xref: /sqlite-3.40.0/src/select.c (revision 50f79f56)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iParm = iParm;
40   pDest->affinity = 0;
41   pDest->iMem = 0;
42   pDest->nMem = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   int isDistinct,       /* true if the DISTINCT keyword is present */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     assert( db->mallocFailed );
69     pNew = &standin;
70     memset(pNew, 0, sizeof(*pNew));
71   }
72   if( pEList==0 ){
73     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
74   }
75   pNew->pEList = pEList;
76   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   assert( pOffset==0 || pLimit!=0 );
87   pNew->addrOpenEphm[0] = -1;
88   pNew->addrOpenEphm[1] = -1;
89   pNew->addrOpenEphm[2] = -1;
90   if( db->mallocFailed ) {
91     clearSelect(db, pNew);
92     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
93     pNew = 0;
94   }else{
95     assert( pNew->pSrc!=0 || pParse->nErr>0 );
96   }
97   assert( pNew!=&standin );
98   return pNew;
99 }
100 
101 /*
102 ** Delete the given Select structure and all of its substructures.
103 */
104 void sqlite3SelectDelete(sqlite3 *db, Select *p){
105   if( p ){
106     clearSelect(db, p);
107     sqlite3DbFree(db, p);
108   }
109 }
110 
111 /*
112 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
113 ** type of join.  Return an integer constant that expresses that type
114 ** in terms of the following bit values:
115 **
116 **     JT_INNER
117 **     JT_CROSS
118 **     JT_OUTER
119 **     JT_NATURAL
120 **     JT_LEFT
121 **     JT_RIGHT
122 **
123 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
124 **
125 ** If an illegal or unsupported join type is seen, then still return
126 ** a join type, but put an error in the pParse structure.
127 */
128 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
129   int jointype = 0;
130   Token *apAll[3];
131   Token *p;
132                              /*   0123456789 123456789 123456789 123 */
133   static const char zKeyText[] = "naturaleftouterightfullinnercross";
134   static const struct {
135     u8 i;        /* Beginning of keyword text in zKeyText[] */
136     u8 nChar;    /* Length of the keyword in characters */
137     u8 code;     /* Join type mask */
138   } aKeyword[] = {
139     /* natural */ { 0,  7, JT_NATURAL                },
140     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
141     /* outer   */ { 10, 5, JT_OUTER                  },
142     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
143     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
144     /* inner   */ { 23, 5, JT_INNER                  },
145     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
146   };
147   int i, j;
148   apAll[0] = pA;
149   apAll[1] = pB;
150   apAll[2] = pC;
151   for(i=0; i<3 && apAll[i]; i++){
152     p = apAll[i];
153     for(j=0; j<ArraySize(aKeyword); j++){
154       if( p->n==aKeyword[j].nChar
155           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
156         jointype |= aKeyword[j].code;
157         break;
158       }
159     }
160     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
161     if( j>=ArraySize(aKeyword) ){
162       jointype |= JT_ERROR;
163       break;
164     }
165   }
166   if(
167      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
168      (jointype & JT_ERROR)!=0
169   ){
170     const char *zSp = " ";
171     assert( pB!=0 );
172     if( pC==0 ){ zSp++; }
173     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
174        "%T %T%s%T", pA, pB, zSp, pC);
175     jointype = JT_INNER;
176   }else if( (jointype & JT_OUTER)!=0
177          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
178     sqlite3ErrorMsg(pParse,
179       "RIGHT and FULL OUTER JOINs are not currently supported");
180     jointype = JT_INNER;
181   }
182   return jointype;
183 }
184 
185 /*
186 ** Return the index of a column in a table.  Return -1 if the column
187 ** is not contained in the table.
188 */
189 static int columnIndex(Table *pTab, const char *zCol){
190   int i;
191   for(i=0; i<pTab->nCol; i++){
192     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
193   }
194   return -1;
195 }
196 
197 /*
198 ** Search the first N tables in pSrc, from left to right, looking for a
199 ** table that has a column named zCol.
200 **
201 ** When found, set *piTab and *piCol to the table index and column index
202 ** of the matching column and return TRUE.
203 **
204 ** If not found, return FALSE.
205 */
206 static int tableAndColumnIndex(
207   SrcList *pSrc,       /* Array of tables to search */
208   int N,               /* Number of tables in pSrc->a[] to search */
209   const char *zCol,    /* Name of the column we are looking for */
210   int *piTab,          /* Write index of pSrc->a[] here */
211   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
212 ){
213   int i;               /* For looping over tables in pSrc */
214   int iCol;            /* Index of column matching zCol */
215 
216   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
217   for(i=0; i<N; i++){
218     iCol = columnIndex(pSrc->a[i].pTab, zCol);
219     if( iCol>=0 ){
220       if( piTab ){
221         *piTab = i;
222         *piCol = iCol;
223       }
224       return 1;
225     }
226   }
227   return 0;
228 }
229 
230 /*
231 ** This function is used to add terms implied by JOIN syntax to the
232 ** WHERE clause expression of a SELECT statement. The new term, which
233 ** is ANDed with the existing WHERE clause, is of the form:
234 **
235 **    (tab1.col1 = tab2.col2)
236 **
237 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
238 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
239 ** column iColRight of tab2.
240 */
241 static void addWhereTerm(
242   Parse *pParse,                  /* Parsing context */
243   SrcList *pSrc,                  /* List of tables in FROM clause */
244   int iLeft,                      /* Index of first table to join in pSrc */
245   int iColLeft,                   /* Index of column in first table */
246   int iRight,                     /* Index of second table in pSrc */
247   int iColRight,                  /* Index of column in second table */
248   int isOuterJoin,                /* True if this is an OUTER join */
249   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
250 ){
251   sqlite3 *db = pParse->db;
252   Expr *pE1;
253   Expr *pE2;
254   Expr *pEq;
255 
256   assert( iLeft<iRight );
257   assert( pSrc->nSrc>iRight );
258   assert( pSrc->a[iLeft].pTab );
259   assert( pSrc->a[iRight].pTab );
260 
261   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
262   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
263 
264   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
265   if( pEq && isOuterJoin ){
266     ExprSetProperty(pEq, EP_FromJoin);
267     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
268     ExprSetIrreducible(pEq);
269     pEq->iRightJoinTable = (i16)pE2->iTable;
270   }
271   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
272 }
273 
274 /*
275 ** Set the EP_FromJoin property on all terms of the given expression.
276 ** And set the Expr.iRightJoinTable to iTable for every term in the
277 ** expression.
278 **
279 ** The EP_FromJoin property is used on terms of an expression to tell
280 ** the LEFT OUTER JOIN processing logic that this term is part of the
281 ** join restriction specified in the ON or USING clause and not a part
282 ** of the more general WHERE clause.  These terms are moved over to the
283 ** WHERE clause during join processing but we need to remember that they
284 ** originated in the ON or USING clause.
285 **
286 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
287 ** expression depends on table iRightJoinTable even if that table is not
288 ** explicitly mentioned in the expression.  That information is needed
289 ** for cases like this:
290 **
291 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
292 **
293 ** The where clause needs to defer the handling of the t1.x=5
294 ** term until after the t2 loop of the join.  In that way, a
295 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
296 ** defer the handling of t1.x=5, it will be processed immediately
297 ** after the t1 loop and rows with t1.x!=5 will never appear in
298 ** the output, which is incorrect.
299 */
300 static void setJoinExpr(Expr *p, int iTable){
301   while( p ){
302     ExprSetProperty(p, EP_FromJoin);
303     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
304     ExprSetIrreducible(p);
305     p->iRightJoinTable = (i16)iTable;
306     setJoinExpr(p->pLeft, iTable);
307     p = p->pRight;
308   }
309 }
310 
311 /*
312 ** This routine processes the join information for a SELECT statement.
313 ** ON and USING clauses are converted into extra terms of the WHERE clause.
314 ** NATURAL joins also create extra WHERE clause terms.
315 **
316 ** The terms of a FROM clause are contained in the Select.pSrc structure.
317 ** The left most table is the first entry in Select.pSrc.  The right-most
318 ** table is the last entry.  The join operator is held in the entry to
319 ** the left.  Thus entry 0 contains the join operator for the join between
320 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
321 ** also attached to the left entry.
322 **
323 ** This routine returns the number of errors encountered.
324 */
325 static int sqliteProcessJoin(Parse *pParse, Select *p){
326   SrcList *pSrc;                  /* All tables in the FROM clause */
327   int i, j;                       /* Loop counters */
328   struct SrcList_item *pLeft;     /* Left table being joined */
329   struct SrcList_item *pRight;    /* Right table being joined */
330 
331   pSrc = p->pSrc;
332   pLeft = &pSrc->a[0];
333   pRight = &pLeft[1];
334   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
335     Table *pLeftTab = pLeft->pTab;
336     Table *pRightTab = pRight->pTab;
337     int isOuter;
338 
339     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
340     isOuter = (pRight->jointype & JT_OUTER)!=0;
341 
342     /* When the NATURAL keyword is present, add WHERE clause terms for
343     ** every column that the two tables have in common.
344     */
345     if( pRight->jointype & JT_NATURAL ){
346       if( pRight->pOn || pRight->pUsing ){
347         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
348            "an ON or USING clause", 0);
349         return 1;
350       }
351       for(j=0; j<pRightTab->nCol; j++){
352         char *zName;   /* Name of column in the right table */
353         int iLeft;     /* Matching left table */
354         int iLeftCol;  /* Matching column in the left table */
355 
356         zName = pRightTab->aCol[j].zName;
357         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
358           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
359                        isOuter, &p->pWhere);
360         }
361       }
362     }
363 
364     /* Disallow both ON and USING clauses in the same join
365     */
366     if( pRight->pOn && pRight->pUsing ){
367       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
368         "clauses in the same join");
369       return 1;
370     }
371 
372     /* Add the ON clause to the end of the WHERE clause, connected by
373     ** an AND operator.
374     */
375     if( pRight->pOn ){
376       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
377       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
378       pRight->pOn = 0;
379     }
380 
381     /* Create extra terms on the WHERE clause for each column named
382     ** in the USING clause.  Example: If the two tables to be joined are
383     ** A and B and the USING clause names X, Y, and Z, then add this
384     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
385     ** Report an error if any column mentioned in the USING clause is
386     ** not contained in both tables to be joined.
387     */
388     if( pRight->pUsing ){
389       IdList *pList = pRight->pUsing;
390       for(j=0; j<pList->nId; j++){
391         char *zName;     /* Name of the term in the USING clause */
392         int iLeft;       /* Table on the left with matching column name */
393         int iLeftCol;    /* Column number of matching column on the left */
394         int iRightCol;   /* Column number of matching column on the right */
395 
396         zName = pList->a[j].zName;
397         iRightCol = columnIndex(pRightTab, zName);
398         if( iRightCol<0
399          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
400         ){
401           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
402             "not present in both tables", zName);
403           return 1;
404         }
405         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
406                      isOuter, &p->pWhere);
407       }
408     }
409   }
410   return 0;
411 }
412 
413 /*
414 ** Insert code into "v" that will push the record on the top of the
415 ** stack into the sorter.
416 */
417 static void pushOntoSorter(
418   Parse *pParse,         /* Parser context */
419   ExprList *pOrderBy,    /* The ORDER BY clause */
420   Select *pSelect,       /* The whole SELECT statement */
421   int regData            /* Register holding data to be sorted */
422 ){
423   Vdbe *v = pParse->pVdbe;
424   int nExpr = pOrderBy->nExpr;
425   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
426   int regRecord = sqlite3GetTempReg(pParse);
427   int op;
428   sqlite3ExprCacheClear(pParse);
429   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
430   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
431   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
432   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
433   if( pSelect->selFlags & SF_UseSorter ){
434     op = OP_SorterInsert;
435   }else{
436     op = OP_IdxInsert;
437   }
438   sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
439   sqlite3ReleaseTempReg(pParse, regRecord);
440   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
441   if( pSelect->iLimit ){
442     int addr1, addr2;
443     int iLimit;
444     if( pSelect->iOffset ){
445       iLimit = pSelect->iOffset+1;
446     }else{
447       iLimit = pSelect->iLimit;
448     }
449     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
450     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
451     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
452     sqlite3VdbeJumpHere(v, addr1);
453     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
454     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
455     sqlite3VdbeJumpHere(v, addr2);
456   }
457 }
458 
459 /*
460 ** Add code to implement the OFFSET
461 */
462 static void codeOffset(
463   Vdbe *v,          /* Generate code into this VM */
464   Select *p,        /* The SELECT statement being coded */
465   int iContinue     /* Jump here to skip the current record */
466 ){
467   if( p->iOffset && iContinue!=0 ){
468     int addr;
469     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
470     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
471     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
472     VdbeComment((v, "skip OFFSET records"));
473     sqlite3VdbeJumpHere(v, addr);
474   }
475 }
476 
477 /*
478 ** Add code that will check to make sure the N registers starting at iMem
479 ** form a distinct entry.  iTab is a sorting index that holds previously
480 ** seen combinations of the N values.  A new entry is made in iTab
481 ** if the current N values are new.
482 **
483 ** A jump to addrRepeat is made and the N+1 values are popped from the
484 ** stack if the top N elements are not distinct.
485 */
486 static void codeDistinct(
487   Parse *pParse,     /* Parsing and code generating context */
488   int iTab,          /* A sorting index used to test for distinctness */
489   int addrRepeat,    /* Jump to here if not distinct */
490   int N,             /* Number of elements */
491   int iMem           /* First element */
492 ){
493   Vdbe *v;
494   int r1;
495 
496   v = pParse->pVdbe;
497   r1 = sqlite3GetTempReg(pParse);
498   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
499   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
500   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
501   sqlite3ReleaseTempReg(pParse, r1);
502 }
503 
504 #ifndef SQLITE_OMIT_SUBQUERY
505 /*
506 ** Generate an error message when a SELECT is used within a subexpression
507 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
508 ** column.  We do this in a subroutine because the error used to occur
509 ** in multiple places.  (The error only occurs in one place now, but we
510 ** retain the subroutine to minimize code disruption.)
511 */
512 static int checkForMultiColumnSelectError(
513   Parse *pParse,       /* Parse context. */
514   SelectDest *pDest,   /* Destination of SELECT results */
515   int nExpr            /* Number of result columns returned by SELECT */
516 ){
517   int eDest = pDest->eDest;
518   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
519     sqlite3ErrorMsg(pParse, "only a single result allowed for "
520        "a SELECT that is part of an expression");
521     return 1;
522   }else{
523     return 0;
524   }
525 }
526 #endif
527 
528 /*
529 ** This routine generates the code for the inside of the inner loop
530 ** of a SELECT.
531 **
532 ** If srcTab and nColumn are both zero, then the pEList expressions
533 ** are evaluated in order to get the data for this row.  If nColumn>0
534 ** then data is pulled from srcTab and pEList is used only to get the
535 ** datatypes for each column.
536 */
537 static void selectInnerLoop(
538   Parse *pParse,          /* The parser context */
539   Select *p,              /* The complete select statement being coded */
540   ExprList *pEList,       /* List of values being extracted */
541   int srcTab,             /* Pull data from this table */
542   int nColumn,            /* Number of columns in the source table */
543   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
544   int distinct,           /* If >=0, make sure results are distinct */
545   SelectDest *pDest,      /* How to dispose of the results */
546   int iContinue,          /* Jump here to continue with next row */
547   int iBreak              /* Jump here to break out of the inner loop */
548 ){
549   Vdbe *v = pParse->pVdbe;
550   int i;
551   int hasDistinct;        /* True if the DISTINCT keyword is present */
552   int regResult;              /* Start of memory holding result set */
553   int eDest = pDest->eDest;   /* How to dispose of results */
554   int iParm = pDest->iParm;   /* First argument to disposal method */
555   int nResultCol;             /* Number of result columns */
556 
557   assert( v );
558   if( NEVER(v==0) ) return;
559   assert( pEList!=0 );
560   hasDistinct = distinct>=0;
561   if( pOrderBy==0 && !hasDistinct ){
562     codeOffset(v, p, iContinue);
563   }
564 
565   /* Pull the requested columns.
566   */
567   if( nColumn>0 ){
568     nResultCol = nColumn;
569   }else{
570     nResultCol = pEList->nExpr;
571   }
572   if( pDest->iMem==0 ){
573     pDest->iMem = pParse->nMem+1;
574     pDest->nMem = nResultCol;
575     pParse->nMem += nResultCol;
576   }else{
577     assert( pDest->nMem==nResultCol );
578   }
579   regResult = pDest->iMem;
580   if( nColumn>0 ){
581     for(i=0; i<nColumn; i++){
582       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
583     }
584   }else if( eDest!=SRT_Exists ){
585     /* If the destination is an EXISTS(...) expression, the actual
586     ** values returned by the SELECT are not required.
587     */
588     sqlite3ExprCacheClear(pParse);
589     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
590   }
591   nColumn = nResultCol;
592 
593   /* If the DISTINCT keyword was present on the SELECT statement
594   ** and this row has been seen before, then do not make this row
595   ** part of the result.
596   */
597   if( hasDistinct ){
598     assert( pEList!=0 );
599     assert( pEList->nExpr==nColumn );
600     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
601     if( pOrderBy==0 ){
602       codeOffset(v, p, iContinue);
603     }
604   }
605 
606   switch( eDest ){
607     /* In this mode, write each query result to the key of the temporary
608     ** table iParm.
609     */
610 #ifndef SQLITE_OMIT_COMPOUND_SELECT
611     case SRT_Union: {
612       int r1;
613       r1 = sqlite3GetTempReg(pParse);
614       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
615       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
616       sqlite3ReleaseTempReg(pParse, r1);
617       break;
618     }
619 
620     /* Construct a record from the query result, but instead of
621     ** saving that record, use it as a key to delete elements from
622     ** the temporary table iParm.
623     */
624     case SRT_Except: {
625       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
626       break;
627     }
628 #endif
629 
630     /* Store the result as data using a unique key.
631     */
632     case SRT_Table:
633     case SRT_EphemTab: {
634       int r1 = sqlite3GetTempReg(pParse);
635       testcase( eDest==SRT_Table );
636       testcase( eDest==SRT_EphemTab );
637       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
638       if( pOrderBy ){
639         pushOntoSorter(pParse, pOrderBy, p, r1);
640       }else{
641         int r2 = sqlite3GetTempReg(pParse);
642         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
643         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
644         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
645         sqlite3ReleaseTempReg(pParse, r2);
646       }
647       sqlite3ReleaseTempReg(pParse, r1);
648       break;
649     }
650 
651 #ifndef SQLITE_OMIT_SUBQUERY
652     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
653     ** then there should be a single item on the stack.  Write this
654     ** item into the set table with bogus data.
