xref: /sqlite-3.40.0/src/select.c (revision 5130c31b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iParm = iParm;
40   pDest->affinity = 0;
41   pDest->iMem = 0;
42   pDest->nMem = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   int isDistinct,       /* true if the DISTINCT keyword is present */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     pNew = &standin;
69     memset(pNew, 0, sizeof(*pNew));
70   }
71   if( pEList==0 ){
72     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
73   }
74   pNew->pEList = pEList;
75   pNew->pSrc = pSrc;
76   pNew->pWhere = pWhere;
77   pNew->pGroupBy = pGroupBy;
78   pNew->pHaving = pHaving;
79   pNew->pOrderBy = pOrderBy;
80   pNew->selFlags = isDistinct ? SF_Distinct : 0;
81   pNew->op = TK_SELECT;
82   pNew->pLimit = pLimit;
83   pNew->pOffset = pOffset;
84   assert( pOffset==0 || pLimit!=0 );
85   pNew->addrOpenEphm[0] = -1;
86   pNew->addrOpenEphm[1] = -1;
87   pNew->addrOpenEphm[2] = -1;
88   if( db->mallocFailed ) {
89     clearSelect(db, pNew);
90     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
91     pNew = 0;
92   }
93   return pNew;
94 }
95 
96 /*
97 ** Delete the given Select structure and all of its substructures.
98 */
99 void sqlite3SelectDelete(sqlite3 *db, Select *p){
100   if( p ){
101     clearSelect(db, p);
102     sqlite3DbFree(db, p);
103   }
104 }
105 
106 /*
107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
108 ** type of join.  Return an integer constant that expresses that type
109 ** in terms of the following bit values:
110 **
111 **     JT_INNER
112 **     JT_CROSS
113 **     JT_OUTER
114 **     JT_NATURAL
115 **     JT_LEFT
116 **     JT_RIGHT
117 **
118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
119 **
120 ** If an illegal or unsupported join type is seen, then still return
121 ** a join type, but put an error in the pParse structure.
122 */
123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
124   int jointype = 0;
125   Token *apAll[3];
126   Token *p;
127                              /*   0123456789 123456789 123456789 123 */
128   static const char zKeyText[] = "naturaleftouterightfullinnercross";
129   static const struct {
130     u8 i;        /* Beginning of keyword text in zKeyText[] */
131     u8 nChar;    /* Length of the keyword in characters */
132     u8 code;     /* Join type mask */
133   } aKeyword[] = {
134     /* natural */ { 0,  7, JT_NATURAL                },
135     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
136     /* outer   */ { 10, 5, JT_OUTER                  },
137     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
138     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
139     /* inner   */ { 23, 5, JT_INNER                  },
140     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
141   };
142   int i, j;
143   apAll[0] = pA;
144   apAll[1] = pB;
145   apAll[2] = pC;
146   for(i=0; i<3 && apAll[i]; i++){
147     p = apAll[i];
148     for(j=0; j<ArraySize(aKeyword); j++){
149       if( p->n==aKeyword[j].nChar
150           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
151         jointype |= aKeyword[j].code;
152         break;
153       }
154     }
155     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
156     if( j>=ArraySize(aKeyword) ){
157       jointype |= JT_ERROR;
158       break;
159     }
160   }
161   if(
162      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
163      (jointype & JT_ERROR)!=0
164   ){
165     const char *zSp = " ";
166     assert( pB!=0 );
167     if( pC==0 ){ zSp++; }
168     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
169        "%T %T%s%T", pA, pB, zSp, pC);
170     jointype = JT_INNER;
171   }else if( (jointype & JT_OUTER)!=0
172          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
173     sqlite3ErrorMsg(pParse,
174       "RIGHT and FULL OUTER JOINs are not currently supported");
175     jointype = JT_INNER;
176   }
177   return jointype;
178 }
179 
180 /*
181 ** Return the index of a column in a table.  Return -1 if the column
182 ** is not contained in the table.
183 */
184 static int columnIndex(Table *pTab, const char *zCol){
185   int i;
186   for(i=0; i<pTab->nCol; i++){
187     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
188   }
189   return -1;
190 }
191 
192 /*
193 ** Search the first N tables in pSrc, from left to right, looking for a
194 ** table that has a column named zCol.
195 **
196 ** When found, set *piTab and *piCol to the table index and column index
197 ** of the matching column and return TRUE.
198 **
199 ** If not found, return FALSE.
200 */
201 static int tableAndColumnIndex(
202   SrcList *pSrc,       /* Array of tables to search */
203   int N,               /* Number of tables in pSrc->a[] to search */
204   const char *zCol,    /* Name of the column we are looking for */
205   int *piTab,          /* Write index of pSrc->a[] here */
206   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
207 ){
208   int i;               /* For looping over tables in pSrc */
209   int iCol;            /* Index of column matching zCol */
210 
211   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
212   for(i=0; i<N; i++){
213     iCol = columnIndex(pSrc->a[i].pTab, zCol);
214     if( iCol>=0 ){
215       if( piTab ){
216         *piTab = i;
217         *piCol = iCol;
218       }
219       return 1;
220     }
221   }
222   return 0;
223 }
224 
225 /*
226 ** This function is used to add terms implied by JOIN syntax to the
227 ** WHERE clause expression of a SELECT statement. The new term, which
228 ** is ANDed with the existing WHERE clause, is of the form:
229 **
230 **    (tab1.col1 = tab2.col2)
231 **
232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
234 ** column iColRight of tab2.
235 */
236 static void addWhereTerm(
237   Parse *pParse,                  /* Parsing context */
238   SrcList *pSrc,                  /* List of tables in FROM clause */
239   int iLeft,                      /* Index of first table to join in pSrc */
240   int iColLeft,                   /* Index of column in first table */
241   int iRight,                     /* Index of second table in pSrc */
242   int iColRight,                  /* Index of column in second table */
243   int isOuterJoin,                /* True if this is an OUTER join */
244   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
245 ){
246   sqlite3 *db = pParse->db;
247   Expr *pE1;
248   Expr *pE2;
249   Expr *pEq;
250 
251   assert( iLeft<iRight );
252   assert( pSrc->nSrc>iRight );
253   assert( pSrc->a[iLeft].pTab );
254   assert( pSrc->a[iRight].pTab );
255 
256   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
257   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
258 
259   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
260   if( pEq && isOuterJoin ){
261     ExprSetProperty(pEq, EP_FromJoin);
262     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
263     ExprSetIrreducible(pEq);
264     pEq->iRightJoinTable = (i16)pE2->iTable;
265   }
266   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
267 }
268 
269 /*
270 ** Set the EP_FromJoin property on all terms of the given expression.
271 ** And set the Expr.iRightJoinTable to iTable for every term in the
272 ** expression.
273 **
274 ** The EP_FromJoin property is used on terms of an expression to tell
275 ** the LEFT OUTER JOIN processing logic that this term is part of the
276 ** join restriction specified in the ON or USING clause and not a part
277 ** of the more general WHERE clause.  These terms are moved over to the
278 ** WHERE clause during join processing but we need to remember that they
279 ** originated in the ON or USING clause.
280 **
281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
282 ** expression depends on table iRightJoinTable even if that table is not
283 ** explicitly mentioned in the expression.  That information is needed
284 ** for cases like this:
285 **
286 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
287 **
288 ** The where clause needs to defer the handling of the t1.x=5
289 ** term until after the t2 loop of the join.  In that way, a
290 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
291 ** defer the handling of t1.x=5, it will be processed immediately
292 ** after the t1 loop and rows with t1.x!=5 will never appear in
293 ** the output, which is incorrect.
294 */
295 static void setJoinExpr(Expr *p, int iTable){
296   while( p ){
297     ExprSetProperty(p, EP_FromJoin);
298     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
299     ExprSetIrreducible(p);
300     p->iRightJoinTable = (i16)iTable;
301     setJoinExpr(p->pLeft, iTable);
302     p = p->pRight;
303   }
304 }
305 
306 /*
307 ** This routine processes the join information for a SELECT statement.
308 ** ON and USING clauses are converted into extra terms of the WHERE clause.
309 ** NATURAL joins also create extra WHERE clause terms.
310 **
311 ** The terms of a FROM clause are contained in the Select.pSrc structure.
312 ** The left most table is the first entry in Select.pSrc.  The right-most
313 ** table is the last entry.  The join operator is held in the entry to
314 ** the left.  Thus entry 0 contains the join operator for the join between
315 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
316 ** also attached to the left entry.
317 **
318 ** This routine returns the number of errors encountered.
319 */
320 static int sqliteProcessJoin(Parse *pParse, Select *p){
321   SrcList *pSrc;                  /* All tables in the FROM clause */
322   int i, j;                       /* Loop counters */
323   struct SrcList_item *pLeft;     /* Left table being joined */
324   struct SrcList_item *pRight;    /* Right table being joined */
325 
326   pSrc = p->pSrc;
327   pLeft = &pSrc->a[0];
328   pRight = &pLeft[1];
329   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
330     Table *pLeftTab = pLeft->pTab;
331     Table *pRightTab = pRight->pTab;
332     int isOuter;
333 
334     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
335     isOuter = (pRight->jointype & JT_OUTER)!=0;
336 
337     /* When the NATURAL keyword is present, add WHERE clause terms for
338     ** every column that the two tables have in common.
339     */
340     if( pRight->jointype & JT_NATURAL ){
341       if( pRight->pOn || pRight->pUsing ){
342         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
343            "an ON or USING clause", 0);
344         return 1;
345       }
346       for(j=0; j<pRightTab->nCol; j++){
347         char *zName;   /* Name of column in the right table */
348         int iLeft;     /* Matching left table */
349         int iLeftCol;  /* Matching column in the left table */
350 
351         zName = pRightTab->aCol[j].zName;
352         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
353           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
354                        isOuter, &p->pWhere);
355         }
356       }
357     }
358 
359     /* Disallow both ON and USING clauses in the same join
360     */
361     if( pRight->pOn && pRight->pUsing ){
362       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
363         "clauses in the same join");
364       return 1;
365     }
366 
367     /* Add the ON clause to the end of the WHERE clause, connected by
368     ** an AND operator.
369     */
370     if( pRight->pOn ){
371       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
372       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
373       pRight->pOn = 0;
374     }
375 
376     /* Create extra terms on the WHERE clause for each column named
377     ** in the USING clause.  Example: If the two tables to be joined are
378     ** A and B and the USING clause names X, Y, and Z, then add this
379     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
380     ** Report an error if any column mentioned in the USING clause is
381     ** not contained in both tables to be joined.
382     */
383     if( pRight->pUsing ){
384       IdList *pList = pRight->pUsing;
385       for(j=0; j<pList->nId; j++){
386         char *zName;     /* Name of the term in the USING clause */
387         int iLeft;       /* Table on the left with matching column name */
388         int iLeftCol;    /* Column number of matching column on the left */
389         int iRightCol;   /* Column number of matching column on the right */
390 
391         zName = pList->a[j].zName;
392         iRightCol = columnIndex(pRightTab, zName);
393         if( iRightCol<0
394          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
395         ){
396           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
397             "not present in both tables", zName);
398           return 1;
399         }
400         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
401                      isOuter, &p->pWhere);
402       }
403     }
404   }
405   return 0;
406 }
407 
408 /*
409 ** Insert code into "v" that will push the record on the top of the
410 ** stack into the sorter.
411 */
412 static void pushOntoSorter(
413   Parse *pParse,         /* Parser context */
414   ExprList *pOrderBy,    /* The ORDER BY clause */
415   Select *pSelect,       /* The whole SELECT statement */
416   int regData            /* Register holding data to be sorted */
417 ){
418   Vdbe *v = pParse->pVdbe;
419   int nExpr = pOrderBy->nExpr;
420   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
421   int regRecord = sqlite3GetTempReg(pParse);
422   sqlite3ExprCacheClear(pParse);
423   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
424   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
425   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
426   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
427   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
428   sqlite3ReleaseTempReg(pParse, regRecord);
429   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
430   if( pSelect->iLimit ){
431     int addr1, addr2;
432     int iLimit;
433     if( pSelect->iOffset ){
434       iLimit = pSelect->iOffset+1;
435     }else{
436       iLimit = pSelect->iLimit;
437     }
438     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
439     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
440     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
441     sqlite3VdbeJumpHere(v, addr1);
442     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
443     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
444     sqlite3VdbeJumpHere(v, addr2);
445     pSelect->iLimit = 0;
446   }
447 }
448 
449 /*
450 ** Add code to implement the OFFSET
451 */
452 static void codeOffset(
453   Vdbe *v,          /* Generate code into this VM */
454   Select *p,        /* The SELECT statement being coded */
455   int iContinue     /* Jump here to skip the current record */
456 ){
457   if( p->iOffset && iContinue!=0 ){
458     int addr;
459     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
460     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
461     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
462     VdbeComment((v, "skip OFFSET records"));
463     sqlite3VdbeJumpHere(v, addr);
464   }
465 }
466 
467 /*
468 ** Add code that will check to make sure the N registers starting at iMem
469 ** form a distinct entry.  iTab is a sorting index that holds previously
470 ** seen combinations of the N values.  A new entry is made in iTab
471 ** if the current N values are new.
472 **
473 ** A jump to addrRepeat is made and the N+1 values are popped from the
474 ** stack if the top N elements are not distinct.
475 */
476 static void codeDistinct(
477   Parse *pParse,     /* Parsing and code generating context */
478   int iTab,          /* A sorting index used to test for distinctness */
479   int addrRepeat,    /* Jump to here if not distinct */
480   int N,             /* Number of elements */
481   int iMem           /* First element */
482 ){
483   Vdbe *v;
484   int r1;
485 
486   v = pParse->pVdbe;
487   r1 = sqlite3GetTempReg(pParse);
488   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
489   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
490   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
491   sqlite3ReleaseTempReg(pParse, r1);
492 }
493 
494 /*
495 ** Generate an error message when a SELECT is used within a subexpression
496 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
497 ** column.  We do this in a subroutine because the error occurs in multiple
498 ** places.
499 */
500 static int checkForMultiColumnSelectError(
501   Parse *pParse,       /* Parse context. */
502   SelectDest *pDest,   /* Destination of SELECT results */
503   int nExpr            /* Number of result columns returned by SELECT */
504 ){
505   int eDest = pDest->eDest;
506   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
507     sqlite3ErrorMsg(pParse, "only a single result allowed for "
508        "a SELECT that is part of an expression");
509     return 1;
510   }else{
511     return 0;
512   }
513 }
514 
515 /*
516 ** This routine generates the code for the inside of the inner loop
517 ** of a SELECT.
518 **
519 ** If srcTab and nColumn are both zero, then the pEList expressions
520 ** are evaluated in order to get the data for this row.  If nColumn>0
521 ** then data is pulled from srcTab and pEList is used only to get the
522 ** datatypes for each column.
523 */
524 static void selectInnerLoop(
525   Parse *pParse,          /* The parser context */
526   Select *p,              /* The complete select statement being coded */
527   ExprList *pEList,       /* List of values being extracted */
528   int srcTab,             /* Pull data from this table */
529   int nColumn,            /* Number of columns in the source table */
530   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
531   int distinct,           /* If >=0, make sure results are distinct */
532   SelectDest *pDest,      /* How to dispose of the results */
533   int iContinue,          /* Jump here to continue with next row */
534   int iBreak              /* Jump here to break out of the inner loop */
535 ){
536   Vdbe *v = pParse->pVdbe;
537   int i;
538   int hasDistinct;        /* True if the DISTINCT keyword is present */
539   int regResult;              /* Start of memory holding result set */
540   int eDest = pDest->eDest;   /* How to dispose of results */
541   int iParm = pDest->iParm;   /* First argument to disposal method */
542   int nResultCol;             /* Number of result columns */
543 
544   assert( v );
545   if( NEVER(v==0) ) return;
546   assert( pEList!=0 );
547   hasDistinct = distinct>=0;
548   if( pOrderBy==0 && !hasDistinct ){
549     codeOffset(v, p, iContinue);
550   }
551 
552   /* Pull the requested columns.
553   */
554   if( nColumn>0 ){
555     nResultCol = nColumn;
556   }else{
557     nResultCol = pEList->nExpr;
558   }
559   if( pDest->iMem==0 ){
560     pDest->iMem = pParse->nMem+1;
561     pDest->nMem = nResultCol;
562     pParse->nMem += nResultCol;
563   }else{
564     assert( pDest->nMem==nResultCol );
565   }
566   regResult = pDest->iMem;
567   if( nColumn>0 ){
568     for(i=0; i<nColumn; i++){
569       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
570     }
571   }else if( eDest!=SRT_Exists ){
572     /* If the destination is an EXISTS(...) expression, the actual
573     ** values returned by the SELECT are not required.
574     */
575     sqlite3ExprCacheClear(pParse);
576     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
577   }
578   nColumn = nResultCol;
579 
580   /* If the DISTINCT keyword was present on the SELECT statement
581   ** and this row has been seen before, then do not make this row
582   ** part of the result.
583   */
584   if( hasDistinct ){
585     assert( pEList!=0 );
586     assert( pEList->nExpr==nColumn );
587     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
588     if( pOrderBy==0 ){
589       codeOffset(v, p, iContinue);
590     }
591   }
592 
593   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
594     return;
595   }
596 
597   switch( eDest ){
598     /* In this mode, write each query result to the key of the temporary
599     ** table iParm.
