xref: /sqlite-3.40.0/src/select.c (revision 4f3557e4)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 */
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209   int jointype = 0;
210   Token *apAll[3];
211   Token *p;
212                              /*   0123456789 123456789 123456789 123 */
213   static const char zKeyText[] = "naturaleftouterightfullinnercross";
214   static const struct {
215     u8 i;        /* Beginning of keyword text in zKeyText[] */
216     u8 nChar;    /* Length of the keyword in characters */
217     u8 code;     /* Join type mask */
218   } aKeyword[] = {
219     /* natural */ { 0,  7, JT_NATURAL                },
220     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
221     /* outer   */ { 10, 5, JT_OUTER                  },
222     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
223     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224     /* inner   */ { 23, 5, JT_INNER                  },
225     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
226   };
227   int i, j;
228   apAll[0] = pA;
229   apAll[1] = pB;
230   apAll[2] = pC;
231   for(i=0; i<3 && apAll[i]; i++){
232     p = apAll[i];
233     for(j=0; j<ArraySize(aKeyword); j++){
234       if( p->n==aKeyword[j].nChar
235           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236         jointype |= aKeyword[j].code;
237         break;
238       }
239     }
240     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241     if( j>=ArraySize(aKeyword) ){
242       jointype |= JT_ERROR;
243       break;
244     }
245   }
246   if(
247      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248      (jointype & JT_ERROR)!=0
249   ){
250     const char *zSp = " ";
251     assert( pB!=0 );
252     if( pC==0 ){ zSp++; }
253     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254        "%T %T%s%T", pA, pB, zSp, pC);
255     jointype = JT_INNER;
256   }else if( (jointype & JT_OUTER)!=0
257          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258     sqlite3ErrorMsg(pParse,
259       "RIGHT and FULL OUTER JOINs are not currently supported");
260     jointype = JT_INNER;
261   }
262   return jointype;
263 }
264 
265 /*
266 ** Return the index of a column in a table.  Return -1 if the column
267 ** is not contained in the table.
268 */
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270   int i;
271   u8 h = sqlite3StrIHash(zCol);
272   Column *pCol;
273   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
275   }
276   return -1;
277 }
278 
279 /*
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
282 **
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
285 **
286 ** If not found, return FALSE.
287 */
288 static int tableAndColumnIndex(
289   SrcList *pSrc,       /* Array of tables to search */
290   int N,               /* Number of tables in pSrc->a[] to search */
291   const char *zCol,    /* Name of the column we are looking for */
292   int *piTab,          /* Write index of pSrc->a[] here */
293   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294   int bIgnoreHidden    /* True to ignore hidden columns */
295 ){
296   int i;               /* For looping over tables in pSrc */
297   int iCol;            /* Index of column matching zCol */
298 
299   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
300   for(i=0; i<N; i++){
301     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302     if( iCol>=0
303      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
304     ){
305       if( piTab ){
306         *piTab = i;
307         *piCol = iCol;
308       }
309       return 1;
310     }
311   }
312   return 0;
313 }
314 
315 /*
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
319 **
320 **    (tab1.col1 = tab2.col2)
321 **
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
325 */
326 static void addWhereTerm(
327   Parse *pParse,                  /* Parsing context */
328   SrcList *pSrc,                  /* List of tables in FROM clause */
329   int iLeft,                      /* Index of first table to join in pSrc */
330   int iColLeft,                   /* Index of column in first table */
331   int iRight,                     /* Index of second table in pSrc */
332   int iColRight,                  /* Index of column in second table */
333   int isOuterJoin,                /* True if this is an OUTER join */
334   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
335 ){
336   sqlite3 *db = pParse->db;
337   Expr *pE1;
338   Expr *pE2;
339   Expr *pEq;
340 
341   assert( iLeft<iRight );
342   assert( pSrc->nSrc>iRight );
343   assert( pSrc->a[iLeft].pTab );
344   assert( pSrc->a[iRight].pTab );
345 
346   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
348 
349   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350   assert( pE2!=0 || pEq==0 );  /* Due to db->mallocFailed test
351                                ** in sqlite3DbMallocRawNN() called from
352                                ** sqlite3PExpr(). */
353   if( pEq && isOuterJoin ){
354     ExprSetProperty(pEq, EP_FromJoin);
355     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
356     ExprSetVVAProperty(pEq, EP_NoReduce);
357     pEq->iRightJoinTable = pE2->iTable;
358   }
359   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
360 }
361 
362 /*
363 ** Set the EP_FromJoin property on all terms of the given expression.
364 ** And set the Expr.iRightJoinTable to iTable for every term in the
365 ** expression.
366 **
367 ** The EP_FromJoin property is used on terms of an expression to tell
368 ** the LEFT OUTER JOIN processing logic that this term is part of the
369 ** join restriction specified in the ON or USING clause and not a part
370 ** of the more general WHERE clause.  These terms are moved over to the
371 ** WHERE clause during join processing but we need to remember that they
372 ** originated in the ON or USING clause.
373 **
374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
375 ** expression depends on table iRightJoinTable even if that table is not
376 ** explicitly mentioned in the expression.  That information is needed
377 ** for cases like this:
378 **
379 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
380 **
381 ** The where clause needs to defer the handling of the t1.x=5
382 ** term until after the t2 loop of the join.  In that way, a
383 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
384 ** defer the handling of t1.x=5, it will be processed immediately
385 ** after the t1 loop and rows with t1.x!=5 will never appear in
386 ** the output, which is incorrect.
387 */
388 void sqlite3SetJoinExpr(Expr *p, int iTable){
389   while( p ){
390     ExprSetProperty(p, EP_FromJoin);
391     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
392     ExprSetVVAProperty(p, EP_NoReduce);
393     p->iRightJoinTable = iTable;
394     if( p->op==TK_FUNCTION ){
395       assert( ExprUseXList(p) );
396       if( p->x.pList ){
397         int i;
398         for(i=0; i<p->x.pList->nExpr; i++){
399           sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
400         }
401       }
402     }
403     sqlite3SetJoinExpr(p->pLeft, iTable);
404     p = p->pRight;
405   }
406 }
407 
408 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
410 ** an ordinary term that omits the EP_FromJoin mark.
411 **
412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
413 */
414 static void unsetJoinExpr(Expr *p, int iTable){
415   while( p ){
416     if( ExprHasProperty(p, EP_FromJoin)
417      && (iTable<0 || p->iRightJoinTable==iTable) ){
418       ExprClearProperty(p, EP_FromJoin);
419     }
420     if( p->op==TK_COLUMN && p->iTable==iTable ){
421       ExprClearProperty(p, EP_CanBeNull);
422     }
423     if( p->op==TK_FUNCTION ){
424       assert( ExprUseXList(p) );
425       if( p->x.pList ){
426         int i;
427         for(i=0; i<p->x.pList->nExpr; i++){
428           unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
429         }
430       }
431     }
432     unsetJoinExpr(p->pLeft, iTable);
433     p = p->pRight;
434   }
435 }
436 
437 /*
438 ** This routine processes the join information for a SELECT statement.
439 ** ON and USING clauses are converted into extra terms of the WHERE clause.
440 ** NATURAL joins also create extra WHERE clause terms.
441 **
442 ** The terms of a FROM clause are contained in the Select.pSrc structure.
443 ** The left most table is the first entry in Select.pSrc.  The right-most
444 ** table is the last entry.  The join operator is held in the entry to
445 ** the left.  Thus entry 0 contains the join operator for the join between
446 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
447 ** also attached to the left entry.
448 **
449 ** This routine returns the number of errors encountered.
450 */
451 static int sqliteProcessJoin(Parse *pParse, Select *p){
452   SrcList *pSrc;                  /* All tables in the FROM clause */
453   int i, j;                       /* Loop counters */
454   SrcItem *pLeft;                 /* Left table being joined */
455   SrcItem *pRight;                /* Right table being joined */
456 
457   pSrc = p->pSrc;
458   pLeft = &pSrc->a[0];
459   pRight = &pLeft[1];
460   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
461     Table *pRightTab = pRight->pTab;
462     int isOuter;
463 
464     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
465     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
466 
467     /* When the NATURAL keyword is present, add WHERE clause terms for
468     ** every column that the two tables have in common.
469     */
470     if( pRight->fg.jointype & JT_NATURAL ){
471       if( pRight->pOn || pRight->pUsing ){
472         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
473            "an ON or USING clause", 0);
474         return 1;
475       }
476       for(j=0; j<pRightTab->nCol; j++){
477         char *zName;   /* Name of column in the right table */
478         int iLeft;     /* Matching left table */
479         int iLeftCol;  /* Matching column in the left table */
480 
481         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
482         zName = pRightTab->aCol[j].zCnName;
483         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
484           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
485                 isOuter, &p->pWhere);
486         }
487       }
488     }
489 
490     /* Disallow both ON and USING clauses in the same join
491     */
492     if( pRight->pOn && pRight->pUsing ){
493       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
494         "clauses in the same join");
495       return 1;
496     }
497 
498     /* Add the ON clause to the end of the WHERE clause, connected by
499     ** an AND operator.
500     */
501     if( pRight->pOn ){
502       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
503       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
504       pRight->pOn = 0;
505     }
506 
507     /* Create extra terms on the WHERE clause for each column named
508     ** in the USING clause.  Example: If the two tables to be joined are
509     ** A and B and the USING clause names X, Y, and Z, then add this
510     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
511     ** Report an error if any column mentioned in the USING clause is
512     ** not contained in both tables to be joined.
513     */
514     if( pRight->pUsing ){
515       IdList *pList = pRight->pUsing;
516       for(j=0; j<pList->nId; j++){
517         char *zName;     /* Name of the term in the USING clause */
518         int iLeft;       /* Table on the left with matching column name */
519         int iLeftCol;    /* Column number of matching column on the left */
520         int iRightCol;   /* Column number of matching column on the right */
521 
522         zName = pList->a[j].zName;
523         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
524         if( iRightCol<0
525          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
526         ){
527           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
528             "not present in both tables", zName);
529           return 1;
530         }
531         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
532                      isOuter, &p->pWhere);
533       }
534     }
535   }
536   return 0;
537 }
538 
539 /*
540 ** An instance of this object holds information (beyond pParse and pSelect)
541 ** needed to load the next result row that is to be added to the sorter.
542 */
543 typedef struct RowLoadInfo RowLoadInfo;
544 struct RowLoadInfo {
545   int regResult;               /* Store results in array of registers here */
546   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
547 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
548   ExprList *pExtra;            /* Extra columns needed by sorter refs */
549   int regExtraResult;          /* Where to load the extra columns */
550 #endif
551 };
552 
553 /*
554 ** This routine does the work of loading query data into an array of
555 ** registers so that it can be added to the sorter.
556 */
557 static void innerLoopLoadRow(
558   Parse *pParse,             /* Statement under construction */
559   Select *pSelect,           /* The query being coded */
560   RowLoadInfo *pInfo         /* Info needed to complete the row load */
561 ){
562   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
563                           0, pInfo->ecelFlags);
564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
565   if( pInfo->pExtra ){
566     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
567     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
568   }
569 #endif
570 }
571 
572 /*
573 ** Code the OP_MakeRecord instruction that generates the entry to be
574 ** added into the sorter.
575 **
576 ** Return the register in which the result is stored.
577 */
578 static int makeSorterRecord(
579   Parse *pParse,
580   SortCtx *pSort,
581   Select *pSelect,
582   int regBase,
583   int nBase
584 ){
585   int nOBSat = pSort->nOBSat;
586   Vdbe *v = pParse->pVdbe;
587   int regOut = ++pParse->nMem;
588   if( pSort->pDeferredRowLoad ){
589     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
590   }
591   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
592   return regOut;
593 }
594 
595 /*
596 ** Generate code that will push the record in registers regData
597 ** through regData+nData-1 onto the sorter.
598 */
599 static void pushOntoSorter(
600   Parse *pParse,         /* Parser context */
601   SortCtx *pSort,        /* Information about the ORDER BY clause */
602   Select *pSelect,       /* The whole SELECT statement */
603   int regData,           /* First register holding data to be sorted */
604   int regOrigData,       /* First register holding data before packing */
605   int nData,             /* Number of elements in the regData data array */
606   int nPrefixReg         /* No. of reg prior to regData available for use */
607 ){
608   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
609   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
610   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
611   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
612   int regBase;                                     /* Regs for sorter record */
613   int regRecord = 0;                               /* Assembled sorter record */
614   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
615   int op;                            /* Opcode to add sorter record to sorter */
616   int iLimit;                        /* LIMIT counter */
617   int iSkip = 0;                     /* End of the sorter insert loop */
618 
619   assert( bSeq==0 || bSeq==1 );
620 
621   /* Three cases:
622   **   (1) The data to be sorted has already been packed into a Record
623   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
624   **       will be completely unrelated to regOrigData.
625   **   (2) All output columns are included in the sort record.  In that
626   **       case regData==regOrigData.
627   **   (3) Some output columns are omitted from the sort record due to
628   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
629   **       SQLITE_ECEL_OMITREF optimization, or due to the
630   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
631   **       regOrigData is 0 to prevent this routine from trying to copy
632   **       values that might not yet exist.
633   */
634   assert( nData==1 || regData==regOrigData || regOrigData==0 );
635 
636   if( nPrefixReg ){
637     assert( nPrefixReg==nExpr+bSeq );
638     regBase = regData - nPrefixReg;
639   }else{
640     regBase = pParse->nMem + 1;
641     pParse->nMem += nBase;
642   }
643   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
644   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
645   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
646   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
647                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
648   if( bSeq ){
649     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
650   }
651   if( nPrefixReg==0 && nData>0 ){
652     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
653   }
654   if( nOBSat>0 ){
655     int regPrevKey;   /* The first nOBSat columns of the previous row */
656     int addrFirst;    /* Address of the OP_IfNot opcode */
657     int addrJmp;      /* Address of the OP_Jump opcode */
658     VdbeOp *pOp;      /* Opcode that opens the sorter */
659     int nKey;         /* Number of sorting key columns, including OP_Sequence */
660     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
661 
662     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
663     regPrevKey = pParse->nMem+1;
664     pParse->nMem += pSort->nOBSat;
665     nKey = nExpr - pSort->nOBSat + bSeq;
666     if( bSeq ){
667       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
668     }else{
669       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
670     }
671     VdbeCoverage(v);
672     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
673     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
674     if( pParse->db->mallocFailed ) return;
675     pOp->p2 = nKey + nData;
676     pKI = pOp->p4.pKeyInfo;
677     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
678     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
679     testcase( pKI->nAllField > pKI->nKeyField+2 );
680     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
681                                            pKI->nAllField-pKI->nKeyField-1);
682     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
683     addrJmp = sqlite3VdbeCurrentAddr(v);
684     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
685     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
686     pSort->regReturn = ++pParse->nMem;
687     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
688     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
689     if( iLimit ){
690       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
691       VdbeCoverage(v);
692     }
693     sqlite3VdbeJumpHere(v, addrFirst);
694     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
695     sqlite3VdbeJumpHere(v, addrJmp);
696   }
697   if( iLimit ){
698     /* At this point the values for the new sorter entry are stored
699     ** in an array of registers. They need to be composed into a record
700     ** and inserted into the sorter if either (a) there are currently
701     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
702     ** the largest record currently in the sorter. If (b) is true and there
703     ** are already LIMIT+OFFSET items in the sorter, delete the largest
704     ** entry before inserting the new one. This way there are never more
705     ** than LIMIT+OFFSET items in the sorter.
706     **
707     ** If the new record does not need to be inserted into the sorter,
708     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
709     ** value is not zero, then it is a label of where to jump.  Otherwise,
710     ** just bypass the row insert logic.  See the header comment on the
711     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
712     */
713     int iCsr = pSort->iECursor;
714     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
715     VdbeCoverage(v);
716     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
717     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
718                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
719     VdbeCoverage(v);
720     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
721   }
722   if( regRecord==0 ){
723     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
724   }
725   if( pSort->sortFlags & SORTFLAG_UseSorter ){
726     op = OP_SorterInsert;
727   }else{
728     op = OP_IdxInsert;
729   }
730   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
731                        regBase+nOBSat, nBase-nOBSat);
732   if( iSkip ){
733     sqlite3VdbeChangeP2(v, iSkip,
734          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
735   }
736 }
737 
738 /*
739 ** Add code to implement the OFFSET
740 */
741 static void codeOffset(
742   Vdbe *v,          /* Generate code into this VM */
743   int iOffset,      /* Register holding the offset counter */
744   int iContinue     /* Jump here to skip the current record */
745 ){
746   if( iOffset>0 ){
747     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
748     VdbeComment((v, "OFFSET"));
749   }
750 }
751 
752 /*
753 ** Add code that will check to make sure the array of registers starting at
754 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
755 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
756 ** are available. Which is used depends on the value of parameter eTnctType,
757 ** as follows:
758 **
759 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
760 **     Build an ephemeral table that contains all entries seen before and
761 **     skip entries which have been seen before.
762 **
763 **     Parameter iTab is the cursor number of an ephemeral table that must
764 **     be opened before the VM code generated by this routine is executed.
765 **     The ephemeral cursor table is queried for a record identical to the
766 **     record formed by the current array of registers. If one is found,
767 **     jump to VM address addrRepeat. Otherwise, insert a new record into
768 **     the ephemeral cursor and proceed.
769 **
770 **     The returned value in this case is a copy of parameter iTab.
771 **
772 **   WHERE_DISTINCT_ORDERED:
773 **     In this case rows are being delivered sorted order. The ephermal
774 **     table is not required. Instead, the current set of values
775 **     is compared against previous row. If they match, the new row
776 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
777 **     the VM program proceeds with processing the new row.
778 **
779 **     The returned value in this case is the register number of the first
780 **     in an array of registers used to store the previous result row so that
781 **     it can be compared to the next. The caller must ensure that this
782 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
783 **     will take care of this initialization.)
784 **
785 **   WHERE_DISTINCT_UNIQUE:
786 **     In this case it has already been determined that the rows are distinct.
787 **     No special action is required. The return value is zero.
788 **
789 ** Parameter pEList is the list of expressions used to generated the
790 ** contents of each row. It is used by this routine to determine (a)
791 ** how many elements there are in the array of registers and (b) the
792 ** collation sequences that should be used for the comparisons if
793 ** eTnctType is WHERE_DISTINCT_ORDERED.
794 */
795 static int codeDistinct(
796   Parse *pParse,     /* Parsing and code generating context */
797   int eTnctType,     /* WHERE_DISTINCT_* value */
798   int iTab,          /* A sorting index used to test for distinctness */
799   int addrRepeat,    /* Jump to here if not distinct */
800   ExprList *pEList,  /* Expression for each element */
801   int regElem        /* First element */
802 ){
803   int iRet = 0;
804   int nResultCol = pEList->nExpr;
805   Vdbe *v = pParse->pVdbe;
806 
807   switch( eTnctType ){
808     case WHERE_DISTINCT_ORDERED: {
809       int i;
810       int iJump;              /* Jump destination */
811       int regPrev;            /* Previous row content */
812 
813       /* Allocate space for the previous row */
814       iRet = regPrev = pParse->nMem+1;
815       pParse->nMem += nResultCol;
816 
817       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
818       for(i=0; i<nResultCol; i++){
819         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
820         if( i<nResultCol-1 ){
821           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
822           VdbeCoverage(v);
823         }else{
824           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
825           VdbeCoverage(v);
826          }
827         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
828         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
829       }
830       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
831       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
832       break;
833     }
834 
835     case WHERE_DISTINCT_UNIQUE: {
836       /* nothing to do */
837       break;
838     }
839 
840     default: {
841       int r1 = sqlite3GetTempReg(pParse);
842       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
843       VdbeCoverage(v);
844       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
845       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
846       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
847       sqlite3ReleaseTempReg(pParse, r1);
848       iRet = iTab;
849       break;
850     }
851   }
852 
853   return iRet;
854 }
855 
856 /*
857 ** This routine runs after codeDistinct().  It makes necessary
858 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
859 ** routine made use of.  This processing must be done separately since
860 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
861 ** laid down.
862 **
863 ** WHERE_DISTINCT_NOOP:
864 ** WHERE_DISTINCT_UNORDERED:
865 **
866 **     No adjustments necessary.  This function is a no-op.
867 **
868 ** WHERE_DISTINCT_UNIQUE:
869 **
870 **     The ephemeral table is not needed.  So change the
871 **     OP_OpenEphemeral opcode into an OP_Noop.
872 **
873 ** WHERE_DISTINCT_ORDERED:
874 **
875 **     The ephemeral table is not needed.  But we do need register
876 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
877 **     into an OP_Null on the iVal register.
878 */
879 static void fixDistinctOpenEph(
880   Parse *pParse,     /* Parsing and code generating context */
881   int eTnctType,     /* WHERE_DISTINCT_* value */
882   int iVal,          /* Value returned by codeDistinct() */
883   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
884 ){
885   if( pParse->nErr==0
886    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
887   ){
888     Vdbe *v = pParse->pVdbe;
889     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
890     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
891       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
892     }
893     if( eTnctType==WHERE_DISTINCT_ORDERED ){
894       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
895       ** bit on the first register of the previous value.  This will cause the
896       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
897       ** the loop even if the first row is all NULLs.  */
898       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
899       pOp->opcode = OP_Null;
900       pOp->p1 = 1;
901       pOp->p2 = iVal;
902     }
903   }
904 }
905 
906 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
907 /*
908 ** This function is called as part of inner-loop generation for a SELECT
909 ** statement with an ORDER BY that is not optimized by an index. It
910 ** determines the expressions, if any, that the sorter-reference
911 ** optimization should be used for. The sorter-reference optimization
912 ** is used for SELECT queries like:
913 **
914 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
915 **
916 ** If the optimization is used for expression "bigblob", then instead of
917 ** storing values read from that column in the sorter records, the PK of
918 ** the row from table t1 is stored instead. Then, as records are extracted from
919 ** the sorter to return to the user, the required value of bigblob is
920 ** retrieved directly from table t1. If the values are very large, this
921 ** can be more efficient than storing them directly in the sorter records.
922 **
923 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
924 ** for which the sorter-reference optimization should be enabled.
925 ** Additionally, the pSort->aDefer[] array is populated with entries
926 ** for all cursors required to evaluate all selected expressions. Finally.
927 ** output variable (*ppExtra) is set to an expression list containing
928 ** expressions for all extra PK values that should be stored in the
929 ** sorter records.
930 */
931 static void selectExprDefer(
932   Parse *pParse,                  /* Leave any error here */
933   SortCtx *pSort,                 /* Sorter context */
934   ExprList *pEList,               /* Expressions destined for sorter */
935   ExprList **ppExtra              /* Expressions to append to sorter record */
936 ){
937   int i;
938   int nDefer = 0;
939   ExprList *pExtra = 0;
940   for(i=0; i<pEList->nExpr; i++){
941     struct ExprList_item *pItem = &pEList->a[i];
942     if( pItem->u.x.iOrderByCol==0 ){
943       Expr *pExpr = pItem->pExpr;
944       Table *pTab;
945       if( pExpr->op==TK_COLUMN
946        && pExpr->iColumn>=0
947        && ALWAYS( ExprUseYTab(pExpr) )
948        && (pTab = pExpr->y.pTab)!=0
949        && IsOrdinaryTable(pTab)
950        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
951       ){
952         int j;
953         for(j=0; j<nDefer; j++){
954           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
955         }
956         if( j==nDefer ){
957           if( nDefer==ArraySize(pSort->aDefer) ){
958             continue;
959           }else{
960             int nKey = 1;
961             int k;
962             Index *pPk = 0;
963             if( !HasRowid(pTab) ){
964               pPk = sqlite3PrimaryKeyIndex(pTab);
965               nKey = pPk->nKeyCol;
966             }
967             for(k=0; k<nKey; k++){
968               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
969               if( pNew ){
970                 pNew->iTable = pExpr->iTable;
971                 assert( ExprUseYTab(pNew) );
972                 pNew->y.pTab = pExpr->y.pTab;
973                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
974                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
975               }
976             }
977             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
978             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
979             pSort->aDefer[nDefer].nKey = nKey;
980             nDefer++;
981           }
982         }
983         pItem->bSorterRef = 1;
984       }
985     }
986   }
987   pSort->nDefer = (u8)nDefer;
988   *ppExtra = pExtra;
989 }
990 #endif
991 
992 /*
993 ** This routine generates the code for the inside of the inner loop
994 ** of a SELECT.
995 **
996 ** If srcTab is negative, then the p->pEList expressions
997 ** are evaluated in order to get the data for this row.  If srcTab is
998 ** zero or more, then data is pulled from srcTab and p->pEList is used only
999 ** to get the number of columns and the collation sequence for each column.
1000 */
1001 static void selectInnerLoop(
1002   Parse *pParse,          /* The parser context */
1003   Select *p,              /* The complete select statement being coded */
1004   int srcTab,             /* Pull data from this table if non-negative */
1005   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
1006   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1007   SelectDest *pDest,      /* How to dispose of the results */
1008   int iContinue,          /* Jump here to continue with next row */
1009   int iBreak              /* Jump here to break out of the inner loop */
1010 ){
1011   Vdbe *v = pParse->pVdbe;
1012   int i;
1013   int hasDistinct;            /* True if the DISTINCT keyword is present */
1014   int eDest = pDest->eDest;   /* How to dispose of results */
1015   int iParm = pDest->iSDParm; /* First argument to disposal method */
1016   int nResultCol;             /* Number of result columns */
1017   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1018   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1019 
1020   /* Usually, regResult is the first cell in an array of memory cells
1021   ** containing the current result row. In this case regOrig is set to the
1022   ** same value. However, if the results are being sent to the sorter, the
1023   ** values for any expressions that are also part of the sort-key are omitted
1024   ** from this array. In this case regOrig is set to zero.  */
1025   int regResult;              /* Start of memory holding current results */
1026   int regOrig;                /* Start of memory holding full result (or 0) */
1027 
1028   assert( v );
1029   assert( p->pEList!=0 );
1030   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1031   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1032   if( pSort==0 && !hasDistinct ){
1033     assert( iContinue!=0 );
1034     codeOffset(v, p->iOffset, iContinue);
1035   }
1036 
1037   /* Pull the requested columns.
1038   */
1039   nResultCol = p->pEList->nExpr;
1040 
1041   if( pDest->iSdst==0 ){
1042     if( pSort ){
1043       nPrefixReg = pSort->pOrderBy->nExpr;
1044       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1045       pParse->nMem += nPrefixReg;
1046     }
1047     pDest->iSdst = pParse->nMem+1;
1048     pParse->nMem += nResultCol;
1049   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1050     /* This is an error condition that can result, for example, when a SELECT
1051     ** on the right-hand side of an INSERT contains more result columns than
1052     ** there are columns in the table on the left.  The error will be caught
1053     ** and reported later.  But we need to make sure enough memory is allocated
1054     ** to avoid other spurious errors in the meantime. */
1055     pParse->nMem += nResultCol;
1056   }
1057   pDest->nSdst = nResultCol;
1058   regOrig = regResult = pDest->iSdst;
1059   if( srcTab>=0 ){
1060     for(i=0; i<nResultCol; i++){
1061       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1062       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1063     }
1064   }else if( eDest!=SRT_Exists ){
1065 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1066     ExprList *pExtra = 0;
1067 #endif
1068     /* If the destination is an EXISTS(...) expression, the actual
1069     ** values returned by the SELECT are not required.
1070     */
1071     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1072     ExprList *pEList;
1073     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1074       ecelFlags = SQLITE_ECEL_DUP;
1075     }else{
1076       ecelFlags = 0;
1077     }
1078     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1079       /* For each expression in p->pEList that is a copy of an expression in
1080       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1081       ** iOrderByCol value to one more than the index of the ORDER BY
1082       ** expression within the sort-key that pushOntoSorter() will generate.
1083       ** This allows the p->pEList field to be omitted from the sorted record,
1084       ** saving space and CPU cycles.  */
1085       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1086 
1087       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1088         int j;
1089         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1090           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1091         }
1092       }
1093 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1094       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1095       if( pExtra && pParse->db->mallocFailed==0 ){
1096         /* If there are any extra PK columns to add to the sorter records,
1097         ** allocate extra memory cells and adjust the OpenEphemeral
1098         ** instruction to account for the larger records. This is only
1099         ** required if there are one or more WITHOUT ROWID tables with
1100         ** composite primary keys in the SortCtx.aDefer[] array.  */
1101         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1102         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1103         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1104         pParse->nMem += pExtra->nExpr;
1105       }
1106 #endif
1107 
1108       /* Adjust nResultCol to account for columns that are omitted
1109       ** from the sorter by the optimizations in this branch */
1110       pEList = p->pEList;
1111       for(i=0; i<pEList->nExpr; i++){
1112         if( pEList->a[i].u.x.iOrderByCol>0
1113 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1114          || pEList->a[i].bSorterRef
1115 #endif
1116         ){
1117           nResultCol--;
1118           regOrig = 0;
1119         }
1120       }
1121 
1122       testcase( regOrig );
1123       testcase( eDest==SRT_Set );
1124       testcase( eDest==SRT_Mem );
1125       testcase( eDest==SRT_Coroutine );
1126       testcase( eDest==SRT_Output );
1127       assert( eDest==SRT_Set || eDest==SRT_Mem
1128            || eDest==SRT_Coroutine || eDest==SRT_Output
1129            || eDest==SRT_Upfrom );
1130     }
1131     sRowLoadInfo.regResult = regResult;
1132     sRowLoadInfo.ecelFlags = ecelFlags;
1133 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1134     sRowLoadInfo.pExtra = pExtra;
1135     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1136     if( pExtra ) nResultCol += pExtra->nExpr;
1137 #endif
1138     if( p->iLimit
1139      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1140      && nPrefixReg>0
1141     ){
1142       assert( pSort!=0 );
1143       assert( hasDistinct==0 );
1144       pSort->pDeferredRowLoad = &sRowLoadInfo;
1145       regOrig = 0;
1146     }else{
1147       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1148     }
1149   }
1150 
1151   /* If the DISTINCT keyword was present on the SELECT statement
1152   ** and this row has been seen before, then do not make this row
1153   ** part of the result.