655     */
656     case SRT_Set: {
657       assert( nColumn==1 );
658       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
659       if( pOrderBy ){
660         /* At first glance you would think we could optimize out the
661         ** ORDER BY in this case since the order of entries in the set
662         ** does not matter.  But there might be a LIMIT clause, in which
663         ** case the order does matter */
664         pushOntoSorter(pParse, pOrderBy, p, regResult);
665       }else{
666         int r1 = sqlite3GetTempReg(pParse);
667         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
668         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
669         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
670         sqlite3ReleaseTempReg(pParse, r1);
671       }
672       break;
673     }
674 
675     /* If any row exist in the result set, record that fact and abort.
676     */
677     case SRT_Exists: {
678       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
679       /* The LIMIT clause will terminate the loop for us */
680       break;
681     }
682 
683     /* If this is a scalar select that is part of an expression, then
684     ** store the results in the appropriate memory cell and break out
685     ** of the scan loop.
686     */
687     case SRT_Mem: {
688       assert( nColumn==1 );
689       if( pOrderBy ){
690         pushOntoSorter(pParse, pOrderBy, p, regResult);
691       }else{
692         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
693         /* The LIMIT clause will jump out of the loop for us */
694       }
695       break;
696     }
697 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
698 
699     /* Send the data to the callback function or to a subroutine.  In the
700     ** case of a subroutine, the subroutine itself is responsible for
701     ** popping the data from the stack.
702     */
703     case SRT_Coroutine:
704     case SRT_Output: {
705       testcase( eDest==SRT_Coroutine );
706       testcase( eDest==SRT_Output );
707       if( pOrderBy ){
708         int r1 = sqlite3GetTempReg(pParse);
709         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
710         pushOntoSorter(pParse, pOrderBy, p, r1);
711         sqlite3ReleaseTempReg(pParse, r1);
712       }else if( eDest==SRT_Coroutine ){
713         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
714       }else{
715         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
716         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
717       }
718       break;
719     }
720 
721 #if !defined(SQLITE_OMIT_TRIGGER)
722     /* Discard the results.  This is used for SELECT statements inside
723     ** the body of a TRIGGER.  The purpose of such selects is to call
724     ** user-defined functions that have side effects.  We do not care
725     ** about the actual results of the select.
726     */
727     default: {
728       assert( eDest==SRT_Discard );
729       break;
730     }
731 #endif
732   }
733 
734   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
735   ** there is a sorter, in which case the sorter has already limited
736   ** the output for us.
737   */
738   if( pOrderBy==0 && p->iLimit ){
739     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
740   }
741 }
742 
743 /*
744 ** Given an expression list, generate a KeyInfo structure that records
745 ** the collating sequence for each expression in that expression list.
746 **
747 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
748 ** KeyInfo structure is appropriate for initializing a virtual index to
749 ** implement that clause.  If the ExprList is the result set of a SELECT
750 ** then the KeyInfo structure is appropriate for initializing a virtual
751 ** index to implement a DISTINCT test.
752 **
753 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
754 ** function is responsible for seeing that this structure is eventually
755 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
756 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
757 */
758 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
759   sqlite3 *db = pParse->db;
760   int nExpr;
761   KeyInfo *pInfo;
762   struct ExprList_item *pItem;
763   int i;
764 
765   nExpr = pList->nExpr;
766   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
767   if( pInfo ){
768     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
769     pInfo->nField = (u16)nExpr;
770     pInfo->enc = ENC(db);
771     pInfo->db = db;
772     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
773       CollSeq *pColl;
774       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
775       if( !pColl ){
776         pColl = db->pDfltColl;
777       }
778       pInfo->aColl[i] = pColl;
779       pInfo->aSortOrder[i] = pItem->sortOrder;
780     }
781   }
782   return pInfo;
783 }
784 
785 #ifndef SQLITE_OMIT_COMPOUND_SELECT
786 /*
787 ** Name of the connection operator, used for error messages.
788 */
789 static const char *selectOpName(int id){
790   char *z;
791   switch( id ){
792     case TK_ALL:       z = "UNION ALL";   break;
793     case TK_INTERSECT: z = "INTERSECT";   break;
794     case TK_EXCEPT:    z = "EXCEPT";      break;
795     default:           z = "UNION";       break;
796   }
797   return z;
798 }
799 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
800 
801 #ifndef SQLITE_OMIT_EXPLAIN
802 /*
803 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
804 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
805 ** where the caption is of the form:
806 **
807 **   "USE TEMP B-TREE FOR xxx"
808 **
809 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
810 ** is determined by the zUsage argument.
811 */
812 static void explainTempTable(Parse *pParse, const char *zUsage){
813   if( pParse->explain==2 ){
814     Vdbe *v = pParse->pVdbe;
815     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
816     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
817   }
818 }
819 
820 /*
821 ** Assign expression b to lvalue a. A second, no-op, version of this macro
822 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
823 ** in sqlite3Select() to assign values to structure member variables that
824 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
825 ** code with #ifndef directives.
826 */
827 # define explainSetInteger(a, b) a = b
828 
829 #else
830 /* No-op versions of the explainXXX() functions and macros. */
831 # define explainTempTable(y,z)
832 # define explainSetInteger(y,z)
833 #endif
834 
835 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
836 /*
837 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
838 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
839 ** where the caption is of one of the two forms:
840 **
841 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
842 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
843 **
844 ** where iSub1 and iSub2 are the integers passed as the corresponding
845 ** function parameters, and op is the text representation of the parameter
846 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
847 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
848 ** false, or the second form if it is true.
849 */
850 static void explainComposite(
851   Parse *pParse,                  /* Parse context */
852   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
853   int iSub1,                      /* Subquery id 1 */
854   int iSub2,                      /* Subquery id 2 */
855   int bUseTmp                     /* True if a temp table was used */
856 ){
857   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
858   if( pParse->explain==2 ){
859     Vdbe *v = pParse->pVdbe;
860     char *zMsg = sqlite3MPrintf(
861         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
862         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
863     );
864     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
865   }
866 }
867 #else
868 /* No-op versions of the explainXXX() functions and macros. */
869 # define explainComposite(v,w,x,y,z)
870 #endif
871 
872 /*
873 ** If the inner loop was generated using a non-null pOrderBy argument,
874 ** then the results were placed in a sorter.  After the loop is terminated
875 ** we need to run the sorter and output the results.  The following
876 ** routine generates the code needed to do that.
877 */
878 static void generateSortTail(
879   Parse *pParse,    /* Parsing context */
880   Select *p,        /* The SELECT statement */
881   Vdbe *v,          /* Generate code into this VDBE */
882   int nColumn,      /* Number of columns of data */
883   SelectDest *pDest /* Write the sorted results here */
884 ){
885   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
886   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
887   int addr;
888   int iTab;
889   int pseudoTab = 0;
890   ExprList *pOrderBy = p->pOrderBy;
891 
892   int eDest = pDest->eDest;
893   int iParm = pDest->iParm;
894 
895   int regRow;
896   int regRowid;
897 
898   iTab = pOrderBy->iECursor;
899   regRow = sqlite3GetTempReg(pParse);
900   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
901     pseudoTab = pParse->nTab++;
902     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
903     regRowid = 0;
904   }else{
905     regRowid = sqlite3GetTempReg(pParse);
906   }
907   if( p->selFlags & SF_UseSorter ){
908     int regSortOut = ++pParse->nMem;
909     int ptab2 = pParse->nTab++;
910     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
911     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
912     codeOffset(v, p, addrContinue);
913     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
914     sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
915     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
916   }else{
917     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
918     codeOffset(v, p, addrContinue);
919     sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
920   }
921   switch( eDest ){
922     case SRT_Table:
923     case SRT_EphemTab: {
924       testcase( eDest==SRT_Table );
925       testcase( eDest==SRT_EphemTab );
926       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
927       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
928       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
929       break;
930     }
931 #ifndef SQLITE_OMIT_SUBQUERY
932     case SRT_Set: {
933       assert( nColumn==1 );
934       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
935       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
936       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
937       break;
938     }
939     case SRT_Mem: {
940       assert( nColumn==1 );
941       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
942       /* The LIMIT clause will terminate the loop for us */
943       break;
944     }
945 #endif
946     default: {
947       int i;
948       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
949       testcase( eDest==SRT_Output );
950       testcase( eDest==SRT_Coroutine );
951       for(i=0; i<nColumn; i++){
952         assert( regRow!=pDest->iMem+i );
953         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
954         if( i==0 ){
955           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
956         }
957       }
958       if( eDest==SRT_Output ){
959         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
960         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
961       }else{
962         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
963       }
964       break;
965     }
966   }
967   sqlite3ReleaseTempReg(pParse, regRow);
968   sqlite3ReleaseTempReg(pParse, regRowid);
969 
970   /* The bottom of the loop
971   */
972   sqlite3VdbeResolveLabel(v, addrContinue);
973   if( p->selFlags & SF_UseSorter ){
974     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
975   }else{
976     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
977   }
978   sqlite3VdbeResolveLabel(v, addrBreak);
979   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
980     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
981   }
982 }
983 
984 /*
985 ** Return a pointer to a string containing the 'declaration type' of the
986 ** expression pExpr. The string may be treated as static by the caller.
987 **
988 ** The declaration type is the exact datatype definition extracted from the
989 ** original CREATE TABLE statement if the expression is a column. The
990 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
991 ** is considered a column can be complex in the presence of subqueries. The
992 ** result-set expression in all of the following SELECT statements is
993 ** considered a column by this function.
994 **
995 **   SELECT col FROM tbl;
996 **   SELECT (SELECT col FROM tbl;
997 **   SELECT (SELECT col FROM tbl);
998 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
999 **
1000 ** The declaration type for any expression other than a column is NULL.
1001 */
1002 static const char *columnType(
1003   NameContext *pNC,
1004   Expr *pExpr,
1005   const char **pzOriginDb,
1006   const char **pzOriginTab,
1007   const char **pzOriginCol
1008 ){
1009   char const *zType = 0;
1010   char const *zOriginDb = 0;
1011   char const *zOriginTab = 0;
1012   char const *zOriginCol = 0;
1013   int j;
1014   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1015 
1016   switch( pExpr->op ){
1017     case TK_AGG_COLUMN:
1018     case TK_COLUMN: {
1019       /* The expression is a column. Locate the table the column is being
1020       ** extracted from in NameContext.pSrcList. This table may be real
1021       ** database table or a subquery.
1022       */
1023       Table *pTab = 0;            /* Table structure column is extracted from */
1024       Select *pS = 0;             /* Select the column is extracted from */
1025       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1026       testcase( pExpr->op==TK_AGG_COLUMN );
1027       testcase( pExpr->op==TK_COLUMN );
1028       while( pNC && !pTab ){
1029         SrcList *pTabList = pNC->pSrcList;
1030         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1031         if( j<pTabList->nSrc ){
1032           pTab = pTabList->a[j].pTab;
1033           pS = pTabList->a[j].pSelect;
1034         }else{
1035           pNC = pNC->pNext;
1036         }
1037       }
1038 
1039       if( pTab==0 ){
1040         /* At one time, code such as "SELECT new.x" within a trigger would
1041         ** cause this condition to run.  Since then, we have restructured how
1042         ** trigger code is generated and so this condition is no longer
1043         ** possible. However, it can still be true for statements like
1044         ** the following:
1045         **
1046         **   CREATE TABLE t1(col INTEGER);
1047         **   SELECT (SELECT t1.col) FROM FROM t1;
1048         **
1049         ** when columnType() is called on the expression "t1.col" in the
1050         ** sub-select. In this case, set the column type to NULL, even
1051         ** though it should really be "INTEGER".
1052         **
1053         ** This is not a problem, as the column type of "t1.col" is never
1054         ** used. When columnType() is called on the expression
1055         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1056         ** branch below.  */
1057         break;
1058       }
1059 
1060       assert( pTab && pExpr->pTab==pTab );
1061       if( pS ){
1062         /* The "table" is actually a sub-select or a view in the FROM clause
1063         ** of the SELECT statement. Return the declaration type and origin
1064         ** data for the result-set column of the sub-select.
1065         */
1066         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1067           /* If iCol is less than zero, then the expression requests the
1068           ** rowid of the sub-select or view. This expression is legal (see
1069           ** test case misc2.2.2) - it always evaluates to NULL.
1070           */
1071           NameContext sNC;
1072           Expr *p = pS->pEList->a[iCol].pExpr;
1073           sNC.pSrcList = pS->pSrc;
1074           sNC.pNext = pNC;
1075           sNC.pParse = pNC->pParse;
1076           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1077         }
1078       }else if( ALWAYS(pTab->pSchema) ){
1079         /* A real table */
1080         assert( !pS );
1081         if( iCol<0 ) iCol = pTab->iPKey;
1082         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1083         if( iCol<0 ){
1084           zType = "INTEGER";
1085           zOriginCol = "rowid";
1086         }else{
1087           zType = pTab->aCol[iCol].zType;
1088           zOriginCol = pTab->aCol[iCol].zName;
1089         }
1090         zOriginTab = pTab->zName;
1091         if( pNC->pParse ){
1092           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1093           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
1094         }
1095       }
1096       break;
1097     }
1098 #ifndef SQLITE_OMIT_SUBQUERY
1099     case TK_SELECT: {
1100       /* The expression is a sub-select. Return the declaration type and
1101       ** origin info for the single column in the result set of the SELECT
1102       ** statement.
1103       */
1104       NameContext sNC;
1105       Select *pS = pExpr->x.pSelect;
1106       Expr *p = pS->pEList->a[0].pExpr;
1107       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1108       sNC.pSrcList = pS->pSrc;
1109       sNC.pNext = pNC;
1110       sNC.pParse = pNC->pParse;
1111       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1112       break;
1113     }
1114 #endif
1115   }
1116 
1117   if( pzOriginDb ){
1118     assert( pzOriginTab && pzOriginCol );
1119     *pzOriginDb = zOriginDb;
1120     *pzOriginTab = zOriginTab;
1121     *pzOriginCol = zOriginCol;
1122   }
1123   return zType;
1124 }
1125 
1126 /*
1127 ** Generate code that will tell the VDBE the declaration types of columns
1128 ** in the result set.
1129 */
1130 static void generateColumnTypes(
1131   Parse *pParse,      /* Parser context */
1132   SrcList *pTabList,  /* List of tables */
1133   ExprList *pEList    /* Expressions defining the result set */
1134 ){
1135 #ifndef SQLITE_OMIT_DECLTYPE
1136   Vdbe *v = pParse->pVdbe;
1137   int i;
1138   NameContext sNC;
1139   sNC.pSrcList = pTabList;
1140   sNC.pParse = pParse;
1141   for(i=0; i<pEList->nExpr; i++){
1142     Expr *p = pEList->a[i].pExpr;
1143     const char *zType;
1144 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1145     const char *zOrigDb = 0;
1146     const char *zOrigTab = 0;
1147     const char *zOrigCol = 0;
1148     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1149 
1150     /* The vdbe must make its own copy of the column-type and other
1151     ** column specific strings, in case the schema is reset before this
1152     ** virtual machine is deleted.
1153     */
1154     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1155     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1156     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1157 #else
1158     zType = columnType(&sNC, p, 0, 0, 0);
1159 #endif
1160     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1161   }
1162 #endif /* SQLITE_OMIT_DECLTYPE */
1163 }
1164 
1165 /*
1166 ** Generate code that will tell the VDBE the names of columns
1167 ** in the result set.  This information is used to provide the
1168 ** azCol[] values in the callback.
1169 */
1170 static void generateColumnNames(
1171   Parse *pParse,      /* Parser context */
1172   SrcList *pTabList,  /* List of tables */
1173   ExprList *pEList    /* Expressions defining the result set */
1174 ){
1175   Vdbe *v = pParse->pVdbe;
1176   int i, j;
1177   sqlite3 *db = pParse->db;
1178   int fullNames, shortNames;
1179 
1180 #ifndef SQLITE_OMIT_EXPLAIN
1181   /* If this is an EXPLAIN, skip this step */
1182   if( pParse->explain ){
1183     return;
1184   }
1185 #endif
1186 
1187   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1188   pParse->colNamesSet = 1;
1189   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1190   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1191   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1192   for(i=0; i<pEList->nExpr; i++){
1193     Expr *p;
1194     p = pEList->a[i].pExpr;
1195     if( NEVER(p==0) ) continue;
1196     if( pEList->a[i].zName ){
1197       char *zName = pEList->a[i].zName;
1198       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1199     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1200       Table *pTab;
1201       char *zCol;
1202       int iCol = p->iColumn;
1203       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1204         if( pTabList->a[j].iCursor==p->iTable ) break;
1205       }
1206       assert( j<pTabList->nSrc );
1207       pTab = pTabList->a[j].pTab;
1208       if( iCol<0 ) iCol = pTab->iPKey;
1209       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1210       if( iCol<0 ){
1211         zCol = "rowid";
1212       }else{
1213         zCol = pTab->aCol[iCol].zName;
1214       }
1215       if( !shortNames && !fullNames ){
1216         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1217             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1218       }else if( fullNames ){
1219         char *zName = 0;
1220         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1221         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1222       }else{
1223         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1224       }
1225     }else{
1226       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1227           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1228     }
1229   }
1230   generateColumnTypes(pParse, pTabList, pEList);
1231 }
1232 
1233 /*
1234 ** Given a an expression list (which is really the list of expressions
1235 ** that form the result set of a SELECT statement) compute appropriate
1236 ** column names for a table that would hold the expression list.
1237 **
1238 ** All column names will be unique.
1239 **
1240 ** Only the column names are computed.  Column.zType, Column.zColl,
1241 ** and other fields of Column are zeroed.
