xref: /sqlite-3.40.0/src/select.c (revision 4e8ad3bc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 };
61 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
62 
63 /*
64 ** Delete all the content of a Select structure.  Deallocate the structure
65 ** itself only if bFree is true.
66 */
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68   while( p ){
69     Select *pPrior = p->pPrior;
70     sqlite3ExprListDelete(db, p->pEList);
71     sqlite3SrcListDelete(db, p->pSrc);
72     sqlite3ExprDelete(db, p->pWhere);
73     sqlite3ExprListDelete(db, p->pGroupBy);
74     sqlite3ExprDelete(db, p->pHaving);
75     sqlite3ExprListDelete(db, p->pOrderBy);
76     sqlite3ExprDelete(db, p->pLimit);
77     sqlite3ExprDelete(db, p->pOffset);
78     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
79     if( bFree ) sqlite3DbFreeNN(db, p);
80     p = pPrior;
81     bFree = 1;
82   }
83 }
84 
85 /*
86 ** Initialize a SelectDest structure.
87 */
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89   pDest->eDest = (u8)eDest;
90   pDest->iSDParm = iParm;
91   pDest->zAffSdst = 0;
92   pDest->iSdst = 0;
93   pDest->nSdst = 0;
94 }
95 
96 
97 /*
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
100 */
101 Select *sqlite3SelectNew(
102   Parse *pParse,        /* Parsing context */
103   ExprList *pEList,     /* which columns to include in the result */
104   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
105   Expr *pWhere,         /* the WHERE clause */
106   ExprList *pGroupBy,   /* the GROUP BY clause */
107   Expr *pHaving,        /* the HAVING clause */
108   ExprList *pOrderBy,   /* the ORDER BY clause */
109   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
110   Expr *pLimit,         /* LIMIT value.  NULL means not used */
111   Expr *pOffset         /* OFFSET value.  NULL means no offset */
112 ){
113   Select *pNew;
114   Select standin;
115   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
116   if( pNew==0 ){
117     assert( pParse->db->mallocFailed );
118     pNew = &standin;
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0,
122                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
123   }
124   pNew->pEList = pEList;
125   pNew->op = TK_SELECT;
126   pNew->selFlags = selFlags;
127   pNew->iLimit = 0;
128   pNew->iOffset = 0;
129 #if SELECTTRACE_ENABLED
130   pNew->zSelName[0] = 0;
131 #endif
132   pNew->addrOpenEphm[0] = -1;
133   pNew->addrOpenEphm[1] = -1;
134   pNew->nSelectRow = 0;
135   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
136   pNew->pSrc = pSrc;
137   pNew->pWhere = pWhere;
138   pNew->pGroupBy = pGroupBy;
139   pNew->pHaving = pHaving;
140   pNew->pOrderBy = pOrderBy;
141   pNew->pPrior = 0;
142   pNew->pNext = 0;
143   pNew->pLimit = pLimit;
144   pNew->pOffset = pOffset;
145   pNew->pWith = 0;
146   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0
147                      || pParse->db->mallocFailed!=0 );
148   if( pParse->db->mallocFailed ) {
149     clearSelect(pParse->db, pNew, pNew!=&standin);
150     pNew = 0;
151   }else{
152     assert( pNew->pSrc!=0 || pParse->nErr>0 );
153   }
154   assert( pNew!=&standin );
155   return pNew;
156 }
157 
158 #if SELECTTRACE_ENABLED
159 /*
160 ** Set the name of a Select object
161 */
162 void sqlite3SelectSetName(Select *p, const char *zName){
163   if( p && zName ){
164     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
165   }
166 }
167 #endif
168 
169 
170 /*
171 ** Delete the given Select structure and all of its substructures.
172 */
173 void sqlite3SelectDelete(sqlite3 *db, Select *p){
174   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
175 }
176 
177 /*
178 ** Return a pointer to the right-most SELECT statement in a compound.
179 */
180 static Select *findRightmost(Select *p){
181   while( p->pNext ) p = p->pNext;
182   return p;
183 }
184 
185 /*
186 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
187 ** type of join.  Return an integer constant that expresses that type
188 ** in terms of the following bit values:
189 **
190 **     JT_INNER
191 **     JT_CROSS
192 **     JT_OUTER
193 **     JT_NATURAL
194 **     JT_LEFT
195 **     JT_RIGHT
196 **
197 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
198 **
199 ** If an illegal or unsupported join type is seen, then still return
200 ** a join type, but put an error in the pParse structure.
201 */
202 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
203   int jointype = 0;
204   Token *apAll[3];
205   Token *p;
206                              /*   0123456789 123456789 123456789 123 */
207   static const char zKeyText[] = "naturaleftouterightfullinnercross";
208   static const struct {
209     u8 i;        /* Beginning of keyword text in zKeyText[] */
210     u8 nChar;    /* Length of the keyword in characters */
211     u8 code;     /* Join type mask */
212   } aKeyword[] = {
213     /* natural */ { 0,  7, JT_NATURAL                },
214     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
215     /* outer   */ { 10, 5, JT_OUTER                  },
216     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
217     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
218     /* inner   */ { 23, 5, JT_INNER                  },
219     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
220   };
221   int i, j;
222   apAll[0] = pA;
223   apAll[1] = pB;
224   apAll[2] = pC;
225   for(i=0; i<3 && apAll[i]; i++){
226     p = apAll[i];
227     for(j=0; j<ArraySize(aKeyword); j++){
228       if( p->n==aKeyword[j].nChar
229           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
230         jointype |= aKeyword[j].code;
231         break;
232       }
233     }
234     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
235     if( j>=ArraySize(aKeyword) ){
236       jointype |= JT_ERROR;
237       break;
238     }
239   }
240   if(
241      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
242      (jointype & JT_ERROR)!=0
243   ){
244     const char *zSp = " ";
245     assert( pB!=0 );
246     if( pC==0 ){ zSp++; }
247     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
248        "%T %T%s%T", pA, pB, zSp, pC);
249     jointype = JT_INNER;
250   }else if( (jointype & JT_OUTER)!=0
251          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
252     sqlite3ErrorMsg(pParse,
253       "RIGHT and FULL OUTER JOINs are not currently supported");
254     jointype = JT_INNER;
255   }
256   return jointype;
257 }
258 
259 /*
260 ** Return the index of a column in a table.  Return -1 if the column
261 ** is not contained in the table.
262 */
263 static int columnIndex(Table *pTab, const char *zCol){
264   int i;
265   for(i=0; i<pTab->nCol; i++){
266     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
267   }
268   return -1;
269 }
270 
271 /*
272 ** Search the first N tables in pSrc, from left to right, looking for a
273 ** table that has a column named zCol.
274 **
275 ** When found, set *piTab and *piCol to the table index and column index
276 ** of the matching column and return TRUE.
277 **
278 ** If not found, return FALSE.
279 */
280 static int tableAndColumnIndex(
281   SrcList *pSrc,       /* Array of tables to search */
282   int N,               /* Number of tables in pSrc->a[] to search */
283   const char *zCol,    /* Name of the column we are looking for */
284   int *piTab,          /* Write index of pSrc->a[] here */
285   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
286 ){
287   int i;               /* For looping over tables in pSrc */
288   int iCol;            /* Index of column matching zCol */
289 
290   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
291   for(i=0; i<N; i++){
292     iCol = columnIndex(pSrc->a[i].pTab, zCol);
293     if( iCol>=0 ){
294       if( piTab ){
295         *piTab = i;
296         *piCol = iCol;
297       }
298       return 1;
299     }
300   }
301   return 0;
302 }
303 
304 /*
305 ** This function is used to add terms implied by JOIN syntax to the
306 ** WHERE clause expression of a SELECT statement. The new term, which
307 ** is ANDed with the existing WHERE clause, is of the form:
308 **
309 **    (tab1.col1 = tab2.col2)
310 **
311 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
312 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
313 ** column iColRight of tab2.
314 */
315 static void addWhereTerm(
316   Parse *pParse,                  /* Parsing context */
317   SrcList *pSrc,                  /* List of tables in FROM clause */
318   int iLeft,                      /* Index of first table to join in pSrc */
319   int iColLeft,                   /* Index of column in first table */
320   int iRight,                     /* Index of second table in pSrc */
321   int iColRight,                  /* Index of column in second table */
322   int isOuterJoin,                /* True if this is an OUTER join */
323   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
324 ){
325   sqlite3 *db = pParse->db;
326   Expr *pE1;
327   Expr *pE2;
328   Expr *pEq;
329 
330   assert( iLeft<iRight );
331   assert( pSrc->nSrc>iRight );
332   assert( pSrc->a[iLeft].pTab );
333   assert( pSrc->a[iRight].pTab );
334 
335   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
336   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
337 
338   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
339   if( pEq && isOuterJoin ){
340     ExprSetProperty(pEq, EP_FromJoin);
341     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
342     ExprSetVVAProperty(pEq, EP_NoReduce);
343     pEq->iRightJoinTable = (i16)pE2->iTable;
344   }
345   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
346 }
347 
348 /*
349 ** Set the EP_FromJoin property on all terms of the given expression.
350 ** And set the Expr.iRightJoinTable to iTable for every term in the
351 ** expression.
352 **
353 ** The EP_FromJoin property is used on terms of an expression to tell
354 ** the LEFT OUTER JOIN processing logic that this term is part of the
355 ** join restriction specified in the ON or USING clause and not a part
356 ** of the more general WHERE clause.  These terms are moved over to the
357 ** WHERE clause during join processing but we need to remember that they
358 ** originated in the ON or USING clause.
359 **
360 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
361 ** expression depends on table iRightJoinTable even if that table is not
362 ** explicitly mentioned in the expression.  That information is needed
363 ** for cases like this:
364 **
365 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
366 **
367 ** The where clause needs to defer the handling of the t1.x=5
368 ** term until after the t2 loop of the join.  In that way, a
369 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
370 ** defer the handling of t1.x=5, it will be processed immediately
371 ** after the t1 loop and rows with t1.x!=5 will never appear in
372 ** the output, which is incorrect.
373 */
374 static void setJoinExpr(Expr *p, int iTable){
375   while( p ){
376     ExprSetProperty(p, EP_FromJoin);
377     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
378     ExprSetVVAProperty(p, EP_NoReduce);
379     p->iRightJoinTable = (i16)iTable;
380     if( p->op==TK_FUNCTION && p->x.pList ){
381       int i;
382       for(i=0; i<p->x.pList->nExpr; i++){
383         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
384       }
385     }
386     setJoinExpr(p->pLeft, iTable);
387     p = p->pRight;
388   }
389 }
390 
391 /*
392 ** This routine processes the join information for a SELECT statement.
393 ** ON and USING clauses are converted into extra terms of the WHERE clause.
394 ** NATURAL joins also create extra WHERE clause terms.
395 **
396 ** The terms of a FROM clause are contained in the Select.pSrc structure.
397 ** The left most table is the first entry in Select.pSrc.  The right-most
398 ** table is the last entry.  The join operator is held in the entry to
399 ** the left.  Thus entry 0 contains the join operator for the join between
400 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
401 ** also attached to the left entry.
402 **
403 ** This routine returns the number of errors encountered.
404 */
405 static int sqliteProcessJoin(Parse *pParse, Select *p){
406   SrcList *pSrc;                  /* All tables in the FROM clause */
407   int i, j;                       /* Loop counters */
408   struct SrcList_item *pLeft;     /* Left table being joined */
409   struct SrcList_item *pRight;    /* Right table being joined */
410 
411   pSrc = p->pSrc;
412   pLeft = &pSrc->a[0];
413   pRight = &pLeft[1];
414   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
415     Table *pRightTab = pRight->pTab;
416     int isOuter;
417 
418     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
419     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
420 
421     /* When the NATURAL keyword is present, add WHERE clause terms for
422     ** every column that the two tables have in common.
423     */
424     if( pRight->fg.jointype & JT_NATURAL ){
425       if( pRight->pOn || pRight->pUsing ){
426         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
427            "an ON or USING clause", 0);
428         return 1;
429       }
430       for(j=0; j<pRightTab->nCol; j++){
431         char *zName;   /* Name of column in the right table */
432         int iLeft;     /* Matching left table */
433         int iLeftCol;  /* Matching column in the left table */
434 
435         zName = pRightTab->aCol[j].zName;
436         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
437           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
438                        isOuter, &p->pWhere);
439         }
440       }
441     }
442 
443     /* Disallow both ON and USING clauses in the same join
444     */
445     if( pRight->pOn && pRight->pUsing ){
446       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
447         "clauses in the same join");
448       return 1;
449     }
450 
451     /* Add the ON clause to the end of the WHERE clause, connected by
452     ** an AND operator.
453     */
454     if( pRight->pOn ){
455       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
456       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
457       pRight->pOn = 0;
458     }
459 
460     /* Create extra terms on the WHERE clause for each column named
461     ** in the USING clause.  Example: If the two tables to be joined are
462     ** A and B and the USING clause names X, Y, and Z, then add this
463     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
464     ** Report an error if any column mentioned in the USING clause is
465     ** not contained in both tables to be joined.
466     */
467     if( pRight->pUsing ){
468       IdList *pList = pRight->pUsing;
469       for(j=0; j<pList->nId; j++){
470         char *zName;     /* Name of the term in the USING clause */
471         int iLeft;       /* Table on the left with matching column name */
472         int iLeftCol;    /* Column number of matching column on the left */
473         int iRightCol;   /* Column number of matching column on the right */
474 
475         zName = pList->a[j].zName;
476         iRightCol = columnIndex(pRightTab, zName);
477         if( iRightCol<0
478          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
479         ){
480           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
481             "not present in both tables", zName);
482           return 1;
483         }
484         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
485                      isOuter, &p->pWhere);
486       }
487     }
488   }
489   return 0;
490 }
491 
492 /* Forward reference */
493 static KeyInfo *keyInfoFromExprList(
494   Parse *pParse,       /* Parsing context */
495   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
496   int iStart,          /* Begin with this column of pList */
497   int nExtra           /* Add this many extra columns to the end */
498 );
499 
500 /*
501 ** Generate code that will push the record in registers regData
502 ** through regData+nData-1 onto the sorter.
503 */
504 static void pushOntoSorter(
505   Parse *pParse,         /* Parser context */
506   SortCtx *pSort,        /* Information about the ORDER BY clause */
507   Select *pSelect,       /* The whole SELECT statement */
508   int regData,           /* First register holding data to be sorted */
509   int regOrigData,       /* First register holding data before packing */
510   int nData,             /* Number of elements in the data array */
511   int nPrefixReg         /* No. of reg prior to regData available for use */
512 ){
513   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
514   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
515   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
516   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
517   int regBase;                                     /* Regs for sorter record */
518   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
519   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
520   int op;                            /* Opcode to add sorter record to sorter */
521   int iLimit;                        /* LIMIT counter */
522 
523   assert( bSeq==0 || bSeq==1 );
524   assert( nData==1 || regData==regOrigData || regOrigData==0 );
525   if( nPrefixReg ){
526     assert( nPrefixReg==nExpr+bSeq );
527     regBase = regData - nExpr - bSeq;
528   }else{
529     regBase = pParse->nMem + 1;
530     pParse->nMem += nBase;
531   }
532   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
533   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
534   pSort->labelDone = sqlite3VdbeMakeLabel(v);
535   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
536                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
537   if( bSeq ){
538     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
539   }
540   if( nPrefixReg==0 && nData>0 ){
541     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
542   }
543   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
544   if( nOBSat>0 ){
545     int regPrevKey;   /* The first nOBSat columns of the previous row */
546     int addrFirst;    /* Address of the OP_IfNot opcode */
547     int addrJmp;      /* Address of the OP_Jump opcode */
548     VdbeOp *pOp;      /* Opcode that opens the sorter */
549     int nKey;         /* Number of sorting key columns, including OP_Sequence */
550     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
551 
552     regPrevKey = pParse->nMem+1;
553     pParse->nMem += pSort->nOBSat;
554     nKey = nExpr - pSort->nOBSat + bSeq;
555     if( bSeq ){
556       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
557     }else{
558       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
559     }
560     VdbeCoverage(v);
561     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
562     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
563     if( pParse->db->mallocFailed ) return;
564     pOp->p2 = nKey + nData;
565     pKI = pOp->p4.pKeyInfo;
566     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
567     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
568     testcase( pKI->nAllField > pKI->nKeyField+2 );
569     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
570                                            pKI->nAllField-pKI->nKeyField-1);
571     addrJmp = sqlite3VdbeCurrentAddr(v);
572     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
573     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
574     pSort->regReturn = ++pParse->nMem;
575     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
576     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
577     if( iLimit ){
578       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
579       VdbeCoverage(v);
580     }
581     sqlite3VdbeJumpHere(v, addrFirst);
582     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
583     sqlite3VdbeJumpHere(v, addrJmp);
584   }
585   if( pSort->sortFlags & SORTFLAG_UseSorter ){
586     op = OP_SorterInsert;
587   }else{
588     op = OP_IdxInsert;
589   }
590   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
591                        regBase+nOBSat, nBase-nOBSat);
592   if( iLimit ){
593     int addr;
594     int r1 = 0;
595     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
596     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
597     ** fills up, delete the least entry in the sorter after each insert.
598     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
599     addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
600     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
601     if( pSort->bOrderedInnerLoop ){
602       r1 = ++pParse->nMem;
603       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
604       VdbeComment((v, "seq"));
605     }
606     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
607     if( pSort->bOrderedInnerLoop ){
608       /* If the inner loop is driven by an index such that values from
609       ** the same iteration of the inner loop are in sorted order, then
610       ** immediately jump to the next iteration of an inner loop if the
611       ** entry from the current iteration does not fit into the top
612       ** LIMIT+OFFSET entries of the sorter. */
613       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
614       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
615       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
616       VdbeCoverage(v);
617     }
618     sqlite3VdbeJumpHere(v, addr);
619   }
620 }
621 
622 /*
623 ** Add code to implement the OFFSET
624 */
625 static void codeOffset(
626   Vdbe *v,          /* Generate code into this VM */
627   int iOffset,      /* Register holding the offset counter */
628   int iContinue     /* Jump here to skip the current record */
629 ){
630   if( iOffset>0 ){
631     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
632     VdbeComment((v, "OFFSET"));
633   }
634 }
635 
636 /*
637 ** Add code that will check to make sure the N registers starting at iMem
638 ** form a distinct entry.  iTab is a sorting index that holds previously
639 ** seen combinations of the N values.  A new entry is made in iTab
640 ** if the current N values are new.
641 **
642 ** A jump to addrRepeat is made and the N+1 values are popped from the
643 ** stack if the top N elements are not distinct.
644 */
645 static void codeDistinct(
646   Parse *pParse,     /* Parsing and code generating context */
647   int iTab,          /* A sorting index used to test for distinctness */
648   int addrRepeat,    /* Jump to here if not distinct */
649   int N,             /* Number of elements */
650   int iMem           /* First element */
651 ){
652   Vdbe *v;
653   int r1;
654 
655   v = pParse->pVdbe;
656   r1 = sqlite3GetTempReg(pParse);
657   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
658   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
659   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
660   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
661   sqlite3ReleaseTempReg(pParse, r1);
662 }
663 
664 /*
665 ** This routine generates the code for the inside of the inner loop
666 ** of a SELECT.
667 **
668 ** If srcTab is negative, then the p->pEList expressions
669 ** are evaluated in order to get the data for this row.  If srcTab is
670 ** zero or more, then data is pulled from srcTab and p->pEList is used only
671 ** to get the number of columns and the collation sequence for each column.
672 */
673 static void selectInnerLoop(
674   Parse *pParse,          /* The parser context */
675   Select *p,              /* The complete select statement being coded */
676   int srcTab,             /* Pull data from this table if non-negative */
677   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
678   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
679   SelectDest *pDest,      /* How to dispose of the results */
680   int iContinue,          /* Jump here to continue with next row */
681   int iBreak              /* Jump here to break out of the inner loop */
682 ){
683   Vdbe *v = pParse->pVdbe;
684   int i;
685   int hasDistinct;            /* True if the DISTINCT keyword is present */
686   int eDest = pDest->eDest;   /* How to dispose of results */
687   int iParm = pDest->iSDParm; /* First argument to disposal method */
688   int nResultCol;             /* Number of result columns */
689   int nPrefixReg = 0;         /* Number of extra registers before regResult */
690 
691   /* Usually, regResult is the first cell in an array of memory cells
692   ** containing the current result row. In this case regOrig is set to the
693   ** same value. However, if the results are being sent to the sorter, the
694   ** values for any expressions that are also part of the sort-key are omitted
695   ** from this array. In this case regOrig is set to zero.  */
696   int regResult;              /* Start of memory holding current results */
697   int regOrig;                /* Start of memory holding full result (or 0) */
698 
699   assert( v );
700   assert( p->pEList!=0 );
701   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
702   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
703   if( pSort==0 && !hasDistinct ){
704     assert( iContinue!=0 );
705     codeOffset(v, p->iOffset, iContinue);
706   }
707 
708   /* Pull the requested columns.
709   */
710   nResultCol = p->pEList->nExpr;
711 
712   if( pDest->iSdst==0 ){
713     if( pSort ){
714       nPrefixReg = pSort->pOrderBy->nExpr;
715       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
716       pParse->nMem += nPrefixReg;
717     }
718     pDest->iSdst = pParse->nMem+1;
719     pParse->nMem += nResultCol;
720   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
721     /* This is an error condition that can result, for example, when a SELECT
722     ** on the right-hand side of an INSERT contains more result columns than
723     ** there are columns in the table on the left.  The error will be caught
724     ** and reported later.  But we need to make sure enough memory is allocated
725     ** to avoid other spurious errors in the meantime. */
726     pParse->nMem += nResultCol;
727   }
728   pDest->nSdst = nResultCol;
729   regOrig = regResult = pDest->iSdst;
730   if( srcTab>=0 ){
731     for(i=0; i<nResultCol; i++){
732       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
733       VdbeComment((v, "%s", p->pEList->a[i].zName));
734     }
735   }else if( eDest!=SRT_Exists ){
736     /* If the destination is an EXISTS(...) expression, the actual
737     ** values returned by the SELECT are not required.
738     */
739     u8 ecelFlags;
740     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
741       ecelFlags = SQLITE_ECEL_DUP;
742     }else{
743       ecelFlags = 0;
744     }
745     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
746       /* For each expression in p->pEList that is a copy of an expression in
747       ** the ORDER BY clause (pSort->pOrderBy), set the associated
748       ** iOrderByCol value to one more than the index of the ORDER BY
749       ** expression within the sort-key that pushOntoSorter() will generate.
750       ** This allows the p->pEList field to be omitted from the sorted record,
751       ** saving space and CPU cycles.  */
752       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
753       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
754         int j;
755         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
756           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
757         }
758       }
759       regOrig = 0;
760       assert( eDest==SRT_Set || eDest==SRT_Mem
761            || eDest==SRT_Coroutine || eDest==SRT_Output );
762     }
763     nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
764                                          0,ecelFlags);
765   }
766 
767   /* If the DISTINCT keyword was present on the SELECT statement
768   ** and this row has been seen before, then do not make this row
769   ** part of the result.
770   */
771   if( hasDistinct ){
772     switch( pDistinct->eTnctType ){
773       case WHERE_DISTINCT_ORDERED: {
774         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
775         int iJump;              /* Jump destination */
776         int regPrev;            /* Previous row content */
777 
778         /* Allocate space for the previous row */
779         regPrev = pParse->nMem+1;
780         pParse->nMem += nResultCol;
781 
782         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
783         ** sets the MEM_Cleared bit on the first register of the
784         ** previous value.  This will cause the OP_Ne below to always
785         ** fail on the first iteration of the loop even if the first
786         ** row is all NULLs.
787         */
788         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
789         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
790         pOp->opcode = OP_Null;
791         pOp->p1 = 1;
792         pOp->p2 = regPrev;
793 
794         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
795         for(i=0; i<nResultCol; i++){
796           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
797           if( i<nResultCol-1 ){
798             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
799             VdbeCoverage(v);
800           }else{
801             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
802             VdbeCoverage(v);
803            }
804           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
805           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
806         }
807         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
808         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
809         break;
810       }
811 
812       case WHERE_DISTINCT_UNIQUE: {
813         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
814         break;
815       }
816 
817       default: {
818         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
819         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
820                      regResult);
821         break;
822       }
823     }
824     if( pSort==0 ){
825       codeOffset(v, p->iOffset, iContinue);
826     }
827   }
828 
829   switch( eDest ){
830     /* In this mode, write each query result to the key of the temporary
831     ** table iParm.
