1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iParm = iParm; 40 pDest->affinity = 0; 41 pDest->iMem = 0; 42 pDest->nMem = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 int isDistinct, /* true if the DISTINCT keyword is present */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 assert( db->mallocFailed ); 69 pNew = &standin; 70 memset(pNew, 0, sizeof(*pNew)); 71 } 72 if( pEList==0 ){ 73 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 74 } 75 pNew->pEList = pEList; 76 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 assert( pOffset==0 || pLimit!=0 ); 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( db->mallocFailed ) { 91 clearSelect(db, pNew); 92 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 93 pNew = 0; 94 }else{ 95 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 96 } 97 assert( pNew!=&standin ); 98 return pNew; 99 } 100 101 /* 102 ** Delete the given Select structure and all of its substructures. 103 */ 104 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 105 if( p ){ 106 clearSelect(db, p); 107 sqlite3DbFree(db, p); 108 } 109 } 110 111 /* 112 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 113 ** type of join. Return an integer constant that expresses that type 114 ** in terms of the following bit values: 115 ** 116 ** JT_INNER 117 ** JT_CROSS 118 ** JT_OUTER 119 ** JT_NATURAL 120 ** JT_LEFT 121 ** JT_RIGHT 122 ** 123 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 124 ** 125 ** If an illegal or unsupported join type is seen, then still return 126 ** a join type, but put an error in the pParse structure. 127 */ 128 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 129 int jointype = 0; 130 Token *apAll[3]; 131 Token *p; 132 /* 0123456789 123456789 123456789 123 */ 133 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 134 static const struct { 135 u8 i; /* Beginning of keyword text in zKeyText[] */ 136 u8 nChar; /* Length of the keyword in characters */ 137 u8 code; /* Join type mask */ 138 } aKeyword[] = { 139 /* natural */ { 0, 7, JT_NATURAL }, 140 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 141 /* outer */ { 10, 5, JT_OUTER }, 142 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 143 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 144 /* inner */ { 23, 5, JT_INNER }, 145 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 146 }; 147 int i, j; 148 apAll[0] = pA; 149 apAll[1] = pB; 150 apAll[2] = pC; 151 for(i=0; i<3 && apAll[i]; i++){ 152 p = apAll[i]; 153 for(j=0; j<ArraySize(aKeyword); j++){ 154 if( p->n==aKeyword[j].nChar 155 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 156 jointype |= aKeyword[j].code; 157 break; 158 } 159 } 160 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 161 if( j>=ArraySize(aKeyword) ){ 162 jointype |= JT_ERROR; 163 break; 164 } 165 } 166 if( 167 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 168 (jointype & JT_ERROR)!=0 169 ){ 170 const char *zSp = " "; 171 assert( pB!=0 ); 172 if( pC==0 ){ zSp++; } 173 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 174 "%T %T%s%T", pA, pB, zSp, pC); 175 jointype = JT_INNER; 176 }else if( (jointype & JT_OUTER)!=0 177 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 178 sqlite3ErrorMsg(pParse, 179 "RIGHT and FULL OUTER JOINs are not currently supported"); 180 jointype = JT_INNER; 181 } 182 return jointype; 183 } 184 185 /* 186 ** Return the index of a column in a table. Return -1 if the column 187 ** is not contained in the table. 188 */ 189 static int columnIndex(Table *pTab, const char *zCol){ 190 int i; 191 for(i=0; i<pTab->nCol; i++){ 192 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 193 } 194 return -1; 195 } 196 197 /* 198 ** Search the first N tables in pSrc, from left to right, looking for a 199 ** table that has a column named zCol. 200 ** 201 ** When found, set *piTab and *piCol to the table index and column index 202 ** of the matching column and return TRUE. 203 ** 204 ** If not found, return FALSE. 205 */ 206 static int tableAndColumnIndex( 207 SrcList *pSrc, /* Array of tables to search */ 208 int N, /* Number of tables in pSrc->a[] to search */ 209 const char *zCol, /* Name of the column we are looking for */ 210 int *piTab, /* Write index of pSrc->a[] here */ 211 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 212 ){ 213 int i; /* For looping over tables in pSrc */ 214 int iCol; /* Index of column matching zCol */ 215 216 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 217 for(i=0; i<N; i++){ 218 iCol = columnIndex(pSrc->a[i].pTab, zCol); 219 if( iCol>=0 ){ 220 if( piTab ){ 221 *piTab = i; 222 *piCol = iCol; 223 } 224 return 1; 225 } 226 } 227 return 0; 228 } 229 230 /* 231 ** This function is used to add terms implied by JOIN syntax to the 232 ** WHERE clause expression of a SELECT statement. The new term, which 233 ** is ANDed with the existing WHERE clause, is of the form: 234 ** 235 ** (tab1.col1 = tab2.col2) 236 ** 237 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 238 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 239 ** column iColRight of tab2. 240 */ 241 static void addWhereTerm( 242 Parse *pParse, /* Parsing context */ 243 SrcList *pSrc, /* List of tables in FROM clause */ 244 int iLeft, /* Index of first table to join in pSrc */ 245 int iColLeft, /* Index of column in first table */ 246 int iRight, /* Index of second table in pSrc */ 247 int iColRight, /* Index of column in second table */ 248 int isOuterJoin, /* True if this is an OUTER join */ 249 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 250 ){ 251 sqlite3 *db = pParse->db; 252 Expr *pE1; 253 Expr *pE2; 254 Expr *pEq; 255 256 assert( iLeft<iRight ); 257 assert( pSrc->nSrc>iRight ); 258 assert( pSrc->a[iLeft].pTab ); 259 assert( pSrc->a[iRight].pTab ); 260 261 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 262 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 263 264 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 265 if( pEq && isOuterJoin ){ 266 ExprSetProperty(pEq, EP_FromJoin); 267 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 268 ExprSetIrreducible(pEq); 269 pEq->iRightJoinTable = (i16)pE2->iTable; 270 } 271 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 272 } 273 274 /* 275 ** Set the EP_FromJoin property on all terms of the given expression. 276 ** And set the Expr.iRightJoinTable to iTable for every term in the 277 ** expression. 278 ** 279 ** The EP_FromJoin property is used on terms of an expression to tell 280 ** the LEFT OUTER JOIN processing logic that this term is part of the 281 ** join restriction specified in the ON or USING clause and not a part 282 ** of the more general WHERE clause. These terms are moved over to the 283 ** WHERE clause during join processing but we need to remember that they 284 ** originated in the ON or USING clause. 285 ** 286 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 287 ** expression depends on table iRightJoinTable even if that table is not 288 ** explicitly mentioned in the expression. That information is needed 289 ** for cases like this: 290 ** 291 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 292 ** 293 ** The where clause needs to defer the handling of the t1.x=5 294 ** term until after the t2 loop of the join. In that way, a 295 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 296 ** defer the handling of t1.x=5, it will be processed immediately 297 ** after the t1 loop and rows with t1.x!=5 will never appear in 298 ** the output, which is incorrect. 299 */ 300 static void setJoinExpr(Expr *p, int iTable){ 301 while( p ){ 302 ExprSetProperty(p, EP_FromJoin); 303 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 304 ExprSetIrreducible(p); 305 p->iRightJoinTable = (i16)iTable; 306 setJoinExpr(p->pLeft, iTable); 307 p = p->pRight; 308 } 309 } 310 311 /* 312 ** This routine processes the join information for a SELECT statement. 313 ** ON and USING clauses are converted into extra terms of the WHERE clause. 314 ** NATURAL joins also create extra WHERE clause terms. 315 ** 316 ** The terms of a FROM clause are contained in the Select.pSrc structure. 317 ** The left most table is the first entry in Select.pSrc. The right-most 318 ** table is the last entry. The join operator is held in the entry to 319 ** the left. Thus entry 0 contains the join operator for the join between 320 ** entries 0 and 1. Any ON or USING clauses associated with the join are 321 ** also attached to the left entry. 322 ** 323 ** This routine returns the number of errors encountered. 324 */ 325 static int sqliteProcessJoin(Parse *pParse, Select *p){ 326 SrcList *pSrc; /* All tables in the FROM clause */ 327 int i, j; /* Loop counters */ 328 struct SrcList_item *pLeft; /* Left table being joined */ 329 struct SrcList_item *pRight; /* Right table being joined */ 330 331 pSrc = p->pSrc; 332 pLeft = &pSrc->a[0]; 333 pRight = &pLeft[1]; 334 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 335 Table *pLeftTab = pLeft->pTab; 336 Table *pRightTab = pRight->pTab; 337 int isOuter; 338 339 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 340 isOuter = (pRight->jointype & JT_OUTER)!=0; 341 342 /* When the NATURAL keyword is present, add WHERE clause terms for 343 ** every column that the two tables have in common. 344 */ 345 if( pRight->jointype & JT_NATURAL ){ 346 if( pRight->pOn || pRight->pUsing ){ 347 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 348 "an ON or USING clause", 0); 349 return 1; 350 } 351 for(j=0; j<pRightTab->nCol; j++){ 352 char *zName; /* Name of column in the right table */ 353 int iLeft; /* Matching left table */ 354 int iLeftCol; /* Matching column in the left table */ 355 356 zName = pRightTab->aCol[j].zName; 357 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 358 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 359 isOuter, &p->pWhere); 360 } 361 } 362 } 363 364 /* Disallow both ON and USING clauses in the same join 365 */ 366 if( pRight->pOn && pRight->pUsing ){ 367 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 368 "clauses in the same join"); 369 return 1; 370 } 371 372 /* Add the ON clause to the end of the WHERE clause, connected by 373 ** an AND operator. 374 */ 375 if( pRight->pOn ){ 376 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 377 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 378 pRight->pOn = 0; 379 } 380 381 /* Create extra terms on the WHERE clause for each column named 382 ** in the USING clause. Example: If the two tables to be joined are 383 ** A and B and the USING clause names X, Y, and Z, then add this 384 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 385 ** Report an error if any column mentioned in the USING clause is 386 ** not contained in both tables to be joined. 387 */ 388 if( pRight->pUsing ){ 389 IdList *pList = pRight->pUsing; 390 for(j=0; j<pList->nId; j++){ 391 char *zName; /* Name of the term in the USING clause */ 392 int iLeft; /* Table on the left with matching column name */ 393 int iLeftCol; /* Column number of matching column on the left */ 394 int iRightCol; /* Column number of matching column on the right */ 395 396 zName = pList->a[j].zName; 397 iRightCol = columnIndex(pRightTab, zName); 398 if( iRightCol<0 399 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 400 ){ 401 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 402 "not present in both tables", zName); 403 return 1; 404 } 405 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 406 isOuter, &p->pWhere); 407 } 408 } 409 } 410 return 0; 411 } 412 413 /* 414 ** Insert code into "v" that will push the record on the top of the 415 ** stack into the sorter. 416 */ 417 static void pushOntoSorter( 418 Parse *pParse, /* Parser context */ 419 ExprList *pOrderBy, /* The ORDER BY clause */ 420 Select *pSelect, /* The whole SELECT statement */ 421 int regData /* Register holding data to be sorted */ 422 ){ 423 Vdbe *v = pParse->pVdbe; 424 int nExpr = pOrderBy->nExpr; 425 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 426 int regRecord = sqlite3GetTempReg(pParse); 427 int op; 428 sqlite3ExprCacheClear(pParse); 429 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 430 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 431 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 432 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 433 if( pSelect->selFlags & SF_UseSorter ){ 434 op = OP_SorterInsert; 435 }else{ 436 op = OP_IdxInsert; 437 } 438 sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord); 439 sqlite3ReleaseTempReg(pParse, regRecord); 440 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 441 if( pSelect->iLimit ){ 442 int addr1, addr2; 443 int iLimit; 444 if( pSelect->iOffset ){ 445 iLimit = pSelect->iOffset+1; 446 }else{ 447 iLimit = pSelect->iLimit; 448 } 449 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 450 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 451 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 452 sqlite3VdbeJumpHere(v, addr1); 453 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 454 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 455 sqlite3VdbeJumpHere(v, addr2); 456 } 457 } 458 459 /* 460 ** Add code to implement the OFFSET 461 */ 462 static void codeOffset( 463 Vdbe *v, /* Generate code into this VM */ 464 Select *p, /* The SELECT statement being coded */ 465 int iContinue /* Jump here to skip the current record */ 466 ){ 467 if( p->iOffset && iContinue!=0 ){ 468 int addr; 469 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 470 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 471 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 472 VdbeComment((v, "skip OFFSET records")); 473 sqlite3VdbeJumpHere(v, addr); 474 } 475 } 476 477 /* 478 ** Add code that will check to make sure the N registers starting at iMem 479 ** form a distinct entry. iTab is a sorting index that holds previously 480 ** seen combinations of the N values. A new entry is made in iTab 481 ** if the current N values are new. 482 ** 483 ** A jump to addrRepeat is made and the N+1 values are popped from the 484 ** stack if the top N elements are not distinct. 485 */ 486 static void codeDistinct( 487 Parse *pParse, /* Parsing and code generating context */ 488 int iTab, /* A sorting index used to test for distinctness */ 489 int addrRepeat, /* Jump to here if not distinct */ 490 int N, /* Number of elements */ 491 int iMem /* First element */ 492 ){ 493 Vdbe *v; 494 int r1; 495 496 v = pParse->pVdbe; 497 r1 = sqlite3GetTempReg(pParse); 498 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 499 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 500 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 501 sqlite3ReleaseTempReg(pParse, r1); 502 } 503 504 #ifndef SQLITE_OMIT_SUBQUERY 505 /* 506 ** Generate an error message when a SELECT is used within a subexpression 507 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 508 ** column. We do this in a subroutine because the error used to occur 509 ** in multiple places. (The error only occurs in one place now, but we 510 ** retain the subroutine to minimize code disruption.) 511 */ 512 static int checkForMultiColumnSelectError( 513 Parse *pParse, /* Parse context. */ 514 SelectDest *pDest, /* Destination of SELECT results */ 515 int nExpr /* Number of result columns returned by SELECT */ 516 ){ 517 int eDest = pDest->eDest; 518 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 519 sqlite3ErrorMsg(pParse, "only a single result allowed for " 520 "a SELECT that is part of an expression"); 521 return 1; 522 }else{ 523 return 0; 524 } 525 } 526 #endif 527 528 /* 529 ** This routine generates the code for the inside of the inner loop 530 ** of a SELECT. 531 ** 532 ** If srcTab and nColumn are both zero, then the pEList expressions 533 ** are evaluated in order to get the data for this row. If nColumn>0 534 ** then data is pulled from srcTab and pEList is used only to get the 535 ** datatypes for each column. 536 */ 537 static void selectInnerLoop( 538 Parse *pParse, /* The parser context */ 539 Select *p, /* The complete select statement being coded */ 540 ExprList *pEList, /* List of values being extracted */ 541 int srcTab, /* Pull data from this table */ 542 int nColumn, /* Number of columns in the source table */ 543 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 544 int distinct, /* If >=0, make sure results are distinct */ 545 SelectDest *pDest, /* How to dispose of the results */ 546 int iContinue, /* Jump here to continue with next row */ 547 int iBreak /* Jump here to break out of the inner loop */ 548 ){ 549 Vdbe *v = pParse->pVdbe; 550 int i; 551 int hasDistinct; /* True if the DISTINCT keyword is present */ 552 int regResult; /* Start of memory holding result set */ 553 int eDest = pDest->eDest; /* How to dispose of results */ 554 int iParm = pDest->iParm; /* First argument to disposal method */ 555 int nResultCol; /* Number of result columns */ 556 557 assert( v ); 558 if( NEVER(v==0) ) return; 559 assert( pEList!=0 ); 560 hasDistinct = distinct>=0; 561 if( pOrderBy==0 && !hasDistinct ){ 562 codeOffset(v, p, iContinue); 563 } 564 565 /* Pull the requested columns. 566 */ 567 if( nColumn>0 ){ 568 nResultCol = nColumn; 569 }else{ 570 nResultCol = pEList->nExpr; 571 } 572 if( pDest->iMem==0 ){ 573 pDest->iMem = pParse->nMem+1; 574 pDest->nMem = nResultCol; 575 pParse->nMem += nResultCol; 576 }else{ 577 assert( pDest->nMem==nResultCol ); 578 } 579 regResult = pDest->iMem; 580 if( nColumn>0 ){ 581 for(i=0; i<nColumn; i++){ 582 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 583 } 584 }else if( eDest!=SRT_Exists ){ 585 /* If the destination is an EXISTS(...) expression, the actual 586 ** values returned by the SELECT are not required. 587 */ 588 sqlite3ExprCacheClear(pParse); 589 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 590 } 591 nColumn = nResultCol; 592 593 /* If the DISTINCT keyword was present on the SELECT statement 594 ** and this row has been seen before, then do not make this row 595 ** part of the result. 596 */ 597 if( hasDistinct ){ 598 assert( pEList!=0 ); 599 assert( pEList->nExpr==nColumn ); 600 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 601 if( pOrderBy==0 ){ 602 codeOffset(v, p, iContinue); 603 } 604 } 605 606 switch( eDest ){ 607 /* In this mode, write each query result to the key of the temporary 608 ** table iParm. 609 */ 610 #ifndef SQLITE_OMIT_COMPOUND_SELECT 611 case SRT_Union: { 612 int r1; 613 r1 = sqlite3GetTempReg(pParse); 614 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 615 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 616 sqlite3ReleaseTempReg(pParse, r1); 617 break; 618 } 619 620 /* Construct a record from the query result, but instead of 621 ** saving that record, use it as a key to delete elements from 622 ** the temporary table iParm. 623 */ 624 case SRT_Except: { 625 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 626 break; 627 } 628 #endif 629 630 /* Store the result as data using a unique key. 631 */ 632 case SRT_Table: 633 case SRT_EphemTab: { 634 int r1 = sqlite3GetTempReg(pParse); 635 testcase( eDest==SRT_Table ); 636 testcase( eDest==SRT_EphemTab ); 637 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 638 if( pOrderBy ){ 639 pushOntoSorter(pParse, pOrderBy, p, r1); 640 }else{ 641 int r2 = sqlite3GetTempReg(pParse); 642 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 643 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 644 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 645 sqlite3ReleaseTempReg(pParse, r2); 646 } 647 sqlite3ReleaseTempReg(pParse, r1); 648 break; 649 } 650 651 #ifndef SQLITE_OMIT_SUBQUERY 652 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 653 ** then there should be a single item on the stack. Write this 654 ** item into the set table with bogus data. 655 */ 656 case SRT_Set: { 657 assert( nColumn==1 ); 658 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 659 if( pOrderBy ){ 660 /* At first glance you would think we could optimize out the 661 ** ORDER BY in this case since the order of entries in the set 662 ** does not matter. But there might be a LIMIT clause, in which 663 ** case the order does matter */ 664 pushOntoSorter(pParse, pOrderBy, p, regResult); 665 }else{ 666 int r1 = sqlite3GetTempReg(pParse); 667 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 668 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 669 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 670 sqlite3ReleaseTempReg(pParse, r1); 671 } 672 break; 673 } 674 675 /* If any row exist in the result set, record that fact and abort. 