1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 58 }; 59 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 60 61 /* 62 ** Delete all the content of a Select structure. Deallocate the structure 63 ** itself only if bFree is true. 64 */ 65 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 66 while( p ){ 67 Select *pPrior = p->pPrior; 68 sqlite3ExprListDelete(db, p->pEList); 69 sqlite3SrcListDelete(db, p->pSrc); 70 sqlite3ExprDelete(db, p->pWhere); 71 sqlite3ExprListDelete(db, p->pGroupBy); 72 sqlite3ExprDelete(db, p->pHaving); 73 sqlite3ExprListDelete(db, p->pOrderBy); 74 sqlite3ExprDelete(db, p->pLimit); 75 sqlite3ExprDelete(db, p->pOffset); 76 sqlite3WithDelete(db, p->pWith); 77 if( bFree ) sqlite3DbFree(db, p); 78 p = pPrior; 79 bFree = 1; 80 } 81 } 82 83 /* 84 ** Initialize a SelectDest structure. 85 */ 86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 87 pDest->eDest = (u8)eDest; 88 pDest->iSDParm = iParm; 89 pDest->affSdst = 0; 90 pDest->iSdst = 0; 91 pDest->nSdst = 0; 92 } 93 94 95 /* 96 ** Allocate a new Select structure and return a pointer to that 97 ** structure. 98 */ 99 Select *sqlite3SelectNew( 100 Parse *pParse, /* Parsing context */ 101 ExprList *pEList, /* which columns to include in the result */ 102 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 103 Expr *pWhere, /* the WHERE clause */ 104 ExprList *pGroupBy, /* the GROUP BY clause */ 105 Expr *pHaving, /* the HAVING clause */ 106 ExprList *pOrderBy, /* the ORDER BY clause */ 107 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 108 Expr *pLimit, /* LIMIT value. NULL means not used */ 109 Expr *pOffset /* OFFSET value. NULL means no offset */ 110 ){ 111 Select *pNew; 112 Select standin; 113 sqlite3 *db = pParse->db; 114 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 if( p->op==TK_FUNCTION && p->x.pList ){ 370 int i; 371 for(i=0; i<p->x.pList->nExpr; i++){ 372 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 373 } 374 } 375 setJoinExpr(p->pLeft, iTable); 376 p = p->pRight; 377 } 378 } 379 380 /* 381 ** This routine processes the join information for a SELECT statement. 382 ** ON and USING clauses are converted into extra terms of the WHERE clause. 383 ** NATURAL joins also create extra WHERE clause terms. 384 ** 385 ** The terms of a FROM clause are contained in the Select.pSrc structure. 386 ** The left most table is the first entry in Select.pSrc. The right-most 387 ** table is the last entry. The join operator is held in the entry to 388 ** the left. Thus entry 0 contains the join operator for the join between 389 ** entries 0 and 1. Any ON or USING clauses associated with the join are 390 ** also attached to the left entry. 391 ** 392 ** This routine returns the number of errors encountered. 393 */ 394 static int sqliteProcessJoin(Parse *pParse, Select *p){ 395 SrcList *pSrc; /* All tables in the FROM clause */ 396 int i, j; /* Loop counters */ 397 struct SrcList_item *pLeft; /* Left table being joined */ 398 struct SrcList_item *pRight; /* Right table being joined */ 399 400 pSrc = p->pSrc; 401 pLeft = &pSrc->a[0]; 402 pRight = &pLeft[1]; 403 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 404 Table *pLeftTab = pLeft->pTab; 405 Table *pRightTab = pRight->pTab; 406 int isOuter; 407 408 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 409 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 410 411 /* When the NATURAL keyword is present, add WHERE clause terms for 412 ** every column that the two tables have in common. 413 */ 414 if( pRight->fg.jointype & JT_NATURAL ){ 415 if( pRight->pOn || pRight->pUsing ){ 416 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 417 "an ON or USING clause", 0); 418 return 1; 419 } 420 for(j=0; j<pRightTab->nCol; j++){ 421 char *zName; /* Name of column in the right table */ 422 int iLeft; /* Matching left table */ 423 int iLeftCol; /* Matching column in the left table */ 424 425 zName = pRightTab->aCol[j].zName; 426 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 427 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 428 isOuter, &p->pWhere); 429 } 430 } 431 } 432 433 /* Disallow both ON and USING clauses in the same join 434 */ 435 if( pRight->pOn && pRight->pUsing ){ 436 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 437 "clauses in the same join"); 438 return 1; 439 } 440 441 /* Add the ON clause to the end of the WHERE clause, connected by 442 ** an AND operator. 443 */ 444 if( pRight->pOn ){ 445 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 446 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 447 pRight->pOn = 0; 448 } 449 450 /* Create extra terms on the WHERE clause for each column named 451 ** in the USING clause. Example: If the two tables to be joined are 452 ** A and B and the USING clause names X, Y, and Z, then add this 453 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 454 ** Report an error if any column mentioned in the USING clause is 455 ** not contained in both tables to be joined. 456 */ 457 if( pRight->pUsing ){ 458 IdList *pList = pRight->pUsing; 459 for(j=0; j<pList->nId; j++){ 460 char *zName; /* Name of the term in the USING clause */ 461 int iLeft; /* Table on the left with matching column name */ 462 int iLeftCol; /* Column number of matching column on the left */ 463 int iRightCol; /* Column number of matching column on the right */ 464 465 zName = pList->a[j].zName; 466 iRightCol = columnIndex(pRightTab, zName); 467 if( iRightCol<0 468 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 469 ){ 470 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 471 "not present in both tables", zName); 472 return 1; 473 } 474 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 475 isOuter, &p->pWhere); 476 } 477 } 478 } 479 return 0; 480 } 481 482 /* Forward reference */ 483 static KeyInfo *keyInfoFromExprList( 484 Parse *pParse, /* Parsing context */ 485 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 486 int iStart, /* Begin with this column of pList */ 487 int nExtra /* Add this many extra columns to the end */ 488 ); 489 490 /* 491 ** Generate code that will push the record in registers regData 492 ** through regData+nData-1 onto the sorter. 493 */ 494 static void pushOntoSorter( 495 Parse *pParse, /* Parser context */ 496 SortCtx *pSort, /* Information about the ORDER BY clause */ 497 Select *pSelect, /* The whole SELECT statement */ 498 int regData, /* First register holding data to be sorted */ 499 int regOrigData, /* First register holding data before packing */ 500 int nData, /* Number of elements in the data array */ 501 int nPrefixReg /* No. of reg prior to regData available for use */ 502 ){ 503 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 504 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 505 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 506 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 507 int regBase; /* Regs for sorter record */ 508 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 509 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 510 int op; /* Opcode to add sorter record to sorter */ 511 512 assert( bSeq==0 || bSeq==1 ); 513 assert( nData==1 || regData==regOrigData ); 514 if( nPrefixReg ){ 515 assert( nPrefixReg==nExpr+bSeq ); 516 regBase = regData - nExpr - bSeq; 517 }else{ 518 regBase = pParse->nMem + 1; 519 pParse->nMem += nBase; 520 } 521 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 522 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); 523 if( bSeq ){ 524 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 525 } 526 if( nPrefixReg==0 ){ 527 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 528 } 529 530 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 531 if( nOBSat>0 ){ 532 int regPrevKey; /* The first nOBSat columns of the previous row */ 533 int addrFirst; /* Address of the OP_IfNot opcode */ 534 int addrJmp; /* Address of the OP_Jump opcode */ 535 VdbeOp *pOp; /* Opcode that opens the sorter */ 536 int nKey; /* Number of sorting key columns, including OP_Sequence */ 537 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 538 539 regPrevKey = pParse->nMem+1; 540 pParse->nMem += pSort->nOBSat; 541 nKey = nExpr - pSort->nOBSat + bSeq; 542 if( bSeq ){ 543 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 544 }else{ 545 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 546 } 547 VdbeCoverage(v); 548 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 549 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 550 if( pParse->db->mallocFailed ) return; 551 pOp->p2 = nKey + nData; 552 pKI = pOp->p4.pKeyInfo; 553 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 554 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 555 testcase( pKI->nXField>2 ); 556 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 557 pKI->nXField-1); 558 addrJmp = sqlite3VdbeCurrentAddr(v); 559 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 560 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 561 pSort->regReturn = ++pParse->nMem; 562 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 563 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 564 sqlite3VdbeJumpHere(v, addrFirst); 565 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 566 sqlite3VdbeJumpHere(v, addrJmp); 567 } 568 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 569 op = OP_SorterInsert; 570 }else{ 571 op = OP_IdxInsert; 572 } 573 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 574 if( pSelect->iLimit ){ 575 int addr; 576 int iLimit; 577 if( pSelect->iOffset ){ 578 iLimit = pSelect->iOffset+1; 579 }else{ 580 iLimit = pSelect->iLimit; 581 } 582 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); 583 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 584 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 585 sqlite3VdbeJumpHere(v, addr); 586 } 587 } 588 589 /* 590 ** Add code to implement the OFFSET 591 */ 592 static void codeOffset( 593 Vdbe *v, /* Generate code into this VM */ 594 int iOffset, /* Register holding the offset counter */ 595 int iContinue /* Jump here to skip the current record */ 596 ){ 597 if( iOffset>0 ){ 598 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 599 VdbeComment((v, "OFFSET")); 600 } 601 } 602 603 /* 604 ** Add code that will check to make sure the N registers starting at iMem 605 ** form a distinct entry. iTab is a sorting index that holds previously 606 ** seen combinations of the N values. A new entry is made in iTab 607 ** if the current N values are new. 608 ** 609 ** A jump to addrRepeat is made and the N+1 values are popped from the 610 ** stack if the top N elements are not distinct. 611 */ 612 static void codeDistinct( 613 Parse *pParse, /* Parsing and code generating context */ 614 int iTab, /* A sorting index used to test for distinctness */ 615 int addrRepeat, /* Jump to here if not distinct */ 616 int N, /* Number of elements */ 617 int iMem /* First element */ 618 ){ 619 Vdbe *v; 620 int r1; 621 622 v = pParse->pVdbe; 623 r1 = sqlite3GetTempReg(pParse); 624 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 625 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 626 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 627 sqlite3ReleaseTempReg(pParse, r1); 628 } 629 630 #ifndef SQLITE_OMIT_SUBQUERY 631 /* 632 ** Generate an error message when a SELECT is used within a subexpression 633 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 634 ** column. We do this in a subroutine because the error used to occur 635 ** in multiple places. (The error only occurs in one place now, but we 636 ** retain the subroutine to minimize code disruption.) 637 */ 638 static int checkForMultiColumnSelectError( 639 Parse *pParse, /* Parse context. */ 640 SelectDest *pDest, /* Destination of SELECT results */ 641 int nExpr /* Number of result columns returned by SELECT */ 642 ){ 643 int eDest = pDest->eDest; 644 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 645 sqlite3ErrorMsg(pParse, "only a single result allowed for " 646 "a SELECT that is part of an expression"); 647 return 1; 648 }else{ 649 return 0; 650 } 651 } 652 #endif 653 654 /* 655 ** This routine generates the code for the inside of the inner loop 656 ** of a SELECT. 657 ** 658 ** If srcTab is negative, then the pEList expressions 659 ** are evaluated in order to get the data for this row. If srcTab is 660 ** zero or more, then data is pulled from srcTab and pEList is used only 661 ** to get number columns and the datatype for each column. 662 */ 663 static void selectInnerLoop( 664 Parse *pParse, /* The parser context */ 665 Select *p, /* The complete select statement being coded */ 666 ExprList *pEList, /* List of values being extracted */ 667 int srcTab, /* Pull data from this table */ 668 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 669 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 670 SelectDest *pDest, /* How to dispose of the results */ 671 int iContinue, /* Jump here to continue with next row */ 672 int iBreak /* Jump here to break out of the inner loop */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 int i; 676 int hasDistinct; /* True if the DISTINCT keyword is present */ 677 int regResult; /* Start of memory holding result set */ 678 int eDest = pDest->eDest; /* How to dispose of results */ 679 int iParm = pDest->iSDParm; /* First argument to disposal method */ 680 int nResultCol; /* Number of result columns */ 681 int nPrefixReg = 0; /* Number of extra registers before regResult */ 682 683 assert( v ); 684 assert( pEList!=0 ); 685 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 686 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 687 if( pSort==0 && !hasDistinct ){ 688 assert( iContinue!=0 ); 689 codeOffset(v, p->iOffset, iContinue); 690 } 691 692 /* Pull the requested columns. 693 */ 694 nResultCol = pEList->nExpr; 695 696 if( pDest->iSdst==0 ){ 697 if( pSort ){ 698 nPrefixReg = pSort->pOrderBy->nExpr; 699 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 700 pParse->nMem += nPrefixReg; 701 } 702 pDest->iSdst = pParse->nMem+1; 703 pParse->nMem += nResultCol; 704 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 705 /* This is an error condition that can result, for example, when a SELECT 706 ** on the right-hand side of an INSERT contains more result columns than 707 ** there are columns in the table on the left. The error will be caught 708 ** and reported later. But we need to make sure enough memory is allocated 709 ** to avoid other spurious errors in the meantime. */ 710 pParse->nMem += nResultCol; 711 } 712 pDest->nSdst = nResultCol; 713 regResult = pDest->iSdst; 714 if( srcTab>=0 ){ 715 for(i=0; i<nResultCol; i++){ 716 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 717 VdbeComment((v, "%s", pEList->a[i].zName)); 718 } 719 }else if( eDest!=SRT_Exists ){ 720 /* If the destination is an EXISTS(...) expression, the actual 721 ** values returned by the SELECT are not required. 722 */ 723 u8 ecelFlags; 724 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 725 ecelFlags = SQLITE_ECEL_DUP; 726 }else{ 727 ecelFlags = 0; 728 } 729 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); 730 } 731 732 /* If the DISTINCT keyword was present on the SELECT statement 733 ** and this row has been seen before, then do not make this row 734 ** part of the result. 735 */ 736 if( hasDistinct ){ 737 switch( pDistinct->eTnctType ){ 738 case WHERE_DISTINCT_ORDERED: { 739 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 740 int iJump; /* Jump destination */ 741 int regPrev; /* Previous row content */ 742 743 /* Allocate space for the previous row */ 744 regPrev = pParse->nMem+1; 745 pParse->nMem += nResultCol; 746 747 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 748 ** sets the MEM_Cleared bit on the first register of the 749 ** previous value. This will cause the OP_Ne below to always 750 ** fail on the first iteration of the loop even if the first 751 ** row is all NULLs. 752 */ 753 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 754 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 755 pOp->opcode = OP_Null; 756 pOp->p1 = 1; 757 pOp->p2 = regPrev; 758 759 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 760 for(i=0; i<nResultCol; i++){ 761 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 762 if( i<nResultCol-1 ){ 763 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 764 VdbeCoverage(v); 765 }else{ 766 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 767 VdbeCoverage(v); 768 } 769 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 770 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 771 } 772 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 773 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 774 break; 775 } 776 777 case WHERE_DISTINCT_UNIQUE: { 778 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 779 break; 780 } 781 782 default: { 783 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 784 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 785 regResult); 786 break; 787 } 788 } 789 if( pSort==0 ){ 790 codeOffset(v, p->iOffset, iContinue); 791 } 792 } 793 794 switch( eDest ){ 795 /* In this mode, write each query result to the key of the temporary 796 ** table iParm. 797 */ 798 #ifndef SQLITE_OMIT_COMPOUND_SELECT 799 case SRT_Union: { 800 int r1; 801 r1 = sqlite3GetTempReg(pParse); 802 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 803 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 804 sqlite3ReleaseTempReg(pParse, r1); 805 break; 806 } 807 808 /* Construct a record from the query result, but instead of 809 ** saving that record, use it as a key to delete elements from 810 ** the temporary table iParm. 811 */ 812 case SRT_Except: { 813 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 814 break; 815 } 816 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 817 818 /* Store the result as data using a unique key. 819 */ 820 case SRT_Fifo: 821 case SRT_DistFifo: 822 case SRT_Table: 823 case SRT_EphemTab: { 824 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 825 testcase( eDest==SRT_Table ); 826 testcase( eDest==SRT_EphemTab ); 827 testcase( eDest==SRT_Fifo ); 828 testcase( eDest==SRT_DistFifo ); 829 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 830 #ifndef SQLITE_OMIT_CTE 831 if( eDest==SRT_DistFifo ){ 832 /* If the destination is DistFifo, then cursor (iParm+1) is open 833 ** on an ephemeral index. If the current row is already present 834 ** in the index, do not write it to the output. If not, add the 835 ** current row to the index and proceed with writing it to the 836 ** output table as well. */ 837 int addr = sqlite3VdbeCurrentAddr(v) + 4; 838 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 839 VdbeCoverage(v); 840 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 841 assert( pSort==0 ); 842 } 843 #endif 844 if( pSort ){ 845 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 846 }else{ 847 int r2 = sqlite3GetTempReg(pParse); 848 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 849 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 850 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 851 sqlite3ReleaseTempReg(pParse, r2); 852 } 853 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 854 break; 855 } 856 857 #ifndef SQLITE_OMIT_SUBQUERY 858 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 859 ** then there should be a single item on the stack. Write this 860 ** item into the set table with bogus data. 861 */ 862 case SRT_Set: { 863 assert( nResultCol==1 ); 864 pDest->affSdst = 865 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 866 if( pSort ){ 867 /* At first glance you would think we could optimize out the 868 ** ORDER BY in this case since the order of entries in the set 869 ** does not matter. But there might be a LIMIT clause, in which 870 ** case the order does matter */ 871 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 872 }else{ 873 int r1 = sqlite3GetTempReg(pParse); 874 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 875 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 876 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 877 sqlite3ReleaseTempReg(pParse, r1); 878 } 879 break; 880 } 881 882 /* If any row exist in the result set, record that fact and abort. 883 */ 884 case SRT_Exists: { 885 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 886 /* The LIMIT clause will terminate the loop for us */ 887 break; 888 } 889 890 /* If this is a scalar select that is part of an expression, then 891 ** store the results in the appropriate memory cell and break out 892 ** of the scan loop. 893 */ 894 case SRT_Mem: { 895 assert( nResultCol==1 ); 896 if( pSort ){ 897 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 898 }else{ 899 assert( regResult==iParm ); 900 /* The LIMIT clause will jump out of the loop for us */ 901 } 902 break; 903 } 904 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 905 906 case SRT_Coroutine: /* Send data to a co-routine */ 907 case SRT_Output: { /* Return the results */ 908 testcase( eDest==SRT_Coroutine ); 909 testcase( eDest==SRT_Output ); 910 if( pSort ){ 911 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, 912 nPrefixReg); 913 }else if( eDest==SRT_Coroutine ){ 914 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 915 }else{ 916 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 917 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 918 } 919 break; 920 } 921 922 #ifndef SQLITE_OMIT_CTE 923 /* Write the results into a priority queue that is order according to 924 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 925 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 926 ** pSO->nExpr columns, then make sure all keys are unique by adding a 927 ** final OP_Sequence column. The last column is the record as a blob. 928 */ 929 case SRT_DistQueue: 930 case SRT_Queue: { 931 int nKey; 932 int r1, r2, r3; 933 int addrTest = 0; 934 ExprList *pSO; 935 pSO = pDest->pOrderBy; 936 assert( pSO ); 937 nKey = pSO->nExpr; 938 r1 = sqlite3GetTempReg(pParse); 939 r2 = sqlite3GetTempRange(pParse, nKey+2); 940 r3 = r2+nKey+1; 941 if( eDest==SRT_DistQueue ){ 942 /* If the destination is DistQueue, then cursor (iParm+1) is open 943 ** on a second ephemeral index that holds all values every previously 944 ** added to the queue. */ 945 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 946 regResult, nResultCol); 947 VdbeCoverage(v); 948 } 949 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 950 if( eDest==SRT_DistQueue ){ 951 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 952 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 953 } 954 for(i=0; i<nKey; i++){ 955 sqlite3VdbeAddOp2(v, OP_SCopy, 956 regResult + pSO->a[i].u.x.iOrderByCol - 1, 957 r2+i); 958 } 959 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 960 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 961 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 962 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 963 sqlite3ReleaseTempReg(pParse, r1); 964 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 965 break; 966 } 967 #endif /* SQLITE_OMIT_CTE */ 968 969 970 971 #if !defined(SQLITE_OMIT_TRIGGER) 972 /* Discard the results. This is used for SELECT statements inside 973 ** the body of a TRIGGER. The purpose of such selects is to call 974 ** user-defined functions that have side effects. We do not care 975 ** about the actual results of the select. 976 */ 977 default: { 978 assert( eDest==SRT_Discard ); 979 break; 980 } 981 #endif 982 } 983 984 /* Jump to the end of the loop if the LIMIT is reached. Except, if 985 ** there is a sorter, in which case the sorter has already limited 986 ** the output for us. 987 */ 988 if( pSort==0 && p->iLimit ){ 989 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 990 } 991 } 992 993 /* 994 ** Allocate a KeyInfo object sufficient for an index of N key columns and 995 ** X extra columns. 