832     */
833 #ifndef SQLITE_OMIT_COMPOUND_SELECT
834     case SRT_Union: {
835       int r1;
836       r1 = sqlite3GetTempReg(pParse);
837       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
838       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
839       sqlite3ReleaseTempReg(pParse, r1);
840       break;
841     }
842 
843     /* Construct a record from the query result, but instead of
844     ** saving that record, use it as a key to delete elements from
845     ** the temporary table iParm.
846     */
847     case SRT_Except: {
848       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
849       break;
850     }
851 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
852 
853     /* Store the result as data using a unique key.
854     */
855     case SRT_Fifo:
856     case SRT_DistFifo:
857     case SRT_Table:
858     case SRT_EphemTab: {
859       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
860       testcase( eDest==SRT_Table );
861       testcase( eDest==SRT_EphemTab );
862       testcase( eDest==SRT_Fifo );
863       testcase( eDest==SRT_DistFifo );
864       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
865 #ifndef SQLITE_OMIT_CTE
866       if( eDest==SRT_DistFifo ){
867         /* If the destination is DistFifo, then cursor (iParm+1) is open
868         ** on an ephemeral index. If the current row is already present
869         ** in the index, do not write it to the output. If not, add the
870         ** current row to the index and proceed with writing it to the
871         ** output table as well.  */
872         int addr = sqlite3VdbeCurrentAddr(v) + 4;
873         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
874         VdbeCoverage(v);
875         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
876         assert( pSort==0 );
877       }
878 #endif
879       if( pSort ){
880         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
881       }else{
882         int r2 = sqlite3GetTempReg(pParse);
883         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
884         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
885         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
886         sqlite3ReleaseTempReg(pParse, r2);
887       }
888       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
889       break;
890     }
891 
892 #ifndef SQLITE_OMIT_SUBQUERY
893     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
894     ** then there should be a single item on the stack.  Write this
895     ** item into the set table with bogus data.
896     */
897     case SRT_Set: {
898       if( pSort ){
899         /* At first glance you would think we could optimize out the
900         ** ORDER BY in this case since the order of entries in the set
901         ** does not matter.  But there might be a LIMIT clause, in which
902         ** case the order does matter */
903         pushOntoSorter(
904             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
905       }else{
906         int r1 = sqlite3GetTempReg(pParse);
907         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
908         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
909             r1, pDest->zAffSdst, nResultCol);
910         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
911         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
912         sqlite3ReleaseTempReg(pParse, r1);
913       }
914       break;
915     }
916 
917     /* If any row exist in the result set, record that fact and abort.
918     */
919     case SRT_Exists: {
920       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
921       /* The LIMIT clause will terminate the loop for us */
922       break;
923     }
924 
925     /* If this is a scalar select that is part of an expression, then
926     ** store the results in the appropriate memory cell or array of
927     ** memory cells and break out of the scan loop.
928     */
929     case SRT_Mem: {
930       if( pSort ){
931         assert( nResultCol<=pDest->nSdst );
932         pushOntoSorter(
933             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
934       }else{
935         assert( nResultCol==pDest->nSdst );
936         assert( regResult==iParm );
937         /* The LIMIT clause will jump out of the loop for us */
938       }
939       break;
940     }
941 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
942 
943     case SRT_Coroutine:       /* Send data to a co-routine */
944     case SRT_Output: {        /* Return the results */
945       testcase( eDest==SRT_Coroutine );
946       testcase( eDest==SRT_Output );
947       if( pSort ){
948         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
949                        nPrefixReg);
950       }else if( eDest==SRT_Coroutine ){
951         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
952       }else{
953         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
954         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
955       }
956       break;
957     }
958 
959 #ifndef SQLITE_OMIT_CTE
960     /* Write the results into a priority queue that is order according to
961     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
962     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
963     ** pSO->nExpr columns, then make sure all keys are unique by adding a
964     ** final OP_Sequence column.  The last column is the record as a blob.
965     */
966     case SRT_DistQueue:
967     case SRT_Queue: {
968       int nKey;
969       int r1, r2, r3;
970       int addrTest = 0;
971       ExprList *pSO;
972       pSO = pDest->pOrderBy;
973       assert( pSO );
974       nKey = pSO->nExpr;
975       r1 = sqlite3GetTempReg(pParse);
976       r2 = sqlite3GetTempRange(pParse, nKey+2);
977       r3 = r2+nKey+1;
978       if( eDest==SRT_DistQueue ){
979         /* If the destination is DistQueue, then cursor (iParm+1) is open
980         ** on a second ephemeral index that holds all values every previously
981         ** added to the queue. */
982         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
983                                         regResult, nResultCol);
984         VdbeCoverage(v);
985       }
986       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
987       if( eDest==SRT_DistQueue ){
988         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
989         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
990       }
991       for(i=0; i<nKey; i++){
992         sqlite3VdbeAddOp2(v, OP_SCopy,
993                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
994                           r2+i);
995       }
996       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
997       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
998       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
999       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1000       sqlite3ReleaseTempReg(pParse, r1);
1001       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1002       break;
1003     }
1004 #endif /* SQLITE_OMIT_CTE */
1005 
1006 
1007 
1008 #if !defined(SQLITE_OMIT_TRIGGER)
1009     /* Discard the results.  This is used for SELECT statements inside
1010     ** the body of a TRIGGER.  The purpose of such selects is to call
1011     ** user-defined functions that have side effects.  We do not care
1012     ** about the actual results of the select.
1013     */
1014     default: {
1015       assert( eDest==SRT_Discard );
1016       break;
1017     }
1018 #endif
1019   }
1020 
1021   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1022   ** there is a sorter, in which case the sorter has already limited
1023   ** the output for us.
1024   */
1025   if( pSort==0 && p->iLimit ){
1026     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1027   }
1028 }
1029 
1030 /*
1031 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1032 ** X extra columns.
1033 */
1034 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1035   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1036   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1037   if( p ){
1038     p->aSortOrder = (u8*)&p->aColl[N+X];
1039     p->nKeyField = (u16)N;
1040     p->nAllField = (u16)(N+X);
1041     p->enc = ENC(db);
1042     p->db = db;
1043     p->nRef = 1;
1044     memset(&p[1], 0, nExtra);
1045   }else{
1046     sqlite3OomFault(db);
1047   }
1048   return p;
1049 }
1050 
1051 /*
1052 ** Deallocate a KeyInfo object
1053 */
1054 void sqlite3KeyInfoUnref(KeyInfo *p){
1055   if( p ){
1056     assert( p->nRef>0 );
1057     p->nRef--;
1058     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1059   }
1060 }
1061 
1062 /*
1063 ** Make a new pointer to a KeyInfo object
1064 */
1065 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1066   if( p ){
1067     assert( p->nRef>0 );
1068     p->nRef++;
1069   }
1070   return p;
1071 }
1072 
1073 #ifdef SQLITE_DEBUG
1074 /*
1075 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1076 ** can only be changed if this is just a single reference to the object.
1077 **
1078 ** This routine is used only inside of assert() statements.
1079 */
1080 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1081 #endif /* SQLITE_DEBUG */
1082 
1083 /*
1084 ** Given an expression list, generate a KeyInfo structure that records
1085 ** the collating sequence for each expression in that expression list.
1086 **
1087 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1088 ** KeyInfo structure is appropriate for initializing a virtual index to
1089 ** implement that clause.  If the ExprList is the result set of a SELECT
1090 ** then the KeyInfo structure is appropriate for initializing a virtual
1091 ** index to implement a DISTINCT test.
1092 **
1093 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1094 ** function is responsible for seeing that this structure is eventually
1095 ** freed.
1096 */
1097 static KeyInfo *keyInfoFromExprList(
1098   Parse *pParse,       /* Parsing context */
1099   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1100   int iStart,          /* Begin with this column of pList */
1101   int nExtra           /* Add this many extra columns to the end */
1102 ){
1103   int nExpr;
1104   KeyInfo *pInfo;
1105   struct ExprList_item *pItem;
1106   sqlite3 *db = pParse->db;
1107   int i;
1108 
1109   nExpr = pList->nExpr;
1110   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1111   if( pInfo ){
1112     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1113     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1114       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1115       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1116     }
1117   }
1118   return pInfo;
1119 }
1120 
1121 /*
1122 ** Name of the connection operator, used for error messages.
1123 */
1124 static const char *selectOpName(int id){
1125   char *z;
1126   switch( id ){
1127     case TK_ALL:       z = "UNION ALL";   break;
1128     case TK_INTERSECT: z = "INTERSECT";   break;
1129     case TK_EXCEPT:    z = "EXCEPT";      break;
1130     default:           z = "UNION";       break;
1131   }
1132   return z;
1133 }
1134 
1135 #ifndef SQLITE_OMIT_EXPLAIN
1136 /*
1137 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1138 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1139 ** where the caption is of the form:
1140 **
1141 **   "USE TEMP B-TREE FOR xxx"
1142 **
1143 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1144 ** is determined by the zUsage argument.
1145 */
1146 static void explainTempTable(Parse *pParse, const char *zUsage){
1147   if( pParse->explain==2 ){
1148     Vdbe *v = pParse->pVdbe;
1149     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1150     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1151   }
1152 }
1153 
1154 /*
1155 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1156 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1157 ** in sqlite3Select() to assign values to structure member variables that
1158 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1159 ** code with #ifndef directives.
1160 */
1161 # define explainSetInteger(a, b) a = b
1162 
1163 #else
1164 /* No-op versions of the explainXXX() functions and macros. */
1165 # define explainTempTable(y,z)
1166 # define explainSetInteger(y,z)
1167 #endif
1168 
1169 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1170 /*
1171 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1172 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1173 ** where the caption is of one of the two forms:
1174 **
1175 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1176 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1177 **
1178 ** where iSub1 and iSub2 are the integers passed as the corresponding
1179 ** function parameters, and op is the text representation of the parameter
1180 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1181 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1182 ** false, or the second form if it is true.
1183 */
1184 static void explainComposite(
1185   Parse *pParse,                  /* Parse context */
1186   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1187   int iSub1,                      /* Subquery id 1 */
1188   int iSub2,                      /* Subquery id 2 */
1189   int bUseTmp                     /* True if a temp table was used */
1190 ){
1191   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1192   if( pParse->explain==2 ){
1193     Vdbe *v = pParse->pVdbe;
1194     char *zMsg = sqlite3MPrintf(
1195         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1196         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1197     );
1198     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1199   }
1200 }
1201 #else
1202 /* No-op versions of the explainXXX() functions and macros. */
1203 # define explainComposite(v,w,x,y,z)
1204 #endif
1205 
1206 /*
1207 ** If the inner loop was generated using a non-null pOrderBy argument,
1208 ** then the results were placed in a sorter.  After the loop is terminated
1209 ** we need to run the sorter and output the results.  The following
1210 ** routine generates the code needed to do that.
1211 */
1212 static void generateSortTail(
1213   Parse *pParse,    /* Parsing context */
1214   Select *p,        /* The SELECT statement */
1215   SortCtx *pSort,   /* Information on the ORDER BY clause */
1216   int nColumn,      /* Number of columns of data */
1217   SelectDest *pDest /* Write the sorted results here */
1218 ){
1219   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1220   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1221   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1222   int addr;
1223   int addrOnce = 0;
1224   int iTab;
1225   ExprList *pOrderBy = pSort->pOrderBy;
1226   int eDest = pDest->eDest;
1227   int iParm = pDest->iSDParm;
1228   int regRow;
1229   int regRowid;
1230   int iCol;
1231   int nKey;
1232   int iSortTab;                   /* Sorter cursor to read from */
1233   int nSortData;                  /* Trailing values to read from sorter */
1234   int i;
1235   int bSeq;                       /* True if sorter record includes seq. no. */
1236   struct ExprList_item *aOutEx = p->pEList->a;
1237 
1238   assert( addrBreak<0 );
1239   if( pSort->labelBkOut ){
1240     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1241     sqlite3VdbeGoto(v, addrBreak);
1242     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1243   }
1244   iTab = pSort->iECursor;
1245   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1246     regRowid = 0;
1247     regRow = pDest->iSdst;
1248     nSortData = nColumn;
1249   }else{
1250     regRowid = sqlite3GetTempReg(pParse);
1251     regRow = sqlite3GetTempRange(pParse, nColumn);
1252     nSortData = nColumn;
1253   }
1254   nKey = pOrderBy->nExpr - pSort->nOBSat;
1255   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1256     int regSortOut = ++pParse->nMem;
1257     iSortTab = pParse->nTab++;
1258     if( pSort->labelBkOut ){
1259       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1260     }
1261     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1262     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1263     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1264     VdbeCoverage(v);
1265     codeOffset(v, p->iOffset, addrContinue);
1266     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1267     bSeq = 0;
1268   }else{
1269     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1270     codeOffset(v, p->iOffset, addrContinue);
1271     iSortTab = iTab;
1272     bSeq = 1;
1273   }
1274   for(i=0, iCol=nKey+bSeq; i<nSortData; i++){
1275     int iRead;
1276     if( aOutEx[i].u.x.iOrderByCol ){
1277       iRead = aOutEx[i].u.x.iOrderByCol-1;
1278     }else{
1279       iRead = iCol++;
1280     }
1281     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1282     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1283   }
1284   switch( eDest ){
1285     case SRT_Table:
1286     case SRT_EphemTab: {
1287       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1288       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1289       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1290       break;
1291     }
1292 #ifndef SQLITE_OMIT_SUBQUERY
1293     case SRT_Set: {
1294       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1295       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1296                         pDest->zAffSdst, nColumn);
1297       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1298       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1299       break;
1300     }
1301     case SRT_Mem: {
1302       /* The LIMIT clause will terminate the loop for us */
1303       break;
1304     }
1305 #endif
1306     default: {
1307       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1308       testcase( eDest==SRT_Output );
1309       testcase( eDest==SRT_Coroutine );
1310       if( eDest==SRT_Output ){
1311         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1312         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1313       }else{
1314         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1315       }
1316       break;
1317     }
1318   }
1319   if( regRowid ){
1320     if( eDest==SRT_Set ){
1321       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1322     }else{
1323       sqlite3ReleaseTempReg(pParse, regRow);
1324     }
1325     sqlite3ReleaseTempReg(pParse, regRowid);
1326   }
1327   /* The bottom of the loop
1328   */
1329   sqlite3VdbeResolveLabel(v, addrContinue);
1330   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1331     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1332   }else{
1333     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1334   }
1335   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1336   sqlite3VdbeResolveLabel(v, addrBreak);
1337 }
1338 
1339 /*
1340 ** Return a pointer to a string containing the 'declaration type' of the
1341 ** expression pExpr. The string may be treated as static by the caller.
1342 **
1343 ** Also try to estimate the size of the returned value and return that
1344 ** result in *pEstWidth.
1345 **
1346 ** The declaration type is the exact datatype definition extracted from the
1347 ** original CREATE TABLE statement if the expression is a column. The
1348 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1349 ** is considered a column can be complex in the presence of subqueries. The
1350 ** result-set expression in all of the following SELECT statements is
1351 ** considered a column by this function.
1352 **
1353 **   SELECT col FROM tbl;
1354 **   SELECT (SELECT col FROM tbl;
1355 **   SELECT (SELECT col FROM tbl);
1356 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1357 **
1358 ** The declaration type for any expression other than a column is NULL.
1359 **
1360 ** This routine has either 3 or 6 parameters depending on whether or not
1361 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1362 */
1363 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1364 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1365 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1366 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1367 #endif
1368 static const char *columnTypeImpl(
1369   NameContext *pNC,
1370 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1371   Expr *pExpr
1372 #else
1373   Expr *pExpr,
1374   const char **pzOrigDb,
1375   const char **pzOrigTab,
1376   const char **pzOrigCol
1377 #endif
1378 ){
1379   char const *zType = 0;
1380   int j;
1381 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1382   char const *zOrigDb = 0;
1383   char const *zOrigTab = 0;
1384   char const *zOrigCol = 0;
1385 #endif
1386 
1387   assert( pExpr!=0 );
1388   assert( pNC->pSrcList!=0 );
1389   switch( pExpr->op ){
1390     case TK_AGG_COLUMN:
1391     case TK_COLUMN: {
1392       /* The expression is a column. Locate the table the column is being
1393       ** extracted from in NameContext.pSrcList. This table may be real
1394       ** database table or a subquery.
1395       */
1396       Table *pTab = 0;            /* Table structure column is extracted from */
1397       Select *pS = 0;             /* Select the column is extracted from */
1398       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1399       testcase( pExpr->op==TK_AGG_COLUMN );
1400       testcase( pExpr->op==TK_COLUMN );
1401       while( pNC && !pTab ){
1402         SrcList *pTabList = pNC->pSrcList;
1403         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1404         if( j<pTabList->nSrc ){
1405           pTab = pTabList->a[j].pTab;
1406           pS = pTabList->a[j].pSelect;
1407         }else{
1408           pNC = pNC->pNext;
1409         }
1410       }
1411 
1412       if( pTab==0 ){
1413         /* At one time, code such as "SELECT new.x" within a trigger would
1414         ** cause this condition to run.  Since then, we have restructured how
1415         ** trigger code is generated and so this condition is no longer
1416         ** possible. However, it can still be true for statements like
1417         ** the following:
1418         **
1419         **   CREATE TABLE t1(col INTEGER);
1420         **   SELECT (SELECT t1.col) FROM FROM t1;
1421         **
1422         ** when columnType() is called on the expression "t1.col" in the
1423         ** sub-select. In this case, set the column type to NULL, even
1424         ** though it should really be "INTEGER".
1425         **
1426         ** This is not a problem, as the column type of "t1.col" is never
1427         ** used. When columnType() is called on the expression
1428         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1429         ** branch below.  */
1430         break;
1431       }
1432 
1433       assert( pTab && pExpr->pTab==pTab );
1434       if( pS ){
1435         /* The "table" is actually a sub-select or a view in the FROM clause
1436         ** of the SELECT statement. Return the declaration type and origin
1437         ** data for the result-set column of the sub-select.
1438         */
1439         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1440           /* If iCol is less than zero, then the expression requests the
1441           ** rowid of the sub-select or view. This expression is legal (see
1442           ** test case misc2.2.2) - it always evaluates to NULL.
1443           */
1444           NameContext sNC;
1445           Expr *p = pS->pEList->a[iCol].pExpr;
1446           sNC.pSrcList = pS->pSrc;
1447           sNC.pNext = pNC;
1448           sNC.pParse = pNC->pParse;
1449           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1450         }
1451       }else{
1452         /* A real table or a CTE table */
1453         assert( !pS );
1454 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1455         if( iCol<0 ) iCol = pTab->iPKey;
1456         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1457         if( iCol<0 ){
1458           zType = "INTEGER";
1459           zOrigCol = "rowid";
1460         }else{
1461           zOrigCol = pTab->aCol[iCol].zName;
1462           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1463         }
1464         zOrigTab = pTab->zName;
1465         if( pNC->pParse && pTab->pSchema ){
1466           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1467           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1468         }
1469 #else
1470         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1471         if( iCol<0 ){
1472           zType = "INTEGER";
1473         }else{
1474           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1475         }
1476 #endif
1477       }
1478       break;
1479     }
1480 #ifndef SQLITE_OMIT_SUBQUERY
1481     case TK_SELECT: {
1482       /* The expression is a sub-select. Return the declaration type and
1483       ** origin info for the single column in the result set of the SELECT
1484       ** statement.
1485       */
1486       NameContext sNC;
1487       Select *pS = pExpr->x.pSelect;
1488       Expr *p = pS->pEList->a[0].pExpr;
1489       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1490       sNC.pSrcList = pS->pSrc;
1491       sNC.pNext = pNC;
1492       sNC.pParse = pNC->pParse;
1493       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1494       break;
1495     }
1496 #endif
1497   }
1498 
1499 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1500   if( pzOrigDb ){
1501     assert( pzOrigTab && pzOrigCol );
1502     *pzOrigDb = zOrigDb;
1503     *pzOrigTab = zOrigTab;
1504     *pzOrigCol = zOrigCol;
1505   }
1506 #endif
1507   return zType;
1508 }
1509 
1510 /*
1511 ** Generate code that will tell the VDBE the declaration types of columns
1512 ** in the result set.
1513 */
1514 static void generateColumnTypes(
1515   Parse *pParse,      /* Parser context */
1516   SrcList *pTabList,  /* List of tables */
1517   ExprList *pEList    /* Expressions defining the result set */
1518 ){
1519 #ifndef SQLITE_OMIT_DECLTYPE
1520   Vdbe *v = pParse->pVdbe;
1521   int i;
1522   NameContext sNC;
1523   sNC.pSrcList = pTabList;
1524   sNC.pParse = pParse;
1525   sNC.pNext = 0;
1526   for(i=0; i<pEList->nExpr; i++){
1527     Expr *p = pEList->a[i].pExpr;
1528     const char *zType;
1529 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1530     const char *zOrigDb = 0;
1531     const char *zOrigTab = 0;
1532     const char *zOrigCol = 0;
1533     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1534 
1535     /* The vdbe must make its own copy of the column-type and other
1536     ** column specific strings, in case the schema is reset before this
1537     ** virtual machine is deleted.
1538     */
1539     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1540     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1541     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1542 #else
1543     zType = columnType(&sNC, p, 0, 0, 0);
1544 #endif
1545     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1546   }
1547 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1548 }
1549 
1550 
1551 /*
1552 ** Compute the column names for a SELECT statement.
1553 **
1554 ** The only guarantee that SQLite makes about column names is that if the
1555 ** column has an AS clause assigning it a name, that will be the name used.
1556 ** That is the only documented guarantee.  However, countless applications
1557 ** developed over the years have made baseless assumptions about column names
1558 ** and will break if those assumptions changes.  Hence, use extreme caution
1559 ** when modifying this routine to avoid breaking legacy.
1560 **
1561 ** See Also: sqlite3ColumnsFromExprList()
1562 **
1563 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1564 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1565 ** applications should operate this way.  Nevertheless, we need to support the
1566 ** other modes for legacy:
1567 **
1568 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1569 **                              originally appears in the SELECT statement.  In
1570 **                              other words, the zSpan of the result expression.
1571 **
1572 **    short=ON, full=OFF:       (This is the default setting).  If the result
1573 **                              refers directly to a table column, then the
1574 **                              result column name is just the table column
1575 **                              name: COLUMN.  Otherwise use zSpan.
1576 **
1577 **    full=ON, short=ANY:       If the result refers directly to a table column,
1578 **                              then the result column name with the table name
1579 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1580 */
1581 static void generateColumnNames(
1582   Parse *pParse,      /* Parser context */
1583   Select *pSelect     /* Generate column names for this SELECT statement */
1584 ){
1585   Vdbe *v = pParse->pVdbe;
1586   int i;
1587   Table *pTab;
1588   SrcList *pTabList;
1589   ExprList *pEList;
1590   sqlite3 *db = pParse->db;
1591   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1592   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1593 
1594 #ifndef SQLITE_OMIT_EXPLAIN
1595   /* If this is an EXPLAIN, skip this step */
1596   if( pParse->explain ){
1597     return;
1598   }
1599 #endif
1600 
1601   if( pParse->colNamesSet || db->mallocFailed ) return;
1602   /* Column names are determined by the left-most term of a compound select */
1603   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1604   pTabList = pSelect->pSrc;
1605   pEList = pSelect->pEList;
1606   assert( v!=0 );
1607   assert( pTabList!=0 );
1608   pParse->colNamesSet = 1;
1609   fullName = (db->flags & SQLITE_FullColNames)!=0;
1610   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1611   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1612   for(i=0; i<pEList->nExpr; i++){
1613     Expr *p = pEList->a[i].pExpr;
1614 
1615     assert( p!=0 );
1616     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1617     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1618     if( pEList->a[i].zName ){
1619       /* An AS clause always takes first priority */
1620       char *zName = pEList->a[i].zName;
1621       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1622     }else if( srcName && p->op==TK_COLUMN ){
1623       char *zCol;
1624       int iCol = p->iColumn;
1625       pTab = p->pTab;
1626       assert( pTab!=0 );
1627       if( iCol<0 ) iCol = pTab->iPKey;
1628       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1629       if( iCol<0 ){
1630         zCol = "rowid";
1631       }else{
1632         zCol = pTab->aCol[iCol].zName;
1633       }
1634       if( fullName ){
1635         char *zName = 0;
1636         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1637         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1638       }else{
1639         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1640       }
1641     }else{
1642       const char *z = pEList->a[i].zSpan;
1643       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1644       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1645     }
1646   }
1647   generateColumnTypes(pParse, pTabList, pEList);
1648 }
1649 
1650 /*
1651 ** Given an expression list (which is really the list of expressions
1652 ** that form the result set of a SELECT statement) compute appropriate
1653 ** column names for a table that would hold the expression list.