676 */ 677 case SRT_Exists: { 678 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 679 /* The LIMIT clause will terminate the loop for us */ 680 break; 681 } 682 683 /* If this is a scalar select that is part of an expression, then 684 ** store the results in the appropriate memory cell and break out 685 ** of the scan loop. 686 */ 687 case SRT_Mem: { 688 assert( nColumn==1 ); 689 if( pOrderBy ){ 690 pushOntoSorter(pParse, pOrderBy, p, regResult); 691 }else{ 692 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 693 /* The LIMIT clause will jump out of the loop for us */ 694 } 695 break; 696 } 697 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 698 699 /* Send the data to the callback function or to a subroutine. In the 700 ** case of a subroutine, the subroutine itself is responsible for 701 ** popping the data from the stack. 702 */ 703 case SRT_Coroutine: 704 case SRT_Output: { 705 testcase( eDest==SRT_Coroutine ); 706 testcase( eDest==SRT_Output ); 707 if( pOrderBy ){ 708 int r1 = sqlite3GetTempReg(pParse); 709 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 710 pushOntoSorter(pParse, pOrderBy, p, r1); 711 sqlite3ReleaseTempReg(pParse, r1); 712 }else if( eDest==SRT_Coroutine ){ 713 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 714 }else{ 715 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 716 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 717 } 718 break; 719 } 720 721 #if !defined(SQLITE_OMIT_TRIGGER) 722 /* Discard the results. This is used for SELECT statements inside 723 ** the body of a TRIGGER. The purpose of such selects is to call 724 ** user-defined functions that have side effects. We do not care 725 ** about the actual results of the select. 726 */ 727 default: { 728 assert( eDest==SRT_Discard ); 729 break; 730 } 731 #endif 732 } 733 734 /* Jump to the end of the loop if the LIMIT is reached. Except, if 735 ** there is a sorter, in which case the sorter has already limited 736 ** the output for us. 737 */ 738 if( pOrderBy==0 && p->iLimit ){ 739 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 740 } 741 } 742 743 /* 744 ** Given an expression list, generate a KeyInfo structure that records 745 ** the collating sequence for each expression in that expression list. 746 ** 747 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 748 ** KeyInfo structure is appropriate for initializing a virtual index to 749 ** implement that clause. If the ExprList is the result set of a SELECT 750 ** then the KeyInfo structure is appropriate for initializing a virtual 751 ** index to implement a DISTINCT test. 752 ** 753 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 754 ** function is responsible for seeing that this structure is eventually 755 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 756 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 757 */ 758 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 759 sqlite3 *db = pParse->db; 760 int nExpr; 761 KeyInfo *pInfo; 762 struct ExprList_item *pItem; 763 int i; 764 765 nExpr = pList->nExpr; 766 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 767 if( pInfo ){ 768 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 769 pInfo->nField = (u16)nExpr; 770 pInfo->enc = ENC(db); 771 pInfo->db = db; 772 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 773 CollSeq *pColl; 774 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 775 if( !pColl ){ 776 pColl = db->pDfltColl; 777 } 778 pInfo->aColl[i] = pColl; 779 pInfo->aSortOrder[i] = pItem->sortOrder; 780 } 781 } 782 return pInfo; 783 } 784 785 #ifndef SQLITE_OMIT_COMPOUND_SELECT 786 /* 787 ** Name of the connection operator, used for error messages. 788 */ 789 static const char *selectOpName(int id){ 790 char *z; 791 switch( id ){ 792 case TK_ALL: z = "UNION ALL"; break; 793 case TK_INTERSECT: z = "INTERSECT"; break; 794 case TK_EXCEPT: z = "EXCEPT"; break; 795 default: z = "UNION"; break; 796 } 797 return z; 798 } 799 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 800 801 #ifndef SQLITE_OMIT_EXPLAIN 802 /* 803 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 804 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 805 ** where the caption is of the form: 806 ** 807 ** "USE TEMP B-TREE FOR xxx" 808 ** 809 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 810 ** is determined by the zUsage argument. 811 */ 812 static void explainTempTable(Parse *pParse, const char *zUsage){ 813 if( pParse->explain==2 ){ 814 Vdbe *v = pParse->pVdbe; 815 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 816 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 817 } 818 } 819 820 /* 821 ** Assign expression b to lvalue a. A second, no-op, version of this macro 822 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 823 ** in sqlite3Select() to assign values to structure member variables that 824 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 825 ** code with #ifndef directives. 826 */ 827 # define explainSetInteger(a, b) a = b 828 829 #else 830 /* No-op versions of the explainXXX() functions and macros. */ 831 # define explainTempTable(y,z) 832 # define explainSetInteger(y,z) 833 #endif 834 835 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 836 /* 837 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 838 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 839 ** where the caption is of one of the two forms: 840 ** 841 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 842 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 843 ** 844 ** where iSub1 and iSub2 are the integers passed as the corresponding 845 ** function parameters, and op is the text representation of the parameter 846 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 847 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 848 ** false, or the second form if it is true. 849 */ 850 static void explainComposite( 851 Parse *pParse, /* Parse context */ 852 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 853 int iSub1, /* Subquery id 1 */ 854 int iSub2, /* Subquery id 2 */ 855 int bUseTmp /* True if a temp table was used */ 856 ){ 857 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 858 if( pParse->explain==2 ){ 859 Vdbe *v = pParse->pVdbe; 860 char *zMsg = sqlite3MPrintf( 861 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 862 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 863 ); 864 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 865 } 866 } 867 #else 868 /* No-op versions of the explainXXX() functions and macros. */ 869 # define explainComposite(v,w,x,y,z) 870 #endif 871 872 /* 873 ** If the inner loop was generated using a non-null pOrderBy argument, 874 ** then the results were placed in a sorter. After the loop is terminated 875 ** we need to run the sorter and output the results. The following 876 ** routine generates the code needed to do that. 877 */ 878 static void generateSortTail( 879 Parse *pParse, /* Parsing context */ 880 Select *p, /* The SELECT statement */ 881 Vdbe *v, /* Generate code into this VDBE */ 882 int nColumn, /* Number of columns of data */ 883 SelectDest *pDest /* Write the sorted results here */ 884 ){ 885 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 886 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 887 int addr; 888 int iTab; 889 int pseudoTab = 0; 890 ExprList *pOrderBy = p->pOrderBy; 891 892 int eDest = pDest->eDest; 893 int iParm = pDest->iParm; 894 895 int regRow; 896 int regRowid; 897 898 iTab = pOrderBy->iECursor; 899 regRow = sqlite3GetTempReg(pParse); 900 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 901 pseudoTab = pParse->nTab++; 902 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 903 regRowid = 0; 904 }else{ 905 regRowid = sqlite3GetTempReg(pParse); 906 } 907 if( p->selFlags & SF_UseSorter ){ 908 int regSortOut = ++pParse->nMem; 909 int ptab2 = pParse->nTab++; 910 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); 911 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 912 codeOffset(v, p, addrContinue); 913 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 914 sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); 915 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 916 }else{ 917 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 918 codeOffset(v, p, addrContinue); 919 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); 920 } 921 switch( eDest ){ 922 case SRT_Table: 923 case SRT_EphemTab: { 924 testcase( eDest==SRT_Table ); 925 testcase( eDest==SRT_EphemTab ); 926 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 927 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 928 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 929 break; 930 } 931 #ifndef SQLITE_OMIT_SUBQUERY 932 case SRT_Set: { 933 assert( nColumn==1 ); 934 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 935 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 936 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 937 break; 938 } 939 case SRT_Mem: { 940 assert( nColumn==1 ); 941 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 942 /* The LIMIT clause will terminate the loop for us */ 943 break; 944 } 945 #endif 946 default: { 947 int i; 948 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 949 testcase( eDest==SRT_Output ); 950 testcase( eDest==SRT_Coroutine ); 951 for(i=0; i<nColumn; i++){ 952 assert( regRow!=pDest->iMem+i ); 953 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 954 if( i==0 ){ 955 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 956 } 957 } 958 if( eDest==SRT_Output ){ 959 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 960 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 961 }else{ 962 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 963 } 964 break; 965 } 966 } 967 sqlite3ReleaseTempReg(pParse, regRow); 968 sqlite3ReleaseTempReg(pParse, regRowid); 969 970 /* The bottom of the loop 971 */ 972 sqlite3VdbeResolveLabel(v, addrContinue); 973 if( p->selFlags & SF_UseSorter ){ 974 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); 975 }else{ 976 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 977 } 978 sqlite3VdbeResolveLabel(v, addrBreak); 979 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 980 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 981 } 982 } 983 984 /* 985 ** Return a pointer to a string containing the 'declaration type' of the 986 ** expression pExpr. The string may be treated as static by the caller. 987 ** 988 ** The declaration type is the exact datatype definition extracted from the 989 ** original CREATE TABLE statement if the expression is a column. The 990 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 991 ** is considered a column can be complex in the presence of subqueries. The 992 ** result-set expression in all of the following SELECT statements is 993 ** considered a column by this function. 994 ** 995 ** SELECT col FROM tbl; 996 ** SELECT (SELECT col FROM tbl; 997 ** SELECT (SELECT col FROM tbl); 998 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 999 ** 1000 ** The declaration type for any expression other than a column is NULL. 1001 */ 1002 static const char *columnType( 1003 NameContext *pNC, 1004 Expr *pExpr, 1005 const char **pzOriginDb, 1006 const char **pzOriginTab, 1007 const char **pzOriginCol 1008 ){ 1009 char const *zType = 0; 1010 char const *zOriginDb = 0; 1011 char const *zOriginTab = 0; 1012 char const *zOriginCol = 0; 1013 int j; 1014 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1015 1016 switch( pExpr->op ){ 1017 case TK_AGG_COLUMN: 1018 case TK_COLUMN: { 1019 /* The expression is a column. Locate the table the column is being 1020 ** extracted from in NameContext.pSrcList. This table may be real 1021 ** database table or a subquery. 1022 */ 1023 Table *pTab = 0; /* Table structure column is extracted from */ 1024 Select *pS = 0; /* Select the column is extracted from */ 1025 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1026 testcase( pExpr->op==TK_AGG_COLUMN ); 1027 testcase( pExpr->op==TK_COLUMN ); 1028 while( pNC && !pTab ){ 1029 SrcList *pTabList = pNC->pSrcList; 1030 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1031 if( j<pTabList->nSrc ){ 1032 pTab = pTabList->a[j].pTab; 1033 pS = pTabList->a[j].pSelect; 1034 }else{ 1035 pNC = pNC->pNext; 1036 } 1037 } 1038 1039 if( pTab==0 ){ 1040 /* At one time, code such as "SELECT new.x" within a trigger would 1041 ** cause this condition to run. Since then, we have restructured how 1042 ** trigger code is generated and so this condition is no longer 1043 ** possible. However, it can still be true for statements like 1044 ** the following: 1045 ** 1046 ** CREATE TABLE t1(col INTEGER); 1047 ** SELECT (SELECT t1.col) FROM FROM t1; 1048 ** 1049 ** when columnType() is called on the expression "t1.col" in the 1050 ** sub-select. In this case, set the column type to NULL, even 1051 ** though it should really be "INTEGER". 1052 ** 1053 ** This is not a problem, as the column type of "t1.col" is never 1054 ** used. When columnType() is called on the expression 1055 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1056 ** branch below. */ 1057 break; 1058 } 1059 1060 assert( pTab && pExpr->pTab==pTab ); 1061 if( pS ){ 1062 /* The "table" is actually a sub-select or a view in the FROM clause 1063 ** of the SELECT statement. Return the declaration type and origin 1064 ** data for the result-set column of the sub-select. 1065 */ 1066 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1067 /* If iCol is less than zero, then the expression requests the 1068 ** rowid of the sub-select or view. This expression is legal (see 1069 ** test case misc2.2.2) - it always evaluates to NULL. 1070 */ 1071 NameContext sNC; 1072 Expr *p = pS->pEList->a[iCol].pExpr; 1073 sNC.pSrcList = pS->pSrc; 1074 sNC.pNext = pNC; 1075 sNC.pParse = pNC->pParse; 1076 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1077 } 1078 }else if( ALWAYS(pTab->pSchema) ){ 1079 /* A real table */ 1080 assert( !pS ); 1081 if( iCol<0 ) iCol = pTab->iPKey; 1082 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1083 if( iCol<0 ){ 1084 zType = "INTEGER"; 1085 zOriginCol = "rowid"; 1086 }else{ 1087 zType = pTab->aCol[iCol].zType; 1088 zOriginCol = pTab->aCol[iCol].zName; 1089 } 1090 zOriginTab = pTab->zName; 1091 if( pNC->pParse ){ 1092 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1093 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 1094 } 1095 } 1096 break; 1097 } 1098 #ifndef SQLITE_OMIT_SUBQUERY 1099 case TK_SELECT: { 1100 /* The expression is a sub-select. Return the declaration type and 1101 ** origin info for the single column in the result set of the SELECT 1102 ** statement. 1103 */ 1104 NameContext sNC; 1105 Select *pS = pExpr->x.pSelect; 1106 Expr *p = pS->pEList->a[0].pExpr; 1107 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1108 sNC.pSrcList = pS->pSrc; 1109 sNC.pNext = pNC; 1110 sNC.pParse = pNC->pParse; 1111 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1112 break; 1113 } 1114 #endif 1115 } 1116 1117 if( pzOriginDb ){ 1118 assert( pzOriginTab && pzOriginCol ); 1119 *pzOriginDb = zOriginDb; 1120 *pzOriginTab = zOriginTab; 1121 *pzOriginCol = zOriginCol; 1122 } 1123 return zType; 1124 } 1125 1126 /* 1127 ** Generate code that will tell the VDBE the declaration types of columns 1128 ** in the result set. 1129 */ 1130 static void generateColumnTypes( 1131 Parse *pParse, /* Parser context */ 1132 SrcList *pTabList, /* List of tables */ 1133 ExprList *pEList /* Expressions defining the result set */ 1134 ){ 1135 #ifndef SQLITE_OMIT_DECLTYPE 1136 Vdbe *v = pParse->pVdbe; 1137 int i; 1138 NameContext sNC; 1139 sNC.pSrcList = pTabList; 1140 sNC.pParse = pParse; 1141 for(i=0; i<pEList->nExpr; i++){ 1142 Expr *p = pEList->a[i].pExpr; 1143 const char *zType; 1144 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1145 const char *zOrigDb = 0; 1146 const char *zOrigTab = 0; 1147 const char *zOrigCol = 0; 1148 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1149 1150 /* The vdbe must make its own copy of the column-type and other 1151 ** column specific strings, in case the schema is reset before this 1152 ** virtual machine is deleted. 1153 */ 1154 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1155 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1156 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1157 #else 1158 zType = columnType(&sNC, p, 0, 0, 0); 1159 #endif 1160 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1161 } 1162 #endif /* SQLITE_OMIT_DECLTYPE */ 1163 } 1164 1165 /* 1166 ** Generate code that will tell the VDBE the names of columns 1167 ** in the result set. This information is used to provide the 1168 ** azCol[] values in the callback. 1169 */ 1170 static void generateColumnNames( 1171 Parse *pParse, /* Parser context */ 1172 SrcList *pTabList, /* List of tables */ 1173 ExprList *pEList /* Expressions defining the result set */ 1174 ){ 1175 Vdbe *v = pParse->pVdbe; 1176 int i, j; 1177 sqlite3 *db = pParse->db; 1178 int fullNames, shortNames; 1179 1180 #ifndef SQLITE_OMIT_EXPLAIN 1181 /* If this is an EXPLAIN, skip this step */ 1182 if( pParse->explain ){ 1183 return; 1184 } 1185 #endif 1186 1187 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1188 pParse->colNamesSet = 1; 1189 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1190 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1191 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1192 for(i=0; i<pEList->nExpr; i++){ 1193 Expr *p; 1194 p = pEList->a[i].pExpr; 1195 if( NEVER(p==0) ) continue; 1196 if( pEList->a[i].zName ){ 1197 char *zName = pEList->a[i].zName; 1198 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1199 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1200 Table *pTab; 1201 char *zCol; 1202 int iCol = p->iColumn; 1203 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1204 if( pTabList->a[j].iCursor==p->iTable ) break; 1205 } 1206 assert( j<pTabList->nSrc ); 1207 pTab = pTabList->a[j].pTab; 1208 if( iCol<0 ) iCol = pTab->iPKey; 1209 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1210 if( iCol<0 ){ 1211 zCol = "rowid"; 1212 }else{ 1213 zCol = pTab->aCol[iCol].zName; 1214 } 1215 if( !shortNames && !fullNames ){ 1216 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1217 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1218 }else if( fullNames ){ 1219 char *zName = 0; 1220 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1221 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1222 }else{ 1223 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1224 } 1225 }else{ 1226 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1227 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1228 } 1229 } 1230 generateColumnTypes(pParse, pTabList, pEList); 1231 } 1232 1233 /* 1234 ** Given a an expression list (which is really the list of expressions 1235 ** that form the result set of a SELECT statement) compute appropriate 1236 ** column names for a table that would hold the expression list. 1237 ** 1238 ** All column names will be unique. 1239 ** 1240 ** Only the column names are computed. Column.zType, Column.zColl, 1241 ** and other fields of Column are zeroed. 1242 ** 1243 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1244 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1245 */ 1246 static int selectColumnsFromExprList( 1247 Parse *pParse, /* Parsing context */ 1248 ExprList *pEList, /* Expr list from which to derive column names */ 1249 int *pnCol, /* Write the number of columns here */ 1250 Column **paCol /* Write the new column list here */ 1251 ){ 1252 sqlite3 *db = pParse->db; /* Database connection */ 1253 int i, j; /* Loop counters */ 1254 int cnt; /* Index added to make the name unique */ 1255 Column *aCol, *pCol; /* For looping over result columns */ 1256 int nCol; /* Number of columns in the result set */ 1257 Expr *p; /* Expression for a single result column */ 1258 char *zName; /* Column name */ 1259 int nName; /* Size of name in zName[] */ 1260 1261 if( pEList ){ 1262 nCol = pEList->nExpr; 1263 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1264 testcase( aCol==0 ); 1265 }else{ 1266 nCol = 0; 1267 aCol = 0; 1268 } 1269 *pnCol = nCol; 1270 *paCol = aCol; 1271 1272 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1273 /* Get an appropriate name for the column 1274 */ 1275 p = pEList->a[i].pExpr; 1276 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1277 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1278 if( (zName = pEList->a[i].zName)!