1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 sqlite3ExprDelete(db, p->pOffset); 78 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 79 if( bFree ) sqlite3DbFreeNN(db, p); 80 p = pPrior; 81 bFree = 1; 82 } 83 } 84 85 /* 86 ** Initialize a SelectDest structure. 87 */ 88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 89 pDest->eDest = (u8)eDest; 90 pDest->iSDParm = iParm; 91 pDest->zAffSdst = 0; 92 pDest->iSdst = 0; 93 pDest->nSdst = 0; 94 } 95 96 97 /* 98 ** Allocate a new Select structure and return a pointer to that 99 ** structure. 100 */ 101 Select *sqlite3SelectNew( 102 Parse *pParse, /* Parsing context */ 103 ExprList *pEList, /* which columns to include in the result */ 104 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 105 Expr *pWhere, /* the WHERE clause */ 106 ExprList *pGroupBy, /* the GROUP BY clause */ 107 Expr *pHaving, /* the HAVING clause */ 108 ExprList *pOrderBy, /* the ORDER BY clause */ 109 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 110 Expr *pLimit, /* LIMIT value. NULL means not used */ 111 Expr *pOffset /* OFFSET value. NULL means no offset */ 112 ){ 113 Select *pNew; 114 Select standin; 115 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 116 if( pNew==0 ){ 117 assert( pParse->db->mallocFailed ); 118 pNew = &standin; 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, 122 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 123 } 124 pNew->pEList = pEList; 125 pNew->op = TK_SELECT; 126 pNew->selFlags = selFlags; 127 pNew->iLimit = 0; 128 pNew->iOffset = 0; 129 #if SELECTTRACE_ENABLED 130 pNew->zSelName[0] = 0; 131 #endif 132 pNew->addrOpenEphm[0] = -1; 133 pNew->addrOpenEphm[1] = -1; 134 pNew->nSelectRow = 0; 135 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 136 pNew->pSrc = pSrc; 137 pNew->pWhere = pWhere; 138 pNew->pGroupBy = pGroupBy; 139 pNew->pHaving = pHaving; 140 pNew->pOrderBy = pOrderBy; 141 pNew->pPrior = 0; 142 pNew->pNext = 0; 143 pNew->pLimit = pLimit; 144 pNew->pOffset = pOffset; 145 pNew->pWith = 0; 146 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 147 || pParse->db->mallocFailed!=0 ); 148 if( pParse->db->mallocFailed ) { 149 clearSelect(pParse->db, pNew, pNew!=&standin); 150 pNew = 0; 151 }else{ 152 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 153 } 154 assert( pNew!=&standin ); 155 return pNew; 156 } 157 158 #if SELECTTRACE_ENABLED 159 /* 160 ** Set the name of a Select object 161 */ 162 void sqlite3SelectSetName(Select *p, const char *zName){ 163 if( p && zName ){ 164 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 165 } 166 } 167 #endif 168 169 170 /* 171 ** Delete the given Select structure and all of its substructures. 172 */ 173 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 174 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 175 } 176 177 /* 178 ** Return a pointer to the right-most SELECT statement in a compound. 179 */ 180 static Select *findRightmost(Select *p){ 181 while( p->pNext ) p = p->pNext; 182 return p; 183 } 184 185 /* 186 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 187 ** type of join. Return an integer constant that expresses that type 188 ** in terms of the following bit values: 189 ** 190 ** JT_INNER 191 ** JT_CROSS 192 ** JT_OUTER 193 ** JT_NATURAL 194 ** JT_LEFT 195 ** JT_RIGHT 196 ** 197 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 198 ** 199 ** If an illegal or unsupported join type is seen, then still return 200 ** a join type, but put an error in the pParse structure. 201 */ 202 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 203 int jointype = 0; 204 Token *apAll[3]; 205 Token *p; 206 /* 0123456789 123456789 123456789 123 */ 207 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 208 static const struct { 209 u8 i; /* Beginning of keyword text in zKeyText[] */ 210 u8 nChar; /* Length of the keyword in characters */ 211 u8 code; /* Join type mask */ 212 } aKeyword[] = { 213 /* natural */ { 0, 7, JT_NATURAL }, 214 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 215 /* outer */ { 10, 5, JT_OUTER }, 216 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 217 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 218 /* inner */ { 23, 5, JT_INNER }, 219 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 220 }; 221 int i, j; 222 apAll[0] = pA; 223 apAll[1] = pB; 224 apAll[2] = pC; 225 for(i=0; i<3 && apAll[i]; i++){ 226 p = apAll[i]; 227 for(j=0; j<ArraySize(aKeyword); j++){ 228 if( p->n==aKeyword[j].nChar 229 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 230 jointype |= aKeyword[j].code; 231 break; 232 } 233 } 234 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 235 if( j>=ArraySize(aKeyword) ){ 236 jointype |= JT_ERROR; 237 break; 238 } 239 } 240 if( 241 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 242 (jointype & JT_ERROR)!=0 243 ){ 244 const char *zSp = " "; 245 assert( pB!=0 ); 246 if( pC==0 ){ zSp++; } 247 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 248 "%T %T%s%T", pA, pB, zSp, pC); 249 jointype = JT_INNER; 250 }else if( (jointype & JT_OUTER)!=0 251 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 252 sqlite3ErrorMsg(pParse, 253 "RIGHT and FULL OUTER JOINs are not currently supported"); 254 jointype = JT_INNER; 255 } 256 return jointype; 257 } 258 259 /* 260 ** Return the index of a column in a table. Return -1 if the column 261 ** is not contained in the table. 262 */ 263 static int columnIndex(Table *pTab, const char *zCol){ 264 int i; 265 for(i=0; i<pTab->nCol; i++){ 266 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 267 } 268 return -1; 269 } 270 271 /* 272 ** Search the first N tables in pSrc, from left to right, looking for a 273 ** table that has a column named zCol. 274 ** 275 ** When found, set *piTab and *piCol to the table index and column index 276 ** of the matching column and return TRUE. 277 ** 278 ** If not found, return FALSE. 279 */ 280 static int tableAndColumnIndex( 281 SrcList *pSrc, /* Array of tables to search */ 282 int N, /* Number of tables in pSrc->a[] to search */ 283 const char *zCol, /* Name of the column we are looking for */ 284 int *piTab, /* Write index of pSrc->a[] here */ 285 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 286 ){ 287 int i; /* For looping over tables in pSrc */ 288 int iCol; /* Index of column matching zCol */ 289 290 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 291 for(i=0; i<N; i++){ 292 iCol = columnIndex(pSrc->a[i].pTab, zCol); 293 if( iCol>=0 ){ 294 if( piTab ){ 295 *piTab = i; 296 *piCol = iCol; 297 } 298 return 1; 299 } 300 } 301 return 0; 302 } 303 304 /* 305 ** This function is used to add terms implied by JOIN syntax to the 306 ** WHERE clause expression of a SELECT statement. The new term, which 307 ** is ANDed with the existing WHERE clause, is of the form: 308 ** 309 ** (tab1.col1 = tab2.col2) 310 ** 311 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 312 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 313 ** column iColRight of tab2. 314 */ 315 static void addWhereTerm( 316 Parse *pParse, /* Parsing context */ 317 SrcList *pSrc, /* List of tables in FROM clause */ 318 int iLeft, /* Index of first table to join in pSrc */ 319 int iColLeft, /* Index of column in first table */ 320 int iRight, /* Index of second table in pSrc */ 321 int iColRight, /* Index of column in second table */ 322 int isOuterJoin, /* True if this is an OUTER join */ 323 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 324 ){ 325 sqlite3 *db = pParse->db; 326 Expr *pE1; 327 Expr *pE2; 328 Expr *pEq; 329 330 assert( iLeft<iRight ); 331 assert( pSrc->nSrc>iRight ); 332 assert( pSrc->a[iLeft].pTab ); 333 assert( pSrc->a[iRight].pTab ); 334 335 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 336 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 337 338 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 339 if( pEq && isOuterJoin ){ 340 ExprSetProperty(pEq, EP_FromJoin); 341 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 342 ExprSetVVAProperty(pEq, EP_NoReduce); 343 pEq->iRightJoinTable = (i16)pE2->iTable; 344 } 345 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 346 } 347 348 /* 349 ** Set the EP_FromJoin property on all terms of the given expression. 350 ** And set the Expr.iRightJoinTable to iTable for every term in the 351 ** expression. 352 ** 353 ** The EP_FromJoin property is used on terms of an expression to tell 354 ** the LEFT OUTER JOIN processing logic that this term is part of the 355 ** join restriction specified in the ON or USING clause and not a part 356 ** of the more general WHERE clause. These terms are moved over to the 357 ** WHERE clause during join processing but we need to remember that they 358 ** originated in the ON or USING clause. 359 ** 360 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 361 ** expression depends on table iRightJoinTable even if that table is not 362 ** explicitly mentioned in the expression. That information is needed 363 ** for cases like this: 364 ** 365 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 366 ** 367 ** The where clause needs to defer the handling of the t1.x=5 368 ** term until after the t2 loop of the join. In that way, a 369 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 370 ** defer the handling of t1.x=5, it will be processed immediately 371 ** after the t1 loop and rows with t1.x!=5 will never appear in 372 ** the output, which is incorrect. 373 */ 374 static void setJoinExpr(Expr *p, int iTable){ 375 while( p ){ 376 ExprSetProperty(p, EP_FromJoin); 377 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 378 ExprSetVVAProperty(p, EP_NoReduce); 379 p->iRightJoinTable = (i16)iTable; 380 if( p->op==TK_FUNCTION && p->x.pList ){ 381 int i; 382 for(i=0; i<p->x.pList->nExpr; i++){ 383 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 384 } 385 } 386 setJoinExpr(p->pLeft, iTable); 387 p = p->pRight; 388 } 389 } 390 391 /* 392 ** This routine processes the join information for a SELECT statement. 393 ** ON and USING clauses are converted into extra terms of the WHERE clause. 394 ** NATURAL joins also create extra WHERE clause terms. 395 ** 396 ** The terms of a FROM clause are contained in the Select.pSrc structure. 397 ** The left most table is the first entry in Select.pSrc. The right-most 398 ** table is the last entry. The join operator is held in the entry to 399 ** the left. Thus entry 0 contains the join operator for the join between 400 ** entries 0 and 1. Any ON or USING clauses associated with the join are 401 ** also attached to the left entry. 402 ** 403 ** This routine returns the number of errors encountered. 404 */ 405 static int sqliteProcessJoin(Parse *pParse, Select *p){ 406 SrcList *pSrc; /* All tables in the FROM clause */ 407 int i, j; /* Loop counters */ 408 struct SrcList_item *pLeft; /* Left table being joined */ 409 struct SrcList_item *pRight; /* Right table being joined */ 410 411 pSrc = p->pSrc; 412 pLeft = &pSrc->a[0]; 413 pRight = &pLeft[1]; 414 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 415 Table *pRightTab = pRight->pTab; 416 int isOuter; 417 418 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 419 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 420 421 /* When the NATURAL keyword is present, add WHERE clause terms for 422 ** every column that the two tables have in common. 423 */ 424 if( pRight->fg.jointype & JT_NATURAL ){ 425 if( pRight->pOn || pRight->pUsing ){ 426 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 427 "an ON or USING clause", 0); 428 return 1; 429 } 430 for(j=0; j<pRightTab->nCol; j++){ 431 char *zName; /* Name of column in the right table */ 432 int iLeft; /* Matching left table */ 433 int iLeftCol; /* Matching column in the left table */ 434 435 zName = pRightTab->aCol[j].zName; 436 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 437 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 438 isOuter, &p->pWhere); 439 } 440 } 441 } 442 443 /* Disallow both ON and USING clauses in the same join 444 */ 445 if( pRight->pOn && pRight->pUsing ){ 446 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 447 "clauses in the same join"); 448 return 1; 449 } 450 451 /* Add the ON clause to the end of the WHERE clause, connected by 452 ** an AND operator. 453 */ 454 if( pRight->pOn ){ 455 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 456 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 457 pRight->pOn = 0; 458 } 459 460 /* Create extra terms on the WHERE clause for each column named 461 ** in the USING clause. Example: If the two tables to be joined are 462 ** A and B and the USING clause names X, Y, and Z, then add this 463 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 464 ** Report an error if any column mentioned in the USING clause is 465 ** not contained in both tables to be joined. 466 */ 467 if( pRight->pUsing ){ 468 IdList *pList = pRight->pUsing; 469 for(j=0; j<pList->nId; j++){ 470 char *zName; /* Name of the term in the USING clause */ 471 int iLeft; /* Table on the left with matching column name */ 472 int iLeftCol; /* Column number of matching column on the left */ 473 int iRightCol; /* Column number of matching column on the right */ 474 475 zName = pList->a[j].zName; 476 iRightCol = columnIndex(pRightTab, zName); 477 if( iRightCol<0 478 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 479 ){ 480 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 481 "not present in both tables", zName); 482 return 1; 483 } 484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 485 isOuter, &p->pWhere); 486 } 487 } 488 } 489 return 0; 490 } 491 492 /* Forward reference */ 493 static KeyInfo *keyInfoFromExprList( 494 Parse *pParse, /* Parsing context */ 495 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 496 int iStart, /* Begin with this column of pList */ 497 int nExtra /* Add this many extra columns to the end */ 498 ); 499 500 /* 501 ** Generate code that will push the record in registers regData 502 ** through regData+nData-1 onto the sorter. 503 */ 504 static void pushOntoSorter( 505 Parse *pParse, /* Parser context */ 506 SortCtx *pSort, /* Information about the ORDER BY clause */ 507 Select *pSelect, /* The whole SELECT statement */ 508 int regData, /* First register holding data to be sorted */ 509 int regOrigData, /* First register holding data before packing */ 510 int nData, /* Number of elements in the data array */ 511 int nPrefixReg /* No. of reg prior to regData available for use */ 512 ){ 513 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 514 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 515 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 516 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 517 int regBase; /* Regs for sorter record */ 518 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 519 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 520 int op; /* Opcode to add sorter record to sorter */ 521 int iLimit; /* LIMIT counter */ 522 523 assert( bSeq==0 || bSeq==1 ); 524 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 525 if( nPrefixReg ){ 526 assert( nPrefixReg==nExpr+bSeq ); 527 regBase = regData - nExpr - bSeq; 528 }else{ 529 regBase = pParse->nMem + 1; 530 pParse->nMem += nBase; 531 } 532 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 533 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 534 pSort->labelDone = sqlite3VdbeMakeLabel(v); 535 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 536 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 537 if( bSeq ){ 538 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 539 } 540 if( nPrefixReg==0 && nData>0 ){ 541 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 542 } 543 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 544 if( nOBSat>0 ){ 545 int regPrevKey; /* The first nOBSat columns of the previous row */ 546 int addrFirst; /* Address of the OP_IfNot opcode */ 547 int addrJmp; /* Address of the OP_Jump opcode */ 548 VdbeOp *pOp; /* Opcode that opens the sorter */ 549 int nKey; /* Number of sorting key columns, including OP_Sequence */ 550 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 551 552 regPrevKey = pParse->nMem+1; 553 pParse->nMem += pSort->nOBSat; 554 nKey = nExpr - pSort->nOBSat + bSeq; 555 if( bSeq ){ 556 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 557 }else{ 558 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 559 } 560 VdbeCoverage(v); 561 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 562 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 563 if( pParse->db->mallocFailed ) return; 564 pOp->p2 = nKey + nData; 565 pKI = pOp->p4.pKeyInfo; 566 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 567 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 568 testcase( pKI->nAllField > pKI->nKeyField+2 ); 569 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 570 pKI->nAllField-pKI->nKeyField-1); 571 addrJmp = sqlite3VdbeCurrentAddr(v); 572 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 573 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 574 pSort->regReturn = ++pParse->nMem; 575 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 576 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 577 if( iLimit ){ 578 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 579 VdbeCoverage(v); 580 } 581 sqlite3VdbeJumpHere(v, addrFirst); 582 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 583 sqlite3VdbeJumpHere(v, addrJmp); 584 } 585 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 586 op = OP_SorterInsert; 587 }else{ 588 op = OP_IdxInsert; 589 } 590 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 591 regBase+nOBSat, nBase-nOBSat); 592 if( iLimit ){ 593 int addr; 594 int r1 = 0; 595 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 596 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 597 ** fills up, delete the least entry in the sorter after each insert. 598 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 599 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 600 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 601 if( pSort->bOrderedInnerLoop ){ 602 r1 = ++pParse->nMem; 603 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 604 VdbeComment((v, "seq")); 605 } 606 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 607 if( pSort->bOrderedInnerLoop ){ 608 /* If the inner loop is driven by an index such that values from 609 ** the same iteration of the inner loop are in sorted order, then 610 ** immediately jump to the next iteration of an inner loop if the 611 ** entry from the current iteration does not fit into the top 612 ** LIMIT+OFFSET entries of the sorter. */ 613 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 614 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 615 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 616 VdbeCoverage(v); 617 } 618 sqlite3VdbeJumpHere(v, addr); 619 } 620 } 621 622 /* 623 ** Add code to implement the OFFSET 624 */ 625 static void codeOffset( 626 Vdbe *v, /* Generate code into this VM */ 627 int iOffset, /* Register holding the offset counter */ 628 int iContinue /* Jump here to skip the current record */ 629 ){ 630 if( iOffset>0 ){ 631 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 632 VdbeComment((v, "OFFSET")); 633 } 634 } 635 636 /* 637 ** Add code that will check to make sure the N registers starting at iMem 638 ** form a distinct entry. iTab is a sorting index that holds previously 639 ** seen combinations of the N values. A new entry is made in iTab 640 ** if the current N values are new. 641 ** 642 ** A jump to addrRepeat is made and the N+1 values are popped from the 643 ** stack if the top N elements are not distinct. 644 */ 645 static void codeDistinct( 646 Parse *pParse, /* Parsing and code generating context */ 647 int iTab, /* A sorting index used to test for distinctness */ 648 int addrRepeat, /* Jump to here if not distinct */ 649 int N, /* Number of elements */ 650 int iMem /* First element */ 651 ){ 652 Vdbe *v; 653 int r1; 654 655 v = pParse->pVdbe; 656 r1 = sqlite3GetTempReg(pParse); 657 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 658 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 659 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 660 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 661 sqlite3ReleaseTempReg(pParse, r1); 662 } 663 664 /* 665 ** This routine generates the code for the inside of the inner loop 666 ** of a SELECT. 667 ** 668 ** If srcTab is negative, then the p->pEList expressions 669 ** are evaluated in order to get the data for this row. If srcTab is 670 ** zero or more, then data is pulled from srcTab and p->pEList is used only 671 ** to get the number of columns and the collation sequence for each column. 672 */ 673 static void selectInnerLoop( 674 Parse *pParse, /* The parser context */ 675 Select *p, /* The complete select statement being coded */ 676 int srcTab, /* Pull data from this table if non-negative */ 677 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 678 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 679 SelectDest *pDest, /* How to dispose of the results */ 680 int iContinue, /* Jump here to continue with next row */ 681 int iBreak /* Jump here to break out of the inner loop */ 682 ){ 683 Vdbe *v = pParse->pVdbe; 684 int i; 685 int hasDistinct; /* True if the DISTINCT keyword is present */ 686 int eDest = pDest->eDest; /* How to dispose of results */ 687 int iParm = pDest->iSDParm; /* First argument to disposal method */ 688 int nResultCol; /* Number of result columns */ 689 int nPrefixReg = 0; /* Number of extra registers before regResult */ 690 691 /* Usually, regResult is the first cell in an array of memory cells 692 ** containing the current result row. In this case regOrig is set to the 693 ** same value. However, if the results are being sent to the sorter, the 694 ** values for any expressions that are also part of the sort-key are omitted 695 ** from this array. In this case regOrig is set to zero. */ 696 int regResult; /* Start of memory holding current results */ 697 int regOrig; /* Start of memory holding full result (or 0) */ 698 699 assert( v ); 700 assert( p->pEList!=0 ); 701 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 702 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 703 if( pSort==0 && !hasDistinct ){ 704 assert( iContinue!=0 ); 705 codeOffset(v, p->iOffset, iContinue); 706 } 707 708 /* Pull the requested columns. 709 */ 710 nResultCol = p->pEList->nExpr; 711 712 if( pDest->iSdst==0 ){ 713 if( pSort ){ 714 nPrefixReg = pSort->pOrderBy->nExpr; 715 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 716 pParse->nMem += nPrefixReg; 717 } 718 pDest->iSdst = pParse->nMem+1; 719 pParse->nMem += nResultCol; 720 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 721 /* This is an error condition that can result, for example, when a SELECT 722 ** on the right-hand side of an INSERT contains more result columns than 723 ** there are columns in the table on the left. The error will be caught 724 ** and reported later. But we need to make sure enough memory is allocated 725 ** to avoid other spurious errors in the meantime. */ 726 pParse->nMem += nResultCol; 727 } 728 pDest->nSdst = nResultCol; 729 regOrig = regResult = pDest->iSdst; 730 if( srcTab>=0 ){ 731 for(i=0; i<nResultCol; i++){ 732 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 733 VdbeComment((v, "%s", p->pEList->a[i].zName)); 734 } 735 }else if( eDest!=SRT_Exists ){ 736 /* If the destination is an EXISTS(...) expression, the actual 737 ** values returned by the SELECT are not required. 738 */ 739 u8 ecelFlags; 740 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 741 ecelFlags = SQLITE_ECEL_DUP; 742 }else{ 743 ecelFlags = 0; 744 } 745 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 746 /* For each expression in p->pEList that is a copy of an expression in 747 ** the ORDER BY clause (pSort->pOrderBy), set the associated 748 ** iOrderByCol value to one more than the index of the ORDER BY 749 ** expression within the sort-key that pushOntoSorter() will generate. 750 ** This allows the p->pEList field to be omitted from the sorted record, 751 ** saving space and CPU cycles. */ 752 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 753 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 754 int j; 755 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 756 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 757 } 758 } 759 regOrig = 0; 760 assert( eDest==SRT_Set || eDest==SRT_Mem 761 || eDest==SRT_Coroutine || eDest==SRT_Output ); 762 } 763 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult, 764 0,ecelFlags); 765 } 766 767 /* If the DISTINCT keyword was present on the SELECT statement 768 ** and this row has been seen before, then do not make this row 769 ** part of the result. 770 */ 771 if( hasDistinct ){ 772 switch( pDistinct->eTnctType ){ 773 case WHERE_DISTINCT_ORDERED: { 774 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 775 int iJump; /* Jump destination */ 776 int regPrev; /* Previous row content */ 777 778 /* Allocate space for the previous row */ 779 regPrev = pParse->nMem+1; 780 pParse->nMem += nResultCol; 781 782 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 783 ** sets the MEM_Cleared bit on the first register of the 784 ** previous value. This will cause the OP_Ne below to always 785 ** fail on the first iteration of the loop even if the first 786 ** row is all NULLs. 787 */ 788 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 789 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 790 pOp->opcode = OP_Null; 791 pOp->p1 = 1; 792 pOp->p2 = regPrev; 793 794 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 795 for(i=0; i<nResultCol; i++){ 796 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 797 if( i<nResultCol-1 ){ 798 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 799 VdbeCoverage(v); 800 }else{ 801 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 802 VdbeCoverage(v); 803 } 804 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 805 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 806 } 807 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 808 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 809 break; 810 } 811 812 case WHERE_DISTINCT_UNIQUE: { 813 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 814 break; 815 } 816 817 default: { 818 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 819 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 820 regResult); 821 break; 822 } 823 } 824 if( pSort==0 ){ 825 codeOffset(v, p->iOffset, iContinue); 826 } 827 } 828 829 switch( eDest ){ 830 /* In this mode, write each query result to the key of the temporary 831 ** table iParm. 