xref: /sqlite-3.40.0/src/select.c (revision 4c8404e5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* 0: Not distinct. 1: DISTICT  2: DISTINCT and ORDER BY */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   assert( db!=0 );
80   while( p ){
81     Select *pPrior = p->pPrior;
82     sqlite3ExprListDelete(db, p->pEList);
83     sqlite3SrcListDelete(db, p->pSrc);
84     sqlite3ExprDelete(db, p->pWhere);
85     sqlite3ExprListDelete(db, p->pGroupBy);
86     sqlite3ExprDelete(db, p->pHaving);
87     sqlite3ExprListDelete(db, p->pOrderBy);
88     sqlite3ExprDelete(db, p->pLimit);
89     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
90 #ifndef SQLITE_OMIT_WINDOWFUNC
91     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
92       sqlite3WindowListDelete(db, p->pWinDefn);
93     }
94     while( p->pWin ){
95       assert( p->pWin->ppThis==&p->pWin );
96       sqlite3WindowUnlinkFromSelect(p->pWin);
97     }
98 #endif
99     if( bFree ) sqlite3DbNNFreeNN(db, p);
100     p = pPrior;
101     bFree = 1;
102   }
103 }
104 
105 /*
106 ** Initialize a SelectDest structure.
107 */
108 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
109   pDest->eDest = (u8)eDest;
110   pDest->iSDParm = iParm;
111   pDest->iSDParm2 = 0;
112   pDest->zAffSdst = 0;
113   pDest->iSdst = 0;
114   pDest->nSdst = 0;
115 }
116 
117 
118 /*
119 ** Allocate a new Select structure and return a pointer to that
120 ** structure.
121 */
122 Select *sqlite3SelectNew(
123   Parse *pParse,        /* Parsing context */
124   ExprList *pEList,     /* which columns to include in the result */
125   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
126   Expr *pWhere,         /* the WHERE clause */
127   ExprList *pGroupBy,   /* the GROUP BY clause */
128   Expr *pHaving,        /* the HAVING clause */
129   ExprList *pOrderBy,   /* the ORDER BY clause */
130   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
131   Expr *pLimit          /* LIMIT value.  NULL means not used */
132 ){
133   Select *pNew, *pAllocated;
134   Select standin;
135   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
136   if( pNew==0 ){
137     assert( pParse->db->mallocFailed );
138     pNew = &standin;
139   }
140   if( pEList==0 ){
141     pEList = sqlite3ExprListAppend(pParse, 0,
142                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
143   }
144   pNew->pEList = pEList;
145   pNew->op = TK_SELECT;
146   pNew->selFlags = selFlags;
147   pNew->iLimit = 0;
148   pNew->iOffset = 0;
149   pNew->selId = ++pParse->nSelect;
150   pNew->addrOpenEphm[0] = -1;
151   pNew->addrOpenEphm[1] = -1;
152   pNew->nSelectRow = 0;
153   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
154   pNew->pSrc = pSrc;
155   pNew->pWhere = pWhere;
156   pNew->pGroupBy = pGroupBy;
157   pNew->pHaving = pHaving;
158   pNew->pOrderBy = pOrderBy;
159   pNew->pPrior = 0;
160   pNew->pNext = 0;
161   pNew->pLimit = pLimit;
162   pNew->pWith = 0;
163 #ifndef SQLITE_OMIT_WINDOWFUNC
164   pNew->pWin = 0;
165   pNew->pWinDefn = 0;
166 #endif
167   if( pParse->db->mallocFailed ) {
168     clearSelect(pParse->db, pNew, pNew!=&standin);
169     pAllocated = 0;
170   }else{
171     assert( pNew->pSrc!=0 || pParse->nErr>0 );
172   }
173   return pAllocated;
174 }
175 
176 
177 /*
178 ** Delete the given Select structure and all of its substructures.
179 */
180 void sqlite3SelectDelete(sqlite3 *db, Select *p){
181   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
182 }
183 
184 /*
185 ** Return a pointer to the right-most SELECT statement in a compound.
186 */
187 static Select *findRightmost(Select *p){
188   while( p->pNext ) p = p->pNext;
189   return p;
190 }
191 
192 /*
193 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
194 ** type of join.  Return an integer constant that expresses that type
195 ** in terms of the following bit values:
196 **
197 **     JT_INNER
198 **     JT_CROSS
199 **     JT_OUTER
200 **     JT_NATURAL
201 **     JT_LEFT
202 **     JT_RIGHT
203 **
204 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
205 **
206 ** If an illegal or unsupported join type is seen, then still return
207 ** a join type, but put an error in the pParse structure.
208 **
209 ** These are the valid join types:
210 **
211 **
212 **      pA       pB       pC               Return Value
213 **     -------  -----    -----             ------------
214 **     CROSS      -        -                 JT_CROSS
215 **     INNER      -        -                 JT_INNER
216 **     LEFT       -        -                 JT_LEFT|JT_OUTER
217 **     LEFT     OUTER      -                 JT_LEFT|JT_OUTER
218 **     RIGHT      -        -                 JT_RIGHT|JT_OUTER
219 **     RIGHT    OUTER      -                 JT_RIGHT|JT_OUTER
220 **     FULL       -        -                 JT_LEFT|JT_RIGHT|JT_OUTER
221 **     FULL     OUTER      -                 JT_LEFT|JT_RIGHT|JT_OUTER
222 **     NATURAL  INNER      -                 JT_NATURAL|JT_INNER
223 **     NATURAL  LEFT       -                 JT_NATURAL|JT_LEFT|JT_OUTER
224 **     NATURAL  LEFT     OUTER               JT_NATURAL|JT_LEFT|JT_OUTER
225 **     NATURAL  RIGHT      -                 JT_NATURAL|JT_RIGHT|JT_OUTER
226 **     NATURAL  RIGHT    OUTER               JT_NATURAL|JT_RIGHT|JT_OUTER
227 **     NATURAL  FULL       -                 JT_NATURAL|JT_LEFT|JT_RIGHT
228 **     NATURAL  FULL     OUTER               JT_NATRUAL|JT_LEFT|JT_RIGHT
229 **
230 ** To preserve historical compatibly, SQLite also accepts a variety
231 ** of other non-standard and in many cases non-sensical join types.
232 ** This routine makes as much sense at it can from the nonsense join
233 ** type and returns a result.  Examples of accepted nonsense join types
234 ** include but are not limited to:
235 **
236 **          INNER CROSS JOIN        ->   same as JOIN
237 **          NATURAL CROSS JOIN      ->   same as NATURAL JOIN
238 **          OUTER LEFT JOIN         ->   same as LEFT JOIN
239 **          LEFT NATURAL JOIN       ->   same as NATURAL LEFT JOIN
240 **          LEFT RIGHT JOIN         ->   same as FULL JOIN
241 **          RIGHT OUTER FULL JOIN   ->   same as FULL JOIN
242 **          CROSS CROSS CROSS JOIN  ->   same as JOIN
243 **
244 ** The only restrictions on the join type name are:
245 **
246 **    *   "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
247 **        or "FULL".
248 **
249 **    *   "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
250 **        or "FULL".
251 **
252 **    *   If "OUTER" is present then there must also be one of
253 **        "LEFT", "RIGHT", or "FULL"
254 */
255 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
256   int jointype = 0;
257   Token *apAll[3];
258   Token *p;
259                              /*   0123456789 123456789 123456789 123 */
260   static const char zKeyText[] = "naturaleftouterightfullinnercross";
261   static const struct {
262     u8 i;        /* Beginning of keyword text in zKeyText[] */
263     u8 nChar;    /* Length of the keyword in characters */
264     u8 code;     /* Join type mask */
265   } aKeyword[] = {
266     /* (0) natural */ { 0,  7, JT_NATURAL                },
267     /* (1) left    */ { 6,  4, JT_LEFT|JT_OUTER          },
268     /* (2) outer   */ { 10, 5, JT_OUTER                  },
269     /* (3) right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
270     /* (4) full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
271     /* (5) inner   */ { 23, 5, JT_INNER                  },
272     /* (6) cross   */ { 28, 5, JT_INNER|JT_CROSS         },
273   };
274   int i, j;
275   apAll[0] = pA;
276   apAll[1] = pB;
277   apAll[2] = pC;
278   for(i=0; i<3 && apAll[i]; i++){
279     p = apAll[i];
280     for(j=0; j<ArraySize(aKeyword); j++){
281       if( p->n==aKeyword[j].nChar
282           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
283         jointype |= aKeyword[j].code;
284         break;
285       }
286     }
287     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
288     if( j>=ArraySize(aKeyword) ){
289       jointype |= JT_ERROR;
290       break;
291     }
292   }
293   if(
294      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
295      (jointype & JT_ERROR)!=0 ||
296      (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
297   ){
298     const char *zSp1 = " ";
299     const char *zSp2 = " ";
300     if( pB==0 ){ zSp1++; }
301     if( pC==0 ){ zSp2++; }
302     sqlite3ErrorMsg(pParse, "unknown join type: "
303        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
304     jointype = JT_INNER;
305   }
306   return jointype;
307 }
308 
309 /*
310 ** Return the index of a column in a table.  Return -1 if the column
311 ** is not contained in the table.
312 */
313 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
314   int i;
315   u8 h = sqlite3StrIHash(zCol);
316   Column *pCol;
317   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
318     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
319   }
320   return -1;
321 }
322 
323 /*
324 ** Mark a subquery result column as having been used.
325 */
326 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
327   assert( pItem!=0 );
328   assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
329   if( pItem->fg.isNestedFrom ){
330     ExprList *pResults;
331     assert( pItem->pSelect!=0 );
332     pResults = pItem->pSelect->pEList;
333     assert( pResults!=0 );
334     assert( iCol>=0 && iCol<pResults->nExpr );
335     pResults->a[iCol].fg.bUsed = 1;
336   }
337 }
338 
339 /*
340 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
341 ** table that has a column named zCol.  The search is left-to-right.
342 ** The first match found is returned.
343 **
344 ** When found, set *piTab and *piCol to the table index and column index
345 ** of the matching column and return TRUE.
346 **
347 ** If not found, return FALSE.
348 */
349 static int tableAndColumnIndex(
350   SrcList *pSrc,       /* Array of tables to search */
351   int iStart,          /* First member of pSrc->a[] to check */
352   int iEnd,            /* Last member of pSrc->a[] to check */
353   const char *zCol,    /* Name of the column we are looking for */
354   int *piTab,          /* Write index of pSrc->a[] here */
355   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
356   int bIgnoreHidden    /* Ignore hidden columns */
357 ){
358   int i;               /* For looping over tables in pSrc */
359   int iCol;            /* Index of column matching zCol */
360 
361   assert( iEnd<pSrc->nSrc );
362   assert( iStart>=0 );
363   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
364 
365   for(i=iStart; i<=iEnd; i++){
366     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
367     if( iCol>=0
368      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
369     ){
370       if( piTab ){
371         sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
372         *piTab = i;
373         *piCol = iCol;
374       }
375       return 1;
376     }
377   }
378   return 0;
379 }
380 
381 /*
382 ** Set the EP_OuterON property on all terms of the given expression.
383 ** And set the Expr.w.iJoin to iTable for every term in the
384 ** expression.
385 **
386 ** The EP_OuterON property is used on terms of an expression to tell
387 ** the OUTER JOIN processing logic that this term is part of the
388 ** join restriction specified in the ON or USING clause and not a part
389 ** of the more general WHERE clause.  These terms are moved over to the
390 ** WHERE clause during join processing but we need to remember that they
391 ** originated in the ON or USING clause.
392 **
393 ** The Expr.w.iJoin tells the WHERE clause processing that the
394 ** expression depends on table w.iJoin even if that table is not
395 ** explicitly mentioned in the expression.  That information is needed
396 ** for cases like this:
397 **
398 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
399 **
400 ** The where clause needs to defer the handling of the t1.x=5
401 ** term until after the t2 loop of the join.  In that way, a
402 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
403 ** defer the handling of t1.x=5, it will be processed immediately
404 ** after the t1 loop and rows with t1.x!=5 will never appear in
405 ** the output, which is incorrect.
406 */
407 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
408   assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
409   while( p ){
410     ExprSetProperty(p, joinFlag);
411     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
412     ExprSetVVAProperty(p, EP_NoReduce);
413     p->w.iJoin = iTable;
414     if( p->op==TK_FUNCTION ){
415       assert( ExprUseXList(p) );
416       if( p->x.pList ){
417         int i;
418         for(i=0; i<p->x.pList->nExpr; i++){
419           sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
420         }
421       }
422     }
423     sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
424     p = p->pRight;
425   }
426 }
427 
428 /* Undo the work of sqlite3SetJoinExpr().  This is used when a LEFT JOIN
429 ** is simplified into an ordinary JOIN, and when an ON expression is
430 ** "pushed down" into the WHERE clause of a subquery.
431 **
432 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
433 ** an ordinary term that omits the EP_OuterON mark.  Or if iTable<0, then
434 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
435 **
436 ** If nullable is true, that means that Expr p might evaluate to NULL even
437 ** if it is a reference to a NOT NULL column.  This can happen, for example,
438 ** if the table that p references is on the left side of a RIGHT JOIN.
439 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
440 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
441 */
442 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
443   while( p ){
444     if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
445       ExprClearProperty(p, EP_OuterON|EP_InnerON);
446       if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
447     }
448     if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
449       ExprClearProperty(p, EP_CanBeNull);
450     }
451     if( p->op==TK_FUNCTION ){
452       assert( ExprUseXList(p) );
453       if( p->x.pList ){
454         int i;
455         for(i=0; i<p->x.pList->nExpr; i++){
456           unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
457         }
458       }
459     }
460     unsetJoinExpr(p->pLeft, iTable, nullable);
461     p = p->pRight;
462   }
463 }
464 
465 /*
466 ** This routine processes the join information for a SELECT statement.
467 **
468 **   *  A NATURAL join is converted into a USING join.  After that, we
469 **      do not need to be concerned with NATURAL joins and we only have
470 **      think about USING joins.
471 **
472 **   *  ON and USING clauses result in extra terms being added to the
473 **      WHERE clause to enforce the specified constraints.  The extra
474 **      WHERE clause terms will be tagged with EP_OuterON or
475 **      EP_InnerON so that we know that they originated in ON/USING.
476 **
477 ** The terms of a FROM clause are contained in the Select.pSrc structure.
478 ** The left most table is the first entry in Select.pSrc.  The right-most
479 ** table is the last entry.  The join operator is held in the entry to
480 ** the right.  Thus entry 1 contains the join operator for the join between
481 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
482 ** also attached to the right entry.
483 **
484 ** This routine returns the number of errors encountered.
485 */
486 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
487   SrcList *pSrc;                  /* All tables in the FROM clause */
488   int i, j;                       /* Loop counters */
489   SrcItem *pLeft;                 /* Left table being joined */
490   SrcItem *pRight;                /* Right table being joined */
491 
492   pSrc = p->pSrc;
493   pLeft = &pSrc->a[0];
494   pRight = &pLeft[1];
495   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
496     Table *pRightTab = pRight->pTab;
497     u32 joinType;
498 
499     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
500     joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
501 
502     /* If this is a NATURAL join, synthesize an approprate USING clause
503     ** to specify which columns should be joined.
504     */
505     if( pRight->fg.jointype & JT_NATURAL ){
506       IdList *pUsing = 0;
507       if( pRight->fg.isUsing || pRight->u3.pOn ){
508         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
509            "an ON or USING clause", 0);
510         return 1;
511       }
512       for(j=0; j<pRightTab->nCol; j++){
513         char *zName;   /* Name of column in the right table */
514 
515         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
516         zName = pRightTab->aCol[j].zCnName;
517         if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
518           pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
519           if( pUsing ){
520             assert( pUsing->nId>0 );
521             assert( pUsing->a[pUsing->nId-1].zName==0 );
522             pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
523           }
524         }
525       }
526       if( pUsing ){
527         pRight->fg.isUsing = 1;
528         pRight->fg.isSynthUsing = 1;
529         pRight->u3.pUsing = pUsing;
530       }
531       if( pParse->nErr ) return 1;
532     }
533 
534     /* Create extra terms on the WHERE clause for each column named
535     ** in the USING clause.  Example: If the two tables to be joined are
536     ** A and B and the USING clause names X, Y, and Z, then add this
537     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
538     ** Report an error if any column mentioned in the USING clause is
539     ** not contained in both tables to be joined.
540     */
541     if( pRight->fg.isUsing ){
542       IdList *pList = pRight->u3.pUsing;
543       sqlite3 *db = pParse->db;
544       assert( pList!=0 );
545       for(j=0; j<pList->nId; j++){
546         char *zName;     /* Name of the term in the USING clause */
547         int iLeft;       /* Table on the left with matching column name */
548         int iLeftCol;    /* Column number of matching column on the left */
549         int iRightCol;   /* Column number of matching column on the right */
550         Expr *pE1;       /* Reference to the column on the LEFT of the join */
551         Expr *pE2;       /* Reference to the column on the RIGHT of the join */
552         Expr *pEq;       /* Equality constraint.  pE1 == pE2 */
553 
554         zName = pList->a[j].zName;
555         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
556         if( iRightCol<0
557          || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
558                                 pRight->fg.isSynthUsing)==0
559         ){
560           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
561             "not present in both tables", zName);
562           return 1;
563         }
564         pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
565         sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
566         if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
567           /* This branch runs if the query contains one or more RIGHT or FULL
568           ** JOINs.  If only a single table on the left side of this join
569           ** contains the zName column, then this branch is a no-op.
570           ** But if there are two or more tables on the left side
571           ** of the join, construct a coalesce() function that gathers all
572           ** such tables.  Raise an error if more than one of those references
573           ** to zName is not also within a prior USING clause.
574           **
575           ** We really ought to raise an error if there are two or more
576           ** non-USING references to zName on the left of an INNER or LEFT
577           ** JOIN.  But older versions of SQLite do not do that, so we avoid
578           ** adding a new error so as to not break legacy applications.
579           */
580           ExprList *pFuncArgs = 0;   /* Arguments to the coalesce() */
581           static const Token tkCoalesce = { "coalesce", 8 };
582           while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
583                                      pRight->fg.isSynthUsing)!=0 ){
584             if( pSrc->a[iLeft].fg.isUsing==0
585              || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
586             ){
587               sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
588                               zName);
589               break;
590             }
591             pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
592             pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
593             sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
594           }
595           if( pFuncArgs ){
596             pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
597             pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
598           }
599         }
600         pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
601         sqlite3SrcItemColumnUsed(pRight, iRightCol);
602         pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
603         assert( pE2!=0 || pEq==0 );
604         if( pEq ){
605           ExprSetProperty(pEq, joinType);
606           assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
607           ExprSetVVAProperty(pEq, EP_NoReduce);
608           pEq->w.iJoin = pE2->iTable;
609         }
610         p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
611       }
612     }
613 
614     /* Add the ON clause to the end of the WHERE clause, connected by
615     ** an AND operator.
616     */
617     else if( pRight->u3.pOn ){
618       sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
619       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
620       pRight->u3.pOn = 0;
621       pRight->fg.isOn = 1;
622     }
623   }
624   return 0;
625 }
626 
627 /*
628 ** An instance of this object holds information (beyond pParse and pSelect)
629 ** needed to load the next result row that is to be added to the sorter.
630 */
631 typedef struct RowLoadInfo RowLoadInfo;
632 struct RowLoadInfo {
633   int regResult;               /* Store results in array of registers here */
634   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
635 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
636   ExprList *pExtra;            /* Extra columns needed by sorter refs */
637   int regExtraResult;          /* Where to load the extra columns */
638 #endif
639 };
640 
641 /*
642 ** This routine does the work of loading query data into an array of
643 ** registers so that it can be added to the sorter.
644 */
645 static void innerLoopLoadRow(
646   Parse *pParse,             /* Statement under construction */
647   Select *pSelect,           /* The query being coded */
648   RowLoadInfo *pInfo         /* Info needed to complete the row load */
649 ){
650   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
651                           0, pInfo->ecelFlags);
652 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
653   if( pInfo->pExtra ){
654     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
655     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
656   }
657 #endif
658 }
659 
660 /*
661 ** Code the OP_MakeRecord instruction that generates the entry to be
662 ** added into the sorter.
663 **
664 ** Return the register in which the result is stored.
665 */
666 static int makeSorterRecord(
667   Parse *pParse,
668   SortCtx *pSort,
669   Select *pSelect,
670   int regBase,
671   int nBase
672 ){
673   int nOBSat = pSort->nOBSat;
674   Vdbe *v = pParse->pVdbe;
675   int regOut = ++pParse->nMem;
676   if( pSort->pDeferredRowLoad ){
677     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
678   }
679   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
680   return regOut;
681 }
682 
683 /*
684 ** Generate code that will push the record in registers regData
685 ** through regData+nData-1 onto the sorter.
686 */
687 static void pushOntoSorter(
688   Parse *pParse,         /* Parser context */
689   SortCtx *pSort,        /* Information about the ORDER BY clause */
690   Select *pSelect,       /* The whole SELECT statement */
691   int regData,           /* First register holding data to be sorted */
692   int regOrigData,       /* First register holding data before packing */
693   int nData,             /* Number of elements in the regData data array */
694   int nPrefixReg         /* No. of reg prior to regData available for use */
695 ){
696   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
697   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
698   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
699   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
700   int regBase;                                     /* Regs for sorter record */
701   int regRecord = 0;                               /* Assembled sorter record */
702   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
703   int op;                            /* Opcode to add sorter record to sorter */
704   int iLimit;                        /* LIMIT counter */
705   int iSkip = 0;                     /* End of the sorter insert loop */
706 
707   assert( bSeq==0 || bSeq==1 );
708 
709   /* Three cases:
710   **   (1) The data to be sorted has already been packed into a Record
711   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
712   **       will be completely unrelated to regOrigData.
713   **   (2) All output columns are included in the sort record.  In that
714   **       case regData==regOrigData.
715   **   (3) Some output columns are omitted from the sort record due to
716   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
717   **       SQLITE_ECEL_OMITREF optimization, or due to the
718   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
719   **       regOrigData is 0 to prevent this routine from trying to copy
720   **       values that might not yet exist.
721   */
722   assert( nData==1 || regData==regOrigData || regOrigData==0 );
723 
724   if( nPrefixReg ){
725     assert( nPrefixReg==nExpr+bSeq );
726     regBase = regData - nPrefixReg;
727   }else{
728     regBase = pParse->nMem + 1;
729     pParse->nMem += nBase;
730   }
731   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
732   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
733   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
734   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
735                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
736   if( bSeq ){
737     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
738   }
739   if( nPrefixReg==0 && nData>0 ){
740     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
741   }
742   if( nOBSat>0 ){
743     int regPrevKey;   /* The first nOBSat columns of the previous row */
744     int addrFirst;    /* Address of the OP_IfNot opcode */
745     int addrJmp;      /* Address of the OP_Jump opcode */
746     VdbeOp *pOp;      /* Opcode that opens the sorter */
747     int nKey;         /* Number of sorting key columns, including OP_Sequence */
748     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
749 
750     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
751     regPrevKey = pParse->nMem+1;
752     pParse->nMem += pSort->nOBSat;
753     nKey = nExpr - pSort->nOBSat + bSeq;
754     if( bSeq ){
755       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
756     }else{
757       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
758     }
759     VdbeCoverage(v);
760     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
761     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
762     if( pParse->db->mallocFailed ) return;
763     pOp->p2 = nKey + nData;
764     pKI = pOp->p4.pKeyInfo;
765     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
766     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
767     testcase( pKI->nAllField > pKI->nKeyField+2 );
768     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
769                                            pKI->nAllField-pKI->nKeyField-1);
770     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
771     addrJmp = sqlite3VdbeCurrentAddr(v);
772     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
773     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
774     pSort->regReturn = ++pParse->nMem;
775     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
776     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
777     if( iLimit ){
778       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
779       VdbeCoverage(v);
780     }
781     sqlite3VdbeJumpHere(v, addrFirst);
782     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
783     sqlite3VdbeJumpHere(v, addrJmp);
784   }
785   if( iLimit ){
786     /* At this point the values for the new sorter entry are stored
787     ** in an array of registers. They need to be composed into a record
788     ** and inserted into the sorter if either (a) there are currently
789     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
790     ** the largest record currently in the sorter. If (b) is true and there
791     ** are already LIMIT+OFFSET items in the sorter, delete the largest
792     ** entry before inserting the new one. This way there are never more
793     ** than LIMIT+OFFSET items in the sorter.
794     **
795     ** If the new record does not need to be inserted into the sorter,
796     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
797     ** value is not zero, then it is a label of where to jump.  Otherwise,
798     ** just bypass the row insert logic.  See the header comment on the
799     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
800     */
801     int iCsr = pSort->iECursor;
802     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
803     VdbeCoverage(v);
804     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
805     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
806                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
807     VdbeCoverage(v);
808     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
809   }
810   if( regRecord==0 ){
811     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
812   }
813   if( pSort->sortFlags & SORTFLAG_UseSorter ){
814     op = OP_SorterInsert;
815   }else{
816     op = OP_IdxInsert;
817   }
818   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
819                        regBase+nOBSat, nBase-nOBSat);
820   if( iSkip ){
821     sqlite3VdbeChangeP2(v, iSkip,
822          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
823   }
824 }
825 
826 /*
827 ** Add code to implement the OFFSET
828 */
829 static void codeOffset(
830   Vdbe *v,          /* Generate code into this VM */
831   int iOffset,      /* Register holding the offset counter */
832   int iContinue     /* Jump here to skip the current record */
833 ){
834   if( iOffset>0 ){
835     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
836     VdbeComment((v, "OFFSET"));
837   }
838 }
839 
840 /*
841 ** Add code that will check to make sure the array of registers starting at
842 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
843 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
844 ** are available. Which is used depends on the value of parameter eTnctType,
845 ** as follows:
846 **
847 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
848 **     Build an ephemeral table that contains all entries seen before and
849 **     skip entries which have been seen before.
850 **
851 **     Parameter iTab is the cursor number of an ephemeral table that must
852 **     be opened before the VM code generated by this routine is executed.
853 **     The ephemeral cursor table is queried for a record identical to the
854 **     record formed by the current array of registers. If one is found,
855 **     jump to VM address addrRepeat. Otherwise, insert a new record into
856 **     the ephemeral cursor and proceed.
857 **
858 **     The returned value in this case is a copy of parameter iTab.
859 **
860 **   WHERE_DISTINCT_ORDERED:
861 **     In this case rows are being delivered sorted order. The ephermal
862 **     table is not required. Instead, the current set of values
863 **     is compared against previous row. If they match, the new row
864 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
865 **     the VM program proceeds with processing the new row.
866 **
867 **     The returned value in this case is the register number of the first
868 **     in an array of registers used to store the previous result row so that
869 **     it can be compared to the next. The caller must ensure that this
870 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
871 **     will take care of this initialization.)
872 **
873 **   WHERE_DISTINCT_UNIQUE:
874 **     In this case it has already been determined that the rows are distinct.
875 **     No special action is required. The return value is zero.
876 **
877 ** Parameter pEList is the list of expressions used to generated the
878 ** contents of each row. It is used by this routine to determine (a)
879 ** how many elements there are in the array of registers and (b) the
880 ** collation sequences that should be used for the comparisons if
881 ** eTnctType is WHERE_DISTINCT_ORDERED.
882 */
883 static int codeDistinct(
884   Parse *pParse,     /* Parsing and code generating context */
885   int eTnctType,     /* WHERE_DISTINCT_* value */
886   int iTab,          /* A sorting index used to test for distinctness */
887   int addrRepeat,    /* Jump to here if not distinct */
888   ExprList *pEList,  /* Expression for each element */
889   int regElem        /* First element */
890 ){
891   int iRet = 0;
892   int nResultCol = pEList->nExpr;
893   Vdbe *v = pParse->pVdbe;
894 
895   switch( eTnctType ){
896     case WHERE_DISTINCT_ORDERED: {
897       int i;
898       int iJump;              /* Jump destination */
899       int regPrev;            /* Previous row content */
900 
901       /* Allocate space for the previous row */
902       iRet = regPrev = pParse->nMem+1;
903       pParse->nMem += nResultCol;
904 
905       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
906       for(i=0; i<nResultCol; i++){
907         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
908         if( i<nResultCol-1 ){
909           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
910           VdbeCoverage(v);
911         }else{
912           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
913           VdbeCoverage(v);
914          }
915         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
916         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
917       }
918       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
919       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
920       break;
921     }
922 
923     case WHERE_DISTINCT_UNIQUE: {
924       /* nothing to do */
925       break;
926     }
927 
928     default: {
929       int r1 = sqlite3GetTempReg(pParse);
930       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
931       VdbeCoverage(v);
932       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
933       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
934       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
935       sqlite3ReleaseTempReg(pParse, r1);
936       iRet = iTab;
937       break;
938     }
939   }
940 
941   return iRet;
942 }
943 
944 /*
945 ** This routine runs after codeDistinct().  It makes necessary
946 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
947 ** routine made use of.  This processing must be done separately since
948 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
949 ** laid down.
950 **
951 ** WHERE_DISTINCT_NOOP:
952 ** WHERE_DISTINCT_UNORDERED:
953 **
954 **     No adjustments necessary.  This function is a no-op.
955 **
956 ** WHERE_DISTINCT_UNIQUE:
957 **
958 **     The ephemeral table is not needed.  So change the
959 **     OP_OpenEphemeral opcode into an OP_Noop.
960 **
961 ** WHERE_DISTINCT_ORDERED:
962 **
963 **     The ephemeral table is not needed.  But we do need register
964 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
965 **     into an OP_Null on the iVal register.
966 */
967 static void fixDistinctOpenEph(
968   Parse *pParse,     /* Parsing and code generating context */
969   int eTnctType,     /* WHERE_DISTINCT_* value */
970   int iVal,          /* Value returned by codeDistinct() */
971   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
972 ){
973   if( pParse->nErr==0
974    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
975   ){
976     Vdbe *v = pParse->pVdbe;
977     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
978     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
979       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
980     }
981     if( eTnctType==WHERE_DISTINCT_ORDERED ){
982       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
983       ** bit on the first register of the previous value.  This will cause the
984       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
985       ** the loop even if the first row is all NULLs.  */
986       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
987       pOp->opcode = OP_Null;
988       pOp->p1 = 1;
989       pOp->p2 = iVal;
990     }
991   }
992 }
993 
994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
995 /*
996 ** This function is called as part of inner-loop generation for a SELECT
997 ** statement with an ORDER BY that is not optimized by an index. It
998 ** determines the expressions, if any, that the sorter-reference
999 ** optimization should be used for. The sorter-reference optimization
1000 ** is used for SELECT queries like:
1001 **
1002 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1003 **
1004 ** If the optimization is used for expression "bigblob", then instead of
1005 ** storing values read from that column in the sorter records, the PK of
1006 ** the row from table t1 is stored instead. Then, as records are extracted from
1007 ** the sorter to return to the user, the required value of bigblob is
1008 ** retrieved directly from table t1. If the values are very large, this
1009 ** can be more efficient than storing them directly in the sorter records.