=0 ){ 1279 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1280 zName = sqlite3DbStrDup(db, zName); 1281 }else{ 1282 Expr *pColExpr = p; /* The expression that is the result column name */ 1283 Table *pTab; /* Table associated with this expression */ 1284 while( pColExpr->op==TK_DOT ){ 1285 pColExpr = pColExpr->pRight; 1286 assert( pColExpr!=0 ); 1287 } 1288 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1289 /* For columns use the column name name */ 1290 int iCol = pColExpr->iColumn; 1291 pTab = pColExpr->pTab; 1292 if( iCol<0 ) iCol = pTab->iPKey; 1293 zName = sqlite3MPrintf(db, "%s", 1294 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1295 }else if( pColExpr->op==TK_ID ){ 1296 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1297 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1298 }else{ 1299 /* Use the original text of the column expression as its name */ 1300 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1301 } 1302 } 1303 if( db->mallocFailed ){ 1304 sqlite3DbFree(db, zName); 1305 break; 1306 } 1307 1308 /* Make sure the column name is unique. If the name is not unique, 1309 ** append a integer to the name so that it becomes unique. 1310 */ 1311 nName = sqlite3Strlen30(zName); 1312 for(j=cnt=0; j<i; j++){ 1313 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1314 char *zNewName; 1315 zName[nName] = 0; 1316 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1317 sqlite3DbFree(db, zName); 1318 zName = zNewName; 1319 j = -1; 1320 if( zName==0 ) break; 1321 } 1322 } 1323 pCol->zName = zName; 1324 } 1325 if( db->mallocFailed ){ 1326 for(j=0; j<i; j++){ 1327 sqlite3DbFree(db, aCol[j].zName); 1328 } 1329 sqlite3DbFree(db, aCol); 1330 *paCol = 0; 1331 *pnCol = 0; 1332 return SQLITE_NOMEM; 1333 } 1334 return SQLITE_OK; 1335 } 1336 1337 /* 1338 ** Add type and collation information to a column list based on 1339 ** a SELECT statement. 1340 ** 1341 ** The column list presumably came from selectColumnNamesFromExprList(). 1342 ** The column list has only names, not types or collations. This 1343 ** routine goes through and adds the types and collations. 1344 ** 1345 ** This routine requires that all identifiers in the SELECT 1346 ** statement be resolved. 1347 */ 1348 static void selectAddColumnTypeAndCollation( 1349 Parse *pParse, /* Parsing contexts */ 1350 int nCol, /* Number of columns */ 1351 Column *aCol, /* List of columns */ 1352 Select *pSelect /* SELECT used to determine types and collations */ 1353 ){ 1354 sqlite3 *db = pParse->db; 1355 NameContext sNC; 1356 Column *pCol; 1357 CollSeq *pColl; 1358 int i; 1359 Expr *p; 1360 struct ExprList_item *a; 1361 1362 assert( pSelect!=0 ); 1363 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1364 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1365 if( db->mallocFailed ) return; 1366 memset(&sNC, 0, sizeof(sNC)); 1367 sNC.pSrcList = pSelect->pSrc; 1368 a = pSelect->pEList->a; 1369 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1370 p = a[i].pExpr; 1371 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1372 pCol->affinity = sqlite3ExprAffinity(p); 1373 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1374 pColl = sqlite3ExprCollSeq(pParse, p); 1375 if( pColl ){ 1376 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1377 } 1378 } 1379 } 1380 1381 /* 1382 ** Given a SELECT statement, generate a Table structure that describes 1383 ** the result set of that SELECT. 1384 */ 1385 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1386 Table *pTab; 1387 sqlite3 *db = pParse->db; 1388 int savedFlags; 1389 1390 savedFlags = db->flags; 1391 db->flags &= ~SQLITE_FullColNames; 1392 db->flags |= SQLITE_ShortColNames; 1393 sqlite3SelectPrep(pParse, pSelect, 0); 1394 if( pParse->nErr ) return 0; 1395 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1396 db->flags = savedFlags; 1397 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1398 if( pTab==0 ){ 1399 return 0; 1400 } 1401 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1402 ** is disabled */ 1403 assert( db->lookaside.bEnabled==0 ); 1404 pTab->nRef = 1; 1405 pTab->zName = 0; 1406 pTab->nRowEst = 1000000; 1407 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1408 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1409 pTab->iPKey = -1; 1410 if( db->mallocFailed ){ 1411 sqlite3DeleteTable(db, pTab); 1412 return 0; 1413 } 1414 return pTab; 1415 } 1416 1417 /* 1418 ** Get a VDBE for the given parser context. Create a new one if necessary. 1419 ** If an error occurs, return NULL and leave a message in pParse. 1420 */ 1421 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1422 Vdbe *v = pParse->pVdbe; 1423 if( v==0 ){ 1424 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1425 #ifndef SQLITE_OMIT_TRACE 1426 if( v ){ 1427 sqlite3VdbeAddOp0(v, OP_Trace); 1428 } 1429 #endif 1430 } 1431 return v; 1432 } 1433 1434 1435 /* 1436 ** Compute the iLimit and iOffset fields of the SELECT based on the 1437 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1438 ** that appear in the original SQL statement after the LIMIT and OFFSET 1439 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1440 ** are the integer memory register numbers for counters used to compute 1441 ** the limit and offset. If there is no limit and/or offset, then 1442 ** iLimit and iOffset are negative. 1443 ** 1444 ** This routine changes the values of iLimit and iOffset only if 1445 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1446 ** iOffset should have been preset to appropriate default values 1447 ** (usually but not always -1) prior to calling this routine. 1448 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1449 ** redefined. The UNION ALL operator uses this property to force 1450 ** the reuse of the same limit and offset registers across multiple 1451 ** SELECT statements. 1452 */ 1453 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1454 Vdbe *v = 0; 1455 int iLimit = 0; 1456 int iOffset; 1457 int addr1, n; 1458 if( p->iLimit ) return; 1459 1460 /* 1461 ** "LIMIT -1" always shows all rows. There is some 1462 ** contraversy about what the correct behavior should be. 1463 ** The current implementation interprets "LIMIT 0" to mean 1464 ** no rows. 1465 */ 1466 sqlite3ExprCacheClear(pParse); 1467 assert( p->pOffset==0 || p->pLimit!=0 ); 1468 if( p->pLimit ){ 1469 p->iLimit = iLimit = ++pParse->nMem; 1470 v = sqlite3GetVdbe(pParse); 1471 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1472 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1473 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1474 VdbeComment((v, "LIMIT counter")); 1475 if( n==0 ){ 1476 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1477 }else{ 1478 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; 1479 } 1480 }else{ 1481 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1482 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1483 VdbeComment((v, "LIMIT counter")); 1484 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1485 } 1486 if( p->pOffset ){ 1487 p->iOffset = iOffset = ++pParse->nMem; 1488 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1489 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1490 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1491 VdbeComment((v, "OFFSET counter")); 1492 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1493 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1494 sqlite3VdbeJumpHere(v, addr1); 1495 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1496 VdbeComment((v, "LIMIT+OFFSET")); 1497 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1498 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1499 sqlite3VdbeJumpHere(v, addr1); 1500 } 1501 } 1502 } 1503 1504 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1505 /* 1506 ** Return the appropriate collating sequence for the iCol-th column of 1507 ** the result set for the compound-select statement "p". Return NULL if 1508 ** the column has no default collating sequence. 1509 ** 1510 ** The collating sequence for the compound select is taken from the 1511 ** left-most term of the select that has a collating sequence. 1512 */ 1513 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1514 CollSeq *pRet; 1515 if( p->pPrior ){ 1516 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1517 }else{ 1518 pRet = 0; 1519 } 1520 assert( iCol>=0 ); 1521 if( pRet==0 && iCol<p->pEList->nExpr ){ 1522 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1523 } 1524 return pRet; 1525 } 1526 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1527 1528 /* Forward reference */ 1529 static int multiSelectOrderBy( 1530 Parse *pParse, /* Parsing context */ 1531 Select *p, /* The right-most of SELECTs to be coded */ 1532 SelectDest *pDest /* What to do with query results */ 1533 ); 1534 1535 1536 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1537 /* 1538 ** This routine is called to process a compound query form from 1539 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1540 ** INTERSECT 1541 ** 1542 ** "p" points to the right-most of the two queries. the query on the 1543 ** left is p->pPrior. The left query could also be a compound query 1544 ** in which case this routine will be called recursively. 1545 ** 1546 ** The results of the total query are to be written into a destination 1547 ** of type eDest with parameter iParm. 1548 ** 1549 ** Example 1: Consider a three-way compound SQL statement. 1550 ** 1551 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1552 ** 1553 ** This statement is parsed up as follows: 1554 ** 1555 ** SELECT c FROM t3 1556 ** | 1557 ** `-----> SELECT b FROM t2 1558 ** | 1559 ** `------> SELECT a FROM t1 1560 ** 1561 ** The arrows in the diagram above represent the Select.pPrior pointer. 1562 ** So if this routine is called with p equal to the t3 query, then 1563 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1564 ** 1565 ** Notice that because of the way SQLite parses compound SELECTs, the 1566 ** individual selects always group from left to right. 1567 */ 1568 static int multiSelect( 1569 Parse *pParse, /* Parsing context */ 1570 Select *p, /* The right-most of SELECTs to be coded */ 1571 SelectDest *pDest /* What to do with query results */ 1572 ){ 1573 int rc = SQLITE_OK; /* Success code from a subroutine */ 1574 Select *pPrior; /* Another SELECT immediately to our left */ 1575 Vdbe *v; /* Generate code to this VDBE */ 1576 SelectDest dest; /* Alternative data destination */ 1577 Select *pDelete = 0; /* Chain of simple selects to delete */ 1578 sqlite3 *db; /* Database connection */ 1579 #ifndef SQLITE_OMIT_EXPLAIN 1580 int iSub1; /* EQP id of left-hand query */ 1581 int iSub2; /* EQP id of right-hand query */ 1582 #endif 1583 1584 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1585 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1586 */ 1587 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1588 db = pParse->db; 1589 pPrior = p->pPrior; 1590 assert( pPrior->pRightmost!=pPrior ); 1591 assert( pPrior->pRightmost==p->pRightmost ); 1592 dest = *pDest; 1593 if( pPrior->pOrderBy ){ 1594 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1595 selectOpName(p->op)); 1596 rc = 1; 1597 goto multi_select_end; 1598 } 1599 if( pPrior->pLimit ){ 1600 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1601 selectOpName(p->op)); 1602 rc = 1; 1603 goto multi_select_end; 1604 } 1605 1606 v = sqlite3GetVdbe(pParse); 1607 assert( v!=0 ); /* The VDBE already created by calling function */ 1608 1609 /* Create the destination temporary table if necessary 1610 */ 1611 if( dest.eDest==SRT_EphemTab ){ 1612 assert( p->pEList ); 1613 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1614 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1615 dest.eDest = SRT_Table; 1616 } 1617 1618 /* Make sure all SELECTs in the statement have the same number of elements 1619 ** in their result sets. 1620 */ 1621 assert( p->pEList && pPrior->pEList ); 1622 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1623 if( p->selFlags & SF_Values ){ 1624 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 1625 }else{ 1626 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1627 " do not have the same number of result columns", selectOpName(p->op)); 1628 } 1629 rc = 1; 1630 goto multi_select_end; 1631 } 1632 1633 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1634 */ 1635 if( p->pOrderBy ){ 1636 return multiSelectOrderBy(pParse, p, pDest); 1637 } 1638 1639 /* Generate code for the left and right SELECT statements. 1640 */ 1641 switch( p->op ){ 1642 case TK_ALL: { 1643 int addr = 0; 1644 int nLimit; 1645 assert( !pPrior->pLimit ); 1646 pPrior->pLimit = p->pLimit; 1647 pPrior->pOffset = p->pOffset; 1648 explainSetInteger(iSub1, pParse->iNextSelectId); 1649 rc = sqlite3Select(pParse, pPrior, &dest); 1650 p->pLimit = 0; 1651 p->pOffset = 0; 1652 if( rc ){ 1653 goto multi_select_end; 1654 } 1655 p->pPrior = 0; 1656 p->iLimit = pPrior->iLimit; 1657 p->iOffset = pPrior->iOffset; 1658 if( p->iLimit ){ 1659 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1660 VdbeComment((v, "Jump ahead if LIMIT reached")); 1661 } 1662 explainSetInteger(iSub2, pParse->iNextSelectId); 1663 rc = sqlite3Select(pParse, p, &dest); 1664 testcase( rc!=SQLITE_OK ); 1665 pDelete = p->pPrior; 1666 p->pPrior = pPrior; 1667 p->nSelectRow += pPrior->nSelectRow; 1668 if( pPrior->pLimit 1669 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 1670 && p->nSelectRow > (double)nLimit 1671 ){ 1672 p->nSelectRow = (double)nLimit; 1673 } 1674 if( addr ){ 1675 sqlite3VdbeJumpHere(v, addr); 1676 } 1677 break; 1678 } 1679 case TK_EXCEPT: 1680 case TK_UNION: { 1681 int unionTab; /* Cursor number of the temporary table holding result */ 1682 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1683 int priorOp; /* The SRT_ operation to apply to prior selects */ 1684 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1685 int addr; 1686 SelectDest uniondest; 1687 1688 testcase( p->op==TK_EXCEPT ); 1689 testcase( p->op==TK_UNION ); 1690 priorOp = SRT_Union; 1691 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1692 /* We can reuse a temporary table generated by a SELECT to our 1693 ** right. 1694 */ 1695 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1696 ** of a 3-way or more compound */ 1697 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1698 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1699 unionTab = dest.iParm; 1700 }else{ 1701 /* We will need to create our own temporary table to hold the 1702 ** intermediate results. 1703 */ 1704 unionTab = pParse->nTab++; 1705 assert( p->pOrderBy==0 ); 1706 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1707 assert( p->addrOpenEphm[0] == -1 ); 1708 p->addrOpenEphm[0] = addr; 1709 p->pRightmost->selFlags |= SF_UsesEphemeral; 1710 assert( p->pEList ); 1711 } 1712 1713 /* Code the SELECT statements to our left 1714 */ 1715 assert( !pPrior->pOrderBy ); 1716 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1717 explainSetInteger(iSub1, pParse->iNextSelectId); 1718 rc = sqlite3Select(pParse, pPrior, &uniondest); 1719 if( rc ){ 1720 goto multi_select_end; 1721 } 1722 1723 /* Code the current SELECT statement 1724 */ 1725 if( p->op==TK_EXCEPT ){ 1726 op = SRT_Except; 1727 }else{ 1728 assert( p->op==TK_UNION ); 1729 op = SRT_Union; 1730 } 1731 p->pPrior = 0; 1732 pLimit = p->pLimit; 1733 p->pLimit = 0; 1734 pOffset = p->pOffset; 1735 p->pOffset = 0; 1736 uniondest.eDest = op; 1737 explainSetInteger(iSub2, pParse->iNextSelectId); 1738 rc = sqlite3Select(pParse, p, &uniondest); 1739 testcase( rc!=SQLITE_OK ); 1740 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1741 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1742 sqlite3ExprListDelete(db, p->pOrderBy); 1743 pDelete = p->pPrior; 1744 p->pPrior = pPrior; 1745 p->pOrderBy = 0; 1746 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 1747 sqlite3ExprDelete(db, p->pLimit); 1748 p->pLimit = pLimit; 1749 p->pOffset = pOffset; 1750 p->iLimit = 0; 1751 p->iOffset = 0; 1752 1753 /* Convert the data in the temporary table into whatever form 1754 ** it is that we currently need. 1755 */ 1756 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1757 if( dest.eDest!=priorOp ){ 1758 int iCont, iBreak, iStart; 1759 assert( p->pEList ); 1760 if( dest.eDest==SRT_Output ){ 1761 Select *pFirst = p; 1762 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1763 generateColumnNames(pParse, 0, pFirst->pEList); 1764 } 1765 iBreak = sqlite3VdbeMakeLabel(v); 1766 iCont = sqlite3VdbeMakeLabel(v); 1767 computeLimitRegisters(pParse, p, iBreak); 1768 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1769 iStart = sqlite3VdbeCurrentAddr(v); 1770 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1771 0, -1, &dest, iCont, iBreak); 1772 sqlite3VdbeResolveLabel(v, iCont); 1773 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1774 sqlite3VdbeResolveLabel(v, iBreak); 1775 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1776 } 1777 break; 1778 } 1779 default: assert( p->op==TK_INTERSECT ); { 1780 int tab1, tab2; 1781 int iCont, iBreak, iStart; 1782 Expr *pLimit, *pOffset; 1783 int addr; 1784 SelectDest intersectdest; 1785 int r1; 1786 1787 /* INTERSECT is different from the others since it requires 1788 ** two temporary tables. Hence it has its own case. Begin 1789 ** by allocating the tables we will need. 1790 */ 1791 tab1 = pParse->nTab++; 1792 tab2 = pParse->nTab++; 1793 assert( p->pOrderBy==0 ); 1794 1795 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1796 assert( p->addrOpenEphm[0] == -1 ); 1797 p->addrOpenEphm[0] = addr; 1798 p->pRightmost->selFlags |= SF_UsesEphemeral; 1799 assert( p->pEList ); 1800 1801 /* Code the SELECTs to our left into temporary table "tab1". 1802 */ 1803 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1804 explainSetInteger(iSub1, pParse->iNextSelectId); 1805 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1806 if( rc ){ 1807 goto multi_select_end; 1808 } 1809 1810 /* Code the current SELECT into temporary table "tab2" 1811 */ 1812 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1813 assert( p->addrOpenEphm[1] == -1 ); 1814 p->addrOpenEphm[1] = addr; 1815 p->pPrior = 0; 1816 pLimit = p->pLimit; 1817 p->pLimit = 0; 1818 pOffset = p->pOffset; 1819 p->pOffset = 0; 1820 intersectdest.iParm = tab2; 1821 explainSetInteger(iSub2, pParse->iNextSelectId); 1822 rc = sqlite3Select(pParse, p, &intersectdest); 1823 testcase( rc!=SQLITE_OK ); 1824 pDelete = p->pPrior; 1825 p->pPrior = pPrior; 1826 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 1827 sqlite3ExprDelete(db, p->pLimit); 1828 p->pLimit = pLimit; 1829 p->pOffset = pOffset; 1830 1831 /* Generate code to take the intersection of the two temporary 1832 ** tables. 1833 */ 1834 assert( p->pEList ); 1835 if( dest.eDest==SRT_Output ){ 1836 Select *pFirst = p; 1837 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1838 generateColumnNames(pParse, 0, pFirst->pEList); 1839 } 1840 iBreak = sqlite3VdbeMakeLabel(v); 1841 iCont = sqlite3VdbeMakeLabel(v); 1842 computeLimitRegisters(pParse, p, iBreak); 1843 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1844 r1 = sqlite3GetTempReg(pParse); 1845 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1846 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1847 sqlite3ReleaseTempReg(pParse, r1); 1848 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1849 0, -1, &dest, iCont, iBreak); 1850 sqlite3VdbeResolveLabel(v, iCont); 1851 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1852 sqlite3VdbeResolveLabel(v, iBreak); 1853 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1854 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1855 break; 1856 } 1857 } 1858 1859 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 1860 1861 /* Compute collating sequences used by 1862 ** temporary tables needed to implement the compound select. 