832 */ 833 #ifndef SQLITE_OMIT_COMPOUND_SELECT 834 case SRT_Union: { 835 int r1; 836 r1 = sqlite3GetTempReg(pParse); 837 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 838 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 839 sqlite3ReleaseTempReg(pParse, r1); 840 break; 841 } 842 843 /* Construct a record from the query result, but instead of 844 ** saving that record, use it as a key to delete elements from 845 ** the temporary table iParm. 846 */ 847 case SRT_Except: { 848 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 849 break; 850 } 851 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 852 853 /* Store the result as data using a unique key. 854 */ 855 case SRT_Fifo: 856 case SRT_DistFifo: 857 case SRT_Table: 858 case SRT_EphemTab: { 859 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 860 testcase( eDest==SRT_Table ); 861 testcase( eDest==SRT_EphemTab ); 862 testcase( eDest==SRT_Fifo ); 863 testcase( eDest==SRT_DistFifo ); 864 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 865 #ifndef SQLITE_OMIT_CTE 866 if( eDest==SRT_DistFifo ){ 867 /* If the destination is DistFifo, then cursor (iParm+1) is open 868 ** on an ephemeral index. If the current row is already present 869 ** in the index, do not write it to the output. If not, add the 870 ** current row to the index and proceed with writing it to the 871 ** output table as well. */ 872 int addr = sqlite3VdbeCurrentAddr(v) + 4; 873 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 874 VdbeCoverage(v); 875 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 876 assert( pSort==0 ); 877 } 878 #endif 879 if( pSort ){ 880 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 881 }else{ 882 int r2 = sqlite3GetTempReg(pParse); 883 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 884 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 885 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 886 sqlite3ReleaseTempReg(pParse, r2); 887 } 888 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 889 break; 890 } 891 892 #ifndef SQLITE_OMIT_SUBQUERY 893 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 894 ** then there should be a single item on the stack. Write this 895 ** item into the set table with bogus data. 896 */ 897 case SRT_Set: { 898 if( pSort ){ 899 /* At first glance you would think we could optimize out the 900 ** ORDER BY in this case since the order of entries in the set 901 ** does not matter. But there might be a LIMIT clause, in which 902 ** case the order does matter */ 903 pushOntoSorter( 904 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 905 }else{ 906 int r1 = sqlite3GetTempReg(pParse); 907 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 908 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 909 r1, pDest->zAffSdst, nResultCol); 910 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 911 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 912 sqlite3ReleaseTempReg(pParse, r1); 913 } 914 break; 915 } 916 917 /* If any row exist in the result set, record that fact and abort. 918 */ 919 case SRT_Exists: { 920 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 921 /* The LIMIT clause will terminate the loop for us */ 922 break; 923 } 924 925 /* If this is a scalar select that is part of an expression, then 926 ** store the results in the appropriate memory cell or array of 927 ** memory cells and break out of the scan loop. 928 */ 929 case SRT_Mem: { 930 if( pSort ){ 931 assert( nResultCol<=pDest->nSdst ); 932 pushOntoSorter( 933 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 934 }else{ 935 assert( nResultCol==pDest->nSdst ); 936 assert( regResult==iParm ); 937 /* The LIMIT clause will jump out of the loop for us */ 938 } 939 break; 940 } 941 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 942 943 case SRT_Coroutine: /* Send data to a co-routine */ 944 case SRT_Output: { /* Return the results */ 945 testcase( eDest==SRT_Coroutine ); 946 testcase( eDest==SRT_Output ); 947 if( pSort ){ 948 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 949 nPrefixReg); 950 }else if( eDest==SRT_Coroutine ){ 951 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 952 }else{ 953 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 954 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 955 } 956 break; 957 } 958 959 #ifndef SQLITE_OMIT_CTE 960 /* Write the results into a priority queue that is order according to 961 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 962 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 963 ** pSO->nExpr columns, then make sure all keys are unique by adding a 964 ** final OP_Sequence column. The last column is the record as a blob. 965 */ 966 case SRT_DistQueue: 967 case SRT_Queue: { 968 int nKey; 969 int r1, r2, r3; 970 int addrTest = 0; 971 ExprList *pSO; 972 pSO = pDest->pOrderBy; 973 assert( pSO ); 974 nKey = pSO->nExpr; 975 r1 = sqlite3GetTempReg(pParse); 976 r2 = sqlite3GetTempRange(pParse, nKey+2); 977 r3 = r2+nKey+1; 978 if( eDest==SRT_DistQueue ){ 979 /* If the destination is DistQueue, then cursor (iParm+1) is open 980 ** on a second ephemeral index that holds all values every previously 981 ** added to the queue. */ 982 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 983 regResult, nResultCol); 984 VdbeCoverage(v); 985 } 986 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 987 if( eDest==SRT_DistQueue ){ 988 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 989 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 990 } 991 for(i=0; i<nKey; i++){ 992 sqlite3VdbeAddOp2(v, OP_SCopy, 993 regResult + pSO->a[i].u.x.iOrderByCol - 1, 994 r2+i); 995 } 996 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 997 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 998 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 999 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1000 sqlite3ReleaseTempReg(pParse, r1); 1001 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1002 break; 1003 } 1004 #endif /* SQLITE_OMIT_CTE */ 1005 1006 1007 1008 #if !defined(SQLITE_OMIT_TRIGGER) 1009 /* Discard the results. This is used for SELECT statements inside 1010 ** the body of a TRIGGER. The purpose of such selects is to call 1011 ** user-defined functions that have side effects. We do not care 1012 ** about the actual results of the select. 1013 */ 1014 default: { 1015 assert( eDest==SRT_Discard ); 1016 break; 1017 } 1018 #endif 1019 } 1020 1021 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1022 ** there is a sorter, in which case the sorter has already limited 1023 ** the output for us. 1024 */ 1025 if( pSort==0 && p->iLimit ){ 1026 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1027 } 1028 } 1029 1030 /* 1031 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1032 ** X extra columns. 1033 */ 1034 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1035 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1036 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1037 if( p ){ 1038 p->aSortOrder = (u8*)&p->aColl[N+X]; 1039 p->nKeyField = (u16)N; 1040 p->nAllField = (u16)(N+X); 1041 p->enc = ENC(db); 1042 p->db = db; 1043 p->nRef = 1; 1044 memset(&p[1], 0, nExtra); 1045 }else{ 1046 sqlite3OomFault(db); 1047 } 1048 return p; 1049 } 1050 1051 /* 1052 ** Deallocate a KeyInfo object 1053 */ 1054 void sqlite3KeyInfoUnref(KeyInfo *p){ 1055 if( p ){ 1056 assert( p->nRef>0 ); 1057 p->nRef--; 1058 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1059 } 1060 } 1061 1062 /* 1063 ** Make a new pointer to a KeyInfo object 1064 */ 1065 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1066 if( p ){ 1067 assert( p->nRef>0 ); 1068 p->nRef++; 1069 } 1070 return p; 1071 } 1072 1073 #ifdef SQLITE_DEBUG 1074 /* 1075 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1076 ** can only be changed if this is just a single reference to the object. 1077 ** 1078 ** This routine is used only inside of assert() statements. 1079 */ 1080 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1081 #endif /* SQLITE_DEBUG */ 1082 1083 /* 1084 ** Given an expression list, generate a KeyInfo structure that records 1085 ** the collating sequence for each expression in that expression list. 1086 ** 1087 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1088 ** KeyInfo structure is appropriate for initializing a virtual index to 1089 ** implement that clause. If the ExprList is the result set of a SELECT 1090 ** then the KeyInfo structure is appropriate for initializing a virtual 1091 ** index to implement a DISTINCT test. 1092 ** 1093 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1094 ** function is responsible for seeing that this structure is eventually 1095 ** freed. 1096 */ 1097 static KeyInfo *keyInfoFromExprList( 1098 Parse *pParse, /* Parsing context */ 1099 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1100 int iStart, /* Begin with this column of pList */ 1101 int nExtra /* Add this many extra columns to the end */ 1102 ){ 1103 int nExpr; 1104 KeyInfo *pInfo; 1105 struct ExprList_item *pItem; 1106 sqlite3 *db = pParse->db; 1107 int i; 1108 1109 nExpr = pList->nExpr; 1110 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1111 if( pInfo ){ 1112 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1113 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1114 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1115 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1116 } 1117 } 1118 return pInfo; 1119 } 1120 1121 /* 1122 ** Name of the connection operator, used for error messages. 1123 */ 1124 static const char *selectOpName(int id){ 1125 char *z; 1126 switch( id ){ 1127 case TK_ALL: z = "UNION ALL"; break; 1128 case TK_INTERSECT: z = "INTERSECT"; break; 1129 case TK_EXCEPT: z = "EXCEPT"; break; 1130 default: z = "UNION"; break; 1131 } 1132 return z; 1133 } 1134 1135 #ifndef SQLITE_OMIT_EXPLAIN 1136 /* 1137 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1138 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1139 ** where the caption is of the form: 1140 ** 1141 ** "USE TEMP B-TREE FOR xxx" 1142 ** 1143 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1144 ** is determined by the zUsage argument. 1145 */ 1146 static void explainTempTable(Parse *pParse, const char *zUsage){ 1147 if( pParse->explain==2 ){ 1148 Vdbe *v = pParse->pVdbe; 1149 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1150 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1151 } 1152 } 1153 1154 /* 1155 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1156 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1157 ** in sqlite3Select() to assign values to structure member variables that 1158 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1159 ** code with #ifndef directives. 1160 */ 1161 # define explainSetInteger(a, b) a = b 1162 1163 #else 1164 /* No-op versions of the explainXXX() functions and macros. */ 1165 # define explainTempTable(y,z) 1166 # define explainSetInteger(y,z) 1167 #endif 1168 1169 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1170 /* 1171 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1172 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1173 ** where the caption is of one of the two forms: 1174 ** 1175 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1176 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1177 ** 1178 ** where iSub1 and iSub2 are the integers passed as the corresponding 1179 ** function parameters, and op is the text representation of the parameter 1180 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1181 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1182 ** false, or the second form if it is true. 1183 */ 1184 static void explainComposite( 1185 Parse *pParse, /* Parse context */ 1186 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1187 int iSub1, /* Subquery id 1 */ 1188 int iSub2, /* Subquery id 2 */ 1189 int bUseTmp /* True if a temp table was used */ 1190 ){ 1191 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1192 if( pParse->explain==2 ){ 1193 Vdbe *v = pParse->pVdbe; 1194 char *zMsg = sqlite3MPrintf( 1195 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1196 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1197 ); 1198 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1199 } 1200 } 1201 #else 1202 /* No-op versions of the explainXXX() functions and macros. */ 1203 # define explainComposite(v,w,x,y,z) 1204 #endif 1205 1206 /* 1207 ** If the inner loop was generated using a non-null pOrderBy argument, 1208 ** then the results were placed in a sorter. After the loop is terminated 1209 ** we need to run the sorter and output the results. The following 1210 ** routine generates the code needed to do that. 1211 */ 1212 static void generateSortTail( 1213 Parse *pParse, /* Parsing context */ 1214 Select *p, /* The SELECT statement */ 1215 SortCtx *pSort, /* Information on the ORDER BY clause */ 1216 int nColumn, /* Number of columns of data */ 1217 SelectDest *pDest /* Write the sorted results here */ 1218 ){ 1219 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1220 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1221 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1222 int addr; 1223 int addrOnce = 0; 1224 int iTab; 1225 ExprList *pOrderBy = pSort->pOrderBy; 1226 int eDest = pDest->eDest; 1227 int iParm = pDest->iSDParm; 1228 int regRow; 1229 int regRowid; 1230 int iCol; 1231 int nKey; 1232 int iSortTab; /* Sorter cursor to read from */ 1233 int nSortData; /* Trailing values to read from sorter */ 1234 int i; 1235 int bSeq; /* True if sorter record includes seq. no. */ 1236 struct ExprList_item *aOutEx = p->pEList->a; 1237 1238 assert( addrBreak<0 ); 1239 if( pSort->labelBkOut ){ 1240 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1241 sqlite3VdbeGoto(v, addrBreak); 1242 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1243 } 1244 iTab = pSort->iECursor; 1245 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1246 regRowid = 0; 1247 regRow = pDest->iSdst; 1248 nSortData = nColumn; 1249 }else{ 1250 regRowid = sqlite3GetTempReg(pParse); 1251 regRow = sqlite3GetTempRange(pParse, nColumn); 1252 nSortData = nColumn; 1253 } 1254 nKey = pOrderBy->nExpr - pSort->nOBSat; 1255 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1256 int regSortOut = ++pParse->nMem; 1257 iSortTab = pParse->nTab++; 1258 if( pSort->labelBkOut ){ 1259 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1260 } 1261 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1262 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1263 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1264 VdbeCoverage(v); 1265 codeOffset(v, p->iOffset, addrContinue); 1266 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1267 bSeq = 0; 1268 }else{ 1269 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1270 codeOffset(v, p->iOffset, addrContinue); 1271 iSortTab = iTab; 1272 bSeq = 1; 1273 } 1274 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){ 1275 int iRead; 1276 if( aOutEx[i].u.x.iOrderByCol ){ 1277 iRead = aOutEx[i].u.x.iOrderByCol-1; 1278 }else{ 1279 iRead = iCol++; 1280 } 1281 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1282 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1283 } 1284 switch( eDest ){ 1285 case SRT_Table: 1286 case SRT_EphemTab: { 1287 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1288 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1289 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1290 break; 1291 } 1292 #ifndef SQLITE_OMIT_SUBQUERY 1293 case SRT_Set: { 1294 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1295 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1296 pDest->zAffSdst, nColumn); 1297 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1298 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1299 break; 1300 } 1301 case SRT_Mem: { 1302 /* The LIMIT clause will terminate the loop for us */ 1303 break; 1304 } 1305 #endif 1306 default: { 1307 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1308 testcase( eDest==SRT_Output ); 1309 testcase( eDest==SRT_Coroutine ); 1310 if( eDest==SRT_Output ){ 1311 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1312 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1313 }else{ 1314 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1315 } 1316 break; 1317 } 1318 } 1319 if( regRowid ){ 1320 if( eDest==SRT_Set ){ 1321 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1322 }else{ 1323 sqlite3ReleaseTempReg(pParse, regRow); 1324 } 1325 sqlite3ReleaseTempReg(pParse, regRowid); 1326 } 1327 /* The bottom of the loop 1328 */ 1329 sqlite3VdbeResolveLabel(v, addrContinue); 1330 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1331 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1332 }else{ 1333 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1334 } 1335 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1336 sqlite3VdbeResolveLabel(v, addrBreak); 1337 } 1338 1339 /* 1340 ** Return a pointer to a string containing the 'declaration type' of the 1341 ** expression pExpr. The string may be treated as static by the caller. 1342 ** 1343 ** Also try to estimate the size of the returned value and return that 1344 ** result in *pEstWidth. 1345 ** 1346 ** The declaration type is the exact datatype definition extracted from the 1347 ** original CREATE TABLE statement if the expression is a column. The 1348 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1349 ** is considered a column can be complex in the presence of subqueries. The 1350 ** result-set expression in all of the following SELECT statements is 1351 ** considered a column by this function. 1352 ** 1353 ** SELECT col FROM tbl; 1354 ** SELECT (SELECT col FROM tbl; 1355 ** SELECT (SELECT col FROM tbl); 1356 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1357 ** 1358 ** The declaration type for any expression other than a column is NULL. 1359 ** 1360 ** This routine has either 3 or 6 parameters depending on whether or not 1361 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1362 */ 1363 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1364 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1365 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1366 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1367 #endif 1368 static const char *columnTypeImpl( 1369 NameContext *pNC, 1370 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1371 Expr *pExpr 1372 #else 1373 Expr *pExpr, 1374 const char **pzOrigDb, 1375 const char **pzOrigTab, 1376 const char **pzOrigCol 1377 #endif 1378 ){ 1379 char const *zType = 0; 1380 int j; 1381 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1382 char const *zOrigDb = 0; 1383 char const *zOrigTab = 0; 1384 char const *zOrigCol = 0; 1385 #endif 1386 1387 assert( pExpr!=0 ); 1388 assert( pNC->pSrcList!=0 ); 1389 switch( pExpr->op ){ 1390 case TK_AGG_COLUMN: 1391 case TK_COLUMN: { 1392 /* The expression is a column. Locate the table the column is being 1393 ** extracted from in NameContext.pSrcList. This table may be real 1394 ** database table or a subquery. 1395 */ 1396 Table *pTab = 0; /* Table structure column is extracted from */ 1397 Select *pS = 0; /* Select the column is extracted from */ 1398 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1399 testcase( pExpr->op==TK_AGG_COLUMN ); 1400 testcase( pExpr->op==TK_COLUMN ); 1401 while( pNC && !pTab ){ 1402 SrcList *pTabList = pNC->pSrcList; 1403 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1404 if( j<pTabList->nSrc ){ 1405 pTab = pTabList->a[j].pTab; 1406 pS = pTabList->a[j].pSelect; 1407 }else{ 1408 pNC = pNC->pNext; 1409 } 1410 } 1411 1412 if( pTab==0 ){ 1413 /* At one time, code such as "SELECT new.x" within a trigger would 1414 ** cause this condition to run. Since then, we have restructured how 1415 ** trigger code is generated and so this condition is no longer 1416 ** possible. However, it can still be true for statements like 1417 ** the following: 1418 ** 1419 ** CREATE TABLE t1(col INTEGER); 1420 ** SELECT (SELECT t1.col) FROM FROM t1; 1421 ** 1422 ** when columnType() is called on the expression "t1.col" in the 1423 ** sub-select. In this case, set the column type to NULL, even 1424 ** though it should really be "INTEGER". 1425 ** 1426 ** This is not a problem, as the column type of "t1.col" is never 1427 ** used. When columnType() is called on the expression 1428 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1429 ** branch below. */ 1430 break; 1431 } 1432 1433 assert( pTab && pExpr->pTab==pTab ); 1434 if( pS ){ 1435 /* The "table" is actually a sub-select or a view in the FROM clause 1436 ** of the SELECT statement. Return the declaration type and origin 1437 ** data for the result-set column of the sub-select. 1438 */ 1439 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1440 /* If iCol is less than zero, then the expression requests the 1441 ** rowid of the sub-select or view. This expression is legal (see 1442 ** test case misc2.2.2) - it always evaluates to NULL. 1443 */ 1444 NameContext sNC; 1445 Expr *p = pS->pEList->a[iCol].pExpr; 1446 sNC.pSrcList = pS->pSrc; 1447 sNC.pNext = pNC; 1448 sNC.pParse = pNC->pParse; 1449 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1450 } 1451 }else{ 1452 /* A real table or a CTE table */ 1453 assert( !pS ); 1454 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1455 if( iCol<0 ) iCol = pTab->iPKey; 1456 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1457 if( iCol<0 ){ 1458 zType = "INTEGER"; 1459 zOrigCol = "rowid"; 1460 }else{ 1461 zOrigCol = pTab->aCol[iCol].zName; 1462 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1463 } 1464 zOrigTab = pTab->zName; 1465 if( pNC->pParse && pTab->pSchema ){ 1466 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1467 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1468 } 1469 #else 1470 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1471 if( iCol<0 ){ 1472 zType = "INTEGER"; 1473 }else{ 1474 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1475 } 1476 #endif 1477 } 1478 break; 1479 } 1480 #ifndef SQLITE_OMIT_SUBQUERY 1481 case TK_SELECT: { 1482 /* The expression is a sub-select. Return the declaration type and 1483 ** origin info for the single column in the result set of the SELECT 1484 ** statement. 1485 */ 1486 NameContext sNC; 1487 Select *pS = pExpr->x.pSelect; 1488 Expr *p = pS->pEList->a[0].pExpr; 1489 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1490 sNC.pSrcList = pS->pSrc; 1491 sNC.pNext = pNC; 1492 sNC.pParse = pNC->pParse; 1493 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1494 break; 1495 } 1496 #endif 1497 } 1498 1499 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1500 if( pzOrigDb ){ 1501 assert( pzOrigTab && pzOrigCol ); 1502 *pzOrigDb = zOrigDb; 1503 *pzOrigTab = zOrigTab; 1504 *pzOrigCol = zOrigCol; 1505 } 1506 #endif 1507 return zType; 1508 } 1509 1510 /* 1511 ** Generate code that will tell the VDBE the declaration types of columns 1512 ** in the result set. 1513 */ 1514 static void generateColumnTypes( 1515 Parse *pParse, /* Parser context */ 1516 SrcList *pTabList, /* List of tables */ 1517 ExprList *pEList /* Expressions defining the result set */ 1518 ){ 1519 #ifndef SQLITE_OMIT_DECLTYPE 1520 Vdbe *v = pParse->pVdbe; 1521 int i; 1522 NameContext sNC; 1523 sNC.pSrcList = pTabList; 1524 sNC.pParse = pParse; 1525 sNC.pNext = 0; 1526 for(i=0; i<pEList->nExpr; i++){ 1527 Expr *p = pEList->a[i].pExpr; 1528 const char *zType; 1529 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1530 const char *zOrigDb = 0; 1531 const char *zOrigTab = 0; 1532 const char *zOrigCol = 0; 1533 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1534 1535 /* The vdbe must make its own copy of the column-type and other 1536 ** column specific strings, in case the schema is reset before this 1537 ** virtual machine is deleted. 1538 */ 1539 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1540 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1541 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1542 #else 1543 zType = columnType(&sNC, p, 0, 0, 0); 1544 #endif 1545 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1546 } 1547 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1548 } 1549 1550 1551 /* 1552 ** Compute the column names for a SELECT statement. 1553 ** 1554 ** The only guarantee that SQLite makes about column names is that if the 1555 ** column has an AS clause assigning it a name, that will be the name used. 1556 ** That is the only documented guarantee. However, countless applications 1557 ** developed over the years have made baseless assumptions about column names 1558 ** and will break if those assumptions changes. Hence, use extreme caution 1559 ** when modifying this routine to avoid breaking legacy. 1560 ** 1561 ** See Also: sqlite3ColumnsFromExprList() 1562 ** 1563 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1564 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1565 ** applications should operate this way. Nevertheless, we need to support the 1566 ** other modes for legacy: 1567 ** 1568 ** short=OFF, full=OFF: Column name is the text of the expression has it 1569 ** originally appears in the SELECT statement. In 1570 ** other words, the zSpan of the result expression. 1571 ** 1572 ** short=ON, full=OFF: (This is the default setting). If the result 1573 ** refers directly to a table column, then the 1574 ** result column name is just the table column 1575 ** name: COLUMN. Otherwise use zSpan. 1576 ** 1577 ** full=ON, short=ANY: If the result refers directly to a table column, 1578 ** then the result column name with the table name 1579 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1580 */ 1581 static void generateColumnNames( 1582 Parse *pParse, /* Parser context */ 1583 Select *pSelect /* Generate column names for this SELECT statement */ 1584 ){ 1585 Vdbe *v = pParse->pVdbe; 1586 int i; 1587 Table *pTab; 1588 SrcList *pTabList; 1589 ExprList *pEList; 1590 sqlite3 *db = pParse->db; 1591 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1592 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1593 1594 #ifndef SQLITE_OMIT_EXPLAIN 1595 /* If this is an EXPLAIN, skip this step */ 1596 if( pParse->explain ){ 1597 return; 1598 } 1599 #endif 1600 1601 if( pParse->colNamesSet || db->mallocFailed ) return; 1602 /* Column names are determined by the left-most term of a compound select */ 1603 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1604 pTabList = pSelect->pSrc; 1605 pEList = pSelect->pEList; 1606 assert( v!=0 ); 1607 assert( pTabList!=0 ); 1608 pParse->colNamesSet = 1; 1609 fullName = (db->flags & SQLITE_FullColNames)!=0; 1610 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1611 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1612 for(i=0; i<pEList->nExpr; i++){ 1613 Expr *p = pEList->a[i].pExpr; 1614 1615 assert( p!