996 */ 997 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 998 KeyInfo *p = sqlite3DbMallocZero(0, 999 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 1000 if( p ){ 1001 p->aSortOrder = (u8*)&p->aColl[N+X]; 1002 p->nField = (u16)N; 1003 p->nXField = (u16)X; 1004 p->enc = ENC(db); 1005 p->db = db; 1006 p->nRef = 1; 1007 }else{ 1008 db->mallocFailed = 1; 1009 } 1010 return p; 1011 } 1012 1013 /* 1014 ** Deallocate a KeyInfo object 1015 */ 1016 void sqlite3KeyInfoUnref(KeyInfo *p){ 1017 if( p ){ 1018 assert( p->nRef>0 ); 1019 p->nRef--; 1020 if( p->nRef==0 ) sqlite3DbFree(0, p); 1021 } 1022 } 1023 1024 /* 1025 ** Make a new pointer to a KeyInfo object 1026 */ 1027 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1028 if( p ){ 1029 assert( p->nRef>0 ); 1030 p->nRef++; 1031 } 1032 return p; 1033 } 1034 1035 #ifdef SQLITE_DEBUG 1036 /* 1037 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1038 ** can only be changed if this is just a single reference to the object. 1039 ** 1040 ** This routine is used only inside of assert() statements. 1041 */ 1042 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1043 #endif /* SQLITE_DEBUG */ 1044 1045 /* 1046 ** Given an expression list, generate a KeyInfo structure that records 1047 ** the collating sequence for each expression in that expression list. 1048 ** 1049 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1050 ** KeyInfo structure is appropriate for initializing a virtual index to 1051 ** implement that clause. If the ExprList is the result set of a SELECT 1052 ** then the KeyInfo structure is appropriate for initializing a virtual 1053 ** index to implement a DISTINCT test. 1054 ** 1055 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1056 ** function is responsible for seeing that this structure is eventually 1057 ** freed. 1058 */ 1059 static KeyInfo *keyInfoFromExprList( 1060 Parse *pParse, /* Parsing context */ 1061 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1062 int iStart, /* Begin with this column of pList */ 1063 int nExtra /* Add this many extra columns to the end */ 1064 ){ 1065 int nExpr; 1066 KeyInfo *pInfo; 1067 struct ExprList_item *pItem; 1068 sqlite3 *db = pParse->db; 1069 int i; 1070 1071 nExpr = pList->nExpr; 1072 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1073 if( pInfo ){ 1074 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1075 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1076 CollSeq *pColl; 1077 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1078 if( !pColl ) pColl = db->pDfltColl; 1079 pInfo->aColl[i-iStart] = pColl; 1080 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1081 } 1082 } 1083 return pInfo; 1084 } 1085 1086 /* 1087 ** Name of the connection operator, used for error messages. 1088 */ 1089 static const char *selectOpName(int id){ 1090 char *z; 1091 switch( id ){ 1092 case TK_ALL: z = "UNION ALL"; break; 1093 case TK_INTERSECT: z = "INTERSECT"; break; 1094 case TK_EXCEPT: z = "EXCEPT"; break; 1095 default: z = "UNION"; break; 1096 } 1097 return z; 1098 } 1099 1100 #ifndef SQLITE_OMIT_EXPLAIN 1101 /* 1102 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1103 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1104 ** where the caption is of the form: 1105 ** 1106 ** "USE TEMP B-TREE FOR xxx" 1107 ** 1108 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1109 ** is determined by the zUsage argument. 1110 */ 1111 static void explainTempTable(Parse *pParse, const char *zUsage){ 1112 if( pParse->explain==2 ){ 1113 Vdbe *v = pParse->pVdbe; 1114 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1115 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1116 } 1117 } 1118 1119 /* 1120 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1121 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1122 ** in sqlite3Select() to assign values to structure member variables that 1123 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1124 ** code with #ifndef directives. 1125 */ 1126 # define explainSetInteger(a, b) a = b 1127 1128 #else 1129 /* No-op versions of the explainXXX() functions and macros. */ 1130 # define explainTempTable(y,z) 1131 # define explainSetInteger(y,z) 1132 #endif 1133 1134 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1135 /* 1136 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1137 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1138 ** where the caption is of one of the two forms: 1139 ** 1140 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1141 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1142 ** 1143 ** where iSub1 and iSub2 are the integers passed as the corresponding 1144 ** function parameters, and op is the text representation of the parameter 1145 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1146 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1147 ** false, or the second form if it is true. 1148 */ 1149 static void explainComposite( 1150 Parse *pParse, /* Parse context */ 1151 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1152 int iSub1, /* Subquery id 1 */ 1153 int iSub2, /* Subquery id 2 */ 1154 int bUseTmp /* True if a temp table was used */ 1155 ){ 1156 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1157 if( pParse->explain==2 ){ 1158 Vdbe *v = pParse->pVdbe; 1159 char *zMsg = sqlite3MPrintf( 1160 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1161 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1162 ); 1163 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1164 } 1165 } 1166 #else 1167 /* No-op versions of the explainXXX() functions and macros. */ 1168 # define explainComposite(v,w,x,y,z) 1169 #endif 1170 1171 /* 1172 ** If the inner loop was generated using a non-null pOrderBy argument, 1173 ** then the results were placed in a sorter. After the loop is terminated 1174 ** we need to run the sorter and output the results. The following 1175 ** routine generates the code needed to do that. 1176 */ 1177 static void generateSortTail( 1178 Parse *pParse, /* Parsing context */ 1179 Select *p, /* The SELECT statement */ 1180 SortCtx *pSort, /* Information on the ORDER BY clause */ 1181 int nColumn, /* Number of columns of data */ 1182 SelectDest *pDest /* Write the sorted results here */ 1183 ){ 1184 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1185 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1186 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1187 int addr; 1188 int addrOnce = 0; 1189 int iTab; 1190 ExprList *pOrderBy = pSort->pOrderBy; 1191 int eDest = pDest->eDest; 1192 int iParm = pDest->iSDParm; 1193 int regRow; 1194 int regRowid; 1195 int nKey; 1196 int iSortTab; /* Sorter cursor to read from */ 1197 int nSortData; /* Trailing values to read from sorter */ 1198 int i; 1199 int bSeq; /* True if sorter record includes seq. no. */ 1200 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1201 struct ExprList_item *aOutEx = p->pEList->a; 1202 #endif 1203 1204 if( pSort->labelBkOut ){ 1205 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1206 sqlite3VdbeGoto(v, addrBreak); 1207 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1208 } 1209 iTab = pSort->iECursor; 1210 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1211 regRowid = 0; 1212 regRow = pDest->iSdst; 1213 nSortData = nColumn; 1214 }else{ 1215 regRowid = sqlite3GetTempReg(pParse); 1216 regRow = sqlite3GetTempReg(pParse); 1217 nSortData = 1; 1218 } 1219 nKey = pOrderBy->nExpr - pSort->nOBSat; 1220 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1221 int regSortOut = ++pParse->nMem; 1222 iSortTab = pParse->nTab++; 1223 if( pSort->labelBkOut ){ 1224 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1225 } 1226 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1227 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1228 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1229 VdbeCoverage(v); 1230 codeOffset(v, p->iOffset, addrContinue); 1231 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1232 bSeq = 0; 1233 }else{ 1234 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1235 codeOffset(v, p->iOffset, addrContinue); 1236 iSortTab = iTab; 1237 bSeq = 1; 1238 } 1239 for(i=0; i<nSortData; i++){ 1240 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1241 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1242 } 1243 switch( eDest ){ 1244 case SRT_EphemTab: { 1245 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1246 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1247 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1248 break; 1249 } 1250 #ifndef SQLITE_OMIT_SUBQUERY 1251 case SRT_Set: { 1252 assert( nColumn==1 ); 1253 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1254 &pDest->affSdst, 1); 1255 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1256 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1257 break; 1258 } 1259 case SRT_Mem: { 1260 assert( nColumn==1 ); 1261 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1262 /* The LIMIT clause will terminate the loop for us */ 1263 break; 1264 } 1265 #endif 1266 default: { 1267 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1268 testcase( eDest==SRT_Output ); 1269 testcase( eDest==SRT_Coroutine ); 1270 if( eDest==SRT_Output ){ 1271 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1272 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1273 }else{ 1274 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1275 } 1276 break; 1277 } 1278 } 1279 if( regRowid ){ 1280 sqlite3ReleaseTempReg(pParse, regRow); 1281 sqlite3ReleaseTempReg(pParse, regRowid); 1282 } 1283 /* The bottom of the loop 1284 */ 1285 sqlite3VdbeResolveLabel(v, addrContinue); 1286 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1287 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1288 }else{ 1289 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1290 } 1291 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1292 sqlite3VdbeResolveLabel(v, addrBreak); 1293 } 1294 1295 /* 1296 ** Return a pointer to a string containing the 'declaration type' of the 1297 ** expression pExpr. The string may be treated as static by the caller. 1298 ** 1299 ** Also try to estimate the size of the returned value and return that 1300 ** result in *pEstWidth. 1301 ** 1302 ** The declaration type is the exact datatype definition extracted from the 1303 ** original CREATE TABLE statement if the expression is a column. The 1304 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1305 ** is considered a column can be complex in the presence of subqueries. The 1306 ** result-set expression in all of the following SELECT statements is 1307 ** considered a column by this function. 1308 ** 1309 ** SELECT col FROM tbl; 1310 ** SELECT (SELECT col FROM tbl; 1311 ** SELECT (SELECT col FROM tbl); 1312 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1313 ** 1314 ** The declaration type for any expression other than a column is NULL. 1315 ** 1316 ** This routine has either 3 or 6 parameters depending on whether or not 1317 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1318 */ 1319 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1320 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1323 #endif 1324 static const char *columnTypeImpl( 1325 NameContext *pNC, 1326 Expr *pExpr, 1327 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1328 const char **pzOrigDb, 1329 const char **pzOrigTab, 1330 const char **pzOrigCol, 1331 #endif 1332 u8 *pEstWidth 1333 ){ 1334 char const *zType = 0; 1335 int j; 1336 u8 estWidth = 1; 1337 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1338 char const *zOrigDb = 0; 1339 char const *zOrigTab = 0; 1340 char const *zOrigCol = 0; 1341 #endif 1342 1343 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1344 switch( pExpr->op ){ 1345 case TK_AGG_COLUMN: 1346 case TK_COLUMN: { 1347 /* The expression is a column. Locate the table the column is being 1348 ** extracted from in NameContext.pSrcList. This table may be real 1349 ** database table or a subquery. 1350 */ 1351 Table *pTab = 0; /* Table structure column is extracted from */ 1352 Select *pS = 0; /* Select the column is extracted from */ 1353 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1354 testcase( pExpr->op==TK_AGG_COLUMN ); 1355 testcase( pExpr->op==TK_COLUMN ); 1356 while( pNC && !pTab ){ 1357 SrcList *pTabList = pNC->pSrcList; 1358 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1359 if( j<pTabList->nSrc ){ 1360 pTab = pTabList->a[j].pTab; 1361 pS = pTabList->a[j].pSelect; 1362 }else{ 1363 pNC = pNC->pNext; 1364 } 1365 } 1366 1367 if( pTab==0 ){ 1368 /* At one time, code such as "SELECT new.x" within a trigger would 1369 ** cause this condition to run. Since then, we have restructured how 1370 ** trigger code is generated and so this condition is no longer 1371 ** possible. However, it can still be true for statements like 1372 ** the following: 1373 ** 1374 ** CREATE TABLE t1(col INTEGER); 1375 ** SELECT (SELECT t1.col) FROM FROM t1; 1376 ** 1377 ** when columnType() is called on the expression "t1.col" in the 1378 ** sub-select. In this case, set the column type to NULL, even 1379 ** though it should really be "INTEGER". 1380 ** 1381 ** This is not a problem, as the column type of "t1.col" is never 1382 ** used. When columnType() is called on the expression 1383 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1384 ** branch below. */ 1385 break; 1386 } 1387 1388 assert( pTab && pExpr->pTab==pTab ); 1389 if( pS ){ 1390 /* The "table" is actually a sub-select or a view in the FROM clause 1391 ** of the SELECT statement. Return the declaration type and origin 1392 ** data for the result-set column of the sub-select. 1393 */ 1394 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1395 /* If iCol is less than zero, then the expression requests the 1396 ** rowid of the sub-select or view. This expression is legal (see 1397 ** test case misc2.2.2) - it always evaluates to NULL. 1398 ** 1399 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1400 ** caught already by name resolution. 1401 */ 1402 NameContext sNC; 1403 Expr *p = pS->pEList->a[iCol].pExpr; 1404 sNC.pSrcList = pS->pSrc; 1405 sNC.pNext = pNC; 1406 sNC.pParse = pNC->pParse; 1407 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1408 } 1409 }else if( pTab->pSchema ){ 1410 /* A real table */ 1411 assert( !pS ); 1412 if( iCol<0 ) iCol = pTab->iPKey; 1413 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1414 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1415 if( iCol<0 ){ 1416 zType = "INTEGER"; 1417 zOrigCol = "rowid"; 1418 }else{ 1419 zType = pTab->aCol[iCol].zType; 1420 zOrigCol = pTab->aCol[iCol].zName; 1421 estWidth = pTab->aCol[iCol].szEst; 1422 } 1423 zOrigTab = pTab->zName; 1424 if( pNC->pParse ){ 1425 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1426 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1427 } 1428 #else 1429 if( iCol<0 ){ 1430 zType = "INTEGER"; 1431 }else{ 1432 zType = pTab->aCol[iCol].zType; 1433 estWidth = pTab->aCol[iCol].szEst; 1434 } 1435 #endif 1436 } 1437 break; 1438 } 1439 #ifndef SQLITE_OMIT_SUBQUERY 1440 case TK_SELECT: { 1441 /* The expression is a sub-select. Return the declaration type and 1442 ** origin info for the single column in the result set of the SELECT 1443 ** statement. 1444 */ 1445 NameContext sNC; 1446 Select *pS = pExpr->x.pSelect; 1447 Expr *p = pS->pEList->a[0].pExpr; 1448 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1449 sNC.pSrcList = pS->pSrc; 1450 sNC.pNext = pNC; 1451 sNC.pParse = pNC->pParse; 1452 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1453 break; 1454 } 1455 #endif 1456 } 1457 1458 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1459 if( pzOrigDb ){ 1460 assert( pzOrigTab && pzOrigCol ); 1461 *pzOrigDb = zOrigDb; 1462 *pzOrigTab = zOrigTab; 1463 *pzOrigCol = zOrigCol; 1464 } 1465 #endif 1466 if( pEstWidth ) *pEstWidth = estWidth; 1467 return zType; 1468 } 1469 1470 /* 1471 ** Generate code that will tell the VDBE the declaration types of columns 1472 ** in the result set. 1473 */ 1474 static void generateColumnTypes( 1475 Parse *pParse, /* Parser context */ 1476 SrcList *pTabList, /* List of tables */ 1477 ExprList *pEList /* Expressions defining the result set */ 1478 ){ 1479 #ifndef SQLITE_OMIT_DECLTYPE 1480 Vdbe *v = pParse->pVdbe; 1481 int i; 1482 NameContext sNC; 1483 sNC.pSrcList = pTabList; 1484 sNC.pParse = pParse; 1485 for(i=0; i<pEList->nExpr; i++){ 1486 Expr *p = pEList->a[i].pExpr; 1487 const char *zType; 1488 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1489 const char *zOrigDb = 0; 1490 const char *zOrigTab = 0; 1491 const char *zOrigCol = 0; 1492 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1493 1494 /* The vdbe must make its own copy of the column-type and other 1495 ** column specific strings, in case the schema is reset before this 1496 ** virtual machine is deleted. 1497 */ 1498 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1499 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1500 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1501 #else 1502 zType = columnType(&sNC, p, 0, 0, 0, 0); 1503 #endif 1504 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1505 } 1506 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1507 } 1508 1509 /* 1510 ** Generate code that will tell the VDBE the names of columns 1511 ** in the result set. This information is used to provide the 1512 ** azCol[] values in the callback. 1513 */ 1514 static void generateColumnNames( 1515 Parse *pParse, /* Parser context */ 1516 SrcList *pTabList, /* List of tables */ 1517 ExprList *pEList /* Expressions defining the result set */ 1518 ){ 1519 Vdbe *v = pParse->pVdbe; 1520 int i, j; 1521 sqlite3 *db = pParse->db; 1522 int fullNames, shortNames; 1523 1524 #ifndef SQLITE_OMIT_EXPLAIN 1525 /* If this is an EXPLAIN, skip this step */ 1526 if( pParse->explain ){ 1527 return; 1528 } 1529 #endif 1530 1531 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1532 pParse->colNamesSet = 1; 1533 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1534 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1535 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1536 for(i=0; i<pEList->nExpr; i++){ 1537 Expr *p; 1538 p = pEList->a[i].pExpr; 1539 if( NEVER(p==0) ) continue; 1540 if( pEList->a[i].zName ){ 1541 char *zName = pEList->a[i].zName; 1542 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1543 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1544 Table *pTab; 1545 char *zCol; 1546 int iCol = p->iColumn; 1547 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1548 if( pTabList->a[j].iCursor==p->iTable ) break; 1549 } 1550 assert( j<pTabList->nSrc ); 1551 pTab = pTabList->a[j].pTab; 1552 if( iCol<0 ) iCol = pTab->iPKey; 1553 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1554 if( iCol<0 ){ 1555 zCol = "rowid"; 1556 }else{ 1557 zCol = pTab->aCol[iCol].zName; 1558 } 1559 if( !shortNames && !fullNames ){ 1560 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1561 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1562 }else if( fullNames ){ 1563 char *zName = 0; 1564 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1565 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1566 }else{ 1567 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1568 } 1569 }else{ 1570 const char *z = pEList->a[i].zSpan; 1571 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1572 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1573 } 1574 } 1575 generateColumnTypes(pParse, pTabList, pEList); 1576 } 1577 1578 /* 1579 ** Given an expression list (which is really the list of expressions 1580 ** that form the result set of a SELECT statement) compute appropriate 1581 ** column names for a table that would hold the expression list. 1582 ** 1583 ** All column names will be unique. 1584 ** 1585 ** Only the column names are computed. Column.zType, Column.zColl, 1586 ** and other fields of Column are zeroed. 1587 ** 1588 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1589 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1590 */ 1591 int sqlite3ColumnsFromExprList( 1592 Parse *pParse, /* Parsing context */ 1593 ExprList *pEList, /* Expr list from which to derive column names */ 1594 i16 *pnCol, /* Write the number of columns here */ 1595 Column **paCol /* Write the new column list here */ 1596 ){ 1597 sqlite3 *db = pParse->db; /* Database connection */ 1598 int i, j; /* Loop counters */ 1599 int cnt; /* Index added to make the name unique */ 1600 Column *aCol, *pCol; /* For looping over result columns */ 1601 int nCol; /* Number of columns in the result set */ 1602 Expr *p; /* Expression for a single result column */ 1603 char *zName; /* Column name */ 1604 int nName; /* Size of name in zName[] */ 1605 1606 if( pEList ){ 1607 nCol = pEList->nExpr; 1608 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1609 testcase( aCol==0 ); 1610 }else{ 1611 nCol = 0; 1612 aCol = 0; 1613 } 1614 *pnCol = nCol; 1615 *paCol = aCol; 1616 1617 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1618 /* Get an appropriate name for the column 1619 */ 1620 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1621 if( (zName = pEList->a[i].zName)!=0 ){ 1622 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1623 zName = sqlite3DbStrDup(db, zName); 1624 }else{ 1625 Expr *pColExpr = p; /* The expression that is the result column name */ 1626 Table *pTab; /* Table associated with this expression */ 1627 while( pColExpr->op==TK_DOT ){ 1628 pColExpr = pColExpr->pRight; 1629 assert( pColExpr!=0 ); 1630 } 1631 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1632 /* For columns use the column name name */ 1633 int iCol = pColExpr->iColumn; 1634 pTab = pColExpr->pTab; 1635 if( iCol<0 ) iCol = pTab->iPKey; 1636 zName = sqlite3MPrintf(db, "%s", 1637 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1638 }else if( pColExpr->op==TK_ID ){ 1639 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1640 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1641 }else{ 1642 /* Use the original text of the column expression as its name */ 1643 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1644 } 1645 } 1646 if( db->mallocFailed ){ 1647 sqlite3DbFree(db, zName); 1648 break; 1649 } 1650 1651 /* Make sure the column name is unique. If the name is not unique, 1652 ** append an integer to the name so that it becomes unique. 1653 */ 1654 nName = sqlite3Strlen30(zName); 1655 for(j=cnt=0; j<i; j++){ 1656 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1657 char *zNewName; 1658 int k; 1659 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1660 if( k>=0 && zName[k]==':' ) nName = k; 1661 zName[nName] = 0; 1662 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1663 sqlite3DbFree(db, zName); 1664 zName = zNewName; 1665 j = -1; 1666 if( zName==0 ) break; 1667 } 1668 } 1669 pCol->zName = zName; 1670 } 1671 if( db->mallocFailed ){ 1672 for(j=0; j<i; j++){ 1673 sqlite3DbFree(db, aCol[j].zName); 1674 } 1675 sqlite3DbFree(db, aCol); 1676 *paCol = 0; 1677 *pnCol = 0; 1678 return SQLITE_NOMEM; 1679 } 1680 return SQLITE_OK; 1681 } 1682 1683 /* 1684 ** Add type and collation information to a column list based on 1685 ** a SELECT statement. 1686 ** 1687 ** The column list presumably came from selectColumnNamesFromExprList(). 1688 ** The column list has only names, not types or collations. This 1689 ** routine goes through and adds the types and collations. 1690 ** 1691 ** This routine requires that all identifiers in the SELECT 1692 ** statement be resolved. 