1654 **
1655 ** All column names will be unique.
1656 **
1657 ** Only the column names are computed.  Column.zType, Column.zColl,
1658 ** and other fields of Column are zeroed.
1659 **
1660 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1661 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1662 **
1663 ** The only guarantee that SQLite makes about column names is that if the
1664 ** column has an AS clause assigning it a name, that will be the name used.
1665 ** That is the only documented guarantee.  However, countless applications
1666 ** developed over the years have made baseless assumptions about column names
1667 ** and will break if those assumptions changes.  Hence, use extreme caution
1668 ** when modifying this routine to avoid breaking legacy.
1669 **
1670 ** See Also: generateColumnNames()
1671 */
1672 int sqlite3ColumnsFromExprList(
1673   Parse *pParse,          /* Parsing context */
1674   ExprList *pEList,       /* Expr list from which to derive column names */
1675   i16 *pnCol,             /* Write the number of columns here */
1676   Column **paCol          /* Write the new column list here */
1677 ){
1678   sqlite3 *db = pParse->db;   /* Database connection */
1679   int i, j;                   /* Loop counters */
1680   u32 cnt;                    /* Index added to make the name unique */
1681   Column *aCol, *pCol;        /* For looping over result columns */
1682   int nCol;                   /* Number of columns in the result set */
1683   char *zName;                /* Column name */
1684   int nName;                  /* Size of name in zName[] */
1685   Hash ht;                    /* Hash table of column names */
1686 
1687   sqlite3HashInit(&ht);
1688   if( pEList ){
1689     nCol = pEList->nExpr;
1690     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1691     testcase( aCol==0 );
1692     if( nCol>32767 ) nCol = 32767;
1693   }else{
1694     nCol = 0;
1695     aCol = 0;
1696   }
1697   assert( nCol==(i16)nCol );
1698   *pnCol = nCol;
1699   *paCol = aCol;
1700 
1701   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1702     /* Get an appropriate name for the column
1703     */
1704     if( (zName = pEList->a[i].zName)!=0 ){
1705       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1706     }else{
1707       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1708       while( pColExpr->op==TK_DOT ){
1709         pColExpr = pColExpr->pRight;
1710         assert( pColExpr!=0 );
1711       }
1712       if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN)
1713        && pColExpr->pTab!=0
1714       ){
1715         /* For columns use the column name name */
1716         int iCol = pColExpr->iColumn;
1717         Table *pTab = pColExpr->pTab;
1718         if( iCol<0 ) iCol = pTab->iPKey;
1719         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1720       }else if( pColExpr->op==TK_ID ){
1721         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1722         zName = pColExpr->u.zToken;
1723       }else{
1724         /* Use the original text of the column expression as its name */
1725         zName = pEList->a[i].zSpan;
1726       }
1727     }
1728     if( zName ){
1729       zName = sqlite3DbStrDup(db, zName);
1730     }else{
1731       zName = sqlite3MPrintf(db,"column%d",i+1);
1732     }
1733 
1734     /* Make sure the column name is unique.  If the name is not unique,
1735     ** append an integer to the name so that it becomes unique.
1736     */
1737     cnt = 0;
1738     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1739       nName = sqlite3Strlen30(zName);
1740       if( nName>0 ){
1741         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1742         if( zName[j]==':' ) nName = j;
1743       }
1744       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1745       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1746     }
1747     pCol->zName = zName;
1748     sqlite3ColumnPropertiesFromName(0, pCol);
1749     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1750       sqlite3OomFault(db);
1751     }
1752   }
1753   sqlite3HashClear(&ht);
1754   if( db->mallocFailed ){
1755     for(j=0; j<i; j++){
1756       sqlite3DbFree(db, aCol[j].zName);
1757     }
1758     sqlite3DbFree(db, aCol);
1759     *paCol = 0;
1760     *pnCol = 0;
1761     return SQLITE_NOMEM_BKPT;
1762   }
1763   return SQLITE_OK;
1764 }
1765 
1766 /*
1767 ** Add type and collation information to a column list based on
1768 ** a SELECT statement.
1769 **
1770 ** The column list presumably came from selectColumnNamesFromExprList().
1771 ** The column list has only names, not types or collations.  This
1772 ** routine goes through and adds the types and collations.
1773 **
1774 ** This routine requires that all identifiers in the SELECT
1775 ** statement be resolved.
1776 */
1777 void sqlite3SelectAddColumnTypeAndCollation(
1778   Parse *pParse,        /* Parsing contexts */
1779   Table *pTab,          /* Add column type information to this table */
1780   Select *pSelect       /* SELECT used to determine types and collations */
1781 ){
1782   sqlite3 *db = pParse->db;
1783   NameContext sNC;
1784   Column *pCol;
1785   CollSeq *pColl;
1786   int i;
1787   Expr *p;
1788   struct ExprList_item *a;
1789 
1790   assert( pSelect!=0 );
1791   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1792   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1793   if( db->mallocFailed ) return;
1794   memset(&sNC, 0, sizeof(sNC));
1795   sNC.pSrcList = pSelect->pSrc;
1796   a = pSelect->pEList->a;
1797   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1798     const char *zType;
1799     int n, m;
1800     p = a[i].pExpr;
1801     zType = columnType(&sNC, p, 0, 0, 0);
1802     /* pCol->szEst = ... // Column size est for SELECT tables never used */
1803     pCol->affinity = sqlite3ExprAffinity(p);
1804     if( zType ){
1805       m = sqlite3Strlen30(zType);
1806       n = sqlite3Strlen30(pCol->zName);
1807       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1808       if( pCol->zName ){
1809         memcpy(&pCol->zName[n+1], zType, m+1);
1810         pCol->colFlags |= COLFLAG_HASTYPE;
1811       }
1812     }
1813     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1814     pColl = sqlite3ExprCollSeq(pParse, p);
1815     if( pColl && pCol->zColl==0 ){
1816       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1817     }
1818   }
1819   pTab->szTabRow = 1; /* Any non-zero value works */
1820 }
1821 
1822 /*
1823 ** Given a SELECT statement, generate a Table structure that describes
1824 ** the result set of that SELECT.
1825 */
1826 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1827   Table *pTab;
1828   sqlite3 *db = pParse->db;
1829   int savedFlags;
1830 
1831   savedFlags = db->flags;
1832   db->flags &= ~SQLITE_FullColNames;
1833   db->flags |= SQLITE_ShortColNames;
1834   sqlite3SelectPrep(pParse, pSelect, 0);
1835   if( pParse->nErr ) return 0;
1836   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1837   db->flags = savedFlags;
1838   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1839   if( pTab==0 ){
1840     return 0;
1841   }
1842   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1843   ** is disabled */
1844   assert( db->lookaside.bDisable );
1845   pTab->nTabRef = 1;
1846   pTab->zName = 0;
1847   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1848   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1849   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1850   pTab->iPKey = -1;
1851   if( db->mallocFailed ){
1852     sqlite3DeleteTable(db, pTab);
1853     return 0;
1854   }
1855   return pTab;
1856 }
1857 
1858 /*
1859 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1860 ** If an error occurs, return NULL and leave a message in pParse.
1861 */
1862 Vdbe *sqlite3GetVdbe(Parse *pParse){
1863   if( pParse->pVdbe ){
1864     return pParse->pVdbe;
1865   }
1866   if( pParse->pToplevel==0
1867    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1868   ){
1869     pParse->okConstFactor = 1;
1870   }
1871   return sqlite3VdbeCreate(pParse);
1872 }
1873 
1874 
1875 /*
1876 ** Compute the iLimit and iOffset fields of the SELECT based on the
1877 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1878 ** that appear in the original SQL statement after the LIMIT and OFFSET
1879 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1880 ** are the integer memory register numbers for counters used to compute
1881 ** the limit and offset.  If there is no limit and/or offset, then
1882 ** iLimit and iOffset are negative.
1883 **
1884 ** This routine changes the values of iLimit and iOffset only if
1885 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1886 ** iOffset should have been preset to appropriate default values (zero)
1887 ** prior to calling this routine.
1888 **
1889 ** The iOffset register (if it exists) is initialized to the value
1890 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1891 ** iOffset+1 is initialized to LIMIT+OFFSET.
1892 **
1893 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1894 ** redefined.  The UNION ALL operator uses this property to force
1895 ** the reuse of the same limit and offset registers across multiple
1896 ** SELECT statements.
1897 */
1898 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1899   Vdbe *v = 0;
1900   int iLimit = 0;
1901   int iOffset;
1902   int n;
1903   if( p->iLimit ) return;
1904 
1905   /*
1906   ** "LIMIT -1" always shows all rows.  There is some
1907   ** controversy about what the correct behavior should be.
1908   ** The current implementation interprets "LIMIT 0" to mean
1909   ** no rows.
1910   */
1911   sqlite3ExprCacheClear(pParse);
1912   assert( p->pOffset==0 || p->pLimit!=0 );
1913   if( p->pLimit ){
1914     p->iLimit = iLimit = ++pParse->nMem;
1915     v = sqlite3GetVdbe(pParse);
1916     assert( v!=0 );
1917     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1918       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1919       VdbeComment((v, "LIMIT counter"));
1920       if( n==0 ){
1921         sqlite3VdbeGoto(v, iBreak);
1922       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1923         p->nSelectRow = sqlite3LogEst((u64)n);
1924         p->selFlags |= SF_FixedLimit;
1925       }
1926     }else{
1927       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1928       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1929       VdbeComment((v, "LIMIT counter"));
1930       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1931     }
1932     if( p->pOffset ){
1933       p->iOffset = iOffset = ++pParse->nMem;
1934       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1935       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1936       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1937       VdbeComment((v, "OFFSET counter"));
1938       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1939       VdbeComment((v, "LIMIT+OFFSET"));
1940     }
1941   }
1942 }
1943 
1944 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1945 /*
1946 ** Return the appropriate collating sequence for the iCol-th column of
1947 ** the result set for the compound-select statement "p".  Return NULL if
1948 ** the column has no default collating sequence.
1949 **
1950 ** The collating sequence for the compound select is taken from the
1951 ** left-most term of the select that has a collating sequence.
1952 */
1953 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1954   CollSeq *pRet;
1955   if( p->pPrior ){
1956     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1957   }else{
1958     pRet = 0;
1959   }
1960   assert( iCol>=0 );
1961   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1962   ** have been thrown during name resolution and we would not have gotten
1963   ** this far */
1964   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1965     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1966   }
1967   return pRet;
1968 }
1969 
1970 /*
1971 ** The select statement passed as the second parameter is a compound SELECT
1972 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1973 ** structure suitable for implementing the ORDER BY.
1974 **
1975 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1976 ** function is responsible for ensuring that this structure is eventually
1977 ** freed.
1978 */
1979 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1980   ExprList *pOrderBy = p->pOrderBy;
1981   int nOrderBy = p->pOrderBy->nExpr;
1982   sqlite3 *db = pParse->db;
1983   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1984   if( pRet ){
1985     int i;
1986     for(i=0; i<nOrderBy; i++){
1987       struct ExprList_item *pItem = &pOrderBy->a[i];
1988       Expr *pTerm = pItem->pExpr;
1989       CollSeq *pColl;
1990 
1991       if( pTerm->flags & EP_Collate ){
1992         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1993       }else{
1994         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1995         if( pColl==0 ) pColl = db->pDfltColl;
1996         pOrderBy->a[i].pExpr =
1997           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1998       }
1999       assert( sqlite3KeyInfoIsWriteable(pRet) );
2000       pRet->aColl[i] = pColl;
2001       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2002     }
2003   }
2004 
2005   return pRet;
2006 }
2007 
2008 #ifndef SQLITE_OMIT_CTE
2009 /*
2010 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2011 ** query of the form:
2012 **
2013 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2014 **                         \___________/             \_______________/
2015 **                           p->pPrior                      p
2016 **
2017 **
2018 ** There is exactly one reference to the recursive-table in the FROM clause
2019 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2020 **
2021 ** The setup-query runs once to generate an initial set of rows that go
2022 ** into a Queue table.  Rows are extracted from the Queue table one by
2023 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2024 ** extracted row (now in the iCurrent table) becomes the content of the
2025 ** recursive-table for a recursive-query run.  The output of the recursive-query
2026 ** is added back into the Queue table.  Then another row is extracted from Queue
2027 ** and the iteration continues until the Queue table is empty.
2028 **
2029 ** If the compound query operator is UNION then no duplicate rows are ever
2030 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2031 ** that have ever been inserted into Queue and causes duplicates to be
2032 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2033 **
2034 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2035 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2036 ** an ORDER BY, the Queue table is just a FIFO.
2037 **
2038 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2039 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2040 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2041 ** with a positive value, then the first OFFSET outputs are discarded rather
2042 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2043 ** rows have been skipped.
2044 */
2045 static void generateWithRecursiveQuery(
2046   Parse *pParse,        /* Parsing context */
2047   Select *p,            /* The recursive SELECT to be coded */
2048   SelectDest *pDest     /* What to do with query results */
2049 ){
2050   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2051   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2052   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2053   Select *pSetup = p->pPrior;   /* The setup query */
2054   int addrTop;                  /* Top of the loop */
2055   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2056   int iCurrent = 0;             /* The Current table */
2057   int regCurrent;               /* Register holding Current table */
2058   int iQueue;                   /* The Queue table */
2059   int iDistinct = 0;            /* To ensure unique results if UNION */
2060   int eDest = SRT_Fifo;         /* How to write to Queue */
2061   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2062   int i;                        /* Loop counter */
2063   int rc;                       /* Result code */
2064   ExprList *pOrderBy;           /* The ORDER BY clause */
2065   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
2066   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2067 
2068   /* Obtain authorization to do a recursive query */
2069   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2070 
2071   /* Process the LIMIT and OFFSET clauses, if they exist */
2072   addrBreak = sqlite3VdbeMakeLabel(v);
2073   p->nSelectRow = 320;  /* 4 billion rows */
2074   computeLimitRegisters(pParse, p, addrBreak);
2075   pLimit = p->pLimit;
2076   pOffset = p->pOffset;
2077   regLimit = p->iLimit;
2078   regOffset = p->iOffset;
2079   p->pLimit = p->pOffset = 0;
2080   p->iLimit = p->iOffset = 0;
2081   pOrderBy = p->pOrderBy;
2082 
2083   /* Locate the cursor number of the Current table */
2084   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2085     if( pSrc->a[i].fg.isRecursive ){
2086       iCurrent = pSrc->a[i].iCursor;
2087       break;
2088     }
2089   }
2090 
2091   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2092   ** the Distinct table must be exactly one greater than Queue in order
2093   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2094   iQueue = pParse->nTab++;
2095   if( p->op==TK_UNION ){
2096     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2097     iDistinct = pParse->nTab++;
2098   }else{
2099     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2100   }
2101   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2102 
2103   /* Allocate cursors for Current, Queue, and Distinct. */
2104   regCurrent = ++pParse->nMem;
2105   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2106   if( pOrderBy ){
2107     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2108     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2109                       (char*)pKeyInfo, P4_KEYINFO);
2110     destQueue.pOrderBy = pOrderBy;
2111   }else{
2112     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2113   }
2114   VdbeComment((v, "Queue table"));
2115   if( iDistinct ){
2116     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2117     p->selFlags |= SF_UsesEphemeral;
2118   }
2119 
2120   /* Detach the ORDER BY clause from the compound SELECT */
2121   p->pOrderBy = 0;
2122 
2123   /* Store the results of the setup-query in Queue. */
2124   pSetup->pNext = 0;
2125   rc = sqlite3Select(pParse, pSetup, &destQueue);
2126   pSetup->pNext = p;
2127   if( rc ) goto end_of_recursive_query;
2128 
2129   /* Find the next row in the Queue and output that row */
2130   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2131 
2132   /* Transfer the next row in Queue over to Current */
2133   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2134   if( pOrderBy ){
2135     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2136   }else{
2137     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2138   }
2139   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2140 
2141   /* Output the single row in Current */
2142   addrCont = sqlite3VdbeMakeLabel(v);
2143   codeOffset(v, regOffset, addrCont);
2144   selectInnerLoop(pParse, p, iCurrent,
2145       0, 0, pDest, addrCont, addrBreak);
2146   if( regLimit ){
2147     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2148     VdbeCoverage(v);
2149   }
2150   sqlite3VdbeResolveLabel(v, addrCont);
2151 
2152   /* Execute the recursive SELECT taking the single row in Current as
2153   ** the value for the recursive-table. Store the results in the Queue.
2154   */
2155   if( p->selFlags & SF_Aggregate ){
2156     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2157   }else{
2158     p->pPrior = 0;
2159     sqlite3Select(pParse, p, &destQueue);
2160     assert( p->pPrior==0 );
2161     p->pPrior = pSetup;
2162   }
2163 
2164   /* Keep running the loop until the Queue is empty */
2165   sqlite3VdbeGoto(v, addrTop);
2166   sqlite3VdbeResolveLabel(v, addrBreak);
2167 
2168 end_of_recursive_query:
2169   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2170   p->pOrderBy = pOrderBy;
2171   p->pLimit = pLimit;
2172   p->pOffset = pOffset;
2173   return;
2174 }
2175 #endif /* SQLITE_OMIT_CTE */
2176 
2177 /* Forward references */
2178 static int multiSelectOrderBy(
2179   Parse *pParse,        /* Parsing context */
2180   Select *p,            /* The right-most of SELECTs to be coded */
2181   SelectDest *pDest     /* What to do with query results */
2182 );
2183 
2184 /*
2185 ** Handle the special case of a compound-select that originates from a
2186 ** VALUES clause.  By handling this as a special case, we avoid deep
2187 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2188 ** on a VALUES clause.
2189 **
2190 ** Because the Select object originates from a VALUES clause:
2191 **   (1) It has no LIMIT or OFFSET
2192 **   (2) All terms are UNION ALL
2193 **   (3) There is no ORDER BY clause
2194 */
2195 static int multiSelectValues(
2196   Parse *pParse,        /* Parsing context */
2197   Select *p,            /* The right-most of SELECTs to be coded */
2198   SelectDest *pDest     /* What to do with query results */
2199 ){
2200   Select *pPrior;
2201   int nRow = 1;
2202   int rc = 0;
2203   assert( p->selFlags & SF_MultiValue );
2204   do{
2205     assert( p->selFlags & SF_Values );
2206     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2207     assert( p->pLimit==0 );
2208     assert( p->pOffset==0 );
2209     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2210     if( p->pPrior==0 ) break;
2211     assert( p->pPrior->pNext==p );
2212     p = p->pPrior;
2213     nRow++;
2214   }while(1);
2215   while( p ){
2216     pPrior = p->pPrior;
2217     p->pPrior = 0;
2218     rc = sqlite3Select(pParse, p, pDest);
2219     p->pPrior = pPrior;
2220     if( rc ) break;
2221     p->nSelectRow = nRow;
2222     p = p->pNext;
2223   }
2224   return rc;
2225 }
2226 
2227 /*
2228 ** This routine is called to process a compound query form from
2229 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2230 ** INTERSECT
2231 **
2232 ** "p" points to the right-most of the two queries.  the query on the
2233 ** left is p->pPrior.  The left query could also be a compound query
2234 ** in which case this routine will be called recursively.
2235 **
2236 ** The results of the total query are to be written into a destination
2237 ** of type eDest with parameter iParm.
2238 **
2239 ** Example 1:  Consider a three-way compound SQL statement.
2240 **
2241 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2242 **
2243 ** This statement is parsed up as follows:
2244 **
2245 **     SELECT c FROM t3
2246 **      |
2247 **      `----->  SELECT b FROM t2
2248 **                |
2249 **                `------>  SELECT a FROM t1
2250 **
2251 ** The arrows in the diagram above represent the Select.pPrior pointer.
2252 ** So if this routine is called with p equal to the t3 query, then
2253 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2254 **
2255 ** Notice that because of the way SQLite parses compound SELECTs, the
2256 ** individual selects always group from left to right.
2257 */
2258 static int multiSelect(
2259   Parse *pParse,        /* Parsing context */
2260   Select *p,            /* The right-most of SELECTs to be coded */
2261   SelectDest *pDest     /* What to do with query results */
2262 ){
2263   int rc = SQLITE_OK;   /* Success code from a subroutine */
2264   Select *pPrior;       /* Another SELECT immediately to our left */
2265   Vdbe *v;              /* Generate code to this VDBE */
2266   SelectDest dest;      /* Alternative data destination */
2267   Select *pDelete = 0;  /* Chain of simple selects to delete */
2268   sqlite3 *db;          /* Database connection */
2269 #ifndef SQLITE_OMIT_EXPLAIN
2270   int iSub1 = 0;        /* EQP id of left-hand query */
2271   int iSub2 = 0;        /* EQP id of right-hand query */
2272 #endif
2273 
2274   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2275   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2276   */
2277   assert( p && p->pPrior );  /* Calling function guarantees this much */
2278   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2279   db = pParse->db;
2280   pPrior = p->pPrior;
2281   dest = *pDest;
2282   if( pPrior->pOrderBy || pPrior->pLimit ){
2283     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2284       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2285     rc = 1;
2286     goto multi_select_end;
2287   }
2288 
2289   v = sqlite3GetVdbe(pParse);
2290   assert( v!=0 );  /* The VDBE already created by calling function */
2291 
2292   /* Create the destination temporary table if necessary
2293   */
2294   if( dest.eDest==SRT_EphemTab ){
2295     assert( p->pEList );
2296     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2297     dest.eDest = SRT_Table;
2298   }
2299 
2300   /* Special handling for a compound-select that originates as a VALUES clause.
2301   */
2302   if( p->selFlags & SF_MultiValue ){
2303     rc = multiSelectValues(pParse, p, &dest);
2304     goto multi_select_end;
2305   }
2306 
2307   /* Make sure all SELECTs in the statement have the same number of elements
2308   ** in their result sets.
2309   */
2310   assert( p->pEList && pPrior->pEList );
2311   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2312 
2313 #ifndef SQLITE_OMIT_CTE
2314   if( p->selFlags & SF_Recursive ){
2315     generateWithRecursiveQuery(pParse, p, &dest);
2316   }else
2317 #endif
2318 
2319   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2320   */
2321   if( p->pOrderBy ){
2322     return multiSelectOrderBy(pParse, p, pDest);
2323   }else
2324 
2325   /* Generate code for the left and right SELECT statements.
2326   */
2327   switch( p->op ){
2328     case TK_ALL: {
2329       int addr = 0;
2330       int nLimit;
2331       assert( !pPrior->pLimit );
2332       pPrior->iLimit = p->iLimit;
2333       pPrior->iOffset = p->iOffset;
2334       pPrior->pLimit = p->pLimit;
2335       pPrior->pOffset = p->pOffset;
2336       explainSetInteger(iSub1, pParse->iNextSelectId);
2337       rc = sqlite3Select(pParse, pPrior, &dest);
2338       p->pLimit = 0;
2339       p->pOffset = 0;
2340       if( rc ){
2341         goto multi_select_end;
2342       }
2343       p->pPrior = 0;
2344       p->iLimit = pPrior->iLimit;
2345       p->iOffset = pPrior->iOffset;
2346       if( p->iLimit ){
2347         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2348         VdbeComment((v, "Jump ahead if LIMIT reached"));
2349         if( p->iOffset ){
2350           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2351                             p->iLimit, p->iOffset+1, p->iOffset);
2352         }
2353       }
2354       explainSetInteger(iSub2, pParse->iNextSelectId);
2355       rc = sqlite3Select(pParse, p, &dest);
2356       testcase( rc!=SQLITE_OK );
2357       pDelete = p->pPrior;
2358       p->pPrior = pPrior;
2359       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2360       if( pPrior->pLimit
2361        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2362        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2363       ){
2364         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2365       }
2366       if( addr ){
2367         sqlite3VdbeJumpHere(v, addr);
2368       }
2369       break;
2370     }
2371     case TK_EXCEPT:
2372     case TK_UNION: {
2373       int unionTab;    /* Cursor number of the temporary table holding result */
2374       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2375       int priorOp;     /* The SRT_ operation to apply to prior selects */
2376       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2377       int addr;
2378       SelectDest uniondest;
2379 
2380       testcase( p->op==TK_EXCEPT );
2381       testcase( p->op==TK_UNION );
2382       priorOp = SRT_Union;
2383       if( dest.eDest==priorOp ){
2384         /* We can reuse a temporary table generated by a SELECT to our
2385         ** right.