=0 ); 1616 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1617 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1618 if( pEList->a[i].zName ){ 1619 /* An AS clause always takes first priority */ 1620 char *zName = pEList->a[i].zName; 1621 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1622 }else if( srcName && p->op==TK_COLUMN ){ 1623 char *zCol; 1624 int iCol = p->iColumn; 1625 pTab = p->pTab; 1626 assert( pTab!=0 ); 1627 if( iCol<0 ) iCol = pTab->iPKey; 1628 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1629 if( iCol<0 ){ 1630 zCol = "rowid"; 1631 }else{ 1632 zCol = pTab->aCol[iCol].zName; 1633 } 1634 if( fullName ){ 1635 char *zName = 0; 1636 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1637 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1638 }else{ 1639 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1640 } 1641 }else{ 1642 const char *z = pEList->a[i].zSpan; 1643 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1644 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1645 } 1646 } 1647 generateColumnTypes(pParse, pTabList, pEList); 1648 } 1649 1650 /* 1651 ** Given an expression list (which is really the list of expressions 1652 ** that form the result set of a SELECT statement) compute appropriate 1653 ** column names for a table that would hold the expression list. 1654 ** 1655 ** All column names will be unique. 1656 ** 1657 ** Only the column names are computed. Column.zType, Column.zColl, 1658 ** and other fields of Column are zeroed. 1659 ** 1660 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1661 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1662 ** 1663 ** The only guarantee that SQLite makes about column names is that if the 1664 ** column has an AS clause assigning it a name, that will be the name used. 1665 ** That is the only documented guarantee. However, countless applications 1666 ** developed over the years have made baseless assumptions about column names 1667 ** and will break if those assumptions changes. Hence, use extreme caution 1668 ** when modifying this routine to avoid breaking legacy. 1669 ** 1670 ** See Also: generateColumnNames() 1671 */ 1672 int sqlite3ColumnsFromExprList( 1673 Parse *pParse, /* Parsing context */ 1674 ExprList *pEList, /* Expr list from which to derive column names */ 1675 i16 *pnCol, /* Write the number of columns here */ 1676 Column **paCol /* Write the new column list here */ 1677 ){ 1678 sqlite3 *db = pParse->db; /* Database connection */ 1679 int i, j; /* Loop counters */ 1680 u32 cnt; /* Index added to make the name unique */ 1681 Column *aCol, *pCol; /* For looping over result columns */ 1682 int nCol; /* Number of columns in the result set */ 1683 char *zName; /* Column name */ 1684 int nName; /* Size of name in zName[] */ 1685 Hash ht; /* Hash table of column names */ 1686 1687 sqlite3HashInit(&ht); 1688 if( pEList ){ 1689 nCol = pEList->nExpr; 1690 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1691 testcase( aCol==0 ); 1692 if( nCol>32767 ) nCol = 32767; 1693 }else{ 1694 nCol = 0; 1695 aCol = 0; 1696 } 1697 assert( nCol==(i16)nCol ); 1698 *pnCol = nCol; 1699 *paCol = aCol; 1700 1701 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1702 /* Get an appropriate name for the column 1703 */ 1704 if( (zName = pEList->a[i].zName)!=0 ){ 1705 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1706 }else{ 1707 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1708 while( pColExpr->op==TK_DOT ){ 1709 pColExpr = pColExpr->pRight; 1710 assert( pColExpr!=0 ); 1711 } 1712 if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN) 1713 && pColExpr->pTab!=0 1714 ){ 1715 /* For columns use the column name name */ 1716 int iCol = pColExpr->iColumn; 1717 Table *pTab = pColExpr->pTab; 1718 if( iCol<0 ) iCol = pTab->iPKey; 1719 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1720 }else if( pColExpr->op==TK_ID ){ 1721 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1722 zName = pColExpr->u.zToken; 1723 }else{ 1724 /* Use the original text of the column expression as its name */ 1725 zName = pEList->a[i].zSpan; 1726 } 1727 } 1728 if( zName ){ 1729 zName = sqlite3DbStrDup(db, zName); 1730 }else{ 1731 zName = sqlite3MPrintf(db,"column%d",i+1); 1732 } 1733 1734 /* Make sure the column name is unique. If the name is not unique, 1735 ** append an integer to the name so that it becomes unique. 1736 */ 1737 cnt = 0; 1738 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1739 nName = sqlite3Strlen30(zName); 1740 if( nName>0 ){ 1741 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1742 if( zName[j]==':' ) nName = j; 1743 } 1744 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1745 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1746 } 1747 pCol->zName = zName; 1748 sqlite3ColumnPropertiesFromName(0, pCol); 1749 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1750 sqlite3OomFault(db); 1751 } 1752 } 1753 sqlite3HashClear(&ht); 1754 if( db->mallocFailed ){ 1755 for(j=0; j<i; j++){ 1756 sqlite3DbFree(db, aCol[j].zName); 1757 } 1758 sqlite3DbFree(db, aCol); 1759 *paCol = 0; 1760 *pnCol = 0; 1761 return SQLITE_NOMEM_BKPT; 1762 } 1763 return SQLITE_OK; 1764 } 1765 1766 /* 1767 ** Add type and collation information to a column list based on 1768 ** a SELECT statement. 1769 ** 1770 ** The column list presumably came from selectColumnNamesFromExprList(). 1771 ** The column list has only names, not types or collations. This 1772 ** routine goes through and adds the types and collations. 1773 ** 1774 ** This routine requires that all identifiers in the SELECT 1775 ** statement be resolved. 1776 */ 1777 void sqlite3SelectAddColumnTypeAndCollation( 1778 Parse *pParse, /* Parsing contexts */ 1779 Table *pTab, /* Add column type information to this table */ 1780 Select *pSelect /* SELECT used to determine types and collations */ 1781 ){ 1782 sqlite3 *db = pParse->db; 1783 NameContext sNC; 1784 Column *pCol; 1785 CollSeq *pColl; 1786 int i; 1787 Expr *p; 1788 struct ExprList_item *a; 1789 1790 assert( pSelect!=0 ); 1791 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1792 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1793 if( db->mallocFailed ) return; 1794 memset(&sNC, 0, sizeof(sNC)); 1795 sNC.pSrcList = pSelect->pSrc; 1796 a = pSelect->pEList->a; 1797 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1798 const char *zType; 1799 int n, m; 1800 p = a[i].pExpr; 1801 zType = columnType(&sNC, p, 0, 0, 0); 1802 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 1803 pCol->affinity = sqlite3ExprAffinity(p); 1804 if( zType ){ 1805 m = sqlite3Strlen30(zType); 1806 n = sqlite3Strlen30(pCol->zName); 1807 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1808 if( pCol->zName ){ 1809 memcpy(&pCol->zName[n+1], zType, m+1); 1810 pCol->colFlags |= COLFLAG_HASTYPE; 1811 } 1812 } 1813 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1814 pColl = sqlite3ExprCollSeq(pParse, p); 1815 if( pColl && pCol->zColl==0 ){ 1816 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1817 } 1818 } 1819 pTab->szTabRow = 1; /* Any non-zero value works */ 1820 } 1821 1822 /* 1823 ** Given a SELECT statement, generate a Table structure that describes 1824 ** the result set of that SELECT. 1825 */ 1826 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1827 Table *pTab; 1828 sqlite3 *db = pParse->db; 1829 int savedFlags; 1830 1831 savedFlags = db->flags; 1832 db->flags &= ~SQLITE_FullColNames; 1833 db->flags |= SQLITE_ShortColNames; 1834 sqlite3SelectPrep(pParse, pSelect, 0); 1835 if( pParse->nErr ) return 0; 1836 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1837 db->flags = savedFlags; 1838 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1839 if( pTab==0 ){ 1840 return 0; 1841 } 1842 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1843 ** is disabled */ 1844 assert( db->lookaside.bDisable ); 1845 pTab->nTabRef = 1; 1846 pTab->zName = 0; 1847 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1848 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1849 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1850 pTab->iPKey = -1; 1851 if( db->mallocFailed ){ 1852 sqlite3DeleteTable(db, pTab); 1853 return 0; 1854 } 1855 return pTab; 1856 } 1857 1858 /* 1859 ** Get a VDBE for the given parser context. Create a new one if necessary. 1860 ** If an error occurs, return NULL and leave a message in pParse. 1861 */ 1862 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1863 if( pParse->pVdbe ){ 1864 return pParse->pVdbe; 1865 } 1866 if( pParse->pToplevel==0 1867 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1868 ){ 1869 pParse->okConstFactor = 1; 1870 } 1871 return sqlite3VdbeCreate(pParse); 1872 } 1873 1874 1875 /* 1876 ** Compute the iLimit and iOffset fields of the SELECT based on the 1877 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1878 ** that appear in the original SQL statement after the LIMIT and OFFSET 1879 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1880 ** are the integer memory register numbers for counters used to compute 1881 ** the limit and offset. If there is no limit and/or offset, then 1882 ** iLimit and iOffset are negative. 1883 ** 1884 ** This routine changes the values of iLimit and iOffset only if 1885 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1886 ** iOffset should have been preset to appropriate default values (zero) 1887 ** prior to calling this routine. 1888 ** 1889 ** The iOffset register (if it exists) is initialized to the value 1890 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1891 ** iOffset+1 is initialized to LIMIT+OFFSET. 1892 ** 1893 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1894 ** redefined. The UNION ALL operator uses this property to force 1895 ** the reuse of the same limit and offset registers across multiple 1896 ** SELECT statements. 1897 */ 1898 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1899 Vdbe *v = 0; 1900 int iLimit = 0; 1901 int iOffset; 1902 int n; 1903 if( p->iLimit ) return; 1904 1905 /* 1906 ** "LIMIT -1" always shows all rows. There is some 1907 ** controversy about what the correct behavior should be. 1908 ** The current implementation interprets "LIMIT 0" to mean 1909 ** no rows. 1910 */ 1911 sqlite3ExprCacheClear(pParse); 1912 assert( p->pOffset==0 || p->pLimit!=0 ); 1913 if( p->pLimit ){ 1914 p->iLimit = iLimit = ++pParse->nMem; 1915 v = sqlite3GetVdbe(pParse); 1916 assert( v!=0 ); 1917 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1918 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1919 VdbeComment((v, "LIMIT counter")); 1920 if( n==0 ){ 1921 sqlite3VdbeGoto(v, iBreak); 1922 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1923 p->nSelectRow = sqlite3LogEst((u64)n); 1924 p->selFlags |= SF_FixedLimit; 1925 } 1926 }else{ 1927 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1928 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1929 VdbeComment((v, "LIMIT counter")); 1930 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1931 } 1932 if( p->pOffset ){ 1933 p->iOffset = iOffset = ++pParse->nMem; 1934 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1935 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1936 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1937 VdbeComment((v, "OFFSET counter")); 1938 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1939 VdbeComment((v, "LIMIT+OFFSET")); 1940 } 1941 } 1942 } 1943 1944 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1945 /* 1946 ** Return the appropriate collating sequence for the iCol-th column of 1947 ** the result set for the compound-select statement "p". Return NULL if 1948 ** the column has no default collating sequence. 1949 ** 1950 ** The collating sequence for the compound select is taken from the 1951 ** left-most term of the select that has a collating sequence. 1952 */ 1953 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1954 CollSeq *pRet; 1955 if( p->pPrior ){ 1956 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1957 }else{ 1958 pRet = 0; 1959 } 1960 assert( iCol>=0 ); 1961 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1962 ** have been thrown during name resolution and we would not have gotten 1963 ** this far */ 1964 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1965 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1966 } 1967 return pRet; 1968 } 1969 1970 /* 1971 ** The select statement passed as the second parameter is a compound SELECT 1972 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1973 ** structure suitable for implementing the ORDER BY. 1974 ** 1975 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1976 ** function is responsible for ensuring that this structure is eventually 1977 ** freed. 1978 */ 1979 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1980 ExprList *pOrderBy = p->pOrderBy; 1981 int nOrderBy = p->pOrderBy->nExpr; 1982 sqlite3 *db = pParse->db; 1983 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1984 if( pRet ){ 1985 int i; 1986 for(i=0; i<nOrderBy; i++){ 1987 struct ExprList_item *pItem = &pOrderBy->a[i]; 1988 Expr *pTerm = pItem->pExpr; 1989 CollSeq *pColl; 1990 1991 if( pTerm->flags & EP_Collate ){ 1992 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1993 }else{ 1994 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1995 if( pColl==0 ) pColl = db->pDfltColl; 1996 pOrderBy->a[i].pExpr = 1997 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1998 } 1999 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2000 pRet->aColl[i] = pColl; 2001 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2002 } 2003 } 2004 2005 return pRet; 2006 } 2007 2008 #ifndef SQLITE_OMIT_CTE 2009 /* 2010 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2011 ** query of the form: 2012 ** 2013 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2014 ** \___________/ \_______________/ 2015 ** p->pPrior p 2016 ** 2017 ** 2018 ** There is exactly one reference to the recursive-table in the FROM clause 2019 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2020 ** 2021 ** The setup-query runs once to generate an initial set of rows that go 2022 ** into a Queue table. Rows are extracted from the Queue table one by 2023 ** one. Each row extracted from Queue is output to pDest. Then the single 2024 ** extracted row (now in the iCurrent table) becomes the content of the 2025 ** recursive-table for a recursive-query run. The output of the recursive-query 2026 ** is added back into the Queue table. Then another row is extracted from Queue 2027 ** and the iteration continues until the Queue table is empty. 2028 ** 2029 ** If the compound query operator is UNION then no duplicate rows are ever 2030 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2031 ** that have ever been inserted into Queue and causes duplicates to be 2032 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2033 ** 2034 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2035 ** ORDER BY order and the first entry is extracted for each cycle. Without 2036 ** an ORDER BY, the Queue table is just a FIFO. 2037 ** 2038 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2039 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2040 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2041 ** with a positive value, then the first OFFSET outputs are discarded rather 2042 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2043 ** rows have been skipped. 2044 */ 2045 static void generateWithRecursiveQuery( 2046 Parse *pParse, /* Parsing context */ 2047 Select *p, /* The recursive SELECT to be coded */ 2048 SelectDest *pDest /* What to do with query results */ 2049 ){ 2050 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2051 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2052 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2053 Select *pSetup = p->pPrior; /* The setup query */ 2054 int addrTop; /* Top of the loop */ 2055 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2056 int iCurrent = 0; /* The Current table */ 2057 int regCurrent; /* Register holding Current table */ 2058 int iQueue; /* The Queue table */ 2059 int iDistinct = 0; /* To ensure unique results if UNION */ 2060 int eDest = SRT_Fifo; /* How to write to Queue */ 2061 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2062 int i; /* Loop counter */ 2063 int rc; /* Result code */ 2064 ExprList *pOrderBy; /* The ORDER BY clause */ 2065 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 2066 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2067 2068 /* Obtain authorization to do a recursive query */ 2069 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2070 2071 /* Process the LIMIT and OFFSET clauses, if they exist */ 2072 addrBreak = sqlite3VdbeMakeLabel(v); 2073 p->nSelectRow = 320; /* 4 billion rows */ 2074 computeLimitRegisters(pParse, p, addrBreak); 2075 pLimit = p->pLimit; 2076 pOffset = p->pOffset; 2077 regLimit = p->iLimit; 2078 regOffset = p->iOffset; 2079 p->pLimit = p->pOffset = 0; 2080 p->iLimit = p->iOffset = 0; 2081 pOrderBy = p->pOrderBy; 2082 2083 /* Locate the cursor number of the Current table */ 2084 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2085 if( pSrc->a[i].fg.isRecursive ){ 2086 iCurrent = pSrc->a[i].iCursor; 2087 break; 2088 } 2089 } 2090 2091 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2092 ** the Distinct table must be exactly one greater than Queue in order 2093 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2094 iQueue = pParse->nTab++; 2095 if( p->op==TK_UNION ){ 2096 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2097 iDistinct = pParse->nTab++; 2098 }else{ 2099 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2100 } 2101 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2102 2103 /* Allocate cursors for Current, Queue, and Distinct. */ 2104 regCurrent = ++pParse->nMem; 2105 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2106 if( pOrderBy ){ 2107 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2108 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2109 (char*)pKeyInfo, P4_KEYINFO); 2110 destQueue.pOrderBy = pOrderBy; 2111 }else{ 2112 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2113 } 2114 VdbeComment((v, "Queue table")); 2115 if( iDistinct ){ 2116 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2117 p->selFlags |= SF_UsesEphemeral; 2118 } 2119 2120 /* Detach the ORDER BY clause from the compound SELECT */ 2121 p->pOrderBy = 0; 2122 2123 /* Store the results of the setup-query in Queue. */ 2124 pSetup->pNext = 0; 2125 rc = sqlite3Select(pParse, pSetup, &destQueue); 2126 pSetup->pNext = p; 2127 if( rc ) goto end_of_recursive_query; 2128 2129 /* Find the next row in the Queue and output that row */ 2130 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2131 2132 /* Transfer the next row in Queue over to Current */ 2133 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2134 if( pOrderBy ){ 2135 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2136 }else{ 2137 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2138 } 2139 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2140 2141 /* Output the single row in Current */ 2142 addrCont = sqlite3VdbeMakeLabel(v); 2143 codeOffset(v, regOffset, addrCont); 2144 selectInnerLoop(pParse, p, iCurrent, 2145 0, 0, pDest, addrCont, addrBreak); 2146 if( regLimit ){ 2147 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2148 VdbeCoverage(v); 2149 } 2150 sqlite3VdbeResolveLabel(v, addrCont); 2151 2152 /* Execute the recursive SELECT taking the single row in Current as 2153 ** the value for the recursive-table. Store the results in the Queue. 2154 */ 2155 if( p->selFlags & SF_Aggregate ){ 2156 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2157 }else{ 2158 p->pPrior = 0; 2159 sqlite3Select(pParse, p, &destQueue); 2160 assert( p->pPrior==0 ); 2161 p->pPrior = pSetup; 2162 } 2163 2164 /* Keep running the loop until the Queue is empty */ 2165 sqlite3VdbeGoto(v, addrTop); 2166 sqlite3VdbeResolveLabel(v, addrBreak); 2167 2168 end_of_recursive_query: 2169 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2170 p->pOrderBy = pOrderBy; 2171 p->pLimit = pLimit; 2172 p->pOffset = pOffset; 2173 return; 2174 } 2175 #endif /* SQLITE_OMIT_CTE */ 2176 2177 /* Forward references */ 2178 static int multiSelectOrderBy( 2179 Parse *pParse, /* Parsing context */ 2180 Select *p, /* The right-most of SELECTs to be coded */ 2181 SelectDest *pDest /* What to do with query results */ 2182 ); 2183 2184 /* 2185 ** Handle the special case of a compound-select that originates from a 2186 ** VALUES clause. By handling this as a special case, we avoid deep 2187 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2188 ** on a VALUES clause. 2189 ** 2190 ** Because the Select object originates from a VALUES clause: 2191 ** (1) It has no LIMIT or OFFSET 2192 ** (2) All terms are UNION ALL 2193 ** (3) There is no ORDER BY clause 2194 */ 2195 static int multiSelectValues( 2196 Parse *pParse, /* Parsing context */ 2197 Select *p, /* The right-most of SELECTs to be coded */ 2198 SelectDest *pDest /* What to do with query results */ 2199 ){ 2200 Select *pPrior; 2201 int nRow = 1; 2202 int rc = 0; 2203 assert( p->selFlags & SF_MultiValue ); 2204 do{ 2205 assert( p->selFlags & SF_Values ); 2206 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2207 assert( p->pLimit==0 ); 2208 assert( p->pOffset==0 ); 2209 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2210 if( p->pPrior==0 ) break; 2211 assert( p->pPrior->pNext==p ); 2212 p = p->pPrior; 2213 nRow++; 2214 }while(1); 2215 while( p ){ 2216 pPrior = p->pPrior; 2217 p->pPrior = 0; 2218 rc = sqlite3Select(pParse, p, pDest); 2219 p->pPrior = pPrior; 2220 if( rc ) break; 2221 p->nSelectRow = nRow; 2222 p = p->pNext; 2223 } 2224 return rc; 2225 } 2226 2227 /* 2228 ** This routine is called to process a compound query form from 2229 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2230 ** INTERSECT 2231 ** 2232 ** "p" points to the right-most of the two queries. the query on the 2233 ** left is p->pPrior. The left query could also be a compound query 2234 ** in which case this routine will be called recursively. 2235 ** 2236 ** The results of the total query are to be written into a destination 2237 ** of type eDest with parameter iParm. 2238 ** 2239 ** Example 1: Consider a three-way compound SQL statement. 2240 ** 2241 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2242 ** 2243 ** This statement is parsed up as follows: 2244 ** 2245 ** SELECT c FROM t3 2246 ** | 2247 ** `-----> SELECT b FROM t2 2248 ** | 2249 ** `------> SELECT a FROM t1 2250 ** 2251 ** The arrows in the diagram above represent the Select.pPrior pointer. 2252 ** So if this routine is called with p equal to the t3 query, then 2253 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2254 ** 2255 ** Notice that because of the way SQLite parses compound SELECTs, the 2256 ** individual selects always group from left to right. 2257 */ 2258 static int multiSelect( 2259 Parse *pParse, /* Parsing context */ 2260 Select *p, /* The right-most of SELECTs to be coded */ 2261 SelectDest *pDest /* What to do with query results */ 2262 ){ 2263 int rc = SQLITE_OK; /* Success code from a subroutine */ 2264 Select *pPrior; /* Another SELECT immediately to our left */ 2265 Vdbe *v; /* Generate code to this VDBE */ 2266 SelectDest dest; /* Alternative data destination */ 2267 Select *pDelete = 0; /* Chain of simple selects to delete */ 2268 sqlite3 *db; /* Database connection */ 2269 #ifndef SQLITE_OMIT_EXPLAIN 2270 int iSub1 = 0; /* EQP id of left-hand query */ 2271 int iSub2 = 0; /* EQP id of right-hand query */ 2272 #endif 2273 2274 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2275 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2276 */ 2277 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2278 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2279 db = pParse->db; 2280 pPrior = p->pPrior; 2281 dest = *pDest; 2282 if( pPrior->pOrderBy || pPrior->pLimit ){ 2283 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2284 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2285 rc = 1; 2286 goto multi_select_end; 2287 } 2288 2289 v = sqlite3GetVdbe(pParse); 2290 assert( v!=0 ); /* The VDBE already created by calling function */ 2291 2292 /* Create the destination temporary table if necessary 2293 */ 2294 if( dest.eDest==SRT_EphemTab ){ 2295 assert( p->pEList ); 2296 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2297 dest.eDest = SRT_Table; 2298 } 2299 2300 /* Special handling for a compound-select that originates as a VALUES clause. 2301 */ 2302 if( p->selFlags & SF_MultiValue ){ 2303 rc = multiSelectValues(pParse, p, &dest); 2304 goto multi_select_end; 2305 } 2306 2307 /* Make sure all SELECTs in the statement have the same number of elements 2308 ** in their result sets. 2309 */ 2310 assert( p->pEList && pPrior->pEList ); 2311 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2312 2313 #ifndef SQLITE_OMIT_CTE 2314 if( p->selFlags & SF_Recursive ){ 2315 generateWithRecursiveQuery(pParse, p, &dest); 2316 }else 2317 #endif 2318 2319 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2320 */ 2321 if( p->pOrderBy ){ 2322 return multiSelectOrderBy(pParse, p, pDest); 2323 }else 2324 2325 /* Generate code for the left and right SELECT statements. 2326 */ 2327 switch( p->op ){ 2328 case TK_ALL: { 2329 int addr = 0; 2330 int nLimit; 2331 assert( !pPrior->pLimit ); 2332 pPrior->iLimit = p->iLimit; 2333 pPrior->iOffset = p->iOffset; 2334 pPrior->pLimit = p->pLimit; 2335 pPrior->pOffset = p->pOffset; 2336 explainSetInteger(iSub1, pParse->iNextSelectId); 2337 rc = sqlite3Select(pParse, pPrior, &dest); 2338 p->pLimit = 0; 2339 p->pOffset = 0; 2340 if( rc ){ 2341 goto multi_select_end; 2342 } 2343 p->pPrior = 0; 2344 p->iLimit = pPrior->iLimit; 2345 p->iOffset = pPrior->iOffset; 2346 if( p->iLimit ){ 2347 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2348 VdbeComment((v, "Jump ahead if LIMIT reached")); 2349 if( p->iOffset ){ 2350 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2351 p->iLimit, p->iOffset+1, p->iOffset); 2352 } 2353 } 2354 explainSetInteger(iSub2, pParse->iNextSelectId); 2355 rc = sqlite3Select(pParse, p, &dest); 2356 testcase( rc!