1010 **
1011 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1012 ** for which the sorter-reference optimization should be enabled.
1013 ** Additionally, the pSort->aDefer[] array is populated with entries
1014 ** for all cursors required to evaluate all selected expressions. Finally.
1015 ** output variable (*ppExtra) is set to an expression list containing
1016 ** expressions for all extra PK values that should be stored in the
1017 ** sorter records.
1018 */
1019 static void selectExprDefer(
1020   Parse *pParse,                  /* Leave any error here */
1021   SortCtx *pSort,                 /* Sorter context */
1022   ExprList *pEList,               /* Expressions destined for sorter */
1023   ExprList **ppExtra              /* Expressions to append to sorter record */
1024 ){
1025   int i;
1026   int nDefer = 0;
1027   ExprList *pExtra = 0;
1028   for(i=0; i<pEList->nExpr; i++){
1029     struct ExprList_item *pItem = &pEList->a[i];
1030     if( pItem->u.x.iOrderByCol==0 ){
1031       Expr *pExpr = pItem->pExpr;
1032       Table *pTab;
1033       if( pExpr->op==TK_COLUMN
1034        && pExpr->iColumn>=0
1035        && ALWAYS( ExprUseYTab(pExpr) )
1036        && (pTab = pExpr->y.pTab)!=0
1037        && IsOrdinaryTable(pTab)
1038        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1039       ){
1040         int j;
1041         for(j=0; j<nDefer; j++){
1042           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1043         }
1044         if( j==nDefer ){
1045           if( nDefer==ArraySize(pSort->aDefer) ){
1046             continue;
1047           }else{
1048             int nKey = 1;
1049             int k;
1050             Index *pPk = 0;
1051             if( !HasRowid(pTab) ){
1052               pPk = sqlite3PrimaryKeyIndex(pTab);
1053               nKey = pPk->nKeyCol;
1054             }
1055             for(k=0; k<nKey; k++){
1056               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1057               if( pNew ){
1058                 pNew->iTable = pExpr->iTable;
1059                 assert( ExprUseYTab(pNew) );
1060                 pNew->y.pTab = pExpr->y.pTab;
1061                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1062                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1063               }
1064             }
1065             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1066             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1067             pSort->aDefer[nDefer].nKey = nKey;
1068             nDefer++;
1069           }
1070         }
1071         pItem->fg.bSorterRef = 1;
1072       }
1073     }
1074   }
1075   pSort->nDefer = (u8)nDefer;
1076   *ppExtra = pExtra;
1077 }
1078 #endif
1079 
1080 /*
1081 ** This routine generates the code for the inside of the inner loop
1082 ** of a SELECT.
1083 **
1084 ** If srcTab is negative, then the p->pEList expressions
1085 ** are evaluated in order to get the data for this row.  If srcTab is
1086 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1087 ** to get the number of columns and the collation sequence for each column.
1088 */
1089 static void selectInnerLoop(
1090   Parse *pParse,          /* The parser context */
1091   Select *p,              /* The complete select statement being coded */
1092   int srcTab,             /* Pull data from this table if non-negative */
1093   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
1094   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1095   SelectDest *pDest,      /* How to dispose of the results */
1096   int iContinue,          /* Jump here to continue with next row */
1097   int iBreak              /* Jump here to break out of the inner loop */
1098 ){
1099   Vdbe *v = pParse->pVdbe;
1100   int i;
1101   int hasDistinct;            /* True if the DISTINCT keyword is present */
1102   int eDest = pDest->eDest;   /* How to dispose of results */
1103   int iParm = pDest->iSDParm; /* First argument to disposal method */
1104   int nResultCol;             /* Number of result columns */
1105   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1106   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1107 
1108   /* Usually, regResult is the first cell in an array of memory cells
1109   ** containing the current result row. In this case regOrig is set to the
1110   ** same value. However, if the results are being sent to the sorter, the
1111   ** values for any expressions that are also part of the sort-key are omitted
1112   ** from this array. In this case regOrig is set to zero.  */
1113   int regResult;              /* Start of memory holding current results */
1114   int regOrig;                /* Start of memory holding full result (or 0) */
1115 
1116   assert( v );
1117   assert( p->pEList!=0 );
1118   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1119   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1120   if( pSort==0 && !hasDistinct ){
1121     assert( iContinue!=0 );
1122     codeOffset(v, p->iOffset, iContinue);
1123   }
1124 
1125   /* Pull the requested columns.
1126   */
1127   nResultCol = p->pEList->nExpr;
1128 
1129   if( pDest->iSdst==0 ){
1130     if( pSort ){
1131       nPrefixReg = pSort->pOrderBy->nExpr;
1132       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1133       pParse->nMem += nPrefixReg;
1134     }
1135     pDest->iSdst = pParse->nMem+1;
1136     pParse->nMem += nResultCol;
1137   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1138     /* This is an error condition that can result, for example, when a SELECT
1139     ** on the right-hand side of an INSERT contains more result columns than
1140     ** there are columns in the table on the left.  The error will be caught
1141     ** and reported later.  But we need to make sure enough memory is allocated
1142     ** to avoid other spurious errors in the meantime. */
1143     pParse->nMem += nResultCol;
1144   }
1145   pDest->nSdst = nResultCol;
1146   regOrig = regResult = pDest->iSdst;
1147   if( srcTab>=0 ){
1148     for(i=0; i<nResultCol; i++){
1149       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1150       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1151     }
1152   }else if( eDest!=SRT_Exists ){
1153 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1154     ExprList *pExtra = 0;
1155 #endif
1156     /* If the destination is an EXISTS(...) expression, the actual
1157     ** values returned by the SELECT are not required.
1158     */
1159     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1160     ExprList *pEList;
1161     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1162       ecelFlags = SQLITE_ECEL_DUP;
1163     }else{
1164       ecelFlags = 0;
1165     }
1166     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1167       /* For each expression in p->pEList that is a copy of an expression in
1168       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1169       ** iOrderByCol value to one more than the index of the ORDER BY
1170       ** expression within the sort-key that pushOntoSorter() will generate.
1171       ** This allows the p->pEList field to be omitted from the sorted record,
1172       ** saving space and CPU cycles.  */
1173       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1174 
1175       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1176         int j;
1177         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1178           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1179         }
1180       }
1181 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1182       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1183       if( pExtra && pParse->db->mallocFailed==0 ){
1184         /* If there are any extra PK columns to add to the sorter records,
1185         ** allocate extra memory cells and adjust the OpenEphemeral
1186         ** instruction to account for the larger records. This is only
1187         ** required if there are one or more WITHOUT ROWID tables with
1188         ** composite primary keys in the SortCtx.aDefer[] array.  */
1189         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1190         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1191         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1192         pParse->nMem += pExtra->nExpr;
1193       }
1194 #endif
1195 
1196       /* Adjust nResultCol to account for columns that are omitted
1197       ** from the sorter by the optimizations in this branch */
1198       pEList = p->pEList;
1199       for(i=0; i<pEList->nExpr; i++){
1200         if( pEList->a[i].u.x.iOrderByCol>0
1201 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1202          || pEList->a[i].fg.bSorterRef
1203 #endif
1204         ){
1205           nResultCol--;
1206           regOrig = 0;
1207         }
1208       }
1209 
1210       testcase( regOrig );
1211       testcase( eDest==SRT_Set );
1212       testcase( eDest==SRT_Mem );
1213       testcase( eDest==SRT_Coroutine );
1214       testcase( eDest==SRT_Output );
1215       assert( eDest==SRT_Set || eDest==SRT_Mem
1216            || eDest==SRT_Coroutine || eDest==SRT_Output
1217            || eDest==SRT_Upfrom );
1218     }
1219     sRowLoadInfo.regResult = regResult;
1220     sRowLoadInfo.ecelFlags = ecelFlags;
1221 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1222     sRowLoadInfo.pExtra = pExtra;
1223     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1224     if( pExtra ) nResultCol += pExtra->nExpr;
1225 #endif
1226     if( p->iLimit
1227      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1228      && nPrefixReg>0
1229     ){
1230       assert( pSort!=0 );
1231       assert( hasDistinct==0 );
1232       pSort->pDeferredRowLoad = &sRowLoadInfo;
1233       regOrig = 0;
1234     }else{
1235       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1236     }
1237   }
1238 
1239   /* If the DISTINCT keyword was present on the SELECT statement
1240   ** and this row has been seen before, then do not make this row
1241   ** part of the result.
1242   */
1243   if( hasDistinct ){
1244     int eType = pDistinct->eTnctType;
1245     int iTab = pDistinct->tabTnct;
1246     assert( nResultCol==p->pEList->nExpr );
1247     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1248     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1249     if( pSort==0 ){
1250       codeOffset(v, p->iOffset, iContinue);
1251     }
1252   }
1253 
1254   switch( eDest ){
1255     /* In this mode, write each query result to the key of the temporary
1256     ** table iParm.
1257     */
1258 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1259     case SRT_Union: {
1260       int r1;
1261       r1 = sqlite3GetTempReg(pParse);
1262       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1263       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1264       sqlite3ReleaseTempReg(pParse, r1);
1265       break;
1266     }
1267 
1268     /* Construct a record from the query result, but instead of
1269     ** saving that record, use it as a key to delete elements from
1270     ** the temporary table iParm.
1271     */
1272     case SRT_Except: {
1273       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1274       break;
1275     }
1276 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1277 
1278     /* Store the result as data using a unique key.
1279     */
1280     case SRT_Fifo:
1281     case SRT_DistFifo:
1282     case SRT_Table:
1283     case SRT_EphemTab: {
1284       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1285       testcase( eDest==SRT_Table );
1286       testcase( eDest==SRT_EphemTab );
1287       testcase( eDest==SRT_Fifo );
1288       testcase( eDest==SRT_DistFifo );
1289       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1290 #ifndef SQLITE_OMIT_CTE
1291       if( eDest==SRT_DistFifo ){
1292         /* If the destination is DistFifo, then cursor (iParm+1) is open
1293         ** on an ephemeral index. If the current row is already present
1294         ** in the index, do not write it to the output. If not, add the
1295         ** current row to the index and proceed with writing it to the
1296         ** output table as well.  */
1297         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1298         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1299         VdbeCoverage(v);
1300         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1301         assert( pSort==0 );
1302       }
1303 #endif
1304       if( pSort ){
1305         assert( regResult==regOrig );
1306         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1307       }else{
1308         int r2 = sqlite3GetTempReg(pParse);
1309         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1310         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1311         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1312         sqlite3ReleaseTempReg(pParse, r2);
1313       }
1314       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1315       break;
1316     }
1317 
1318     case SRT_Upfrom: {
1319       if( pSort ){
1320         pushOntoSorter(
1321             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1322       }else{
1323         int i2 = pDest->iSDParm2;
1324         int r1 = sqlite3GetTempReg(pParse);
1325 
1326         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1327         ** might still be trying to return one row, because that is what
1328         ** aggregates do.  Don't record that empty row in the output table. */
1329         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1330 
1331         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1332                           regResult+(i2<0), nResultCol-(i2<0), r1);
1333         if( i2<0 ){
1334           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1335         }else{
1336           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1337         }
1338       }
1339       break;
1340     }
1341 
1342 #ifndef SQLITE_OMIT_SUBQUERY
1343     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1344     ** then there should be a single item on the stack.  Write this
1345     ** item into the set table with bogus data.
1346     */
1347     case SRT_Set: {
1348       if( pSort ){
1349         /* At first glance you would think we could optimize out the
1350         ** ORDER BY in this case since the order of entries in the set
1351         ** does not matter.  But there might be a LIMIT clause, in which
1352         ** case the order does matter */
1353         pushOntoSorter(
1354             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1355       }else{
1356         int r1 = sqlite3GetTempReg(pParse);
1357         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1358         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1359             r1, pDest->zAffSdst, nResultCol);
1360         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1361         sqlite3ReleaseTempReg(pParse, r1);
1362       }
1363       break;
1364     }
1365 
1366 
1367     /* If any row exist in the result set, record that fact and abort.
1368     */
1369     case SRT_Exists: {
1370       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1371       /* The LIMIT clause will terminate the loop for us */
1372       break;
1373     }
1374 
1375     /* If this is a scalar select that is part of an expression, then
1376     ** store the results in the appropriate memory cell or array of
1377     ** memory cells and break out of the scan loop.
1378     */
1379     case SRT_Mem: {
1380       if( pSort ){
1381         assert( nResultCol<=pDest->nSdst );
1382         pushOntoSorter(
1383             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1384       }else{
1385         assert( nResultCol==pDest->nSdst );
1386         assert( regResult==iParm );
1387         /* The LIMIT clause will jump out of the loop for us */
1388       }
1389       break;
1390     }
1391 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1392 
1393     case SRT_Coroutine:       /* Send data to a co-routine */
1394     case SRT_Output: {        /* Return the results */
1395       testcase( eDest==SRT_Coroutine );
1396       testcase( eDest==SRT_Output );
1397       if( pSort ){
1398         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1399                        nPrefixReg);
1400       }else if( eDest==SRT_Coroutine ){
1401         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1402       }else{
1403         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1404       }
1405       break;
1406     }
1407 
1408 #ifndef SQLITE_OMIT_CTE
1409     /* Write the results into a priority queue that is order according to
1410     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1411     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1412     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1413     ** final OP_Sequence column.  The last column is the record as a blob.
1414     */
1415     case SRT_DistQueue:
1416     case SRT_Queue: {
1417       int nKey;
1418       int r1, r2, r3;
1419       int addrTest = 0;
1420       ExprList *pSO;
1421       pSO = pDest->pOrderBy;
1422       assert( pSO );
1423       nKey = pSO->nExpr;
1424       r1 = sqlite3GetTempReg(pParse);
1425       r2 = sqlite3GetTempRange(pParse, nKey+2);
1426       r3 = r2+nKey+1;
1427       if( eDest==SRT_DistQueue ){
1428         /* If the destination is DistQueue, then cursor (iParm+1) is open
1429         ** on a second ephemeral index that holds all values every previously
1430         ** added to the queue. */
1431         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1432                                         regResult, nResultCol);
1433         VdbeCoverage(v);
1434       }
1435       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1436       if( eDest==SRT_DistQueue ){
1437         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1438         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1439       }
1440       for(i=0; i<nKey; i++){
1441         sqlite3VdbeAddOp2(v, OP_SCopy,
1442                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1443                           r2+i);
1444       }
1445       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1446       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1447       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1448       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1449       sqlite3ReleaseTempReg(pParse, r1);
1450       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1451       break;
1452     }
1453 #endif /* SQLITE_OMIT_CTE */
1454 
1455 
1456 
1457 #if !defined(SQLITE_OMIT_TRIGGER)
1458     /* Discard the results.  This is used for SELECT statements inside
1459     ** the body of a TRIGGER.  The purpose of such selects is to call
1460     ** user-defined functions that have side effects.  We do not care
1461     ** about the actual results of the select.
1462     */
1463     default: {
1464       assert( eDest==SRT_Discard );
1465       break;
1466     }
1467 #endif
1468   }
1469 
1470   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1471   ** there is a sorter, in which case the sorter has already limited
1472   ** the output for us.
1473   */
1474   if( pSort==0 && p->iLimit ){
1475     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1476   }
1477 }
1478 
1479 /*
1480 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1481 ** X extra columns.
1482 */
1483 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1484   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1485   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1486   if( p ){
1487     p->aSortFlags = (u8*)&p->aColl[N+X];
1488     p->nKeyField = (u16)N;
1489     p->nAllField = (u16)(N+X);
1490     p->enc = ENC(db);
1491     p->db = db;
1492     p->nRef = 1;
1493     memset(&p[1], 0, nExtra);
1494   }else{
1495     return (KeyInfo*)sqlite3OomFault(db);
1496   }
1497   return p;
1498 }
1499 
1500 /*
1501 ** Deallocate a KeyInfo object
1502 */
1503 void sqlite3KeyInfoUnref(KeyInfo *p){
1504   if( p ){
1505     assert( p->db!=0 );
1506     assert( p->nRef>0 );
1507     p->nRef--;
1508     if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
1509   }
1510 }
1511 
1512 /*
1513 ** Make a new pointer to a KeyInfo object
1514 */
1515 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1516   if( p ){
1517     assert( p->nRef>0 );
1518     p->nRef++;
1519   }
1520   return p;
1521 }
1522 
1523 #ifdef SQLITE_DEBUG
1524 /*
1525 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1526 ** can only be changed if this is just a single reference to the object.
1527 **
1528 ** This routine is used only inside of assert() statements.
1529 */
1530 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1531 #endif /* SQLITE_DEBUG */
1532 
1533 /*
1534 ** Given an expression list, generate a KeyInfo structure that records
1535 ** the collating sequence for each expression in that expression list.
1536 **
1537 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1538 ** KeyInfo structure is appropriate for initializing a virtual index to
1539 ** implement that clause.  If the ExprList is the result set of a SELECT
1540 ** then the KeyInfo structure is appropriate for initializing a virtual
1541 ** index to implement a DISTINCT test.
1542 **
1543 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1544 ** function is responsible for seeing that this structure is eventually
1545 ** freed.
1546 */
1547 KeyInfo *sqlite3KeyInfoFromExprList(
1548   Parse *pParse,       /* Parsing context */
1549   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1550   int iStart,          /* Begin with this column of pList */
1551   int nExtra           /* Add this many extra columns to the end */
1552 ){
1553   int nExpr;
1554   KeyInfo *pInfo;
1555   struct ExprList_item *pItem;
1556   sqlite3 *db = pParse->db;
1557   int i;
1558 
1559   nExpr = pList->nExpr;
1560   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1561   if( pInfo ){
1562     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1563     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1564       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1565       pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1566     }
1567   }
1568   return pInfo;
1569 }
1570 
1571 /*
1572 ** Name of the connection operator, used for error messages.
1573 */
1574 const char *sqlite3SelectOpName(int id){
1575   char *z;
1576   switch( id ){
1577     case TK_ALL:       z = "UNION ALL";   break;
1578     case TK_INTERSECT: z = "INTERSECT";   break;
1579     case TK_EXCEPT:    z = "EXCEPT";      break;
1580     default:           z = "UNION";       break;
1581   }
1582   return z;
1583 }
1584 
1585 #ifndef SQLITE_OMIT_EXPLAIN
1586 /*
1587 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1588 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1589 ** where the caption is of the form:
1590 **
1591 **   "USE TEMP B-TREE FOR xxx"
1592 **
1593 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1594 ** is determined by the zUsage argument.
1595 */
1596 static void explainTempTable(Parse *pParse, const char *zUsage){
1597   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1598 }
1599 
1600 /*
1601 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1602 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1603 ** in sqlite3Select() to assign values to structure member variables that
1604 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1605 ** code with #ifndef directives.
1606 */
1607 # define explainSetInteger(a, b) a = b
1608 
1609 #else
1610 /* No-op versions of the explainXXX() functions and macros. */
1611 # define explainTempTable(y,z)
1612 # define explainSetInteger(y,z)
1613 #endif
1614 
1615 
1616 /*
1617 ** If the inner loop was generated using a non-null pOrderBy argument,
1618 ** then the results were placed in a sorter.  After the loop is terminated
1619 ** we need to run the sorter and output the results.  The following
1620 ** routine generates the code needed to do that.
1621 */
1622 static void generateSortTail(
1623   Parse *pParse,    /* Parsing context */
1624   Select *p,        /* The SELECT statement */
1625   SortCtx *pSort,   /* Information on the ORDER BY clause */
1626   int nColumn,      /* Number of columns of data */
1627   SelectDest *pDest /* Write the sorted results here */
1628 ){
1629   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1630   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1631   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1632   int addr;                       /* Top of output loop. Jump for Next. */
1633   int addrOnce = 0;
1634   int iTab;
1635   ExprList *pOrderBy = pSort->pOrderBy;
1636   int eDest = pDest->eDest;
1637   int iParm = pDest->iSDParm;
1638   int regRow;
1639   int regRowid;
1640   int iCol;
1641   int nKey;                       /* Number of key columns in sorter record */
1642   int iSortTab;                   /* Sorter cursor to read from */
1643   int i;
1644   int bSeq;                       /* True if sorter record includes seq. no. */
1645   int nRefKey = 0;
1646   struct ExprList_item *aOutEx = p->pEList->a;
1647 
1648   assert( addrBreak<0 );
1649   if( pSort->labelBkOut ){
1650     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1651     sqlite3VdbeGoto(v, addrBreak);
1652     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1653   }
1654 
1655 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1656   /* Open any cursors needed for sorter-reference expressions */
1657   for(i=0; i<pSort->nDefer; i++){
1658     Table *pTab = pSort->aDefer[i].pTab;
1659     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1660     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1661     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1662   }
1663 #endif
1664 
1665   iTab = pSort->iECursor;
1666   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1667     if( eDest==SRT_Mem && p->iOffset ){
1668       sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1669     }
1670     regRowid = 0;
1671     regRow = pDest->iSdst;
1672   }else{
1673     regRowid = sqlite3GetTempReg(pParse);
1674     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1675       regRow = sqlite3GetTempReg(pParse);
1676       nColumn = 0;
1677     }else{
1678       regRow = sqlite3GetTempRange(pParse, nColumn);
1679     }
1680   }
1681   nKey = pOrderBy->nExpr - pSort->nOBSat;
1682   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1683     int regSortOut = ++pParse->nMem;
1684     iSortTab = pParse->nTab++;
1685     if( pSort->labelBkOut ){
1686       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1687     }
1688     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1689         nKey+1+nColumn+nRefKey);
1690     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1691     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1692     VdbeCoverage(v);
1693     assert( p->iLimit==0 && p->iOffset==0 );
1694     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1695     bSeq = 0;
1696   }else{
1697     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1698     codeOffset(v, p->iOffset, addrContinue);
1699     iSortTab = iTab;
1700     bSeq = 1;
1701     if( p->iOffset>0 ){
1702       sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1703     }
1704   }
1705   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1706 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1707     if( aOutEx[i].fg.bSorterRef ) continue;
1708 #endif
1709     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1710   }
1711 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1712   if( pSort->nDefer ){
1713     int iKey = iCol+1;
1714     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1715 
1716     for(i=0; i<pSort->nDefer; i++){
1717       int iCsr = pSort->aDefer[i].iCsr;
1718       Table *pTab = pSort->aDefer[i].pTab;
1719       int nKey = pSort->aDefer[i].nKey;
1720 
1721       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1722       if( HasRowid(pTab) ){
1723         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1724         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1725             sqlite3VdbeCurrentAddr(v)+1, regKey);
1726       }else{
1727         int k;
1728         int iJmp;
1729         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1730         for(k=0; k<nKey; k++){
1731           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1732         }
1733         iJmp = sqlite3VdbeCurrentAddr(v);
1734         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1735         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1736         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1737       }
1738     }
1739     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1740   }
1741 #endif
1742   for(i=nColumn-1; i>=0; i--){
1743 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1744     if( aOutEx[i].fg.bSorterRef ){
1745       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1746     }else
1747 #endif
1748     {
1749       int iRead;
1750       if( aOutEx[i].u.x.iOrderByCol ){
1751         iRead = aOutEx[i].u.x.iOrderByCol-1;
1752       }else{
1753         iRead = iCol--;
1754       }
1755       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1756       VdbeComment((v, "%s", aOutEx[i].zEName));
1757     }
1758   }
1759   switch( eDest ){
1760     case SRT_Table:
1761     case SRT_EphemTab: {
1762       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1763       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1764       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1765       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1766       break;
1767     }
1768 #ifndef SQLITE_OMIT_SUBQUERY
1769     case SRT_Set: {
1770       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1771       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1772                         pDest->zAffSdst, nColumn);
1773       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1774       break;
1775     }
1776     case SRT_Mem: {
1777       /* The LIMIT clause will terminate the loop for us */
1778       break;
1779     }
1780 #endif
1781     case SRT_Upfrom: {
1782       int i2 = pDest->iSDParm2;
1783       int r1 = sqlite3GetTempReg(pParse);
1784       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1785       if( i2<0 ){
1786         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1787       }else{
1788         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1789       }
1790       break;
1791     }
1792     default: {
1793       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1794       testcase( eDest==SRT_Output );
1795       testcase( eDest==SRT_Coroutine );
1796       if( eDest==SRT_Output ){
1797         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1798       }else{
1799         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1800       }
1801       break;
1802     }
1803   }
1804   if( regRowid ){
1805     if( eDest==SRT_Set ){
1806       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1807     }else{
1808       sqlite3ReleaseTempReg(pParse, regRow);
1809     }
1810     sqlite3ReleaseTempReg(pParse, regRowid);
1811   }
1812   /* The bottom of the loop
1813   */
1814   sqlite3VdbeResolveLabel(v, addrContinue);
1815   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1816     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1817   }else{
1818     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1819   }
1820   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1821   sqlite3VdbeResolveLabel(v, addrBreak);
1822 }
1823 
1824 /*
1825 ** Return a pointer to a string containing the 'declaration type' of the
1826 ** expression pExpr. The string may be treated as static by the caller.
1827 **
1828 ** The declaration type is the exact datatype definition extracted from the
1829 ** original CREATE TABLE statement if the expression is a column. The
1830 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1831 ** is considered a column can be complex in the presence of subqueries. The
1832 ** result-set expression in all of the following SELECT statements is
1833 ** considered a column by this function.
1834 **
1835 **   SELECT col FROM tbl;
1836 **   SELECT (SELECT col FROM tbl;
1837 **   SELECT (SELECT col FROM tbl);
1838 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1839 **
1840 ** The declaration type for any expression other than a column is NULL.
1841 **
1842 ** This routine has either 3 or 6 parameters depending on whether or not
1843 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1844 */
1845 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1846 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1847 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1848 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1849 #endif
1850 static const char *columnTypeImpl(
1851   NameContext *pNC,
1852 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1853   Expr *pExpr
1854 #else
1855   Expr *pExpr,
1856   const char **pzOrigDb,
1857   const char **pzOrigTab,
1858   const char **pzOrigCol
1859 #endif
1860 ){
1861   char const *zType = 0;
1862   int j;
1863 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1864   char const *zOrigDb = 0;
1865   char const *zOrigTab = 0;
1866   char const *zOrigCol = 0;
1867 #endif
1868 
1869   assert( pExpr!=0 );
1870   assert( pNC->pSrcList!=0 );
1871   switch( pExpr->op ){
1872     case TK_COLUMN: {
1873       /* The expression is a column. Locate the table the column is being
1874       ** extracted from in NameContext.pSrcList. This table may be real
1875       ** database table or a subquery.
1876       */
1877       Table *pTab = 0;            /* Table structure column is extracted from */
1878       Select *pS = 0;             /* Select the column is extracted from */
1879       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1880       while( pNC && !pTab ){
1881         SrcList *pTabList = pNC->pSrcList;
1882         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1883         if( j<pTabList->nSrc ){
1884           pTab = pTabList->a[j].pTab;
1885           pS = pTabList->a[j].pSelect;
1886         }else{
1887           pNC = pNC->pNext;
1888         }
1889       }
1890 
1891       if( pTab==0 ){
1892         /* At one time, code such as "SELECT new.x" within a trigger would
1893         ** cause this condition to run.  Since then, we have restructured how
1894         ** trigger code is generated and so this condition is no longer
1895         ** possible. However, it can still be true for statements like
1896         ** the following:
1897         **
1898         **   CREATE TABLE t1(col INTEGER);
1899         **   SELECT (SELECT t1.col) FROM FROM t1;
1900         **
1901         ** when columnType() is called on the expression "t1.col" in the
1902         ** sub-select. In this case, set the column type to NULL, even
1903         ** though it should really be "INTEGER".
1904         **
1905         ** This is not a problem, as the column type of "t1.col" is never
1906         ** used. When columnType() is called on the expression
1907         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1908         ** branch below.  */
1909         break;
1910       }
1911 
1912       assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1913       if( pS ){
1914         /* The "table" is actually a sub-select or a view in the FROM clause
1915         ** of the SELECT statement. Return the declaration type and origin
1916         ** data for the result-set column of the sub-select.
1917         */
1918         if( iCol<pS->pEList->nExpr
1919 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1920          && iCol>=0
1921 #else
1922          && ALWAYS(iCol>=0)
1923 #endif
1924         ){
1925           /* If iCol is less than zero, then the expression requests the
1926           ** rowid of the sub-select or view. This expression is legal (see
1927           ** test case misc2.2.2) - it always evaluates to NULL.
1928           */
1929           NameContext sNC;
1930           Expr *p = pS->pEList->a[iCol].pExpr;
1931           sNC.pSrcList = pS->pSrc;
1932           sNC.pNext = pNC;
1933           sNC.pParse = pNC->pParse;
1934           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1935         }
1936       }else{
1937         /* A real table or a CTE table */
1938         assert( !pS );
1939 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1940         if( iCol<0 ) iCol = pTab->iPKey;
1941         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1942         if( iCol<0 ){
1943           zType = "INTEGER";
1944           zOrigCol = "rowid";
1945         }else{
1946           zOrigCol = pTab->aCol[iCol].zCnName;
1947           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1948         }
1949         zOrigTab = pTab->zName;
1950         if( pNC->pParse && pTab->pSchema ){
1951           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1952           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1953         }
1954 #else
1955         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1956         if( iCol<0 ){
1957           zType = "INTEGER";
1958         }else{
1959           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1960         }
1961 #endif
1962       }
1963       break;
1964     }
1965 #ifndef SQLITE_OMIT_SUBQUERY
1966     case TK_SELECT: {
1967       /* The expression is a sub-select. Return the declaration type and
1968       ** origin info for the single column in the result set of the SELECT
1969       ** statement.
1970       */
1971       NameContext sNC;
1972       Select *pS;
1973       Expr *p;
1974       assert( ExprUseXSelect(pExpr) );
1975       pS = pExpr->x.pSelect;
1976       p = pS->pEList->a[0].pExpr;
1977       sNC.pSrcList = pS->pSrc;
1978       sNC.pNext = pNC;
1979       sNC.pParse = pNC->pParse;
1980       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1981       break;
1982     }
1983 #endif
1984   }
1985 
1986 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1987   if( pzOrigDb ){
1988     assert( pzOrigTab && pzOrigCol );
1989     *pzOrigDb = zOrigDb;
1990     *pzOrigTab = zOrigTab;
1991     *pzOrigCol = zOrigCol;
1992   }
1993 #endif
1994   return zType;
1995 }
1996 
1997 /*
1998 ** Generate code that will tell the VDBE the declaration types of columns
1999 ** in the result set.
2000 */
2001 static void generateColumnTypes(
2002   Parse *pParse,      /* Parser context */
2003   SrcList *pTabList,  /* List of tables */
2004   ExprList *pEList    /* Expressions defining the result set */
2005 ){
2006 #ifndef SQLITE_OMIT_DECLTYPE
2007   Vdbe *v = pParse->pVdbe;
2008   int i;
2009   NameContext sNC;
2010   sNC.pSrcList = pTabList;
2011   sNC.pParse = pParse;
2012   sNC.pNext = 0;
2013   for(i=0; i<pEList->nExpr; i++){
2014     Expr *p = pEList->a[i].pExpr;
2015     const char *zType;
2016 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2017     const char *zOrigDb = 0;
2018     const char *zOrigTab = 0;
2019     const char *zOrigCol = 0;
2020     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2021 
2022     /* The vdbe must make its own copy of the column-type and other
2023     ** column specific strings, in case the schema is reset before this
2024     ** virtual machine is deleted.