1242 **
1243 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1244 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1245 */
1246 static int selectColumnsFromExprList(
1247   Parse *pParse,          /* Parsing context */
1248   ExprList *pEList,       /* Expr list from which to derive column names */
1249   int *pnCol,             /* Write the number of columns here */
1250   Column **paCol          /* Write the new column list here */
1251 ){
1252   sqlite3 *db = pParse->db;   /* Database connection */
1253   int i, j;                   /* Loop counters */
1254   int cnt;                    /* Index added to make the name unique */
1255   Column *aCol, *pCol;        /* For looping over result columns */
1256   int nCol;                   /* Number of columns in the result set */
1257   Expr *p;                    /* Expression for a single result column */
1258   char *zName;                /* Column name */
1259   int nName;                  /* Size of name in zName[] */
1260 
1261   if( pEList ){
1262     nCol = pEList->nExpr;
1263     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1264     testcase( aCol==0 );
1265   }else{
1266     nCol = 0;
1267     aCol = 0;
1268   }
1269   *pnCol = nCol;
1270   *paCol = aCol;
1271 
1272   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1273     /* Get an appropriate name for the column
1274     */
1275     p = pEList->a[i].pExpr;
1276     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1277                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1278     if( (zName = pEList->a[i].zName)!=0 ){
1279       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1280       zName = sqlite3DbStrDup(db, zName);
1281     }else{
1282       Expr *pColExpr = p;  /* The expression that is the result column name */
1283       Table *pTab;         /* Table associated with this expression */
1284       while( pColExpr->op==TK_DOT ){
1285         pColExpr = pColExpr->pRight;
1286         assert( pColExpr!=0 );
1287       }
1288       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1289         /* For columns use the column name name */
1290         int iCol = pColExpr->iColumn;
1291         pTab = pColExpr->pTab;
1292         if( iCol<0 ) iCol = pTab->iPKey;
1293         zName = sqlite3MPrintf(db, "%s",
1294                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1295       }else if( pColExpr->op==TK_ID ){
1296         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1297         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1298       }else{
1299         /* Use the original text of the column expression as its name */
1300         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1301       }
1302     }
1303     if( db->mallocFailed ){
1304       sqlite3DbFree(db, zName);
1305       break;
1306     }
1307 
1308     /* Make sure the column name is unique.  If the name is not unique,
1309     ** append a integer to the name so that it becomes unique.
1310     */
1311     nName = sqlite3Strlen30(zName);
1312     for(j=cnt=0; j<i; j++){
1313       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1314         char *zNewName;
1315         zName[nName] = 0;
1316         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1317         sqlite3DbFree(db, zName);
1318         zName = zNewName;
1319         j = -1;
1320         if( zName==0 ) break;
1321       }
1322     }
1323     pCol->zName = zName;
1324   }
1325   if( db->mallocFailed ){
1326     for(j=0; j<i; j++){
1327       sqlite3DbFree(db, aCol[j].zName);
1328     }
1329     sqlite3DbFree(db, aCol);
1330     *paCol = 0;
1331     *pnCol = 0;
1332     return SQLITE_NOMEM;
1333   }
1334   return SQLITE_OK;
1335 }
1336 
1337 /*
1338 ** Add type and collation information to a column list based on
1339 ** a SELECT statement.
1340 **
1341 ** The column list presumably came from selectColumnNamesFromExprList().
1342 ** The column list has only names, not types or collations.  This
1343 ** routine goes through and adds the types and collations.
1344 **
1345 ** This routine requires that all identifiers in the SELECT
1346 ** statement be resolved.
1347 */
1348 static void selectAddColumnTypeAndCollation(
1349   Parse *pParse,        /* Parsing contexts */
1350   int nCol,             /* Number of columns */
1351   Column *aCol,         /* List of columns */
1352   Select *pSelect       /* SELECT used to determine types and collations */
1353 ){
1354   sqlite3 *db = pParse->db;
1355   NameContext sNC;
1356   Column *pCol;
1357   CollSeq *pColl;
1358   int i;
1359   Expr *p;
1360   struct ExprList_item *a;
1361 
1362   assert( pSelect!=0 );
1363   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1364   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1365   if( db->mallocFailed ) return;
1366   memset(&sNC, 0, sizeof(sNC));
1367   sNC.pSrcList = pSelect->pSrc;
1368   a = pSelect->pEList->a;
1369   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1370     p = a[i].pExpr;
1371     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1372     pCol->affinity = sqlite3ExprAffinity(p);
1373     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1374     pColl = sqlite3ExprCollSeq(pParse, p);
1375     if( pColl ){
1376       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1377     }
1378   }
1379 }
1380 
1381 /*
1382 ** Given a SELECT statement, generate a Table structure that describes
1383 ** the result set of that SELECT.
1384 */
1385 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1386   Table *pTab;
1387   sqlite3 *db = pParse->db;
1388   int savedFlags;
1389 
1390   savedFlags = db->flags;
1391   db->flags &= ~SQLITE_FullColNames;
1392   db->flags |= SQLITE_ShortColNames;
1393   sqlite3SelectPrep(pParse, pSelect, 0);
1394   if( pParse->nErr ) return 0;
1395   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1396   db->flags = savedFlags;
1397   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1398   if( pTab==0 ){
1399     return 0;
1400   }
1401   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1402   ** is disabled */
1403   assert( db->lookaside.bEnabled==0 );
1404   pTab->nRef = 1;
1405   pTab->zName = 0;
1406   pTab->nRowEst = 1000000;
1407   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1408   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1409   pTab->iPKey = -1;
1410   if( db->mallocFailed ){
1411     sqlite3DeleteTable(db, pTab);
1412     return 0;
1413   }
1414   return pTab;
1415 }
1416 
1417 /*
1418 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1419 ** If an error occurs, return NULL and leave a message in pParse.
1420 */
1421 Vdbe *sqlite3GetVdbe(Parse *pParse){
1422   Vdbe *v = pParse->pVdbe;
1423   if( v==0 ){
1424     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1425 #ifndef SQLITE_OMIT_TRACE
1426     if( v ){
1427       sqlite3VdbeAddOp0(v, OP_Trace);
1428     }
1429 #endif
1430   }
1431   return v;
1432 }
1433 
1434 
1435 /*
1436 ** Compute the iLimit and iOffset fields of the SELECT based on the
1437 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1438 ** that appear in the original SQL statement after the LIMIT and OFFSET
1439 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1440 ** are the integer memory register numbers for counters used to compute
1441 ** the limit and offset.  If there is no limit and/or offset, then
1442 ** iLimit and iOffset are negative.
1443 **
1444 ** This routine changes the values of iLimit and iOffset only if
1445 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1446 ** iOffset should have been preset to appropriate default values
1447 ** (usually but not always -1) prior to calling this routine.
1448 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1449 ** redefined.  The UNION ALL operator uses this property to force
1450 ** the reuse of the same limit and offset registers across multiple
1451 ** SELECT statements.
1452 */
1453 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1454   Vdbe *v = 0;
1455   int iLimit = 0;
1456   int iOffset;
1457   int addr1, n;
1458   if( p->iLimit ) return;
1459 
1460   /*
1461   ** "LIMIT -1" always shows all rows.  There is some
1462   ** contraversy about what the correct behavior should be.
1463   ** The current implementation interprets "LIMIT 0" to mean
1464   ** no rows.
1465   */
1466   sqlite3ExprCacheClear(pParse);
1467   assert( p->pOffset==0 || p->pLimit!=0 );
1468   if( p->pLimit ){
1469     p->iLimit = iLimit = ++pParse->nMem;
1470     v = sqlite3GetVdbe(pParse);
1471     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1472     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1473       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1474       VdbeComment((v, "LIMIT counter"));
1475       if( n==0 ){
1476         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1477       }else{
1478         if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
1479       }
1480     }else{
1481       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1482       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1483       VdbeComment((v, "LIMIT counter"));
1484       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1485     }
1486     if( p->pOffset ){
1487       p->iOffset = iOffset = ++pParse->nMem;
1488       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1489       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1490       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1491       VdbeComment((v, "OFFSET counter"));
1492       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1493       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1494       sqlite3VdbeJumpHere(v, addr1);
1495       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1496       VdbeComment((v, "LIMIT+OFFSET"));
1497       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1498       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1499       sqlite3VdbeJumpHere(v, addr1);
1500     }
1501   }
1502 }
1503 
1504 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1505 /*
1506 ** Return the appropriate collating sequence for the iCol-th column of
1507 ** the result set for the compound-select statement "p".  Return NULL if
1508 ** the column has no default collating sequence.
1509 **
1510 ** The collating sequence for the compound select is taken from the
1511 ** left-most term of the select that has a collating sequence.
1512 */
1513 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1514   CollSeq *pRet;
1515   if( p->pPrior ){
1516     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1517   }else{
1518     pRet = 0;
1519   }
1520   assert( iCol>=0 );
1521   if( pRet==0 && iCol<p->pEList->nExpr ){
1522     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1523   }
1524   return pRet;
1525 }
1526 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1527 
1528 /* Forward reference */
1529 static int multiSelectOrderBy(
1530   Parse *pParse,        /* Parsing context */
1531   Select *p,            /* The right-most of SELECTs to be coded */
1532   SelectDest *pDest     /* What to do with query results */
1533 );
1534 
1535 
1536 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1537 /*
1538 ** This routine is called to process a compound query form from
1539 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1540 ** INTERSECT
1541 **
1542 ** "p" points to the right-most of the two queries.  the query on the
1543 ** left is p->pPrior.  The left query could also be a compound query
1544 ** in which case this routine will be called recursively.
1545 **
1546 ** The results of the total query are to be written into a destination
1547 ** of type eDest with parameter iParm.
1548 **
1549 ** Example 1:  Consider a three-way compound SQL statement.
1550 **
1551 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1552 **
1553 ** This statement is parsed up as follows:
1554 **
1555 **     SELECT c FROM t3
1556 **      |
1557 **      `----->  SELECT b FROM t2
1558 **                |
1559 **                `------>  SELECT a FROM t1
1560 **
1561 ** The arrows in the diagram above represent the Select.pPrior pointer.
1562 ** So if this routine is called with p equal to the t3 query, then
1563 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1564 **
1565 ** Notice that because of the way SQLite parses compound SELECTs, the
1566 ** individual selects always group from left to right.
1567 */
1568 static int multiSelect(
1569   Parse *pParse,        /* Parsing context */
1570   Select *p,            /* The right-most of SELECTs to be coded */
1571   SelectDest *pDest     /* What to do with query results */
1572 ){
1573   int rc = SQLITE_OK;   /* Success code from a subroutine */
1574   Select *pPrior;       /* Another SELECT immediately to our left */
1575   Vdbe *v;              /* Generate code to this VDBE */
1576   SelectDest dest;      /* Alternative data destination */
1577   Select *pDelete = 0;  /* Chain of simple selects to delete */
1578   sqlite3 *db;          /* Database connection */
1579 #ifndef SQLITE_OMIT_EXPLAIN
1580   int iSub1;            /* EQP id of left-hand query */
1581   int iSub2;            /* EQP id of right-hand query */
1582 #endif
1583 
1584   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1585   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1586   */
1587   assert( p && p->pPrior );  /* Calling function guarantees this much */
1588   db = pParse->db;
1589   pPrior = p->pPrior;
1590   assert( pPrior->pRightmost!=pPrior );
1591   assert( pPrior->pRightmost==p->pRightmost );
1592   dest = *pDest;
1593   if( pPrior->pOrderBy ){
1594     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1595       selectOpName(p->op));
1596     rc = 1;
1597     goto multi_select_end;
1598   }
1599   if( pPrior->pLimit ){
1600     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1601       selectOpName(p->op));
1602     rc = 1;
1603     goto multi_select_end;
1604   }
1605 
1606   v = sqlite3GetVdbe(pParse);
1607   assert( v!=0 );  /* The VDBE already created by calling function */
1608 
1609   /* Create the destination temporary table if necessary
1610   */
1611   if( dest.eDest==SRT_EphemTab ){
1612     assert( p->pEList );
1613     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1614     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1615     dest.eDest = SRT_Table;
1616   }
1617 
1618   /* Make sure all SELECTs in the statement have the same number of elements
1619   ** in their result sets.
1620   */
1621   assert( p->pEList && pPrior->pEList );
1622   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1623     if( p->selFlags & SF_Values ){
1624       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
1625     }else{
1626       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1627         " do not have the same number of result columns", selectOpName(p->op));
1628     }
1629     rc = 1;
1630     goto multi_select_end;
1631   }
1632 
1633   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1634   */
1635   if( p->pOrderBy ){
1636     return multiSelectOrderBy(pParse, p, pDest);
1637   }
1638 
1639   /* Generate code for the left and right SELECT statements.
1640   */
1641   switch( p->op ){
1642     case TK_ALL: {
1643       int addr = 0;
1644       int nLimit;
1645       assert( !pPrior->pLimit );
1646       pPrior->pLimit = p->pLimit;
1647       pPrior->pOffset = p->pOffset;
1648       explainSetInteger(iSub1, pParse->iNextSelectId);
1649       rc = sqlite3Select(pParse, pPrior, &dest);
1650       p->pLimit = 0;
1651       p->pOffset = 0;
1652       if( rc ){
1653         goto multi_select_end;
1654       }
1655       p->pPrior = 0;
1656       p->iLimit = pPrior->iLimit;
1657       p->iOffset = pPrior->iOffset;
1658       if( p->iLimit ){
1659         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1660         VdbeComment((v, "Jump ahead if LIMIT reached"));
1661       }
1662       explainSetInteger(iSub2, pParse->iNextSelectId);
1663       rc = sqlite3Select(pParse, p, &dest);
1664       testcase( rc!=SQLITE_OK );
1665       pDelete = p->pPrior;
1666       p->pPrior = pPrior;
1667       p->nSelectRow += pPrior->nSelectRow;
1668       if( pPrior->pLimit
1669        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1670        && p->nSelectRow > (double)nLimit
1671       ){
1672         p->nSelectRow = (double)nLimit;
1673       }
1674       if( addr ){
1675         sqlite3VdbeJumpHere(v, addr);
1676       }
1677       break;
1678     }
1679     case TK_EXCEPT:
1680     case TK_UNION: {
1681       int unionTab;    /* Cursor number of the temporary table holding result */
1682       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1683       int priorOp;     /* The SRT_ operation to apply to prior selects */
1684       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1685       int addr;
1686       SelectDest uniondest;
1687 
1688       testcase( p->op==TK_EXCEPT );
1689       testcase( p->op==TK_UNION );
1690       priorOp = SRT_Union;
1691       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1692         /* We can reuse a temporary table generated by a SELECT to our
1693         ** right.
1694         */
1695         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1696                                      ** of a 3-way or more compound */
1697         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1698         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1699         unionTab = dest.iParm;
1700       }else{
1701         /* We will need to create our own temporary table to hold the
1702         ** intermediate results.
1703         */
1704         unionTab = pParse->nTab++;
1705         assert( p->pOrderBy==0 );
1706         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1707         assert( p->addrOpenEphm[0] == -1 );
1708         p->addrOpenEphm[0] = addr;
1709         p->pRightmost->selFlags |= SF_UsesEphemeral;
1710         assert( p->pEList );
1711       }
1712 
1713       /* Code the SELECT statements to our left
1714       */
1715       assert( !pPrior->pOrderBy );
1716       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1717       explainSetInteger(iSub1, pParse->iNextSelectId);
1718       rc = sqlite3Select(pParse, pPrior, &uniondest);
1719       if( rc ){
1720         goto multi_select_end;
1721       }
1722 
1723       /* Code the current SELECT statement
1724       */
1725       if( p->op==TK_EXCEPT ){
1726         op = SRT_Except;
1727       }else{
1728         assert( p->op==TK_UNION );
1729         op = SRT_Union;
1730       }
1731       p->pPrior = 0;
1732       pLimit = p->pLimit;
1733       p->pLimit = 0;
1734       pOffset = p->pOffset;
1735       p->pOffset = 0;
1736       uniondest.eDest = op;
1737       explainSetInteger(iSub2, pParse->iNextSelectId);
1738       rc = sqlite3Select(pParse, p, &uniondest);
1739       testcase( rc!=SQLITE_OK );
1740       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1741       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1742       sqlite3ExprListDelete(db, p->pOrderBy);
1743       pDelete = p->pPrior;
1744       p->pPrior = pPrior;
1745       p->pOrderBy = 0;
1746       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1747       sqlite3ExprDelete(db, p->pLimit);
1748       p->pLimit = pLimit;
1749       p->pOffset = pOffset;
1750       p->iLimit = 0;
1751       p->iOffset = 0;
1752 
1753       /* Convert the data in the temporary table into whatever form
1754       ** it is that we currently need.
1755       */
1756       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1757       if( dest.eDest!=priorOp ){
1758         int iCont, iBreak, iStart;
1759         assert( p->pEList );
1760         if( dest.eDest==SRT_Output ){
1761           Select *pFirst = p;
1762           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1763           generateColumnNames(pParse, 0, pFirst->pEList);
1764         }
1765         iBreak = sqlite3VdbeMakeLabel(v);
1766         iCont = sqlite3VdbeMakeLabel(v);
1767         computeLimitRegisters(pParse, p, iBreak);
1768         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1769         iStart = sqlite3VdbeCurrentAddr(v);
1770         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1771                         0, -1, &dest, iCont, iBreak);
1772         sqlite3VdbeResolveLabel(v, iCont);
1773         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1774         sqlite3VdbeResolveLabel(v, iBreak);
1775         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1776       }
1777       break;
1778     }
1779     default: assert( p->op==TK_INTERSECT ); {
1780       int tab1, tab2;
1781       int iCont, iBreak, iStart;
1782       Expr *pLimit, *pOffset;
1783       int addr;
1784       SelectDest intersectdest;
1785       int r1;
1786 
1787       /* INTERSECT is different from the others since it requires
1788       ** two temporary tables.  Hence it has its own case.  Begin
1789       ** by allocating the tables we will need.
1790       */
1791       tab1 = pParse->nTab++;
1792       tab2 = pParse->nTab++;
1793       assert( p->pOrderBy==0 );
1794 
1795       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1796       assert( p->addrOpenEphm[0] == -1 );
1797       p->addrOpenEphm[0] = addr;
1798       p->pRightmost->selFlags |= SF_UsesEphemeral;
1799       assert( p->pEList );
1800 
1801       /* Code the SELECTs to our left into temporary table "tab1".