=SQLITE_OK ); 2357 pDelete = p->pPrior; 2358 p->pPrior = pPrior; 2359 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2360 if( pPrior->pLimit 2361 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2362 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2363 ){ 2364 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2365 } 2366 if( addr ){ 2367 sqlite3VdbeJumpHere(v, addr); 2368 } 2369 break; 2370 } 2371 case TK_EXCEPT: 2372 case TK_UNION: { 2373 int unionTab; /* Cursor number of the temporary table holding result */ 2374 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2375 int priorOp; /* The SRT_ operation to apply to prior selects */ 2376 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2377 int addr; 2378 SelectDest uniondest; 2379 2380 testcase( p->op==TK_EXCEPT ); 2381 testcase( p->op==TK_UNION ); 2382 priorOp = SRT_Union; 2383 if( dest.eDest==priorOp ){ 2384 /* We can reuse a temporary table generated by a SELECT to our 2385 ** right. 2386 */ 2387 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2388 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2389 unionTab = dest.iSDParm; 2390 }else{ 2391 /* We will need to create our own temporary table to hold the 2392 ** intermediate results. 2393 */ 2394 unionTab = pParse->nTab++; 2395 assert( p->pOrderBy==0 ); 2396 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2397 assert( p->addrOpenEphm[0] == -1 ); 2398 p->addrOpenEphm[0] = addr; 2399 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2400 assert( p->pEList ); 2401 } 2402 2403 /* Code the SELECT statements to our left 2404 */ 2405 assert( !pPrior->pOrderBy ); 2406 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2407 explainSetInteger(iSub1, pParse->iNextSelectId); 2408 rc = sqlite3Select(pParse, pPrior, &uniondest); 2409 if( rc ){ 2410 goto multi_select_end; 2411 } 2412 2413 /* Code the current SELECT statement 2414 */ 2415 if( p->op==TK_EXCEPT ){ 2416 op = SRT_Except; 2417 }else{ 2418 assert( p->op==TK_UNION ); 2419 op = SRT_Union; 2420 } 2421 p->pPrior = 0; 2422 pLimit = p->pLimit; 2423 p->pLimit = 0; 2424 pOffset = p->pOffset; 2425 p->pOffset = 0; 2426 uniondest.eDest = op; 2427 explainSetInteger(iSub2, pParse->iNextSelectId); 2428 rc = sqlite3Select(pParse, p, &uniondest); 2429 testcase( rc!=SQLITE_OK ); 2430 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2431 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2432 sqlite3ExprListDelete(db, p->pOrderBy); 2433 pDelete = p->pPrior; 2434 p->pPrior = pPrior; 2435 p->pOrderBy = 0; 2436 if( p->op==TK_UNION ){ 2437 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2438 } 2439 sqlite3ExprDelete(db, p->pLimit); 2440 p->pLimit = pLimit; 2441 p->pOffset = pOffset; 2442 p->iLimit = 0; 2443 p->iOffset = 0; 2444 2445 /* Convert the data in the temporary table into whatever form 2446 ** it is that we currently need. 2447 */ 2448 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2449 if( dest.eDest!=priorOp ){ 2450 int iCont, iBreak, iStart; 2451 assert( p->pEList ); 2452 iBreak = sqlite3VdbeMakeLabel(v); 2453 iCont = sqlite3VdbeMakeLabel(v); 2454 computeLimitRegisters(pParse, p, iBreak); 2455 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2456 iStart = sqlite3VdbeCurrentAddr(v); 2457 selectInnerLoop(pParse, p, unionTab, 2458 0, 0, &dest, iCont, iBreak); 2459 sqlite3VdbeResolveLabel(v, iCont); 2460 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2461 sqlite3VdbeResolveLabel(v, iBreak); 2462 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2463 } 2464 break; 2465 } 2466 default: assert( p->op==TK_INTERSECT ); { 2467 int tab1, tab2; 2468 int iCont, iBreak, iStart; 2469 Expr *pLimit, *pOffset; 2470 int addr; 2471 SelectDest intersectdest; 2472 int r1; 2473 2474 /* INTERSECT is different from the others since it requires 2475 ** two temporary tables. Hence it has its own case. Begin 2476 ** by allocating the tables we will need. 2477 */ 2478 tab1 = pParse->nTab++; 2479 tab2 = pParse->nTab++; 2480 assert( p->pOrderBy==0 ); 2481 2482 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2483 assert( p->addrOpenEphm[0] == -1 ); 2484 p->addrOpenEphm[0] = addr; 2485 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2486 assert( p->pEList ); 2487 2488 /* Code the SELECTs to our left into temporary table "tab1". 2489 */ 2490 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2491 explainSetInteger(iSub1, pParse->iNextSelectId); 2492 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2493 if( rc ){ 2494 goto multi_select_end; 2495 } 2496 2497 /* Code the current SELECT into temporary table "tab2" 2498 */ 2499 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2500 assert( p->addrOpenEphm[1] == -1 ); 2501 p->addrOpenEphm[1] = addr; 2502 p->pPrior = 0; 2503 pLimit = p->pLimit; 2504 p->pLimit = 0; 2505 pOffset = p->pOffset; 2506 p->pOffset = 0; 2507 intersectdest.iSDParm = tab2; 2508 explainSetInteger(iSub2, pParse->iNextSelectId); 2509 rc = sqlite3Select(pParse, p, &intersectdest); 2510 testcase( rc!=SQLITE_OK ); 2511 pDelete = p->pPrior; 2512 p->pPrior = pPrior; 2513 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2514 sqlite3ExprDelete(db, p->pLimit); 2515 p->pLimit = pLimit; 2516 p->pOffset = pOffset; 2517 2518 /* Generate code to take the intersection of the two temporary 2519 ** tables. 2520 */ 2521 assert( p->pEList ); 2522 iBreak = sqlite3VdbeMakeLabel(v); 2523 iCont = sqlite3VdbeMakeLabel(v); 2524 computeLimitRegisters(pParse, p, iBreak); 2525 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2526 r1 = sqlite3GetTempReg(pParse); 2527 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2528 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2529 sqlite3ReleaseTempReg(pParse, r1); 2530 selectInnerLoop(pParse, p, tab1, 2531 0, 0, &dest, iCont, iBreak); 2532 sqlite3VdbeResolveLabel(v, iCont); 2533 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2534 sqlite3VdbeResolveLabel(v, iBreak); 2535 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2536 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2537 break; 2538 } 2539 } 2540 2541 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2542 2543 /* Compute collating sequences used by 2544 ** temporary tables needed to implement the compound select. 2545 ** Attach the KeyInfo structure to all temporary tables. 2546 ** 2547 ** This section is run by the right-most SELECT statement only. 2548 ** SELECT statements to the left always skip this part. The right-most 2549 ** SELECT might also skip this part if it has no ORDER BY clause and 2550 ** no temp tables are required. 2551 */ 2552 if( p->selFlags & SF_UsesEphemeral ){ 2553 int i; /* Loop counter */ 2554 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2555 Select *pLoop; /* For looping through SELECT statements */ 2556 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2557 int nCol; /* Number of columns in result set */ 2558 2559 assert( p->pNext==0 ); 2560 nCol = p->pEList->nExpr; 2561 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2562 if( !pKeyInfo ){ 2563 rc = SQLITE_NOMEM_BKPT; 2564 goto multi_select_end; 2565 } 2566 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2567 *apColl = multiSelectCollSeq(pParse, p, i); 2568 if( 0==*apColl ){ 2569 *apColl = db->pDfltColl; 2570 } 2571 } 2572 2573 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2574 for(i=0; i<2; i++){ 2575 int addr = pLoop->addrOpenEphm[i]; 2576 if( addr<0 ){ 2577 /* If [0] is unused then [1] is also unused. So we can 2578 ** always safely abort as soon as the first unused slot is found */ 2579 assert( pLoop->addrOpenEphm[1]<0 ); 2580 break; 2581 } 2582 sqlite3VdbeChangeP2(v, addr, nCol); 2583 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2584 P4_KEYINFO); 2585 pLoop->addrOpenEphm[i] = -1; 2586 } 2587 } 2588 sqlite3KeyInfoUnref(pKeyInfo); 2589 } 2590 2591 multi_select_end: 2592 pDest->iSdst = dest.iSdst; 2593 pDest->nSdst = dest.nSdst; 2594 sqlite3SelectDelete(db, pDelete); 2595 return rc; 2596 } 2597 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2598 2599 /* 2600 ** Error message for when two or more terms of a compound select have different 2601 ** size result sets. 2602 */ 2603 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2604 if( p->selFlags & SF_Values ){ 2605 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2606 }else{ 2607 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2608 " do not have the same number of result columns", selectOpName(p->op)); 2609 } 2610 } 2611 2612 /* 2613 ** Code an output subroutine for a coroutine implementation of a 2614 ** SELECT statment. 2615 ** 2616 ** The data to be output is contained in pIn->iSdst. There are 2617 ** pIn->nSdst columns to be output. pDest is where the output should 2618 ** be sent. 2619 ** 2620 ** regReturn is the number of the register holding the subroutine 2621 ** return address. 2622 ** 2623 ** If regPrev>0 then it is the first register in a vector that 2624 ** records the previous output. mem[regPrev] is a flag that is false 2625 ** if there has been no previous output. If regPrev>0 then code is 2626 ** generated to suppress duplicates. pKeyInfo is used for comparing 2627 ** keys. 2628 ** 2629 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2630 ** iBreak. 2631 */ 2632 static int generateOutputSubroutine( 2633 Parse *pParse, /* Parsing context */ 2634 Select *p, /* The SELECT statement */ 2635 SelectDest *pIn, /* Coroutine supplying data */ 2636 SelectDest *pDest, /* Where to send the data */ 2637 int regReturn, /* The return address register */ 2638 int regPrev, /* Previous result register. No uniqueness if 0 */ 2639 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2640 int iBreak /* Jump here if we hit the LIMIT */ 2641 ){ 2642 Vdbe *v = pParse->pVdbe; 2643 int iContinue; 2644 int addr; 2645 2646 addr = sqlite3VdbeCurrentAddr(v); 2647 iContinue = sqlite3VdbeMakeLabel(v); 2648 2649 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2650 */ 2651 if( regPrev ){ 2652 int addr1, addr2; 2653 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2654 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2655 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2656 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2657 sqlite3VdbeJumpHere(v, addr1); 2658 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2659 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2660 } 2661 if( pParse->db->mallocFailed ) return 0; 2662 2663 /* Suppress the first OFFSET entries if there is an OFFSET clause 2664 */ 2665 codeOffset(v, p->iOffset, iContinue); 2666 2667 assert( pDest->eDest!=SRT_Exists ); 2668 assert( pDest->eDest!=SRT_Table ); 2669 switch( pDest->eDest ){ 2670 /* Store the result as data using a unique key. 2671 */ 2672 case SRT_EphemTab: { 2673 int r1 = sqlite3GetTempReg(pParse); 2674 int r2 = sqlite3GetTempReg(pParse); 2675 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2676 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2677 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2678 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2679 sqlite3ReleaseTempReg(pParse, r2); 2680 sqlite3ReleaseTempReg(pParse, r1); 2681 break; 2682 } 2683 2684 #ifndef SQLITE_OMIT_SUBQUERY 2685 /* If we are creating a set for an "expr IN (SELECT ...)". 2686 */ 2687 case SRT_Set: { 2688 int r1; 2689 testcase( pIn->nSdst>1 ); 2690 r1 = sqlite3GetTempReg(pParse); 2691 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2692 r1, pDest->zAffSdst, pIn->nSdst); 2693 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2694 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2695 pIn->iSdst, pIn->nSdst); 2696 sqlite3ReleaseTempReg(pParse, r1); 2697 break; 2698 } 2699 2700 /* If this is a scalar select that is part of an expression, then 2701 ** store the results in the appropriate memory cell and break out 2702 ** of the scan loop. 2703 */ 2704 case SRT_Mem: { 2705 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2706 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2707 /* The LIMIT clause will jump out of the loop for us */ 2708 break; 2709 } 2710 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2711 2712 /* The results are stored in a sequence of registers 2713 ** starting at pDest->iSdst. Then the co-routine yields. 2714 */ 2715 case SRT_Coroutine: { 2716 if( pDest->iSdst==0 ){ 2717 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2718 pDest->nSdst = pIn->nSdst; 2719 } 2720 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2721 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2722 break; 2723 } 2724 2725 /* If none of the above, then the result destination must be 2726 ** SRT_Output. This routine is never called with any other 2727 ** destination other than the ones handled above or SRT_Output. 2728 ** 2729 ** For SRT_Output, results are stored in a sequence of registers. 2730 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2731 ** return the next row of result. 2732 */ 2733 default: { 2734 assert( pDest->eDest==SRT_Output ); 2735 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2736 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2737 break; 2738 } 2739 } 2740 2741 /* Jump to the end of the loop if the LIMIT is reached. 2742 */ 2743 if( p->iLimit ){ 2744 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2745 } 2746 2747 /* Generate the subroutine return 2748 */ 2749 sqlite3VdbeResolveLabel(v, iContinue); 2750 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2751 2752 return addr; 2753 } 2754 2755 /* 2756 ** Alternative compound select code generator for cases when there 2757 ** is an ORDER BY clause. 2758 ** 2759 ** We assume a query of the following form: 2760 ** 2761 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2762 ** 2763 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2764 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2765 ** co-routines. Then run the co-routines in parallel and merge the results 2766 ** into the output. In addition to the two coroutines (called selectA and 2767 ** selectB) there are 7 subroutines: 2768 ** 2769 ** outA: Move the output of the selectA coroutine into the output 2770 ** of the compound query. 2771 ** 2772 ** outB: Move the output of the selectB coroutine into the output 2773 ** of the compound query. (Only generated for UNION and 2774 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2775 ** appears only in B.) 2776 ** 2777 ** AltB: Called when there is data from both coroutines and A<B. 2778 ** 2779 ** AeqB: Called when there is data from both coroutines and A==B. 2780 ** 2781 ** AgtB: Called when there is data from both coroutines and A>B. 2782 ** 2783 ** EofA: Called when data is exhausted from selectA. 2784 ** 2785 ** EofB: Called when data is exhausted from selectB. 2786 ** 2787 ** The implementation of the latter five subroutines depend on which 2788 ** <operator> is used: 2789 ** 2790 ** 2791 ** UNION ALL UNION EXCEPT INTERSECT 2792 ** ------------- ----------------- -------------- ----------------- 2793 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2794 ** 2795 ** AeqB: outA, nextA nextA nextA outA, nextA 2796 ** 2797 ** AgtB: outB, nextB outB, nextB nextB nextB 2798 ** 2799 ** EofA: outB, nextB outB, nextB halt halt 2800 ** 2801 ** EofB: outA, nextA outA, nextA outA, nextA halt 2802 ** 2803 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2804 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2805 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2806 ** following nextX causes a jump to the end of the select processing. 2807 ** 2808 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2809 ** within the output subroutine. The regPrev register set holds the previously 2810 ** output value. A comparison is made against this value and the output 2811 ** is skipped if the next results would be the same as the previous. 2812 ** 2813 ** The implementation plan is to implement the two coroutines and seven 2814 ** subroutines first, then put the control logic at the bottom. Like this: 2815 ** 2816 ** goto Init 2817 ** coA: coroutine for left query (A) 2818 ** coB: coroutine for right query (B) 2819 ** outA: output one row of A 2820 ** outB: output one row of B (UNION and UNION ALL only) 2821 ** EofA: ... 2822 ** EofB: ... 2823 ** AltB: ... 2824 ** AeqB: ... 2825 ** AgtB: ... 2826 ** Init: initialize coroutine registers 2827 ** yield coA 2828 ** if eof(A) goto EofA 2829 ** yield coB 2830 ** if eof(B) goto EofB 2831 ** Cmpr: Compare A, B 2832 ** Jump AltB, AeqB, AgtB 2833 ** End: ... 2834 ** 2835 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2836 ** actually called using Gosub and they do not Return. EofA and EofB loop 2837 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2838 ** and AgtB jump to either L2 or to one of EofA or EofB. 2839 */ 2840 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2841 static int multiSelectOrderBy( 2842 Parse *pParse, /* Parsing context */ 2843 Select *p, /* The right-most of SELECTs to be coded */ 2844 SelectDest *pDest /* What to do with query results */ 2845 ){ 2846 int i, j; /* Loop counters */ 2847 Select *pPrior; /* Another SELECT immediately to our left */ 2848 Vdbe *v; /* Generate code to this VDBE */ 2849 SelectDest destA; /* Destination for coroutine A */ 2850 SelectDest destB; /* Destination for coroutine B */ 2851 int regAddrA; /* Address register for select-A coroutine */ 2852 int regAddrB; /* Address register for select-B coroutine */ 2853 int addrSelectA; /* Address of the select-A coroutine */ 2854 int addrSelectB; /* Address of the select-B coroutine */ 2855 int regOutA; /* Address register for the output-A subroutine */ 2856 int regOutB; /* Address register for the output-B subroutine */ 2857 int addrOutA; /* Address of the output-A subroutine */ 2858 int addrOutB = 0; /* Address of the output-B subroutine */ 2859 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2860 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2861 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2862 int addrAltB; /* Address of the A<B subroutine */ 2863 int addrAeqB; /* Address of the A==B subroutine */ 2864 int addrAgtB; /* Address of the A>B subroutine */ 2865 int regLimitA; /* Limit register for select-A */ 2866 int regLimitB; /* Limit register for select-A */ 2867 int regPrev; /* A range of registers to hold previous output */ 2868 int savedLimit; /* Saved value of p->iLimit */ 2869 int savedOffset; /* Saved value of p->iOffset */ 2870 int labelCmpr; /* Label for the start of the merge algorithm */ 2871 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2872 int addr1; /* Jump instructions that get retargetted */ 2873 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2874 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2875 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2876 sqlite3 *db; /* Database connection */ 2877 ExprList *pOrderBy; /* The ORDER BY clause */ 2878 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2879 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2880 #ifndef SQLITE_OMIT_EXPLAIN 2881 int iSub1; /* EQP id of left-hand query */ 2882 int iSub2; /* EQP id of right-hand query */ 2883 #endif 2884 2885 assert( p->pOrderBy!=0 ); 2886 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2887 db = pParse->db; 2888 v = pParse->pVdbe; 2889 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2890 labelEnd = sqlite3VdbeMakeLabel(v); 2891 labelCmpr = sqlite3VdbeMakeLabel(v); 2892 2893 2894 /* Patch up the ORDER BY clause 2895 */ 2896 op = p->op; 2897 pPrior = p->pPrior; 2898 assert( pPrior->pOrderBy==0 ); 2899 pOrderBy = p->pOrderBy; 2900 assert( pOrderBy ); 2901 nOrderBy = pOrderBy->nExpr; 2902 2903 /* For operators other than UNION ALL we have to make sure that 2904 ** the ORDER BY clause covers every term of the result set. Add 2905 ** terms to the ORDER BY clause as necessary. 2906 */ 2907 if( op!=TK_ALL ){ 2908 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2909 struct ExprList_item *pItem; 2910 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2911 assert( pItem->u.x.iOrderByCol>0 ); 2912 if( pItem->u.x.iOrderByCol==i ) break; 2913 } 2914 if( j==nOrderBy ){ 2915 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2916 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2917 pNew->flags |= EP_IntValue; 2918 pNew->u.iValue = i; 2919 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2920 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2921 } 2922 } 2923 } 2924 2925 /* Compute the comparison permutation and keyinfo that is used with 2926 ** the permutation used to determine if the next 2927 ** row of results comes from selectA or selectB. Also add explicit 2928 ** collations to the ORDER BY clause terms so that when the subqueries 2929 ** to the right and the left are evaluated, they use the correct 2930 ** collation. 2931 */ 2932 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2933 if( aPermute ){ 2934 struct ExprList_item *pItem; 2935 aPermute[0] = nOrderBy; 2936 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2937 assert( pItem->u.x.iOrderByCol>0 ); 2938 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2939 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2940 } 2941 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2942 }else{ 2943 pKeyMerge = 0; 2944 } 2945 2946 /* Reattach the ORDER BY clause to the query. 2947 */ 2948 p->pOrderBy = pOrderBy; 2949 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2950 2951 /* Allocate a range of temporary registers and the KeyInfo needed 2952 ** for the logic that removes duplicate result rows when the 2953 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2954 */ 2955 if( op==TK_ALL ){ 2956 regPrev = 0; 2957 }else{ 2958 int nExpr = p->pEList->nExpr; 2959 assert( nOrderBy>=nExpr || db->mallocFailed ); 2960 regPrev = pParse->nMem+1; 2961 pParse->nMem += nExpr+1; 2962 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2963 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2964 if( pKeyDup ){ 2965 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2966 for(i=0; i<nExpr; i++){ 2967 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2968 pKeyDup->aSortOrder[i] = 0; 2969 } 2970 } 2971 } 2972 2973 /* Separate the left and the right query from one another 2974 */ 2975 p->pPrior = 0; 2976 pPrior->pNext = 0; 2977 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2978 if( pPrior->pPrior==0 ){ 2979 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2980 } 2981 2982 /* Compute the limit registers */ 2983 computeLimitRegisters(pParse, p, labelEnd); 2984 if( p->iLimit && op==TK_ALL ){ 2985 regLimitA = ++pParse->nMem; 2986 regLimitB = ++pParse->nMem; 2987 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2988 regLimitA); 2989 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2990 }else{ 2991 regLimitA = regLimitB = 0; 2992 } 2993 sqlite3ExprDelete(db, p->pLimit); 2994 p->pLimit = 0; 2995 sqlite3ExprDelete(db, p->pOffset); 2996 p->pOffset = 0; 2997 2998 regAddrA = ++pParse->nMem; 2999 regAddrB = ++pParse->nMem; 3000 regOutA = ++pParse->nMem; 3001 regOutB = ++pParse->nMem; 3002 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3003 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3004 3005 /* Generate a coroutine to evaluate the SELECT statement to the 3006 ** left of the compound operator - the "A" select. 3007 */ 3008 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3009 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3010 VdbeComment((v, "left SELECT")); 3011 pPrior->iLimit = regLimitA; 3012 explainSetInteger(iSub1, pParse->iNextSelectId); 3013 sqlite3Select(pParse, pPrior, &destA); 3014 sqlite3VdbeEndCoroutine(v, regAddrA); 3015 sqlite3VdbeJumpHere(v, addr1); 3016 3017 /* Generate a coroutine to evaluate the SELECT statement on 3018 ** the right - the "B" select 3019 */ 3020 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3021 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3022 VdbeComment((v, "right SELECT")); 3023 savedLimit = p->iLimit; 3024 savedOffset = p->iOffset; 3025 p->iLimit = regLimitB; 3026 p->iOffset = 0; 3027 explainSetInteger(iSub2, pParse->iNextSelectId); 3028 sqlite3Select(pParse, p, &destB); 3029 p->iLimit = savedLimit; 3030 p->iOffset = savedOffset; 3031 sqlite3VdbeEndCoroutine(v, regAddrB); 3032 3033 /* Generate a subroutine that outputs the current row of the A 3034 ** select as the next output row of the compound select. 3035 */ 3036 VdbeNoopComment((v, "Output routine for A")); 3037 addrOutA = generateOutputSubroutine(pParse, 3038 p, &destA, pDest, regOutA, 3039 regPrev, pKeyDup, labelEnd); 3040 3041 /* Generate a subroutine that outputs the current row of the B 3042 ** select as the next output row of the compound select. 3043 */ 3044 if( op==TK_ALL || op==TK_UNION ){ 3045 VdbeNoopComment((v, "Output routine for B")); 3046 addrOutB = generateOutputSubroutine(pParse, 3047 p, &destB, pDest, regOutB, 3048 regPrev, pKeyDup, labelEnd); 3049 } 3050 sqlite3KeyInfoUnref(pKeyDup); 3051 3052 /* Generate a subroutine to run when the results from select A 3053 ** are exhausted and only data in select B remains. 3054 */ 3055 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3056 addrEofA_noB = addrEofA = labelEnd; 3057 }else{ 3058 VdbeNoopComment((v, "eof-A subroutine")); 3059 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3060 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3061 VdbeCoverage(v); 3062 sqlite3VdbeGoto(v, addrEofA); 3063 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3064 } 3065 3066 /* Generate a subroutine to run when the results from select B 3067 ** are exhausted and only data in select A remains. 3068 */ 3069 if( op==TK_INTERSECT ){ 3070 addrEofB = addrEofA; 3071 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3072 }else{ 3073 VdbeNoopComment((v, "eof-B subroutine")); 3074 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3075 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3076 sqlite3VdbeGoto(v, addrEofB); 3077 } 3078 3079 /* Generate code to handle the case of A<B 3080 */ 3081 VdbeNoopComment((v, "A-lt-B subroutine")); 3082 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3083 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3084 sqlite3VdbeGoto(v, labelCmpr); 3085 3086 /* Generate code to handle the case of A==B 3087 */ 3088 if( op==TK_ALL ){ 3089 addrAeqB = addrAltB; 3090 }else if( op==TK_INTERSECT ){ 3091 addrAeqB = addrAltB; 3092 addrAltB++; 3093 }else{ 3094 VdbeNoopComment((v, "A-eq-B subroutine")); 3095 addrAeqB = 3096 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3097 sqlite3VdbeGoto(v, labelCmpr); 3098 } 3099 3100 /* Generate code to handle the case of A>B 3101 */ 3102 VdbeNoopComment((v, "A-gt-B subroutine")); 3103 addrAgtB = sqlite3VdbeCurrentAddr(v); 3104 if( op==TK_ALL || op==TK_UNION ){ 3105 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3106 } 3107 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3108 sqlite3VdbeGoto(v, labelCmpr); 3109 3110 /* This code runs once to initialize everything. 