1154   */
1155   if( hasDistinct ){
1156     int eType = pDistinct->eTnctType;
1157     int iTab = pDistinct->tabTnct;
1158     assert( nResultCol==p->pEList->nExpr );
1159     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1160     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1161     if( pSort==0 ){
1162       codeOffset(v, p->iOffset, iContinue);
1163     }
1164   }
1165 
1166   switch( eDest ){
1167     /* In this mode, write each query result to the key of the temporary
1168     ** table iParm.
1169     */
1170 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1171     case SRT_Union: {
1172       int r1;
1173       r1 = sqlite3GetTempReg(pParse);
1174       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1175       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1176       sqlite3ReleaseTempReg(pParse, r1);
1177       break;
1178     }
1179 
1180     /* Construct a record from the query result, but instead of
1181     ** saving that record, use it as a key to delete elements from
1182     ** the temporary table iParm.
1183     */
1184     case SRT_Except: {
1185       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1186       break;
1187     }
1188 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1189 
1190     /* Store the result as data using a unique key.
1191     */
1192     case SRT_Fifo:
1193     case SRT_DistFifo:
1194     case SRT_Table:
1195     case SRT_EphemTab: {
1196       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1197       testcase( eDest==SRT_Table );
1198       testcase( eDest==SRT_EphemTab );
1199       testcase( eDest==SRT_Fifo );
1200       testcase( eDest==SRT_DistFifo );
1201       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1202 #ifndef SQLITE_OMIT_CTE
1203       if( eDest==SRT_DistFifo ){
1204         /* If the destination is DistFifo, then cursor (iParm+1) is open
1205         ** on an ephemeral index. If the current row is already present
1206         ** in the index, do not write it to the output. If not, add the
1207         ** current row to the index and proceed with writing it to the
1208         ** output table as well.  */
1209         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1210         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1211         VdbeCoverage(v);
1212         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1213         assert( pSort==0 );
1214       }
1215 #endif
1216       if( pSort ){
1217         assert( regResult==regOrig );
1218         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1219       }else{
1220         int r2 = sqlite3GetTempReg(pParse);
1221         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1222         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1223         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1224         sqlite3ReleaseTempReg(pParse, r2);
1225       }
1226       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1227       break;
1228     }
1229 
1230     case SRT_Upfrom: {
1231       if( pSort ){
1232         pushOntoSorter(
1233             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1234       }else{
1235         int i2 = pDest->iSDParm2;
1236         int r1 = sqlite3GetTempReg(pParse);
1237 
1238         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1239         ** might still be trying to return one row, because that is what
1240         ** aggregates do.  Don't record that empty row in the output table. */
1241         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1242 
1243         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1244                           regResult+(i2<0), nResultCol-(i2<0), r1);
1245         if( i2<0 ){
1246           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1247         }else{
1248           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1249         }
1250       }
1251       break;
1252     }
1253 
1254 #ifndef SQLITE_OMIT_SUBQUERY
1255     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1256     ** then there should be a single item on the stack.  Write this
1257     ** item into the set table with bogus data.
1258     */
1259     case SRT_Set: {
1260       if( pSort ){
1261         /* At first glance you would think we could optimize out the
1262         ** ORDER BY in this case since the order of entries in the set
1263         ** does not matter.  But there might be a LIMIT clause, in which
1264         ** case the order does matter */
1265         pushOntoSorter(
1266             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1267       }else{
1268         int r1 = sqlite3GetTempReg(pParse);
1269         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1270         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1271             r1, pDest->zAffSdst, nResultCol);
1272         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1273         sqlite3ReleaseTempReg(pParse, r1);
1274       }
1275       break;
1276     }
1277 
1278 
1279     /* If any row exist in the result set, record that fact and abort.
1280     */
1281     case SRT_Exists: {
1282       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1283       /* The LIMIT clause will terminate the loop for us */
1284       break;
1285     }
1286 
1287     /* If this is a scalar select that is part of an expression, then
1288     ** store the results in the appropriate memory cell or array of
1289     ** memory cells and break out of the scan loop.
1290     */
1291     case SRT_Mem: {
1292       if( pSort ){
1293         assert( nResultCol<=pDest->nSdst );
1294         pushOntoSorter(
1295             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1296       }else{
1297         assert( nResultCol==pDest->nSdst );
1298         assert( regResult==iParm );
1299         /* The LIMIT clause will jump out of the loop for us */
1300       }
1301       break;
1302     }
1303 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1304 
1305     case SRT_Coroutine:       /* Send data to a co-routine */
1306     case SRT_Output: {        /* Return the results */
1307       testcase( eDest==SRT_Coroutine );
1308       testcase( eDest==SRT_Output );
1309       if( pSort ){
1310         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1311                        nPrefixReg);
1312       }else if( eDest==SRT_Coroutine ){
1313         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1314       }else{
1315         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1316       }
1317       break;
1318     }
1319 
1320 #ifndef SQLITE_OMIT_CTE
1321     /* Write the results into a priority queue that is order according to
1322     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1323     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1324     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1325     ** final OP_Sequence column.  The last column is the record as a blob.
1326     */
1327     case SRT_DistQueue:
1328     case SRT_Queue: {
1329       int nKey;
1330       int r1, r2, r3;
1331       int addrTest = 0;
1332       ExprList *pSO;
1333       pSO = pDest->pOrderBy;
1334       assert( pSO );
1335       nKey = pSO->nExpr;
1336       r1 = sqlite3GetTempReg(pParse);
1337       r2 = sqlite3GetTempRange(pParse, nKey+2);
1338       r3 = r2+nKey+1;
1339       if( eDest==SRT_DistQueue ){
1340         /* If the destination is DistQueue, then cursor (iParm+1) is open
1341         ** on a second ephemeral index that holds all values every previously
1342         ** added to the queue. */
1343         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1344                                         regResult, nResultCol);
1345         VdbeCoverage(v);
1346       }
1347       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1348       if( eDest==SRT_DistQueue ){
1349         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1350         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1351       }
1352       for(i=0; i<nKey; i++){
1353         sqlite3VdbeAddOp2(v, OP_SCopy,
1354                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1355                           r2+i);
1356       }
1357       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1358       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1359       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1360       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1361       sqlite3ReleaseTempReg(pParse, r1);
1362       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1363       break;
1364     }
1365 #endif /* SQLITE_OMIT_CTE */
1366 
1367 
1368 
1369 #if !defined(SQLITE_OMIT_TRIGGER)
1370     /* Discard the results.  This is used for SELECT statements inside
1371     ** the body of a TRIGGER.  The purpose of such selects is to call
1372     ** user-defined functions that have side effects.  We do not care
1373     ** about the actual results of the select.
1374     */
1375     default: {
1376       assert( eDest==SRT_Discard );
1377       break;
1378     }
1379 #endif
1380   }
1381 
1382   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1383   ** there is a sorter, in which case the sorter has already limited
1384   ** the output for us.
1385   */
1386   if( pSort==0 && p->iLimit ){
1387     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1388   }
1389 }
1390 
1391 /*
1392 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1393 ** X extra columns.
1394 */
1395 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1396   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1397   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1398   if( p ){
1399     p->aSortFlags = (u8*)&p->aColl[N+X];
1400     p->nKeyField = (u16)N;
1401     p->nAllField = (u16)(N+X);
1402     p->enc = ENC(db);
1403     p->db = db;
1404     p->nRef = 1;
1405     memset(&p[1], 0, nExtra);
1406   }else{
1407     sqlite3OomFault(db);
1408   }
1409   return p;
1410 }
1411 
1412 /*
1413 ** Deallocate a KeyInfo object
1414 */
1415 void sqlite3KeyInfoUnref(KeyInfo *p){
1416   if( p ){
1417     assert( p->nRef>0 );
1418     p->nRef--;
1419     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1420   }
1421 }
1422 
1423 /*
1424 ** Make a new pointer to a KeyInfo object
1425 */
1426 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1427   if( p ){
1428     assert( p->nRef>0 );
1429     p->nRef++;
1430   }
1431   return p;
1432 }
1433 
1434 #ifdef SQLITE_DEBUG
1435 /*
1436 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1437 ** can only be changed if this is just a single reference to the object.
1438 **
1439 ** This routine is used only inside of assert() statements.
1440 */
1441 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1442 #endif /* SQLITE_DEBUG */
1443 
1444 /*
1445 ** Given an expression list, generate a KeyInfo structure that records
1446 ** the collating sequence for each expression in that expression list.
1447 **
1448 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1449 ** KeyInfo structure is appropriate for initializing a virtual index to
1450 ** implement that clause.  If the ExprList is the result set of a SELECT
1451 ** then the KeyInfo structure is appropriate for initializing a virtual
1452 ** index to implement a DISTINCT test.
1453 **
1454 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1455 ** function is responsible for seeing that this structure is eventually
1456 ** freed.
1457 */
1458 KeyInfo *sqlite3KeyInfoFromExprList(
1459   Parse *pParse,       /* Parsing context */
1460   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1461   int iStart,          /* Begin with this column of pList */
1462   int nExtra           /* Add this many extra columns to the end */
1463 ){
1464   int nExpr;
1465   KeyInfo *pInfo;
1466   struct ExprList_item *pItem;
1467   sqlite3 *db = pParse->db;
1468   int i;
1469 
1470   nExpr = pList->nExpr;
1471   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1472   if( pInfo ){
1473     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1474     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1475       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1476       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1477     }
1478   }
1479   return pInfo;
1480 }
1481 
1482 /*
1483 ** Name of the connection operator, used for error messages.
1484 */
1485 const char *sqlite3SelectOpName(int id){
1486   char *z;
1487   switch( id ){
1488     case TK_ALL:       z = "UNION ALL";   break;
1489     case TK_INTERSECT: z = "INTERSECT";   break;
1490     case TK_EXCEPT:    z = "EXCEPT";      break;
1491     default:           z = "UNION";       break;
1492   }
1493   return z;
1494 }
1495 
1496 #ifndef SQLITE_OMIT_EXPLAIN
1497 /*
1498 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1499 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1500 ** where the caption is of the form:
1501 **
1502 **   "USE TEMP B-TREE FOR xxx"
1503 **
1504 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1505 ** is determined by the zUsage argument.
1506 */
1507 static void explainTempTable(Parse *pParse, const char *zUsage){
1508   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1509 }
1510 
1511 /*
1512 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1513 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1514 ** in sqlite3Select() to assign values to structure member variables that
1515 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1516 ** code with #ifndef directives.
1517 */
1518 # define explainSetInteger(a, b) a = b
1519 
1520 #else
1521 /* No-op versions of the explainXXX() functions and macros. */
1522 # define explainTempTable(y,z)
1523 # define explainSetInteger(y,z)
1524 #endif
1525 
1526 
1527 /*
1528 ** If the inner loop was generated using a non-null pOrderBy argument,
1529 ** then the results were placed in a sorter.  After the loop is terminated
1530 ** we need to run the sorter and output the results.  The following
1531 ** routine generates the code needed to do that.
1532 */
1533 static void generateSortTail(
1534   Parse *pParse,    /* Parsing context */
1535   Select *p,        /* The SELECT statement */
1536   SortCtx *pSort,   /* Information on the ORDER BY clause */
1537   int nColumn,      /* Number of columns of data */
1538   SelectDest *pDest /* Write the sorted results here */
1539 ){
1540   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1541   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1542   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1543   int addr;                       /* Top of output loop. Jump for Next. */
1544   int addrOnce = 0;
1545   int iTab;
1546   ExprList *pOrderBy = pSort->pOrderBy;
1547   int eDest = pDest->eDest;
1548   int iParm = pDest->iSDParm;
1549   int regRow;
1550   int regRowid;
1551   int iCol;
1552   int nKey;                       /* Number of key columns in sorter record */
1553   int iSortTab;                   /* Sorter cursor to read from */
1554   int i;
1555   int bSeq;                       /* True if sorter record includes seq. no. */
1556   int nRefKey = 0;
1557   struct ExprList_item *aOutEx = p->pEList->a;
1558 
1559   assert( addrBreak<0 );
1560   if( pSort->labelBkOut ){
1561     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1562     sqlite3VdbeGoto(v, addrBreak);
1563     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1564   }
1565 
1566 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1567   /* Open any cursors needed for sorter-reference expressions */
1568   for(i=0; i<pSort->nDefer; i++){
1569     Table *pTab = pSort->aDefer[i].pTab;
1570     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1571     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1572     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1573   }
1574 #endif
1575 
1576   iTab = pSort->iECursor;
1577   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1578     regRowid = 0;
1579     regRow = pDest->iSdst;
1580   }else{
1581     regRowid = sqlite3GetTempReg(pParse);
1582     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1583       regRow = sqlite3GetTempReg(pParse);
1584       nColumn = 0;
1585     }else{
1586       regRow = sqlite3GetTempRange(pParse, nColumn);
1587     }
1588   }
1589   nKey = pOrderBy->nExpr - pSort->nOBSat;
1590   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1591     int regSortOut = ++pParse->nMem;
1592     iSortTab = pParse->nTab++;
1593     if( pSort->labelBkOut ){
1594       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1595     }
1596     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1597         nKey+1+nColumn+nRefKey);
1598     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1599     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1600     VdbeCoverage(v);
1601     codeOffset(v, p->iOffset, addrContinue);
1602     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1603     bSeq = 0;
1604   }else{
1605     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1606     codeOffset(v, p->iOffset, addrContinue);
1607     iSortTab = iTab;
1608     bSeq = 1;
1609   }
1610   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1611 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1612     if( aOutEx[i].bSorterRef ) continue;
1613 #endif
1614     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1615   }
1616 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1617   if( pSort->nDefer ){
1618     int iKey = iCol+1;
1619     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1620 
1621     for(i=0; i<pSort->nDefer; i++){
1622       int iCsr = pSort->aDefer[i].iCsr;
1623       Table *pTab = pSort->aDefer[i].pTab;
1624       int nKey = pSort->aDefer[i].nKey;
1625 
1626       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1627       if( HasRowid(pTab) ){
1628         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1629         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1630             sqlite3VdbeCurrentAddr(v)+1, regKey);
1631       }else{
1632         int k;
1633         int iJmp;
1634         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1635         for(k=0; k<nKey; k++){
1636           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1637         }
1638         iJmp = sqlite3VdbeCurrentAddr(v);
1639         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1640         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1641         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1642       }
1643     }
1644     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1645   }
1646 #endif
1647   for(i=nColumn-1; i>=0; i--){
1648 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1649     if( aOutEx[i].bSorterRef ){
1650       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1651     }else
1652 #endif
1653     {
1654       int iRead;
1655       if( aOutEx[i].u.x.iOrderByCol ){
1656         iRead = aOutEx[i].u.x.iOrderByCol-1;
1657       }else{
1658         iRead = iCol--;
1659       }
1660       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1661       VdbeComment((v, "%s", aOutEx[i].zEName));
1662     }
1663   }
1664   switch( eDest ){
1665     case SRT_Table:
1666     case SRT_EphemTab: {
1667       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1668       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1669       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1670       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1671       break;
1672     }
1673 #ifndef SQLITE_OMIT_SUBQUERY
1674     case SRT_Set: {
1675       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1676       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1677                         pDest->zAffSdst, nColumn);
1678       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1679       break;
1680     }
1681     case SRT_Mem: {
1682       /* The LIMIT clause will terminate the loop for us */
1683       break;
1684     }
1685 #endif
1686     case SRT_Upfrom: {
1687       int i2 = pDest->iSDParm2;
1688       int r1 = sqlite3GetTempReg(pParse);
1689       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1690       if( i2<0 ){
1691         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1692       }else{
1693         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1694       }
1695       break;
1696     }
1697     default: {
1698       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1699       testcase( eDest==SRT_Output );
1700       testcase( eDest==SRT_Coroutine );
1701       if( eDest==SRT_Output ){
1702         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1703       }else{
1704         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1705       }
1706       break;
1707     }
1708   }
1709   if( regRowid ){
1710     if( eDest==SRT_Set ){
1711       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1712     }else{
1713       sqlite3ReleaseTempReg(pParse, regRow);
1714     }
1715     sqlite3ReleaseTempReg(pParse, regRowid);
1716   }
1717   /* The bottom of the loop
1718   */
1719   sqlite3VdbeResolveLabel(v, addrContinue);
1720   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1721     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1722   }else{
1723     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1724   }
1725   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1726   sqlite3VdbeResolveLabel(v, addrBreak);
1727 }
1728 
1729 /*
1730 ** Return a pointer to a string containing the 'declaration type' of the
1731 ** expression pExpr. The string may be treated as static by the caller.
1732 **
1733 ** Also try to estimate the size of the returned value and return that
1734 ** result in *pEstWidth.
1735 **
1736 ** The declaration type is the exact datatype definition extracted from the
1737 ** original CREATE TABLE statement if the expression is a column. The
1738 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1739 ** is considered a column can be complex in the presence of subqueries. The
1740 ** result-set expression in all of the following SELECT statements is
1741 ** considered a column by this function.
1742 **
1743 **   SELECT col FROM tbl;
1744 **   SELECT (SELECT col FROM tbl;
1745 **   SELECT (SELECT col FROM tbl);
1746 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1747 **
1748 ** The declaration type for any expression other than a column is NULL.
1749 **
1750 ** This routine has either 3 or 6 parameters depending on whether or not
1751 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1752 */
1753 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1754 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1755 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1756 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1757 #endif
1758 static const char *columnTypeImpl(
1759   NameContext *pNC,
1760 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1761   Expr *pExpr
1762 #else
1763   Expr *pExpr,
1764   const char **pzOrigDb,
1765   const char **pzOrigTab,
1766   const char **pzOrigCol
1767 #endif
1768 ){
1769   char const *zType = 0;
1770   int j;
1771 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1772   char const *zOrigDb = 0;
1773   char const *zOrigTab = 0;
1774   char const *zOrigCol = 0;
1775 #endif
1776 
1777   assert( pExpr!=0 );
1778   assert( pNC->pSrcList!=0 );
1779   switch( pExpr->op ){
1780     case TK_COLUMN: {
1781       /* The expression is a column. Locate the table the column is being
1782       ** extracted from in NameContext.pSrcList. This table may be real
1783       ** database table or a subquery.
1784       */
1785       Table *pTab = 0;            /* Table structure column is extracted from */
1786       Select *pS = 0;             /* Select the column is extracted from */
1787       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1788       while( pNC && !pTab ){
1789         SrcList *pTabList = pNC->pSrcList;
1790         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1791         if( j<pTabList->nSrc ){
1792           pTab = pTabList->a[j].pTab;
1793           pS = pTabList->a[j].pSelect;
1794         }else{
1795           pNC = pNC->pNext;
1796         }
1797       }
1798 
1799       if( pTab==0 ){
1800         /* At one time, code such as "SELECT new.x" within a trigger would
1801         ** cause this condition to run.  Since then, we have restructured how
1802         ** trigger code is generated and so this condition is no longer
1803         ** possible. However, it can still be true for statements like
1804         ** the following:
1805         **
1806         **   CREATE TABLE t1(col INTEGER);
1807         **   SELECT (SELECT t1.col) FROM FROM t1;
1808         **
1809         ** when columnType() is called on the expression "t1.col" in the
1810         ** sub-select. In this case, set the column type to NULL, even
1811         ** though it should really be "INTEGER".
1812         **
1813         ** This is not a problem, as the column type of "t1.col" is never
1814         ** used. When columnType() is called on the expression
1815         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1816         ** branch below.  */
1817         break;
1818       }
1819 
1820       assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1821       if( pS ){
1822         /* The "table" is actually a sub-select or a view in the FROM clause
1823         ** of the SELECT statement. Return the declaration type and origin
1824         ** data for the result-set column of the sub-select.
1825         */
1826         if( iCol<pS->pEList->nExpr
1827 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1828          && iCol>=0
1829 #else
1830          && ALWAYS(iCol>=0)
1831 #endif
1832         ){
1833           /* If iCol is less than zero, then the expression requests the
1834           ** rowid of the sub-select or view. This expression is legal (see
1835           ** test case misc2.2.2) - it always evaluates to NULL.
1836           */
1837           NameContext sNC;
1838           Expr *p = pS->pEList->a[iCol].pExpr;
1839           sNC.pSrcList = pS->pSrc;
1840           sNC.pNext = pNC;
1841           sNC.pParse = pNC->pParse;
1842           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1843         }
1844       }else{
1845         /* A real table or a CTE table */
1846         assert( !pS );
1847 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1848         if( iCol<0 ) iCol = pTab->iPKey;
1849         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1850         if( iCol<0 ){
1851           zType = "INTEGER";
1852           zOrigCol = "rowid";
1853         }else{
1854           zOrigCol = pTab->aCol[iCol].zCnName;
1855           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1856         }
1857         zOrigTab = pTab->zName;
1858         if( pNC->pParse && pTab->pSchema ){
1859           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1860           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1861         }
1862 #else
1863         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1864         if( iCol<0 ){
1865           zType = "INTEGER";
1866         }else{
1867           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1868         }
1869 #endif
1870       }
1871       break;
1872     }
1873 #ifndef SQLITE_OMIT_SUBQUERY
1874     case TK_SELECT: {
1875       /* The expression is a sub-select. Return the declaration type and
1876       ** origin info for the single column in the result set of the SELECT
1877       ** statement.
1878       */
1879       NameContext sNC;
1880       Select *pS;
1881       Expr *p;
1882       assert( ExprUseXSelect(pExpr) );
1883       pS = pExpr->x.pSelect;
1884       p = pS->pEList->a[0].pExpr;
1885       sNC.pSrcList = pS->pSrc;
1886       sNC.pNext = pNC;
1887       sNC.pParse = pNC->pParse;
1888       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1889       break;
1890     }
1891 #endif
1892   }
1893 
1894 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1895   if( pzOrigDb ){
1896     assert( pzOrigTab && pzOrigCol );
1897     *pzOrigDb = zOrigDb;
1898     *pzOrigTab = zOrigTab;
1899     *pzOrigCol = zOrigCol;
1900   }
1901 #endif
1902   return zType;
1903 }
1904 
1905 /*
1906 ** Generate code that will tell the VDBE the declaration types of columns
1907 ** in the result set.
1908 */
1909 static void generateColumnTypes(
1910   Parse *pParse,      /* Parser context */
1911   SrcList *pTabList,  /* List of tables */
1912   ExprList *pEList    /* Expressions defining the result set */
1913 ){
1914 #ifndef SQLITE_OMIT_DECLTYPE
1915   Vdbe *v = pParse->pVdbe;
1916   int i;
1917   NameContext sNC;
1918   sNC.pSrcList = pTabList;
1919   sNC.pParse = pParse;
1920   sNC.pNext = 0;
1921   for(i=0; i<pEList->nExpr; i++){
1922     Expr *p = pEList->a[i].pExpr;
1923     const char *zType;
1924 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1925     const char *zOrigDb = 0;
1926     const char *zOrigTab = 0;
1927     const char *zOrigCol = 0;
1928     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1929 
1930     /* The vdbe must make its own copy of the column-type and other
1931     ** column specific strings, in case the schema is reset before this
1932     ** virtual machine is deleted.
1933     */
1934     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1935     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1936     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1937 #else
1938     zType = columnType(&sNC, p, 0, 0, 0);
1939 #endif
1940     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1941   }
1942 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1943 }
1944 
1945 
1946 /*
1947 ** Compute the column names for a SELECT statement.
1948 **
1949 ** The only guarantee that SQLite makes about column names is that if the
1950 ** column has an AS clause assigning it a name, that will be the name used.
1951 ** That is the only documented guarantee.  However, countless applications
1952 ** developed over the years have made baseless assumptions about column names
1953 ** and will break if those assumptions changes.  Hence, use extreme caution
1954 ** when modifying this routine to avoid breaking legacy.
1955 **
1956 ** See Also: sqlite3ColumnsFromExprList()
1957 **
1958 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1959 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1960 ** applications should operate this way.  Nevertheless, we need to support the
1961 ** other modes for legacy:
1962 **
1963 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1964 **                              originally appears in the SELECT statement.  In
1965 **                              other words, the zSpan of the result expression.
1966 **
1967 **    short=ON, full=OFF:       (This is the default setting).  If the result
1968 **                              refers directly to a table column, then the
1969 **                              result column name is just the table column
1970 **                              name: COLUMN.  Otherwise use zSpan.
1971 **
1972 **    full=ON, short=ANY:       If the result refers directly to a table column,
1973 **                              then the result column name with the table name
1974 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1975 */
1976 void sqlite3GenerateColumnNames(
1977   Parse *pParse,      /* Parser context */
1978   Select *pSelect     /* Generate column names for this SELECT statement */
1979 ){
1980   Vdbe *v = pParse->pVdbe;
1981   int i;
1982   Table *pTab;
1983   SrcList *pTabList;
1984   ExprList *pEList;
1985   sqlite3 *db = pParse->db;
1986   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1987   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1988 
1989 #ifndef SQLITE_OMIT_EXPLAIN
1990   /* If this is an EXPLAIN, skip this step */
1991   if( pParse->explain ){
1992     return;
1993   }
1994 #endif
1995 
1996   if( pParse->colNamesSet ) return;
1997   /* Column names are determined by the left-most term of a compound select */
1998   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1999   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2000   pTabList = pSelect->pSrc;
2001   pEList = pSelect->pEList;
2002   assert( v!=0 );
2003   assert( pTabList!=0 );
2004   pParse->colNamesSet = 1;
2005   fullName = (db->flags & SQLITE_FullColNames)!=0;
2006   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2007   sqlite3VdbeSetNumCols(v, pEList->nExpr);
2008   for(i=0; i<pEList->nExpr; i++){
2009     Expr *p = pEList->a[i].pExpr;
2010 
2011     assert( p!=0 );
2012     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2013     assert( p->op!=TK_COLUMN
2014         || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2015     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
2016       /* An AS clause always takes first priority */
2017       char *zName = pEList->a[i].zEName;
2018       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2019     }else if( srcName && p->op==TK_COLUMN ){
2020       char *zCol;
2021       int iCol = p->iColumn;
2022       pTab = p->y.pTab;
2023       assert( pTab!=0 );
2024       if( iCol<0 ) iCol = pTab->iPKey;
2025       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2026       if( iCol<0 ){
2027         zCol = "rowid";
2028       }else{
2029         zCol = pTab->aCol[iCol].zCnName;
2030       }
2031       if( fullName ){
2032         char *zName = 0;
2033         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2034         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2035       }else{
2036         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2037       }
2038     }else{
2039       const char *z = pEList->a[i].zEName;
2040       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2041       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2042     }
2043   }
2044   generateColumnTypes(pParse, pTabList, pEList);
2045 }
2046 
2047 /*
2048 ** Given an expression list (which is really the list of expressions
2049 ** that form the result set of a SELECT statement) compute appropriate
2050 ** column names for a table that would hold the expression list.
2051 **
2052 ** All column names will be unique.
2053 **
2054 ** Only the column names are computed.  Column.zType, Column.zColl,
2055 ** and other fields of Column are zeroed.
2056 **
2057 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2058 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2059 **
2060 ** The only guarantee that SQLite makes about column names is that if the
2061 ** column has an AS clause assigning it a name, that will be the name used.
2062 ** That is the only documented guarantee.  However, countless applications
2063 ** developed over the years have made baseless assumptions about column names
2064 ** and will break if those assumptions changes.  Hence, use extreme caution
2065 ** when modifying this routine to avoid breaking legacy.
2066 **
2067 ** See Also: sqlite3GenerateColumnNames()
2068 */
2069 int sqlite3ColumnsFromExprList(
2070   Parse *pParse,          /* Parsing context */
2071   ExprList *pEList,       /* Expr list from which to derive column names */
2072   i16 *pnCol,             /* Write the number of columns here */
2073   Column **paCol          /* Write the new column list here */
2074 ){
2075   sqlite3 *db = pParse->db;   /* Database connection */
2076   int i, j;                   /* Loop counters */
2077   u32 cnt;                    /* Index added to make the name unique */
2078   Column *aCol, *pCol;        /* For looping over result columns */
2079   int nCol;                   /* Number of columns in the result set */
2080   char *zName;                /* Column name */
2081   int nName;                  /* Size of name in zName[] */
2082   Hash ht;                    /* Hash table of column names */
2083   Table *pTab;
2084 
2085   sqlite3HashInit(&ht);
2086   if( pEList ){
2087     nCol = pEList->nExpr;
2088     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2089     testcase( aCol==0 );
2090     if( NEVER(nCol>32767) ) nCol = 32767;
2091   }else{
2092     nCol = 0;
2093     aCol = 0;
2094   }
2095   assert( nCol==(i16)nCol );
2096   *pnCol = nCol;
2097   *paCol = aCol;
2098 
2099   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2100     /* Get an appropriate name for the column
2101     */
2102     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2103       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2104     }else{
2105       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2106       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2107         pColExpr = pColExpr->pRight;
2108         assert( pColExpr!=0 );
2109       }
2110       if( pColExpr->op==TK_COLUMN
2111        && ALWAYS( ExprUseYTab(pColExpr) )
2112        && (pTab = pColExpr->y.pTab)!=0
2113       ){
2114         /* For columns use the column name name */
2115         int iCol = pColExpr->iColumn;
2116         if( iCol<0 ) iCol = pTab->iPKey;
2117         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2118       }else if( pColExpr->op==TK_ID ){
2119         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2120         zName = pColExpr->u.zToken;
2121       }else{
2122         /* Use the original text of the column expression as its name */
2123         zName = pEList->a[i].zEName;
2124       }
2125     }
2126     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2127       zName = sqlite3DbStrDup(db, zName);
2128     }else{
2129       zName = sqlite3MPrintf(db,"column%d",i+1);
2130     }
2131 
2132     /* Make sure the column name is unique.  If the name is not unique,
2133     ** append an integer to the name so that it becomes unique.