2386         */
2387         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2388         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2389         unionTab = dest.iSDParm;
2390       }else{
2391         /* We will need to create our own temporary table to hold the
2392         ** intermediate results.
2393         */
2394         unionTab = pParse->nTab++;
2395         assert( p->pOrderBy==0 );
2396         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2397         assert( p->addrOpenEphm[0] == -1 );
2398         p->addrOpenEphm[0] = addr;
2399         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2400         assert( p->pEList );
2401       }
2402 
2403       /* Code the SELECT statements to our left
2404       */
2405       assert( !pPrior->pOrderBy );
2406       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2407       explainSetInteger(iSub1, pParse->iNextSelectId);
2408       rc = sqlite3Select(pParse, pPrior, &uniondest);
2409       if( rc ){
2410         goto multi_select_end;
2411       }
2412 
2413       /* Code the current SELECT statement
2414       */
2415       if( p->op==TK_EXCEPT ){
2416         op = SRT_Except;
2417       }else{
2418         assert( p->op==TK_UNION );
2419         op = SRT_Union;
2420       }
2421       p->pPrior = 0;
2422       pLimit = p->pLimit;
2423       p->pLimit = 0;
2424       pOffset = p->pOffset;
2425       p->pOffset = 0;
2426       uniondest.eDest = op;
2427       explainSetInteger(iSub2, pParse->iNextSelectId);
2428       rc = sqlite3Select(pParse, p, &uniondest);
2429       testcase( rc!=SQLITE_OK );
2430       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2431       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2432       sqlite3ExprListDelete(db, p->pOrderBy);
2433       pDelete = p->pPrior;
2434       p->pPrior = pPrior;
2435       p->pOrderBy = 0;
2436       if( p->op==TK_UNION ){
2437         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2438       }
2439       sqlite3ExprDelete(db, p->pLimit);
2440       p->pLimit = pLimit;
2441       p->pOffset = pOffset;
2442       p->iLimit = 0;
2443       p->iOffset = 0;
2444 
2445       /* Convert the data in the temporary table into whatever form
2446       ** it is that we currently need.
2447       */
2448       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2449       if( dest.eDest!=priorOp ){
2450         int iCont, iBreak, iStart;
2451         assert( p->pEList );
2452         iBreak = sqlite3VdbeMakeLabel(v);
2453         iCont = sqlite3VdbeMakeLabel(v);
2454         computeLimitRegisters(pParse, p, iBreak);
2455         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2456         iStart = sqlite3VdbeCurrentAddr(v);
2457         selectInnerLoop(pParse, p, unionTab,
2458                         0, 0, &dest, iCont, iBreak);
2459         sqlite3VdbeResolveLabel(v, iCont);
2460         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2461         sqlite3VdbeResolveLabel(v, iBreak);
2462         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2463       }
2464       break;
2465     }
2466     default: assert( p->op==TK_INTERSECT ); {
2467       int tab1, tab2;
2468       int iCont, iBreak, iStart;
2469       Expr *pLimit, *pOffset;
2470       int addr;
2471       SelectDest intersectdest;
2472       int r1;
2473 
2474       /* INTERSECT is different from the others since it requires
2475       ** two temporary tables.  Hence it has its own case.  Begin
2476       ** by allocating the tables we will need.
2477       */
2478       tab1 = pParse->nTab++;
2479       tab2 = pParse->nTab++;
2480       assert( p->pOrderBy==0 );
2481 
2482       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2483       assert( p->addrOpenEphm[0] == -1 );
2484       p->addrOpenEphm[0] = addr;
2485       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2486       assert( p->pEList );
2487 
2488       /* Code the SELECTs to our left into temporary table "tab1".
2489       */
2490       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2491       explainSetInteger(iSub1, pParse->iNextSelectId);
2492       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2493       if( rc ){
2494         goto multi_select_end;
2495       }
2496 
2497       /* Code the current SELECT into temporary table "tab2"
2498       */
2499       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2500       assert( p->addrOpenEphm[1] == -1 );
2501       p->addrOpenEphm[1] = addr;
2502       p->pPrior = 0;
2503       pLimit = p->pLimit;
2504       p->pLimit = 0;
2505       pOffset = p->pOffset;
2506       p->pOffset = 0;
2507       intersectdest.iSDParm = tab2;
2508       explainSetInteger(iSub2, pParse->iNextSelectId);
2509       rc = sqlite3Select(pParse, p, &intersectdest);
2510       testcase( rc!=SQLITE_OK );
2511       pDelete = p->pPrior;
2512       p->pPrior = pPrior;
2513       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2514       sqlite3ExprDelete(db, p->pLimit);
2515       p->pLimit = pLimit;
2516       p->pOffset = pOffset;
2517 
2518       /* Generate code to take the intersection of the two temporary
2519       ** tables.
2520       */
2521       assert( p->pEList );
2522       iBreak = sqlite3VdbeMakeLabel(v);
2523       iCont = sqlite3VdbeMakeLabel(v);
2524       computeLimitRegisters(pParse, p, iBreak);
2525       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2526       r1 = sqlite3GetTempReg(pParse);
2527       iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2528       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2529       sqlite3ReleaseTempReg(pParse, r1);
2530       selectInnerLoop(pParse, p, tab1,
2531                       0, 0, &dest, iCont, iBreak);
2532       sqlite3VdbeResolveLabel(v, iCont);
2533       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2534       sqlite3VdbeResolveLabel(v, iBreak);
2535       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2536       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2537       break;
2538     }
2539   }
2540 
2541   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2542 
2543   /* Compute collating sequences used by
2544   ** temporary tables needed to implement the compound select.
2545   ** Attach the KeyInfo structure to all temporary tables.
2546   **
2547   ** This section is run by the right-most SELECT statement only.
2548   ** SELECT statements to the left always skip this part.  The right-most
2549   ** SELECT might also skip this part if it has no ORDER BY clause and
2550   ** no temp tables are required.
2551   */
2552   if( p->selFlags & SF_UsesEphemeral ){
2553     int i;                        /* Loop counter */
2554     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2555     Select *pLoop;                /* For looping through SELECT statements */
2556     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2557     int nCol;                     /* Number of columns in result set */
2558 
2559     assert( p->pNext==0 );
2560     nCol = p->pEList->nExpr;
2561     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2562     if( !pKeyInfo ){
2563       rc = SQLITE_NOMEM_BKPT;
2564       goto multi_select_end;
2565     }
2566     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2567       *apColl = multiSelectCollSeq(pParse, p, i);
2568       if( 0==*apColl ){
2569         *apColl = db->pDfltColl;
2570       }
2571     }
2572 
2573     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2574       for(i=0; i<2; i++){
2575         int addr = pLoop->addrOpenEphm[i];
2576         if( addr<0 ){
2577           /* If [0] is unused then [1] is also unused.  So we can
2578           ** always safely abort as soon as the first unused slot is found */
2579           assert( pLoop->addrOpenEphm[1]<0 );
2580           break;
2581         }
2582         sqlite3VdbeChangeP2(v, addr, nCol);
2583         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2584                             P4_KEYINFO);
2585         pLoop->addrOpenEphm[i] = -1;
2586       }
2587     }
2588     sqlite3KeyInfoUnref(pKeyInfo);
2589   }
2590 
2591 multi_select_end:
2592   pDest->iSdst = dest.iSdst;
2593   pDest->nSdst = dest.nSdst;
2594   sqlite3SelectDelete(db, pDelete);
2595   return rc;
2596 }
2597 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2598 
2599 /*
2600 ** Error message for when two or more terms of a compound select have different
2601 ** size result sets.
2602 */
2603 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2604   if( p->selFlags & SF_Values ){
2605     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2606   }else{
2607     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2608       " do not have the same number of result columns", selectOpName(p->op));
2609   }
2610 }
2611 
2612 /*
2613 ** Code an output subroutine for a coroutine implementation of a
2614 ** SELECT statment.
2615 **
2616 ** The data to be output is contained in pIn->iSdst.  There are
2617 ** pIn->nSdst columns to be output.  pDest is where the output should
2618 ** be sent.
2619 **
2620 ** regReturn is the number of the register holding the subroutine
2621 ** return address.
2622 **
2623 ** If regPrev>0 then it is the first register in a vector that
2624 ** records the previous output.  mem[regPrev] is a flag that is false
2625 ** if there has been no previous output.  If regPrev>0 then code is
2626 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2627 ** keys.
2628 **
2629 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2630 ** iBreak.
2631 */
2632 static int generateOutputSubroutine(
2633   Parse *pParse,          /* Parsing context */
2634   Select *p,              /* The SELECT statement */
2635   SelectDest *pIn,        /* Coroutine supplying data */
2636   SelectDest *pDest,      /* Where to send the data */
2637   int regReturn,          /* The return address register */
2638   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2639   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2640   int iBreak              /* Jump here if we hit the LIMIT */
2641 ){
2642   Vdbe *v = pParse->pVdbe;
2643   int iContinue;
2644   int addr;
2645 
2646   addr = sqlite3VdbeCurrentAddr(v);
2647   iContinue = sqlite3VdbeMakeLabel(v);
2648 
2649   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2650   */
2651   if( regPrev ){
2652     int addr1, addr2;
2653     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2654     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2655                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2656     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2657     sqlite3VdbeJumpHere(v, addr1);
2658     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2659     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2660   }
2661   if( pParse->db->mallocFailed ) return 0;
2662 
2663   /* Suppress the first OFFSET entries if there is an OFFSET clause
2664   */
2665   codeOffset(v, p->iOffset, iContinue);
2666 
2667   assert( pDest->eDest!=SRT_Exists );
2668   assert( pDest->eDest!=SRT_Table );
2669   switch( pDest->eDest ){
2670     /* Store the result as data using a unique key.
2671     */
2672     case SRT_EphemTab: {
2673       int r1 = sqlite3GetTempReg(pParse);
2674       int r2 = sqlite3GetTempReg(pParse);
2675       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2676       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2677       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2678       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2679       sqlite3ReleaseTempReg(pParse, r2);
2680       sqlite3ReleaseTempReg(pParse, r1);
2681       break;
2682     }
2683 
2684 #ifndef SQLITE_OMIT_SUBQUERY
2685     /* If we are creating a set for an "expr IN (SELECT ...)".
2686     */
2687     case SRT_Set: {
2688       int r1;
2689       testcase( pIn->nSdst>1 );
2690       r1 = sqlite3GetTempReg(pParse);
2691       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2692           r1, pDest->zAffSdst, pIn->nSdst);
2693       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2694       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2695                            pIn->iSdst, pIn->nSdst);
2696       sqlite3ReleaseTempReg(pParse, r1);
2697       break;
2698     }
2699 
2700     /* If this is a scalar select that is part of an expression, then
2701     ** store the results in the appropriate memory cell and break out
2702     ** of the scan loop.
2703     */
2704     case SRT_Mem: {
2705       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2706       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2707       /* The LIMIT clause will jump out of the loop for us */
2708       break;
2709     }
2710 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2711 
2712     /* The results are stored in a sequence of registers
2713     ** starting at pDest->iSdst.  Then the co-routine yields.
2714     */
2715     case SRT_Coroutine: {
2716       if( pDest->iSdst==0 ){
2717         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2718         pDest->nSdst = pIn->nSdst;
2719       }
2720       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2721       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2722       break;
2723     }
2724 
2725     /* If none of the above, then the result destination must be
2726     ** SRT_Output.  This routine is never called with any other
2727     ** destination other than the ones handled above or SRT_Output.
2728     **
2729     ** For SRT_Output, results are stored in a sequence of registers.
2730     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2731     ** return the next row of result.
2732     */
2733     default: {
2734       assert( pDest->eDest==SRT_Output );
2735       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2736       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2737       break;
2738     }
2739   }
2740 
2741   /* Jump to the end of the loop if the LIMIT is reached.
2742   */
2743   if( p->iLimit ){
2744     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2745   }
2746 
2747   /* Generate the subroutine return
2748   */
2749   sqlite3VdbeResolveLabel(v, iContinue);
2750   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2751 
2752   return addr;
2753 }
2754 
2755 /*
2756 ** Alternative compound select code generator for cases when there
2757 ** is an ORDER BY clause.
2758 **
2759 ** We assume a query of the following form:
2760 **
2761 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2762 **
2763 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2764 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2765 ** co-routines.  Then run the co-routines in parallel and merge the results
2766 ** into the output.  In addition to the two coroutines (called selectA and
2767 ** selectB) there are 7 subroutines:
2768 **
2769 **    outA:    Move the output of the selectA coroutine into the output
2770 **             of the compound query.
2771 **
2772 **    outB:    Move the output of the selectB coroutine into the output
2773 **             of the compound query.  (Only generated for UNION and
2774 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2775 **             appears only in B.)
2776 **
2777 **    AltB:    Called when there is data from both coroutines and A<B.
2778 **
2779 **    AeqB:    Called when there is data from both coroutines and A==B.
2780 **
2781 **    AgtB:    Called when there is data from both coroutines and A>B.
2782 **
2783 **    EofA:    Called when data is exhausted from selectA.
2784 **
2785 **    EofB:    Called when data is exhausted from selectB.
2786 **
2787 ** The implementation of the latter five subroutines depend on which
2788 ** <operator> is used:
2789 **
2790 **
2791 **             UNION ALL         UNION            EXCEPT          INTERSECT
2792 **          -------------  -----------------  --------------  -----------------
2793 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2794 **
2795 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2796 **
2797 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2798 **
2799 **   EofA:   outB, nextB      outB, nextB          halt             halt
2800 **
2801 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2802 **
2803 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2804 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2805 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2806 ** following nextX causes a jump to the end of the select processing.
2807 **
2808 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2809 ** within the output subroutine.  The regPrev register set holds the previously
2810 ** output value.  A comparison is made against this value and the output
2811 ** is skipped if the next results would be the same as the previous.
2812 **
2813 ** The implementation plan is to implement the two coroutines and seven
2814 ** subroutines first, then put the control logic at the bottom.  Like this:
2815 **
2816 **          goto Init
2817 **     coA: coroutine for left query (A)
2818 **     coB: coroutine for right query (B)
2819 **    outA: output one row of A
2820 **    outB: output one row of B (UNION and UNION ALL only)
2821 **    EofA: ...
2822 **    EofB: ...
2823 **    AltB: ...
2824 **    AeqB: ...
2825 **    AgtB: ...
2826 **    Init: initialize coroutine registers
2827 **          yield coA
2828 **          if eof(A) goto EofA
2829 **          yield coB
2830 **          if eof(B) goto EofB
2831 **    Cmpr: Compare A, B
2832 **          Jump AltB, AeqB, AgtB
2833 **     End: ...
2834 **
2835 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2836 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2837 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2838 ** and AgtB jump to either L2 or to one of EofA or EofB.
2839 */
2840 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2841 static int multiSelectOrderBy(
2842   Parse *pParse,        /* Parsing context */
2843   Select *p,            /* The right-most of SELECTs to be coded */
2844   SelectDest *pDest     /* What to do with query results */
2845 ){
2846   int i, j;             /* Loop counters */
2847   Select *pPrior;       /* Another SELECT immediately to our left */
2848   Vdbe *v;              /* Generate code to this VDBE */
2849   SelectDest destA;     /* Destination for coroutine A */
2850   SelectDest destB;     /* Destination for coroutine B */
2851   int regAddrA;         /* Address register for select-A coroutine */
2852   int regAddrB;         /* Address register for select-B coroutine */
2853   int addrSelectA;      /* Address of the select-A coroutine */
2854   int addrSelectB;      /* Address of the select-B coroutine */
2855   int regOutA;          /* Address register for the output-A subroutine */
2856   int regOutB;          /* Address register for the output-B subroutine */
2857   int addrOutA;         /* Address of the output-A subroutine */
2858   int addrOutB = 0;     /* Address of the output-B subroutine */
2859   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2860   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2861   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2862   int addrAltB;         /* Address of the A<B subroutine */
2863   int addrAeqB;         /* Address of the A==B subroutine */
2864   int addrAgtB;         /* Address of the A>B subroutine */
2865   int regLimitA;        /* Limit register for select-A */
2866   int regLimitB;        /* Limit register for select-A */
2867   int regPrev;          /* A range of registers to hold previous output */
2868   int savedLimit;       /* Saved value of p->iLimit */
2869   int savedOffset;      /* Saved value of p->iOffset */
2870   int labelCmpr;        /* Label for the start of the merge algorithm */
2871   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2872   int addr1;            /* Jump instructions that get retargetted */
2873   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2874   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2875   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2876   sqlite3 *db;          /* Database connection */
2877   ExprList *pOrderBy;   /* The ORDER BY clause */
2878   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2879   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2880 #ifndef SQLITE_OMIT_EXPLAIN
2881   int iSub1;            /* EQP id of left-hand query */
2882   int iSub2;            /* EQP id of right-hand query */
2883 #endif
2884 
2885   assert( p->pOrderBy!=0 );
2886   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2887   db = pParse->db;
2888   v = pParse->pVdbe;
2889   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2890   labelEnd = sqlite3VdbeMakeLabel(v);
2891   labelCmpr = sqlite3VdbeMakeLabel(v);
2892 
2893 
2894   /* Patch up the ORDER BY clause
2895   */
2896   op = p->op;
2897   pPrior = p->pPrior;
2898   assert( pPrior->pOrderBy==0 );
2899   pOrderBy = p->pOrderBy;
2900   assert( pOrderBy );
2901   nOrderBy = pOrderBy->nExpr;
2902 
2903   /* For operators other than UNION ALL we have to make sure that
2904   ** the ORDER BY clause covers every term of the result set.  Add
2905   ** terms to the ORDER BY clause as necessary.
2906   */
2907   if( op!=TK_ALL ){
2908     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2909       struct ExprList_item *pItem;
2910       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2911         assert( pItem->u.x.iOrderByCol>0 );
2912         if( pItem->u.x.iOrderByCol==i ) break;
2913       }
2914       if( j==nOrderBy ){
2915         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2916         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2917         pNew->flags |= EP_IntValue;
2918         pNew->u.iValue = i;
2919         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2920         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2921       }
2922     }
2923   }
2924 
2925   /* Compute the comparison permutation and keyinfo that is used with
2926   ** the permutation used to determine if the next
2927   ** row of results comes from selectA or selectB.  Also add explicit
2928   ** collations to the ORDER BY clause terms so that when the subqueries
2929   ** to the right and the left are evaluated, they use the correct
2930   ** collation.
2931   */
2932   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2933   if( aPermute ){
2934     struct ExprList_item *pItem;
2935     aPermute[0] = nOrderBy;
2936     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2937       assert( pItem->u.x.iOrderByCol>0 );
2938       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2939       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2940     }
2941     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2942   }else{
2943     pKeyMerge = 0;
2944   }
2945 
2946   /* Reattach the ORDER BY clause to the query.
2947   */
2948   p->pOrderBy = pOrderBy;
2949   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2950 
2951   /* Allocate a range of temporary registers and the KeyInfo needed
2952   ** for the logic that removes duplicate result rows when the
2953   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2954   */
2955   if( op==TK_ALL ){
2956     regPrev = 0;
2957   }else{
2958     int nExpr = p->pEList->nExpr;
2959     assert( nOrderBy>=nExpr || db->mallocFailed );
2960     regPrev = pParse->nMem+1;
2961     pParse->nMem += nExpr+1;
2962     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2963     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2964     if( pKeyDup ){
2965       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2966       for(i=0; i<nExpr; i++){
2967         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2968         pKeyDup->aSortOrder[i] = 0;
2969       }
2970     }
2971   }
2972 
2973   /* Separate the left and the right query from one another
2974   */
2975   p->pPrior = 0;
2976   pPrior->pNext = 0;
2977   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2978   if( pPrior->pPrior==0 ){
2979     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2980   }
2981 
2982   /* Compute the limit registers */
2983   computeLimitRegisters(pParse, p, labelEnd);
2984   if( p->iLimit && op==TK_ALL ){
2985     regLimitA = ++pParse->nMem;
2986     regLimitB = ++pParse->nMem;
2987     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2988                                   regLimitA);
2989     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2990   }else{
2991     regLimitA = regLimitB = 0;
2992   }
2993   sqlite3ExprDelete(db, p->pLimit);
2994   p->pLimit = 0;
2995   sqlite3ExprDelete(db, p->pOffset);
2996   p->pOffset = 0;
2997 
2998   regAddrA = ++pParse->nMem;
2999   regAddrB = ++pParse->nMem;
3000   regOutA = ++pParse->nMem;
3001   regOutB = ++pParse->nMem;
3002   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3003   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3004 
3005   /* Generate a coroutine to evaluate the SELECT statement to the
3006   ** left of the compound operator - the "A" select.
3007   */
3008   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3009   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3010   VdbeComment((v, "left SELECT"));
3011   pPrior->iLimit = regLimitA;
3012   explainSetInteger(iSub1, pParse->iNextSelectId);
3013   sqlite3Select(pParse, pPrior, &destA);
3014   sqlite3VdbeEndCoroutine(v, regAddrA);
3015   sqlite3VdbeJumpHere(v, addr1);
3016 
3017   /* Generate a coroutine to evaluate the SELECT statement on
3018   ** the right - the "B" select
3019   */
3020   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3021   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3022   VdbeComment((v, "right SELECT"));
3023   savedLimit = p->iLimit;
3024   savedOffset = p->iOffset;
3025   p->iLimit = regLimitB;
3026   p->iOffset = 0;
3027   explainSetInteger(iSub2, pParse->iNextSelectId);
3028   sqlite3Select(pParse, p, &destB);
3029   p->iLimit = savedLimit;
3030   p->iOffset = savedOffset;
3031   sqlite3VdbeEndCoroutine(v, regAddrB);
3032 
3033   /* Generate a subroutine that outputs the current row of the A
3034   ** select as the next output row of the compound select.
3035   */
3036   VdbeNoopComment((v, "Output routine for A"));
3037   addrOutA = generateOutputSubroutine(pParse,
3038                  p, &destA, pDest, regOutA,
3039                  regPrev, pKeyDup, labelEnd);
3040 
3041   /* Generate a subroutine that outputs the current row of the B
3042   ** select as the next output row of the compound select.
3043   */
3044   if( op==TK_ALL || op==TK_UNION ){
3045     VdbeNoopComment((v, "Output routine for B"));
3046     addrOutB = generateOutputSubroutine(pParse,
3047                  p, &destB, pDest, regOutB,
3048                  regPrev, pKeyDup, labelEnd);
3049   }
3050   sqlite3KeyInfoUnref(pKeyDup);
3051 
3052   /* Generate a subroutine to run when the results from select A
3053   ** are exhausted and only data in select B remains.
3054   */
3055   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3056     addrEofA_noB = addrEofA = labelEnd;
3057   }else{
3058     VdbeNoopComment((v, "eof-A subroutine"));
3059     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3060     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3061                                      VdbeCoverage(v);
3062     sqlite3VdbeGoto(v, addrEofA);
3063     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3064   }
3065 
3066   /* Generate a subroutine to run when the results from select B
3067   ** are exhausted and only data in select A remains.