3111 */ 3112 sqlite3VdbeJumpHere(v, addr1); 3113 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3114 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3115 3116 /* Implement the main merge loop 3117 */ 3118 sqlite3VdbeResolveLabel(v, labelCmpr); 3119 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3120 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3121 (char*)pKeyMerge, P4_KEYINFO); 3122 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3123 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3124 3125 /* Jump to the this point in order to terminate the query. 3126 */ 3127 sqlite3VdbeResolveLabel(v, labelEnd); 3128 3129 /* Reassembly the compound query so that it will be freed correctly 3130 ** by the calling function */ 3131 if( p->pPrior ){ 3132 sqlite3SelectDelete(db, p->pPrior); 3133 } 3134 p->pPrior = pPrior; 3135 pPrior->pNext = p; 3136 3137 /*** TBD: Insert subroutine calls to close cursors on incomplete 3138 **** subqueries ****/ 3139 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3140 return pParse->nErr!=0; 3141 } 3142 #endif 3143 3144 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3145 3146 /* An instance of the SubstContext object describes an substitution edit 3147 ** to be performed on a parse tree. 3148 ** 3149 ** All references to columns in table iTable are to be replaced by corresponding 3150 ** expressions in pEList. 3151 */ 3152 typedef struct SubstContext { 3153 Parse *pParse; /* The parsing context */ 3154 int iTable; /* Replace references to this table */ 3155 int iNewTable; /* New table number */ 3156 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3157 ExprList *pEList; /* Replacement expressions */ 3158 } SubstContext; 3159 3160 /* Forward Declarations */ 3161 static void substExprList(SubstContext*, ExprList*); 3162 static void substSelect(SubstContext*, Select*, int); 3163 3164 /* 3165 ** Scan through the expression pExpr. Replace every reference to 3166 ** a column in table number iTable with a copy of the iColumn-th 3167 ** entry in pEList. (But leave references to the ROWID column 3168 ** unchanged.) 3169 ** 3170 ** This routine is part of the flattening procedure. A subquery 3171 ** whose result set is defined by pEList appears as entry in the 3172 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3173 ** FORM clause entry is iTable. This routine makes the necessary 3174 ** changes to pExpr so that it refers directly to the source table 3175 ** of the subquery rather the result set of the subquery. 3176 */ 3177 static Expr *substExpr( 3178 SubstContext *pSubst, /* Description of the substitution */ 3179 Expr *pExpr /* Expr in which substitution occurs */ 3180 ){ 3181 if( pExpr==0 ) return 0; 3182 if( ExprHasProperty(pExpr, EP_FromJoin) 3183 && pExpr->iRightJoinTable==pSubst->iTable 3184 ){ 3185 pExpr->iRightJoinTable = pSubst->iNewTable; 3186 } 3187 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3188 if( pExpr->iColumn<0 ){ 3189 pExpr->op = TK_NULL; 3190 }else{ 3191 Expr *pNew; 3192 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3193 Expr ifNullRow; 3194 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3195 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3196 if( sqlite3ExprIsVector(pCopy) ){ 3197 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3198 }else{ 3199 sqlite3 *db = pSubst->pParse->db; 3200 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3201 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3202 ifNullRow.op = TK_IF_NULL_ROW; 3203 ifNullRow.pLeft = pCopy; 3204 ifNullRow.iTable = pSubst->iNewTable; 3205 pCopy = &ifNullRow; 3206 } 3207 pNew = sqlite3ExprDup(db, pCopy, 0); 3208 if( pNew && pSubst->isLeftJoin ){ 3209 ExprSetProperty(pNew, EP_CanBeNull); 3210 } 3211 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3212 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3213 ExprSetProperty(pNew, EP_FromJoin); 3214 } 3215 sqlite3ExprDelete(db, pExpr); 3216 pExpr = pNew; 3217 } 3218 } 3219 }else{ 3220 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3221 pExpr->iTable = pSubst->iNewTable; 3222 } 3223 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3224 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3225 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3226 substSelect(pSubst, pExpr->x.pSelect, 1); 3227 }else{ 3228 substExprList(pSubst, pExpr->x.pList); 3229 } 3230 } 3231 return pExpr; 3232 } 3233 static void substExprList( 3234 SubstContext *pSubst, /* Description of the substitution */ 3235 ExprList *pList /* List to scan and in which to make substitutes */ 3236 ){ 3237 int i; 3238 if( pList==0 ) return; 3239 for(i=0; i<pList->nExpr; i++){ 3240 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3241 } 3242 } 3243 static void substSelect( 3244 SubstContext *pSubst, /* Description of the substitution */ 3245 Select *p, /* SELECT statement in which to make substitutions */ 3246 int doPrior /* Do substitutes on p->pPrior too */ 3247 ){ 3248 SrcList *pSrc; 3249 struct SrcList_item *pItem; 3250 int i; 3251 if( !p ) return; 3252 do{ 3253 substExprList(pSubst, p->pEList); 3254 substExprList(pSubst, p->pGroupBy); 3255 substExprList(pSubst, p->pOrderBy); 3256 p->pHaving = substExpr(pSubst, p->pHaving); 3257 p->pWhere = substExpr(pSubst, p->pWhere); 3258 pSrc = p->pSrc; 3259 assert( pSrc!=0 ); 3260 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3261 substSelect(pSubst, pItem->pSelect, 1); 3262 if( pItem->fg.isTabFunc ){ 3263 substExprList(pSubst, pItem->u1.pFuncArg); 3264 } 3265 } 3266 }while( doPrior && (p = p->pPrior)!=0 ); 3267 } 3268 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3269 3270 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3271 /* 3272 ** This routine attempts to flatten subqueries as a performance optimization. 3273 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3274 ** 3275 ** To understand the concept of flattening, consider the following 3276 ** query: 3277 ** 3278 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3279 ** 3280 ** The default way of implementing this query is to execute the 3281 ** subquery first and store the results in a temporary table, then 3282 ** run the outer query on that temporary table. This requires two 3283 ** passes over the data. Furthermore, because the temporary table 3284 ** has no indices, the WHERE clause on the outer query cannot be 3285 ** optimized. 3286 ** 3287 ** This routine attempts to rewrite queries such as the above into 3288 ** a single flat select, like this: 3289 ** 3290 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3291 ** 3292 ** The code generated for this simplification gives the same result 3293 ** but only has to scan the data once. And because indices might 3294 ** exist on the table t1, a complete scan of the data might be 3295 ** avoided. 3296 ** 3297 ** Flattening is subject to the following constraints: 3298 ** 3299 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3300 ** The subquery and the outer query cannot both be aggregates. 3301 ** 3302 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3303 ** (2) If the subquery is an aggregate then 3304 ** (2a) the outer query must not be a join and 3305 ** (2b) the outer query must not use subqueries 3306 ** other than the one FROM-clause subquery that is a candidate 3307 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3308 ** from 2015-02-09.) 3309 ** 3310 ** (3) If the subquery is the right operand of a LEFT JOIN then 3311 ** (3a) the subquery may not be a join and 3312 ** (3b) the FROM clause of the subquery may not contain a virtual 3313 ** table and 3314 ** (3c) the outer query may not be an aggregate. 3315 ** 3316 ** (4) The subquery can not be DISTINCT. 3317 ** 3318 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3319 ** sub-queries that were excluded from this optimization. Restriction 3320 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3321 ** 3322 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3323 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3324 ** 3325 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3326 ** A FROM clause, consider adding a FROM clause with the special 3327 ** table sqlite_once that consists of a single row containing a 3328 ** single NULL. 3329 ** 3330 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3331 ** 3332 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3333 ** 3334 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3335 ** accidently carried the comment forward until 2014-09-15. Original 3336 ** constraint: "If the subquery is aggregate then the outer query 3337 ** may not use LIMIT." 3338 ** 3339 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3340 ** 3341 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3342 ** a separate restriction deriving from ticket #350. 3343 ** 3344 ** (13) The subquery and outer query may not both use LIMIT. 3345 ** 3346 ** (14) The subquery may not use OFFSET. 3347 ** 3348 ** (15) If the outer query is part of a compound select, then the 3349 ** subquery may not use LIMIT. 3350 ** (See ticket #2339 and ticket [02a8e81d44]). 3351 ** 3352 ** (16) If the outer query is aggregate, then the subquery may not 3353 ** use ORDER BY. (Ticket #2942) This used to not matter 3354 ** until we introduced the group_concat() function. 3355 ** 3356 ** (17) If the subquery is a compound select, then 3357 ** (17a) all compound operators must be a UNION ALL, and 3358 ** (17b) no terms within the subquery compound may be aggregate 3359 ** or DISTINCT, and 3360 ** (17c) every term within the subquery compound must have a FROM clause 3361 ** (17d) the outer query may not be 3362 ** (17d1) aggregate, or 3363 ** (17d2) DISTINCT, or 3364 ** (17d3) a join. 3365 ** 3366 ** The parent and sub-query may contain WHERE clauses. Subject to 3367 ** rules (11), (13) and (14), they may also contain ORDER BY, 3368 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3369 ** operator other than UNION ALL because all the other compound 3370 ** operators have an implied DISTINCT which is disallowed by 3371 ** restriction (4). 3372 ** 3373 ** Also, each component of the sub-query must return the same number 3374 ** of result columns. This is actually a requirement for any compound 3375 ** SELECT statement, but all the code here does is make sure that no 3376 ** such (illegal) sub-query is flattened. The caller will detect the 3377 ** syntax error and return a detailed message. 3378 ** 3379 ** (18) If the sub-query is a compound select, then all terms of the 3380 ** ORDER BY clause of the parent must be simple references to 3381 ** columns of the sub-query. 3382 ** 3383 ** (19) If the subquery uses LIMIT then the outer query may not 3384 ** have a WHERE clause. 3385 ** 3386 ** (20) If the sub-query is a compound select, then it must not use 3387 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3388 ** somewhat by saying that the terms of the ORDER BY clause must 3389 ** appear as unmodified result columns in the outer query. But we 3390 ** have other optimizations in mind to deal with that case. 3391 ** 3392 ** (21) If the subquery uses LIMIT then the outer query may not be 3393 ** DISTINCT. (See ticket [752e1646fc]). 3394 ** 3395 ** (22) The subquery may not be a recursive CTE. 3396 ** 3397 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3398 ** a recursive CTE, then the sub-query may not be a compound query. 3399 ** This restriction is because transforming the 3400 ** parent to a compound query confuses the code that handles 3401 ** recursive queries in multiSelect(). 3402 ** 3403 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3404 ** The subquery may not be an aggregate that uses the built-in min() or 3405 ** or max() functions. (Without this restriction, a query like: 3406 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3407 ** return the value X for which Y was maximal.) 3408 ** 3409 ** 3410 ** In this routine, the "p" parameter is a pointer to the outer query. 3411 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3412 ** uses aggregates. 3413 ** 3414 ** If flattening is not attempted, this routine is a no-op and returns 0. 3415 ** If flattening is attempted this routine returns 1. 3416 ** 3417 ** All of the expression analysis must occur on both the outer query and 3418 ** the subquery before this routine runs. 3419 */ 3420 static int flattenSubquery( 3421 Parse *pParse, /* Parsing context */ 3422 Select *p, /* The parent or outer SELECT statement */ 3423 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3424 int isAgg /* True if outer SELECT uses aggregate functions */ 3425 ){ 3426 const char *zSavedAuthContext = pParse->zAuthContext; 3427 Select *pParent; /* Current UNION ALL term of the other query */ 3428 Select *pSub; /* The inner query or "subquery" */ 3429 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3430 SrcList *pSrc; /* The FROM clause of the outer query */ 3431 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3432 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3433 int iNewParent = -1;/* Replacement table for iParent */ 3434 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3435 int i; /* Loop counter */ 3436 Expr *pWhere; /* The WHERE clause */ 3437 struct SrcList_item *pSubitem; /* The subquery */ 3438 sqlite3 *db = pParse->db; 3439 3440 /* Check to see if flattening is permitted. Return 0 if not. 3441 */ 3442 assert( p!=0 ); 3443 assert( p->pPrior==0 ); 3444 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3445 pSrc = p->pSrc; 3446 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3447 pSubitem = &pSrc->a[iFrom]; 3448 iParent = pSubitem->iCursor; 3449 pSub = pSubitem->pSelect; 3450 assert( pSub!=0 ); 3451 3452 pSubSrc = pSub->pSrc; 3453 assert( pSubSrc ); 3454 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3455 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3456 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3457 ** became arbitrary expressions, we were forced to add restrictions (13) 3458 ** and (14). */ 3459 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3460 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3461 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3462 return 0; /* Restriction (15) */ 3463 } 3464 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3465 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3466 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3467 return 0; /* Restrictions (8)(9) */ 3468 } 3469 if( p->pOrderBy && pSub->pOrderBy ){ 3470 return 0; /* Restriction (11) */ 3471 } 3472 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3473 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3474 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3475 return 0; /* Restriction (21) */ 3476 } 3477 if( pSub->selFlags & (SF_Recursive) ){ 3478 return 0; /* Restrictions (22) */ 3479 } 3480 3481 /* 3482 ** If the subquery is the right operand of a LEFT JOIN, then the 3483 ** subquery may not be a join itself (3a). Example of why this is not 3484 ** allowed: 3485 ** 3486 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3487 ** 3488 ** If we flatten the above, we would get 3489 ** 3490 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3491 ** 3492 ** which is not at all the same thing. 3493 ** 3494 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3495 ** query cannot be an aggregate. (3c) This is an artifact of the way 3496 ** aggregates are processed - there is no mechanism to determine if 3497 ** the LEFT JOIN table should be all-NULL. 3498 ** 3499 ** See also tickets #306, #350, and #3300. 3500 */ 3501 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3502 isLeftJoin = 1; 3503 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3504 /* (3a) (3c) (3b) */ 3505 return 0; 3506 } 3507 } 3508 #ifdef SQLITE_EXTRA_IFNULLROW 3509 else if( iFrom>0 && !isAgg ){ 3510 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3511 ** every reference to any result column from subquery in a join, even 3512 ** though they are not necessary. This will stress-test the OP_IfNullRow 3513 ** opcode. */ 3514 isLeftJoin = -1; 3515 } 3516 #endif 3517 3518 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3519 ** use only the UNION ALL operator. And none of the simple select queries 3520 ** that make up the compound SELECT are allowed to be aggregate or distinct 3521 ** queries. 3522 */ 3523 if( pSub->pPrior ){ 3524 if( pSub->pOrderBy ){ 3525 return 0; /* Restriction (20) */ 3526 } 3527 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3528 return 0; /* (17d1), (17d2), or (17d3) */ 3529 } 3530 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3531 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3532 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3533 assert( pSub->pSrc!=0 ); 3534 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3535 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3536 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3537 || pSub1->pSrc->nSrc<1 /* (17c) */ 3538 ){ 3539 return 0; 3540 } 3541 testcase( pSub1->pSrc->nSrc>1 ); 3542 } 3543 3544 /* Restriction (18). */ 3545 if( p->pOrderBy ){ 3546 int ii; 3547 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3548 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3549 } 3550 } 3551 } 3552 3553 /* Ex-restriction (23): 3554 ** The only way that the recursive part of a CTE can contain a compound 3555 ** subquery is for the subquery to be one term of a join. But if the 3556 ** subquery is a join, then the flattening has already been stopped by 3557 ** restriction (17d3) 3558 */ 3559 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3560 3561 /***** If we reach this point, flattening is permitted. *****/ 3562 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3563 pSub->zSelName, pSub, iFrom)); 3564 3565 /* Authorize the subquery */ 3566 pParse->zAuthContext = pSubitem->zName; 3567 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3568 testcase( i==SQLITE_DENY ); 3569 pParse->zAuthContext = zSavedAuthContext; 3570 3571 /* If the sub-query is a compound SELECT statement, then (by restrictions 3572 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3573 ** be of the form: 3574 ** 3575 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3576 ** 3577 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3578 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3579 ** OFFSET clauses and joins them to the left-hand-side of the original 3580 ** using UNION ALL operators. In this case N is the number of simple 3581 ** select statements in the compound sub-query. 3582 ** 3583 ** Example: 3584 ** 3585 ** SELECT a+1 FROM ( 3586 ** SELECT x FROM tab 3587 ** UNION ALL 3588 ** SELECT y FROM tab 3589 ** UNION ALL 3590 ** SELECT abs(z*2) FROM tab2 3591 ** ) WHERE a!=5 ORDER BY 1 3592 ** 3593 ** Transformed into: 3594 ** 3595 ** SELECT x+1 FROM tab WHERE x+1!=5 3596 ** UNION ALL 3597 ** SELECT y+1 FROM tab WHERE y+1!=5 3598 ** UNION ALL 3599 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3600 ** ORDER BY 1 3601 ** 3602 ** We call this the "compound-subquery flattening". 3603 */ 3604 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3605 Select *pNew; 3606 ExprList *pOrderBy = p->pOrderBy; 3607 Expr *pLimit = p->pLimit; 3608 Expr *pOffset = p->pOffset; 3609 Select *pPrior = p->pPrior; 3610 p->pOrderBy = 0; 3611 p->pSrc = 0; 3612 p->pPrior = 0; 3613 p->pLimit = 0; 3614 p->pOffset = 0; 3615 pNew = sqlite3SelectDup(db, p, 0); 3616 sqlite3SelectSetName(pNew, pSub->zSelName); 3617 p->pOffset = pOffset; 3618 p->pLimit = pLimit; 3619 p->pOrderBy = pOrderBy; 3620 p->pSrc = pSrc; 3621 p->op = TK_ALL; 3622 if( pNew==0 ){ 3623 p->pPrior = pPrior; 3624 }else{ 3625 pNew->pPrior = pPrior; 3626 if( pPrior ) pPrior->pNext = pNew; 3627 pNew->pNext = p; 3628 p->pPrior = pNew; 3629 SELECTTRACE(2,pParse,p, 3630 ("compound-subquery flattener creates %s.%p as peer\n", 3631 pNew->zSelName, pNew)); 3632 } 3633 if( db->mallocFailed ) return 1; 3634 } 3635 3636 /* Begin flattening the iFrom-th entry of the FROM clause 3637 ** in the outer query. 3638 */ 3639 pSub = pSub1 = pSubitem->pSelect; 3640 3641 /* Delete the transient table structure associated with the 3642 ** subquery 3643 */ 3644 sqlite3DbFree(db, pSubitem->zDatabase); 3645 sqlite3DbFree(db, pSubitem->zName); 3646 sqlite3DbFree(db, pSubitem->zAlias); 3647 pSubitem->zDatabase = 0; 3648 pSubitem->zName = 0; 3649 pSubitem->zAlias = 0; 3650 pSubitem->pSelect = 0; 3651 3652 /* Defer deleting the Table object associated with the 3653 ** subquery until code generation is 3654 ** complete, since there may still exist Expr.pTab entries that 3655 ** refer to the subquery even after flattening. Ticket #3346. 3656 ** 3657 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3658 */ 3659 if( ALWAYS(pSubitem->pTab!=0) ){ 3660 Table *pTabToDel = pSubitem->pTab; 3661 if( pTabToDel->nTabRef==1 ){ 3662 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3663 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3664 pToplevel->pZombieTab = pTabToDel; 3665 }else{ 3666 pTabToDel->nTabRef--; 3667 } 3668 pSubitem->pTab = 0; 3669 } 3670 3671 /* The following loop runs once for each term in a compound-subquery 3672 ** flattening (as described above). If we are doing a different kind 3673 ** of flattening - a flattening other than a compound-subquery flattening - 3674 ** then this loop only runs once. 3675 ** 3676 ** This loop moves all of the FROM elements of the subquery into the 3677 ** the FROM clause of the outer query. Before doing this, remember 3678 ** the cursor number for the original outer query FROM element in 3679 ** iParent. The iParent cursor will never be used. Subsequent code 3680 ** will scan expressions looking for iParent references and replace 3681 ** those references with expressions that resolve to the subquery FROM 3682 ** elements we are now copying in. 3683 */ 3684 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3685 int nSubSrc; 3686 u8 jointype = 0; 3687 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3688 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3689 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3690 3691 if( pSrc ){ 3692 assert( pParent==p ); /* First time through the loop */ 3693 jointype = pSubitem->fg.jointype; 3694 }else{ 3695 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3696 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3697 if( pSrc==0 ){ 3698 assert( db->mallocFailed ); 3699 break; 3700 } 3701 } 3702 3703 /* The subquery uses a single slot of the FROM clause of the outer 3704 ** query. If the subquery has more than one element in its FROM clause, 3705 ** then expand the outer query to make space for it to hold all elements 3706 ** of the subquery. 3707 ** 3708 ** Example: 3709 ** 3710 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3711 ** 3712 ** The outer query has 3 slots in its FROM clause. One slot of the 3713 ** outer query (the middle slot) is used by the subquery. The next 3714 ** block of code will expand the outer query FROM clause to 4 slots. 3715 ** The middle slot is expanded to two slots in order to make space 3716 ** for the two elements in the FROM clause of the subquery. 3717 */ 3718 if( nSubSrc>1 ){ 3719 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3720 if( db->mallocFailed ){ 3721 break; 3722 } 3723 } 3724 3725 /* Transfer the FROM clause terms from the subquery into the 3726 ** outer query. 3727 */ 3728 for(i=0; i<nSubSrc; i++){ 3729 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3730 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3731 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3732 iNewParent = pSubSrc->a[i].iCursor; 3733 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3734 } 3735 pSrc->a[iFrom].fg.jointype = jointype; 3736 3737 /* Now begin substituting subquery result set expressions for 3738 ** references to the iParent in the outer query. 3739 ** 3740 ** Example: 3741 ** 3742 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3743 ** \ \_____________ subquery __________/ / 3744 ** \_____________________ outer query ______________________________/ 3745 ** 3746 ** We look at every expression in the outer query and every place we see 3747 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3748 */ 3749 if( pSub->pOrderBy ){ 3750 /* At this point, any non-zero iOrderByCol values indicate that the 3751 ** ORDER BY column expression is identical to the iOrderByCol'th 3752 ** expression returned by SELECT statement pSub. Since these values 3753 ** do not necessarily correspond to columns in SELECT statement pParent, 3754 ** zero them before transfering the ORDER BY clause. 3755 ** 3756 ** Not doing this may cause an error if a subsequent call to this 3757 ** function attempts to flatten a compound sub-query into pParent 3758 ** (the only way this can happen is if the compound sub-query is 3759 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3760 ExprList *pOrderBy = pSub->pOrderBy; 3761 for(i=0; i<pOrderBy->nExpr; i++){ 3762 pOrderBy->a[i].u.x.iOrderByCol = 0; 3763 } 3764 assert( pParent->pOrderBy==0 ); 3765 assert( pSub->pPrior==0 ); 3766 pParent->pOrderBy = pOrderBy; 3767 pSub->pOrderBy = 0; 3768 } 3769 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3770 if( isLeftJoin>0 ){ 3771 setJoinExpr(pWhere, iNewParent); 3772 } 3773 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3774 if( db->mallocFailed==0 ){ 3775 SubstContext x; 3776 x.pParse = pParse; 3777 x.iTable = iParent; 3778 x.iNewTable = iNewParent; 3779 x.isLeftJoin = isLeftJoin; 3780 x.pEList = pSub->pEList; 3781 substSelect(&x, pParent, 0); 3782 } 3783 3784 /* The flattened query is distinct if either the inner or the 3785 ** outer query is distinct. 3786 */ 3787 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3788 3789 /* 3790 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3791 ** 3792 ** One is tempted to try to add a and b to combine the limits. But this 3793 ** does not work if either limit is negative. 3794 */ 3795 if( pSub->pLimit ){ 3796 pParent->pLimit = pSub->pLimit; 3797 pSub->pLimit = 0; 3798 } 3799 } 3800 3801 /* Finially, delete what is left of the subquery and return 3802 ** success. 3803 */ 3804 sqlite3SelectDelete(db, pSub1); 3805 3806 #if SELECTTRACE_ENABLED 3807 if( sqlite3SelectTrace & 0x100 ){ 3808 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3809 sqlite3TreeViewSelect(0, p, 0); 3810 } 3811 #endif 3812 3813 return 1; 3814 } 3815 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3816 3817 3818 3819 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3820 /* 3821 ** Make copies of relevant WHERE clause terms of the outer query into 3822 ** the WHERE clause of subquery. Example: 3823 ** 3824 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3825 ** 3826 ** Transformed into: 3827 ** 3828 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3829 ** WHERE x=5 AND y=10; 3830 ** 3831 ** The hope is that the terms added to the inner query will make it more 3832 ** efficient. 