1693 */ 1694 static void selectAddColumnTypeAndCollation( 1695 Parse *pParse, /* Parsing contexts */ 1696 Table *pTab, /* Add column type information to this table */ 1697 Select *pSelect /* SELECT used to determine types and collations */ 1698 ){ 1699 sqlite3 *db = pParse->db; 1700 NameContext sNC; 1701 Column *pCol; 1702 CollSeq *pColl; 1703 int i; 1704 Expr *p; 1705 struct ExprList_item *a; 1706 u64 szAll = 0; 1707 1708 assert( pSelect!=0 ); 1709 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1710 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1711 if( db->mallocFailed ) return; 1712 memset(&sNC, 0, sizeof(sNC)); 1713 sNC.pSrcList = pSelect->pSrc; 1714 a = pSelect->pEList->a; 1715 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1716 p = a[i].pExpr; 1717 if( pCol->zType==0 ){ 1718 pCol->zType = sqlite3DbStrDup(db, 1719 columnType(&sNC, p,0,0,0, &pCol->szEst)); 1720 } 1721 szAll += pCol->szEst; 1722 pCol->affinity = sqlite3ExprAffinity(p); 1723 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1724 pColl = sqlite3ExprCollSeq(pParse, p); 1725 if( pColl && pCol->zColl==0 ){ 1726 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1727 } 1728 } 1729 pTab->szTabRow = sqlite3LogEst(szAll*4); 1730 } 1731 1732 /* 1733 ** Given a SELECT statement, generate a Table structure that describes 1734 ** the result set of that SELECT. 1735 */ 1736 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1737 Table *pTab; 1738 sqlite3 *db = pParse->db; 1739 int savedFlags; 1740 1741 savedFlags = db->flags; 1742 db->flags &= ~SQLITE_FullColNames; 1743 db->flags |= SQLITE_ShortColNames; 1744 sqlite3SelectPrep(pParse, pSelect, 0); 1745 if( pParse->nErr ) return 0; 1746 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1747 db->flags = savedFlags; 1748 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1749 if( pTab==0 ){ 1750 return 0; 1751 } 1752 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1753 ** is disabled */ 1754 assert( db->lookaside.bEnabled==0 ); 1755 pTab->nRef = 1; 1756 pTab->zName = 0; 1757 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1758 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1759 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1760 pTab->iPKey = -1; 1761 if( db->mallocFailed ){ 1762 sqlite3DeleteTable(db, pTab); 1763 return 0; 1764 } 1765 return pTab; 1766 } 1767 1768 /* 1769 ** Get a VDBE for the given parser context. Create a new one if necessary. 1770 ** If an error occurs, return NULL and leave a message in pParse. 1771 */ 1772 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1773 Vdbe *v = pParse->pVdbe; 1774 if( v==0 ){ 1775 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1776 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1777 if( pParse->pToplevel==0 1778 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1779 ){ 1780 pParse->okConstFactor = 1; 1781 } 1782 1783 } 1784 return v; 1785 } 1786 1787 1788 /* 1789 ** Compute the iLimit and iOffset fields of the SELECT based on the 1790 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1791 ** that appear in the original SQL statement after the LIMIT and OFFSET 1792 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1793 ** are the integer memory register numbers for counters used to compute 1794 ** the limit and offset. If there is no limit and/or offset, then 1795 ** iLimit and iOffset are negative. 1796 ** 1797 ** This routine changes the values of iLimit and iOffset only if 1798 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1799 ** iOffset should have been preset to appropriate default values (zero) 1800 ** prior to calling this routine. 1801 ** 1802 ** The iOffset register (if it exists) is initialized to the value 1803 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1804 ** iOffset+1 is initialized to LIMIT+OFFSET. 1805 ** 1806 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1807 ** redefined. The UNION ALL operator uses this property to force 1808 ** the reuse of the same limit and offset registers across multiple 1809 ** SELECT statements. 1810 */ 1811 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1812 Vdbe *v = 0; 1813 int iLimit = 0; 1814 int iOffset; 1815 int n; 1816 if( p->iLimit ) return; 1817 1818 /* 1819 ** "LIMIT -1" always shows all rows. There is some 1820 ** controversy about what the correct behavior should be. 1821 ** The current implementation interprets "LIMIT 0" to mean 1822 ** no rows. 1823 */ 1824 sqlite3ExprCacheClear(pParse); 1825 assert( p->pOffset==0 || p->pLimit!=0 ); 1826 if( p->pLimit ){ 1827 p->iLimit = iLimit = ++pParse->nMem; 1828 v = sqlite3GetVdbe(pParse); 1829 assert( v!=0 ); 1830 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1831 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1832 VdbeComment((v, "LIMIT counter")); 1833 if( n==0 ){ 1834 sqlite3VdbeGoto(v, iBreak); 1835 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1836 p->nSelectRow = n; 1837 } 1838 }else{ 1839 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1840 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1841 VdbeComment((v, "LIMIT counter")); 1842 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1843 } 1844 if( p->pOffset ){ 1845 p->iOffset = iOffset = ++pParse->nMem; 1846 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1847 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1848 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1849 VdbeComment((v, "OFFSET counter")); 1850 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iOffset, iOffset, 0); 1851 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1852 VdbeComment((v, "LIMIT+OFFSET")); 1853 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iLimit, iOffset+1, -1); 1854 } 1855 } 1856 } 1857 1858 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1859 /* 1860 ** Return the appropriate collating sequence for the iCol-th column of 1861 ** the result set for the compound-select statement "p". Return NULL if 1862 ** the column has no default collating sequence. 1863 ** 1864 ** The collating sequence for the compound select is taken from the 1865 ** left-most term of the select that has a collating sequence. 1866 */ 1867 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1868 CollSeq *pRet; 1869 if( p->pPrior ){ 1870 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1871 }else{ 1872 pRet = 0; 1873 } 1874 assert( iCol>=0 ); 1875 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1876 ** have been thrown during name resolution and we would not have gotten 1877 ** this far */ 1878 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1879 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1880 } 1881 return pRet; 1882 } 1883 1884 /* 1885 ** The select statement passed as the second parameter is a compound SELECT 1886 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1887 ** structure suitable for implementing the ORDER BY. 1888 ** 1889 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1890 ** function is responsible for ensuring that this structure is eventually 1891 ** freed. 1892 */ 1893 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1894 ExprList *pOrderBy = p->pOrderBy; 1895 int nOrderBy = p->pOrderBy->nExpr; 1896 sqlite3 *db = pParse->db; 1897 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1898 if( pRet ){ 1899 int i; 1900 for(i=0; i<nOrderBy; i++){ 1901 struct ExprList_item *pItem = &pOrderBy->a[i]; 1902 Expr *pTerm = pItem->pExpr; 1903 CollSeq *pColl; 1904 1905 if( pTerm->flags & EP_Collate ){ 1906 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1907 }else{ 1908 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1909 if( pColl==0 ) pColl = db->pDfltColl; 1910 pOrderBy->a[i].pExpr = 1911 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1912 } 1913 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1914 pRet->aColl[i] = pColl; 1915 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1916 } 1917 } 1918 1919 return pRet; 1920 } 1921 1922 #ifndef SQLITE_OMIT_CTE 1923 /* 1924 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1925 ** query of the form: 1926 ** 1927 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1928 ** \___________/ \_______________/ 1929 ** p->pPrior p 1930 ** 1931 ** 1932 ** There is exactly one reference to the recursive-table in the FROM clause 1933 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1934 ** 1935 ** The setup-query runs once to generate an initial set of rows that go 1936 ** into a Queue table. Rows are extracted from the Queue table one by 1937 ** one. Each row extracted from Queue is output to pDest. Then the single 1938 ** extracted row (now in the iCurrent table) becomes the content of the 1939 ** recursive-table for a recursive-query run. The output of the recursive-query 1940 ** is added back into the Queue table. Then another row is extracted from Queue 1941 ** and the iteration continues until the Queue table is empty. 1942 ** 1943 ** If the compound query operator is UNION then no duplicate rows are ever 1944 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1945 ** that have ever been inserted into Queue and causes duplicates to be 1946 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1947 ** 1948 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1949 ** ORDER BY order and the first entry is extracted for each cycle. Without 1950 ** an ORDER BY, the Queue table is just a FIFO. 1951 ** 1952 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1953 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1954 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1955 ** with a positive value, then the first OFFSET outputs are discarded rather 1956 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1957 ** rows have been skipped. 1958 */ 1959 static void generateWithRecursiveQuery( 1960 Parse *pParse, /* Parsing context */ 1961 Select *p, /* The recursive SELECT to be coded */ 1962 SelectDest *pDest /* What to do with query results */ 1963 ){ 1964 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1965 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1966 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1967 Select *pSetup = p->pPrior; /* The setup query */ 1968 int addrTop; /* Top of the loop */ 1969 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1970 int iCurrent = 0; /* The Current table */ 1971 int regCurrent; /* Register holding Current table */ 1972 int iQueue; /* The Queue table */ 1973 int iDistinct = 0; /* To ensure unique results if UNION */ 1974 int eDest = SRT_Fifo; /* How to write to Queue */ 1975 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1976 int i; /* Loop counter */ 1977 int rc; /* Result code */ 1978 ExprList *pOrderBy; /* The ORDER BY clause */ 1979 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1980 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1981 1982 /* Obtain authorization to do a recursive query */ 1983 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1984 1985 /* Process the LIMIT and OFFSET clauses, if they exist */ 1986 addrBreak = sqlite3VdbeMakeLabel(v); 1987 computeLimitRegisters(pParse, p, addrBreak); 1988 pLimit = p->pLimit; 1989 pOffset = p->pOffset; 1990 regLimit = p->iLimit; 1991 regOffset = p->iOffset; 1992 p->pLimit = p->pOffset = 0; 1993 p->iLimit = p->iOffset = 0; 1994 pOrderBy = p->pOrderBy; 1995 1996 /* Locate the cursor number of the Current table */ 1997 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1998 if( pSrc->a[i].fg.isRecursive ){ 1999 iCurrent = pSrc->a[i].iCursor; 2000 break; 2001 } 2002 } 2003 2004 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2005 ** the Distinct table must be exactly one greater than Queue in order 2006 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2007 iQueue = pParse->nTab++; 2008 if( p->op==TK_UNION ){ 2009 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2010 iDistinct = pParse->nTab++; 2011 }else{ 2012 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2013 } 2014 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2015 2016 /* Allocate cursors for Current, Queue, and Distinct. */ 2017 regCurrent = ++pParse->nMem; 2018 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2019 if( pOrderBy ){ 2020 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2021 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2022 (char*)pKeyInfo, P4_KEYINFO); 2023 destQueue.pOrderBy = pOrderBy; 2024 }else{ 2025 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2026 } 2027 VdbeComment((v, "Queue table")); 2028 if( iDistinct ){ 2029 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2030 p->selFlags |= SF_UsesEphemeral; 2031 } 2032 2033 /* Detach the ORDER BY clause from the compound SELECT */ 2034 p->pOrderBy = 0; 2035 2036 /* Store the results of the setup-query in Queue. */ 2037 pSetup->pNext = 0; 2038 rc = sqlite3Select(pParse, pSetup, &destQueue); 2039 pSetup->pNext = p; 2040 if( rc ) goto end_of_recursive_query; 2041 2042 /* Find the next row in the Queue and output that row */ 2043 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2044 2045 /* Transfer the next row in Queue over to Current */ 2046 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2047 if( pOrderBy ){ 2048 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2049 }else{ 2050 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2051 } 2052 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2053 2054 /* Output the single row in Current */ 2055 addrCont = sqlite3VdbeMakeLabel(v); 2056 codeOffset(v, regOffset, addrCont); 2057 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2058 0, 0, pDest, addrCont, addrBreak); 2059 if( regLimit ){ 2060 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2061 VdbeCoverage(v); 2062 } 2063 sqlite3VdbeResolveLabel(v, addrCont); 2064 2065 /* Execute the recursive SELECT taking the single row in Current as 2066 ** the value for the recursive-table. Store the results in the Queue. 2067 */ 2068 if( p->selFlags & SF_Aggregate ){ 2069 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2070 }else{ 2071 p->pPrior = 0; 2072 sqlite3Select(pParse, p, &destQueue); 2073 assert( p->pPrior==0 ); 2074 p->pPrior = pSetup; 2075 } 2076 2077 /* Keep running the loop until the Queue is empty */ 2078 sqlite3VdbeGoto(v, addrTop); 2079 sqlite3VdbeResolveLabel(v, addrBreak); 2080 2081 end_of_recursive_query: 2082 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2083 p->pOrderBy = pOrderBy; 2084 p->pLimit = pLimit; 2085 p->pOffset = pOffset; 2086 return; 2087 } 2088 #endif /* SQLITE_OMIT_CTE */ 2089 2090 /* Forward references */ 2091 static int multiSelectOrderBy( 2092 Parse *pParse, /* Parsing context */ 2093 Select *p, /* The right-most of SELECTs to be coded */ 2094 SelectDest *pDest /* What to do with query results */ 2095 ); 2096 2097 /* 2098 ** Handle the special case of a compound-select that originates from a 2099 ** VALUES clause. By handling this as a special case, we avoid deep 2100 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2101 ** on a VALUES clause. 2102 ** 2103 ** Because the Select object originates from a VALUES clause: 2104 ** (1) It has no LIMIT or OFFSET 2105 ** (2) All terms are UNION ALL 2106 ** (3) There is no ORDER BY clause 2107 */ 2108 static int multiSelectValues( 2109 Parse *pParse, /* Parsing context */ 2110 Select *p, /* The right-most of SELECTs to be coded */ 2111 SelectDest *pDest /* What to do with query results */ 2112 ){ 2113 Select *pPrior; 2114 int nRow = 1; 2115 int rc = 0; 2116 assert( p->selFlags & SF_MultiValue ); 2117 do{ 2118 assert( p->selFlags & SF_Values ); 2119 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2120 assert( p->pLimit==0 ); 2121 assert( p->pOffset==0 ); 2122 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2123 if( p->pPrior==0 ) break; 2124 assert( p->pPrior->pNext==p ); 2125 p = p->pPrior; 2126 nRow++; 2127 }while(1); 2128 while( p ){ 2129 pPrior = p->pPrior; 2130 p->pPrior = 0; 2131 rc = sqlite3Select(pParse, p, pDest); 2132 p->pPrior = pPrior; 2133 if( rc ) break; 2134 p->nSelectRow = nRow; 2135 p = p->pNext; 2136 } 2137 return rc; 2138 } 2139 2140 /* 2141 ** This routine is called to process a compound query form from 2142 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2143 ** INTERSECT 2144 ** 2145 ** "p" points to the right-most of the two queries. the query on the 2146 ** left is p->pPrior. The left query could also be a compound query 2147 ** in which case this routine will be called recursively. 2148 ** 2149 ** The results of the total query are to be written into a destination 2150 ** of type eDest with parameter iParm. 2151 ** 2152 ** Example 1: Consider a three-way compound SQL statement. 2153 ** 2154 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2155 ** 2156 ** This statement is parsed up as follows: 2157 ** 2158 ** SELECT c FROM t3 2159 ** | 2160 ** `-----> SELECT b FROM t2 2161 ** | 2162 ** `------> SELECT a FROM t1 2163 ** 2164 ** The arrows in the diagram above represent the Select.pPrior pointer. 2165 ** So if this routine is called with p equal to the t3 query, then 2166 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2167 ** 2168 ** Notice that because of the way SQLite parses compound SELECTs, the 2169 ** individual selects always group from left to right. 2170 */ 2171 static int multiSelect( 2172 Parse *pParse, /* Parsing context */ 2173 Select *p, /* The right-most of SELECTs to be coded */ 2174 SelectDest *pDest /* What to do with query results */ 2175 ){ 2176 int rc = SQLITE_OK; /* Success code from a subroutine */ 2177 Select *pPrior; /* Another SELECT immediately to our left */ 2178 Vdbe *v; /* Generate code to this VDBE */ 2179 SelectDest dest; /* Alternative data destination */ 2180 Select *pDelete = 0; /* Chain of simple selects to delete */ 2181 sqlite3 *db; /* Database connection */ 2182 #ifndef SQLITE_OMIT_EXPLAIN 2183 int iSub1 = 0; /* EQP id of left-hand query */ 2184 int iSub2 = 0; /* EQP id of right-hand query */ 2185 #endif 2186 2187 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2188 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2189 */ 2190 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2191 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2192 db = pParse->db; 2193 pPrior = p->pPrior; 2194 dest = *pDest; 2195 if( pPrior->pOrderBy ){ 2196 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2197 selectOpName(p->op)); 2198 rc = 1; 2199 goto multi_select_end; 2200 } 2201 if( pPrior->pLimit ){ 2202 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2203 selectOpName(p->op)); 2204 rc = 1; 2205 goto multi_select_end; 2206 } 2207 2208 v = sqlite3GetVdbe(pParse); 2209 assert( v!=0 ); /* The VDBE already created by calling function */ 2210 2211 /* Create the destination temporary table if necessary 2212 */ 2213 if( dest.eDest==SRT_EphemTab ){ 2214 assert( p->pEList ); 2215 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2216 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2217 dest.eDest = SRT_Table; 2218 } 2219 2220 /* Special handling for a compound-select that originates as a VALUES clause. 2221 */ 2222 if( p->selFlags & SF_MultiValue ){ 2223 rc = multiSelectValues(pParse, p, &dest); 2224 goto multi_select_end; 2225 } 2226 2227 /* Make sure all SELECTs in the statement have the same number of elements 2228 ** in their result sets. 2229 */ 2230 assert( p->pEList && pPrior->pEList ); 2231 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2232 2233 #ifndef SQLITE_OMIT_CTE 2234 if( p->selFlags & SF_Recursive ){ 2235 generateWithRecursiveQuery(pParse, p, &dest); 2236 }else 2237 #endif 2238 2239 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2240 */ 2241 if( p->pOrderBy ){ 2242 return multiSelectOrderBy(pParse, p, pDest); 2243 }else 2244 2245 /* Generate code for the left and right SELECT statements. 2246 */ 2247 switch( p->op ){ 2248 case TK_ALL: { 2249 int addr = 0; 2250 int nLimit; 2251 assert( !pPrior->pLimit ); 2252 pPrior->iLimit = p->iLimit; 2253 pPrior->iOffset = p->iOffset; 2254 pPrior->pLimit = p->pLimit; 2255 pPrior->pOffset = p->pOffset; 2256 explainSetInteger(iSub1, pParse->iNextSelectId); 2257 rc = sqlite3Select(pParse, pPrior, &dest); 2258 p->pLimit = 0; 2259 p->pOffset = 0; 2260 if( rc ){ 2261 goto multi_select_end; 2262 } 2263 p->pPrior = 0; 2264 p->iLimit = pPrior->iLimit; 2265 p->iOffset = pPrior->iOffset; 2266 if( p->iLimit ){ 2267 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2268 VdbeComment((v, "Jump ahead if LIMIT reached")); 2269 if( p->iOffset ){ 2270 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iOffset, p->iOffset, 0); 2271 sqlite3VdbeAddOp3(v, OP_Add, p->iLimit, p->iOffset, p->iOffset+1); 2272 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iLimit, p->iOffset+1, -1); 2273 } 2274 } 2275 explainSetInteger(iSub2, pParse->iNextSelectId); 2276 rc = sqlite3Select(pParse, p, &dest); 2277 testcase( rc!=SQLITE_OK ); 2278 pDelete = p->pPrior; 2279 p->pPrior = pPrior; 2280 p->nSelectRow += pPrior->nSelectRow; 2281 if( pPrior->pLimit 2282 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2283 && nLimit>0 && p->nSelectRow > (u64)nLimit 2284 ){ 2285 p->nSelectRow = nLimit; 2286 } 2287 if( addr ){ 2288 sqlite3VdbeJumpHere(v, addr); 2289 } 2290 break; 2291 } 2292 case TK_EXCEPT: 2293 case TK_UNION: { 2294 int unionTab; /* Cursor number of the temporary table holding result */ 2295 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2296 int priorOp; /* The SRT_ operation to apply to prior selects */ 2297 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2298 int addr; 2299 SelectDest uniondest; 2300 2301 testcase( p->op==TK_EXCEPT ); 2302 testcase( p->op==TK_UNION ); 2303 priorOp = SRT_Union; 2304 if( dest.eDest==priorOp ){ 2305 /* We can reuse a temporary table generated by a SELECT to our 2306 ** right. 2307 */ 2308 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2309 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2310 unionTab = dest.iSDParm; 2311 }else{ 2312 /* We will need to create our own temporary table to hold the 2313 ** intermediate results. 2314 */ 2315 unionTab = pParse->nTab++; 2316 assert( p->pOrderBy==0 ); 2317 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2318 assert( p->addrOpenEphm[0] == -1 ); 2319 p->addrOpenEphm[0] = addr; 2320 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2321 assert( p->pEList ); 2322 } 2323 2324 /* Code the SELECT statements to our left 2325 */ 2326 assert( !pPrior->pOrderBy ); 2327 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2328 explainSetInteger(iSub1, pParse->iNextSelectId); 2329 rc = sqlite3Select(pParse, pPrior, &uniondest); 2330 if( rc ){ 2331 goto multi_select_end; 2332 } 2333 2334 /* Code the current SELECT statement 2335 */ 2336 if( p->op==TK_EXCEPT ){ 2337 op = SRT_Except; 2338 }else{ 2339 assert( p->op==TK_UNION ); 2340 op = SRT_Union; 2341 } 2342 p->pPrior = 0; 2343 pLimit = p->pLimit; 2344 p->pLimit = 0; 2345 pOffset = p->pOffset; 2346 p->pOffset = 0; 2347 uniondest.eDest = op; 2348 explainSetInteger(iSub2, pParse->iNextSelectId); 2349 rc = sqlite3Select(pParse, p, &uniondest); 2350 testcase( rc!=SQLITE_OK ); 2351 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2352 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2353 sqlite3ExprListDelete(db, p->pOrderBy); 2354 pDelete = p->pPrior; 2355 p->pPrior = pPrior; 2356 p->pOrderBy = 0; 2357 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2358 sqlite3ExprDelete(db, p->pLimit); 2359 p->pLimit = pLimit; 2360 p->pOffset = pOffset; 2361 p->iLimit = 0; 2362 p->iOffset = 0; 2363 2364 /* Convert the data in the temporary table into whatever form 2365 ** it is that we currently need. 2366 */ 2367 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2368 if( dest.eDest!