2025     */
2026     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2027     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2028     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2029 #else
2030     zType = columnType(&sNC, p, 0, 0, 0);
2031 #endif
2032     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2033   }
2034 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2035 }
2036 
2037 
2038 /*
2039 ** Compute the column names for a SELECT statement.
2040 **
2041 ** The only guarantee that SQLite makes about column names is that if the
2042 ** column has an AS clause assigning it a name, that will be the name used.
2043 ** That is the only documented guarantee.  However, countless applications
2044 ** developed over the years have made baseless assumptions about column names
2045 ** and will break if those assumptions changes.  Hence, use extreme caution
2046 ** when modifying this routine to avoid breaking legacy.
2047 **
2048 ** See Also: sqlite3ColumnsFromExprList()
2049 **
2050 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2051 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
2052 ** applications should operate this way.  Nevertheless, we need to support the
2053 ** other modes for legacy:
2054 **
2055 **    short=OFF, full=OFF:      Column name is the text of the expression has it
2056 **                              originally appears in the SELECT statement.  In
2057 **                              other words, the zSpan of the result expression.
2058 **
2059 **    short=ON, full=OFF:       (This is the default setting).  If the result
2060 **                              refers directly to a table column, then the
2061 **                              result column name is just the table column
2062 **                              name: COLUMN.  Otherwise use zSpan.
2063 **
2064 **    full=ON, short=ANY:       If the result refers directly to a table column,
2065 **                              then the result column name with the table name
2066 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
2067 */
2068 void sqlite3GenerateColumnNames(
2069   Parse *pParse,      /* Parser context */
2070   Select *pSelect     /* Generate column names for this SELECT statement */
2071 ){
2072   Vdbe *v = pParse->pVdbe;
2073   int i;
2074   Table *pTab;
2075   SrcList *pTabList;
2076   ExprList *pEList;
2077   sqlite3 *db = pParse->db;
2078   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
2079   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2080 
2081 #ifndef SQLITE_OMIT_EXPLAIN
2082   /* If this is an EXPLAIN, skip this step */
2083   if( pParse->explain ){
2084     return;
2085   }
2086 #endif
2087 
2088   if( pParse->colNamesSet ) return;
2089   /* Column names are determined by the left-most term of a compound select */
2090   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2091   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2092   pTabList = pSelect->pSrc;
2093   pEList = pSelect->pEList;
2094   assert( v!=0 );
2095   assert( pTabList!=0 );
2096   pParse->colNamesSet = 1;
2097   fullName = (db->flags & SQLITE_FullColNames)!=0;
2098   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2099   sqlite3VdbeSetNumCols(v, pEList->nExpr);
2100   for(i=0; i<pEList->nExpr; i++){
2101     Expr *p = pEList->a[i].pExpr;
2102 
2103     assert( p!=0 );
2104     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2105     assert( p->op!=TK_COLUMN
2106         || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2107     if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2108       /* An AS clause always takes first priority */
2109       char *zName = pEList->a[i].zEName;
2110       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2111     }else if( srcName && p->op==TK_COLUMN ){
2112       char *zCol;
2113       int iCol = p->iColumn;
2114       pTab = p->y.pTab;
2115       assert( pTab!=0 );
2116       if( iCol<0 ) iCol = pTab->iPKey;
2117       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2118       if( iCol<0 ){
2119         zCol = "rowid";
2120       }else{
2121         zCol = pTab->aCol[iCol].zCnName;
2122       }
2123       if( fullName ){
2124         char *zName = 0;
2125         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2126         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2127       }else{
2128         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2129       }
2130     }else{
2131       const char *z = pEList->a[i].zEName;
2132       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2133       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2134     }
2135   }
2136   generateColumnTypes(pParse, pTabList, pEList);
2137 }
2138 
2139 /*
2140 ** Given an expression list (which is really the list of expressions
2141 ** that form the result set of a SELECT statement) compute appropriate
2142 ** column names for a table that would hold the expression list.
2143 **
2144 ** All column names will be unique.
2145 **
2146 ** Only the column names are computed.  Column.zType, Column.zColl,
2147 ** and other fields of Column are zeroed.
2148 **
2149 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2150 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2151 **
2152 ** The only guarantee that SQLite makes about column names is that if the
2153 ** column has an AS clause assigning it a name, that will be the name used.
2154 ** That is the only documented guarantee.  However, countless applications
2155 ** developed over the years have made baseless assumptions about column names
2156 ** and will break if those assumptions changes.  Hence, use extreme caution
2157 ** when modifying this routine to avoid breaking legacy.
2158 **
2159 ** See Also: sqlite3GenerateColumnNames()
2160 */
2161 int sqlite3ColumnsFromExprList(
2162   Parse *pParse,          /* Parsing context */
2163   ExprList *pEList,       /* Expr list from which to derive column names */
2164   i16 *pnCol,             /* Write the number of columns here */
2165   Column **paCol          /* Write the new column list here */
2166 ){
2167   sqlite3 *db = pParse->db;   /* Database connection */
2168   int i, j;                   /* Loop counters */
2169   u32 cnt;                    /* Index added to make the name unique */
2170   Column *aCol, *pCol;        /* For looping over result columns */
2171   int nCol;                   /* Number of columns in the result set */
2172   char *zName;                /* Column name */
2173   int nName;                  /* Size of name in zName[] */
2174   Hash ht;                    /* Hash table of column names */
2175   Table *pTab;
2176 
2177   sqlite3HashInit(&ht);
2178   if( pEList ){
2179     nCol = pEList->nExpr;
2180     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2181     testcase( aCol==0 );
2182     if( NEVER(nCol>32767) ) nCol = 32767;
2183   }else{
2184     nCol = 0;
2185     aCol = 0;
2186   }
2187   assert( nCol==(i16)nCol );
2188   *pnCol = nCol;
2189   *paCol = aCol;
2190 
2191   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2192     struct ExprList_item *pX = &pEList->a[i];
2193     struct ExprList_item *pCollide;
2194     /* Get an appropriate name for the column
2195     */
2196     if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2197       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2198     }else{
2199       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2200       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2201         pColExpr = pColExpr->pRight;
2202         assert( pColExpr!=0 );
2203       }
2204       if( pColExpr->op==TK_COLUMN
2205        && ALWAYS( ExprUseYTab(pColExpr) )
2206        && ALWAYS( pColExpr->y.pTab!=0 )
2207       ){
2208         /* For columns use the column name name */
2209         int iCol = pColExpr->iColumn;
2210         pTab = pColExpr->y.pTab;
2211         if( iCol<0 ) iCol = pTab->iPKey;
2212         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2213       }else if( pColExpr->op==TK_ID ){
2214         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2215         zName = pColExpr->u.zToken;
2216       }else{
2217         /* Use the original text of the column expression as its name */
2218         assert( zName==pX->zEName );  /* pointer comparison intended */
2219       }
2220     }
2221     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2222       zName = sqlite3DbStrDup(db, zName);
2223     }else{
2224       zName = sqlite3MPrintf(db,"column%d",i+1);
2225     }
2226 
2227     /* Make sure the column name is unique.  If the name is not unique,
2228     ** append an integer to the name so that it becomes unique.
2229     */
2230     cnt = 0;
2231     while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2232       if( pCollide->fg.bUsingTerm ){
2233         pCol->colFlags |= COLFLAG_NOEXPAND;
2234       }
2235       nName = sqlite3Strlen30(zName);
2236       if( nName>0 ){
2237         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2238         if( zName[j]==':' ) nName = j;
2239       }
2240       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2241       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2242     }
2243     pCol->zCnName = zName;
2244     pCol->hName = sqlite3StrIHash(zName);
2245     if( pX->fg.bNoExpand ){
2246       pCol->colFlags |= COLFLAG_NOEXPAND;
2247     }
2248     sqlite3ColumnPropertiesFromName(0, pCol);
2249     if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2250       sqlite3OomFault(db);
2251     }
2252   }
2253   sqlite3HashClear(&ht);
2254   if( db->mallocFailed ){
2255     for(j=0; j<i; j++){
2256       sqlite3DbFree(db, aCol[j].zCnName);
2257     }
2258     sqlite3DbFree(db, aCol);
2259     *paCol = 0;
2260     *pnCol = 0;
2261     return SQLITE_NOMEM_BKPT;
2262   }
2263   return SQLITE_OK;
2264 }
2265 
2266 /*
2267 ** Add type and collation information to a column list based on
2268 ** a SELECT statement.
2269 **
2270 ** The column list presumably came from selectColumnNamesFromExprList().
2271 ** The column list has only names, not types or collations.  This
2272 ** routine goes through and adds the types and collations.
2273 **
2274 ** This routine requires that all identifiers in the SELECT
2275 ** statement be resolved.
2276 */
2277 void sqlite3SelectAddColumnTypeAndCollation(
2278   Parse *pParse,        /* Parsing contexts */
2279   Table *pTab,          /* Add column type information to this table */
2280   Select *pSelect,      /* SELECT used to determine types and collations */
2281   char aff              /* Default affinity for columns */
2282 ){
2283   sqlite3 *db = pParse->db;
2284   NameContext sNC;
2285   Column *pCol;
2286   CollSeq *pColl;
2287   int i;
2288   Expr *p;
2289   struct ExprList_item *a;
2290 
2291   assert( pSelect!=0 );
2292   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2293   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2294   if( db->mallocFailed ) return;
2295   memset(&sNC, 0, sizeof(sNC));
2296   sNC.pSrcList = pSelect->pSrc;
2297   a = pSelect->pEList->a;
2298   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2299     const char *zType;
2300     i64 n, m;
2301     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2302     p = a[i].pExpr;
2303     zType = columnType(&sNC, p, 0, 0, 0);
2304     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2305     pCol->affinity = sqlite3ExprAffinity(p);
2306     if( zType ){
2307       m = sqlite3Strlen30(zType);
2308       n = sqlite3Strlen30(pCol->zCnName);
2309       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2310       if( pCol->zCnName ){
2311         memcpy(&pCol->zCnName[n+1], zType, m+1);
2312         pCol->colFlags |= COLFLAG_HASTYPE;
2313       }else{
2314         testcase( pCol->colFlags & COLFLAG_HASTYPE );
2315         pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2316       }
2317     }
2318     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2319     pColl = sqlite3ExprCollSeq(pParse, p);
2320     if( pColl ){
2321       assert( pTab->pIndex==0 );
2322       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2323     }
2324   }
2325   pTab->szTabRow = 1; /* Any non-zero value works */
2326 }
2327 
2328 /*
2329 ** Given a SELECT statement, generate a Table structure that describes
2330 ** the result set of that SELECT.
2331 */
2332 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2333   Table *pTab;
2334   sqlite3 *db = pParse->db;
2335   u64 savedFlags;
2336 
2337   savedFlags = db->flags;
2338   db->flags &= ~(u64)SQLITE_FullColNames;
2339   db->flags |= SQLITE_ShortColNames;
2340   sqlite3SelectPrep(pParse, pSelect, 0);
2341   db->flags = savedFlags;
2342   if( pParse->nErr ) return 0;
2343   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2344   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2345   if( pTab==0 ){
2346     return 0;
2347   }
2348   pTab->nTabRef = 1;
2349   pTab->zName = 0;
2350   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2351   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2352   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2353   pTab->iPKey = -1;
2354   if( db->mallocFailed ){
2355     sqlite3DeleteTable(db, pTab);
2356     return 0;
2357   }
2358   return pTab;
2359 }
2360 
2361 /*
2362 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2363 ** If an error occurs, return NULL and leave a message in pParse.
2364 */
2365 Vdbe *sqlite3GetVdbe(Parse *pParse){
2366   if( pParse->pVdbe ){
2367     return pParse->pVdbe;
2368   }
2369   if( pParse->pToplevel==0
2370    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2371   ){
2372     pParse->okConstFactor = 1;
2373   }
2374   return sqlite3VdbeCreate(pParse);
2375 }
2376 
2377 
2378 /*
2379 ** Compute the iLimit and iOffset fields of the SELECT based on the
2380 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2381 ** that appear in the original SQL statement after the LIMIT and OFFSET
2382 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2383 ** are the integer memory register numbers for counters used to compute
2384 ** the limit and offset.  If there is no limit and/or offset, then
2385 ** iLimit and iOffset are negative.
2386 **
2387 ** This routine changes the values of iLimit and iOffset only if
2388 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2389 ** and iOffset should have been preset to appropriate default values (zero)
2390 ** prior to calling this routine.
2391 **
2392 ** The iOffset register (if it exists) is initialized to the value
2393 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2394 ** iOffset+1 is initialized to LIMIT+OFFSET.
2395 **
2396 ** Only if pLimit->pLeft!=0 do the limit registers get
2397 ** redefined.  The UNION ALL operator uses this property to force
2398 ** the reuse of the same limit and offset registers across multiple
2399 ** SELECT statements.
2400 */
2401 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2402   Vdbe *v = 0;
2403   int iLimit = 0;
2404   int iOffset;
2405   int n;
2406   Expr *pLimit = p->pLimit;
2407 
2408   if( p->iLimit ) return;
2409 
2410   /*
2411   ** "LIMIT -1" always shows all rows.  There is some
2412   ** controversy about what the correct behavior should be.
2413   ** The current implementation interprets "LIMIT 0" to mean
2414   ** no rows.
2415   */
2416   if( pLimit ){
2417     assert( pLimit->op==TK_LIMIT );
2418     assert( pLimit->pLeft!=0 );
2419     p->iLimit = iLimit = ++pParse->nMem;
2420     v = sqlite3GetVdbe(pParse);
2421     assert( v!=0 );
2422     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2423       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2424       VdbeComment((v, "LIMIT counter"));
2425       if( n==0 ){
2426         sqlite3VdbeGoto(v, iBreak);
2427       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2428         p->nSelectRow = sqlite3LogEst((u64)n);
2429         p->selFlags |= SF_FixedLimit;
2430       }
2431     }else{
2432       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2433       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2434       VdbeComment((v, "LIMIT counter"));
2435       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2436     }
2437     if( pLimit->pRight ){
2438       p->iOffset = iOffset = ++pParse->nMem;
2439       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2440       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2441       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2442       VdbeComment((v, "OFFSET counter"));
2443       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2444       VdbeComment((v, "LIMIT+OFFSET"));
2445     }
2446   }
2447 }
2448 
2449 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2450 /*
2451 ** Return the appropriate collating sequence for the iCol-th column of
2452 ** the result set for the compound-select statement "p".  Return NULL if
2453 ** the column has no default collating sequence.
2454 **
2455 ** The collating sequence for the compound select is taken from the
2456 ** left-most term of the select that has a collating sequence.
2457 */
2458 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2459   CollSeq *pRet;
2460   if( p->pPrior ){
2461     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2462   }else{
2463     pRet = 0;
2464   }
2465   assert( iCol>=0 );
2466   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2467   ** have been thrown during name resolution and we would not have gotten
2468   ** this far */
2469   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2470     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2471   }
2472   return pRet;
2473 }
2474 
2475 /*
2476 ** The select statement passed as the second parameter is a compound SELECT
2477 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2478 ** structure suitable for implementing the ORDER BY.
2479 **
2480 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2481 ** function is responsible for ensuring that this structure is eventually
2482 ** freed.
2483 */
2484 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2485   ExprList *pOrderBy = p->pOrderBy;
2486   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2487   sqlite3 *db = pParse->db;
2488   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2489   if( pRet ){
2490     int i;
2491     for(i=0; i<nOrderBy; i++){
2492       struct ExprList_item *pItem = &pOrderBy->a[i];
2493       Expr *pTerm = pItem->pExpr;
2494       CollSeq *pColl;
2495 
2496       if( pTerm->flags & EP_Collate ){
2497         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2498       }else{
2499         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2500         if( pColl==0 ) pColl = db->pDfltColl;
2501         pOrderBy->a[i].pExpr =
2502           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2503       }
2504       assert( sqlite3KeyInfoIsWriteable(pRet) );
2505       pRet->aColl[i] = pColl;
2506       pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2507     }
2508   }
2509 
2510   return pRet;
2511 }
2512 
2513 #ifndef SQLITE_OMIT_CTE
2514 /*
2515 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2516 ** query of the form:
2517 **
2518 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2519 **                         \___________/             \_______________/
2520 **                           p->pPrior                      p
2521 **
2522 **
2523 ** There is exactly one reference to the recursive-table in the FROM clause
2524 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2525 **
2526 ** The setup-query runs once to generate an initial set of rows that go
2527 ** into a Queue table.  Rows are extracted from the Queue table one by
2528 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2529 ** extracted row (now in the iCurrent table) becomes the content of the
2530 ** recursive-table for a recursive-query run.  The output of the recursive-query
2531 ** is added back into the Queue table.  Then another row is extracted from Queue
2532 ** and the iteration continues until the Queue table is empty.
2533 **
2534 ** If the compound query operator is UNION then no duplicate rows are ever
2535 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2536 ** that have ever been inserted into Queue and causes duplicates to be
2537 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2538 **
2539 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2540 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2541 ** an ORDER BY, the Queue table is just a FIFO.
2542 **
2543 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2544 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2545 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2546 ** with a positive value, then the first OFFSET outputs are discarded rather
2547 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2548 ** rows have been skipped.
2549 */
2550 static void generateWithRecursiveQuery(
2551   Parse *pParse,        /* Parsing context */
2552   Select *p,            /* The recursive SELECT to be coded */
2553   SelectDest *pDest     /* What to do with query results */
2554 ){
2555   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2556   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2557   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2558   Select *pSetup;               /* The setup query */
2559   Select *pFirstRec;            /* Left-most recursive term */
2560   int addrTop;                  /* Top of the loop */
2561   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2562   int iCurrent = 0;             /* The Current table */
2563   int regCurrent;               /* Register holding Current table */
2564   int iQueue;                   /* The Queue table */
2565   int iDistinct = 0;            /* To ensure unique results if UNION */
2566   int eDest = SRT_Fifo;         /* How to write to Queue */
2567   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2568   int i;                        /* Loop counter */
2569   int rc;                       /* Result code */
2570   ExprList *pOrderBy;           /* The ORDER BY clause */
2571   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2572   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2573 
2574 #ifndef SQLITE_OMIT_WINDOWFUNC
2575   if( p->pWin ){
2576     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2577     return;
2578   }
2579 #endif
2580 
2581   /* Obtain authorization to do a recursive query */
2582   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2583 
2584   /* Process the LIMIT and OFFSET clauses, if they exist */
2585   addrBreak = sqlite3VdbeMakeLabel(pParse);
2586   p->nSelectRow = 320;  /* 4 billion rows */
2587   computeLimitRegisters(pParse, p, addrBreak);
2588   pLimit = p->pLimit;
2589   regLimit = p->iLimit;
2590   regOffset = p->iOffset;
2591   p->pLimit = 0;
2592   p->iLimit = p->iOffset = 0;
2593   pOrderBy = p->pOrderBy;
2594 
2595   /* Locate the cursor number of the Current table */
2596   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2597     if( pSrc->a[i].fg.isRecursive ){
2598       iCurrent = pSrc->a[i].iCursor;
2599       break;
2600     }
2601   }
2602 
2603   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2604   ** the Distinct table must be exactly one greater than Queue in order
2605   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2606   iQueue = pParse->nTab++;
2607   if( p->op==TK_UNION ){
2608     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2609     iDistinct = pParse->nTab++;
2610   }else{
2611     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2612   }
2613   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2614 
2615   /* Allocate cursors for Current, Queue, and Distinct. */
2616   regCurrent = ++pParse->nMem;
2617   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2618   if( pOrderBy ){
2619     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2620     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2621                       (char*)pKeyInfo, P4_KEYINFO);
2622     destQueue.pOrderBy = pOrderBy;
2623   }else{
2624     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2625   }
2626   VdbeComment((v, "Queue table"));
2627   if( iDistinct ){
2628     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2629     p->selFlags |= SF_UsesEphemeral;
2630   }
2631 
2632   /* Detach the ORDER BY clause from the compound SELECT */
2633   p->pOrderBy = 0;
2634 
2635   /* Figure out how many elements of the compound SELECT are part of the
2636   ** recursive query.  Make sure no recursive elements use aggregate
2637   ** functions.  Mark the recursive elements as UNION ALL even if they
2638   ** are really UNION because the distinctness will be enforced by the
2639   ** iDistinct table.  pFirstRec is left pointing to the left-most
2640   ** recursive term of the CTE.
2641   */
2642   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2643     if( pFirstRec->selFlags & SF_Aggregate ){
2644       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2645       goto end_of_recursive_query;
2646     }
2647     pFirstRec->op = TK_ALL;
2648     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2649   }
2650 
2651   /* Store the results of the setup-query in Queue. */
2652   pSetup = pFirstRec->pPrior;
2653   pSetup->pNext = 0;
2654   ExplainQueryPlan((pParse, 1, "SETUP"));
2655   rc = sqlite3Select(pParse, pSetup, &destQueue);
2656   pSetup->pNext = p;
2657   if( rc ) goto end_of_recursive_query;
2658 
2659   /* Find the next row in the Queue and output that row */
2660   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2661 
2662   /* Transfer the next row in Queue over to Current */
2663   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2664   if( pOrderBy ){
2665     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2666   }else{
2667     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2668   }
2669   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2670 
2671   /* Output the single row in Current */
2672   addrCont = sqlite3VdbeMakeLabel(pParse);
2673   codeOffset(v, regOffset, addrCont);
2674   selectInnerLoop(pParse, p, iCurrent,
2675       0, 0, pDest, addrCont, addrBreak);
2676   if( regLimit ){
2677     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2678     VdbeCoverage(v);
2679   }
2680   sqlite3VdbeResolveLabel(v, addrCont);
2681 
2682   /* Execute the recursive SELECT taking the single row in Current as
2683   ** the value for the recursive-table. Store the results in the Queue.
2684   */
2685   pFirstRec->pPrior = 0;
2686   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2687   sqlite3Select(pParse, p, &destQueue);
2688   assert( pFirstRec->pPrior==0 );
2689   pFirstRec->pPrior = pSetup;
2690 
2691   /* Keep running the loop until the Queue is empty */
2692   sqlite3VdbeGoto(v, addrTop);
2693   sqlite3VdbeResolveLabel(v, addrBreak);
2694 
2695 end_of_recursive_query:
2696   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2697   p->pOrderBy = pOrderBy;
2698   p->pLimit = pLimit;
2699   return;
2700 }
2701 #endif /* SQLITE_OMIT_CTE */
2702 
2703 /* Forward references */
2704 static int multiSelectOrderBy(
2705   Parse *pParse,        /* Parsing context */
2706   Select *p,            /* The right-most of SELECTs to be coded */
2707   SelectDest *pDest     /* What to do with query results */
2708 );
2709 
2710 /*
2711 ** Handle the special case of a compound-select that originates from a
2712 ** VALUES clause.  By handling this as a special case, we avoid deep
2713 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2714 ** on a VALUES clause.
2715 **
2716 ** Because the Select object originates from a VALUES clause:
2717 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2718 **   (2) All terms are UNION ALL
2719 **   (3) There is no ORDER BY clause
2720 **
2721 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2722 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2723 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2724 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2725 */
2726 static int multiSelectValues(
2727   Parse *pParse,        /* Parsing context */
2728   Select *p,            /* The right-most of SELECTs to be coded */
2729   SelectDest *pDest     /* What to do with query results */
2730 ){
2731   int nRow = 1;
2732   int rc = 0;
2733   int bShowAll = p->pLimit==0;
2734   assert( p->selFlags & SF_MultiValue );
2735   do{
2736     assert( p->selFlags & SF_Values );
2737     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2738     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2739 #ifndef SQLITE_OMIT_WINDOWFUNC
2740     if( p->pWin ) return -1;
2741 #endif
2742     if( p->pPrior==0 ) break;
2743     assert( p->pPrior->pNext==p );
2744     p = p->pPrior;
2745     nRow += bShowAll;
2746   }while(1);
2747   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2748                     nRow==1 ? "" : "S"));
2749   while( p ){
2750     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2751     if( !bShowAll ) break;
2752     p->nSelectRow = nRow;
2753     p = p->pNext;
2754   }
2755   return rc;
2756 }
2757 
2758 /*
2759 ** Return true if the SELECT statement which is known to be the recursive
2760 ** part of a recursive CTE still has its anchor terms attached.  If the
2761 ** anchor terms have already been removed, then return false.
2762 */
2763 static int hasAnchor(Select *p){
2764   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2765   return p!=0;
2766 }
2767 
2768 /*
2769 ** This routine is called to process a compound query form from
2770 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2771 ** INTERSECT
2772 **
2773 ** "p" points to the right-most of the two queries.  the query on the
2774 ** left is p->pPrior.  The left query could also be a compound query
2775 ** in which case this routine will be called recursively.
2776 **
2777 ** The results of the total query are to be written into a destination
2778 ** of type eDest with parameter iParm.
2779 **
2780 ** Example 1:  Consider a three-way compound SQL statement.
2781 **
2782 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2783 **
2784 ** This statement is parsed up as follows:
2785 **
2786 **     SELECT c FROM t3
2787 **      |
2788 **      `----->  SELECT b FROM t2
2789 **                |
2790 **                `------>  SELECT a FROM t1
2791 **
2792 ** The arrows in the diagram above represent the Select.pPrior pointer.
2793 ** So if this routine is called with p equal to the t3 query, then
2794 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2795 **
2796 ** Notice that because of the way SQLite parses compound SELECTs, the
2797 ** individual selects always group from left to right.
2798 */
2799 static int multiSelect(
2800   Parse *pParse,        /* Parsing context */
2801   Select *p,            /* The right-most of SELECTs to be coded */
2802   SelectDest *pDest     /* What to do with query results */
2803 ){
2804   int rc = SQLITE_OK;   /* Success code from a subroutine */
2805   Select *pPrior;       /* Another SELECT immediately to our left */
2806   Vdbe *v;              /* Generate code to this VDBE */
2807   SelectDest dest;      /* Alternative data destination */
2808   Select *pDelete = 0;  /* Chain of simple selects to delete */
2809   sqlite3 *db;          /* Database connection */
2810 
2811   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2812   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2813   */
2814   assert( p && p->pPrior );  /* Calling function guarantees this much */
2815   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2816   assert( p->selFlags & SF_Compound );
2817   db = pParse->db;
2818   pPrior = p->pPrior;
2819   dest = *pDest;
2820   assert( pPrior->pOrderBy==0 );
2821   assert( pPrior->pLimit==0 );
2822 
2823   v = sqlite3GetVdbe(pParse);
2824   assert( v!=0 );  /* The VDBE already created by calling function */
2825 
2826   /* Create the destination temporary table if necessary
2827   */
2828   if( dest.eDest==SRT_EphemTab ){
2829     assert( p->pEList );
2830     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2831     dest.eDest = SRT_Table;
2832   }
2833 
2834   /* Special handling for a compound-select that originates as a VALUES clause.
2835   */
2836   if( p->selFlags & SF_MultiValue ){
2837     rc = multiSelectValues(pParse, p, &dest);
2838     if( rc>=0 ) goto multi_select_end;
2839     rc = SQLITE_OK;
2840   }
2841 
2842   /* Make sure all SELECTs in the statement have the same number of elements
2843   ** in their result sets.
2844   */
2845   assert( p->pEList && pPrior->pEList );
2846   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2847 
2848 #ifndef SQLITE_OMIT_CTE
2849   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2850     generateWithRecursiveQuery(pParse, p, &dest);
2851   }else
2852 #endif
2853 
2854   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2855   */
2856   if( p->pOrderBy ){
2857     return multiSelectOrderBy(pParse, p, pDest);
2858   }else{
2859 
2860 #ifndef SQLITE_OMIT_EXPLAIN
2861     if( pPrior->pPrior==0 ){
2862       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2863       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2864     }
2865 #endif
2866 
2867     /* Generate code for the left and right SELECT statements.
2868     */
2869     switch( p->op ){
2870       case TK_ALL: {
2871         int addr = 0;
2872         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2873         assert( !pPrior->pLimit );
2874         pPrior->iLimit = p->iLimit;
2875         pPrior->iOffset = p->iOffset;
2876         pPrior->pLimit = p->pLimit;
2877         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2878         rc = sqlite3Select(pParse, pPrior, &dest);
2879         pPrior->pLimit = 0;
2880         if( rc ){
2881           goto multi_select_end;
2882         }
2883         p->pPrior = 0;
2884         p->iLimit = pPrior->iLimit;
2885         p->iOffset = pPrior->iOffset;
2886         if( p->iLimit ){
2887           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2888           VdbeComment((v, "Jump ahead if LIMIT reached"));
2889           if( p->iOffset ){
2890             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2891                               p->iLimit, p->iOffset+1, p->iOffset);
2892           }
2893         }
2894         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2895         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2896         rc = sqlite3Select(pParse, p, &dest);
2897         testcase( rc!=SQLITE_OK );
2898         pDelete = p->pPrior;
2899         p->pPrior = pPrior;
2900         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2901         if( p->pLimit
2902          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2903          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2904         ){
2905           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2906         }
2907         if( addr ){
2908           sqlite3VdbeJumpHere(v, addr);
2909         }
2910         break;
2911       }
2912       case TK_EXCEPT:
2913       case TK_UNION: {
2914         int unionTab;    /* Cursor number of the temp table holding result */
2915         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2916         int priorOp;     /* The SRT_ operation to apply to prior selects */
2917         Expr *pLimit;    /* Saved values of p->nLimit  */
2918         int addr;
2919         SelectDest uniondest;
2920 
2921         testcase( p->op==TK_EXCEPT );
2922         testcase( p->op==TK_UNION );
2923         priorOp = SRT_Union;
2924         if( dest.eDest==priorOp ){
2925           /* We can reuse a temporary table generated by a SELECT to our
2926           ** right.
2927           */
2928           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2929           unionTab = dest.iSDParm;
2930         }else{
2931           /* We will need to create our own temporary table to hold the
2932           ** intermediate results.
2933           */
2934           unionTab = pParse->nTab++;
2935           assert( p->pOrderBy==0 );
2936           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2937           assert( p->addrOpenEphm[0] == -1 );
2938           p->addrOpenEphm[0] = addr;
2939           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2940           assert( p->pEList );
2941         }
2942 
2943 
2944         /* Code the SELECT statements to our left
2945         */
2946         assert( !pPrior->pOrderBy );
2947         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2948         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2949         rc = sqlite3Select(pParse, pPrior, &uniondest);
2950         if( rc ){
2951           goto multi_select_end;
2952         }
2953 
2954         /* Code the current SELECT statement
2955         */
2956         if( p->op==TK_EXCEPT ){
2957           op = SRT_Except;
2958         }else{
2959           assert( p->op==TK_UNION );
2960           op = SRT_Union;
2961         }
2962         p->pPrior = 0;
2963         pLimit = p->pLimit;
2964         p->pLimit = 0;
2965         uniondest.eDest = op;
2966         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2967                           sqlite3SelectOpName(p->op)));
2968         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2969         rc = sqlite3Select(pParse, p, &uniondest);
2970         testcase( rc!=SQLITE_OK );
2971         assert( p->pOrderBy==0 );
2972         pDelete = p->pPrior;
2973         p->pPrior = pPrior;
2974         p->pOrderBy = 0;
2975         if( p->op==TK_UNION ){
2976           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2977         }
2978         sqlite3ExprDelete(db, p->pLimit);
2979         p->pLimit = pLimit;
2980         p->iLimit = 0;
2981         p->iOffset = 0;
2982 
2983         /* Convert the data in the temporary table into whatever form
2984         ** it is that we currently need.