3833 ** 3834 ** Do not attempt this optimization if: 3835 ** 3836 ** (1) (** This restriction was removed on 2017-09-29. We used to 3837 ** disallow this optimization for aggregate subqueries, but now 3838 ** it is allowed by putting the extra terms on the HAVING clause. 3839 ** The added HAVING clause is pointless if the subquery lacks 3840 ** a GROUP BY clause. But such a HAVING clause is also harmless 3841 ** so there does not appear to be any reason to add extra logic 3842 ** to suppress it. **) 3843 ** 3844 ** (2) The inner query is the recursive part of a common table expression. 3845 ** 3846 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3847 ** close would change the meaning of the LIMIT). 3848 ** 3849 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3850 ** enforces this restriction since this routine does not have enough 3851 ** information to know.) 3852 ** 3853 ** (5) The WHERE clause expression originates in the ON or USING clause 3854 ** of a LEFT JOIN. 3855 ** 3856 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3857 ** terms are duplicated into the subquery. 3858 */ 3859 static int pushDownWhereTerms( 3860 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3861 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3862 Expr *pWhere, /* The WHERE clause of the outer query */ 3863 int iCursor /* Cursor number of the subquery */ 3864 ){ 3865 Expr *pNew; 3866 int nChng = 0; 3867 if( pWhere==0 ) return 0; 3868 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 3869 3870 #ifdef SQLITE_DEBUG 3871 /* Only the first term of a compound can have a WITH clause. But make 3872 ** sure no other terms are marked SF_Recursive in case something changes 3873 ** in the future. 3874 */ 3875 { 3876 Select *pX; 3877 for(pX=pSubq; pX; pX=pX->pPrior){ 3878 assert( (pX->selFlags & (SF_Recursive))==0 ); 3879 } 3880 } 3881 #endif 3882 3883 if( pSubq->pLimit!=0 ){ 3884 return 0; /* restriction (3) */ 3885 } 3886 while( pWhere->op==TK_AND ){ 3887 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); 3888 pWhere = pWhere->pLeft; 3889 } 3890 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction (5) */ 3891 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3892 nChng++; 3893 while( pSubq ){ 3894 SubstContext x; 3895 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3896 x.pParse = pParse; 3897 x.iTable = iCursor; 3898 x.iNewTable = iCursor; 3899 x.isLeftJoin = 0; 3900 x.pEList = pSubq->pEList; 3901 pNew = substExpr(&x, pNew); 3902 if( pSubq->selFlags & SF_Aggregate ){ 3903 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 3904 }else{ 3905 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3906 } 3907 pSubq = pSubq->pPrior; 3908 } 3909 } 3910 return nChng; 3911 } 3912 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3913 3914 /* 3915 ** The pFunc is the only aggregate function in the query. Check to see 3916 ** if the query is a candidate for the min/max optimization. 3917 ** 3918 ** If the query is a candidate for the min/max optimization, then set 3919 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 3920 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 3921 ** whether pFunc is a min() or max() function. 3922 ** 3923 ** If the query is not a candidate for the min/max optimization, return 3924 ** WHERE_ORDERBY_NORMAL (which must be zero). 3925 ** 3926 ** This routine must be called after aggregate functions have been 3927 ** located but before their arguments have been subjected to aggregate 3928 ** analysis. 3929 */ 3930 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 3931 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3932 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 3933 const char *zFunc; /* Name of aggregate function pFunc */ 3934 ExprList *pOrderBy; 3935 u8 sortOrder; 3936 3937 assert( *ppMinMax==0 ); 3938 assert( pFunc->op==TK_AGG_FUNCTION ); 3939 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 3940 zFunc = pFunc->u.zToken; 3941 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3942 eRet = WHERE_ORDERBY_MIN; 3943 sortOrder = SQLITE_SO_ASC; 3944 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3945 eRet = WHERE_ORDERBY_MAX; 3946 sortOrder = SQLITE_SO_DESC; 3947 }else{ 3948 return eRet; 3949 } 3950 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 3951 assert( pOrderBy!=0 || db->mallocFailed ); 3952 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 3953 return eRet; 3954 } 3955 3956 /* 3957 ** The select statement passed as the first argument is an aggregate query. 3958 ** The second argument is the associated aggregate-info object. This 3959 ** function tests if the SELECT is of the form: 3960 ** 3961 ** SELECT count(*) FROM <tbl> 3962 ** 3963 ** where table is a database table, not a sub-select or view. If the query 3964 ** does match this pattern, then a pointer to the Table object representing 3965 ** <tbl> is returned. Otherwise, 0 is returned. 3966 */ 3967 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3968 Table *pTab; 3969 Expr *pExpr; 3970 3971 assert( !p->pGroupBy ); 3972 3973 if( p->pWhere || p->pEList->nExpr!=1 3974 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3975 ){ 3976 return 0; 3977 } 3978 pTab = p->pSrc->a[0].pTab; 3979 pExpr = p->pEList->a[0].pExpr; 3980 assert( pTab && !pTab->pSelect && pExpr ); 3981 3982 if( IsVirtual(pTab) ) return 0; 3983 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3984 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3985 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3986 if( pExpr->flags&EP_Distinct ) return 0; 3987 3988 return pTab; 3989 } 3990 3991 /* 3992 ** If the source-list item passed as an argument was augmented with an 3993 ** INDEXED BY clause, then try to locate the specified index. If there 3994 ** was such a clause and the named index cannot be found, return 3995 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3996 ** pFrom->pIndex and return SQLITE_OK. 3997 */ 3998 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3999 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4000 Table *pTab = pFrom->pTab; 4001 char *zIndexedBy = pFrom->u1.zIndexedBy; 4002 Index *pIdx; 4003 for(pIdx=pTab->pIndex; 4004 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4005 pIdx=pIdx->pNext 4006 ); 4007 if( !pIdx ){ 4008 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4009 pParse->checkSchema = 1; 4010 return SQLITE_ERROR; 4011 } 4012 pFrom->pIBIndex = pIdx; 4013 } 4014 return SQLITE_OK; 4015 } 4016 /* 4017 ** Detect compound SELECT statements that use an ORDER BY clause with 4018 ** an alternative collating sequence. 4019 ** 4020 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4021 ** 4022 ** These are rewritten as a subquery: 4023 ** 4024 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4025 ** ORDER BY ... COLLATE ... 4026 ** 4027 ** This transformation is necessary because the multiSelectOrderBy() routine 4028 ** above that generates the code for a compound SELECT with an ORDER BY clause 4029 ** uses a merge algorithm that requires the same collating sequence on the 4030 ** result columns as on the ORDER BY clause. See ticket 4031 ** http://www.sqlite.org/src/info/6709574d2a 4032 ** 4033 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4034 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4035 ** there are COLLATE terms in the ORDER BY. 4036 */ 4037 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4038 int i; 4039 Select *pNew; 4040 Select *pX; 4041 sqlite3 *db; 4042 struct ExprList_item *a; 4043 SrcList *pNewSrc; 4044 Parse *pParse; 4045 Token dummy; 4046 4047 if( p->pPrior==0 ) return WRC_Continue; 4048 if( p->pOrderBy==0 ) return WRC_Continue; 4049 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4050 if( pX==0 ) return WRC_Continue; 4051 a = p->pOrderBy->a; 4052 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4053 if( a[i].pExpr->flags & EP_Collate ) break; 4054 } 4055 if( i<0 ) return WRC_Continue; 4056 4057 /* If we reach this point, that means the transformation is required. */ 4058 4059 pParse = pWalker->pParse; 4060 db = pParse->db; 4061 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4062 if( pNew==0 ) return WRC_Abort; 4063 memset(&dummy, 0, sizeof(dummy)); 4064 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4065 if( pNewSrc==0 ) return WRC_Abort; 4066 *pNew = *p; 4067 p->pSrc = pNewSrc; 4068 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4069 p->op = TK_SELECT; 4070 p->pWhere = 0; 4071 pNew->pGroupBy = 0; 4072 pNew->pHaving = 0; 4073 pNew->pOrderBy = 0; 4074 p->pPrior = 0; 4075 p->pNext = 0; 4076 p->pWith = 0; 4077 p->selFlags &= ~SF_Compound; 4078 assert( (p->selFlags & SF_Converted)==0 ); 4079 p->selFlags |= SF_Converted; 4080 assert( pNew->pPrior!=0 ); 4081 pNew->pPrior->pNext = pNew; 4082 pNew->pLimit = 0; 4083 pNew->pOffset = 0; 4084 return WRC_Continue; 4085 } 4086 4087 /* 4088 ** Check to see if the FROM clause term pFrom has table-valued function 4089 ** arguments. If it does, leave an error message in pParse and return 4090 ** non-zero, since pFrom is not allowed to be a table-valued function. 4091 */ 4092 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4093 if( pFrom->fg.isTabFunc ){ 4094 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4095 return 1; 4096 } 4097 return 0; 4098 } 4099 4100 #ifndef SQLITE_OMIT_CTE 4101 /* 4102 ** Argument pWith (which may be NULL) points to a linked list of nested 4103 ** WITH contexts, from inner to outermost. If the table identified by 4104 ** FROM clause element pItem is really a common-table-expression (CTE) 4105 ** then return a pointer to the CTE definition for that table. Otherwise 4106 ** return NULL. 4107 ** 4108 ** If a non-NULL value is returned, set *ppContext to point to the With 4109 ** object that the returned CTE belongs to. 4110 */ 4111 static struct Cte *searchWith( 4112 With *pWith, /* Current innermost WITH clause */ 4113 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4114 With **ppContext /* OUT: WITH clause return value belongs to */ 4115 ){ 4116 const char *zName; 4117 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4118 With *p; 4119 for(p=pWith; p; p=p->pOuter){ 4120 int i; 4121 for(i=0; i<p->nCte; i++){ 4122 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4123 *ppContext = p; 4124 return &p->a[i]; 4125 } 4126 } 4127 } 4128 } 4129 return 0; 4130 } 4131 4132 /* The code generator maintains a stack of active WITH clauses 4133 ** with the inner-most WITH clause being at the top of the stack. 4134 ** 4135 ** This routine pushes the WITH clause passed as the second argument 4136 ** onto the top of the stack. If argument bFree is true, then this 4137 ** WITH clause will never be popped from the stack. In this case it 4138 ** should be freed along with the Parse object. In other cases, when 4139 ** bFree==0, the With object will be freed along with the SELECT 4140 ** statement with which it is associated. 4141 */ 4142 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4143 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4144 if( pWith ){ 4145 assert( pParse->pWith!=pWith ); 4146 pWith->pOuter = pParse->pWith; 4147 pParse->pWith = pWith; 4148 if( bFree ) pParse->pWithToFree = pWith; 4149 } 4150 } 4151 4152 /* 4153 ** This function checks if argument pFrom refers to a CTE declared by 4154 ** a WITH clause on the stack currently maintained by the parser. And, 4155 ** if currently processing a CTE expression, if it is a recursive 4156 ** reference to the current CTE. 4157 ** 4158 ** If pFrom falls into either of the two categories above, pFrom->pTab 4159 ** and other fields are populated accordingly. The caller should check 4160 ** (pFrom->pTab!=0) to determine whether or not a successful match 4161 ** was found. 4162 ** 4163 ** Whether or not a match is found, SQLITE_OK is returned if no error 4164 ** occurs. If an error does occur, an error message is stored in the 4165 ** parser and some error code other than SQLITE_OK returned. 4166 */ 4167 static int withExpand( 4168 Walker *pWalker, 4169 struct SrcList_item *pFrom 4170 ){ 4171 Parse *pParse = pWalker->pParse; 4172 sqlite3 *db = pParse->db; 4173 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4174 With *pWith; /* WITH clause that pCte belongs to */ 4175 4176 assert( pFrom->pTab==0 ); 4177 4178 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4179 if( pCte ){ 4180 Table *pTab; 4181 ExprList *pEList; 4182 Select *pSel; 4183 Select *pLeft; /* Left-most SELECT statement */ 4184 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4185 With *pSavedWith; /* Initial value of pParse->pWith */ 4186 4187 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4188 ** recursive reference to CTE pCte. Leave an error in pParse and return 4189 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4190 ** In this case, proceed. */ 4191 if( pCte->zCteErr ){ 4192 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4193 return SQLITE_ERROR; 4194 } 4195 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4196 4197 assert( pFrom->pTab==0 ); 4198 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4199 if( pTab==0 ) return WRC_Abort; 4200 pTab->nTabRef = 1; 4201 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4202 pTab->iPKey = -1; 4203 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4204 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4205 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4206 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4207 assert( pFrom->pSelect ); 4208 4209 /* Check if this is a recursive CTE. */ 4210 pSel = pFrom->pSelect; 4211 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4212 if( bMayRecursive ){ 4213 int i; 4214 SrcList *pSrc = pFrom->pSelect->pSrc; 4215 for(i=0; i<pSrc->nSrc; i++){ 4216 struct SrcList_item *pItem = &pSrc->a[i]; 4217 if( pItem->zDatabase==0 4218 && pItem->zName!=0 4219 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4220 ){ 4221 pItem->pTab = pTab; 4222 pItem->fg.isRecursive = 1; 4223 pTab->nTabRef++; 4224 pSel->selFlags |= SF_Recursive; 4225 } 4226 } 4227 } 4228 4229 /* Only one recursive reference is permitted. */ 4230 if( pTab->nTabRef>2 ){ 4231 sqlite3ErrorMsg( 4232 pParse, "multiple references to recursive table: %s", pCte->zName 4233 ); 4234 return SQLITE_ERROR; 4235 } 4236 assert( pTab->nTabRef==1 || 4237 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4238 4239 pCte->zCteErr = "circular reference: %s"; 4240 pSavedWith = pParse->pWith; 4241 pParse->pWith = pWith; 4242 if( bMayRecursive ){ 4243 Select *pPrior = pSel->pPrior; 4244 assert( pPrior->pWith==0 ); 4245 pPrior->pWith = pSel->pWith; 4246 sqlite3WalkSelect(pWalker, pPrior); 4247 pPrior->pWith = 0; 4248 }else{ 4249 sqlite3WalkSelect(pWalker, pSel); 4250 } 4251 pParse->pWith = pWith; 4252 4253 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4254 pEList = pLeft->pEList; 4255 if( pCte->pCols ){ 4256 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4257 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4258 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4259 ); 4260 pParse->pWith = pSavedWith; 4261 return SQLITE_ERROR; 4262 } 4263 pEList = pCte->pCols; 4264 } 4265 4266 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4267 if( bMayRecursive ){ 4268 if( pSel->selFlags & SF_Recursive ){ 4269 pCte->zCteErr = "multiple recursive references: %s"; 4270 }else{ 4271 pCte->zCteErr = "recursive reference in a subquery: %s"; 4272 } 4273 sqlite3WalkSelect(pWalker, pSel); 4274 } 4275 pCte->zCteErr = 0; 4276 pParse->pWith = pSavedWith; 4277 } 4278 4279 return SQLITE_OK; 4280 } 4281 #endif 4282 4283 #ifndef SQLITE_OMIT_CTE 4284 /* 4285 ** If the SELECT passed as the second argument has an associated WITH 4286 ** clause, pop it from the stack stored as part of the Parse object. 4287 ** 4288 ** This function is used as the xSelectCallback2() callback by 4289 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4290 ** names and other FROM clause elements. 4291 */ 4292 static void selectPopWith(Walker *pWalker, Select *p){ 4293 Parse *pParse = pWalker->pParse; 4294 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4295 With *pWith = findRightmost(p)->pWith; 4296 if( pWith!=0 ){ 4297 assert( pParse->pWith==pWith ); 4298 pParse->pWith = pWith->pOuter; 4299 } 4300 } 4301 } 4302 #else 4303 #define selectPopWith 0 4304 #endif 4305 4306 /* 4307 ** This routine is a Walker callback for "expanding" a SELECT statement. 4308 ** "Expanding" means to do the following: 4309 ** 4310 ** (1) Make sure VDBE cursor numbers have been assigned to every 4311 ** element of the FROM clause. 4312 ** 4313 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4314 ** defines FROM clause. When views appear in the FROM clause, 4315 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4316 ** that implements the view. A copy is made of the view's SELECT 4317 ** statement so that we can freely modify or delete that statement 4318 ** without worrying about messing up the persistent representation 4319 ** of the view. 4320 ** 4321 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4322 ** on joins and the ON and USING clause of joins. 4323 ** 4324 ** (4) Scan the list of columns in the result set (pEList) looking 4325 ** for instances of the "*" operator or the TABLE.* operator. 4326 ** If found, expand each "*" to be every column in every table 4327 ** and TABLE.* to be every column in TABLE. 4328 ** 4329 */ 4330 static int selectExpander(Walker *pWalker, Select *p){ 4331 Parse *pParse = pWalker->pParse; 4332 int i, j, k; 4333 SrcList *pTabList; 4334 ExprList *pEList; 4335 struct SrcList_item *pFrom; 4336 sqlite3 *db = pParse->db; 4337 Expr *pE, *pRight, *pExpr; 4338 u16 selFlags = p->selFlags; 4339 u32 elistFlags = 0; 4340 4341 p->selFlags |= SF_Expanded; 4342 if( db->mallocFailed ){ 4343 return WRC_Abort; 4344 } 4345 assert( p->pSrc!=0 ); 4346 if( (selFlags & SF_Expanded)!=0 ){ 4347 return WRC_Prune; 4348 } 4349 pTabList = p->pSrc; 4350 pEList = p->pEList; 4351 if( OK_IF_ALWAYS_TRUE(p->pWith) ){ 4352 sqlite3WithPush(pParse, p->pWith, 0); 4353 } 4354 4355 /* Make sure cursor numbers have been assigned to all entries in 4356 ** the FROM clause of the SELECT statement. 4357 */ 4358 sqlite3SrcListAssignCursors(pParse, pTabList); 4359 4360 /* Look up every table named in the FROM clause of the select. If 4361 ** an entry of the FROM clause is a subquery instead of a table or view, 4362 ** then create a transient table structure to describe the subquery. 4363 */ 4364 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4365 Table *pTab; 4366 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4367 if( pFrom->fg.isRecursive ) continue; 4368 assert( pFrom->pTab==0 ); 4369 #ifndef SQLITE_OMIT_CTE 4370 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4371 if( pFrom->pTab ) {} else 4372 #endif 4373 if( pFrom->zName==0 ){ 4374 #ifndef SQLITE_OMIT_SUBQUERY 4375 Select *pSel = pFrom->pSelect; 4376 /* A sub-query in the FROM clause of a SELECT */ 4377 assert( pSel!=0 ); 4378 assert( pFrom->pTab==0 ); 4379 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4380 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4381 if( pTab==0 ) return WRC_Abort; 4382 pTab->nTabRef = 1; 4383 if( pFrom->zAlias ){ 4384 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias); 4385 }else{ 4386 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab); 4387 } 4388 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4389 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4390 pTab->iPKey = -1; 4391 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4392 pTab->tabFlags |= TF_Ephemeral; 4393 #endif 4394 }else{ 4395 /* An ordinary table or view name in the FROM clause */ 4396 assert( pFrom->pTab==0 ); 4397 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4398 if( pTab==0 ) return WRC_Abort; 4399 if( pTab->nTabRef>=0xffff ){ 4400 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4401 pTab->zName); 4402 pFrom->pTab = 0; 4403 return WRC_Abort; 4404 } 4405 pTab->nTabRef++; 4406 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4407 return WRC_Abort; 4408 } 4409 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4410 if( IsVirtual(pTab) || pTab->pSelect ){ 4411 i16 nCol; 4412 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4413 assert( pFrom->pSelect==0 ); 4414 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4415 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4416 nCol = pTab->nCol; 4417 pTab->nCol = -1; 4418 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4419 pTab->nCol = nCol; 4420 } 4421 #endif 4422 } 4423 4424 /* Locate the index named by the INDEXED BY clause, if any. */ 4425 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4426 return WRC_Abort; 4427 } 4428 } 4429 4430 /* Process NATURAL keywords, and ON and USING clauses of joins. 4431 */ 4432 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4433 return WRC_Abort; 4434 } 4435 4436 /* For every "*" that occurs in the column list, insert the names of 4437 ** all columns in all tables. And for every TABLE.* insert the names 4438 ** of all columns in TABLE. The parser inserted a special expression 4439 ** with the TK_ASTERISK operator for each "*" that it found in the column 4440 ** list. The following code just has to locate the TK_ASTERISK 4441 ** expressions and expand each one to the list of all columns in 4442 ** all tables. 4443 ** 4444 ** The first loop just checks to see if there are any "*" operators 4445 ** that need expanding. 4446 */ 4447 for(k=0; k<pEList->nExpr; k++){ 4448 pE = pEList->a[k].pExpr; 4449 if( pE->op==TK_ASTERISK ) break; 4450 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4451 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4452 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4453 elistFlags |= pE->flags; 4454 } 4455 if( k<pEList->nExpr ){ 4456 /* 4457 ** If we get here it means the result set contains one or more "*" 4458 ** operators that need to be expanded. Loop through each expression 4459 ** in the result set and expand them one by one. 4460 */ 4461 struct ExprList_item *a = pEList->a; 4462 ExprList *pNew = 0; 4463 int flags = pParse->db->flags; 4464 int longNames = (flags & SQLITE_FullColNames)!=0 4465 && (flags & SQLITE_ShortColNames)==0; 4466 4467 for(k=0; k<pEList->nExpr; k++){ 4468 pE = a[k].pExpr; 4469 elistFlags |= pE->flags; 4470 pRight = pE->pRight; 4471 assert( pE->op!=TK_DOT || pRight!=0 ); 4472 if( pE->op!=TK_ASTERISK 4473 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4474 ){ 4475 /* This particular expression does not need to be expanded. 4476 */ 4477 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4478 if( pNew ){ 4479 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4480 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4481 a[k].zName = 0; 4482 a[k].zSpan = 0; 4483 } 4484 a[k].pExpr = 0; 4485 }else{ 4486 /* This expression is a "*" or a "TABLE.*" and needs to be 4487 ** expanded. */ 4488 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4489 char *zTName = 0; /* text of name of TABLE */ 4490 if( pE->op==TK_DOT ){ 4491 assert( pE->pLeft!=0 ); 4492 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4493 zTName = pE->pLeft->u.zToken; 4494 } 4495 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4496 Table *pTab = pFrom->pTab; 4497 Select *pSub = pFrom->pSelect; 4498 char *zTabName = pFrom->zAlias; 4499 const char *zSchemaName = 0; 4500 int iDb; 4501 if( zTabName==0 ){ 4502 zTabName = pTab->zName; 4503 } 4504 if( db->mallocFailed ) break; 4505 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4506 pSub = 0; 4507 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4508 continue; 4509 } 4510 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4511 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4512 } 4513 for(j=0; j<pTab->nCol; j++){ 4514 char *zName = pTab->aCol[j].zName; 4515 char *zColname; /* The computed column name */ 4516 char *zToFree; /* Malloced string that needs to be freed */ 4517 Token sColname; /* Computed column name as a token */ 4518 4519 assert( zName ); 4520 if( zTName && pSub 4521 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4522 ){ 4523 continue; 4524 } 4525 4526 /* If a column is marked as 'hidden', omit it from the expanded 4527 ** result-set list unless the SELECT has the SF_IncludeHidden 4528 ** bit set. 4529 */ 4530 if( (p->selFlags & SF_IncludeHidden)==0 4531 && IsHiddenColumn(&pTab->aCol[j]) 4532 ){ 4533 continue; 4534 } 4535 tableSeen = 1; 4536 4537 if( i>0 && zTName==0 ){ 4538 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4539 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4540 ){ 4541 /* In a NATURAL join, omit the join columns from the 4542 ** table to the right of the join */ 4543 continue; 4544 } 4545 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4546 /* In a join with a USING clause, omit columns in the 4547 ** using clause from the table on the right. */ 4548 continue; 4549 } 4550 } 4551 pRight = sqlite3Expr(db, TK_ID, zName); 4552 zColname = zName; 4553 zToFree = 0; 4554 if( longNames || pTabList->nSrc>1 ){ 4555 Expr *pLeft; 4556 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4557 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4558 if( zSchemaName ){ 4559 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4560 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4561 } 4562 if( longNames ){ 4563 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4564 zToFree = zColname; 4565 } 4566 }else{ 4567 pExpr = pRight; 4568 } 4569 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4570 sqlite3TokenInit(&sColname, zColname); 4571 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4572 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4573 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4574 if( pSub ){ 4575 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4576 testcase( pX->zSpan==0 ); 4577 }else{ 4578 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4579 zSchemaName, zTabName, zColname); 4580 testcase( pX->zSpan==0 ); 4581 } 4582 pX->bSpanIsTab = 1; 4583 } 4584 sqlite3DbFree(db, zToFree); 4585 } 4586 } 4587 if( !tableSeen ){ 4588 if( zTName ){ 4589 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4590 }else{ 4591 sqlite3ErrorMsg(pParse, "no tables specified"); 4592 } 4593 } 4594 } 4595 } 4596 sqlite3ExprListDelete(db, pEList); 4597 p->pEList = pNew; 4598 } 4599 if( p->pEList ){ 4600 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4601 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4602 return WRC_Abort; 4603 } 4604 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4605 p->selFlags |= SF_ComplexResult; 4606 } 4607 } 4608 return WRC_Continue; 4609 } 4610 4611 /* 4612 ** No-op routine for the parse-tree walker. 