1802       */
1803       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1804       explainSetInteger(iSub1, pParse->iNextSelectId);
1805       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1806       if( rc ){
1807         goto multi_select_end;
1808       }
1809 
1810       /* Code the current SELECT into temporary table "tab2"
1811       */
1812       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1813       assert( p->addrOpenEphm[1] == -1 );
1814       p->addrOpenEphm[1] = addr;
1815       p->pPrior = 0;
1816       pLimit = p->pLimit;
1817       p->pLimit = 0;
1818       pOffset = p->pOffset;
1819       p->pOffset = 0;
1820       intersectdest.iParm = tab2;
1821       explainSetInteger(iSub2, pParse->iNextSelectId);
1822       rc = sqlite3Select(pParse, p, &intersectdest);
1823       testcase( rc!=SQLITE_OK );
1824       pDelete = p->pPrior;
1825       p->pPrior = pPrior;
1826       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1827       sqlite3ExprDelete(db, p->pLimit);
1828       p->pLimit = pLimit;
1829       p->pOffset = pOffset;
1830 
1831       /* Generate code to take the intersection of the two temporary
1832       ** tables.
1833       */
1834       assert( p->pEList );
1835       if( dest.eDest==SRT_Output ){
1836         Select *pFirst = p;
1837         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1838         generateColumnNames(pParse, 0, pFirst->pEList);
1839       }
1840       iBreak = sqlite3VdbeMakeLabel(v);
1841       iCont = sqlite3VdbeMakeLabel(v);
1842       computeLimitRegisters(pParse, p, iBreak);
1843       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1844       r1 = sqlite3GetTempReg(pParse);
1845       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1846       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1847       sqlite3ReleaseTempReg(pParse, r1);
1848       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1849                       0, -1, &dest, iCont, iBreak);
1850       sqlite3VdbeResolveLabel(v, iCont);
1851       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1852       sqlite3VdbeResolveLabel(v, iBreak);
1853       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1854       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1855       break;
1856     }
1857   }
1858 
1859   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1860 
1861   /* Compute collating sequences used by
1862   ** temporary tables needed to implement the compound select.
1863   ** Attach the KeyInfo structure to all temporary tables.
1864   **
1865   ** This section is run by the right-most SELECT statement only.
1866   ** SELECT statements to the left always skip this part.  The right-most
1867   ** SELECT might also skip this part if it has no ORDER BY clause and
1868   ** no temp tables are required.
1869   */
1870   if( p->selFlags & SF_UsesEphemeral ){
1871     int i;                        /* Loop counter */
1872     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1873     Select *pLoop;                /* For looping through SELECT statements */
1874     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1875     int nCol;                     /* Number of columns in result set */
1876 
1877     assert( p->pRightmost==p );
1878     nCol = p->pEList->nExpr;
1879     pKeyInfo = sqlite3DbMallocZero(db,
1880                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1881     if( !pKeyInfo ){
1882       rc = SQLITE_NOMEM;
1883       goto multi_select_end;
1884     }
1885 
1886     pKeyInfo->enc = ENC(db);
1887     pKeyInfo->nField = (u16)nCol;
1888 
1889     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1890       *apColl = multiSelectCollSeq(pParse, p, i);
1891       if( 0==*apColl ){
1892         *apColl = db->pDfltColl;
1893       }
1894     }
1895 
1896     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1897       for(i=0; i<2; i++){
1898         int addr = pLoop->addrOpenEphm[i];
1899         if( addr<0 ){
1900           /* If [0] is unused then [1] is also unused.  So we can
1901           ** always safely abort as soon as the first unused slot is found */
1902           assert( pLoop->addrOpenEphm[1]<0 );
1903           break;
1904         }
1905         sqlite3VdbeChangeP2(v, addr, nCol);
1906         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1907         pLoop->addrOpenEphm[i] = -1;
1908       }
1909     }
1910     sqlite3DbFree(db, pKeyInfo);
1911   }
1912 
1913 multi_select_end:
1914   pDest->iMem = dest.iMem;
1915   pDest->nMem = dest.nMem;
1916   sqlite3SelectDelete(db, pDelete);
1917   return rc;
1918 }
1919 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1920 
1921 /*
1922 ** Code an output subroutine for a coroutine implementation of a
1923 ** SELECT statment.
1924 **
1925 ** The data to be output is contained in pIn->iMem.  There are
1926 ** pIn->nMem columns to be output.  pDest is where the output should
1927 ** be sent.
1928 **
1929 ** regReturn is the number of the register holding the subroutine
1930 ** return address.
1931 **
1932 ** If regPrev>0 then it is the first register in a vector that
1933 ** records the previous output.  mem[regPrev] is a flag that is false
1934 ** if there has been no previous output.  If regPrev>0 then code is
1935 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1936 ** keys.
1937 **
1938 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1939 ** iBreak.
1940 */
1941 static int generateOutputSubroutine(
1942   Parse *pParse,          /* Parsing context */
1943   Select *p,              /* The SELECT statement */
1944   SelectDest *pIn,        /* Coroutine supplying data */
1945   SelectDest *pDest,      /* Where to send the data */
1946   int regReturn,          /* The return address register */
1947   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1948   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1949   int p4type,             /* The p4 type for pKeyInfo */
1950   int iBreak              /* Jump here if we hit the LIMIT */
1951 ){
1952   Vdbe *v = pParse->pVdbe;
1953   int iContinue;
1954   int addr;
1955 
1956   addr = sqlite3VdbeCurrentAddr(v);
1957   iContinue = sqlite3VdbeMakeLabel(v);
1958 
1959   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1960   */
1961   if( regPrev ){
1962     int j1, j2;
1963     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1964     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1965                               (char*)pKeyInfo, p4type);
1966     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1967     sqlite3VdbeJumpHere(v, j1);
1968     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1969     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1970   }
1971   if( pParse->db->mallocFailed ) return 0;
1972 
1973   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1974   */
1975   codeOffset(v, p, iContinue);
1976 
1977   switch( pDest->eDest ){
1978     /* Store the result as data using a unique key.
1979     */
1980     case SRT_Table:
1981     case SRT_EphemTab: {
1982       int r1 = sqlite3GetTempReg(pParse);
1983       int r2 = sqlite3GetTempReg(pParse);
1984       testcase( pDest->eDest==SRT_Table );
1985       testcase( pDest->eDest==SRT_EphemTab );
1986       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1987       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1988       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1989       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1990       sqlite3ReleaseTempReg(pParse, r2);
1991       sqlite3ReleaseTempReg(pParse, r1);
1992       break;
1993     }
1994 
1995 #ifndef SQLITE_OMIT_SUBQUERY
1996     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1997     ** then there should be a single item on the stack.  Write this
1998     ** item into the set table with bogus data.
1999     */
2000     case SRT_Set: {
2001       int r1;
2002       assert( pIn->nMem==1 );
2003       p->affinity =
2004          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
2005       r1 = sqlite3GetTempReg(pParse);
2006       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
2007       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
2008       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
2009       sqlite3ReleaseTempReg(pParse, r1);
2010       break;
2011     }
2012 
2013 #if 0  /* Never occurs on an ORDER BY query */
2014     /* If any row exist in the result set, record that fact and abort.
2015     */
2016     case SRT_Exists: {
2017       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
2018       /* The LIMIT clause will terminate the loop for us */
2019       break;
2020     }
2021 #endif
2022 
2023     /* If this is a scalar select that is part of an expression, then
2024     ** store the results in the appropriate memory cell and break out
2025     ** of the scan loop.
2026     */
2027     case SRT_Mem: {
2028       assert( pIn->nMem==1 );
2029       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
2030       /* The LIMIT clause will jump out of the loop for us */
2031       break;
2032     }
2033 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2034 
2035     /* The results are stored in a sequence of registers
2036     ** starting at pDest->iMem.  Then the co-routine yields.
2037     */
2038     case SRT_Coroutine: {
2039       if( pDest->iMem==0 ){
2040         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
2041         pDest->nMem = pIn->nMem;
2042       }
2043       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
2044       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
2045       break;
2046     }
2047 
2048     /* If none of the above, then the result destination must be
2049     ** SRT_Output.  This routine is never called with any other
2050     ** destination other than the ones handled above or SRT_Output.
2051     **
2052     ** For SRT_Output, results are stored in a sequence of registers.
2053     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2054     ** return the next row of result.
2055     */
2056     default: {
2057       assert( pDest->eDest==SRT_Output );
2058       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
2059       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
2060       break;
2061     }
2062   }
2063 
2064   /* Jump to the end of the loop if the LIMIT is reached.
2065   */
2066   if( p->iLimit ){
2067     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2068   }
2069 
2070   /* Generate the subroutine return
2071   */
2072   sqlite3VdbeResolveLabel(v, iContinue);
2073   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2074 
2075   return addr;
2076 }
2077 
2078 /*
2079 ** Alternative compound select code generator for cases when there
2080 ** is an ORDER BY clause.
2081 **
2082 ** We assume a query of the following form:
2083 **
2084 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2085 **
2086 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2087 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2088 ** co-routines.  Then run the co-routines in parallel and merge the results
2089 ** into the output.  In addition to the two coroutines (called selectA and
2090 ** selectB) there are 7 subroutines:
2091 **
2092 **    outA:    Move the output of the selectA coroutine into the output
2093 **             of the compound query.
2094 **
2095 **    outB:    Move the output of the selectB coroutine into the output
2096 **             of the compound query.  (Only generated for UNION and
2097 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2098 **             appears only in B.)
2099 **
2100 **    AltB:    Called when there is data from both coroutines and A<B.
2101 **
2102 **    AeqB:    Called when there is data from both coroutines and A==B.
2103 **
2104 **    AgtB:    Called when there is data from both coroutines and A>B.
2105 **
2106 **    EofA:    Called when data is exhausted from selectA.
2107 **
2108 **    EofB:    Called when data is exhausted from selectB.
2109 **
2110 ** The implementation of the latter five subroutines depend on which
2111 ** <operator> is used:
2112 **
2113 **
2114 **             UNION ALL         UNION            EXCEPT          INTERSECT
2115 **          -------------  -----------------  --------------  -----------------
2116 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2117 **
2118 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2119 **
2120 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2121 **
2122 **   EofA:   outB, nextB      outB, nextB          halt             halt
2123 **
2124 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2125 **
2126 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2127 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2128 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2129 ** following nextX causes a jump to the end of the select processing.
2130 **
2131 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2132 ** within the output subroutine.  The regPrev register set holds the previously
2133 ** output value.  A comparison is made against this value and the output
2134 ** is skipped if the next results would be the same as the previous.
2135 **
2136 ** The implementation plan is to implement the two coroutines and seven
2137 ** subroutines first, then put the control logic at the bottom.  Like this:
2138 **
2139 **          goto Init
2140 **     coA: coroutine for left query (A)
2141 **     coB: coroutine for right query (B)
2142 **    outA: output one row of A
2143 **    outB: output one row of B (UNION and UNION ALL only)
2144 **    EofA: ...
2145 **    EofB: ...
2146 **    AltB: ...
2147 **    AeqB: ...
2148 **    AgtB: ...
2149 **    Init: initialize coroutine registers
2150 **          yield coA
2151 **          if eof(A) goto EofA
2152 **          yield coB
2153 **          if eof(B) goto EofB
2154 **    Cmpr: Compare A, B
2155 **          Jump AltB, AeqB, AgtB
2156 **     End: ...
2157 **
2158 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2159 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2160 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2161 ** and AgtB jump to either L2 or to one of EofA or EofB.
2162 */
2163 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2164 static int multiSelectOrderBy(
2165   Parse *pParse,        /* Parsing context */
2166   Select *p,            /* The right-most of SELECTs to be coded */
2167   SelectDest *pDest     /* What to do with query results */
2168 ){
2169   int i, j;             /* Loop counters */
2170   Select *pPrior;       /* Another SELECT immediately to our left */
2171   Vdbe *v;              /* Generate code to this VDBE */
2172   SelectDest destA;     /* Destination for coroutine A */
2173   SelectDest destB;     /* Destination for coroutine B */
2174   int regAddrA;         /* Address register for select-A coroutine */
2175   int regEofA;          /* Flag to indicate when select-A is complete */
2176   int regAddrB;         /* Address register for select-B coroutine */
2177   int regEofB;          /* Flag to indicate when select-B is complete */
2178   int addrSelectA;      /* Address of the select-A coroutine */
2179   int addrSelectB;      /* Address of the select-B coroutine */
2180   int regOutA;          /* Address register for the output-A subroutine */
2181   int regOutB;          /* Address register for the output-B subroutine */
2182   int addrOutA;         /* Address of the output-A subroutine */
2183   int addrOutB = 0;     /* Address of the output-B subroutine */
2184   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2185   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2186   int addrAltB;         /* Address of the A<B subroutine */
2187   int addrAeqB;         /* Address of the A==B subroutine */
2188   int addrAgtB;         /* Address of the A>B subroutine */
2189   int regLimitA;        /* Limit register for select-A */
2190   int regLimitB;        /* Limit register for select-A */
2191   int regPrev;          /* A range of registers to hold previous output */
2192   int savedLimit;       /* Saved value of p->iLimit */
2193   int savedOffset;      /* Saved value of p->iOffset */
2194   int labelCmpr;        /* Label for the start of the merge algorithm */
2195   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2196   int j1;               /* Jump instructions that get retargetted */
2197   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2198   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2199   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2200   sqlite3 *db;          /* Database connection */
2201   ExprList *pOrderBy;   /* The ORDER BY clause */
2202   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2203   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2204 #ifndef SQLITE_OMIT_EXPLAIN
2205   int iSub1;            /* EQP id of left-hand query */
2206   int iSub2;            /* EQP id of right-hand query */
2207 #endif
2208 
2209   assert( p->pOrderBy!=0 );
2210   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2211   db = pParse->db;
2212   v = pParse->pVdbe;
2213   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2214   labelEnd = sqlite3VdbeMakeLabel(v);
2215   labelCmpr = sqlite3VdbeMakeLabel(v);
2216 
2217 
2218   /* Patch up the ORDER BY clause
2219   */
2220   op = p->op;
2221   pPrior = p->pPrior;
2222   assert( pPrior->pOrderBy==0 );
2223   pOrderBy = p->pOrderBy;
2224   assert( pOrderBy );
2225   nOrderBy = pOrderBy->nExpr;
2226 
2227   /* For operators other than UNION ALL we have to make sure that
2228   ** the ORDER BY clause covers every term of the result set.  Add
2229   ** terms to the ORDER BY clause as necessary.
2230   */
2231   if( op!=TK_ALL ){
2232     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2233       struct ExprList_item *pItem;
2234       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2235         assert( pItem->iOrderByCol>0 );
2236         if( pItem->iOrderByCol==i ) break;
2237       }
2238       if( j==nOrderBy ){
2239         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2240         if( pNew==0 ) return SQLITE_NOMEM;
2241         pNew->flags |= EP_IntValue;
2242         pNew->u.iValue = i;
2243         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2244         if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i;
2245       }
2246     }
2247   }
2248 
2249   /* Compute the comparison permutation and keyinfo that is used with
2250   ** the permutation used to determine if the next
2251   ** row of results comes from selectA or selectB.  Also add explicit
2252   ** collations to the ORDER BY clause terms so that when the subqueries
2253   ** to the right and the left are evaluated, they use the correct
2254   ** collation.
2255   */
2256   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2257   if( aPermute ){
2258     struct ExprList_item *pItem;
2259     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2260       assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
2261       aPermute[i] = pItem->iOrderByCol - 1;
2262     }
2263     pKeyMerge =
2264       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2265     if( pKeyMerge ){
2266       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2267       pKeyMerge->nField = (u16)nOrderBy;
2268       pKeyMerge->enc = ENC(db);
2269       for(i=0; i<nOrderBy; i++){
2270         CollSeq *pColl;
2271         Expr *pTerm = pOrderBy->a[i].pExpr;
2272         if( pTerm->flags & EP_ExpCollate ){
2273           pColl = pTerm->pColl;
2274         }else{
2275           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2276           pTerm->flags |= EP_ExpCollate;
2277           pTerm->pColl = pColl;
2278         }
2279         pKeyMerge->aColl[i] = pColl;
2280         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2281       }
2282     }
2283   }else{
2284     pKeyMerge = 0;
2285   }
2286 
2287   /* Reattach the ORDER BY clause to the query.
2288   */
2289   p->pOrderBy = pOrderBy;
2290   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2291 
2292   /* Allocate a range of temporary registers and the KeyInfo needed
2293   ** for the logic that removes duplicate result rows when the
2294   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2295   */
2296   if( op==TK_ALL ){
2297     regPrev = 0;
2298   }else{
2299     int nExpr = p->pEList->nExpr;
2300     assert( nOrderBy>=nExpr || db->mallocFailed );
2301     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2302     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2303     pKeyDup = sqlite3DbMallocZero(db,
2304                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2305     if( pKeyDup ){
2306       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2307       pKeyDup->nField = (u16)nExpr;
2308       pKeyDup->enc = ENC(db);
2309       for(i=0; i<nExpr; i++){
2310         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2311         pKeyDup->aSortOrder[i] = 0;
2312       }
2313     }
2314   }
2315 
2316   /* Separate the left and the right query from one another
2317   */
2318   p->pPrior = 0;
2319   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2320   if( pPrior->pPrior==0 ){
2321     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2322   }
2323 
2324   /* Compute the limit registers */
2325   computeLimitRegisters(pParse, p, labelEnd);
2326   if( p->iLimit && op==TK_ALL ){
2327     regLimitA = ++pParse->nMem;
2328     regLimitB = ++pParse->nMem;
2329     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2330                                   regLimitA);
2331     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2332   }else{
2333     regLimitA = regLimitB = 0;
2334   }
2335   sqlite3ExprDelete(db, p->pLimit);
2336   p->pLimit = 0;
2337   sqlite3ExprDelete(db, p->pOffset);
2338   p->pOffset = 0;
2339 
2340   regAddrA = ++pParse->nMem;
2341   regEofA = ++pParse->nMem;
2342   regAddrB = ++pParse->nMem;
2343   regEofB = ++pParse->nMem;
2344   regOutA = ++pParse->nMem;
2345   regOutB = ++pParse->nMem;
2346   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2347   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2348 
2349   /* Jump past the various subroutines and coroutines to the main
2350   ** merge loop
2351   */
2352   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2353   addrSelectA = sqlite3VdbeCurrentAddr(v);
2354 
2355 
2356   /* Generate a coroutine to evaluate the SELECT statement to the
2357   ** left of the compound operator - the "A" select.