600     */
601 #ifndef SQLITE_OMIT_COMPOUND_SELECT
602     case SRT_Union: {
603       int r1;
604       r1 = sqlite3GetTempReg(pParse);
605       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
606       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
607       sqlite3ReleaseTempReg(pParse, r1);
608       break;
609     }
610 
611     /* Construct a record from the query result, but instead of
612     ** saving that record, use it as a key to delete elements from
613     ** the temporary table iParm.
614     */
615     case SRT_Except: {
616       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
617       break;
618     }
619 #endif
620 
621     /* Store the result as data using a unique key.
622     */
623     case SRT_Table:
624     case SRT_EphemTab: {
625       int r1 = sqlite3GetTempReg(pParse);
626       testcase( eDest==SRT_Table );
627       testcase( eDest==SRT_EphemTab );
628       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
629       if( pOrderBy ){
630         pushOntoSorter(pParse, pOrderBy, p, r1);
631       }else{
632         int r2 = sqlite3GetTempReg(pParse);
633         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
634         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
635         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
636         sqlite3ReleaseTempReg(pParse, r2);
637       }
638       sqlite3ReleaseTempReg(pParse, r1);
639       break;
640     }
641 
642 #ifndef SQLITE_OMIT_SUBQUERY
643     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
644     ** then there should be a single item on the stack.  Write this
645     ** item into the set table with bogus data.
646     */
647     case SRT_Set: {
648       assert( nColumn==1 );
649       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
650       if( pOrderBy ){
651         /* At first glance you would think we could optimize out the
652         ** ORDER BY in this case since the order of entries in the set
653         ** does not matter.  But there might be a LIMIT clause, in which
654         ** case the order does matter */
655         pushOntoSorter(pParse, pOrderBy, p, regResult);
656       }else{
657         int r1 = sqlite3GetTempReg(pParse);
658         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
659         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
660         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
661         sqlite3ReleaseTempReg(pParse, r1);
662       }
663       break;
664     }
665 
666     /* If any row exist in the result set, record that fact and abort.
667     */
668     case SRT_Exists: {
669       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
670       /* The LIMIT clause will terminate the loop for us */
671       break;
672     }
673 
674     /* If this is a scalar select that is part of an expression, then
675     ** store the results in the appropriate memory cell and break out
676     ** of the scan loop.
677     */
678     case SRT_Mem: {
679       assert( nColumn==1 );
680       if( pOrderBy ){
681         pushOntoSorter(pParse, pOrderBy, p, regResult);
682       }else{
683         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
684         /* The LIMIT clause will jump out of the loop for us */
685       }
686       break;
687     }
688 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
689 
690     /* Send the data to the callback function or to a subroutine.  In the
691     ** case of a subroutine, the subroutine itself is responsible for
692     ** popping the data from the stack.
693     */
694     case SRT_Coroutine:
695     case SRT_Output: {
696       testcase( eDest==SRT_Coroutine );
697       testcase( eDest==SRT_Output );
698       if( pOrderBy ){
699         int r1 = sqlite3GetTempReg(pParse);
700         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
701         pushOntoSorter(pParse, pOrderBy, p, r1);
702         sqlite3ReleaseTempReg(pParse, r1);
703       }else if( eDest==SRT_Coroutine ){
704         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
705       }else{
706         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
707         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
708       }
709       break;
710     }
711 
712 #if !defined(SQLITE_OMIT_TRIGGER)
713     /* Discard the results.  This is used for SELECT statements inside
714     ** the body of a TRIGGER.  The purpose of such selects is to call
715     ** user-defined functions that have side effects.  We do not care
716     ** about the actual results of the select.
717     */
718     default: {
719       assert( eDest==SRT_Discard );
720       break;
721     }
722 #endif
723   }
724 
725   /* Jump to the end of the loop if the LIMIT is reached.
726   */
727   if( p->iLimit ){
728     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
729                             ** pushOntoSorter() would have cleared p->iLimit */
730     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
731   }
732 }
733 
734 /*
735 ** Given an expression list, generate a KeyInfo structure that records
736 ** the collating sequence for each expression in that expression list.
737 **
738 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
739 ** KeyInfo structure is appropriate for initializing a virtual index to
740 ** implement that clause.  If the ExprList is the result set of a SELECT
741 ** then the KeyInfo structure is appropriate for initializing a virtual
742 ** index to implement a DISTINCT test.
743 **
744 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
745 ** function is responsible for seeing that this structure is eventually
746 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
747 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
748 */
749 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
750   sqlite3 *db = pParse->db;
751   int nExpr;
752   KeyInfo *pInfo;
753   struct ExprList_item *pItem;
754   int i;
755 
756   nExpr = pList->nExpr;
757   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
758   if( pInfo ){
759     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
760     pInfo->nField = (u16)nExpr;
761     pInfo->enc = ENC(db);
762     pInfo->db = db;
763     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
764       CollSeq *pColl;
765       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
766       if( !pColl ){
767         pColl = db->pDfltColl;
768       }
769       pInfo->aColl[i] = pColl;
770       pInfo->aSortOrder[i] = pItem->sortOrder;
771     }
772   }
773   return pInfo;
774 }
775 
776 
777 /*
778 ** If the inner loop was generated using a non-null pOrderBy argument,
779 ** then the results were placed in a sorter.  After the loop is terminated
780 ** we need to run the sorter and output the results.  The following
781 ** routine generates the code needed to do that.
782 */
783 static void generateSortTail(
784   Parse *pParse,    /* Parsing context */
785   Select *p,        /* The SELECT statement */
786   Vdbe *v,          /* Generate code into this VDBE */
787   int nColumn,      /* Number of columns of data */
788   SelectDest *pDest /* Write the sorted results here */
789 ){
790   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
791   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
792   int addr;
793   int iTab;
794   int pseudoTab = 0;
795   ExprList *pOrderBy = p->pOrderBy;
796 
797   int eDest = pDest->eDest;
798   int iParm = pDest->iParm;
799 
800   int regRow;
801   int regRowid;
802 
803   iTab = pOrderBy->iECursor;
804   regRow = sqlite3GetTempReg(pParse);
805   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
806     pseudoTab = pParse->nTab++;
807     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
808     regRowid = 0;
809   }else{
810     regRowid = sqlite3GetTempReg(pParse);
811   }
812   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
813   codeOffset(v, p, addrContinue);
814   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
815   switch( eDest ){
816     case SRT_Table:
817     case SRT_EphemTab: {
818       testcase( eDest==SRT_Table );
819       testcase( eDest==SRT_EphemTab );
820       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
821       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
822       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
823       break;
824     }
825 #ifndef SQLITE_OMIT_SUBQUERY
826     case SRT_Set: {
827       assert( nColumn==1 );
828       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
829       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
830       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
831       break;
832     }
833     case SRT_Mem: {
834       assert( nColumn==1 );
835       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
836       /* The LIMIT clause will terminate the loop for us */
837       break;
838     }
839 #endif
840     default: {
841       int i;
842       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
843       testcase( eDest==SRT_Output );
844       testcase( eDest==SRT_Coroutine );
845       for(i=0; i<nColumn; i++){
846         assert( regRow!=pDest->iMem+i );
847         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
848         if( i==0 ){
849           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
850         }
851       }
852       if( eDest==SRT_Output ){
853         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
854         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
855       }else{
856         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
857       }
858       break;
859     }
860   }
861   sqlite3ReleaseTempReg(pParse, regRow);
862   sqlite3ReleaseTempReg(pParse, regRowid);
863 
864   /* LIMIT has been implemented by the pushOntoSorter() routine.
865   */
866   assert( p->iLimit==0 );
867 
868   /* The bottom of the loop
869   */
870   sqlite3VdbeResolveLabel(v, addrContinue);
871   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
872   sqlite3VdbeResolveLabel(v, addrBreak);
873   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
874     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
875   }
876 }
877 
878 /*
879 ** Return a pointer to a string containing the 'declaration type' of the
880 ** expression pExpr. The string may be treated as static by the caller.
881 **
882 ** The declaration type is the exact datatype definition extracted from the
883 ** original CREATE TABLE statement if the expression is a column. The
884 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
885 ** is considered a column can be complex in the presence of subqueries. The
886 ** result-set expression in all of the following SELECT statements is
887 ** considered a column by this function.
888 **
889 **   SELECT col FROM tbl;
890 **   SELECT (SELECT col FROM tbl;
891 **   SELECT (SELECT col FROM tbl);
892 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
893 **
894 ** The declaration type for any expression other than a column is NULL.
895 */
896 static const char *columnType(
897   NameContext *pNC,
898   Expr *pExpr,
899   const char **pzOriginDb,
900   const char **pzOriginTab,
901   const char **pzOriginCol
902 ){
903   char const *zType = 0;
904   char const *zOriginDb = 0;
905   char const *zOriginTab = 0;
906   char const *zOriginCol = 0;
907   int j;
908   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
909 
910   switch( pExpr->op ){
911     case TK_AGG_COLUMN:
912     case TK_COLUMN: {
913       /* The expression is a column. Locate the table the column is being
914       ** extracted from in NameContext.pSrcList. This table may be real
915       ** database table or a subquery.
916       */
917       Table *pTab = 0;            /* Table structure column is extracted from */
918       Select *pS = 0;             /* Select the column is extracted from */
919       int iCol = pExpr->iColumn;  /* Index of column in pTab */
920       testcase( pExpr->op==TK_AGG_COLUMN );
921       testcase( pExpr->op==TK_COLUMN );
922       while( pNC && !pTab ){
923         SrcList *pTabList = pNC->pSrcList;
924         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
925         if( j<pTabList->nSrc ){
926           pTab = pTabList->a[j].pTab;
927           pS = pTabList->a[j].pSelect;
928         }else{
929           pNC = pNC->pNext;
930         }
931       }
932 
933       if( pTab==0 ){
934         /* At one time, code such as "SELECT new.x" within a trigger would
935         ** cause this condition to run.  Since then, we have restructured how
936         ** trigger code is generated and so this condition is no longer
937         ** possible. However, it can still be true for statements like
938         ** the following:
939         **
940         **   CREATE TABLE t1(col INTEGER);
941         **   SELECT (SELECT t1.col) FROM FROM t1;
942         **
943         ** when columnType() is called on the expression "t1.col" in the
944         ** sub-select. In this case, set the column type to NULL, even
945         ** though it should really be "INTEGER".
946         **
947         ** This is not a problem, as the column type of "t1.col" is never
948         ** used. When columnType() is called on the expression
949         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
950         ** branch below.  */
951         break;
952       }
953 
954       assert( pTab && pExpr->pTab==pTab );
955       if( pS ){
956         /* The "table" is actually a sub-select or a view in the FROM clause
957         ** of the SELECT statement. Return the declaration type and origin
958         ** data for the result-set column of the sub-select.
959         */
960         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
961           /* If iCol is less than zero, then the expression requests the
962           ** rowid of the sub-select or view. This expression is legal (see
963           ** test case misc2.2.2) - it always evaluates to NULL.
964           */
965           NameContext sNC;
966           Expr *p = pS->pEList->a[iCol].pExpr;
967           sNC.pSrcList = pS->pSrc;
968           sNC.pNext = pNC;
969           sNC.pParse = pNC->pParse;
970           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
971         }
972       }else if( ALWAYS(pTab->pSchema) ){
973         /* A real table */
974         assert( !pS );
975         if( iCol<0 ) iCol = pTab->iPKey;
976         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
977         if( iCol<0 ){
978           zType = "INTEGER";
979           zOriginCol = "rowid";
980         }else{
981           zType = pTab->aCol[iCol].zType;
982           zOriginCol = pTab->aCol[iCol].zName;
983         }
984         zOriginTab = pTab->zName;
985         if( pNC->pParse ){
986           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
987           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
988         }
989       }
990       break;
991     }
992 #ifndef SQLITE_OMIT_SUBQUERY
993     case TK_SELECT: {
994       /* The expression is a sub-select. Return the declaration type and
995       ** origin info for the single column in the result set of the SELECT
996       ** statement.
997       */
998       NameContext sNC;
999       Select *pS = pExpr->x.pSelect;
1000       Expr *p = pS->pEList->a[0].pExpr;
1001       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1002       sNC.pSrcList = pS->pSrc;
1003       sNC.pNext = pNC;
1004       sNC.pParse = pNC->pParse;
1005       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1006       break;
1007     }
1008 #endif
1009   }
1010 
1011   if( pzOriginDb ){
1012     assert( pzOriginTab && pzOriginCol );
1013     *pzOriginDb = zOriginDb;
1014     *pzOriginTab = zOriginTab;
1015     *pzOriginCol = zOriginCol;
1016   }
1017   return zType;
1018 }
1019 
1020 /*
1021 ** Generate code that will tell the VDBE the declaration types of columns
1022 ** in the result set.
1023 */
1024 static void generateColumnTypes(
1025   Parse *pParse,      /* Parser context */
1026   SrcList *pTabList,  /* List of tables */
1027   ExprList *pEList    /* Expressions defining the result set */
1028 ){
1029 #ifndef SQLITE_OMIT_DECLTYPE
1030   Vdbe *v = pParse->pVdbe;
1031   int i;
1032   NameContext sNC;
1033   sNC.pSrcList = pTabList;
1034   sNC.pParse = pParse;
1035   for(i=0; i<pEList->nExpr; i++){
1036     Expr *p = pEList->a[i].pExpr;
1037     const char *zType;
1038 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1039     const char *zOrigDb = 0;
1040     const char *zOrigTab = 0;
1041     const char *zOrigCol = 0;
1042     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1043 
1044     /* The vdbe must make its own copy of the column-type and other
1045     ** column specific strings, in case the schema is reset before this
1046     ** virtual machine is deleted.
1047     */
1048     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1049     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1050     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1051 #else
1052     zType = columnType(&sNC, p, 0, 0, 0);
1053 #endif
1054     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1055   }
1056 #endif /* SQLITE_OMIT_DECLTYPE */
1057 }
1058 
1059 /*
1060 ** Generate code that will tell the VDBE the names of columns
1061 ** in the result set.  This information is used to provide the
1062 ** azCol[] values in the callback.
1063 */
1064 static void generateColumnNames(
1065   Parse *pParse,      /* Parser context */
1066   SrcList *pTabList,  /* List of tables */
1067   ExprList *pEList    /* Expressions defining the result set */
1068 ){
1069   Vdbe *v = pParse->pVdbe;
1070   int i, j;
1071   sqlite3 *db = pParse->db;
1072   int fullNames, shortNames;
1073 
1074 #ifndef SQLITE_OMIT_EXPLAIN
1075   /* If this is an EXPLAIN, skip this step */
1076   if( pParse->explain ){
1077     return;
1078   }
1079 #endif
1080 
1081   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1082   pParse->colNamesSet = 1;
1083   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1084   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1085   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1086   for(i=0; i<pEList->nExpr; i++){
1087     Expr *p;
1088     p = pEList->a[i].pExpr;
1089     if( NEVER(p==0) ) continue;
1090     if( pEList->a[i].zName ){
1091       char *zName = pEList->a[i].zName;
1092       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1093     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1094       Table *pTab;
1095       char *zCol;
1096       int iCol = p->iColumn;
1097       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1098         if( pTabList->a[j].iCursor==p->iTable ) break;
1099       }
1100       assert( j<pTabList->nSrc );
1101       pTab = pTabList->a[j].pTab;
1102       if( iCol<0 ) iCol = pTab->iPKey;
1103       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1104       if( iCol<0 ){
1105         zCol = "rowid";
1106       }else{
1107         zCol = pTab->aCol[iCol].zName;
1108       }
1109       if( !shortNames && !fullNames ){
1110         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1111             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1112       }else if( fullNames ){
1113         char *zName = 0;
1114         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1115         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1116       }else{
1117         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1118       }
1119     }else{
1120       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1121           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1122     }
1123   }
1124   generateColumnTypes(pParse, pTabList, pEList);
1125 }
1126 
1127 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1128 /*
1129 ** Name of the connection operator, used for error messages.
1130 */
1131 static const char *selectOpName(int id){
1132   char *z;
1133   switch( id ){
1134     case TK_ALL:       z = "UNION ALL";   break;
1135     case TK_INTERSECT: z = "INTERSECT";   break;
1136     case TK_EXCEPT:    z = "EXCEPT";      break;
1137     default:           z = "UNION";       break;
1138   }
1139   return z;
1140 }
1141 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1142 
1143 /*
1144 ** Given a an expression list (which is really the list of expressions
1145 ** that form the result set of a SELECT statement) compute appropriate
1146 ** column names for a table that would hold the expression list.
1147 **
1148 ** All column names will be unique.
1149 **
1150 ** Only the column names are computed.  Column.zType, Column.zColl,
1151 ** and other fields of Column are zeroed.
