. The parser inserted a special expression 4347 ** with the TK_ASTERISK operator for each "*" that it found in the column 4348 ** list. The following code just has to locate the TK_ASTERISK 4349 ** expressions and expand each one to the list of all columns in 4350 ** all tables. 4351 ** 4352 ** The first loop just checks to see if there are any "*" operators 4353 ** that need expanding. 4354 */ 4355 for(k=0; k<pEList->nExpr; k++){ 4356 pE = pEList->a[k].pExpr; 4357 if( pE->op==TK_ASTERISK ) break; 4358 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4359 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4360 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4361 } 4362 if( k<pEList->nExpr ){ 4363 /* 4364 ** If we get here it means the result set contains one or more "*" 4365 ** operators that need to be expanded. Loop through each expression 4366 ** in the result set and expand them one by one. 4367 */ 4368 struct ExprList_item *a = pEList->a; 4369 ExprList *pNew = 0; 4370 int flags = pParse->db->flags; 4371 int longNames = (flags & SQLITE_FullColNames)!=0 4372 && (flags & SQLITE_ShortColNames)==0; 4373 4374 for(k=0; k<pEList->nExpr; k++){ 4375 pE = a[k].pExpr; 4376 pRight = pE->pRight; 4377 assert( pE->op!=TK_DOT || pRight!=0 ); 4378 if( pE->op!=TK_ASTERISK 4379 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4380 ){ 4381 /* This particular expression does not need to be expanded. 4382 */ 4383 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4384 if( pNew ){ 4385 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4386 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4387 a[k].zName = 0; 4388 a[k].zSpan = 0; 4389 } 4390 a[k].pExpr = 0; 4391 }else{ 4392 /* This expression is a "*" or a "TABLE.*" and needs to be 4393 ** expanded. */ 4394 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4395 char *zTName = 0; /* text of name of TABLE */ 4396 if( pE->op==TK_DOT ){ 4397 assert( pE->pLeft!=0 ); 4398 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4399 zTName = pE->pLeft->u.zToken; 4400 } 4401 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4402 Table *pTab = pFrom->pTab; 4403 Select *pSub = pFrom->pSelect; 4404 char *zTabName = pFrom->zAlias; 4405 const char *zSchemaName = 0; 4406 int iDb; 4407 if( zTabName==0 ){ 4408 zTabName = pTab->zName; 4409 } 4410 if( db->mallocFailed ) break; 4411 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4412 pSub = 0; 4413 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4414 continue; 4415 } 4416 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4417 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4418 } 4419 for(j=0; j<pTab->nCol; j++){ 4420 char *zName = pTab->aCol[j].zName; 4421 char *zColname; /* The computed column name */ 4422 char *zToFree; /* Malloced string that needs to be freed */ 4423 Token sColname; /* Computed column name as a token */ 4424 4425 assert( zName ); 4426 if( zTName && pSub 4427 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4428 ){ 4429 continue; 4430 } 4431 4432 /* If a column is marked as 'hidden', omit it from the expanded 4433 ** result-set list unless the SELECT has the SF_IncludeHidden 4434 ** bit set. 4435 */ 4436 if( (p->selFlags & SF_IncludeHidden)==0 4437 && IsHiddenColumn(&pTab->aCol[j]) 4438 ){ 4439 continue; 4440 } 4441 tableSeen = 1; 4442 4443 if( i>0 && zTName==0 ){ 4444 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4445 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4446 ){ 4447 /* In a NATURAL join, omit the join columns from the 4448 ** table to the right of the join */ 4449 continue; 4450 } 4451 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4452 /* In a join with a USING clause, omit columns in the 4453 ** using clause from the table on the right. */ 4454 continue; 4455 } 4456 } 4457 pRight = sqlite3Expr(db, TK_ID, zName); 4458 zColname = zName; 4459 zToFree = 0; 4460 if( longNames || pTabList->nSrc>1 ){ 4461 Expr *pLeft; 4462 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4463 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4464 if( zSchemaName ){ 4465 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4466 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4467 } 4468 if( longNames ){ 4469 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4470 zToFree = zColname; 4471 } 4472 }else{ 4473 pExpr = pRight; 4474 } 4475 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4476 sqlite3TokenInit(&sColname, zColname); 4477 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4478 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4479 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4480 if( pSub ){ 4481 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4482 testcase( pX->zSpan==0 ); 4483 }else{ 4484 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4485 zSchemaName, zTabName, zColname); 4486 testcase( pX->zSpan==0 ); 4487 } 4488 pX->bSpanIsTab = 1; 4489 } 4490 sqlite3DbFree(db, zToFree); 4491 } 4492 } 4493 if( !tableSeen ){ 4494 if( zTName ){ 4495 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4496 }else{ 4497 sqlite3ErrorMsg(pParse, "no tables specified"); 4498 } 4499 } 4500 } 4501 } 4502 sqlite3ExprListDelete(db, pEList); 4503 p->pEList = pNew; 4504 } 4505 #if SQLITE_MAX_COLUMN 4506 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4507 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4508 return WRC_Abort; 4509 } 4510 #endif 4511 return WRC_Continue; 4512 } 4513 4514 /* 4515 ** No-op routine for the parse-tree walker. 4516 ** 4517 ** When this routine is the Walker.xExprCallback then expression trees 4518 ** are walked without any actions being taken at each node. Presumably, 4519 ** when this routine is used for Walker.xExprCallback then 4520 ** Walker.xSelectCallback is set to do something useful for every 4521 ** subquery in the parser tree. 4522 */ 4523 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4524 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4525 return WRC_Continue; 4526 } 4527 4528 /* 4529 ** This routine "expands" a SELECT statement and all of its subqueries. 4530 ** For additional information on what it means to "expand" a SELECT 4531 ** statement, see the comment on the selectExpand worker callback above. 