2134     */
2135     cnt = 0;
2136     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2137       nName = sqlite3Strlen30(zName);
2138       if( nName>0 ){
2139         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2140         if( zName[j]==':' ) nName = j;
2141       }
2142       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2143       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2144     }
2145     pCol->zCnName = zName;
2146     pCol->hName = sqlite3StrIHash(zName);
2147     sqlite3ColumnPropertiesFromName(0, pCol);
2148     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2149       sqlite3OomFault(db);
2150     }
2151   }
2152   sqlite3HashClear(&ht);
2153   if( db->mallocFailed ){
2154     for(j=0; j<i; j++){
2155       sqlite3DbFree(db, aCol[j].zCnName);
2156     }
2157     sqlite3DbFree(db, aCol);
2158     *paCol = 0;
2159     *pnCol = 0;
2160     return SQLITE_NOMEM_BKPT;
2161   }
2162   return SQLITE_OK;
2163 }
2164 
2165 /*
2166 ** Add type and collation information to a column list based on
2167 ** a SELECT statement.
2168 **
2169 ** The column list presumably came from selectColumnNamesFromExprList().
2170 ** The column list has only names, not types or collations.  This
2171 ** routine goes through and adds the types and collations.
2172 **
2173 ** This routine requires that all identifiers in the SELECT
2174 ** statement be resolved.
2175 */
2176 void sqlite3SelectAddColumnTypeAndCollation(
2177   Parse *pParse,        /* Parsing contexts */
2178   Table *pTab,          /* Add column type information to this table */
2179   Select *pSelect,      /* SELECT used to determine types and collations */
2180   char aff              /* Default affinity for columns */
2181 ){
2182   sqlite3 *db = pParse->db;
2183   NameContext sNC;
2184   Column *pCol;
2185   CollSeq *pColl;
2186   int i;
2187   Expr *p;
2188   struct ExprList_item *a;
2189 
2190   assert( pSelect!=0 );
2191   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2192   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2193   if( db->mallocFailed ) return;
2194   memset(&sNC, 0, sizeof(sNC));
2195   sNC.pSrcList = pSelect->pSrc;
2196   a = pSelect->pEList->a;
2197   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2198     const char *zType;
2199     i64 n, m;
2200     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2201     p = a[i].pExpr;
2202     zType = columnType(&sNC, p, 0, 0, 0);
2203     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2204     pCol->affinity = sqlite3ExprAffinity(p);
2205     if( zType ){
2206       m = sqlite3Strlen30(zType);
2207       n = sqlite3Strlen30(pCol->zCnName);
2208       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2209       if( pCol->zCnName ){
2210         memcpy(&pCol->zCnName[n+1], zType, m+1);
2211         pCol->colFlags |= COLFLAG_HASTYPE;
2212       }else{
2213         testcase( pCol->colFlags & COLFLAG_HASTYPE );
2214         pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2215       }
2216     }
2217     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2218     pColl = sqlite3ExprCollSeq(pParse, p);
2219     if( pColl ){
2220       assert( pTab->pIndex==0 );
2221       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2222     }
2223   }
2224   pTab->szTabRow = 1; /* Any non-zero value works */
2225 }
2226 
2227 /*
2228 ** Given a SELECT statement, generate a Table structure that describes
2229 ** the result set of that SELECT.
2230 */
2231 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2232   Table *pTab;
2233   sqlite3 *db = pParse->db;
2234   u64 savedFlags;
2235 
2236   savedFlags = db->flags;
2237   db->flags &= ~(u64)SQLITE_FullColNames;
2238   db->flags |= SQLITE_ShortColNames;
2239   sqlite3SelectPrep(pParse, pSelect, 0);
2240   db->flags = savedFlags;
2241   if( pParse->nErr ) return 0;
2242   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2243   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2244   if( pTab==0 ){
2245     return 0;
2246   }
2247   pTab->nTabRef = 1;
2248   pTab->zName = 0;
2249   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2250   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2251   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2252   pTab->iPKey = -1;
2253   if( db->mallocFailed ){
2254     sqlite3DeleteTable(db, pTab);
2255     return 0;
2256   }
2257   return pTab;
2258 }
2259 
2260 /*
2261 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2262 ** If an error occurs, return NULL and leave a message in pParse.
2263 */
2264 Vdbe *sqlite3GetVdbe(Parse *pParse){
2265   if( pParse->pVdbe ){
2266     return pParse->pVdbe;
2267   }
2268   if( pParse->pToplevel==0
2269    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2270   ){
2271     pParse->okConstFactor = 1;
2272   }
2273   return sqlite3VdbeCreate(pParse);
2274 }
2275 
2276 
2277 /*
2278 ** Compute the iLimit and iOffset fields of the SELECT based on the
2279 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2280 ** that appear in the original SQL statement after the LIMIT and OFFSET
2281 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2282 ** are the integer memory register numbers for counters used to compute
2283 ** the limit and offset.  If there is no limit and/or offset, then
2284 ** iLimit and iOffset are negative.
2285 **
2286 ** This routine changes the values of iLimit and iOffset only if
2287 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2288 ** and iOffset should have been preset to appropriate default values (zero)
2289 ** prior to calling this routine.
2290 **
2291 ** The iOffset register (if it exists) is initialized to the value
2292 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2293 ** iOffset+1 is initialized to LIMIT+OFFSET.
2294 **
2295 ** Only if pLimit->pLeft!=0 do the limit registers get
2296 ** redefined.  The UNION ALL operator uses this property to force
2297 ** the reuse of the same limit and offset registers across multiple
2298 ** SELECT statements.
2299 */
2300 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2301   Vdbe *v = 0;
2302   int iLimit = 0;
2303   int iOffset;
2304   int n;
2305   Expr *pLimit = p->pLimit;
2306 
2307   if( p->iLimit ) return;
2308 
2309   /*
2310   ** "LIMIT -1" always shows all rows.  There is some
2311   ** controversy about what the correct behavior should be.
2312   ** The current implementation interprets "LIMIT 0" to mean
2313   ** no rows.
2314   */
2315   if( pLimit ){
2316     assert( pLimit->op==TK_LIMIT );
2317     assert( pLimit->pLeft!=0 );
2318     p->iLimit = iLimit = ++pParse->nMem;
2319     v = sqlite3GetVdbe(pParse);
2320     assert( v!=0 );
2321     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2322       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2323       VdbeComment((v, "LIMIT counter"));
2324       if( n==0 ){
2325         sqlite3VdbeGoto(v, iBreak);
2326       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2327         p->nSelectRow = sqlite3LogEst((u64)n);
2328         p->selFlags |= SF_FixedLimit;
2329       }
2330     }else{
2331       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2332       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2333       VdbeComment((v, "LIMIT counter"));
2334       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2335     }
2336     if( pLimit->pRight ){
2337       p->iOffset = iOffset = ++pParse->nMem;
2338       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2339       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2340       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2341       VdbeComment((v, "OFFSET counter"));
2342       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2343       VdbeComment((v, "LIMIT+OFFSET"));
2344     }
2345   }
2346 }
2347 
2348 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2349 /*
2350 ** Return the appropriate collating sequence for the iCol-th column of
2351 ** the result set for the compound-select statement "p".  Return NULL if
2352 ** the column has no default collating sequence.
2353 **
2354 ** The collating sequence for the compound select is taken from the
2355 ** left-most term of the select that has a collating sequence.
2356 */
2357 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2358   CollSeq *pRet;
2359   if( p->pPrior ){
2360     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2361   }else{
2362     pRet = 0;
2363   }
2364   assert( iCol>=0 );
2365   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2366   ** have been thrown during name resolution and we would not have gotten
2367   ** this far */
2368   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2369     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2370   }
2371   return pRet;
2372 }
2373 
2374 /*
2375 ** The select statement passed as the second parameter is a compound SELECT
2376 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2377 ** structure suitable for implementing the ORDER BY.
2378 **
2379 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2380 ** function is responsible for ensuring that this structure is eventually
2381 ** freed.
2382 */
2383 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2384   ExprList *pOrderBy = p->pOrderBy;
2385   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2386   sqlite3 *db = pParse->db;
2387   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2388   if( pRet ){
2389     int i;
2390     for(i=0; i<nOrderBy; i++){
2391       struct ExprList_item *pItem = &pOrderBy->a[i];
2392       Expr *pTerm = pItem->pExpr;
2393       CollSeq *pColl;
2394 
2395       if( pTerm->flags & EP_Collate ){
2396         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2397       }else{
2398         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2399         if( pColl==0 ) pColl = db->pDfltColl;
2400         pOrderBy->a[i].pExpr =
2401           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2402       }
2403       assert( sqlite3KeyInfoIsWriteable(pRet) );
2404       pRet->aColl[i] = pColl;
2405       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2406     }
2407   }
2408 
2409   return pRet;
2410 }
2411 
2412 #ifndef SQLITE_OMIT_CTE
2413 /*
2414 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2415 ** query of the form:
2416 **
2417 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2418 **                         \___________/             \_______________/
2419 **                           p->pPrior                      p
2420 **
2421 **
2422 ** There is exactly one reference to the recursive-table in the FROM clause
2423 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2424 **
2425 ** The setup-query runs once to generate an initial set of rows that go
2426 ** into a Queue table.  Rows are extracted from the Queue table one by
2427 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2428 ** extracted row (now in the iCurrent table) becomes the content of the
2429 ** recursive-table for a recursive-query run.  The output of the recursive-query
2430 ** is added back into the Queue table.  Then another row is extracted from Queue
2431 ** and the iteration continues until the Queue table is empty.
2432 **
2433 ** If the compound query operator is UNION then no duplicate rows are ever
2434 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2435 ** that have ever been inserted into Queue and causes duplicates to be
2436 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2437 **
2438 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2439 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2440 ** an ORDER BY, the Queue table is just a FIFO.
2441 **
2442 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2443 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2444 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2445 ** with a positive value, then the first OFFSET outputs are discarded rather
2446 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2447 ** rows have been skipped.
2448 */
2449 static void generateWithRecursiveQuery(
2450   Parse *pParse,        /* Parsing context */
2451   Select *p,            /* The recursive SELECT to be coded */
2452   SelectDest *pDest     /* What to do with query results */
2453 ){
2454   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2455   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2456   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2457   Select *pSetup;               /* The setup query */
2458   Select *pFirstRec;            /* Left-most recursive term */
2459   int addrTop;                  /* Top of the loop */
2460   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2461   int iCurrent = 0;             /* The Current table */
2462   int regCurrent;               /* Register holding Current table */
2463   int iQueue;                   /* The Queue table */
2464   int iDistinct = 0;            /* To ensure unique results if UNION */
2465   int eDest = SRT_Fifo;         /* How to write to Queue */
2466   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2467   int i;                        /* Loop counter */
2468   int rc;                       /* Result code */
2469   ExprList *pOrderBy;           /* The ORDER BY clause */
2470   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2471   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2472 
2473 #ifndef SQLITE_OMIT_WINDOWFUNC
2474   if( p->pWin ){
2475     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2476     return;
2477   }
2478 #endif
2479 
2480   /* Obtain authorization to do a recursive query */
2481   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2482 
2483   /* Process the LIMIT and OFFSET clauses, if they exist */
2484   addrBreak = sqlite3VdbeMakeLabel(pParse);
2485   p->nSelectRow = 320;  /* 4 billion rows */
2486   computeLimitRegisters(pParse, p, addrBreak);
2487   pLimit = p->pLimit;
2488   regLimit = p->iLimit;
2489   regOffset = p->iOffset;
2490   p->pLimit = 0;
2491   p->iLimit = p->iOffset = 0;
2492   pOrderBy = p->pOrderBy;
2493 
2494   /* Locate the cursor number of the Current table */
2495   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2496     if( pSrc->a[i].fg.isRecursive ){
2497       iCurrent = pSrc->a[i].iCursor;
2498       break;
2499     }
2500   }
2501 
2502   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2503   ** the Distinct table must be exactly one greater than Queue in order
2504   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2505   iQueue = pParse->nTab++;
2506   if( p->op==TK_UNION ){
2507     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2508     iDistinct = pParse->nTab++;
2509   }else{
2510     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2511   }
2512   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2513 
2514   /* Allocate cursors for Current, Queue, and Distinct. */
2515   regCurrent = ++pParse->nMem;
2516   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2517   if( pOrderBy ){
2518     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2519     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2520                       (char*)pKeyInfo, P4_KEYINFO);
2521     destQueue.pOrderBy = pOrderBy;
2522   }else{
2523     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2524   }
2525   VdbeComment((v, "Queue table"));
2526   if( iDistinct ){
2527     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2528     p->selFlags |= SF_UsesEphemeral;
2529   }
2530 
2531   /* Detach the ORDER BY clause from the compound SELECT */
2532   p->pOrderBy = 0;
2533 
2534   /* Figure out how many elements of the compound SELECT are part of the
2535   ** recursive query.  Make sure no recursive elements use aggregate
2536   ** functions.  Mark the recursive elements as UNION ALL even if they
2537   ** are really UNION because the distinctness will be enforced by the
2538   ** iDistinct table.  pFirstRec is left pointing to the left-most
2539   ** recursive term of the CTE.
2540   */
2541   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2542     if( pFirstRec->selFlags & SF_Aggregate ){
2543       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2544       goto end_of_recursive_query;
2545     }
2546     pFirstRec->op = TK_ALL;
2547     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2548   }
2549 
2550   /* Store the results of the setup-query in Queue. */
2551   pSetup = pFirstRec->pPrior;
2552   pSetup->pNext = 0;
2553   ExplainQueryPlan((pParse, 1, "SETUP"));
2554   rc = sqlite3Select(pParse, pSetup, &destQueue);
2555   pSetup->pNext = p;
2556   if( rc ) goto end_of_recursive_query;
2557 
2558   /* Find the next row in the Queue and output that row */
2559   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2560 
2561   /* Transfer the next row in Queue over to Current */
2562   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2563   if( pOrderBy ){
2564     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2565   }else{
2566     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2567   }
2568   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2569 
2570   /* Output the single row in Current */
2571   addrCont = sqlite3VdbeMakeLabel(pParse);
2572   codeOffset(v, regOffset, addrCont);
2573   selectInnerLoop(pParse, p, iCurrent,
2574       0, 0, pDest, addrCont, addrBreak);
2575   if( regLimit ){
2576     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2577     VdbeCoverage(v);
2578   }
2579   sqlite3VdbeResolveLabel(v, addrCont);
2580 
2581   /* Execute the recursive SELECT taking the single row in Current as
2582   ** the value for the recursive-table. Store the results in the Queue.
2583   */
2584   pFirstRec->pPrior = 0;
2585   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2586   sqlite3Select(pParse, p, &destQueue);
2587   assert( pFirstRec->pPrior==0 );
2588   pFirstRec->pPrior = pSetup;
2589 
2590   /* Keep running the loop until the Queue is empty */
2591   sqlite3VdbeGoto(v, addrTop);
2592   sqlite3VdbeResolveLabel(v, addrBreak);
2593 
2594 end_of_recursive_query:
2595   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2596   p->pOrderBy = pOrderBy;
2597   p->pLimit = pLimit;
2598   return;
2599 }
2600 #endif /* SQLITE_OMIT_CTE */
2601 
2602 /* Forward references */
2603 static int multiSelectOrderBy(
2604   Parse *pParse,        /* Parsing context */
2605   Select *p,            /* The right-most of SELECTs to be coded */
2606   SelectDest *pDest     /* What to do with query results */
2607 );
2608 
2609 /*
2610 ** Handle the special case of a compound-select that originates from a
2611 ** VALUES clause.  By handling this as a special case, we avoid deep
2612 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2613 ** on a VALUES clause.
2614 **
2615 ** Because the Select object originates from a VALUES clause:
2616 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2617 **   (2) All terms are UNION ALL
2618 **   (3) There is no ORDER BY clause
2619 **
2620 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2621 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2622 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2623 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2624 */
2625 static int multiSelectValues(
2626   Parse *pParse,        /* Parsing context */
2627   Select *p,            /* The right-most of SELECTs to be coded */
2628   SelectDest *pDest     /* What to do with query results */
2629 ){
2630   int nRow = 1;
2631   int rc = 0;
2632   int bShowAll = p->pLimit==0;
2633   assert( p->selFlags & SF_MultiValue );
2634   do{
2635     assert( p->selFlags & SF_Values );
2636     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2637     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2638 #ifndef SQLITE_OMIT_WINDOWFUNC
2639     if( p->pWin ) return -1;
2640 #endif
2641     if( p->pPrior==0 ) break;
2642     assert( p->pPrior->pNext==p );
2643     p = p->pPrior;
2644     nRow += bShowAll;
2645   }while(1);
2646   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2647                     nRow==1 ? "" : "S"));
2648   while( p ){
2649     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2650     if( !bShowAll ) break;
2651     p->nSelectRow = nRow;
2652     p = p->pNext;
2653   }
2654   return rc;
2655 }
2656 
2657 /*
2658 ** Return true if the SELECT statement which is known to be the recursive
2659 ** part of a recursive CTE still has its anchor terms attached.  If the
2660 ** anchor terms have already been removed, then return false.
2661 */
2662 static int hasAnchor(Select *p){
2663   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2664   return p!=0;
2665 }
2666 
2667 /*
2668 ** This routine is called to process a compound query form from
2669 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2670 ** INTERSECT
2671 **
2672 ** "p" points to the right-most of the two queries.  the query on the
2673 ** left is p->pPrior.  The left query could also be a compound query
2674 ** in which case this routine will be called recursively.
2675 **
2676 ** The results of the total query are to be written into a destination
2677 ** of type eDest with parameter iParm.
2678 **
2679 ** Example 1:  Consider a three-way compound SQL statement.
2680 **
2681 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2682 **
2683 ** This statement is parsed up as follows:
2684 **
2685 **     SELECT c FROM t3
2686 **      |
2687 **      `----->  SELECT b FROM t2
2688 **                |
2689 **                `------>  SELECT a FROM t1
2690 **
2691 ** The arrows in the diagram above represent the Select.pPrior pointer.
2692 ** So if this routine is called with p equal to the t3 query, then
2693 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2694 **
2695 ** Notice that because of the way SQLite parses compound SELECTs, the
2696 ** individual selects always group from left to right.
2697 */
2698 static int multiSelect(
2699   Parse *pParse,        /* Parsing context */
2700   Select *p,            /* The right-most of SELECTs to be coded */
2701   SelectDest *pDest     /* What to do with query results */
2702 ){
2703   int rc = SQLITE_OK;   /* Success code from a subroutine */
2704   Select *pPrior;       /* Another SELECT immediately to our left */
2705   Vdbe *v;              /* Generate code to this VDBE */
2706   SelectDest dest;      /* Alternative data destination */
2707   Select *pDelete = 0;  /* Chain of simple selects to delete */
2708   sqlite3 *db;          /* Database connection */
2709 
2710   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2711   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2712   */
2713   assert( p && p->pPrior );  /* Calling function guarantees this much */
2714   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2715   assert( p->selFlags & SF_Compound );
2716   db = pParse->db;
2717   pPrior = p->pPrior;
2718   dest = *pDest;
2719   assert( pPrior->pOrderBy==0 );
2720   assert( pPrior->pLimit==0 );
2721 
2722   v = sqlite3GetVdbe(pParse);
2723   assert( v!=0 );  /* The VDBE already created by calling function */
2724 
2725   /* Create the destination temporary table if necessary
2726   */
2727   if( dest.eDest==SRT_EphemTab ){
2728     assert( p->pEList );
2729     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2730     dest.eDest = SRT_Table;
2731   }
2732 
2733   /* Special handling for a compound-select that originates as a VALUES clause.
2734   */
2735   if( p->selFlags & SF_MultiValue ){
2736     rc = multiSelectValues(pParse, p, &dest);
2737     if( rc>=0 ) goto multi_select_end;
2738     rc = SQLITE_OK;
2739   }
2740 
2741   /* Make sure all SELECTs in the statement have the same number of elements
2742   ** in their result sets.
2743   */
2744   assert( p->pEList && pPrior->pEList );
2745   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2746 
2747 #ifndef SQLITE_OMIT_CTE
2748   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2749     generateWithRecursiveQuery(pParse, p, &dest);
2750   }else
2751 #endif
2752 
2753   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2754   */
2755   if( p->pOrderBy ){
2756     return multiSelectOrderBy(pParse, p, pDest);
2757   }else{
2758 
2759 #ifndef SQLITE_OMIT_EXPLAIN
2760     if( pPrior->pPrior==0 ){
2761       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2762       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2763     }
2764 #endif
2765 
2766     /* Generate code for the left and right SELECT statements.
2767     */
2768     switch( p->op ){
2769       case TK_ALL: {
2770         int addr = 0;
2771         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2772         assert( !pPrior->pLimit );
2773         pPrior->iLimit = p->iLimit;
2774         pPrior->iOffset = p->iOffset;
2775         pPrior->pLimit = p->pLimit;
2776         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2777         rc = sqlite3Select(pParse, pPrior, &dest);
2778         pPrior->pLimit = 0;
2779         if( rc ){
2780           goto multi_select_end;
2781         }
2782         p->pPrior = 0;
2783         p->iLimit = pPrior->iLimit;
2784         p->iOffset = pPrior->iOffset;
2785         if( p->iLimit ){
2786           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2787           VdbeComment((v, "Jump ahead if LIMIT reached"));
2788           if( p->iOffset ){
2789             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2790                               p->iLimit, p->iOffset+1, p->iOffset);
2791           }
2792         }
2793         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2794         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2795         rc = sqlite3Select(pParse, p, &dest);
2796         testcase( rc!=SQLITE_OK );
2797         pDelete = p->pPrior;
2798         p->pPrior = pPrior;
2799         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2800         if( p->pLimit
2801          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2802          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2803         ){
2804           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2805         }
2806         if( addr ){
2807           sqlite3VdbeJumpHere(v, addr);
2808         }
2809         break;
2810       }
2811       case TK_EXCEPT:
2812       case TK_UNION: {
2813         int unionTab;    /* Cursor number of the temp table holding result */
2814         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2815         int priorOp;     /* The SRT_ operation to apply to prior selects */
2816         Expr *pLimit;    /* Saved values of p->nLimit  */
2817         int addr;
2818         SelectDest uniondest;
2819 
2820         testcase( p->op==TK_EXCEPT );
2821         testcase( p->op==TK_UNION );
2822         priorOp = SRT_Union;
2823         if( dest.eDest==priorOp ){
2824           /* We can reuse a temporary table generated by a SELECT to our
2825           ** right.
2826           */
2827           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2828           unionTab = dest.iSDParm;
2829         }else{
2830           /* We will need to create our own temporary table to hold the
2831           ** intermediate results.
2832           */
2833           unionTab = pParse->nTab++;
2834           assert( p->pOrderBy==0 );
2835           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2836           assert( p->addrOpenEphm[0] == -1 );
2837           p->addrOpenEphm[0] = addr;
2838           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2839           assert( p->pEList );
2840         }
2841 
2842 
2843         /* Code the SELECT statements to our left
2844         */
2845         assert( !pPrior->pOrderBy );
2846         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2847         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2848         rc = sqlite3Select(pParse, pPrior, &uniondest);
2849         if( rc ){
2850           goto multi_select_end;
2851         }
2852 
2853         /* Code the current SELECT statement
2854         */
2855         if( p->op==TK_EXCEPT ){
2856           op = SRT_Except;
2857         }else{
2858           assert( p->op==TK_UNION );
2859           op = SRT_Union;
2860         }
2861         p->pPrior = 0;
2862         pLimit = p->pLimit;
2863         p->pLimit = 0;
2864         uniondest.eDest = op;
2865         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2866                           sqlite3SelectOpName(p->op)));
2867         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2868         rc = sqlite3Select(pParse, p, &uniondest);
2869         testcase( rc!=SQLITE_OK );
2870         assert( p->pOrderBy==0 );
2871         pDelete = p->pPrior;
2872         p->pPrior = pPrior;
2873         p->pOrderBy = 0;
2874         if( p->op==TK_UNION ){
2875           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2876         }
2877         sqlite3ExprDelete(db, p->pLimit);
2878         p->pLimit = pLimit;
2879         p->iLimit = 0;
2880         p->iOffset = 0;
2881 
2882         /* Convert the data in the temporary table into whatever form
2883         ** it is that we currently need.
2884         */
2885         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2886         assert( p->pEList || db->mallocFailed );
2887         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2888           int iCont, iBreak, iStart;
2889           iBreak = sqlite3VdbeMakeLabel(pParse);
2890           iCont = sqlite3VdbeMakeLabel(pParse);
2891           computeLimitRegisters(pParse, p, iBreak);
2892           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2893           iStart = sqlite3VdbeCurrentAddr(v);
2894           selectInnerLoop(pParse, p, unionTab,
2895                           0, 0, &dest, iCont, iBreak);
2896           sqlite3VdbeResolveLabel(v, iCont);
2897           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2898           sqlite3VdbeResolveLabel(v, iBreak);
2899           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2900         }
2901         break;
2902       }
2903       default: assert( p->op==TK_INTERSECT ); {
2904         int tab1, tab2;
2905         int iCont, iBreak, iStart;
2906         Expr *pLimit;
2907         int addr;
2908         SelectDest intersectdest;
2909         int r1;
2910 
2911         /* INTERSECT is different from the others since it requires
2912         ** two temporary tables.  Hence it has its own case.  Begin
2913         ** by allocating the tables we will need.
2914         */
2915         tab1 = pParse->nTab++;
2916         tab2 = pParse->nTab++;
2917         assert( p->pOrderBy==0 );
2918 
2919         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2920         assert( p->addrOpenEphm[0] == -1 );
2921         p->addrOpenEphm[0] = addr;
2922         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2923         assert( p->pEList );
2924 
2925         /* Code the SELECTs to our left into temporary table "tab1".
2926         */
2927         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2928         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2929         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2930         if( rc ){
2931           goto multi_select_end;
2932         }
2933 
2934         /* Code the current SELECT into temporary table "tab2"
2935         */
2936         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2937         assert( p->addrOpenEphm[1] == -1 );
2938         p->addrOpenEphm[1] = addr;
2939         p->pPrior = 0;
2940         pLimit = p->pLimit;
2941         p->pLimit = 0;
2942         intersectdest.iSDParm = tab2;
2943         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2944                           sqlite3SelectOpName(p->op)));
2945         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2946         rc = sqlite3Select(pParse, p, &intersectdest);
2947         testcase( rc!=SQLITE_OK );
2948         pDelete = p->pPrior;
2949         p->pPrior = pPrior;
2950         if( p->nSelectRow>pPrior->nSelectRow ){
2951           p->nSelectRow = pPrior->nSelectRow;
2952         }
2953         sqlite3ExprDelete(db, p->pLimit);
2954         p->pLimit = pLimit;
2955 
2956         /* Generate code to take the intersection of the two temporary
2957         ** tables.
2958         */
2959         if( rc ) break;
2960         assert( p->pEList );
2961         iBreak = sqlite3VdbeMakeLabel(pParse);
2962         iCont = sqlite3VdbeMakeLabel(pParse);
2963         computeLimitRegisters(pParse, p, iBreak);
2964         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2965         r1 = sqlite3GetTempReg(pParse);
2966         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2967         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2968         VdbeCoverage(v);
2969         sqlite3ReleaseTempReg(pParse, r1);
2970         selectInnerLoop(pParse, p, tab1,
2971                         0, 0, &dest, iCont, iBreak);
2972         sqlite3VdbeResolveLabel(v, iCont);
2973         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2974         sqlite3VdbeResolveLabel(v, iBreak);
2975         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2976         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2977         break;
2978       }
2979     }
2980 
2981   #ifndef SQLITE_OMIT_EXPLAIN
2982     if( p->pNext==0 ){
2983       ExplainQueryPlanPop(pParse);
2984     }
2985   #endif
2986   }
2987   if( pParse->nErr ) goto multi_select_end;
2988 
2989   /* Compute collating sequences used by
2990   ** temporary tables needed to implement the compound select.
2991   ** Attach the KeyInfo structure to all temporary tables.
2992   **
2993   ** This section is run by the right-most SELECT statement only.
2994   ** SELECT statements to the left always skip this part.  The right-most
2995   ** SELECT might also skip this part if it has no ORDER BY clause and
2996   ** no temp tables are required.
2997   */
2998   if( p->selFlags & SF_UsesEphemeral ){
2999     int i;                        /* Loop counter */
3000     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
3001     Select *pLoop;                /* For looping through SELECT statements */
3002     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
3003     int nCol;                     /* Number of columns in result set */
3004 
3005     assert( p->pNext==0 );
3006     assert( p->pEList!=0 );
3007     nCol = p->pEList->nExpr;
3008     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3009     if( !pKeyInfo ){
3010       rc = SQLITE_NOMEM_BKPT;
3011       goto multi_select_end;
3012     }
3013     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3014       *apColl = multiSelectCollSeq(pParse, p, i);
3015       if( 0==*apColl ){
3016         *apColl = db->pDfltColl;
3017       }
3018     }
3019 
3020     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3021       for(i=0; i<2; i++){
3022         int addr = pLoop->addrOpenEphm[i];
3023         if( addr<0 ){
3024           /* If [0] is unused then [1] is also unused.  So we can
3025           ** always safely abort as soon as the first unused slot is found */
3026           assert( pLoop->addrOpenEphm[1]<0 );
3027           break;
3028         }
3029         sqlite3VdbeChangeP2(v, addr, nCol);
3030         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3031                             P4_KEYINFO);
3032         pLoop->addrOpenEphm[i] = -1;
3033       }
3034     }
3035     sqlite3KeyInfoUnref(pKeyInfo);
3036   }
3037 
3038 multi_select_end:
3039   pDest->iSdst = dest.iSdst;
3040   pDest->nSdst = dest.nSdst;
3041   if( pDelete ){
3042     sqlite3ParserAddCleanup(pParse,
3043         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3044         pDelete);
3045   }
3046   return rc;
3047 }
3048 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3049 
3050 /*
3051 ** Error message for when two or more terms of a compound select have different
3052 ** size result sets.