4613 ** 4614 ** When this routine is the Walker.xExprCallback then expression trees 4615 ** are walked without any actions being taken at each node. Presumably, 4616 ** when this routine is used for Walker.xExprCallback then 4617 ** Walker.xSelectCallback is set to do something useful for every 4618 ** subquery in the parser tree. 4619 */ 4620 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4621 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4622 return WRC_Continue; 4623 } 4624 4625 /* 4626 ** No-op routine for the parse-tree walker for SELECT statements. 4627 ** subquery in the parser tree. 4628 */ 4629 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4630 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4631 return WRC_Continue; 4632 } 4633 4634 #if SQLITE_DEBUG 4635 /* 4636 ** Always assert. This xSelectCallback2 implementation proves that the 4637 ** xSelectCallback2 is never invoked. 4638 */ 4639 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4640 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4641 assert( 0 ); 4642 } 4643 #endif 4644 /* 4645 ** This routine "expands" a SELECT statement and all of its subqueries. 4646 ** For additional information on what it means to "expand" a SELECT 4647 ** statement, see the comment on the selectExpand worker callback above. 4648 ** 4649 ** Expanding a SELECT statement is the first step in processing a 4650 ** SELECT statement. The SELECT statement must be expanded before 4651 ** name resolution is performed. 4652 ** 4653 ** If anything goes wrong, an error message is written into pParse. 4654 ** The calling function can detect the problem by looking at pParse->nErr 4655 ** and/or pParse->db->mallocFailed. 4656 */ 4657 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4658 Walker w; 4659 w.xExprCallback = sqlite3ExprWalkNoop; 4660 w.pParse = pParse; 4661 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4662 w.xSelectCallback = convertCompoundSelectToSubquery; 4663 w.xSelectCallback2 = 0; 4664 sqlite3WalkSelect(&w, pSelect); 4665 } 4666 w.xSelectCallback = selectExpander; 4667 w.xSelectCallback2 = selectPopWith; 4668 sqlite3WalkSelect(&w, pSelect); 4669 } 4670 4671 4672 #ifndef SQLITE_OMIT_SUBQUERY 4673 /* 4674 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4675 ** interface. 4676 ** 4677 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4678 ** information to the Table structure that represents the result set 4679 ** of that subquery. 4680 ** 4681 ** The Table structure that represents the result set was constructed 4682 ** by selectExpander() but the type and collation information was omitted 4683 ** at that point because identifiers had not yet been resolved. This 4684 ** routine is called after identifier resolution. 4685 */ 4686 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4687 Parse *pParse; 4688 int i; 4689 SrcList *pTabList; 4690 struct SrcList_item *pFrom; 4691 4692 assert( p->selFlags & SF_Resolved ); 4693 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4694 p->selFlags |= SF_HasTypeInfo; 4695 pParse = pWalker->pParse; 4696 pTabList = p->pSrc; 4697 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4698 Table *pTab = pFrom->pTab; 4699 assert( pTab!=0 ); 4700 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4701 /* A sub-query in the FROM clause of a SELECT */ 4702 Select *pSel = pFrom->pSelect; 4703 if( pSel ){ 4704 while( pSel->pPrior ) pSel = pSel->pPrior; 4705 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4706 } 4707 } 4708 } 4709 } 4710 #endif 4711 4712 4713 /* 4714 ** This routine adds datatype and collating sequence information to 4715 ** the Table structures of all FROM-clause subqueries in a 4716 ** SELECT statement. 4717 ** 4718 ** Use this routine after name resolution. 4719 */ 4720 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4721 #ifndef SQLITE_OMIT_SUBQUERY 4722 Walker w; 4723 w.xSelectCallback = sqlite3SelectWalkNoop; 4724 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4725 w.xExprCallback = sqlite3ExprWalkNoop; 4726 w.pParse = pParse; 4727 sqlite3WalkSelect(&w, pSelect); 4728 #endif 4729 } 4730 4731 4732 /* 4733 ** This routine sets up a SELECT statement for processing. The 4734 ** following is accomplished: 4735 ** 4736 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4737 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4738 ** * ON and USING clauses are shifted into WHERE statements 4739 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4740 ** * Identifiers in expression are matched to tables. 4741 ** 4742 ** This routine acts recursively on all subqueries within the SELECT. 4743 */ 4744 void sqlite3SelectPrep( 4745 Parse *pParse, /* The parser context */ 4746 Select *p, /* The SELECT statement being coded. */ 4747 NameContext *pOuterNC /* Name context for container */ 4748 ){ 4749 assert( p!=0 || pParse->db->mallocFailed ); 4750 if( pParse->db->mallocFailed ) return; 4751 if( p->selFlags & SF_HasTypeInfo ) return; 4752 sqlite3SelectExpand(pParse, p); 4753 if( pParse->nErr || pParse->db->mallocFailed ) return; 4754 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4755 if( pParse->nErr || pParse->db->mallocFailed ) return; 4756 sqlite3SelectAddTypeInfo(pParse, p); 4757 } 4758 4759 /* 4760 ** Reset the aggregate accumulator. 4761 ** 4762 ** The aggregate accumulator is a set of memory cells that hold 4763 ** intermediate results while calculating an aggregate. This 4764 ** routine generates code that stores NULLs in all of those memory 4765 ** cells. 4766 */ 4767 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4768 Vdbe *v = pParse->pVdbe; 4769 int i; 4770 struct AggInfo_func *pFunc; 4771 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4772 if( nReg==0 ) return; 4773 #ifdef SQLITE_DEBUG 4774 /* Verify that all AggInfo registers are within the range specified by 4775 ** AggInfo.mnReg..AggInfo.mxReg */ 4776 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4777 for(i=0; i<pAggInfo->nColumn; i++){ 4778 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4779 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4780 } 4781 for(i=0; i<pAggInfo->nFunc; i++){ 4782 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4783 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4784 } 4785 #endif 4786 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4787 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4788 if( pFunc->iDistinct>=0 ){ 4789 Expr *pE = pFunc->pExpr; 4790 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4791 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4792 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4793 "argument"); 4794 pFunc->iDistinct = -1; 4795 }else{ 4796 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4797 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4798 (char*)pKeyInfo, P4_KEYINFO); 4799 } 4800 } 4801 } 4802 } 4803 4804 /* 4805 ** Invoke the OP_AggFinalize opcode for every aggregate function 4806 ** in the AggInfo structure. 4807 */ 4808 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4809 Vdbe *v = pParse->pVdbe; 4810 int i; 4811 struct AggInfo_func *pF; 4812 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4813 ExprList *pList = pF->pExpr->x.pList; 4814 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4815 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4816 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4817 } 4818 } 4819 4820 /* 4821 ** Update the accumulator memory cells for an aggregate based on 4822 ** the current cursor position. 4823 */ 4824 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4825 Vdbe *v = pParse->pVdbe; 4826 int i; 4827 int regHit = 0; 4828 int addrHitTest = 0; 4829 struct AggInfo_func *pF; 4830 struct AggInfo_col *pC; 4831 4832 pAggInfo->directMode = 1; 4833 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4834 int nArg; 4835 int addrNext = 0; 4836 int regAgg; 4837 ExprList *pList = pF->pExpr->x.pList; 4838 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4839 if( pList ){ 4840 nArg = pList->nExpr; 4841 regAgg = sqlite3GetTempRange(pParse, nArg); 4842 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4843 }else{ 4844 nArg = 0; 4845 regAgg = 0; 4846 } 4847 if( pF->iDistinct>=0 ){ 4848 addrNext = sqlite3VdbeMakeLabel(v); 4849 testcase( nArg==0 ); /* Error condition */ 4850 testcase( nArg>1 ); /* Also an error */ 4851 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4852 } 4853 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4854 CollSeq *pColl = 0; 4855 struct ExprList_item *pItem; 4856 int j; 4857 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4858 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4859 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4860 } 4861 if( !pColl ){ 4862 pColl = pParse->db->pDfltColl; 4863 } 4864 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4865 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4866 } 4867 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4868 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4869 sqlite3VdbeChangeP5(v, (u8)nArg); 4870 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4871 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4872 if( addrNext ){ 4873 sqlite3VdbeResolveLabel(v, addrNext); 4874 sqlite3ExprCacheClear(pParse); 4875 } 4876 } 4877 4878 /* Before populating the accumulator registers, clear the column cache. 4879 ** Otherwise, if any of the required column values are already present 4880 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4881 ** to pC->iMem. But by the time the value is used, the original register 4882 ** may have been used, invalidating the underlying buffer holding the 4883 ** text or blob value. See ticket [883034dcb5]. 4884 ** 4885 ** Another solution would be to change the OP_SCopy used to copy cached 4886 ** values to an OP_Copy. 4887 */ 4888 if( regHit ){ 4889 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4890 } 4891 sqlite3ExprCacheClear(pParse); 4892 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4893 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4894 } 4895 pAggInfo->directMode = 0; 4896 sqlite3ExprCacheClear(pParse); 4897 if( addrHitTest ){ 4898 sqlite3VdbeJumpHere(v, addrHitTest); 4899 } 4900 } 4901 4902 /* 4903 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4904 ** count(*) query ("SELECT count(*) FROM pTab"). 4905 */ 4906 #ifndef SQLITE_OMIT_EXPLAIN 4907 static void explainSimpleCount( 4908 Parse *pParse, /* Parse context */ 4909 Table *pTab, /* Table being queried */ 4910 Index *pIdx /* Index used to optimize scan, or NULL */ 4911 ){ 4912 if( pParse->explain==2 ){ 4913 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4914 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4915 pTab->zName, 4916 bCover ? " USING COVERING INDEX " : "", 4917 bCover ? pIdx->zName : "" 4918 ); 4919 sqlite3VdbeAddOp4( 4920 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4921 ); 4922 } 4923 } 4924 #else 4925 # define explainSimpleCount(a,b,c) 4926 #endif 4927 4928 /* 4929 ** Context object for havingToWhereExprCb(). 4930 */ 4931 struct HavingToWhereCtx { 4932 Expr **ppWhere; 4933 ExprList *pGroupBy; 4934 }; 4935 4936 /* 4937 ** sqlite3WalkExpr() callback used by havingToWhere(). 4938 ** 4939 ** If the node passed to the callback is a TK_AND node, return 4940 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 4941 ** 4942 ** Otherwise, return WRC_Prune. In this case, also check if the 4943 ** sub-expression matches the criteria for being moved to the WHERE 4944 ** clause. If so, add it to the WHERE clause and replace the sub-expression 4945 ** within the HAVING expression with a constant "1". 4946 */ 4947 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 4948 if( pExpr->op!=TK_AND ){ 4949 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx; 4950 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){ 4951 sqlite3 *db = pWalker->pParse->db; 4952 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 4953 if( pNew ){ 4954 Expr *pWhere = *(p->ppWhere); 4955 SWAP(Expr, *pNew, *pExpr); 4956 pNew = sqlite3ExprAnd(db, pWhere, pNew); 4957 *(p->ppWhere) = pNew; 4958 } 4959 } 4960 return WRC_Prune; 4961 } 4962 return WRC_Continue; 4963 } 4964 4965 /* 4966 ** Transfer eligible terms from the HAVING clause of a query, which is 4967 ** processed after grouping, to the WHERE clause, which is processed before 4968 ** grouping. For example, the query: 4969 ** 4970 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 4971 ** 4972 ** can be rewritten as: 4973 ** 4974 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 4975 ** 4976 ** A term of the HAVING expression is eligible for transfer if it consists 4977 ** entirely of constants and expressions that are also GROUP BY terms that 4978 ** use the "BINARY" collation sequence. 4979 */ 4980 static void havingToWhere( 4981 Parse *pParse, 4982 ExprList *pGroupBy, 4983 Expr *pHaving, 4984 Expr **ppWhere 4985 ){ 4986 struct HavingToWhereCtx sCtx; 4987 Walker sWalker; 4988 4989 sCtx.ppWhere = ppWhere; 4990 sCtx.pGroupBy = pGroupBy; 4991 4992 memset(&sWalker, 0, sizeof(sWalker)); 4993 sWalker.pParse = pParse; 4994 sWalker.xExprCallback = havingToWhereExprCb; 4995 sWalker.u.pHavingCtx = &sCtx; 4996 sqlite3WalkExpr(&sWalker, pHaving); 4997 } 4998 4999 /* 5000 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5001 ** If it is, then return the SrcList_item for the prior view. If it is not, 5002 ** then return 0. 5003 */ 5004 static struct SrcList_item *isSelfJoinView( 5005 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5006 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5007 ){ 5008 struct SrcList_item *pItem; 5009 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5010 if( pItem->pSelect==0 ) continue; 5011 if( pItem->fg.viaCoroutine ) continue; 5012 if( pItem->zName==0 ) continue; 5013 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5014 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5015 if( sqlite3ExprCompare(0, 5016 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5017 ){ 5018 /* The view was modified by some other optimization such as 5019 ** pushDownWhereTerms() */ 5020 continue; 5021 } 5022 return pItem; 5023 } 5024 return 0; 5025 } 5026 5027 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5028 /* 5029 ** Attempt to transform a query of the form 5030 ** 5031 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5032 ** 5033 ** Into this: 5034 ** 5035 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5036 ** 5037 ** The transformation only works if all of the following are true: 5038 ** 5039 ** * The subquery is a UNION ALL of two or more terms 5040 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5041 ** * The outer query is a simple count(*) 5042 ** 5043 ** Return TRUE if the optimization is undertaken. 5044 */ 5045 static int countOfViewOptimization(Parse *pParse, Select *p){ 5046 Select *pSub, *pPrior; 5047 Expr *pExpr; 5048 Expr *pCount; 5049 sqlite3 *db; 5050 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5051 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5052 pExpr = p->pEList->a[0].pExpr; 5053 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5054 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5055 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5056 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5057 pSub = p->pSrc->a[0].pSelect; 5058 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5059 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5060 do{ 5061 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5062 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5063 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5064 pSub = pSub->pPrior; /* Repeat over compound */ 5065 }while( pSub ); 5066 5067 /* If we reach this point then it is OK to perform the transformation */ 5068 5069 db = pParse->db; 5070 pCount = pExpr; 5071 pExpr = 0; 5072 pSub = p->pSrc->a[0].pSelect; 5073 p->pSrc->a[0].pSelect = 0; 5074 sqlite3SrcListDelete(db, p->pSrc); 5075 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5076 while( pSub ){ 5077 Expr *pTerm; 5078 pPrior = pSub->pPrior; 5079 pSub->pPrior = 0; 5080 pSub->pNext = 0; 5081 pSub->selFlags |= SF_Aggregate; 5082 pSub->selFlags &= ~SF_Compound; 5083 pSub->nSelectRow = 0; 5084 sqlite3ExprListDelete(db, pSub->pEList); 5085 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5086 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5087 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5088 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5089 if( pExpr==0 ){ 5090 pExpr = pTerm; 5091 }else{ 5092 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5093 } 5094 pSub = pPrior; 5095 } 5096 p->pEList->a[0].pExpr = pExpr; 5097 p->selFlags &= ~SF_Aggregate; 5098 5099 #if SELECTTRACE_ENABLED 5100 if( sqlite3SelectTrace & 0x400 ){ 5101 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5102 sqlite3TreeViewSelect(0, p, 0); 5103 } 5104 #endif 5105 return 1; 5106 } 5107 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5108 5109 /* 5110 ** Generate code for the SELECT statement given in the p argument. 5111 ** 5112 ** The results are returned according to the SelectDest structure. 5113 ** See comments in sqliteInt.h for further information. 5114 ** 5115 ** This routine returns the number of errors. If any errors are 5116 ** encountered, then an appropriate error message is left in 5117 ** pParse->zErrMsg. 5118 ** 5119 ** This routine does NOT free the Select structure passed in. The 5120 ** calling function needs to do that. 5121 */ 5122 int sqlite3Select( 5123 Parse *pParse, /* The parser context */ 5124 Select *p, /* The SELECT statement being coded. */ 5125 SelectDest *pDest /* What to do with the query results */ 5126 ){ 5127 int i, j; /* Loop counters */ 5128 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5129 Vdbe *v; /* The virtual machine under construction */ 5130 int isAgg; /* True for select lists like "count(*)" */ 5131 ExprList *pEList = 0; /* List of columns to extract. */ 5132 SrcList *pTabList; /* List of tables to select from */ 5133 Expr *pWhere; /* The WHERE clause. May be NULL */ 5134 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5135 Expr *pHaving; /* The HAVING clause. May be NULL */ 5136 int rc = 1; /* Value to return from this function */ 5137 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5138 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5139 AggInfo sAggInfo; /* Information used by aggregate queries */ 5140 int iEnd; /* Address of the end of the query */ 5141 sqlite3 *db; /* The database connection */ 5142 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5143 u8 minMaxFlag; /* Flag for min/max queries */ 5144 5145 #ifndef SQLITE_OMIT_EXPLAIN 5146 int iRestoreSelectId = pParse->iSelectId; 5147 pParse->iSelectId = pParse->iNextSelectId++; 5148 #endif 5149 5150 db = pParse->db; 5151 if( p==0 || db->mallocFailed || pParse->nErr ){ 5152 return 1; 5153 } 5154 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5155 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5156 #if SELECTTRACE_ENABLED 5157 pParse->nSelectIndent++; 5158 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5159 if( sqlite3SelectTrace & 0x100 ){ 5160 sqlite3TreeViewSelect(0, p, 0); 5161 } 5162 #endif 5163 5164 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5165 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5166 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5167 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5168 if( IgnorableOrderby(pDest) ){ 5169 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5170 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5171 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5172 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5173 /* If ORDER BY makes no difference in the output then neither does 5174 ** DISTINCT so it can be removed too. */ 5175 sqlite3ExprListDelete(db, p->pOrderBy); 5176 p->pOrderBy = 0; 5177 p->selFlags &= ~SF_Distinct; 5178 } 5179 sqlite3SelectPrep(pParse, p, 0); 5180 memset(&sSort, 0, sizeof(sSort)); 5181 sSort.pOrderBy = p->pOrderBy; 5182 pTabList = p->pSrc; 5183 if( pParse->nErr || db->mallocFailed ){ 5184 goto select_end; 5185 } 5186 assert( p->pEList!=0 ); 5187 isAgg = (p->selFlags & SF_Aggregate)!=0; 5188 #if SELECTTRACE_ENABLED 5189 if( sqlite3SelectTrace & 0x100 ){ 5190 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5191 sqlite3TreeViewSelect(0, p, 0); 5192 } 5193 #endif 5194 5195 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5196 ** does not already exist */ 5197 v = sqlite3GetVdbe(pParse); 5198 if( v==0 ) goto select_end; 5199 if( pDest->eDest==SRT_Output ){ 5200 generateColumnNames(pParse, p); 5201 } 5202 5203 /* Try to flatten subqueries in the FROM clause up into the main query 5204 */ 5205 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5206 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5207 struct SrcList_item *pItem = &pTabList->a[i]; 5208 Select *pSub = pItem->pSelect; 5209 Table *pTab = pItem->pTab; 5210 if( pSub==0 ) continue; 5211 5212 /* Catch mismatch in the declared columns of a view and the number of 5213 ** columns in the SELECT on the RHS */ 5214 if( pTab->nCol!=pSub->pEList->nExpr ){ 5215 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5216 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5217 goto select_end; 5218 } 5219 5220 /* Do not try to flatten an aggregate subquery. 5221 ** 5222 ** Flattening an aggregate subquery is only possible if the outer query 5223 ** is not a join. But if the outer query is not a join, then the subquery 5224 ** will be implemented as a co-routine and there is no advantage to 5225 ** flattening in that case. 5226 */ 5227 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5228 assert( pSub->pGroupBy==0 ); 5229 5230 /* If the outer query contains a "complex" result set (that is, 5231 ** if the result set of the outer query uses functions or subqueries) 5232 ** and if the subquery contains an ORDER BY clause and if 5233 ** it will be implemented as a co-routine, then do not flatten. This 5234 ** restriction allows SQL constructs like this: 5235 ** 5236 ** SELECT expensive_function(x) 5237 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5238 ** 5239 ** The expensive_function() is only computed on the 10 rows that 5240 ** are output, rather than every row of the table. 5241 ** 5242 ** The requirement that the outer query have a complex result set 5243 ** means that flattening does occur on simpler SQL constraints without 5244 ** the expensive_function() like: 5245 ** 5246 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5247 */ 5248 if( pSub->pOrderBy!=0 5249 && i==0 5250 && (p->selFlags & SF_ComplexResult)!=0 5251 && (pTabList->nSrc==1 5252 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5253 ){ 5254 continue; 5255 } 5256 5257 if( flattenSubquery(pParse, p, i, isAgg) ){ 5258 /* This subquery can be absorbed into its parent. */ 5259 i = -1; 5260 } 5261 pTabList = p->pSrc; 5262 if( db->mallocFailed ) goto select_end; 5263 if( !IgnorableOrderby(pDest) ){ 5264 sSort.pOrderBy = p->pOrderBy; 5265 } 5266 } 5267 #endif 5268 5269 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5270 /* Handle compound SELECT statements using the separate multiSelect() 5271 ** procedure. 5272 */ 5273 if( p->pPrior ){ 5274 rc = multiSelect(pParse, p, pDest); 5275 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5276 #if SELECTTRACE_ENABLED 5277 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5278 pParse->nSelectIndent--; 5279 #endif 5280 return rc; 5281 } 5282 #endif 5283 5284 /* For each term in the FROM clause, do two things: 5285 ** (1) Authorized unreferenced tables 5286 ** (2) Generate code for all sub-queries 5287 */ 5288 for(i=0; i<pTabList->nSrc; i++){ 5289 struct SrcList_item *pItem = &pTabList->a[i]; 5290 SelectDest dest; 5291 Select *pSub; 5292 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5293 const char *zSavedAuthContext; 5294 #endif 5295 5296 /* Issue SQLITE_READ authorizations with a fake column name for any 5297 ** tables that are referenced but from which no values are extracted. 5298 ** Examples of where these kinds of null SQLITE_READ authorizations 5299 ** would occur: 5300 ** 5301 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5302 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5303 ** 5304 ** The fake column name is an empty string. It is possible for a table to 5305 ** have a column named by the empty string, in which case there is no way to 5306 ** distinguish between an unreferenced table and an actual reference to the 5307 ** "" column. The original design was for the fake column name to be a NULL, 5308 ** which would be unambiguous. But legacy authorization callbacks might 5309 ** assume the column name is non-NULL and segfault. The use of an empty 5310 ** string for the fake column name seems safer. 5311 */ 5312 if( pItem->colUsed==0 ){ 5313 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5314 } 5315 5316 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5317 /* Generate code for all sub-queries in the FROM clause 5318 */ 5319 pSub = pItem->pSelect; 5320 if( pSub==0 ) continue; 5321 5322 /* Sometimes the code for a subquery will be generated more than 5323 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5324 ** for example. In that case, do not regenerate the code to manifest 5325 ** a view or the co-routine to implement a view. The first instance 5326 ** is sufficient, though the subroutine to manifest the view does need 5327 ** to be invoked again. */ 5328 if( pItem->addrFillSub ){ 5329 if( pItem->fg.viaCoroutine==0 ){ 5330 /* The subroutine that manifests the view might be a one-time routine, 5331 ** or it might need to be rerun on each iteration because it 5332 ** encodes a correlated subquery. */ 5333 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5334 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5335 } 5336 continue; 5337 } 5338 5339 /* Increment Parse.nHeight by the height of the largest expression 5340 ** tree referred to by this, the parent select. The child select 5341 ** may contain expression trees of at most 5342 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5343 ** more conservative than necessary, but much easier than enforcing 5344 ** an exact limit. 5345 */ 5346 pParse->nHeight += sqlite3SelectExprHeight(p); 5347 5348 /* Make copies of constant WHERE-clause terms in the outer query down 5349 ** inside the subquery. This can help the subquery to run more efficiently. 