1152 **
1153 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1154 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1155 */
1156 static int selectColumnsFromExprList(
1157   Parse *pParse,          /* Parsing context */
1158   ExprList *pEList,       /* Expr list from which to derive column names */
1159   int *pnCol,             /* Write the number of columns here */
1160   Column **paCol          /* Write the new column list here */
1161 ){
1162   sqlite3 *db = pParse->db;   /* Database connection */
1163   int i, j;                   /* Loop counters */
1164   int cnt;                    /* Index added to make the name unique */
1165   Column *aCol, *pCol;        /* For looping over result columns */
1166   int nCol;                   /* Number of columns in the result set */
1167   Expr *p;                    /* Expression for a single result column */
1168   char *zName;                /* Column name */
1169   int nName;                  /* Size of name in zName[] */
1170 
1171   *pnCol = nCol = pEList->nExpr;
1172   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1173   if( aCol==0 ) return SQLITE_NOMEM;
1174   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1175     /* Get an appropriate name for the column
1176     */
1177     p = pEList->a[i].pExpr;
1178     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1179                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1180     if( (zName = pEList->a[i].zName)!=0 ){
1181       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1182       zName = sqlite3DbStrDup(db, zName);
1183     }else{
1184       Expr *pColExpr = p;  /* The expression that is the result column name */
1185       Table *pTab;         /* Table associated with this expression */
1186       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1187       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1188         /* For columns use the column name name */
1189         int iCol = pColExpr->iColumn;
1190         pTab = pColExpr->pTab;
1191         if( iCol<0 ) iCol = pTab->iPKey;
1192         zName = sqlite3MPrintf(db, "%s",
1193                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1194       }else if( pColExpr->op==TK_ID ){
1195         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1196         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1197       }else{
1198         /* Use the original text of the column expression as its name */
1199         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1200       }
1201     }
1202     if( db->mallocFailed ){
1203       sqlite3DbFree(db, zName);
1204       break;
1205     }
1206 
1207     /* Make sure the column name is unique.  If the name is not unique,
1208     ** append a integer to the name so that it becomes unique.
1209     */
1210     nName = sqlite3Strlen30(zName);
1211     for(j=cnt=0; j<i; j++){
1212       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1213         char *zNewName;
1214         zName[nName] = 0;
1215         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1216         sqlite3DbFree(db, zName);
1217         zName = zNewName;
1218         j = -1;
1219         if( zName==0 ) break;
1220       }
1221     }
1222     pCol->zName = zName;
1223   }
1224   if( db->mallocFailed ){
1225     for(j=0; j<i; j++){
1226       sqlite3DbFree(db, aCol[j].zName);
1227     }
1228     sqlite3DbFree(db, aCol);
1229     *paCol = 0;
1230     *pnCol = 0;
1231     return SQLITE_NOMEM;
1232   }
1233   return SQLITE_OK;
1234 }
1235 
1236 /*
1237 ** Add type and collation information to a column list based on
1238 ** a SELECT statement.
1239 **
1240 ** The column list presumably came from selectColumnNamesFromExprList().
1241 ** The column list has only names, not types or collations.  This
1242 ** routine goes through and adds the types and collations.
1243 **
1244 ** This routine requires that all identifiers in the SELECT
1245 ** statement be resolved.
1246 */
1247 static void selectAddColumnTypeAndCollation(
1248   Parse *pParse,        /* Parsing contexts */
1249   int nCol,             /* Number of columns */
1250   Column *aCol,         /* List of columns */
1251   Select *pSelect       /* SELECT used to determine types and collations */
1252 ){
1253   sqlite3 *db = pParse->db;
1254   NameContext sNC;
1255   Column *pCol;
1256   CollSeq *pColl;
1257   int i;
1258   Expr *p;
1259   struct ExprList_item *a;
1260 
1261   assert( pSelect!=0 );
1262   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1263   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1264   if( db->mallocFailed ) return;
1265   memset(&sNC, 0, sizeof(sNC));
1266   sNC.pSrcList = pSelect->pSrc;
1267   a = pSelect->pEList->a;
1268   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1269     p = a[i].pExpr;
1270     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1271     pCol->affinity = sqlite3ExprAffinity(p);
1272     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1273     pColl = sqlite3ExprCollSeq(pParse, p);
1274     if( pColl ){
1275       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1276     }
1277   }
1278 }
1279 
1280 /*
1281 ** Given a SELECT statement, generate a Table structure that describes
1282 ** the result set of that SELECT.
1283 */
1284 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1285   Table *pTab;
1286   sqlite3 *db = pParse->db;
1287   int savedFlags;
1288 
1289   savedFlags = db->flags;
1290   db->flags &= ~SQLITE_FullColNames;
1291   db->flags |= SQLITE_ShortColNames;
1292   sqlite3SelectPrep(pParse, pSelect, 0);
1293   if( pParse->nErr ) return 0;
1294   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1295   db->flags = savedFlags;
1296   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1297   if( pTab==0 ){
1298     return 0;
1299   }
1300   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1301   ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */
1302   assert( db->lookaside.bEnabled==0 );
1303   pTab->dbMem = 0;
1304   pTab->nRef = 1;
1305   pTab->zName = 0;
1306   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1307   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1308   pTab->iPKey = -1;
1309   if( db->mallocFailed ){
1310     sqlite3DeleteTable(pTab);
1311     return 0;
1312   }
1313   return pTab;
1314 }
1315 
1316 /*
1317 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1318 ** If an error occurs, return NULL and leave a message in pParse.
1319 */
1320 Vdbe *sqlite3GetVdbe(Parse *pParse){
1321   Vdbe *v = pParse->pVdbe;
1322   if( v==0 ){
1323     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1324 #ifndef SQLITE_OMIT_TRACE
1325     if( v ){
1326       sqlite3VdbeAddOp0(v, OP_Trace);
1327     }
1328 #endif
1329   }
1330   return v;
1331 }
1332 
1333 
1334 /*
1335 ** Compute the iLimit and iOffset fields of the SELECT based on the
1336 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1337 ** that appear in the original SQL statement after the LIMIT and OFFSET
1338 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1339 ** are the integer memory register numbers for counters used to compute
1340 ** the limit and offset.  If there is no limit and/or offset, then
1341 ** iLimit and iOffset are negative.
1342 **
1343 ** This routine changes the values of iLimit and iOffset only if
1344 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1345 ** iOffset should have been preset to appropriate default values
1346 ** (usually but not always -1) prior to calling this routine.
1347 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1348 ** redefined.  The UNION ALL operator uses this property to force
1349 ** the reuse of the same limit and offset registers across multiple
1350 ** SELECT statements.
1351 */
1352 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1353   Vdbe *v = 0;
1354   int iLimit = 0;
1355   int iOffset;
1356   int addr1, n;
1357   if( p->iLimit ) return;
1358 
1359   /*
1360   ** "LIMIT -1" always shows all rows.  There is some
1361   ** contraversy about what the correct behavior should be.
1362   ** The current implementation interprets "LIMIT 0" to mean
1363   ** no rows.
1364   */
1365   sqlite3ExprCacheClear(pParse);
1366   assert( p->pOffset==0 || p->pLimit!=0 );
1367   if( p->pLimit ){
1368     p->iLimit = iLimit = ++pParse->nMem;
1369     v = sqlite3GetVdbe(pParse);
1370     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1371     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1372       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1373       VdbeComment((v, "LIMIT counter"));
1374       if( n==0 ){
1375         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1376       }
1377     }else{
1378       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1379       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1380       VdbeComment((v, "LIMIT counter"));
1381       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1382     }
1383     if( p->pOffset ){
1384       p->iOffset = iOffset = ++pParse->nMem;
1385       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1386       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1387       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1388       VdbeComment((v, "OFFSET counter"));
1389       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1390       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1391       sqlite3VdbeJumpHere(v, addr1);
1392       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1393       VdbeComment((v, "LIMIT+OFFSET"));
1394       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1395       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1396       sqlite3VdbeJumpHere(v, addr1);
1397     }
1398   }
1399 }
1400 
1401 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1402 /*
1403 ** Return the appropriate collating sequence for the iCol-th column of
1404 ** the result set for the compound-select statement "p".  Return NULL if
1405 ** the column has no default collating sequence.
1406 **
1407 ** The collating sequence for the compound select is taken from the
1408 ** left-most term of the select that has a collating sequence.
1409 */
1410 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1411   CollSeq *pRet;
1412   if( p->pPrior ){
1413     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1414   }else{
1415     pRet = 0;
1416   }
1417   assert( iCol>=0 );
1418   if( pRet==0 && iCol<p->pEList->nExpr ){
1419     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1420   }
1421   return pRet;
1422 }
1423 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1424 
1425 /* Forward reference */
1426 static int multiSelectOrderBy(
1427   Parse *pParse,        /* Parsing context */
1428   Select *p,            /* The right-most of SELECTs to be coded */
1429   SelectDest *pDest     /* What to do with query results */
1430 );
1431 
1432 
1433 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1434 /*
1435 ** This routine is called to process a compound query form from
1436 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1437 ** INTERSECT
1438 **
1439 ** "p" points to the right-most of the two queries.  the query on the
1440 ** left is p->pPrior.  The left query could also be a compound query
1441 ** in which case this routine will be called recursively.
1442 **
1443 ** The results of the total query are to be written into a destination
1444 ** of type eDest with parameter iParm.
1445 **
1446 ** Example 1:  Consider a three-way compound SQL statement.
1447 **
1448 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1449 **
1450 ** This statement is parsed up as follows:
1451 **
1452 **     SELECT c FROM t3
1453 **      |
1454 **      `----->  SELECT b FROM t2
1455 **                |
1456 **                `------>  SELECT a FROM t1
1457 **
1458 ** The arrows in the diagram above represent the Select.pPrior pointer.
1459 ** So if this routine is called with p equal to the t3 query, then
1460 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1461 **
1462 ** Notice that because of the way SQLite parses compound SELECTs, the
1463 ** individual selects always group from left to right.
1464 */
1465 static int multiSelect(
1466   Parse *pParse,        /* Parsing context */
1467   Select *p,            /* The right-most of SELECTs to be coded */
1468   SelectDest *pDest     /* What to do with query results */
1469 ){
1470   int rc = SQLITE_OK;   /* Success code from a subroutine */
1471   Select *pPrior;       /* Another SELECT immediately to our left */
1472   Vdbe *v;              /* Generate code to this VDBE */
1473   SelectDest dest;      /* Alternative data destination */
1474   Select *pDelete = 0;  /* Chain of simple selects to delete */
1475   sqlite3 *db;          /* Database connection */
1476 
1477   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1478   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1479   */
1480   assert( p && p->pPrior );  /* Calling function guarantees this much */
1481   db = pParse->db;
1482   pPrior = p->pPrior;
1483   assert( pPrior->pRightmost!=pPrior );
1484   assert( pPrior->pRightmost==p->pRightmost );
1485   dest = *pDest;
1486   if( pPrior->pOrderBy ){
1487     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1488       selectOpName(p->op));
1489     rc = 1;
1490     goto multi_select_end;
1491   }
1492   if( pPrior->pLimit ){
1493     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1494       selectOpName(p->op));
1495     rc = 1;
1496     goto multi_select_end;
1497   }
1498 
1499   v = sqlite3GetVdbe(pParse);
1500   assert( v!=0 );  /* The VDBE already created by calling function */
1501 
1502   /* Create the destination temporary table if necessary
1503   */
1504   if( dest.eDest==SRT_EphemTab ){
1505     assert( p->pEList );
1506     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1507     dest.eDest = SRT_Table;
1508   }
1509 
1510   /* Make sure all SELECTs in the statement have the same number of elements
1511   ** in their result sets.
1512   */
1513   assert( p->pEList && pPrior->pEList );
1514   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1515     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1516       " do not have the same number of result columns", selectOpName(p->op));
1517     rc = 1;
1518     goto multi_select_end;
1519   }
1520 
1521   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1522   */
1523   if( p->pOrderBy ){
1524     return multiSelectOrderBy(pParse, p, pDest);
1525   }
1526 
1527   /* Generate code for the left and right SELECT statements.
1528   */
1529   switch( p->op ){
1530     case TK_ALL: {
1531       int addr = 0;
1532       assert( !pPrior->pLimit );
1533       pPrior->pLimit = p->pLimit;
1534       pPrior->pOffset = p->pOffset;
1535       rc = sqlite3Select(pParse, pPrior, &dest);
1536       p->pLimit = 0;
1537       p->pOffset = 0;
1538       if( rc ){
1539         goto multi_select_end;
1540       }
1541       p->pPrior = 0;
1542       p->iLimit = pPrior->iLimit;
1543       p->iOffset = pPrior->iOffset;
1544       if( p->iLimit ){
1545         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1546         VdbeComment((v, "Jump ahead if LIMIT reached"));
1547       }
1548       rc = sqlite3Select(pParse, p, &dest);
1549       testcase( rc!=SQLITE_OK );
1550       pDelete = p->pPrior;
1551       p->pPrior = pPrior;
1552       if( addr ){
1553         sqlite3VdbeJumpHere(v, addr);
1554       }
1555       break;
1556     }
1557     case TK_EXCEPT:
1558     case TK_UNION: {
1559       int unionTab;    /* Cursor number of the temporary table holding result */
1560       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1561       int priorOp;     /* The SRT_ operation to apply to prior selects */
1562       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1563       int addr;
1564       SelectDest uniondest;
1565 
1566       testcase( p->op==TK_EXCEPT );
1567       testcase( p->op==TK_UNION );
1568       priorOp = SRT_Union;
1569       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1570         /* We can reuse a temporary table generated by a SELECT to our
1571         ** right.
1572         */
1573         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1574                                      ** of a 3-way or more compound */
1575         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1576         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1577         unionTab = dest.iParm;
1578       }else{
1579         /* We will need to create our own temporary table to hold the
1580         ** intermediate results.
1581         */
1582         unionTab = pParse->nTab++;
1583         assert( p->pOrderBy==0 );
1584         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1585         assert( p->addrOpenEphm[0] == -1 );
1586         p->addrOpenEphm[0] = addr;
1587         p->pRightmost->selFlags |= SF_UsesEphemeral;
1588         assert( p->pEList );
1589       }
1590 
1591       /* Code the SELECT statements to our left
1592       */
1593       assert( !pPrior->pOrderBy );
1594       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1595       rc = sqlite3Select(pParse, pPrior, &uniondest);
1596       if( rc ){
1597         goto multi_select_end;
1598       }
1599 
1600       /* Code the current SELECT statement
1601       */
1602       if( p->op==TK_EXCEPT ){
1603         op = SRT_Except;
1604       }else{
1605         assert( p->op==TK_UNION );
1606         op = SRT_Union;
1607       }
1608       p->pPrior = 0;
1609       pLimit = p->pLimit;
1610       p->pLimit = 0;
1611       pOffset = p->pOffset;
1612       p->pOffset = 0;
1613       uniondest.eDest = op;
1614       rc = sqlite3Select(pParse, p, &uniondest);
1615       testcase( rc!=SQLITE_OK );
1616       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1617       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1618       sqlite3ExprListDelete(db, p->pOrderBy);
1619       pDelete = p->pPrior;
1620       p->pPrior = pPrior;
1621       p->pOrderBy = 0;
1622       sqlite3ExprDelete(db, p->pLimit);
1623       p->pLimit = pLimit;
1624       p->pOffset = pOffset;
1625       p->iLimit = 0;
1626       p->iOffset = 0;
1627 
1628       /* Convert the data in the temporary table into whatever form
1629       ** it is that we currently need.
1630       */
1631       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1632       if( dest.eDest!=priorOp ){
1633         int iCont, iBreak, iStart;
1634         assert( p->pEList );
1635         if( dest.eDest==SRT_Output ){
1636           Select *pFirst = p;
1637           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1638           generateColumnNames(pParse, 0, pFirst->pEList);
1639         }
1640         iBreak = sqlite3VdbeMakeLabel(v);
1641         iCont = sqlite3VdbeMakeLabel(v);
1642         computeLimitRegisters(pParse, p, iBreak);
1643         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1644         iStart = sqlite3VdbeCurrentAddr(v);
1645         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1646                         0, -1, &dest, iCont, iBreak);
1647         sqlite3VdbeResolveLabel(v, iCont);
1648         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1649         sqlite3VdbeResolveLabel(v, iBreak);
1650         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1651       }
1652       break;
1653     }
1654     default: assert( p->op==TK_INTERSECT ); {
1655       int tab1, tab2;
1656       int iCont, iBreak, iStart;
1657       Expr *pLimit, *pOffset;
1658       int addr;
1659       SelectDest intersectdest;
1660       int r1;
1661 
1662       /* INTERSECT is different from the others since it requires
1663       ** two temporary tables.  Hence it has its own case.  Begin
1664       ** by allocating the tables we will need.
1665       */
1666       tab1 = pParse->nTab++;
1667       tab2 = pParse->nTab++;
1668       assert( p->pOrderBy==0 );
1669 
1670       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1671       assert( p->addrOpenEphm[0] == -1 );
1672       p->addrOpenEphm[0] = addr;
1673       p->pRightmost->selFlags |= SF_UsesEphemeral;
1674       assert( p->pEList );
1675 
1676       /* Code the SELECTs to our left into temporary table "tab1".