1863 ** Attach the KeyInfo structure to all temporary tables. 1864 ** 1865 ** This section is run by the right-most SELECT statement only. 1866 ** SELECT statements to the left always skip this part. The right-most 1867 ** SELECT might also skip this part if it has no ORDER BY clause and 1868 ** no temp tables are required. 1869 */ 1870 if( p->selFlags & SF_UsesEphemeral ){ 1871 int i; /* Loop counter */ 1872 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1873 Select *pLoop; /* For looping through SELECT statements */ 1874 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1875 int nCol; /* Number of columns in result set */ 1876 1877 assert( p->pRightmost==p ); 1878 nCol = p->pEList->nExpr; 1879 pKeyInfo = sqlite3DbMallocZero(db, 1880 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1881 if( !pKeyInfo ){ 1882 rc = SQLITE_NOMEM; 1883 goto multi_select_end; 1884 } 1885 1886 pKeyInfo->enc = ENC(db); 1887 pKeyInfo->nField = (u16)nCol; 1888 1889 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1890 *apColl = multiSelectCollSeq(pParse, p, i); 1891 if( 0==*apColl ){ 1892 *apColl = db->pDfltColl; 1893 } 1894 } 1895 1896 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1897 for(i=0; i<2; i++){ 1898 int addr = pLoop->addrOpenEphm[i]; 1899 if( addr<0 ){ 1900 /* If [0] is unused then [1] is also unused. So we can 1901 ** always safely abort as soon as the first unused slot is found */ 1902 assert( pLoop->addrOpenEphm[1]<0 ); 1903 break; 1904 } 1905 sqlite3VdbeChangeP2(v, addr, nCol); 1906 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1907 pLoop->addrOpenEphm[i] = -1; 1908 } 1909 } 1910 sqlite3DbFree(db, pKeyInfo); 1911 } 1912 1913 multi_select_end: 1914 pDest->iMem = dest.iMem; 1915 pDest->nMem = dest.nMem; 1916 sqlite3SelectDelete(db, pDelete); 1917 return rc; 1918 } 1919 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1920 1921 /* 1922 ** Code an output subroutine for a coroutine implementation of a 1923 ** SELECT statment. 1924 ** 1925 ** The data to be output is contained in pIn->iMem. There are 1926 ** pIn->nMem columns to be output. pDest is where the output should 1927 ** be sent. 1928 ** 1929 ** regReturn is the number of the register holding the subroutine 1930 ** return address. 1931 ** 1932 ** If regPrev>0 then it is the first register in a vector that 1933 ** records the previous output. mem[regPrev] is a flag that is false 1934 ** if there has been no previous output. If regPrev>0 then code is 1935 ** generated to suppress duplicates. pKeyInfo is used for comparing 1936 ** keys. 1937 ** 1938 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1939 ** iBreak. 1940 */ 1941 static int generateOutputSubroutine( 1942 Parse *pParse, /* Parsing context */ 1943 Select *p, /* The SELECT statement */ 1944 SelectDest *pIn, /* Coroutine supplying data */ 1945 SelectDest *pDest, /* Where to send the data */ 1946 int regReturn, /* The return address register */ 1947 int regPrev, /* Previous result register. No uniqueness if 0 */ 1948 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1949 int p4type, /* The p4 type for pKeyInfo */ 1950 int iBreak /* Jump here if we hit the LIMIT */ 1951 ){ 1952 Vdbe *v = pParse->pVdbe; 1953 int iContinue; 1954 int addr; 1955 1956 addr = sqlite3VdbeCurrentAddr(v); 1957 iContinue = sqlite3VdbeMakeLabel(v); 1958 1959 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1960 */ 1961 if( regPrev ){ 1962 int j1, j2; 1963 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1964 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1965 (char*)pKeyInfo, p4type); 1966 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1967 sqlite3VdbeJumpHere(v, j1); 1968 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1969 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1970 } 1971 if( pParse->db->mallocFailed ) return 0; 1972 1973 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1974 */ 1975 codeOffset(v, p, iContinue); 1976 1977 switch( pDest->eDest ){ 1978 /* Store the result as data using a unique key. 1979 */ 1980 case SRT_Table: 1981 case SRT_EphemTab: { 1982 int r1 = sqlite3GetTempReg(pParse); 1983 int r2 = sqlite3GetTempReg(pParse); 1984 testcase( pDest->eDest==SRT_Table ); 1985 testcase( pDest->eDest==SRT_EphemTab ); 1986 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1987 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1988 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1989 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1990 sqlite3ReleaseTempReg(pParse, r2); 1991 sqlite3ReleaseTempReg(pParse, r1); 1992 break; 1993 } 1994 1995 #ifndef SQLITE_OMIT_SUBQUERY 1996 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1997 ** then there should be a single item on the stack. Write this 1998 ** item into the set table with bogus data. 1999 */ 2000 case SRT_Set: { 2001 int r1; 2002 assert( pIn->nMem==1 ); 2003 p->affinity = 2004 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 2005 r1 = sqlite3GetTempReg(pParse); 2006 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 2007 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 2008 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 2009 sqlite3ReleaseTempReg(pParse, r1); 2010 break; 2011 } 2012 2013 #if 0 /* Never occurs on an ORDER BY query */ 2014 /* If any row exist in the result set, record that fact and abort. 2015 */ 2016 case SRT_Exists: { 2017 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 2018 /* The LIMIT clause will terminate the loop for us */ 2019 break; 2020 } 2021 #endif 2022 2023 /* If this is a scalar select that is part of an expression, then 2024 ** store the results in the appropriate memory cell and break out 2025 ** of the scan loop. 2026 */ 2027 case SRT_Mem: { 2028 assert( pIn->nMem==1 ); 2029 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 2030 /* The LIMIT clause will jump out of the loop for us */ 2031 break; 2032 } 2033 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2034 2035 /* The results are stored in a sequence of registers 2036 ** starting at pDest->iMem. Then the co-routine yields. 2037 */ 2038 case SRT_Coroutine: { 2039 if( pDest->iMem==0 ){ 2040 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 2041 pDest->nMem = pIn->nMem; 2042 } 2043 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 2044 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 2045 break; 2046 } 2047 2048 /* If none of the above, then the result destination must be 2049 ** SRT_Output. This routine is never called with any other 2050 ** destination other than the ones handled above or SRT_Output. 2051 ** 2052 ** For SRT_Output, results are stored in a sequence of registers. 2053 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2054 ** return the next row of result. 2055 */ 2056 default: { 2057 assert( pDest->eDest==SRT_Output ); 2058 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 2059 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 2060 break; 2061 } 2062 } 2063 2064 /* Jump to the end of the loop if the LIMIT is reached. 2065 */ 2066 if( p->iLimit ){ 2067 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2068 } 2069 2070 /* Generate the subroutine return 2071 */ 2072 sqlite3VdbeResolveLabel(v, iContinue); 2073 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2074 2075 return addr; 2076 } 2077 2078 /* 2079 ** Alternative compound select code generator for cases when there 2080 ** is an ORDER BY clause. 2081 ** 2082 ** We assume a query of the following form: 2083 ** 2084 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2085 ** 2086 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2087 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2088 ** co-routines. Then run the co-routines in parallel and merge the results 2089 ** into the output. In addition to the two coroutines (called selectA and 2090 ** selectB) there are 7 subroutines: 2091 ** 2092 ** outA: Move the output of the selectA coroutine into the output 2093 ** of the compound query. 2094 ** 2095 ** outB: Move the output of the selectB coroutine into the output 2096 ** of the compound query. (Only generated for UNION and 2097 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2098 ** appears only in B.) 2099 ** 2100 ** AltB: Called when there is data from both coroutines and A<B. 2101 ** 2102 ** AeqB: Called when there is data from both coroutines and A==B. 2103 ** 2104 ** AgtB: Called when there is data from both coroutines and A>B. 2105 ** 2106 ** EofA: Called when data is exhausted from selectA. 2107 ** 2108 ** EofB: Called when data is exhausted from selectB. 2109 ** 2110 ** The implementation of the latter five subroutines depend on which 2111 ** <operator> is used: 2112 ** 2113 ** 2114 ** UNION ALL UNION EXCEPT INTERSECT 2115 ** ------------- ----------------- -------------- ----------------- 2116 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2117 ** 2118 ** AeqB: outA, nextA nextA nextA outA, nextA 2119 ** 2120 ** AgtB: outB, nextB outB, nextB nextB nextB 2121 ** 2122 ** EofA: outB, nextB outB, nextB halt halt 2123 ** 2124 ** EofB: outA, nextA outA, nextA outA, nextA halt 2125 ** 2126 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2127 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2128 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2129 ** following nextX causes a jump to the end of the select processing. 2130 ** 2131 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2132 ** within the output subroutine. The regPrev register set holds the previously 2133 ** output value. A comparison is made against this value and the output 2134 ** is skipped if the next results would be the same as the previous. 2135 ** 2136 ** The implementation plan is to implement the two coroutines and seven 2137 ** subroutines first, then put the control logic at the bottom. Like this: 2138 ** 2139 ** goto Init 2140 ** coA: coroutine for left query (A) 2141 ** coB: coroutine for right query (B) 2142 ** outA: output one row of A 2143 ** outB: output one row of B (UNION and UNION ALL only) 2144 ** EofA: ... 2145 ** EofB: ... 2146 ** AltB: ... 2147 ** AeqB: ... 2148 ** AgtB: ... 2149 ** Init: initialize coroutine registers 2150 ** yield coA 2151 ** if eof(A) goto EofA 2152 ** yield coB 2153 ** if eof(B) goto EofB 2154 ** Cmpr: Compare A, B 2155 ** Jump AltB, AeqB, AgtB 2156 ** End: ... 2157 ** 2158 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2159 ** actually called using Gosub and they do not Return. EofA and EofB loop 2160 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2161 ** and AgtB jump to either L2 or to one of EofA or EofB. 2162 */ 2163 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2164 static int multiSelectOrderBy( 2165 Parse *pParse, /* Parsing context */ 2166 Select *p, /* The right-most of SELECTs to be coded */ 2167 SelectDest *pDest /* What to do with query results */ 2168 ){ 2169 int i, j; /* Loop counters */ 2170 Select *pPrior; /* Another SELECT immediately to our left */ 2171 Vdbe *v; /* Generate code to this VDBE */ 2172 SelectDest destA; /* Destination for coroutine A */ 2173 SelectDest destB; /* Destination for coroutine B */ 2174 int regAddrA; /* Address register for select-A coroutine */ 2175 int regEofA; /* Flag to indicate when select-A is complete */ 2176 int regAddrB; /* Address register for select-B coroutine */ 2177 int regEofB; /* Flag to indicate when select-B is complete */ 2178 int addrSelectA; /* Address of the select-A coroutine */ 2179 int addrSelectB; /* Address of the select-B coroutine */ 2180 int regOutA; /* Address register for the output-A subroutine */ 2181 int regOutB; /* Address register for the output-B subroutine */ 2182 int addrOutA; /* Address of the output-A subroutine */ 2183 int addrOutB = 0; /* Address of the output-B subroutine */ 2184 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2185 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2186 int addrAltB; /* Address of the A<B subroutine */ 2187 int addrAeqB; /* Address of the A==B subroutine */ 2188 int addrAgtB; /* Address of the A>B subroutine */ 2189 int regLimitA; /* Limit register for select-A */ 2190 int regLimitB; /* Limit register for select-A */ 2191 int regPrev; /* A range of registers to hold previous output */ 2192 int savedLimit; /* Saved value of p->iLimit */ 2193 int savedOffset; /* Saved value of p->iOffset */ 2194 int labelCmpr; /* Label for the start of the merge algorithm */ 2195 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2196 int j1; /* Jump instructions that get retargetted */ 2197 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2198 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2199 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2200 sqlite3 *db; /* Database connection */ 2201 ExprList *pOrderBy; /* The ORDER BY clause */ 2202 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2203 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2204 #ifndef SQLITE_OMIT_EXPLAIN 2205 int iSub1; /* EQP id of left-hand query */ 2206 int iSub2; /* EQP id of right-hand query */ 2207 #endif 2208 2209 assert( p->pOrderBy!=0 ); 2210 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2211 db = pParse->db; 2212 v = pParse->pVdbe; 2213 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2214 labelEnd = sqlite3VdbeMakeLabel(v); 2215 labelCmpr = sqlite3VdbeMakeLabel(v); 2216 2217 2218 /* Patch up the ORDER BY clause 2219 */ 2220 op = p->op; 2221 pPrior = p->pPrior; 2222 assert( pPrior->pOrderBy==0 ); 2223 pOrderBy = p->pOrderBy; 2224 assert( pOrderBy ); 2225 nOrderBy = pOrderBy->nExpr; 2226 2227 /* For operators other than UNION ALL we have to make sure that 2228 ** the ORDER BY clause covers every term of the result set. Add 2229 ** terms to the ORDER BY clause as necessary. 2230 */ 2231 if( op!=TK_ALL ){ 2232 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2233 struct ExprList_item *pItem; 2234 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2235 assert( pItem->iOrderByCol>0 ); 2236 if( pItem->iOrderByCol==i ) break; 2237 } 2238 if( j==nOrderBy ){ 2239 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2240 if( pNew==0 ) return SQLITE_NOMEM; 2241 pNew->flags |= EP_IntValue; 2242 pNew->u.iValue = i; 2243 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2244 if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i; 2245 } 2246 } 2247 } 2248 2249 /* Compute the comparison permutation and keyinfo that is used with 2250 ** the permutation used to determine if the next 2251 ** row of results comes from selectA or selectB. Also add explicit 2252 ** collations to the ORDER BY clause terms so that when the subqueries 2253 ** to the right and the left are evaluated, they use the correct 2254 ** collation. 2255 */ 2256 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2257 if( aPermute ){ 2258 struct ExprList_item *pItem; 2259 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2260 assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr ); 2261 aPermute[i] = pItem->iOrderByCol - 1; 2262 } 2263 pKeyMerge = 2264 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2265 if( pKeyMerge ){ 2266 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2267 pKeyMerge->nField = (u16)nOrderBy; 2268 pKeyMerge->enc = ENC(db); 2269 for(i=0; i<nOrderBy; i++){ 2270 CollSeq *pColl; 2271 Expr *pTerm = pOrderBy->a[i].pExpr; 2272 if( pTerm->flags & EP_ExpCollate ){ 2273 pColl = pTerm->pColl; 2274 }else{ 2275 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2276 pTerm->flags |= EP_ExpCollate; 2277 pTerm->pColl = pColl; 2278 } 2279 pKeyMerge->aColl[i] = pColl; 2280 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2281 } 2282 } 2283 }else{ 2284 pKeyMerge = 0; 2285 } 2286 2287 /* Reattach the ORDER BY clause to the query. 2288 */ 2289 p->pOrderBy = pOrderBy; 2290 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2291 2292 /* Allocate a range of temporary registers and the KeyInfo needed 2293 ** for the logic that removes duplicate result rows when the 2294 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2295 */ 2296 if( op==TK_ALL ){ 2297 regPrev = 0; 2298 }else{ 2299 int nExpr = p->pEList->nExpr; 2300 assert( nOrderBy>=nExpr || db->mallocFailed ); 2301 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2302 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2303 pKeyDup = sqlite3DbMallocZero(db, 2304 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2305 if( pKeyDup ){ 2306 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2307 pKeyDup->nField = (u16)nExpr; 2308 pKeyDup->enc = ENC(db); 2309 for(i=0; i<nExpr; i++){ 2310 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2311 pKeyDup->aSortOrder[i] = 0; 2312 } 2313 } 2314 } 2315 2316 /* Separate the left and the right query from one another 2317 */ 2318 p->pPrior = 0; 2319 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2320 if( pPrior->pPrior==0 ){ 2321 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2322 } 2323 2324 /* Compute the limit registers */ 2325 computeLimitRegisters(pParse, p, labelEnd); 2326 if( p->iLimit && op==TK_ALL ){ 2327 regLimitA = ++pParse->nMem; 2328 regLimitB = ++pParse->nMem; 2329 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2330 regLimitA); 2331 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2332 }else{ 2333 regLimitA = regLimitB = 0; 2334 } 2335 sqlite3ExprDelete(db, p->pLimit); 2336 p->pLimit = 0; 2337 sqlite3ExprDelete(db, p->pOffset); 2338 p->pOffset = 0; 2339 2340 regAddrA = ++pParse->nMem; 2341 regEofA = ++pParse->nMem; 2342 regAddrB = ++pParse->nMem; 2343 regEofB = ++pParse->nMem; 2344 regOutA = ++pParse->nMem; 2345 regOutB = ++pParse->nMem; 2346 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2347 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2348 2349 /* Jump past the various subroutines and coroutines to the main 2350 ** merge loop 2351 */ 2352 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2353 addrSelectA = sqlite3VdbeCurrentAddr(v); 2354 2355 2356 /* Generate a coroutine to evaluate the SELECT statement to the 2357 ** left of the compound operator - the "A" select. 2358 */ 2359 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2360 pPrior->iLimit = regLimitA; 2361 explainSetInteger(iSub1, pParse->iNextSelectId); 2362 sqlite3Select(pParse, pPrior, &destA); 2363 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2364 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2365 VdbeNoopComment((v, "End coroutine for left SELECT")); 2366 2367 /* Generate a coroutine to evaluate the SELECT statement on 2368 ** the right - the "B" select 2369 */ 2370 addrSelectB = sqlite3VdbeCurrentAddr(v); 2371 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2372 savedLimit = p->iLimit; 2373 savedOffset = p->iOffset; 2374 p->iLimit = regLimitB; 2375 p->iOffset = 0; 2376 explainSetInteger(iSub2, pParse->iNextSelectId); 2377 sqlite3Select(pParse, p, &destB); 2378 p->iLimit = savedLimit; 2379 p->iOffset = savedOffset; 2380 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2381 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2382 VdbeNoopComment((v, "End coroutine for right SELECT")); 2383 2384 /* Generate a subroutine that outputs the current row of the A 2385 ** select as the next output row of the compound select. 2386 */ 2387 VdbeNoopComment((v, "Output routine for A")); 2388 addrOutA = generateOutputSubroutine(pParse, 2389 p, &destA, pDest, regOutA, 2390 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2391 2392 /* Generate a subroutine that outputs the current row of the B 2393 ** select as the next output row of the compound select. 2394 */ 2395 if( op==TK_ALL || op==TK_UNION ){ 2396 VdbeNoopComment((v, "Output routine for B")); 2397 addrOutB = generateOutputSubroutine(pParse, 2398 p, &destB, pDest, regOutB, 2399 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2400 } 2401 2402 /* Generate a subroutine to run when the results from select A 2403 ** are exhausted and only data in select B remains. 