5350 */ 5351 if( (pItem->fg.jointype & JT_OUTER)==0 5352 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) 5353 ){ 5354 #if SELECTTRACE_ENABLED 5355 if( sqlite3SelectTrace & 0x100 ){ 5356 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5357 sqlite3TreeViewSelect(0, p, 0); 5358 } 5359 #endif 5360 } 5361 5362 zSavedAuthContext = pParse->zAuthContext; 5363 pParse->zAuthContext = pItem->zName; 5364 5365 /* Generate code to implement the subquery 5366 ** 5367 ** The subquery is implemented as a co-routine if the subquery is 5368 ** guaranteed to be the outer loop (so that it does not need to be 5369 ** computed more than once) 5370 ** 5371 ** TODO: Are there other reasons beside (1) to use a co-routine 5372 ** implementation? 5373 */ 5374 if( i==0 5375 && (pTabList->nSrc==1 5376 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5377 ){ 5378 /* Implement a co-routine that will return a single row of the result 5379 ** set on each invocation. 5380 */ 5381 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5382 5383 pItem->regReturn = ++pParse->nMem; 5384 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5385 VdbeComment((v, "%s", pItem->pTab->zName)); 5386 pItem->addrFillSub = addrTop; 5387 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5388 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5389 sqlite3Select(pParse, pSub, &dest); 5390 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5391 pItem->fg.viaCoroutine = 1; 5392 pItem->regResult = dest.iSdst; 5393 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5394 sqlite3VdbeJumpHere(v, addrTop-1); 5395 sqlite3ClearTempRegCache(pParse); 5396 }else{ 5397 /* Generate a subroutine that will fill an ephemeral table with 5398 ** the content of this subquery. pItem->addrFillSub will point 5399 ** to the address of the generated subroutine. pItem->regReturn 5400 ** is a register allocated to hold the subroutine return address 5401 */ 5402 int topAddr; 5403 int onceAddr = 0; 5404 int retAddr; 5405 struct SrcList_item *pPrior; 5406 5407 assert( pItem->addrFillSub==0 ); 5408 pItem->regReturn = ++pParse->nMem; 5409 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5410 pItem->addrFillSub = topAddr+1; 5411 if( pItem->fg.isCorrelated==0 ){ 5412 /* If the subquery is not correlated and if we are not inside of 5413 ** a trigger, then we only need to compute the value of the subquery 5414 ** once. */ 5415 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5416 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5417 }else{ 5418 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5419 } 5420 pPrior = isSelfJoinView(pTabList, pItem); 5421 if( pPrior ){ 5422 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5423 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5424 assert( pPrior->pSelect!=0 ); 5425 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5426 }else{ 5427 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5428 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5429 sqlite3Select(pParse, pSub, &dest); 5430 } 5431 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5432 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5433 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5434 VdbeComment((v, "end %s", pItem->pTab->zName)); 5435 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5436 sqlite3ClearTempRegCache(pParse); 5437 } 5438 if( db->mallocFailed ) goto select_end; 5439 pParse->nHeight -= sqlite3SelectExprHeight(p); 5440 pParse->zAuthContext = zSavedAuthContext; 5441 #endif 5442 } 5443 5444 /* Various elements of the SELECT copied into local variables for 5445 ** convenience */ 5446 pEList = p->pEList; 5447 pWhere = p->pWhere; 5448 pGroupBy = p->pGroupBy; 5449 pHaving = p->pHaving; 5450 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5451 5452 #if SELECTTRACE_ENABLED 5453 if( sqlite3SelectTrace & 0x400 ){ 5454 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5455 sqlite3TreeViewSelect(0, p, 0); 5456 } 5457 #endif 5458 5459 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5460 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5461 && countOfViewOptimization(pParse, p) 5462 ){ 5463 if( db->mallocFailed ) goto select_end; 5464 pEList = p->pEList; 5465 pTabList = p->pSrc; 5466 } 5467 #endif 5468 5469 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5470 ** if the select-list is the same as the ORDER BY list, then this query 5471 ** can be rewritten as a GROUP BY. In other words, this: 5472 ** 5473 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5474 ** 5475 ** is transformed to: 5476 ** 5477 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5478 ** 5479 ** The second form is preferred as a single index (or temp-table) may be 5480 ** used for both the ORDER BY and DISTINCT processing. As originally 5481 ** written the query must use a temp-table for at least one of the ORDER 5482 ** BY and DISTINCT, and an index or separate temp-table for the other. 5483 */ 5484 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5485 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5486 ){ 5487 p->selFlags &= ~SF_Distinct; 5488 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5489 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5490 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5491 ** original setting of the SF_Distinct flag, not the current setting */ 5492 assert( sDistinct.isTnct ); 5493 5494 #if SELECTTRACE_ENABLED 5495 if( sqlite3SelectTrace & 0x400 ){ 5496 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5497 sqlite3TreeViewSelect(0, p, 0); 5498 } 5499 #endif 5500 } 5501 5502 /* If there is an ORDER BY clause, then create an ephemeral index to 5503 ** do the sorting. But this sorting ephemeral index might end up 5504 ** being unused if the data can be extracted in pre-sorted order. 5505 ** If that is the case, then the OP_OpenEphemeral instruction will be 5506 ** changed to an OP_Noop once we figure out that the sorting index is 5507 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5508 ** that change. 5509 */ 5510 if( sSort.pOrderBy ){ 5511 KeyInfo *pKeyInfo; 5512 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5513 sSort.iECursor = pParse->nTab++; 5514 sSort.addrSortIndex = 5515 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5516 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5517 (char*)pKeyInfo, P4_KEYINFO 5518 ); 5519 }else{ 5520 sSort.addrSortIndex = -1; 5521 } 5522 5523 /* If the output is destined for a temporary table, open that table. 5524 */ 5525 if( pDest->eDest==SRT_EphemTab ){ 5526 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5527 } 5528 5529 /* Set the limiter. 5530 */ 5531 iEnd = sqlite3VdbeMakeLabel(v); 5532 if( (p->selFlags & SF_FixedLimit)==0 ){ 5533 p->nSelectRow = 320; /* 4 billion rows */ 5534 } 5535 computeLimitRegisters(pParse, p, iEnd); 5536 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5537 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5538 sSort.sortFlags |= SORTFLAG_UseSorter; 5539 } 5540 5541 /* Open an ephemeral index to use for the distinct set. 5542 */ 5543 if( p->selFlags & SF_Distinct ){ 5544 sDistinct.tabTnct = pParse->nTab++; 5545 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5546 sDistinct.tabTnct, 0, 0, 5547 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5548 P4_KEYINFO); 5549 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5550 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5551 }else{ 5552 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5553 } 5554 5555 if( !isAgg && pGroupBy==0 ){ 5556 /* No aggregate functions and no GROUP BY clause */ 5557 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5558 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5559 wctrlFlags |= p->selFlags & SF_FixedLimit; 5560 5561 /* Begin the database scan. */ 5562 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5563 p->pEList, wctrlFlags, p->nSelectRow); 5564 if( pWInfo==0 ) goto select_end; 5565 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5566 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5567 } 5568 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5569 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5570 } 5571 if( sSort.pOrderBy ){ 5572 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5573 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5574 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5575 sSort.pOrderBy = 0; 5576 } 5577 } 5578 5579 /* If sorting index that was created by a prior OP_OpenEphemeral 5580 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5581 ** into an OP_Noop. 5582 */ 5583 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5584 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5585 } 5586 5587 /* Use the standard inner loop. */ 5588 assert( p->pEList==pEList ); 5589 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5590 sqlite3WhereContinueLabel(pWInfo), 5591 sqlite3WhereBreakLabel(pWInfo)); 5592 5593 /* End the database scan loop. 5594 */ 5595 sqlite3WhereEnd(pWInfo); 5596 }else{ 5597 /* This case when there exist aggregate functions or a GROUP BY clause 5598 ** or both */ 5599 NameContext sNC; /* Name context for processing aggregate information */ 5600 int iAMem; /* First Mem address for storing current GROUP BY */ 5601 int iBMem; /* First Mem address for previous GROUP BY */ 5602 int iUseFlag; /* Mem address holding flag indicating that at least 5603 ** one row of the input to the aggregator has been 5604 ** processed */ 5605 int iAbortFlag; /* Mem address which causes query abort if positive */ 5606 int groupBySort; /* Rows come from source in GROUP BY order */ 5607 int addrEnd; /* End of processing for this SELECT */ 5608 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5609 int sortOut = 0; /* Output register from the sorter */ 5610 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5611 5612 /* Remove any and all aliases between the result set and the 5613 ** GROUP BY clause. 5614 */ 5615 if( pGroupBy ){ 5616 int k; /* Loop counter */ 5617 struct ExprList_item *pItem; /* For looping over expression in a list */ 5618 5619 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5620 pItem->u.x.iAlias = 0; 5621 } 5622 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5623 pItem->u.x.iAlias = 0; 5624 } 5625 assert( 66==sqlite3LogEst(100) ); 5626 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5627 }else{ 5628 assert( 0==sqlite3LogEst(1) ); 5629 p->nSelectRow = 0; 5630 } 5631 5632 /* If there is both a GROUP BY and an ORDER BY clause and they are 5633 ** identical, then it may be possible to disable the ORDER BY clause 5634 ** on the grounds that the GROUP BY will cause elements to come out 5635 ** in the correct order. It also may not - the GROUP BY might use a 5636 ** database index that causes rows to be grouped together as required 5637 ** but not actually sorted. Either way, record the fact that the 5638 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5639 ** variable. */ 5640 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5641 orderByGrp = 1; 5642 } 5643 5644 /* Create a label to jump to when we want to abort the query */ 5645 addrEnd = sqlite3VdbeMakeLabel(v); 5646 5647 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5648 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5649 ** SELECT statement. 5650 */ 5651 memset(&sNC, 0, sizeof(sNC)); 5652 sNC.pParse = pParse; 5653 sNC.pSrcList = pTabList; 5654 sNC.pAggInfo = &sAggInfo; 5655 sAggInfo.mnReg = pParse->nMem+1; 5656 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5657 sAggInfo.pGroupBy = pGroupBy; 5658 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5659 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5660 if( pHaving ){ 5661 if( pGroupBy ){ 5662 assert( pWhere==p->pWhere ); 5663 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere); 5664 pWhere = p->pWhere; 5665 } 5666 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5667 } 5668 sAggInfo.nAccumulator = sAggInfo.nColumn; 5669 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 5670 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 5671 }else{ 5672 minMaxFlag = WHERE_ORDERBY_NORMAL; 5673 } 5674 for(i=0; i<sAggInfo.nFunc; i++){ 5675 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5676 sNC.ncFlags |= NC_InAggFunc; 5677 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5678 sNC.ncFlags &= ~NC_InAggFunc; 5679 } 5680 sAggInfo.mxReg = pParse->nMem; 5681 if( db->mallocFailed ) goto select_end; 5682 #if SELECTTRACE_ENABLED 5683 if( sqlite3SelectTrace & 0x400 ){ 5684 int ii; 5685 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 5686 sqlite3TreeViewSelect(0, p, 0); 5687 for(ii=0; ii<sAggInfo.nColumn; ii++){ 5688 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 5689 ii, sAggInfo.aCol[ii].iMem); 5690 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 5691 } 5692 for(ii=0; ii<sAggInfo.nFunc; ii++){ 5693 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 5694 ii, sAggInfo.aFunc[ii].iMem); 5695 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 5696 } 5697 } 5698 #endif 5699 5700 5701 /* Processing for aggregates with GROUP BY is very different and 5702 ** much more complex than aggregates without a GROUP BY. 5703 */ 5704 if( pGroupBy ){ 5705 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5706 int addr1; /* A-vs-B comparision jump */ 5707 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5708 int regOutputRow; /* Return address register for output subroutine */ 5709 int addrSetAbort; /* Set the abort flag and return */ 5710 int addrTopOfLoop; /* Top of the input loop */ 5711 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5712 int addrReset; /* Subroutine for resetting the accumulator */ 5713 int regReset; /* Return address register for reset subroutine */ 5714 5715 /* If there is a GROUP BY clause we might need a sorting index to 5716 ** implement it. Allocate that sorting index now. If it turns out 5717 ** that we do not need it after all, the OP_SorterOpen instruction 5718 ** will be converted into a Noop. 5719 */ 5720 sAggInfo.sortingIdx = pParse->nTab++; 5721 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5722 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5723 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5724 0, (char*)pKeyInfo, P4_KEYINFO); 5725 5726 /* Initialize memory locations used by GROUP BY aggregate processing 5727 */ 5728 iUseFlag = ++pParse->nMem; 5729 iAbortFlag = ++pParse->nMem; 5730 regOutputRow = ++pParse->nMem; 5731 addrOutputRow = sqlite3VdbeMakeLabel(v); 5732 regReset = ++pParse->nMem; 5733 addrReset = sqlite3VdbeMakeLabel(v); 5734 iAMem = pParse->nMem + 1; 5735 pParse->nMem += pGroupBy->nExpr; 5736 iBMem = pParse->nMem + 1; 5737 pParse->nMem += pGroupBy->nExpr; 5738 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5739 VdbeComment((v, "clear abort flag")); 5740 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5741 VdbeComment((v, "indicate accumulator empty")); 5742 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5743 5744 /* Begin a loop that will extract all source rows in GROUP BY order. 5745 ** This might involve two separate loops with an OP_Sort in between, or 5746 ** it might be a single loop that uses an index to extract information 5747 ** in the right order to begin with. 5748 */ 5749 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5750 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5751 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5752 ); 5753 if( pWInfo==0 ) goto select_end; 5754 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5755 /* The optimizer is able to deliver rows in group by order so 5756 ** we do not have to sort. The OP_OpenEphemeral table will be 5757 ** cancelled later because we still need to use the pKeyInfo 5758 */ 5759 groupBySort = 0; 5760 }else{ 5761 /* Rows are coming out in undetermined order. We have to push 5762 ** each row into a sorting index, terminate the first loop, 5763 ** then loop over the sorting index in order to get the output 5764 ** in sorted order 5765 */ 5766 int regBase; 5767 int regRecord; 5768 int nCol; 5769 int nGroupBy; 5770 5771 explainTempTable(pParse, 5772 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5773 "DISTINCT" : "GROUP BY"); 5774 5775 groupBySort = 1; 5776 nGroupBy = pGroupBy->nExpr; 5777 nCol = nGroupBy; 5778 j = nGroupBy; 5779 for(i=0; i<sAggInfo.nColumn; i++){ 5780 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5781 nCol++; 5782 j++; 5783 } 5784 } 5785 regBase = sqlite3GetTempRange(pParse, nCol); 5786 sqlite3ExprCacheClear(pParse); 5787 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5788 j = nGroupBy; 5789 for(i=0; i<sAggInfo.nColumn; i++){ 5790 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5791 if( pCol->iSorterColumn>=j ){ 5792 int r1 = j + regBase; 5793 sqlite3ExprCodeGetColumnToReg(pParse, 5794 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5795 j++; 5796 } 5797 } 5798 regRecord = sqlite3GetTempReg(pParse); 5799 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5800 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5801 sqlite3ReleaseTempReg(pParse, regRecord); 5802 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5803 sqlite3WhereEnd(pWInfo); 5804 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5805 sortOut = sqlite3GetTempReg(pParse); 5806 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5807 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5808 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5809 sAggInfo.useSortingIdx = 1; 5810 sqlite3ExprCacheClear(pParse); 5811 5812 } 5813 5814 /* If the index or temporary table used by the GROUP BY sort 5815 ** will naturally deliver rows in the order required by the ORDER BY 5816 ** clause, cancel the ephemeral table open coded earlier. 5817 ** 5818 ** This is an optimization - the correct answer should result regardless. 5819 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5820 ** disable this optimization for testing purposes. */ 5821 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5822 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5823 ){ 5824 sSort.pOrderBy = 0; 5825 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5826 } 5827 5828 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5829 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5830 ** Then compare the current GROUP BY terms against the GROUP BY terms 5831 ** from the previous row currently stored in a0, a1, a2... 5832 */ 5833 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5834 sqlite3ExprCacheClear(pParse); 5835 if( groupBySort ){ 5836 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5837 sortOut, sortPTab); 5838 } 5839 for(j=0; j<pGroupBy->nExpr; j++){ 5840 if( groupBySort ){ 5841 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5842 }else{ 5843 sAggInfo.directMode = 1; 5844 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5845 } 5846 } 5847 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5848 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5849 addr1 = sqlite3VdbeCurrentAddr(v); 5850 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5851 5852 /* Generate code that runs whenever the GROUP BY changes. 5853 ** Changes in the GROUP BY are detected by the previous code 5854 ** block. If there were no changes, this block is skipped. 5855 ** 5856 ** This code copies current group by terms in b0,b1,b2,... 5857 ** over to a0,a1,a2. It then calls the output subroutine 5858 ** and resets the aggregate accumulator registers in preparation 5859 ** for the next GROUP BY batch. 5860 */ 5861 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5862 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5863 VdbeComment((v, "output one row")); 5864 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5865 VdbeComment((v, "check abort flag")); 5866 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5867 VdbeComment((v, "reset accumulator")); 5868 5869 /* Update the aggregate accumulators based on the content of 5870 ** the current row 5871 */ 5872 sqlite3VdbeJumpHere(v, addr1); 5873 updateAccumulator(pParse, &sAggInfo); 5874 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5875 VdbeComment((v, "indicate data in accumulator")); 5876 5877 /* End of the loop 5878 */ 5879 if( groupBySort ){ 5880 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5881 VdbeCoverage(v); 5882 }else{ 5883 sqlite3WhereEnd(pWInfo); 5884 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5885 } 5886 5887 /* Output the final row of result 5888 */ 5889 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5890 VdbeComment((v, "output final row")); 5891 5892 /* Jump over the subroutines 5893 */ 5894 sqlite3VdbeGoto(v, addrEnd); 5895 5896 /* Generate a subroutine that outputs a single row of the result 5897 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5898 ** is less than or equal to zero, the subroutine is a no-op. If 5899 ** the processing calls for the query to abort, this subroutine 5900 ** increments the iAbortFlag memory location before returning in 5901 ** order to signal the caller to abort. 5902 */ 5903 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5904 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5905 VdbeComment((v, "set abort flag")); 5906 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5907 sqlite3VdbeResolveLabel(v, addrOutputRow); 5908 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5909 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5910 VdbeCoverage(v); 5911 VdbeComment((v, "Groupby result generator entry point")); 5912 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5913 finalizeAggFunctions(pParse, &sAggInfo); 5914 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5915 selectInnerLoop(pParse, p, -1, &sSort, 5916 &sDistinct, pDest, 5917 addrOutputRow+1, addrSetAbort); 5918 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5919 VdbeComment((v, "end groupby result generator")); 5920 5921 /* Generate a subroutine that will reset the group-by accumulator 5922 */ 5923 sqlite3VdbeResolveLabel(v, addrReset); 5924 resetAccumulator(pParse, &sAggInfo); 5925 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5926 5927 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5928 else { 5929 #ifndef SQLITE_OMIT_BTREECOUNT 5930 Table *pTab; 5931 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5932 /* If isSimpleCount() returns a pointer to a Table structure, then 5933 ** the SQL statement is of the form: 5934 ** 5935 ** SELECT count(*) FROM <tbl> 5936 ** 5937 ** where the Table structure returned represents table <tbl>. 5938 ** 5939 ** This statement is so common that it is optimized specially. The 5940 ** OP_Count instruction is executed either on the intkey table that 5941 ** contains the data for table <tbl> or on one of its indexes. It 5942 ** is better to execute the op on an index, as indexes are almost 5943 ** always spread across less pages than their corresponding tables. 5944 */ 5945 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5946 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5947 Index *pIdx; /* Iterator variable */ 5948 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5949 Index *pBest = 0; /* Best index found so far */ 5950 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5951 5952 sqlite3CodeVerifySchema(pParse, iDb); 5953 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5954 5955 /* Search for the index that has the lowest scan cost. 5956 ** 5957 ** (2011-04-15) Do not do a full scan of an unordered index. 5958 ** 5959 ** (2013-10-03) Do not count the entries in a partial index. 5960 ** 5961 ** In practice the KeyInfo structure will not be used. It is only 5962 ** passed to keep OP_OpenRead happy. 5963 */ 5964 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5965 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5966 if( pIdx->bUnordered==0 5967 && pIdx->szIdxRow<pTab->szTabRow 5968 && pIdx->pPartIdxWhere==0 5969 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5970 ){ 5971 pBest = pIdx; 5972 } 5973 } 5974 if( pBest ){ 5975 iRoot = pBest->tnum; 5976 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5977 } 5978 5979 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5980 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5981 if( pKeyInfo ){ 5982 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5983 } 5984 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5985 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5986 explainSimpleCount(pParse, pTab, pBest); 5987 }else 5988 #endif /* SQLITE_OMIT_BTREECOUNT */ 5989 { 5990 /* This case runs if the aggregate has no GROUP BY clause. The 5991 ** processing is much simpler since there is only a single row 5992 ** of output. 5993 */ 5994 assert( p->pGroupBy==0 ); 5995 resetAccumulator(pParse, &sAggInfo); 5996 5997 /* If this query is a candidate for the min/max optimization, then 5998 ** minMaxFlag will have been previously set to either 5999 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6000 ** be an appropriate ORDER BY expression for the optimization. 6001 */ 6002 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6003 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6004 6005 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6006 0, minMaxFlag, 0); 6007 if( pWInfo==0 ){ 6008 goto select_end; 6009 } 6010 updateAccumulator(pParse, &sAggInfo); 6011 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6012 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6013 VdbeComment((v, "%s() by index", 6014 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6015 } 6016 sqlite3WhereEnd(pWInfo); 6017 finalizeAggFunctions(pParse, &sAggInfo); 6018 } 6019 6020 sSort.pOrderBy = 0; 6021 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6022 selectInnerLoop(pParse, p, -1, 0, 0, 6023 pDest, addrEnd, addrEnd); 6024 } 6025 sqlite3VdbeResolveLabel(v, addrEnd); 6026 6027 } /* endif aggregate query */ 6028 6029 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6030 explainTempTable(pParse, "DISTINCT"); 6031 } 6032 6033 /* If there is an ORDER BY clause, then we need to sort the results 6034 ** and send them to the callback one by one. 6035 */ 6036 if( sSort.pOrderBy ){ 6037 explainTempTable(pParse, 6038 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6039 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6040 } 6041 6042 /* Jump here to skip this query 6043 */ 6044 sqlite3VdbeResolveLabel(v, iEnd); 6045 6046 /* The SELECT has been coded. If there is an error in the Parse structure, 6047 ** set the return code to 1. Otherwise 0. */ 6048 rc = (pParse->nErr>0); 6049 6050 /* Control jumps to here if an error is encountered above, or upon 6051 ** successful coding of the SELECT. 6052 */ 6053 select_end: 6054 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 6055 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6056 sqlite3DbFree(db, sAggInfo.aCol); 6057 sqlite3DbFree(db, sAggInfo.aFunc); 6058 #if SELECTTRACE_ENABLED 6059 SELECTTRACE(1,pParse,p,("end processing\n")); 6060 pParse->nSelectIndent--; 6061 #endif 6062 return rc; 6063 } 6064