1677       */
1678       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1679       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1680       if( rc ){
1681         goto multi_select_end;
1682       }
1683 
1684       /* Code the current SELECT into temporary table "tab2"
1685       */
1686       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1687       assert( p->addrOpenEphm[1] == -1 );
1688       p->addrOpenEphm[1] = addr;
1689       p->pPrior = 0;
1690       pLimit = p->pLimit;
1691       p->pLimit = 0;
1692       pOffset = p->pOffset;
1693       p->pOffset = 0;
1694       intersectdest.iParm = tab2;
1695       rc = sqlite3Select(pParse, p, &intersectdest);
1696       testcase( rc!=SQLITE_OK );
1697       pDelete = p->pPrior;
1698       p->pPrior = pPrior;
1699       sqlite3ExprDelete(db, p->pLimit);
1700       p->pLimit = pLimit;
1701       p->pOffset = pOffset;
1702 
1703       /* Generate code to take the intersection of the two temporary
1704       ** tables.
1705       */
1706       assert( p->pEList );
1707       if( dest.eDest==SRT_Output ){
1708         Select *pFirst = p;
1709         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1710         generateColumnNames(pParse, 0, pFirst->pEList);
1711       }
1712       iBreak = sqlite3VdbeMakeLabel(v);
1713       iCont = sqlite3VdbeMakeLabel(v);
1714       computeLimitRegisters(pParse, p, iBreak);
1715       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1716       r1 = sqlite3GetTempReg(pParse);
1717       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1718       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1719       sqlite3ReleaseTempReg(pParse, r1);
1720       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1721                       0, -1, &dest, iCont, iBreak);
1722       sqlite3VdbeResolveLabel(v, iCont);
1723       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1724       sqlite3VdbeResolveLabel(v, iBreak);
1725       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1726       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1727       break;
1728     }
1729   }
1730 
1731   /* Compute collating sequences used by
1732   ** temporary tables needed to implement the compound select.
1733   ** Attach the KeyInfo structure to all temporary tables.
1734   **
1735   ** This section is run by the right-most SELECT statement only.
1736   ** SELECT statements to the left always skip this part.  The right-most
1737   ** SELECT might also skip this part if it has no ORDER BY clause and
1738   ** no temp tables are required.
1739   */
1740   if( p->selFlags & SF_UsesEphemeral ){
1741     int i;                        /* Loop counter */
1742     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1743     Select *pLoop;                /* For looping through SELECT statements */
1744     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1745     int nCol;                     /* Number of columns in result set */
1746 
1747     assert( p->pRightmost==p );
1748     nCol = p->pEList->nExpr;
1749     pKeyInfo = sqlite3DbMallocZero(db,
1750                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1751     if( !pKeyInfo ){
1752       rc = SQLITE_NOMEM;
1753       goto multi_select_end;
1754     }
1755 
1756     pKeyInfo->enc = ENC(db);
1757     pKeyInfo->nField = (u16)nCol;
1758 
1759     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1760       *apColl = multiSelectCollSeq(pParse, p, i);
1761       if( 0==*apColl ){
1762         *apColl = db->pDfltColl;
1763       }
1764     }
1765 
1766     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1767       for(i=0; i<2; i++){
1768         int addr = pLoop->addrOpenEphm[i];
1769         if( addr<0 ){
1770           /* If [0] is unused then [1] is also unused.  So we can
1771           ** always safely abort as soon as the first unused slot is found */
1772           assert( pLoop->addrOpenEphm[1]<0 );
1773           break;
1774         }
1775         sqlite3VdbeChangeP2(v, addr, nCol);
1776         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1777         pLoop->addrOpenEphm[i] = -1;
1778       }
1779     }
1780     sqlite3DbFree(db, pKeyInfo);
1781   }
1782 
1783 multi_select_end:
1784   pDest->iMem = dest.iMem;
1785   pDest->nMem = dest.nMem;
1786   sqlite3SelectDelete(db, pDelete);
1787   return rc;
1788 }
1789 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1790 
1791 /*
1792 ** Code an output subroutine for a coroutine implementation of a
1793 ** SELECT statment.
1794 **
1795 ** The data to be output is contained in pIn->iMem.  There are
1796 ** pIn->nMem columns to be output.  pDest is where the output should
1797 ** be sent.
1798 **
1799 ** regReturn is the number of the register holding the subroutine
1800 ** return address.
1801 **
1802 ** If regPrev>0 then it is a the first register in a vector that
1803 ** records the previous output.  mem[regPrev] is a flag that is false
1804 ** if there has been no previous output.  If regPrev>0 then code is
1805 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1806 ** keys.
1807 **
1808 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1809 ** iBreak.
1810 */
1811 static int generateOutputSubroutine(
1812   Parse *pParse,          /* Parsing context */
1813   Select *p,              /* The SELECT statement */
1814   SelectDest *pIn,        /* Coroutine supplying data */
1815   SelectDest *pDest,      /* Where to send the data */
1816   int regReturn,          /* The return address register */
1817   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1818   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1819   int p4type,             /* The p4 type for pKeyInfo */
1820   int iBreak              /* Jump here if we hit the LIMIT */
1821 ){
1822   Vdbe *v = pParse->pVdbe;
1823   int iContinue;
1824   int addr;
1825 
1826   addr = sqlite3VdbeCurrentAddr(v);
1827   iContinue = sqlite3VdbeMakeLabel(v);
1828 
1829   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1830   */
1831   if( regPrev ){
1832     int j1, j2;
1833     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1834     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1835                               (char*)pKeyInfo, p4type);
1836     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1837     sqlite3VdbeJumpHere(v, j1);
1838     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1839     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1840   }
1841   if( pParse->db->mallocFailed ) return 0;
1842 
1843   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1844   */
1845   codeOffset(v, p, iContinue);
1846 
1847   switch( pDest->eDest ){
1848     /* Store the result as data using a unique key.
1849     */
1850     case SRT_Table:
1851     case SRT_EphemTab: {
1852       int r1 = sqlite3GetTempReg(pParse);
1853       int r2 = sqlite3GetTempReg(pParse);
1854       testcase( pDest->eDest==SRT_Table );
1855       testcase( pDest->eDest==SRT_EphemTab );
1856       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1857       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1858       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1859       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1860       sqlite3ReleaseTempReg(pParse, r2);
1861       sqlite3ReleaseTempReg(pParse, r1);
1862       break;
1863     }
1864 
1865 #ifndef SQLITE_OMIT_SUBQUERY
1866     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1867     ** then there should be a single item on the stack.  Write this
1868     ** item into the set table with bogus data.
1869     */
1870     case SRT_Set: {
1871       int r1;
1872       assert( pIn->nMem==1 );
1873       p->affinity =
1874          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1875       r1 = sqlite3GetTempReg(pParse);
1876       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1877       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1878       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1879       sqlite3ReleaseTempReg(pParse, r1);
1880       break;
1881     }
1882 
1883 #if 0  /* Never occurs on an ORDER BY query */
1884     /* If any row exist in the result set, record that fact and abort.
1885     */
1886     case SRT_Exists: {
1887       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1888       /* The LIMIT clause will terminate the loop for us */
1889       break;
1890     }
1891 #endif
1892 
1893     /* If this is a scalar select that is part of an expression, then
1894     ** store the results in the appropriate memory cell and break out
1895     ** of the scan loop.
1896     */
1897     case SRT_Mem: {
1898       assert( pIn->nMem==1 );
1899       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1900       /* The LIMIT clause will jump out of the loop for us */
1901       break;
1902     }
1903 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1904 
1905     /* The results are stored in a sequence of registers
1906     ** starting at pDest->iMem.  Then the co-routine yields.
1907     */
1908     case SRT_Coroutine: {
1909       if( pDest->iMem==0 ){
1910         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1911         pDest->nMem = pIn->nMem;
1912       }
1913       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1914       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1915       break;
1916     }
1917 
1918     /* If none of the above, then the result destination must be
1919     ** SRT_Output.  This routine is never called with any other
1920     ** destination other than the ones handled above or SRT_Output.
1921     **
1922     ** For SRT_Output, results are stored in a sequence of registers.
1923     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
1924     ** return the next row of result.
1925     */
1926     default: {
1927       assert( pDest->eDest==SRT_Output );
1928       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1929       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1930       break;
1931     }
1932   }
1933 
1934   /* Jump to the end of the loop if the LIMIT is reached.
1935   */
1936   if( p->iLimit ){
1937     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
1938   }
1939 
1940   /* Generate the subroutine return
1941   */
1942   sqlite3VdbeResolveLabel(v, iContinue);
1943   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1944 
1945   return addr;
1946 }
1947 
1948 /*
1949 ** Alternative compound select code generator for cases when there
1950 ** is an ORDER BY clause.
1951 **
1952 ** We assume a query of the following form:
1953 **
1954 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
1955 **
1956 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
1957 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1958 ** co-routines.  Then run the co-routines in parallel and merge the results
1959 ** into the output.  In addition to the two coroutines (called selectA and
1960 ** selectB) there are 7 subroutines:
1961 **
1962 **    outA:    Move the output of the selectA coroutine into the output
1963 **             of the compound query.
1964 **
1965 **    outB:    Move the output of the selectB coroutine into the output
1966 **             of the compound query.  (Only generated for UNION and
1967 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
1968 **             appears only in B.)
1969 **
1970 **    AltB:    Called when there is data from both coroutines and A<B.
1971 **
1972 **    AeqB:    Called when there is data from both coroutines and A==B.
1973 **
1974 **    AgtB:    Called when there is data from both coroutines and A>B.
1975 **
1976 **    EofA:    Called when data is exhausted from selectA.
1977 **
1978 **    EofB:    Called when data is exhausted from selectB.
1979 **
1980 ** The implementation of the latter five subroutines depend on which
1981 ** <operator> is used:
1982 **
1983 **
1984 **             UNION ALL         UNION            EXCEPT          INTERSECT
1985 **          -------------  -----------------  --------------  -----------------
1986 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
1987 **
1988 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
1989 **
1990 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
1991 **
1992 **   EofA:   outB, nextB      outB, nextB          halt             halt
1993 **
1994 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
1995 **
1996 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1997 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1998 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
1999 ** following nextX causes a jump to the end of the select processing.
2000 **
2001 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2002 ** within the output subroutine.  The regPrev register set holds the previously
2003 ** output value.  A comparison is made against this value and the output
2004 ** is skipped if the next results would be the same as the previous.
2005 **
2006 ** The implementation plan is to implement the two coroutines and seven
2007 ** subroutines first, then put the control logic at the bottom.  Like this:
2008 **
2009 **          goto Init
2010 **     coA: coroutine for left query (A)
2011 **     coB: coroutine for right query (B)
2012 **    outA: output one row of A
2013 **    outB: output one row of B (UNION and UNION ALL only)
2014 **    EofA: ...
2015 **    EofB: ...
2016 **    AltB: ...
2017 **    AeqB: ...
2018 **    AgtB: ...
2019 **    Init: initialize coroutine registers
2020 **          yield coA
2021 **          if eof(A) goto EofA
2022 **          yield coB
2023 **          if eof(B) goto EofB
2024 **    Cmpr: Compare A, B
2025 **          Jump AltB, AeqB, AgtB
2026 **     End: ...
2027 **
2028 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2029 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2030 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2031 ** and AgtB jump to either L2 or to one of EofA or EofB.
2032 */
2033 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2034 static int multiSelectOrderBy(
2035   Parse *pParse,        /* Parsing context */
2036   Select *p,            /* The right-most of SELECTs to be coded */
2037   SelectDest *pDest     /* What to do with query results */
2038 ){
2039   int i, j;             /* Loop counters */
2040   Select *pPrior;       /* Another SELECT immediately to our left */
2041   Vdbe *v;              /* Generate code to this VDBE */
2042   SelectDest destA;     /* Destination for coroutine A */
2043   SelectDest destB;     /* Destination for coroutine B */
2044   int regAddrA;         /* Address register for select-A coroutine */
2045   int regEofA;          /* Flag to indicate when select-A is complete */
2046   int regAddrB;         /* Address register for select-B coroutine */
2047   int regEofB;          /* Flag to indicate when select-B is complete */
2048   int addrSelectA;      /* Address of the select-A coroutine */
2049   int addrSelectB;      /* Address of the select-B coroutine */
2050   int regOutA;          /* Address register for the output-A subroutine */
2051   int regOutB;          /* Address register for the output-B subroutine */
2052   int addrOutA;         /* Address of the output-A subroutine */
2053   int addrOutB = 0;     /* Address of the output-B subroutine */
2054   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2055   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2056   int addrAltB;         /* Address of the A<B subroutine */
2057   int addrAeqB;         /* Address of the A==B subroutine */
2058   int addrAgtB;         /* Address of the A>B subroutine */
2059   int regLimitA;        /* Limit register for select-A */
2060   int regLimitB;        /* Limit register for select-A */
2061   int regPrev;          /* A range of registers to hold previous output */
2062   int savedLimit;       /* Saved value of p->iLimit */
2063   int savedOffset;      /* Saved value of p->iOffset */
2064   int labelCmpr;        /* Label for the start of the merge algorithm */
2065   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2066   int j1;               /* Jump instructions that get retargetted */
2067   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2068   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2069   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2070   sqlite3 *db;          /* Database connection */
2071   ExprList *pOrderBy;   /* The ORDER BY clause */
2072   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2073   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2074 
2075   assert( p->pOrderBy!=0 );
2076   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2077   db = pParse->db;
2078   v = pParse->pVdbe;
2079   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2080   labelEnd = sqlite3VdbeMakeLabel(v);
2081   labelCmpr = sqlite3VdbeMakeLabel(v);
2082 
2083 
2084   /* Patch up the ORDER BY clause
2085   */
2086   op = p->op;
2087   pPrior = p->pPrior;
2088   assert( pPrior->pOrderBy==0 );
2089   pOrderBy = p->pOrderBy;
2090   assert( pOrderBy );
2091   nOrderBy = pOrderBy->nExpr;
2092 
2093   /* For operators other than UNION ALL we have to make sure that
2094   ** the ORDER BY clause covers every term of the result set.  Add
2095   ** terms to the ORDER BY clause as necessary.
2096   */
2097   if( op!=TK_ALL ){
2098     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2099       struct ExprList_item *pItem;
2100       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2101         assert( pItem->iCol>0 );
2102         if( pItem->iCol==i ) break;
2103       }
2104       if( j==nOrderBy ){
2105         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2106         if( pNew==0 ) return SQLITE_NOMEM;
2107         pNew->flags |= EP_IntValue;
2108         pNew->u.iValue = i;
2109         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2110         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2111       }
2112     }
2113   }
2114 
2115   /* Compute the comparison permutation and keyinfo that is used with
2116   ** the permutation used to determine if the next
2117   ** row of results comes from selectA or selectB.  Also add explicit
2118   ** collations to the ORDER BY clause terms so that when the subqueries
2119   ** to the right and the left are evaluated, they use the correct
2120   ** collation.
2121   */
2122   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2123   if( aPermute ){
2124     struct ExprList_item *pItem;
2125     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2126       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2127       aPermute[i] = pItem->iCol - 1;
2128     }
2129     pKeyMerge =
2130       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2131     if( pKeyMerge ){
2132       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2133       pKeyMerge->nField = (u16)nOrderBy;
2134       pKeyMerge->enc = ENC(db);
2135       for(i=0; i<nOrderBy; i++){
2136         CollSeq *pColl;
2137         Expr *pTerm = pOrderBy->a[i].pExpr;
2138         if( pTerm->flags & EP_ExpCollate ){
2139           pColl = pTerm->pColl;
2140         }else{
2141           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2142           pTerm->flags |= EP_ExpCollate;
2143           pTerm->pColl = pColl;
2144         }
2145         pKeyMerge->aColl[i] = pColl;
2146         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2147       }
2148     }
2149   }else{
2150     pKeyMerge = 0;
2151   }
2152 
2153   /* Reattach the ORDER BY clause to the query.
2154   */
2155   p->pOrderBy = pOrderBy;
2156   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2157 
2158   /* Allocate a range of temporary registers and the KeyInfo needed
2159   ** for the logic that removes duplicate result rows when the
2160   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2161   */
2162   if( op==TK_ALL ){
2163     regPrev = 0;
2164   }else{
2165     int nExpr = p->pEList->nExpr;
2166     assert( nOrderBy>=nExpr || db->mallocFailed );
2167     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2168     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2169     pKeyDup = sqlite3DbMallocZero(db,
2170                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2171     if( pKeyDup ){
2172       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2173       pKeyDup->nField = (u16)nExpr;
2174       pKeyDup->enc = ENC(db);
2175       for(i=0; i<nExpr; i++){
2176         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2177         pKeyDup->aSortOrder[i] = 0;
2178       }
2179     }
2180   }
2181 
2182   /* Separate the left and the right query from one another
2183   */
2184   p->pPrior = 0;
2185   pPrior->pRightmost = 0;
2186   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2187   if( pPrior->pPrior==0 ){
2188     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2189   }
2190 
2191   /* Compute the limit registers */
2192   computeLimitRegisters(pParse, p, labelEnd);
2193   if( p->iLimit && op==TK_ALL ){
2194     regLimitA = ++pParse->nMem;
2195     regLimitB = ++pParse->nMem;
2196     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2197                                   regLimitA);
2198     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2199   }else{
2200     regLimitA = regLimitB = 0;
2201   }
2202   sqlite3ExprDelete(db, p->pLimit);
2203   p->pLimit = 0;
2204   sqlite3ExprDelete(db, p->pOffset);
2205   p->pOffset = 0;
2206 
2207   regAddrA = ++pParse->nMem;
2208   regEofA = ++pParse->nMem;
2209   regAddrB = ++pParse->nMem;
2210   regEofB = ++pParse->nMem;
2211   regOutA = ++pParse->nMem;
2212   regOutB = ++pParse->nMem;
2213   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2214   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2215 
2216   /* Jump past the various subroutines and coroutines to the main
2217   ** merge loop
2218   */
2219   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2220   addrSelectA = sqlite3VdbeCurrentAddr(v);
2221 
2222 
2223   /* Generate a coroutine to evaluate the SELECT statement to the
2224   ** left of the compound operator - the "A" select.