=priorOp ){ 2369 int iCont, iBreak, iStart; 2370 assert( p->pEList ); 2371 if( dest.eDest==SRT_Output ){ 2372 Select *pFirst = p; 2373 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2374 generateColumnNames(pParse, 0, pFirst->pEList); 2375 } 2376 iBreak = sqlite3VdbeMakeLabel(v); 2377 iCont = sqlite3VdbeMakeLabel(v); 2378 computeLimitRegisters(pParse, p, iBreak); 2379 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2380 iStart = sqlite3VdbeCurrentAddr(v); 2381 selectInnerLoop(pParse, p, p->pEList, unionTab, 2382 0, 0, &dest, iCont, iBreak); 2383 sqlite3VdbeResolveLabel(v, iCont); 2384 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2385 sqlite3VdbeResolveLabel(v, iBreak); 2386 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2387 } 2388 break; 2389 } 2390 default: assert( p->op==TK_INTERSECT ); { 2391 int tab1, tab2; 2392 int iCont, iBreak, iStart; 2393 Expr *pLimit, *pOffset; 2394 int addr; 2395 SelectDest intersectdest; 2396 int r1; 2397 2398 /* INTERSECT is different from the others since it requires 2399 ** two temporary tables. Hence it has its own case. Begin 2400 ** by allocating the tables we will need. 2401 */ 2402 tab1 = pParse->nTab++; 2403 tab2 = pParse->nTab++; 2404 assert( p->pOrderBy==0 ); 2405 2406 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2407 assert( p->addrOpenEphm[0] == -1 ); 2408 p->addrOpenEphm[0] = addr; 2409 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2410 assert( p->pEList ); 2411 2412 /* Code the SELECTs to our left into temporary table "tab1". 2413 */ 2414 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2415 explainSetInteger(iSub1, pParse->iNextSelectId); 2416 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2417 if( rc ){ 2418 goto multi_select_end; 2419 } 2420 2421 /* Code the current SELECT into temporary table "tab2" 2422 */ 2423 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2424 assert( p->addrOpenEphm[1] == -1 ); 2425 p->addrOpenEphm[1] = addr; 2426 p->pPrior = 0; 2427 pLimit = p->pLimit; 2428 p->pLimit = 0; 2429 pOffset = p->pOffset; 2430 p->pOffset = 0; 2431 intersectdest.iSDParm = tab2; 2432 explainSetInteger(iSub2, pParse->iNextSelectId); 2433 rc = sqlite3Select(pParse, p, &intersectdest); 2434 testcase( rc!=SQLITE_OK ); 2435 pDelete = p->pPrior; 2436 p->pPrior = pPrior; 2437 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2438 sqlite3ExprDelete(db, p->pLimit); 2439 p->pLimit = pLimit; 2440 p->pOffset = pOffset; 2441 2442 /* Generate code to take the intersection of the two temporary 2443 ** tables. 2444 */ 2445 assert( p->pEList ); 2446 if( dest.eDest==SRT_Output ){ 2447 Select *pFirst = p; 2448 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2449 generateColumnNames(pParse, 0, pFirst->pEList); 2450 } 2451 iBreak = sqlite3VdbeMakeLabel(v); 2452 iCont = sqlite3VdbeMakeLabel(v); 2453 computeLimitRegisters(pParse, p, iBreak); 2454 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2455 r1 = sqlite3GetTempReg(pParse); 2456 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2457 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2458 sqlite3ReleaseTempReg(pParse, r1); 2459 selectInnerLoop(pParse, p, p->pEList, tab1, 2460 0, 0, &dest, iCont, iBreak); 2461 sqlite3VdbeResolveLabel(v, iCont); 2462 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2463 sqlite3VdbeResolveLabel(v, iBreak); 2464 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2465 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2466 break; 2467 } 2468 } 2469 2470 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2471 2472 /* Compute collating sequences used by 2473 ** temporary tables needed to implement the compound select. 2474 ** Attach the KeyInfo structure to all temporary tables. 2475 ** 2476 ** This section is run by the right-most SELECT statement only. 2477 ** SELECT statements to the left always skip this part. The right-most 2478 ** SELECT might also skip this part if it has no ORDER BY clause and 2479 ** no temp tables are required. 2480 */ 2481 if( p->selFlags & SF_UsesEphemeral ){ 2482 int i; /* Loop counter */ 2483 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2484 Select *pLoop; /* For looping through SELECT statements */ 2485 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2486 int nCol; /* Number of columns in result set */ 2487 2488 assert( p->pNext==0 ); 2489 nCol = p->pEList->nExpr; 2490 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2491 if( !pKeyInfo ){ 2492 rc = SQLITE_NOMEM; 2493 goto multi_select_end; 2494 } 2495 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2496 *apColl = multiSelectCollSeq(pParse, p, i); 2497 if( 0==*apColl ){ 2498 *apColl = db->pDfltColl; 2499 } 2500 } 2501 2502 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2503 for(i=0; i<2; i++){ 2504 int addr = pLoop->addrOpenEphm[i]; 2505 if( addr<0 ){ 2506 /* If [0] is unused then [1] is also unused. So we can 2507 ** always safely abort as soon as the first unused slot is found */ 2508 assert( pLoop->addrOpenEphm[1]<0 ); 2509 break; 2510 } 2511 sqlite3VdbeChangeP2(v, addr, nCol); 2512 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2513 P4_KEYINFO); 2514 pLoop->addrOpenEphm[i] = -1; 2515 } 2516 } 2517 sqlite3KeyInfoUnref(pKeyInfo); 2518 } 2519 2520 multi_select_end: 2521 pDest->iSdst = dest.iSdst; 2522 pDest->nSdst = dest.nSdst; 2523 sqlite3SelectDelete(db, pDelete); 2524 return rc; 2525 } 2526 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2527 2528 /* 2529 ** Error message for when two or more terms of a compound select have different 2530 ** size result sets. 2531 */ 2532 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2533 if( p->selFlags & SF_Values ){ 2534 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2535 }else{ 2536 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2537 " do not have the same number of result columns", selectOpName(p->op)); 2538 } 2539 } 2540 2541 /* 2542 ** Code an output subroutine for a coroutine implementation of a 2543 ** SELECT statment. 2544 ** 2545 ** The data to be output is contained in pIn->iSdst. There are 2546 ** pIn->nSdst columns to be output. pDest is where the output should 2547 ** be sent. 2548 ** 2549 ** regReturn is the number of the register holding the subroutine 2550 ** return address. 2551 ** 2552 ** If regPrev>0 then it is the first register in a vector that 2553 ** records the previous output. mem[regPrev] is a flag that is false 2554 ** if there has been no previous output. If regPrev>0 then code is 2555 ** generated to suppress duplicates. pKeyInfo is used for comparing 2556 ** keys. 2557 ** 2558 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2559 ** iBreak. 2560 */ 2561 static int generateOutputSubroutine( 2562 Parse *pParse, /* Parsing context */ 2563 Select *p, /* The SELECT statement */ 2564 SelectDest *pIn, /* Coroutine supplying data */ 2565 SelectDest *pDest, /* Where to send the data */ 2566 int regReturn, /* The return address register */ 2567 int regPrev, /* Previous result register. No uniqueness if 0 */ 2568 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2569 int iBreak /* Jump here if we hit the LIMIT */ 2570 ){ 2571 Vdbe *v = pParse->pVdbe; 2572 int iContinue; 2573 int addr; 2574 2575 addr = sqlite3VdbeCurrentAddr(v); 2576 iContinue = sqlite3VdbeMakeLabel(v); 2577 2578 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2579 */ 2580 if( regPrev ){ 2581 int j1, j2; 2582 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2583 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2584 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2585 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2586 sqlite3VdbeJumpHere(v, j1); 2587 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2588 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2589 } 2590 if( pParse->db->mallocFailed ) return 0; 2591 2592 /* Suppress the first OFFSET entries if there is an OFFSET clause 2593 */ 2594 codeOffset(v, p->iOffset, iContinue); 2595 2596 assert( pDest->eDest!=SRT_Exists ); 2597 assert( pDest->eDest!=SRT_Table ); 2598 switch( pDest->eDest ){ 2599 /* Store the result as data using a unique key. 2600 */ 2601 case SRT_EphemTab: { 2602 int r1 = sqlite3GetTempReg(pParse); 2603 int r2 = sqlite3GetTempReg(pParse); 2604 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2605 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2606 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2607 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2608 sqlite3ReleaseTempReg(pParse, r2); 2609 sqlite3ReleaseTempReg(pParse, r1); 2610 break; 2611 } 2612 2613 #ifndef SQLITE_OMIT_SUBQUERY 2614 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2615 ** then there should be a single item on the stack. Write this 2616 ** item into the set table with bogus data. 2617 */ 2618 case SRT_Set: { 2619 int r1; 2620 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2621 pDest->affSdst = 2622 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2623 r1 = sqlite3GetTempReg(pParse); 2624 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2625 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2626 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2627 sqlite3ReleaseTempReg(pParse, r1); 2628 break; 2629 } 2630 2631 /* If this is a scalar select that is part of an expression, then 2632 ** store the results in the appropriate memory cell and break out 2633 ** of the scan loop. 2634 */ 2635 case SRT_Mem: { 2636 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2637 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2638 /* The LIMIT clause will jump out of the loop for us */ 2639 break; 2640 } 2641 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2642 2643 /* The results are stored in a sequence of registers 2644 ** starting at pDest->iSdst. Then the co-routine yields. 2645 */ 2646 case SRT_Coroutine: { 2647 if( pDest->iSdst==0 ){ 2648 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2649 pDest->nSdst = pIn->nSdst; 2650 } 2651 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2652 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2653 break; 2654 } 2655 2656 /* If none of the above, then the result destination must be 2657 ** SRT_Output. This routine is never called with any other 2658 ** destination other than the ones handled above or SRT_Output. 2659 ** 2660 ** For SRT_Output, results are stored in a sequence of registers. 2661 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2662 ** return the next row of result. 2663 */ 2664 default: { 2665 assert( pDest->eDest==SRT_Output ); 2666 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2667 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2668 break; 2669 } 2670 } 2671 2672 /* Jump to the end of the loop if the LIMIT is reached. 2673 */ 2674 if( p->iLimit ){ 2675 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2676 } 2677 2678 /* Generate the subroutine return 2679 */ 2680 sqlite3VdbeResolveLabel(v, iContinue); 2681 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2682 2683 return addr; 2684 } 2685 2686 /* 2687 ** Alternative compound select code generator for cases when there 2688 ** is an ORDER BY clause. 2689 ** 2690 ** We assume a query of the following form: 2691 ** 2692 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2693 ** 2694 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2695 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2696 ** co-routines. Then run the co-routines in parallel and merge the results 2697 ** into the output. In addition to the two coroutines (called selectA and 2698 ** selectB) there are 7 subroutines: 2699 ** 2700 ** outA: Move the output of the selectA coroutine into the output 2701 ** of the compound query. 2702 ** 2703 ** outB: Move the output of the selectB coroutine into the output 2704 ** of the compound query. (Only generated for UNION and 2705 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2706 ** appears only in B.) 2707 ** 2708 ** AltB: Called when there is data from both coroutines and A<B. 2709 ** 2710 ** AeqB: Called when there is data from both coroutines and A==B. 2711 ** 2712 ** AgtB: Called when there is data from both coroutines and A>B. 2713 ** 2714 ** EofA: Called when data is exhausted from selectA. 2715 ** 2716 ** EofB: Called when data is exhausted from selectB. 2717 ** 2718 ** The implementation of the latter five subroutines depend on which 2719 ** <operator> is used: 2720 ** 2721 ** 2722 ** UNION ALL UNION EXCEPT INTERSECT 2723 ** ------------- ----------------- -------------- ----------------- 2724 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2725 ** 2726 ** AeqB: outA, nextA nextA nextA outA, nextA 2727 ** 2728 ** AgtB: outB, nextB outB, nextB nextB nextB 2729 ** 2730 ** EofA: outB, nextB outB, nextB halt halt 2731 ** 2732 ** EofB: outA, nextA outA, nextA outA, nextA halt 2733 ** 2734 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2735 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2736 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2737 ** following nextX causes a jump to the end of the select processing. 2738 ** 2739 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2740 ** within the output subroutine. The regPrev register set holds the previously 2741 ** output value. A comparison is made against this value and the output 2742 ** is skipped if the next results would be the same as the previous. 2743 ** 2744 ** The implementation plan is to implement the two coroutines and seven 2745 ** subroutines first, then put the control logic at the bottom. Like this: 2746 ** 2747 ** goto Init 2748 ** coA: coroutine for left query (A) 2749 ** coB: coroutine for right query (B) 2750 ** outA: output one row of A 2751 ** outB: output one row of B (UNION and UNION ALL only) 2752 ** EofA: ... 2753 ** EofB: ... 2754 ** AltB: ... 2755 ** AeqB: ... 2756 ** AgtB: ... 2757 ** Init: initialize coroutine registers 2758 ** yield coA 2759 ** if eof(A) goto EofA 2760 ** yield coB 2761 ** if eof(B) goto EofB 2762 ** Cmpr: Compare A, B 2763 ** Jump AltB, AeqB, AgtB 2764 ** End: ... 2765 ** 2766 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2767 ** actually called using Gosub and they do not Return. EofA and EofB loop 2768 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2769 ** and AgtB jump to either L2 or to one of EofA or EofB. 2770 */ 2771 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2772 static int multiSelectOrderBy( 2773 Parse *pParse, /* Parsing context */ 2774 Select *p, /* The right-most of SELECTs to be coded */ 2775 SelectDest *pDest /* What to do with query results */ 2776 ){ 2777 int i, j; /* Loop counters */ 2778 Select *pPrior; /* Another SELECT immediately to our left */ 2779 Vdbe *v; /* Generate code to this VDBE */ 2780 SelectDest destA; /* Destination for coroutine A */ 2781 SelectDest destB; /* Destination for coroutine B */ 2782 int regAddrA; /* Address register for select-A coroutine */ 2783 int regAddrB; /* Address register for select-B coroutine */ 2784 int addrSelectA; /* Address of the select-A coroutine */ 2785 int addrSelectB; /* Address of the select-B coroutine */ 2786 int regOutA; /* Address register for the output-A subroutine */ 2787 int regOutB; /* Address register for the output-B subroutine */ 2788 int addrOutA; /* Address of the output-A subroutine */ 2789 int addrOutB = 0; /* Address of the output-B subroutine */ 2790 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2791 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2792 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2793 int addrAltB; /* Address of the A<B subroutine */ 2794 int addrAeqB; /* Address of the A==B subroutine */ 2795 int addrAgtB; /* Address of the A>B subroutine */ 2796 int regLimitA; /* Limit register for select-A */ 2797 int regLimitB; /* Limit register for select-A */ 2798 int regPrev; /* A range of registers to hold previous output */ 2799 int savedLimit; /* Saved value of p->iLimit */ 2800 int savedOffset; /* Saved value of p->iOffset */ 2801 int labelCmpr; /* Label for the start of the merge algorithm */ 2802 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2803 int j1; /* Jump instructions that get retargetted */ 2804 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2805 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2806 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2807 sqlite3 *db; /* Database connection */ 2808 ExprList *pOrderBy; /* The ORDER BY clause */ 2809 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2810 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2811 #ifndef SQLITE_OMIT_EXPLAIN 2812 int iSub1; /* EQP id of left-hand query */ 2813 int iSub2; /* EQP id of right-hand query */ 2814 #endif 2815 2816 assert( p->pOrderBy!=0 ); 2817 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2818 db = pParse->db; 2819 v = pParse->pVdbe; 2820 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2821 labelEnd = sqlite3VdbeMakeLabel(v); 2822 labelCmpr = sqlite3VdbeMakeLabel(v); 2823 2824 2825 /* Patch up the ORDER BY clause 2826 */ 2827 op = p->op; 2828 pPrior = p->pPrior; 2829 assert( pPrior->pOrderBy==0 ); 2830 pOrderBy = p->pOrderBy; 2831 assert( pOrderBy ); 2832 nOrderBy = pOrderBy->nExpr; 2833 2834 /* For operators other than UNION ALL we have to make sure that 2835 ** the ORDER BY clause covers every term of the result set. Add 2836 ** terms to the ORDER BY clause as necessary. 2837 */ 2838 if( op!=TK_ALL ){ 2839 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2840 struct ExprList_item *pItem; 2841 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2842 assert( pItem->u.x.iOrderByCol>0 ); 2843 if( pItem->u.x.iOrderByCol==i ) break; 2844 } 2845 if( j==nOrderBy ){ 2846 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2847 if( pNew==0 ) return SQLITE_NOMEM; 2848 pNew->flags |= EP_IntValue; 2849 pNew->u.iValue = i; 2850 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2851 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2852 } 2853 } 2854 } 2855 2856 /* Compute the comparison permutation and keyinfo that is used with 2857 ** the permutation used to determine if the next 2858 ** row of results comes from selectA or selectB. Also add explicit 2859 ** collations to the ORDER BY clause terms so that when the subqueries 2860 ** to the right and the left are evaluated, they use the correct 2861 ** collation. 2862 */ 2863 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2864 if( aPermute ){ 2865 struct ExprList_item *pItem; 2866 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2867 assert( pItem->u.x.iOrderByCol>0 ); 2868 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2869 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2870 } 2871 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2872 }else{ 2873 pKeyMerge = 0; 2874 } 2875 2876 /* Reattach the ORDER BY clause to the query. 2877 */ 2878 p->pOrderBy = pOrderBy; 2879 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2880 2881 /* Allocate a range of temporary registers and the KeyInfo needed 2882 ** for the logic that removes duplicate result rows when the 2883 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2884 */ 2885 if( op==TK_ALL ){ 2886 regPrev = 0; 2887 }else{ 2888 int nExpr = p->pEList->nExpr; 2889 assert( nOrderBy>=nExpr || db->mallocFailed ); 2890 regPrev = pParse->nMem+1; 2891 pParse->nMem += nExpr+1; 2892 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2893 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2894 if( pKeyDup ){ 2895 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2896 for(i=0; i<nExpr; i++){ 2897 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2898 pKeyDup->aSortOrder[i] = 0; 2899 } 2900 } 2901 } 2902 2903 /* Separate the left and the right query from one another 2904 */ 2905 p->pPrior = 0; 2906 pPrior->pNext = 0; 2907 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2908 if( pPrior->pPrior==0 ){ 2909 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2910 } 2911 2912 /* Compute the limit registers */ 2913 computeLimitRegisters(pParse, p, labelEnd); 2914 if( p->iLimit && op==TK_ALL ){ 2915 regLimitA = ++pParse->nMem; 2916 regLimitB = ++pParse->nMem; 2917 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2918 regLimitA); 2919 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2920 }else{ 2921 regLimitA = regLimitB = 0; 2922 } 2923 sqlite3ExprDelete(db, p->pLimit); 2924 p->pLimit = 0; 2925 sqlite3ExprDelete(db, p->pOffset); 2926 p->pOffset = 0; 2927 2928 regAddrA = ++pParse->nMem; 2929 regAddrB = ++pParse->nMem; 2930 regOutA = ++pParse->nMem; 2931 regOutB = ++pParse->nMem; 2932 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2933 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2934 2935 /* Generate a coroutine to evaluate the SELECT statement to the 2936 ** left of the compound operator - the "A" select. 2937 */ 2938 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2939 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2940 VdbeComment((v, "left SELECT")); 2941 pPrior->iLimit = regLimitA; 2942 explainSetInteger(iSub1, pParse->iNextSelectId); 2943 sqlite3Select(pParse, pPrior, &destA); 2944 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2945 sqlite3VdbeJumpHere(v, j1); 2946 2947 /* Generate a coroutine to evaluate the SELECT statement on 2948 ** the right - the "B" select 2949 */ 2950 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2951 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2952 VdbeComment((v, "right SELECT")); 2953 savedLimit = p->iLimit; 2954 savedOffset = p->iOffset; 2955 p->iLimit = regLimitB; 2956 p->iOffset = 0; 2957 explainSetInteger(iSub2, pParse->iNextSelectId); 2958 sqlite3Select(pParse, p, &destB); 2959 p->iLimit = savedLimit; 2960 p->iOffset = savedOffset; 2961 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2962 2963 /* Generate a subroutine that outputs the current row of the A 2964 ** select as the next output row of the compound select. 2965 */ 2966 VdbeNoopComment((v, "Output routine for A")); 2967 addrOutA = generateOutputSubroutine(pParse, 2968 p, &destA, pDest, regOutA, 2969 regPrev, pKeyDup, labelEnd); 2970 2971 /* Generate a subroutine that outputs the current row of the B 2972 ** select as the next output row of the compound select. 2973 */ 2974 if( op==TK_ALL || op==TK_UNION ){ 2975 VdbeNoopComment((v, "Output routine for B")); 2976 addrOutB = generateOutputSubroutine(pParse, 2977 p, &destB, pDest, regOutB, 2978 regPrev, pKeyDup, labelEnd); 2979 } 2980 sqlite3KeyInfoUnref(pKeyDup); 2981 2982 /* Generate a subroutine to run when the results from select A 2983 ** are exhausted and only data in select B remains. 2984 */ 2985 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2986 addrEofA_noB = addrEofA = labelEnd; 2987 }else{ 2988 VdbeNoopComment((v, "eof-A subroutine")); 2989 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2990 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2991 VdbeCoverage(v); 2992 sqlite3VdbeGoto(v, addrEofA); 2993 p->nSelectRow += pPrior->nSelectRow; 2994 } 2995 2996 /* Generate a subroutine to run when the results from select B 2997 ** are exhausted and only data in select A remains. 