4532 ** 4533 ** Expanding a SELECT statement is the first step in processing a 4534 ** SELECT statement. The SELECT statement must be expanded before 4535 ** name resolution is performed. 4536 ** 4537 ** If anything goes wrong, an error message is written into pParse. 4538 ** The calling function can detect the problem by looking at pParse->nErr 4539 ** and/or pParse->db->mallocFailed. 4540 */ 4541 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4542 Walker w; 4543 memset(&w, 0, sizeof(w)); 4544 w.xExprCallback = sqlite3ExprWalkNoop; 4545 w.pParse = pParse; 4546 if( pParse->hasCompound ){ 4547 w.xSelectCallback = convertCompoundSelectToSubquery; 4548 sqlite3WalkSelect(&w, pSelect); 4549 } 4550 w.xSelectCallback = selectExpander; 4551 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4552 w.xSelectCallback2 = selectPopWith; 4553 } 4554 sqlite3WalkSelect(&w, pSelect); 4555 } 4556 4557 4558 #ifndef SQLITE_OMIT_SUBQUERY 4559 /* 4560 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4561 ** interface. 4562 ** 4563 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4564 ** information to the Table structure that represents the result set 4565 ** of that subquery. 4566 ** 4567 ** The Table structure that represents the result set was constructed 4568 ** by selectExpander() but the type and collation information was omitted 4569 ** at that point because identifiers had not yet been resolved. This 4570 ** routine is called after identifier resolution. 4571 */ 4572 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4573 Parse *pParse; 4574 int i; 4575 SrcList *pTabList; 4576 struct SrcList_item *pFrom; 4577 4578 assert( p->selFlags & SF_Resolved ); 4579 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4580 p->selFlags |= SF_HasTypeInfo; 4581 pParse = pWalker->pParse; 4582 pTabList = p->pSrc; 4583 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4584 Table *pTab = pFrom->pTab; 4585 assert( pTab!=0 ); 4586 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4587 /* A sub-query in the FROM clause of a SELECT */ 4588 Select *pSel = pFrom->pSelect; 4589 if( pSel ){ 4590 while( pSel->pPrior ) pSel = pSel->pPrior; 4591 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4592 } 4593 } 4594 } 4595 } 4596 #endif 4597 4598 4599 /* 4600 ** This routine adds datatype and collating sequence information to 4601 ** the Table structures of all FROM-clause subqueries in a 4602 ** SELECT statement. 4603 ** 4604 ** Use this routine after name resolution. 4605 */ 4606 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4607 #ifndef SQLITE_OMIT_SUBQUERY 4608 Walker w; 4609 memset(&w, 0, sizeof(w)); 4610 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4611 w.xExprCallback = sqlite3ExprWalkNoop; 4612 w.pParse = pParse; 4613 sqlite3WalkSelect(&w, pSelect); 4614 #endif 4615 } 4616 4617 4618 /* 4619 ** This routine sets up a SELECT statement for processing. The 4620 ** following is accomplished: 4621 ** 4622 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4623 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4624 ** * ON and USING clauses are shifted into WHERE statements 4625 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4626 ** * Identifiers in expression are matched to tables. 4627 ** 4628 ** This routine acts recursively on all subqueries within the SELECT. 4629 */ 4630 void sqlite3SelectPrep( 4631 Parse *pParse, /* The parser context */ 4632 Select *p, /* The SELECT statement being coded. */ 4633 NameContext *pOuterNC /* Name context for container */ 4634 ){ 4635 sqlite3 *db; 4636 if( NEVER(p==0) ) return; 4637 db = pParse->db; 4638 if( db->mallocFailed ) return; 4639 if( p->selFlags & SF_HasTypeInfo ) return; 4640 sqlite3SelectExpand(pParse, p); 4641 if( pParse->nErr || db->mallocFailed ) return; 4642 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4643 if( pParse->nErr || db->mallocFailed ) return; 4644 sqlite3SelectAddTypeInfo(pParse, p); 4645 } 4646 4647 /* 4648 ** Reset the aggregate accumulator. 4649 ** 4650 ** The aggregate accumulator is a set of memory cells that hold 4651 ** intermediate results while calculating an aggregate. This 4652 ** routine generates code that stores NULLs in all of those memory 4653 ** cells. 4654 */ 4655 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4656 Vdbe *v = pParse->pVdbe; 4657 int i; 4658 struct AggInfo_func *pFunc; 4659 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4660 if( nReg==0 ) return; 4661 #ifdef SQLITE_DEBUG 4662 /* Verify that all AggInfo registers are within the range specified by 4663 ** AggInfo.mnReg..AggInfo.mxReg */ 4664 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4665 for(i=0; i<pAggInfo->nColumn; i++){ 4666 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4667 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4668 } 4669 for(i=0; i<pAggInfo->nFunc; i++){ 4670 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4671 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4672 } 4673 #endif 4674 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4675 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4676 if( pFunc->iDistinct>=0 ){ 4677 Expr *pE = pFunc->pExpr; 4678 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4679 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4680 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4681 "argument"); 4682 pFunc->iDistinct = -1; 4683 }else{ 4684 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4685 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4686 (char*)pKeyInfo, P4_KEYINFO); 4687 } 4688 } 4689 } 4690 } 4691 4692 /* 4693 ** Invoke the OP_AggFinalize opcode for every aggregate function 4694 ** in the AggInfo structure. 4695 */ 4696 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4697 Vdbe *v = pParse->pVdbe; 4698 int i; 4699 struct AggInfo_func *pF; 4700 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4701 ExprList *pList = pF->pExpr->x.pList; 4702 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4703 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4704 (void*)pF->pFunc, P4_FUNCDEF); 4705 } 4706 } 4707 4708 /* 4709 ** Update the accumulator memory cells for an aggregate based on 4710 ** the current cursor position. 