3053 */
3054 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3055   if( p->selFlags & SF_Values ){
3056     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3057   }else{
3058     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3059       " do not have the same number of result columns",
3060       sqlite3SelectOpName(p->op));
3061   }
3062 }
3063 
3064 /*
3065 ** Code an output subroutine for a coroutine implementation of a
3066 ** SELECT statment.
3067 **
3068 ** The data to be output is contained in pIn->iSdst.  There are
3069 ** pIn->nSdst columns to be output.  pDest is where the output should
3070 ** be sent.
3071 **
3072 ** regReturn is the number of the register holding the subroutine
3073 ** return address.
3074 **
3075 ** If regPrev>0 then it is the first register in a vector that
3076 ** records the previous output.  mem[regPrev] is a flag that is false
3077 ** if there has been no previous output.  If regPrev>0 then code is
3078 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3079 ** keys.
3080 **
3081 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3082 ** iBreak.
3083 */
3084 static int generateOutputSubroutine(
3085   Parse *pParse,          /* Parsing context */
3086   Select *p,              /* The SELECT statement */
3087   SelectDest *pIn,        /* Coroutine supplying data */
3088   SelectDest *pDest,      /* Where to send the data */
3089   int regReturn,          /* The return address register */
3090   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3091   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3092   int iBreak              /* Jump here if we hit the LIMIT */
3093 ){
3094   Vdbe *v = pParse->pVdbe;
3095   int iContinue;
3096   int addr;
3097 
3098   addr = sqlite3VdbeCurrentAddr(v);
3099   iContinue = sqlite3VdbeMakeLabel(pParse);
3100 
3101   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3102   */
3103   if( regPrev ){
3104     int addr1, addr2;
3105     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3106     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3107                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3108     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3109     sqlite3VdbeJumpHere(v, addr1);
3110     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3111     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3112   }
3113   if( pParse->db->mallocFailed ) return 0;
3114 
3115   /* Suppress the first OFFSET entries if there is an OFFSET clause
3116   */
3117   codeOffset(v, p->iOffset, iContinue);
3118 
3119   assert( pDest->eDest!=SRT_Exists );
3120   assert( pDest->eDest!=SRT_Table );
3121   switch( pDest->eDest ){
3122     /* Store the result as data using a unique key.
3123     */
3124     case SRT_EphemTab: {
3125       int r1 = sqlite3GetTempReg(pParse);
3126       int r2 = sqlite3GetTempReg(pParse);
3127       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3128       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3129       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3130       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3131       sqlite3ReleaseTempReg(pParse, r2);
3132       sqlite3ReleaseTempReg(pParse, r1);
3133       break;
3134     }
3135 
3136 #ifndef SQLITE_OMIT_SUBQUERY
3137     /* If we are creating a set for an "expr IN (SELECT ...)".
3138     */
3139     case SRT_Set: {
3140       int r1;
3141       testcase( pIn->nSdst>1 );
3142       r1 = sqlite3GetTempReg(pParse);
3143       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3144           r1, pDest->zAffSdst, pIn->nSdst);
3145       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3146                            pIn->iSdst, pIn->nSdst);
3147       sqlite3ReleaseTempReg(pParse, r1);
3148       break;
3149     }
3150 
3151     /* If this is a scalar select that is part of an expression, then
3152     ** store the results in the appropriate memory cell and break out
3153     ** of the scan loop.  Note that the select might return multiple columns
3154     ** if it is the RHS of a row-value IN operator.
3155     */
3156     case SRT_Mem: {
3157       testcase( pIn->nSdst>1 );
3158       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3159       /* The LIMIT clause will jump out of the loop for us */
3160       break;
3161     }
3162 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3163 
3164     /* The results are stored in a sequence of registers
3165     ** starting at pDest->iSdst.  Then the co-routine yields.
3166     */
3167     case SRT_Coroutine: {
3168       if( pDest->iSdst==0 ){
3169         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3170         pDest->nSdst = pIn->nSdst;
3171       }
3172       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3173       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3174       break;
3175     }
3176 
3177     /* If none of the above, then the result destination must be
3178     ** SRT_Output.  This routine is never called with any other
3179     ** destination other than the ones handled above or SRT_Output.
3180     **
3181     ** For SRT_Output, results are stored in a sequence of registers.
3182     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3183     ** return the next row of result.
3184     */
3185     default: {
3186       assert( pDest->eDest==SRT_Output );
3187       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3188       break;
3189     }
3190   }
3191 
3192   /* Jump to the end of the loop if the LIMIT is reached.
3193   */
3194   if( p->iLimit ){
3195     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3196   }
3197 
3198   /* Generate the subroutine return
3199   */
3200   sqlite3VdbeResolveLabel(v, iContinue);
3201   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3202 
3203   return addr;
3204 }
3205 
3206 /*
3207 ** Alternative compound select code generator for cases when there
3208 ** is an ORDER BY clause.
3209 **
3210 ** We assume a query of the following form:
3211 **
3212 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3213 **
3214 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3215 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3216 ** co-routines.  Then run the co-routines in parallel and merge the results
3217 ** into the output.  In addition to the two coroutines (called selectA and
3218 ** selectB) there are 7 subroutines:
3219 **
3220 **    outA:    Move the output of the selectA coroutine into the output
3221 **             of the compound query.
3222 **
3223 **    outB:    Move the output of the selectB coroutine into the output
3224 **             of the compound query.  (Only generated for UNION and
3225 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3226 **             appears only in B.)
3227 **
3228 **    AltB:    Called when there is data from both coroutines and A<B.
3229 **
3230 **    AeqB:    Called when there is data from both coroutines and A==B.
3231 **
3232 **    AgtB:    Called when there is data from both coroutines and A>B.
3233 **
3234 **    EofA:    Called when data is exhausted from selectA.
3235 **
3236 **    EofB:    Called when data is exhausted from selectB.
3237 **
3238 ** The implementation of the latter five subroutines depend on which
3239 ** <operator> is used:
3240 **
3241 **
3242 **             UNION ALL         UNION            EXCEPT          INTERSECT
3243 **          -------------  -----------------  --------------  -----------------
3244 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3245 **
3246 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3247 **
3248 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3249 **
3250 **   EofA:   outB, nextB      outB, nextB          halt             halt
3251 **
3252 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3253 **
3254 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3255 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3256 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3257 ** following nextX causes a jump to the end of the select processing.
3258 **
3259 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3260 ** within the output subroutine.  The regPrev register set holds the previously
3261 ** output value.  A comparison is made against this value and the output
3262 ** is skipped if the next results would be the same as the previous.
3263 **
3264 ** The implementation plan is to implement the two coroutines and seven
3265 ** subroutines first, then put the control logic at the bottom.  Like this:
3266 **
3267 **          goto Init
3268 **     coA: coroutine for left query (A)
3269 **     coB: coroutine for right query (B)
3270 **    outA: output one row of A
3271 **    outB: output one row of B (UNION and UNION ALL only)
3272 **    EofA: ...
3273 **    EofB: ...
3274 **    AltB: ...
3275 **    AeqB: ...
3276 **    AgtB: ...
3277 **    Init: initialize coroutine registers
3278 **          yield coA
3279 **          if eof(A) goto EofA
3280 **          yield coB
3281 **          if eof(B) goto EofB
3282 **    Cmpr: Compare A, B
3283 **          Jump AltB, AeqB, AgtB
3284 **     End: ...
3285 **
3286 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3287 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3288 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3289 ** and AgtB jump to either L2 or to one of EofA or EofB.
3290 */
3291 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3292 static int multiSelectOrderBy(
3293   Parse *pParse,        /* Parsing context */
3294   Select *p,            /* The right-most of SELECTs to be coded */
3295   SelectDest *pDest     /* What to do with query results */
3296 ){
3297   int i, j;             /* Loop counters */
3298   Select *pPrior;       /* Another SELECT immediately to our left */
3299   Select *pSplit;       /* Left-most SELECT in the right-hand group */
3300   int nSelect;          /* Number of SELECT statements in the compound */
3301   Vdbe *v;              /* Generate code to this VDBE */
3302   SelectDest destA;     /* Destination for coroutine A */
3303   SelectDest destB;     /* Destination for coroutine B */
3304   int regAddrA;         /* Address register for select-A coroutine */
3305   int regAddrB;         /* Address register for select-B coroutine */
3306   int addrSelectA;      /* Address of the select-A coroutine */
3307   int addrSelectB;      /* Address of the select-B coroutine */
3308   int regOutA;          /* Address register for the output-A subroutine */
3309   int regOutB;          /* Address register for the output-B subroutine */
3310   int addrOutA;         /* Address of the output-A subroutine */
3311   int addrOutB = 0;     /* Address of the output-B subroutine */
3312   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3313   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3314   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3315   int addrAltB;         /* Address of the A<B subroutine */
3316   int addrAeqB;         /* Address of the A==B subroutine */
3317   int addrAgtB;         /* Address of the A>B subroutine */
3318   int regLimitA;        /* Limit register for select-A */
3319   int regLimitB;        /* Limit register for select-A */
3320   int regPrev;          /* A range of registers to hold previous output */
3321   int savedLimit;       /* Saved value of p->iLimit */
3322   int savedOffset;      /* Saved value of p->iOffset */
3323   int labelCmpr;        /* Label for the start of the merge algorithm */
3324   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3325   int addr1;            /* Jump instructions that get retargetted */
3326   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3327   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3328   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3329   sqlite3 *db;          /* Database connection */
3330   ExprList *pOrderBy;   /* The ORDER BY clause */
3331   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3332   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3333 
3334   assert( p->pOrderBy!=0 );
3335   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3336   db = pParse->db;
3337   v = pParse->pVdbe;
3338   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3339   labelEnd = sqlite3VdbeMakeLabel(pParse);
3340   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3341 
3342 
3343   /* Patch up the ORDER BY clause
3344   */
3345   op = p->op;
3346   assert( p->pPrior->pOrderBy==0 );
3347   pOrderBy = p->pOrderBy;
3348   assert( pOrderBy );
3349   nOrderBy = pOrderBy->nExpr;
3350 
3351   /* For operators other than UNION ALL we have to make sure that
3352   ** the ORDER BY clause covers every term of the result set.  Add
3353   ** terms to the ORDER BY clause as necessary.
3354   */
3355   if( op!=TK_ALL ){
3356     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3357       struct ExprList_item *pItem;
3358       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3359         assert( pItem!=0 );
3360         assert( pItem->u.x.iOrderByCol>0 );
3361         if( pItem->u.x.iOrderByCol==i ) break;
3362       }
3363       if( j==nOrderBy ){
3364         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3365         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3366         pNew->flags |= EP_IntValue;
3367         pNew->u.iValue = i;
3368         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3369         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3370       }
3371     }
3372   }
3373 
3374   /* Compute the comparison permutation and keyinfo that is used with
3375   ** the permutation used to determine if the next
3376   ** row of results comes from selectA or selectB.  Also add explicit
3377   ** collations to the ORDER BY clause terms so that when the subqueries
3378   ** to the right and the left are evaluated, they use the correct
3379   ** collation.
3380   */
3381   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3382   if( aPermute ){
3383     struct ExprList_item *pItem;
3384     aPermute[0] = nOrderBy;
3385     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3386       assert( pItem!=0 );
3387       assert( pItem->u.x.iOrderByCol>0 );
3388       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3389       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3390     }
3391     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3392   }else{
3393     pKeyMerge = 0;
3394   }
3395 
3396   /* Allocate a range of temporary registers and the KeyInfo needed
3397   ** for the logic that removes duplicate result rows when the
3398   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3399   */
3400   if( op==TK_ALL ){
3401     regPrev = 0;
3402   }else{
3403     int nExpr = p->pEList->nExpr;
3404     assert( nOrderBy>=nExpr || db->mallocFailed );
3405     regPrev = pParse->nMem+1;
3406     pParse->nMem += nExpr+1;
3407     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3408     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3409     if( pKeyDup ){
3410       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3411       for(i=0; i<nExpr; i++){
3412         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3413         pKeyDup->aSortFlags[i] = 0;
3414       }
3415     }
3416   }
3417 
3418   /* Separate the left and the right query from one another
3419   */
3420   nSelect = 1;
3421   if( (op==TK_ALL || op==TK_UNION)
3422    && OptimizationEnabled(db, SQLITE_BalancedMerge)
3423   ){
3424     for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3425       nSelect++;
3426       assert( pSplit->pPrior->pNext==pSplit );
3427     }
3428   }
3429   if( nSelect<=3 ){
3430     pSplit = p;
3431   }else{
3432     pSplit = p;
3433     for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3434   }
3435   pPrior = pSplit->pPrior;
3436   pSplit->pPrior = 0;
3437   pPrior->pNext = 0;
3438   assert( p->pOrderBy == pOrderBy );
3439   assert( pOrderBy!=0 || db->mallocFailed );
3440   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3441   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3442   sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3443 
3444   /* Compute the limit registers */
3445   computeLimitRegisters(pParse, p, labelEnd);
3446   if( p->iLimit && op==TK_ALL ){
3447     regLimitA = ++pParse->nMem;
3448     regLimitB = ++pParse->nMem;
3449     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3450                                   regLimitA);
3451     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3452   }else{
3453     regLimitA = regLimitB = 0;
3454   }
3455   sqlite3ExprDelete(db, p->pLimit);
3456   p->pLimit = 0;
3457 
3458   regAddrA = ++pParse->nMem;
3459   regAddrB = ++pParse->nMem;
3460   regOutA = ++pParse->nMem;
3461   regOutB = ++pParse->nMem;
3462   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3463   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3464 
3465   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3466 
3467   /* Generate a coroutine to evaluate the SELECT statement to the
3468   ** left of the compound operator - the "A" select.
3469   */
3470   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3471   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3472   VdbeComment((v, "left SELECT"));
3473   pPrior->iLimit = regLimitA;
3474   ExplainQueryPlan((pParse, 1, "LEFT"));
3475   sqlite3Select(pParse, pPrior, &destA);
3476   sqlite3VdbeEndCoroutine(v, regAddrA);
3477   sqlite3VdbeJumpHere(v, addr1);
3478 
3479   /* Generate a coroutine to evaluate the SELECT statement on
3480   ** the right - the "B" select
3481   */
3482   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3483   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3484   VdbeComment((v, "right SELECT"));
3485   savedLimit = p->iLimit;
3486   savedOffset = p->iOffset;
3487   p->iLimit = regLimitB;
3488   p->iOffset = 0;
3489   ExplainQueryPlan((pParse, 1, "RIGHT"));
3490   sqlite3Select(pParse, p, &destB);
3491   p->iLimit = savedLimit;
3492   p->iOffset = savedOffset;
3493   sqlite3VdbeEndCoroutine(v, regAddrB);
3494 
3495   /* Generate a subroutine that outputs the current row of the A
3496   ** select as the next output row of the compound select.
3497   */
3498   VdbeNoopComment((v, "Output routine for A"));
3499   addrOutA = generateOutputSubroutine(pParse,
3500                  p, &destA, pDest, regOutA,
3501                  regPrev, pKeyDup, labelEnd);
3502 
3503   /* Generate a subroutine that outputs the current row of the B
3504   ** select as the next output row of the compound select.
3505   */
3506   if( op==TK_ALL || op==TK_UNION ){
3507     VdbeNoopComment((v, "Output routine for B"));
3508     addrOutB = generateOutputSubroutine(pParse,
3509                  p, &destB, pDest, regOutB,
3510                  regPrev, pKeyDup, labelEnd);
3511   }
3512   sqlite3KeyInfoUnref(pKeyDup);
3513 
3514   /* Generate a subroutine to run when the results from select A
3515   ** are exhausted and only data in select B remains.
3516   */
3517   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3518     addrEofA_noB = addrEofA = labelEnd;
3519   }else{
3520     VdbeNoopComment((v, "eof-A subroutine"));
3521     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3522     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3523                                      VdbeCoverage(v);
3524     sqlite3VdbeGoto(v, addrEofA);
3525     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3526   }
3527 
3528   /* Generate a subroutine to run when the results from select B
3529   ** are exhausted and only data in select A remains.
3530   */
3531   if( op==TK_INTERSECT ){
3532     addrEofB = addrEofA;
3533     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3534   }else{
3535     VdbeNoopComment((v, "eof-B subroutine"));
3536     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3537     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3538     sqlite3VdbeGoto(v, addrEofB);
3539   }
3540 
3541   /* Generate code to handle the case of A<B
3542   */
3543   VdbeNoopComment((v, "A-lt-B subroutine"));
3544   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3545   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3546   sqlite3VdbeGoto(v, labelCmpr);
3547 
3548   /* Generate code to handle the case of A==B
3549   */
3550   if( op==TK_ALL ){
3551     addrAeqB = addrAltB;
3552   }else if( op==TK_INTERSECT ){
3553     addrAeqB = addrAltB;
3554     addrAltB++;
3555   }else{
3556     VdbeNoopComment((v, "A-eq-B subroutine"));
3557     addrAeqB =
3558     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3559     sqlite3VdbeGoto(v, labelCmpr);
3560   }
3561 
3562   /* Generate code to handle the case of A>B
3563   */
3564   VdbeNoopComment((v, "A-gt-B subroutine"));
3565   addrAgtB = sqlite3VdbeCurrentAddr(v);
3566   if( op==TK_ALL || op==TK_UNION ){
3567     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3568   }
3569   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3570   sqlite3VdbeGoto(v, labelCmpr);
3571 
3572   /* This code runs once to initialize everything.
3573   */
3574   sqlite3VdbeJumpHere(v, addr1);
3575   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3576   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3577 
3578   /* Implement the main merge loop
3579   */
3580   sqlite3VdbeResolveLabel(v, labelCmpr);
3581   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3582   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3583                          (char*)pKeyMerge, P4_KEYINFO);
3584   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3585   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3586 
3587   /* Jump to the this point in order to terminate the query.
3588   */
3589   sqlite3VdbeResolveLabel(v, labelEnd);
3590 
3591   /* Reassembly the compound query so that it will be freed correctly
3592   ** by the calling function */
3593   if( pSplit->pPrior ){
3594     sqlite3SelectDelete(db, pSplit->pPrior);
3595   }
3596   pSplit->pPrior = pPrior;
3597   pPrior->pNext = pSplit;
3598   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3599   pPrior->pOrderBy = 0;
3600 
3601   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3602   **** subqueries ****/
3603   ExplainQueryPlanPop(pParse);
3604   return pParse->nErr!=0;
3605 }
3606 #endif
3607 
3608 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3609 
3610 /* An instance of the SubstContext object describes an substitution edit
3611 ** to be performed on a parse tree.
3612 **
3613 ** All references to columns in table iTable are to be replaced by corresponding
3614 ** expressions in pEList.
3615 */
3616 typedef struct SubstContext {
3617   Parse *pParse;            /* The parsing context */
3618   int iTable;               /* Replace references to this table */
3619   int iNewTable;            /* New table number */
3620   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3621   ExprList *pEList;         /* Replacement expressions */
3622 } SubstContext;
3623 
3624 /* Forward Declarations */
3625 static void substExprList(SubstContext*, ExprList*);
3626 static void substSelect(SubstContext*, Select*, int);
3627 
3628 /*
3629 ** Scan through the expression pExpr.  Replace every reference to
3630 ** a column in table number iTable with a copy of the iColumn-th
3631 ** entry in pEList.  (But leave references to the ROWID column
3632 ** unchanged.)
3633 **
3634 ** This routine is part of the flattening procedure.  A subquery
3635 ** whose result set is defined by pEList appears as entry in the
3636 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3637 ** FORM clause entry is iTable.  This routine makes the necessary
3638 ** changes to pExpr so that it refers directly to the source table
3639 ** of the subquery rather the result set of the subquery.
3640 */
3641 static Expr *substExpr(
3642   SubstContext *pSubst,  /* Description of the substitution */
3643   Expr *pExpr            /* Expr in which substitution occurs */
3644 ){
3645   if( pExpr==0 ) return 0;
3646   if( ExprHasProperty(pExpr, EP_FromJoin)
3647    && pExpr->iRightJoinTable==pSubst->iTable
3648   ){
3649     pExpr->iRightJoinTable = pSubst->iNewTable;
3650   }
3651   if( pExpr->op==TK_COLUMN
3652    && pExpr->iTable==pSubst->iTable
3653    && !ExprHasProperty(pExpr, EP_FixedCol)
3654   ){
3655 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3656     if( pExpr->iColumn<0 ){
3657       pExpr->op = TK_NULL;
3658     }else
3659 #endif
3660     {
3661       Expr *pNew;
3662       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3663       Expr ifNullRow;
3664       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3665       assert( pExpr->pRight==0 );
3666       if( sqlite3ExprIsVector(pCopy) ){
3667         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3668       }else{
3669         sqlite3 *db = pSubst->pParse->db;
3670         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3671           memset(&ifNullRow, 0, sizeof(ifNullRow));
3672           ifNullRow.op = TK_IF_NULL_ROW;
3673           ifNullRow.pLeft = pCopy;
3674           ifNullRow.iTable = pSubst->iNewTable;
3675           ifNullRow.flags = EP_IfNullRow;
3676           pCopy = &ifNullRow;
3677         }
3678         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3679         pNew = sqlite3ExprDup(db, pCopy, 0);
3680         if( db->mallocFailed ){
3681           sqlite3ExprDelete(db, pNew);
3682           return pExpr;
3683         }
3684         if( pSubst->isLeftJoin ){
3685           ExprSetProperty(pNew, EP_CanBeNull);
3686         }
3687         if( ExprHasProperty(pExpr,EP_FromJoin) ){
3688           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3689         }
3690         sqlite3ExprDelete(db, pExpr);
3691         pExpr = pNew;
3692 
3693         /* Ensure that the expression now has an implicit collation sequence,
3694         ** just as it did when it was a column of a view or sub-query. */
3695         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3696           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3697           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3698               (pColl ? pColl->zName : "BINARY")
3699           );
3700         }
3701         ExprClearProperty(pExpr, EP_Collate);
3702       }
3703     }
3704   }else{
3705     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3706       pExpr->iTable = pSubst->iNewTable;
3707     }
3708     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3709     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3710     if( ExprUseXSelect(pExpr) ){
3711       substSelect(pSubst, pExpr->x.pSelect, 1);
3712     }else{
3713       substExprList(pSubst, pExpr->x.pList);
3714     }
3715 #ifndef SQLITE_OMIT_WINDOWFUNC
3716     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3717       Window *pWin = pExpr->y.pWin;
3718       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3719       substExprList(pSubst, pWin->pPartition);
3720       substExprList(pSubst, pWin->pOrderBy);
3721     }
3722 #endif
3723   }
3724   return pExpr;
3725 }
3726 static void substExprList(
3727   SubstContext *pSubst, /* Description of the substitution */
3728   ExprList *pList       /* List to scan and in which to make substitutes */
3729 ){
3730   int i;
3731   if( pList==0 ) return;
3732   for(i=0; i<pList->nExpr; i++){
3733     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3734   }
3735 }
3736 static void substSelect(
3737   SubstContext *pSubst, /* Description of the substitution */
3738   Select *p,            /* SELECT statement in which to make substitutions */
3739   int doPrior           /* Do substitutes on p->pPrior too */
3740 ){
3741   SrcList *pSrc;
3742   SrcItem *pItem;
3743   int i;
3744   if( !p ) return;
3745   do{
3746     substExprList(pSubst, p->pEList);
3747     substExprList(pSubst, p->pGroupBy);
3748     substExprList(pSubst, p->pOrderBy);
3749     p->pHaving = substExpr(pSubst, p->pHaving);
3750     p->pWhere = substExpr(pSubst, p->pWhere);
3751     pSrc = p->pSrc;
3752     assert( pSrc!=0 );
3753     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3754       substSelect(pSubst, pItem->pSelect, 1);
3755       if( pItem->fg.isTabFunc ){
3756         substExprList(pSubst, pItem->u1.pFuncArg);
3757       }
3758     }
3759   }while( doPrior && (p = p->pPrior)!=0 );
3760 }
3761 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3762 
3763 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3764 /*
3765 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3766 ** clause of that SELECT.
3767 **
3768 ** This routine scans the entire SELECT statement and recomputes the
3769 ** pSrcItem->colUsed mask.
3770 */
3771 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3772   SrcItem *pItem;
3773   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3774   pItem = pWalker->u.pSrcItem;
3775   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3776   if( pExpr->iColumn<0 ) return WRC_Continue;
3777   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3778   return WRC_Continue;
3779 }
3780 static void recomputeColumnsUsed(
3781   Select *pSelect,                 /* The complete SELECT statement */
3782   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3783 ){
3784   Walker w;
3785   if( NEVER(pSrcItem->pTab==0) ) return;
3786   memset(&w, 0, sizeof(w));
3787   w.xExprCallback = recomputeColumnsUsedExpr;
3788   w.xSelectCallback = sqlite3SelectWalkNoop;
3789   w.u.pSrcItem = pSrcItem;
3790   pSrcItem->colUsed = 0;
3791   sqlite3WalkSelect(&w, pSelect);
3792 }
3793 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3794 
3795 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3796 /*
3797 ** Assign new cursor numbers to each of the items in pSrc. For each
3798 ** new cursor number assigned, set an entry in the aCsrMap[] array
3799 ** to map the old cursor number to the new:
3800 **
3801 **     aCsrMap[iOld+1] = iNew;
3802 **
3803 ** The array is guaranteed by the caller to be large enough for all
3804 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3805 **
3806 ** If pSrc contains any sub-selects, call this routine recursively
3807 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3808 */
3809 static void srclistRenumberCursors(
3810   Parse *pParse,                  /* Parse context */
3811   int *aCsrMap,                   /* Array to store cursor mappings in */
3812   SrcList *pSrc,                  /* FROM clause to renumber */
3813   int iExcept                     /* FROM clause item to skip */
3814 ){
3815   int i;
3816   SrcItem *pItem;
3817   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3818     if( i!=iExcept ){
3819       Select *p;
3820       assert( pItem->iCursor < aCsrMap[0] );
3821       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3822         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3823       }
3824       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3825       for(p=pItem->pSelect; p; p=p->pPrior){
3826         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3827       }
3828     }
3829   }
3830 }
3831 
3832 /*
3833 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3834 */
3835 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3836   int *aCsrMap = pWalker->u.aiCol;
3837   int iCsr = *piCursor;
3838   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3839     *piCursor = aCsrMap[iCsr+1];
3840   }
3841 }
3842 
3843 /*
3844 ** Expression walker callback used by renumberCursors() to update
3845 ** Expr objects to match newly assigned cursor numbers.
3846 */
3847 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3848   int op = pExpr->op;
3849   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3850     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3851   }
3852   if( ExprHasProperty(pExpr, EP_FromJoin) ){
3853     renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable);
3854   }
3855   return WRC_Continue;
3856 }
3857 
3858 /*
3859 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3860 ** of the SELECT statement passed as the second argument, and to each
3861 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3862 ** Except, do not assign a new cursor number to the iExcept'th element in
3863 ** the FROM clause of (*p). Update all expressions and other references
3864 ** to refer to the new cursor numbers.
3865 **
3866 ** Argument aCsrMap is an array that may be used for temporary working
3867 ** space. Two guarantees are made by the caller:
3868 **
3869 **   * the array is larger than the largest cursor number used within the
3870 **     select statement passed as an argument, and
3871 **
3872 **   * the array entries for all cursor numbers that do *not* appear in
3873 **     FROM clauses of the select statement as described above are
3874 **     initialized to zero.
3875 */
3876 static void renumberCursors(
3877   Parse *pParse,                  /* Parse context */
3878   Select *p,                      /* Select to renumber cursors within */
3879   int iExcept,                    /* FROM clause item to skip */
3880   int *aCsrMap                    /* Working space */
3881 ){
3882   Walker w;
3883   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3884   memset(&w, 0, sizeof(w));
3885   w.u.aiCol = aCsrMap;
3886   w.xExprCallback = renumberCursorsCb;
3887   w.xSelectCallback = sqlite3SelectWalkNoop;
3888   sqlite3WalkSelect(&w, p);
3889 }
3890 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3891 
3892 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3893 /*
3894 ** This routine attempts to flatten subqueries as a performance optimization.
3895 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3896 **
3897 ** To understand the concept of flattening, consider the following
3898 ** query:
3899 **
3900 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3901 **
3902 ** The default way of implementing this query is to execute the
3903 ** subquery first and store the results in a temporary table, then
3904 ** run the outer query on that temporary table.  This requires two
3905 ** passes over the data.  Furthermore, because the temporary table
3906 ** has no indices, the WHERE clause on the outer query cannot be
3907 ** optimized.
3908 **
3909 ** This routine attempts to rewrite queries such as the above into
3910 ** a single flat select, like this:
3911 **
3912 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3913 **
3914 ** The code generated for this simplification gives the same result
3915 ** but only has to scan the data once.  And because indices might
3916 ** exist on the table t1, a complete scan of the data might be
3917 ** avoided.
3918 **
3919 ** Flattening is subject to the following constraints:
3920 **
3921 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3922 **        The subquery and the outer query cannot both be aggregates.