2404 */ 2405 VdbeNoopComment((v, "eof-A subroutine")); 2406 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2407 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2408 }else{ 2409 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2410 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2411 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2412 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2413 p->nSelectRow += pPrior->nSelectRow; 2414 } 2415 2416 /* Generate a subroutine to run when the results from select B 2417 ** are exhausted and only data in select A remains. 2418 */ 2419 if( op==TK_INTERSECT ){ 2420 addrEofB = addrEofA; 2421 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2422 }else{ 2423 VdbeNoopComment((v, "eof-B subroutine")); 2424 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2425 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2426 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2427 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2428 } 2429 2430 /* Generate code to handle the case of A<B 2431 */ 2432 VdbeNoopComment((v, "A-lt-B subroutine")); 2433 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2434 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2435 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2436 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2437 2438 /* Generate code to handle the case of A==B 2439 */ 2440 if( op==TK_ALL ){ 2441 addrAeqB = addrAltB; 2442 }else if( op==TK_INTERSECT ){ 2443 addrAeqB = addrAltB; 2444 addrAltB++; 2445 }else{ 2446 VdbeNoopComment((v, "A-eq-B subroutine")); 2447 addrAeqB = 2448 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2449 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2450 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2451 } 2452 2453 /* Generate code to handle the case of A>B 2454 */ 2455 VdbeNoopComment((v, "A-gt-B subroutine")); 2456 addrAgtB = sqlite3VdbeCurrentAddr(v); 2457 if( op==TK_ALL || op==TK_UNION ){ 2458 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2459 } 2460 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2461 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2462 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2463 2464 /* This code runs once to initialize everything. 2465 */ 2466 sqlite3VdbeJumpHere(v, j1); 2467 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2468 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2469 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2470 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2471 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2472 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2473 2474 /* Implement the main merge loop 2475 */ 2476 sqlite3VdbeResolveLabel(v, labelCmpr); 2477 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2478 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2479 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2480 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2481 2482 /* Release temporary registers 2483 */ 2484 if( regPrev ){ 2485 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2486 } 2487 2488 /* Jump to the this point in order to terminate the query. 2489 */ 2490 sqlite3VdbeResolveLabel(v, labelEnd); 2491 2492 /* Set the number of output columns 2493 */ 2494 if( pDest->eDest==SRT_Output ){ 2495 Select *pFirst = pPrior; 2496 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2497 generateColumnNames(pParse, 0, pFirst->pEList); 2498 } 2499 2500 /* Reassembly the compound query so that it will be freed correctly 2501 ** by the calling function */ 2502 if( p->pPrior ){ 2503 sqlite3SelectDelete(db, p->pPrior); 2504 } 2505 p->pPrior = pPrior; 2506 2507 /*** TBD: Insert subroutine calls to close cursors on incomplete 2508 **** subqueries ****/ 2509 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2510 return SQLITE_OK; 2511 } 2512 #endif 2513 2514 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2515 /* Forward Declarations */ 2516 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2517 static void substSelect(sqlite3*, Select *, int, ExprList *); 2518 2519 /* 2520 ** Scan through the expression pExpr. Replace every reference to 2521 ** a column in table number iTable with a copy of the iColumn-th 2522 ** entry in pEList. (But leave references to the ROWID column 2523 ** unchanged.) 2524 ** 2525 ** This routine is part of the flattening procedure. A subquery 2526 ** whose result set is defined by pEList appears as entry in the 2527 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2528 ** FORM clause entry is iTable. This routine make the necessary 2529 ** changes to pExpr so that it refers directly to the source table 2530 ** of the subquery rather the result set of the subquery. 2531 */ 2532 static Expr *substExpr( 2533 sqlite3 *db, /* Report malloc errors to this connection */ 2534 Expr *pExpr, /* Expr in which substitution occurs */ 2535 int iTable, /* Table to be substituted */ 2536 ExprList *pEList /* Substitute expressions */ 2537 ){ 2538 if( pExpr==0 ) return 0; 2539 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2540 if( pExpr->iColumn<0 ){ 2541 pExpr->op = TK_NULL; 2542 }else{ 2543 Expr *pNew; 2544 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2545 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2546 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2547 if( pNew && pExpr->pColl ){ 2548 pNew->pColl = pExpr->pColl; 2549 } 2550 sqlite3ExprDelete(db, pExpr); 2551 pExpr = pNew; 2552 } 2553 }else{ 2554 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2555 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2556 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2557 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2558 }else{ 2559 substExprList(db, pExpr->x.pList, iTable, pEList); 2560 } 2561 } 2562 return pExpr; 2563 } 2564 static void substExprList( 2565 sqlite3 *db, /* Report malloc errors here */ 2566 ExprList *pList, /* List to scan and in which to make substitutes */ 2567 int iTable, /* Table to be substituted */ 2568 ExprList *pEList /* Substitute values */ 2569 ){ 2570 int i; 2571 if( pList==0 ) return; 2572 for(i=0; i<pList->nExpr; i++){ 2573 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2574 } 2575 } 2576 static void substSelect( 2577 sqlite3 *db, /* Report malloc errors here */ 2578 Select *p, /* SELECT statement in which to make substitutions */ 2579 int iTable, /* Table to be replaced */ 2580 ExprList *pEList /* Substitute values */ 2581 ){ 2582 SrcList *pSrc; 2583 struct SrcList_item *pItem; 2584 int i; 2585 if( !p ) return; 2586 substExprList(db, p->pEList, iTable, pEList); 2587 substExprList(db, p->pGroupBy, iTable, pEList); 2588 substExprList(db, p->pOrderBy, iTable, pEList); 2589 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2590 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2591 substSelect(db, p->pPrior, iTable, pEList); 2592 pSrc = p->pSrc; 2593 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2594 if( ALWAYS(pSrc) ){ 2595 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2596 substSelect(db, pItem->pSelect, iTable, pEList); 2597 } 2598 } 2599 } 2600 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2601 2602 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2603 /* 2604 ** This routine attempts to flatten subqueries as a performance optimization. 2605 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 2606 ** 2607 ** To understand the concept of flattening, consider the following 2608 ** query: 2609 ** 2610 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2611 ** 2612 ** The default way of implementing this query is to execute the 2613 ** subquery first and store the results in a temporary table, then 2614 ** run the outer query on that temporary table. This requires two 2615 ** passes over the data. Furthermore, because the temporary table 2616 ** has no indices, the WHERE clause on the outer query cannot be 2617 ** optimized. 2618 ** 2619 ** This routine attempts to rewrite queries such as the above into 2620 ** a single flat select, like this: 2621 ** 2622 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2623 ** 2624 ** The code generated for this simpification gives the same result 2625 ** but only has to scan the data once. And because indices might 2626 ** exist on the table t1, a complete scan of the data might be 2627 ** avoided. 2628 ** 2629 ** Flattening is only attempted if all of the following are true: 2630 ** 2631 ** (1) The subquery and the outer query do not both use aggregates. 2632 ** 2633 ** (2) The subquery is not an aggregate or the outer query is not a join. 2634 ** 2635 ** (3) The subquery is not the right operand of a left outer join 2636 ** (Originally ticket #306. Strengthened by ticket #3300) 2637 ** 2638 ** (4) The subquery is not DISTINCT. 2639 ** 2640 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 2641 ** sub-queries that were excluded from this optimization. Restriction 2642 ** (4) has since been expanded to exclude all DISTINCT subqueries. 2643 ** 2644 ** (6) The subquery does not use aggregates or the outer query is not 2645 ** DISTINCT. 2646 ** 2647 ** (7) The subquery has a FROM clause. TODO: For subqueries without 2648 ** A FROM clause, consider adding a FROM close with the special 2649 ** table sqlite_once that consists of a single row containing a 2650 ** single NULL. 2651 ** 2652 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2653 ** 2654 ** (9) The subquery does not use LIMIT or the outer query does not use 2655 ** aggregates. 2656 ** 2657 ** (10) The subquery does not use aggregates or the outer query does not 2658 ** use LIMIT. 2659 ** 2660 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2661 ** 2662 ** (**) Not implemented. Subsumed into restriction (3). Was previously 2663 ** a separate restriction deriving from ticket #350. 2664 ** 2665 ** (13) The subquery and outer query do not both use LIMIT. 2666 ** 2667 ** (14) The subquery does not use OFFSET. 2668 ** 2669 ** (15) The outer query is not part of a compound select or the 2670 ** subquery does not have a LIMIT clause. 2671 ** (See ticket #2339 and ticket [02a8e81d44]). 2672 ** 2673 ** (16) The outer query is not an aggregate or the subquery does 2674 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2675 ** until we introduced the group_concat() function. 2676 ** 2677 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2678 ** compound clause made up entirely of non-aggregate queries, and 2679 ** the parent query: 2680 ** 2681 ** * is not itself part of a compound select, 2682 ** * is not an aggregate or DISTINCT query, and 2683 ** * is not a join 2684 ** 2685 ** The parent and sub-query may contain WHERE clauses. Subject to 2686 ** rules (11), (13) and (14), they may also contain ORDER BY, 2687 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 2688 ** operator other than UNION ALL because all the other compound 2689 ** operators have an implied DISTINCT which is disallowed by 2690 ** restriction (4). 2691 ** 2692 ** (18) If the sub-query is a compound select, then all terms of the 2693 ** ORDER by clause of the parent must be simple references to 2694 ** columns of the sub-query. 2695 ** 2696 ** (19) The subquery does not use LIMIT or the outer query does not 2697 ** have a WHERE clause. 2698 ** 2699 ** (20) If the sub-query is a compound select, then it must not use 2700 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2701 ** somewhat by saying that the terms of the ORDER BY clause must 2702 ** appear as unmodified result columns in the outer query. But we 2703 ** have other optimizations in mind to deal with that case. 2704 ** 2705 ** (21) The subquery does not use LIMIT or the outer query is not 2706 ** DISTINCT. (See ticket [752e1646fc]). 2707 ** 2708 ** In this routine, the "p" parameter is a pointer to the outer query. 2709 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2710 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2711 ** 2712 ** If flattening is not attempted, this routine is a no-op and returns 0. 2713 ** If flattening is attempted this routine returns 1. 2714 ** 2715 ** All of the expression analysis must occur on both the outer query and 2716 ** the subquery before this routine runs. 2717 */ 2718 static int flattenSubquery( 2719 Parse *pParse, /* Parsing context */ 2720 Select *p, /* The parent or outer SELECT statement */ 2721 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2722 int isAgg, /* True if outer SELECT uses aggregate functions */ 2723 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2724 ){ 2725 const char *zSavedAuthContext = pParse->zAuthContext; 2726 Select *pParent; 2727 Select *pSub; /* The inner query or "subquery" */ 2728 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2729 SrcList *pSrc; /* The FROM clause of the outer query */ 2730 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2731 ExprList *pList; /* The result set of the outer query */ 2732 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2733 int i; /* Loop counter */ 2734 Expr *pWhere; /* The WHERE clause */ 2735 struct SrcList_item *pSubitem; /* The subquery */ 2736 sqlite3 *db = pParse->db; 2737 2738 /* Check to see if flattening is permitted. Return 0 if not. 2739 */ 2740 assert( p!=0 ); 2741 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2742 if( db->flags & SQLITE_QueryFlattener ) return 0; 2743 pSrc = p->pSrc; 2744 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2745 pSubitem = &pSrc->a[iFrom]; 2746 iParent = pSubitem->iCursor; 2747 pSub = pSubitem->pSelect; 2748 assert( pSub!=0 ); 2749 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2750 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2751 pSubSrc = pSub->pSrc; 2752 assert( pSubSrc ); 2753 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2754 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2755 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2756 ** became arbitrary expressions, we were forced to add restrictions (13) 2757 ** and (14). */ 2758 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2759 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2760 if( p->pRightmost && pSub->pLimit ){ 2761 return 0; /* Restriction (15) */ 2762 } 2763 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2764 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 2765 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 2766 return 0; /* Restrictions (8)(9) */ 2767 } 2768 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2769 return 0; /* Restriction (6) */ 2770 } 2771 if( p->pOrderBy && pSub->pOrderBy ){ 2772 return 0; /* Restriction (11) */ 2773 } 2774 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2775 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2776 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 2777 return 0; /* Restriction (21) */ 2778 } 2779 2780 /* OBSOLETE COMMENT 1: 2781 ** Restriction 3: If the subquery is a join, make sure the subquery is 2782 ** not used as the right operand of an outer join. Examples of why this 2783 ** is not allowed: 2784 ** 2785 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2786 ** 2787 ** If we flatten the above, we would get 2788 ** 2789 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2790 ** 2791 ** which is not at all the same thing. 2792 ** 2793 ** OBSOLETE COMMENT 2: 2794 ** Restriction 12: If the subquery is the right operand of a left outer 2795 ** join, make sure the subquery has no WHERE clause. 2796 ** An examples of why this is not allowed: 2797 ** 2798 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2799 ** 2800 ** If we flatten the above, we would get 2801 ** 2802 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2803 ** 2804 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2805 ** effectively converts the OUTER JOIN into an INNER JOIN. 2806 ** 2807 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2808 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2809 ** is fraught with danger. Best to avoid the whole thing. If the 2810 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2811 */ 2812 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2813 return 0; 2814 } 2815 2816 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2817 ** use only the UNION ALL operator. And none of the simple select queries 2818 ** that make up the compound SELECT are allowed to be aggregate or distinct 2819 ** queries. 2820 */ 2821 if( pSub->pPrior ){ 2822 if( pSub->pOrderBy ){ 2823 return 0; /* Restriction 20 */ 2824 } 2825 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2826 return 0; 2827 } 2828 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2829 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2830 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2831 assert( pSub->pSrc!=0 ); 2832 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2833 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2834 || pSub1->pSrc->nSrc<1 2835 ){ 2836 return 0; 2837 } 2838 testcase( pSub1->pSrc->nSrc>1 ); 2839 } 2840 2841 /* Restriction 18. */ 2842 if( p->pOrderBy ){ 2843 int ii; 2844 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2845 if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0; 2846 } 2847 } 2848 } 2849 2850 /***** If we reach this point, flattening is permitted. *****/ 2851 2852 /* Authorize the subquery */ 2853 pParse->zAuthContext = pSubitem->zName; 2854 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2855 testcase( i==SQLITE_DENY ); 2856 pParse->zAuthContext = zSavedAuthContext; 2857 2858 /* If the sub-query is a compound SELECT statement, then (by restrictions 2859 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2860 ** be of the form: 2861 ** 2862 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2863 ** 2864 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2865 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2866 ** OFFSET clauses and joins them to the left-hand-side of the original 2867 ** using UNION ALL operators. In this case N is the number of simple 2868 ** select statements in the compound sub-query. 2869 ** 2870 ** Example: 2871 ** 2872 ** SELECT a+1 FROM ( 2873 ** SELECT x FROM tab 2874 ** UNION ALL 2875 ** SELECT y FROM tab 2876 ** UNION ALL 2877 ** SELECT abs(z*2) FROM tab2 2878 ** ) WHERE a!=5 ORDER BY 1 2879 ** 2880 ** Transformed into: 2881 ** 2882 ** SELECT x+1 FROM tab WHERE x+1!=5 2883 ** UNION ALL 2884 ** SELECT y+1 FROM tab WHERE y+1!=5 2885 ** UNION ALL 2886 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2887 ** ORDER BY 1 2888 ** 2889 ** We call this the "compound-subquery flattening". 2890 */ 2891 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2892 Select *pNew; 2893 ExprList *pOrderBy = p->pOrderBy; 2894 Expr *pLimit = p->pLimit; 2895 Select *pPrior = p->pPrior; 2896 p->pOrderBy = 0; 2897 p->pSrc = 0; 2898 p->pPrior = 0; 2899 p->pLimit = 0; 2900 pNew = sqlite3SelectDup(db, p, 0); 2901 p->pLimit = pLimit; 2902 p->pOrderBy = pOrderBy; 2903 p->pSrc = pSrc; 2904 p->op = TK_ALL; 2905 p->pRightmost = 0; 2906 if( pNew==0 ){ 2907 pNew = pPrior; 2908 }else{ 2909 pNew->pPrior = pPrior; 2910 pNew->pRightmost = 0; 2911 } 2912 p->pPrior = pNew; 2913 if( db->mallocFailed ) return 1; 2914 } 2915 2916 /* Begin flattening the iFrom-th entry of the FROM clause 2917 ** in the outer query. 2918 */ 2919 pSub = pSub1 = pSubitem->pSelect; 2920 2921 /* Delete the transient table structure associated with the 2922 ** subquery 2923 */ 2924 sqlite3DbFree(db, pSubitem->zDatabase); 2925 sqlite3DbFree(db, pSubitem->zName); 2926 sqlite3DbFree(db, pSubitem->zAlias); 2927 pSubitem->zDatabase = 0; 2928 pSubitem->zName = 0; 2929 pSubitem->zAlias = 0; 2930 pSubitem->pSelect = 0; 2931 2932 /* Defer deleting the Table object associated with the 2933 ** subquery until code generation is 2934 ** complete, since there may still exist Expr.pTab entries that 2935 ** refer to the subquery even after flattening. Ticket #3346. 2936 ** 2937 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2938 */ 2939 if( ALWAYS(pSubitem->pTab!