3068   */
3069   if( op==TK_INTERSECT ){
3070     addrEofB = addrEofA;
3071     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3072   }else{
3073     VdbeNoopComment((v, "eof-B subroutine"));
3074     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3075     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3076     sqlite3VdbeGoto(v, addrEofB);
3077   }
3078 
3079   /* Generate code to handle the case of A<B
3080   */
3081   VdbeNoopComment((v, "A-lt-B subroutine"));
3082   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3083   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3084   sqlite3VdbeGoto(v, labelCmpr);
3085 
3086   /* Generate code to handle the case of A==B
3087   */
3088   if( op==TK_ALL ){
3089     addrAeqB = addrAltB;
3090   }else if( op==TK_INTERSECT ){
3091     addrAeqB = addrAltB;
3092     addrAltB++;
3093   }else{
3094     VdbeNoopComment((v, "A-eq-B subroutine"));
3095     addrAeqB =
3096     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3097     sqlite3VdbeGoto(v, labelCmpr);
3098   }
3099 
3100   /* Generate code to handle the case of A>B
3101   */
3102   VdbeNoopComment((v, "A-gt-B subroutine"));
3103   addrAgtB = sqlite3VdbeCurrentAddr(v);
3104   if( op==TK_ALL || op==TK_UNION ){
3105     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3106   }
3107   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3108   sqlite3VdbeGoto(v, labelCmpr);
3109 
3110   /* This code runs once to initialize everything.
3111   */
3112   sqlite3VdbeJumpHere(v, addr1);
3113   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3114   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3115 
3116   /* Implement the main merge loop
3117   */
3118   sqlite3VdbeResolveLabel(v, labelCmpr);
3119   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3120   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3121                          (char*)pKeyMerge, P4_KEYINFO);
3122   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3123   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3124 
3125   /* Jump to the this point in order to terminate the query.
3126   */
3127   sqlite3VdbeResolveLabel(v, labelEnd);
3128 
3129   /* Reassembly the compound query so that it will be freed correctly
3130   ** by the calling function */
3131   if( p->pPrior ){
3132     sqlite3SelectDelete(db, p->pPrior);
3133   }
3134   p->pPrior = pPrior;
3135   pPrior->pNext = p;
3136 
3137   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3138   **** subqueries ****/
3139   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3140   return pParse->nErr!=0;
3141 }
3142 #endif
3143 
3144 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3145 
3146 /* An instance of the SubstContext object describes an substitution edit
3147 ** to be performed on a parse tree.
3148 **
3149 ** All references to columns in table iTable are to be replaced by corresponding
3150 ** expressions in pEList.
3151 */
3152 typedef struct SubstContext {
3153   Parse *pParse;            /* The parsing context */
3154   int iTable;               /* Replace references to this table */
3155   int iNewTable;            /* New table number */
3156   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3157   ExprList *pEList;         /* Replacement expressions */
3158 } SubstContext;
3159 
3160 /* Forward Declarations */
3161 static void substExprList(SubstContext*, ExprList*);
3162 static void substSelect(SubstContext*, Select*, int);
3163 
3164 /*
3165 ** Scan through the expression pExpr.  Replace every reference to
3166 ** a column in table number iTable with a copy of the iColumn-th
3167 ** entry in pEList.  (But leave references to the ROWID column
3168 ** unchanged.)
3169 **
3170 ** This routine is part of the flattening procedure.  A subquery
3171 ** whose result set is defined by pEList appears as entry in the
3172 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3173 ** FORM clause entry is iTable.  This routine makes the necessary
3174 ** changes to pExpr so that it refers directly to the source table
3175 ** of the subquery rather the result set of the subquery.
3176 */
3177 static Expr *substExpr(
3178   SubstContext *pSubst,  /* Description of the substitution */
3179   Expr *pExpr            /* Expr in which substitution occurs */
3180 ){
3181   if( pExpr==0 ) return 0;
3182   if( ExprHasProperty(pExpr, EP_FromJoin)
3183    && pExpr->iRightJoinTable==pSubst->iTable
3184   ){
3185     pExpr->iRightJoinTable = pSubst->iNewTable;
3186   }
3187   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3188     if( pExpr->iColumn<0 ){
3189       pExpr->op = TK_NULL;
3190     }else{
3191       Expr *pNew;
3192       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3193       Expr ifNullRow;
3194       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3195       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3196       if( sqlite3ExprIsVector(pCopy) ){
3197         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3198       }else{
3199         sqlite3 *db = pSubst->pParse->db;
3200         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3201           memset(&ifNullRow, 0, sizeof(ifNullRow));
3202           ifNullRow.op = TK_IF_NULL_ROW;
3203           ifNullRow.pLeft = pCopy;
3204           ifNullRow.iTable = pSubst->iNewTable;
3205           pCopy = &ifNullRow;
3206         }
3207         pNew = sqlite3ExprDup(db, pCopy, 0);
3208         if( pNew && pSubst->isLeftJoin ){
3209           ExprSetProperty(pNew, EP_CanBeNull);
3210         }
3211         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3212           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3213           ExprSetProperty(pNew, EP_FromJoin);
3214         }
3215         sqlite3ExprDelete(db, pExpr);
3216         pExpr = pNew;
3217       }
3218     }
3219   }else{
3220     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3221       pExpr->iTable = pSubst->iNewTable;
3222     }
3223     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3224     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3225     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3226       substSelect(pSubst, pExpr->x.pSelect, 1);
3227     }else{
3228       substExprList(pSubst, pExpr->x.pList);
3229     }
3230   }
3231   return pExpr;
3232 }
3233 static void substExprList(
3234   SubstContext *pSubst, /* Description of the substitution */
3235   ExprList *pList       /* List to scan and in which to make substitutes */
3236 ){
3237   int i;
3238   if( pList==0 ) return;
3239   for(i=0; i<pList->nExpr; i++){
3240     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3241   }
3242 }
3243 static void substSelect(
3244   SubstContext *pSubst, /* Description of the substitution */
3245   Select *p,            /* SELECT statement in which to make substitutions */
3246   int doPrior           /* Do substitutes on p->pPrior too */
3247 ){
3248   SrcList *pSrc;
3249   struct SrcList_item *pItem;
3250   int i;
3251   if( !p ) return;
3252   do{
3253     substExprList(pSubst, p->pEList);
3254     substExprList(pSubst, p->pGroupBy);
3255     substExprList(pSubst, p->pOrderBy);
3256     p->pHaving = substExpr(pSubst, p->pHaving);
3257     p->pWhere = substExpr(pSubst, p->pWhere);
3258     pSrc = p->pSrc;
3259     assert( pSrc!=0 );
3260     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3261       substSelect(pSubst, pItem->pSelect, 1);
3262       if( pItem->fg.isTabFunc ){
3263         substExprList(pSubst, pItem->u1.pFuncArg);
3264       }
3265     }
3266   }while( doPrior && (p = p->pPrior)!=0 );
3267 }
3268 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3269 
3270 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3271 /*
3272 ** This routine attempts to flatten subqueries as a performance optimization.
3273 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3274 **
3275 ** To understand the concept of flattening, consider the following
3276 ** query:
3277 **
3278 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3279 **
3280 ** The default way of implementing this query is to execute the
3281 ** subquery first and store the results in a temporary table, then
3282 ** run the outer query on that temporary table.  This requires two
3283 ** passes over the data.  Furthermore, because the temporary table
3284 ** has no indices, the WHERE clause on the outer query cannot be
3285 ** optimized.
3286 **
3287 ** This routine attempts to rewrite queries such as the above into
3288 ** a single flat select, like this:
3289 **
3290 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3291 **
3292 ** The code generated for this simplification gives the same result
3293 ** but only has to scan the data once.  And because indices might
3294 ** exist on the table t1, a complete scan of the data might be
3295 ** avoided.
3296 **
3297 ** Flattening is subject to the following constraints:
3298 **
3299 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3300 **        The subquery and the outer query cannot both be aggregates.
3301 **
3302 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3303 **        (2) If the subquery is an aggregate then
3304 **        (2a) the outer query must not be a join and
3305 **        (2b) the outer query must not use subqueries
3306 **             other than the one FROM-clause subquery that is a candidate
3307 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3308 **             from 2015-02-09.)
3309 **
3310 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3311 **        (3a) the subquery may not be a join and
3312 **        (3b) the FROM clause of the subquery may not contain a virtual
3313 **             table and
3314 **        (3c) the outer query may not be an aggregate.
3315 **
3316 **   (4)  The subquery can not be DISTINCT.
3317 **
3318 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3319 **        sub-queries that were excluded from this optimization. Restriction
3320 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3321 **
3322 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3323 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3324 **
3325 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3326 **        A FROM clause, consider adding a FROM clause with the special
3327 **        table sqlite_once that consists of a single row containing a
3328 **        single NULL.
3329 **
3330 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3331 **
3332 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3333 **
3334 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3335 **        accidently carried the comment forward until 2014-09-15.  Original
3336 **        constraint: "If the subquery is aggregate then the outer query
3337 **        may not use LIMIT."
3338 **
3339 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3340 **
3341 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3342 **        a separate restriction deriving from ticket #350.
3343 **
3344 **  (13)  The subquery and outer query may not both use LIMIT.
3345 **
3346 **  (14)  The subquery may not use OFFSET.
3347 **
3348 **  (15)  If the outer query is part of a compound select, then the
3349 **        subquery may not use LIMIT.
3350 **        (See ticket #2339 and ticket [02a8e81d44]).
3351 **
3352 **  (16)  If the outer query is aggregate, then the subquery may not
3353 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3354 **        until we introduced the group_concat() function.
3355 **
3356 **  (17)  If the subquery is a compound select, then
3357 **        (17a) all compound operators must be a UNION ALL, and
3358 **        (17b) no terms within the subquery compound may be aggregate
3359 **              or DISTINCT, and
3360 **        (17c) every term within the subquery compound must have a FROM clause
3361 **        (17d) the outer query may not be
3362 **              (17d1) aggregate, or
3363 **              (17d2) DISTINCT, or
3364 **              (17d3) a join.
3365 **
3366 **        The parent and sub-query may contain WHERE clauses. Subject to
3367 **        rules (11), (13) and (14), they may also contain ORDER BY,
3368 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3369 **        operator other than UNION ALL because all the other compound
3370 **        operators have an implied DISTINCT which is disallowed by
3371 **        restriction (4).
3372 **
3373 **        Also, each component of the sub-query must return the same number
3374 **        of result columns. This is actually a requirement for any compound
3375 **        SELECT statement, but all the code here does is make sure that no
3376 **        such (illegal) sub-query is flattened. The caller will detect the
3377 **        syntax error and return a detailed message.
3378 **
3379 **  (18)  If the sub-query is a compound select, then all terms of the
3380 **        ORDER BY clause of the parent must be simple references to
3381 **        columns of the sub-query.
3382 **
3383 **  (19)  If the subquery uses LIMIT then the outer query may not
3384 **        have a WHERE clause.
3385 **
3386 **  (20)  If the sub-query is a compound select, then it must not use
3387 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3388 **        somewhat by saying that the terms of the ORDER BY clause must
3389 **        appear as unmodified result columns in the outer query.  But we
3390 **        have other optimizations in mind to deal with that case.
3391 **
3392 **  (21)  If the subquery uses LIMIT then the outer query may not be
3393 **        DISTINCT.  (See ticket [752e1646fc]).
3394 **
3395 **  (22)  The subquery may not be a recursive CTE.
3396 **
3397 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3398 **        a recursive CTE, then the sub-query may not be a compound query.
3399 **        This restriction is because transforming the
3400 **        parent to a compound query confuses the code that handles
3401 **        recursive queries in multiSelect().
3402 **
3403 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3404 **        The subquery may not be an aggregate that uses the built-in min() or
3405 **        or max() functions.  (Without this restriction, a query like:
3406 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3407 **        return the value X for which Y was maximal.)
3408 **
3409 **
3410 ** In this routine, the "p" parameter is a pointer to the outer query.
3411 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3412 ** uses aggregates.
3413 **
3414 ** If flattening is not attempted, this routine is a no-op and returns 0.
3415 ** If flattening is attempted this routine returns 1.
3416 **
3417 ** All of the expression analysis must occur on both the outer query and
3418 ** the subquery before this routine runs.
3419 */
3420 static int flattenSubquery(
3421   Parse *pParse,       /* Parsing context */
3422   Select *p,           /* The parent or outer SELECT statement */
3423   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3424   int isAgg            /* True if outer SELECT uses aggregate functions */
3425 ){
3426   const char *zSavedAuthContext = pParse->zAuthContext;
3427   Select *pParent;    /* Current UNION ALL term of the other query */
3428   Select *pSub;       /* The inner query or "subquery" */
3429   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3430   SrcList *pSrc;      /* The FROM clause of the outer query */
3431   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3432   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3433   int iNewParent = -1;/* Replacement table for iParent */
3434   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3435   int i;              /* Loop counter */
3436   Expr *pWhere;                    /* The WHERE clause */
3437   struct SrcList_item *pSubitem;   /* The subquery */
3438   sqlite3 *db = pParse->db;
3439 
3440   /* Check to see if flattening is permitted.  Return 0 if not.
3441   */
3442   assert( p!=0 );
3443   assert( p->pPrior==0 );
3444   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3445   pSrc = p->pSrc;
3446   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3447   pSubitem = &pSrc->a[iFrom];
3448   iParent = pSubitem->iCursor;
3449   pSub = pSubitem->pSelect;
3450   assert( pSub!=0 );
3451 
3452   pSubSrc = pSub->pSrc;
3453   assert( pSubSrc );
3454   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3455   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3456   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3457   ** became arbitrary expressions, we were forced to add restrictions (13)
3458   ** and (14). */
3459   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3460   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3461   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3462     return 0;                                            /* Restriction (15) */
3463   }
3464   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3465   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3466   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3467      return 0;         /* Restrictions (8)(9) */
3468   }
3469   if( p->pOrderBy && pSub->pOrderBy ){
3470      return 0;                                           /* Restriction (11) */
3471   }
3472   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3473   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3474   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3475      return 0;         /* Restriction (21) */
3476   }
3477   if( pSub->selFlags & (SF_Recursive) ){
3478     return 0; /* Restrictions (22) */
3479   }
3480 
3481   /*
3482   ** If the subquery is the right operand of a LEFT JOIN, then the
3483   ** subquery may not be a join itself (3a). Example of why this is not
3484   ** allowed:
3485   **
3486   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3487   **
3488   ** If we flatten the above, we would get
3489   **
3490   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3491   **
3492   ** which is not at all the same thing.
3493   **
3494   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3495   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3496   ** aggregates are processed - there is no mechanism to determine if
3497   ** the LEFT JOIN table should be all-NULL.
3498   **
3499   ** See also tickets #306, #350, and #3300.
3500   */
3501   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3502     isLeftJoin = 1;
3503     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3504       /*  (3a)             (3c)     (3b) */
3505       return 0;
3506     }
3507   }
3508 #ifdef SQLITE_EXTRA_IFNULLROW
3509   else if( iFrom>0 && !isAgg ){
3510     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3511     ** every reference to any result column from subquery in a join, even
3512     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3513     ** opcode. */
3514     isLeftJoin = -1;
3515   }
3516 #endif
3517 
3518   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3519   ** use only the UNION ALL operator. And none of the simple select queries
3520   ** that make up the compound SELECT are allowed to be aggregate or distinct
3521   ** queries.
3522   */
3523   if( pSub->pPrior ){
3524     if( pSub->pOrderBy ){
3525       return 0;  /* Restriction (20) */
3526     }
3527     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3528       return 0; /* (17d1), (17d2), or (17d3) */
3529     }
3530     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3531       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3532       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3533       assert( pSub->pSrc!=0 );
3534       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3535       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3536        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3537        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3538       ){
3539         return 0;
3540       }
3541       testcase( pSub1->pSrc->nSrc>1 );
3542     }
3543 
3544     /* Restriction (18). */
3545     if( p->pOrderBy ){
3546       int ii;
3547       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3548         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3549       }
3550     }
3551   }
3552 
3553   /* Ex-restriction (23):
3554   ** The only way that the recursive part of a CTE can contain a compound
3555   ** subquery is for the subquery to be one term of a join.  But if the
3556   ** subquery is a join, then the flattening has already been stopped by
3557   ** restriction (17d3)
3558   */
3559   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3560 
3561   /***** If we reach this point, flattening is permitted. *****/
3562   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3563                    pSub->zSelName, pSub, iFrom));
3564 
3565   /* Authorize the subquery */
3566   pParse->zAuthContext = pSubitem->zName;
3567   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3568   testcase( i==SQLITE_DENY );
3569   pParse->zAuthContext = zSavedAuthContext;
3570 
3571   /* If the sub-query is a compound SELECT statement, then (by restrictions
3572   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3573   ** be of the form:
3574   **
3575   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3576   **
3577   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3578   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3579   ** OFFSET clauses and joins them to the left-hand-side of the original
3580   ** using UNION ALL operators. In this case N is the number of simple
3581   ** select statements in the compound sub-query.
3582   **
3583   ** Example:
3584   **
3585   **     SELECT a+1 FROM (
3586   **        SELECT x FROM tab
3587   **        UNION ALL
3588   **        SELECT y FROM tab
3589   **        UNION ALL
3590   **        SELECT abs(z*2) FROM tab2
3591   **     ) WHERE a!=5 ORDER BY 1
3592   **
3593   ** Transformed into:
3594   **
3595   **     SELECT x+1 FROM tab WHERE x+1!=5
3596   **     UNION ALL
3597   **     SELECT y+1 FROM tab WHERE y+1!=5
3598   **     UNION ALL
3599   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3600   **     ORDER BY 1
3601   **
3602   ** We call this the "compound-subquery flattening".
3603   */
3604   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3605     Select *pNew;
3606     ExprList *pOrderBy = p->pOrderBy;
3607     Expr *pLimit = p->pLimit;
3608     Expr *pOffset = p->pOffset;
3609     Select *pPrior = p->pPrior;
3610     p->pOrderBy = 0;
3611     p->pSrc = 0;
3612     p->pPrior = 0;
3613     p->pLimit = 0;
3614     p->pOffset = 0;
3615     pNew = sqlite3SelectDup(db, p, 0);
3616     sqlite3SelectSetName(pNew, pSub->zSelName);
3617     p->pOffset = pOffset;
3618     p->pLimit = pLimit;
3619     p->pOrderBy = pOrderBy;
3620     p->pSrc = pSrc;
3621     p->op = TK_ALL;
3622     if( pNew==0 ){
3623       p->pPrior = pPrior;
3624     }else{
3625       pNew->pPrior = pPrior;
3626       if( pPrior ) pPrior->pNext = pNew;
3627       pNew->pNext = p;
3628       p->pPrior = pNew;
3629       SELECTTRACE(2,pParse,p,
3630          ("compound-subquery flattener creates %s.%p as peer\n",
3631          pNew->zSelName, pNew));
3632     }
3633     if( db->mallocFailed ) return 1;
3634   }
3635 
3636   /* Begin flattening the iFrom-th entry of the FROM clause
3637   ** in the outer query.
3638   */
3639   pSub = pSub1 = pSubitem->pSelect;
3640 
3641   /* Delete the transient table structure associated with the
3642   ** subquery
3643   */
3644   sqlite3DbFree(db, pSubitem->zDatabase);
3645   sqlite3DbFree(db, pSubitem->zName);
3646   sqlite3DbFree(db, pSubitem->zAlias);
3647   pSubitem->zDatabase = 0;
3648   pSubitem->zName = 0;
3649   pSubitem->zAlias = 0;
3650   pSubitem->pSelect = 0;
3651 
3652   /* Defer deleting the Table object associated with the
3653   ** subquery until code generation is
3654   ** complete, since there may still exist Expr.pTab entries that
3655   ** refer to the subquery even after flattening.  Ticket #3346.
3656   **
3657   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3658   */
3659   if( ALWAYS(pSubitem->pTab!=0) ){
3660     Table *pTabToDel = pSubitem->pTab;
3661     if( pTabToDel->nTabRef==1 ){
3662       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3663       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3664       pToplevel->pZombieTab = pTabToDel;
3665     }else{
3666       pTabToDel->nTabRef--;
3667     }
3668     pSubitem->pTab = 0;
3669   }
3670 
3671   /* The following loop runs once for each term in a compound-subquery
3672   ** flattening (as described above).  If we are doing a different kind
3673   ** of flattening - a flattening other than a compound-subquery flattening -
3674   ** then this loop only runs once.
3675   **
3676   ** This loop moves all of the FROM elements of the subquery into the
3677   ** the FROM clause of the outer query.  Before doing this, remember
3678   ** the cursor number for the original outer query FROM element in
3679   ** iParent.  The iParent cursor will never be used.  Subsequent code
3680   ** will scan expressions looking for iParent references and replace
3681   ** those references with expressions that resolve to the subquery FROM
3682   ** elements we are now copying in.
3683   */
3684   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3685     int nSubSrc;
3686     u8 jointype = 0;
3687     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3688     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3689     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3690 
3691     if( pSrc ){
3692       assert( pParent==p );  /* First time through the loop */
3693       jointype = pSubitem->fg.jointype;
3694     }else{
3695       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3696       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3697       if( pSrc==0 ){
3698         assert( db->mallocFailed );
3699         break;
3700       }
3701     }
3702 
3703     /* The subquery uses a single slot of the FROM clause of the outer
3704     ** query.  If the subquery has more than one element in its FROM clause,
3705     ** then expand the outer query to make space for it to hold all elements
3706     ** of the subquery.
3707     **
3708     ** Example:
3709     **
3710     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3711     **
3712     ** The outer query has 3 slots in its FROM clause.  One slot of the
3713     ** outer query (the middle slot) is used by the subquery.  The next
3714     ** block of code will expand the outer query FROM clause to 4 slots.
3715     ** The middle slot is expanded to two slots in order to make space
3716     ** for the two elements in the FROM clause of the subquery.
3717     */
3718     if( nSubSrc>1 ){
3719       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3720       if( db->mallocFailed ){
3721         break;
3722       }
3723     }
3724 
3725     /* Transfer the FROM clause terms from the subquery into the
3726     ** outer query.
3727     */
3728     for(i=0; i<nSubSrc; i++){
3729       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3730       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3731       pSrc->a[i+iFrom] = pSubSrc->a[i];
3732       iNewParent = pSubSrc->a[i].iCursor;
3733       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3734     }
3735     pSrc->a[iFrom].fg.jointype = jointype;
3736 
3737     /* Now begin substituting subquery result set expressions for
3738     ** references to the iParent in the outer query.
3739     **
3740     ** Example:
3741     **
3742     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3743     **   \                     \_____________ subquery __________/          /
3744     **    \_____________________ outer query ______________________________/
3745     **
3746     ** We look at every expression in the outer query and every place we see
3747     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3748     */
3749     if( pSub->pOrderBy ){
3750       /* At this point, any non-zero iOrderByCol values indicate that the
3751       ** ORDER BY column expression is identical to the iOrderByCol'th
3752       ** expression returned by SELECT statement pSub. Since these values
3753       ** do not necessarily correspond to columns in SELECT statement pParent,
3754       ** zero them before transfering the ORDER BY clause.
3755       **
3756       ** Not doing this may cause an error if a subsequent call to this
3757       ** function attempts to flatten a compound sub-query into pParent
3758       ** (the only way this can happen is if the compound sub-query is
3759       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3760       ExprList *pOrderBy = pSub->pOrderBy;
3761       for(i=0; i<pOrderBy->nExpr; i++){
3762         pOrderBy->a[i].u.x.iOrderByCol = 0;
3763       }
3764       assert( pParent->pOrderBy==0 );
3765       assert( pSub->pPrior==0 );
3766       pParent->pOrderBy = pOrderBy;
3767       pSub->pOrderBy = 0;
3768     }
3769     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3770     if( isLeftJoin>0 ){
3771       setJoinExpr(pWhere, iNewParent);
3772     }
3773     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3774     if( db->mallocFailed==0 ){
3775       SubstContext x;
3776       x.pParse = pParse;
3777       x.iTable = iParent;
3778       x.iNewTable = iNewParent;
3779       x.isLeftJoin = isLeftJoin;
3780       x.pEList = pSub->pEList;
3781       substSelect(&x, pParent, 0);
3782     }
3783 
3784     /* The flattened query is distinct if either the inner or the
3785     ** outer query is distinct.
3786     */
3787     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3788 
3789     /*
3790     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3791     **
3792     ** One is tempted to try to add a and b to combine the limits.  But this
3793     ** does not work if either limit is negative.