3923 **
3924 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3925 **        (2) If the subquery is an aggregate then
3926 **        (2a) the outer query must not be a join and
3927 **        (2b) the outer query must not use subqueries
3928 **             other than the one FROM-clause subquery that is a candidate
3929 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3930 **             from 2015-02-09.)
3931 **
3932 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3933 **        (3a) the subquery may not be a join and
3934 **        (3b) the FROM clause of the subquery may not contain a virtual
3935 **             table and
3936 **        (3c) the outer query may not be an aggregate.
3937 **        (3d) the outer query may not be DISTINCT.
3938 **
3939 **   (4)  The subquery can not be DISTINCT.
3940 **
3941 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3942 **        sub-queries that were excluded from this optimization. Restriction
3943 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3944 **
3945 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3946 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3947 **
3948 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3949 **        A FROM clause, consider adding a FROM clause with the special
3950 **        table sqlite_once that consists of a single row containing a
3951 **        single NULL.
3952 **
3953 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3954 **
3955 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3956 **
3957 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3958 **        accidently carried the comment forward until 2014-09-15.  Original
3959 **        constraint: "If the subquery is aggregate then the outer query
3960 **        may not use LIMIT."
3961 **
3962 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3963 **
3964 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3965 **        a separate restriction deriving from ticket #350.
3966 **
3967 **  (13)  The subquery and outer query may not both use LIMIT.
3968 **
3969 **  (14)  The subquery may not use OFFSET.
3970 **
3971 **  (15)  If the outer query is part of a compound select, then the
3972 **        subquery may not use LIMIT.
3973 **        (See ticket #2339 and ticket [02a8e81d44]).
3974 **
3975 **  (16)  If the outer query is aggregate, then the subquery may not
3976 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3977 **        until we introduced the group_concat() function.
3978 **
3979 **  (17)  If the subquery is a compound select, then
3980 **        (17a) all compound operators must be a UNION ALL, and
3981 **        (17b) no terms within the subquery compound may be aggregate
3982 **              or DISTINCT, and
3983 **        (17c) every term within the subquery compound must have a FROM clause
3984 **        (17d) the outer query may not be
3985 **              (17d1) aggregate, or
3986 **              (17d2) DISTINCT
3987 **        (17e) the subquery may not contain window functions, and
3988 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3989 **
3990 **        The parent and sub-query may contain WHERE clauses. Subject to
3991 **        rules (11), (13) and (14), they may also contain ORDER BY,
3992 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3993 **        operator other than UNION ALL because all the other compound
3994 **        operators have an implied DISTINCT which is disallowed by
3995 **        restriction (4).
3996 **
3997 **        Also, each component of the sub-query must return the same number
3998 **        of result columns. This is actually a requirement for any compound
3999 **        SELECT statement, but all the code here does is make sure that no
4000 **        such (illegal) sub-query is flattened. The caller will detect the
4001 **        syntax error and return a detailed message.
4002 **
4003 **  (18)  If the sub-query is a compound select, then all terms of the
4004 **        ORDER BY clause of the parent must be copies of a term returned
4005 **        by the parent query.
4006 **
4007 **  (19)  If the subquery uses LIMIT then the outer query may not
4008 **        have a WHERE clause.
4009 **
4010 **  (20)  If the sub-query is a compound select, then it must not use
4011 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
4012 **        somewhat by saying that the terms of the ORDER BY clause must
4013 **        appear as unmodified result columns in the outer query.  But we
4014 **        have other optimizations in mind to deal with that case.
4015 **
4016 **  (21)  If the subquery uses LIMIT then the outer query may not be
4017 **        DISTINCT.  (See ticket [752e1646fc]).
4018 **
4019 **  (22)  The subquery may not be a recursive CTE.
4020 **
4021 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
4022 **        a compound query.  This restriction is because transforming the
4023 **        parent to a compound query confuses the code that handles
4024 **        recursive queries in multiSelect().
4025 **
4026 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4027 **        The subquery may not be an aggregate that uses the built-in min() or
4028 **        or max() functions.  (Without this restriction, a query like:
4029 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4030 **        return the value X for which Y was maximal.)
4031 **
4032 **  (25)  If either the subquery or the parent query contains a window
4033 **        function in the select list or ORDER BY clause, flattening
4034 **        is not attempted.
4035 **
4036 **
4037 ** In this routine, the "p" parameter is a pointer to the outer query.
4038 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4039 ** uses aggregates.
4040 **
4041 ** If flattening is not attempted, this routine is a no-op and returns 0.
4042 ** If flattening is attempted this routine returns 1.
4043 **
4044 ** All of the expression analysis must occur on both the outer query and
4045 ** the subquery before this routine runs.
4046 */
4047 static int flattenSubquery(
4048   Parse *pParse,       /* Parsing context */
4049   Select *p,           /* The parent or outer SELECT statement */
4050   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4051   int isAgg            /* True if outer SELECT uses aggregate functions */
4052 ){
4053   const char *zSavedAuthContext = pParse->zAuthContext;
4054   Select *pParent;    /* Current UNION ALL term of the other query */
4055   Select *pSub;       /* The inner query or "subquery" */
4056   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4057   SrcList *pSrc;      /* The FROM clause of the outer query */
4058   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4059   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4060   int iNewParent = -1;/* Replacement table for iParent */
4061   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4062   int i;              /* Loop counter */
4063   Expr *pWhere;                    /* The WHERE clause */
4064   SrcItem *pSubitem;               /* The subquery */
4065   sqlite3 *db = pParse->db;
4066   Walker w;                        /* Walker to persist agginfo data */
4067   int *aCsrMap = 0;
4068 
4069   /* Check to see if flattening is permitted.  Return 0 if not.
4070   */
4071   assert( p!=0 );
4072   assert( p->pPrior==0 );
4073   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4074   pSrc = p->pSrc;
4075   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4076   pSubitem = &pSrc->a[iFrom];
4077   iParent = pSubitem->iCursor;
4078   pSub = pSubitem->pSelect;
4079   assert( pSub!=0 );
4080 
4081 #ifndef SQLITE_OMIT_WINDOWFUNC
4082   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4083 #endif
4084 
4085   pSubSrc = pSub->pSrc;
4086   assert( pSubSrc );
4087   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4088   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4089   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4090   ** became arbitrary expressions, we were forced to add restrictions (13)
4091   ** and (14). */
4092   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4093   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4094   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4095     return 0;                                            /* Restriction (15) */
4096   }
4097   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4098   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4099   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4100      return 0;         /* Restrictions (8)(9) */
4101   }
4102   if( p->pOrderBy && pSub->pOrderBy ){
4103      return 0;                                           /* Restriction (11) */
4104   }
4105   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4106   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4107   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4108      return 0;         /* Restriction (21) */
4109   }
4110   if( pSub->selFlags & (SF_Recursive) ){
4111     return 0; /* Restrictions (22) */
4112   }
4113 
4114   /*
4115   ** If the subquery is the right operand of a LEFT JOIN, then the
4116   ** subquery may not be a join itself (3a). Example of why this is not
4117   ** allowed:
4118   **
4119   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4120   **
4121   ** If we flatten the above, we would get
4122   **
4123   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4124   **
4125   ** which is not at all the same thing.
4126   **
4127   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4128   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4129   ** aggregates are processed - there is no mechanism to determine if
4130   ** the LEFT JOIN table should be all-NULL.
4131   **
4132   ** See also tickets #306, #350, and #3300.
4133   */
4134   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4135     isLeftJoin = 1;
4136     if( pSubSrc->nSrc>1                   /* (3a) */
4137      || isAgg                             /* (3b) */
4138      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
4139      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
4140     ){
4141       return 0;
4142     }
4143   }
4144 #ifdef SQLITE_EXTRA_IFNULLROW
4145   else if( iFrom>0 && !isAgg ){
4146     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4147     ** every reference to any result column from subquery in a join, even
4148     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4149     ** opcode. */
4150     isLeftJoin = -1;
4151   }
4152 #endif
4153 
4154   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4155   ** use only the UNION ALL operator. And none of the simple select queries
4156   ** that make up the compound SELECT are allowed to be aggregate or distinct
4157   ** queries.
4158   */
4159   if( pSub->pPrior ){
4160     if( pSub->pOrderBy ){
4161       return 0;  /* Restriction (20) */
4162     }
4163     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4164       return 0; /* (17d1), (17d2), or (17f) */
4165     }
4166     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4167       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4168       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4169       assert( pSub->pSrc!=0 );
4170       assert( (pSub->selFlags & SF_Recursive)==0 );
4171       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4172       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4173        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4174        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4175 #ifndef SQLITE_OMIT_WINDOWFUNC
4176        || pSub1->pWin                                          /* (17e) */
4177 #endif
4178       ){
4179         return 0;
4180       }
4181       testcase( pSub1->pSrc->nSrc>1 );
4182     }
4183 
4184     /* Restriction (18). */
4185     if( p->pOrderBy ){
4186       int ii;
4187       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4188         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4189       }
4190     }
4191 
4192     /* Restriction (23) */
4193     if( (p->selFlags & SF_Recursive) ) return 0;
4194 
4195     if( pSrc->nSrc>1 ){
4196       if( pParse->nSelect>500 ) return 0;
4197       aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4198       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4199     }
4200   }
4201 
4202   /***** If we reach this point, flattening is permitted. *****/
4203   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4204                    pSub->selId, pSub, iFrom));
4205 
4206   /* Authorize the subquery */
4207   pParse->zAuthContext = pSubitem->zName;
4208   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4209   testcase( i==SQLITE_DENY );
4210   pParse->zAuthContext = zSavedAuthContext;
4211 
4212   /* Delete the transient structures associated with thesubquery */
4213   pSub1 = pSubitem->pSelect;
4214   sqlite3DbFree(db, pSubitem->zDatabase);
4215   sqlite3DbFree(db, pSubitem->zName);
4216   sqlite3DbFree(db, pSubitem->zAlias);
4217   pSubitem->zDatabase = 0;
4218   pSubitem->zName = 0;
4219   pSubitem->zAlias = 0;
4220   pSubitem->pSelect = 0;
4221   assert( pSubitem->pOn==0 );
4222 
4223   /* If the sub-query is a compound SELECT statement, then (by restrictions
4224   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4225   ** be of the form:
4226   **
4227   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4228   **
4229   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4230   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4231   ** OFFSET clauses and joins them to the left-hand-side of the original
4232   ** using UNION ALL operators. In this case N is the number of simple
4233   ** select statements in the compound sub-query.
4234   **
4235   ** Example:
4236   **
4237   **     SELECT a+1 FROM (
4238   **        SELECT x FROM tab
4239   **        UNION ALL
4240   **        SELECT y FROM tab
4241   **        UNION ALL
4242   **        SELECT abs(z*2) FROM tab2
4243   **     ) WHERE a!=5 ORDER BY 1
4244   **
4245   ** Transformed into:
4246   **
4247   **     SELECT x+1 FROM tab WHERE x+1!=5
4248   **     UNION ALL
4249   **     SELECT y+1 FROM tab WHERE y+1!=5
4250   **     UNION ALL
4251   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4252   **     ORDER BY 1
4253   **
4254   ** We call this the "compound-subquery flattening".
4255   */
4256   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4257     Select *pNew;
4258     ExprList *pOrderBy = p->pOrderBy;
4259     Expr *pLimit = p->pLimit;
4260     Select *pPrior = p->pPrior;
4261     Table *pItemTab = pSubitem->pTab;
4262     pSubitem->pTab = 0;
4263     p->pOrderBy = 0;
4264     p->pPrior = 0;
4265     p->pLimit = 0;
4266     pNew = sqlite3SelectDup(db, p, 0);
4267     p->pLimit = pLimit;
4268     p->pOrderBy = pOrderBy;
4269     p->op = TK_ALL;
4270     pSubitem->pTab = pItemTab;
4271     if( pNew==0 ){
4272       p->pPrior = pPrior;
4273     }else{
4274       pNew->selId = ++pParse->nSelect;
4275       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4276         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4277       }
4278       pNew->pPrior = pPrior;
4279       if( pPrior ) pPrior->pNext = pNew;
4280       pNew->pNext = p;
4281       p->pPrior = pNew;
4282       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4283                               " creates %u as peer\n",pNew->selId));
4284     }
4285     assert( pSubitem->pSelect==0 );
4286   }
4287   sqlite3DbFree(db, aCsrMap);
4288   if( db->mallocFailed ){
4289     pSubitem->pSelect = pSub1;
4290     return 1;
4291   }
4292 
4293   /* Defer deleting the Table object associated with the
4294   ** subquery until code generation is
4295   ** complete, since there may still exist Expr.pTab entries that
4296   ** refer to the subquery even after flattening.  Ticket #3346.
4297   **
4298   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4299   */
4300   if( ALWAYS(pSubitem->pTab!=0) ){
4301     Table *pTabToDel = pSubitem->pTab;
4302     if( pTabToDel->nTabRef==1 ){
4303       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4304       sqlite3ParserAddCleanup(pToplevel,
4305          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4306          pTabToDel);
4307       testcase( pToplevel->earlyCleanup );
4308     }else{
4309       pTabToDel->nTabRef--;
4310     }
4311     pSubitem->pTab = 0;
4312   }
4313 
4314   /* The following loop runs once for each term in a compound-subquery
4315   ** flattening (as described above).  If we are doing a different kind
4316   ** of flattening - a flattening other than a compound-subquery flattening -
4317   ** then this loop only runs once.
4318   **
4319   ** This loop moves all of the FROM elements of the subquery into the
4320   ** the FROM clause of the outer query.  Before doing this, remember
4321   ** the cursor number for the original outer query FROM element in
4322   ** iParent.  The iParent cursor will never be used.  Subsequent code
4323   ** will scan expressions looking for iParent references and replace
4324   ** those references with expressions that resolve to the subquery FROM
4325   ** elements we are now copying in.
4326   */
4327   pSub = pSub1;
4328   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4329     int nSubSrc;
4330     u8 jointype = 0;
4331     assert( pSub!=0 );
4332     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4333     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4334     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4335 
4336     if( pParent==p ){
4337       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4338     }
4339 
4340     /* The subquery uses a single slot of the FROM clause of the outer
4341     ** query.  If the subquery has more than one element in its FROM clause,
4342     ** then expand the outer query to make space for it to hold all elements
4343     ** of the subquery.
4344     **
4345     ** Example:
4346     **
4347     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4348     **
4349     ** The outer query has 3 slots in its FROM clause.  One slot of the
4350     ** outer query (the middle slot) is used by the subquery.  The next
4351     ** block of code will expand the outer query FROM clause to 4 slots.
4352     ** The middle slot is expanded to two slots in order to make space
4353     ** for the two elements in the FROM clause of the subquery.
4354     */
4355     if( nSubSrc>1 ){
4356       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4357       if( pSrc==0 ) break;
4358       pParent->pSrc = pSrc;
4359     }
4360 
4361     /* Transfer the FROM clause terms from the subquery into the
4362     ** outer query.
4363     */
4364     for(i=0; i<nSubSrc; i++){
4365       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4366       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4367       pSrc->a[i+iFrom] = pSubSrc->a[i];
4368       iNewParent = pSubSrc->a[i].iCursor;
4369       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4370     }
4371     pSrc->a[iFrom].fg.jointype = jointype;
4372 
4373     /* Now begin substituting subquery result set expressions for
4374     ** references to the iParent in the outer query.
4375     **
4376     ** Example:
4377     **
4378     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4379     **   \                     \_____________ subquery __________/          /
4380     **    \_____________________ outer query ______________________________/
4381     **
4382     ** We look at every expression in the outer query and every place we see
4383     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4384     */
4385     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4386       /* At this point, any non-zero iOrderByCol values indicate that the
4387       ** ORDER BY column expression is identical to the iOrderByCol'th
4388       ** expression returned by SELECT statement pSub. Since these values
4389       ** do not necessarily correspond to columns in SELECT statement pParent,
4390       ** zero them before transfering the ORDER BY clause.
4391       **
4392       ** Not doing this may cause an error if a subsequent call to this
4393       ** function attempts to flatten a compound sub-query into pParent
4394       ** (the only way this can happen is if the compound sub-query is
4395       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4396       ExprList *pOrderBy = pSub->pOrderBy;
4397       for(i=0; i<pOrderBy->nExpr; i++){
4398         pOrderBy->a[i].u.x.iOrderByCol = 0;
4399       }
4400       assert( pParent->pOrderBy==0 );
4401       pParent->pOrderBy = pOrderBy;
4402       pSub->pOrderBy = 0;
4403     }
4404     pWhere = pSub->pWhere;
4405     pSub->pWhere = 0;
4406     if( isLeftJoin>0 ){
4407       sqlite3SetJoinExpr(pWhere, iNewParent);
4408     }
4409     if( pWhere ){
4410       if( pParent->pWhere ){
4411         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4412       }else{
4413         pParent->pWhere = pWhere;
4414       }
4415     }
4416     if( db->mallocFailed==0 ){
4417       SubstContext x;
4418       x.pParse = pParse;
4419       x.iTable = iParent;
4420       x.iNewTable = iNewParent;
4421       x.isLeftJoin = isLeftJoin;
4422       x.pEList = pSub->pEList;
4423       substSelect(&x, pParent, 0);
4424     }
4425 
4426     /* The flattened query is a compound if either the inner or the
4427     ** outer query is a compound. */
4428     pParent->selFlags |= pSub->selFlags & SF_Compound;
4429     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4430 
4431     /*
4432     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4433     **
4434     ** One is tempted to try to add a and b to combine the limits.  But this
4435     ** does not work if either limit is negative.
4436     */
4437     if( pSub->pLimit ){
4438       pParent->pLimit = pSub->pLimit;
4439       pSub->pLimit = 0;
4440     }
4441 
4442     /* Recompute the SrcList_item.colUsed masks for the flattened
4443     ** tables. */
4444     for(i=0; i<nSubSrc; i++){
4445       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4446     }
4447   }
4448 
4449   /* Finially, delete what is left of the subquery and return
4450   ** success.
4451   */
4452   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4453   sqlite3WalkSelect(&w,pSub1);
4454   sqlite3SelectDelete(db, pSub1);
4455 
4456 #if SELECTTRACE_ENABLED
4457   if( sqlite3SelectTrace & 0x100 ){
4458     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4459     sqlite3TreeViewSelect(0, p, 0);
4460   }
4461 #endif
4462 
4463   return 1;
4464 }
4465 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4466 
4467 /*
4468 ** A structure to keep track of all of the column values that are fixed to
4469 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4470 */
4471 typedef struct WhereConst WhereConst;
4472 struct WhereConst {
4473   Parse *pParse;   /* Parsing context */
4474   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4475   int nConst;      /* Number for COLUMN=CONSTANT terms */
4476   int nChng;       /* Number of times a constant is propagated */
4477   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4478   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4479 };
4480 
4481 /*
4482 ** Add a new entry to the pConst object.  Except, do not add duplicate
4483 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4484 **
4485 ** The caller guarantees the pColumn is a column and pValue is a constant.
4486 ** This routine has to do some additional checks before completing the
4487 ** insert.
4488 */
4489 static void constInsert(
4490   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4491   Expr *pColumn,       /* The COLUMN part of the constraint */
4492   Expr *pValue,        /* The VALUE part of the constraint */
4493   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4494 ){
4495   int i;
4496   assert( pColumn->op==TK_COLUMN );
4497   assert( sqlite3ExprIsConstant(pValue) );
4498 
4499   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4500   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4501   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4502     return;
4503   }
4504 
4505   /* 2018-10-25 ticket [cf5ed20f]
4506   ** Make sure the same pColumn is not inserted more than once */
4507   for(i=0; i<pConst->nConst; i++){
4508     const Expr *pE2 = pConst->apExpr[i*2];
4509     assert( pE2->op==TK_COLUMN );
4510     if( pE2->iTable==pColumn->iTable
4511      && pE2->iColumn==pColumn->iColumn
4512     ){
4513       return;  /* Already present.  Return without doing anything. */
4514     }
4515   }
4516   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4517     pConst->bHasAffBlob = 1;
4518   }
4519 
4520   pConst->nConst++;
4521   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4522                          pConst->nConst*2*sizeof(Expr*));
4523   if( pConst->apExpr==0 ){
4524     pConst->nConst = 0;
4525   }else{
4526     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4527     pConst->apExpr[pConst->nConst*2-1] = pValue;
4528   }
4529 }
4530 
4531 /*
4532 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4533 ** is a constant expression and where the term must be true because it
4534 ** is part of the AND-connected terms of the expression.  For each term
4535 ** found, add it to the pConst structure.
4536 */
4537 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4538   Expr *pRight, *pLeft;
4539   if( NEVER(pExpr==0) ) return;
4540   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4541   if( pExpr->op==TK_AND ){
4542     findConstInWhere(pConst, pExpr->pRight);
4543     findConstInWhere(pConst, pExpr->pLeft);
4544     return;
4545   }
4546   if( pExpr->op!=TK_EQ ) return;
4547   pRight = pExpr->pRight;
4548   pLeft = pExpr->pLeft;
4549   assert( pRight!=0 );
4550   assert( pLeft!=0 );
4551   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4552     constInsert(pConst,pRight,pLeft,pExpr);
4553   }
4554   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4555     constInsert(pConst,pLeft,pRight,pExpr);
4556   }
4557 }
4558 
4559 /*
4560 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4561 **
4562 ** Argument pExpr is a candidate expression to be replaced by a value. If
4563 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4564 ** then overwrite it with the corresponding value. Except, do not do so
4565 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4566 ** is SQLITE_AFF_BLOB.
4567 */
4568 static int propagateConstantExprRewriteOne(
4569   WhereConst *pConst,
4570   Expr *pExpr,
4571   int bIgnoreAffBlob
4572 ){
4573   int i;
4574   if( pConst->pOomFault[0] ) return WRC_Prune;
4575   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4576   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4577     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4578     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4579     return WRC_Continue;
4580   }
4581   for(i=0; i<pConst->nConst; i++){
4582     Expr *pColumn = pConst->apExpr[i*2];
4583     if( pColumn==pExpr ) continue;
4584     if( pColumn->iTable!=pExpr->iTable ) continue;
4585     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4586     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4587       break;
4588     }
4589     /* A match is found.  Add the EP_FixedCol property */
4590     pConst->nChng++;
4591     ExprClearProperty(pExpr, EP_Leaf);
4592     ExprSetProperty(pExpr, EP_FixedCol);
4593     assert( pExpr->pLeft==0 );
4594     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4595     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4596     break;
4597   }
4598   return WRC_Prune;
4599 }
4600 
4601 /*
4602 ** This is a Walker expression callback. pExpr is a node from the WHERE
4603 ** clause of a SELECT statement. This function examines pExpr to see if
4604 ** any substitutions based on the contents of pWalker->u.pConst should
4605 ** be made to pExpr or its immediate children.
4606 **
4607 ** A substitution is made if:
4608 **
4609 **   + pExpr is a column with an affinity other than BLOB that matches
4610 **     one of the columns in pWalker->u.pConst, or
4611 **
4612 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4613 **     uses an affinity other than TEXT and one of its immediate
4614 **     children is a column that matches one of the columns in
4615 **     pWalker->u.pConst.
4616 */
4617 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4618   WhereConst *pConst = pWalker->u.pConst;
4619   assert( TK_GT==TK_EQ+1 );
4620   assert( TK_LE==TK_EQ+2 );
4621   assert( TK_LT==TK_EQ+3 );
4622   assert( TK_GE==TK_EQ+4 );
4623   if( pConst->bHasAffBlob ){
4624     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4625      || pExpr->op==TK_IS
4626     ){
4627       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4628       if( pConst->pOomFault[0] ) return WRC_Prune;
4629       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4630         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4631       }
4632     }
4633   }
4634   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4635 }
4636 
4637 /*
4638 ** The WHERE-clause constant propagation optimization.
4639 **
4640 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4641 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4642 ** part of a ON clause from a LEFT JOIN, then throughout the query
4643 ** replace all other occurrences of COLUMN with CONSTANT.
4644 **
4645 ** For example, the query:
4646 **
4647 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4648 **
4649 ** Is transformed into
4650 **
4651 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4652 **
4653 ** Return true if any transformations where made and false if not.
4654 **
4655 ** Implementation note:  Constant propagation is tricky due to affinity
4656 ** and collating sequence interactions.  Consider this example:
4657 **
4658 **    CREATE TABLE t1(a INT,b TEXT);
4659 **    INSERT INTO t1 VALUES(123,'0123');
4660 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4661 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4662 **
4663 ** The two SELECT statements above should return different answers.  b=a
4664 ** is alway true because the comparison uses numeric affinity, but b=123
4665 ** is false because it uses text affinity and '0123' is not the same as '123'.
4666 ** To work around this, the expression tree is not actually changed from
4667 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4668 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4669 ** routines know to generate the constant "123" instead of looking up the
4670 ** column value.  Also, to avoid collation problems, this optimization is
4671 ** only attempted if the "a=123" term uses the default BINARY collation.
4672 **
4673 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4674 **
4675 **    CREATE TABLE t1(x);
4676 **    INSERT INTO t1 VALUES(10.0);
4677 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4678 **
4679 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4680 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4681 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4682 ** resulting in a false positive.  To avoid this, constant propagation for
4683 ** columns with BLOB affinity is only allowed if the constant is used with
4684 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4685 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4686 ** for details.
4687 */
4688 static int propagateConstants(
4689   Parse *pParse,   /* The parsing context */
4690   Select *p        /* The query in which to propagate constants */
4691 ){
4692   WhereConst x;
4693   Walker w;
4694   int nChng = 0;
4695   x.pParse = pParse;
4696   x.pOomFault = &pParse->db->mallocFailed;
4697   do{
4698     x.nConst = 0;
4699     x.nChng = 0;
4700     x.apExpr = 0;
4701     x.bHasAffBlob = 0;
4702     findConstInWhere(&x, p->pWhere);
4703     if( x.nConst ){
4704       memset(&w, 0, sizeof(w));
4705       w.pParse = pParse;
4706       w.xExprCallback = propagateConstantExprRewrite;
4707       w.xSelectCallback = sqlite3SelectWalkNoop;
4708       w.xSelectCallback2 = 0;
4709       w.walkerDepth = 0;
4710       w.u.pConst = &x;
4711       sqlite3WalkExpr(&w, p->pWhere);
4712       sqlite3DbFree(x.pParse->db, x.apExpr);
4713       nChng += x.nChng;
4714     }
4715   }while( x.nChng );
4716   return nChng;
4717 }
4718 
4719 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4720 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4721 /*
4722 ** This function is called to determine whether or not it is safe to
4723 ** push WHERE clause expression pExpr down to FROM clause sub-query
4724 ** pSubq, which contains at least one window function. Return 1
4725 ** if it is safe and the expression should be pushed down, or 0
4726 ** otherwise.
4727 **
4728 ** It is only safe to push the expression down if it consists only
4729 ** of constants and copies of expressions that appear in the PARTITION
4730 ** BY clause of all window function used by the sub-query. It is safe
4731 ** to filter out entire partitions, but not rows within partitions, as
4732 ** this may change the results of the window functions.
4733 **
4734 ** At the time this function is called it is guaranteed that
4735 **
4736 **   * the sub-query uses only one distinct window frame, and
4737 **   * that the window frame has a PARTITION BY clase.
4738 */
4739 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4740   assert( pSubq->pWin->pPartition );
4741   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4742   assert( pSubq->pPrior==0 );
4743   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4744 }
4745 # endif /* SQLITE_OMIT_WINDOWFUNC */
4746 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4747 
4748 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4749 /*
4750 ** Make copies of relevant WHERE clause terms of the outer query into
4751 ** the WHERE clause of subquery.  Example:
4752 **
4753 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4754 **
4755 ** Transformed into:
4756 **
4757 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4758 **     WHERE x=5 AND y=10;
4759 **
4760 ** The hope is that the terms added to the inner query will make it more
4761 ** efficient.
4762 **
4763 ** Do not attempt this optimization if:
4764 **
4765 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4766 **           disallow this optimization for aggregate subqueries, but now
4767 **           it is allowed by putting the extra terms on the HAVING clause.
4768 **           The added HAVING clause is pointless if the subquery lacks
4769 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4770 **           so there does not appear to be any reason to add extra logic
4771 **           to suppress it. **)
4772 **
4773 **   (2) The inner query is the recursive part of a common table expression.
4774 **
4775 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4776 **       clause would change the meaning of the LIMIT).
4777 **
4778 **   (4) The inner query is the right operand of a LEFT JOIN and the
4779 **       expression to be pushed down does not come from the ON clause
4780 **       on that LEFT JOIN.
4781 **
4782 **   (5) The WHERE clause expression originates in the ON or USING clause
4783 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4784 **       left join.  An example:
4785 **
4786 **           SELECT *
4787 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4788 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4789 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4790 **
4791 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4792 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4793 **       then the (1,1,NULL) row would be suppressed.
4794 **
4795 **   (6) Window functions make things tricky as changes to the WHERE clause
4796 **       of the inner query could change the window over which window
4797 **       functions are calculated. Therefore, do not attempt the optimization
4798 **       if:
4799 **
4800 **     (6a) The inner query uses multiple incompatible window partitions.
4801 **
4802 **     (6b) The inner query is a compound and uses window-functions.
4803 **
4804 **     (6c) The WHERE clause does not consist entirely of constants and
4805 **          copies of expressions found in the PARTITION BY clause of
4806 **          all window-functions used by the sub-query. It is safe to
4807 **          filter out entire partitions, as this does not change the
4808 **          window over which any window-function is calculated.
4809 **
4810 **   (7) The inner query is a Common Table Expression (CTE) that should
4811 **       be materialized.  (This restriction is implemented in the calling
4812 **       routine.)