=0) ){ 2940 Table *pTabToDel = pSubitem->pTab; 2941 if( pTabToDel->nRef==1 ){ 2942 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2943 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2944 pToplevel->pZombieTab = pTabToDel; 2945 }else{ 2946 pTabToDel->nRef--; 2947 } 2948 pSubitem->pTab = 0; 2949 } 2950 2951 /* The following loop runs once for each term in a compound-subquery 2952 ** flattening (as described above). If we are doing a different kind 2953 ** of flattening - a flattening other than a compound-subquery flattening - 2954 ** then this loop only runs once. 2955 ** 2956 ** This loop moves all of the FROM elements of the subquery into the 2957 ** the FROM clause of the outer query. Before doing this, remember 2958 ** the cursor number for the original outer query FROM element in 2959 ** iParent. The iParent cursor will never be used. Subsequent code 2960 ** will scan expressions looking for iParent references and replace 2961 ** those references with expressions that resolve to the subquery FROM 2962 ** elements we are now copying in. 2963 */ 2964 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2965 int nSubSrc; 2966 u8 jointype = 0; 2967 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2968 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2969 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2970 2971 if( pSrc ){ 2972 assert( pParent==p ); /* First time through the loop */ 2973 jointype = pSubitem->jointype; 2974 }else{ 2975 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2976 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2977 if( pSrc==0 ){ 2978 assert( db->mallocFailed ); 2979 break; 2980 } 2981 } 2982 2983 /* The subquery uses a single slot of the FROM clause of the outer 2984 ** query. If the subquery has more than one element in its FROM clause, 2985 ** then expand the outer query to make space for it to hold all elements 2986 ** of the subquery. 2987 ** 2988 ** Example: 2989 ** 2990 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2991 ** 2992 ** The outer query has 3 slots in its FROM clause. One slot of the 2993 ** outer query (the middle slot) is used by the subquery. The next 2994 ** block of code will expand the out query to 4 slots. The middle 2995 ** slot is expanded to two slots in order to make space for the 2996 ** two elements in the FROM clause of the subquery. 2997 */ 2998 if( nSubSrc>1 ){ 2999 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3000 if( db->mallocFailed ){ 3001 break; 3002 } 3003 } 3004 3005 /* Transfer the FROM clause terms from the subquery into the 3006 ** outer query. 3007 */ 3008 for(i=0; i<nSubSrc; i++){ 3009 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3010 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3011 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3012 } 3013 pSrc->a[iFrom].jointype = jointype; 3014 3015 /* Now begin substituting subquery result set expressions for 3016 ** references to the iParent in the outer query. 3017 ** 3018 ** Example: 3019 ** 3020 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3021 ** \ \_____________ subquery __________/ / 3022 ** \_____________________ outer query ______________________________/ 3023 ** 3024 ** We look at every expression in the outer query and every place we see 3025 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3026 */ 3027 pList = pParent->pEList; 3028 for(i=0; i<pList->nExpr; i++){ 3029 if( pList->a[i].zName==0 ){ 3030 const char *zSpan = pList->a[i].zSpan; 3031 if( ALWAYS(zSpan) ){ 3032 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 3033 } 3034 } 3035 } 3036 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3037 if( isAgg ){ 3038 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3039 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3040 } 3041 if( pSub->pOrderBy ){ 3042 assert( pParent->pOrderBy==0 ); 3043 pParent->pOrderBy = pSub->pOrderBy; 3044 pSub->pOrderBy = 0; 3045 }else if( pParent->pOrderBy ){ 3046 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3047 } 3048 if( pSub->pWhere ){ 3049 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3050 }else{ 3051 pWhere = 0; 3052 } 3053 if( subqueryIsAgg ){ 3054 assert( pParent->pHaving==0 ); 3055 pParent->pHaving = pParent->pWhere; 3056 pParent->pWhere = pWhere; 3057 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3058 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3059 sqlite3ExprDup(db, pSub->pHaving, 0)); 3060 assert( pParent->pGroupBy==0 ); 3061 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3062 }else{ 3063 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3064 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3065 } 3066 3067 /* The flattened query is distinct if either the inner or the 3068 ** outer query is distinct. 3069 */ 3070 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3071 3072 /* 3073 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3074 ** 3075 ** One is tempted to try to add a and b to combine the limits. But this 3076 ** does not work if either limit is negative. 3077 */ 3078 if( pSub->pLimit ){ 3079 pParent->pLimit = pSub->pLimit; 3080 pSub->pLimit = 0; 3081 } 3082 } 3083 3084 /* Finially, delete what is left of the subquery and return 3085 ** success. 3086 */ 3087 sqlite3SelectDelete(db, pSub1); 3088 3089 return 1; 3090 } 3091 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3092 3093 /* 3094 ** Analyze the SELECT statement passed as an argument to see if it 3095 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 3096 ** it is, or 0 otherwise. At present, a query is considered to be 3097 ** a min()/max() query if: 3098 ** 3099 ** 1. There is a single object in the FROM clause. 3100 ** 3101 ** 2. There is a single expression in the result set, and it is 3102 ** either min(x) or max(x), where x is a column reference. 3103 */ 3104 static u8 minMaxQuery(Select *p){ 3105 Expr *pExpr; 3106 ExprList *pEList = p->pEList; 3107 3108 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 3109 pExpr = pEList->a[0].pExpr; 3110 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3111 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 3112 pEList = pExpr->x.pList; 3113 if( pEList==0 || pEList->nExpr!=1 ) return 0; 3114 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 3115 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3116 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 3117 return WHERE_ORDERBY_MIN; 3118 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 3119 return WHERE_ORDERBY_MAX; 3120 } 3121 return WHERE_ORDERBY_NORMAL; 3122 } 3123 3124 /* 3125 ** The select statement passed as the first argument is an aggregate query. 3126 ** The second argment is the associated aggregate-info object. This 3127 ** function tests if the SELECT is of the form: 3128 ** 3129 ** SELECT count(*) FROM <tbl> 3130 ** 3131 ** where table is a database table, not a sub-select or view. If the query 3132 ** does match this pattern, then a pointer to the Table object representing 3133 ** <tbl> is returned. Otherwise, 0 is returned. 3134 */ 3135 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3136 Table *pTab; 3137 Expr *pExpr; 3138 3139 assert( !p->pGroupBy ); 3140 3141 if( p->pWhere || p->pEList->nExpr!=1 3142 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3143 ){ 3144 return 0; 3145 } 3146 pTab = p->pSrc->a[0].pTab; 3147 pExpr = p->pEList->a[0].pExpr; 3148 assert( pTab && !pTab->pSelect && pExpr ); 3149 3150 if( IsVirtual(pTab) ) return 0; 3151 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3152 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 3153 if( pExpr->flags&EP_Distinct ) return 0; 3154 3155 return pTab; 3156 } 3157 3158 /* 3159 ** If the source-list item passed as an argument was augmented with an 3160 ** INDEXED BY clause, then try to locate the specified index. If there 3161 ** was such a clause and the named index cannot be found, return 3162 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3163 ** pFrom->pIndex and return SQLITE_OK. 3164 */ 3165 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3166 if( pFrom->pTab && pFrom->zIndex ){ 3167 Table *pTab = pFrom->pTab; 3168 char *zIndex = pFrom->zIndex; 3169 Index *pIdx; 3170 for(pIdx=pTab->pIndex; 3171 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3172 pIdx=pIdx->pNext 3173 ); 3174 if( !pIdx ){ 3175 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3176 pParse->checkSchema = 1; 3177 return SQLITE_ERROR; 3178 } 3179 pFrom->pIndex = pIdx; 3180 } 3181 return SQLITE_OK; 3182 } 3183 3184 /* 3185 ** This routine is a Walker callback for "expanding" a SELECT statement. 3186 ** "Expanding" means to do the following: 3187 ** 3188 ** (1) Make sure VDBE cursor numbers have been assigned to every 3189 ** element of the FROM clause. 3190 ** 3191 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3192 ** defines FROM clause. When views appear in the FROM clause, 3193 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3194 ** that implements the view. A copy is made of the view's SELECT 3195 ** statement so that we can freely modify or delete that statement 3196 ** without worrying about messing up the presistent representation 3197 ** of the view. 3198 ** 3199 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3200 ** on joins and the ON and USING clause of joins. 3201 ** 3202 ** (4) Scan the list of columns in the result set (pEList) looking 3203 ** for instances of the "*" operator or the TABLE.* operator. 3204 ** If found, expand each "*" to be every column in every table 3205 ** and TABLE.* to be every column in TABLE. 3206 ** 3207 */ 3208 static int selectExpander(Walker *pWalker, Select *p){ 3209 Parse *pParse = pWalker->pParse; 3210 int i, j, k; 3211 SrcList *pTabList; 3212 ExprList *pEList; 3213 struct SrcList_item *pFrom; 3214 sqlite3 *db = pParse->db; 3215 3216 if( db->mallocFailed ){ 3217 return WRC_Abort; 3218 } 3219 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3220 return WRC_Prune; 3221 } 3222 p->selFlags |= SF_Expanded; 3223 pTabList = p->pSrc; 3224 pEList = p->pEList; 3225 3226 /* Make sure cursor numbers have been assigned to all entries in 3227 ** the FROM clause of the SELECT statement. 3228 */ 3229 sqlite3SrcListAssignCursors(pParse, pTabList); 3230 3231 /* Look up every table named in the FROM clause of the select. If 3232 ** an entry of the FROM clause is a subquery instead of a table or view, 3233 ** then create a transient table structure to describe the subquery. 3234 */ 3235 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3236 Table *pTab; 3237 if( pFrom->pTab!=0 ){ 3238 /* This statement has already been prepared. There is no need 3239 ** to go further. */ 3240 assert( i==0 ); 3241 return WRC_Prune; 3242 } 3243 if( pFrom->zName==0 ){ 3244 #ifndef SQLITE_OMIT_SUBQUERY 3245 Select *pSel = pFrom->pSelect; 3246 /* A sub-query in the FROM clause of a SELECT */ 3247 assert( pSel!=0 ); 3248 assert( pFrom->pTab==0 ); 3249 sqlite3WalkSelect(pWalker, pSel); 3250 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3251 if( pTab==0 ) return WRC_Abort; 3252 pTab->nRef = 1; 3253 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3254 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3255 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3256 pTab->iPKey = -1; 3257 pTab->nRowEst = 1000000; 3258 pTab->tabFlags |= TF_Ephemeral; 3259 #endif 3260 }else{ 3261 /* An ordinary table or view name in the FROM clause */ 3262 assert( pFrom->pTab==0 ); 3263 pFrom->pTab = pTab = 3264 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3265 if( pTab==0 ) return WRC_Abort; 3266 pTab->nRef++; 3267 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3268 if( pTab->pSelect || IsVirtual(pTab) ){ 3269 /* We reach here if the named table is a really a view */ 3270 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3271 assert( pFrom->pSelect==0 ); 3272 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3273 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3274 } 3275 #endif 3276 } 3277 3278 /* Locate the index named by the INDEXED BY clause, if any. */ 3279 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3280 return WRC_Abort; 3281 } 3282 } 3283 3284 /* Process NATURAL keywords, and ON and USING clauses of joins. 3285 */ 3286 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3287 return WRC_Abort; 3288 } 3289 3290 /* For every "*" that occurs in the column list, insert the names of 3291 ** all columns in all tables. And for every TABLE.* insert the names 3292 ** of all columns in TABLE. The parser inserted a special expression 3293 ** with the TK_ALL operator for each "*" that it found in the column list. 3294 ** The following code just has to locate the TK_ALL expressions and expand 3295 ** each one to the list of all columns in all tables. 3296 ** 3297 ** The first loop just checks to see if there are any "*" operators 3298 ** that need expanding. 3299 */ 3300 for(k=0; k<pEList->nExpr; k++){ 3301 Expr *pE = pEList->a[k].pExpr; 3302 if( pE->op==TK_ALL ) break; 3303 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3304 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3305 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3306 } 3307 if( k<pEList->nExpr ){ 3308 /* 3309 ** If we get here it means the result set contains one or more "*" 3310 ** operators that need to be expanded. Loop through each expression 3311 ** in the result set and expand them one by one. 3312 */ 3313 struct ExprList_item *a = pEList->a; 3314 ExprList *pNew = 0; 3315 int flags = pParse->db->flags; 3316 int longNames = (flags & SQLITE_FullColNames)!=0 3317 && (flags & SQLITE_ShortColNames)==0; 3318 3319 for(k=0; k<pEList->nExpr; k++){ 3320 Expr *pE = a[k].pExpr; 3321 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3322 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3323 /* This particular expression does not need to be expanded. 3324 */ 3325 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3326 if( pNew ){ 3327 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3328 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3329 a[k].zName = 0; 3330 a[k].zSpan = 0; 3331 } 3332 a[k].pExpr = 0; 3333 }else{ 3334 /* This expression is a "*" or a "TABLE.*" and needs to be 3335 ** expanded. */ 3336 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3337 char *zTName; /* text of name of TABLE */ 3338 if( pE->op==TK_DOT ){ 3339 assert( pE->pLeft!=0 ); 3340 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3341 zTName = pE->pLeft->u.zToken; 3342 }else{ 3343 zTName = 0; 3344 } 3345 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3346 Table *pTab = pFrom->pTab; 3347 char *zTabName = pFrom->zAlias; 3348 if( zTabName==0 ){ 3349 zTabName = pTab->zName; 3350 } 3351 if( db->mallocFailed ) break; 3352 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3353 continue; 3354 } 3355 tableSeen = 1; 3356 for(j=0; j<pTab->nCol; j++){ 3357 Expr *pExpr, *pRight; 3358 char *zName = pTab->aCol[j].zName; 3359 char *zColname; /* The computed column name */ 3360 char *zToFree; /* Malloced string that needs to be freed */ 3361 Token sColname; /* Computed column name as a token */ 3362 3363 /* If a column is marked as 'hidden' (currently only possible 3364 ** for virtual tables), do not include it in the expanded 3365 ** result-set list. 3366 */ 3367 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3368 assert(IsVirtual(pTab)); 3369 continue; 3370 } 3371 3372 if( i>0 && zTName==0 ){ 3373 if( (pFrom->jointype & JT_NATURAL)!=0 3374 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 3375 ){ 3376 /* In a NATURAL join, omit the join columns from the 3377 ** table to the right of the join */ 3378 continue; 3379 } 3380 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 3381 /* In a join with a USING clause, omit columns in the 3382 ** using clause from the table on the right. */ 3383 continue; 3384 } 3385 } 3386 pRight = sqlite3Expr(db, TK_ID, zName); 3387 zColname = zName; 3388 zToFree = 0; 3389 if( longNames || pTabList->nSrc>1 ){ 3390 Expr *pLeft; 3391 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3392 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3393 if( longNames ){ 3394 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3395 zToFree = zColname; 3396 } 3397 }else{ 3398 pExpr = pRight; 3399 } 3400 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3401 sColname.z = zColname; 3402 sColname.n = sqlite3Strlen30(zColname); 3403 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3404 sqlite3DbFree(db, zToFree); 3405 } 3406 } 3407 if( !tableSeen ){ 3408 if( zTName ){ 3409 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3410 }else{ 3411 sqlite3ErrorMsg(pParse, "no tables specified"); 3412 } 3413 } 3414 } 3415 } 3416 sqlite3ExprListDelete(db, pEList); 3417 p->pEList = pNew; 3418 } 3419 #if SQLITE_MAX_COLUMN 3420 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3421 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3422 } 3423 #endif 3424 return WRC_Continue; 3425 } 3426 3427 /* 3428 ** No-op routine for the parse-tree walker. 3429 ** 3430 ** When this routine is the Walker.xExprCallback then expression trees 3431 ** are walked without any actions being taken at each node. Presumably, 3432 ** when this routine is used for Walker.xExprCallback then 3433 ** Walker.xSelectCallback is set to do something useful for every 3434 ** subquery in the parser tree. 3435 */ 3436 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3437 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3438 return WRC_Continue; 3439 } 3440 3441 /* 3442 ** This routine "expands" a SELECT statement and all of its subqueries. 3443 ** For additional information on what it means to "expand" a SELECT 3444 ** statement, see the comment on the selectExpand worker callback above. 3445 ** 3446 ** Expanding a SELECT statement is the first step in processing a 3447 ** SELECT statement. The SELECT statement must be expanded before 3448 ** name resolution is performed. 3449 ** 3450 ** If anything goes wrong, an error message is written into pParse. 3451 ** The calling function can detect the problem by looking at pParse->nErr 3452 ** and/or pParse->db->mallocFailed. 3453 */ 3454 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3455 Walker w; 3456 w.xSelectCallback = selectExpander; 3457 w.xExprCallback = exprWalkNoop; 3458 w.pParse = pParse; 3459 sqlite3WalkSelect(&w, pSelect); 3460 } 3461 3462 3463 #ifndef SQLITE_OMIT_SUBQUERY 3464 /* 3465 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3466 ** interface. 3467 ** 3468 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3469 ** information to the Table structure that represents the result set 3470 ** of that subquery. 3471 ** 3472 ** The Table structure that represents the result set was constructed 3473 ** by selectExpander() but the type and collation information was omitted 3474 ** at that point because identifiers had not yet been resolved. This 3475 ** routine is called after identifier resolution. 3476 */ 3477 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3478 Parse *pParse; 3479 int i; 3480 SrcList *pTabList; 3481 struct SrcList_item *pFrom; 3482 3483 assert( p->selFlags & SF_Resolved ); 3484 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3485 p->selFlags |= SF_HasTypeInfo; 3486 pParse = pWalker->pParse; 3487 pTabList = p->pSrc; 3488 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3489 Table *pTab = pFrom->pTab; 3490 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3491 /* A sub-query in the FROM clause of a SELECT */ 3492 Select *pSel = pFrom->pSelect; 3493 assert( pSel ); 3494 while( pSel->pPrior ) pSel = pSel->pPrior; 3495 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3496 } 3497 } 3498 } 3499 return WRC_Continue; 3500 } 3501 #endif 3502 3503 3504 /* 3505 ** This routine adds datatype and collating sequence information to 3506 ** the Table structures of all FROM-clause subqueries in a 3507 ** SELECT statement. 3508 ** 3509 ** Use this routine after name resolution. 3510 */ 3511 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3512 #ifndef SQLITE_OMIT_SUBQUERY 3513 Walker w; 3514 w.xSelectCallback = selectAddSubqueryTypeInfo; 3515 w.xExprCallback = exprWalkNoop; 3516 w.pParse = pParse; 3517 sqlite3WalkSelect(&w, pSelect); 3518 #endif 3519 } 3520 3521 3522 /* 3523 ** This routine sets of a SELECT statement for processing. The 3524 ** following is accomplished: 3525 ** 3526 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3527 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3528 ** * ON and USING clauses are shifted into WHERE statements 3529 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3530 ** * Identifiers in expression are matched to tables. 