2998 */ 2999 if( op==TK_INTERSECT ){ 3000 addrEofB = addrEofA; 3001 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3002 }else{ 3003 VdbeNoopComment((v, "eof-B subroutine")); 3004 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3005 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3006 sqlite3VdbeGoto(v, addrEofB); 3007 } 3008 3009 /* Generate code to handle the case of A<B 3010 */ 3011 VdbeNoopComment((v, "A-lt-B subroutine")); 3012 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3013 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3014 sqlite3VdbeGoto(v, labelCmpr); 3015 3016 /* Generate code to handle the case of A==B 3017 */ 3018 if( op==TK_ALL ){ 3019 addrAeqB = addrAltB; 3020 }else if( op==TK_INTERSECT ){ 3021 addrAeqB = addrAltB; 3022 addrAltB++; 3023 }else{ 3024 VdbeNoopComment((v, "A-eq-B subroutine")); 3025 addrAeqB = 3026 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3027 sqlite3VdbeGoto(v, labelCmpr); 3028 } 3029 3030 /* Generate code to handle the case of A>B 3031 */ 3032 VdbeNoopComment((v, "A-gt-B subroutine")); 3033 addrAgtB = sqlite3VdbeCurrentAddr(v); 3034 if( op==TK_ALL || op==TK_UNION ){ 3035 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3036 } 3037 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3038 sqlite3VdbeGoto(v, labelCmpr); 3039 3040 /* This code runs once to initialize everything. 3041 */ 3042 sqlite3VdbeJumpHere(v, j1); 3043 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3044 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3045 3046 /* Implement the main merge loop 3047 */ 3048 sqlite3VdbeResolveLabel(v, labelCmpr); 3049 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3050 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3051 (char*)pKeyMerge, P4_KEYINFO); 3052 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3053 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3054 3055 /* Jump to the this point in order to terminate the query. 3056 */ 3057 sqlite3VdbeResolveLabel(v, labelEnd); 3058 3059 /* Set the number of output columns 3060 */ 3061 if( pDest->eDest==SRT_Output ){ 3062 Select *pFirst = pPrior; 3063 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3064 generateColumnNames(pParse, 0, pFirst->pEList); 3065 } 3066 3067 /* Reassembly the compound query so that it will be freed correctly 3068 ** by the calling function */ 3069 if( p->pPrior ){ 3070 sqlite3SelectDelete(db, p->pPrior); 3071 } 3072 p->pPrior = pPrior; 3073 pPrior->pNext = p; 3074 3075 /*** TBD: Insert subroutine calls to close cursors on incomplete 3076 **** subqueries ****/ 3077 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3078 return pParse->nErr!=0; 3079 } 3080 #endif 3081 3082 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3083 /* Forward Declarations */ 3084 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3085 static void substSelect(sqlite3*, Select *, int, ExprList *); 3086 3087 /* 3088 ** Scan through the expression pExpr. Replace every reference to 3089 ** a column in table number iTable with a copy of the iColumn-th 3090 ** entry in pEList. (But leave references to the ROWID column 3091 ** unchanged.) 3092 ** 3093 ** This routine is part of the flattening procedure. A subquery 3094 ** whose result set is defined by pEList appears as entry in the 3095 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3096 ** FORM clause entry is iTable. This routine make the necessary 3097 ** changes to pExpr so that it refers directly to the source table 3098 ** of the subquery rather the result set of the subquery. 3099 */ 3100 static Expr *substExpr( 3101 sqlite3 *db, /* Report malloc errors to this connection */ 3102 Expr *pExpr, /* Expr in which substitution occurs */ 3103 int iTable, /* Table to be substituted */ 3104 ExprList *pEList /* Substitute expressions */ 3105 ){ 3106 if( pExpr==0 ) return 0; 3107 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3108 if( pExpr->iColumn<0 ){ 3109 pExpr->op = TK_NULL; 3110 }else{ 3111 Expr *pNew; 3112 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3113 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3114 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3115 sqlite3ExprDelete(db, pExpr); 3116 pExpr = pNew; 3117 } 3118 }else{ 3119 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3120 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3121 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3122 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3123 }else{ 3124 substExprList(db, pExpr->x.pList, iTable, pEList); 3125 } 3126 } 3127 return pExpr; 3128 } 3129 static void substExprList( 3130 sqlite3 *db, /* Report malloc errors here */ 3131 ExprList *pList, /* List to scan and in which to make substitutes */ 3132 int iTable, /* Table to be substituted */ 3133 ExprList *pEList /* Substitute values */ 3134 ){ 3135 int i; 3136 if( pList==0 ) return; 3137 for(i=0; i<pList->nExpr; i++){ 3138 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3139 } 3140 } 3141 static void substSelect( 3142 sqlite3 *db, /* Report malloc errors here */ 3143 Select *p, /* SELECT statement in which to make substitutions */ 3144 int iTable, /* Table to be replaced */ 3145 ExprList *pEList /* Substitute values */ 3146 ){ 3147 SrcList *pSrc; 3148 struct SrcList_item *pItem; 3149 int i; 3150 if( !p ) return; 3151 substExprList(db, p->pEList, iTable, pEList); 3152 substExprList(db, p->pGroupBy, iTable, pEList); 3153 substExprList(db, p->pOrderBy, iTable, pEList); 3154 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3155 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3156 substSelect(db, p->pPrior, iTable, pEList); 3157 pSrc = p->pSrc; 3158 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3159 if( ALWAYS(pSrc) ){ 3160 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3161 substSelect(db, pItem->pSelect, iTable, pEList); 3162 } 3163 } 3164 } 3165 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3166 3167 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3168 /* 3169 ** This routine attempts to flatten subqueries as a performance optimization. 3170 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3171 ** 3172 ** To understand the concept of flattening, consider the following 3173 ** query: 3174 ** 3175 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3176 ** 3177 ** The default way of implementing this query is to execute the 3178 ** subquery first and store the results in a temporary table, then 3179 ** run the outer query on that temporary table. This requires two 3180 ** passes over the data. Furthermore, because the temporary table 3181 ** has no indices, the WHERE clause on the outer query cannot be 3182 ** optimized. 3183 ** 3184 ** This routine attempts to rewrite queries such as the above into 3185 ** a single flat select, like this: 3186 ** 3187 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3188 ** 3189 ** The code generated for this simplification gives the same result 3190 ** but only has to scan the data once. And because indices might 3191 ** exist on the table t1, a complete scan of the data might be 3192 ** avoided. 3193 ** 3194 ** Flattening is only attempted if all of the following are true: 3195 ** 3196 ** (1) The subquery and the outer query do not both use aggregates. 3197 ** 3198 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3199 ** and (2b) the outer query does not use subqueries other than the one 3200 ** FROM-clause subquery that is a candidate for flattening. (2b is 3201 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3202 ** 3203 ** (3) The subquery is not the right operand of a left outer join 3204 ** (Originally ticket #306. Strengthened by ticket #3300) 3205 ** 3206 ** (4) The subquery is not DISTINCT. 3207 ** 3208 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3209 ** sub-queries that were excluded from this optimization. Restriction 3210 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3211 ** 3212 ** (6) The subquery does not use aggregates or the outer query is not 3213 ** DISTINCT. 3214 ** 3215 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3216 ** A FROM clause, consider adding a FROM close with the special 3217 ** table sqlite_once that consists of a single row containing a 3218 ** single NULL. 3219 ** 3220 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3221 ** 3222 ** (9) The subquery does not use LIMIT or the outer query does not use 3223 ** aggregates. 3224 ** 3225 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3226 ** accidently carried the comment forward until 2014-09-15. Original 3227 ** text: "The subquery does not use aggregates or the outer query 3228 ** does not use LIMIT." 3229 ** 3230 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3231 ** 3232 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3233 ** a separate restriction deriving from ticket #350. 3234 ** 3235 ** (13) The subquery and outer query do not both use LIMIT. 3236 ** 3237 ** (14) The subquery does not use OFFSET. 3238 ** 3239 ** (15) The outer query is not part of a compound select or the 3240 ** subquery does not have a LIMIT clause. 3241 ** (See ticket #2339 and ticket [02a8e81d44]). 3242 ** 3243 ** (16) The outer query is not an aggregate or the subquery does 3244 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3245 ** until we introduced the group_concat() function. 3246 ** 3247 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3248 ** compound clause made up entirely of non-aggregate queries, and 3249 ** the parent query: 3250 ** 3251 ** * is not itself part of a compound select, 3252 ** * is not an aggregate or DISTINCT query, and 3253 ** * is not a join 3254 ** 3255 ** The parent and sub-query may contain WHERE clauses. Subject to 3256 ** rules (11), (13) and (14), they may also contain ORDER BY, 3257 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3258 ** operator other than UNION ALL because all the other compound 3259 ** operators have an implied DISTINCT which is disallowed by 3260 ** restriction (4). 3261 ** 3262 ** Also, each component of the sub-query must return the same number 3263 ** of result columns. This is actually a requirement for any compound 3264 ** SELECT statement, but all the code here does is make sure that no 3265 ** such (illegal) sub-query is flattened. The caller will detect the 3266 ** syntax error and return a detailed message. 3267 ** 3268 ** (18) If the sub-query is a compound select, then all terms of the 3269 ** ORDER by clause of the parent must be simple references to 3270 ** columns of the sub-query. 3271 ** 3272 ** (19) The subquery does not use LIMIT or the outer query does not 3273 ** have a WHERE clause. 3274 ** 3275 ** (20) If the sub-query is a compound select, then it must not use 3276 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3277 ** somewhat by saying that the terms of the ORDER BY clause must 3278 ** appear as unmodified result columns in the outer query. But we 3279 ** have other optimizations in mind to deal with that case. 3280 ** 3281 ** (21) The subquery does not use LIMIT or the outer query is not 3282 ** DISTINCT. (See ticket [752e1646fc]). 3283 ** 3284 ** (22) The subquery is not a recursive CTE. 3285 ** 3286 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3287 ** compound query. This restriction is because transforming the 3288 ** parent to a compound query confuses the code that handles 3289 ** recursive queries in multiSelect(). 3290 ** 3291 ** (24) The subquery is not an aggregate that uses the built-in min() or 3292 ** or max() functions. (Without this restriction, a query like: 3293 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3294 ** return the value X for which Y was maximal.) 3295 ** 3296 ** 3297 ** In this routine, the "p" parameter is a pointer to the outer query. 3298 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3299 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3300 ** 3301 ** If flattening is not attempted, this routine is a no-op and returns 0. 3302 ** If flattening is attempted this routine returns 1. 3303 ** 3304 ** All of the expression analysis must occur on both the outer query and 3305 ** the subquery before this routine runs. 3306 */ 3307 static int flattenSubquery( 3308 Parse *pParse, /* Parsing context */ 3309 Select *p, /* The parent or outer SELECT statement */ 3310 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3311 int isAgg, /* True if outer SELECT uses aggregate functions */ 3312 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3313 ){ 3314 const char *zSavedAuthContext = pParse->zAuthContext; 3315 Select *pParent; 3316 Select *pSub; /* The inner query or "subquery" */ 3317 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3318 SrcList *pSrc; /* The FROM clause of the outer query */ 3319 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3320 ExprList *pList; /* The result set of the outer query */ 3321 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3322 int i; /* Loop counter */ 3323 Expr *pWhere; /* The WHERE clause */ 3324 struct SrcList_item *pSubitem; /* The subquery */ 3325 sqlite3 *db = pParse->db; 3326 3327 /* Check to see if flattening is permitted. Return 0 if not. 3328 */ 3329 assert( p!=0 ); 3330 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3331 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3332 pSrc = p->pSrc; 3333 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3334 pSubitem = &pSrc->a[iFrom]; 3335 iParent = pSubitem->iCursor; 3336 pSub = pSubitem->pSelect; 3337 assert( pSub!=0 ); 3338 if( subqueryIsAgg ){ 3339 if( isAgg ) return 0; /* Restriction (1) */ 3340 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3341 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3342 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3343 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3344 ){ 3345 return 0; /* Restriction (2b) */ 3346 } 3347 } 3348 3349 pSubSrc = pSub->pSrc; 3350 assert( pSubSrc ); 3351 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3352 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3353 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3354 ** became arbitrary expressions, we were forced to add restrictions (13) 3355 ** and (14). */ 3356 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3357 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3358 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3359 return 0; /* Restriction (15) */ 3360 } 3361 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3362 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3363 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3364 return 0; /* Restrictions (8)(9) */ 3365 } 3366 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3367 return 0; /* Restriction (6) */ 3368 } 3369 if( p->pOrderBy && pSub->pOrderBy ){ 3370 return 0; /* Restriction (11) */ 3371 } 3372 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3373 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3374 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3375 return 0; /* Restriction (21) */ 3376 } 3377 testcase( pSub->selFlags & SF_Recursive ); 3378 testcase( pSub->selFlags & SF_MinMaxAgg ); 3379 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3380 return 0; /* Restrictions (22) and (24) */ 3381 } 3382 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3383 return 0; /* Restriction (23) */ 3384 } 3385 3386 /* OBSOLETE COMMENT 1: 3387 ** Restriction 3: If the subquery is a join, make sure the subquery is 3388 ** not used as the right operand of an outer join. Examples of why this 3389 ** is not allowed: 3390 ** 3391 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3392 ** 3393 ** If we flatten the above, we would get 3394 ** 3395 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3396 ** 3397 ** which is not at all the same thing. 3398 ** 3399 ** OBSOLETE COMMENT 2: 3400 ** Restriction 12: If the subquery is the right operand of a left outer 3401 ** join, make sure the subquery has no WHERE clause. 3402 ** An examples of why this is not allowed: 3403 ** 3404 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3405 ** 3406 ** If we flatten the above, we would get 3407 ** 3408 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3409 ** 3410 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3411 ** effectively converts the OUTER JOIN into an INNER JOIN. 3412 ** 3413 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3414 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3415 ** is fraught with danger. Best to avoid the whole thing. If the 3416 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3417 */ 3418 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3419 return 0; 3420 } 3421 3422 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3423 ** use only the UNION ALL operator. And none of the simple select queries 3424 ** that make up the compound SELECT are allowed to be aggregate or distinct 3425 ** queries. 3426 */ 3427 if( pSub->pPrior ){ 3428 if( pSub->pOrderBy ){ 3429 return 0; /* Restriction 20 */ 3430 } 3431 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3432 return 0; 3433 } 3434 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3435 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3436 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3437 assert( pSub->pSrc!=0 ); 3438 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3439 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3440 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3441 || pSub1->pSrc->nSrc<1 3442 ){ 3443 return 0; 3444 } 3445 testcase( pSub1->pSrc->nSrc>1 ); 3446 } 3447 3448 /* Restriction 18. */ 3449 if( p->pOrderBy ){ 3450 int ii; 3451 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3452 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3453 } 3454 } 3455 } 3456 3457 /***** If we reach this point, flattening is permitted. *****/ 3458 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3459 pSub->zSelName, pSub, iFrom)); 3460 3461 /* Authorize the subquery */ 3462 pParse->zAuthContext = pSubitem->zName; 3463 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3464 testcase( i==SQLITE_DENY ); 3465 pParse->zAuthContext = zSavedAuthContext; 3466 3467 /* If the sub-query is a compound SELECT statement, then (by restrictions 3468 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3469 ** be of the form: 3470 ** 3471 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3472 ** 3473 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3474 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3475 ** OFFSET clauses and joins them to the left-hand-side of the original 3476 ** using UNION ALL operators. In this case N is the number of simple 3477 ** select statements in the compound sub-query. 3478 ** 3479 ** Example: 3480 ** 3481 ** SELECT a+1 FROM ( 3482 ** SELECT x FROM tab 3483 ** UNION ALL 3484 ** SELECT y FROM tab 3485 ** UNION ALL 3486 ** SELECT abs(z*2) FROM tab2 3487 ** ) WHERE a!=5 ORDER BY 1 3488 ** 3489 ** Transformed into: 3490 ** 3491 ** SELECT x+1 FROM tab WHERE x+1!=5 3492 ** UNION ALL 3493 ** SELECT y+1 FROM tab WHERE y+1!=5 3494 ** UNION ALL 3495 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3496 ** ORDER BY 1 3497 ** 3498 ** We call this the "compound-subquery flattening". 3499 */ 3500 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3501 Select *pNew; 3502 ExprList *pOrderBy = p->pOrderBy; 3503 Expr *pLimit = p->pLimit; 3504 Expr *pOffset = p->pOffset; 3505 Select *pPrior = p->pPrior; 3506 p->pOrderBy = 0; 3507 p->pSrc = 0; 3508 p->pPrior = 0; 3509 p->pLimit = 0; 3510 p->pOffset = 0; 3511 pNew = sqlite3SelectDup(db, p, 0); 3512 sqlite3SelectSetName(pNew, pSub->zSelName); 3513 p->pOffset = pOffset; 3514 p->pLimit = pLimit; 3515 p->pOrderBy = pOrderBy; 3516 p->pSrc = pSrc; 3517 p->op = TK_ALL; 3518 if( pNew==0 ){ 3519 p->pPrior = pPrior; 3520 }else{ 3521 pNew->pPrior = pPrior; 3522 if( pPrior ) pPrior->pNext = pNew; 3523 pNew->pNext = p; 3524 p->pPrior = pNew; 3525 SELECTTRACE(2,pParse,p, 3526 ("compound-subquery flattener creates %s.%p as peer\n", 3527 pNew->zSelName, pNew)); 3528 } 3529 if( db->mallocFailed ) return 1; 3530 } 3531 3532 /* Begin flattening the iFrom-th entry of the FROM clause 3533 ** in the outer query. 3534 */ 3535 pSub = pSub1 = pSubitem->pSelect; 3536 3537 /* Delete the transient table structure associated with the 3538 ** subquery 3539 */ 3540 sqlite3DbFree(db, pSubitem->zDatabase); 3541 sqlite3DbFree(db, pSubitem->zName); 3542 sqlite3DbFree(db, pSubitem->zAlias); 3543 pSubitem->zDatabase = 0; 3544 pSubitem->zName = 0; 3545 pSubitem->zAlias = 0; 3546 pSubitem->pSelect = 0; 3547 3548 /* Defer deleting the Table object associated with the 3549 ** subquery until code generation is 3550 ** complete, since there may still exist Expr.pTab entries that 3551 ** refer to the subquery even after flattening. Ticket #3346. 3552 ** 3553 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3554 */ 3555 if( ALWAYS(pSubitem->pTab!=0) ){ 3556 Table *pTabToDel = pSubitem->pTab; 3557 if( pTabToDel->nRef==1 ){ 3558 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3559 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3560 pToplevel->pZombieTab = pTabToDel; 3561 }else{ 3562 pTabToDel->nRef--; 3563 } 3564 pSubitem->pTab = 0; 3565 } 3566 3567 /* The following loop runs once for each term in a compound-subquery 3568 ** flattening (as described above). If we are doing a different kind 3569 ** of flattening - a flattening other than a compound-subquery flattening - 3570 ** then this loop only runs once. 3571 ** 3572 ** This loop moves all of the FROM elements of the subquery into the 3573 ** the FROM clause of the outer query. Before doing this, remember 3574 ** the cursor number for the original outer query FROM element in 3575 ** iParent. The iParent cursor will never be used. Subsequent code 3576 ** will scan expressions looking for iParent references and replace 3577 ** those references with expressions that resolve to the subquery FROM 3578 ** elements we are now copying in. 3579 */ 3580 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3581 int nSubSrc; 3582 u8 jointype = 0; 3583 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3584 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3585 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3586 3587 if( pSrc ){ 3588 assert( pParent==p ); /* First time through the loop */ 3589 jointype = pSubitem->fg.jointype; 3590 }else{ 3591 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3592 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3593 if( pSrc==0 ){ 3594 assert( db->mallocFailed ); 3595 break; 3596 } 3597 } 3598 3599 /* The subquery uses a single slot of the FROM clause of the outer 3600 ** query. If the subquery has more than one element in its FROM clause, 3601 ** then expand the outer query to make space for it to hold all elements 3602 ** of the subquery. 3603 ** 3604 ** Example: 3605 ** 3606 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3607 ** 3608 ** The outer query has 3 slots in its FROM clause. One slot of the 3609 ** outer query (the middle slot) is used by the subquery. The next 3610 ** block of code will expand the out query to 4 slots. The middle 3611 ** slot is expanded to two slots in order to make space for the 3612 ** two elements in the FROM clause of the subquery. 3613 */ 3614 if( nSubSrc>1 ){ 3615 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3616 if( db->mallocFailed ){ 3617 break; 3618 } 3619 } 3620 3621 /* Transfer the FROM clause terms from the subquery into the 3622 ** outer query. 3623 */ 3624 for(i=0; i<nSubSrc; i++){ 3625 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3626 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3627 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3628 } 3629 pSrc->a[iFrom].fg.jointype = jointype; 3630 3631 /* Now begin substituting subquery result set expressions for 3632 ** references to the iParent in the outer query. 