2225   */
2226   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2227   pPrior->iLimit = regLimitA;
2228   sqlite3Select(pParse, pPrior, &destA);
2229   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2230   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2231   VdbeNoopComment((v, "End coroutine for left SELECT"));
2232 
2233   /* Generate a coroutine to evaluate the SELECT statement on
2234   ** the right - the "B" select
2235   */
2236   addrSelectB = sqlite3VdbeCurrentAddr(v);
2237   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2238   savedLimit = p->iLimit;
2239   savedOffset = p->iOffset;
2240   p->iLimit = regLimitB;
2241   p->iOffset = 0;
2242   sqlite3Select(pParse, p, &destB);
2243   p->iLimit = savedLimit;
2244   p->iOffset = savedOffset;
2245   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2246   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2247   VdbeNoopComment((v, "End coroutine for right SELECT"));
2248 
2249   /* Generate a subroutine that outputs the current row of the A
2250   ** select as the next output row of the compound select.
2251   */
2252   VdbeNoopComment((v, "Output routine for A"));
2253   addrOutA = generateOutputSubroutine(pParse,
2254                  p, &destA, pDest, regOutA,
2255                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2256 
2257   /* Generate a subroutine that outputs the current row of the B
2258   ** select as the next output row of the compound select.
2259   */
2260   if( op==TK_ALL || op==TK_UNION ){
2261     VdbeNoopComment((v, "Output routine for B"));
2262     addrOutB = generateOutputSubroutine(pParse,
2263                  p, &destB, pDest, regOutB,
2264                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2265   }
2266 
2267   /* Generate a subroutine to run when the results from select A
2268   ** are exhausted and only data in select B remains.
2269   */
2270   VdbeNoopComment((v, "eof-A subroutine"));
2271   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2272     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2273   }else{
2274     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2275     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2276     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2277     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2278   }
2279 
2280   /* Generate a subroutine to run when the results from select B
2281   ** are exhausted and only data in select A remains.
2282   */
2283   if( op==TK_INTERSECT ){
2284     addrEofB = addrEofA;
2285   }else{
2286     VdbeNoopComment((v, "eof-B subroutine"));
2287     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2288     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2289     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2290     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2291   }
2292 
2293   /* Generate code to handle the case of A<B
2294   */
2295   VdbeNoopComment((v, "A-lt-B subroutine"));
2296   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2297   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2298   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2299   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2300 
2301   /* Generate code to handle the case of A==B
2302   */
2303   if( op==TK_ALL ){
2304     addrAeqB = addrAltB;
2305   }else if( op==TK_INTERSECT ){
2306     addrAeqB = addrAltB;
2307     addrAltB++;
2308   }else{
2309     VdbeNoopComment((v, "A-eq-B subroutine"));
2310     addrAeqB =
2311     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2312     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2313     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2314   }
2315 
2316   /* Generate code to handle the case of A>B
2317   */
2318   VdbeNoopComment((v, "A-gt-B subroutine"));
2319   addrAgtB = sqlite3VdbeCurrentAddr(v);
2320   if( op==TK_ALL || op==TK_UNION ){
2321     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2322   }
2323   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2324   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2325   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2326 
2327   /* This code runs once to initialize everything.
2328   */
2329   sqlite3VdbeJumpHere(v, j1);
2330   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2331   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2332   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2333   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2334   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2335   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2336 
2337   /* Implement the main merge loop
2338   */
2339   sqlite3VdbeResolveLabel(v, labelCmpr);
2340   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2341   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2342                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2343   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2344 
2345   /* Release temporary registers
2346   */
2347   if( regPrev ){
2348     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2349   }
2350 
2351   /* Jump to the this point in order to terminate the query.
2352   */
2353   sqlite3VdbeResolveLabel(v, labelEnd);
2354 
2355   /* Set the number of output columns
2356   */
2357   if( pDest->eDest==SRT_Output ){
2358     Select *pFirst = pPrior;
2359     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2360     generateColumnNames(pParse, 0, pFirst->pEList);
2361   }
2362 
2363   /* Reassembly the compound query so that it will be freed correctly
2364   ** by the calling function */
2365   if( p->pPrior ){
2366     sqlite3SelectDelete(db, p->pPrior);
2367   }
2368   p->pPrior = pPrior;
2369 
2370   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2371   **** subqueries ****/
2372   return SQLITE_OK;
2373 }
2374 #endif
2375 
2376 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2377 /* Forward Declarations */
2378 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2379 static void substSelect(sqlite3*, Select *, int, ExprList *);
2380 
2381 /*
2382 ** Scan through the expression pExpr.  Replace every reference to
2383 ** a column in table number iTable with a copy of the iColumn-th
2384 ** entry in pEList.  (But leave references to the ROWID column
2385 ** unchanged.)
2386 **
2387 ** This routine is part of the flattening procedure.  A subquery
2388 ** whose result set is defined by pEList appears as entry in the
2389 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2390 ** FORM clause entry is iTable.  This routine make the necessary
2391 ** changes to pExpr so that it refers directly to the source table
2392 ** of the subquery rather the result set of the subquery.
2393 */
2394 static Expr *substExpr(
2395   sqlite3 *db,        /* Report malloc errors to this connection */
2396   Expr *pExpr,        /* Expr in which substitution occurs */
2397   int iTable,         /* Table to be substituted */
2398   ExprList *pEList    /* Substitute expressions */
2399 ){
2400   if( pExpr==0 ) return 0;
2401   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2402     if( pExpr->iColumn<0 ){
2403       pExpr->op = TK_NULL;
2404     }else{
2405       Expr *pNew;
2406       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2407       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2408       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2409       if( pNew && pExpr->pColl ){
2410         pNew->pColl = pExpr->pColl;
2411       }
2412       sqlite3ExprDelete(db, pExpr);
2413       pExpr = pNew;
2414     }
2415   }else{
2416     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2417     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2418     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2419       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2420     }else{
2421       substExprList(db, pExpr->x.pList, iTable, pEList);
2422     }
2423   }
2424   return pExpr;
2425 }
2426 static void substExprList(
2427   sqlite3 *db,         /* Report malloc errors here */
2428   ExprList *pList,     /* List to scan and in which to make substitutes */
2429   int iTable,          /* Table to be substituted */
2430   ExprList *pEList     /* Substitute values */
2431 ){
2432   int i;
2433   if( pList==0 ) return;
2434   for(i=0; i<pList->nExpr; i++){
2435     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2436   }
2437 }
2438 static void substSelect(
2439   sqlite3 *db,         /* Report malloc errors here */
2440   Select *p,           /* SELECT statement in which to make substitutions */
2441   int iTable,          /* Table to be replaced */
2442   ExprList *pEList     /* Substitute values */
2443 ){
2444   SrcList *pSrc;
2445   struct SrcList_item *pItem;
2446   int i;
2447   if( !p ) return;
2448   substExprList(db, p->pEList, iTable, pEList);
2449   substExprList(db, p->pGroupBy, iTable, pEList);
2450   substExprList(db, p->pOrderBy, iTable, pEList);
2451   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2452   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2453   substSelect(db, p->pPrior, iTable, pEList);
2454   pSrc = p->pSrc;
2455   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2456   if( ALWAYS(pSrc) ){
2457     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2458       substSelect(db, pItem->pSelect, iTable, pEList);
2459     }
2460   }
2461 }
2462 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2463 
2464 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2465 /*
2466 ** This routine attempts to flatten subqueries in order to speed
2467 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2468 ** occurs.
2469 **
2470 ** To understand the concept of flattening, consider the following
2471 ** query:
2472 **
2473 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2474 **
2475 ** The default way of implementing this query is to execute the
2476 ** subquery first and store the results in a temporary table, then
2477 ** run the outer query on that temporary table.  This requires two
2478 ** passes over the data.  Furthermore, because the temporary table
2479 ** has no indices, the WHERE clause on the outer query cannot be
2480 ** optimized.
2481 **
2482 ** This routine attempts to rewrite queries such as the above into
2483 ** a single flat select, like this:
2484 **
2485 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2486 **
2487 ** The code generated for this simpification gives the same result
2488 ** but only has to scan the data once.  And because indices might
2489 ** exist on the table t1, a complete scan of the data might be
2490 ** avoided.
2491 **
2492 ** Flattening is only attempted if all of the following are true:
2493 **
2494 **   (1)  The subquery and the outer query do not both use aggregates.
2495 **
2496 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2497 **
2498 **   (3)  The subquery is not the right operand of a left outer join
2499 **        (Originally ticket #306.  Strenghtened by ticket #3300)
2500 **
2501 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2502 **
2503 **   (5)  The subquery is not DISTINCT or the outer query does not use
2504 **        aggregates.
2505 **
2506 **   (6)  The subquery does not use aggregates or the outer query is not
2507 **        DISTINCT.
2508 **
2509 **   (7)  The subquery has a FROM clause.
2510 **
2511 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2512 **
2513 **   (9)  The subquery does not use LIMIT or the outer query does not use
2514 **        aggregates.
2515 **
2516 **  (10)  The subquery does not use aggregates or the outer query does not
2517 **        use LIMIT.
2518 **
2519 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2520 **
2521 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
2522 **        a separate restriction deriving from ticket #350.
2523 **
2524 **  (13)  The subquery and outer query do not both use LIMIT
2525 **
2526 **  (14)  The subquery does not use OFFSET
2527 **
2528 **  (15)  The outer query is not part of a compound select or the
2529 **        subquery does not have a LIMIT clause.
2530 **        (See ticket #2339 and ticket [02a8e81d44]).
2531 **
2532 **  (16)  The outer query is not an aggregate or the subquery does
2533 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2534 **        until we introduced the group_concat() function.
2535 **
2536 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2537 **        compound clause made up entirely of non-aggregate queries, and
2538 **        the parent query:
2539 **
2540 **          * is not itself part of a compound select,
2541 **          * is not an aggregate or DISTINCT query, and
2542 **          * has no other tables or sub-selects in the FROM clause.
2543 **
2544 **        The parent and sub-query may contain WHERE clauses. Subject to
2545 **        rules (11), (13) and (14), they may also contain ORDER BY,
2546 **        LIMIT and OFFSET clauses.
2547 **
2548 **  (18)  If the sub-query is a compound select, then all terms of the
2549 **        ORDER by clause of the parent must be simple references to
2550 **        columns of the sub-query.
2551 **
2552 **  (19)  The subquery does not use LIMIT or the outer query does not
2553 **        have a WHERE clause.
2554 **
2555 **  (20)  If the sub-query is a compound select, then it must not use
2556 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2557 **        somewhat by saying that the terms of the ORDER BY clause must
2558 **        appear as unmodified result columns in the outer query.  But
2559 **        have other optimizations in mind to deal with that case.
2560 **
2561 ** In this routine, the "p" parameter is a pointer to the outer query.
2562 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2563 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2564 **
2565 ** If flattening is not attempted, this routine is a no-op and returns 0.
2566 ** If flattening is attempted this routine returns 1.
2567 **
2568 ** All of the expression analysis must occur on both the outer query and
2569 ** the subquery before this routine runs.
2570 */
2571 static int flattenSubquery(
2572   Parse *pParse,       /* Parsing context */
2573   Select *p,           /* The parent or outer SELECT statement */
2574   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2575   int isAgg,           /* True if outer SELECT uses aggregate functions */
2576   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2577 ){
2578   const char *zSavedAuthContext = pParse->zAuthContext;
2579   Select *pParent;
2580   Select *pSub;       /* The inner query or "subquery" */
2581   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2582   SrcList *pSrc;      /* The FROM clause of the outer query */
2583   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2584   ExprList *pList;    /* The result set of the outer query */
2585   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2586   int i;              /* Loop counter */
2587   Expr *pWhere;                    /* The WHERE clause */
2588   struct SrcList_item *pSubitem;   /* The subquery */
2589   sqlite3 *db = pParse->db;
2590 
2591   /* Check to see if flattening is permitted.  Return 0 if not.
2592   */
2593   assert( p!=0 );
2594   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2595   if( db->flags & SQLITE_QueryFlattener ) return 0;
2596   pSrc = p->pSrc;
2597   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2598   pSubitem = &pSrc->a[iFrom];
2599   iParent = pSubitem->iCursor;
2600   pSub = pSubitem->pSelect;
2601   assert( pSub!=0 );
2602   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2603   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2604   pSubSrc = pSub->pSrc;
2605   assert( pSubSrc );
2606   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2607   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2608   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2609   ** became arbitrary expressions, we were forced to add restrictions (13)
2610   ** and (14). */
2611   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2612   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2613   if( p->pRightmost && pSub->pLimit ){
2614     return 0;                                            /* Restriction (15) */
2615   }
2616   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2617   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
2618          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2619      return 0;
2620   }
2621   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2622      return 0;         /* Restriction (6)  */
2623   }
2624   if( p->pOrderBy && pSub->pOrderBy ){
2625      return 0;                                           /* Restriction (11) */
2626   }
2627   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2628   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2629 
2630   /* OBSOLETE COMMENT 1:
2631   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2632   ** not used as the right operand of an outer join.  Examples of why this
2633   ** is not allowed:
2634   **
2635   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2636   **
2637   ** If we flatten the above, we would get
2638   **
2639   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2640   **
2641   ** which is not at all the same thing.
2642   **
2643   ** OBSOLETE COMMENT 2:
2644   ** Restriction 12:  If the subquery is the right operand of a left outer
2645   ** join, make sure the subquery has no WHERE clause.
2646   ** An examples of why this is not allowed:
2647   **
2648   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2649   **
2650   ** If we flatten the above, we would get
2651   **
2652   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2653   **
2654   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2655   ** effectively converts the OUTER JOIN into an INNER JOIN.
2656   **
2657   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2658   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2659   ** is fraught with danger.  Best to avoid the whole thing.  If the
2660   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2661   */
2662   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2663     return 0;
2664   }
2665 
2666   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2667   ** use only the UNION ALL operator. And none of the simple select queries
2668   ** that make up the compound SELECT are allowed to be aggregate or distinct
2669   ** queries.
2670   */
2671   if( pSub->pPrior ){
2672     if( pSub->pOrderBy ){
2673       return 0;  /* Restriction 20 */
2674     }
2675     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2676       return 0;
2677     }
2678     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2679       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2680       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2681       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2682        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2683        || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
2684       ){
2685         return 0;
2686       }
2687     }
2688 
2689     /* Restriction 18. */
2690     if( p->pOrderBy ){
2691       int ii;
2692       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2693         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2694       }
2695     }
2696   }
2697 
2698   /***** If we reach this point, flattening is permitted. *****/
2699 
2700   /* Authorize the subquery */
2701   pParse->zAuthContext = pSubitem->zName;
2702   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2703   pParse->zAuthContext = zSavedAuthContext;
2704 
2705   /* If the sub-query is a compound SELECT statement, then (by restrictions
2706   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2707   ** be of the form:
2708   **
2709   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2710   **
2711   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2712   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2713   ** OFFSET clauses and joins them to the left-hand-side of the original
2714   ** using UNION ALL operators. In this case N is the number of simple
2715   ** select statements in the compound sub-query.
2716   **
2717   ** Example:
2718   **
2719   **     SELECT a+1 FROM (
2720   **        SELECT x FROM tab
2721   **        UNION ALL
2722   **        SELECT y FROM tab
2723   **        UNION ALL
2724   **        SELECT abs(z*2) FROM tab2
2725   **     ) WHERE a!=5 ORDER BY 1
2726   **
2727   ** Transformed into:
2728   **
2729   **     SELECT x+1 FROM tab WHERE x+1!=5
2730   **     UNION ALL
2731   **     SELECT y+1 FROM tab WHERE y+1!=5
2732   **     UNION ALL
2733   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2734   **     ORDER BY 1
2735   **
2736   ** We call this the "compound-subquery flattening".
2737   */
2738   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2739     Select *pNew;
2740     ExprList *pOrderBy = p->pOrderBy;
2741     Expr *pLimit = p->pLimit;
2742     Select *pPrior = p->pPrior;
2743     p->pOrderBy = 0;
2744     p->pSrc = 0;
2745     p->pPrior = 0;
2746     p->pLimit = 0;
2747     pNew = sqlite3SelectDup(db, p, 0);
2748     p->pLimit = pLimit;
2749     p->pOrderBy = pOrderBy;
2750     p->pSrc = pSrc;
2751     p->op = TK_ALL;
2752     p->pRightmost = 0;
2753     if( pNew==0 ){
2754       pNew = pPrior;
2755     }else{
2756       pNew->pPrior = pPrior;
2757       pNew->pRightmost = 0;
2758     }
2759     p->pPrior = pNew;
2760     if( db->mallocFailed ) return 1;
2761   }
2762 
2763   /* Begin flattening the iFrom-th entry of the FROM clause
2764   ** in the outer query.