3531 ** 3532 ** This routine acts recursively on all subqueries within the SELECT. 3533 */ 3534 void sqlite3SelectPrep( 3535 Parse *pParse, /* The parser context */ 3536 Select *p, /* The SELECT statement being coded. */ 3537 NameContext *pOuterNC /* Name context for container */ 3538 ){ 3539 sqlite3 *db; 3540 if( NEVER(p==0) ) return; 3541 db = pParse->db; 3542 if( p->selFlags & SF_HasTypeInfo ) return; 3543 sqlite3SelectExpand(pParse, p); 3544 if( pParse->nErr || db->mallocFailed ) return; 3545 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3546 if( pParse->nErr || db->mallocFailed ) return; 3547 sqlite3SelectAddTypeInfo(pParse, p); 3548 } 3549 3550 /* 3551 ** Reset the aggregate accumulator. 3552 ** 3553 ** The aggregate accumulator is a set of memory cells that hold 3554 ** intermediate results while calculating an aggregate. This 3555 ** routine simply stores NULLs in all of those memory cells. 3556 */ 3557 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3558 Vdbe *v = pParse->pVdbe; 3559 int i; 3560 struct AggInfo_func *pFunc; 3561 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3562 return; 3563 } 3564 for(i=0; i<pAggInfo->nColumn; i++){ 3565 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3566 } 3567 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3568 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3569 if( pFunc->iDistinct>=0 ){ 3570 Expr *pE = pFunc->pExpr; 3571 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3572 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3573 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3574 "argument"); 3575 pFunc->iDistinct = -1; 3576 }else{ 3577 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3578 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3579 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3580 } 3581 } 3582 } 3583 } 3584 3585 /* 3586 ** Invoke the OP_AggFinalize opcode for every aggregate function 3587 ** in the AggInfo structure. 3588 */ 3589 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3590 Vdbe *v = pParse->pVdbe; 3591 int i; 3592 struct AggInfo_func *pF; 3593 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3594 ExprList *pList = pF->pExpr->x.pList; 3595 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3596 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3597 (void*)pF->pFunc, P4_FUNCDEF); 3598 } 3599 } 3600 3601 /* 3602 ** Update the accumulator memory cells for an aggregate based on 3603 ** the current cursor position. 3604 */ 3605 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3606 Vdbe *v = pParse->pVdbe; 3607 int i; 3608 int regHit = 0; 3609 int addrHitTest = 0; 3610 struct AggInfo_func *pF; 3611 struct AggInfo_col *pC; 3612 3613 pAggInfo->directMode = 1; 3614 sqlite3ExprCacheClear(pParse); 3615 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3616 int nArg; 3617 int addrNext = 0; 3618 int regAgg; 3619 ExprList *pList = pF->pExpr->x.pList; 3620 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3621 if( pList ){ 3622 nArg = pList->nExpr; 3623 regAgg = sqlite3GetTempRange(pParse, nArg); 3624 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); 3625 }else{ 3626 nArg = 0; 3627 regAgg = 0; 3628 } 3629 if( pF->iDistinct>=0 ){ 3630 addrNext = sqlite3VdbeMakeLabel(v); 3631 assert( nArg==1 ); 3632 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3633 } 3634 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3635 CollSeq *pColl = 0; 3636 struct ExprList_item *pItem; 3637 int j; 3638 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3639 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3640 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3641 } 3642 if( !pColl ){ 3643 pColl = pParse->db->pDfltColl; 3644 } 3645 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 3646 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 3647 } 3648 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3649 (void*)pF->pFunc, P4_FUNCDEF); 3650 sqlite3VdbeChangeP5(v, (u8)nArg); 3651 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3652 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3653 if( addrNext ){ 3654 sqlite3VdbeResolveLabel(v, addrNext); 3655 sqlite3ExprCacheClear(pParse); 3656 } 3657 } 3658 3659 /* Before populating the accumulator registers, clear the column cache. 3660 ** Otherwise, if any of the required column values are already present 3661 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 3662 ** to pC->iMem. But by the time the value is used, the original register 3663 ** may have been used, invalidating the underlying buffer holding the 3664 ** text or blob value. See ticket [883034dcb5]. 3665 ** 3666 ** Another solution would be to change the OP_SCopy used to copy cached 3667 ** values to an OP_Copy. 3668 */ 3669 if( regHit ){ 3670 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); 3671 } 3672 sqlite3ExprCacheClear(pParse); 3673 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3674 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3675 } 3676 pAggInfo->directMode = 0; 3677 sqlite3ExprCacheClear(pParse); 3678 if( addrHitTest ){ 3679 sqlite3VdbeJumpHere(v, addrHitTest); 3680 } 3681 } 3682 3683 /* 3684 ** Add a single OP_Explain instruction to the VDBE to explain a simple 3685 ** count(*) query ("SELECT count(*) FROM pTab"). 3686 */ 3687 #ifndef SQLITE_OMIT_EXPLAIN 3688 static void explainSimpleCount( 3689 Parse *pParse, /* Parse context */ 3690 Table *pTab, /* Table being queried */ 3691 Index *pIdx /* Index used to optimize scan, or NULL */ 3692 ){ 3693 if( pParse->explain==2 ){ 3694 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", 3695 pTab->zName, 3696 pIdx ? "USING COVERING INDEX " : "", 3697 pIdx ? pIdx->zName : "", 3698 pTab->nRowEst 3699 ); 3700 sqlite3VdbeAddOp4( 3701 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 3702 ); 3703 } 3704 } 3705 #else 3706 # define explainSimpleCount(a,b,c) 3707 #endif 3708 3709 /* 3710 ** Generate code for the SELECT statement given in the p argument. 3711 ** 3712 ** The results are distributed in various ways depending on the 3713 ** contents of the SelectDest structure pointed to by argument pDest 3714 ** as follows: 3715 ** 3716 ** pDest->eDest Result 3717 ** ------------ ------------------------------------------- 3718 ** SRT_Output Generate a row of output (using the OP_ResultRow 3719 ** opcode) for each row in the result set. 3720 ** 3721 ** SRT_Mem Only valid if the result is a single column. 3722 ** Store the first column of the first result row 3723 ** in register pDest->iParm then abandon the rest 3724 ** of the query. This destination implies "LIMIT 1". 3725 ** 3726 ** SRT_Set The result must be a single column. Store each 3727 ** row of result as the key in table pDest->iParm. 3728 ** Apply the affinity pDest->affinity before storing 3729 ** results. Used to implement "IN (SELECT ...)". 3730 ** 3731 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3732 ** 3733 ** SRT_Except Remove results from the temporary table pDest->iParm. 3734 ** 3735 ** SRT_Table Store results in temporary table pDest->iParm. 3736 ** This is like SRT_EphemTab except that the table 3737 ** is assumed to already be open. 3738 ** 3739 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3740 ** the result there. The cursor is left open after 3741 ** returning. This is like SRT_Table except that 3742 ** this destination uses OP_OpenEphemeral to create 3743 ** the table first. 3744 ** 3745 ** SRT_Coroutine Generate a co-routine that returns a new row of 3746 ** results each time it is invoked. The entry point 3747 ** of the co-routine is stored in register pDest->iParm. 3748 ** 3749 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3750 ** set is not empty. 3751 ** 3752 ** SRT_Discard Throw the results away. This is used by SELECT 3753 ** statements within triggers whose only purpose is 3754 ** the side-effects of functions. 3755 ** 3756 ** This routine returns the number of errors. If any errors are 3757 ** encountered, then an appropriate error message is left in 3758 ** pParse->zErrMsg. 3759 ** 3760 ** This routine does NOT free the Select structure passed in. The 3761 ** calling function needs to do that. 3762 */ 3763 int sqlite3Select( 3764 Parse *pParse, /* The parser context */ 3765 Select *p, /* The SELECT statement being coded. */ 3766 SelectDest *pDest /* What to do with the query results */ 3767 ){ 3768 int i, j; /* Loop counters */ 3769 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3770 Vdbe *v; /* The virtual machine under construction */ 3771 int isAgg; /* True for select lists like "count(*)" */ 3772 ExprList *pEList; /* List of columns to extract. */ 3773 SrcList *pTabList; /* List of tables to select from */ 3774 Expr *pWhere; /* The WHERE clause. May be NULL */ 3775 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3776 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3777 Expr *pHaving; /* The HAVING clause. May be NULL */ 3778 int isDistinct; /* True if the DISTINCT keyword is present */ 3779 int distinct; /* Table to use for the distinct set */ 3780 int rc = 1; /* Value to return from this function */ 3781 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3782 int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */ 3783 AggInfo sAggInfo; /* Information used by aggregate queries */ 3784 int iEnd; /* Address of the end of the query */ 3785 sqlite3 *db; /* The database connection */ 3786 3787 #ifndef SQLITE_OMIT_EXPLAIN 3788 int iRestoreSelectId = pParse->iSelectId; 3789 pParse->iSelectId = pParse->iNextSelectId++; 3790 #endif 3791 3792 db = pParse->db; 3793 if( p==0 || db->mallocFailed || pParse->nErr ){ 3794 return 1; 3795 } 3796 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3797 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3798 3799 if( IgnorableOrderby(pDest) ){ 3800 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3801 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3802 /* If ORDER BY makes no difference in the output then neither does 3803 ** DISTINCT so it can be removed too. */ 3804 sqlite3ExprListDelete(db, p->pOrderBy); 3805 p->pOrderBy = 0; 3806 p->selFlags &= ~SF_Distinct; 3807 } 3808 sqlite3SelectPrep(pParse, p, 0); 3809 pOrderBy = p->pOrderBy; 3810 pTabList = p->pSrc; 3811 pEList = p->pEList; 3812 if( pParse->nErr || db->mallocFailed ){ 3813 goto select_end; 3814 } 3815 isAgg = (p->selFlags & SF_Aggregate)!=0; 3816 assert( pEList!=0 ); 3817 3818 /* Begin generating code. 3819 */ 3820 v = sqlite3GetVdbe(pParse); 3821 if( v==0 ) goto select_end; 3822 3823 /* If writing to memory or generating a set 3824 ** only a single column may be output. 3825 */ 3826 #ifndef SQLITE_OMIT_SUBQUERY 3827 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3828 goto select_end; 3829 } 3830 #endif 3831 3832 /* Generate code for all sub-queries in the FROM clause 3833 */ 3834 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3835 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3836 struct SrcList_item *pItem = &pTabList->a[i]; 3837 SelectDest dest; 3838 Select *pSub = pItem->pSelect; 3839 int isAggSub; 3840 3841 if( pSub==0 ) continue; 3842 if( pItem->addrFillSub ){ 3843 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 3844 continue; 3845 } 3846 3847 /* Increment Parse.nHeight by the height of the largest expression 3848 ** tree refered to by this, the parent select. The child select 3849 ** may contain expression trees of at most 3850 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3851 ** more conservative than necessary, but much easier than enforcing 3852 ** an exact limit. 3853 */ 3854 pParse->nHeight += sqlite3SelectExprHeight(p); 3855 3856 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3857 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3858 /* This subquery can be absorbed into its parent. */ 3859 if( isAggSub ){ 3860 isAgg = 1; 3861 p->selFlags |= SF_Aggregate; 3862 } 3863 i = -1; 3864 }else{ 3865 /* Generate a subroutine that will fill an ephemeral table with 3866 ** the content of this subquery. pItem->addrFillSub will point 3867 ** to the address of the generated subroutine. pItem->regReturn 3868 ** is a register allocated to hold the subroutine return address 3869 */ 3870 int topAddr; 3871 int onceAddr = 0; 3872 int retAddr; 3873 assert( pItem->addrFillSub==0 ); 3874 pItem->regReturn = ++pParse->nMem; 3875 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 3876 pItem->addrFillSub = topAddr+1; 3877 VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); 3878 if( pItem->isCorrelated==0 ){ 3879 /* If the subquery is no correlated and if we are not inside of 3880 ** a trigger, then we only need to compute the value of the subquery 3881 ** once. */ 3882 onceAddr = sqlite3CodeOnce(pParse); 3883 } 3884 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3885 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 3886 sqlite3Select(pParse, pSub, &dest); 3887 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 3888 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 3889 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 3890 VdbeComment((v, "end %s", pItem->pTab->zName)); 3891 sqlite3VdbeChangeP1(v, topAddr, retAddr); 3892 sqlite3ClearTempRegCache(pParse); 3893 } 3894 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3895 goto select_end; 3896 } 3897 pParse->nHeight -= sqlite3SelectExprHeight(p); 3898 pTabList = p->pSrc; 3899 if( !IgnorableOrderby(pDest) ){ 3900 pOrderBy = p->pOrderBy; 3901 } 3902 } 3903 pEList = p->pEList; 3904 #endif 3905 pWhere = p->pWhere; 3906 pGroupBy = p->pGroupBy; 3907 pHaving = p->pHaving; 3908 isDistinct = (p->selFlags & SF_Distinct)!=0; 3909 3910 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3911 /* If there is are a sequence of queries, do the earlier ones first. 3912 */ 3913 if( p->pPrior ){ 3914 if( p->pRightmost==0 ){ 3915 Select *pLoop, *pRight = 0; 3916 int cnt = 0; 3917 int mxSelect; 3918 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3919 pLoop->pRightmost = p; 3920 pLoop->pNext = pRight; 3921 pRight = pLoop; 3922 } 3923 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3924 if( mxSelect && cnt>mxSelect ){ 3925 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3926 goto select_end; 3927 } 3928 } 3929 rc = multiSelect(pParse, p, pDest); 3930 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 3931 return rc; 3932 } 3933 #endif 3934 3935 /* If there is both a GROUP BY and an ORDER BY clause and they are 3936 ** identical, then disable the ORDER BY clause since the GROUP BY 3937 ** will cause elements to come out in the correct order. This is 3938 ** an optimization - the correct answer should result regardless. 3939 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 3940 ** to disable this optimization for testing purposes. 3941 */ 3942 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 3943 && (db->flags & SQLITE_GroupByOrder)==0 ){ 3944 pOrderBy = 0; 3945 } 3946 3947 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 3948 ** if the select-list is the same as the ORDER BY list, then this query 3949 ** can be rewritten as a GROUP BY. In other words, this: 3950 ** 3951 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 3952 ** 3953 ** is transformed to: 3954 ** 3955 ** SELECT xyz FROM ... GROUP BY xyz 3956 ** 3957 ** The second form is preferred as a single index (or temp-table) may be 3958 ** used for both the ORDER BY and DISTINCT processing. As originally 3959 ** written the query must use a temp-table for at least one of the ORDER 3960 ** BY and DISTINCT, and an index or separate temp-table for the other. 3961 */ 3962 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 3963 && sqlite3ExprListCompare(pOrderBy, p->pEList)==0 3964 ){ 3965 p->selFlags &= ~SF_Distinct; 3966 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3967 pGroupBy = p->pGroupBy; 3968 pOrderBy = 0; 3969 } 3970 3971 /* If there is an ORDER BY clause, then this sorting 3972 ** index might end up being unused if the data can be 3973 ** extracted in pre-sorted order. If that is the case, then the 3974 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3975 ** we figure out that the sorting index is not needed. The addrSortIndex 3976 ** variable is used to facilitate that change. 3977 */ 3978 if( pOrderBy ){ 3979 KeyInfo *pKeyInfo; 3980 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3981 pOrderBy->iECursor = pParse->nTab++; 3982 p->addrOpenEphm[2] = addrSortIndex = 3983 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3984 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3985 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3986 }else{ 3987 addrSortIndex = -1; 3988 } 3989 3990 /* If the output is destined for a temporary table, open that table. 3991 */ 3992 if( pDest->eDest==SRT_EphemTab ){ 3993 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3994 } 3995 3996 /* Set the limiter. 3997 */ 3998 iEnd = sqlite3VdbeMakeLabel(v); 3999 p->nSelectRow = (double)LARGEST_INT64; 4000 computeLimitRegisters(pParse, p, iEnd); 4001 if( p->iLimit==0 && addrSortIndex>=0 ){ 4002 sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; 4003 p->selFlags |= SF_UseSorter; 4004 } 4005 4006 /* Open a virtual index to use for the distinct set. 4007 */ 4008 if( p->selFlags & SF_Distinct ){ 4009 KeyInfo *pKeyInfo; 4010 distinct = pParse->nTab++; 4011 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 4012 addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 4013 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4014 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4015 }else{ 4016 distinct = addrDistinctIndex = -1; 4017 } 4018 4019 /* Aggregate and non-aggregate queries are handled differently */ 4020 if( !isAgg && pGroupBy==0 ){ 4021 ExprList *pDist = (isDistinct ? p->pEList : 0); 4022 4023 /* Begin the database scan. */ 4024 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0); 4025 if( pWInfo==0 ) goto select_end; 4026 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; 4027 4028 /* If sorting index that was created by a prior OP_OpenEphemeral 4029 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4030 ** into an OP_Noop. 4031 */ 4032 if( addrSortIndex>=0 && pOrderBy==0 ){ 4033 sqlite3VdbeChangeToNoop(v, addrSortIndex); 4034 p->addrOpenEphm[2] = -1; 4035 } 4036 4037 if( pWInfo->eDistinct ){ 4038 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 4039 4040 assert( addrDistinctIndex>=0 ); 4041 pOp = sqlite3VdbeGetOp(v, addrDistinctIndex); 4042 4043 assert( isDistinct ); 4044 assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 4045 || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE 4046 ); 4047 distinct = -1; 4048 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){ 4049 int iJump; 4050 int iExpr; 4051 int iFlag = ++pParse->nMem; 4052 int iBase = pParse->nMem+1; 4053 int iBase2 = iBase + pEList->nExpr; 4054 pParse->nMem += (pEList->nExpr*2); 4055 4056 /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The 4057 ** OP_Integer initializes the "first row" flag. */ 4058 pOp->opcode = OP_Integer; 4059 pOp->p1 = 1; 4060 pOp->p2 = iFlag; 4061 4062 sqlite3ExprCodeExprList(pParse, pEList, iBase, 1); 4063 iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1; 4064 sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1); 4065 for(iExpr=0; iExpr<pEList->nExpr; iExpr++){ 4066 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr); 4067 sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr); 4068 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 4069 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 4070 } 4071 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue); 4072 4073 sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag); 4074 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 4075 sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr); 4076 }else{ 4077 pOp->opcode = OP_Noop; 4078 } 4079 } 4080 4081 /* Use the standard inner loop. */ 4082 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest, 4083 pWInfo->iContinue, pWInfo->iBreak); 4084 4085 /* End the database scan loop. 4086 */ 4087 sqlite3WhereEnd(pWInfo); 4088 }else{ 4089 /* This is the processing for aggregate queries */ 4090 NameContext sNC; /* Name context for processing aggregate information */ 4091 int iAMem; /* First Mem address for storing current GROUP BY */ 4092 int iBMem; /* First Mem address for previous GROUP BY */ 4093 int iUseFlag; /* Mem address holding flag indicating that at least 4094 ** one row of the input to the aggregator has been 4095 ** processed */ 4096 int iAbortFlag; /* Mem address which causes query abort if positive */ 4097 int groupBySort; /* Rows come from source in GROUP BY order */ 4098 int addrEnd; /* End of processing for this SELECT */ 4099 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4100 int sortOut = 0; /* Output register from the sorter */ 4101 4102 /* Remove any and all aliases between the result set and the 4103 ** GROUP BY clause. 