3633 ** 3634 ** Example: 3635 ** 3636 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3637 ** \ \_____________ subquery __________/ / 3638 ** \_____________________ outer query ______________________________/ 3639 ** 3640 ** We look at every expression in the outer query and every place we see 3641 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3642 */ 3643 pList = pParent->pEList; 3644 for(i=0; i<pList->nExpr; i++){ 3645 if( pList->a[i].zName==0 ){ 3646 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3647 sqlite3Dequote(zName); 3648 pList->a[i].zName = zName; 3649 } 3650 } 3651 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3652 if( isAgg ){ 3653 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3654 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3655 } 3656 if( pSub->pOrderBy ){ 3657 /* At this point, any non-zero iOrderByCol values indicate that the 3658 ** ORDER BY column expression is identical to the iOrderByCol'th 3659 ** expression returned by SELECT statement pSub. Since these values 3660 ** do not necessarily correspond to columns in SELECT statement pParent, 3661 ** zero them before transfering the ORDER BY clause. 3662 ** 3663 ** Not doing this may cause an error if a subsequent call to this 3664 ** function attempts to flatten a compound sub-query into pParent 3665 ** (the only way this can happen is if the compound sub-query is 3666 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3667 ExprList *pOrderBy = pSub->pOrderBy; 3668 for(i=0; i<pOrderBy->nExpr; i++){ 3669 pOrderBy->a[i].u.x.iOrderByCol = 0; 3670 } 3671 assert( pParent->pOrderBy==0 ); 3672 assert( pSub->pPrior==0 ); 3673 pParent->pOrderBy = pOrderBy; 3674 pSub->pOrderBy = 0; 3675 }else if( pParent->pOrderBy ){ 3676 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3677 } 3678 if( pSub->pWhere ){ 3679 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3680 }else{ 3681 pWhere = 0; 3682 } 3683 if( subqueryIsAgg ){ 3684 assert( pParent->pHaving==0 ); 3685 pParent->pHaving = pParent->pWhere; 3686 pParent->pWhere = pWhere; 3687 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3688 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3689 sqlite3ExprDup(db, pSub->pHaving, 0)); 3690 assert( pParent->pGroupBy==0 ); 3691 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3692 }else{ 3693 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3694 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3695 } 3696 3697 /* The flattened query is distinct if either the inner or the 3698 ** outer query is distinct. 3699 */ 3700 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3701 3702 /* 3703 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3704 ** 3705 ** One is tempted to try to add a and b to combine the limits. But this 3706 ** does not work if either limit is negative. 3707 */ 3708 if( pSub->pLimit ){ 3709 pParent->pLimit = pSub->pLimit; 3710 pSub->pLimit = 0; 3711 } 3712 } 3713 3714 /* Finially, delete what is left of the subquery and return 3715 ** success. 3716 */ 3717 sqlite3SelectDelete(db, pSub1); 3718 3719 #if SELECTTRACE_ENABLED 3720 if( sqlite3SelectTrace & 0x100 ){ 3721 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3722 sqlite3TreeViewSelect(0, p, 0); 3723 } 3724 #endif 3725 3726 return 1; 3727 } 3728 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3729 3730 3731 3732 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3733 /* 3734 ** Make copies of relevant WHERE clause terms of the outer query into 3735 ** the WHERE clause of subquery. Example: 3736 ** 3737 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3738 ** 3739 ** Transformed into: 3740 ** 3741 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3742 ** WHERE x=5 AND y=10; 3743 ** 3744 ** The hope is that the terms added to the inner query will make it more 3745 ** efficient. 3746 ** 3747 ** Do not attempt this optimization if: 3748 ** 3749 ** (1) The inner query is an aggregate. (In that case, we'd really want 3750 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3751 ** inner query. But they probably won't help there so do not bother.) 3752 ** 3753 ** (2) The inner query is the recursive part of a common table expression. 3754 ** 3755 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3756 ** close would change the meaning of the LIMIT). 3757 ** 3758 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3759 ** enforces this restriction since this routine does not have enough 3760 ** information to know.) 3761 ** 3762 ** (5) The WHERE clause expression originates in the ON or USING clause 3763 ** of a LEFT JOIN. 3764 ** 3765 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3766 ** terms are duplicated into the subquery. 3767 */ 3768 static int pushDownWhereTerms( 3769 sqlite3 *db, /* The database connection (for malloc()) */ 3770 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3771 Expr *pWhere, /* The WHERE clause of the outer query */ 3772 int iCursor /* Cursor number of the subquery */ 3773 ){ 3774 Expr *pNew; 3775 int nChng = 0; 3776 if( pWhere==0 ) return 0; 3777 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3778 return 0; /* restrictions (1) and (2) */ 3779 } 3780 if( pSubq->pLimit!=0 ){ 3781 return 0; /* restriction (3) */ 3782 } 3783 while( pWhere->op==TK_AND ){ 3784 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3785 pWhere = pWhere->pLeft; 3786 } 3787 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3788 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3789 nChng++; 3790 while( pSubq ){ 3791 pNew = sqlite3ExprDup(db, pWhere, 0); 3792 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3793 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3794 pSubq = pSubq->pPrior; 3795 } 3796 } 3797 return nChng; 3798 } 3799 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3800 3801 /* 3802 ** Based on the contents of the AggInfo structure indicated by the first 3803 ** argument, this function checks if the following are true: 3804 ** 3805 ** * the query contains just a single aggregate function, 3806 ** * the aggregate function is either min() or max(), and 3807 ** * the argument to the aggregate function is a column value. 3808 ** 3809 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3810 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3811 ** list of arguments passed to the aggregate before returning. 3812 ** 3813 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3814 ** WHERE_ORDERBY_NORMAL is returned. 3815 */ 3816 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3817 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3818 3819 *ppMinMax = 0; 3820 if( pAggInfo->nFunc==1 ){ 3821 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3822 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3823 3824 assert( pExpr->op==TK_AGG_FUNCTION ); 3825 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3826 const char *zFunc = pExpr->u.zToken; 3827 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3828 eRet = WHERE_ORDERBY_MIN; 3829 *ppMinMax = pEList; 3830 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3831 eRet = WHERE_ORDERBY_MAX; 3832 *ppMinMax = pEList; 3833 } 3834 } 3835 } 3836 3837 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3838 return eRet; 3839 } 3840 3841 /* 3842 ** The select statement passed as the first argument is an aggregate query. 3843 ** The second argument is the associated aggregate-info object. This 3844 ** function tests if the SELECT is of the form: 3845 ** 3846 ** SELECT count(*) FROM <tbl> 3847 ** 3848 ** where table is a database table, not a sub-select or view. If the query 3849 ** does match this pattern, then a pointer to the Table object representing 3850 ** <tbl> is returned. Otherwise, 0 is returned. 3851 */ 3852 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3853 Table *pTab; 3854 Expr *pExpr; 3855 3856 assert( !p->pGroupBy ); 3857 3858 if( p->pWhere || p->pEList->nExpr!=1 3859 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3860 ){ 3861 return 0; 3862 } 3863 pTab = p->pSrc->a[0].pTab; 3864 pExpr = p->pEList->a[0].pExpr; 3865 assert( pTab && !pTab->pSelect && pExpr ); 3866 3867 if( IsVirtual(pTab) ) return 0; 3868 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3869 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3870 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3871 if( pExpr->flags&EP_Distinct ) return 0; 3872 3873 return pTab; 3874 } 3875 3876 /* 3877 ** If the source-list item passed as an argument was augmented with an 3878 ** INDEXED BY clause, then try to locate the specified index. If there 3879 ** was such a clause and the named index cannot be found, return 3880 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3881 ** pFrom->pIndex and return SQLITE_OK. 3882 */ 3883 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3884 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3885 Table *pTab = pFrom->pTab; 3886 char *zIndexedBy = pFrom->u1.zIndexedBy; 3887 Index *pIdx; 3888 for(pIdx=pTab->pIndex; 3889 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3890 pIdx=pIdx->pNext 3891 ); 3892 if( !pIdx ){ 3893 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3894 pParse->checkSchema = 1; 3895 return SQLITE_ERROR; 3896 } 3897 pFrom->pIBIndex = pIdx; 3898 } 3899 return SQLITE_OK; 3900 } 3901 /* 3902 ** Detect compound SELECT statements that use an ORDER BY clause with 3903 ** an alternative collating sequence. 3904 ** 3905 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3906 ** 3907 ** These are rewritten as a subquery: 3908 ** 3909 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3910 ** ORDER BY ... COLLATE ... 3911 ** 3912 ** This transformation is necessary because the multiSelectOrderBy() routine 3913 ** above that generates the code for a compound SELECT with an ORDER BY clause 3914 ** uses a merge algorithm that requires the same collating sequence on the 3915 ** result columns as on the ORDER BY clause. See ticket 3916 ** http://www.sqlite.org/src/info/6709574d2a 3917 ** 3918 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3919 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3920 ** there are COLLATE terms in the ORDER BY. 3921 */ 3922 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3923 int i; 3924 Select *pNew; 3925 Select *pX; 3926 sqlite3 *db; 3927 struct ExprList_item *a; 3928 SrcList *pNewSrc; 3929 Parse *pParse; 3930 Token dummy; 3931 3932 if( p->pPrior==0 ) return WRC_Continue; 3933 if( p->pOrderBy==0 ) return WRC_Continue; 3934 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3935 if( pX==0 ) return WRC_Continue; 3936 a = p->pOrderBy->a; 3937 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3938 if( a[i].pExpr->flags & EP_Collate ) break; 3939 } 3940 if( i<0 ) return WRC_Continue; 3941 3942 /* If we reach this point, that means the transformation is required. */ 3943 3944 pParse = pWalker->pParse; 3945 db = pParse->db; 3946 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3947 if( pNew==0 ) return WRC_Abort; 3948 memset(&dummy, 0, sizeof(dummy)); 3949 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3950 if( pNewSrc==0 ) return WRC_Abort; 3951 *pNew = *p; 3952 p->pSrc = pNewSrc; 3953 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3954 p->op = TK_SELECT; 3955 p->pWhere = 0; 3956 pNew->pGroupBy = 0; 3957 pNew->pHaving = 0; 3958 pNew->pOrderBy = 0; 3959 p->pPrior = 0; 3960 p->pNext = 0; 3961 p->pWith = 0; 3962 p->selFlags &= ~SF_Compound; 3963 assert( (p->selFlags & SF_Converted)==0 ); 3964 p->selFlags |= SF_Converted; 3965 assert( pNew->pPrior!=0 ); 3966 pNew->pPrior->pNext = pNew; 3967 pNew->pLimit = 0; 3968 pNew->pOffset = 0; 3969 return WRC_Continue; 3970 } 3971 3972 #ifndef SQLITE_OMIT_CTE 3973 /* 3974 ** Argument pWith (which may be NULL) points to a linked list of nested 3975 ** WITH contexts, from inner to outermost. If the table identified by 3976 ** FROM clause element pItem is really a common-table-expression (CTE) 3977 ** then return a pointer to the CTE definition for that table. Otherwise 3978 ** return NULL. 3979 ** 3980 ** If a non-NULL value is returned, set *ppContext to point to the With 3981 ** object that the returned CTE belongs to. 3982 */ 3983 static struct Cte *searchWith( 3984 With *pWith, /* Current outermost WITH clause */ 3985 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3986 With **ppContext /* OUT: WITH clause return value belongs to */ 3987 ){ 3988 const char *zName; 3989 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3990 With *p; 3991 for(p=pWith; p; p=p->pOuter){ 3992 int i; 3993 for(i=0; i<p->nCte; i++){ 3994 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3995 *ppContext = p; 3996 return &p->a[i]; 3997 } 3998 } 3999 } 4000 } 4001 return 0; 4002 } 4003 4004 /* The code generator maintains a stack of active WITH clauses 4005 ** with the inner-most WITH clause being at the top of the stack. 4006 ** 4007 ** This routine pushes the WITH clause passed as the second argument 4008 ** onto the top of the stack. If argument bFree is true, then this 4009 ** WITH clause will never be popped from the stack. In this case it 4010 ** should be freed along with the Parse object. In other cases, when 4011 ** bFree==0, the With object will be freed along with the SELECT 4012 ** statement with which it is associated. 4013 */ 4014 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4015 assert( bFree==0 || pParse->pWith==0 ); 4016 if( pWith ){ 4017 pWith->pOuter = pParse->pWith; 4018 pParse->pWith = pWith; 4019 pParse->bFreeWith = bFree; 4020 } 4021 } 4022 4023 /* 4024 ** This function checks if argument pFrom refers to a CTE declared by 4025 ** a WITH clause on the stack currently maintained by the parser. And, 4026 ** if currently processing a CTE expression, if it is a recursive 4027 ** reference to the current CTE. 4028 ** 4029 ** If pFrom falls into either of the two categories above, pFrom->pTab 4030 ** and other fields are populated accordingly. The caller should check 4031 ** (pFrom->pTab!=0) to determine whether or not a successful match 4032 ** was found. 4033 ** 4034 ** Whether or not a match is found, SQLITE_OK is returned if no error 4035 ** occurs. If an error does occur, an error message is stored in the 4036 ** parser and some error code other than SQLITE_OK returned. 4037 */ 4038 static int withExpand( 4039 Walker *pWalker, 4040 struct SrcList_item *pFrom 4041 ){ 4042 Parse *pParse = pWalker->pParse; 4043 sqlite3 *db = pParse->db; 4044 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4045 With *pWith; /* WITH clause that pCte belongs to */ 4046 4047 assert( pFrom->pTab==0 ); 4048 4049 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4050 if( pCte ){ 4051 Table *pTab; 4052 ExprList *pEList; 4053 Select *pSel; 4054 Select *pLeft; /* Left-most SELECT statement */ 4055 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4056 With *pSavedWith; /* Initial value of pParse->pWith */ 4057 4058 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4059 ** recursive reference to CTE pCte. Leave an error in pParse and return 4060 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4061 ** In this case, proceed. */ 4062 if( pCte->zCteErr ){ 4063 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4064 return SQLITE_ERROR; 4065 } 4066 4067 assert( pFrom->pTab==0 ); 4068 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4069 if( pTab==0 ) return WRC_Abort; 4070 pTab->nRef = 1; 4071 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4072 pTab->iPKey = -1; 4073 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4074 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4075 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4076 if( db->mallocFailed ) return SQLITE_NOMEM; 4077 assert( pFrom->pSelect ); 4078 4079 /* Check if this is a recursive CTE. */ 4080 pSel = pFrom->pSelect; 4081 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4082 if( bMayRecursive ){ 4083 int i; 4084 SrcList *pSrc = pFrom->pSelect->pSrc; 4085 for(i=0; i<pSrc->nSrc; i++){ 4086 struct SrcList_item *pItem = &pSrc->a[i]; 4087 if( pItem->zDatabase==0 4088 && pItem->zName!=0 4089 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4090 ){ 4091 pItem->pTab = pTab; 4092 pItem->fg.isRecursive = 1; 4093 pTab->nRef++; 4094 pSel->selFlags |= SF_Recursive; 4095 } 4096 } 4097 } 4098 4099 /* Only one recursive reference is permitted. */ 4100 if( pTab->nRef>2 ){ 4101 sqlite3ErrorMsg( 4102 pParse, "multiple references to recursive table: %s", pCte->zName 4103 ); 4104 return SQLITE_ERROR; 4105 } 4106 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4107 4108 pCte->zCteErr = "circular reference: %s"; 4109 pSavedWith = pParse->pWith; 4110 pParse->pWith = pWith; 4111 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4112 4113 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4114 pEList = pLeft->pEList; 4115 if( pCte->pCols ){ 4116 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4117 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4118 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4119 ); 4120 pParse->pWith = pSavedWith; 4121 return SQLITE_ERROR; 4122 } 4123 pEList = pCte->pCols; 4124 } 4125 4126 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4127 if( bMayRecursive ){ 4128 if( pSel->selFlags & SF_Recursive ){ 4129 pCte->zCteErr = "multiple recursive references: %s"; 4130 }else{ 4131 pCte->zCteErr = "recursive reference in a subquery: %s"; 4132 } 4133 sqlite3WalkSelect(pWalker, pSel); 4134 } 4135 pCte->zCteErr = 0; 4136 pParse->pWith = pSavedWith; 4137 } 4138 4139 return SQLITE_OK; 4140 } 4141 #endif 4142 4143 #ifndef SQLITE_OMIT_CTE 4144 /* 4145 ** If the SELECT passed as the second argument has an associated WITH 4146 ** clause, pop it from the stack stored as part of the Parse object. 4147 ** 4148 ** This function is used as the xSelectCallback2() callback by 4149 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4150 ** names and other FROM clause elements. 4151 */ 4152 static void selectPopWith(Walker *pWalker, Select *p){ 4153 Parse *pParse = pWalker->pParse; 4154 With *pWith = findRightmost(p)->pWith; 4155 if( pWith!=0 ){ 4156 assert( pParse->pWith==pWith ); 4157 pParse->pWith = pWith->pOuter; 4158 } 4159 } 4160 #else 4161 #define selectPopWith 0 4162 #endif 4163 4164 /* 4165 ** This routine is a Walker callback for "expanding" a SELECT statement. 4166 ** "Expanding" means to do the following: 4167 ** 4168 ** (1) Make sure VDBE cursor numbers have been assigned to every 4169 ** element of the FROM clause. 4170 ** 4171 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4172 ** defines FROM clause. When views appear in the FROM clause, 4173 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4174 ** that implements the view. A copy is made of the view's SELECT 4175 ** statement so that we can freely modify or delete that statement 4176 ** without worrying about messing up the persistent representation 4177 ** of the view. 4178 ** 4179 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4180 ** on joins and the ON and USING clause of joins. 4181 ** 4182 ** (4) Scan the list of columns in the result set (pEList) looking 4183 ** for instances of the "*" operator or the TABLE.* operator. 4184 ** If found, expand each "*" to be every column in every table 4185 ** and TABLE.* to be every column in TABLE. 4186 ** 4187 */ 4188 static int selectExpander(Walker *pWalker, Select *p){ 4189 Parse *pParse = pWalker->pParse; 4190 int i, j, k; 4191 SrcList *pTabList; 4192 ExprList *pEList; 4193 struct SrcList_item *pFrom; 4194 sqlite3 *db = pParse->db; 4195 Expr *pE, *pRight, *pExpr; 4196 u16 selFlags = p->selFlags; 4197 4198 p->selFlags |= SF_Expanded; 4199 if( db->mallocFailed ){ 4200 return WRC_Abort; 4201 } 4202 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4203 return WRC_Prune; 4204 } 4205 pTabList = p->pSrc; 4206 pEList = p->pEList; 4207 if( pWalker->xSelectCallback2==selectPopWith ){ 4208 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4209 } 4210 4211 /* Make sure cursor numbers have been assigned to all entries in 4212 ** the FROM clause of the SELECT statement. 4213 */ 4214 sqlite3SrcListAssignCursors(pParse, pTabList); 4215 4216 /* Look up every table named in the FROM clause of the select. If 4217 ** an entry of the FROM clause is a subquery instead of a table or view, 4218 ** then create a transient table structure to describe the subquery. 4219 */ 4220 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4221 Table *pTab; 4222 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4223 if( pFrom->fg.isRecursive ) continue; 4224 assert( pFrom->pTab==0 ); 4225 #ifndef SQLITE_OMIT_CTE 4226 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4227 if( pFrom->pTab ) {} else 4228 #endif 4229 if( pFrom->zName==0 ){ 4230 #ifndef SQLITE_OMIT_SUBQUERY 4231 Select *pSel = pFrom->pSelect; 4232 /* A sub-query in the FROM clause of a SELECT */ 4233 assert( pSel!=0 ); 4234 assert( pFrom->pTab==0 ); 4235 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4236 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4237 if( pTab==0 ) return WRC_Abort; 4238 pTab->nRef = 1; 4239 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4240 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4241 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4242 pTab->iPKey = -1; 4243 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4244 pTab->tabFlags |= TF_Ephemeral; 4245 #endif 4246 }else{ 4247 /* An ordinary table or view name in the FROM clause */ 4248 assert( pFrom->pTab==0 ); 4249 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4250 if( pTab==0 ) return WRC_Abort; 4251 if( pTab->nRef==0xffff ){ 4252 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4253 pTab->zName); 4254 pFrom->pTab = 0; 4255 return WRC_Abort; 4256 } 4257 pTab->nRef++; 4258 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4259 if( pTab->pSelect || IsVirtual(pTab) ){ 4260 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4261 assert( pFrom->pSelect==0 ); 4262 if( pFrom->fg.isTabFunc && !IsVirtual(pTab) ){ 4263 sqlite3ErrorMsg(pParse, "'%s' is not a function", pTab->zName); 4264 return WRC_Abort; 4265 } 4266 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4267 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4268 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4269 } 4270 #endif 4271 } 4272 4273 /* Locate the index named by the INDEXED BY clause, if any. */ 4274 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4275 return WRC_Abort; 4276 } 4277 } 4278 4279 /* Process NATURAL keywords, and ON and USING clauses of joins. 4280 */ 4281 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4282 return WRC_Abort; 4283 } 4284 4285 /* For every "*" that occurs in the column list, insert the names of 4286 ** all columns in all tables. And for every TABLE.* insert the names 4287 ** of all columns in TABLE. The parser inserted a special expression 4288 ** with the TK_ALL operator for each "*" that it found in the column list. 4289 ** The following code just has to locate the TK_ALL expressions and expand 4290 ** each one to the list of all columns in all tables. 4291 ** 4292 ** The first loop just checks to see if there are any "*" operators 4293 ** that need expanding. 4294 */ 4295 for(k=0; k<pEList->nExpr; k++){ 4296 pE = pEList->a[k].pExpr; 4297 if( pE->op==TK_ALL ) break; 4298 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4299 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4300 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4301 } 4302 if( k<pEList->nExpr ){ 4303 /* 4304 ** If we get here it means the result set contains one or more "*" 4305 ** operators that need to be expanded. Loop through each expression 4306 ** in the result set and expand them one by one. 4307 */ 4308 struct ExprList_item *a = pEList->a; 4309 ExprList *pNew = 0; 4310 int flags = pParse->db->flags; 4311 int longNames = (flags & SQLITE_FullColNames)!=0 4312 && (flags & SQLITE_ShortColNames)==0; 4313 4314 for(k=0; k<pEList->nExpr; k++){ 4315 pE = a[k].pExpr; 4316 pRight = pE->pRight; 4317 assert( pE->op!=TK_DOT || pRight!=0 ); 4318 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4319 /* This particular expression does not need to be expanded. 