2985         */
2986         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2987         assert( p->pEList || db->mallocFailed );
2988         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2989           int iCont, iBreak, iStart;
2990           iBreak = sqlite3VdbeMakeLabel(pParse);
2991           iCont = sqlite3VdbeMakeLabel(pParse);
2992           computeLimitRegisters(pParse, p, iBreak);
2993           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2994           iStart = sqlite3VdbeCurrentAddr(v);
2995           selectInnerLoop(pParse, p, unionTab,
2996                           0, 0, &dest, iCont, iBreak);
2997           sqlite3VdbeResolveLabel(v, iCont);
2998           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2999           sqlite3VdbeResolveLabel(v, iBreak);
3000           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3001         }
3002         break;
3003       }
3004       default: assert( p->op==TK_INTERSECT ); {
3005         int tab1, tab2;
3006         int iCont, iBreak, iStart;
3007         Expr *pLimit;
3008         int addr;
3009         SelectDest intersectdest;
3010         int r1;
3011 
3012         /* INTERSECT is different from the others since it requires
3013         ** two temporary tables.  Hence it has its own case.  Begin
3014         ** by allocating the tables we will need.
3015         */
3016         tab1 = pParse->nTab++;
3017         tab2 = pParse->nTab++;
3018         assert( p->pOrderBy==0 );
3019 
3020         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3021         assert( p->addrOpenEphm[0] == -1 );
3022         p->addrOpenEphm[0] = addr;
3023         findRightmost(p)->selFlags |= SF_UsesEphemeral;
3024         assert( p->pEList );
3025 
3026         /* Code the SELECTs to our left into temporary table "tab1".
3027         */
3028         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3029         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
3030         rc = sqlite3Select(pParse, pPrior, &intersectdest);
3031         if( rc ){
3032           goto multi_select_end;
3033         }
3034 
3035         /* Code the current SELECT into temporary table "tab2"
3036         */
3037         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3038         assert( p->addrOpenEphm[1] == -1 );
3039         p->addrOpenEphm[1] = addr;
3040         p->pPrior = 0;
3041         pLimit = p->pLimit;
3042         p->pLimit = 0;
3043         intersectdest.iSDParm = tab2;
3044         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3045                           sqlite3SelectOpName(p->op)));
3046         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
3047         rc = sqlite3Select(pParse, p, &intersectdest);
3048         testcase( rc!=SQLITE_OK );
3049         pDelete = p->pPrior;
3050         p->pPrior = pPrior;
3051         if( p->nSelectRow>pPrior->nSelectRow ){
3052           p->nSelectRow = pPrior->nSelectRow;
3053         }
3054         sqlite3ExprDelete(db, p->pLimit);
3055         p->pLimit = pLimit;
3056 
3057         /* Generate code to take the intersection of the two temporary
3058         ** tables.
3059         */
3060         if( rc ) break;
3061         assert( p->pEList );
3062         iBreak = sqlite3VdbeMakeLabel(pParse);
3063         iCont = sqlite3VdbeMakeLabel(pParse);
3064         computeLimitRegisters(pParse, p, iBreak);
3065         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3066         r1 = sqlite3GetTempReg(pParse);
3067         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3068         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3069         VdbeCoverage(v);
3070         sqlite3ReleaseTempReg(pParse, r1);
3071         selectInnerLoop(pParse, p, tab1,
3072                         0, 0, &dest, iCont, iBreak);
3073         sqlite3VdbeResolveLabel(v, iCont);
3074         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3075         sqlite3VdbeResolveLabel(v, iBreak);
3076         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3077         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3078         break;
3079       }
3080     }
3081 
3082   #ifndef SQLITE_OMIT_EXPLAIN
3083     if( p->pNext==0 ){
3084       ExplainQueryPlanPop(pParse);
3085     }
3086   #endif
3087   }
3088   if( pParse->nErr ) goto multi_select_end;
3089 
3090   /* Compute collating sequences used by
3091   ** temporary tables needed to implement the compound select.
3092   ** Attach the KeyInfo structure to all temporary tables.
3093   **
3094   ** This section is run by the right-most SELECT statement only.
3095   ** SELECT statements to the left always skip this part.  The right-most
3096   ** SELECT might also skip this part if it has no ORDER BY clause and
3097   ** no temp tables are required.
3098   */
3099   if( p->selFlags & SF_UsesEphemeral ){
3100     int i;                        /* Loop counter */
3101     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
3102     Select *pLoop;                /* For looping through SELECT statements */
3103     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
3104     int nCol;                     /* Number of columns in result set */
3105 
3106     assert( p->pNext==0 );
3107     assert( p->pEList!=0 );
3108     nCol = p->pEList->nExpr;
3109     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3110     if( !pKeyInfo ){
3111       rc = SQLITE_NOMEM_BKPT;
3112       goto multi_select_end;
3113     }
3114     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3115       *apColl = multiSelectCollSeq(pParse, p, i);
3116       if( 0==*apColl ){
3117         *apColl = db->pDfltColl;
3118       }
3119     }
3120 
3121     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3122       for(i=0; i<2; i++){
3123         int addr = pLoop->addrOpenEphm[i];
3124         if( addr<0 ){
3125           /* If [0] is unused then [1] is also unused.  So we can
3126           ** always safely abort as soon as the first unused slot is found */
3127           assert( pLoop->addrOpenEphm[1]<0 );
3128           break;
3129         }
3130         sqlite3VdbeChangeP2(v, addr, nCol);
3131         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3132                             P4_KEYINFO);
3133         pLoop->addrOpenEphm[i] = -1;
3134       }
3135     }
3136     sqlite3KeyInfoUnref(pKeyInfo);
3137   }
3138 
3139 multi_select_end:
3140   pDest->iSdst = dest.iSdst;
3141   pDest->nSdst = dest.nSdst;
3142   if( pDelete ){
3143     sqlite3ParserAddCleanup(pParse,
3144         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3145         pDelete);
3146   }
3147   return rc;
3148 }
3149 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3150 
3151 /*
3152 ** Error message for when two or more terms of a compound select have different
3153 ** size result sets.
3154 */
3155 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3156   if( p->selFlags & SF_Values ){
3157     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3158   }else{
3159     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3160       " do not have the same number of result columns",
3161       sqlite3SelectOpName(p->op));
3162   }
3163 }
3164 
3165 /*
3166 ** Code an output subroutine for a coroutine implementation of a
3167 ** SELECT statment.
3168 **
3169 ** The data to be output is contained in pIn->iSdst.  There are
3170 ** pIn->nSdst columns to be output.  pDest is where the output should
3171 ** be sent.
3172 **
3173 ** regReturn is the number of the register holding the subroutine
3174 ** return address.
3175 **
3176 ** If regPrev>0 then it is the first register in a vector that
3177 ** records the previous output.  mem[regPrev] is a flag that is false
3178 ** if there has been no previous output.  If regPrev>0 then code is
3179 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3180 ** keys.
3181 **
3182 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3183 ** iBreak.
3184 */
3185 static int generateOutputSubroutine(
3186   Parse *pParse,          /* Parsing context */
3187   Select *p,              /* The SELECT statement */
3188   SelectDest *pIn,        /* Coroutine supplying data */
3189   SelectDest *pDest,      /* Where to send the data */
3190   int regReturn,          /* The return address register */
3191   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3192   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3193   int iBreak              /* Jump here if we hit the LIMIT */
3194 ){
3195   Vdbe *v = pParse->pVdbe;
3196   int iContinue;
3197   int addr;
3198 
3199   addr = sqlite3VdbeCurrentAddr(v);
3200   iContinue = sqlite3VdbeMakeLabel(pParse);
3201 
3202   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3203   */
3204   if( regPrev ){
3205     int addr1, addr2;
3206     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3207     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3208                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3209     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3210     sqlite3VdbeJumpHere(v, addr1);
3211     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3212     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3213   }
3214   if( pParse->db->mallocFailed ) return 0;
3215 
3216   /* Suppress the first OFFSET entries if there is an OFFSET clause
3217   */
3218   codeOffset(v, p->iOffset, iContinue);
3219 
3220   assert( pDest->eDest!=SRT_Exists );
3221   assert( pDest->eDest!=SRT_Table );
3222   switch( pDest->eDest ){
3223     /* Store the result as data using a unique key.
3224     */
3225     case SRT_EphemTab: {
3226       int r1 = sqlite3GetTempReg(pParse);
3227       int r2 = sqlite3GetTempReg(pParse);
3228       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3229       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3230       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3231       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3232       sqlite3ReleaseTempReg(pParse, r2);
3233       sqlite3ReleaseTempReg(pParse, r1);
3234       break;
3235     }
3236 
3237 #ifndef SQLITE_OMIT_SUBQUERY
3238     /* If we are creating a set for an "expr IN (SELECT ...)".
3239     */
3240     case SRT_Set: {
3241       int r1;
3242       testcase( pIn->nSdst>1 );
3243       r1 = sqlite3GetTempReg(pParse);
3244       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3245           r1, pDest->zAffSdst, pIn->nSdst);
3246       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3247                            pIn->iSdst, pIn->nSdst);
3248       sqlite3ReleaseTempReg(pParse, r1);
3249       break;
3250     }
3251 
3252     /* If this is a scalar select that is part of an expression, then
3253     ** store the results in the appropriate memory cell and break out
3254     ** of the scan loop.  Note that the select might return multiple columns
3255     ** if it is the RHS of a row-value IN operator.
3256     */
3257     case SRT_Mem: {
3258       testcase( pIn->nSdst>1 );
3259       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3260       /* The LIMIT clause will jump out of the loop for us */
3261       break;
3262     }
3263 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3264 
3265     /* The results are stored in a sequence of registers
3266     ** starting at pDest->iSdst.  Then the co-routine yields.
3267     */
3268     case SRT_Coroutine: {
3269       if( pDest->iSdst==0 ){
3270         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3271         pDest->nSdst = pIn->nSdst;
3272       }
3273       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3274       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3275       break;
3276     }
3277 
3278     /* If none of the above, then the result destination must be
3279     ** SRT_Output.  This routine is never called with any other
3280     ** destination other than the ones handled above or SRT_Output.
3281     **
3282     ** For SRT_Output, results are stored in a sequence of registers.
3283     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3284     ** return the next row of result.
3285     */
3286     default: {
3287       assert( pDest->eDest==SRT_Output );
3288       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3289       break;
3290     }
3291   }
3292 
3293   /* Jump to the end of the loop if the LIMIT is reached.
3294   */
3295   if( p->iLimit ){
3296     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3297   }
3298 
3299   /* Generate the subroutine return
3300   */
3301   sqlite3VdbeResolveLabel(v, iContinue);
3302   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3303 
3304   return addr;
3305 }
3306 
3307 /*
3308 ** Alternative compound select code generator for cases when there
3309 ** is an ORDER BY clause.
3310 **
3311 ** We assume a query of the following form:
3312 **
3313 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3314 **
3315 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3316 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3317 ** co-routines.  Then run the co-routines in parallel and merge the results
3318 ** into the output.  In addition to the two coroutines (called selectA and
3319 ** selectB) there are 7 subroutines:
3320 **
3321 **    outA:    Move the output of the selectA coroutine into the output
3322 **             of the compound query.
3323 **
3324 **    outB:    Move the output of the selectB coroutine into the output
3325 **             of the compound query.  (Only generated for UNION and
3326 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3327 **             appears only in B.)
3328 **
3329 **    AltB:    Called when there is data from both coroutines and A<B.
3330 **
3331 **    AeqB:    Called when there is data from both coroutines and A==B.
3332 **
3333 **    AgtB:    Called when there is data from both coroutines and A>B.
3334 **
3335 **    EofA:    Called when data is exhausted from selectA.
3336 **
3337 **    EofB:    Called when data is exhausted from selectB.
3338 **
3339 ** The implementation of the latter five subroutines depend on which
3340 ** <operator> is used:
3341 **
3342 **
3343 **             UNION ALL         UNION            EXCEPT          INTERSECT
3344 **          -------------  -----------------  --------------  -----------------
3345 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3346 **
3347 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3348 **
3349 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3350 **
3351 **   EofA:   outB, nextB      outB, nextB          halt             halt
3352 **
3353 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3354 **
3355 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3356 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3357 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3358 ** following nextX causes a jump to the end of the select processing.
3359 **
3360 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3361 ** within the output subroutine.  The regPrev register set holds the previously
3362 ** output value.  A comparison is made against this value and the output
3363 ** is skipped if the next results would be the same as the previous.
3364 **
3365 ** The implementation plan is to implement the two coroutines and seven
3366 ** subroutines first, then put the control logic at the bottom.  Like this:
3367 **
3368 **          goto Init
3369 **     coA: coroutine for left query (A)
3370 **     coB: coroutine for right query (B)
3371 **    outA: output one row of A
3372 **    outB: output one row of B (UNION and UNION ALL only)
3373 **    EofA: ...
3374 **    EofB: ...
3375 **    AltB: ...
3376 **    AeqB: ...
3377 **    AgtB: ...
3378 **    Init: initialize coroutine registers
3379 **          yield coA
3380 **          if eof(A) goto EofA
3381 **          yield coB
3382 **          if eof(B) goto EofB
3383 **    Cmpr: Compare A, B
3384 **          Jump AltB, AeqB, AgtB
3385 **     End: ...
3386 **
3387 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3388 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3389 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3390 ** and AgtB jump to either L2 or to one of EofA or EofB.
3391 */
3392 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3393 static int multiSelectOrderBy(
3394   Parse *pParse,        /* Parsing context */
3395   Select *p,            /* The right-most of SELECTs to be coded */
3396   SelectDest *pDest     /* What to do with query results */
3397 ){
3398   int i, j;             /* Loop counters */
3399   Select *pPrior;       /* Another SELECT immediately to our left */
3400   Select *pSplit;       /* Left-most SELECT in the right-hand group */
3401   int nSelect;          /* Number of SELECT statements in the compound */
3402   Vdbe *v;              /* Generate code to this VDBE */
3403   SelectDest destA;     /* Destination for coroutine A */
3404   SelectDest destB;     /* Destination for coroutine B */
3405   int regAddrA;         /* Address register for select-A coroutine */
3406   int regAddrB;         /* Address register for select-B coroutine */
3407   int addrSelectA;      /* Address of the select-A coroutine */
3408   int addrSelectB;      /* Address of the select-B coroutine */
3409   int regOutA;          /* Address register for the output-A subroutine */
3410   int regOutB;          /* Address register for the output-B subroutine */
3411   int addrOutA;         /* Address of the output-A subroutine */
3412   int addrOutB = 0;     /* Address of the output-B subroutine */
3413   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3414   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3415   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3416   int addrAltB;         /* Address of the A<B subroutine */
3417   int addrAeqB;         /* Address of the A==B subroutine */
3418   int addrAgtB;         /* Address of the A>B subroutine */
3419   int regLimitA;        /* Limit register for select-A */
3420   int regLimitB;        /* Limit register for select-A */
3421   int regPrev;          /* A range of registers to hold previous output */
3422   int savedLimit;       /* Saved value of p->iLimit */
3423   int savedOffset;      /* Saved value of p->iOffset */
3424   int labelCmpr;        /* Label for the start of the merge algorithm */
3425   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3426   int addr1;            /* Jump instructions that get retargetted */
3427   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3428   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3429   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3430   sqlite3 *db;          /* Database connection */
3431   ExprList *pOrderBy;   /* The ORDER BY clause */
3432   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3433   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3434 
3435   assert( p->pOrderBy!=0 );
3436   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3437   db = pParse->db;
3438   v = pParse->pVdbe;
3439   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3440   labelEnd = sqlite3VdbeMakeLabel(pParse);
3441   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3442 
3443 
3444   /* Patch up the ORDER BY clause
3445   */
3446   op = p->op;
3447   assert( p->pPrior->pOrderBy==0 );
3448   pOrderBy = p->pOrderBy;
3449   assert( pOrderBy );
3450   nOrderBy = pOrderBy->nExpr;
3451 
3452   /* For operators other than UNION ALL we have to make sure that
3453   ** the ORDER BY clause covers every term of the result set.  Add
3454   ** terms to the ORDER BY clause as necessary.
3455   */
3456   if( op!=TK_ALL ){
3457     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3458       struct ExprList_item *pItem;
3459       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3460         assert( pItem!=0 );
3461         assert( pItem->u.x.iOrderByCol>0 );
3462         if( pItem->u.x.iOrderByCol==i ) break;
3463       }
3464       if( j==nOrderBy ){
3465         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3466         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3467         pNew->flags |= EP_IntValue;
3468         pNew->u.iValue = i;
3469         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3470         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3471       }
3472     }
3473   }
3474 
3475   /* Compute the comparison permutation and keyinfo that is used with
3476   ** the permutation used to determine if the next
3477   ** row of results comes from selectA or selectB.  Also add explicit
3478   ** collations to the ORDER BY clause terms so that when the subqueries
3479   ** to the right and the left are evaluated, they use the correct
3480   ** collation.
3481   */
3482   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3483   if( aPermute ){
3484     struct ExprList_item *pItem;
3485     aPermute[0] = nOrderBy;
3486     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3487       assert( pItem!=0 );
3488       assert( pItem->u.x.iOrderByCol>0 );
3489       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3490       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3491     }
3492     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3493   }else{
3494     pKeyMerge = 0;
3495   }
3496 
3497   /* Allocate a range of temporary registers and the KeyInfo needed
3498   ** for the logic that removes duplicate result rows when the
3499   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3500   */
3501   if( op==TK_ALL ){
3502     regPrev = 0;
3503   }else{
3504     int nExpr = p->pEList->nExpr;
3505     assert( nOrderBy>=nExpr || db->mallocFailed );
3506     regPrev = pParse->nMem+1;
3507     pParse->nMem += nExpr+1;
3508     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3509     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3510     if( pKeyDup ){
3511       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3512       for(i=0; i<nExpr; i++){
3513         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3514         pKeyDup->aSortFlags[i] = 0;
3515       }
3516     }
3517   }
3518 
3519   /* Separate the left and the right query from one another
3520   */
3521   nSelect = 1;
3522   if( (op==TK_ALL || op==TK_UNION)
3523    && OptimizationEnabled(db, SQLITE_BalancedMerge)
3524   ){
3525     for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3526       nSelect++;
3527       assert( pSplit->pPrior->pNext==pSplit );
3528     }
3529   }
3530   if( nSelect<=3 ){
3531     pSplit = p;
3532   }else{
3533     pSplit = p;
3534     for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3535   }
3536   pPrior = pSplit->pPrior;
3537   assert( pPrior!=0 );
3538   pSplit->pPrior = 0;
3539   pPrior->pNext = 0;
3540   assert( p->pOrderBy == pOrderBy );
3541   assert( pOrderBy!=0 || db->mallocFailed );
3542   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3543   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3544   sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3545 
3546   /* Compute the limit registers */
3547   computeLimitRegisters(pParse, p, labelEnd);
3548   if( p->iLimit && op==TK_ALL ){
3549     regLimitA = ++pParse->nMem;
3550     regLimitB = ++pParse->nMem;
3551     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3552                                   regLimitA);
3553     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3554   }else{
3555     regLimitA = regLimitB = 0;
3556   }
3557   sqlite3ExprDelete(db, p->pLimit);
3558   p->pLimit = 0;
3559 
3560   regAddrA = ++pParse->nMem;
3561   regAddrB = ++pParse->nMem;
3562   regOutA = ++pParse->nMem;
3563   regOutB = ++pParse->nMem;
3564   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3565   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3566 
3567   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3568 
3569   /* Generate a coroutine to evaluate the SELECT statement to the
3570   ** left of the compound operator - the "A" select.
3571   */
3572   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3573   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3574   VdbeComment((v, "left SELECT"));
3575   pPrior->iLimit = regLimitA;
3576   ExplainQueryPlan((pParse, 1, "LEFT"));
3577   sqlite3Select(pParse, pPrior, &destA);
3578   sqlite3VdbeEndCoroutine(v, regAddrA);
3579   sqlite3VdbeJumpHere(v, addr1);
3580 
3581   /* Generate a coroutine to evaluate the SELECT statement on
3582   ** the right - the "B" select
3583   */
3584   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3585   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3586   VdbeComment((v, "right SELECT"));
3587   savedLimit = p->iLimit;
3588   savedOffset = p->iOffset;
3589   p->iLimit = regLimitB;
3590   p->iOffset = 0;
3591   ExplainQueryPlan((pParse, 1, "RIGHT"));
3592   sqlite3Select(pParse, p, &destB);
3593   p->iLimit = savedLimit;
3594   p->iOffset = savedOffset;
3595   sqlite3VdbeEndCoroutine(v, regAddrB);
3596 
3597   /* Generate a subroutine that outputs the current row of the A
3598   ** select as the next output row of the compound select.
3599   */
3600   VdbeNoopComment((v, "Output routine for A"));
3601   addrOutA = generateOutputSubroutine(pParse,
3602                  p, &destA, pDest, regOutA,
3603                  regPrev, pKeyDup, labelEnd);
3604 
3605   /* Generate a subroutine that outputs the current row of the B
3606   ** select as the next output row of the compound select.
3607   */
3608   if( op==TK_ALL || op==TK_UNION ){
3609     VdbeNoopComment((v, "Output routine for B"));
3610     addrOutB = generateOutputSubroutine(pParse,
3611                  p, &destB, pDest, regOutB,
3612                  regPrev, pKeyDup, labelEnd);
3613   }
3614   sqlite3KeyInfoUnref(pKeyDup);
3615 
3616   /* Generate a subroutine to run when the results from select A
3617   ** are exhausted and only data in select B remains.
3618   */
3619   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3620     addrEofA_noB = addrEofA = labelEnd;
3621   }else{
3622     VdbeNoopComment((v, "eof-A subroutine"));
3623     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3624     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3625                                      VdbeCoverage(v);
3626     sqlite3VdbeGoto(v, addrEofA);
3627     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3628   }
3629 
3630   /* Generate a subroutine to run when the results from select B
3631   ** are exhausted and only data in select A remains.
3632   */
3633   if( op==TK_INTERSECT ){
3634     addrEofB = addrEofA;
3635     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3636   }else{
3637     VdbeNoopComment((v, "eof-B subroutine"));
3638     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3639     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3640     sqlite3VdbeGoto(v, addrEofB);
3641   }
3642 
3643   /* Generate code to handle the case of A<B
3644   */
3645   VdbeNoopComment((v, "A-lt-B subroutine"));
3646   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3647   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3648   sqlite3VdbeGoto(v, labelCmpr);
3649 
3650   /* Generate code to handle the case of A==B
3651   */
3652   if( op==TK_ALL ){
3653     addrAeqB = addrAltB;
3654   }else if( op==TK_INTERSECT ){
3655     addrAeqB = addrAltB;
3656     addrAltB++;
3657   }else{
3658     VdbeNoopComment((v, "A-eq-B subroutine"));
3659     addrAeqB =
3660     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3661     sqlite3VdbeGoto(v, labelCmpr);
3662   }
3663 
3664   /* Generate code to handle the case of A>B
3665   */
3666   VdbeNoopComment((v, "A-gt-B subroutine"));
3667   addrAgtB = sqlite3VdbeCurrentAddr(v);
3668   if( op==TK_ALL || op==TK_UNION ){
3669     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3670   }
3671   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3672   sqlite3VdbeGoto(v, labelCmpr);
3673 
3674   /* This code runs once to initialize everything.
3675   */
3676   sqlite3VdbeJumpHere(v, addr1);
3677   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3678   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3679 
3680   /* Implement the main merge loop
3681   */
3682   sqlite3VdbeResolveLabel(v, labelCmpr);
3683   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3684   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3685                          (char*)pKeyMerge, P4_KEYINFO);
3686   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3687   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3688 
3689   /* Jump to the this point in order to terminate the query.
3690   */
3691   sqlite3VdbeResolveLabel(v, labelEnd);
3692 
3693   /* Reassemble the compound query so that it will be freed correctly
3694   ** by the calling function */
3695   if( pSplit->pPrior ){
3696     sqlite3ParserAddCleanup(pParse,
3697        (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior);
3698   }
3699   pSplit->pPrior = pPrior;
3700   pPrior->pNext = pSplit;
3701   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3702   pPrior->pOrderBy = 0;
3703 
3704   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3705   **** subqueries ****/
3706   ExplainQueryPlanPop(pParse);
3707   return pParse->nErr!=0;
3708 }
3709 #endif
3710 
3711 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3712 
3713 /* An instance of the SubstContext object describes an substitution edit
3714 ** to be performed on a parse tree.
3715 **
3716 ** All references to columns in table iTable are to be replaced by corresponding
3717 ** expressions in pEList.
3718 **
3719 ** ## About "isOuterJoin":
3720 **
3721 ** The isOuterJoin column indicates that the replacement will occur into a
3722 ** position in the parent that NULL-able due to an OUTER JOIN.  Either the
3723 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3724 ** the left operands of a RIGHT JOIN.  In either case, we need to potentially
3725 ** bypass the substituted expression with OP_IfNullRow.
3726 **
3727 ** Suppose the original expression integer constant.  Even though the table
3728 ** has the nullRow flag set, because the expression is an integer constant,
3729 ** it will not be NULLed out.  So instead, we insert an OP_IfNullRow opcode
3730 ** that checks to see if the nullRow flag is set on the table.  If the nullRow
3731 ** flag is set, then the value in the register is set to NULL and the original
3732 ** expression is bypassed.  If the nullRow flag is not set, then the original
3733 ** expression runs to populate the register.
3734 **
3735 ** Example where this is needed:
3736 **
3737 **      CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3738 **      CREATE TABLE t2(x INT UNIQUE);
3739 **
3740 **      SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3741 **
3742 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3743 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3744 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3745 ** when processing a non-matched row of the left.
3746 */
3747 typedef struct SubstContext {
3748   Parse *pParse;            /* The parsing context */
3749   int iTable;               /* Replace references to this table */
3750   int iNewTable;            /* New table number */
3751   int isOuterJoin;          /* Add TK_IF_NULL_ROW opcodes on each replacement */
3752   ExprList *pEList;         /* Replacement expressions */
3753 } SubstContext;
3754 
3755 /* Forward Declarations */
3756 static void substExprList(SubstContext*, ExprList*);
3757 static void substSelect(SubstContext*, Select*, int);
3758 
3759 /*
3760 ** Scan through the expression pExpr.  Replace every reference to
3761 ** a column in table number iTable with a copy of the iColumn-th
3762 ** entry in pEList.  (But leave references to the ROWID column
3763 ** unchanged.)
3764 **
3765 ** This routine is part of the flattening procedure.  A subquery
3766 ** whose result set is defined by pEList appears as entry in the
3767 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3768 ** FORM clause entry is iTable.  This routine makes the necessary
3769 ** changes to pExpr so that it refers directly to the source table
3770 ** of the subquery rather the result set of the subquery.
3771 */
3772 static Expr *substExpr(
3773   SubstContext *pSubst,  /* Description of the substitution */
3774   Expr *pExpr            /* Expr in which substitution occurs */
3775 ){
3776   if( pExpr==0 ) return 0;
3777   if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3778    && pExpr->w.iJoin==pSubst->iTable
3779   ){
3780     testcase( ExprHasProperty(pExpr, EP_InnerON) );
3781     pExpr->w.iJoin = pSubst->iNewTable;
3782   }
3783   if( pExpr->op==TK_COLUMN
3784    && pExpr->iTable==pSubst->iTable
3785    && !ExprHasProperty(pExpr, EP_FixedCol)
3786   ){
3787 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3788     if( pExpr->iColumn<0 ){
3789       pExpr->op = TK_NULL;
3790     }else
3791 #endif
3792     {
3793       Expr *pNew;
3794       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3795       Expr ifNullRow;
3796       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3797       assert( pExpr->pRight==0 );
3798       if( sqlite3ExprIsVector(pCopy) ){
3799         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3800       }else{
3801         sqlite3 *db = pSubst->pParse->db;
3802         if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){
3803           memset(&ifNullRow, 0, sizeof(ifNullRow));
3804           ifNullRow.op = TK_IF_NULL_ROW;
3805           ifNullRow.pLeft = pCopy;
3806           ifNullRow.iTable = pSubst->iNewTable;
3807           ifNullRow.iColumn = -99;
3808           ifNullRow.flags = EP_IfNullRow;
3809           pCopy = &ifNullRow;
3810         }
3811         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3812         pNew = sqlite3ExprDup(db, pCopy, 0);
3813         if( db->mallocFailed ){
3814           sqlite3ExprDelete(db, pNew);
3815           return pExpr;
3816         }
3817         if( pSubst->isOuterJoin ){
3818           ExprSetProperty(pNew, EP_CanBeNull);
3819         }
3820         if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3821           sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3822                              pExpr->flags & (EP_OuterON|EP_InnerON));
3823         }
3824         sqlite3ExprDelete(db, pExpr);
3825         pExpr = pNew;
3826         if( pExpr->op==TK_TRUEFALSE ){
3827           pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3828           pExpr->op = TK_INTEGER;
3829           ExprSetProperty(pExpr, EP_IntValue);
3830         }
3831 
3832         /* Ensure that the expression now has an implicit collation sequence,
3833         ** just as it did when it was a column of a view or sub-query. */
3834         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3835           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3836           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3837               (pColl ? pColl->zName : "BINARY")
3838           );
3839         }
3840         ExprClearProperty(pExpr, EP_Collate);
3841       }
3842     }
3843   }else{
3844     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3845       pExpr->iTable = pSubst->iNewTable;
3846     }
3847     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3848     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3849     if( ExprUseXSelect(pExpr) ){
3850       substSelect(pSubst, pExpr->x.pSelect, 1);
3851     }else{
3852       substExprList(pSubst, pExpr->x.pList);
3853     }
3854 #ifndef SQLITE_OMIT_WINDOWFUNC
3855     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3856       Window *pWin = pExpr->y.pWin;
3857       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3858       substExprList(pSubst, pWin->pPartition);
3859       substExprList(pSubst, pWin->pOrderBy);
3860     }
3861 #endif
3862   }
3863   return pExpr;
3864 }
3865 static void substExprList(
3866   SubstContext *pSubst, /* Description of the substitution */
3867   ExprList *pList       /* List to scan and in which to make substitutes */
3868 ){
3869   int i;
3870   if( pList==0 ) return;
3871   for(i=0; i<pList->nExpr; i++){
3872     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3873   }
3874 }
3875 static void substSelect(
3876   SubstContext *pSubst, /* Description of the substitution */
3877   Select *p,            /* SELECT statement in which to make substitutions */
3878   int doPrior           /* Do substitutes on p->pPrior too */
3879 ){
3880   SrcList *pSrc;
3881   SrcItem *pItem;
3882   int i;
3883   if( !p ) return;
3884   do{
3885     substExprList(pSubst, p->pEList);
3886     substExprList(pSubst, p->pGroupBy);
3887     substExprList(pSubst, p->pOrderBy);
3888     p->pHaving = substExpr(pSubst, p->pHaving);
3889     p->pWhere = substExpr(pSubst, p->pWhere);
3890     pSrc = p->pSrc;
3891     assert( pSrc!=0 );
3892     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3893       substSelect(pSubst, pItem->pSelect, 1);
3894       if( pItem->fg.isTabFunc ){
3895         substExprList(pSubst, pItem->u1.pFuncArg);
3896       }
3897     }
3898   }while( doPrior && (p = p->pPrior)!=0 );
3899 }
3900 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3901 
3902 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3903 /*
3904 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3905 ** clause of that SELECT.