4813 **
4814 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4815 ** terms are duplicated into the subquery.
4816 */
4817 static int pushDownWhereTerms(
4818   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4819   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4820   Expr *pWhere,         /* The WHERE clause of the outer query */
4821   int iCursor,          /* Cursor number of the subquery */
4822   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4823 ){
4824   Expr *pNew;
4825   int nChng = 0;
4826   if( pWhere==0 ) return 0;
4827   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4828 
4829 #ifndef SQLITE_OMIT_WINDOWFUNC
4830   if( pSubq->pPrior ){
4831     Select *pSel;
4832     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4833       if( pSel->pWin ) return 0;    /* restriction (6b) */
4834     }
4835   }else{
4836     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4837   }
4838 #endif
4839 
4840 #ifdef SQLITE_DEBUG
4841   /* Only the first term of a compound can have a WITH clause.  But make
4842   ** sure no other terms are marked SF_Recursive in case something changes
4843   ** in the future.
4844   */
4845   {
4846     Select *pX;
4847     for(pX=pSubq; pX; pX=pX->pPrior){
4848       assert( (pX->selFlags & (SF_Recursive))==0 );
4849     }
4850   }
4851 #endif
4852 
4853   if( pSubq->pLimit!=0 ){
4854     return 0; /* restriction (3) */
4855   }
4856   while( pWhere->op==TK_AND ){
4857     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4858                                 iCursor, isLeftJoin);
4859     pWhere = pWhere->pLeft;
4860   }
4861   if( isLeftJoin
4862    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4863          || pWhere->iRightJoinTable!=iCursor)
4864   ){
4865     return 0; /* restriction (4) */
4866   }
4867   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4868     return 0; /* restriction (5) */
4869   }
4870   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4871     nChng++;
4872     pSubq->selFlags |= SF_PushDown;
4873     while( pSubq ){
4874       SubstContext x;
4875       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4876       unsetJoinExpr(pNew, -1);
4877       x.pParse = pParse;
4878       x.iTable = iCursor;
4879       x.iNewTable = iCursor;
4880       x.isLeftJoin = 0;
4881       x.pEList = pSubq->pEList;
4882       pNew = substExpr(&x, pNew);
4883 #ifndef SQLITE_OMIT_WINDOWFUNC
4884       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4885         /* Restriction 6c has prevented push-down in this case */
4886         sqlite3ExprDelete(pParse->db, pNew);
4887         nChng--;
4888         break;
4889       }
4890 #endif
4891       if( pSubq->selFlags & SF_Aggregate ){
4892         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4893       }else{
4894         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4895       }
4896       pSubq = pSubq->pPrior;
4897     }
4898   }
4899   return nChng;
4900 }
4901 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4902 
4903 /*
4904 ** The pFunc is the only aggregate function in the query.  Check to see
4905 ** if the query is a candidate for the min/max optimization.
4906 **
4907 ** If the query is a candidate for the min/max optimization, then set
4908 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4909 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4910 ** whether pFunc is a min() or max() function.
4911 **
4912 ** If the query is not a candidate for the min/max optimization, return
4913 ** WHERE_ORDERBY_NORMAL (which must be zero).
4914 **
4915 ** This routine must be called after aggregate functions have been
4916 ** located but before their arguments have been subjected to aggregate
4917 ** analysis.
4918 */
4919 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4920   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4921   ExprList *pEList;                     /* Arguments to agg function */
4922   const char *zFunc;                    /* Name of aggregate function pFunc */
4923   ExprList *pOrderBy;
4924   u8 sortFlags = 0;
4925 
4926   assert( *ppMinMax==0 );
4927   assert( pFunc->op==TK_AGG_FUNCTION );
4928   assert( !IsWindowFunc(pFunc) );
4929   assert( ExprUseXList(pFunc) );
4930   pEList = pFunc->x.pList;
4931   if( pEList==0
4932    || pEList->nExpr!=1
4933    || ExprHasProperty(pFunc, EP_WinFunc)
4934    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4935   ){
4936     return eRet;
4937   }
4938   assert( !ExprHasProperty(pFunc, EP_IntValue) );
4939   zFunc = pFunc->u.zToken;
4940   if( sqlite3StrICmp(zFunc, "min")==0 ){
4941     eRet = WHERE_ORDERBY_MIN;
4942     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4943       sortFlags = KEYINFO_ORDER_BIGNULL;
4944     }
4945   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4946     eRet = WHERE_ORDERBY_MAX;
4947     sortFlags = KEYINFO_ORDER_DESC;
4948   }else{
4949     return eRet;
4950   }
4951   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4952   assert( pOrderBy!=0 || db->mallocFailed );
4953   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4954   return eRet;
4955 }
4956 
4957 /*
4958 ** The select statement passed as the first argument is an aggregate query.
4959 ** The second argument is the associated aggregate-info object. This
4960 ** function tests if the SELECT is of the form:
4961 **
4962 **   SELECT count(*) FROM <tbl>
4963 **
4964 ** where table is a database table, not a sub-select or view. If the query
4965 ** does match this pattern, then a pointer to the Table object representing
4966 ** <tbl> is returned. Otherwise, NULL is returned.
4967 **
4968 ** This routine checks to see if it is safe to use the count optimization.
4969 ** A correct answer is still obtained (though perhaps more slowly) if
4970 ** this routine returns NULL when it could have returned a table pointer.
4971 ** But returning the pointer when NULL should have been returned can
4972 ** result in incorrect answers and/or crashes.  So, when in doubt, return NULL.
4973 */
4974 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4975   Table *pTab;
4976   Expr *pExpr;
4977 
4978   assert( !p->pGroupBy );
4979 
4980   if( p->pWhere
4981    || p->pEList->nExpr!=1
4982    || p->pSrc->nSrc!=1
4983    || p->pSrc->a[0].pSelect
4984    || pAggInfo->nFunc!=1
4985   ){
4986     return 0;
4987   }
4988   pTab = p->pSrc->a[0].pTab;
4989   assert( pTab!=0 );
4990   assert( !IsView(pTab) );
4991   if( !IsOrdinaryTable(pTab) ) return 0;
4992   pExpr = p->pEList->a[0].pExpr;
4993   assert( pExpr!=0 );
4994   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4995   if( pExpr->pAggInfo!=pAggInfo ) return 0;
4996   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4997   assert( pAggInfo->aFunc[0].pFExpr==pExpr );
4998   testcase( ExprHasProperty(pExpr, EP_Distinct) );
4999   testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5000   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5001 
5002   return pTab;
5003 }
5004 
5005 /*
5006 ** If the source-list item passed as an argument was augmented with an
5007 ** INDEXED BY clause, then try to locate the specified index. If there
5008 ** was such a clause and the named index cannot be found, return
5009 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5010 ** pFrom->pIndex and return SQLITE_OK.
5011 */
5012 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5013   Table *pTab = pFrom->pTab;
5014   char *zIndexedBy = pFrom->u1.zIndexedBy;
5015   Index *pIdx;
5016   assert( pTab!=0 );
5017   assert( pFrom->fg.isIndexedBy!=0 );
5018 
5019   for(pIdx=pTab->pIndex;
5020       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5021       pIdx=pIdx->pNext
5022   );
5023   if( !pIdx ){
5024     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5025     pParse->checkSchema = 1;
5026     return SQLITE_ERROR;
5027   }
5028   assert( pFrom->fg.isCte==0 );
5029   pFrom->u2.pIBIndex = pIdx;
5030   return SQLITE_OK;
5031 }
5032 
5033 /*
5034 ** Detect compound SELECT statements that use an ORDER BY clause with
5035 ** an alternative collating sequence.
5036 **
5037 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5038 **
5039 ** These are rewritten as a subquery:
5040 **
5041 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5042 **     ORDER BY ... COLLATE ...
5043 **
5044 ** This transformation is necessary because the multiSelectOrderBy() routine
5045 ** above that generates the code for a compound SELECT with an ORDER BY clause
5046 ** uses a merge algorithm that requires the same collating sequence on the
5047 ** result columns as on the ORDER BY clause.  See ticket
5048 ** http://www.sqlite.org/src/info/6709574d2a
5049 **
5050 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5051 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5052 ** there are COLLATE terms in the ORDER BY.
5053 */
5054 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5055   int i;
5056   Select *pNew;
5057   Select *pX;
5058   sqlite3 *db;
5059   struct ExprList_item *a;
5060   SrcList *pNewSrc;
5061   Parse *pParse;
5062   Token dummy;
5063 
5064   if( p->pPrior==0 ) return WRC_Continue;
5065   if( p->pOrderBy==0 ) return WRC_Continue;
5066   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5067   if( pX==0 ) return WRC_Continue;
5068   a = p->pOrderBy->a;
5069 #ifndef SQLITE_OMIT_WINDOWFUNC
5070   /* If iOrderByCol is already non-zero, then it has already been matched
5071   ** to a result column of the SELECT statement. This occurs when the
5072   ** SELECT is rewritten for window-functions processing and then passed
5073   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5074   ** by this function is not required in this case. */
5075   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5076 #endif
5077   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5078     if( a[i].pExpr->flags & EP_Collate ) break;
5079   }
5080   if( i<0 ) return WRC_Continue;
5081 
5082   /* If we reach this point, that means the transformation is required. */
5083 
5084   pParse = pWalker->pParse;
5085   db = pParse->db;
5086   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5087   if( pNew==0 ) return WRC_Abort;
5088   memset(&dummy, 0, sizeof(dummy));
5089   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
5090   if( pNewSrc==0 ) return WRC_Abort;
5091   *pNew = *p;
5092   p->pSrc = pNewSrc;
5093   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5094   p->op = TK_SELECT;
5095   p->pWhere = 0;
5096   pNew->pGroupBy = 0;
5097   pNew->pHaving = 0;
5098   pNew->pOrderBy = 0;
5099   p->pPrior = 0;
5100   p->pNext = 0;
5101   p->pWith = 0;
5102 #ifndef SQLITE_OMIT_WINDOWFUNC
5103   p->pWinDefn = 0;
5104 #endif
5105   p->selFlags &= ~SF_Compound;
5106   assert( (p->selFlags & SF_Converted)==0 );
5107   p->selFlags |= SF_Converted;
5108   assert( pNew->pPrior!=0 );
5109   pNew->pPrior->pNext = pNew;
5110   pNew->pLimit = 0;
5111   return WRC_Continue;
5112 }
5113 
5114 /*
5115 ** Check to see if the FROM clause term pFrom has table-valued function
5116 ** arguments.  If it does, leave an error message in pParse and return
5117 ** non-zero, since pFrom is not allowed to be a table-valued function.
5118 */
5119 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5120   if( pFrom->fg.isTabFunc ){
5121     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5122     return 1;
5123   }
5124   return 0;
5125 }
5126 
5127 #ifndef SQLITE_OMIT_CTE
5128 /*
5129 ** Argument pWith (which may be NULL) points to a linked list of nested
5130 ** WITH contexts, from inner to outermost. If the table identified by
5131 ** FROM clause element pItem is really a common-table-expression (CTE)
5132 ** then return a pointer to the CTE definition for that table. Otherwise
5133 ** return NULL.
5134 **
5135 ** If a non-NULL value is returned, set *ppContext to point to the With
5136 ** object that the returned CTE belongs to.
5137 */
5138 static struct Cte *searchWith(
5139   With *pWith,                    /* Current innermost WITH clause */
5140   SrcItem *pItem,                 /* FROM clause element to resolve */
5141   With **ppContext                /* OUT: WITH clause return value belongs to */
5142 ){
5143   const char *zName = pItem->zName;
5144   With *p;
5145   assert( pItem->zDatabase==0 );
5146   assert( zName!=0 );
5147   for(p=pWith; p; p=p->pOuter){
5148     int i;
5149     for(i=0; i<p->nCte; i++){
5150       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5151         *ppContext = p;
5152         return &p->a[i];
5153       }
5154     }
5155     if( p->bView ) break;
5156   }
5157   return 0;
5158 }
5159 
5160 /* The code generator maintains a stack of active WITH clauses
5161 ** with the inner-most WITH clause being at the top of the stack.
5162 **
5163 ** This routine pushes the WITH clause passed as the second argument
5164 ** onto the top of the stack. If argument bFree is true, then this
5165 ** WITH clause will never be popped from the stack but should instead
5166 ** be freed along with the Parse object. In other cases, when
5167 ** bFree==0, the With object will be freed along with the SELECT
5168 ** statement with which it is associated.
5169 **
5170 ** This routine returns a copy of pWith.  Or, if bFree is true and
5171 ** the pWith object is destroyed immediately due to an OOM condition,
5172 ** then this routine return NULL.
5173 **
5174 ** If bFree is true, do not continue to use the pWith pointer after
5175 ** calling this routine,  Instead, use only the return value.
5176 */
5177 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5178   if( pWith ){
5179     if( bFree ){
5180       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5181                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5182                       pWith);
5183       if( pWith==0 ) return 0;
5184     }
5185     if( pParse->nErr==0 ){
5186       assert( pParse->pWith!=pWith );
5187       pWith->pOuter = pParse->pWith;
5188       pParse->pWith = pWith;
5189     }
5190   }
5191   return pWith;
5192 }
5193 
5194 /*
5195 ** This function checks if argument pFrom refers to a CTE declared by
5196 ** a WITH clause on the stack currently maintained by the parser (on the
5197 ** pParse->pWith linked list).  And if currently processing a CTE
5198 ** CTE expression, through routine checks to see if the reference is
5199 ** a recursive reference to the CTE.
5200 **
5201 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5202 ** and other fields are populated accordingly.
5203 **
5204 ** Return 0 if no match is found.
5205 ** Return 1 if a match is found.
5206 ** Return 2 if an error condition is detected.
5207 */
5208 static int resolveFromTermToCte(
5209   Parse *pParse,                  /* The parsing context */
5210   Walker *pWalker,                /* Current tree walker */
5211   SrcItem *pFrom                  /* The FROM clause term to check */
5212 ){
5213   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5214   With *pWith;             /* The matching WITH */
5215 
5216   assert( pFrom->pTab==0 );
5217   if( pParse->pWith==0 ){
5218     /* There are no WITH clauses in the stack.  No match is possible */
5219     return 0;
5220   }
5221   if( pParse->nErr ){
5222     /* Prior errors might have left pParse->pWith in a goofy state, so
5223     ** go no further. */
5224     return 0;
5225   }
5226   if( pFrom->zDatabase!=0 ){
5227     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5228     ** it cannot possibly be a CTE reference. */
5229     return 0;
5230   }
5231   if( pFrom->fg.notCte ){
5232     /* The FROM term is specifically excluded from matching a CTE.
5233     **   (1)  It is part of a trigger that used to have zDatabase but had
5234     **        zDatabase removed by sqlite3FixTriggerStep().
5235     **   (2)  This is the first term in the FROM clause of an UPDATE.
5236     */
5237     return 0;
5238   }
5239   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5240   if( pCte ){
5241     sqlite3 *db = pParse->db;
5242     Table *pTab;
5243     ExprList *pEList;
5244     Select *pSel;
5245     Select *pLeft;                /* Left-most SELECT statement */
5246     Select *pRecTerm;             /* Left-most recursive term */
5247     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5248     With *pSavedWith;             /* Initial value of pParse->pWith */
5249     int iRecTab = -1;             /* Cursor for recursive table */
5250     CteUse *pCteUse;
5251 
5252     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5253     ** recursive reference to CTE pCte. Leave an error in pParse and return
5254     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5255     ** In this case, proceed.  */
5256     if( pCte->zCteErr ){
5257       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5258       return 2;
5259     }
5260     if( cannotBeFunction(pParse, pFrom) ) return 2;
5261 
5262     assert( pFrom->pTab==0 );
5263     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5264     if( pTab==0 ) return 2;
5265     pCteUse = pCte->pUse;
5266     if( pCteUse==0 ){
5267       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5268       if( pCteUse==0
5269        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5270       ){
5271         sqlite3DbFree(db, pTab);
5272         return 2;
5273       }
5274       pCteUse->eM10d = pCte->eM10d;
5275     }
5276     pFrom->pTab = pTab;
5277     pTab->nTabRef = 1;
5278     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5279     pTab->iPKey = -1;
5280     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5281     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5282     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5283     if( db->mallocFailed ) return 2;
5284     pFrom->pSelect->selFlags |= SF_CopyCte;
5285     assert( pFrom->pSelect );
5286     if( pFrom->fg.isIndexedBy ){
5287       sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5288       return 2;
5289     }
5290     pFrom->fg.isCte = 1;
5291     pFrom->u2.pCteUse = pCteUse;
5292     pCteUse->nUse++;
5293     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5294       pCteUse->eM10d = M10d_Yes;
5295     }
5296 
5297     /* Check if this is a recursive CTE. */
5298     pRecTerm = pSel = pFrom->pSelect;
5299     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5300     while( bMayRecursive && pRecTerm->op==pSel->op ){
5301       int i;
5302       SrcList *pSrc = pRecTerm->pSrc;
5303       assert( pRecTerm->pPrior!=0 );
5304       for(i=0; i<pSrc->nSrc; i++){
5305         SrcItem *pItem = &pSrc->a[i];
5306         if( pItem->zDatabase==0
5307          && pItem->zName!=0
5308          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5309         ){
5310           pItem->pTab = pTab;
5311           pTab->nTabRef++;
5312           pItem->fg.isRecursive = 1;
5313           if( pRecTerm->selFlags & SF_Recursive ){
5314             sqlite3ErrorMsg(pParse,
5315                "multiple references to recursive table: %s", pCte->zName
5316             );
5317             return 2;
5318           }
5319           pRecTerm->selFlags |= SF_Recursive;
5320           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5321           pItem->iCursor = iRecTab;
5322         }
5323       }
5324       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5325       pRecTerm = pRecTerm->pPrior;
5326     }
5327 
5328     pCte->zCteErr = "circular reference: %s";
5329     pSavedWith = pParse->pWith;
5330     pParse->pWith = pWith;
5331     if( pSel->selFlags & SF_Recursive ){
5332       int rc;
5333       assert( pRecTerm!=0 );
5334       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5335       assert( pRecTerm->pNext!=0 );
5336       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5337       assert( pRecTerm->pWith==0 );
5338       pRecTerm->pWith = pSel->pWith;
5339       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5340       pRecTerm->pWith = 0;
5341       if( rc ){
5342         pParse->pWith = pSavedWith;
5343         return 2;
5344       }
5345     }else{
5346       if( sqlite3WalkSelect(pWalker, pSel) ){
5347         pParse->pWith = pSavedWith;
5348         return 2;
5349       }
5350     }
5351     pParse->pWith = pWith;
5352 
5353     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5354     pEList = pLeft->pEList;
5355     if( pCte->pCols ){
5356       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5357         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5358             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5359         );
5360         pParse->pWith = pSavedWith;
5361         return 2;
5362       }
5363       pEList = pCte->pCols;
5364     }
5365 
5366     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5367     if( bMayRecursive ){
5368       if( pSel->selFlags & SF_Recursive ){
5369         pCte->zCteErr = "multiple recursive references: %s";
5370       }else{
5371         pCte->zCteErr = "recursive reference in a subquery: %s";
5372       }
5373       sqlite3WalkSelect(pWalker, pSel);
5374     }
5375     pCte->zCteErr = 0;
5376     pParse->pWith = pSavedWith;
5377     return 1;  /* Success */
5378   }
5379   return 0;  /* No match */
5380 }
5381 #endif
5382 
5383 #ifndef SQLITE_OMIT_CTE
5384 /*
5385 ** If the SELECT passed as the second argument has an associated WITH
5386 ** clause, pop it from the stack stored as part of the Parse object.
5387 **
5388 ** This function is used as the xSelectCallback2() callback by
5389 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5390 ** names and other FROM clause elements.
5391 */
5392 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5393   Parse *pParse = pWalker->pParse;
5394   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5395     With *pWith = findRightmost(p)->pWith;
5396     if( pWith!=0 ){
5397       assert( pParse->pWith==pWith || pParse->nErr );
5398       pParse->pWith = pWith->pOuter;
5399     }
5400   }
5401 }
5402 #endif
5403 
5404 /*
5405 ** The SrcList_item structure passed as the second argument represents a
5406 ** sub-query in the FROM clause of a SELECT statement. This function
5407 ** allocates and populates the SrcList_item.pTab object. If successful,
5408 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5409 ** SQLITE_NOMEM.
5410 */
5411 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5412   Select *pSel = pFrom->pSelect;
5413   Table *pTab;
5414 
5415   assert( pSel );
5416   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5417   if( pTab==0 ) return SQLITE_NOMEM;
5418   pTab->nTabRef = 1;
5419   if( pFrom->zAlias ){
5420     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5421   }else{
5422     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5423   }
5424   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5425   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5426   pTab->iPKey = -1;
5427   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5428 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5429   /* The usual case - do not allow ROWID on a subquery */
5430   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5431 #else
5432   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5433 #endif
5434 
5435 
5436   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5437 }
5438 
5439 /*
5440 ** This routine is a Walker callback for "expanding" a SELECT statement.
5441 ** "Expanding" means to do the following:
5442 **
5443 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5444 **         element of the FROM clause.
5445 **
5446 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5447 **         defines FROM clause.  When views appear in the FROM clause,
5448 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5449 **         that implements the view.  A copy is made of the view's SELECT
5450 **         statement so that we can freely modify or delete that statement
5451 **         without worrying about messing up the persistent representation
5452 **         of the view.
5453 **
5454 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5455 **         on joins and the ON and USING clause of joins.
5456 **
5457 **    (4)  Scan the list of columns in the result set (pEList) looking
5458 **         for instances of the "*" operator or the TABLE.* operator.
5459 **         If found, expand each "*" to be every column in every table
5460 **         and TABLE.* to be every column in TABLE.
5461 **
5462 */
5463 static int selectExpander(Walker *pWalker, Select *p){
5464   Parse *pParse = pWalker->pParse;
5465   int i, j, k, rc;
5466   SrcList *pTabList;
5467   ExprList *pEList;
5468   SrcItem *pFrom;
5469   sqlite3 *db = pParse->db;
5470   Expr *pE, *pRight, *pExpr;
5471   u16 selFlags = p->selFlags;
5472   u32 elistFlags = 0;
5473 
5474   p->selFlags |= SF_Expanded;
5475   if( db->mallocFailed  ){
5476     return WRC_Abort;
5477   }
5478   assert( p->pSrc!=0 );
5479   if( (selFlags & SF_Expanded)!=0 ){
5480     return WRC_Prune;
5481   }
5482   if( pWalker->eCode ){
5483     /* Renumber selId because it has been copied from a view */
5484     p->selId = ++pParse->nSelect;
5485   }
5486   pTabList = p->pSrc;
5487   pEList = p->pEList;
5488   if( pParse->pWith && (p->selFlags & SF_View) ){
5489     if( p->pWith==0 ){
5490       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5491       if( p->pWith==0 ){
5492         return WRC_Abort;
5493       }
5494     }
5495     p->pWith->bView = 1;
5496   }
5497   sqlite3WithPush(pParse, p->pWith, 0);
5498 
5499   /* Make sure cursor numbers have been assigned to all entries in
5500   ** the FROM clause of the SELECT statement.
5501   */
5502   sqlite3SrcListAssignCursors(pParse, pTabList);
5503 
5504   /* Look up every table named in the FROM clause of the select.  If
5505   ** an entry of the FROM clause is a subquery instead of a table or view,
5506   ** then create a transient table structure to describe the subquery.
5507   */
5508   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5509     Table *pTab;
5510     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5511     if( pFrom->pTab ) continue;
5512     assert( pFrom->fg.isRecursive==0 );
5513     if( pFrom->zName==0 ){
5514 #ifndef SQLITE_OMIT_SUBQUERY
5515       Select *pSel = pFrom->pSelect;
5516       /* A sub-query in the FROM clause of a SELECT */
5517       assert( pSel!=0 );
5518       assert( pFrom->pTab==0 );
5519       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5520       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5521 #endif
5522 #ifndef SQLITE_OMIT_CTE
5523     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5524       if( rc>1 ) return WRC_Abort;
5525       pTab = pFrom->pTab;
5526       assert( pTab!=0 );
5527 #endif
5528     }else{
5529       /* An ordinary table or view name in the FROM clause */
5530       assert( pFrom->pTab==0 );
5531       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5532       if( pTab==0 ) return WRC_Abort;
5533       if( pTab->nTabRef>=0xffff ){
5534         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5535            pTab->zName);
5536         pFrom->pTab = 0;
5537         return WRC_Abort;
5538       }
5539       pTab->nTabRef++;
5540       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5541         return WRC_Abort;
5542       }
5543 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5544       if( !IsOrdinaryTable(pTab) ){
5545         i16 nCol;
5546         u8 eCodeOrig = pWalker->eCode;
5547         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5548         assert( pFrom->pSelect==0 );
5549         if( IsView(pTab) ){
5550           if( (db->flags & SQLITE_EnableView)==0
5551            && pTab->pSchema!=db->aDb[1].pSchema
5552           ){
5553             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5554               pTab->zName);
5555           }
5556           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5557         }
5558 #ifndef SQLITE_OMIT_VIRTUALTABLE
5559         else if( ALWAYS(IsVirtual(pTab))
5560          && pFrom->fg.fromDDL
5561          && ALWAYS(pTab->u.vtab.p!=0)
5562          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5563         ){
5564           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5565                                   pTab->zName);
5566         }
5567         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5568 #endif
5569         nCol = pTab->nCol;
5570         pTab->nCol = -1;
5571         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5572         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5573         pWalker->eCode = eCodeOrig;
5574         pTab->nCol = nCol;
5575       }
5576 #endif
5577     }
5578 
5579     /* Locate the index named by the INDEXED BY clause, if any. */
5580     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5581       return WRC_Abort;
5582     }
5583   }
5584 
5585   /* Process NATURAL keywords, and ON and USING clauses of joins.
5586   */
5587   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5588     return WRC_Abort;
5589   }
5590 
5591   /* For every "*" that occurs in the column list, insert the names of
5592   ** all columns in all tables.  And for every TABLE.* insert the names
5593   ** of all columns in TABLE.  The parser inserted a special expression
5594   ** with the TK_ASTERISK operator for each "*" that it found in the column
5595   ** list.  The following code just has to locate the TK_ASTERISK
5596   ** expressions and expand each one to the list of all columns in
5597   ** all tables.
5598   **
5599   ** The first loop just checks to see if there are any "*" operators
5600   ** that need expanding.
5601   */
5602   for(k=0; k<pEList->nExpr; k++){
5603     pE = pEList->a[k].pExpr;
5604     if( pE->op==TK_ASTERISK ) break;
5605     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5606     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5607     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5608     elistFlags |= pE->flags;
5609   }
5610   if( k<pEList->nExpr ){
5611     /*
5612     ** If we get here it means the result set contains one or more "*"
5613     ** operators that need to be expanded.  Loop through each expression
5614     ** in the result set and expand them one by one.
5615     */
5616     struct ExprList_item *a = pEList->a;
5617     ExprList *pNew = 0;
5618     int flags = pParse->db->flags;
5619     int longNames = (flags & SQLITE_FullColNames)!=0
5620                       && (flags & SQLITE_ShortColNames)==0;
5621 
5622     for(k=0; k<pEList->nExpr; k++){
5623       pE = a[k].pExpr;
5624       elistFlags |= pE->flags;
5625       pRight = pE->pRight;
5626       assert( pE->op!=TK_DOT || pRight!=0 );
5627       if( pE->op!=TK_ASTERISK
5628        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5629       ){
5630         /* This particular expression does not need to be expanded.
5631         */
5632         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5633         if( pNew ){
5634           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5635           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5636           a[k].zEName = 0;
5637         }
5638         a[k].pExpr = 0;
5639       }else{
5640         /* This expression is a "*" or a "TABLE.*" and needs to be
5641         ** expanded. */
5642         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5643         char *zTName = 0;       /* text of name of TABLE */
5644         if( pE->op==TK_DOT ){
5645           assert( pE->pLeft!=0 );
5646           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5647           zTName = pE->pLeft->u.zToken;
5648         }
5649         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5650           Table *pTab = pFrom->pTab;
5651           Select *pSub = pFrom->pSelect;
5652           char *zTabName = pFrom->zAlias;
5653           const char *zSchemaName = 0;
5654           int iDb;
5655           if( zTabName==0 ){
5656             zTabName = pTab->zName;
5657           }
5658           if( db->mallocFailed ) break;
5659           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5660             pSub = 0;
5661             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5662               continue;
5663             }
5664             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5665             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5666           }
5667           for(j=0; j<pTab->nCol; j++){
5668             char *zName = pTab->aCol[j].zCnName;
5669             char *zColname;  /* The computed column name */
5670             char *zToFree;   /* Malloced string that needs to be freed */
5671             Token sColname;  /* Computed column name as a token */
5672 
5673             assert( zName );
5674             if( zTName && pSub
5675              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5676             ){
5677               continue;
5678             }
5679 
5680             /* If a column is marked as 'hidden', omit it from the expanded
5681             ** result-set list unless the SELECT has the SF_IncludeHidden
5682             ** bit set.