4711 */ 4712 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4713 Vdbe *v = pParse->pVdbe; 4714 int i; 4715 int regHit = 0; 4716 int addrHitTest = 0; 4717 struct AggInfo_func *pF; 4718 struct AggInfo_col *pC; 4719 4720 pAggInfo->directMode = 1; 4721 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4722 int nArg; 4723 int addrNext = 0; 4724 int regAgg; 4725 ExprList *pList = pF->pExpr->x.pList; 4726 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4727 if( pList ){ 4728 nArg = pList->nExpr; 4729 regAgg = sqlite3GetTempRange(pParse, nArg); 4730 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4731 }else{ 4732 nArg = 0; 4733 regAgg = 0; 4734 } 4735 if( pF->iDistinct>=0 ){ 4736 addrNext = sqlite3VdbeMakeLabel(v); 4737 testcase( nArg==0 ); /* Error condition */ 4738 testcase( nArg>1 ); /* Also an error */ 4739 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4740 } 4741 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4742 CollSeq *pColl = 0; 4743 struct ExprList_item *pItem; 4744 int j; 4745 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4746 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4747 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4748 } 4749 if( !pColl ){ 4750 pColl = pParse->db->pDfltColl; 4751 } 4752 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4753 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4754 } 4755 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4756 (void*)pF->pFunc, P4_FUNCDEF); 4757 sqlite3VdbeChangeP5(v, (u8)nArg); 4758 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4759 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4760 if( addrNext ){ 4761 sqlite3VdbeResolveLabel(v, addrNext); 4762 sqlite3ExprCacheClear(pParse); 4763 } 4764 } 4765 4766 /* Before populating the accumulator registers, clear the column cache. 4767 ** Otherwise, if any of the required column values are already present 4768 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4769 ** to pC->iMem. But by the time the value is used, the original register 4770 ** may have been used, invalidating the underlying buffer holding the 4771 ** text or blob value. See ticket [883034dcb5]. 4772 ** 4773 ** Another solution would be to change the OP_SCopy used to copy cached 4774 ** values to an OP_Copy. 4775 */ 4776 if( regHit ){ 4777 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4778 } 4779 sqlite3ExprCacheClear(pParse); 4780 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4781 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4782 } 4783 pAggInfo->directMode = 0; 4784 sqlite3ExprCacheClear(pParse); 4785 if( addrHitTest ){ 4786 sqlite3VdbeJumpHere(v, addrHitTest); 4787 } 4788 } 4789 4790 /* 4791 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4792 ** count(*) query ("SELECT count(*) FROM pTab"). 4793 */ 4794 #ifndef SQLITE_OMIT_EXPLAIN 4795 static void explainSimpleCount( 4796 Parse *pParse, /* Parse context */ 4797 Table *pTab, /* Table being queried */ 4798 Index *pIdx /* Index used to optimize scan, or NULL */ 4799 ){ 4800 if( pParse->explain==2 ){ 4801 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4802 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4803 pTab->zName, 4804 bCover ? " USING COVERING INDEX " : "", 4805 bCover ? pIdx->zName : "" 4806 ); 4807 sqlite3VdbeAddOp4( 4808 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4809 ); 4810 } 4811 } 4812 #else 4813 # define explainSimpleCount(a,b,c) 4814 #endif 4815 4816 /* 4817 ** Generate code for the SELECT statement given in the p argument. 4818 ** 4819 ** The results are returned according to the SelectDest structure. 4820 ** See comments in sqliteInt.h for further information. 4821 ** 4822 ** This routine returns the number of errors. If any errors are 4823 ** encountered, then an appropriate error message is left in 4824 ** pParse->zErrMsg. 4825 ** 4826 ** This routine does NOT free the Select structure passed in. The 4827 ** calling function needs to do that. 4828 */ 4829 int sqlite3Select( 4830 Parse *pParse, /* The parser context */ 4831 Select *p, /* The SELECT statement being coded. */ 4832 SelectDest *pDest /* What to do with the query results */ 4833 ){ 4834 int i, j; /* Loop counters */ 4835 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4836 Vdbe *v; /* The virtual machine under construction */ 4837 int isAgg; /* True for select lists like "count(*)" */ 4838 ExprList *pEList = 0; /* List of columns to extract. */ 4839 SrcList *pTabList; /* List of tables to select from */ 4840 Expr *pWhere; /* The WHERE clause. May be NULL */ 4841 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4842 Expr *pHaving; /* The HAVING clause. May be NULL */ 4843 int rc = 1; /* Value to return from this function */ 4844 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4845 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4846 AggInfo sAggInfo; /* Information used by aggregate queries */ 4847 int iEnd; /* Address of the end of the query */ 4848 sqlite3 *db; /* The database connection */ 4849 4850 #ifndef SQLITE_OMIT_EXPLAIN 4851 int iRestoreSelectId = pParse->iSelectId; 4852 pParse->iSelectId = pParse->iNextSelectId++; 4853 #endif 4854 4855 db = pParse->db; 4856 if( p==0 || db->mallocFailed || pParse->nErr ){ 4857 return 1; 4858 } 4859 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4860 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4861 #if SELECTTRACE_ENABLED 4862 pParse->nSelectIndent++; 4863 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4864 if( sqlite3SelectTrace & 0x100 ){ 4865 sqlite3TreeViewSelect(0, p, 0); 4866 } 4867 #endif 4868 4869 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4870 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4871 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4872 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4873 if( IgnorableOrderby(pDest) ){ 4874 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4875 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4876 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4877 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4878 /* If ORDER BY makes no difference in the output then neither does 4879 ** DISTINCT so it can be removed too. */ 4880 sqlite3ExprListDelete(db, p->pOrderBy); 4881 p->pOrderBy = 0; 4882 p->selFlags &= ~SF_Distinct; 4883 } 4884 sqlite3SelectPrep(pParse, p, 0); 4885 memset(&sSort, 0, sizeof(sSort)); 4886 sSort.pOrderBy = p->pOrderBy; 4887 pTabList = p->pSrc; 4888 if( pParse->nErr || db->mallocFailed ){ 4889 goto select_end; 4890 } 4891 assert( p->pEList!