3794     */
3795     if( pSub->pLimit ){
3796       pParent->pLimit = pSub->pLimit;
3797       pSub->pLimit = 0;
3798     }
3799   }
3800 
3801   /* Finially, delete what is left of the subquery and return
3802   ** success.
3803   */
3804   sqlite3SelectDelete(db, pSub1);
3805 
3806 #if SELECTTRACE_ENABLED
3807   if( sqlite3SelectTrace & 0x100 ){
3808     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3809     sqlite3TreeViewSelect(0, p, 0);
3810   }
3811 #endif
3812 
3813   return 1;
3814 }
3815 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3816 
3817 
3818 
3819 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3820 /*
3821 ** Make copies of relevant WHERE clause terms of the outer query into
3822 ** the WHERE clause of subquery.  Example:
3823 **
3824 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3825 **
3826 ** Transformed into:
3827 **
3828 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3829 **     WHERE x=5 AND y=10;
3830 **
3831 ** The hope is that the terms added to the inner query will make it more
3832 ** efficient.
3833 **
3834 ** Do not attempt this optimization if:
3835 **
3836 **   (1) (** This restriction was removed on 2017-09-29.  We used to
3837 **           disallow this optimization for aggregate subqueries, but now
3838 **           it is allowed by putting the extra terms on the HAVING clause.
3839 **           The added HAVING clause is pointless if the subquery lacks
3840 **           a GROUP BY clause.  But such a HAVING clause is also harmless
3841 **           so there does not appear to be any reason to add extra logic
3842 **           to suppress it. **)
3843 **
3844 **   (2) The inner query is the recursive part of a common table expression.
3845 **
3846 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3847 **       close would change the meaning of the LIMIT).
3848 **
3849 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3850 **       enforces this restriction since this routine does not have enough
3851 **       information to know.)
3852 **
3853 **   (5) The WHERE clause expression originates in the ON or USING clause
3854 **       of a LEFT JOIN.
3855 **
3856 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3857 ** terms are duplicated into the subquery.
3858 */
3859 static int pushDownWhereTerms(
3860   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
3861   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3862   Expr *pWhere,         /* The WHERE clause of the outer query */
3863   int iCursor           /* Cursor number of the subquery */
3864 ){
3865   Expr *pNew;
3866   int nChng = 0;
3867   if( pWhere==0 ) return 0;
3868   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
3869 
3870 #ifdef SQLITE_DEBUG
3871   /* Only the first term of a compound can have a WITH clause.  But make
3872   ** sure no other terms are marked SF_Recursive in case something changes
3873   ** in the future.
3874   */
3875   {
3876     Select *pX;
3877     for(pX=pSubq; pX; pX=pX->pPrior){
3878       assert( (pX->selFlags & (SF_Recursive))==0 );
3879     }
3880   }
3881 #endif
3882 
3883   if( pSubq->pLimit!=0 ){
3884     return 0; /* restriction (3) */
3885   }
3886   while( pWhere->op==TK_AND ){
3887     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3888     pWhere = pWhere->pLeft;
3889   }
3890   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction (5) */
3891   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3892     nChng++;
3893     while( pSubq ){
3894       SubstContext x;
3895       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3896       x.pParse = pParse;
3897       x.iTable = iCursor;
3898       x.iNewTable = iCursor;
3899       x.isLeftJoin = 0;
3900       x.pEList = pSubq->pEList;
3901       pNew = substExpr(&x, pNew);
3902       if( pSubq->selFlags & SF_Aggregate ){
3903         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
3904       }else{
3905         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3906       }
3907       pSubq = pSubq->pPrior;
3908     }
3909   }
3910   return nChng;
3911 }
3912 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3913 
3914 /*
3915 ** The pFunc is the only aggregate function in the query.  Check to see
3916 ** if the query is a candidate for the min/max optimization.
3917 **
3918 ** If the query is a candidate for the min/max optimization, then set
3919 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
3920 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
3921 ** whether pFunc is a min() or max() function.
3922 **
3923 ** If the query is not a candidate for the min/max optimization, return
3924 ** WHERE_ORDERBY_NORMAL (which must be zero).
3925 **
3926 ** This routine must be called after aggregate functions have been
3927 ** located but before their arguments have been subjected to aggregate
3928 ** analysis.
3929 */
3930 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
3931   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
3932   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
3933   const char *zFunc;                    /* Name of aggregate function pFunc */
3934   ExprList *pOrderBy;
3935   u8 sortOrder;
3936 
3937   assert( *ppMinMax==0 );
3938   assert( pFunc->op==TK_AGG_FUNCTION );
3939   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
3940   zFunc = pFunc->u.zToken;
3941   if( sqlite3StrICmp(zFunc, "min")==0 ){
3942     eRet = WHERE_ORDERBY_MIN;
3943     sortOrder = SQLITE_SO_ASC;
3944   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3945     eRet = WHERE_ORDERBY_MAX;
3946     sortOrder = SQLITE_SO_DESC;
3947   }else{
3948     return eRet;
3949   }
3950   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
3951   assert( pOrderBy!=0 || db->mallocFailed );
3952   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
3953   return eRet;
3954 }
3955 
3956 /*
3957 ** The select statement passed as the first argument is an aggregate query.
3958 ** The second argument is the associated aggregate-info object. This
3959 ** function tests if the SELECT is of the form:
3960 **
3961 **   SELECT count(*) FROM <tbl>
3962 **
3963 ** where table is a database table, not a sub-select or view. If the query
3964 ** does match this pattern, then a pointer to the Table object representing
3965 ** <tbl> is returned. Otherwise, 0 is returned.
3966 */
3967 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3968   Table *pTab;
3969   Expr *pExpr;
3970 
3971   assert( !p->pGroupBy );
3972 
3973   if( p->pWhere || p->pEList->nExpr!=1
3974    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3975   ){
3976     return 0;
3977   }
3978   pTab = p->pSrc->a[0].pTab;
3979   pExpr = p->pEList->a[0].pExpr;
3980   assert( pTab && !pTab->pSelect && pExpr );
3981 
3982   if( IsVirtual(pTab) ) return 0;
3983   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3984   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3985   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3986   if( pExpr->flags&EP_Distinct ) return 0;
3987 
3988   return pTab;
3989 }
3990 
3991 /*
3992 ** If the source-list item passed as an argument was augmented with an
3993 ** INDEXED BY clause, then try to locate the specified index. If there
3994 ** was such a clause and the named index cannot be found, return
3995 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3996 ** pFrom->pIndex and return SQLITE_OK.
3997 */
3998 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3999   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4000     Table *pTab = pFrom->pTab;
4001     char *zIndexedBy = pFrom->u1.zIndexedBy;
4002     Index *pIdx;
4003     for(pIdx=pTab->pIndex;
4004         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4005         pIdx=pIdx->pNext
4006     );
4007     if( !pIdx ){
4008       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4009       pParse->checkSchema = 1;
4010       return SQLITE_ERROR;
4011     }
4012     pFrom->pIBIndex = pIdx;
4013   }
4014   return SQLITE_OK;
4015 }
4016 /*
4017 ** Detect compound SELECT statements that use an ORDER BY clause with
4018 ** an alternative collating sequence.
4019 **
4020 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4021 **
4022 ** These are rewritten as a subquery:
4023 **
4024 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4025 **     ORDER BY ... COLLATE ...
4026 **
4027 ** This transformation is necessary because the multiSelectOrderBy() routine
4028 ** above that generates the code for a compound SELECT with an ORDER BY clause
4029 ** uses a merge algorithm that requires the same collating sequence on the
4030 ** result columns as on the ORDER BY clause.  See ticket
4031 ** http://www.sqlite.org/src/info/6709574d2a
4032 **
4033 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4034 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4035 ** there are COLLATE terms in the ORDER BY.
4036 */
4037 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4038   int i;
4039   Select *pNew;
4040   Select *pX;
4041   sqlite3 *db;
4042   struct ExprList_item *a;
4043   SrcList *pNewSrc;
4044   Parse *pParse;
4045   Token dummy;
4046 
4047   if( p->pPrior==0 ) return WRC_Continue;
4048   if( p->pOrderBy==0 ) return WRC_Continue;
4049   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4050   if( pX==0 ) return WRC_Continue;
4051   a = p->pOrderBy->a;
4052   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4053     if( a[i].pExpr->flags & EP_Collate ) break;
4054   }
4055   if( i<0 ) return WRC_Continue;
4056 
4057   /* If we reach this point, that means the transformation is required. */
4058 
4059   pParse = pWalker->pParse;
4060   db = pParse->db;
4061   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4062   if( pNew==0 ) return WRC_Abort;
4063   memset(&dummy, 0, sizeof(dummy));
4064   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4065   if( pNewSrc==0 ) return WRC_Abort;
4066   *pNew = *p;
4067   p->pSrc = pNewSrc;
4068   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4069   p->op = TK_SELECT;
4070   p->pWhere = 0;
4071   pNew->pGroupBy = 0;
4072   pNew->pHaving = 0;
4073   pNew->pOrderBy = 0;
4074   p->pPrior = 0;
4075   p->pNext = 0;
4076   p->pWith = 0;
4077   p->selFlags &= ~SF_Compound;
4078   assert( (p->selFlags & SF_Converted)==0 );
4079   p->selFlags |= SF_Converted;
4080   assert( pNew->pPrior!=0 );
4081   pNew->pPrior->pNext = pNew;
4082   pNew->pLimit = 0;
4083   pNew->pOffset = 0;
4084   return WRC_Continue;
4085 }
4086 
4087 /*
4088 ** Check to see if the FROM clause term pFrom has table-valued function
4089 ** arguments.  If it does, leave an error message in pParse and return
4090 ** non-zero, since pFrom is not allowed to be a table-valued function.
4091 */
4092 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4093   if( pFrom->fg.isTabFunc ){
4094     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4095     return 1;
4096   }
4097   return 0;
4098 }
4099 
4100 #ifndef SQLITE_OMIT_CTE
4101 /*
4102 ** Argument pWith (which may be NULL) points to a linked list of nested
4103 ** WITH contexts, from inner to outermost. If the table identified by
4104 ** FROM clause element pItem is really a common-table-expression (CTE)
4105 ** then return a pointer to the CTE definition for that table. Otherwise
4106 ** return NULL.
4107 **
4108 ** If a non-NULL value is returned, set *ppContext to point to the With
4109 ** object that the returned CTE belongs to.
4110 */
4111 static struct Cte *searchWith(
4112   With *pWith,                    /* Current innermost WITH clause */
4113   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4114   With **ppContext                /* OUT: WITH clause return value belongs to */
4115 ){
4116   const char *zName;
4117   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4118     With *p;
4119     for(p=pWith; p; p=p->pOuter){
4120       int i;
4121       for(i=0; i<p->nCte; i++){
4122         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4123           *ppContext = p;
4124           return &p->a[i];
4125         }
4126       }
4127     }
4128   }
4129   return 0;
4130 }
4131 
4132 /* The code generator maintains a stack of active WITH clauses
4133 ** with the inner-most WITH clause being at the top of the stack.
4134 **
4135 ** This routine pushes the WITH clause passed as the second argument
4136 ** onto the top of the stack. If argument bFree is true, then this
4137 ** WITH clause will never be popped from the stack. In this case it
4138 ** should be freed along with the Parse object. In other cases, when
4139 ** bFree==0, the With object will be freed along with the SELECT
4140 ** statement with which it is associated.
4141 */
4142 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4143   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4144   if( pWith ){
4145     assert( pParse->pWith!=pWith );
4146     pWith->pOuter = pParse->pWith;
4147     pParse->pWith = pWith;
4148     if( bFree ) pParse->pWithToFree = pWith;
4149   }
4150 }
4151 
4152 /*
4153 ** This function checks if argument pFrom refers to a CTE declared by
4154 ** a WITH clause on the stack currently maintained by the parser. And,
4155 ** if currently processing a CTE expression, if it is a recursive
4156 ** reference to the current CTE.
4157 **
4158 ** If pFrom falls into either of the two categories above, pFrom->pTab
4159 ** and other fields are populated accordingly. The caller should check
4160 ** (pFrom->pTab!=0) to determine whether or not a successful match
4161 ** was found.
4162 **
4163 ** Whether or not a match is found, SQLITE_OK is returned if no error
4164 ** occurs. If an error does occur, an error message is stored in the
4165 ** parser and some error code other than SQLITE_OK returned.
4166 */
4167 static int withExpand(
4168   Walker *pWalker,
4169   struct SrcList_item *pFrom
4170 ){
4171   Parse *pParse = pWalker->pParse;
4172   sqlite3 *db = pParse->db;
4173   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4174   With *pWith;                    /* WITH clause that pCte belongs to */
4175 
4176   assert( pFrom->pTab==0 );
4177 
4178   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4179   if( pCte ){
4180     Table *pTab;
4181     ExprList *pEList;
4182     Select *pSel;
4183     Select *pLeft;                /* Left-most SELECT statement */
4184     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4185     With *pSavedWith;             /* Initial value of pParse->pWith */
4186 
4187     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4188     ** recursive reference to CTE pCte. Leave an error in pParse and return
4189     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4190     ** In this case, proceed.  */
4191     if( pCte->zCteErr ){
4192       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4193       return SQLITE_ERROR;
4194     }
4195     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4196 
4197     assert( pFrom->pTab==0 );
4198     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4199     if( pTab==0 ) return WRC_Abort;
4200     pTab->nTabRef = 1;
4201     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4202     pTab->iPKey = -1;
4203     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4204     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4205     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4206     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4207     assert( pFrom->pSelect );
4208 
4209     /* Check if this is a recursive CTE. */
4210     pSel = pFrom->pSelect;
4211     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4212     if( bMayRecursive ){
4213       int i;
4214       SrcList *pSrc = pFrom->pSelect->pSrc;
4215       for(i=0; i<pSrc->nSrc; i++){
4216         struct SrcList_item *pItem = &pSrc->a[i];
4217         if( pItem->zDatabase==0
4218          && pItem->zName!=0
4219          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4220           ){
4221           pItem->pTab = pTab;
4222           pItem->fg.isRecursive = 1;
4223           pTab->nTabRef++;
4224           pSel->selFlags |= SF_Recursive;
4225         }
4226       }
4227     }
4228 
4229     /* Only one recursive reference is permitted. */
4230     if( pTab->nTabRef>2 ){
4231       sqlite3ErrorMsg(
4232           pParse, "multiple references to recursive table: %s", pCte->zName
4233       );
4234       return SQLITE_ERROR;
4235     }
4236     assert( pTab->nTabRef==1 ||
4237             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4238 
4239     pCte->zCteErr = "circular reference: %s";
4240     pSavedWith = pParse->pWith;
4241     pParse->pWith = pWith;
4242     if( bMayRecursive ){
4243       Select *pPrior = pSel->pPrior;
4244       assert( pPrior->pWith==0 );
4245       pPrior->pWith = pSel->pWith;
4246       sqlite3WalkSelect(pWalker, pPrior);
4247       pPrior->pWith = 0;
4248     }else{
4249       sqlite3WalkSelect(pWalker, pSel);
4250     }
4251     pParse->pWith = pWith;
4252 
4253     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4254     pEList = pLeft->pEList;
4255     if( pCte->pCols ){
4256       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4257         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4258             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4259         );
4260         pParse->pWith = pSavedWith;
4261         return SQLITE_ERROR;
4262       }
4263       pEList = pCte->pCols;
4264     }
4265 
4266     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4267     if( bMayRecursive ){
4268       if( pSel->selFlags & SF_Recursive ){
4269         pCte->zCteErr = "multiple recursive references: %s";
4270       }else{
4271         pCte->zCteErr = "recursive reference in a subquery: %s";
4272       }
4273       sqlite3WalkSelect(pWalker, pSel);
4274     }
4275     pCte->zCteErr = 0;
4276     pParse->pWith = pSavedWith;
4277   }
4278 
4279   return SQLITE_OK;
4280 }
4281 #endif
4282 
4283 #ifndef SQLITE_OMIT_CTE
4284 /*
4285 ** If the SELECT passed as the second argument has an associated WITH
4286 ** clause, pop it from the stack stored as part of the Parse object.
4287 **
4288 ** This function is used as the xSelectCallback2() callback by
4289 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4290 ** names and other FROM clause elements.
4291 */
4292 static void selectPopWith(Walker *pWalker, Select *p){
4293   Parse *pParse = pWalker->pParse;
4294   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4295     With *pWith = findRightmost(p)->pWith;
4296     if( pWith!=0 ){
4297       assert( pParse->pWith==pWith );
4298       pParse->pWith = pWith->pOuter;
4299     }
4300   }
4301 }
4302 #else
4303 #define selectPopWith 0
4304 #endif
4305 
4306 /*
4307 ** This routine is a Walker callback for "expanding" a SELECT statement.
4308 ** "Expanding" means to do the following:
4309 **
4310 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4311 **         element of the FROM clause.
4312 **
4313 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4314 **         defines FROM clause.  When views appear in the FROM clause,
4315 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4316 **         that implements the view.  A copy is made of the view's SELECT
4317 **         statement so that we can freely modify or delete that statement
4318 **         without worrying about messing up the persistent representation
4319 **         of the view.
4320 **
4321 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4322 **         on joins and the ON and USING clause of joins.
4323 **
4324 **    (4)  Scan the list of columns in the result set (pEList) looking
4325 **         for instances of the "*" operator or the TABLE.* operator.
4326 **         If found, expand each "*" to be every column in every table
4327 **         and TABLE.* to be every column in TABLE.
4328 **
4329 */
4330 static int selectExpander(Walker *pWalker, Select *p){
4331   Parse *pParse = pWalker->pParse;
4332   int i, j, k;
4333   SrcList *pTabList;
4334   ExprList *pEList;
4335   struct SrcList_item *pFrom;
4336   sqlite3 *db = pParse->db;
4337   Expr *pE, *pRight, *pExpr;
4338   u16 selFlags = p->selFlags;
4339   u32 elistFlags = 0;
4340 
4341   p->selFlags |= SF_Expanded;
4342   if( db->mallocFailed  ){
4343     return WRC_Abort;
4344   }
4345   assert( p->pSrc!=0 );
4346   if( (selFlags & SF_Expanded)!=0 ){
4347     return WRC_Prune;
4348   }
4349   pTabList = p->pSrc;
4350   pEList = p->pEList;
4351   if( OK_IF_ALWAYS_TRUE(p->pWith) ){
4352     sqlite3WithPush(pParse, p->pWith, 0);
4353   }
4354 
4355   /* Make sure cursor numbers have been assigned to all entries in
4356   ** the FROM clause of the SELECT statement.
4357   */
4358   sqlite3SrcListAssignCursors(pParse, pTabList);
4359 
4360   /* Look up every table named in the FROM clause of the select.  If
4361   ** an entry of the FROM clause is a subquery instead of a table or view,
4362   ** then create a transient table structure to describe the subquery.
4363   */
4364   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4365     Table *pTab;
4366     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4367     if( pFrom->fg.isRecursive ) continue;
4368     assert( pFrom->pTab==0 );
4369 #ifndef SQLITE_OMIT_CTE
4370     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4371     if( pFrom->pTab ) {} else
4372 #endif
4373     if( pFrom->zName==0 ){
4374 #ifndef SQLITE_OMIT_SUBQUERY
4375       Select *pSel = pFrom->pSelect;
4376       /* A sub-query in the FROM clause of a SELECT */
4377       assert( pSel!=0 );
4378       assert( pFrom->pTab==0 );
4379       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4380       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4381       if( pTab==0 ) return WRC_Abort;
4382       pTab->nTabRef = 1;
4383       if( pFrom->zAlias ){
4384         pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4385       }else{
4386         pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4387       }
4388       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4389       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4390       pTab->iPKey = -1;
4391       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4392       pTab->tabFlags |= TF_Ephemeral;
4393 #endif
4394     }else{
4395       /* An ordinary table or view name in the FROM clause */
4396       assert( pFrom->pTab==0 );
4397       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4398       if( pTab==0 ) return WRC_Abort;
4399       if( pTab->nTabRef>=0xffff ){
4400         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4401            pTab->zName);
4402         pFrom->pTab = 0;
4403         return WRC_Abort;
4404       }
4405       pTab->nTabRef++;
4406       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4407         return WRC_Abort;
4408       }
4409 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4410       if( IsVirtual(pTab) || pTab->pSelect ){
4411         i16 nCol;
4412         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4413         assert( pFrom->pSelect==0 );
4414         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4415         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4416         nCol = pTab->nCol;
4417         pTab->nCol = -1;
4418         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4419         pTab->nCol = nCol;
4420       }
4421 #endif
4422     }
4423 
4424     /* Locate the index named by the INDEXED BY clause, if any. */
4425     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4426       return WRC_Abort;
4427     }
4428   }
4429 
4430   /* Process NATURAL keywords, and ON and USING clauses of joins.
4431   */
4432   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4433     return WRC_Abort;
4434   }
4435 
4436   /* For every "*" that occurs in the column list, insert the names of
4437   ** all columns in all tables.  And for every TABLE.* insert the names
4438   ** of all columns in TABLE.  The parser inserted a special expression
4439   ** with the TK_ASTERISK operator for each "*" that it found in the column
4440   ** list.  The following code just has to locate the TK_ASTERISK
4441   ** expressions and expand each one to the list of all columns in
4442   ** all tables.
4443   **
4444   ** The first loop just checks to see if there are any "*" operators
4445   ** that need expanding.
4446   */
4447   for(k=0; k<pEList->nExpr; k++){
4448     pE = pEList->a[k].pExpr;
4449     if( pE->op==TK_ASTERISK ) break;
4450     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4451     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4452     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4453     elistFlags |= pE->flags;
4454   }
4455   if( k<pEList->nExpr ){
4456     /*
4457     ** If we get here it means the result set contains one or more "*"
4458     ** operators that need to be expanded.  Loop through each expression
4459     ** in the result set and expand them one by one.
4460     */
4461     struct ExprList_item *a = pEList->a;
4462     ExprList *pNew = 0;
4463     int flags = pParse->db->flags;
4464     int longNames = (flags & SQLITE_FullColNames)!=0
4465                       && (flags & SQLITE_ShortColNames)==0;
4466 
4467     for(k=0; k<pEList->nExpr; k++){
4468       pE = a[k].pExpr;
4469       elistFlags |= pE->flags;
4470       pRight = pE->pRight;
4471       assert( pE->op!=TK_DOT || pRight!=0 );
4472       if( pE->op!=TK_ASTERISK
4473        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4474       ){
4475         /* This particular expression does not need to be expanded.
4476         */
4477         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4478         if( pNew ){
4479           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4480           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4481           a[k].zName = 0;
4482           a[k].zSpan = 0;
4483         }
4484         a[k].pExpr = 0;
4485       }else{
4486         /* This expression is a "*" or a "TABLE.*" and needs to be
4487         ** expanded. */
4488         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4489         char *zTName = 0;       /* text of name of TABLE */
4490         if( pE->op==TK_DOT ){
4491           assert( pE->pLeft!=0 );
4492           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4493           zTName = pE->pLeft->u.zToken;
4494         }
4495         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4496           Table *pTab = pFrom->pTab;
4497           Select *pSub = pFrom->pSelect;
4498           char *zTabName = pFrom->zAlias;
4499           const char *zSchemaName = 0;
4500           int iDb;
4501           if( zTabName==0 ){
4502             zTabName = pTab->zName;
4503           }
4504           if( db->mallocFailed ) break;
4505           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4506             pSub = 0;
4507             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4508               continue;
4509             }
4510             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4511             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4512           }
4513           for(j=0; j<pTab->nCol; j++){
4514             char *zName = pTab->aCol[j].zName;
4515             char *zColname;  /* The computed column name */
4516             char *zToFree;   /* Malloced string that needs to be freed */
4517             Token sColname;  /* Computed column name as a token */
4518 
4519             assert( zName );
4520             if( zTName && pSub
4521              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4522             ){
4523               continue;
4524             }
4525 
4526             /* If a column is marked as 'hidden', omit it from the expanded
4527             ** result-set list unless the SELECT has the SF_IncludeHidden
4528             ** bit set.