3906 **
3907 ** This routine scans the entire SELECT statement and recomputes the
3908 ** pSrcItem->colUsed mask.
3909 */
3910 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3911   SrcItem *pItem;
3912   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3913   pItem = pWalker->u.pSrcItem;
3914   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3915   if( pExpr->iColumn<0 ) return WRC_Continue;
3916   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3917   return WRC_Continue;
3918 }
3919 static void recomputeColumnsUsed(
3920   Select *pSelect,                 /* The complete SELECT statement */
3921   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3922 ){
3923   Walker w;
3924   if( NEVER(pSrcItem->pTab==0) ) return;
3925   memset(&w, 0, sizeof(w));
3926   w.xExprCallback = recomputeColumnsUsedExpr;
3927   w.xSelectCallback = sqlite3SelectWalkNoop;
3928   w.u.pSrcItem = pSrcItem;
3929   pSrcItem->colUsed = 0;
3930   sqlite3WalkSelect(&w, pSelect);
3931 }
3932 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3933 
3934 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3935 /*
3936 ** Assign new cursor numbers to each of the items in pSrc. For each
3937 ** new cursor number assigned, set an entry in the aCsrMap[] array
3938 ** to map the old cursor number to the new:
3939 **
3940 **     aCsrMap[iOld+1] = iNew;
3941 **
3942 ** The array is guaranteed by the caller to be large enough for all
3943 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3944 **
3945 ** If pSrc contains any sub-selects, call this routine recursively
3946 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3947 */
3948 static void srclistRenumberCursors(
3949   Parse *pParse,                  /* Parse context */
3950   int *aCsrMap,                   /* Array to store cursor mappings in */
3951   SrcList *pSrc,                  /* FROM clause to renumber */
3952   int iExcept                     /* FROM clause item to skip */
3953 ){
3954   int i;
3955   SrcItem *pItem;
3956   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3957     if( i!=iExcept ){
3958       Select *p;
3959       assert( pItem->iCursor < aCsrMap[0] );
3960       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3961         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3962       }
3963       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3964       for(p=pItem->pSelect; p; p=p->pPrior){
3965         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3966       }
3967     }
3968   }
3969 }
3970 
3971 /*
3972 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3973 */
3974 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3975   int *aCsrMap = pWalker->u.aiCol;
3976   int iCsr = *piCursor;
3977   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3978     *piCursor = aCsrMap[iCsr+1];
3979   }
3980 }
3981 
3982 /*
3983 ** Expression walker callback used by renumberCursors() to update
3984 ** Expr objects to match newly assigned cursor numbers.
3985 */
3986 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3987   int op = pExpr->op;
3988   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3989     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3990   }
3991   if( ExprHasProperty(pExpr, EP_OuterON) ){
3992     renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
3993   }
3994   return WRC_Continue;
3995 }
3996 
3997 /*
3998 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3999 ** of the SELECT statement passed as the second argument, and to each
4000 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4001 ** Except, do not assign a new cursor number to the iExcept'th element in
4002 ** the FROM clause of (*p). Update all expressions and other references
4003 ** to refer to the new cursor numbers.
4004 **
4005 ** Argument aCsrMap is an array that may be used for temporary working
4006 ** space. Two guarantees are made by the caller:
4007 **
4008 **   * the array is larger than the largest cursor number used within the
4009 **     select statement passed as an argument, and
4010 **
4011 **   * the array entries for all cursor numbers that do *not* appear in
4012 **     FROM clauses of the select statement as described above are
4013 **     initialized to zero.
4014 */
4015 static void renumberCursors(
4016   Parse *pParse,                  /* Parse context */
4017   Select *p,                      /* Select to renumber cursors within */
4018   int iExcept,                    /* FROM clause item to skip */
4019   int *aCsrMap                    /* Working space */
4020 ){
4021   Walker w;
4022   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4023   memset(&w, 0, sizeof(w));
4024   w.u.aiCol = aCsrMap;
4025   w.xExprCallback = renumberCursorsCb;
4026   w.xSelectCallback = sqlite3SelectWalkNoop;
4027   sqlite3WalkSelect(&w, p);
4028 }
4029 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4030 
4031 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4032 /*
4033 ** This routine attempts to flatten subqueries as a performance optimization.
4034 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4035 **
4036 ** To understand the concept of flattening, consider the following
4037 ** query:
4038 **
4039 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4040 **
4041 ** The default way of implementing this query is to execute the
4042 ** subquery first and store the results in a temporary table, then
4043 ** run the outer query on that temporary table.  This requires two
4044 ** passes over the data.  Furthermore, because the temporary table
4045 ** has no indices, the WHERE clause on the outer query cannot be
4046 ** optimized.
4047 **
4048 ** This routine attempts to rewrite queries such as the above into
4049 ** a single flat select, like this:
4050 **
4051 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4052 **
4053 ** The code generated for this simplification gives the same result
4054 ** but only has to scan the data once.  And because indices might
4055 ** exist on the table t1, a complete scan of the data might be
4056 ** avoided.
4057 **
4058 ** Flattening is subject to the following constraints:
4059 **
4060 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
4061 **        The subquery and the outer query cannot both be aggregates.
4062 **
4063 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
4064 **        (2) If the subquery is an aggregate then
4065 **        (2a) the outer query must not be a join and
4066 **        (2b) the outer query must not use subqueries
4067 **             other than the one FROM-clause subquery that is a candidate
4068 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
4069 **             from 2015-02-09.)
4070 **
4071 **   (3)  If the subquery is the right operand of a LEFT JOIN then
4072 **        (3a) the subquery may not be a join and
4073 **        (3b) the FROM clause of the subquery may not contain a virtual
4074 **             table and
4075 **        (**) Was: "The outer query may not have a GROUP BY." This case
4076 **             is now managed correctly
4077 **        (3d) the outer query may not be DISTINCT.
4078 **        See also (26) for restrictions on RIGHT JOIN.
4079 **
4080 **   (4)  The subquery can not be DISTINCT.
4081 **
4082 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
4083 **        sub-queries that were excluded from this optimization. Restriction
4084 **        (4) has since been expanded to exclude all DISTINCT subqueries.
4085 **
4086 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4087 **        If the subquery is aggregate, the outer query may not be DISTINCT.
4088 **
4089 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
4090 **        A FROM clause, consider adding a FROM clause with the special
4091 **        table sqlite_once that consists of a single row containing a
4092 **        single NULL.
4093 **
4094 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
4095 **
4096 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
4097 **
4098 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
4099 **        accidently carried the comment forward until 2014-09-15.  Original
4100 **        constraint: "If the subquery is aggregate then the outer query
4101 **        may not use LIMIT."
4102 **
4103 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
4104 **
4105 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
4106 **        a separate restriction deriving from ticket #350.
4107 **
4108 **  (13)  The subquery and outer query may not both use LIMIT.
4109 **
4110 **  (14)  The subquery may not use OFFSET.
4111 **
4112 **  (15)  If the outer query is part of a compound select, then the
4113 **        subquery may not use LIMIT.
4114 **        (See ticket #2339 and ticket [02a8e81d44]).
4115 **
4116 **  (16)  If the outer query is aggregate, then the subquery may not
4117 **        use ORDER BY.  (Ticket #2942)  This used to not matter
4118 **        until we introduced the group_concat() function.
4119 **
4120 **  (17)  If the subquery is a compound select, then
4121 **        (17a) all compound operators must be a UNION ALL, and
4122 **        (17b) no terms within the subquery compound may be aggregate
4123 **              or DISTINCT, and
4124 **        (17c) every term within the subquery compound must have a FROM clause
4125 **        (17d) the outer query may not be
4126 **              (17d1) aggregate, or
4127 **              (17d2) DISTINCT
4128 **        (17e) the subquery may not contain window functions, and
4129 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
4130 **        (17g) either the subquery is the first element of the outer
4131 **              query or there are no RIGHT or FULL JOINs in any arm
4132 **              of the subquery.  (This is a duplicate of condition (27b).)
4133 **
4134 **        The parent and sub-query may contain WHERE clauses. Subject to
4135 **        rules (11), (13) and (14), they may also contain ORDER BY,
4136 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
4137 **        operator other than UNION ALL because all the other compound
4138 **        operators have an implied DISTINCT which is disallowed by
4139 **        restriction (4).
4140 **
4141 **        Also, each component of the sub-query must return the same number
4142 **        of result columns. This is actually a requirement for any compound
4143 **        SELECT statement, but all the code here does is make sure that no
4144 **        such (illegal) sub-query is flattened. The caller will detect the
4145 **        syntax error and return a detailed message.
4146 **
4147 **  (18)  If the sub-query is a compound select, then all terms of the
4148 **        ORDER BY clause of the parent must be copies of a term returned
4149 **        by the parent query.
4150 **
4151 **  (19)  If the subquery uses LIMIT then the outer query may not
4152 **        have a WHERE clause.
4153 **
4154 **  (20)  If the sub-query is a compound select, then it must not use
4155 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
4156 **        somewhat by saying that the terms of the ORDER BY clause must
4157 **        appear as unmodified result columns in the outer query.  But we
4158 **        have other optimizations in mind to deal with that case.
4159 **
4160 **  (21)  If the subquery uses LIMIT then the outer query may not be
4161 **        DISTINCT.  (See ticket [752e1646fc]).
4162 **
4163 **  (22)  The subquery may not be a recursive CTE.
4164 **
4165 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
4166 **        a compound query.  This restriction is because transforming the
4167 **        parent to a compound query confuses the code that handles
4168 **        recursive queries in multiSelect().
4169 **
4170 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4171 **        The subquery may not be an aggregate that uses the built-in min() or
4172 **        or max() functions.  (Without this restriction, a query like:
4173 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4174 **        return the value X for which Y was maximal.)
4175 **
4176 **  (25)  If either the subquery or the parent query contains a window
4177 **        function in the select list or ORDER BY clause, flattening
4178 **        is not attempted.
4179 **
4180 **  (26)  The subquery may not be the right operand of a RIGHT JOIN.
4181 **        See also (3) for restrictions on LEFT JOIN.
4182 **
4183 **  (27)  The subquery may not contain a FULL or RIGHT JOIN unless it
4184 **        is the first element of the parent query.  This must be the
4185 **        the case if:
4186 **        (27a) the subquery is not compound query, and
4187 **        (27b) the subquery is a compound query and the RIGHT JOIN occurs
4188 **              in any arm of the compound query.  (See also (17g).)
4189 **
4190 **  (28)  The subquery is not a MATERIALIZED CTE.
4191 **
4192 **  (29)  Either the subquery is not the right-hand operand of a join with an
4193 **        ON or USING clause nor the right-hand operand of a NATURAL JOIN, or
4194 **        the right-most table within the FROM clause of the subquery
4195 **        is not part of an outer join.
4196 **
4197 **
4198 ** In this routine, the "p" parameter is a pointer to the outer query.
4199 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4200 ** uses aggregates.
4201 **
4202 ** If flattening is not attempted, this routine is a no-op and returns 0.
4203 ** If flattening is attempted this routine returns 1.
4204 **
4205 ** All of the expression analysis must occur on both the outer query and
4206 ** the subquery before this routine runs.
4207 */
4208 static int flattenSubquery(
4209   Parse *pParse,       /* Parsing context */
4210   Select *p,           /* The parent or outer SELECT statement */
4211   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4212   int isAgg            /* True if outer SELECT uses aggregate functions */
4213 ){
4214   const char *zSavedAuthContext = pParse->zAuthContext;
4215   Select *pParent;    /* Current UNION ALL term of the other query */
4216   Select *pSub;       /* The inner query or "subquery" */
4217   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4218   SrcList *pSrc;      /* The FROM clause of the outer query */
4219   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4220   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4221   int iNewParent = -1;/* Replacement table for iParent */
4222   int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4223   int i;              /* Loop counter */
4224   Expr *pWhere;                    /* The WHERE clause */
4225   SrcItem *pSubitem;               /* The subquery */
4226   sqlite3 *db = pParse->db;
4227   Walker w;                        /* Walker to persist agginfo data */
4228   int *aCsrMap = 0;
4229 
4230   /* Check to see if flattening is permitted.  Return 0 if not.
4231   */
4232   assert( p!=0 );
4233   assert( p->pPrior==0 );
4234   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4235   pSrc = p->pSrc;
4236   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4237   pSubitem = &pSrc->a[iFrom];
4238   iParent = pSubitem->iCursor;
4239   pSub = pSubitem->pSelect;
4240   assert( pSub!=0 );
4241 
4242 #ifndef SQLITE_OMIT_WINDOWFUNC
4243   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4244 #endif
4245 
4246   pSubSrc = pSub->pSrc;
4247   assert( pSubSrc );
4248   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4249   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4250   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4251   ** became arbitrary expressions, we were forced to add restrictions (13)
4252   ** and (14). */
4253   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4254   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4255   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4256     return 0;                                            /* Restriction (15) */
4257   }
4258   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4259   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4260   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4261      return 0;         /* Restrictions (8)(9) */
4262   }
4263   if( p->pOrderBy && pSub->pOrderBy ){
4264      return 0;                                           /* Restriction (11) */
4265   }
4266   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4267   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4268   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4269      return 0;         /* Restriction (21) */
4270   }
4271   if( pSub->selFlags & (SF_Recursive) ){
4272     return 0; /* Restrictions (22) */
4273   }
4274 
4275   /*
4276   ** If the subquery is the right operand of a LEFT JOIN, then the
4277   ** subquery may not be a join itself (3a). Example of why this is not
4278   ** allowed:
4279   **
4280   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4281   **
4282   ** If we flatten the above, we would get
4283   **
4284   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4285   **
4286   ** which is not at all the same thing.
4287   **
4288   ** See also tickets #306, #350, and #3300.
4289   */
4290   if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4291     if( pSubSrc->nSrc>1                        /* (3a) */
4292      || IsVirtual(pSubSrc->a[0].pTab)          /* (3b) */
4293      || (p->selFlags & SF_Distinct)!=0         /* (3d) */
4294      || (pSubitem->fg.jointype & JT_RIGHT)!=0  /* (26) */
4295     ){
4296       return 0;
4297     }
4298     isOuterJoin = 1;
4299   }
4300 #ifdef SQLITE_EXTRA_IFNULLROW
4301   else if( iFrom>0 && !isAgg ){
4302     /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for
4303     ** every reference to any result column from subquery in a join, even
4304     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4305     ** opcode. */
4306     isOuterJoin = -1;
4307   }
4308 #endif
4309 
4310   assert( pSubSrc->nSrc>0 );  /* True by restriction (7) */
4311   if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4312     return 0;   /* Restriction (27a) */
4313   }
4314   if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
4315     return 0;       /* (28) */
4316   }
4317 
4318   /* Restriction (29):
4319   **
4320   ** We do not want two constraints on the same term of the flattened
4321   ** query where one constraint has EP_InnerON and the other is EP_OuterON.
4322   ** To prevent this, one or the other of the following conditions must be
4323   ** false:
4324   **
4325   **   (29a)  The right-most entry in the FROM clause of the subquery
4326   **          must not be part of an outer join.
4327   **
4328   **   (29b)  The subquery itself must not be the right operand of a
4329   **          NATURAL join or a join that as an ON or USING clause.
4330   **
4331   ** These conditions are sufficient to keep an EP_OuterON from being
4332   ** flattened into an EP_InnerON.  Restrictions (3a) and (27a) prevent
4333   ** an EP_InnerON from being flattened into an EP_OuterON.
4334   */
4335   if( pSubSrc->nSrc>=2
4336    && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0
4337   ){
4338     if( (pSubitem->fg.jointype & JT_NATURAL)!=0
4339      || pSubitem->fg.isUsing
4340      || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */
4341      || pSubitem->fg.isOn
4342     ){
4343       return 0;
4344     }
4345   }
4346 
4347   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4348   ** use only the UNION ALL operator. And none of the simple select queries
4349   ** that make up the compound SELECT are allowed to be aggregate or distinct
4350   ** queries.
4351   */
4352   if( pSub->pPrior ){
4353     if( pSub->pOrderBy ){
4354       return 0;  /* Restriction (20) */
4355     }
4356     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4357       return 0; /* (17d1), (17d2), or (17f) */
4358     }
4359     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4360       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4361       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4362       assert( pSub->pSrc!=0 );
4363       assert( (pSub->selFlags & SF_Recursive)==0 );
4364       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4365       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4366        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4367        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4368 #ifndef SQLITE_OMIT_WINDOWFUNC
4369        || pSub1->pWin                                          /* (17e) */
4370 #endif
4371       ){
4372         return 0;
4373       }
4374       if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4375         /* Without this restriction, the JT_LTORJ flag would end up being
4376         ** omitted on left-hand tables of the right join that is being
4377         ** flattened. */
4378         return 0;   /* Restrictions (17g), (27b) */
4379       }
4380       testcase( pSub1->pSrc->nSrc>1 );
4381     }
4382 
4383     /* Restriction (18). */
4384     if( p->pOrderBy ){
4385       int ii;
4386       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4387         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4388       }
4389     }
4390 
4391     /* Restriction (23) */
4392     if( (p->selFlags & SF_Recursive) ) return 0;
4393 
4394     if( pSrc->nSrc>1 ){
4395       if( pParse->nSelect>500 ) return 0;
4396       if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4397       aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4398       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4399     }
4400   }
4401 
4402   /***** If we reach this point, flattening is permitted. *****/
4403   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4404                    pSub->selId, pSub, iFrom));
4405 
4406   /* Authorize the subquery */
4407   pParse->zAuthContext = pSubitem->zName;
4408   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4409   testcase( i==SQLITE_DENY );
4410   pParse->zAuthContext = zSavedAuthContext;
4411 
4412   /* Delete the transient structures associated with thesubquery */
4413   pSub1 = pSubitem->pSelect;
4414   sqlite3DbFree(db, pSubitem->zDatabase);
4415   sqlite3DbFree(db, pSubitem->zName);
4416   sqlite3DbFree(db, pSubitem->zAlias);
4417   pSubitem->zDatabase = 0;
4418   pSubitem->zName = 0;
4419   pSubitem->zAlias = 0;
4420   pSubitem->pSelect = 0;
4421   assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4422 
4423   /* If the sub-query is a compound SELECT statement, then (by restrictions
4424   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4425   ** be of the form:
4426   **
4427   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4428   **
4429   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4430   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4431   ** OFFSET clauses and joins them to the left-hand-side of the original
4432   ** using UNION ALL operators. In this case N is the number of simple
4433   ** select statements in the compound sub-query.
4434   **
4435   ** Example:
4436   **
4437   **     SELECT a+1 FROM (
4438   **        SELECT x FROM tab
4439   **        UNION ALL
4440   **        SELECT y FROM tab
4441   **        UNION ALL
4442   **        SELECT abs(z*2) FROM tab2
4443   **     ) WHERE a!=5 ORDER BY 1
4444   **
4445   ** Transformed into:
4446   **
4447   **     SELECT x+1 FROM tab WHERE x+1!=5
4448   **     UNION ALL
4449   **     SELECT y+1 FROM tab WHERE y+1!=5
4450   **     UNION ALL
4451   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4452   **     ORDER BY 1
4453   **
4454   ** We call this the "compound-subquery flattening".
4455   */
4456   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4457     Select *pNew;
4458     ExprList *pOrderBy = p->pOrderBy;
4459     Expr *pLimit = p->pLimit;
4460     Select *pPrior = p->pPrior;
4461     Table *pItemTab = pSubitem->pTab;
4462     pSubitem->pTab = 0;
4463     p->pOrderBy = 0;
4464     p->pPrior = 0;
4465     p->pLimit = 0;
4466     pNew = sqlite3SelectDup(db, p, 0);
4467     p->pLimit = pLimit;
4468     p->pOrderBy = pOrderBy;
4469     p->op = TK_ALL;
4470     pSubitem->pTab = pItemTab;
4471     if( pNew==0 ){
4472       p->pPrior = pPrior;
4473     }else{
4474       pNew->selId = ++pParse->nSelect;
4475       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4476         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4477       }
4478       pNew->pPrior = pPrior;
4479       if( pPrior ) pPrior->pNext = pNew;
4480       pNew->pNext = p;
4481       p->pPrior = pNew;
4482       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4483                               " creates %u as peer\n",pNew->selId));
4484     }
4485     assert( pSubitem->pSelect==0 );
4486   }
4487   sqlite3DbFree(db, aCsrMap);
4488   if( db->mallocFailed ){
4489     pSubitem->pSelect = pSub1;
4490     return 1;
4491   }
4492 
4493   /* Defer deleting the Table object associated with the
4494   ** subquery until code generation is
4495   ** complete, since there may still exist Expr.pTab entries that
4496   ** refer to the subquery even after flattening.  Ticket #3346.
4497   **
4498   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4499   */
4500   if( ALWAYS(pSubitem->pTab!=0) ){
4501     Table *pTabToDel = pSubitem->pTab;
4502     if( pTabToDel->nTabRef==1 ){
4503       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4504       sqlite3ParserAddCleanup(pToplevel,
4505          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4506          pTabToDel);
4507       testcase( pToplevel->earlyCleanup );
4508     }else{
4509       pTabToDel->nTabRef--;
4510     }
4511     pSubitem->pTab = 0;
4512   }
4513 
4514   /* The following loop runs once for each term in a compound-subquery
4515   ** flattening (as described above).  If we are doing a different kind
4516   ** of flattening - a flattening other than a compound-subquery flattening -
4517   ** then this loop only runs once.
4518   **
4519   ** This loop moves all of the FROM elements of the subquery into the
4520   ** the FROM clause of the outer query.  Before doing this, remember
4521   ** the cursor number for the original outer query FROM element in
4522   ** iParent.  The iParent cursor will never be used.  Subsequent code
4523   ** will scan expressions looking for iParent references and replace
4524   ** those references with expressions that resolve to the subquery FROM
4525   ** elements we are now copying in.
4526   */
4527   pSub = pSub1;
4528   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4529     int nSubSrc;
4530     u8 jointype = 0;
4531     u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4532     assert( pSub!=0 );
4533     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4534     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4535     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4536 
4537     if( pParent==p ){
4538       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4539     }
4540 
4541     /* The subquery uses a single slot of the FROM clause of the outer
4542     ** query.  If the subquery has more than one element in its FROM clause,
4543     ** then expand the outer query to make space for it to hold all elements
4544     ** of the subquery.
4545     **
4546     ** Example:
4547     **
4548     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4549     **
4550     ** The outer query has 3 slots in its FROM clause.  One slot of the
4551     ** outer query (the middle slot) is used by the subquery.  The next
4552     ** block of code will expand the outer query FROM clause to 4 slots.
4553     ** The middle slot is expanded to two slots in order to make space
4554     ** for the two elements in the FROM clause of the subquery.
4555     */
4556     if( nSubSrc>1 ){
4557       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4558       if( pSrc==0 ) break;
4559       pParent->pSrc = pSrc;
4560     }
4561 
4562     /* Transfer the FROM clause terms from the subquery into the
4563     ** outer query.
4564     */
4565     for(i=0; i<nSubSrc; i++){
4566       SrcItem *pItem = &pSrc->a[i+iFrom];
4567       if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4568       assert( pItem->fg.isTabFunc==0 );
4569       *pItem = pSubSrc->a[i];
4570       pItem->fg.jointype |= ltorj;
4571       iNewParent = pSubSrc->a[i].iCursor;
4572       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4573     }
4574     pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4575     pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4576 
4577     /* Now begin substituting subquery result set expressions for
4578     ** references to the iParent in the outer query.
4579     **
4580     ** Example:
4581     **
4582     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4583     **   \                     \_____________ subquery __________/          /
4584     **    \_____________________ outer query ______________________________/
4585     **
4586     ** We look at every expression in the outer query and every place we see
4587     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4588     */
4589     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4590       /* At this point, any non-zero iOrderByCol values indicate that the
4591       ** ORDER BY column expression is identical to the iOrderByCol'th
4592       ** expression returned by SELECT statement pSub. Since these values
4593       ** do not necessarily correspond to columns in SELECT statement pParent,
4594       ** zero them before transfering the ORDER BY clause.
4595       **
4596       ** Not doing this may cause an error if a subsequent call to this
4597       ** function attempts to flatten a compound sub-query into pParent
4598       ** (the only way this can happen is if the compound sub-query is
4599       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4600       ExprList *pOrderBy = pSub->pOrderBy;
4601       for(i=0; i<pOrderBy->nExpr; i++){
4602         pOrderBy->a[i].u.x.iOrderByCol = 0;
4603       }
4604       assert( pParent->pOrderBy==0 );
4605       pParent->pOrderBy = pOrderBy;
4606       pSub->pOrderBy = 0;
4607     }
4608     pWhere = pSub->pWhere;
4609     pSub->pWhere = 0;
4610     if( isOuterJoin>0 ){
4611       sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4612     }
4613     if( pWhere ){
4614       if( pParent->pWhere ){
4615         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4616       }else{
4617         pParent->pWhere = pWhere;
4618       }
4619     }
4620     if( db->mallocFailed==0 ){
4621       SubstContext x;
4622       x.pParse = pParse;
4623       x.iTable = iParent;
4624       x.iNewTable = iNewParent;
4625       x.isOuterJoin = isOuterJoin;
4626       x.pEList = pSub->pEList;
4627       substSelect(&x, pParent, 0);
4628     }
4629 
4630     /* The flattened query is a compound if either the inner or the
4631     ** outer query is a compound. */
4632     pParent->selFlags |= pSub->selFlags & SF_Compound;
4633     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4634 
4635     /*
4636     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4637     **
4638     ** One is tempted to try to add a and b to combine the limits.  But this
4639     ** does not work if either limit is negative.
4640     */
4641     if( pSub->pLimit ){
4642       pParent->pLimit = pSub->pLimit;
4643       pSub->pLimit = 0;
4644     }
4645 
4646     /* Recompute the SrcList_item.colUsed masks for the flattened
4647     ** tables. */
4648     for(i=0; i<nSubSrc; i++){
4649       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4650     }
4651   }
4652 
4653   /* Finially, delete what is left of the subquery and return
4654   ** success.
4655   */
4656   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4657   sqlite3WalkSelect(&w,pSub1);
4658   sqlite3SelectDelete(db, pSub1);
4659 
4660 #if TREETRACE_ENABLED
4661   if( sqlite3TreeTrace & 0x100 ){
4662     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4663     sqlite3TreeViewSelect(0, p, 0);
4664   }
4665 #endif
4666 
4667   return 1;
4668 }
4669 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4670 
4671 /*
4672 ** A structure to keep track of all of the column values that are fixed to
4673 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4674 */
4675 typedef struct WhereConst WhereConst;
4676 struct WhereConst {
4677   Parse *pParse;   /* Parsing context */
4678   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4679   int nConst;      /* Number for COLUMN=CONSTANT terms */
4680   int nChng;       /* Number of times a constant is propagated */
4681   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4682   u32 mExcludeOn;  /* Which ON expressions to exclude from considertion.
4683                    ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4684   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4685 };
4686 
4687 /*
4688 ** Add a new entry to the pConst object.  Except, do not add duplicate
4689 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4690 **
4691 ** The caller guarantees the pColumn is a column and pValue is a constant.
4692 ** This routine has to do some additional checks before completing the
4693 ** insert.
4694 */
4695 static void constInsert(
4696   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4697   Expr *pColumn,       /* The COLUMN part of the constraint */
4698   Expr *pValue,        /* The VALUE part of the constraint */
4699   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4700 ){
4701   int i;
4702   assert( pColumn->op==TK_COLUMN );
4703   assert( sqlite3ExprIsConstant(pValue) );
4704 
4705   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4706   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4707   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4708     return;
4709   }
4710 
4711   /* 2018-10-25 ticket [cf5ed20f]
4712   ** Make sure the same pColumn is not inserted more than once */
4713   for(i=0; i<pConst->nConst; i++){
4714     const Expr *pE2 = pConst->apExpr[i*2];
4715     assert( pE2->op==TK_COLUMN );
4716     if( pE2->iTable==pColumn->iTable
4717      && pE2->iColumn==pColumn->iColumn
4718     ){
4719       return;  /* Already present.  Return without doing anything. */
4720     }
4721   }
4722   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4723     pConst->bHasAffBlob = 1;
4724   }
4725 
4726   pConst->nConst++;
4727   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4728                          pConst->nConst*2*sizeof(Expr*));
4729   if( pConst->apExpr==0 ){
4730     pConst->nConst = 0;
4731   }else{
4732     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4733     pConst->apExpr[pConst->nConst*2-1] = pValue;
4734   }
4735 }
4736 
4737 /*
4738 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4739 ** is a constant expression and where the term must be true because it
4740 ** is part of the AND-connected terms of the expression.  For each term
4741 ** found, add it to the pConst structure.
4742 */
4743 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4744   Expr *pRight, *pLeft;
4745   if( NEVER(pExpr==0) ) return;
4746   if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4747     testcase( ExprHasProperty(pExpr, EP_OuterON) );
4748     testcase( ExprHasProperty(pExpr, EP_InnerON) );
4749     return;
4750   }
4751   if( pExpr->op==TK_AND ){
4752     findConstInWhere(pConst, pExpr->pRight);
4753     findConstInWhere(pConst, pExpr->pLeft);
4754     return;
4755   }
4756   if( pExpr->op!=TK_EQ ) return;
4757   pRight = pExpr->pRight;
4758   pLeft = pExpr->pLeft;
4759   assert( pRight!=0 );
4760   assert( pLeft!=0 );
4761   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4762     constInsert(pConst,pRight,pLeft,pExpr);
4763   }
4764   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4765     constInsert(pConst,pLeft,pRight,pExpr);
4766   }
4767 }
4768 
4769 /*
4770 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4771 **
4772 ** Argument pExpr is a candidate expression to be replaced by a value. If
4773 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4774 ** then overwrite it with the corresponding value. Except, do not do so
4775 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4776 ** is SQLITE_AFF_BLOB.