2358   */
2359   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2360   pPrior->iLimit = regLimitA;
2361   explainSetInteger(iSub1, pParse->iNextSelectId);
2362   sqlite3Select(pParse, pPrior, &destA);
2363   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2364   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2365   VdbeNoopComment((v, "End coroutine for left SELECT"));
2366 
2367   /* Generate a coroutine to evaluate the SELECT statement on
2368   ** the right - the "B" select
2369   */
2370   addrSelectB = sqlite3VdbeCurrentAddr(v);
2371   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2372   savedLimit = p->iLimit;
2373   savedOffset = p->iOffset;
2374   p->iLimit = regLimitB;
2375   p->iOffset = 0;
2376   explainSetInteger(iSub2, pParse->iNextSelectId);
2377   sqlite3Select(pParse, p, &destB);
2378   p->iLimit = savedLimit;
2379   p->iOffset = savedOffset;
2380   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2381   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2382   VdbeNoopComment((v, "End coroutine for right SELECT"));
2383 
2384   /* Generate a subroutine that outputs the current row of the A
2385   ** select as the next output row of the compound select.
2386   */
2387   VdbeNoopComment((v, "Output routine for A"));
2388   addrOutA = generateOutputSubroutine(pParse,
2389                  p, &destA, pDest, regOutA,
2390                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2391 
2392   /* Generate a subroutine that outputs the current row of the B
2393   ** select as the next output row of the compound select.
2394   */
2395   if( op==TK_ALL || op==TK_UNION ){
2396     VdbeNoopComment((v, "Output routine for B"));
2397     addrOutB = generateOutputSubroutine(pParse,
2398                  p, &destB, pDest, regOutB,
2399                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2400   }
2401 
2402   /* Generate a subroutine to run when the results from select A
2403   ** are exhausted and only data in select B remains.
2404   */
2405   VdbeNoopComment((v, "eof-A subroutine"));
2406   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2407     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2408   }else{
2409     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2410     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2411     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2412     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2413     p->nSelectRow += pPrior->nSelectRow;
2414   }
2415 
2416   /* Generate a subroutine to run when the results from select B
2417   ** are exhausted and only data in select A remains.
2418   */
2419   if( op==TK_INTERSECT ){
2420     addrEofB = addrEofA;
2421     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2422   }else{
2423     VdbeNoopComment((v, "eof-B subroutine"));
2424     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2425     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2426     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2427     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2428   }
2429 
2430   /* Generate code to handle the case of A<B
2431   */
2432   VdbeNoopComment((v, "A-lt-B subroutine"));
2433   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2434   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2435   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2436   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2437 
2438   /* Generate code to handle the case of A==B
2439   */
2440   if( op==TK_ALL ){
2441     addrAeqB = addrAltB;
2442   }else if( op==TK_INTERSECT ){
2443     addrAeqB = addrAltB;
2444     addrAltB++;
2445   }else{
2446     VdbeNoopComment((v, "A-eq-B subroutine"));
2447     addrAeqB =
2448     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2449     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2450     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2451   }
2452 
2453   /* Generate code to handle the case of A>B
2454   */
2455   VdbeNoopComment((v, "A-gt-B subroutine"));
2456   addrAgtB = sqlite3VdbeCurrentAddr(v);
2457   if( op==TK_ALL || op==TK_UNION ){
2458     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2459   }
2460   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2461   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2462   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2463 
2464   /* This code runs once to initialize everything.
2465   */
2466   sqlite3VdbeJumpHere(v, j1);
2467   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2468   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2469   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2470   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2471   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2472   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2473 
2474   /* Implement the main merge loop
2475   */
2476   sqlite3VdbeResolveLabel(v, labelCmpr);
2477   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2478   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2479                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2480   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2481 
2482   /* Release temporary registers
2483   */
2484   if( regPrev ){
2485     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2486   }
2487 
2488   /* Jump to the this point in order to terminate the query.
2489   */
2490   sqlite3VdbeResolveLabel(v, labelEnd);
2491 
2492   /* Set the number of output columns
2493   */
2494   if( pDest->eDest==SRT_Output ){
2495     Select *pFirst = pPrior;
2496     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2497     generateColumnNames(pParse, 0, pFirst->pEList);
2498   }
2499 
2500   /* Reassembly the compound query so that it will be freed correctly
2501   ** by the calling function */
2502   if( p->pPrior ){
2503     sqlite3SelectDelete(db, p->pPrior);
2504   }
2505   p->pPrior = pPrior;
2506 
2507   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2508   **** subqueries ****/
2509   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2510   return SQLITE_OK;
2511 }
2512 #endif
2513 
2514 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2515 /* Forward Declarations */
2516 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2517 static void substSelect(sqlite3*, Select *, int, ExprList *);
2518 
2519 /*
2520 ** Scan through the expression pExpr.  Replace every reference to
2521 ** a column in table number iTable with a copy of the iColumn-th
2522 ** entry in pEList.  (But leave references to the ROWID column
2523 ** unchanged.)
2524 **
2525 ** This routine is part of the flattening procedure.  A subquery
2526 ** whose result set is defined by pEList appears as entry in the
2527 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2528 ** FORM clause entry is iTable.  This routine make the necessary
2529 ** changes to pExpr so that it refers directly to the source table
2530 ** of the subquery rather the result set of the subquery.
2531 */
2532 static Expr *substExpr(
2533   sqlite3 *db,        /* Report malloc errors to this connection */
2534   Expr *pExpr,        /* Expr in which substitution occurs */
2535   int iTable,         /* Table to be substituted */
2536   ExprList *pEList    /* Substitute expressions */
2537 ){
2538   if( pExpr==0 ) return 0;
2539   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2540     if( pExpr->iColumn<0 ){
2541       pExpr->op = TK_NULL;
2542     }else{
2543       Expr *pNew;
2544       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2545       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2546       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2547       if( pNew && pExpr->pColl ){
2548         pNew->pColl = pExpr->pColl;
2549       }
2550       sqlite3ExprDelete(db, pExpr);
2551       pExpr = pNew;
2552     }
2553   }else{
2554     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2555     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2556     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2557       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2558     }else{
2559       substExprList(db, pExpr->x.pList, iTable, pEList);
2560     }
2561   }
2562   return pExpr;
2563 }
2564 static void substExprList(
2565   sqlite3 *db,         /* Report malloc errors here */
2566   ExprList *pList,     /* List to scan and in which to make substitutes */
2567   int iTable,          /* Table to be substituted */
2568   ExprList *pEList     /* Substitute values */
2569 ){
2570   int i;
2571   if( pList==0 ) return;
2572   for(i=0; i<pList->nExpr; i++){
2573     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2574   }
2575 }
2576 static void substSelect(
2577   sqlite3 *db,         /* Report malloc errors here */
2578   Select *p,           /* SELECT statement in which to make substitutions */
2579   int iTable,          /* Table to be replaced */
2580   ExprList *pEList     /* Substitute values */
2581 ){
2582   SrcList *pSrc;
2583   struct SrcList_item *pItem;
2584   int i;
2585   if( !p ) return;
2586   substExprList(db, p->pEList, iTable, pEList);
2587   substExprList(db, p->pGroupBy, iTable, pEList);
2588   substExprList(db, p->pOrderBy, iTable, pEList);
2589   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2590   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2591   substSelect(db, p->pPrior, iTable, pEList);
2592   pSrc = p->pSrc;
2593   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2594   if( ALWAYS(pSrc) ){
2595     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2596       substSelect(db, pItem->pSelect, iTable, pEList);
2597     }
2598   }
2599 }
2600 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2601 
2602 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2603 /*
2604 ** This routine attempts to flatten subqueries as a performance optimization.
2605 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
2606 **
2607 ** To understand the concept of flattening, consider the following
2608 ** query:
2609 **
2610 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2611 **
2612 ** The default way of implementing this query is to execute the
2613 ** subquery first and store the results in a temporary table, then
2614 ** run the outer query on that temporary table.  This requires two
2615 ** passes over the data.  Furthermore, because the temporary table
2616 ** has no indices, the WHERE clause on the outer query cannot be
2617 ** optimized.
2618 **
2619 ** This routine attempts to rewrite queries such as the above into
2620 ** a single flat select, like this:
2621 **
2622 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2623 **
2624 ** The code generated for this simpification gives the same result
2625 ** but only has to scan the data once.  And because indices might
2626 ** exist on the table t1, a complete scan of the data might be
2627 ** avoided.
2628 **
2629 ** Flattening is only attempted if all of the following are true:
2630 **
2631 **   (1)  The subquery and the outer query do not both use aggregates.
2632 **
2633 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2634 **
2635 **   (3)  The subquery is not the right operand of a left outer join
2636 **        (Originally ticket #306.  Strengthened by ticket #3300)
2637 **
2638 **   (4)  The subquery is not DISTINCT.
2639 **
2640 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
2641 **        sub-queries that were excluded from this optimization. Restriction
2642 **        (4) has since been expanded to exclude all DISTINCT subqueries.
2643 **
2644 **   (6)  The subquery does not use aggregates or the outer query is not
2645 **        DISTINCT.
2646 **
2647 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
2648 **        A FROM clause, consider adding a FROM close with the special
2649 **        table sqlite_once that consists of a single row containing a
2650 **        single NULL.
2651 **
2652 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2653 **
2654 **   (9)  The subquery does not use LIMIT or the outer query does not use
2655 **        aggregates.
2656 **
2657 **  (10)  The subquery does not use aggregates or the outer query does not
2658 **        use LIMIT.
2659 **
2660 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2661 **
2662 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
2663 **        a separate restriction deriving from ticket #350.
2664 **
2665 **  (13)  The subquery and outer query do not both use LIMIT.
2666 **
2667 **  (14)  The subquery does not use OFFSET.
2668 **
2669 **  (15)  The outer query is not part of a compound select or the
2670 **        subquery does not have a LIMIT clause.
2671 **        (See ticket #2339 and ticket [02a8e81d44]).
2672 **
2673 **  (16)  The outer query is not an aggregate or the subquery does
2674 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2675 **        until we introduced the group_concat() function.
2676 **
2677 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2678 **        compound clause made up entirely of non-aggregate queries, and
2679 **        the parent query:
2680 **
2681 **          * is not itself part of a compound select,
2682 **          * is not an aggregate or DISTINCT query, and
2683 **          * is not a join
2684 **
2685 **        The parent and sub-query may contain WHERE clauses. Subject to
2686 **        rules (11), (13) and (14), they may also contain ORDER BY,
2687 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
2688 **        operator other than UNION ALL because all the other compound
2689 **        operators have an implied DISTINCT which is disallowed by
2690 **        restriction (4).
2691 **
2692 **  (18)  If the sub-query is a compound select, then all terms of the
2693 **        ORDER by clause of the parent must be simple references to
2694 **        columns of the sub-query.
2695 **
2696 **  (19)  The subquery does not use LIMIT or the outer query does not
2697 **        have a WHERE clause.
2698 **
2699 **  (20)  If the sub-query is a compound select, then it must not use
2700 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2701 **        somewhat by saying that the terms of the ORDER BY clause must
2702 **        appear as unmodified result columns in the outer query.  But we
2703 **        have other optimizations in mind to deal with that case.
2704 **
2705 **  (21)  The subquery does not use LIMIT or the outer query is not
2706 **        DISTINCT.  (See ticket [752e1646fc]).
2707 **
2708 ** In this routine, the "p" parameter is a pointer to the outer query.
2709 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2710 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2711 **
2712 ** If flattening is not attempted, this routine is a no-op and returns 0.
2713 ** If flattening is attempted this routine returns 1.
2714 **
2715 ** All of the expression analysis must occur on both the outer query and
2716 ** the subquery before this routine runs.
2717 */
2718 static int flattenSubquery(
2719   Parse *pParse,       /* Parsing context */
2720   Select *p,           /* The parent or outer SELECT statement */
2721   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2722   int isAgg,           /* True if outer SELECT uses aggregate functions */
2723   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2724 ){
2725   const char *zSavedAuthContext = pParse->zAuthContext;
2726   Select *pParent;
2727   Select *pSub;       /* The inner query or "subquery" */
2728   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2729   SrcList *pSrc;      /* The FROM clause of the outer query */
2730   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2731   ExprList *pList;    /* The result set of the outer query */
2732   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2733   int i;              /* Loop counter */
2734   Expr *pWhere;                    /* The WHERE clause */
2735   struct SrcList_item *pSubitem;   /* The subquery */
2736   sqlite3 *db = pParse->db;
2737 
2738   /* Check to see if flattening is permitted.  Return 0 if not.
2739   */
2740   assert( p!=0 );
2741   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2742   if( db->flags & SQLITE_QueryFlattener ) return 0;
2743   pSrc = p->pSrc;
2744   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2745   pSubitem = &pSrc->a[iFrom];
2746   iParent = pSubitem->iCursor;
2747   pSub = pSubitem->pSelect;
2748   assert( pSub!=0 );
2749   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2750   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2751   pSubSrc = pSub->pSrc;
2752   assert( pSubSrc );
2753   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2754   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2755   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2756   ** became arbitrary expressions, we were forced to add restrictions (13)
2757   ** and (14). */
2758   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2759   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2760   if( p->pRightmost && pSub->pLimit ){
2761     return 0;                                            /* Restriction (15) */
2762   }
2763   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2764   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
2765   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2766      return 0;         /* Restrictions (8)(9) */
2767   }
2768   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2769      return 0;         /* Restriction (6)  */
2770   }
2771   if( p->pOrderBy && pSub->pOrderBy ){
2772      return 0;                                           /* Restriction (11) */
2773   }
2774   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2775   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2776   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2777      return 0;         /* Restriction (21) */
2778   }
2779 
2780   /* OBSOLETE COMMENT 1:
2781   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2782   ** not used as the right operand of an outer join.  Examples of why this
2783   ** is not allowed:
2784   **
2785   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2786   **
2787   ** If we flatten the above, we would get
2788   **
2789   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2790   **
2791   ** which is not at all the same thing.
2792   **
2793   ** OBSOLETE COMMENT 2:
2794   ** Restriction 12:  If the subquery is the right operand of a left outer
2795   ** join, make sure the subquery has no WHERE clause.
2796   ** An examples of why this is not allowed:
2797   **
2798   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2799   **
2800   ** If we flatten the above, we would get
2801   **
2802   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2803   **
2804   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2805   ** effectively converts the OUTER JOIN into an INNER JOIN.
2806   **
2807   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2808   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2809   ** is fraught with danger.  Best to avoid the whole thing.  If the
2810   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2811   */
2812   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2813     return 0;
2814   }
2815 
2816   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2817   ** use only the UNION ALL operator. And none of the simple select queries
2818   ** that make up the compound SELECT are allowed to be aggregate or distinct
2819   ** queries.
2820   */
2821   if( pSub->pPrior ){
2822     if( pSub->pOrderBy ){
2823       return 0;  /* Restriction 20 */
2824     }
2825     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2826       return 0;
2827     }
2828     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2829       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2830       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2831       assert( pSub->pSrc!=0 );
2832       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2833        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2834        || pSub1->pSrc->nSrc<1
2835       ){
2836         return 0;
2837       }
2838       testcase( pSub1->pSrc->nSrc>1 );
2839     }
2840 
2841     /* Restriction 18. */
2842     if( p->pOrderBy ){
2843       int ii;
2844       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2845         if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0;
2846       }
2847     }
2848   }
2849 
2850   /***** If we reach this point, flattening is permitted. *****/
2851 
2852   /* Authorize the subquery */
2853   pParse->zAuthContext = pSubitem->zName;
2854   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2855   testcase( i==SQLITE_DENY );
2856   pParse->zAuthContext = zSavedAuthContext;
2857 
2858   /* If the sub-query is a compound SELECT statement, then (by restrictions
2859   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2860   ** be of the form:
2861   **
2862   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2863   **
2864   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2865   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2866   ** OFFSET clauses and joins them to the left-hand-side of the original
2867   ** using UNION ALL operators. In this case N is the number of simple
2868   ** select statements in the compound sub-query.
2869   **
2870   ** Example:
2871   **
2872   **     SELECT a+1 FROM (
2873   **        SELECT x FROM tab
2874   **        UNION ALL
2875   **        SELECT y FROM tab
2876   **        UNION ALL
2877   **        SELECT abs(z*2) FROM tab2
2878   **     ) WHERE a!=5 ORDER BY 1
2879   **
2880   ** Transformed into:
2881   **
2882   **     SELECT x+1 FROM tab WHERE x+1!=5
2883   **     UNION ALL
2884   **     SELECT y+1 FROM tab WHERE y+1!=5
2885   **     UNION ALL
2886   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2887   **     ORDER BY 1
2888   **
2889   ** We call this the "compound-subquery flattening".
2890   */
2891   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2892     Select *pNew;
2893     ExprList *pOrderBy = p->pOrderBy;
2894     Expr *pLimit = p->pLimit;
2895     Select *pPrior = p->pPrior;
2896     p->pOrderBy = 0;
2897     p->pSrc = 0;
2898     p->pPrior = 0;
2899     p->pLimit = 0;
2900     pNew = sqlite3SelectDup(db, p, 0);
2901     p->pLimit = pLimit;
2902     p->pOrderBy = pOrderBy;
2903     p->pSrc = pSrc;
2904     p->op = TK_ALL;
2905     p->pRightmost = 0;
2906     if( pNew==0 ){
2907       pNew = pPrior;
2908     }else{
2909       pNew->pPrior = pPrior;
2910       pNew->pRightmost = 0;
2911     }
2912     p->pPrior = pNew;
2913     if( db->mallocFailed ) return 1;
2914   }
2915 
2916   /* Begin flattening the iFrom-th entry of the FROM clause
2917   ** in the outer query.
2918   */
2919   pSub = pSub1 = pSubitem->pSelect;
2920 
2921   /* Delete the transient table structure associated with the
2922   ** subquery
2923   */
2924   sqlite3DbFree(db, pSubitem->zDatabase);
2925   sqlite3DbFree(db, pSubitem->zName);
2926   sqlite3DbFree(db, pSubitem->zAlias);
2927   pSubitem->zDatabase = 0;
2928   pSubitem->zName = 0;
2929   pSubitem->zAlias = 0;
2930   pSubitem->pSelect = 0;
2931 
2932   /* Defer deleting the Table object associated with the
2933   ** subquery until code generation is
2934   ** complete, since there may still exist Expr.pTab entries that
2935   ** refer to the subquery even after flattening.  Ticket #3346.