=0 ); 4892 isAgg = (p->selFlags & SF_Aggregate)!=0; 4893 #if SELECTTRACE_ENABLED 4894 if( sqlite3SelectTrace & 0x100 ){ 4895 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4896 sqlite3TreeViewSelect(0, p, 0); 4897 } 4898 #endif 4899 4900 4901 /* If writing to memory or generating a set 4902 ** only a single column may be output. 4903 */ 4904 #ifndef SQLITE_OMIT_SUBQUERY 4905 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4906 goto select_end; 4907 } 4908 #endif 4909 4910 /* Try to flatten subqueries in the FROM clause up into the main query 4911 */ 4912 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4913 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4914 struct SrcList_item *pItem = &pTabList->a[i]; 4915 Select *pSub = pItem->pSelect; 4916 int isAggSub; 4917 Table *pTab = pItem->pTab; 4918 if( pSub==0 ) continue; 4919 4920 /* Catch mismatch in the declared columns of a view and the number of 4921 ** columns in the SELECT on the RHS */ 4922 if( pTab->nCol!=pSub->pEList->nExpr ){ 4923 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4924 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4925 goto select_end; 4926 } 4927 4928 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4929 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4930 /* This subquery can be absorbed into its parent. */ 4931 if( isAggSub ){ 4932 isAgg = 1; 4933 p->selFlags |= SF_Aggregate; 4934 } 4935 i = -1; 4936 } 4937 pTabList = p->pSrc; 4938 if( db->mallocFailed ) goto select_end; 4939 if( !IgnorableOrderby(pDest) ){ 4940 sSort.pOrderBy = p->pOrderBy; 4941 } 4942 } 4943 #endif 4944 4945 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4946 ** does not already exist */ 4947 v = sqlite3GetVdbe(pParse); 4948 if( v==0 ) goto select_end; 4949 4950 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4951 /* Handle compound SELECT statements using the separate multiSelect() 4952 ** procedure. 4953 */ 4954 if( p->pPrior ){ 4955 rc = multiSelect(pParse, p, pDest); 4956 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4957 #if SELECTTRACE_ENABLED 4958 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4959 pParse->nSelectIndent--; 4960 #endif 4961 return rc; 4962 } 4963 #endif 4964 4965 /* Generate code for all sub-queries in the FROM clause 4966 */ 4967 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4968 for(i=0; i<pTabList->nSrc; i++){ 4969 struct SrcList_item *pItem = &pTabList->a[i]; 4970 SelectDest dest; 4971 Select *pSub = pItem->pSelect; 4972 if( pSub==0 ) continue; 4973 4974 /* Sometimes the code for a subquery will be generated more than 4975 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4976 ** for example. In that case, do not regenerate the code to manifest 4977 ** a view or the co-routine to implement a view. The first instance 4978 ** is sufficient, though the subroutine to manifest the view does need 4979 ** to be invoked again. */ 4980 if( pItem->addrFillSub ){ 4981 if( pItem->fg.viaCoroutine==0 ){ 4982 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4983 } 4984 continue; 4985 } 4986 4987 /* Increment Parse.nHeight by the height of the largest expression 4988 ** tree referred to by this, the parent select. The child select 4989 ** may contain expression trees of at most 4990 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4991 ** more conservative than necessary, but much easier than enforcing 4992 ** an exact limit. 4993 */ 4994 pParse->nHeight += sqlite3SelectExprHeight(p); 4995 4996 /* Make copies of constant WHERE-clause terms in the outer query down 4997 ** inside the subquery. This can help the subquery to run more efficiently. 4998 */ 4999 if( (pItem->fg.jointype & JT_OUTER)==0 5000 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 5001 ){ 5002 #if SELECTTRACE_ENABLED 5003 if( sqlite3SelectTrace & 0x100 ){ 5004 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5005 sqlite3TreeViewSelect(0, p, 0); 5006 } 5007 #endif 5008 } 5009 5010 /* Generate code to implement the subquery 5011 ** 5012 ** The subquery is implemented as a co-routine if all of these are true: 5013 ** (1) The subquery is guaranteed to be the outer loop (so that it 5014 ** does not need to be computed more than once) 5015 ** (2) The ALL keyword after SELECT is omitted. (Applications are 5016 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 5017 ** the use of co-routines.) 5018 ** (3) Co-routines are not disabled using sqlite3_test_control() 5019 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 5020 ** 5021 ** TODO: Are there other reasons beside (1) to use a co-routine 5022 ** implementation? 5023 */ 5024 if( i==0 5025 && (pTabList->nSrc==1 5026 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5027 && (p->selFlags & SF_All)==0 /* (2) */ 5028 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 5029 ){ 5030 /* Implement a co-routine that will return a single row of the result 5031 ** set on each invocation. 5032 */ 5033 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5034 pItem->regReturn = ++pParse->nMem; 5035 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5036 VdbeComment((v, "%s", pItem->pTab->zName)); 5037 pItem->addrFillSub = addrTop; 5038 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5039 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5040 sqlite3Select(pParse, pSub, &dest); 5041 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5042 pItem->fg.viaCoroutine = 1; 5043 pItem->regResult = dest.iSdst; 5044 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5045 sqlite3VdbeJumpHere(v, addrTop-1); 5046 sqlite3ClearTempRegCache(pParse); 5047 }else{ 5048 /* Generate a subroutine that will fill an ephemeral table with 5049 ** the content of this subquery. pItem->addrFillSub will point 5050 ** to the address of the generated subroutine. pItem->regReturn 5051 ** is a register allocated to hold the subroutine return address 5052 */ 5053 int topAddr; 5054 int onceAddr = 0; 5055 int retAddr; 5056 assert( pItem->addrFillSub==0 ); 5057 