2765   */
2766   pSub = pSub1 = pSubitem->pSelect;
2767 
2768   /* Delete the transient table structure associated with the
2769   ** subquery
2770   */
2771   sqlite3DbFree(db, pSubitem->zDatabase);
2772   sqlite3DbFree(db, pSubitem->zName);
2773   sqlite3DbFree(db, pSubitem->zAlias);
2774   pSubitem->zDatabase = 0;
2775   pSubitem->zName = 0;
2776   pSubitem->zAlias = 0;
2777   pSubitem->pSelect = 0;
2778 
2779   /* Defer deleting the Table object associated with the
2780   ** subquery until code generation is
2781   ** complete, since there may still exist Expr.pTab entries that
2782   ** refer to the subquery even after flattening.  Ticket #3346.
2783   **
2784   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2785   */
2786   if( ALWAYS(pSubitem->pTab!=0) ){
2787     Table *pTabToDel = pSubitem->pTab;
2788     if( pTabToDel->nRef==1 ){
2789       Parse *pToplevel = sqlite3ParseToplevel(pParse);
2790       pTabToDel->pNextZombie = pToplevel->pZombieTab;
2791       pToplevel->pZombieTab = pTabToDel;
2792     }else{
2793       pTabToDel->nRef--;
2794     }
2795     pSubitem->pTab = 0;
2796   }
2797 
2798   /* The following loop runs once for each term in a compound-subquery
2799   ** flattening (as described above).  If we are doing a different kind
2800   ** of flattening - a flattening other than a compound-subquery flattening -
2801   ** then this loop only runs once.
2802   **
2803   ** This loop moves all of the FROM elements of the subquery into the
2804   ** the FROM clause of the outer query.  Before doing this, remember
2805   ** the cursor number for the original outer query FROM element in
2806   ** iParent.  The iParent cursor will never be used.  Subsequent code
2807   ** will scan expressions looking for iParent references and replace
2808   ** those references with expressions that resolve to the subquery FROM
2809   ** elements we are now copying in.
2810   */
2811   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2812     int nSubSrc;
2813     u8 jointype = 0;
2814     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2815     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2816     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2817 
2818     if( pSrc ){
2819       assert( pParent==p );  /* First time through the loop */
2820       jointype = pSubitem->jointype;
2821     }else{
2822       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2823       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2824       if( pSrc==0 ){
2825         assert( db->mallocFailed );
2826         break;
2827       }
2828     }
2829 
2830     /* The subquery uses a single slot of the FROM clause of the outer
2831     ** query.  If the subquery has more than one element in its FROM clause,
2832     ** then expand the outer query to make space for it to hold all elements
2833     ** of the subquery.
2834     **
2835     ** Example:
2836     **
2837     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2838     **
2839     ** The outer query has 3 slots in its FROM clause.  One slot of the
2840     ** outer query (the middle slot) is used by the subquery.  The next
2841     ** block of code will expand the out query to 4 slots.  The middle
2842     ** slot is expanded to two slots in order to make space for the
2843     ** two elements in the FROM clause of the subquery.
2844     */
2845     if( nSubSrc>1 ){
2846       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2847       if( db->mallocFailed ){
2848         break;
2849       }
2850     }
2851 
2852     /* Transfer the FROM clause terms from the subquery into the
2853     ** outer query.
2854     */
2855     for(i=0; i<nSubSrc; i++){
2856       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
2857       pSrc->a[i+iFrom] = pSubSrc->a[i];
2858       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2859     }
2860     pSrc->a[iFrom].jointype = jointype;
2861 
2862     /* Now begin substituting subquery result set expressions for
2863     ** references to the iParent in the outer query.
2864     **
2865     ** Example:
2866     **
2867     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2868     **   \                     \_____________ subquery __________/          /
2869     **    \_____________________ outer query ______________________________/
2870     **
2871     ** We look at every expression in the outer query and every place we see
2872     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2873     */
2874     pList = pParent->pEList;
2875     for(i=0; i<pList->nExpr; i++){
2876       if( pList->a[i].zName==0 ){
2877         const char *zSpan = pList->a[i].zSpan;
2878         if( ALWAYS(zSpan) ){
2879           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
2880         }
2881       }
2882     }
2883     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2884     if( isAgg ){
2885       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2886       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2887     }
2888     if( pSub->pOrderBy ){
2889       assert( pParent->pOrderBy==0 );
2890       pParent->pOrderBy = pSub->pOrderBy;
2891       pSub->pOrderBy = 0;
2892     }else if( pParent->pOrderBy ){
2893       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2894     }
2895     if( pSub->pWhere ){
2896       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
2897     }else{
2898       pWhere = 0;
2899     }
2900     if( subqueryIsAgg ){
2901       assert( pParent->pHaving==0 );
2902       pParent->pHaving = pParent->pWhere;
2903       pParent->pWhere = pWhere;
2904       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2905       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2906                                   sqlite3ExprDup(db, pSub->pHaving, 0));
2907       assert( pParent->pGroupBy==0 );
2908       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
2909     }else{
2910       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2911       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2912     }
2913 
2914     /* The flattened query is distinct if either the inner or the
2915     ** outer query is distinct.
2916     */
2917     pParent->selFlags |= pSub->selFlags & SF_Distinct;
2918 
2919     /*
2920     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2921     **
2922     ** One is tempted to try to add a and b to combine the limits.  But this
2923     ** does not work if either limit is negative.
2924     */
2925     if( pSub->pLimit ){
2926       pParent->pLimit = pSub->pLimit;
2927       pSub->pLimit = 0;
2928     }
2929   }
2930 
2931   /* Finially, delete what is left of the subquery and return
2932   ** success.
2933   */
2934   sqlite3SelectDelete(db, pSub1);
2935 
2936   return 1;
2937 }
2938 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2939 
2940 /*
2941 ** Analyze the SELECT statement passed as an argument to see if it
2942 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2943 ** it is, or 0 otherwise. At present, a query is considered to be
2944 ** a min()/max() query if:
2945 **
2946 **   1. There is a single object in the FROM clause.
2947 **
2948 **   2. There is a single expression in the result set, and it is
2949 **      either min(x) or max(x), where x is a column reference.
2950 */
2951 static u8 minMaxQuery(Select *p){
2952   Expr *pExpr;
2953   ExprList *pEList = p->pEList;
2954 
2955   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2956   pExpr = pEList->a[0].pExpr;
2957   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2958   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
2959   pEList = pExpr->x.pList;
2960   if( pEList==0 || pEList->nExpr!=1 ) return 0;
2961   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2962   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2963   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
2964     return WHERE_ORDERBY_MIN;
2965   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
2966     return WHERE_ORDERBY_MAX;
2967   }
2968   return WHERE_ORDERBY_NORMAL;
2969 }
2970 
2971 /*
2972 ** The select statement passed as the first argument is an aggregate query.
2973 ** The second argment is the associated aggregate-info object. This
2974 ** function tests if the SELECT is of the form:
2975 **
2976 **   SELECT count(*) FROM <tbl>
2977 **
2978 ** where table is a database table, not a sub-select or view. If the query
2979 ** does match this pattern, then a pointer to the Table object representing
2980 ** <tbl> is returned. Otherwise, 0 is returned.
2981 */
2982 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
2983   Table *pTab;
2984   Expr *pExpr;
2985 
2986   assert( !p->pGroupBy );
2987 
2988   if( p->pWhere || p->pEList->nExpr!=1
2989    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
2990   ){
2991     return 0;
2992   }
2993   pTab = p->pSrc->a[0].pTab;
2994   pExpr = p->pEList->a[0].pExpr;
2995   assert( pTab && !pTab->pSelect && pExpr );
2996 
2997   if( IsVirtual(pTab) ) return 0;
2998   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2999   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3000   if( pExpr->flags&EP_Distinct ) return 0;
3001 
3002   return pTab;
3003 }
3004 
3005 /*
3006 ** If the source-list item passed as an argument was augmented with an
3007 ** INDEXED BY clause, then try to locate the specified index. If there
3008 ** was such a clause and the named index cannot be found, return
3009 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3010 ** pFrom->pIndex and return SQLITE_OK.
3011 */
3012 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3013   if( pFrom->pTab && pFrom->zIndex ){
3014     Table *pTab = pFrom->pTab;
3015     char *zIndex = pFrom->zIndex;
3016     Index *pIdx;
3017     for(pIdx=pTab->pIndex;
3018         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3019         pIdx=pIdx->pNext
3020     );
3021     if( !pIdx ){
3022       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3023       return SQLITE_ERROR;
3024     }
3025     pFrom->pIndex = pIdx;
3026   }
3027   return SQLITE_OK;
3028 }
3029 
3030 /*
3031 ** This routine is a Walker callback for "expanding" a SELECT statement.
3032 ** "Expanding" means to do the following:
3033 **
3034 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3035 **         element of the FROM clause.
3036 **
3037 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3038 **         defines FROM clause.  When views appear in the FROM clause,
3039 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3040 **         that implements the view.  A copy is made of the view's SELECT
3041 **         statement so that we can freely modify or delete that statement
3042 **         without worrying about messing up the presistent representation
3043 **         of the view.
3044 **
3045 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3046 **         on joins and the ON and USING clause of joins.
3047 **
3048 **    (4)  Scan the list of columns in the result set (pEList) looking
3049 **         for instances of the "*" operator or the TABLE.* operator.
3050 **         If found, expand each "*" to be every column in every table
3051 **         and TABLE.* to be every column in TABLE.
3052 **
3053 */
3054 static int selectExpander(Walker *pWalker, Select *p){
3055   Parse *pParse = pWalker->pParse;
3056   int i, j, k;
3057   SrcList *pTabList;
3058   ExprList *pEList;
3059   struct SrcList_item *pFrom;
3060   sqlite3 *db = pParse->db;
3061 
3062   if( db->mallocFailed  ){
3063     return WRC_Abort;
3064   }
3065   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3066     return WRC_Prune;
3067   }
3068   p->selFlags |= SF_Expanded;
3069   pTabList = p->pSrc;
3070   pEList = p->pEList;
3071 
3072   /* Make sure cursor numbers have been assigned to all entries in
3073   ** the FROM clause of the SELECT statement.
3074   */
3075   sqlite3SrcListAssignCursors(pParse, pTabList);
3076 
3077   /* Look up every table named in the FROM clause of the select.  If
3078   ** an entry of the FROM clause is a subquery instead of a table or view,
3079   ** then create a transient table structure to describe the subquery.
3080   */
3081   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3082     Table *pTab;
3083     if( pFrom->pTab!=0 ){
3084       /* This statement has already been prepared.  There is no need
3085       ** to go further. */
3086       assert( i==0 );
3087       return WRC_Prune;
3088     }
3089     if( pFrom->zName==0 ){
3090 #ifndef SQLITE_OMIT_SUBQUERY
3091       Select *pSel = pFrom->pSelect;
3092       /* A sub-query in the FROM clause of a SELECT */
3093       assert( pSel!=0 );
3094       assert( pFrom->pTab==0 );
3095       sqlite3WalkSelect(pWalker, pSel);
3096       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3097       if( pTab==0 ) return WRC_Abort;
3098       pTab->dbMem = db->lookaside.bEnabled ? db : 0;
3099       pTab->nRef = 1;
3100       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3101       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3102       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3103       pTab->iPKey = -1;
3104       pTab->tabFlags |= TF_Ephemeral;
3105 #endif
3106     }else{
3107       /* An ordinary table or view name in the FROM clause */
3108       assert( pFrom->pTab==0 );
3109       pFrom->pTab = pTab =
3110         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3111       if( pTab==0 ) return WRC_Abort;
3112       pTab->nRef++;
3113 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3114       if( pTab->pSelect || IsVirtual(pTab) ){
3115         /* We reach here if the named table is a really a view */
3116         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3117         assert( pFrom->pSelect==0 );
3118         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3119         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3120       }
3121 #endif
3122     }
3123 
3124     /* Locate the index named by the INDEXED BY clause, if any. */
3125     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3126       return WRC_Abort;
3127     }
3128   }
3129 
3130   /* Process NATURAL keywords, and ON and USING clauses of joins.
3131   */
3132   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3133     return WRC_Abort;
3134   }
3135 
3136   /* For every "*" that occurs in the column list, insert the names of
3137   ** all columns in all tables.  And for every TABLE.* insert the names
3138   ** of all columns in TABLE.  The parser inserted a special expression
3139   ** with the TK_ALL operator for each "*" that it found in the column list.
3140   ** The following code just has to locate the TK_ALL expressions and expand
3141   ** each one to the list of all columns in all tables.
3142   **
3143   ** The first loop just checks to see if there are any "*" operators
3144   ** that need expanding.
3145   */
3146   for(k=0; k<pEList->nExpr; k++){
3147     Expr *pE = pEList->a[k].pExpr;
3148     if( pE->op==TK_ALL ) break;
3149     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3150     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3151     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3152   }
3153   if( k<pEList->nExpr ){
3154     /*
3155     ** If we get here it means the result set contains one or more "*"
3156     ** operators that need to be expanded.  Loop through each expression
3157     ** in the result set and expand them one by one.
3158     */
3159     struct ExprList_item *a = pEList->a;
3160     ExprList *pNew = 0;
3161     int flags = pParse->db->flags;
3162     int longNames = (flags & SQLITE_FullColNames)!=0
3163                       && (flags & SQLITE_ShortColNames)==0;
3164 
3165     for(k=0; k<pEList->nExpr; k++){
3166       Expr *pE = a[k].pExpr;
3167       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3168       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3169         /* This particular expression does not need to be expanded.
3170         */
3171         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3172         if( pNew ){
3173           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3174           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3175           a[k].zName = 0;
3176           a[k].zSpan = 0;
3177         }
3178         a[k].pExpr = 0;
3179       }else{
3180         /* This expression is a "*" or a "TABLE.*" and needs to be
3181         ** expanded. */
3182         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3183         char *zTName;            /* text of name of TABLE */
3184         if( pE->op==TK_DOT ){
3185           assert( pE->pLeft!=0 );
3186           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3187           zTName = pE->pLeft->u.zToken;
3188         }else{
3189           zTName = 0;
3190         }
3191         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3192           Table *pTab = pFrom->pTab;
3193           char *zTabName = pFrom->zAlias;
3194           if( zTabName==0 ){
3195             zTabName = pTab->zName;
3196           }
3197           if( db->mallocFailed ) break;
3198           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3199             continue;
3200           }
3201           tableSeen = 1;
3202           for(j=0; j<pTab->nCol; j++){
3203             Expr *pExpr, *pRight;
3204             char *zName = pTab->aCol[j].zName;
3205             char *zColname;  /* The computed column name */
3206             char *zToFree;   /* Malloced string that needs to be freed */
3207             Token sColname;  /* Computed column name as a token */
3208 
3209             /* If a column is marked as 'hidden' (currently only possible
3210             ** for virtual tables), do not include it in the expanded
3211             ** result-set list.
3212             */
3213             if( IsHiddenColumn(&pTab->aCol[j]) ){
3214               assert(IsVirtual(pTab));
3215               continue;
3216             }
3217 
3218             if( i>0 && zTName==0 ){
3219               if( (pFrom->jointype & JT_NATURAL)!=0
3220                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3221               ){
3222                 /* In a NATURAL join, omit the join columns from the
3223                 ** table to the right of the join */
3224                 continue;
3225               }
3226               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3227                 /* In a join with a USING clause, omit columns in the
3228                 ** using clause from the table on the right. */
3229                 continue;
3230               }
3231             }
3232             pRight = sqlite3Expr(db, TK_ID, zName);
3233             zColname = zName;
3234             zToFree = 0;
3235             if( longNames || pTabList->nSrc>1 ){
3236               Expr *pLeft;
3237               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3238               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3239               if( longNames ){
3240                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3241                 zToFree = zColname;
3242               }
3243             }else{
3244               pExpr = pRight;
3245             }
3246             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3247             sColname.z = zColname;
3248             sColname.n = sqlite3Strlen30(zColname);
3249             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3250             sqlite3DbFree(db, zToFree);
3251           }
3252         }
3253         if( !tableSeen ){
3254           if( zTName ){
3255             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3256           }else{
3257             sqlite3ErrorMsg(pParse, "no tables specified");
3258           }
3259         }
3260       }
3261     }
3262     sqlite3ExprListDelete(db, pEList);
3263     p->pEList = pNew;
3264   }
3265 #if SQLITE_MAX_COLUMN
3266   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3267     sqlite3ErrorMsg(pParse, "too many columns in result set");
3268   }
3269 #endif
3270   return WRC_Continue;
3271 }
3272 
3273 /*
3274 ** No-op routine for the parse-tree walker.
3275 **
3276 ** When this routine is the Walker.xExprCallback then expression trees
3277 ** are walked without any actions being taken at each node.  Presumably,
3278 ** when this routine is used for Walker.xExprCallback then
3279 ** Walker.xSelectCallback is set to do something useful for every
3280 ** subquery in the parser tree.