2936   **
2937   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2938   */
2939   if( ALWAYS(pSubitem->pTab!=0) ){
2940     Table *pTabToDel = pSubitem->pTab;
2941     if( pTabToDel->nRef==1 ){
2942       Parse *pToplevel = sqlite3ParseToplevel(pParse);
2943       pTabToDel->pNextZombie = pToplevel->pZombieTab;
2944       pToplevel->pZombieTab = pTabToDel;
2945     }else{
2946       pTabToDel->nRef--;
2947     }
2948     pSubitem->pTab = 0;
2949   }
2950 
2951   /* The following loop runs once for each term in a compound-subquery
2952   ** flattening (as described above).  If we are doing a different kind
2953   ** of flattening - a flattening other than a compound-subquery flattening -
2954   ** then this loop only runs once.
2955   **
2956   ** This loop moves all of the FROM elements of the subquery into the
2957   ** the FROM clause of the outer query.  Before doing this, remember
2958   ** the cursor number for the original outer query FROM element in
2959   ** iParent.  The iParent cursor will never be used.  Subsequent code
2960   ** will scan expressions looking for iParent references and replace
2961   ** those references with expressions that resolve to the subquery FROM
2962   ** elements we are now copying in.
2963   */
2964   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2965     int nSubSrc;
2966     u8 jointype = 0;
2967     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2968     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2969     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2970 
2971     if( pSrc ){
2972       assert( pParent==p );  /* First time through the loop */
2973       jointype = pSubitem->jointype;
2974     }else{
2975       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2976       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2977       if( pSrc==0 ){
2978         assert( db->mallocFailed );
2979         break;
2980       }
2981     }
2982 
2983     /* The subquery uses a single slot of the FROM clause of the outer
2984     ** query.  If the subquery has more than one element in its FROM clause,
2985     ** then expand the outer query to make space for it to hold all elements
2986     ** of the subquery.
2987     **
2988     ** Example:
2989     **
2990     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2991     **
2992     ** The outer query has 3 slots in its FROM clause.  One slot of the
2993     ** outer query (the middle slot) is used by the subquery.  The next
2994     ** block of code will expand the out query to 4 slots.  The middle
2995     ** slot is expanded to two slots in order to make space for the
2996     ** two elements in the FROM clause of the subquery.
2997     */
2998     if( nSubSrc>1 ){
2999       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3000       if( db->mallocFailed ){
3001         break;
3002       }
3003     }
3004 
3005     /* Transfer the FROM clause terms from the subquery into the
3006     ** outer query.
3007     */
3008     for(i=0; i<nSubSrc; i++){
3009       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3010       pSrc->a[i+iFrom] = pSubSrc->a[i];
3011       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3012     }
3013     pSrc->a[iFrom].jointype = jointype;
3014 
3015     /* Now begin substituting subquery result set expressions for
3016     ** references to the iParent in the outer query.
3017     **
3018     ** Example:
3019     **
3020     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3021     **   \                     \_____________ subquery __________/          /
3022     **    \_____________________ outer query ______________________________/
3023     **
3024     ** We look at every expression in the outer query and every place we see
3025     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3026     */
3027     pList = pParent->pEList;
3028     for(i=0; i<pList->nExpr; i++){
3029       if( pList->a[i].zName==0 ){
3030         const char *zSpan = pList->a[i].zSpan;
3031         if( ALWAYS(zSpan) ){
3032           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
3033         }
3034       }
3035     }
3036     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3037     if( isAgg ){
3038       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3039       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3040     }
3041     if( pSub->pOrderBy ){
3042       assert( pParent->pOrderBy==0 );
3043       pParent->pOrderBy = pSub->pOrderBy;
3044       pSub->pOrderBy = 0;
3045     }else if( pParent->pOrderBy ){
3046       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3047     }
3048     if( pSub->pWhere ){
3049       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3050     }else{
3051       pWhere = 0;
3052     }
3053     if( subqueryIsAgg ){
3054       assert( pParent->pHaving==0 );
3055       pParent->pHaving = pParent->pWhere;
3056       pParent->pWhere = pWhere;
3057       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3058       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3059                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3060       assert( pParent->pGroupBy==0 );
3061       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3062     }else{
3063       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3064       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3065     }
3066 
3067     /* The flattened query is distinct if either the inner or the
3068     ** outer query is distinct.
3069     */
3070     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3071 
3072     /*
3073     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3074     **
3075     ** One is tempted to try to add a and b to combine the limits.  But this
3076     ** does not work if either limit is negative.
3077     */
3078     if( pSub->pLimit ){
3079       pParent->pLimit = pSub->pLimit;
3080       pSub->pLimit = 0;
3081     }
3082   }
3083 
3084   /* Finially, delete what is left of the subquery and return
3085   ** success.
3086   */
3087   sqlite3SelectDelete(db, pSub1);
3088 
3089   return 1;
3090 }
3091 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3092 
3093 /*
3094 ** Analyze the SELECT statement passed as an argument to see if it
3095 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
3096 ** it is, or 0 otherwise. At present, a query is considered to be
3097 ** a min()/max() query if:
3098 **
3099 **   1. There is a single object in the FROM clause.
3100 **
3101 **   2. There is a single expression in the result set, and it is
3102 **      either min(x) or max(x), where x is a column reference.
3103 */
3104 static u8 minMaxQuery(Select *p){
3105   Expr *pExpr;
3106   ExprList *pEList = p->pEList;
3107 
3108   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
3109   pExpr = pEList->a[0].pExpr;
3110   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3111   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
3112   pEList = pExpr->x.pList;
3113   if( pEList==0 || pEList->nExpr!=1 ) return 0;
3114   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
3115   assert( !ExprHasProperty(pExpr, EP_IntValue) );
3116   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
3117     return WHERE_ORDERBY_MIN;
3118   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
3119     return WHERE_ORDERBY_MAX;
3120   }
3121   return WHERE_ORDERBY_NORMAL;
3122 }
3123 
3124 /*
3125 ** The select statement passed as the first argument is an aggregate query.
3126 ** The second argment is the associated aggregate-info object. This
3127 ** function tests if the SELECT is of the form:
3128 **
3129 **   SELECT count(*) FROM <tbl>
3130 **
3131 ** where table is a database table, not a sub-select or view. If the query
3132 ** does match this pattern, then a pointer to the Table object representing
3133 ** <tbl> is returned. Otherwise, 0 is returned.
3134 */
3135 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3136   Table *pTab;
3137   Expr *pExpr;
3138 
3139   assert( !p->pGroupBy );
3140 
3141   if( p->pWhere || p->pEList->nExpr!=1
3142    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3143   ){
3144     return 0;
3145   }
3146   pTab = p->pSrc->a[0].pTab;
3147   pExpr = p->pEList->a[0].pExpr;
3148   assert( pTab && !pTab->pSelect && pExpr );
3149 
3150   if( IsVirtual(pTab) ) return 0;
3151   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3152   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3153   if( pExpr->flags&EP_Distinct ) return 0;
3154 
3155   return pTab;
3156 }
3157 
3158 /*
3159 ** If the source-list item passed as an argument was augmented with an
3160 ** INDEXED BY clause, then try to locate the specified index. If there
3161 ** was such a clause and the named index cannot be found, return
3162 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3163 ** pFrom->pIndex and return SQLITE_OK.
3164 */
3165 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3166   if( pFrom->pTab && pFrom->zIndex ){
3167     Table *pTab = pFrom->pTab;
3168     char *zIndex = pFrom->zIndex;
3169     Index *pIdx;
3170     for(pIdx=pTab->pIndex;
3171         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3172         pIdx=pIdx->pNext
3173     );
3174     if( !pIdx ){
3175       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3176       pParse->checkSchema = 1;
3177       return SQLITE_ERROR;
3178     }
3179     pFrom->pIndex = pIdx;
3180   }
3181   return SQLITE_OK;
3182 }
3183 
3184 /*
3185 ** This routine is a Walker callback for "expanding" a SELECT statement.
3186 ** "Expanding" means to do the following:
3187 **
3188 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3189 **         element of the FROM clause.
3190 **
3191 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3192 **         defines FROM clause.  When views appear in the FROM clause,
3193 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3194 **         that implements the view.  A copy is made of the view's SELECT
3195 **         statement so that we can freely modify or delete that statement
3196 **         without worrying about messing up the presistent representation
3197 **         of the view.
3198 **
3199 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3200 **         on joins and the ON and USING clause of joins.
3201 **
3202 **    (4)  Scan the list of columns in the result set (pEList) looking
3203 **         for instances of the "*" operator or the TABLE.* operator.
3204 **         If found, expand each "*" to be every column in every table
3205 **         and TABLE.* to be every column in TABLE.
3206 **
3207 */
3208 static int selectExpander(Walker *pWalker, Select *p){
3209   Parse *pParse = pWalker->pParse;
3210   int i, j, k;
3211   SrcList *pTabList;
3212   ExprList *pEList;
3213   struct SrcList_item *pFrom;
3214   sqlite3 *db = pParse->db;
3215 
3216   if( db->mallocFailed  ){
3217     return WRC_Abort;
3218   }
3219   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3220     return WRC_Prune;
3221   }
3222   p->selFlags |= SF_Expanded;
3223   pTabList = p->pSrc;
3224   pEList = p->pEList;
3225 
3226   /* Make sure cursor numbers have been assigned to all entries in
3227   ** the FROM clause of the SELECT statement.
3228   */
3229   sqlite3SrcListAssignCursors(pParse, pTabList);
3230 
3231   /* Look up every table named in the FROM clause of the select.  If
3232   ** an entry of the FROM clause is a subquery instead of a table or view,
3233   ** then create a transient table structure to describe the subquery.
3234   */
3235   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3236     Table *pTab;
3237     if( pFrom->pTab!=0 ){
3238       /* This statement has already been prepared.  There is no need
3239       ** to go further. */
3240       assert( i==0 );
3241       return WRC_Prune;
3242     }
3243     if( pFrom->zName==0 ){
3244 #ifndef SQLITE_OMIT_SUBQUERY
3245       Select *pSel = pFrom->pSelect;
3246       /* A sub-query in the FROM clause of a SELECT */
3247       assert( pSel!=0 );
3248       assert( pFrom->pTab==0 );
3249       sqlite3WalkSelect(pWalker, pSel);
3250       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3251       if( pTab==0 ) return WRC_Abort;
3252       pTab->nRef = 1;
3253       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3254       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3255       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3256       pTab->iPKey = -1;
3257       pTab->nRowEst = 1000000;
3258       pTab->tabFlags |= TF_Ephemeral;
3259 #endif
3260     }else{
3261       /* An ordinary table or view name in the FROM clause */
3262       assert( pFrom->pTab==0 );
3263       pFrom->pTab = pTab =
3264         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3265       if( pTab==0 ) return WRC_Abort;
3266       pTab->nRef++;
3267 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3268       if( pTab->pSelect || IsVirtual(pTab) ){
3269         /* We reach here if the named table is a really a view */
3270         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3271         assert( pFrom->pSelect==0 );
3272         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3273         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3274       }
3275 #endif
3276     }
3277 
3278     /* Locate the index named by the INDEXED BY clause, if any. */
3279     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3280       return WRC_Abort;
3281     }
3282   }
3283 
3284   /* Process NATURAL keywords, and ON and USING clauses of joins.
3285   */
3286   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3287     return WRC_Abort;
3288   }
3289 
3290   /* For every "*" that occurs in the column list, insert the names of
3291   ** all columns in all tables.  And for every TABLE.* insert the names
3292   ** of all columns in TABLE.  The parser inserted a special expression
3293   ** with the TK_ALL operator for each "*" that it found in the column list.
3294   ** The following code just has to locate the TK_ALL expressions and expand
3295   ** each one to the list of all columns in all tables.
3296   **
3297   ** The first loop just checks to see if there are any "*" operators
3298   ** that need expanding.
3299   */
3300   for(k=0; k<pEList->nExpr; k++){
3301     Expr *pE = pEList->a[k].pExpr;
3302     if( pE->op==TK_ALL ) break;
3303     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3304     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3305     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3306   }
3307   if( k<pEList->nExpr ){
3308     /*
3309     ** If we get here it means the result set contains one or more "*"
3310     ** operators that need to be expanded.  Loop through each expression
3311     ** in the result set and expand them one by one.
3312     */
3313     struct ExprList_item *a = pEList->a;
3314     ExprList *pNew = 0;
3315     int flags = pParse->db->flags;
3316     int longNames = (flags & SQLITE_FullColNames)!=0
3317                       && (flags & SQLITE_ShortColNames)==0;
3318 
3319     for(k=0; k<pEList->nExpr; k++){
3320       Expr *pE = a[k].pExpr;
3321       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3322       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3323         /* This particular expression does not need to be expanded.
3324         */
3325         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3326         if( pNew ){
3327           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3328           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3329           a[k].zName = 0;
3330           a[k].zSpan = 0;
3331         }
3332         a[k].pExpr = 0;
3333       }else{
3334         /* This expression is a "*" or a "TABLE.*" and needs to be
3335         ** expanded. */
3336         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3337         char *zTName;            /* text of name of TABLE */
3338         if( pE->op==TK_DOT ){
3339           assert( pE->pLeft!=0 );
3340           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3341           zTName = pE->pLeft->u.zToken;
3342         }else{
3343           zTName = 0;
3344         }
3345         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3346           Table *pTab = pFrom->pTab;
3347           char *zTabName = pFrom->zAlias;
3348           if( zTabName==0 ){
3349             zTabName = pTab->zName;
3350           }
3351           if( db->mallocFailed ) break;
3352           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3353             continue;
3354           }
3355           tableSeen = 1;
3356           for(j=0; j<pTab->nCol; j++){
3357             Expr *pExpr, *pRight;
3358             char *zName = pTab->aCol[j].zName;
3359             char *zColname;  /* The computed column name */
3360             char *zToFree;   /* Malloced string that needs to be freed */
3361             Token sColname;  /* Computed column name as a token */
3362 
3363             /* If a column is marked as 'hidden' (currently only possible
3364             ** for virtual tables), do not include it in the expanded
3365             ** result-set list.
3366             */
3367             if( IsHiddenColumn(&pTab->aCol[j]) ){
3368               assert(IsVirtual(pTab));
3369               continue;
3370             }
3371 
3372             if( i>0 && zTName==0 ){
3373               if( (pFrom->jointype & JT_NATURAL)!=0
3374                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3375               ){
3376                 /* In a NATURAL join, omit the join columns from the
3377                 ** table to the right of the join */
3378                 continue;
3379               }
3380               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3381                 /* In a join with a USING clause, omit columns in the
3382                 ** using clause from the table on the right. */
3383                 continue;
3384               }
3385             }
3386             pRight = sqlite3Expr(db, TK_ID, zName);
3387             zColname = zName;
3388             zToFree = 0;
3389             if( longNames || pTabList->nSrc>1 ){
3390               Expr *pLeft;
3391               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3392               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3393               if( longNames ){
3394                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3395                 zToFree = zColname;
3396               }
3397             }else{
3398               pExpr = pRight;
3399             }
3400             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3401             sColname.z = zColname;
3402             sColname.n = sqlite3Strlen30(zColname);
3403             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3404             sqlite3DbFree(db, zToFree);
3405           }
3406         }
3407         if( !tableSeen ){
3408           if( zTName ){
3409             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3410           }else{
3411             sqlite3ErrorMsg(pParse, "no tables specified");
3412           }
3413         }
3414       }
3415     }
3416     sqlite3ExprListDelete(db, pEList);
3417     p->pEList = pNew;
3418   }
3419 #if SQLITE_MAX_COLUMN
3420   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3421     sqlite3ErrorMsg(pParse, "too many columns in result set");
3422   }
3423 #endif
3424   return WRC_Continue;
3425 }
3426 
3427 /*
3428 ** No-op routine for the parse-tree walker.
3429 **
3430 ** When this routine is the Walker.xExprCallback then expression trees
3431 ** are walked without any actions being taken at each node.  Presumably,
3432 ** when this routine is used for Walker.xExprCallback then
3433 ** Walker.xSelectCallback is set to do something useful for every
3434 ** subquery in the parser tree.
3435 */
3436 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3437   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3438   return WRC_Continue;
3439 }
3440 
3441 /*
3442 ** This routine "expands" a SELECT statement and all of its subqueries.
3443 ** For additional information on what it means to "expand" a SELECT
3444 ** statement, see the comment on the selectExpand worker callback above.
3445 **
3446 ** Expanding a SELECT statement is the first step in processing a
3447 ** SELECT statement.  The SELECT statement must be expanded before
3448 ** name resolution is performed.
3449 **
3450 ** If anything goes wrong, an error message is written into pParse.
3451 ** The calling function can detect the problem by looking at pParse->nErr
3452 ** and/or pParse->db->mallocFailed.
3453 */
3454 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3455   Walker w;
3456   w.xSelectCallback = selectExpander;
3457   w.xExprCallback = exprWalkNoop;
3458   w.pParse = pParse;
3459   sqlite3WalkSelect(&w, pSelect);
3460 }
3461 
3462 
3463 #ifndef SQLITE_OMIT_SUBQUERY
3464 /*
3465 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3466 ** interface.
3467 **
3468 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3469 ** information to the Table structure that represents the result set
3470 ** of that subquery.
3471 **
3472 ** The Table structure that represents the result set was constructed
3473 ** by selectExpander() but the type and collation information was omitted
3474 ** at that point because identifiers had not yet been resolved.  This
3475 ** routine is called after identifier resolution.
3476 */
3477 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3478   Parse *pParse;
3479   int i;
3480   SrcList *pTabList;
3481   struct SrcList_item *pFrom;
3482 
3483   assert( p->selFlags & SF_Resolved );
3484   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3485     p->selFlags |= SF_HasTypeInfo;
3486     pParse = pWalker->pParse;
3487     pTabList = p->pSrc;
3488     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3489       Table *pTab = pFrom->pTab;
3490       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3491         /* A sub-query in the FROM clause of a SELECT */
3492         Select *pSel = pFrom->pSelect;
3493         assert( pSel );
3494         while( pSel->pPrior ) pSel = pSel->pPrior;
3495         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3496       }
3497     }
3498   }
3499   return WRC_Continue;
3500 }
3501 #endif
3502 
3503 
3504 /*
3505 ** This routine adds datatype and collating sequence information to
3506 ** the Table structures of all FROM-clause subqueries in a
3507 ** SELECT statement.
3508 **
3509 ** Use this routine after name resolution.