pItem->regReturn = ++pParse->nMem; 5058 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5059 pItem->addrFillSub = topAddr+1; 5060 if( pItem->fg.isCorrelated==0 ){ 5061 /* If the subquery is not correlated and if we are not inside of 5062 ** a trigger, then we only need to compute the value of the subquery 5063 ** once. */ 5064 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 5065 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5066 }else{ 5067 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5068 } 5069 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5070 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5071 sqlite3Select(pParse, pSub, &dest); 5072 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5073 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5074 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5075 VdbeComment((v, "end %s", pItem->pTab->zName)); 5076 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5077 sqlite3ClearTempRegCache(pParse); 5078 } 5079 if( db->mallocFailed ) goto select_end; 5080 pParse->nHeight -= sqlite3SelectExprHeight(p); 5081 } 5082 #endif 5083 5084 /* Various elements of the SELECT copied into local variables for 5085 ** convenience */ 5086 pEList = p->pEList; 5087 pWhere = p->pWhere; 5088 pGroupBy = p->pGroupBy; 5089 pHaving = p->pHaving; 5090 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5091 5092 #if SELECTTRACE_ENABLED 5093 if( sqlite3SelectTrace & 0x400 ){ 5094 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5095 sqlite3TreeViewSelect(0, p, 0); 5096 } 5097 #endif 5098 5099 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5100 ** if the select-list is the same as the ORDER BY list, then this query 5101 ** can be rewritten as a GROUP BY. In other words, this: 5102 ** 5103 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5104 ** 5105 ** is transformed to: 5106 ** 5107 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5108 ** 5109 ** The second form is preferred as a single index (or temp-table) may be 5110 ** used for both the ORDER BY and DISTINCT processing. As originally 5111 ** written the query must use a temp-table for at least one of the ORDER 5112 ** BY and DISTINCT, and an index or separate temp-table for the other. 5113 */ 5114 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5115 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5116 ){ 5117 p->selFlags &= ~SF_Distinct; 5118 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5119 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5120 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5121 ** original setting of the SF_Distinct flag, not the current setting */ 5122 assert( sDistinct.isTnct ); 5123 5124 #if SELECTTRACE_ENABLED 5125 if( sqlite3SelectTrace & 0x400 ){ 5126 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5127 sqlite3TreeViewSelect(0, p, 0); 5128 } 5129 #endif 5130 } 5131 5132 /* If there is an ORDER BY clause, then create an ephemeral index to 5133 ** do the sorting. But this sorting ephemeral index might end up 5134 ** being unused if the data can be extracted in pre-sorted order. 5135 ** If that is the case, then the OP_OpenEphemeral instruction will be 5136 ** changed to an OP_Noop once we figure out that the sorting index is 5137 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5138 ** that change. 5139 */ 5140 if( sSort.pOrderBy ){ 5141 KeyInfo *pKeyInfo; 5142 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5143 sSort.iECursor = pParse->nTab++; 5144 sSort.addrSortIndex = 5145 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5146 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5147 (char*)pKeyInfo, P4_KEYINFO 5148 ); 5149 }else{ 5150 sSort.addrSortIndex = -1; 5151 } 5152 5153 /* If the output is destined for a temporary table, open that table. 5154 */ 5155 if( pDest->eDest==SRT_EphemTab ){ 5156 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5157 } 5158 5159 /* Set the limiter. 5160 */ 5161 iEnd = sqlite3VdbeMakeLabel(v); 5162 p->nSelectRow = 320; /* 4 billion rows */ 5163 computeLimitRegisters(pParse, p, iEnd); 5164 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5165 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5166 sSort.sortFlags |= SORTFLAG_UseSorter; 5167 } 5168 5169 /* Open an ephemeral index to use for the distinct set. 5170 */ 5171 if( p->selFlags & SF_Distinct ){ 5172 sDistinct.tabTnct = pParse->nTab++; 5173 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5174 sDistinct.tabTnct, 0, 0, 5175 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5176 P4_KEYINFO); 5177 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5178 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5179 }else{ 5180 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5181 } 5182 5183 if( !isAgg && pGroupBy==0 ){ 5184 /* No aggregate functions and no GROUP BY clause */ 5185 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5186 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5187 wctrlFlags |= p->selFlags & SF_FixedLimit; 5188 5189 /* Begin the database scan. */ 5190 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5191 p->pEList, wctrlFlags, p->nSelectRow); 5192 if( pWInfo==0 ) goto select_end; 5193 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5194 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5195 } 5196 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5197 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5198 } 5199 if( sSort.pOrderBy ){ 5200 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5201 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5202 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5203 sSort.pOrderBy = 0; 5204 } 5205 } 5206 5207 /* If sorting index that was created by a prior OP_OpenEphemeral 5208 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5209 ** into an OP_Noop. 5210 */ 5211 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5212 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5213 } 5214 5215 /* Use the standard inner loop. */ 5216 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5217 sqlite3WhereContinueLabel(pWInfo), 5218 sqlite3WhereBreakLabel(pWInfo)); 5219 5220 /* End the database scan loop. 5221 */ 5222 sqlite3WhereEnd(pWInfo); 5223 }else{ 5224 /* This case when there exist aggregate functions or a GROUP BY clause 5225 ** or both */ 5226 NameContext sNC; /* Name context for processing aggregate information */ 5227 int iAMem; /* First Mem address for storing current GROUP BY */ 5228 int iBMem; /* First Mem address for previous GROUP BY */ 5229 int iUseFlag; /* Mem address holding flag indicating that at least 5230 ** one row of the input to the aggregator has been 5231 ** processed */ 5232 int iAbortFlag; /* Mem address which causes query abort if positive */ 5233 int groupBySort; /* Rows come from source in GROUP BY order */ 5234 int addrEnd; /* End of processing for this SELECT */ 5235 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5236 int sortOut = 0; /* Output register from the sorter */ 5237 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5238 5239 /* Remove any and all aliases between the result set and the 5240 ** GROUP BY clause. 