5683             */
5684             if( (p->selFlags & SF_IncludeHidden)==0
5685              && IsHiddenColumn(&pTab->aCol[j])
5686             ){
5687               continue;
5688             }
5689             tableSeen = 1;
5690 
5691             if( i>0 && zTName==0 ){
5692               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5693                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5694               ){
5695                 /* In a NATURAL join, omit the join columns from the
5696                 ** table to the right of the join */
5697                 continue;
5698               }
5699               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5700                 /* In a join with a USING clause, omit columns in the
5701                 ** using clause from the table on the right. */
5702                 continue;
5703               }
5704             }
5705             pRight = sqlite3Expr(db, TK_ID, zName);
5706             zColname = zName;
5707             zToFree = 0;
5708             if( longNames || pTabList->nSrc>1 ){
5709               Expr *pLeft;
5710               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5711               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5712               if( zSchemaName ){
5713                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5714                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5715               }
5716               if( longNames ){
5717                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5718                 zToFree = zColname;
5719               }
5720             }else{
5721               pExpr = pRight;
5722             }
5723             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5724             sqlite3TokenInit(&sColname, zColname);
5725             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5726             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5727               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5728               sqlite3DbFree(db, pX->zEName);
5729               if( pSub ){
5730                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5731                 testcase( pX->zEName==0 );
5732               }else{
5733                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5734                                            zSchemaName, zTabName, zColname);
5735                 testcase( pX->zEName==0 );
5736               }
5737               pX->eEName = ENAME_TAB;
5738             }
5739             sqlite3DbFree(db, zToFree);
5740           }
5741         }
5742         if( !tableSeen ){
5743           if( zTName ){
5744             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5745           }else{
5746             sqlite3ErrorMsg(pParse, "no tables specified");
5747           }
5748         }
5749       }
5750     }
5751     sqlite3ExprListDelete(db, pEList);
5752     p->pEList = pNew;
5753   }
5754   if( p->pEList ){
5755     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5756       sqlite3ErrorMsg(pParse, "too many columns in result set");
5757       return WRC_Abort;
5758     }
5759     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5760       p->selFlags |= SF_ComplexResult;
5761     }
5762   }
5763   return WRC_Continue;
5764 }
5765 
5766 #if SQLITE_DEBUG
5767 /*
5768 ** Always assert.  This xSelectCallback2 implementation proves that the
5769 ** xSelectCallback2 is never invoked.
5770 */
5771 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5772   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5773   assert( 0 );
5774 }
5775 #endif
5776 /*
5777 ** This routine "expands" a SELECT statement and all of its subqueries.
5778 ** For additional information on what it means to "expand" a SELECT
5779 ** statement, see the comment on the selectExpand worker callback above.
5780 **
5781 ** Expanding a SELECT statement is the first step in processing a
5782 ** SELECT statement.  The SELECT statement must be expanded before
5783 ** name resolution is performed.
5784 **
5785 ** If anything goes wrong, an error message is written into pParse.
5786 ** The calling function can detect the problem by looking at pParse->nErr
5787 ** and/or pParse->db->mallocFailed.
5788 */
5789 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5790   Walker w;
5791   w.xExprCallback = sqlite3ExprWalkNoop;
5792   w.pParse = pParse;
5793   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5794     w.xSelectCallback = convertCompoundSelectToSubquery;
5795     w.xSelectCallback2 = 0;
5796     sqlite3WalkSelect(&w, pSelect);
5797   }
5798   w.xSelectCallback = selectExpander;
5799   w.xSelectCallback2 = sqlite3SelectPopWith;
5800   w.eCode = 0;
5801   sqlite3WalkSelect(&w, pSelect);
5802 }
5803 
5804 
5805 #ifndef SQLITE_OMIT_SUBQUERY
5806 /*
5807 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5808 ** interface.
5809 **
5810 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5811 ** information to the Table structure that represents the result set
5812 ** of that subquery.
5813 **
5814 ** The Table structure that represents the result set was constructed
5815 ** by selectExpander() but the type and collation information was omitted
5816 ** at that point because identifiers had not yet been resolved.  This
5817 ** routine is called after identifier resolution.
5818 */
5819 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5820   Parse *pParse;
5821   int i;
5822   SrcList *pTabList;
5823   SrcItem *pFrom;
5824 
5825   assert( p->selFlags & SF_Resolved );
5826   if( p->selFlags & SF_HasTypeInfo ) return;
5827   p->selFlags |= SF_HasTypeInfo;
5828   pParse = pWalker->pParse;
5829   pTabList = p->pSrc;
5830   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5831     Table *pTab = pFrom->pTab;
5832     assert( pTab!=0 );
5833     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5834       /* A sub-query in the FROM clause of a SELECT */
5835       Select *pSel = pFrom->pSelect;
5836       if( pSel ){
5837         while( pSel->pPrior ) pSel = pSel->pPrior;
5838         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5839                                                SQLITE_AFF_NONE);
5840       }
5841     }
5842   }
5843 }
5844 #endif
5845 
5846 
5847 /*
5848 ** This routine adds datatype and collating sequence information to
5849 ** the Table structures of all FROM-clause subqueries in a
5850 ** SELECT statement.
5851 **
5852 ** Use this routine after name resolution.
5853 */
5854 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5855 #ifndef SQLITE_OMIT_SUBQUERY
5856   Walker w;
5857   w.xSelectCallback = sqlite3SelectWalkNoop;
5858   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5859   w.xExprCallback = sqlite3ExprWalkNoop;
5860   w.pParse = pParse;
5861   sqlite3WalkSelect(&w, pSelect);
5862 #endif
5863 }
5864 
5865 
5866 /*
5867 ** This routine sets up a SELECT statement for processing.  The
5868 ** following is accomplished:
5869 **
5870 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5871 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5872 **     *  ON and USING clauses are shifted into WHERE statements
5873 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5874 **     *  Identifiers in expression are matched to tables.
5875 **
5876 ** This routine acts recursively on all subqueries within the SELECT.
5877 */
5878 void sqlite3SelectPrep(
5879   Parse *pParse,         /* The parser context */
5880   Select *p,             /* The SELECT statement being coded. */
5881   NameContext *pOuterNC  /* Name context for container */
5882 ){
5883   assert( p!=0 || pParse->db->mallocFailed );
5884   if( pParse->db->mallocFailed ) return;
5885   if( p->selFlags & SF_HasTypeInfo ) return;
5886   sqlite3SelectExpand(pParse, p);
5887   if( pParse->nErr || pParse->db->mallocFailed ) return;
5888   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5889   if( pParse->nErr || pParse->db->mallocFailed ) return;
5890   sqlite3SelectAddTypeInfo(pParse, p);
5891 }
5892 
5893 /*
5894 ** Reset the aggregate accumulator.
5895 **
5896 ** The aggregate accumulator is a set of memory cells that hold
5897 ** intermediate results while calculating an aggregate.  This
5898 ** routine generates code that stores NULLs in all of those memory
5899 ** cells.
5900 */
5901 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5902   Vdbe *v = pParse->pVdbe;
5903   int i;
5904   struct AggInfo_func *pFunc;
5905   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5906   if( nReg==0 ) return;
5907   if( pParse->nErr || pParse->db->mallocFailed ) return;
5908 #ifdef SQLITE_DEBUG
5909   /* Verify that all AggInfo registers are within the range specified by
5910   ** AggInfo.mnReg..AggInfo.mxReg */
5911   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5912   for(i=0; i<pAggInfo->nColumn; i++){
5913     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5914          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5915   }
5916   for(i=0; i<pAggInfo->nFunc; i++){
5917     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5918          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5919   }
5920 #endif
5921   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5922   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5923     if( pFunc->iDistinct>=0 ){
5924       Expr *pE = pFunc->pFExpr;
5925       assert( ExprUseXList(pE) );
5926       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5927         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5928            "argument");
5929         pFunc->iDistinct = -1;
5930       }else{
5931         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5932         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5933             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5934         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5935                           pFunc->pFunc->zName));
5936       }
5937     }
5938   }
5939 }
5940 
5941 /*
5942 ** Invoke the OP_AggFinalize opcode for every aggregate function
5943 ** in the AggInfo structure.
5944 */
5945 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5946   Vdbe *v = pParse->pVdbe;
5947   int i;
5948   struct AggInfo_func *pF;
5949   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5950     ExprList *pList;
5951     assert( ExprUseXList(pF->pFExpr) );
5952     pList = pF->pFExpr->x.pList;
5953     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5954     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5955   }
5956 }
5957 
5958 
5959 /*
5960 ** Update the accumulator memory cells for an aggregate based on
5961 ** the current cursor position.
5962 **
5963 ** If regAcc is non-zero and there are no min() or max() aggregates
5964 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5965 ** registers if register regAcc contains 0. The caller will take care
5966 ** of setting and clearing regAcc.
5967 */
5968 static void updateAccumulator(
5969   Parse *pParse,
5970   int regAcc,
5971   AggInfo *pAggInfo,
5972   int eDistinctType
5973 ){
5974   Vdbe *v = pParse->pVdbe;
5975   int i;
5976   int regHit = 0;
5977   int addrHitTest = 0;
5978   struct AggInfo_func *pF;
5979   struct AggInfo_col *pC;
5980 
5981   pAggInfo->directMode = 1;
5982   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5983     int nArg;
5984     int addrNext = 0;
5985     int regAgg;
5986     ExprList *pList;
5987     assert( ExprUseXList(pF->pFExpr) );
5988     assert( !IsWindowFunc(pF->pFExpr) );
5989     pList = pF->pFExpr->x.pList;
5990     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5991       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5992       if( pAggInfo->nAccumulator
5993        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5994        && regAcc
5995       ){
5996         /* If regAcc==0, there there exists some min() or max() function
5997         ** without a FILTER clause that will ensure the magnet registers
5998         ** are populated. */
5999         if( regHit==0 ) regHit = ++pParse->nMem;
6000         /* If this is the first row of the group (regAcc contains 0), clear the
6001         ** "magnet" register regHit so that the accumulator registers
6002         ** are populated if the FILTER clause jumps over the the
6003         ** invocation of min() or max() altogether. Or, if this is not
6004         ** the first row (regAcc contains 1), set the magnet register so that
6005         ** the accumulators are not populated unless the min()/max() is invoked
6006         ** and indicates that they should be.  */
6007         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6008       }
6009       addrNext = sqlite3VdbeMakeLabel(pParse);
6010       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6011     }
6012     if( pList ){
6013       nArg = pList->nExpr;
6014       regAgg = sqlite3GetTempRange(pParse, nArg);
6015       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6016     }else{
6017       nArg = 0;
6018       regAgg = 0;
6019     }
6020     if( pF->iDistinct>=0 && pList ){
6021       if( addrNext==0 ){
6022         addrNext = sqlite3VdbeMakeLabel(pParse);
6023       }
6024       pF->iDistinct = codeDistinct(pParse, eDistinctType,
6025           pF->iDistinct, addrNext, pList, regAgg);
6026     }
6027     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6028       CollSeq *pColl = 0;
6029       struct ExprList_item *pItem;
6030       int j;
6031       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
6032       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6033         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6034       }
6035       if( !pColl ){
6036         pColl = pParse->db->pDfltColl;
6037       }
6038       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6039       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6040     }
6041     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6042     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6043     sqlite3VdbeChangeP5(v, (u8)nArg);
6044     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6045     if( addrNext ){
6046       sqlite3VdbeResolveLabel(v, addrNext);
6047     }
6048   }
6049   if( regHit==0 && pAggInfo->nAccumulator ){
6050     regHit = regAcc;
6051   }
6052   if( regHit ){
6053     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6054   }
6055   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6056     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6057   }
6058 
6059   pAggInfo->directMode = 0;
6060   if( addrHitTest ){
6061     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6062   }
6063 }
6064 
6065 /*
6066 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6067 ** count(*) query ("SELECT count(*) FROM pTab").
6068 */
6069 #ifndef SQLITE_OMIT_EXPLAIN
6070 static void explainSimpleCount(
6071   Parse *pParse,                  /* Parse context */
6072   Table *pTab,                    /* Table being queried */
6073   Index *pIdx                     /* Index used to optimize scan, or NULL */
6074 ){
6075   if( pParse->explain==2 ){
6076     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6077     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6078         pTab->zName,
6079         bCover ? " USING COVERING INDEX " : "",
6080         bCover ? pIdx->zName : ""
6081     );
6082   }
6083 }
6084 #else
6085 # define explainSimpleCount(a,b,c)
6086 #endif
6087 
6088 /*
6089 ** sqlite3WalkExpr() callback used by havingToWhere().
6090 **
6091 ** If the node passed to the callback is a TK_AND node, return
6092 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6093 **
6094 ** Otherwise, return WRC_Prune. In this case, also check if the
6095 ** sub-expression matches the criteria for being moved to the WHERE
6096 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6097 ** within the HAVING expression with a constant "1".
6098 */
6099 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6100   if( pExpr->op!=TK_AND ){
6101     Select *pS = pWalker->u.pSelect;
6102     /* This routine is called before the HAVING clause of the current
6103     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6104     ** here, it indicates that the expression is a correlated reference to a
6105     ** column from an outer aggregate query, or an aggregate function that
6106     ** belongs to an outer query. Do not move the expression to the WHERE
6107     ** clause in this obscure case, as doing so may corrupt the outer Select
6108     ** statements AggInfo structure.  */
6109     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6110      && ExprAlwaysFalse(pExpr)==0
6111      && pExpr->pAggInfo==0
6112     ){
6113       sqlite3 *db = pWalker->pParse->db;
6114       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6115       if( pNew ){
6116         Expr *pWhere = pS->pWhere;
6117         SWAP(Expr, *pNew, *pExpr);
6118         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6119         pS->pWhere = pNew;
6120         pWalker->eCode = 1;
6121       }
6122     }
6123     return WRC_Prune;
6124   }
6125   return WRC_Continue;
6126 }
6127 
6128 /*
6129 ** Transfer eligible terms from the HAVING clause of a query, which is
6130 ** processed after grouping, to the WHERE clause, which is processed before
6131 ** grouping. For example, the query:
6132 **
6133 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6134 **
6135 ** can be rewritten as:
6136 **
6137 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6138 **
6139 ** A term of the HAVING expression is eligible for transfer if it consists
6140 ** entirely of constants and expressions that are also GROUP BY terms that
6141 ** use the "BINARY" collation sequence.
6142 */
6143 static void havingToWhere(Parse *pParse, Select *p){
6144   Walker sWalker;
6145   memset(&sWalker, 0, sizeof(sWalker));
6146   sWalker.pParse = pParse;
6147   sWalker.xExprCallback = havingToWhereExprCb;
6148   sWalker.u.pSelect = p;
6149   sqlite3WalkExpr(&sWalker, p->pHaving);
6150 #if SELECTTRACE_ENABLED
6151   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
6152     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6153     sqlite3TreeViewSelect(0, p, 0);
6154   }
6155 #endif
6156 }
6157 
6158 /*
6159 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6160 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6161 ** then return 0.
6162 */
6163 static SrcItem *isSelfJoinView(
6164   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6165   SrcItem *pThis               /* Search for prior reference to this subquery */
6166 ){
6167   SrcItem *pItem;
6168   assert( pThis->pSelect!=0 );
6169   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6170   for(pItem = pTabList->a; pItem<pThis; pItem++){
6171     Select *pS1;
6172     if( pItem->pSelect==0 ) continue;
6173     if( pItem->fg.viaCoroutine ) continue;
6174     if( pItem->zName==0 ) continue;
6175     assert( pItem->pTab!=0 );
6176     assert( pThis->pTab!=0 );
6177     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6178     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6179     pS1 = pItem->pSelect;
6180     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6181       /* The query flattener left two different CTE tables with identical
6182       ** names in the same FROM clause. */
6183       continue;
6184     }
6185     if( pItem->pSelect->selFlags & SF_PushDown ){
6186       /* The view was modified by some other optimization such as
6187       ** pushDownWhereTerms() */
6188       continue;
6189     }
6190     return pItem;
6191   }
6192   return 0;
6193 }
6194 
6195 /*
6196 ** Deallocate a single AggInfo object
6197 */
6198 static void agginfoFree(sqlite3 *db, AggInfo *p){
6199   sqlite3DbFree(db, p->aCol);
6200   sqlite3DbFree(db, p->aFunc);
6201   sqlite3DbFreeNN(db, p);
6202 }
6203 
6204 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6205 /*
6206 ** Attempt to transform a query of the form
6207 **
6208 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6209 **
6210 ** Into this:
6211 **
6212 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6213 **
6214 ** The transformation only works if all of the following are true:
6215 **
6216 **   *  The subquery is a UNION ALL of two or more terms
6217 **   *  The subquery does not have a LIMIT clause
6218 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6219 **   *  The outer query is a simple count(*) with no WHERE clause or other
6220 **      extraneous syntax.
6221 **
6222 ** Return TRUE if the optimization is undertaken.
6223 */
6224 static int countOfViewOptimization(Parse *pParse, Select *p){
6225   Select *pSub, *pPrior;
6226   Expr *pExpr;
6227   Expr *pCount;
6228   sqlite3 *db;
6229   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6230   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6231   if( p->pWhere ) return 0;
6232   if( p->pGroupBy ) return 0;
6233   pExpr = p->pEList->a[0].pExpr;
6234   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6235   assert( ExprUseUToken(pExpr) );
6236   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6237   assert( ExprUseXList(pExpr) );
6238   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6239   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6240   pSub = p->pSrc->a[0].pSelect;
6241   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6242   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6243   do{
6244     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6245     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6246     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6247     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6248     pSub = pSub->pPrior;                              /* Repeat over compound */
6249   }while( pSub );
6250 
6251   /* If we reach this point then it is OK to perform the transformation */
6252 
6253   db = pParse->db;
6254   pCount = pExpr;
6255   pExpr = 0;
6256   pSub = p->pSrc->a[0].pSelect;
6257   p->pSrc->a[0].pSelect = 0;
6258   sqlite3SrcListDelete(db, p->pSrc);
6259   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6260   while( pSub ){
6261     Expr *pTerm;
6262     pPrior = pSub->pPrior;
6263     pSub->pPrior = 0;
6264     pSub->pNext = 0;
6265     pSub->selFlags |= SF_Aggregate;
6266     pSub->selFlags &= ~SF_Compound;
6267     pSub->nSelectRow = 0;
6268     sqlite3ExprListDelete(db, pSub->pEList);
6269     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6270     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6271     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6272     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6273     if( pExpr==0 ){
6274       pExpr = pTerm;
6275     }else{
6276       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6277     }
6278     pSub = pPrior;
6279   }
6280   p->pEList->a[0].pExpr = pExpr;
6281   p->selFlags &= ~SF_Aggregate;
6282 
6283 #if SELECTTRACE_ENABLED
6284   if( sqlite3SelectTrace & 0x400 ){
6285     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6286     sqlite3TreeViewSelect(0, p, 0);
6287   }
6288 #endif
6289   return 1;
6290 }
6291 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6292 
6293 /*
6294 ** Generate code for the SELECT statement given in the p argument.
6295 **
6296 ** The results are returned according to the SelectDest structure.
6297 ** See comments in sqliteInt.h for further information.
6298 **
6299 ** This routine returns the number of errors.  If any errors are
6300 ** encountered, then an appropriate error message is left in
6301 ** pParse->zErrMsg.
6302 **
6303 ** This routine does NOT free the Select structure passed in.  The
6304 ** calling function needs to do that.
6305 */
6306 int sqlite3Select(
6307   Parse *pParse,         /* The parser context */
6308   Select *p,             /* The SELECT statement being coded. */
6309   SelectDest *pDest      /* What to do with the query results */
6310 ){
6311   int i, j;              /* Loop counters */
6312   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6313   Vdbe *v;               /* The virtual machine under construction */
6314   int isAgg;             /* True for select lists like "count(*)" */
6315   ExprList *pEList = 0;  /* List of columns to extract. */
6316   SrcList *pTabList;     /* List of tables to select from */
6317   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6318   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6319   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6320   AggInfo *pAggInfo = 0; /* Aggregate information */
6321   int rc = 1;            /* Value to return from this function */
6322   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6323   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6324   int iEnd;              /* Address of the end of the query */
6325   sqlite3 *db;           /* The database connection */
6326   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6327   u8 minMaxFlag;                 /* Flag for min/max queries */
6328 
6329   db = pParse->db;
6330   v = sqlite3GetVdbe(pParse);
6331   if( p==0 || db->mallocFailed || pParse->nErr ){
6332     return 1;
6333   }
6334   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6335 #if SELECTTRACE_ENABLED
6336   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6337   if( sqlite3SelectTrace & 0x100 ){
6338     sqlite3TreeViewSelect(0, p, 0);
6339   }
6340 #endif
6341 
6342   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6343   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6344   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6345   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6346   if( IgnorableDistinct(pDest) ){
6347     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6348            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6349            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6350     /* All of these destinations are also able to ignore the ORDER BY clause */
6351     if( p->pOrderBy ){
6352 #if SELECTTRACE_ENABLED
6353       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6354       if( sqlite3SelectTrace & 0x100 ){
6355         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6356       }
6357 #endif
6358       sqlite3ParserAddCleanup(pParse,
6359         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6360         p->pOrderBy);
6361       testcase( pParse->earlyCleanup );
6362       p->pOrderBy = 0;
6363     }
6364     p->selFlags &= ~SF_Distinct;
6365     p->selFlags |= SF_NoopOrderBy;
6366   }
6367   sqlite3SelectPrep(pParse, p, 0);
6368   if( pParse->nErr || db->mallocFailed ){
6369     goto select_end;
6370   }
6371   assert( p->pEList!=0 );
6372 #if SELECTTRACE_ENABLED
6373   if( sqlite3SelectTrace & 0x104 ){
6374     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6375     sqlite3TreeViewSelect(0, p, 0);
6376   }
6377 #endif
6378 
6379   /* If the SF_UFSrcCheck flag is set, then this function is being called
6380   ** as part of populating the temp table for an UPDATE...FROM statement.
6381   ** In this case, it is an error if the target object (pSrc->a[0]) name
6382   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6383   **
6384   ** Postgres disallows this case too. The reason is that some other
6385   ** systems handle this case differently, and not all the same way,
6386   ** which is just confusing. To avoid this, we follow PG's lead and
6387   ** disallow it altogether.  */
6388   if( p->selFlags & SF_UFSrcCheck ){
6389     SrcItem *p0 = &p->pSrc->a[0];
6390     for(i=1; i<p->pSrc->nSrc; i++){
6391       SrcItem *p1 = &p->pSrc->a[i];
6392       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6393         sqlite3ErrorMsg(pParse,
6394             "target object/alias may not appear in FROM clause: %s",
6395             p0->zAlias ? p0->zAlias : p0->pTab->zName
6396         );
6397         goto select_end;
6398       }
6399     }
6400 
6401     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6402     ** and leaving this flag set can cause errors if a compound sub-query
6403     ** in p->pSrc is flattened into this query and this function called
6404     ** again as part of compound SELECT processing.  */
6405     p->selFlags &= ~SF_UFSrcCheck;
6406   }
6407 
6408   if( pDest->eDest==SRT_Output ){
6409     sqlite3GenerateColumnNames(pParse, p);
6410   }
6411 
6412 #ifndef SQLITE_OMIT_WINDOWFUNC
6413   if( sqlite3WindowRewrite(pParse, p) ){
6414     assert( db->mallocFailed || pParse->nErr>0 );
6415     goto select_end;
6416   }
6417 #if SELECTTRACE_ENABLED
6418   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6419     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6420     sqlite3TreeViewSelect(0, p, 0);
6421   }
6422 #endif
6423 #endif /* SQLITE_OMIT_WINDOWFUNC */
6424   pTabList = p->pSrc;
6425   isAgg = (p->selFlags & SF_Aggregate)!=0;
6426   memset(&sSort, 0, sizeof(sSort));
6427   sSort.pOrderBy = p->pOrderBy;
6428 
6429   /* Try to do various optimizations (flattening subqueries, and strength
6430   ** reduction of join operators) in the FROM clause up into the main query
6431   */
6432 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6433   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6434     SrcItem *pItem = &pTabList->a[i];
6435     Select *pSub = pItem->pSelect;
6436     Table *pTab = pItem->pTab;
6437 
6438     /* The expander should have already created transient Table objects
6439     ** even for FROM clause elements such as subqueries that do not correspond
6440     ** to a real table */
6441     assert( pTab!=0 );
6442 
6443     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6444     ** of the LEFT JOIN used in the WHERE clause.
6445     */
6446     if( (pItem->fg.jointype & JT_LEFT)!=0
6447      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6448      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6449     ){
6450       SELECTTRACE(0x100,pParse,p,
6451                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6452       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6453       unsetJoinExpr(p->pWhere, pItem->iCursor);
6454     }
6455 
6456     /* No futher action if this term of the FROM clause is no a subquery */
6457     if( pSub==0 ) continue;
6458 
6459     /* Catch mismatch in the declared columns of a view and the number of
6460     ** columns in the SELECT on the RHS */
6461     if( pTab->nCol!=pSub->pEList->nExpr ){
6462       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6463                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6464       goto select_end;
6465     }
6466 
6467     /* Do not try to flatten an aggregate subquery.
6468     **
6469     ** Flattening an aggregate subquery is only possible if the outer query
6470     ** is not a join.  But if the outer query is not a join, then the subquery
6471     ** will be implemented as a co-routine and there is no advantage to
6472     ** flattening in that case.
6473     */
6474     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6475     assert( pSub->pGroupBy==0 );
6476 
6477     /* If a FROM-clause subquery has an ORDER BY clause that is not
6478     ** really doing anything, then delete it now so that it does not
6479     ** interfere with query flattening.  See the discussion at
6480     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6481     **
6482     ** Beware of these cases where the ORDER BY clause may not be safely
6483     ** omitted:
6484     **
6485     **    (1)   There is also a LIMIT clause
6486     **    (2)   The subquery was added to help with window-function
6487     **          processing
6488     **    (3)   The subquery is in the FROM clause of an UPDATE
6489     **    (4)   The outer query uses an aggregate function other than
6490     **          the built-in count(), min(), or max().
6491     **    (5)   The ORDER BY isn't going to accomplish anything because
6492     **          one of:
6493     **            (a)  The outer query has a different ORDER BY clause
6494     **            (b)  The subquery is part of a join
6495     **          See forum post 062d576715d277c8
6496     */
6497     if( pSub->pOrderBy!=0
6498      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6499      && pSub->pLimit==0                           /* Condition (1) */
6500      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6501      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6502      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6503     ){
6504       SELECTTRACE(0x100,pParse,p,
6505                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6506       sqlite3ExprListDelete(db, pSub->pOrderBy);
6507       pSub->pOrderBy = 0;
6508     }
6509 
6510     /* If the outer query contains a "complex" result set (that is,
6511     ** if the result set of the outer query uses functions or subqueries)
6512     ** and if the subquery contains an ORDER BY clause and if
6513     ** it will be implemented as a co-routine, then do not flatten.  This
6514     ** restriction allows SQL constructs like this:
6515     **
6516     **  SELECT expensive_function(x)
6517     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6518     **
6519     ** The expensive_function() is only computed on the 10 rows that
6520     ** are output, rather than every row of the table.
6521     **
6522     ** The requirement that the outer query have a complex result set
6523     ** means that flattening does occur on simpler SQL constraints without
6524     ** the expensive_function() like:
6525     **
6526     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6527     */
6528     if( pSub->pOrderBy!=0
6529      && i==0
6530      && (p->selFlags & SF_ComplexResult)!=0
6531      && (pTabList->nSrc==1
6532          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6533     ){
6534       continue;
6535     }
6536 
6537     if( flattenSubquery(pParse, p, i, isAgg) ){
6538       if( pParse->nErr ) goto select_end;
6539       /* This subquery can be absorbed into its parent. */
6540       i = -1;
6541     }
6542     pTabList = p->pSrc;
6543     if( db->mallocFailed ) goto select_end;
6544     if( !IgnorableOrderby(pDest) ){
6545       sSort.pOrderBy = p->pOrderBy;
6546     }
6547   }
6548 #endif
6549 
6550 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6551   /* Handle compound SELECT statements using the separate multiSelect()
6552   ** procedure.
6553   */
6554   if( p->pPrior ){
6555     rc = multiSelect(pParse, p, pDest);
6556 #if SELECTTRACE_ENABLED
6557     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6558     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6559       sqlite3TreeViewSelect(0, p, 0);
6560     }
6561 #endif
6562     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6563     return rc;
6564   }
6565 #endif
6566 
6567   /* Do the WHERE-clause constant propagation optimization if this is
6568   ** a join.  No need to speed time on this operation for non-join queries
6569   ** as the equivalent optimization will be handled by query planner in
6570   ** sqlite3WhereBegin().
6571   */
6572   if( p->pWhere!=0
6573    && p->pWhere->op==TK_AND
6574    && OptimizationEnabled(db, SQLITE_PropagateConst)
6575    && propagateConstants(pParse, p)
6576   ){
6577 #if SELECTTRACE_ENABLED
6578     if( sqlite3SelectTrace & 0x100 ){
6579       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6580       sqlite3TreeViewSelect(0, p, 0);
6581     }
6582 #endif
6583   }else{
6584     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6585   }
6586 
6587 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6588   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6589    && countOfViewOptimization(pParse, p)
6590   ){
6591     if( db->mallocFailed ) goto select_end;
6592     pEList = p->pEList;
6593     pTabList = p->pSrc;
6594   }
6595 #endif
6596 
6597   /* For each term in the FROM clause, do two things:
6598   ** (1) Authorized unreferenced tables
6599   ** (2) Generate code for all sub-queries
6600   */
6601   for(i=0; i<pTabList->nSrc; i++){
6602     SrcItem *pItem = &pTabList->a[i];
6603     SrcItem *pPrior;
6604     SelectDest dest;
6605     Select *pSub;
6606 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6607     const char *zSavedAuthContext;
6608 #endif
6609 
6610     /* Issue SQLITE_READ authorizations with a fake column name for any
6611     ** tables that are referenced but from which no values are extracted.
6612     ** Examples of where these kinds of null SQLITE_READ authorizations
6613     ** would occur:
6614     **
6615     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6616     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6617     **
6618     ** The fake column name is an empty string.  It is possible for a table to
6619     ** have a column named by the empty string, in which case there is no way to
6620     ** distinguish between an unreferenced table and an actual reference to the
6621     ** "" column. The original design was for the fake column name to be a NULL,
6622     ** which would be unambiguous.  But legacy authorization callbacks might
6623     ** assume the column name is non-NULL and segfault.  The use of an empty
6624     ** string for the fake column name seems safer.