4320 */ 4321 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4322 if( pNew ){ 4323 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4324 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4325 a[k].zName = 0; 4326 a[k].zSpan = 0; 4327 } 4328 a[k].pExpr = 0; 4329 }else{ 4330 /* This expression is a "*" or a "TABLE.*" and needs to be 4331 ** expanded. */ 4332 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4333 char *zTName = 0; /* text of name of TABLE */ 4334 if( pE->op==TK_DOT ){ 4335 assert( pE->pLeft!=0 ); 4336 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4337 zTName = pE->pLeft->u.zToken; 4338 } 4339 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4340 Table *pTab = pFrom->pTab; 4341 Select *pSub = pFrom->pSelect; 4342 char *zTabName = pFrom->zAlias; 4343 const char *zSchemaName = 0; 4344 int iDb; 4345 if( zTabName==0 ){ 4346 zTabName = pTab->zName; 4347 } 4348 if( db->mallocFailed ) break; 4349 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4350 pSub = 0; 4351 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4352 continue; 4353 } 4354 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4355 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4356 } 4357 for(j=0; j<pTab->nCol; j++){ 4358 char *zName = pTab->aCol[j].zName; 4359 char *zColname; /* The computed column name */ 4360 char *zToFree; /* Malloced string that needs to be freed */ 4361 Token sColname; /* Computed column name as a token */ 4362 4363 assert( zName ); 4364 if( zTName && pSub 4365 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4366 ){ 4367 continue; 4368 } 4369 4370 /* If a column is marked as 'hidden' (currently only possible 4371 ** for virtual tables), do not include it in the expanded 4372 ** result-set list. 4373 */ 4374 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4375 assert(IsVirtual(pTab)); 4376 continue; 4377 } 4378 tableSeen = 1; 4379 4380 if( i>0 && zTName==0 ){ 4381 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4382 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4383 ){ 4384 /* In a NATURAL join, omit the join columns from the 4385 ** table to the right of the join */ 4386 continue; 4387 } 4388 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4389 /* In a join with a USING clause, omit columns in the 4390 ** using clause from the table on the right. */ 4391 continue; 4392 } 4393 } 4394 pRight = sqlite3Expr(db, TK_ID, zName); 4395 zColname = zName; 4396 zToFree = 0; 4397 if( longNames || pTabList->nSrc>1 ){ 4398 Expr *pLeft; 4399 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4400 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4401 if( zSchemaName ){ 4402 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4403 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4404 } 4405 if( longNames ){ 4406 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4407 zToFree = zColname; 4408 } 4409 }else{ 4410 pExpr = pRight; 4411 } 4412 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4413 sColname.z = zColname; 4414 sColname.n = sqlite3Strlen30(zColname); 4415 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4416 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4417 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4418 if( pSub ){ 4419 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4420 testcase( pX->zSpan==0 ); 4421 }else{ 4422 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4423 zSchemaName, zTabName, zColname); 4424 testcase( pX->zSpan==0 ); 4425 } 4426 pX->bSpanIsTab = 1; 4427 } 4428 sqlite3DbFree(db, zToFree); 4429 } 4430 } 4431 if( !tableSeen ){ 4432 if( zTName ){ 4433 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4434 }else{ 4435 sqlite3ErrorMsg(pParse, "no tables specified"); 4436 } 4437 } 4438 } 4439 } 4440 sqlite3ExprListDelete(db, pEList); 4441 p->pEList = pNew; 4442 } 4443 #if SQLITE_MAX_COLUMN 4444 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4445 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4446 } 4447 #endif 4448 return WRC_Continue; 4449 } 4450 4451 /* 4452 ** No-op routine for the parse-tree walker. 4453 ** 4454 ** When this routine is the Walker.xExprCallback then expression trees 4455 ** are walked without any actions being taken at each node. Presumably, 4456 ** when this routine is used for Walker.xExprCallback then 4457 ** Walker.xSelectCallback is set to do something useful for every 4458 ** subquery in the parser tree. 4459 */ 4460 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4461 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4462 return WRC_Continue; 4463 } 4464 4465 /* 4466 ** This routine "expands" a SELECT statement and all of its subqueries. 4467 ** For additional information on what it means to "expand" a SELECT 4468 ** statement, see the comment on the selectExpand worker callback above. 4469 ** 4470 ** Expanding a SELECT statement is the first step in processing a 4471 ** SELECT statement. The SELECT statement must be expanded before 4472 ** name resolution is performed. 4473 ** 4474 ** If anything goes wrong, an error message is written into pParse. 4475 ** The calling function can detect the problem by looking at pParse->nErr 4476 ** and/or pParse->db->mallocFailed. 4477 */ 4478 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4479 Walker w; 4480 memset(&w, 0, sizeof(w)); 4481 w.xExprCallback = exprWalkNoop; 4482 w.pParse = pParse; 4483 if( pParse->hasCompound ){ 4484 w.xSelectCallback = convertCompoundSelectToSubquery; 4485 sqlite3WalkSelect(&w, pSelect); 4486 } 4487 w.xSelectCallback = selectExpander; 4488 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4489 w.xSelectCallback2 = selectPopWith; 4490 } 4491 sqlite3WalkSelect(&w, pSelect); 4492 } 4493 4494 4495 #ifndef SQLITE_OMIT_SUBQUERY 4496 /* 4497 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4498 ** interface. 4499 ** 4500 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4501 ** information to the Table structure that represents the result set 4502 ** of that subquery. 4503 ** 4504 ** The Table structure that represents the result set was constructed 4505 ** by selectExpander() but the type and collation information was omitted 4506 ** at that point because identifiers had not yet been resolved. This 4507 ** routine is called after identifier resolution. 4508 */ 4509 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4510 Parse *pParse; 4511 int i; 4512 SrcList *pTabList; 4513 struct SrcList_item *pFrom; 4514 4515 assert( p->selFlags & SF_Resolved ); 4516 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4517 p->selFlags |= SF_HasTypeInfo; 4518 pParse = pWalker->pParse; 4519 pTabList = p->pSrc; 4520 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4521 Table *pTab = pFrom->pTab; 4522 assert( pTab!=0 ); 4523 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4524 /* A sub-query in the FROM clause of a SELECT */ 4525 Select *pSel = pFrom->pSelect; 4526 if( pSel ){ 4527 while( pSel->pPrior ) pSel = pSel->pPrior; 4528 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4529 } 4530 } 4531 } 4532 } 4533 #endif 4534 4535 4536 /* 4537 ** This routine adds datatype and collating sequence information to 4538 ** the Table structures of all FROM-clause subqueries in a 4539 ** SELECT statement. 4540 ** 4541 ** Use this routine after name resolution. 4542 */ 4543 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4544 #ifndef SQLITE_OMIT_SUBQUERY 4545 Walker w; 4546 memset(&w, 0, sizeof(w)); 4547 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4548 w.xExprCallback = exprWalkNoop; 4549 w.pParse = pParse; 4550 sqlite3WalkSelect(&w, pSelect); 4551 #endif 4552 } 4553 4554 4555 /* 4556 ** This routine sets up a SELECT statement for processing. The 4557 ** following is accomplished: 4558 ** 4559 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4560 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4561 ** * ON and USING clauses are shifted into WHERE statements 4562 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4563 ** * Identifiers in expression are matched to tables. 4564 ** 4565 ** This routine acts recursively on all subqueries within the SELECT. 4566 */ 4567 void sqlite3SelectPrep( 4568 Parse *pParse, /* The parser context */ 4569 Select *p, /* The SELECT statement being coded. */ 4570 NameContext *pOuterNC /* Name context for container */ 4571 ){ 4572 sqlite3 *db; 4573 if( NEVER(p==0) ) return; 4574 db = pParse->db; 4575 if( db->mallocFailed ) return; 4576 if( p->selFlags & SF_HasTypeInfo ) return; 4577 sqlite3SelectExpand(pParse, p); 4578 if( pParse->nErr || db->mallocFailed ) return; 4579 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4580 if( pParse->nErr || db->mallocFailed ) return; 4581 sqlite3SelectAddTypeInfo(pParse, p); 4582 } 4583 4584 /* 4585 ** Reset the aggregate accumulator. 4586 ** 4587 ** The aggregate accumulator is a set of memory cells that hold 4588 ** intermediate results while calculating an aggregate. This 4589 ** routine generates code that stores NULLs in all of those memory 4590 ** cells. 4591 */ 4592 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4593 Vdbe *v = pParse->pVdbe; 4594 int i; 4595 struct AggInfo_func *pFunc; 4596 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4597 if( nReg==0 ) return; 4598 #ifdef SQLITE_DEBUG 4599 /* Verify that all AggInfo registers are within the range specified by 4600 ** AggInfo.mnReg..AggInfo.mxReg */ 4601 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4602 for(i=0; i<pAggInfo->nColumn; i++){ 4603 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4604 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4605 } 4606 for(i=0; i<pAggInfo->nFunc; i++){ 4607 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4608 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4609 } 4610 #endif 4611 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4612 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4613 if( pFunc->iDistinct>=0 ){ 4614 Expr *pE = pFunc->pExpr; 4615 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4616 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4617 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4618 "argument"); 4619 pFunc->iDistinct = -1; 4620 }else{ 4621 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4622 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4623 (char*)pKeyInfo, P4_KEYINFO); 4624 } 4625 } 4626 } 4627 } 4628 4629 /* 4630 ** Invoke the OP_AggFinalize opcode for every aggregate function 4631 ** in the AggInfo structure. 4632 */ 4633 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4634 Vdbe *v = pParse->pVdbe; 4635 int i; 4636 struct AggInfo_func *pF; 4637 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4638 ExprList *pList = pF->pExpr->x.pList; 4639 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4640 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4641 (void*)pF->pFunc, P4_FUNCDEF); 4642 } 4643 } 4644 4645 /* 4646 ** Update the accumulator memory cells for an aggregate based on 4647 ** the current cursor position. 4648 */ 4649 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4650 Vdbe *v = pParse->pVdbe; 4651 int i; 4652 int regHit = 0; 4653 int addrHitTest = 0; 4654 struct AggInfo_func *pF; 4655 struct AggInfo_col *pC; 4656 4657 pAggInfo->directMode = 1; 4658 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4659 int nArg; 4660 int addrNext = 0; 4661 int regAgg; 4662 ExprList *pList = pF->pExpr->x.pList; 4663 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4664 if( pList ){ 4665 nArg = pList->nExpr; 4666 regAgg = sqlite3GetTempRange(pParse, nArg); 4667 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4668 }else{ 4669 nArg = 0; 4670 regAgg = 0; 4671 } 4672 if( pF->iDistinct>=0 ){ 4673 addrNext = sqlite3VdbeMakeLabel(v); 4674 testcase( nArg==0 ); /* Error condition */ 4675 testcase( nArg>1 ); /* Also an error */ 4676 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4677 } 4678 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4679 CollSeq *pColl = 0; 4680 struct ExprList_item *pItem; 4681 int j; 4682 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4683 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4684 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4685 } 4686 if( !pColl ){ 4687 pColl = pParse->db->pDfltColl; 4688 } 4689 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4690 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4691 } 4692 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4693 (void*)pF->pFunc, P4_FUNCDEF); 4694 sqlite3VdbeChangeP5(v, (u8)nArg); 4695 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4696 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4697 if( addrNext ){ 4698 sqlite3VdbeResolveLabel(v, addrNext); 4699 sqlite3ExprCacheClear(pParse); 4700 } 4701 } 4702 4703 /* Before populating the accumulator registers, clear the column cache. 4704 ** Otherwise, if any of the required column values are already present 4705 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4706 ** to pC->iMem. But by the time the value is used, the original register 4707 ** may have been used, invalidating the underlying buffer holding the 4708 ** text or blob value. See ticket [883034dcb5]. 4709 ** 4710 ** Another solution would be to change the OP_SCopy used to copy cached 4711 ** values to an OP_Copy. 4712 */ 4713 if( regHit ){ 4714 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4715 } 4716 sqlite3ExprCacheClear(pParse); 4717 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4718 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4719 } 4720 pAggInfo->directMode = 0; 4721 sqlite3ExprCacheClear(pParse); 4722 if( addrHitTest ){ 4723 sqlite3VdbeJumpHere(v, addrHitTest); 4724 } 4725 } 4726 4727 /* 4728 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4729 ** count(*) query ("SELECT count(*) FROM pTab"). 4730 */ 4731 #ifndef SQLITE_OMIT_EXPLAIN 4732 static void explainSimpleCount( 4733 Parse *pParse, /* Parse context */ 4734 Table *pTab, /* Table being queried */ 4735 Index *pIdx /* Index used to optimize scan, or NULL */ 4736 ){ 4737 if( pParse->explain==2 ){ 4738 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4739 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4740 pTab->zName, 4741 bCover ? " USING COVERING INDEX " : "", 4742 bCover ? pIdx->zName : "" 4743 ); 4744 sqlite3VdbeAddOp4( 4745 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4746 ); 4747 } 4748 } 4749 #else 4750 # define explainSimpleCount(a,b,c) 4751 #endif 4752 4753 /* 4754 ** Generate code for the SELECT statement given in the p argument. 4755 ** 4756 ** The results are returned according to the SelectDest structure. 4757 ** See comments in sqliteInt.h for further information. 4758 ** 4759 ** This routine returns the number of errors. If any errors are 4760 ** encountered, then an appropriate error message is left in 4761 ** pParse->zErrMsg. 4762 ** 4763 ** This routine does NOT free the Select structure passed in. The 4764 ** calling function needs to do that. 4765 */ 4766 int sqlite3Select( 4767 Parse *pParse, /* The parser context */ 4768 Select *p, /* The SELECT statement being coded. */ 4769 SelectDest *pDest /* What to do with the query results */ 4770 ){ 4771 int i, j; /* Loop counters */ 4772 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4773 Vdbe *v; /* The virtual machine under construction */ 4774 int isAgg; /* True for select lists like "count(*)" */ 4775 ExprList *pEList = 0; /* List of columns to extract. */ 4776 SrcList *pTabList; /* List of tables to select from */ 4777 Expr *pWhere; /* The WHERE clause. May be NULL */ 4778 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4779 Expr *pHaving; /* The HAVING clause. May be NULL */ 4780 int rc = 1; /* Value to return from this function */ 4781 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4782 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4783 AggInfo sAggInfo; /* Information used by aggregate queries */ 4784 int iEnd; /* Address of the end of the query */ 4785 sqlite3 *db; /* The database connection */ 4786 4787 #ifndef SQLITE_OMIT_EXPLAIN 4788 int iRestoreSelectId = pParse->iSelectId; 4789 pParse->iSelectId = pParse->iNextSelectId++; 4790 #endif 4791 4792 db = pParse->db; 4793 if( p==0 || db->mallocFailed || pParse->nErr ){ 4794 return 1; 4795 } 4796 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4797 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4798 #if SELECTTRACE_ENABLED 4799 pParse->nSelectIndent++; 4800 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4801 if( sqlite3SelectTrace & 0x100 ){ 4802 sqlite3TreeViewSelect(0, p, 0); 4803 } 4804 #endif 4805 4806 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4807 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4808 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4809 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4810 if( IgnorableOrderby(pDest) ){ 4811 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4812 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4813 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4814 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4815 /* If ORDER BY makes no difference in the output then neither does 4816 ** DISTINCT so it can be removed too. */ 4817 sqlite3ExprListDelete(db, p->pOrderBy); 4818 p->pOrderBy = 0; 4819 p->selFlags &= ~SF_Distinct; 4820 } 4821 sqlite3SelectPrep(pParse, p, 0); 4822 memset(&sSort, 0, sizeof(sSort)); 4823 sSort.pOrderBy = p->pOrderBy; 4824 pTabList = p->pSrc; 4825 if( pParse->nErr || db->mallocFailed ){ 4826 goto select_end; 4827 } 4828 assert( p->pEList!=0 ); 4829 isAgg = (p->selFlags & SF_Aggregate)!=0; 4830 #if SELECTTRACE_ENABLED 4831 if( sqlite3SelectTrace & 0x100 ){ 4832 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4833 sqlite3TreeViewSelect(0, p, 0); 4834 } 4835 #endif 4836 4837 4838 /* If writing to memory or generating a set 4839 ** only a single column may be output. 4840 */ 4841 #ifndef SQLITE_OMIT_SUBQUERY 4842 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4843 goto select_end; 4844 } 4845 #endif 4846 4847 /* Try to flatten subqueries in the FROM clause up into the main query 4848 */ 4849 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4850 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4851 struct SrcList_item *pItem = &pTabList->a[i]; 4852 Select *pSub = pItem->pSelect; 4853 int isAggSub; 4854 Table *pTab = pItem->pTab; 4855 if( pSub==0 ) continue; 4856 4857 /* Catch mismatch in the declared columns of a view and the number of 4858 ** columns in the SELECT on the RHS */ 4859 if( pTab->nCol!=pSub->pEList->nExpr ){ 4860 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4861 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4862 goto select_end; 4863 } 4864 4865 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4866 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4867 /* This subquery can be absorbed into its parent. */ 4868 if( isAggSub ){ 4869 isAgg = 1; 4870 p->selFlags |= SF_Aggregate; 4871 } 4872 i = -1; 4873 } 4874 pTabList = p->pSrc; 4875 if( db->mallocFailed ) goto select_end; 4876 if( !IgnorableOrderby(pDest) ){ 4877 sSort.pOrderBy = p->pOrderBy; 4878 } 4879 } 4880 #endif 4881 4882 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4883 ** does not already exist */ 4884 v = sqlite3GetVdbe(pParse); 4885 if( v==0 ) goto select_end; 4886 4887 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4888 /* Handle compound SELECT statements using the separate multiSelect() 4889 ** procedure. 4890 */ 4891 if( p->pPrior ){ 4892 rc = multiSelect(pParse, p, pDest); 4893 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4894 #if SELECTTRACE_ENABLED 4895 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4896 pParse->nSelectIndent--; 4897 #endif 4898 return rc; 4899 } 4900 #endif 4901 4902 /* Generate code for all sub-queries in the FROM clause 4903 */ 4904 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4905 for(i=0; i<pTabList->nSrc; i++){ 4906 struct SrcList_item *pItem = &pTabList->a[i]; 4907 SelectDest dest; 4908 Select *pSub = pItem->pSelect; 4909 if( pSub==0 ) continue; 4910 4911 /* Sometimes the code for a subquery will be generated more than 4912 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4913 ** for example. In that case, do not regenerate the code to manifest 4914 ** a view or the co-routine to implement a view. The first instance 4915 ** is sufficient, though the subroutine to manifest the view does need 4916 ** to be invoked again. */ 4917 if( pItem->addrFillSub ){ 4918 if( pItem->fg.viaCoroutine==0 ){ 4919 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4920 } 4921 continue; 4922 } 4923 4924 /* Increment Parse.nHeight by the height of the largest expression 4925 ** tree referred to by this, the parent select. The child select 4926 ** may contain expression trees of at most 4927 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4928 ** more conservative than necessary, but much easier than enforcing 4929 ** an exact limit. 4930 */ 4931 pParse->nHeight += sqlite3SelectExprHeight(p); 4932 4933 /* Make copies of constant WHERE-clause terms in the outer query down 4934 ** inside the subquery. This can help the subquery to run more efficiently. 4935 */ 4936 if( (pItem->fg.jointype & JT_OUTER)==0 4937 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4938 ){ 4939 #if SELECTTRACE_ENABLED 4940 if( sqlite3SelectTrace & 0x100 ){ 4941 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4942 sqlite3TreeViewSelect(0, p, 0); 4943 } 4944 #endif 4945 } 4946 4947 /* Generate code to implement the subquery 4948 */ 4949 if( pTabList->nSrc==1 4950 && (p->selFlags & SF_All)==0 4951 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4952 ){ 4953 /* Implement a co-routine that will return a single row of the result 4954 ** set on each invocation. 4955 */ 4956 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4957 pItem->regReturn = ++pParse->nMem; 4958 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4959 VdbeComment((v, "%s", pItem->pTab->zName)); 4960 pItem->addrFillSub = addrTop; 4961 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4962 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4963 sqlite3Select(pParse, pSub, &dest); 4964 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4965 pItem->fg.viaCoroutine = 1; 4966 pItem->regResult = dest.iSdst; 4967 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4968 sqlite3VdbeJumpHere(v, addrTop-1); 4969 sqlite3ClearTempRegCache(pParse); 4970 }else{ 4971 /* Generate a subroutine that will fill an ephemeral table with 4972 ** the content of this subquery. pItem->addrFillSub will point 4973 ** to the address of the generated subroutine. pItem->regReturn 4974 ** is a register allocated to hold the subroutine return address 4975 */ 4976 int topAddr; 4977 int onceAddr = 0; 4978 int retAddr; 4979 assert( pItem->addrFillSub==0 ); 4980 pItem->regReturn = ++pParse->nMem; 4981 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4982 pItem->addrFillSub = topAddr+1; 4983 if( pItem->fg.isCorrelated==0 ){ 4984 /* If the subquery is not correlated and if we are not inside of 4985 ** a trigger, then we only need to compute the value of the subquery 4986 ** once. */ 4987 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4988 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4989 }else{ 4990 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4991 } 4992 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4993 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4994 sqlite3Select(pParse, pSub, &dest); 4995 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4996 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4997 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4998 VdbeComment((v, "end %s", pItem->pTab->zName)); 4999 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5000 sqlite3ClearTempRegCache(pParse); 5001 } 5002 if( db->mallocFailed ) goto select_end; 5003 pParse->nHeight -= sqlite3SelectExprHeight(p); 5004 } 5005 #endif 5006 5007 /* Various elements of the SELECT copied into local variables for 5008 ** convenience */ 5009 pEList = p->pEList; 5010 pWhere = p->pWhere; 5011 pGroupBy = p->pGroupBy; 5012 pHaving = p->pHaving; 5013 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5014 5015 #if SELECTTRACE_ENABLED 5016 if( sqlite3SelectTrace & 0x400 ){ 5017 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5018 sqlite3TreeViewSelect(0, p, 0); 5019 } 5020 #endif 5021 5022 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5023 ** if the select-list is the same as the ORDER BY list, then this query 5024 ** can be rewritten as a GROUP BY. In other words, this: 5025 ** 5026 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5027 ** 5028 ** is transformed to: 5029 ** 5030 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5031 ** 5032 ** The second form is preferred as a single index (or temp-table) may be 5033 ** used for both the ORDER BY and DISTINCT processing. As originally 5034 ** written the query must use a temp-table for at least one of the ORDER 5035 ** BY and DISTINCT, and an index or separate temp-table for the other. 