5241 */ 5242 if( pGroupBy ){ 5243 int k; /* Loop counter */ 5244 struct ExprList_item *pItem; /* For looping over expression in a list */ 5245 5246 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5247 pItem->u.x.iAlias = 0; 5248 } 5249 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5250 pItem->u.x.iAlias = 0; 5251 } 5252 assert( 66==sqlite3LogEst(100) ); 5253 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5254 }else{ 5255 assert( 0==sqlite3LogEst(1) ); 5256 p->nSelectRow = 0; 5257 } 5258 5259 /* If there is both a GROUP BY and an ORDER BY clause and they are 5260 ** identical, then it may be possible to disable the ORDER BY clause 5261 ** on the grounds that the GROUP BY will cause elements to come out 5262 ** in the correct order. It also may not - the GROUP BY might use a 5263 ** database index that causes rows to be grouped together as required 5264 ** but not actually sorted. Either way, record the fact that the 5265 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5266 ** variable. */ 5267 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5268 orderByGrp = 1; 5269 } 5270 5271 /* Create a label to jump to when we want to abort the query */ 5272 addrEnd = sqlite3VdbeMakeLabel(v); 5273 5274 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5275 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5276 ** SELECT statement. 5277 */ 5278 memset(&sNC, 0, sizeof(sNC)); 5279 sNC.pParse = pParse; 5280 sNC.pSrcList = pTabList; 5281 sNC.pAggInfo = &sAggInfo; 5282 sAggInfo.mnReg = pParse->nMem+1; 5283 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5284 sAggInfo.pGroupBy = pGroupBy; 5285 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5286 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5287 if( pHaving ){ 5288 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5289 } 5290 sAggInfo.nAccumulator = sAggInfo.nColumn; 5291 for(i=0; i<sAggInfo.nFunc; i++){ 5292 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5293 sNC.ncFlags |= NC_InAggFunc; 5294 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5295 sNC.ncFlags &= ~NC_InAggFunc; 5296 } 5297 sAggInfo.mxReg = pParse->nMem; 5298 if( db->mallocFailed ) goto select_end; 5299 5300 /* Processing for aggregates with GROUP BY is very different and 5301 ** much more complex than aggregates without a GROUP BY. 5302 */ 5303 if( pGroupBy ){ 5304 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5305 int addr1; /* A-vs-B comparision jump */ 5306 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5307 int regOutputRow; /* Return address register for output subroutine */ 5308 int addrSetAbort; /* Set the abort flag and return */ 5309 int addrTopOfLoop; /* Top of the input loop */ 5310 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5311 int addrReset; /* Subroutine for resetting the accumulator */ 5312 int regReset; /* Return address register for reset subroutine */ 5313 5314 /* If there is a GROUP BY clause we might need a sorting index to 5315 ** implement it. Allocate that sorting index now. If it turns out 5316 ** that we do not need it after all, the OP_SorterOpen instruction 5317 ** will be converted into a Noop. 5318 */ 5319 sAggInfo.sortingIdx = pParse->nTab++; 5320 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5321 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5322 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5323 0, (char*)pKeyInfo, P4_KEYINFO); 5324 5325 /* Initialize memory locations used by GROUP BY aggregate processing 5326 */ 5327 iUseFlag = ++pParse->nMem; 5328 iAbortFlag = ++pParse->nMem; 5329 regOutputRow = ++pParse->nMem; 5330 addrOutputRow = sqlite3VdbeMakeLabel(v); 5331 regReset = ++pParse->nMem; 5332 addrReset = sqlite3VdbeMakeLabel(v); 5333 iAMem = pParse->nMem + 1; 5334 pParse->nMem += pGroupBy->nExpr; 5335 iBMem = pParse->nMem + 1; 5336 pParse->nMem += pGroupBy->nExpr; 5337 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5338 VdbeComment((v, "clear abort flag")); 5339 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5340 VdbeComment((v, "indicate accumulator empty")); 5341 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5342 5343 /* Begin a loop that will extract all source rows in GROUP BY order. 5344 ** This might involve two separate loops with an OP_Sort in between, or 5345 ** it might be a single loop that uses an index to extract information 5346 ** in the right order to begin with. 5347 */ 5348 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5349 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5350 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5351 ); 5352 if( pWInfo==0 ) goto select_end; 5353 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5354 /* The optimizer is able to deliver rows in group by order so 5355 ** we do not have to sort. The OP_OpenEphemeral table will be 5356 ** cancelled later because we still need to use the pKeyInfo 5357 */ 5358 groupBySort = 0; 5359 }else{ 5360 /* Rows are coming out in undetermined order. We have to push 5361 ** each row into a sorting index, terminate the first loop, 5362 ** then loop over the sorting index in order to get the output 5363 ** in sorted order 5364 */ 5365 int regBase; 5366 int regRecord; 5367 int nCol; 5368 int nGroupBy; 5369 5370 explainTempTable(pParse, 5371 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5372 "DISTINCT" : "GROUP BY"); 5373 5374 groupBySort = 1; 5375 nGroupBy = pGroupBy->nExpr; 5376 nCol = nGroupBy; 5377 j = nGroupBy; 5378 for(i=0; i<sAggInfo.nColumn; i++){ 5379 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5380 nCol++; 5381 j++; 5382 } 5383 } 5384 regBase = sqlite3GetTempRange(pParse, nCol); 5385 sqlite3ExprCacheClear(pParse); 5386 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5387 j = nGroupBy; 5388 for(i=0; i<sAggInfo.nColumn; i++){ 5389 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5390 if( pCol->iSorterColumn>=j ){ 5391 int r1 = j + regBase; 5392 sqlite3ExprCodeGetColumnToReg(pParse, 5393 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5394 j++; 5395 } 5396 } 5397 regRecord = sqlite3GetTempReg(pParse); 5398 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5399 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5400 sqlite3ReleaseTempReg(pParse, regRecord); 5401 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5402 sqlite3WhereEnd(pWInfo); 5403 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5404 sortOut = sqlite3GetTempReg(pParse); 5405 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5406 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5407 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5408 sAggInfo.useSortingIdx = 1; 5409 sqlite3ExprCacheClear(pParse); 5410 5411 } 5412 5413 /* If the index or temporary table used by the GROUP BY sort 5414 ** will naturally deliver rows in the order required by the ORDER BY 5415 ** clause, cancel the ephemeral table open coded earlier. 5416 ** 5417 ** This is an optimization - the correct answer should result regardless. 5418 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5419 ** disable this optimization for testing purposes. */ 5420 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5421 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5422 ){ 5423 sSort.pOrderBy = 0; 5424 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5425 } 5426 5427 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5428 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5429 ** Then compare the current GROUP BY terms against the GROUP BY terms 5430 ** from the previous row currently stored in a0, a1, a2... 5431 */ 5432 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5433 sqlite3ExprCacheClear(pParse); 5434 if( groupBySort ){ 5435 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5436 sortOut, sortPTab); 5437 } 5438 for(j=0; j<pGroupBy->nExpr; j++){ 5439 if( groupBySort ){ 5440 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5441 }else{ 5442 sAggInfo.directMode = 1; 5443 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5444 } 5445 } 5446 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5447 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5448 addr1 = sqlite3VdbeCurrentAddr(v); 5449 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5450 5451 /* Generate code that runs whenever the GROUP BY changes. 5452 ** Changes in the GROUP BY are detected by the previous code 5453 ** block. If there were no changes, this block is skipped. 5454 ** 5455 ** This code copies current group by terms in b0,b1,b2,... 5456 ** over to a0,a1,a2. It then calls the output subroutine 5457 ** and resets the aggregate accumulator registers in preparation 5458 ** for the next GROUP BY batch. 5459 */ 5460 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5461 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5462 VdbeComment((v, "output one row")); 5463 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5464 VdbeComment((v, "check abort flag")); 5465 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5466 VdbeComment((v, "reset accumulator")); 5467 5468 /* Update the aggregate accumulators based on the content of 5469 ** the current row 5470 */ 5471 sqlite3VdbeJumpHere(v, addr1); 5472 updateAccumulator(pParse, &sAggInfo); 5473 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5474 VdbeComment((v, "indicate data in accumulator")); 5475 5476 /* End of the loop 5477 */ 5478 if( groupBySort ){ 5479 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5480 VdbeCoverage(v); 5481 }else{ 5482 sqlite3WhereEnd(pWInfo); 5483 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5484 } 5485 5486 /* Output the final row of result 5487 */ 5488 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5489 VdbeComment((v, "output final row")); 5490 5491 /* Jump over the subroutines 5492 */ 5493 sqlite3VdbeGoto(v, addrEnd); 5494 5495 /* Generate a subroutine that outputs a single row of the result 5496 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5497 ** is less than or equal to zero, the subroutine is a no-op. If 5498 ** the processing calls for the query to abort, this subroutine 5499 ** increments the iAbortFlag memory location before returning in 5500 ** order to signal the caller to abort. 5501 */ 5502 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5503 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5504 VdbeComment((v, "set abort flag")); 5505 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5506 sqlite3VdbeResolveLabel(v, addrOutputRow); 5507 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5508 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5509 VdbeCoverage(v); 5510 VdbeComment((v, "Groupby result generator entry point")); 5511 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5512 finalizeAggFunctions(pParse, &sAggInfo); 5513 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5514 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5515 &sDistinct, pDest, 5516 addrOutputRow+1, addrSetAbort); 5517 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5518 VdbeComment((v, "end groupby result generator")); 5519 5520 /* Generate a subroutine that will reset the group-by accumulator 5521 */ 5522 sqlite3VdbeResolveLabel(v, addrReset); 5523 resetAccumulator(pParse, &sAggInfo); 5524 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5525 5526 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5527 else { 5528 ExprList *pDel = 0; 5529 #ifndef SQLITE_OMIT_BTREECOUNT 5530 Table *pTab; 5531 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5532 /* If isSimpleCount() returns a pointer to a Table structure, then 5533 ** the SQL statement is of the form: 5534 ** 5535 ** SELECT count(*) FROM <tbl> 5536 ** 5537 ** where the Table structure returned represents table <tbl>. 