4777 */
4778 static int propagateConstantExprRewriteOne(
4779   WhereConst *pConst,
4780   Expr *pExpr,
4781   int bIgnoreAffBlob
4782 ){
4783   int i;
4784   if( pConst->pOomFault[0] ) return WRC_Prune;
4785   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4786   if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4787     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4788     testcase( ExprHasProperty(pExpr, EP_OuterON) );
4789     testcase( ExprHasProperty(pExpr, EP_InnerON) );
4790     return WRC_Continue;
4791   }
4792   for(i=0; i<pConst->nConst; i++){
4793     Expr *pColumn = pConst->apExpr[i*2];
4794     if( pColumn==pExpr ) continue;
4795     if( pColumn->iTable!=pExpr->iTable ) continue;
4796     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4797     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4798       break;
4799     }
4800     /* A match is found.  Add the EP_FixedCol property */
4801     pConst->nChng++;
4802     ExprClearProperty(pExpr, EP_Leaf);
4803     ExprSetProperty(pExpr, EP_FixedCol);
4804     assert( pExpr->pLeft==0 );
4805     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4806     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4807     break;
4808   }
4809   return WRC_Prune;
4810 }
4811 
4812 /*
4813 ** This is a Walker expression callback. pExpr is a node from the WHERE
4814 ** clause of a SELECT statement. This function examines pExpr to see if
4815 ** any substitutions based on the contents of pWalker->u.pConst should
4816 ** be made to pExpr or its immediate children.
4817 **
4818 ** A substitution is made if:
4819 **
4820 **   + pExpr is a column with an affinity other than BLOB that matches
4821 **     one of the columns in pWalker->u.pConst, or
4822 **
4823 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4824 **     uses an affinity other than TEXT and one of its immediate
4825 **     children is a column that matches one of the columns in
4826 **     pWalker->u.pConst.
4827 */
4828 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4829   WhereConst *pConst = pWalker->u.pConst;
4830   assert( TK_GT==TK_EQ+1 );
4831   assert( TK_LE==TK_EQ+2 );
4832   assert( TK_LT==TK_EQ+3 );
4833   assert( TK_GE==TK_EQ+4 );
4834   if( pConst->bHasAffBlob ){
4835     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4836      || pExpr->op==TK_IS
4837     ){
4838       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4839       if( pConst->pOomFault[0] ) return WRC_Prune;
4840       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4841         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4842       }
4843     }
4844   }
4845   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4846 }
4847 
4848 /*
4849 ** The WHERE-clause constant propagation optimization.
4850 **
4851 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4852 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4853 ** part of a ON clause from a LEFT JOIN, then throughout the query
4854 ** replace all other occurrences of COLUMN with CONSTANT.
4855 **
4856 ** For example, the query:
4857 **
4858 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4859 **
4860 ** Is transformed into
4861 **
4862 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4863 **
4864 ** Return true if any transformations where made and false if not.
4865 **
4866 ** Implementation note:  Constant propagation is tricky due to affinity
4867 ** and collating sequence interactions.  Consider this example:
4868 **
4869 **    CREATE TABLE t1(a INT,b TEXT);
4870 **    INSERT INTO t1 VALUES(123,'0123');
4871 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4872 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4873 **
4874 ** The two SELECT statements above should return different answers.  b=a
4875 ** is alway true because the comparison uses numeric affinity, but b=123
4876 ** is false because it uses text affinity and '0123' is not the same as '123'.
4877 ** To work around this, the expression tree is not actually changed from
4878 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4879 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4880 ** routines know to generate the constant "123" instead of looking up the
4881 ** column value.  Also, to avoid collation problems, this optimization is
4882 ** only attempted if the "a=123" term uses the default BINARY collation.
4883 **
4884 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4885 **
4886 **    CREATE TABLE t1(x);
4887 **    INSERT INTO t1 VALUES(10.0);
4888 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4889 **
4890 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4891 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4892 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4893 ** resulting in a false positive.  To avoid this, constant propagation for
4894 ** columns with BLOB affinity is only allowed if the constant is used with
4895 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4896 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4897 ** for details.
4898 */
4899 static int propagateConstants(
4900   Parse *pParse,   /* The parsing context */
4901   Select *p        /* The query in which to propagate constants */
4902 ){
4903   WhereConst x;
4904   Walker w;
4905   int nChng = 0;
4906   x.pParse = pParse;
4907   x.pOomFault = &pParse->db->mallocFailed;
4908   do{
4909     x.nConst = 0;
4910     x.nChng = 0;
4911     x.apExpr = 0;
4912     x.bHasAffBlob = 0;
4913     if( ALWAYS(p->pSrc!=0)
4914      && p->pSrc->nSrc>0
4915      && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
4916     ){
4917       /* Do not propagate constants on any ON clause if there is a
4918       ** RIGHT JOIN anywhere in the query */
4919       x.mExcludeOn = EP_InnerON | EP_OuterON;
4920     }else{
4921       /* Do not propagate constants through the ON clause of a LEFT JOIN */
4922       x.mExcludeOn = EP_OuterON;
4923     }
4924     findConstInWhere(&x, p->pWhere);
4925     if( x.nConst ){
4926       memset(&w, 0, sizeof(w));
4927       w.pParse = pParse;
4928       w.xExprCallback = propagateConstantExprRewrite;
4929       w.xSelectCallback = sqlite3SelectWalkNoop;
4930       w.xSelectCallback2 = 0;
4931       w.walkerDepth = 0;
4932       w.u.pConst = &x;
4933       sqlite3WalkExpr(&w, p->pWhere);
4934       sqlite3DbFree(x.pParse->db, x.apExpr);
4935       nChng += x.nChng;
4936     }
4937   }while( x.nChng );
4938   return nChng;
4939 }
4940 
4941 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4942 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4943 /*
4944 ** This function is called to determine whether or not it is safe to
4945 ** push WHERE clause expression pExpr down to FROM clause sub-query
4946 ** pSubq, which contains at least one window function. Return 1
4947 ** if it is safe and the expression should be pushed down, or 0
4948 ** otherwise.
4949 **
4950 ** It is only safe to push the expression down if it consists only
4951 ** of constants and copies of expressions that appear in the PARTITION
4952 ** BY clause of all window function used by the sub-query. It is safe
4953 ** to filter out entire partitions, but not rows within partitions, as
4954 ** this may change the results of the window functions.
4955 **
4956 ** At the time this function is called it is guaranteed that
4957 **
4958 **   * the sub-query uses only one distinct window frame, and
4959 **   * that the window frame has a PARTITION BY clase.
4960 */
4961 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4962   assert( pSubq->pWin->pPartition );
4963   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4964   assert( pSubq->pPrior==0 );
4965   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4966 }
4967 # endif /* SQLITE_OMIT_WINDOWFUNC */
4968 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4969 
4970 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4971 /*
4972 ** Make copies of relevant WHERE clause terms of the outer query into
4973 ** the WHERE clause of subquery.  Example:
4974 **
4975 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4976 **
4977 ** Transformed into:
4978 **
4979 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4980 **     WHERE x=5 AND y=10;
4981 **
4982 ** The hope is that the terms added to the inner query will make it more
4983 ** efficient.
4984 **
4985 ** Do not attempt this optimization if:
4986 **
4987 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4988 **           disallow this optimization for aggregate subqueries, but now
4989 **           it is allowed by putting the extra terms on the HAVING clause.
4990 **           The added HAVING clause is pointless if the subquery lacks
4991 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4992 **           so there does not appear to be any reason to add extra logic
4993 **           to suppress it. **)
4994 **
4995 **   (2) The inner query is the recursive part of a common table expression.
4996 **
4997 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4998 **       clause would change the meaning of the LIMIT).
4999 **
5000 **   (4) The inner query is the right operand of a LEFT JOIN and the
5001 **       expression to be pushed down does not come from the ON clause
5002 **       on that LEFT JOIN.
5003 **
5004 **   (5) The WHERE clause expression originates in the ON or USING clause
5005 **       of a LEFT JOIN where iCursor is not the right-hand table of that
5006 **       left join.  An example:
5007 **
5008 **           SELECT *
5009 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5010 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5011 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5012 **
5013 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
5014 **       But if the (b2=2) term were to be pushed down into the bb subquery,
5015 **       then the (1,1,NULL) row would be suppressed.
5016 **
5017 **   (6) Window functions make things tricky as changes to the WHERE clause
5018 **       of the inner query could change the window over which window
5019 **       functions are calculated. Therefore, do not attempt the optimization
5020 **       if:
5021 **
5022 **     (6a) The inner query uses multiple incompatible window partitions.
5023 **
5024 **     (6b) The inner query is a compound and uses window-functions.
5025 **
5026 **     (6c) The WHERE clause does not consist entirely of constants and
5027 **          copies of expressions found in the PARTITION BY clause of
5028 **          all window-functions used by the sub-query. It is safe to
5029 **          filter out entire partitions, as this does not change the
5030 **          window over which any window-function is calculated.
5031 **
5032 **   (7) The inner query is a Common Table Expression (CTE) that should
5033 **       be materialized.  (This restriction is implemented in the calling
5034 **       routine.)
5035 **
5036 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5037 ** terms are duplicated into the subquery.
5038 */
5039 static int pushDownWhereTerms(
5040   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
5041   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
5042   Expr *pWhere,         /* The WHERE clause of the outer query */
5043   SrcItem *pSrc         /* The subquery term of the outer FROM clause */
5044 ){
5045   Expr *pNew;
5046   int nChng = 0;
5047   if( pWhere==0 ) return 0;
5048   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
5049   if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0;
5050 
5051 #ifndef SQLITE_OMIT_WINDOWFUNC
5052   if( pSubq->pPrior ){
5053     Select *pSel;
5054     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5055       if( pSel->pWin ) return 0;    /* restriction (6b) */
5056     }
5057   }else{
5058     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5059   }
5060 #endif
5061 
5062 #ifdef SQLITE_DEBUG
5063   /* Only the first term of a compound can have a WITH clause.  But make
5064   ** sure no other terms are marked SF_Recursive in case something changes
5065   ** in the future.
5066   */
5067   {
5068     Select *pX;
5069     for(pX=pSubq; pX; pX=pX->pPrior){
5070       assert( (pX->selFlags & (SF_Recursive))==0 );
5071     }
5072   }
5073 #endif
5074 
5075   if( pSubq->pLimit!=0 ){
5076     return 0; /* restriction (3) */
5077   }
5078   while( pWhere->op==TK_AND ){
5079     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc);
5080     pWhere = pWhere->pLeft;
5081   }
5082 
5083 #if 0  /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
5084   if( isLeftJoin
5085    && (ExprHasProperty(pWhere,EP_OuterON)==0
5086          || pWhere->w.iJoin!=iCursor)
5087   ){
5088     return 0; /* restriction (4) */
5089   }
5090   if( ExprHasProperty(pWhere,EP_OuterON)
5091    && pWhere->w.iJoin!=iCursor
5092   ){
5093     return 0; /* restriction (5) */
5094   }
5095 #endif
5096 
5097   if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){
5098     nChng++;
5099     pSubq->selFlags |= SF_PushDown;
5100     while( pSubq ){
5101       SubstContext x;
5102       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5103       unsetJoinExpr(pNew, -1, 1);
5104       x.pParse = pParse;
5105       x.iTable = pSrc->iCursor;
5106       x.iNewTable = pSrc->iCursor;
5107       x.isOuterJoin = 0;
5108       x.pEList = pSubq->pEList;
5109       pNew = substExpr(&x, pNew);
5110 #ifndef SQLITE_OMIT_WINDOWFUNC
5111       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5112         /* Restriction 6c has prevented push-down in this case */
5113         sqlite3ExprDelete(pParse->db, pNew);
5114         nChng--;
5115         break;
5116       }
5117 #endif
5118       if( pSubq->selFlags & SF_Aggregate ){
5119         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5120       }else{
5121         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5122       }
5123       pSubq = pSubq->pPrior;
5124     }
5125   }
5126   return nChng;
5127 }
5128 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5129 
5130 /*
5131 ** The pFunc is the only aggregate function in the query.  Check to see
5132 ** if the query is a candidate for the min/max optimization.
5133 **
5134 ** If the query is a candidate for the min/max optimization, then set
5135 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5136 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5137 ** whether pFunc is a min() or max() function.
5138 **
5139 ** If the query is not a candidate for the min/max optimization, return
5140 ** WHERE_ORDERBY_NORMAL (which must be zero).
5141 **
5142 ** This routine must be called after aggregate functions have been
5143 ** located but before their arguments have been subjected to aggregate
5144 ** analysis.
5145 */
5146 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5147   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
5148   ExprList *pEList;                     /* Arguments to agg function */
5149   const char *zFunc;                    /* Name of aggregate function pFunc */
5150   ExprList *pOrderBy;
5151   u8 sortFlags = 0;
5152 
5153   assert( *ppMinMax==0 );
5154   assert( pFunc->op==TK_AGG_FUNCTION );
5155   assert( !IsWindowFunc(pFunc) );
5156   assert( ExprUseXList(pFunc) );
5157   pEList = pFunc->x.pList;
5158   if( pEList==0
5159    || pEList->nExpr!=1
5160    || ExprHasProperty(pFunc, EP_WinFunc)
5161    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5162   ){
5163     return eRet;
5164   }
5165   assert( !ExprHasProperty(pFunc, EP_IntValue) );
5166   zFunc = pFunc->u.zToken;
5167   if( sqlite3StrICmp(zFunc, "min")==0 ){
5168     eRet = WHERE_ORDERBY_MIN;
5169     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5170       sortFlags = KEYINFO_ORDER_BIGNULL;
5171     }
5172   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5173     eRet = WHERE_ORDERBY_MAX;
5174     sortFlags = KEYINFO_ORDER_DESC;
5175   }else{
5176     return eRet;
5177   }
5178   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5179   assert( pOrderBy!=0 || db->mallocFailed );
5180   if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5181   return eRet;
5182 }
5183 
5184 /*
5185 ** The select statement passed as the first argument is an aggregate query.
5186 ** The second argument is the associated aggregate-info object. This
5187 ** function tests if the SELECT is of the form:
5188 **
5189 **   SELECT count(*) FROM <tbl>
5190 **
5191 ** where table is a database table, not a sub-select or view. If the query
5192 ** does match this pattern, then a pointer to the Table object representing
5193 ** <tbl> is returned. Otherwise, NULL is returned.
5194 **
5195 ** This routine checks to see if it is safe to use the count optimization.
5196 ** A correct answer is still obtained (though perhaps more slowly) if
5197 ** this routine returns NULL when it could have returned a table pointer.
5198 ** But returning the pointer when NULL should have been returned can
5199 ** result in incorrect answers and/or crashes.  So, when in doubt, return NULL.
5200 */
5201 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5202   Table *pTab;
5203   Expr *pExpr;
5204 
5205   assert( !p->pGroupBy );
5206 
5207   if( p->pWhere
5208    || p->pEList->nExpr!=1
5209    || p->pSrc->nSrc!=1
5210    || p->pSrc->a[0].pSelect
5211    || pAggInfo->nFunc!=1
5212    || p->pHaving
5213   ){
5214     return 0;
5215   }
5216   pTab = p->pSrc->a[0].pTab;
5217   assert( pTab!=0 );
5218   assert( !IsView(pTab) );
5219   if( !IsOrdinaryTable(pTab) ) return 0;
5220   pExpr = p->pEList->a[0].pExpr;
5221   assert( pExpr!=0 );
5222   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5223   if( pExpr->pAggInfo!=pAggInfo ) return 0;
5224   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5225   assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5226   testcase( ExprHasProperty(pExpr, EP_Distinct) );
5227   testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5228   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5229 
5230   return pTab;
5231 }
5232 
5233 /*
5234 ** If the source-list item passed as an argument was augmented with an
5235 ** INDEXED BY clause, then try to locate the specified index. If there
5236 ** was such a clause and the named index cannot be found, return
5237 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5238 ** pFrom->pIndex and return SQLITE_OK.
5239 */
5240 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5241   Table *pTab = pFrom->pTab;
5242   char *zIndexedBy = pFrom->u1.zIndexedBy;
5243   Index *pIdx;
5244   assert( pTab!=0 );
5245   assert( pFrom->fg.isIndexedBy!=0 );
5246 
5247   for(pIdx=pTab->pIndex;
5248       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5249       pIdx=pIdx->pNext
5250   );
5251   if( !pIdx ){
5252     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5253     pParse->checkSchema = 1;
5254     return SQLITE_ERROR;
5255   }
5256   assert( pFrom->fg.isCte==0 );
5257   pFrom->u2.pIBIndex = pIdx;
5258   return SQLITE_OK;
5259 }
5260 
5261 /*
5262 ** Detect compound SELECT statements that use an ORDER BY clause with
5263 ** an alternative collating sequence.
5264 **
5265 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5266 **
5267 ** These are rewritten as a subquery:
5268 **
5269 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5270 **     ORDER BY ... COLLATE ...
5271 **
5272 ** This transformation is necessary because the multiSelectOrderBy() routine
5273 ** above that generates the code for a compound SELECT with an ORDER BY clause
5274 ** uses a merge algorithm that requires the same collating sequence on the
5275 ** result columns as on the ORDER BY clause.  See ticket
5276 ** http://www.sqlite.org/src/info/6709574d2a
5277 **
5278 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5279 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5280 ** there are COLLATE terms in the ORDER BY.
5281 */
5282 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5283   int i;
5284   Select *pNew;
5285   Select *pX;
5286   sqlite3 *db;
5287   struct ExprList_item *a;
5288   SrcList *pNewSrc;
5289   Parse *pParse;
5290   Token dummy;
5291 
5292   if( p->pPrior==0 ) return WRC_Continue;
5293   if( p->pOrderBy==0 ) return WRC_Continue;
5294   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5295   if( pX==0 ) return WRC_Continue;
5296   a = p->pOrderBy->a;
5297 #ifndef SQLITE_OMIT_WINDOWFUNC
5298   /* If iOrderByCol is already non-zero, then it has already been matched
5299   ** to a result column of the SELECT statement. This occurs when the
5300   ** SELECT is rewritten for window-functions processing and then passed
5301   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5302   ** by this function is not required in this case. */
5303   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5304 #endif
5305   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5306     if( a[i].pExpr->flags & EP_Collate ) break;
5307   }
5308   if( i<0 ) return WRC_Continue;
5309 
5310   /* If we reach this point, that means the transformation is required. */
5311 
5312   pParse = pWalker->pParse;
5313   db = pParse->db;
5314   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5315   if( pNew==0 ) return WRC_Abort;
5316   memset(&dummy, 0, sizeof(dummy));
5317   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5318   if( pNewSrc==0 ) return WRC_Abort;
5319   *pNew = *p;
5320   p->pSrc = pNewSrc;
5321   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5322   p->op = TK_SELECT;
5323   p->pWhere = 0;
5324   pNew->pGroupBy = 0;
5325   pNew->pHaving = 0;
5326   pNew->pOrderBy = 0;
5327   p->pPrior = 0;
5328   p->pNext = 0;
5329   p->pWith = 0;
5330 #ifndef SQLITE_OMIT_WINDOWFUNC
5331   p->pWinDefn = 0;
5332 #endif
5333   p->selFlags &= ~SF_Compound;
5334   assert( (p->selFlags & SF_Converted)==0 );
5335   p->selFlags |= SF_Converted;
5336   assert( pNew->pPrior!=0 );
5337   pNew->pPrior->pNext = pNew;
5338   pNew->pLimit = 0;
5339   return WRC_Continue;
5340 }
5341 
5342 /*
5343 ** Check to see if the FROM clause term pFrom has table-valued function
5344 ** arguments.  If it does, leave an error message in pParse and return
5345 ** non-zero, since pFrom is not allowed to be a table-valued function.
5346 */
5347 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5348   if( pFrom->fg.isTabFunc ){
5349     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5350     return 1;
5351   }
5352   return 0;
5353 }
5354 
5355 #ifndef SQLITE_OMIT_CTE
5356 /*
5357 ** Argument pWith (which may be NULL) points to a linked list of nested
5358 ** WITH contexts, from inner to outermost. If the table identified by
5359 ** FROM clause element pItem is really a common-table-expression (CTE)
5360 ** then return a pointer to the CTE definition for that table. Otherwise
5361 ** return NULL.
5362 **
5363 ** If a non-NULL value is returned, set *ppContext to point to the With
5364 ** object that the returned CTE belongs to.
5365 */
5366 static struct Cte *searchWith(
5367   With *pWith,                    /* Current innermost WITH clause */
5368   SrcItem *pItem,                 /* FROM clause element to resolve */
5369   With **ppContext                /* OUT: WITH clause return value belongs to */
5370 ){
5371   const char *zName = pItem->zName;
5372   With *p;
5373   assert( pItem->zDatabase==0 );
5374   assert( zName!=0 );
5375   for(p=pWith; p; p=p->pOuter){
5376     int i;
5377     for(i=0; i<p->nCte; i++){
5378       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5379         *ppContext = p;
5380         return &p->a[i];
5381       }
5382     }
5383     if( p->bView ) break;
5384   }
5385   return 0;
5386 }
5387 
5388 /* The code generator maintains a stack of active WITH clauses
5389 ** with the inner-most WITH clause being at the top of the stack.
5390 **
5391 ** This routine pushes the WITH clause passed as the second argument
5392 ** onto the top of the stack. If argument bFree is true, then this
5393 ** WITH clause will never be popped from the stack but should instead
5394 ** be freed along with the Parse object. In other cases, when
5395 ** bFree==0, the With object will be freed along with the SELECT
5396 ** statement with which it is associated.
5397 **
5398 ** This routine returns a copy of pWith.  Or, if bFree is true and
5399 ** the pWith object is destroyed immediately due to an OOM condition,
5400 ** then this routine return NULL.
5401 **
5402 ** If bFree is true, do not continue to use the pWith pointer after
5403 ** calling this routine,  Instead, use only the return value.
5404 */
5405 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5406   if( pWith ){
5407     if( bFree ){
5408       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5409                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5410                       pWith);
5411       if( pWith==0 ) return 0;
5412     }
5413     if( pParse->nErr==0 ){
5414       assert( pParse->pWith!=pWith );
5415       pWith->pOuter = pParse->pWith;
5416       pParse->pWith = pWith;
5417     }
5418   }
5419   return pWith;
5420 }
5421 
5422 /*
5423 ** This function checks if argument pFrom refers to a CTE declared by
5424 ** a WITH clause on the stack currently maintained by the parser (on the
5425 ** pParse->pWith linked list).  And if currently processing a CTE
5426 ** CTE expression, through routine checks to see if the reference is
5427 ** a recursive reference to the CTE.
5428 **
5429 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5430 ** and other fields are populated accordingly.
5431 **
5432 ** Return 0 if no match is found.
5433 ** Return 1 if a match is found.
5434 ** Return 2 if an error condition is detected.
5435 */
5436 static int resolveFromTermToCte(
5437   Parse *pParse,                  /* The parsing context */
5438   Walker *pWalker,                /* Current tree walker */
5439   SrcItem *pFrom                  /* The FROM clause term to check */
5440 ){
5441   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5442   With *pWith;             /* The matching WITH */
5443 
5444   assert( pFrom->pTab==0 );
5445   if( pParse->pWith==0 ){
5446     /* There are no WITH clauses in the stack.  No match is possible */
5447     return 0;
5448   }
5449   if( pParse->nErr ){
5450     /* Prior errors might have left pParse->pWith in a goofy state, so
5451     ** go no further. */
5452     return 0;
5453   }
5454   if( pFrom->zDatabase!=0 ){
5455     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5456     ** it cannot possibly be a CTE reference. */
5457     return 0;
5458   }
5459   if( pFrom->fg.notCte ){
5460     /* The FROM term is specifically excluded from matching a CTE.
5461     **   (1)  It is part of a trigger that used to have zDatabase but had
5462     **        zDatabase removed by sqlite3FixTriggerStep().
5463     **   (2)  This is the first term in the FROM clause of an UPDATE.
5464     */
5465     return 0;
5466   }
5467   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5468   if( pCte ){
5469     sqlite3 *db = pParse->db;
5470     Table *pTab;
5471     ExprList *pEList;
5472     Select *pSel;
5473     Select *pLeft;                /* Left-most SELECT statement */
5474     Select *pRecTerm;             /* Left-most recursive term */
5475     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5476     With *pSavedWith;             /* Initial value of pParse->pWith */
5477     int iRecTab = -1;             /* Cursor for recursive table */
5478     CteUse *pCteUse;
5479 
5480     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5481     ** recursive reference to CTE pCte. Leave an error in pParse and return
5482     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5483     ** In this case, proceed.  */
5484     if( pCte->zCteErr ){
5485       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5486       return 2;
5487     }
5488     if( cannotBeFunction(pParse, pFrom) ) return 2;
5489 
5490     assert( pFrom->pTab==0 );
5491     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5492     if( pTab==0 ) return 2;
5493     pCteUse = pCte->pUse;
5494     if( pCteUse==0 ){
5495       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5496       if( pCteUse==0
5497        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5498       ){
5499         sqlite3DbFree(db, pTab);
5500         return 2;
5501       }
5502       pCteUse->eM10d = pCte->eM10d;
5503     }
5504     pFrom->pTab = pTab;
5505     pTab->nTabRef = 1;
5506     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5507     pTab->iPKey = -1;
5508     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5509     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5510     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5511     if( db->mallocFailed ) return 2;
5512     pFrom->pSelect->selFlags |= SF_CopyCte;
5513     assert( pFrom->pSelect );
5514     if( pFrom->fg.isIndexedBy ){
5515       sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5516       return 2;
5517     }
5518     pFrom->fg.isCte = 1;
5519     pFrom->u2.pCteUse = pCteUse;
5520     pCteUse->nUse++;
5521     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5522       pCteUse->eM10d = M10d_Yes;
5523     }
5524 
5525     /* Check if this is a recursive CTE. */
5526     pRecTerm = pSel = pFrom->pSelect;
5527     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5528     while( bMayRecursive && pRecTerm->op==pSel->op ){
5529       int i;
5530       SrcList *pSrc = pRecTerm->pSrc;
5531       assert( pRecTerm->pPrior!=0 );
5532       for(i=0; i<pSrc->nSrc; i++){
5533         SrcItem *pItem = &pSrc->a[i];
5534         if( pItem->zDatabase==0
5535          && pItem->zName!=0
5536          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5537         ){
5538           pItem->pTab = pTab;
5539           pTab->nTabRef++;
5540           pItem->fg.isRecursive = 1;
5541           if( pRecTerm->selFlags & SF_Recursive ){
5542             sqlite3ErrorMsg(pParse,
5543                "multiple references to recursive table: %s", pCte->zName
5544             );
5545             return 2;
5546           }
5547           pRecTerm->selFlags |= SF_Recursive;
5548           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5549           pItem->iCursor = iRecTab;
5550         }
5551       }
5552       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5553       pRecTerm = pRecTerm->pPrior;
5554     }
5555 
5556     pCte->zCteErr = "circular reference: %s";
5557     pSavedWith = pParse->pWith;
5558     pParse->pWith = pWith;
5559     if( pSel->selFlags & SF_Recursive ){
5560       int rc;
5561       assert( pRecTerm!=0 );
5562       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5563       assert( pRecTerm->pNext!=0 );
5564       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5565       assert( pRecTerm->pWith==0 );
5566       pRecTerm->pWith = pSel->pWith;
5567       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5568       pRecTerm->pWith = 0;
5569       if( rc ){
5570         pParse->pWith = pSavedWith;
5571         return 2;
5572       }
5573     }else{
5574       if( sqlite3WalkSelect(pWalker, pSel) ){
5575         pParse->pWith = pSavedWith;
5576         return 2;
5577       }
5578     }
5579     pParse->pWith = pWith;
5580 
5581     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5582     pEList = pLeft->pEList;
5583     if( pCte->pCols ){
5584       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5585         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5586             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5587         );
5588         pParse->pWith = pSavedWith;
5589         return 2;
5590       }
5591       pEList = pCte->pCols;
5592     }
5593 
5594     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5595     if( bMayRecursive ){
5596       if( pSel->selFlags & SF_Recursive ){
5597         pCte->zCteErr = "multiple recursive references: %s";
5598       }else{
5599         pCte->zCteErr = "recursive reference in a subquery: %s";
5600       }
5601       sqlite3WalkSelect(pWalker, pSel);
5602     }
5603     pCte->zCteErr = 0;
5604     pParse->pWith = pSavedWith;
5605     return 1;  /* Success */
5606   }
5607   return 0;  /* No match */
5608 }
5609 #endif
5610 
5611 #ifndef SQLITE_OMIT_CTE
5612 /*
5613 ** If the SELECT passed as the second argument has an associated WITH
5614 ** clause, pop it from the stack stored as part of the Parse object.
5615 **
5616 ** This function is used as the xSelectCallback2() callback by
5617 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5618 ** names and other FROM clause elements.
5619 */
5620 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5621   Parse *pParse = pWalker->pParse;
5622   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5623     With *pWith = findRightmost(p)->pWith;
5624     if( pWith!=0 ){
5625       assert( pParse->pWith==pWith || pParse->nErr );
5626       pParse->pWith = pWith->pOuter;
5627     }
5628   }
5629 }
5630 #endif
5631 
5632 /*
5633 ** The SrcList_item structure passed as the second argument represents a
5634 ** sub-query in the FROM clause of a SELECT statement. This function
5635 ** allocates and populates the SrcList_item.pTab object. If successful,
5636 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5637 ** SQLITE_NOMEM.
5638 */
5639 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5640   Select *pSel = pFrom->pSelect;
5641   Table *pTab;
5642 
5643   assert( pSel );
5644   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5645   if( pTab==0 ) return SQLITE_NOMEM;
5646   pTab->nTabRef = 1;
5647   if( pFrom->zAlias ){
5648     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5649   }else{
5650     pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5651   }
5652   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5653   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5654   pTab->iPKey = -1;
5655   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5656 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5657   /* The usual case - do not allow ROWID on a subquery */
5658   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5659 #else
5660   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5661 #endif
5662   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5663 }
5664 
5665 
5666 /*
5667 ** Check the N SrcItem objects to the right of pBase.  (N might be zero!)
5668 ** If any of those SrcItem objects have a USING clause containing zName
5669 ** then return true.
5670 **
5671 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5672 ** contains a USING clause, or if none of the USING clauses contain zName,
5673 ** then return false.
5674 */
5675 static int inAnyUsingClause(
5676   const char *zName, /* Name we are looking for */
5677   SrcItem *pBase,    /* The base SrcItem.  Looking at pBase[1] and following */
5678   int N              /* How many SrcItems to check */
5679 ){
5680   while( N>0 ){
5681     N--;
5682     pBase++;
5683     if( pBase->fg.isUsing==0 ) continue;
5684     if( NEVER(pBase->u3.pUsing==0) ) continue;
5685     if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5686   }
5687   return 0;
5688 }
5689 
5690 
5691 /*
5692 ** This routine is a Walker callback for "expanding" a SELECT statement.
5693 ** "Expanding" means to do the following:
5694 **
5695 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5696 **         element of the FROM clause.