4529             */
4530             if( (p->selFlags & SF_IncludeHidden)==0
4531              && IsHiddenColumn(&pTab->aCol[j])
4532             ){
4533               continue;
4534             }
4535             tableSeen = 1;
4536 
4537             if( i>0 && zTName==0 ){
4538               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4539                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4540               ){
4541                 /* In a NATURAL join, omit the join columns from the
4542                 ** table to the right of the join */
4543                 continue;
4544               }
4545               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4546                 /* In a join with a USING clause, omit columns in the
4547                 ** using clause from the table on the right. */
4548                 continue;
4549               }
4550             }
4551             pRight = sqlite3Expr(db, TK_ID, zName);
4552             zColname = zName;
4553             zToFree = 0;
4554             if( longNames || pTabList->nSrc>1 ){
4555               Expr *pLeft;
4556               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4557               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4558               if( zSchemaName ){
4559                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4560                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4561               }
4562               if( longNames ){
4563                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4564                 zToFree = zColname;
4565               }
4566             }else{
4567               pExpr = pRight;
4568             }
4569             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4570             sqlite3TokenInit(&sColname, zColname);
4571             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4572             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4573               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4574               if( pSub ){
4575                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4576                 testcase( pX->zSpan==0 );
4577               }else{
4578                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4579                                            zSchemaName, zTabName, zColname);
4580                 testcase( pX->zSpan==0 );
4581               }
4582               pX->bSpanIsTab = 1;
4583             }
4584             sqlite3DbFree(db, zToFree);
4585           }
4586         }
4587         if( !tableSeen ){
4588           if( zTName ){
4589             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4590           }else{
4591             sqlite3ErrorMsg(pParse, "no tables specified");
4592           }
4593         }
4594       }
4595     }
4596     sqlite3ExprListDelete(db, pEList);
4597     p->pEList = pNew;
4598   }
4599   if( p->pEList ){
4600     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4601       sqlite3ErrorMsg(pParse, "too many columns in result set");
4602       return WRC_Abort;
4603     }
4604     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4605       p->selFlags |= SF_ComplexResult;
4606     }
4607   }
4608   return WRC_Continue;
4609 }
4610 
4611 /*
4612 ** No-op routine for the parse-tree walker.
4613 **
4614 ** When this routine is the Walker.xExprCallback then expression trees
4615 ** are walked without any actions being taken at each node.  Presumably,
4616 ** when this routine is used for Walker.xExprCallback then
4617 ** Walker.xSelectCallback is set to do something useful for every
4618 ** subquery in the parser tree.
4619 */
4620 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4621   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4622   return WRC_Continue;
4623 }
4624 
4625 /*
4626 ** No-op routine for the parse-tree walker for SELECT statements.
4627 ** subquery in the parser tree.
4628 */
4629 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4630   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4631   return WRC_Continue;
4632 }
4633 
4634 #if SQLITE_DEBUG
4635 /*
4636 ** Always assert.  This xSelectCallback2 implementation proves that the
4637 ** xSelectCallback2 is never invoked.
4638 */
4639 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4640   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4641   assert( 0 );
4642 }
4643 #endif
4644 /*
4645 ** This routine "expands" a SELECT statement and all of its subqueries.
4646 ** For additional information on what it means to "expand" a SELECT
4647 ** statement, see the comment on the selectExpand worker callback above.
4648 **
4649 ** Expanding a SELECT statement is the first step in processing a
4650 ** SELECT statement.  The SELECT statement must be expanded before
4651 ** name resolution is performed.
4652 **
4653 ** If anything goes wrong, an error message is written into pParse.
4654 ** The calling function can detect the problem by looking at pParse->nErr
4655 ** and/or pParse->db->mallocFailed.
4656 */
4657 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4658   Walker w;
4659   w.xExprCallback = sqlite3ExprWalkNoop;
4660   w.pParse = pParse;
4661   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4662     w.xSelectCallback = convertCompoundSelectToSubquery;
4663     w.xSelectCallback2 = 0;
4664     sqlite3WalkSelect(&w, pSelect);
4665   }
4666   w.xSelectCallback = selectExpander;
4667   w.xSelectCallback2 = selectPopWith;
4668   sqlite3WalkSelect(&w, pSelect);
4669 }
4670 
4671 
4672 #ifndef SQLITE_OMIT_SUBQUERY
4673 /*
4674 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4675 ** interface.
4676 **
4677 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4678 ** information to the Table structure that represents the result set
4679 ** of that subquery.
4680 **
4681 ** The Table structure that represents the result set was constructed
4682 ** by selectExpander() but the type and collation information was omitted
4683 ** at that point because identifiers had not yet been resolved.  This
4684 ** routine is called after identifier resolution.
4685 */
4686 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4687   Parse *pParse;
4688   int i;
4689   SrcList *pTabList;
4690   struct SrcList_item *pFrom;
4691 
4692   assert( p->selFlags & SF_Resolved );
4693   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4694   p->selFlags |= SF_HasTypeInfo;
4695   pParse = pWalker->pParse;
4696   pTabList = p->pSrc;
4697   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4698     Table *pTab = pFrom->pTab;
4699     assert( pTab!=0 );
4700     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4701       /* A sub-query in the FROM clause of a SELECT */
4702       Select *pSel = pFrom->pSelect;
4703       if( pSel ){
4704         while( pSel->pPrior ) pSel = pSel->pPrior;
4705         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4706       }
4707     }
4708   }
4709 }
4710 #endif
4711 
4712 
4713 /*
4714 ** This routine adds datatype and collating sequence information to
4715 ** the Table structures of all FROM-clause subqueries in a
4716 ** SELECT statement.
4717 **
4718 ** Use this routine after name resolution.
4719 */
4720 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4721 #ifndef SQLITE_OMIT_SUBQUERY
4722   Walker w;
4723   w.xSelectCallback = sqlite3SelectWalkNoop;
4724   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4725   w.xExprCallback = sqlite3ExprWalkNoop;
4726   w.pParse = pParse;
4727   sqlite3WalkSelect(&w, pSelect);
4728 #endif
4729 }
4730 
4731 
4732 /*
4733 ** This routine sets up a SELECT statement for processing.  The
4734 ** following is accomplished:
4735 **
4736 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4737 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4738 **     *  ON and USING clauses are shifted into WHERE statements
4739 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4740 **     *  Identifiers in expression are matched to tables.
4741 **
4742 ** This routine acts recursively on all subqueries within the SELECT.
4743 */
4744 void sqlite3SelectPrep(
4745   Parse *pParse,         /* The parser context */
4746   Select *p,             /* The SELECT statement being coded. */
4747   NameContext *pOuterNC  /* Name context for container */
4748 ){
4749   assert( p!=0 || pParse->db->mallocFailed );
4750   if( pParse->db->mallocFailed ) return;
4751   if( p->selFlags & SF_HasTypeInfo ) return;
4752   sqlite3SelectExpand(pParse, p);
4753   if( pParse->nErr || pParse->db->mallocFailed ) return;
4754   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4755   if( pParse->nErr || pParse->db->mallocFailed ) return;
4756   sqlite3SelectAddTypeInfo(pParse, p);
4757 }
4758 
4759 /*
4760 ** Reset the aggregate accumulator.
4761 **
4762 ** The aggregate accumulator is a set of memory cells that hold
4763 ** intermediate results while calculating an aggregate.  This
4764 ** routine generates code that stores NULLs in all of those memory
4765 ** cells.
4766 */
4767 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4768   Vdbe *v = pParse->pVdbe;
4769   int i;
4770   struct AggInfo_func *pFunc;
4771   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4772   if( nReg==0 ) return;
4773 #ifdef SQLITE_DEBUG
4774   /* Verify that all AggInfo registers are within the range specified by
4775   ** AggInfo.mnReg..AggInfo.mxReg */
4776   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4777   for(i=0; i<pAggInfo->nColumn; i++){
4778     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4779          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4780   }
4781   for(i=0; i<pAggInfo->nFunc; i++){
4782     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4783          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4784   }
4785 #endif
4786   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4787   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4788     if( pFunc->iDistinct>=0 ){
4789       Expr *pE = pFunc->pExpr;
4790       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4791       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4792         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4793            "argument");
4794         pFunc->iDistinct = -1;
4795       }else{
4796         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4797         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4798                           (char*)pKeyInfo, P4_KEYINFO);
4799       }
4800     }
4801   }
4802 }
4803 
4804 /*
4805 ** Invoke the OP_AggFinalize opcode for every aggregate function
4806 ** in the AggInfo structure.
4807 */
4808 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4809   Vdbe *v = pParse->pVdbe;
4810   int i;
4811   struct AggInfo_func *pF;
4812   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4813     ExprList *pList = pF->pExpr->x.pList;
4814     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4815     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4816     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4817   }
4818 }
4819 
4820 /*
4821 ** Update the accumulator memory cells for an aggregate based on
4822 ** the current cursor position.
4823 */
4824 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4825   Vdbe *v = pParse->pVdbe;
4826   int i;
4827   int regHit = 0;
4828   int addrHitTest = 0;
4829   struct AggInfo_func *pF;
4830   struct AggInfo_col *pC;
4831 
4832   pAggInfo->directMode = 1;
4833   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4834     int nArg;
4835     int addrNext = 0;
4836     int regAgg;
4837     ExprList *pList = pF->pExpr->x.pList;
4838     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4839     if( pList ){
4840       nArg = pList->nExpr;
4841       regAgg = sqlite3GetTempRange(pParse, nArg);
4842       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4843     }else{
4844       nArg = 0;
4845       regAgg = 0;
4846     }
4847     if( pF->iDistinct>=0 ){
4848       addrNext = sqlite3VdbeMakeLabel(v);
4849       testcase( nArg==0 );  /* Error condition */
4850       testcase( nArg>1 );   /* Also an error */
4851       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4852     }
4853     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4854       CollSeq *pColl = 0;
4855       struct ExprList_item *pItem;
4856       int j;
4857       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4858       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4859         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4860       }
4861       if( !pColl ){
4862         pColl = pParse->db->pDfltColl;
4863       }
4864       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4865       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4866     }
4867     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4868     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4869     sqlite3VdbeChangeP5(v, (u8)nArg);
4870     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4871     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4872     if( addrNext ){
4873       sqlite3VdbeResolveLabel(v, addrNext);
4874       sqlite3ExprCacheClear(pParse);
4875     }
4876   }
4877 
4878   /* Before populating the accumulator registers, clear the column cache.
4879   ** Otherwise, if any of the required column values are already present
4880   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4881   ** to pC->iMem. But by the time the value is used, the original register
4882   ** may have been used, invalidating the underlying buffer holding the
4883   ** text or blob value. See ticket [883034dcb5].
4884   **
4885   ** Another solution would be to change the OP_SCopy used to copy cached
4886   ** values to an OP_Copy.
4887   */
4888   if( regHit ){
4889     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4890   }
4891   sqlite3ExprCacheClear(pParse);
4892   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4893     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4894   }
4895   pAggInfo->directMode = 0;
4896   sqlite3ExprCacheClear(pParse);
4897   if( addrHitTest ){
4898     sqlite3VdbeJumpHere(v, addrHitTest);
4899   }
4900 }
4901 
4902 /*
4903 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4904 ** count(*) query ("SELECT count(*) FROM pTab").
4905 */
4906 #ifndef SQLITE_OMIT_EXPLAIN
4907 static void explainSimpleCount(
4908   Parse *pParse,                  /* Parse context */
4909   Table *pTab,                    /* Table being queried */
4910   Index *pIdx                     /* Index used to optimize scan, or NULL */
4911 ){
4912   if( pParse->explain==2 ){
4913     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4914     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4915         pTab->zName,
4916         bCover ? " USING COVERING INDEX " : "",
4917         bCover ? pIdx->zName : ""
4918     );
4919     sqlite3VdbeAddOp4(
4920         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4921     );
4922   }
4923 }
4924 #else
4925 # define explainSimpleCount(a,b,c)
4926 #endif
4927 
4928 /*
4929 ** Context object for havingToWhereExprCb().
4930 */
4931 struct HavingToWhereCtx {
4932   Expr **ppWhere;
4933   ExprList *pGroupBy;
4934 };
4935 
4936 /*
4937 ** sqlite3WalkExpr() callback used by havingToWhere().
4938 **
4939 ** If the node passed to the callback is a TK_AND node, return
4940 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4941 **
4942 ** Otherwise, return WRC_Prune. In this case, also check if the
4943 ** sub-expression matches the criteria for being moved to the WHERE
4944 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4945 ** within the HAVING expression with a constant "1".
4946 */
4947 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4948   if( pExpr->op!=TK_AND ){
4949     struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4950     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4951       sqlite3 *db = pWalker->pParse->db;
4952       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4953       if( pNew ){
4954         Expr *pWhere = *(p->ppWhere);
4955         SWAP(Expr, *pNew, *pExpr);
4956         pNew = sqlite3ExprAnd(db, pWhere, pNew);
4957         *(p->ppWhere) = pNew;
4958       }
4959     }
4960     return WRC_Prune;
4961   }
4962   return WRC_Continue;
4963 }
4964 
4965 /*
4966 ** Transfer eligible terms from the HAVING clause of a query, which is
4967 ** processed after grouping, to the WHERE clause, which is processed before
4968 ** grouping. For example, the query:
4969 **
4970 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4971 **
4972 ** can be rewritten as:
4973 **
4974 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4975 **
4976 ** A term of the HAVING expression is eligible for transfer if it consists
4977 ** entirely of constants and expressions that are also GROUP BY terms that
4978 ** use the "BINARY" collation sequence.
4979 */
4980 static void havingToWhere(
4981   Parse *pParse,
4982   ExprList *pGroupBy,
4983   Expr *pHaving,
4984   Expr **ppWhere
4985 ){
4986   struct HavingToWhereCtx sCtx;
4987   Walker sWalker;
4988 
4989   sCtx.ppWhere = ppWhere;
4990   sCtx.pGroupBy = pGroupBy;
4991 
4992   memset(&sWalker, 0, sizeof(sWalker));
4993   sWalker.pParse = pParse;
4994   sWalker.xExprCallback = havingToWhereExprCb;
4995   sWalker.u.pHavingCtx = &sCtx;
4996   sqlite3WalkExpr(&sWalker, pHaving);
4997 }
4998 
4999 /*
5000 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5001 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5002 ** then return 0.
5003 */
5004 static struct SrcList_item *isSelfJoinView(
5005   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5006   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5007 ){
5008   struct SrcList_item *pItem;
5009   for(pItem = pTabList->a; pItem<pThis; pItem++){
5010     if( pItem->pSelect==0 ) continue;
5011     if( pItem->fg.viaCoroutine ) continue;
5012     if( pItem->zName==0 ) continue;
5013     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5014     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5015     if( sqlite3ExprCompare(0,
5016           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5017     ){
5018       /* The view was modified by some other optimization such as
5019       ** pushDownWhereTerms() */
5020       continue;
5021     }
5022     return pItem;
5023   }
5024   return 0;
5025 }
5026 
5027 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5028 /*
5029 ** Attempt to transform a query of the form
5030 **
5031 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5032 **
5033 ** Into this:
5034 **
5035 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5036 **
5037 ** The transformation only works if all of the following are true:
5038 **
5039 **   *  The subquery is a UNION ALL of two or more terms
5040 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5041 **   *  The outer query is a simple count(*)
5042 **
5043 ** Return TRUE if the optimization is undertaken.
5044 */
5045 static int countOfViewOptimization(Parse *pParse, Select *p){
5046   Select *pSub, *pPrior;
5047   Expr *pExpr;
5048   Expr *pCount;
5049   sqlite3 *db;
5050   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5051   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5052   pExpr = p->pEList->a[0].pExpr;
5053   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5054   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5055   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5056   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5057   pSub = p->pSrc->a[0].pSelect;
5058   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5059   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5060   do{
5061     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5062     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5063     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5064     pSub = pSub->pPrior;                              /* Repeat over compound */
5065   }while( pSub );
5066 
5067   /* If we reach this point then it is OK to perform the transformation */
5068 
5069   db = pParse->db;
5070   pCount = pExpr;
5071   pExpr = 0;
5072   pSub = p->pSrc->a[0].pSelect;
5073   p->pSrc->a[0].pSelect = 0;
5074   sqlite3SrcListDelete(db, p->pSrc);
5075   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5076   while( pSub ){
5077     Expr *pTerm;
5078     pPrior = pSub->pPrior;
5079     pSub->pPrior = 0;
5080     pSub->pNext = 0;
5081     pSub->selFlags |= SF_Aggregate;
5082     pSub->selFlags &= ~SF_Compound;
5083     pSub->nSelectRow = 0;
5084     sqlite3ExprListDelete(db, pSub->pEList);
5085     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5086     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5087     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5088     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5089     if( pExpr==0 ){
5090       pExpr = pTerm;
5091     }else{
5092       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5093     }
5094     pSub = pPrior;
5095   }
5096   p->pEList->a[0].pExpr = pExpr;
5097   p->selFlags &= ~SF_Aggregate;
5098 
5099 #if SELECTTRACE_ENABLED
5100   if( sqlite3SelectTrace & 0x400 ){
5101     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5102     sqlite3TreeViewSelect(0, p, 0);
5103   }
5104 #endif
5105   return 1;
5106 }
5107 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5108 
5109 /*
5110 ** Generate code for the SELECT statement given in the p argument.
5111 **
5112 ** The results are returned according to the SelectDest structure.
5113 ** See comments in sqliteInt.h for further information.
5114 **
5115 ** This routine returns the number of errors.  If any errors are
5116 ** encountered, then an appropriate error message is left in
5117 ** pParse->zErrMsg.
5118 **
5119 ** This routine does NOT free the Select structure passed in.  The
5120 ** calling function needs to do that.
5121 */
5122 int sqlite3Select(
5123   Parse *pParse,         /* The parser context */
5124   Select *p,             /* The SELECT statement being coded. */
5125   SelectDest *pDest      /* What to do with the query results */
5126 ){
5127   int i, j;              /* Loop counters */
5128   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5129   Vdbe *v;               /* The virtual machine under construction */
5130   int isAgg;             /* True for select lists like "count(*)" */
5131   ExprList *pEList = 0;  /* List of columns to extract. */
5132   SrcList *pTabList;     /* List of tables to select from */
5133   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5134   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5135   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5136   int rc = 1;            /* Value to return from this function */
5137   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5138   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5139   AggInfo sAggInfo;      /* Information used by aggregate queries */
5140   int iEnd;              /* Address of the end of the query */
5141   sqlite3 *db;           /* The database connection */
5142   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5143   u8 minMaxFlag;                 /* Flag for min/max queries */
5144 
5145 #ifndef SQLITE_OMIT_EXPLAIN
5146   int iRestoreSelectId = pParse->iSelectId;
5147   pParse->iSelectId = pParse->iNextSelectId++;
5148 #endif
5149 
5150   db = pParse->db;
5151   if( p==0 || db->mallocFailed || pParse->nErr ){
5152     return 1;
5153   }
5154   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5155   memset(&sAggInfo, 0, sizeof(sAggInfo));
5156 #if SELECTTRACE_ENABLED
5157   pParse->nSelectIndent++;
5158   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5159   if( sqlite3SelectTrace & 0x100 ){
5160     sqlite3TreeViewSelect(0, p, 0);
5161   }
5162 #endif
5163 
5164   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5165   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5166   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5167   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5168   if( IgnorableOrderby(pDest) ){
5169     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5170            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5171            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5172            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5173     /* If ORDER BY makes no difference in the output then neither does
5174     ** DISTINCT so it can be removed too. */
5175     sqlite3ExprListDelete(db, p->pOrderBy);
5176     p->pOrderBy = 0;
5177     p->selFlags &= ~SF_Distinct;
5178   }
5179   sqlite3SelectPrep(pParse, p, 0);
5180   memset(&sSort, 0, sizeof(sSort));
5181   sSort.pOrderBy = p->pOrderBy;
5182   pTabList = p->pSrc;
5183   if( pParse->nErr || db->mallocFailed ){
5184     goto select_end;
5185   }
5186   assert( p->pEList!=0 );
5187   isAgg = (p->selFlags & SF_Aggregate)!=0;
5188 #if SELECTTRACE_ENABLED
5189   if( sqlite3SelectTrace & 0x100 ){
5190     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5191     sqlite3TreeViewSelect(0, p, 0);
5192   }
5193 #endif
5194 
5195   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5196   ** does not already exist */
5197   v = sqlite3GetVdbe(pParse);
5198   if( v==0 ) goto select_end;
5199   if( pDest->eDest==SRT_Output ){
5200     generateColumnNames(pParse, p);
5201   }
5202 
5203   /* Try to flatten subqueries in the FROM clause up into the main query
5204   */
5205 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5206   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5207     struct SrcList_item *pItem = &pTabList->a[i];
5208     Select *pSub = pItem->pSelect;
5209     Table *pTab = pItem->pTab;
5210     if( pSub==0 ) continue;
5211 
5212     /* Catch mismatch in the declared columns of a view and the number of
5213     ** columns in the SELECT on the RHS */
5214     if( pTab->nCol!=pSub->pEList->nExpr ){
5215       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5216                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5217       goto select_end;
5218     }
5219 
5220     /* Do not try to flatten an aggregate subquery.
5221     **
5222     ** Flattening an aggregate subquery is only possible if the outer query
5223     ** is not a join.  But if the outer query is not a join, then the subquery
5224     ** will be implemented as a co-routine and there is no advantage to
5225     ** flattening in that case.
5226     */
5227     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5228     assert( pSub->pGroupBy==0 );
5229 
5230     /* If the outer query contains a "complex" result set (that is,
5231     ** if the result set of the outer query uses functions or subqueries)
5232     ** and if the subquery contains an ORDER BY clause and if
5233     ** it will be implemented as a co-routine, then do not flatten.  This
5234     ** restriction allows SQL constructs like this:
5235     **
5236     **  SELECT expensive_function(x)
5237     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5238     **
5239     ** The expensive_function() is only computed on the 10 rows that
5240     ** are output, rather than every row of the table.
5241     **
5242     ** The requirement that the outer query have a complex result set
5243     ** means that flattening does occur on simpler SQL constraints without
5244     ** the expensive_function() like:
5245     **
5246     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5247     */
5248     if( pSub->pOrderBy!=0
5249      && i==0
5250      && (p->selFlags & SF_ComplexResult)!=0
5251      && (pTabList->nSrc==1
5252          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5253     ){
5254       continue;
5255     }
5256 
5257     if( flattenSubquery(pParse, p, i, isAgg) ){
5258       /* This subquery can be absorbed into its parent. */
5259       i = -1;
5260     }
5261     pTabList = p->pSrc;
5262     if( db->mallocFailed ) goto select_end;
5263     if( !IgnorableOrderby(pDest) ){
5264       sSort.pOrderBy = p->pOrderBy;
5265     }
5266   }
5267 #endif
5268 
5269 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5270   /* Handle compound SELECT statements using the separate multiSelect()
5271   ** procedure.
5272   */
5273   if( p->pPrior ){
5274     rc = multiSelect(pParse, p, pDest);
5275     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5276 #if SELECTTRACE_ENABLED
5277     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5278     pParse->nSelectIndent--;
5279 #endif
5280     return rc;
5281   }
5282 #endif
5283 
5284   /* For each term in the FROM clause, do two things:
5285   ** (1) Authorized unreferenced tables
5286   ** (2) Generate code for all sub-queries
5287   */
5288   for(i=0; i<pTabList->nSrc; i++){
5289     struct SrcList_item *pItem = &pTabList->a[i];
5290     SelectDest dest;
5291     Select *pSub;
5292 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5293     const char *zSavedAuthContext;
5294 #endif
5295 
5296     /* Issue SQLITE_READ authorizations with a fake column name for any
5297     ** tables that are referenced but from which no values are extracted.
5298     ** Examples of where these kinds of null SQLITE_READ authorizations
5299     ** would occur:
5300     **
5301     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5302     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5303     **
5304     ** The fake column name is an empty string.  It is possible for a table to
5305     ** have a column named by the empty string, in which case there is no way to
5306     ** distinguish between an unreferenced table and an actual reference to the
5307     ** "" column. The original design was for the fake column name to be a NULL,
5308     ** which would be unambiguous.  But legacy authorization callbacks might
5309     ** assume the column name is non-NULL and segfault.  The use of an empty
5310     ** string for the fake column name seems safer.