5538 ** 5539 ** This statement is so common that it is optimized specially. The 5540 ** OP_Count instruction is executed either on the intkey table that 5541 ** contains the data for table <tbl> or on one of its indexes. It 5542 ** is better to execute the op on an index, as indexes are almost 5543 ** always spread across less pages than their corresponding tables. 5544 */ 5545 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5546 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5547 Index *pIdx; /* Iterator variable */ 5548 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5549 Index *pBest = 0; /* Best index found so far */ 5550 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5551 5552 sqlite3CodeVerifySchema(pParse, iDb); 5553 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5554 5555 /* Search for the index that has the lowest scan cost. 5556 ** 5557 ** (2011-04-15) Do not do a full scan of an unordered index. 5558 ** 5559 ** (2013-10-03) Do not count the entries in a partial index. 5560 ** 5561 ** In practice the KeyInfo structure will not be used. It is only 5562 ** passed to keep OP_OpenRead happy. 5563 */ 5564 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5565 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5566 if( pIdx->bUnordered==0 5567 && pIdx->szIdxRow<pTab->szTabRow 5568 && pIdx->pPartIdxWhere==0 5569 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5570 ){ 5571 pBest = pIdx; 5572 } 5573 } 5574 if( pBest ){ 5575 iRoot = pBest->tnum; 5576 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5577 } 5578 5579 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5580 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5581 if( pKeyInfo ){ 5582 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5583 } 5584 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5585 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5586 explainSimpleCount(pParse, pTab, pBest); 5587 }else 5588 #endif /* SQLITE_OMIT_BTREECOUNT */ 5589 { 5590 /* Check if the query is of one of the following forms: 5591 ** 5592 ** SELECT min(x) FROM ... 5593 ** SELECT max(x) FROM ... 5594 ** 5595 ** If it is, then ask the code in where.c to attempt to sort results 5596 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5597 ** If where.c is able to produce results sorted in this order, then 5598 ** add vdbe code to break out of the processing loop after the 5599 ** first iteration (since the first iteration of the loop is 5600 ** guaranteed to operate on the row with the minimum or maximum 5601 ** value of x, the only row required). 5602 ** 5603 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5604 ** modify behavior as follows: 5605 ** 5606 ** + If the query is a "SELECT min(x)", then the loop coded by 5607 ** where.c should not iterate over any values with a NULL value 5608 ** for x. 5609 ** 5610 ** + The optimizer code in where.c (the thing that decides which 5611 ** index or indices to use) should place a different priority on 5612 ** satisfying the 'ORDER BY' clause than it does in other cases. 5613 ** Refer to code and comments in where.c for details. 5614 */ 5615 ExprList *pMinMax = 0; 5616 u8 flag = WHERE_ORDERBY_NORMAL; 5617 5618 assert( p->pGroupBy==0 ); 5619 assert( flag==0 ); 5620 if( p->pHaving==0 ){ 5621 flag = minMaxQuery(&sAggInfo, &pMinMax); 5622 } 5623 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5624 5625 if( flag ){ 5626 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5627 pDel = pMinMax; 5628 assert( db->mallocFailed || pMinMax!=0 ); 5629 if( !db->mallocFailed ){ 5630 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5631 pMinMax->a[0].pExpr->op = TK_COLUMN; 5632 } 5633 } 5634 5635 /* This case runs if the aggregate has no GROUP BY clause. The 5636 ** processing is much simpler since there is only a single row 5637 ** of output. 5638 */ 5639 resetAccumulator(pParse, &sAggInfo); 5640 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5641 if( pWInfo==0 ){ 5642 sqlite3ExprListDelete(db, pDel); 5643 goto select_end; 5644 } 5645 updateAccumulator(pParse, &sAggInfo); 5646 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5647 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5648 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5649 VdbeComment((v, "%s() by index", 5650 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5651 } 5652 sqlite3WhereEnd(pWInfo); 5653 finalizeAggFunctions(pParse, &sAggInfo); 5654 } 5655 5656 sSort.pOrderBy = 0; 5657 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5658 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5659 pDest, addrEnd, addrEnd); 5660 sqlite3ExprListDelete(db, pDel); 5661 } 5662 sqlite3VdbeResolveLabel(v, addrEnd); 5663 5664 } /* endif aggregate query */ 5665 5666 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5667 explainTempTable(pParse, "DISTINCT"); 5668 } 5669 5670 /* If there is an ORDER BY clause, then we need to sort the results 5671 ** and send them to the callback one by one. 5672 */ 5673 if( sSort.pOrderBy ){ 5674 explainTempTable(pParse, 5675 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5676 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5677 } 5678 5679 /* Jump here to skip this query 5680 */ 5681 sqlite3VdbeResolveLabel(v, iEnd); 5682 5683 /* The SELECT has been coded. If there is an error in the Parse structure, 5684 ** set the return code to 1. Otherwise 0. */ 5685 rc = (pParse->nErr>0); 5686 5687 /* Control jumps to here if an error is encountered above, or upon 5688 ** successful coding of the SELECT. 5689 */ 5690 select_end: 5691 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5692 5693 /* Identify column names if results of the SELECT are to be output. 5694 */ 5695 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5696 generateColumnNames(pParse, pTabList, pEList); 5697 } 5698 5699 sqlite3DbFree(db, sAggInfo.aCol); 5700 sqlite3DbFree(db, sAggInfo.aFunc); 5701 #if SELECTTRACE_ENABLED 5702 SELECTTRACE(1,pParse,p,("end processing\n")); 5703 pParse->nSelectIndent--; 5704 #endif 5705 return rc; 5706 } 5707