5697 **
5698 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5699 **         defines FROM clause.  When views appear in the FROM clause,
5700 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5701 **         that implements the view.  A copy is made of the view's SELECT
5702 **         statement so that we can freely modify or delete that statement
5703 **         without worrying about messing up the persistent representation
5704 **         of the view.
5705 **
5706 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5707 **         on joins and the ON and USING clause of joins.
5708 **
5709 **    (4)  Scan the list of columns in the result set (pEList) looking
5710 **         for instances of the "*" operator or the TABLE.* operator.
5711 **         If found, expand each "*" to be every column in every table
5712 **         and TABLE.* to be every column in TABLE.
5713 **
5714 */
5715 static int selectExpander(Walker *pWalker, Select *p){
5716   Parse *pParse = pWalker->pParse;
5717   int i, j, k, rc;
5718   SrcList *pTabList;
5719   ExprList *pEList;
5720   SrcItem *pFrom;
5721   sqlite3 *db = pParse->db;
5722   Expr *pE, *pRight, *pExpr;
5723   u16 selFlags = p->selFlags;
5724   u32 elistFlags = 0;
5725 
5726   p->selFlags |= SF_Expanded;
5727   if( db->mallocFailed  ){
5728     return WRC_Abort;
5729   }
5730   assert( p->pSrc!=0 );
5731   if( (selFlags & SF_Expanded)!=0 ){
5732     return WRC_Prune;
5733   }
5734   if( pWalker->eCode ){
5735     /* Renumber selId because it has been copied from a view */
5736     p->selId = ++pParse->nSelect;
5737   }
5738   pTabList = p->pSrc;
5739   pEList = p->pEList;
5740   if( pParse->pWith && (p->selFlags & SF_View) ){
5741     if( p->pWith==0 ){
5742       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5743       if( p->pWith==0 ){
5744         return WRC_Abort;
5745       }
5746     }
5747     p->pWith->bView = 1;
5748   }
5749   sqlite3WithPush(pParse, p->pWith, 0);
5750 
5751   /* Make sure cursor numbers have been assigned to all entries in
5752   ** the FROM clause of the SELECT statement.
5753   */
5754   sqlite3SrcListAssignCursors(pParse, pTabList);
5755 
5756   /* Look up every table named in the FROM clause of the select.  If
5757   ** an entry of the FROM clause is a subquery instead of a table or view,
5758   ** then create a transient table structure to describe the subquery.
5759   */
5760   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5761     Table *pTab;
5762     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5763     if( pFrom->pTab ) continue;
5764     assert( pFrom->fg.isRecursive==0 );
5765     if( pFrom->zName==0 ){
5766 #ifndef SQLITE_OMIT_SUBQUERY
5767       Select *pSel = pFrom->pSelect;
5768       /* A sub-query in the FROM clause of a SELECT */
5769       assert( pSel!=0 );
5770       assert( pFrom->pTab==0 );
5771       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5772       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5773 #endif
5774 #ifndef SQLITE_OMIT_CTE
5775     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5776       if( rc>1 ) return WRC_Abort;
5777       pTab = pFrom->pTab;
5778       assert( pTab!=0 );
5779 #endif
5780     }else{
5781       /* An ordinary table or view name in the FROM clause */
5782       assert( pFrom->pTab==0 );
5783       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5784       if( pTab==0 ) return WRC_Abort;
5785       if( pTab->nTabRef>=0xffff ){
5786         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5787            pTab->zName);
5788         pFrom->pTab = 0;
5789         return WRC_Abort;
5790       }
5791       pTab->nTabRef++;
5792       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5793         return WRC_Abort;
5794       }
5795 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5796       if( !IsOrdinaryTable(pTab) ){
5797         i16 nCol;
5798         u8 eCodeOrig = pWalker->eCode;
5799         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5800         assert( pFrom->pSelect==0 );
5801         if( IsView(pTab) ){
5802           if( (db->flags & SQLITE_EnableView)==0
5803            && pTab->pSchema!=db->aDb[1].pSchema
5804           ){
5805             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5806               pTab->zName);
5807           }
5808           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5809         }
5810 #ifndef SQLITE_OMIT_VIRTUALTABLE
5811         else if( ALWAYS(IsVirtual(pTab))
5812          && pFrom->fg.fromDDL
5813          && ALWAYS(pTab->u.vtab.p!=0)
5814          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5815         ){
5816           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5817                                   pTab->zName);
5818         }
5819         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5820 #endif
5821         nCol = pTab->nCol;
5822         pTab->nCol = -1;
5823         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5824         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5825         pWalker->eCode = eCodeOrig;
5826         pTab->nCol = nCol;
5827       }
5828 #endif
5829     }
5830 
5831     /* Locate the index named by the INDEXED BY clause, if any. */
5832     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5833       return WRC_Abort;
5834     }
5835   }
5836 
5837   /* Process NATURAL keywords, and ON and USING clauses of joins.
5838   */
5839   assert( db->mallocFailed==0 || pParse->nErr!=0 );
5840   if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
5841     return WRC_Abort;
5842   }
5843 
5844   /* For every "*" that occurs in the column list, insert the names of
5845   ** all columns in all tables.  And for every TABLE.* insert the names
5846   ** of all columns in TABLE.  The parser inserted a special expression
5847   ** with the TK_ASTERISK operator for each "*" that it found in the column
5848   ** list.  The following code just has to locate the TK_ASTERISK
5849   ** expressions and expand each one to the list of all columns in
5850   ** all tables.
5851   **
5852   ** The first loop just checks to see if there are any "*" operators
5853   ** that need expanding.
5854   */
5855   for(k=0; k<pEList->nExpr; k++){
5856     pE = pEList->a[k].pExpr;
5857     if( pE->op==TK_ASTERISK ) break;
5858     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5859     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5860     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5861     elistFlags |= pE->flags;
5862   }
5863   if( k<pEList->nExpr ){
5864     /*
5865     ** If we get here it means the result set contains one or more "*"
5866     ** operators that need to be expanded.  Loop through each expression
5867     ** in the result set and expand them one by one.
5868     */
5869     struct ExprList_item *a = pEList->a;
5870     ExprList *pNew = 0;
5871     int flags = pParse->db->flags;
5872     int longNames = (flags & SQLITE_FullColNames)!=0
5873                       && (flags & SQLITE_ShortColNames)==0;
5874 
5875     for(k=0; k<pEList->nExpr; k++){
5876       pE = a[k].pExpr;
5877       elistFlags |= pE->flags;
5878       pRight = pE->pRight;
5879       assert( pE->op!=TK_DOT || pRight!=0 );
5880       if( pE->op!=TK_ASTERISK
5881        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5882       ){
5883         /* This particular expression does not need to be expanded.
5884         */
5885         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5886         if( pNew ){
5887           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5888           pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
5889           a[k].zEName = 0;
5890         }
5891         a[k].pExpr = 0;
5892       }else{
5893         /* This expression is a "*" or a "TABLE.*" and needs to be
5894         ** expanded. */
5895         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5896         char *zTName = 0;       /* text of name of TABLE */
5897         if( pE->op==TK_DOT ){
5898           assert( pE->pLeft!=0 );
5899           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5900           zTName = pE->pLeft->u.zToken;
5901         }
5902         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5903           Table *pTab = pFrom->pTab;   /* Table for this data source */
5904           ExprList *pNestedFrom;       /* Result-set of a nested FROM clause */
5905           char *zTabName;              /* AS name for this data source */
5906           const char *zSchemaName = 0; /* Schema name for this data source */
5907           int iDb;                     /* Schema index for this data src */
5908           IdList *pUsing;              /* USING clause for pFrom[1] */
5909 
5910           if( (zTabName = pFrom->zAlias)==0 ){
5911             zTabName = pTab->zName;
5912           }
5913           if( db->mallocFailed ) break;
5914           assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
5915           if( pFrom->fg.isNestedFrom ){
5916             assert( pFrom->pSelect!=0 );
5917             pNestedFrom = pFrom->pSelect->pEList;
5918             assert( pNestedFrom!=0 );
5919             assert( pNestedFrom->nExpr==pTab->nCol );
5920           }else{
5921             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5922               continue;
5923             }
5924             pNestedFrom = 0;
5925             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5926             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5927           }
5928           if( i+1<pTabList->nSrc
5929            && pFrom[1].fg.isUsing
5930            && (selFlags & SF_NestedFrom)!=0
5931           ){
5932             int ii;
5933             pUsing = pFrom[1].u3.pUsing;
5934             for(ii=0; ii<pUsing->nId; ii++){
5935               const char *zUName = pUsing->a[ii].zName;
5936               pRight = sqlite3Expr(db, TK_ID, zUName);
5937               pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
5938               if( pNew ){
5939                 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5940                 assert( pX->zEName==0 );
5941                 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
5942                 pX->fg.eEName = ENAME_TAB;
5943                 pX->fg.bUsingTerm = 1;
5944               }
5945             }
5946           }else{
5947             pUsing = 0;
5948           }
5949           for(j=0; j<pTab->nCol; j++){
5950             char *zName = pTab->aCol[j].zCnName;
5951             struct ExprList_item *pX; /* Newly added ExprList term */
5952 
5953             assert( zName );
5954             if( zTName
5955              && pNestedFrom
5956              && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0
5957             ){
5958               continue;
5959             }
5960 
5961             /* If a column is marked as 'hidden', omit it from the expanded
5962             ** result-set list unless the SELECT has the SF_IncludeHidden
5963             ** bit set.
5964             */
5965             if( (p->selFlags & SF_IncludeHidden)==0
5966              && IsHiddenColumn(&pTab->aCol[j])
5967             ){
5968               continue;
5969             }
5970             if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
5971              && zTName==0
5972              && (selFlags & (SF_NestedFrom))==0
5973             ){
5974               continue;
5975             }
5976             tableSeen = 1;
5977 
5978             if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
5979               if( pFrom->fg.isUsing
5980                && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
5981               ){
5982                 /* In a join with a USING clause, omit columns in the
5983                 ** using clause from the table on the right. */
5984                 continue;
5985               }
5986             }
5987             pRight = sqlite3Expr(db, TK_ID, zName);
5988             if( (pTabList->nSrc>1
5989                  && (  (pFrom->fg.jointype & JT_LTORJ)==0
5990                      || (selFlags & SF_NestedFrom)!=0
5991                      || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
5992                     )
5993                 )
5994              || IN_RENAME_OBJECT
5995             ){
5996               Expr *pLeft;
5997               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5998               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5999               if( IN_RENAME_OBJECT && pE->pLeft ){
6000                 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
6001               }
6002               if( zSchemaName ){
6003                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
6004                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
6005               }
6006             }else{
6007               pExpr = pRight;
6008             }
6009             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6010             if( pNew==0 ){
6011               break;  /* OOM */
6012             }
6013             pX = &pNew->a[pNew->nExpr-1];
6014             assert( pX->zEName==0 );
6015             if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6016               if( pNestedFrom ){
6017                 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6018                 testcase( pX->zEName==0 );
6019               }else{
6020                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6021                                            zSchemaName, zTabName, zName);
6022                 testcase( pX->zEName==0 );
6023               }
6024               pX->fg.eEName = ENAME_TAB;
6025               if( (pFrom->fg.isUsing
6026                    && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6027                || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6028                || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6029               ){
6030                 pX->fg.bNoExpand = 1;
6031               }
6032             }else if( longNames ){
6033               pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6034               pX->fg.eEName = ENAME_NAME;
6035             }else{
6036               pX->zEName = sqlite3DbStrDup(db, zName);
6037               pX->fg.eEName = ENAME_NAME;
6038             }
6039           }
6040         }
6041         if( !tableSeen ){
6042           if( zTName ){
6043             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6044           }else{
6045             sqlite3ErrorMsg(pParse, "no tables specified");
6046           }
6047         }
6048       }
6049     }
6050     sqlite3ExprListDelete(db, pEList);
6051     p->pEList = pNew;
6052   }
6053   if( p->pEList ){
6054     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6055       sqlite3ErrorMsg(pParse, "too many columns in result set");
6056       return WRC_Abort;
6057     }
6058     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6059       p->selFlags |= SF_ComplexResult;
6060     }
6061   }
6062 #if TREETRACE_ENABLED
6063   if( sqlite3TreeTrace & 0x100 ){
6064     SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n"));
6065     sqlite3TreeViewSelect(0, p, 0);
6066   }
6067 #endif
6068   return WRC_Continue;
6069 }
6070 
6071 #if SQLITE_DEBUG
6072 /*
6073 ** Always assert.  This xSelectCallback2 implementation proves that the
6074 ** xSelectCallback2 is never invoked.
6075 */
6076 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6077   UNUSED_PARAMETER2(NotUsed, NotUsed2);
6078   assert( 0 );
6079 }
6080 #endif
6081 /*
6082 ** This routine "expands" a SELECT statement and all of its subqueries.
6083 ** For additional information on what it means to "expand" a SELECT
6084 ** statement, see the comment on the selectExpand worker callback above.
6085 **
6086 ** Expanding a SELECT statement is the first step in processing a
6087 ** SELECT statement.  The SELECT statement must be expanded before
6088 ** name resolution is performed.
6089 **
6090 ** If anything goes wrong, an error message is written into pParse.
6091 ** The calling function can detect the problem by looking at pParse->nErr
6092 ** and/or pParse->db->mallocFailed.
6093 */
6094 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6095   Walker w;
6096   w.xExprCallback = sqlite3ExprWalkNoop;
6097   w.pParse = pParse;
6098   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6099     w.xSelectCallback = convertCompoundSelectToSubquery;
6100     w.xSelectCallback2 = 0;
6101     sqlite3WalkSelect(&w, pSelect);
6102   }
6103   w.xSelectCallback = selectExpander;
6104   w.xSelectCallback2 = sqlite3SelectPopWith;
6105   w.eCode = 0;
6106   sqlite3WalkSelect(&w, pSelect);
6107 }
6108 
6109 
6110 #ifndef SQLITE_OMIT_SUBQUERY
6111 /*
6112 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6113 ** interface.
6114 **
6115 ** For each FROM-clause subquery, add Column.zType and Column.zColl
6116 ** information to the Table structure that represents the result set
6117 ** of that subquery.
6118 **
6119 ** The Table structure that represents the result set was constructed
6120 ** by selectExpander() but the type and collation information was omitted
6121 ** at that point because identifiers had not yet been resolved.  This
6122 ** routine is called after identifier resolution.
6123 */
6124 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6125   Parse *pParse;
6126   int i;
6127   SrcList *pTabList;
6128   SrcItem *pFrom;
6129 
6130   assert( p->selFlags & SF_Resolved );
6131   if( p->selFlags & SF_HasTypeInfo ) return;
6132   p->selFlags |= SF_HasTypeInfo;
6133   pParse = pWalker->pParse;
6134   pTabList = p->pSrc;
6135   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6136     Table *pTab = pFrom->pTab;
6137     assert( pTab!=0 );
6138     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6139       /* A sub-query in the FROM clause of a SELECT */
6140       Select *pSel = pFrom->pSelect;
6141       if( pSel ){
6142         while( pSel->pPrior ) pSel = pSel->pPrior;
6143         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
6144                                                SQLITE_AFF_NONE);
6145       }
6146     }
6147   }
6148 }
6149 #endif
6150 
6151 
6152 /*
6153 ** This routine adds datatype and collating sequence information to
6154 ** the Table structures of all FROM-clause subqueries in a
6155 ** SELECT statement.
6156 **
6157 ** Use this routine after name resolution.
6158 */
6159 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6160 #ifndef SQLITE_OMIT_SUBQUERY
6161   Walker w;
6162   w.xSelectCallback = sqlite3SelectWalkNoop;
6163   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6164   w.xExprCallback = sqlite3ExprWalkNoop;
6165   w.pParse = pParse;
6166   sqlite3WalkSelect(&w, pSelect);
6167 #endif
6168 }
6169 
6170 
6171 /*
6172 ** This routine sets up a SELECT statement for processing.  The
6173 ** following is accomplished:
6174 **
6175 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
6176 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
6177 **     *  ON and USING clauses are shifted into WHERE statements
6178 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
6179 **     *  Identifiers in expression are matched to tables.
6180 **
6181 ** This routine acts recursively on all subqueries within the SELECT.
6182 */
6183 void sqlite3SelectPrep(
6184   Parse *pParse,         /* The parser context */
6185   Select *p,             /* The SELECT statement being coded. */
6186   NameContext *pOuterNC  /* Name context for container */
6187 ){
6188   assert( p!=0 || pParse->db->mallocFailed );
6189   assert( pParse->db->pParse==pParse );
6190   if( pParse->db->mallocFailed ) return;
6191   if( p->selFlags & SF_HasTypeInfo ) return;
6192   sqlite3SelectExpand(pParse, p);
6193   if( pParse->nErr ) return;
6194   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6195   if( pParse->nErr ) return;
6196   sqlite3SelectAddTypeInfo(pParse, p);
6197 }
6198 
6199 /*
6200 ** Reset the aggregate accumulator.
6201 **
6202 ** The aggregate accumulator is a set of memory cells that hold
6203 ** intermediate results while calculating an aggregate.  This
6204 ** routine generates code that stores NULLs in all of those memory
6205 ** cells.
6206 */
6207 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6208   Vdbe *v = pParse->pVdbe;
6209   int i;
6210   struct AggInfo_func *pFunc;
6211   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6212   assert( pParse->db->pParse==pParse );
6213   assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6214   if( nReg==0 ) return;
6215   if( pParse->nErr ) return;
6216 #ifdef SQLITE_DEBUG
6217   /* Verify that all AggInfo registers are within the range specified by
6218   ** AggInfo.mnReg..AggInfo.mxReg */
6219   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
6220   for(i=0; i<pAggInfo->nColumn; i++){
6221     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
6222          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
6223   }
6224   for(i=0; i<pAggInfo->nFunc; i++){
6225     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
6226          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
6227   }
6228 #endif
6229   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
6230   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6231     if( pFunc->iDistinct>=0 ){
6232       Expr *pE = pFunc->pFExpr;
6233       assert( ExprUseXList(pE) );
6234       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6235         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6236            "argument");
6237         pFunc->iDistinct = -1;
6238       }else{
6239         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6240         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6241             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6242         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6243                           pFunc->pFunc->zName));
6244       }
6245     }
6246   }
6247 }
6248 
6249 /*
6250 ** Invoke the OP_AggFinalize opcode for every aggregate function
6251 ** in the AggInfo structure.
6252 */
6253 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6254   Vdbe *v = pParse->pVdbe;
6255   int i;
6256   struct AggInfo_func *pF;
6257   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6258     ExprList *pList;
6259     assert( ExprUseXList(pF->pFExpr) );
6260     pList = pF->pFExpr->x.pList;
6261     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
6262     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6263   }
6264 }
6265 
6266 
6267 /*
6268 ** Update the accumulator memory cells for an aggregate based on
6269 ** the current cursor position.
6270 **
6271 ** If regAcc is non-zero and there are no min() or max() aggregates
6272 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6273 ** registers if register regAcc contains 0. The caller will take care
6274 ** of setting and clearing regAcc.
6275 */
6276 static void updateAccumulator(
6277   Parse *pParse,
6278   int regAcc,
6279   AggInfo *pAggInfo,
6280   int eDistinctType
6281 ){
6282   Vdbe *v = pParse->pVdbe;
6283   int i;
6284   int regHit = 0;
6285   int addrHitTest = 0;
6286   struct AggInfo_func *pF;
6287   struct AggInfo_col *pC;
6288 
6289   pAggInfo->directMode = 1;
6290   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6291     int nArg;
6292     int addrNext = 0;
6293     int regAgg;
6294     ExprList *pList;
6295     assert( ExprUseXList(pF->pFExpr) );
6296     assert( !IsWindowFunc(pF->pFExpr) );
6297     pList = pF->pFExpr->x.pList;
6298     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6299       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6300       if( pAggInfo->nAccumulator
6301        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6302        && regAcc
6303       ){
6304         /* If regAcc==0, there there exists some min() or max() function
6305         ** without a FILTER clause that will ensure the magnet registers
6306         ** are populated. */
6307         if( regHit==0 ) regHit = ++pParse->nMem;
6308         /* If this is the first row of the group (regAcc contains 0), clear the
6309         ** "magnet" register regHit so that the accumulator registers
6310         ** are populated if the FILTER clause jumps over the the
6311         ** invocation of min() or max() altogether. Or, if this is not
6312         ** the first row (regAcc contains 1), set the magnet register so that
6313         ** the accumulators are not populated unless the min()/max() is invoked
6314         ** and indicates that they should be.  */
6315         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6316       }
6317       addrNext = sqlite3VdbeMakeLabel(pParse);
6318       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6319     }
6320     if( pList ){
6321       nArg = pList->nExpr;
6322       regAgg = sqlite3GetTempRange(pParse, nArg);
6323       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6324     }else{
6325       nArg = 0;
6326       regAgg = 0;
6327     }
6328     if( pF->iDistinct>=0 && pList ){
6329       if( addrNext==0 ){
6330         addrNext = sqlite3VdbeMakeLabel(pParse);
6331       }
6332       pF->iDistinct = codeDistinct(pParse, eDistinctType,
6333           pF->iDistinct, addrNext, pList, regAgg);
6334     }
6335     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6336       CollSeq *pColl = 0;
6337       struct ExprList_item *pItem;
6338       int j;
6339       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
6340       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6341         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6342       }
6343       if( !pColl ){
6344         pColl = pParse->db->pDfltColl;
6345       }
6346       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6347       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6348     }
6349     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6350     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6351     sqlite3VdbeChangeP5(v, (u8)nArg);
6352     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6353     if( addrNext ){
6354       sqlite3VdbeResolveLabel(v, addrNext);
6355     }
6356   }
6357   if( regHit==0 && pAggInfo->nAccumulator ){
6358     regHit = regAcc;
6359   }
6360   if( regHit ){
6361     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6362   }
6363   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6364     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6365   }
6366 
6367   pAggInfo->directMode = 0;
6368   if( addrHitTest ){
6369     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6370   }
6371 }
6372 
6373 /*
6374 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6375 ** count(*) query ("SELECT count(*) FROM pTab").
6376 */
6377 #ifndef SQLITE_OMIT_EXPLAIN
6378 static void explainSimpleCount(
6379   Parse *pParse,                  /* Parse context */
6380   Table *pTab,                    /* Table being queried */
6381   Index *pIdx                     /* Index used to optimize scan, or NULL */
6382 ){
6383   if( pParse->explain==2 ){
6384     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6385     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6386         pTab->zName,
6387         bCover ? " USING COVERING INDEX " : "",
6388         bCover ? pIdx->zName : ""
6389     );
6390   }
6391 }
6392 #else
6393 # define explainSimpleCount(a,b,c)
6394 #endif
6395 
6396 /*
6397 ** sqlite3WalkExpr() callback used by havingToWhere().
6398 **
6399 ** If the node passed to the callback is a TK_AND node, return
6400 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6401 **
6402 ** Otherwise, return WRC_Prune. In this case, also check if the
6403 ** sub-expression matches the criteria for being moved to the WHERE
6404 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6405 ** within the HAVING expression with a constant "1".
6406 */
6407 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6408   if( pExpr->op!=TK_AND ){
6409     Select *pS = pWalker->u.pSelect;
6410     /* This routine is called before the HAVING clause of the current
6411     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6412     ** here, it indicates that the expression is a correlated reference to a
6413     ** column from an outer aggregate query, or an aggregate function that
6414     ** belongs to an outer query. Do not move the expression to the WHERE
6415     ** clause in this obscure case, as doing so may corrupt the outer Select
6416     ** statements AggInfo structure.  */
6417     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6418      && ExprAlwaysFalse(pExpr)==0
6419      && pExpr->pAggInfo==0
6420     ){
6421       sqlite3 *db = pWalker->pParse->db;
6422       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6423       if( pNew ){
6424         Expr *pWhere = pS->pWhere;
6425         SWAP(Expr, *pNew, *pExpr);
6426         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6427         pS->pWhere = pNew;
6428         pWalker->eCode = 1;
6429       }
6430     }
6431     return WRC_Prune;
6432   }
6433   return WRC_Continue;
6434 }
6435 
6436 /*
6437 ** Transfer eligible terms from the HAVING clause of a query, which is
6438 ** processed after grouping, to the WHERE clause, which is processed before
6439 ** grouping. For example, the query:
6440 **
6441 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6442 **
6443 ** can be rewritten as:
6444 **
6445 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6446 **
6447 ** A term of the HAVING expression is eligible for transfer if it consists
6448 ** entirely of constants and expressions that are also GROUP BY terms that
6449 ** use the "BINARY" collation sequence.
6450 */
6451 static void havingToWhere(Parse *pParse, Select *p){
6452   Walker sWalker;
6453   memset(&sWalker, 0, sizeof(sWalker));
6454   sWalker.pParse = pParse;
6455   sWalker.xExprCallback = havingToWhereExprCb;
6456   sWalker.u.pSelect = p;
6457   sqlite3WalkExpr(&sWalker, p->pHaving);
6458 #if TREETRACE_ENABLED
6459   if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
6460     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6461     sqlite3TreeViewSelect(0, p, 0);
6462   }
6463 #endif
6464 }
6465 
6466 /*
6467 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6468 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6469 ** then return 0.
6470 */
6471 static SrcItem *isSelfJoinView(
6472   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6473   SrcItem *pThis               /* Search for prior reference to this subquery */
6474 ){
6475   SrcItem *pItem;
6476   assert( pThis->pSelect!=0 );
6477   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6478   for(pItem = pTabList->a; pItem<pThis; pItem++){
6479     Select *pS1;
6480     if( pItem->pSelect==0 ) continue;
6481     if( pItem->fg.viaCoroutine ) continue;
6482     if( pItem->zName==0 ) continue;
6483     assert( pItem->pTab!=0 );
6484     assert( pThis->pTab!=0 );
6485     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6486     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6487     pS1 = pItem->pSelect;
6488     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6489       /* The query flattener left two different CTE tables with identical
6490       ** names in the same FROM clause. */
6491       continue;
6492     }
6493     if( pItem->pSelect->selFlags & SF_PushDown ){
6494       /* The view was modified by some other optimization such as
6495       ** pushDownWhereTerms() */
6496       continue;
6497     }
6498     return pItem;
6499   }
6500   return 0;
6501 }
6502 
6503 /*
6504 ** Deallocate a single AggInfo object
6505 */
6506 static void agginfoFree(sqlite3 *db, AggInfo *p){
6507   sqlite3DbFree(db, p->aCol);
6508   sqlite3DbFree(db, p->aFunc);
6509   sqlite3DbFreeNN(db, p);
6510 }
6511 
6512 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6513 /*
6514 ** Attempt to transform a query of the form
6515 **
6516 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6517 **
6518 ** Into this:
6519 **
6520 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6521 **
6522 ** The transformation only works if all of the following are true:
6523 **
6524 **   *  The subquery is a UNION ALL of two or more terms
6525 **   *  The subquery does not have a LIMIT clause
6526 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6527 **   *  The outer query is a simple count(*) with no WHERE clause or other
6528 **      extraneous syntax.
6529 **
6530 ** Return TRUE if the optimization is undertaken.
6531 */
6532 static int countOfViewOptimization(Parse *pParse, Select *p){
6533   Select *pSub, *pPrior;
6534   Expr *pExpr;
6535   Expr *pCount;
6536   sqlite3 *db;
6537   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6538   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6539   if( p->pWhere ) return 0;
6540   if( p->pGroupBy ) return 0;
6541   pExpr = p->pEList->a[0].pExpr;
6542   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6543   assert( ExprUseUToken(pExpr) );
6544   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6545   assert( ExprUseXList(pExpr) );
6546   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6547   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6548   pSub = p->pSrc->a[0].pSelect;
6549   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6550   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6551   do{
6552     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6553     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6554     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6555     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6556     pSub = pSub->pPrior;                              /* Repeat over compound */
6557   }while( pSub );
6558 
6559   /* If we reach this point then it is OK to perform the transformation */
6560 
6561   db = pParse->db;
6562   pCount = pExpr;
6563   pExpr = 0;
6564   pSub = p->pSrc->a[0].pSelect;
6565   p->pSrc->a[0].pSelect = 0;
6566   sqlite3SrcListDelete(db, p->pSrc);
6567   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6568   while( pSub ){
6569     Expr *pTerm;
6570     pPrior = pSub->pPrior;
6571     pSub->pPrior = 0;
6572     pSub->pNext = 0;
6573     pSub->selFlags |= SF_Aggregate;
6574     pSub->selFlags &= ~SF_Compound;
6575     pSub->nSelectRow = 0;
6576     sqlite3ExprListDelete(db, pSub->pEList);
6577     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6578     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6579     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6580     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6581     if( pExpr==0 ){
6582       pExpr = pTerm;
6583     }else{
6584       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6585     }
6586     pSub = pPrior;
6587   }
6588   p->pEList->a[0].pExpr = pExpr;
6589   p->selFlags &= ~SF_Aggregate;
6590 
6591 #if TREETRACE_ENABLED
6592   if( sqlite3TreeTrace & 0x400 ){
6593     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6594     sqlite3TreeViewSelect(0, p, 0);
6595   }
6596 #endif
6597   return 1;
6598 }
6599 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6600 
6601 /*
6602 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
6603 ** as pSrcItem but has the same alias as p0, then return true.
6604 ** Otherwise return false.
6605 */
6606 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
6607   int i;
6608   for(i=0; i<pSrc->nSrc; i++){
6609     SrcItem *p1 = &pSrc->a[i];
6610     if( p1==p0 ) continue;
6611     if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6612       return 1;
6613     }
6614     if( p1->pSelect
6615      && (p1->pSelect->selFlags & SF_NestedFrom)!=0
6616      && sameSrcAlias(p0, p1->pSelect->pSrc)
6617     ){
6618       return 1;
6619     }
6620   }
6621   return 0;
6622 }
6623 
6624 /*
6625 ** Generate code for the SELECT statement given in the p argument.
6626 **
6627 ** The results are returned according to the SelectDest structure.
6628 ** See comments in sqliteInt.h for further information.
6629 **
6630 ** This routine returns the number of errors.  If any errors are
6631 ** encountered, then an appropriate error message is left in
6632 ** pParse->zErrMsg.
6633 **
6634 ** This routine does NOT free the Select structure passed in.  The
6635 ** calling function needs to do that.