4104 */ 4105 if( pGroupBy ){ 4106 int k; /* Loop counter */ 4107 struct ExprList_item *pItem; /* For looping over expression in a list */ 4108 4109 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4110 pItem->iAlias = 0; 4111 } 4112 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4113 pItem->iAlias = 0; 4114 } 4115 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; 4116 }else{ 4117 p->nSelectRow = (double)1; 4118 } 4119 4120 4121 /* Create a label to jump to when we want to abort the query */ 4122 addrEnd = sqlite3VdbeMakeLabel(v); 4123 4124 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4125 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4126 ** SELECT statement. 4127 */ 4128 memset(&sNC, 0, sizeof(sNC)); 4129 sNC.pParse = pParse; 4130 sNC.pSrcList = pTabList; 4131 sNC.pAggInfo = &sAggInfo; 4132 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4133 sAggInfo.pGroupBy = pGroupBy; 4134 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4135 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 4136 if( pHaving ){ 4137 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4138 } 4139 sAggInfo.nAccumulator = sAggInfo.nColumn; 4140 for(i=0; i<sAggInfo.nFunc; i++){ 4141 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4142 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4143 } 4144 if( db->mallocFailed ) goto select_end; 4145 4146 /* Processing for aggregates with GROUP BY is very different and 4147 ** much more complex than aggregates without a GROUP BY. 4148 */ 4149 if( pGroupBy ){ 4150 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4151 int j1; /* A-vs-B comparision jump */ 4152 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4153 int regOutputRow; /* Return address register for output subroutine */ 4154 int addrSetAbort; /* Set the abort flag and return */ 4155 int addrTopOfLoop; /* Top of the input loop */ 4156 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4157 int addrReset; /* Subroutine for resetting the accumulator */ 4158 int regReset; /* Return address register for reset subroutine */ 4159 4160 /* If there is a GROUP BY clause we might need a sorting index to 4161 ** implement it. Allocate that sorting index now. If it turns out 4162 ** that we do not need it after all, the OP_SorterOpen instruction 4163 ** will be converted into a Noop. 4164 */ 4165 sAggInfo.sortingIdx = pParse->nTab++; 4166 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 4167 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4168 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4169 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4170 4171 /* Initialize memory locations used by GROUP BY aggregate processing 4172 */ 4173 iUseFlag = ++pParse->nMem; 4174 iAbortFlag = ++pParse->nMem; 4175 regOutputRow = ++pParse->nMem; 4176 addrOutputRow = sqlite3VdbeMakeLabel(v); 4177 regReset = ++pParse->nMem; 4178 addrReset = sqlite3VdbeMakeLabel(v); 4179 iAMem = pParse->nMem + 1; 4180 pParse->nMem += pGroupBy->nExpr; 4181 iBMem = pParse->nMem + 1; 4182 pParse->nMem += pGroupBy->nExpr; 4183 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4184 VdbeComment((v, "clear abort flag")); 4185 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4186 VdbeComment((v, "indicate accumulator empty")); 4187 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4188 4189 /* Begin a loop that will extract all source rows in GROUP BY order. 4190 ** This might involve two separate loops with an OP_Sort in between, or 4191 ** it might be a single loop that uses an index to extract information 4192 ** in the right order to begin with. 4193 */ 4194 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4195 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0); 4196 if( pWInfo==0 ) goto select_end; 4197 if( pGroupBy==0 ){ 4198 /* The optimizer is able to deliver rows in group by order so 4199 ** we do not have to sort. The OP_OpenEphemeral table will be 4200 ** cancelled later because we still need to use the pKeyInfo 4201 */ 4202 pGroupBy = p->pGroupBy; 4203 groupBySort = 0; 4204 }else{ 4205 /* Rows are coming out in undetermined order. We have to push 4206 ** each row into a sorting index, terminate the first loop, 4207 ** then loop over the sorting index in order to get the output 4208 ** in sorted order 4209 */ 4210 int regBase; 4211 int regRecord; 4212 int nCol; 4213 int nGroupBy; 4214 4215 explainTempTable(pParse, 4216 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY"); 4217 4218 groupBySort = 1; 4219 nGroupBy = pGroupBy->nExpr; 4220 nCol = nGroupBy + 1; 4221 j = nGroupBy+1; 4222 for(i=0; i<sAggInfo.nColumn; i++){ 4223 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4224 nCol++; 4225 j++; 4226 } 4227 } 4228 regBase = sqlite3GetTempRange(pParse, nCol); 4229 sqlite3ExprCacheClear(pParse); 4230 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4231 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4232 j = nGroupBy+1; 4233 for(i=0; i<sAggInfo.nColumn; i++){ 4234 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4235 if( pCol->iSorterColumn>=j ){ 4236 int r1 = j + regBase; 4237 int r2; 4238 4239 r2 = sqlite3ExprCodeGetColumn(pParse, 4240 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 4241 if( r1!=r2 ){ 4242 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4243 } 4244 j++; 4245 } 4246 } 4247 regRecord = sqlite3GetTempReg(pParse); 4248 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4249 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 4250 sqlite3ReleaseTempReg(pParse, regRecord); 4251 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4252 sqlite3WhereEnd(pWInfo); 4253 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 4254 sortOut = sqlite3GetTempReg(pParse); 4255 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 4256 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 4257 VdbeComment((v, "GROUP BY sort")); 4258 sAggInfo.useSortingIdx = 1; 4259 sqlite3ExprCacheClear(pParse); 4260 } 4261 4262 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4263 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4264 ** Then compare the current GROUP BY terms against the GROUP BY terms 4265 ** from the previous row currently stored in a0, a1, a2... 4266 */ 4267 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4268 sqlite3ExprCacheClear(pParse); 4269 if( groupBySort ){ 4270 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 4271 } 4272 for(j=0; j<pGroupBy->nExpr; j++){ 4273 if( groupBySort ){ 4274 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 4275 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 4276 }else{ 4277 sAggInfo.directMode = 1; 4278 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4279 } 4280 } 4281 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4282 (char*)pKeyInfo, P4_KEYINFO); 4283 j1 = sqlite3VdbeCurrentAddr(v); 4284 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4285 4286 /* Generate code that runs whenever the GROUP BY changes. 4287 ** Changes in the GROUP BY are detected by the previous code 4288 ** block. If there were no changes, this block is skipped. 4289 ** 4290 ** This code copies current group by terms in b0,b1,b2,... 4291 ** over to a0,a1,a2. It then calls the output subroutine 4292 ** and resets the aggregate accumulator registers in preparation 4293 ** for the next GROUP BY batch. 4294 */ 4295 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4296 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4297 VdbeComment((v, "output one row")); 4298 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4299 VdbeComment((v, "check abort flag")); 4300 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4301 VdbeComment((v, "reset accumulator")); 4302 4303 /* Update the aggregate accumulators based on the content of 4304 ** the current row 4305 */ 4306 sqlite3VdbeJumpHere(v, j1); 4307 updateAccumulator(pParse, &sAggInfo); 4308 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4309 VdbeComment((v, "indicate data in accumulator")); 4310 4311 /* End of the loop 4312 */ 4313 if( groupBySort ){ 4314 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 4315 }else{ 4316 sqlite3WhereEnd(pWInfo); 4317 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 4318 } 4319 4320 /* Output the final row of result 4321 */ 4322 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4323 VdbeComment((v, "output final row")); 4324 4325 /* Jump over the subroutines 4326 */ 4327 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4328 4329 /* Generate a subroutine that outputs a single row of the result 4330 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4331 ** is less than or equal to zero, the subroutine is a no-op. If 4332 ** the processing calls for the query to abort, this subroutine 4333 ** increments the iAbortFlag memory location before returning in 4334 ** order to signal the caller to abort. 4335 */ 4336 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4337 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4338 VdbeComment((v, "set abort flag")); 4339 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4340 sqlite3VdbeResolveLabel(v, addrOutputRow); 4341 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4342 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4343 VdbeComment((v, "Groupby result generator entry point")); 4344 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4345 finalizeAggFunctions(pParse, &sAggInfo); 4346 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4347 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4348 distinct, pDest, 4349 addrOutputRow+1, addrSetAbort); 4350 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4351 VdbeComment((v, "end groupby result generator")); 4352 4353 /* Generate a subroutine that will reset the group-by accumulator 4354 */ 4355 sqlite3VdbeResolveLabel(v, addrReset); 4356 resetAccumulator(pParse, &sAggInfo); 4357 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4358 4359 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4360 else { 4361 ExprList *pDel = 0; 4362 #ifndef SQLITE_OMIT_BTREECOUNT 4363 Table *pTab; 4364 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4365 /* If isSimpleCount() returns a pointer to a Table structure, then 4366 ** the SQL statement is of the form: 4367 ** 4368 ** SELECT count(*) FROM <tbl> 4369 ** 4370 ** where the Table structure returned represents table <tbl>. 4371 ** 4372 ** This statement is so common that it is optimized specially. The 4373 ** OP_Count instruction is executed either on the intkey table that 4374 ** contains the data for table <tbl> or on one of its indexes. It 4375 ** is better to execute the op on an index, as indexes are almost 4376 ** always spread across less pages than their corresponding tables. 4377 */ 4378 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4379 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4380 Index *pIdx; /* Iterator variable */ 4381 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4382 Index *pBest = 0; /* Best index found so far */ 4383 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4384 4385 sqlite3CodeVerifySchema(pParse, iDb); 4386 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4387 4388 /* Search for the index that has the least amount of columns. If 4389 ** there is such an index, and it has less columns than the table 4390 ** does, then we can assume that it consumes less space on disk and 4391 ** will therefore be cheaper to scan to determine the query result. 4392 ** In this case set iRoot to the root page number of the index b-tree 4393 ** and pKeyInfo to the KeyInfo structure required to navigate the 4394 ** index. 4395 ** 4396 ** (2011-04-15) Do not do a full scan of an unordered index. 4397 ** 4398 ** In practice the KeyInfo structure will not be used. It is only 4399 ** passed to keep OP_OpenRead happy. 4400 */ 4401 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4402 if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){ 4403 pBest = pIdx; 4404 } 4405 } 4406 if( pBest && pBest->nColumn<pTab->nCol ){ 4407 iRoot = pBest->tnum; 4408 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4409 } 4410 4411 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4412 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4413 if( pKeyInfo ){ 4414 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4415 } 4416 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4417 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4418 explainSimpleCount(pParse, pTab, pBest); 4419 }else 4420 #endif /* SQLITE_OMIT_BTREECOUNT */ 4421 { 4422 /* Check if the query is of one of the following forms: 4423 ** 4424 ** SELECT min(x) FROM ... 4425 ** SELECT max(x) FROM ... 4426 ** 4427 ** If it is, then ask the code in where.c to attempt to sort results 4428 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4429 ** If where.c is able to produce results sorted in this order, then 4430 ** add vdbe code to break out of the processing loop after the 4431 ** first iteration (since the first iteration of the loop is 4432 ** guaranteed to operate on the row with the minimum or maximum 4433 ** value of x, the only row required). 4434 ** 4435 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4436 ** modify behaviour as follows: 4437 ** 4438 ** + If the query is a "SELECT min(x)", then the loop coded by 4439 ** where.c should not iterate over any values with a NULL value 4440 ** for x. 4441 ** 4442 ** + The optimizer code in where.c (the thing that decides which 4443 ** index or indices to use) should place a different priority on 4444 ** satisfying the 'ORDER BY' clause than it does in other cases. 4445 ** Refer to code and comments in where.c for details. 4446 */ 4447 ExprList *pMinMax = 0; 4448 u8 flag = minMaxQuery(p); 4449 if( flag ){ 4450 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4451 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4452 pDel = pMinMax; 4453 if( pMinMax && !db->mallocFailed ){ 4454 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4455 pMinMax->a[0].pExpr->op = TK_COLUMN; 4456 } 4457 } 4458 4459 /* This case runs if the aggregate has no GROUP BY clause. The 4460 ** processing is much simpler since there is only a single row 4461 ** of output. 4462 */ 4463 resetAccumulator(pParse, &sAggInfo); 4464 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag); 4465 if( pWInfo==0 ){ 4466 sqlite3ExprListDelete(db, pDel); 4467 goto select_end; 4468 } 4469 updateAccumulator(pParse, &sAggInfo); 4470 if( !pMinMax && flag ){ 4471 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4472 VdbeComment((v, "%s() by index", 4473 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4474 } 4475 sqlite3WhereEnd(pWInfo); 4476 finalizeAggFunctions(pParse, &sAggInfo); 4477 } 4478 4479 pOrderBy = 0; 4480 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4481 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4482 pDest, addrEnd, addrEnd); 4483 sqlite3ExprListDelete(db, pDel); 4484 } 4485 sqlite3VdbeResolveLabel(v, addrEnd); 4486 4487 } /* endif aggregate query */ 4488 4489 if( distinct>=0 ){ 4490 explainTempTable(pParse, "DISTINCT"); 4491 } 4492 4493 /* If there is an ORDER BY clause, then we need to sort the results 4494 ** and send them to the callback one by one. 4495 */ 4496 if( pOrderBy ){ 4497 explainTempTable(pParse, "ORDER BY"); 4498 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4499 } 4500 4501 /* Jump here to skip this query 4502 */ 4503 sqlite3VdbeResolveLabel(v, iEnd); 4504 4505 /* The SELECT was successfully coded. Set the return code to 0 4506 ** to indicate no errors. 4507 */ 4508 rc = 0; 4509 4510 /* Control jumps to here if an error is encountered above, or upon 4511 ** successful coding of the SELECT. 4512 */ 4513 select_end: 4514 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4515 4516 /* Identify column names if results of the SELECT are to be output. 4517 */ 4518 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4519 generateColumnNames(pParse, pTabList, pEList); 4520 } 4521 4522 sqlite3DbFree(db, sAggInfo.aCol); 4523 sqlite3DbFree(db, sAggInfo.aFunc); 4524 return rc; 4525 } 4526 4527 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 4528 /* 4529 ** Generate a human-readable description of a the Select object. 4530 */ 4531 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 4532 sqlite3ExplainPrintf(pVdbe, "SELECT "); 4533 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 4534 if( p->selFlags & SF_Distinct ){ 4535 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 4536 } 4537 if( p->selFlags & SF_Aggregate ){ 4538 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 4539 } 4540 sqlite3ExplainNL(pVdbe); 4541 sqlite3ExplainPrintf(pVdbe, " "); 4542 } 4543 sqlite3ExplainExprList(pVdbe, p->pEList); 4544 sqlite3ExplainNL(pVdbe); 4545 if( p->pSrc && p->pSrc->nSrc ){ 4546 int i; 4547 sqlite3ExplainPrintf(pVdbe, "FROM "); 4548 sqlite3ExplainPush(pVdbe); 4549 for(i=0; i<p->pSrc->nSrc; i++){ 4550 struct SrcList_item *pItem = &p->pSrc->a[i]; 4551 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 4552 if( pItem->pSelect ){ 4553 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 4554 if( pItem->pTab ){ 4555 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 4556 } 4557 }else if( pItem->zName ){ 4558 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 4559 } 4560 if( pItem->zAlias ){ 4561 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 4562 } 4563 if( pItem->jointype & JT_LEFT ){ 4564 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 4565 } 4566 sqlite3ExplainNL(pVdbe); 4567 } 4568 sqlite3ExplainPop(pVdbe); 4569 } 4570 if( p->pWhere ){ 4571 sqlite3ExplainPrintf(pVdbe, "WHERE "); 4572 sqlite3ExplainExpr(pVdbe, p->pWhere); 4573 sqlite3ExplainNL(pVdbe); 4574 } 4575 if( p->pGroupBy ){ 4576 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 4577 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 4578 sqlite3ExplainNL(pVdbe); 4579 } 4580 if( p->pHaving ){ 4581 sqlite3ExplainPrintf(pVdbe, "HAVING "); 4582 sqlite3ExplainExpr(pVdbe, p->pHaving); 4583 sqlite3ExplainNL(pVdbe); 4584 } 4585 if( p->pOrderBy ){ 4586 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 4587 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 4588 sqlite3ExplainNL(pVdbe); 4589 } 4590 if( p->pLimit ){ 4591 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 4592 sqlite3ExplainExpr(pVdbe, p->pLimit); 4593 sqlite3ExplainNL(pVdbe); 4594 } 4595 if( p->pOffset ){ 4596 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 4597 sqlite3ExplainExpr(pVdbe, p->pOffset); 4598 sqlite3ExplainNL(pVdbe); 4599 } 4600 } 4601 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 4602 if( p==0 ){ 4603 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 4604 return; 4605 } 4606 while( p->pPrior ) p = p->pPrior; 4607 sqlite3ExplainPush(pVdbe); 4608 while( p ){ 4609 explainOneSelect(pVdbe, p); 4610 p = p->pNext; 4611 if( p==0 ) break; 4612 sqlite3ExplainNL(pVdbe); 4613 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 4614 } 4615 sqlite3ExplainPrintf(pVdbe, "END"); 4616 sqlite3ExplainPop(pVdbe); 4617 } 4618 4619 /* End of the structure debug printing code 4620 *****************************************************************************/ 4621 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 4622