3281 */
3282 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3283   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3284   return WRC_Continue;
3285 }
3286 
3287 /*
3288 ** This routine "expands" a SELECT statement and all of its subqueries.
3289 ** For additional information on what it means to "expand" a SELECT
3290 ** statement, see the comment on the selectExpand worker callback above.
3291 **
3292 ** Expanding a SELECT statement is the first step in processing a
3293 ** SELECT statement.  The SELECT statement must be expanded before
3294 ** name resolution is performed.
3295 **
3296 ** If anything goes wrong, an error message is written into pParse.
3297 ** The calling function can detect the problem by looking at pParse->nErr
3298 ** and/or pParse->db->mallocFailed.
3299 */
3300 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3301   Walker w;
3302   w.xSelectCallback = selectExpander;
3303   w.xExprCallback = exprWalkNoop;
3304   w.pParse = pParse;
3305   sqlite3WalkSelect(&w, pSelect);
3306 }
3307 
3308 
3309 #ifndef SQLITE_OMIT_SUBQUERY
3310 /*
3311 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3312 ** interface.
3313 **
3314 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3315 ** information to the Table structure that represents the result set
3316 ** of that subquery.
3317 **
3318 ** The Table structure that represents the result set was constructed
3319 ** by selectExpander() but the type and collation information was omitted
3320 ** at that point because identifiers had not yet been resolved.  This
3321 ** routine is called after identifier resolution.
3322 */
3323 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3324   Parse *pParse;
3325   int i;
3326   SrcList *pTabList;
3327   struct SrcList_item *pFrom;
3328 
3329   assert( p->selFlags & SF_Resolved );
3330   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3331     p->selFlags |= SF_HasTypeInfo;
3332     pParse = pWalker->pParse;
3333     pTabList = p->pSrc;
3334     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3335       Table *pTab = pFrom->pTab;
3336       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3337         /* A sub-query in the FROM clause of a SELECT */
3338         Select *pSel = pFrom->pSelect;
3339         assert( pSel );
3340         while( pSel->pPrior ) pSel = pSel->pPrior;
3341         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3342       }
3343     }
3344   }
3345   return WRC_Continue;
3346 }
3347 #endif
3348 
3349 
3350 /*
3351 ** This routine adds datatype and collating sequence information to
3352 ** the Table structures of all FROM-clause subqueries in a
3353 ** SELECT statement.
3354 **
3355 ** Use this routine after name resolution.
3356 */
3357 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3358 #ifndef SQLITE_OMIT_SUBQUERY
3359   Walker w;
3360   w.xSelectCallback = selectAddSubqueryTypeInfo;
3361   w.xExprCallback = exprWalkNoop;
3362   w.pParse = pParse;
3363   sqlite3WalkSelect(&w, pSelect);
3364 #endif
3365 }
3366 
3367 
3368 /*
3369 ** This routine sets of a SELECT statement for processing.  The
3370 ** following is accomplished:
3371 **
3372 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3373 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3374 **     *  ON and USING clauses are shifted into WHERE statements
3375 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3376 **     *  Identifiers in expression are matched to tables.
3377 **
3378 ** This routine acts recursively on all subqueries within the SELECT.
3379 */
3380 void sqlite3SelectPrep(
3381   Parse *pParse,         /* The parser context */
3382   Select *p,             /* The SELECT statement being coded. */
3383   NameContext *pOuterNC  /* Name context for container */
3384 ){
3385   sqlite3 *db;
3386   if( NEVER(p==0) ) return;
3387   db = pParse->db;
3388   if( p->selFlags & SF_HasTypeInfo ) return;
3389   sqlite3SelectExpand(pParse, p);
3390   if( pParse->nErr || db->mallocFailed ) return;
3391   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3392   if( pParse->nErr || db->mallocFailed ) return;
3393   sqlite3SelectAddTypeInfo(pParse, p);
3394 }
3395 
3396 /*
3397 ** Reset the aggregate accumulator.
3398 **
3399 ** The aggregate accumulator is a set of memory cells that hold
3400 ** intermediate results while calculating an aggregate.  This
3401 ** routine simply stores NULLs in all of those memory cells.
3402 */
3403 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3404   Vdbe *v = pParse->pVdbe;
3405   int i;
3406   struct AggInfo_func *pFunc;
3407   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3408     return;
3409   }
3410   for(i=0; i<pAggInfo->nColumn; i++){
3411     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3412   }
3413   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3414     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3415     if( pFunc->iDistinct>=0 ){
3416       Expr *pE = pFunc->pExpr;
3417       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3418       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3419         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3420            "argument");
3421         pFunc->iDistinct = -1;
3422       }else{
3423         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3424         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3425                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3426       }
3427     }
3428   }
3429 }
3430 
3431 /*
3432 ** Invoke the OP_AggFinalize opcode for every aggregate function
3433 ** in the AggInfo structure.
3434 */
3435 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3436   Vdbe *v = pParse->pVdbe;
3437   int i;
3438   struct AggInfo_func *pF;
3439   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3440     ExprList *pList = pF->pExpr->x.pList;
3441     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3442     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3443                       (void*)pF->pFunc, P4_FUNCDEF);
3444   }
3445 }
3446 
3447 /*
3448 ** Update the accumulator memory cells for an aggregate based on
3449 ** the current cursor position.
3450 */
3451 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3452   Vdbe *v = pParse->pVdbe;
3453   int i;
3454   struct AggInfo_func *pF;
3455   struct AggInfo_col *pC;
3456 
3457   pAggInfo->directMode = 1;
3458   sqlite3ExprCacheClear(pParse);
3459   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3460     int nArg;
3461     int addrNext = 0;
3462     int regAgg;
3463     ExprList *pList = pF->pExpr->x.pList;
3464     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3465     if( pList ){
3466       nArg = pList->nExpr;
3467       regAgg = sqlite3GetTempRange(pParse, nArg);
3468       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3469     }else{
3470       nArg = 0;
3471       regAgg = 0;
3472     }
3473     if( pF->iDistinct>=0 ){
3474       addrNext = sqlite3VdbeMakeLabel(v);
3475       assert( nArg==1 );
3476       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3477     }
3478     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3479       CollSeq *pColl = 0;
3480       struct ExprList_item *pItem;
3481       int j;
3482       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3483       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3484         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3485       }
3486       if( !pColl ){
3487         pColl = pParse->db->pDfltColl;
3488       }
3489       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3490     }
3491     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3492                       (void*)pF->pFunc, P4_FUNCDEF);
3493     sqlite3VdbeChangeP5(v, (u8)nArg);
3494     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3495     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3496     if( addrNext ){
3497       sqlite3VdbeResolveLabel(v, addrNext);
3498       sqlite3ExprCacheClear(pParse);
3499     }
3500   }
3501 
3502   /* Before populating the accumulator registers, clear the column cache.
3503   ** Otherwise, if any of the required column values are already present
3504   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3505   ** to pC->iMem. But by the time the value is used, the original register
3506   ** may have been used, invalidating the underlying buffer holding the
3507   ** text or blob value. See ticket [883034dcb5].
3508   **
3509   ** Another solution would be to change the OP_SCopy used to copy cached
3510   ** values to an OP_Copy.
3511   */
3512   sqlite3ExprCacheClear(pParse);
3513   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3514     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3515   }
3516   pAggInfo->directMode = 0;
3517   sqlite3ExprCacheClear(pParse);
3518 }
3519 
3520 /*
3521 ** Generate code for the SELECT statement given in the p argument.
3522 **
3523 ** The results are distributed in various ways depending on the
3524 ** contents of the SelectDest structure pointed to by argument pDest
3525 ** as follows:
3526 **
3527 **     pDest->eDest    Result
3528 **     ------------    -------------------------------------------
3529 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3530 **                     opcode) for each row in the result set.
3531 **
3532 **     SRT_Mem         Only valid if the result is a single column.
3533 **                     Store the first column of the first result row
3534 **                     in register pDest->iParm then abandon the rest
3535 **                     of the query.  This destination implies "LIMIT 1".
3536 **
3537 **     SRT_Set         The result must be a single column.  Store each
3538 **                     row of result as the key in table pDest->iParm.
3539 **                     Apply the affinity pDest->affinity before storing
3540 **                     results.  Used to implement "IN (SELECT ...)".
3541 **
3542 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3543 **
3544 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3545 **
3546 **     SRT_Table       Store results in temporary table pDest->iParm.
3547 **                     This is like SRT_EphemTab except that the table
3548 **                     is assumed to already be open.
3549 **
3550 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3551 **                     the result there. The cursor is left open after
3552 **                     returning.  This is like SRT_Table except that
3553 **                     this destination uses OP_OpenEphemeral to create
3554 **                     the table first.
3555 **
3556 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3557 **                     results each time it is invoked.  The entry point
3558 **                     of the co-routine is stored in register pDest->iParm.
3559 **
3560 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3561 **                     set is not empty.
3562 **
3563 **     SRT_Discard     Throw the results away.  This is used by SELECT
3564 **                     statements within triggers whose only purpose is
3565 **                     the side-effects of functions.
3566 **
3567 ** This routine returns the number of errors.  If any errors are
3568 ** encountered, then an appropriate error message is left in
3569 ** pParse->zErrMsg.
3570 **
3571 ** This routine does NOT free the Select structure passed in.  The
3572 ** calling function needs to do that.
3573 */
3574 int sqlite3Select(
3575   Parse *pParse,         /* The parser context */
3576   Select *p,             /* The SELECT statement being coded. */
3577   SelectDest *pDest      /* What to do with the query results */
3578 ){
3579   int i, j;              /* Loop counters */
3580   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3581   Vdbe *v;               /* The virtual machine under construction */
3582   int isAgg;             /* True for select lists like "count(*)" */
3583   ExprList *pEList;      /* List of columns to extract. */
3584   SrcList *pTabList;     /* List of tables to select from */
3585   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3586   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3587   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3588   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3589   int isDistinct;        /* True if the DISTINCT keyword is present */
3590   int distinct;          /* Table to use for the distinct set */
3591   int rc = 1;            /* Value to return from this function */
3592   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3593   AggInfo sAggInfo;      /* Information used by aggregate queries */
3594   int iEnd;              /* Address of the end of the query */
3595   sqlite3 *db;           /* The database connection */
3596 
3597   db = pParse->db;
3598   if( p==0 || db->mallocFailed || pParse->nErr ){
3599     return 1;
3600   }
3601   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3602   memset(&sAggInfo, 0, sizeof(sAggInfo));
3603 
3604   if( IgnorableOrderby(pDest) ){
3605     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3606            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3607     /* If ORDER BY makes no difference in the output then neither does
3608     ** DISTINCT so it can be removed too. */
3609     sqlite3ExprListDelete(db, p->pOrderBy);
3610     p->pOrderBy = 0;
3611     p->selFlags &= ~SF_Distinct;
3612   }
3613   sqlite3SelectPrep(pParse, p, 0);
3614   pOrderBy = p->pOrderBy;
3615   pTabList = p->pSrc;
3616   pEList = p->pEList;
3617   if( pParse->nErr || db->mallocFailed ){
3618     goto select_end;
3619   }
3620   isAgg = (p->selFlags & SF_Aggregate)!=0;
3621   assert( pEList!=0 );
3622 
3623   /* Begin generating code.
3624   */
3625   v = sqlite3GetVdbe(pParse);
3626   if( v==0 ) goto select_end;
3627 
3628   /* Generate code for all sub-queries in the FROM clause
3629   */
3630 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3631   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3632     struct SrcList_item *pItem = &pTabList->a[i];
3633     SelectDest dest;
3634     Select *pSub = pItem->pSelect;
3635     int isAggSub;
3636 
3637     if( pSub==0 || pItem->isPopulated ) continue;
3638 
3639     /* Increment Parse.nHeight by the height of the largest expression
3640     ** tree refered to by this, the parent select. The child select
3641     ** may contain expression trees of at most
3642     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3643     ** more conservative than necessary, but much easier than enforcing
3644     ** an exact limit.
3645     */
3646     pParse->nHeight += sqlite3SelectExprHeight(p);
3647 
3648     /* Check to see if the subquery can be absorbed into the parent. */
3649     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3650     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3651       if( isAggSub ){
3652         isAgg = 1;
3653         p->selFlags |= SF_Aggregate;
3654       }
3655       i = -1;
3656     }else{
3657       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3658       assert( pItem->isPopulated==0 );
3659       sqlite3Select(pParse, pSub, &dest);
3660       pItem->isPopulated = 1;
3661     }
3662     if( /*pParse->nErr ||*/ db->mallocFailed ){
3663       goto select_end;
3664     }
3665     pParse->nHeight -= sqlite3SelectExprHeight(p);
3666     pTabList = p->pSrc;
3667     if( !IgnorableOrderby(pDest) ){
3668       pOrderBy = p->pOrderBy;
3669     }
3670   }
3671   pEList = p->pEList;
3672 #endif
3673   pWhere = p->pWhere;
3674   pGroupBy = p->pGroupBy;
3675   pHaving = p->pHaving;
3676   isDistinct = (p->selFlags & SF_Distinct)!=0;
3677 
3678 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3679   /* If there is are a sequence of queries, do the earlier ones first.
3680   */
3681   if( p->pPrior ){
3682     if( p->pRightmost==0 ){
3683       Select *pLoop, *pRight = 0;
3684       int cnt = 0;
3685       int mxSelect;
3686       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3687         pLoop->pRightmost = p;
3688         pLoop->pNext = pRight;
3689         pRight = pLoop;
3690       }
3691       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3692       if( mxSelect && cnt>mxSelect ){
3693         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3694         return 1;
3695       }
3696     }
3697     return multiSelect(pParse, p, pDest);
3698   }
3699 #endif
3700 
3701   /* If writing to memory or generating a set
3702   ** only a single column may be output.
3703   */
3704 #ifndef SQLITE_OMIT_SUBQUERY
3705   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3706     goto select_end;
3707   }
3708 #endif
3709 
3710   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3711   ** GROUP BY might use an index, DISTINCT never does.
3712   */
3713   assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
3714   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
3715     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3716     pGroupBy = p->pGroupBy;
3717     p->selFlags &= ~SF_Distinct;
3718     isDistinct = 0;
3719   }
3720 
3721   /* If there is both a GROUP BY and an ORDER BY clause and they are
3722   ** identical, then disable the ORDER BY clause since the GROUP BY
3723   ** will cause elements to come out in the correct order.  This is
3724   ** an optimization - the correct answer should result regardless.
3725   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
3726   ** to disable this optimization for testing purposes.
3727   */
3728   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
3729          && (db->flags & SQLITE_GroupByOrder)==0 ){
3730     pOrderBy = 0;
3731   }
3732 
3733   /* If there is an ORDER BY clause, then this sorting
3734   ** index might end up being unused if the data can be
3735   ** extracted in pre-sorted order.  If that is the case, then the
3736   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3737   ** we figure out that the sorting index is not needed.  The addrSortIndex
3738   ** variable is used to facilitate that change.
3739   */
3740   if( pOrderBy ){
3741     KeyInfo *pKeyInfo;
3742     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3743     pOrderBy->iECursor = pParse->nTab++;
3744     p->addrOpenEphm[2] = addrSortIndex =
3745       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3746                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3747                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3748   }else{
3749     addrSortIndex = -1;
3750   }
3751 
3752   /* If the output is destined for a temporary table, open that table.
3753   */
3754   if( pDest->eDest==SRT_EphemTab ){
3755     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3756   }
3757 
3758   /* Set the limiter.
3759   */
3760   iEnd = sqlite3VdbeMakeLabel(v);
3761   computeLimitRegisters(pParse, p, iEnd);
3762 
3763   /* Open a virtual index to use for the distinct set.
3764   */
3765   if( isDistinct ){
3766     KeyInfo *pKeyInfo;
3767     assert( isAgg || pGroupBy );
3768     distinct = pParse->nTab++;
3769     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3770     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3771                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3772   }else{
3773     distinct = -1;
3774   }
3775 
3776   /* Aggregate and non-aggregate queries are handled differently */
3777   if( !isAgg && pGroupBy==0 ){
3778     /* This case is for non-aggregate queries
3779     ** Begin the database scan
3780     */
3781     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3782     if( pWInfo==0 ) goto select_end;
3783 
3784     /* If sorting index that was created by a prior OP_OpenEphemeral
3785     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3786     ** into an OP_Noop.
3787     */
3788     if( addrSortIndex>=0 && pOrderBy==0 ){
3789       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3790       p->addrOpenEphm[2] = -1;
3791     }
3792 
3793     /* Use the standard inner loop
3794     */
3795     assert(!isDistinct);
3796     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3797                     pWInfo->iContinue, pWInfo->iBreak);
3798 
3799     /* End the database scan loop.
3800     */
3801     sqlite3WhereEnd(pWInfo);
3802   }else{
3803     /* This is the processing for aggregate queries */
3804     NameContext sNC;    /* Name context for processing aggregate information */
3805     int iAMem;          /* First Mem address for storing current GROUP BY */
3806     int iBMem;          /* First Mem address for previous GROUP BY */
3807     int iUseFlag;       /* Mem address holding flag indicating that at least
3808                         ** one row of the input to the aggregator has been
3809                         ** processed */
3810     int iAbortFlag;     /* Mem address which causes query abort if positive */
3811     int groupBySort;    /* Rows come from source in GROUP BY order */
3812     int addrEnd;        /* End of processing for this SELECT */
3813 
3814     /* Remove any and all aliases between the result set and the
3815     ** GROUP BY clause.