3510 */
3511 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3512 #ifndef SQLITE_OMIT_SUBQUERY
3513   Walker w;
3514   w.xSelectCallback = selectAddSubqueryTypeInfo;
3515   w.xExprCallback = exprWalkNoop;
3516   w.pParse = pParse;
3517   sqlite3WalkSelect(&w, pSelect);
3518 #endif
3519 }
3520 
3521 
3522 /*
3523 ** This routine sets of a SELECT statement for processing.  The
3524 ** following is accomplished:
3525 **
3526 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3527 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3528 **     *  ON and USING clauses are shifted into WHERE statements
3529 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3530 **     *  Identifiers in expression are matched to tables.
3531 **
3532 ** This routine acts recursively on all subqueries within the SELECT.
3533 */
3534 void sqlite3SelectPrep(
3535   Parse *pParse,         /* The parser context */
3536   Select *p,             /* The SELECT statement being coded. */
3537   NameContext *pOuterNC  /* Name context for container */
3538 ){
3539   sqlite3 *db;
3540   if( NEVER(p==0) ) return;
3541   db = pParse->db;
3542   if( p->selFlags & SF_HasTypeInfo ) return;
3543   sqlite3SelectExpand(pParse, p);
3544   if( pParse->nErr || db->mallocFailed ) return;
3545   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3546   if( pParse->nErr || db->mallocFailed ) return;
3547   sqlite3SelectAddTypeInfo(pParse, p);
3548 }
3549 
3550 /*
3551 ** Reset the aggregate accumulator.
3552 **
3553 ** The aggregate accumulator is a set of memory cells that hold
3554 ** intermediate results while calculating an aggregate.  This
3555 ** routine simply stores NULLs in all of those memory cells.
3556 */
3557 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3558   Vdbe *v = pParse->pVdbe;
3559   int i;
3560   struct AggInfo_func *pFunc;
3561   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3562     return;
3563   }
3564   for(i=0; i<pAggInfo->nColumn; i++){
3565     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3566   }
3567   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3568     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3569     if( pFunc->iDistinct>=0 ){
3570       Expr *pE = pFunc->pExpr;
3571       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3572       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3573         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3574            "argument");
3575         pFunc->iDistinct = -1;
3576       }else{
3577         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3578         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3579                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3580       }
3581     }
3582   }
3583 }
3584 
3585 /*
3586 ** Invoke the OP_AggFinalize opcode for every aggregate function
3587 ** in the AggInfo structure.
3588 */
3589 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3590   Vdbe *v = pParse->pVdbe;
3591   int i;
3592   struct AggInfo_func *pF;
3593   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3594     ExprList *pList = pF->pExpr->x.pList;
3595     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3596     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3597                       (void*)pF->pFunc, P4_FUNCDEF);
3598   }
3599 }
3600 
3601 /*
3602 ** Update the accumulator memory cells for an aggregate based on
3603 ** the current cursor position.
3604 */
3605 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3606   Vdbe *v = pParse->pVdbe;
3607   int i;
3608   int regHit = 0;
3609   int addrHitTest = 0;
3610   struct AggInfo_func *pF;
3611   struct AggInfo_col *pC;
3612 
3613   pAggInfo->directMode = 1;
3614   sqlite3ExprCacheClear(pParse);
3615   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3616     int nArg;
3617     int addrNext = 0;
3618     int regAgg;
3619     ExprList *pList = pF->pExpr->x.pList;
3620     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3621     if( pList ){
3622       nArg = pList->nExpr;
3623       regAgg = sqlite3GetTempRange(pParse, nArg);
3624       sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
3625     }else{
3626       nArg = 0;
3627       regAgg = 0;
3628     }
3629     if( pF->iDistinct>=0 ){
3630       addrNext = sqlite3VdbeMakeLabel(v);
3631       assert( nArg==1 );
3632       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3633     }
3634     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3635       CollSeq *pColl = 0;
3636       struct ExprList_item *pItem;
3637       int j;
3638       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3639       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3640         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3641       }
3642       if( !pColl ){
3643         pColl = pParse->db->pDfltColl;
3644       }
3645       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
3646       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
3647     }
3648     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3649                       (void*)pF->pFunc, P4_FUNCDEF);
3650     sqlite3VdbeChangeP5(v, (u8)nArg);
3651     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3652     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3653     if( addrNext ){
3654       sqlite3VdbeResolveLabel(v, addrNext);
3655       sqlite3ExprCacheClear(pParse);
3656     }
3657   }
3658 
3659   /* Before populating the accumulator registers, clear the column cache.
3660   ** Otherwise, if any of the required column values are already present
3661   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3662   ** to pC->iMem. But by the time the value is used, the original register
3663   ** may have been used, invalidating the underlying buffer holding the
3664   ** text or blob value. See ticket [883034dcb5].
3665   **
3666   ** Another solution would be to change the OP_SCopy used to copy cached
3667   ** values to an OP_Copy.
3668   */
3669   if( regHit ){
3670     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit);
3671   }
3672   sqlite3ExprCacheClear(pParse);
3673   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3674     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3675   }
3676   pAggInfo->directMode = 0;
3677   sqlite3ExprCacheClear(pParse);
3678   if( addrHitTest ){
3679     sqlite3VdbeJumpHere(v, addrHitTest);
3680   }
3681 }
3682 
3683 /*
3684 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3685 ** count(*) query ("SELECT count(*) FROM pTab").
3686 */
3687 #ifndef SQLITE_OMIT_EXPLAIN
3688 static void explainSimpleCount(
3689   Parse *pParse,                  /* Parse context */
3690   Table *pTab,                    /* Table being queried */
3691   Index *pIdx                     /* Index used to optimize scan, or NULL */
3692 ){
3693   if( pParse->explain==2 ){
3694     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
3695         pTab->zName,
3696         pIdx ? "USING COVERING INDEX " : "",
3697         pIdx ? pIdx->zName : "",
3698         pTab->nRowEst
3699     );
3700     sqlite3VdbeAddOp4(
3701         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3702     );
3703   }
3704 }
3705 #else
3706 # define explainSimpleCount(a,b,c)
3707 #endif
3708 
3709 /*
3710 ** Generate code for the SELECT statement given in the p argument.
3711 **
3712 ** The results are distributed in various ways depending on the
3713 ** contents of the SelectDest structure pointed to by argument pDest
3714 ** as follows:
3715 **
3716 **     pDest->eDest    Result
3717 **     ------------    -------------------------------------------
3718 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3719 **                     opcode) for each row in the result set.
3720 **
3721 **     SRT_Mem         Only valid if the result is a single column.
3722 **                     Store the first column of the first result row
3723 **                     in register pDest->iParm then abandon the rest
3724 **                     of the query.  This destination implies "LIMIT 1".
3725 **
3726 **     SRT_Set         The result must be a single column.  Store each
3727 **                     row of result as the key in table pDest->iParm.
3728 **                     Apply the affinity pDest->affinity before storing
3729 **                     results.  Used to implement "IN (SELECT ...)".
3730 **
3731 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3732 **
3733 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3734 **
3735 **     SRT_Table       Store results in temporary table pDest->iParm.
3736 **                     This is like SRT_EphemTab except that the table
3737 **                     is assumed to already be open.
3738 **
3739 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3740 **                     the result there. The cursor is left open after
3741 **                     returning.  This is like SRT_Table except that
3742 **                     this destination uses OP_OpenEphemeral to create
3743 **                     the table first.
3744 **
3745 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3746 **                     results each time it is invoked.  The entry point
3747 **                     of the co-routine is stored in register pDest->iParm.
3748 **
3749 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3750 **                     set is not empty.
3751 **
3752 **     SRT_Discard     Throw the results away.  This is used by SELECT
3753 **                     statements within triggers whose only purpose is
3754 **                     the side-effects of functions.
3755 **
3756 ** This routine returns the number of errors.  If any errors are
3757 ** encountered, then an appropriate error message is left in
3758 ** pParse->zErrMsg.
3759 **
3760 ** This routine does NOT free the Select structure passed in.  The
3761 ** calling function needs to do that.
3762 */
3763 int sqlite3Select(
3764   Parse *pParse,         /* The parser context */
3765   Select *p,             /* The SELECT statement being coded. */
3766   SelectDest *pDest      /* What to do with the query results */
3767 ){
3768   int i, j;              /* Loop counters */
3769   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3770   Vdbe *v;               /* The virtual machine under construction */
3771   int isAgg;             /* True for select lists like "count(*)" */
3772   ExprList *pEList;      /* List of columns to extract. */
3773   SrcList *pTabList;     /* List of tables to select from */
3774   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3775   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3776   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3777   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3778   int isDistinct;        /* True if the DISTINCT keyword is present */
3779   int distinct;          /* Table to use for the distinct set */
3780   int rc = 1;            /* Value to return from this function */
3781   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3782   int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */
3783   AggInfo sAggInfo;      /* Information used by aggregate queries */
3784   int iEnd;              /* Address of the end of the query */
3785   sqlite3 *db;           /* The database connection */
3786 
3787 #ifndef SQLITE_OMIT_EXPLAIN
3788   int iRestoreSelectId = pParse->iSelectId;
3789   pParse->iSelectId = pParse->iNextSelectId++;
3790 #endif
3791 
3792   db = pParse->db;
3793   if( p==0 || db->mallocFailed || pParse->nErr ){
3794     return 1;
3795   }
3796   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3797   memset(&sAggInfo, 0, sizeof(sAggInfo));
3798 
3799   if( IgnorableOrderby(pDest) ){
3800     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3801            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3802     /* If ORDER BY makes no difference in the output then neither does
3803     ** DISTINCT so it can be removed too. */
3804     sqlite3ExprListDelete(db, p->pOrderBy);
3805     p->pOrderBy = 0;
3806     p->selFlags &= ~SF_Distinct;
3807   }
3808   sqlite3SelectPrep(pParse, p, 0);
3809   pOrderBy = p->pOrderBy;
3810   pTabList = p->pSrc;
3811   pEList = p->pEList;
3812   if( pParse->nErr || db->mallocFailed ){
3813     goto select_end;
3814   }
3815   isAgg = (p->selFlags & SF_Aggregate)!=0;
3816   assert( pEList!=0 );
3817 
3818   /* Begin generating code.
3819   */
3820   v = sqlite3GetVdbe(pParse);
3821   if( v==0 ) goto select_end;
3822 
3823   /* If writing to memory or generating a set
3824   ** only a single column may be output.
3825   */
3826 #ifndef SQLITE_OMIT_SUBQUERY
3827   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3828     goto select_end;
3829   }
3830 #endif
3831 
3832   /* Generate code for all sub-queries in the FROM clause
3833   */
3834 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3835   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3836     struct SrcList_item *pItem = &pTabList->a[i];
3837     SelectDest dest;
3838     Select *pSub = pItem->pSelect;
3839     int isAggSub;
3840 
3841     if( pSub==0 ) continue;
3842     if( pItem->addrFillSub ){
3843       sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
3844       continue;
3845     }
3846 
3847     /* Increment Parse.nHeight by the height of the largest expression
3848     ** tree refered to by this, the parent select. The child select
3849     ** may contain expression trees of at most
3850     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3851     ** more conservative than necessary, but much easier than enforcing
3852     ** an exact limit.
3853     */
3854     pParse->nHeight += sqlite3SelectExprHeight(p);
3855 
3856     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3857     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3858       /* This subquery can be absorbed into its parent. */
3859       if( isAggSub ){
3860         isAgg = 1;
3861         p->selFlags |= SF_Aggregate;
3862       }
3863       i = -1;
3864     }else{
3865       /* Generate a subroutine that will fill an ephemeral table with
3866       ** the content of this subquery.  pItem->addrFillSub will point
3867       ** to the address of the generated subroutine.  pItem->regReturn
3868       ** is a register allocated to hold the subroutine return address
3869       */
3870       int topAddr;
3871       int onceAddr = 0;
3872       int retAddr;
3873       assert( pItem->addrFillSub==0 );
3874       pItem->regReturn = ++pParse->nMem;
3875       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
3876       pItem->addrFillSub = topAddr+1;
3877       VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
3878       if( pItem->isCorrelated==0 ){
3879         /* If the subquery is no correlated and if we are not inside of
3880         ** a trigger, then we only need to compute the value of the subquery
3881         ** once. */
3882         onceAddr = sqlite3CodeOnce(pParse);
3883       }
3884       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3885       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
3886       sqlite3Select(pParse, pSub, &dest);
3887       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
3888       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
3889       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
3890       VdbeComment((v, "end %s", pItem->pTab->zName));
3891       sqlite3VdbeChangeP1(v, topAddr, retAddr);
3892       sqlite3ClearTempRegCache(pParse);
3893     }
3894     if( /*pParse->nErr ||*/ db->mallocFailed ){
3895       goto select_end;
3896     }
3897     pParse->nHeight -= sqlite3SelectExprHeight(p);
3898     pTabList = p->pSrc;
3899     if( !IgnorableOrderby(pDest) ){
3900       pOrderBy = p->pOrderBy;
3901     }
3902   }
3903   pEList = p->pEList;
3904 #endif
3905   pWhere = p->pWhere;
3906   pGroupBy = p->pGroupBy;
3907   pHaving = p->pHaving;
3908   isDistinct = (p->selFlags & SF_Distinct)!=0;
3909 
3910 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3911   /* If there is are a sequence of queries, do the earlier ones first.
3912   */
3913   if( p->pPrior ){
3914     if( p->pRightmost==0 ){
3915       Select *pLoop, *pRight = 0;
3916       int cnt = 0;
3917       int mxSelect;
3918       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3919         pLoop->pRightmost = p;
3920         pLoop->pNext = pRight;
3921         pRight = pLoop;
3922       }
3923       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3924       if( mxSelect && cnt>mxSelect ){
3925         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3926         goto select_end;
3927       }
3928     }
3929     rc = multiSelect(pParse, p, pDest);
3930     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
3931     return rc;
3932   }
3933 #endif
3934 
3935   /* If there is both a GROUP BY and an ORDER BY clause and they are
3936   ** identical, then disable the ORDER BY clause since the GROUP BY
3937   ** will cause elements to come out in the correct order.  This is
3938   ** an optimization - the correct answer should result regardless.
3939   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
3940   ** to disable this optimization for testing purposes.
3941   */
3942   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
3943          && (db->flags & SQLITE_GroupByOrder)==0 ){
3944     pOrderBy = 0;
3945   }
3946 
3947   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
3948   ** if the select-list is the same as the ORDER BY list, then this query
3949   ** can be rewritten as a GROUP BY. In other words, this:
3950   **
3951   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
3952   **
3953   ** is transformed to:
3954   **
3955   **     SELECT xyz FROM ... GROUP BY xyz
3956   **
3957   ** The second form is preferred as a single index (or temp-table) may be
3958   ** used for both the ORDER BY and DISTINCT processing. As originally
3959   ** written the query must use a temp-table for at least one of the ORDER
3960   ** BY and DISTINCT, and an index or separate temp-table for the other.
3961   */
3962   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
3963    && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
3964   ){
3965     p->selFlags &= ~SF_Distinct;
3966     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3967     pGroupBy = p->pGroupBy;
3968     pOrderBy = 0;
3969   }
3970 
3971   /* If there is an ORDER BY clause, then this sorting
3972   ** index might end up being unused if the data can be
3973   ** extracted in pre-sorted order.  If that is the case, then the
3974   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3975   ** we figure out that the sorting index is not needed.  The addrSortIndex
3976   ** variable is used to facilitate that change.
3977   */
3978   if( pOrderBy ){
3979     KeyInfo *pKeyInfo;
3980     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3981     pOrderBy->iECursor = pParse->nTab++;
3982     p->addrOpenEphm[2] = addrSortIndex =
3983       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3984                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3985                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3986   }else{
3987     addrSortIndex = -1;
3988   }
3989 
3990   /* If the output is destined for a temporary table, open that table.
3991   */
3992   if( pDest->eDest==SRT_EphemTab ){
3993     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3994   }
3995 
3996   /* Set the limiter.
3997   */
3998   iEnd = sqlite3VdbeMakeLabel(v);
3999   p->nSelectRow = (double)LARGEST_INT64;
4000   computeLimitRegisters(pParse, p, iEnd);
4001   if( p->iLimit==0 && addrSortIndex>=0 ){
4002     sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
4003     p->selFlags |= SF_UseSorter;
4004   }
4005 
4006   /* Open a virtual index to use for the distinct set.
4007   */
4008   if( p->selFlags & SF_Distinct ){
4009     KeyInfo *pKeyInfo;
4010     distinct = pParse->nTab++;
4011     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
4012     addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
4013         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4014     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4015   }else{
4016     distinct = addrDistinctIndex = -1;
4017   }
4018 
4019   /* Aggregate and non-aggregate queries are handled differently */
4020   if( !isAgg && pGroupBy==0 ){
4021     ExprList *pDist = (isDistinct ? p->pEList : 0);
4022 
4023     /* Begin the database scan. */
4024     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0);
4025     if( pWInfo==0 ) goto select_end;
4026     if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
4027 
4028     /* If sorting index that was created by a prior OP_OpenEphemeral
4029     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4030     ** into an OP_Noop.
4031     */
4032     if( addrSortIndex>=0 && pOrderBy==0 ){
4033       sqlite3VdbeChangeToNoop(v, addrSortIndex);
4034       p->addrOpenEphm[2] = -1;
4035     }
4036 
4037     if( pWInfo->eDistinct ){
4038       VdbeOp *pOp;                /* No longer required OpenEphemeral instr. */
4039 
4040       assert( addrDistinctIndex>=0 );
4041       pOp = sqlite3VdbeGetOp(v, addrDistinctIndex);
4042 
4043       assert( isDistinct );
4044       assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
4045            || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE
4046       );
4047       distinct = -1;
4048       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){
4049         int iJump;
4050         int iExpr;
4051         int iFlag = ++pParse->nMem;
4052         int iBase = pParse->nMem+1;
4053         int iBase2 = iBase + pEList->nExpr;
4054         pParse->nMem += (pEList->nExpr*2);
4055 
4056         /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The
4057         ** OP_Integer initializes the "first row" flag.  */
4058         pOp->opcode = OP_Integer;
4059         pOp->p1 = 1;
4060         pOp->p2 = iFlag;
4061 
4062         sqlite3ExprCodeExprList(pParse, pEList, iBase, 1);
4063         iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1;
4064         sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1);
4065         for(iExpr=0; iExpr<pEList->nExpr; iExpr++){
4066           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr);
4067           sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr);
4068           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
4069           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
4070         }
4071         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue);
4072 
4073         sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag);
4074         assert( sqlite3VdbeCurrentAddr(v)==iJump );
4075         sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr);
4076       }else{
4077         pOp->opcode = OP_Noop;
4078       }
4079     }
4080 
4081     /* Use the standard inner loop. */
4082     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest,
4083                     pWInfo->iContinue, pWInfo->iBreak);
4084 
4085     /* End the database scan loop.