5311     */
5312     if( pItem->colUsed==0 ){
5313       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5314     }
5315 
5316 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5317     /* Generate code for all sub-queries in the FROM clause
5318     */
5319     pSub = pItem->pSelect;
5320     if( pSub==0 ) continue;
5321 
5322     /* Sometimes the code for a subquery will be generated more than
5323     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5324     ** for example.  In that case, do not regenerate the code to manifest
5325     ** a view or the co-routine to implement a view.  The first instance
5326     ** is sufficient, though the subroutine to manifest the view does need
5327     ** to be invoked again. */
5328     if( pItem->addrFillSub ){
5329       if( pItem->fg.viaCoroutine==0 ){
5330         /* The subroutine that manifests the view might be a one-time routine,
5331         ** or it might need to be rerun on each iteration because it
5332         ** encodes a correlated subquery. */
5333         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5334         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5335       }
5336       continue;
5337     }
5338 
5339     /* Increment Parse.nHeight by the height of the largest expression
5340     ** tree referred to by this, the parent select. The child select
5341     ** may contain expression trees of at most
5342     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5343     ** more conservative than necessary, but much easier than enforcing
5344     ** an exact limit.
5345     */
5346     pParse->nHeight += sqlite3SelectExprHeight(p);
5347 
5348     /* Make copies of constant WHERE-clause terms in the outer query down
5349     ** inside the subquery.  This can help the subquery to run more efficiently.
5350     */
5351     if( (pItem->fg.jointype & JT_OUTER)==0
5352      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5353     ){
5354 #if SELECTTRACE_ENABLED
5355       if( sqlite3SelectTrace & 0x100 ){
5356         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5357         sqlite3TreeViewSelect(0, p, 0);
5358       }
5359 #endif
5360     }
5361 
5362     zSavedAuthContext = pParse->zAuthContext;
5363     pParse->zAuthContext = pItem->zName;
5364 
5365     /* Generate code to implement the subquery
5366     **
5367     ** The subquery is implemented as a co-routine if the subquery is
5368     ** guaranteed to be the outer loop (so that it does not need to be
5369     ** computed more than once)
5370     **
5371     ** TODO: Are there other reasons beside (1) to use a co-routine
5372     ** implementation?
5373     */
5374     if( i==0
5375      && (pTabList->nSrc==1
5376             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5377     ){
5378       /* Implement a co-routine that will return a single row of the result
5379       ** set on each invocation.
5380       */
5381       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5382 
5383       pItem->regReturn = ++pParse->nMem;
5384       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5385       VdbeComment((v, "%s", pItem->pTab->zName));
5386       pItem->addrFillSub = addrTop;
5387       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5388       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5389       sqlite3Select(pParse, pSub, &dest);
5390       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5391       pItem->fg.viaCoroutine = 1;
5392       pItem->regResult = dest.iSdst;
5393       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5394       sqlite3VdbeJumpHere(v, addrTop-1);
5395       sqlite3ClearTempRegCache(pParse);
5396     }else{
5397       /* Generate a subroutine that will fill an ephemeral table with
5398       ** the content of this subquery.  pItem->addrFillSub will point
5399       ** to the address of the generated subroutine.  pItem->regReturn
5400       ** is a register allocated to hold the subroutine return address
5401       */
5402       int topAddr;
5403       int onceAddr = 0;
5404       int retAddr;
5405       struct SrcList_item *pPrior;
5406 
5407       assert( pItem->addrFillSub==0 );
5408       pItem->regReturn = ++pParse->nMem;
5409       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5410       pItem->addrFillSub = topAddr+1;
5411       if( pItem->fg.isCorrelated==0 ){
5412         /* If the subquery is not correlated and if we are not inside of
5413         ** a trigger, then we only need to compute the value of the subquery
5414         ** once. */
5415         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5416         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5417       }else{
5418         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5419       }
5420       pPrior = isSelfJoinView(pTabList, pItem);
5421       if( pPrior ){
5422         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5423         explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5424         assert( pPrior->pSelect!=0 );
5425         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5426       }else{
5427         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5428         explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5429         sqlite3Select(pParse, pSub, &dest);
5430       }
5431       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5432       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5433       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5434       VdbeComment((v, "end %s", pItem->pTab->zName));
5435       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5436       sqlite3ClearTempRegCache(pParse);
5437     }
5438     if( db->mallocFailed ) goto select_end;
5439     pParse->nHeight -= sqlite3SelectExprHeight(p);
5440     pParse->zAuthContext = zSavedAuthContext;
5441 #endif
5442   }
5443 
5444   /* Various elements of the SELECT copied into local variables for
5445   ** convenience */
5446   pEList = p->pEList;
5447   pWhere = p->pWhere;
5448   pGroupBy = p->pGroupBy;
5449   pHaving = p->pHaving;
5450   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5451 
5452 #if SELECTTRACE_ENABLED
5453   if( sqlite3SelectTrace & 0x400 ){
5454     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5455     sqlite3TreeViewSelect(0, p, 0);
5456   }
5457 #endif
5458 
5459 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5460   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5461    && countOfViewOptimization(pParse, p)
5462   ){
5463     if( db->mallocFailed ) goto select_end;
5464     pEList = p->pEList;
5465     pTabList = p->pSrc;
5466   }
5467 #endif
5468 
5469   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5470   ** if the select-list is the same as the ORDER BY list, then this query
5471   ** can be rewritten as a GROUP BY. In other words, this:
5472   **
5473   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5474   **
5475   ** is transformed to:
5476   **
5477   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5478   **
5479   ** The second form is preferred as a single index (or temp-table) may be
5480   ** used for both the ORDER BY and DISTINCT processing. As originally
5481   ** written the query must use a temp-table for at least one of the ORDER
5482   ** BY and DISTINCT, and an index or separate temp-table for the other.
5483   */
5484   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5485    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5486   ){
5487     p->selFlags &= ~SF_Distinct;
5488     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5489     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5490     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5491     ** original setting of the SF_Distinct flag, not the current setting */
5492     assert( sDistinct.isTnct );
5493 
5494 #if SELECTTRACE_ENABLED
5495     if( sqlite3SelectTrace & 0x400 ){
5496       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5497       sqlite3TreeViewSelect(0, p, 0);
5498     }
5499 #endif
5500   }
5501 
5502   /* If there is an ORDER BY clause, then create an ephemeral index to
5503   ** do the sorting.  But this sorting ephemeral index might end up
5504   ** being unused if the data can be extracted in pre-sorted order.
5505   ** If that is the case, then the OP_OpenEphemeral instruction will be
5506   ** changed to an OP_Noop once we figure out that the sorting index is
5507   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5508   ** that change.
5509   */
5510   if( sSort.pOrderBy ){
5511     KeyInfo *pKeyInfo;
5512     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5513     sSort.iECursor = pParse->nTab++;
5514     sSort.addrSortIndex =
5515       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5516           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5517           (char*)pKeyInfo, P4_KEYINFO
5518       );
5519   }else{
5520     sSort.addrSortIndex = -1;
5521   }
5522 
5523   /* If the output is destined for a temporary table, open that table.
5524   */
5525   if( pDest->eDest==SRT_EphemTab ){
5526     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5527   }
5528 
5529   /* Set the limiter.
5530   */
5531   iEnd = sqlite3VdbeMakeLabel(v);
5532   if( (p->selFlags & SF_FixedLimit)==0 ){
5533     p->nSelectRow = 320;  /* 4 billion rows */
5534   }
5535   computeLimitRegisters(pParse, p, iEnd);
5536   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5537     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5538     sSort.sortFlags |= SORTFLAG_UseSorter;
5539   }
5540 
5541   /* Open an ephemeral index to use for the distinct set.
5542   */
5543   if( p->selFlags & SF_Distinct ){
5544     sDistinct.tabTnct = pParse->nTab++;
5545     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5546                              sDistinct.tabTnct, 0, 0,
5547                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5548                              P4_KEYINFO);
5549     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5550     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5551   }else{
5552     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5553   }
5554 
5555   if( !isAgg && pGroupBy==0 ){
5556     /* No aggregate functions and no GROUP BY clause */
5557     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5558     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5559     wctrlFlags |= p->selFlags & SF_FixedLimit;
5560 
5561     /* Begin the database scan. */
5562     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5563                                p->pEList, wctrlFlags, p->nSelectRow);
5564     if( pWInfo==0 ) goto select_end;
5565     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5566       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5567     }
5568     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5569       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5570     }
5571     if( sSort.pOrderBy ){
5572       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5573       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5574       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5575         sSort.pOrderBy = 0;
5576       }
5577     }
5578 
5579     /* If sorting index that was created by a prior OP_OpenEphemeral
5580     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5581     ** into an OP_Noop.
5582     */
5583     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5584       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5585     }
5586 
5587     /* Use the standard inner loop. */
5588     assert( p->pEList==pEList );
5589     selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5590                     sqlite3WhereContinueLabel(pWInfo),
5591                     sqlite3WhereBreakLabel(pWInfo));
5592 
5593     /* End the database scan loop.
5594     */
5595     sqlite3WhereEnd(pWInfo);
5596   }else{
5597     /* This case when there exist aggregate functions or a GROUP BY clause
5598     ** or both */
5599     NameContext sNC;    /* Name context for processing aggregate information */
5600     int iAMem;          /* First Mem address for storing current GROUP BY */
5601     int iBMem;          /* First Mem address for previous GROUP BY */
5602     int iUseFlag;       /* Mem address holding flag indicating that at least
5603                         ** one row of the input to the aggregator has been
5604                         ** processed */
5605     int iAbortFlag;     /* Mem address which causes query abort if positive */
5606     int groupBySort;    /* Rows come from source in GROUP BY order */
5607     int addrEnd;        /* End of processing for this SELECT */
5608     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5609     int sortOut = 0;    /* Output register from the sorter */
5610     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5611 
5612     /* Remove any and all aliases between the result set and the
5613     ** GROUP BY clause.
5614     */
5615     if( pGroupBy ){
5616       int k;                        /* Loop counter */
5617       struct ExprList_item *pItem;  /* For looping over expression in a list */
5618 
5619       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5620         pItem->u.x.iAlias = 0;
5621       }
5622       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5623         pItem->u.x.iAlias = 0;
5624       }
5625       assert( 66==sqlite3LogEst(100) );
5626       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5627     }else{
5628       assert( 0==sqlite3LogEst(1) );
5629       p->nSelectRow = 0;
5630     }
5631 
5632     /* If there is both a GROUP BY and an ORDER BY clause and they are
5633     ** identical, then it may be possible to disable the ORDER BY clause
5634     ** on the grounds that the GROUP BY will cause elements to come out
5635     ** in the correct order. It also may not - the GROUP BY might use a
5636     ** database index that causes rows to be grouped together as required
5637     ** but not actually sorted. Either way, record the fact that the
5638     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5639     ** variable.  */
5640     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5641       orderByGrp = 1;
5642     }
5643 
5644     /* Create a label to jump to when we want to abort the query */
5645     addrEnd = sqlite3VdbeMakeLabel(v);
5646 
5647     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5648     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5649     ** SELECT statement.
5650     */
5651     memset(&sNC, 0, sizeof(sNC));
5652     sNC.pParse = pParse;
5653     sNC.pSrcList = pTabList;
5654     sNC.pAggInfo = &sAggInfo;
5655     sAggInfo.mnReg = pParse->nMem+1;
5656     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5657     sAggInfo.pGroupBy = pGroupBy;
5658     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5659     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5660     if( pHaving ){
5661       if( pGroupBy ){
5662         assert( pWhere==p->pWhere );
5663         havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5664         pWhere = p->pWhere;
5665       }
5666       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5667     }
5668     sAggInfo.nAccumulator = sAggInfo.nColumn;
5669     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5670       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5671     }else{
5672       minMaxFlag = WHERE_ORDERBY_NORMAL;
5673     }
5674     for(i=0; i<sAggInfo.nFunc; i++){
5675       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5676       sNC.ncFlags |= NC_InAggFunc;
5677       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5678       sNC.ncFlags &= ~NC_InAggFunc;
5679     }
5680     sAggInfo.mxReg = pParse->nMem;
5681     if( db->mallocFailed ) goto select_end;
5682 #if SELECTTRACE_ENABLED
5683     if( sqlite3SelectTrace & 0x400 ){
5684       int ii;
5685       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5686       sqlite3TreeViewSelect(0, p, 0);
5687       for(ii=0; ii<sAggInfo.nColumn; ii++){
5688         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5689             ii, sAggInfo.aCol[ii].iMem);
5690         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5691       }
5692       for(ii=0; ii<sAggInfo.nFunc; ii++){
5693         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5694             ii, sAggInfo.aFunc[ii].iMem);
5695         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5696       }
5697     }
5698 #endif
5699 
5700 
5701     /* Processing for aggregates with GROUP BY is very different and
5702     ** much more complex than aggregates without a GROUP BY.
5703     */
5704     if( pGroupBy ){
5705       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5706       int addr1;          /* A-vs-B comparision jump */
5707       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5708       int regOutputRow;   /* Return address register for output subroutine */
5709       int addrSetAbort;   /* Set the abort flag and return */
5710       int addrTopOfLoop;  /* Top of the input loop */
5711       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5712       int addrReset;      /* Subroutine for resetting the accumulator */
5713       int regReset;       /* Return address register for reset subroutine */
5714 
5715       /* If there is a GROUP BY clause we might need a sorting index to
5716       ** implement it.  Allocate that sorting index now.  If it turns out
5717       ** that we do not need it after all, the OP_SorterOpen instruction
5718       ** will be converted into a Noop.
5719       */
5720       sAggInfo.sortingIdx = pParse->nTab++;
5721       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5722       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5723           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5724           0, (char*)pKeyInfo, P4_KEYINFO);
5725 
5726       /* Initialize memory locations used by GROUP BY aggregate processing
5727       */
5728       iUseFlag = ++pParse->nMem;
5729       iAbortFlag = ++pParse->nMem;
5730       regOutputRow = ++pParse->nMem;
5731       addrOutputRow = sqlite3VdbeMakeLabel(v);
5732       regReset = ++pParse->nMem;
5733       addrReset = sqlite3VdbeMakeLabel(v);
5734       iAMem = pParse->nMem + 1;
5735       pParse->nMem += pGroupBy->nExpr;
5736       iBMem = pParse->nMem + 1;
5737       pParse->nMem += pGroupBy->nExpr;
5738       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5739       VdbeComment((v, "clear abort flag"));
5740       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5741       VdbeComment((v, "indicate accumulator empty"));
5742       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5743 
5744       /* Begin a loop that will extract all source rows in GROUP BY order.
5745       ** This might involve two separate loops with an OP_Sort in between, or
5746       ** it might be a single loop that uses an index to extract information
5747       ** in the right order to begin with.
5748       */
5749       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5750       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5751           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5752       );
5753       if( pWInfo==0 ) goto select_end;
5754       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5755         /* The optimizer is able to deliver rows in group by order so
5756         ** we do not have to sort.  The OP_OpenEphemeral table will be
5757         ** cancelled later because we still need to use the pKeyInfo
5758         */
5759         groupBySort = 0;
5760       }else{
5761         /* Rows are coming out in undetermined order.  We have to push
5762         ** each row into a sorting index, terminate the first loop,
5763         ** then loop over the sorting index in order to get the output
5764         ** in sorted order
5765         */
5766         int regBase;
5767         int regRecord;
5768         int nCol;
5769         int nGroupBy;
5770 
5771         explainTempTable(pParse,
5772             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5773                     "DISTINCT" : "GROUP BY");
5774 
5775         groupBySort = 1;
5776         nGroupBy = pGroupBy->nExpr;
5777         nCol = nGroupBy;
5778         j = nGroupBy;
5779         for(i=0; i<sAggInfo.nColumn; i++){
5780           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5781             nCol++;
5782             j++;
5783           }
5784         }
5785         regBase = sqlite3GetTempRange(pParse, nCol);
5786         sqlite3ExprCacheClear(pParse);
5787         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5788         j = nGroupBy;
5789         for(i=0; i<sAggInfo.nColumn; i++){
5790           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5791           if( pCol->iSorterColumn>=j ){
5792             int r1 = j + regBase;
5793             sqlite3ExprCodeGetColumnToReg(pParse,
5794                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5795             j++;
5796           }
5797         }
5798         regRecord = sqlite3GetTempReg(pParse);
5799         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5800         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5801         sqlite3ReleaseTempReg(pParse, regRecord);
5802         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5803         sqlite3WhereEnd(pWInfo);
5804         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5805         sortOut = sqlite3GetTempReg(pParse);
5806         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5807         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5808         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5809         sAggInfo.useSortingIdx = 1;
5810         sqlite3ExprCacheClear(pParse);
5811 
5812       }
5813 
5814       /* If the index or temporary table used by the GROUP BY sort
5815       ** will naturally deliver rows in the order required by the ORDER BY
5816       ** clause, cancel the ephemeral table open coded earlier.
5817       **
5818       ** This is an optimization - the correct answer should result regardless.
5819       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5820       ** disable this optimization for testing purposes.  */
5821       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5822        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5823       ){
5824         sSort.pOrderBy = 0;
5825         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5826       }
5827 
5828       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5829       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5830       ** Then compare the current GROUP BY terms against the GROUP BY terms
5831       ** from the previous row currently stored in a0, a1, a2...
5832       */
5833       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5834       sqlite3ExprCacheClear(pParse);
5835       if( groupBySort ){
5836         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5837                           sortOut, sortPTab);
5838       }
5839       for(j=0; j<pGroupBy->nExpr; j++){
5840         if( groupBySort ){
5841           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5842         }else{
5843           sAggInfo.directMode = 1;
5844           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5845         }
5846       }
5847       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5848                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5849       addr1 = sqlite3VdbeCurrentAddr(v);
5850       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5851 
5852       /* Generate code that runs whenever the GROUP BY changes.
5853       ** Changes in the GROUP BY are detected by the previous code
5854       ** block.  If there were no changes, this block is skipped.
5855       **
5856       ** This code copies current group by terms in b0,b1,b2,...
5857       ** over to a0,a1,a2.  It then calls the output subroutine
5858       ** and resets the aggregate accumulator registers in preparation
5859       ** for the next GROUP BY batch.
5860       */
5861       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5862       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5863       VdbeComment((v, "output one row"));
5864       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5865       VdbeComment((v, "check abort flag"));
5866       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5867       VdbeComment((v, "reset accumulator"));
5868 
5869       /* Update the aggregate accumulators based on the content of
5870       ** the current row
5871       */
5872       sqlite3VdbeJumpHere(v, addr1);
5873       updateAccumulator(pParse, &sAggInfo);
5874       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5875       VdbeComment((v, "indicate data in accumulator"));
5876 
5877       /* End of the loop
5878       */
5879       if( groupBySort ){
5880         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5881         VdbeCoverage(v);
5882       }else{
5883         sqlite3WhereEnd(pWInfo);
5884         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5885       }
5886 
5887       /* Output the final row of result
5888       */
5889       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5890       VdbeComment((v, "output final row"));
5891 
5892       /* Jump over the subroutines
5893       */
5894       sqlite3VdbeGoto(v, addrEnd);
5895 
5896       /* Generate a subroutine that outputs a single row of the result
5897       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5898       ** is less than or equal to zero, the subroutine is a no-op.  If
5899       ** the processing calls for the query to abort, this subroutine
5900       ** increments the iAbortFlag memory location before returning in
5901       ** order to signal the caller to abort.
5902       */
5903       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5904       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5905       VdbeComment((v, "set abort flag"));
5906       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5907       sqlite3VdbeResolveLabel(v, addrOutputRow);
5908       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5909       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5910       VdbeCoverage(v);
5911       VdbeComment((v, "Groupby result generator entry point"));
5912       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5913       finalizeAggFunctions(pParse, &sAggInfo);
5914       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5915       selectInnerLoop(pParse, p, -1, &sSort,
5916                       &sDistinct, pDest,
5917                       addrOutputRow+1, addrSetAbort);
5918       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5919       VdbeComment((v, "end groupby result generator"));
5920 
5921       /* Generate a subroutine that will reset the group-by accumulator
5922       */
5923       sqlite3VdbeResolveLabel(v, addrReset);
5924       resetAccumulator(pParse, &sAggInfo);
5925       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5926 
5927     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5928     else {
5929 #ifndef SQLITE_OMIT_BTREECOUNT
5930       Table *pTab;
5931       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5932         /* If isSimpleCount() returns a pointer to a Table structure, then
5933         ** the SQL statement is of the form:
5934         **
5935         **   SELECT count(*) FROM <tbl>
5936         **
5937         ** where the Table structure returned represents table <tbl>.
5938         **
5939         ** This statement is so common that it is optimized specially. The
5940         ** OP_Count instruction is executed either on the intkey table that
5941         ** contains the data for table <tbl> or on one of its indexes. It
5942         ** is better to execute the op on an index, as indexes are almost
5943         ** always spread across less pages than their corresponding tables.
5944         */
5945         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5946         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5947         Index *pIdx;                         /* Iterator variable */
5948         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5949         Index *pBest = 0;                    /* Best index found so far */
5950         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5951 
5952         sqlite3CodeVerifySchema(pParse, iDb);
5953         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5954 
5955         /* Search for the index that has the lowest scan cost.
5956         **
5957         ** (2011-04-15) Do not do a full scan of an unordered index.
5958         **
5959         ** (2013-10-03) Do not count the entries in a partial index.
5960         **
5961         ** In practice the KeyInfo structure will not be used. It is only
5962         ** passed to keep OP_OpenRead happy.
5963         */
5964         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5965         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5966           if( pIdx->bUnordered==0
5967            && pIdx->szIdxRow<pTab->szTabRow
5968            && pIdx->pPartIdxWhere==0
5969            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5970           ){
5971             pBest = pIdx;
5972           }
5973         }
5974         if( pBest ){
5975           iRoot = pBest->tnum;
5976           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5977         }
5978 
5979         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5980         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5981         if( pKeyInfo ){
5982           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5983         }
5984         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5985         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5986         explainSimpleCount(pParse, pTab, pBest);
5987       }else
5988 #endif /* SQLITE_OMIT_BTREECOUNT */
5989       {
5990         /* This case runs if the aggregate has no GROUP BY clause.  The
5991         ** processing is much simpler since there is only a single row
5992         ** of output.
5993         */
5994         assert( p->pGroupBy==0 );
5995         resetAccumulator(pParse, &sAggInfo);
5996 
5997         /* If this query is a candidate for the min/max optimization, then
5998         ** minMaxFlag will have been previously set to either
5999         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6000         ** be an appropriate ORDER BY expression for the optimization.
6001         */
6002         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6003         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6004 
6005         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6006                                    0, minMaxFlag, 0);
6007         if( pWInfo==0 ){
6008           goto select_end;
6009         }
6010         updateAccumulator(pParse, &sAggInfo);
6011         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6012           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6013           VdbeComment((v, "%s() by index",
6014                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6015         }
6016         sqlite3WhereEnd(pWInfo);
6017         finalizeAggFunctions(pParse, &sAggInfo);
6018       }
6019 
6020       sSort.pOrderBy = 0;
6021       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6022       selectInnerLoop(pParse, p, -1, 0, 0,
6023                       pDest, addrEnd, addrEnd);
6024     }
6025     sqlite3VdbeResolveLabel(v, addrEnd);
6026 
6027   } /* endif aggregate query */
6028 
6029   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6030     explainTempTable(pParse, "DISTINCT");
6031   }
6032 
6033   /* If there is an ORDER BY clause, then we need to sort the results
6034   ** and send them to the callback one by one.
6035   */
6036   if( sSort.pOrderBy ){
6037     explainTempTable(pParse,
6038                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6039     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6040   }
6041 
6042   /* Jump here to skip this query
6043   */
6044   sqlite3VdbeResolveLabel(v, iEnd);
6045 
6046   /* The SELECT has been coded. If there is an error in the Parse structure,
6047   ** set the return code to 1. Otherwise 0. */
6048   rc = (pParse->nErr>0);
6049 
6050   /* Control jumps to here if an error is encountered above, or upon
6051   ** successful coding of the SELECT.
6052   */
6053 select_end:
6054   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6055   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6056   sqlite3DbFree(db, sAggInfo.aCol);
6057   sqlite3DbFree(db, sAggInfo.aFunc);
6058 #if SELECTTRACE_ENABLED
6059   SELECTTRACE(1,pParse,p,("end processing\n"));
6060   pParse->nSelectIndent--;
6061 #endif
6062   return rc;
6063 }
6064