3816     */
3817     if( pGroupBy ){
3818       int k;                        /* Loop counter */
3819       struct ExprList_item *pItem;  /* For looping over expression in a list */
3820 
3821       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3822         pItem->iAlias = 0;
3823       }
3824       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3825         pItem->iAlias = 0;
3826       }
3827     }
3828 
3829 
3830     /* Create a label to jump to when we want to abort the query */
3831     addrEnd = sqlite3VdbeMakeLabel(v);
3832 
3833     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3834     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3835     ** SELECT statement.
3836     */
3837     memset(&sNC, 0, sizeof(sNC));
3838     sNC.pParse = pParse;
3839     sNC.pSrcList = pTabList;
3840     sNC.pAggInfo = &sAggInfo;
3841     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3842     sAggInfo.pGroupBy = pGroupBy;
3843     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3844     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3845     if( pHaving ){
3846       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3847     }
3848     sAggInfo.nAccumulator = sAggInfo.nColumn;
3849     for(i=0; i<sAggInfo.nFunc; i++){
3850       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3851       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3852     }
3853     if( db->mallocFailed ) goto select_end;
3854 
3855     /* Processing for aggregates with GROUP BY is very different and
3856     ** much more complex than aggregates without a GROUP BY.
3857     */
3858     if( pGroupBy ){
3859       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3860       int j1;             /* A-vs-B comparision jump */
3861       int addrOutputRow;  /* Start of subroutine that outputs a result row */
3862       int regOutputRow;   /* Return address register for output subroutine */
3863       int addrSetAbort;   /* Set the abort flag and return */
3864       int addrTopOfLoop;  /* Top of the input loop */
3865       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3866       int addrReset;      /* Subroutine for resetting the accumulator */
3867       int regReset;       /* Return address register for reset subroutine */
3868 
3869       /* If there is a GROUP BY clause we might need a sorting index to
3870       ** implement it.  Allocate that sorting index now.  If it turns out
3871       ** that we do not need it after all, the OpenEphemeral instruction
3872       ** will be converted into a Noop.
3873       */
3874       sAggInfo.sortingIdx = pParse->nTab++;
3875       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3876       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3877           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3878           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3879 
3880       /* Initialize memory locations used by GROUP BY aggregate processing
3881       */
3882       iUseFlag = ++pParse->nMem;
3883       iAbortFlag = ++pParse->nMem;
3884       regOutputRow = ++pParse->nMem;
3885       addrOutputRow = sqlite3VdbeMakeLabel(v);
3886       regReset = ++pParse->nMem;
3887       addrReset = sqlite3VdbeMakeLabel(v);
3888       iAMem = pParse->nMem + 1;
3889       pParse->nMem += pGroupBy->nExpr;
3890       iBMem = pParse->nMem + 1;
3891       pParse->nMem += pGroupBy->nExpr;
3892       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3893       VdbeComment((v, "clear abort flag"));
3894       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3895       VdbeComment((v, "indicate accumulator empty"));
3896 
3897       /* Begin a loop that will extract all source rows in GROUP BY order.
3898       ** This might involve two separate loops with an OP_Sort in between, or
3899       ** it might be a single loop that uses an index to extract information
3900       ** in the right order to begin with.
3901       */
3902       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3903       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3904       if( pWInfo==0 ) goto select_end;
3905       if( pGroupBy==0 ){
3906         /* The optimizer is able to deliver rows in group by order so
3907         ** we do not have to sort.  The OP_OpenEphemeral table will be
3908         ** cancelled later because we still need to use the pKeyInfo
3909         */
3910         pGroupBy = p->pGroupBy;
3911         groupBySort = 0;
3912       }else{
3913         /* Rows are coming out in undetermined order.  We have to push
3914         ** each row into a sorting index, terminate the first loop,
3915         ** then loop over the sorting index in order to get the output
3916         ** in sorted order
3917         */
3918         int regBase;
3919         int regRecord;
3920         int nCol;
3921         int nGroupBy;
3922 
3923         groupBySort = 1;
3924         nGroupBy = pGroupBy->nExpr;
3925         nCol = nGroupBy + 1;
3926         j = nGroupBy+1;
3927         for(i=0; i<sAggInfo.nColumn; i++){
3928           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3929             nCol++;
3930             j++;
3931           }
3932         }
3933         regBase = sqlite3GetTempRange(pParse, nCol);
3934         sqlite3ExprCacheClear(pParse);
3935         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3936         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3937         j = nGroupBy+1;
3938         for(i=0; i<sAggInfo.nColumn; i++){
3939           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3940           if( pCol->iSorterColumn>=j ){
3941             int r1 = j + regBase;
3942             int r2;
3943 
3944             r2 = sqlite3ExprCodeGetColumn(pParse,
3945                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
3946             if( r1!=r2 ){
3947               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3948             }
3949             j++;
3950           }
3951         }
3952         regRecord = sqlite3GetTempReg(pParse);
3953         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3954         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3955         sqlite3ReleaseTempReg(pParse, regRecord);
3956         sqlite3ReleaseTempRange(pParse, regBase, nCol);
3957         sqlite3WhereEnd(pWInfo);
3958         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3959         VdbeComment((v, "GROUP BY sort"));
3960         sAggInfo.useSortingIdx = 1;
3961         sqlite3ExprCacheClear(pParse);
3962       }
3963 
3964       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3965       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3966       ** Then compare the current GROUP BY terms against the GROUP BY terms
3967       ** from the previous row currently stored in a0, a1, a2...
3968       */
3969       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3970       sqlite3ExprCacheClear(pParse);
3971       for(j=0; j<pGroupBy->nExpr; j++){
3972         if( groupBySort ){
3973           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3974         }else{
3975           sAggInfo.directMode = 1;
3976           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3977         }
3978       }
3979       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3980                           (char*)pKeyInfo, P4_KEYINFO);
3981       j1 = sqlite3VdbeCurrentAddr(v);
3982       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3983 
3984       /* Generate code that runs whenever the GROUP BY changes.
3985       ** Changes in the GROUP BY are detected by the previous code
3986       ** block.  If there were no changes, this block is skipped.
3987       **
3988       ** This code copies current group by terms in b0,b1,b2,...
3989       ** over to a0,a1,a2.  It then calls the output subroutine
3990       ** and resets the aggregate accumulator registers in preparation
3991       ** for the next GROUP BY batch.
3992       */
3993       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3994       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3995       VdbeComment((v, "output one row"));
3996       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3997       VdbeComment((v, "check abort flag"));
3998       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3999       VdbeComment((v, "reset accumulator"));
4000 
4001       /* Update the aggregate accumulators based on the content of
4002       ** the current row
4003       */
4004       sqlite3VdbeJumpHere(v, j1);
4005       updateAccumulator(pParse, &sAggInfo);
4006       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4007       VdbeComment((v, "indicate data in accumulator"));
4008 
4009       /* End of the loop
4010       */
4011       if( groupBySort ){
4012         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
4013       }else{
4014         sqlite3WhereEnd(pWInfo);
4015         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
4016       }
4017 
4018       /* Output the final row of result
4019       */
4020       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4021       VdbeComment((v, "output final row"));
4022 
4023       /* Jump over the subroutines
4024       */
4025       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4026 
4027       /* Generate a subroutine that outputs a single row of the result
4028       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4029       ** is less than or equal to zero, the subroutine is a no-op.  If
4030       ** the processing calls for the query to abort, this subroutine
4031       ** increments the iAbortFlag memory location before returning in
4032       ** order to signal the caller to abort.
4033       */
4034       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4035       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4036       VdbeComment((v, "set abort flag"));
4037       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4038       sqlite3VdbeResolveLabel(v, addrOutputRow);
4039       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4040       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4041       VdbeComment((v, "Groupby result generator entry point"));
4042       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4043       finalizeAggFunctions(pParse, &sAggInfo);
4044       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4045       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4046                       distinct, pDest,
4047                       addrOutputRow+1, addrSetAbort);
4048       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4049       VdbeComment((v, "end groupby result generator"));
4050 
4051       /* Generate a subroutine that will reset the group-by accumulator
4052       */
4053       sqlite3VdbeResolveLabel(v, addrReset);
4054       resetAccumulator(pParse, &sAggInfo);
4055       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4056 
4057     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4058     else {
4059       ExprList *pDel = 0;
4060 #ifndef SQLITE_OMIT_BTREECOUNT
4061       Table *pTab;
4062       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4063         /* If isSimpleCount() returns a pointer to a Table structure, then
4064         ** the SQL statement is of the form:
4065         **
4066         **   SELECT count(*) FROM <tbl>
4067         **
4068         ** where the Table structure returned represents table <tbl>.
4069         **
4070         ** This statement is so common that it is optimized specially. The
4071         ** OP_Count instruction is executed either on the intkey table that
4072         ** contains the data for table <tbl> or on one of its indexes. It
4073         ** is better to execute the op on an index, as indexes are almost
4074         ** always spread across less pages than their corresponding tables.
4075         */
4076         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4077         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4078         Index *pIdx;                         /* Iterator variable */
4079         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4080         Index *pBest = 0;                    /* Best index found so far */
4081         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4082 
4083         sqlite3CodeVerifySchema(pParse, iDb);
4084         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4085 
4086         /* Search for the index that has the least amount of columns. If
4087         ** there is such an index, and it has less columns than the table
4088         ** does, then we can assume that it consumes less space on disk and
4089         ** will therefore be cheaper to scan to determine the query result.
4090         ** In this case set iRoot to the root page number of the index b-tree
4091         ** and pKeyInfo to the KeyInfo structure required to navigate the
4092         ** index.
4093         **
4094         ** In practice the KeyInfo structure will not be used. It is only
4095         ** passed to keep OP_OpenRead happy.
4096         */
4097         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4098           if( !pBest || pIdx->nColumn<pBest->nColumn ){
4099             pBest = pIdx;
4100           }
4101         }
4102         if( pBest && pBest->nColumn<pTab->nCol ){
4103           iRoot = pBest->tnum;
4104           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4105         }
4106 
4107         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4108         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4109         if( pKeyInfo ){
4110           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4111         }
4112         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4113         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4114       }else
4115 #endif /* SQLITE_OMIT_BTREECOUNT */
4116       {
4117         /* Check if the query is of one of the following forms:
4118         **
4119         **   SELECT min(x) FROM ...
4120         **   SELECT max(x) FROM ...
4121         **
4122         ** If it is, then ask the code in where.c to attempt to sort results
4123         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4124         ** If where.c is able to produce results sorted in this order, then
4125         ** add vdbe code to break out of the processing loop after the
4126         ** first iteration (since the first iteration of the loop is
4127         ** guaranteed to operate on the row with the minimum or maximum
4128         ** value of x, the only row required).
4129         **
4130         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4131         ** modify behaviour as follows:
4132         **
4133         **   + If the query is a "SELECT min(x)", then the loop coded by
4134         **     where.c should not iterate over any values with a NULL value
4135         **     for x.
4136         **
4137         **   + The optimizer code in where.c (the thing that decides which
4138         **     index or indices to use) should place a different priority on
4139         **     satisfying the 'ORDER BY' clause than it does in other cases.
4140         **     Refer to code and comments in where.c for details.
4141         */
4142         ExprList *pMinMax = 0;
4143         u8 flag = minMaxQuery(p);
4144         if( flag ){
4145           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4146           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4147           pDel = pMinMax;
4148           if( pMinMax && !db->mallocFailed ){
4149             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4150             pMinMax->a[0].pExpr->op = TK_COLUMN;
4151           }
4152         }
4153 
4154         /* This case runs if the aggregate has no GROUP BY clause.  The
4155         ** processing is much simpler since there is only a single row
4156         ** of output.
4157         */
4158         resetAccumulator(pParse, &sAggInfo);
4159         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4160         if( pWInfo==0 ){
4161           sqlite3ExprListDelete(db, pDel);
4162           goto select_end;
4163         }
4164         updateAccumulator(pParse, &sAggInfo);
4165         if( !pMinMax && flag ){
4166           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4167           VdbeComment((v, "%s() by index",
4168                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4169         }
4170         sqlite3WhereEnd(pWInfo);
4171         finalizeAggFunctions(pParse, &sAggInfo);
4172       }
4173 
4174       pOrderBy = 0;
4175       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4176       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4177                       pDest, addrEnd, addrEnd);
4178       sqlite3ExprListDelete(db, pDel);
4179     }
4180     sqlite3VdbeResolveLabel(v, addrEnd);
4181 
4182   } /* endif aggregate query */
4183 
4184   /* If there is an ORDER BY clause, then we need to sort the results
4185   ** and send them to the callback one by one.
4186   */
4187   if( pOrderBy ){
4188     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4189   }
4190 
4191   /* Jump here to skip this query
4192   */
4193   sqlite3VdbeResolveLabel(v, iEnd);
4194 
4195   /* The SELECT was successfully coded.   Set the return code to 0
4196   ** to indicate no errors.
4197   */
4198   rc = 0;
4199 
4200   /* Control jumps to here if an error is encountered above, or upon
4201   ** successful coding of the SELECT.
4202   */
4203 select_end:
4204 
4205   /* Identify column names if results of the SELECT are to be output.
4206   */
4207   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4208     generateColumnNames(pParse, pTabList, pEList);
4209   }
4210 
4211   sqlite3DbFree(db, sAggInfo.aCol);
4212   sqlite3DbFree(db, sAggInfo.aFunc);
4213   return rc;
4214 }
4215 
4216 #if defined(SQLITE_DEBUG)
4217 /*
4218 *******************************************************************************
4219 ** The following code is used for testing and debugging only.  The code
4220 ** that follows does not appear in normal builds.
4221 **
4222 ** These routines are used to print out the content of all or part of a
4223 ** parse structures such as Select or Expr.  Such printouts are useful
4224 ** for helping to understand what is happening inside the code generator
4225 ** during the execution of complex SELECT statements.
4226 **
4227 ** These routine are not called anywhere from within the normal
4228 ** code base.  Then are intended to be called from within the debugger
4229 ** or from temporary "printf" statements inserted for debugging.
4230 */
4231 void sqlite3PrintExpr(Expr *p){
4232   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
4233     sqlite3DebugPrintf("(%s", p->u.zToken);
4234   }else{
4235     sqlite3DebugPrintf("(%d", p->op);
4236   }
4237   if( p->pLeft ){
4238     sqlite3DebugPrintf(" ");
4239     sqlite3PrintExpr(p->pLeft);
4240   }
4241   if( p->pRight ){
4242     sqlite3DebugPrintf(" ");
4243     sqlite3PrintExpr(p->pRight);
4244   }
4245   sqlite3DebugPrintf(")");
4246 }
4247 void sqlite3PrintExprList(ExprList *pList){
4248   int i;
4249   for(i=0; i<pList->nExpr; i++){
4250     sqlite3PrintExpr(pList->a[i].pExpr);
4251     if( i<pList->nExpr-1 ){
4252       sqlite3DebugPrintf(", ");
4253     }
4254   }
4255 }
4256 void sqlite3PrintSelect(Select *p, int indent){
4257   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4258   sqlite3PrintExprList(p->pEList);
4259   sqlite3DebugPrintf("\n");
4260   if( p->pSrc ){
4261     char *zPrefix;
4262     int i;
4263     zPrefix = "FROM";
4264     for(i=0; i<p->pSrc->nSrc; i++){
4265       struct SrcList_item *pItem = &p->pSrc->a[i];
4266       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4267       zPrefix = "";
4268       if( pItem->pSelect ){
4269         sqlite3DebugPrintf("(\n");
4270         sqlite3PrintSelect(pItem->pSelect, indent+10);
4271         sqlite3DebugPrintf("%*s)", indent+8, "");
4272       }else if( pItem->zName ){
4273         sqlite3DebugPrintf("%s", pItem->zName);
4274       }
4275       if( pItem->pTab ){
4276         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4277       }
4278       if( pItem->zAlias ){
4279         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4280       }
4281       if( i<p->pSrc->nSrc-1 ){
4282         sqlite3DebugPrintf(",");
4283       }
4284       sqlite3DebugPrintf("\n");
4285     }
4286   }
4287   if( p->pWhere ){
4288     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4289     sqlite3PrintExpr(p->pWhere);
4290     sqlite3DebugPrintf("\n");
4291   }
4292   if( p->pGroupBy ){
4293     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4294     sqlite3PrintExprList(p->pGroupBy);
4295     sqlite3DebugPrintf("\n");
4296   }
4297   if( p->pHaving ){
4298     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4299     sqlite3PrintExpr(p->pHaving);
4300     sqlite3DebugPrintf("\n");
4301   }
4302   if( p->pOrderBy ){
4303     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4304     sqlite3PrintExprList(p->pOrderBy);
4305     sqlite3DebugPrintf("\n");
4306   }
4307 }
4308 /* End of the structure debug printing code
4309 *****************************************************************************/
4310 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4311