4086     */
4087     sqlite3WhereEnd(pWInfo);
4088   }else{
4089     /* This is the processing for aggregate queries */
4090     NameContext sNC;    /* Name context for processing aggregate information */
4091     int iAMem;          /* First Mem address for storing current GROUP BY */
4092     int iBMem;          /* First Mem address for previous GROUP BY */
4093     int iUseFlag;       /* Mem address holding flag indicating that at least
4094                         ** one row of the input to the aggregator has been
4095                         ** processed */
4096     int iAbortFlag;     /* Mem address which causes query abort if positive */
4097     int groupBySort;    /* Rows come from source in GROUP BY order */
4098     int addrEnd;        /* End of processing for this SELECT */
4099     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4100     int sortOut = 0;    /* Output register from the sorter */
4101 
4102     /* Remove any and all aliases between the result set and the
4103     ** GROUP BY clause.
4104     */
4105     if( pGroupBy ){
4106       int k;                        /* Loop counter */
4107       struct ExprList_item *pItem;  /* For looping over expression in a list */
4108 
4109       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4110         pItem->iAlias = 0;
4111       }
4112       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4113         pItem->iAlias = 0;
4114       }
4115       if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
4116     }else{
4117       p->nSelectRow = (double)1;
4118     }
4119 
4120 
4121     /* Create a label to jump to when we want to abort the query */
4122     addrEnd = sqlite3VdbeMakeLabel(v);
4123 
4124     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4125     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4126     ** SELECT statement.
4127     */
4128     memset(&sNC, 0, sizeof(sNC));
4129     sNC.pParse = pParse;
4130     sNC.pSrcList = pTabList;
4131     sNC.pAggInfo = &sAggInfo;
4132     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4133     sAggInfo.pGroupBy = pGroupBy;
4134     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4135     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
4136     if( pHaving ){
4137       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4138     }
4139     sAggInfo.nAccumulator = sAggInfo.nColumn;
4140     for(i=0; i<sAggInfo.nFunc; i++){
4141       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4142       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4143     }
4144     if( db->mallocFailed ) goto select_end;
4145 
4146     /* Processing for aggregates with GROUP BY is very different and
4147     ** much more complex than aggregates without a GROUP BY.
4148     */
4149     if( pGroupBy ){
4150       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4151       int j1;             /* A-vs-B comparision jump */
4152       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4153       int regOutputRow;   /* Return address register for output subroutine */
4154       int addrSetAbort;   /* Set the abort flag and return */
4155       int addrTopOfLoop;  /* Top of the input loop */
4156       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4157       int addrReset;      /* Subroutine for resetting the accumulator */
4158       int regReset;       /* Return address register for reset subroutine */
4159 
4160       /* If there is a GROUP BY clause we might need a sorting index to
4161       ** implement it.  Allocate that sorting index now.  If it turns out
4162       ** that we do not need it after all, the OP_SorterOpen instruction
4163       ** will be converted into a Noop.
4164       */
4165       sAggInfo.sortingIdx = pParse->nTab++;
4166       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
4167       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4168           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4169           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4170 
4171       /* Initialize memory locations used by GROUP BY aggregate processing
4172       */
4173       iUseFlag = ++pParse->nMem;
4174       iAbortFlag = ++pParse->nMem;
4175       regOutputRow = ++pParse->nMem;
4176       addrOutputRow = sqlite3VdbeMakeLabel(v);
4177       regReset = ++pParse->nMem;
4178       addrReset = sqlite3VdbeMakeLabel(v);
4179       iAMem = pParse->nMem + 1;
4180       pParse->nMem += pGroupBy->nExpr;
4181       iBMem = pParse->nMem + 1;
4182       pParse->nMem += pGroupBy->nExpr;
4183       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4184       VdbeComment((v, "clear abort flag"));
4185       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4186       VdbeComment((v, "indicate accumulator empty"));
4187       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4188 
4189       /* Begin a loop that will extract all source rows in GROUP BY order.
4190       ** This might involve two separate loops with an OP_Sort in between, or
4191       ** it might be a single loop that uses an index to extract information
4192       ** in the right order to begin with.
4193       */
4194       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4195       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
4196       if( pWInfo==0 ) goto select_end;
4197       if( pGroupBy==0 ){
4198         /* The optimizer is able to deliver rows in group by order so
4199         ** we do not have to sort.  The OP_OpenEphemeral table will be
4200         ** cancelled later because we still need to use the pKeyInfo
4201         */
4202         pGroupBy = p->pGroupBy;
4203         groupBySort = 0;
4204       }else{
4205         /* Rows are coming out in undetermined order.  We have to push
4206         ** each row into a sorting index, terminate the first loop,
4207         ** then loop over the sorting index in order to get the output
4208         ** in sorted order
4209         */
4210         int regBase;
4211         int regRecord;
4212         int nCol;
4213         int nGroupBy;
4214 
4215         explainTempTable(pParse,
4216             isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
4217 
4218         groupBySort = 1;
4219         nGroupBy = pGroupBy->nExpr;
4220         nCol = nGroupBy + 1;
4221         j = nGroupBy+1;
4222         for(i=0; i<sAggInfo.nColumn; i++){
4223           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4224             nCol++;
4225             j++;
4226           }
4227         }
4228         regBase = sqlite3GetTempRange(pParse, nCol);
4229         sqlite3ExprCacheClear(pParse);
4230         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4231         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4232         j = nGroupBy+1;
4233         for(i=0; i<sAggInfo.nColumn; i++){
4234           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4235           if( pCol->iSorterColumn>=j ){
4236             int r1 = j + regBase;
4237             int r2;
4238 
4239             r2 = sqlite3ExprCodeGetColumn(pParse,
4240                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
4241             if( r1!=r2 ){
4242               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4243             }
4244             j++;
4245           }
4246         }
4247         regRecord = sqlite3GetTempReg(pParse);
4248         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4249         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
4250         sqlite3ReleaseTempReg(pParse, regRecord);
4251         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4252         sqlite3WhereEnd(pWInfo);
4253         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
4254         sortOut = sqlite3GetTempReg(pParse);
4255         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
4256         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
4257         VdbeComment((v, "GROUP BY sort"));
4258         sAggInfo.useSortingIdx = 1;
4259         sqlite3ExprCacheClear(pParse);
4260       }
4261 
4262       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4263       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4264       ** Then compare the current GROUP BY terms against the GROUP BY terms
4265       ** from the previous row currently stored in a0, a1, a2...
4266       */
4267       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4268       sqlite3ExprCacheClear(pParse);
4269       if( groupBySort ){
4270         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
4271       }
4272       for(j=0; j<pGroupBy->nExpr; j++){
4273         if( groupBySort ){
4274           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
4275           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
4276         }else{
4277           sAggInfo.directMode = 1;
4278           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4279         }
4280       }
4281       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4282                           (char*)pKeyInfo, P4_KEYINFO);
4283       j1 = sqlite3VdbeCurrentAddr(v);
4284       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4285 
4286       /* Generate code that runs whenever the GROUP BY changes.
4287       ** Changes in the GROUP BY are detected by the previous code
4288       ** block.  If there were no changes, this block is skipped.
4289       **
4290       ** This code copies current group by terms in b0,b1,b2,...
4291       ** over to a0,a1,a2.  It then calls the output subroutine
4292       ** and resets the aggregate accumulator registers in preparation
4293       ** for the next GROUP BY batch.
4294       */
4295       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4296       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4297       VdbeComment((v, "output one row"));
4298       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4299       VdbeComment((v, "check abort flag"));
4300       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4301       VdbeComment((v, "reset accumulator"));
4302 
4303       /* Update the aggregate accumulators based on the content of
4304       ** the current row
4305       */
4306       sqlite3VdbeJumpHere(v, j1);
4307       updateAccumulator(pParse, &sAggInfo);
4308       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4309       VdbeComment((v, "indicate data in accumulator"));
4310 
4311       /* End of the loop
4312       */
4313       if( groupBySort ){
4314         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
4315       }else{
4316         sqlite3WhereEnd(pWInfo);
4317         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
4318       }
4319 
4320       /* Output the final row of result
4321       */
4322       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4323       VdbeComment((v, "output final row"));
4324 
4325       /* Jump over the subroutines
4326       */
4327       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4328 
4329       /* Generate a subroutine that outputs a single row of the result
4330       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4331       ** is less than or equal to zero, the subroutine is a no-op.  If
4332       ** the processing calls for the query to abort, this subroutine
4333       ** increments the iAbortFlag memory location before returning in
4334       ** order to signal the caller to abort.
4335       */
4336       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4337       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4338       VdbeComment((v, "set abort flag"));
4339       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4340       sqlite3VdbeResolveLabel(v, addrOutputRow);
4341       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4342       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4343       VdbeComment((v, "Groupby result generator entry point"));
4344       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4345       finalizeAggFunctions(pParse, &sAggInfo);
4346       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4347       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4348                       distinct, pDest,
4349                       addrOutputRow+1, addrSetAbort);
4350       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4351       VdbeComment((v, "end groupby result generator"));
4352 
4353       /* Generate a subroutine that will reset the group-by accumulator
4354       */
4355       sqlite3VdbeResolveLabel(v, addrReset);
4356       resetAccumulator(pParse, &sAggInfo);
4357       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4358 
4359     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4360     else {
4361       ExprList *pDel = 0;
4362 #ifndef SQLITE_OMIT_BTREECOUNT
4363       Table *pTab;
4364       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4365         /* If isSimpleCount() returns a pointer to a Table structure, then
4366         ** the SQL statement is of the form:
4367         **
4368         **   SELECT count(*) FROM <tbl>
4369         **
4370         ** where the Table structure returned represents table <tbl>.
4371         **
4372         ** This statement is so common that it is optimized specially. The
4373         ** OP_Count instruction is executed either on the intkey table that
4374         ** contains the data for table <tbl> or on one of its indexes. It
4375         ** is better to execute the op on an index, as indexes are almost
4376         ** always spread across less pages than their corresponding tables.
4377         */
4378         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4379         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4380         Index *pIdx;                         /* Iterator variable */
4381         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4382         Index *pBest = 0;                    /* Best index found so far */
4383         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4384 
4385         sqlite3CodeVerifySchema(pParse, iDb);
4386         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4387 
4388         /* Search for the index that has the least amount of columns. If
4389         ** there is such an index, and it has less columns than the table
4390         ** does, then we can assume that it consumes less space on disk and
4391         ** will therefore be cheaper to scan to determine the query result.
4392         ** In this case set iRoot to the root page number of the index b-tree
4393         ** and pKeyInfo to the KeyInfo structure required to navigate the
4394         ** index.
4395         **
4396         ** (2011-04-15) Do not do a full scan of an unordered index.
4397         **
4398         ** In practice the KeyInfo structure will not be used. It is only
4399         ** passed to keep OP_OpenRead happy.
4400         */
4401         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4402           if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){
4403             pBest = pIdx;
4404           }
4405         }
4406         if( pBest && pBest->nColumn<pTab->nCol ){
4407           iRoot = pBest->tnum;
4408           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4409         }
4410 
4411         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4412         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4413         if( pKeyInfo ){
4414           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4415         }
4416         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4417         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4418         explainSimpleCount(pParse, pTab, pBest);
4419       }else
4420 #endif /* SQLITE_OMIT_BTREECOUNT */
4421       {
4422         /* Check if the query is of one of the following forms:
4423         **
4424         **   SELECT min(x) FROM ...
4425         **   SELECT max(x) FROM ...
4426         **
4427         ** If it is, then ask the code in where.c to attempt to sort results
4428         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4429         ** If where.c is able to produce results sorted in this order, then
4430         ** add vdbe code to break out of the processing loop after the
4431         ** first iteration (since the first iteration of the loop is
4432         ** guaranteed to operate on the row with the minimum or maximum
4433         ** value of x, the only row required).
4434         **
4435         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4436         ** modify behaviour as follows:
4437         **
4438         **   + If the query is a "SELECT min(x)", then the loop coded by
4439         **     where.c should not iterate over any values with a NULL value
4440         **     for x.
4441         **
4442         **   + The optimizer code in where.c (the thing that decides which
4443         **     index or indices to use) should place a different priority on
4444         **     satisfying the 'ORDER BY' clause than it does in other cases.
4445         **     Refer to code and comments in where.c for details.
4446         */
4447         ExprList *pMinMax = 0;
4448         u8 flag = minMaxQuery(p);
4449         if( flag ){
4450           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4451           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4452           pDel = pMinMax;
4453           if( pMinMax && !db->mallocFailed ){
4454             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4455             pMinMax->a[0].pExpr->op = TK_COLUMN;
4456           }
4457         }
4458 
4459         /* This case runs if the aggregate has no GROUP BY clause.  The
4460         ** processing is much simpler since there is only a single row
4461         ** of output.
4462         */
4463         resetAccumulator(pParse, &sAggInfo);
4464         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag);
4465         if( pWInfo==0 ){
4466           sqlite3ExprListDelete(db, pDel);
4467           goto select_end;
4468         }
4469         updateAccumulator(pParse, &sAggInfo);
4470         if( !pMinMax && flag ){
4471           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4472           VdbeComment((v, "%s() by index",
4473                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4474         }
4475         sqlite3WhereEnd(pWInfo);
4476         finalizeAggFunctions(pParse, &sAggInfo);
4477       }
4478 
4479       pOrderBy = 0;
4480       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4481       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4482                       pDest, addrEnd, addrEnd);
4483       sqlite3ExprListDelete(db, pDel);
4484     }
4485     sqlite3VdbeResolveLabel(v, addrEnd);
4486 
4487   } /* endif aggregate query */
4488 
4489   if( distinct>=0 ){
4490     explainTempTable(pParse, "DISTINCT");
4491   }
4492 
4493   /* If there is an ORDER BY clause, then we need to sort the results
4494   ** and send them to the callback one by one.
4495   */
4496   if( pOrderBy ){
4497     explainTempTable(pParse, "ORDER BY");
4498     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4499   }
4500 
4501   /* Jump here to skip this query
4502   */
4503   sqlite3VdbeResolveLabel(v, iEnd);
4504 
4505   /* The SELECT was successfully coded.   Set the return code to 0
4506   ** to indicate no errors.
4507   */
4508   rc = 0;
4509 
4510   /* Control jumps to here if an error is encountered above, or upon
4511   ** successful coding of the SELECT.
4512   */
4513 select_end:
4514   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4515 
4516   /* Identify column names if results of the SELECT are to be output.
4517   */
4518   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4519     generateColumnNames(pParse, pTabList, pEList);
4520   }
4521 
4522   sqlite3DbFree(db, sAggInfo.aCol);
4523   sqlite3DbFree(db, sAggInfo.aFunc);
4524   return rc;
4525 }
4526 
4527 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
4528 /*
4529 ** Generate a human-readable description of a the Select object.
4530 */
4531 static void explainOneSelect(Vdbe *pVdbe, Select *p){
4532   sqlite3ExplainPrintf(pVdbe, "SELECT ");
4533   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
4534     if( p->selFlags & SF_Distinct ){
4535       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
4536     }
4537     if( p->selFlags & SF_Aggregate ){
4538       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
4539     }
4540     sqlite3ExplainNL(pVdbe);
4541     sqlite3ExplainPrintf(pVdbe, "   ");
4542   }
4543   sqlite3ExplainExprList(pVdbe, p->pEList);
4544   sqlite3ExplainNL(pVdbe);
4545   if( p->pSrc && p->pSrc->nSrc ){
4546     int i;
4547     sqlite3ExplainPrintf(pVdbe, "FROM ");
4548     sqlite3ExplainPush(pVdbe);
4549     for(i=0; i<p->pSrc->nSrc; i++){
4550       struct SrcList_item *pItem = &p->pSrc->a[i];
4551       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
4552       if( pItem->pSelect ){
4553         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
4554         if( pItem->pTab ){
4555           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
4556         }
4557       }else if( pItem->zName ){
4558         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
4559       }
4560       if( pItem->zAlias ){
4561         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
4562       }
4563       if( pItem->jointype & JT_LEFT ){
4564         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
4565       }
4566       sqlite3ExplainNL(pVdbe);
4567     }
4568     sqlite3ExplainPop(pVdbe);
4569   }
4570   if( p->pWhere ){
4571     sqlite3ExplainPrintf(pVdbe, "WHERE ");
4572     sqlite3ExplainExpr(pVdbe, p->pWhere);
4573     sqlite3ExplainNL(pVdbe);
4574   }
4575   if( p->pGroupBy ){
4576     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
4577     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
4578     sqlite3ExplainNL(pVdbe);
4579   }
4580   if( p->pHaving ){
4581     sqlite3ExplainPrintf(pVdbe, "HAVING ");
4582     sqlite3ExplainExpr(pVdbe, p->pHaving);
4583     sqlite3ExplainNL(pVdbe);
4584   }
4585   if( p->pOrderBy ){
4586     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
4587     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
4588     sqlite3ExplainNL(pVdbe);
4589   }
4590   if( p->pLimit ){
4591     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
4592     sqlite3ExplainExpr(pVdbe, p->pLimit);
4593     sqlite3ExplainNL(pVdbe);
4594   }
4595   if( p->pOffset ){
4596     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
4597     sqlite3ExplainExpr(pVdbe, p->pOffset);
4598     sqlite3ExplainNL(pVdbe);
4599   }
4600 }
4601 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
4602   if( p==0 ){
4603     sqlite3ExplainPrintf(pVdbe, "(null-select)");
4604     return;
4605   }
4606   while( p->pPrior ) p = p->pPrior;
4607   sqlite3ExplainPush(pVdbe);
4608   while( p ){
4609     explainOneSelect(pVdbe, p);
4610     p = p->pNext;
4611     if( p==0 ) break;
4612     sqlite3ExplainNL(pVdbe);
4613     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
4614   }
4615   sqlite3ExplainPrintf(pVdbe, "END");
4616   sqlite3ExplainPop(pVdbe);
4617 }
4618 
4619 /* End of the structure debug printing code
4620 *****************************************************************************/
4621 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
4622