5036 */ 5037 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5038 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5039 ){ 5040 p->selFlags &= ~SF_Distinct; 5041 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5042 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5043 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5044 ** original setting of the SF_Distinct flag, not the current setting */ 5045 assert( sDistinct.isTnct ); 5046 } 5047 5048 /* If there is an ORDER BY clause, then create an ephemeral index to 5049 ** do the sorting. But this sorting ephemeral index might end up 5050 ** being unused if the data can be extracted in pre-sorted order. 5051 ** If that is the case, then the OP_OpenEphemeral instruction will be 5052 ** changed to an OP_Noop once we figure out that the sorting index is 5053 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5054 ** that change. 5055 */ 5056 if( sSort.pOrderBy ){ 5057 KeyInfo *pKeyInfo; 5058 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5059 sSort.iECursor = pParse->nTab++; 5060 sSort.addrSortIndex = 5061 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5062 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5063 (char*)pKeyInfo, P4_KEYINFO 5064 ); 5065 }else{ 5066 sSort.addrSortIndex = -1; 5067 } 5068 5069 /* If the output is destined for a temporary table, open that table. 5070 */ 5071 if( pDest->eDest==SRT_EphemTab ){ 5072 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5073 } 5074 5075 /* Set the limiter. 5076 */ 5077 iEnd = sqlite3VdbeMakeLabel(v); 5078 p->nSelectRow = LARGEST_INT64; 5079 computeLimitRegisters(pParse, p, iEnd); 5080 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5081 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5082 sSort.sortFlags |= SORTFLAG_UseSorter; 5083 } 5084 5085 /* Open an ephemeral index to use for the distinct set. 5086 */ 5087 if( p->selFlags & SF_Distinct ){ 5088 sDistinct.tabTnct = pParse->nTab++; 5089 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5090 sDistinct.tabTnct, 0, 0, 5091 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5092 P4_KEYINFO); 5093 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5094 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5095 }else{ 5096 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5097 } 5098 5099 if( !isAgg && pGroupBy==0 ){ 5100 /* No aggregate functions and no GROUP BY clause */ 5101 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5102 5103 /* Begin the database scan. */ 5104 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5105 p->pEList, wctrlFlags, 0); 5106 if( pWInfo==0 ) goto select_end; 5107 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5108 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5109 } 5110 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5111 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5112 } 5113 if( sSort.pOrderBy ){ 5114 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5115 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5116 sSort.pOrderBy = 0; 5117 } 5118 } 5119 5120 /* If sorting index that was created by a prior OP_OpenEphemeral 5121 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5122 ** into an OP_Noop. 5123 */ 5124 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5125 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5126 } 5127 5128 /* Use the standard inner loop. */ 5129 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5130 sqlite3WhereContinueLabel(pWInfo), 5131 sqlite3WhereBreakLabel(pWInfo)); 5132 5133 /* End the database scan loop. 5134 */ 5135 sqlite3WhereEnd(pWInfo); 5136 }else{ 5137 /* This case when there exist aggregate functions or a GROUP BY clause 5138 ** or both */ 5139 NameContext sNC; /* Name context for processing aggregate information */ 5140 int iAMem; /* First Mem address for storing current GROUP BY */ 5141 int iBMem; /* First Mem address for previous GROUP BY */ 5142 int iUseFlag; /* Mem address holding flag indicating that at least 5143 ** one row of the input to the aggregator has been 5144 ** processed */ 5145 int iAbortFlag; /* Mem address which causes query abort if positive */ 5146 int groupBySort; /* Rows come from source in GROUP BY order */ 5147 int addrEnd; /* End of processing for this SELECT */ 5148 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5149 int sortOut = 0; /* Output register from the sorter */ 5150 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5151 5152 /* Remove any and all aliases between the result set and the 5153 ** GROUP BY clause. 5154 */ 5155 if( pGroupBy ){ 5156 int k; /* Loop counter */ 5157 struct ExprList_item *pItem; /* For looping over expression in a list */ 5158 5159 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5160 pItem->u.x.iAlias = 0; 5161 } 5162 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5163 pItem->u.x.iAlias = 0; 5164 } 5165 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5166 }else{ 5167 p->nSelectRow = 1; 5168 } 5169 5170 /* If there is both a GROUP BY and an ORDER BY clause and they are 5171 ** identical, then it may be possible to disable the ORDER BY clause 5172 ** on the grounds that the GROUP BY will cause elements to come out 5173 ** in the correct order. It also may not - the GROUP BY might use a 5174 ** database index that causes rows to be grouped together as required 5175 ** but not actually sorted. Either way, record the fact that the 5176 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5177 ** variable. */ 5178 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5179 orderByGrp = 1; 5180 } 5181 5182 /* Create a label to jump to when we want to abort the query */ 5183 addrEnd = sqlite3VdbeMakeLabel(v); 5184 5185 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5186 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5187 ** SELECT statement. 5188 */ 5189 memset(&sNC, 0, sizeof(sNC)); 5190 sNC.pParse = pParse; 5191 sNC.pSrcList = pTabList; 5192 sNC.pAggInfo = &sAggInfo; 5193 sAggInfo.mnReg = pParse->nMem+1; 5194 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5195 sAggInfo.pGroupBy = pGroupBy; 5196 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5197 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5198 if( pHaving ){ 5199 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5200 } 5201 sAggInfo.nAccumulator = sAggInfo.nColumn; 5202 for(i=0; i<sAggInfo.nFunc; i++){ 5203 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5204 sNC.ncFlags |= NC_InAggFunc; 5205 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5206 sNC.ncFlags &= ~NC_InAggFunc; 5207 } 5208 sAggInfo.mxReg = pParse->nMem; 5209 if( db->mallocFailed ) goto select_end; 5210 5211 /* Processing for aggregates with GROUP BY is very different and 5212 ** much more complex than aggregates without a GROUP BY. 5213 */ 5214 if( pGroupBy ){ 5215 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5216 int j1; /* A-vs-B comparision jump */ 5217 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5218 int regOutputRow; /* Return address register for output subroutine */ 5219 int addrSetAbort; /* Set the abort flag and return */ 5220 int addrTopOfLoop; /* Top of the input loop */ 5221 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5222 int addrReset; /* Subroutine for resetting the accumulator */ 5223 int regReset; /* Return address register for reset subroutine */ 5224 5225 /* If there is a GROUP BY clause we might need a sorting index to 5226 ** implement it. Allocate that sorting index now. If it turns out 5227 ** that we do not need it after all, the OP_SorterOpen instruction 5228 ** will be converted into a Noop. 5229 */ 5230 sAggInfo.sortingIdx = pParse->nTab++; 5231 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5232 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5233 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5234 0, (char*)pKeyInfo, P4_KEYINFO); 5235 5236 /* Initialize memory locations used by GROUP BY aggregate processing 5237 */ 5238 iUseFlag = ++pParse->nMem; 5239 iAbortFlag = ++pParse->nMem; 5240 regOutputRow = ++pParse->nMem; 5241 addrOutputRow = sqlite3VdbeMakeLabel(v); 5242 regReset = ++pParse->nMem; 5243 addrReset = sqlite3VdbeMakeLabel(v); 5244 iAMem = pParse->nMem + 1; 5245 pParse->nMem += pGroupBy->nExpr; 5246 iBMem = pParse->nMem + 1; 5247 pParse->nMem += pGroupBy->nExpr; 5248 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5249 VdbeComment((v, "clear abort flag")); 5250 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5251 VdbeComment((v, "indicate accumulator empty")); 5252 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5253 5254 /* Begin a loop that will extract all source rows in GROUP BY order. 5255 ** This might involve two separate loops with an OP_Sort in between, or 5256 ** it might be a single loop that uses an index to extract information 5257 ** in the right order to begin with. 5258 */ 5259 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5260 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5261 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5262 ); 5263 if( pWInfo==0 ) goto select_end; 5264 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5265 /* The optimizer is able to deliver rows in group by order so 5266 ** we do not have to sort. The OP_OpenEphemeral table will be 5267 ** cancelled later because we still need to use the pKeyInfo 5268 */ 5269 groupBySort = 0; 5270 }else{ 5271 /* Rows are coming out in undetermined order. We have to push 5272 ** each row into a sorting index, terminate the first loop, 5273 ** then loop over the sorting index in order to get the output 5274 ** in sorted order 5275 */ 5276 int regBase; 5277 int regRecord; 5278 int nCol; 5279 int nGroupBy; 5280 5281 explainTempTable(pParse, 5282 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5283 "DISTINCT" : "GROUP BY"); 5284 5285 groupBySort = 1; 5286 nGroupBy = pGroupBy->nExpr; 5287 nCol = nGroupBy; 5288 j = nGroupBy; 5289 for(i=0; i<sAggInfo.nColumn; i++){ 5290 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5291 nCol++; 5292 j++; 5293 } 5294 } 5295 regBase = sqlite3GetTempRange(pParse, nCol); 5296 sqlite3ExprCacheClear(pParse); 5297 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5298 j = nGroupBy; 5299 for(i=0; i<sAggInfo.nColumn; i++){ 5300 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5301 if( pCol->iSorterColumn>=j ){ 5302 int r1 = j + regBase; 5303 int r2; 5304 5305 r2 = sqlite3ExprCodeGetColumn(pParse, 5306 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5307 if( r1!=r2 ){ 5308 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5309 } 5310 j++; 5311 } 5312 } 5313 regRecord = sqlite3GetTempReg(pParse); 5314 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5315 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5316 sqlite3ReleaseTempReg(pParse, regRecord); 5317 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5318 sqlite3WhereEnd(pWInfo); 5319 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5320 sortOut = sqlite3GetTempReg(pParse); 5321 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5322 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5323 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5324 sAggInfo.useSortingIdx = 1; 5325 sqlite3ExprCacheClear(pParse); 5326 5327 } 5328 5329 /* If the index or temporary table used by the GROUP BY sort 5330 ** will naturally deliver rows in the order required by the ORDER BY 5331 ** clause, cancel the ephemeral table open coded earlier. 5332 ** 5333 ** This is an optimization - the correct answer should result regardless. 5334 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5335 ** disable this optimization for testing purposes. */ 5336 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5337 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5338 ){ 5339 sSort.pOrderBy = 0; 5340 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5341 } 5342 5343 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5344 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5345 ** Then compare the current GROUP BY terms against the GROUP BY terms 5346 ** from the previous row currently stored in a0, a1, a2... 5347 */ 5348 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5349 sqlite3ExprCacheClear(pParse); 5350 if( groupBySort ){ 5351 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5352 sortOut, sortPTab); 5353 } 5354 for(j=0; j<pGroupBy->nExpr; j++){ 5355 if( groupBySort ){ 5356 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5357 }else{ 5358 sAggInfo.directMode = 1; 5359 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5360 } 5361 } 5362 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5363 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5364 j1 = sqlite3VdbeCurrentAddr(v); 5365 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5366 5367 /* Generate code that runs whenever the GROUP BY changes. 5368 ** Changes in the GROUP BY are detected by the previous code 5369 ** block. If there were no changes, this block is skipped. 5370 ** 5371 ** This code copies current group by terms in b0,b1,b2,... 5372 ** over to a0,a1,a2. It then calls the output subroutine 5373 ** and resets the aggregate accumulator registers in preparation 5374 ** for the next GROUP BY batch. 5375 */ 5376 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5377 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5378 VdbeComment((v, "output one row")); 5379 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5380 VdbeComment((v, "check abort flag")); 5381 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5382 VdbeComment((v, "reset accumulator")); 5383 5384 /* Update the aggregate accumulators based on the content of 5385 ** the current row 5386 */ 5387 sqlite3VdbeJumpHere(v, j1); 5388 updateAccumulator(pParse, &sAggInfo); 5389 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5390 VdbeComment((v, "indicate data in accumulator")); 5391 5392 /* End of the loop 5393 */ 5394 if( groupBySort ){ 5395 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5396 VdbeCoverage(v); 5397 }else{ 5398 sqlite3WhereEnd(pWInfo); 5399 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5400 } 5401 5402 /* Output the final row of result 5403 */ 5404 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5405 VdbeComment((v, "output final row")); 5406 5407 /* Jump over the subroutines 5408 */ 5409 sqlite3VdbeGoto(v, addrEnd); 5410 5411 /* Generate a subroutine that outputs a single row of the result 5412 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5413 ** is less than or equal to zero, the subroutine is a no-op. If 5414 ** the processing calls for the query to abort, this subroutine 5415 ** increments the iAbortFlag memory location before returning in 5416 ** order to signal the caller to abort. 5417 */ 5418 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5419 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5420 VdbeComment((v, "set abort flag")); 5421 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5422 sqlite3VdbeResolveLabel(v, addrOutputRow); 5423 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5424 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5425 VdbeCoverage(v); 5426 VdbeComment((v, "Groupby result generator entry point")); 5427 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5428 finalizeAggFunctions(pParse, &sAggInfo); 5429 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5430 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5431 &sDistinct, pDest, 5432 addrOutputRow+1, addrSetAbort); 5433 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5434 VdbeComment((v, "end groupby result generator")); 5435 5436 /* Generate a subroutine that will reset the group-by accumulator 5437 */ 5438 sqlite3VdbeResolveLabel(v, addrReset); 5439 resetAccumulator(pParse, &sAggInfo); 5440 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5441 5442 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5443 else { 5444 ExprList *pDel = 0; 5445 #ifndef SQLITE_OMIT_BTREECOUNT 5446 Table *pTab; 5447 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5448 /* If isSimpleCount() returns a pointer to a Table structure, then 5449 ** the SQL statement is of the form: 5450 ** 5451 ** SELECT count(*) FROM <tbl> 5452 ** 5453 ** where the Table structure returned represents table <tbl>. 5454 ** 5455 ** This statement is so common that it is optimized specially. The 5456 ** OP_Count instruction is executed either on the intkey table that 5457 ** contains the data for table <tbl> or on one of its indexes. It 5458 ** is better to execute the op on an index, as indexes are almost 5459 ** always spread across less pages than their corresponding tables. 5460 */ 5461 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5462 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5463 Index *pIdx; /* Iterator variable */ 5464 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5465 Index *pBest = 0; /* Best index found so far */ 5466 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5467 5468 sqlite3CodeVerifySchema(pParse, iDb); 5469 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5470 5471 /* Search for the index that has the lowest scan cost. 5472 ** 5473 ** (2011-04-15) Do not do a full scan of an unordered index. 5474 ** 5475 ** (2013-10-03) Do not count the entries in a partial index. 5476 ** 5477 ** In practice the KeyInfo structure will not be used. It is only 5478 ** passed to keep OP_OpenRead happy. 5479 */ 5480 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5481 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5482 if( pIdx->bUnordered==0 5483 && pIdx->szIdxRow<pTab->szTabRow 5484 && pIdx->pPartIdxWhere==0 5485 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5486 ){ 5487 pBest = pIdx; 5488 } 5489 } 5490 if( pBest ){ 5491 iRoot = pBest->tnum; 5492 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5493 } 5494 5495 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5496 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5497 if( pKeyInfo ){ 5498 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5499 } 5500 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5501 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5502 explainSimpleCount(pParse, pTab, pBest); 5503 }else 5504 #endif /* SQLITE_OMIT_BTREECOUNT */ 5505 { 5506 /* Check if the query is of one of the following forms: 5507 ** 5508 ** SELECT min(x) FROM ... 5509 ** SELECT max(x) FROM ... 5510 ** 5511 ** If it is, then ask the code in where.c to attempt to sort results 5512 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5513 ** If where.c is able to produce results sorted in this order, then 5514 ** add vdbe code to break out of the processing loop after the 5515 ** first iteration (since the first iteration of the loop is 5516 ** guaranteed to operate on the row with the minimum or maximum 5517 ** value of x, the only row required). 5518 ** 5519 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5520 ** modify behavior as follows: 5521 ** 5522 ** + If the query is a "SELECT min(x)", then the loop coded by 5523 ** where.c should not iterate over any values with a NULL value 5524 ** for x. 5525 ** 5526 ** + The optimizer code in where.c (the thing that decides which 5527 ** index or indices to use) should place a different priority on 5528 ** satisfying the 'ORDER BY' clause than it does in other cases. 5529 ** Refer to code and comments in where.c for details. 5530 */ 5531 ExprList *pMinMax = 0; 5532 u8 flag = WHERE_ORDERBY_NORMAL; 5533 5534 assert( p->pGroupBy==0 ); 5535 assert( flag==0 ); 5536 if( p->pHaving==0 ){ 5537 flag = minMaxQuery(&sAggInfo, &pMinMax); 5538 } 5539 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5540 5541 if( flag ){ 5542 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5543 pDel = pMinMax; 5544 if( pMinMax && !db->mallocFailed ){ 5545 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5546 pMinMax->a[0].pExpr->op = TK_COLUMN; 5547 } 5548 } 5549 5550 /* This case runs if the aggregate has no GROUP BY clause. The 5551 ** processing is much simpler since there is only a single row 5552 ** of output. 5553 */ 5554 resetAccumulator(pParse, &sAggInfo); 5555 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5556 if( pWInfo==0 ){ 5557 sqlite3ExprListDelete(db, pDel); 5558 goto select_end; 5559 } 5560 updateAccumulator(pParse, &sAggInfo); 5561 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5562 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5563 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5564 VdbeComment((v, "%s() by index", 5565 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5566 } 5567 sqlite3WhereEnd(pWInfo); 5568 finalizeAggFunctions(pParse, &sAggInfo); 5569 } 5570 5571 sSort.pOrderBy = 0; 5572 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5573 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5574 pDest, addrEnd, addrEnd); 5575 sqlite3ExprListDelete(db, pDel); 5576 } 5577 sqlite3VdbeResolveLabel(v, addrEnd); 5578 5579 } /* endif aggregate query */ 5580 5581 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5582 explainTempTable(pParse, "DISTINCT"); 5583 } 5584 5585 /* If there is an ORDER BY clause, then we need to sort the results 5586 ** and send them to the callback one by one. 5587 */ 5588 if( sSort.pOrderBy ){ 5589 explainTempTable(pParse, 5590 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5591 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5592 } 5593 5594 /* Jump here to skip this query 5595 */ 5596 sqlite3VdbeResolveLabel(v, iEnd); 5597 5598 /* The SELECT has been coded. If there is an error in the Parse structure, 5599 ** set the return code to 1. Otherwise 0. */ 5600 rc = (pParse->nErr>0); 5601 5602 /* Control jumps to here if an error is encountered above, or upon 5603 ** successful coding of the SELECT. 5604 */ 5605 select_end: 5606 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5607 5608 /* Identify column names if results of the SELECT are to be output. 5609 */ 5610 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5611 generateColumnNames(pParse, pTabList, pEList); 5612 } 5613 5614 sqlite3DbFree(db, sAggInfo.aCol); 5615 sqlite3DbFree(db, sAggInfo.aFunc); 5616 #if SELECTTRACE_ENABLED 5617 SELECTTRACE(1,pParse,p,("end processing\n")); 5618 pParse->nSelectIndent--; 5619 #endif 5620 return rc; 5621 } 5622