6625     */
6626     if( pItem->colUsed==0 && pItem->zName!=0 ){
6627       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6628     }
6629 
6630 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6631     /* Generate code for all sub-queries in the FROM clause
6632     */
6633     pSub = pItem->pSelect;
6634     if( pSub==0 ) continue;
6635 
6636     /* The code for a subquery should only be generated once. */
6637     assert( pItem->addrFillSub==0 );
6638 
6639     /* Increment Parse.nHeight by the height of the largest expression
6640     ** tree referred to by this, the parent select. The child select
6641     ** may contain expression trees of at most
6642     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6643     ** more conservative than necessary, but much easier than enforcing
6644     ** an exact limit.
6645     */
6646     pParse->nHeight += sqlite3SelectExprHeight(p);
6647 
6648     /* Make copies of constant WHERE-clause terms in the outer query down
6649     ** inside the subquery.  This can help the subquery to run more efficiently.
6650     */
6651     if( OptimizationEnabled(db, SQLITE_PushDown)
6652      && (pItem->fg.isCte==0
6653          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6654      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6655                            (pItem->fg.jointype & JT_OUTER)!=0)
6656     ){
6657 #if SELECTTRACE_ENABLED
6658       if( sqlite3SelectTrace & 0x100 ){
6659         SELECTTRACE(0x100,pParse,p,
6660             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6661         sqlite3TreeViewSelect(0, p, 0);
6662       }
6663 #endif
6664       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6665     }else{
6666       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6667     }
6668 
6669     zSavedAuthContext = pParse->zAuthContext;
6670     pParse->zAuthContext = pItem->zName;
6671 
6672     /* Generate code to implement the subquery
6673     **
6674     ** The subquery is implemented as a co-routine if:
6675     **    (1)  the subquery is guaranteed to be the outer loop (so that
6676     **         it does not need to be computed more than once), and
6677     **    (2)  the subquery is not a CTE that should be materialized
6678     **
6679     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6680     ** implementation?
6681     */
6682     if( i==0
6683      && (pTabList->nSrc==1
6684             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6685      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6686     ){
6687       /* Implement a co-routine that will return a single row of the result
6688       ** set on each invocation.
6689       */
6690       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6691 
6692       pItem->regReturn = ++pParse->nMem;
6693       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6694       VdbeComment((v, "%!S", pItem));
6695       pItem->addrFillSub = addrTop;
6696       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6697       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6698       sqlite3Select(pParse, pSub, &dest);
6699       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6700       pItem->fg.viaCoroutine = 1;
6701       pItem->regResult = dest.iSdst;
6702       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6703       sqlite3VdbeJumpHere(v, addrTop-1);
6704       sqlite3ClearTempRegCache(pParse);
6705     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6706       /* This is a CTE for which materialization code has already been
6707       ** generated.  Invoke the subroutine to compute the materialization,
6708       ** the make the pItem->iCursor be a copy of the ephemerial table that
6709       ** holds the result of the materialization. */
6710       CteUse *pCteUse = pItem->u2.pCteUse;
6711       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6712       if( pItem->iCursor!=pCteUse->iCur ){
6713         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6714         VdbeComment((v, "%!S", pItem));
6715       }
6716       pSub->nSelectRow = pCteUse->nRowEst;
6717     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6718       /* This view has already been materialized by a prior entry in
6719       ** this same FROM clause.  Reuse it. */
6720       if( pPrior->addrFillSub ){
6721         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6722       }
6723       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6724       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6725     }else{
6726       /* Materialize the view.  If the view is not correlated, generate a
6727       ** subroutine to do the materialization so that subsequent uses of
6728       ** the same view can reuse the materialization. */
6729       int topAddr;
6730       int onceAddr = 0;
6731       int retAddr;
6732 
6733       pItem->regReturn = ++pParse->nMem;
6734       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6735       pItem->addrFillSub = topAddr+1;
6736       if( pItem->fg.isCorrelated==0 ){
6737         /* If the subquery is not correlated and if we are not inside of
6738         ** a trigger, then we only need to compute the value of the subquery
6739         ** once. */
6740         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6741         VdbeComment((v, "materialize %!S", pItem));
6742       }else{
6743         VdbeNoopComment((v, "materialize %!S", pItem));
6744       }
6745       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6746       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6747       sqlite3Select(pParse, pSub, &dest);
6748       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6749       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6750       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6751       VdbeComment((v, "end %!S", pItem));
6752       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6753       sqlite3ClearTempRegCache(pParse);
6754       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6755         CteUse *pCteUse = pItem->u2.pCteUse;
6756         pCteUse->addrM9e = pItem->addrFillSub;
6757         pCteUse->regRtn = pItem->regReturn;
6758         pCteUse->iCur = pItem->iCursor;
6759         pCteUse->nRowEst = pSub->nSelectRow;
6760       }
6761     }
6762     if( db->mallocFailed ) goto select_end;
6763     pParse->nHeight -= sqlite3SelectExprHeight(p);
6764     pParse->zAuthContext = zSavedAuthContext;
6765 #endif
6766   }
6767 
6768   /* Various elements of the SELECT copied into local variables for
6769   ** convenience */
6770   pEList = p->pEList;
6771   pWhere = p->pWhere;
6772   pGroupBy = p->pGroupBy;
6773   pHaving = p->pHaving;
6774   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6775 
6776 #if SELECTTRACE_ENABLED
6777   if( sqlite3SelectTrace & 0x400 ){
6778     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6779     sqlite3TreeViewSelect(0, p, 0);
6780   }
6781 #endif
6782 
6783   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6784   ** if the select-list is the same as the ORDER BY list, then this query
6785   ** can be rewritten as a GROUP BY. In other words, this:
6786   **
6787   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6788   **
6789   ** is transformed to:
6790   **
6791   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6792   **
6793   ** The second form is preferred as a single index (or temp-table) may be
6794   ** used for both the ORDER BY and DISTINCT processing. As originally
6795   ** written the query must use a temp-table for at least one of the ORDER
6796   ** BY and DISTINCT, and an index or separate temp-table for the other.
6797   */
6798   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6799    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6800 #ifndef SQLITE_OMIT_WINDOWFUNC
6801    && p->pWin==0
6802 #endif
6803   ){
6804     p->selFlags &= ~SF_Distinct;
6805     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6806     p->selFlags |= SF_Aggregate;
6807     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6808     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6809     ** original setting of the SF_Distinct flag, not the current setting */
6810     assert( sDistinct.isTnct );
6811 
6812 #if SELECTTRACE_ENABLED
6813     if( sqlite3SelectTrace & 0x400 ){
6814       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6815       sqlite3TreeViewSelect(0, p, 0);
6816     }
6817 #endif
6818   }
6819 
6820   /* If there is an ORDER BY clause, then create an ephemeral index to
6821   ** do the sorting.  But this sorting ephemeral index might end up
6822   ** being unused if the data can be extracted in pre-sorted order.
6823   ** If that is the case, then the OP_OpenEphemeral instruction will be
6824   ** changed to an OP_Noop once we figure out that the sorting index is
6825   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6826   ** that change.
6827   */
6828   if( sSort.pOrderBy ){
6829     KeyInfo *pKeyInfo;
6830     pKeyInfo = sqlite3KeyInfoFromExprList(
6831         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6832     sSort.iECursor = pParse->nTab++;
6833     sSort.addrSortIndex =
6834       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6835           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6836           (char*)pKeyInfo, P4_KEYINFO
6837       );
6838   }else{
6839     sSort.addrSortIndex = -1;
6840   }
6841 
6842   /* If the output is destined for a temporary table, open that table.
6843   */
6844   if( pDest->eDest==SRT_EphemTab ){
6845     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6846   }
6847 
6848   /* Set the limiter.
6849   */
6850   iEnd = sqlite3VdbeMakeLabel(pParse);
6851   if( (p->selFlags & SF_FixedLimit)==0 ){
6852     p->nSelectRow = 320;  /* 4 billion rows */
6853   }
6854   computeLimitRegisters(pParse, p, iEnd);
6855   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6856     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6857     sSort.sortFlags |= SORTFLAG_UseSorter;
6858   }
6859 
6860   /* Open an ephemeral index to use for the distinct set.
6861   */
6862   if( p->selFlags & SF_Distinct ){
6863     sDistinct.tabTnct = pParse->nTab++;
6864     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6865                        sDistinct.tabTnct, 0, 0,
6866                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6867                        P4_KEYINFO);
6868     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6869     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6870   }else{
6871     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6872   }
6873 
6874   if( !isAgg && pGroupBy==0 ){
6875     /* No aggregate functions and no GROUP BY clause */
6876     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6877                    | (p->selFlags & SF_FixedLimit);
6878 #ifndef SQLITE_OMIT_WINDOWFUNC
6879     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6880     if( pWin ){
6881       sqlite3WindowCodeInit(pParse, p);
6882     }
6883 #endif
6884     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6885 
6886 
6887     /* Begin the database scan. */
6888     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6889     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6890                                p->pEList, wctrlFlags, p->nSelectRow);
6891     if( pWInfo==0 ) goto select_end;
6892     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6893       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6894     }
6895     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6896       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6897     }
6898     if( sSort.pOrderBy ){
6899       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6900       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6901       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6902         sSort.pOrderBy = 0;
6903       }
6904     }
6905     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6906 
6907     /* If sorting index that was created by a prior OP_OpenEphemeral
6908     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6909     ** into an OP_Noop.
6910     */
6911     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6912       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6913     }
6914 
6915     assert( p->pEList==pEList );
6916 #ifndef SQLITE_OMIT_WINDOWFUNC
6917     if( pWin ){
6918       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6919       int iCont = sqlite3VdbeMakeLabel(pParse);
6920       int iBreak = sqlite3VdbeMakeLabel(pParse);
6921       int regGosub = ++pParse->nMem;
6922 
6923       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6924 
6925       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6926       sqlite3VdbeResolveLabel(v, addrGosub);
6927       VdbeNoopComment((v, "inner-loop subroutine"));
6928       sSort.labelOBLopt = 0;
6929       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6930       sqlite3VdbeResolveLabel(v, iCont);
6931       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6932       VdbeComment((v, "end inner-loop subroutine"));
6933       sqlite3VdbeResolveLabel(v, iBreak);
6934     }else
6935 #endif /* SQLITE_OMIT_WINDOWFUNC */
6936     {
6937       /* Use the standard inner loop. */
6938       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6939           sqlite3WhereContinueLabel(pWInfo),
6940           sqlite3WhereBreakLabel(pWInfo));
6941 
6942       /* End the database scan loop.
6943       */
6944       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6945       sqlite3WhereEnd(pWInfo);
6946     }
6947   }else{
6948     /* This case when there exist aggregate functions or a GROUP BY clause
6949     ** or both */
6950     NameContext sNC;    /* Name context for processing aggregate information */
6951     int iAMem;          /* First Mem address for storing current GROUP BY */
6952     int iBMem;          /* First Mem address for previous GROUP BY */
6953     int iUseFlag;       /* Mem address holding flag indicating that at least
6954                         ** one row of the input to the aggregator has been
6955                         ** processed */
6956     int iAbortFlag;     /* Mem address which causes query abort if positive */
6957     int groupBySort;    /* Rows come from source in GROUP BY order */
6958     int addrEnd;        /* End of processing for this SELECT */
6959     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6960     int sortOut = 0;    /* Output register from the sorter */
6961     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6962 
6963     /* Remove any and all aliases between the result set and the
6964     ** GROUP BY clause.
6965     */
6966     if( pGroupBy ){
6967       int k;                        /* Loop counter */
6968       struct ExprList_item *pItem;  /* For looping over expression in a list */
6969 
6970       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6971         pItem->u.x.iAlias = 0;
6972       }
6973       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6974         pItem->u.x.iAlias = 0;
6975       }
6976       assert( 66==sqlite3LogEst(100) );
6977       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6978 
6979       /* If there is both a GROUP BY and an ORDER BY clause and they are
6980       ** identical, then it may be possible to disable the ORDER BY clause
6981       ** on the grounds that the GROUP BY will cause elements to come out
6982       ** in the correct order. It also may not - the GROUP BY might use a
6983       ** database index that causes rows to be grouped together as required
6984       ** but not actually sorted. Either way, record the fact that the
6985       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6986       ** variable.  */
6987       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6988         int ii;
6989         /* The GROUP BY processing doesn't care whether rows are delivered in
6990         ** ASC or DESC order - only that each group is returned contiguously.
6991         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6992         ** ORDER BY to maximize the chances of rows being delivered in an
6993         ** order that makes the ORDER BY redundant.  */
6994         for(ii=0; ii<pGroupBy->nExpr; ii++){
6995           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6996           pGroupBy->a[ii].sortFlags = sortFlags;
6997         }
6998         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6999           orderByGrp = 1;
7000         }
7001       }
7002     }else{
7003       assert( 0==sqlite3LogEst(1) );
7004       p->nSelectRow = 0;
7005     }
7006 
7007     /* Create a label to jump to when we want to abort the query */
7008     addrEnd = sqlite3VdbeMakeLabel(pParse);
7009 
7010     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7011     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7012     ** SELECT statement.
7013     */
7014     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7015     if( pAggInfo ){
7016       sqlite3ParserAddCleanup(pParse,
7017           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7018       testcase( pParse->earlyCleanup );
7019     }
7020     if( db->mallocFailed ){
7021       goto select_end;
7022     }
7023     pAggInfo->selId = p->selId;
7024     memset(&sNC, 0, sizeof(sNC));
7025     sNC.pParse = pParse;
7026     sNC.pSrcList = pTabList;
7027     sNC.uNC.pAggInfo = pAggInfo;
7028     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7029     pAggInfo->mnReg = pParse->nMem+1;
7030     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7031     pAggInfo->pGroupBy = pGroupBy;
7032     sqlite3ExprAnalyzeAggList(&sNC, pEList);
7033     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7034     if( pHaving ){
7035       if( pGroupBy ){
7036         assert( pWhere==p->pWhere );
7037         assert( pHaving==p->pHaving );
7038         assert( pGroupBy==p->pGroupBy );
7039         havingToWhere(pParse, p);
7040         pWhere = p->pWhere;
7041       }
7042       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7043     }
7044     pAggInfo->nAccumulator = pAggInfo->nColumn;
7045     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7046       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7047     }else{
7048       minMaxFlag = WHERE_ORDERBY_NORMAL;
7049     }
7050     for(i=0; i<pAggInfo->nFunc; i++){
7051       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7052       assert( ExprUseXList(pExpr) );
7053       sNC.ncFlags |= NC_InAggFunc;
7054       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7055 #ifndef SQLITE_OMIT_WINDOWFUNC
7056       assert( !IsWindowFunc(pExpr) );
7057       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7058         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7059       }
7060 #endif
7061       sNC.ncFlags &= ~NC_InAggFunc;
7062     }
7063     pAggInfo->mxReg = pParse->nMem;
7064     if( db->mallocFailed ) goto select_end;
7065 #if SELECTTRACE_ENABLED
7066     if( sqlite3SelectTrace & 0x400 ){
7067       int ii;
7068       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7069       sqlite3TreeViewSelect(0, p, 0);
7070       if( minMaxFlag ){
7071         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7072         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7073       }
7074       for(ii=0; ii<pAggInfo->nColumn; ii++){
7075         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7076             ii, pAggInfo->aCol[ii].iMem);
7077         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7078       }
7079       for(ii=0; ii<pAggInfo->nFunc; ii++){
7080         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7081             ii, pAggInfo->aFunc[ii].iMem);
7082         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7083       }
7084     }
7085 #endif
7086 
7087 
7088     /* Processing for aggregates with GROUP BY is very different and
7089     ** much more complex than aggregates without a GROUP BY.
7090     */
7091     if( pGroupBy ){
7092       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7093       int addr1;          /* A-vs-B comparision jump */
7094       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7095       int regOutputRow;   /* Return address register for output subroutine */
7096       int addrSetAbort;   /* Set the abort flag and return */
7097       int addrTopOfLoop;  /* Top of the input loop */
7098       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7099       int addrReset;      /* Subroutine for resetting the accumulator */
7100       int regReset;       /* Return address register for reset subroutine */
7101       ExprList *pDistinct = 0;
7102       u16 distFlag = 0;
7103       int eDist = WHERE_DISTINCT_NOOP;
7104 
7105       if( pAggInfo->nFunc==1
7106        && pAggInfo->aFunc[0].iDistinct>=0
7107        && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7108        && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7109        && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7110       ){
7111         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7112         pExpr = sqlite3ExprDup(db, pExpr, 0);
7113         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7114         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7115         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7116       }
7117 
7118       /* If there is a GROUP BY clause we might need a sorting index to
7119       ** implement it.  Allocate that sorting index now.  If it turns out
7120       ** that we do not need it after all, the OP_SorterOpen instruction
7121       ** will be converted into a Noop.
7122       */
7123       pAggInfo->sortingIdx = pParse->nTab++;
7124       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7125                                             0, pAggInfo->nColumn);
7126       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7127           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7128           0, (char*)pKeyInfo, P4_KEYINFO);
7129 
7130       /* Initialize memory locations used by GROUP BY aggregate processing
7131       */
7132       iUseFlag = ++pParse->nMem;
7133       iAbortFlag = ++pParse->nMem;
7134       regOutputRow = ++pParse->nMem;
7135       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7136       regReset = ++pParse->nMem;
7137       addrReset = sqlite3VdbeMakeLabel(pParse);
7138       iAMem = pParse->nMem + 1;
7139       pParse->nMem += pGroupBy->nExpr;
7140       iBMem = pParse->nMem + 1;
7141       pParse->nMem += pGroupBy->nExpr;
7142       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7143       VdbeComment((v, "clear abort flag"));
7144       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7145 
7146       /* Begin a loop that will extract all source rows in GROUP BY order.
7147       ** This might involve two separate loops with an OP_Sort in between, or
7148       ** it might be a single loop that uses an index to extract information
7149       ** in the right order to begin with.
7150       */
7151       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7152       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7153       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7154           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7155       );
7156       if( pWInfo==0 ){
7157         sqlite3ExprListDelete(db, pDistinct);
7158         goto select_end;
7159       }
7160       eDist = sqlite3WhereIsDistinct(pWInfo);
7161       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7162       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7163         /* The optimizer is able to deliver rows in group by order so
7164         ** we do not have to sort.  The OP_OpenEphemeral table will be
7165         ** cancelled later because we still need to use the pKeyInfo
7166         */
7167         groupBySort = 0;
7168       }else{
7169         /* Rows are coming out in undetermined order.  We have to push
7170         ** each row into a sorting index, terminate the first loop,
7171         ** then loop over the sorting index in order to get the output
7172         ** in sorted order
7173         */
7174         int regBase;
7175         int regRecord;
7176         int nCol;
7177         int nGroupBy;
7178 
7179         explainTempTable(pParse,
7180             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7181                     "DISTINCT" : "GROUP BY");
7182 
7183         groupBySort = 1;
7184         nGroupBy = pGroupBy->nExpr;
7185         nCol = nGroupBy;
7186         j = nGroupBy;
7187         for(i=0; i<pAggInfo->nColumn; i++){
7188           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7189             nCol++;
7190             j++;
7191           }
7192         }
7193         regBase = sqlite3GetTempRange(pParse, nCol);
7194         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7195         j = nGroupBy;
7196         for(i=0; i<pAggInfo->nColumn; i++){
7197           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7198           if( pCol->iSorterColumn>=j ){
7199             int r1 = j + regBase;
7200             sqlite3ExprCodeGetColumnOfTable(v,
7201                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7202             j++;
7203           }
7204         }
7205         regRecord = sqlite3GetTempReg(pParse);
7206         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7207         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7208         sqlite3ReleaseTempReg(pParse, regRecord);
7209         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7210         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7211         sqlite3WhereEnd(pWInfo);
7212         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7213         sortOut = sqlite3GetTempReg(pParse);
7214         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7215         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7216         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7217         pAggInfo->useSortingIdx = 1;
7218       }
7219 
7220       /* If the index or temporary table used by the GROUP BY sort
7221       ** will naturally deliver rows in the order required by the ORDER BY
7222       ** clause, cancel the ephemeral table open coded earlier.
7223       **
7224       ** This is an optimization - the correct answer should result regardless.
7225       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7226       ** disable this optimization for testing purposes.  */
7227       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7228        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7229       ){
7230         sSort.pOrderBy = 0;
7231         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7232       }
7233 
7234       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7235       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7236       ** Then compare the current GROUP BY terms against the GROUP BY terms
7237       ** from the previous row currently stored in a0, a1, a2...
7238       */
7239       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7240       if( groupBySort ){
7241         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7242                           sortOut, sortPTab);
7243       }
7244       for(j=0; j<pGroupBy->nExpr; j++){
7245         if( groupBySort ){
7246           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7247         }else{
7248           pAggInfo->directMode = 1;
7249           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7250         }
7251       }
7252       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7253                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7254       addr1 = sqlite3VdbeCurrentAddr(v);
7255       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7256 
7257       /* Generate code that runs whenever the GROUP BY changes.
7258       ** Changes in the GROUP BY are detected by the previous code
7259       ** block.  If there were no changes, this block is skipped.
7260       **
7261       ** This code copies current group by terms in b0,b1,b2,...
7262       ** over to a0,a1,a2.  It then calls the output subroutine
7263       ** and resets the aggregate accumulator registers in preparation
7264       ** for the next GROUP BY batch.
7265       */
7266       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7267       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7268       VdbeComment((v, "output one row"));
7269       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7270       VdbeComment((v, "check abort flag"));
7271       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7272       VdbeComment((v, "reset accumulator"));
7273 
7274       /* Update the aggregate accumulators based on the content of
7275       ** the current row
7276       */
7277       sqlite3VdbeJumpHere(v, addr1);
7278       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7279       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7280       VdbeComment((v, "indicate data in accumulator"));
7281 
7282       /* End of the loop
7283       */
7284       if( groupBySort ){
7285         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7286         VdbeCoverage(v);
7287       }else{
7288         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7289         sqlite3WhereEnd(pWInfo);
7290         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7291       }
7292       sqlite3ExprListDelete(db, pDistinct);
7293 
7294       /* Output the final row of result
7295       */
7296       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7297       VdbeComment((v, "output final row"));
7298 
7299       /* Jump over the subroutines
7300       */
7301       sqlite3VdbeGoto(v, addrEnd);
7302 
7303       /* Generate a subroutine that outputs a single row of the result
7304       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7305       ** is less than or equal to zero, the subroutine is a no-op.  If
7306       ** the processing calls for the query to abort, this subroutine
7307       ** increments the iAbortFlag memory location before returning in
7308       ** order to signal the caller to abort.
7309       */
7310       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7311       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7312       VdbeComment((v, "set abort flag"));
7313       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7314       sqlite3VdbeResolveLabel(v, addrOutputRow);
7315       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7316       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7317       VdbeCoverage(v);
7318       VdbeComment((v, "Groupby result generator entry point"));
7319       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7320       finalizeAggFunctions(pParse, pAggInfo);
7321       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7322       selectInnerLoop(pParse, p, -1, &sSort,
7323                       &sDistinct, pDest,
7324                       addrOutputRow+1, addrSetAbort);
7325       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7326       VdbeComment((v, "end groupby result generator"));
7327 
7328       /* Generate a subroutine that will reset the group-by accumulator
7329       */
7330       sqlite3VdbeResolveLabel(v, addrReset);
7331       resetAccumulator(pParse, pAggInfo);
7332       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7333       VdbeComment((v, "indicate accumulator empty"));
7334       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7335 
7336       if( eDist!=WHERE_DISTINCT_NOOP ){
7337         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7338         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7339       }
7340     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7341     else {
7342       Table *pTab;
7343       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7344         /* If isSimpleCount() returns a pointer to a Table structure, then
7345         ** the SQL statement is of the form:
7346         **
7347         **   SELECT count(*) FROM <tbl>
7348         **
7349         ** where the Table structure returned represents table <tbl>.
7350         **
7351         ** This statement is so common that it is optimized specially. The
7352         ** OP_Count instruction is executed either on the intkey table that
7353         ** contains the data for table <tbl> or on one of its indexes. It
7354         ** is better to execute the op on an index, as indexes are almost
7355         ** always spread across less pages than their corresponding tables.
7356         */
7357         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7358         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7359         Index *pIdx;                         /* Iterator variable */
7360         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7361         Index *pBest = 0;                    /* Best index found so far */
7362         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7363 
7364         sqlite3CodeVerifySchema(pParse, iDb);
7365         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7366 
7367         /* Search for the index that has the lowest scan cost.
7368         **
7369         ** (2011-04-15) Do not do a full scan of an unordered index.
7370         **
7371         ** (2013-10-03) Do not count the entries in a partial index.
7372         **
7373         ** In practice the KeyInfo structure will not be used. It is only
7374         ** passed to keep OP_OpenRead happy.
7375         */
7376         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7377         if( !p->pSrc->a[0].fg.notIndexed ){
7378           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7379             if( pIdx->bUnordered==0
7380              && pIdx->szIdxRow<pTab->szTabRow
7381              && pIdx->pPartIdxWhere==0
7382              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7383             ){
7384               pBest = pIdx;
7385             }
7386           }
7387         }
7388         if( pBest ){
7389           iRoot = pBest->tnum;
7390           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7391         }
7392 
7393         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7394         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7395         if( pKeyInfo ){
7396           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7397         }
7398         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7399         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7400         explainSimpleCount(pParse, pTab, pBest);
7401       }else{
7402         int regAcc = 0;           /* "populate accumulators" flag */
7403         ExprList *pDistinct = 0;
7404         u16 distFlag = 0;
7405         int eDist;
7406 
7407         /* If there are accumulator registers but no min() or max() functions
7408         ** without FILTER clauses, allocate register regAcc. Register regAcc
7409         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7410         ** The code generated by updateAccumulator() uses this to ensure
7411         ** that the accumulator registers are (a) updated only once if
7412         ** there are no min() or max functions or (b) always updated for the
7413         ** first row visited by the aggregate, so that they are updated at
7414         ** least once even if the FILTER clause means the min() or max()
7415         ** function visits zero rows.  */
7416         if( pAggInfo->nAccumulator ){
7417           for(i=0; i<pAggInfo->nFunc; i++){
7418             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7419               continue;
7420             }
7421             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7422               break;
7423             }
7424           }
7425           if( i==pAggInfo->nFunc ){
7426             regAcc = ++pParse->nMem;
7427             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7428           }
7429         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7430           assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7431           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7432           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7433         }
7434 
7435         /* This case runs if the aggregate has no GROUP BY clause.  The
7436         ** processing is much simpler since there is only a single row
7437         ** of output.
7438         */
7439         assert( p->pGroupBy==0 );
7440         resetAccumulator(pParse, pAggInfo);
7441 
7442         /* If this query is a candidate for the min/max optimization, then
7443         ** minMaxFlag will have been previously set to either
7444         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7445         ** be an appropriate ORDER BY expression for the optimization.
7446         */
7447         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7448         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7449 
7450         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7451         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7452                                    pDistinct, minMaxFlag|distFlag, 0);
7453         if( pWInfo==0 ){
7454           goto select_end;
7455         }
7456         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7457         eDist = sqlite3WhereIsDistinct(pWInfo);
7458         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7459         if( eDist!=WHERE_DISTINCT_NOOP ){
7460           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7461           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7462         }
7463 
7464         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7465         if( minMaxFlag ){
7466           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7467         }
7468         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7469         sqlite3WhereEnd(pWInfo);
7470         finalizeAggFunctions(pParse, pAggInfo);
7471       }
7472 
7473       sSort.pOrderBy = 0;
7474       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7475       selectInnerLoop(pParse, p, -1, 0, 0,
7476                       pDest, addrEnd, addrEnd);
7477     }
7478     sqlite3VdbeResolveLabel(v, addrEnd);
7479 
7480   } /* endif aggregate query */
7481 
7482   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7483     explainTempTable(pParse, "DISTINCT");
7484   }
7485 
7486   /* If there is an ORDER BY clause, then we need to sort the results
7487   ** and send them to the callback one by one.
7488   */
7489   if( sSort.pOrderBy ){
7490     explainTempTable(pParse,
7491                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7492     assert( p->pEList==pEList );
7493     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7494   }
7495 
7496   /* Jump here to skip this query
7497   */
7498   sqlite3VdbeResolveLabel(v, iEnd);
7499 
7500   /* The SELECT has been coded. If there is an error in the Parse structure,
7501   ** set the return code to 1. Otherwise 0. */
7502   rc = (pParse->nErr>0);
7503 
7504   /* Control jumps to here if an error is encountered above, or upon
7505   ** successful coding of the SELECT.
7506   */
7507 select_end:
7508   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7509   pParse->nErr += db->mallocFailed;
7510   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7511 #ifdef SQLITE_DEBUG
7512   if( pAggInfo && !db->mallocFailed ){
7513     for(i=0; i<pAggInfo->nColumn; i++){
7514       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7515       assert( pExpr!=0 );
7516       assert( pExpr->pAggInfo==pAggInfo );
7517       assert( pExpr->iAgg==i );
7518     }
7519     for(i=0; i<pAggInfo->nFunc; i++){
7520       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7521       assert( pExpr!=0 );
7522       assert( pExpr->pAggInfo==pAggInfo );
7523       assert( pExpr->iAgg==i );
7524     }
7525   }
7526 #endif
7527 
7528 #if SELECTTRACE_ENABLED
7529   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7530   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7531     sqlite3TreeViewSelect(0, p, 0);
7532   }
7533 #endif
7534   ExplainQueryPlanPop(pParse);
7535   return rc;
7536 }
7537