6636 */
6637 int sqlite3Select(
6638   Parse *pParse,         /* The parser context */
6639   Select *p,             /* The SELECT statement being coded. */
6640   SelectDest *pDest      /* What to do with the query results */
6641 ){
6642   int i, j;              /* Loop counters */
6643   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6644   Vdbe *v;               /* The virtual machine under construction */
6645   int isAgg;             /* True for select lists like "count(*)" */
6646   ExprList *pEList = 0;  /* List of columns to extract. */
6647   SrcList *pTabList;     /* List of tables to select from */
6648   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6649   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6650   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6651   AggInfo *pAggInfo = 0; /* Aggregate information */
6652   int rc = 1;            /* Value to return from this function */
6653   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6654   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6655   int iEnd;              /* Address of the end of the query */
6656   sqlite3 *db;           /* The database connection */
6657   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6658   u8 minMaxFlag;                 /* Flag for min/max queries */
6659 
6660   db = pParse->db;
6661   assert( pParse==db->pParse );
6662   v = sqlite3GetVdbe(pParse);
6663   if( p==0 || pParse->nErr ){
6664     return 1;
6665   }
6666   assert( db->mallocFailed==0 );
6667   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6668 #if TREETRACE_ENABLED
6669   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6670   if( sqlite3TreeTrace & 0x10100 ){
6671     if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
6672       sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
6673                            __FILE__, __LINE__);
6674     }
6675     sqlite3ShowSelect(p);
6676   }
6677 #endif
6678 
6679   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6680   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6681   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6682   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6683   if( IgnorableDistinct(pDest) ){
6684     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6685            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6686            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6687     /* All of these destinations are also able to ignore the ORDER BY clause */
6688     if( p->pOrderBy ){
6689 #if TREETRACE_ENABLED
6690       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6691       if( sqlite3TreeTrace & 0x100 ){
6692         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6693       }
6694 #endif
6695       sqlite3ParserAddCleanup(pParse,
6696         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6697         p->pOrderBy);
6698       testcase( pParse->earlyCleanup );
6699       p->pOrderBy = 0;
6700     }
6701     p->selFlags &= ~SF_Distinct;
6702     p->selFlags |= SF_NoopOrderBy;
6703   }
6704   sqlite3SelectPrep(pParse, p, 0);
6705   if( pParse->nErr ){
6706     goto select_end;
6707   }
6708   assert( db->mallocFailed==0 );
6709   assert( p->pEList!=0 );
6710 #if TREETRACE_ENABLED
6711   if( sqlite3TreeTrace & 0x104 ){
6712     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6713     sqlite3TreeViewSelect(0, p, 0);
6714   }
6715 #endif
6716 
6717   /* If the SF_UFSrcCheck flag is set, then this function is being called
6718   ** as part of populating the temp table for an UPDATE...FROM statement.
6719   ** In this case, it is an error if the target object (pSrc->a[0]) name
6720   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6721   **
6722   ** Postgres disallows this case too. The reason is that some other
6723   ** systems handle this case differently, and not all the same way,
6724   ** which is just confusing. To avoid this, we follow PG's lead and
6725   ** disallow it altogether.  */
6726   if( p->selFlags & SF_UFSrcCheck ){
6727     SrcItem *p0 = &p->pSrc->a[0];
6728     if( sameSrcAlias(p0, p->pSrc) ){
6729       sqlite3ErrorMsg(pParse,
6730           "target object/alias may not appear in FROM clause: %s",
6731           p0->zAlias ? p0->zAlias : p0->pTab->zName
6732       );
6733       goto select_end;
6734     }
6735 
6736     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6737     ** and leaving this flag set can cause errors if a compound sub-query
6738     ** in p->pSrc is flattened into this query and this function called
6739     ** again as part of compound SELECT processing.  */
6740     p->selFlags &= ~SF_UFSrcCheck;
6741   }
6742 
6743   if( pDest->eDest==SRT_Output ){
6744     sqlite3GenerateColumnNames(pParse, p);
6745   }
6746 
6747 #ifndef SQLITE_OMIT_WINDOWFUNC
6748   if( sqlite3WindowRewrite(pParse, p) ){
6749     assert( pParse->nErr );
6750     goto select_end;
6751   }
6752 #if TREETRACE_ENABLED
6753   if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
6754     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6755     sqlite3TreeViewSelect(0, p, 0);
6756   }
6757 #endif
6758 #endif /* SQLITE_OMIT_WINDOWFUNC */
6759   pTabList = p->pSrc;
6760   isAgg = (p->selFlags & SF_Aggregate)!=0;
6761   memset(&sSort, 0, sizeof(sSort));
6762   sSort.pOrderBy = p->pOrderBy;
6763 
6764   /* Try to do various optimizations (flattening subqueries, and strength
6765   ** reduction of join operators) in the FROM clause up into the main query
6766   */
6767 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6768   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6769     SrcItem *pItem = &pTabList->a[i];
6770     Select *pSub = pItem->pSelect;
6771     Table *pTab = pItem->pTab;
6772 
6773     /* The expander should have already created transient Table objects
6774     ** even for FROM clause elements such as subqueries that do not correspond
6775     ** to a real table */
6776     assert( pTab!=0 );
6777 
6778     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6779     ** of the LEFT JOIN used in the WHERE clause.
6780     */
6781     if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT
6782      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6783      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6784     ){
6785       SELECTTRACE(0x100,pParse,p,
6786                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6787       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6788       assert( pItem->iCursor>=0 );
6789       unsetJoinExpr(p->pWhere, pItem->iCursor,
6790                     pTabList->a[0].fg.jointype & JT_LTORJ);
6791     }
6792 
6793     /* No futher action if this term of the FROM clause is no a subquery */
6794     if( pSub==0 ) continue;
6795 
6796     /* Catch mismatch in the declared columns of a view and the number of
6797     ** columns in the SELECT on the RHS */
6798     if( pTab->nCol!=pSub->pEList->nExpr ){
6799       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6800                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6801       goto select_end;
6802     }
6803 
6804     /* Do not try to flatten an aggregate subquery.
6805     **
6806     ** Flattening an aggregate subquery is only possible if the outer query
6807     ** is not a join.  But if the outer query is not a join, then the subquery
6808     ** will be implemented as a co-routine and there is no advantage to
6809     ** flattening in that case.
6810     */
6811     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6812     assert( pSub->pGroupBy==0 );
6813 
6814     /* If a FROM-clause subquery has an ORDER BY clause that is not
6815     ** really doing anything, then delete it now so that it does not
6816     ** interfere with query flattening.  See the discussion at
6817     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6818     **
6819     ** Beware of these cases where the ORDER BY clause may not be safely
6820     ** omitted:
6821     **
6822     **    (1)   There is also a LIMIT clause
6823     **    (2)   The subquery was added to help with window-function
6824     **          processing
6825     **    (3)   The subquery is in the FROM clause of an UPDATE
6826     **    (4)   The outer query uses an aggregate function other than
6827     **          the built-in count(), min(), or max().
6828     **    (5)   The ORDER BY isn't going to accomplish anything because
6829     **          one of:
6830     **            (a)  The outer query has a different ORDER BY clause
6831     **            (b)  The subquery is part of a join
6832     **          See forum post 062d576715d277c8
6833     */
6834     if( pSub->pOrderBy!=0
6835      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6836      && pSub->pLimit==0                           /* Condition (1) */
6837      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6838      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6839      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6840     ){
6841       SELECTTRACE(0x100,pParse,p,
6842                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6843       sqlite3ParserAddCleanup(pParse,
6844          (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6845          pSub->pOrderBy);
6846       pSub->pOrderBy = 0;
6847     }
6848 
6849     /* If the outer query contains a "complex" result set (that is,
6850     ** if the result set of the outer query uses functions or subqueries)
6851     ** and if the subquery contains an ORDER BY clause and if
6852     ** it will be implemented as a co-routine, then do not flatten.  This
6853     ** restriction allows SQL constructs like this:
6854     **
6855     **  SELECT expensive_function(x)
6856     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6857     **
6858     ** The expensive_function() is only computed on the 10 rows that
6859     ** are output, rather than every row of the table.
6860     **
6861     ** The requirement that the outer query have a complex result set
6862     ** means that flattening does occur on simpler SQL constraints without
6863     ** the expensive_function() like:
6864     **
6865     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6866     */
6867     if( pSub->pOrderBy!=0
6868      && i==0
6869      && (p->selFlags & SF_ComplexResult)!=0
6870      && (pTabList->nSrc==1
6871          || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
6872     ){
6873       continue;
6874     }
6875 
6876     if( flattenSubquery(pParse, p, i, isAgg) ){
6877       if( pParse->nErr ) goto select_end;
6878       /* This subquery can be absorbed into its parent. */
6879       i = -1;
6880     }
6881     pTabList = p->pSrc;
6882     if( db->mallocFailed ) goto select_end;
6883     if( !IgnorableOrderby(pDest) ){
6884       sSort.pOrderBy = p->pOrderBy;
6885     }
6886   }
6887 #endif
6888 
6889 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6890   /* Handle compound SELECT statements using the separate multiSelect()
6891   ** procedure.
6892   */
6893   if( p->pPrior ){
6894     rc = multiSelect(pParse, p, pDest);
6895 #if TREETRACE_ENABLED
6896     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6897     if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6898       sqlite3TreeViewSelect(0, p, 0);
6899     }
6900 #endif
6901     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6902     return rc;
6903   }
6904 #endif
6905 
6906   /* Do the WHERE-clause constant propagation optimization if this is
6907   ** a join.  No need to speed time on this operation for non-join queries
6908   ** as the equivalent optimization will be handled by query planner in
6909   ** sqlite3WhereBegin().
6910   */
6911   if( p->pWhere!=0
6912    && p->pWhere->op==TK_AND
6913    && OptimizationEnabled(db, SQLITE_PropagateConst)
6914    && propagateConstants(pParse, p)
6915   ){
6916 #if TREETRACE_ENABLED
6917     if( sqlite3TreeTrace & 0x100 ){
6918       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6919       sqlite3TreeViewSelect(0, p, 0);
6920     }
6921 #endif
6922   }else{
6923     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6924   }
6925 
6926 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6927   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6928    && countOfViewOptimization(pParse, p)
6929   ){
6930     if( db->mallocFailed ) goto select_end;
6931     pEList = p->pEList;
6932     pTabList = p->pSrc;
6933   }
6934 #endif
6935 
6936   /* For each term in the FROM clause, do two things:
6937   ** (1) Authorized unreferenced tables
6938   ** (2) Generate code for all sub-queries
6939   */
6940   for(i=0; i<pTabList->nSrc; i++){
6941     SrcItem *pItem = &pTabList->a[i];
6942     SrcItem *pPrior;
6943     SelectDest dest;
6944     Select *pSub;
6945 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6946     const char *zSavedAuthContext;
6947 #endif
6948 
6949     /* Issue SQLITE_READ authorizations with a fake column name for any
6950     ** tables that are referenced but from which no values are extracted.
6951     ** Examples of where these kinds of null SQLITE_READ authorizations
6952     ** would occur:
6953     **
6954     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6955     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6956     **
6957     ** The fake column name is an empty string.  It is possible for a table to
6958     ** have a column named by the empty string, in which case there is no way to
6959     ** distinguish between an unreferenced table and an actual reference to the
6960     ** "" column. The original design was for the fake column name to be a NULL,
6961     ** which would be unambiguous.  But legacy authorization callbacks might
6962     ** assume the column name is non-NULL and segfault.  The use of an empty
6963     ** string for the fake column name seems safer.
6964     */
6965     if( pItem->colUsed==0 && pItem->zName!=0 ){
6966       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6967     }
6968 
6969 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6970     /* Generate code for all sub-queries in the FROM clause
6971     */
6972     pSub = pItem->pSelect;
6973     if( pSub==0 ) continue;
6974 
6975     /* The code for a subquery should only be generated once. */
6976     assert( pItem->addrFillSub==0 );
6977 
6978     /* Increment Parse.nHeight by the height of the largest expression
6979     ** tree referred to by this, the parent select. The child select
6980     ** may contain expression trees of at most
6981     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6982     ** more conservative than necessary, but much easier than enforcing
6983     ** an exact limit.
6984     */
6985     pParse->nHeight += sqlite3SelectExprHeight(p);
6986 
6987     /* Make copies of constant WHERE-clause terms in the outer query down
6988     ** inside the subquery.  This can help the subquery to run more efficiently.
6989     */
6990     if( OptimizationEnabled(db, SQLITE_PushDown)
6991      && (pItem->fg.isCte==0
6992          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6993      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem)
6994     ){
6995 #if TREETRACE_ENABLED
6996       if( sqlite3TreeTrace & 0x100 ){
6997         SELECTTRACE(0x100,pParse,p,
6998             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6999         sqlite3TreeViewSelect(0, p, 0);
7000       }
7001 #endif
7002       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
7003     }else{
7004       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
7005     }
7006 
7007     zSavedAuthContext = pParse->zAuthContext;
7008     pParse->zAuthContext = pItem->zName;
7009 
7010     /* Generate code to implement the subquery
7011     **
7012     ** The subquery is implemented as a co-routine if all of the following are
7013     ** true:
7014     **
7015     **    (1)  the subquery is guaranteed to be the outer loop (so that
7016     **         it does not need to be computed more than once), and
7017     **    (2)  the subquery is not a CTE that should be materialized
7018     **    (3)  the subquery is not part of a left operand for a RIGHT JOIN
7019     */
7020     if( i==0
7021      && (pTabList->nSrc==1
7022             || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)  /* (1) */
7023      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)   /* (2) */
7024      && (pTabList->a[0].fg.jointype & JT_LTORJ)==0                   /* (3) */
7025     ){
7026       /* Implement a co-routine that will return a single row of the result
7027       ** set on each invocation.
7028       */
7029       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7030 
7031       pItem->regReturn = ++pParse->nMem;
7032       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7033       VdbeComment((v, "%!S", pItem));
7034       pItem->addrFillSub = addrTop;
7035       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7036       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7037       sqlite3Select(pParse, pSub, &dest);
7038       pItem->pTab->nRowLogEst = pSub->nSelectRow;
7039       pItem->fg.viaCoroutine = 1;
7040       pItem->regResult = dest.iSdst;
7041       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7042       sqlite3VdbeJumpHere(v, addrTop-1);
7043       sqlite3ClearTempRegCache(pParse);
7044     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7045       /* This is a CTE for which materialization code has already been
7046       ** generated.  Invoke the subroutine to compute the materialization,
7047       ** the make the pItem->iCursor be a copy of the ephemerial table that
7048       ** holds the result of the materialization. */
7049       CteUse *pCteUse = pItem->u2.pCteUse;
7050       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7051       if( pItem->iCursor!=pCteUse->iCur ){
7052         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7053         VdbeComment((v, "%!S", pItem));
7054       }
7055       pSub->nSelectRow = pCteUse->nRowEst;
7056     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
7057       /* This view has already been materialized by a prior entry in
7058       ** this same FROM clause.  Reuse it. */
7059       if( pPrior->addrFillSub ){
7060         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7061       }
7062       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7063       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7064     }else{
7065       /* Materialize the view.  If the view is not correlated, generate a
7066       ** subroutine to do the materialization so that subsequent uses of
7067       ** the same view can reuse the materialization. */
7068       int topAddr;
7069       int onceAddr = 0;
7070 
7071       pItem->regReturn = ++pParse->nMem;
7072       topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7073       pItem->addrFillSub = topAddr+1;
7074       pItem->fg.isMaterialized = 1;
7075       if( pItem->fg.isCorrelated==0 ){
7076         /* If the subquery is not correlated and if we are not inside of
7077         ** a trigger, then we only need to compute the value of the subquery
7078         ** once. */
7079         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7080         VdbeComment((v, "materialize %!S", pItem));
7081       }else{
7082         VdbeNoopComment((v, "materialize %!S", pItem));
7083       }
7084       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7085       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
7086       sqlite3Select(pParse, pSub, &dest);
7087       pItem->pTab->nRowLogEst = pSub->nSelectRow;
7088       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7089       sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7090       VdbeComment((v, "end %!S", pItem));
7091       sqlite3VdbeJumpHere(v, topAddr);
7092       sqlite3ClearTempRegCache(pParse);
7093       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7094         CteUse *pCteUse = pItem->u2.pCteUse;
7095         pCteUse->addrM9e = pItem->addrFillSub;
7096         pCteUse->regRtn = pItem->regReturn;
7097         pCteUse->iCur = pItem->iCursor;
7098         pCteUse->nRowEst = pSub->nSelectRow;
7099       }
7100     }
7101     if( db->mallocFailed ) goto select_end;
7102     pParse->nHeight -= sqlite3SelectExprHeight(p);
7103     pParse->zAuthContext = zSavedAuthContext;
7104 #endif
7105   }
7106 
7107   /* Various elements of the SELECT copied into local variables for
7108   ** convenience */
7109   pEList = p->pEList;
7110   pWhere = p->pWhere;
7111   pGroupBy = p->pGroupBy;
7112   pHaving = p->pHaving;
7113   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7114 
7115 #if TREETRACE_ENABLED
7116   if( sqlite3TreeTrace & 0x400 ){
7117     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
7118     sqlite3TreeViewSelect(0, p, 0);
7119   }
7120 #endif
7121 
7122   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7123   ** if the select-list is the same as the ORDER BY list, then this query
7124   ** can be rewritten as a GROUP BY. In other words, this:
7125   **
7126   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
7127   **
7128   ** is transformed to:
7129   **
7130   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7131   **
7132   ** The second form is preferred as a single index (or temp-table) may be
7133   ** used for both the ORDER BY and DISTINCT processing. As originally
7134   ** written the query must use a temp-table for at least one of the ORDER
7135   ** BY and DISTINCT, and an index or separate temp-table for the other.
7136   */
7137   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7138    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7139 #ifndef SQLITE_OMIT_WINDOWFUNC
7140    && p->pWin==0
7141 #endif
7142   ){
7143     p->selFlags &= ~SF_Distinct;
7144     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7145     p->selFlags |= SF_Aggregate;
7146     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7147     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
7148     ** original setting of the SF_Distinct flag, not the current setting */
7149     assert( sDistinct.isTnct );
7150     sDistinct.isTnct = 2;
7151 
7152 #if TREETRACE_ENABLED
7153     if( sqlite3TreeTrace & 0x400 ){
7154       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7155       sqlite3TreeViewSelect(0, p, 0);
7156     }
7157 #endif
7158   }
7159 
7160   /* If there is an ORDER BY clause, then create an ephemeral index to
7161   ** do the sorting.  But this sorting ephemeral index might end up
7162   ** being unused if the data can be extracted in pre-sorted order.
7163   ** If that is the case, then the OP_OpenEphemeral instruction will be
7164   ** changed to an OP_Noop once we figure out that the sorting index is
7165   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
7166   ** that change.
7167   */
7168   if( sSort.pOrderBy ){
7169     KeyInfo *pKeyInfo;
7170     pKeyInfo = sqlite3KeyInfoFromExprList(
7171         pParse, sSort.pOrderBy, 0, pEList->nExpr);
7172     sSort.iECursor = pParse->nTab++;
7173     sSort.addrSortIndex =
7174       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7175           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7176           (char*)pKeyInfo, P4_KEYINFO
7177       );
7178   }else{
7179     sSort.addrSortIndex = -1;
7180   }
7181 
7182   /* If the output is destined for a temporary table, open that table.
7183   */
7184   if( pDest->eDest==SRT_EphemTab ){
7185     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7186     if( p->selFlags & SF_NestedFrom ){
7187       /* Delete or NULL-out result columns that will never be used */
7188       int ii;
7189       for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7190         sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7191         sqlite3DbFree(db, pEList->a[ii].zEName);
7192         pEList->nExpr--;
7193       }
7194       for(ii=0; ii<pEList->nExpr; ii++){
7195         if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7196       }
7197     }
7198   }
7199 
7200   /* Set the limiter.
7201   */
7202   iEnd = sqlite3VdbeMakeLabel(pParse);
7203   if( (p->selFlags & SF_FixedLimit)==0 ){
7204     p->nSelectRow = 320;  /* 4 billion rows */
7205   }
7206   if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
7207   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7208     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7209     sSort.sortFlags |= SORTFLAG_UseSorter;
7210   }
7211 
7212   /* Open an ephemeral index to use for the distinct set.
7213   */
7214   if( p->selFlags & SF_Distinct ){
7215     sDistinct.tabTnct = pParse->nTab++;
7216     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7217                        sDistinct.tabTnct, 0, 0,
7218                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7219                        P4_KEYINFO);
7220     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7221     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7222   }else{
7223     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7224   }
7225 
7226   if( !isAgg && pGroupBy==0 ){
7227     /* No aggregate functions and no GROUP BY clause */
7228     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7229                    | (p->selFlags & SF_FixedLimit);
7230 #ifndef SQLITE_OMIT_WINDOWFUNC
7231     Window *pWin = p->pWin;      /* Main window object (or NULL) */
7232     if( pWin ){
7233       sqlite3WindowCodeInit(pParse, p);
7234     }
7235 #endif
7236     assert( WHERE_USE_LIMIT==SF_FixedLimit );
7237 
7238 
7239     /* Begin the database scan. */
7240     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7241     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7242                                p->pEList, p, wctrlFlags, p->nSelectRow);
7243     if( pWInfo==0 ) goto select_end;
7244     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7245       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7246     }
7247     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7248       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7249     }
7250     if( sSort.pOrderBy ){
7251       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7252       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7253       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7254         sSort.pOrderBy = 0;
7255       }
7256     }
7257     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7258 
7259     /* If sorting index that was created by a prior OP_OpenEphemeral
7260     ** instruction ended up not being needed, then change the OP_OpenEphemeral
7261     ** into an OP_Noop.
7262     */
7263     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7264       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7265     }
7266 
7267     assert( p->pEList==pEList );
7268 #ifndef SQLITE_OMIT_WINDOWFUNC
7269     if( pWin ){
7270       int addrGosub = sqlite3VdbeMakeLabel(pParse);
7271       int iCont = sqlite3VdbeMakeLabel(pParse);
7272       int iBreak = sqlite3VdbeMakeLabel(pParse);
7273       int regGosub = ++pParse->nMem;
7274 
7275       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
7276 
7277       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
7278       sqlite3VdbeResolveLabel(v, addrGosub);
7279       VdbeNoopComment((v, "inner-loop subroutine"));
7280       sSort.labelOBLopt = 0;
7281       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
7282       sqlite3VdbeResolveLabel(v, iCont);
7283       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7284       VdbeComment((v, "end inner-loop subroutine"));
7285       sqlite3VdbeResolveLabel(v, iBreak);
7286     }else
7287 #endif /* SQLITE_OMIT_WINDOWFUNC */
7288     {
7289       /* Use the standard inner loop. */
7290       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7291           sqlite3WhereContinueLabel(pWInfo),
7292           sqlite3WhereBreakLabel(pWInfo));
7293 
7294       /* End the database scan loop.
7295       */
7296       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7297       sqlite3WhereEnd(pWInfo);
7298     }
7299   }else{
7300     /* This case when there exist aggregate functions or a GROUP BY clause
7301     ** or both */
7302     NameContext sNC;    /* Name context for processing aggregate information */
7303     int iAMem;          /* First Mem address for storing current GROUP BY */
7304     int iBMem;          /* First Mem address for previous GROUP BY */
7305     int iUseFlag;       /* Mem address holding flag indicating that at least
7306                         ** one row of the input to the aggregator has been
7307                         ** processed */
7308     int iAbortFlag;     /* Mem address which causes query abort if positive */
7309     int groupBySort;    /* Rows come from source in GROUP BY order */
7310     int addrEnd;        /* End of processing for this SELECT */
7311     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
7312     int sortOut = 0;    /* Output register from the sorter */
7313     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
7314 
7315     /* Remove any and all aliases between the result set and the
7316     ** GROUP BY clause.
7317     */
7318     if( pGroupBy ){
7319       int k;                        /* Loop counter */
7320       struct ExprList_item *pItem;  /* For looping over expression in a list */
7321 
7322       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
7323         pItem->u.x.iAlias = 0;
7324       }
7325       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
7326         pItem->u.x.iAlias = 0;
7327       }
7328       assert( 66==sqlite3LogEst(100) );
7329       if( p->nSelectRow>66 ) p->nSelectRow = 66;
7330 
7331       /* If there is both a GROUP BY and an ORDER BY clause and they are
7332       ** identical, then it may be possible to disable the ORDER BY clause
7333       ** on the grounds that the GROUP BY will cause elements to come out
7334       ** in the correct order. It also may not - the GROUP BY might use a
7335       ** database index that causes rows to be grouped together as required
7336       ** but not actually sorted. Either way, record the fact that the
7337       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7338       ** variable.  */
7339       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7340         int ii;
7341         /* The GROUP BY processing doesn't care whether rows are delivered in
7342         ** ASC or DESC order - only that each group is returned contiguously.
7343         ** So set the ASC/DESC flags in the GROUP BY to match those in the
7344         ** ORDER BY to maximize the chances of rows being delivered in an
7345         ** order that makes the ORDER BY redundant.  */
7346         for(ii=0; ii<pGroupBy->nExpr; ii++){
7347           u8 sortFlags;
7348           sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
7349           pGroupBy->a[ii].fg.sortFlags = sortFlags;
7350         }
7351         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7352           orderByGrp = 1;
7353         }
7354       }
7355     }else{
7356       assert( 0==sqlite3LogEst(1) );
7357       p->nSelectRow = 0;
7358     }
7359 
7360     /* Create a label to jump to when we want to abort the query */
7361     addrEnd = sqlite3VdbeMakeLabel(pParse);
7362 
7363     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7364     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7365     ** SELECT statement.
7366     */
7367     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7368     if( pAggInfo ){
7369       sqlite3ParserAddCleanup(pParse,
7370           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7371       testcase( pParse->earlyCleanup );
7372     }
7373     if( db->mallocFailed ){
7374       goto select_end;
7375     }
7376     pAggInfo->selId = p->selId;
7377     memset(&sNC, 0, sizeof(sNC));
7378     sNC.pParse = pParse;
7379     sNC.pSrcList = pTabList;
7380     sNC.uNC.pAggInfo = pAggInfo;
7381     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7382     pAggInfo->mnReg = pParse->nMem+1;
7383     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7384     pAggInfo->pGroupBy = pGroupBy;
7385     sqlite3ExprAnalyzeAggList(&sNC, pEList);
7386     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7387     if( pHaving ){
7388       if( pGroupBy ){
7389         assert( pWhere==p->pWhere );
7390         assert( pHaving==p->pHaving );
7391         assert( pGroupBy==p->pGroupBy );
7392         havingToWhere(pParse, p);
7393         pWhere = p->pWhere;
7394       }
7395       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7396     }
7397     pAggInfo->nAccumulator = pAggInfo->nColumn;
7398     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7399       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7400     }else{
7401       minMaxFlag = WHERE_ORDERBY_NORMAL;
7402     }
7403     for(i=0; i<pAggInfo->nFunc; i++){
7404       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7405       assert( ExprUseXList(pExpr) );
7406       sNC.ncFlags |= NC_InAggFunc;
7407       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7408 #ifndef SQLITE_OMIT_WINDOWFUNC
7409       assert( !IsWindowFunc(pExpr) );
7410       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7411         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7412       }
7413 #endif
7414       sNC.ncFlags &= ~NC_InAggFunc;
7415     }
7416     pAggInfo->mxReg = pParse->nMem;
7417     if( db->mallocFailed ) goto select_end;
7418 #if TREETRACE_ENABLED
7419     if( sqlite3TreeTrace & 0x400 ){
7420       int ii;
7421       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7422       sqlite3TreeViewSelect(0, p, 0);
7423       if( minMaxFlag ){
7424         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7425         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7426       }
7427       for(ii=0; ii<pAggInfo->nColumn; ii++){
7428         struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
7429         sqlite3DebugPrintf(
7430            "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
7431            " iSorterColumn=%d\n",
7432            ii, pCol->pTab ? pCol->pTab->zName : "NULL",
7433            pCol->iTable, pCol->iColumn, pCol->iMem,
7434            pCol->iSorterColumn);
7435         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7436       }
7437       for(ii=0; ii<pAggInfo->nFunc; ii++){
7438         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7439             ii, pAggInfo->aFunc[ii].iMem);
7440         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7441       }
7442     }
7443 #endif
7444 
7445 
7446     /* Processing for aggregates with GROUP BY is very different and
7447     ** much more complex than aggregates without a GROUP BY.
7448     */
7449     if( pGroupBy ){
7450       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7451       int addr1;          /* A-vs-B comparision jump */
7452       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7453       int regOutputRow;   /* Return address register for output subroutine */
7454       int addrSetAbort;   /* Set the abort flag and return */
7455       int addrTopOfLoop;  /* Top of the input loop */
7456       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7457       int addrReset;      /* Subroutine for resetting the accumulator */
7458       int regReset;       /* Return address register for reset subroutine */
7459       ExprList *pDistinct = 0;
7460       u16 distFlag = 0;
7461       int eDist = WHERE_DISTINCT_NOOP;
7462 
7463       if( pAggInfo->nFunc==1
7464        && pAggInfo->aFunc[0].iDistinct>=0
7465        && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7466        && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7467        && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7468       ){
7469         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7470         pExpr = sqlite3ExprDup(db, pExpr, 0);
7471         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7472         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7473         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7474       }
7475 
7476       /* If there is a GROUP BY clause we might need a sorting index to
7477       ** implement it.  Allocate that sorting index now.  If it turns out
7478       ** that we do not need it after all, the OP_SorterOpen instruction
7479       ** will be converted into a Noop.
7480       */
7481       pAggInfo->sortingIdx = pParse->nTab++;
7482       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7483                                             0, pAggInfo->nColumn);
7484       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7485           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7486           0, (char*)pKeyInfo, P4_KEYINFO);
7487 
7488       /* Initialize memory locations used by GROUP BY aggregate processing
7489       */
7490       iUseFlag = ++pParse->nMem;
7491       iAbortFlag = ++pParse->nMem;
7492       regOutputRow = ++pParse->nMem;
7493       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7494       regReset = ++pParse->nMem;
7495       addrReset = sqlite3VdbeMakeLabel(pParse);
7496       iAMem = pParse->nMem + 1;
7497       pParse->nMem += pGroupBy->nExpr;
7498       iBMem = pParse->nMem + 1;
7499       pParse->nMem += pGroupBy->nExpr;
7500       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7501       VdbeComment((v, "clear abort flag"));
7502       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7503 
7504       /* Begin a loop that will extract all source rows in GROUP BY order.
7505       ** This might involve two separate loops with an OP_Sort in between, or
7506       ** it might be a single loop that uses an index to extract information
7507       ** in the right order to begin with.
7508       */
7509       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7510       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7511       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7512           0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
7513           |  (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7514       );
7515       if( pWInfo==0 ){
7516         sqlite3ExprListDelete(db, pDistinct);
7517         goto select_end;
7518       }
7519       eDist = sqlite3WhereIsDistinct(pWInfo);
7520       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7521       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7522         /* The optimizer is able to deliver rows in group by order so
7523         ** we do not have to sort.  The OP_OpenEphemeral table will be
7524         ** cancelled later because we still need to use the pKeyInfo
7525         */
7526         groupBySort = 0;
7527       }else{
7528         /* Rows are coming out in undetermined order.  We have to push
7529         ** each row into a sorting index, terminate the first loop,
7530         ** then loop over the sorting index in order to get the output
7531         ** in sorted order
7532         */
7533         int regBase;
7534         int regRecord;
7535         int nCol;
7536         int nGroupBy;
7537 
7538         explainTempTable(pParse,
7539             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7540                     "DISTINCT" : "GROUP BY");
7541 
7542         groupBySort = 1;
7543         nGroupBy = pGroupBy->nExpr;
7544         nCol = nGroupBy;
7545         j = nGroupBy;
7546         for(i=0; i<pAggInfo->nColumn; i++){
7547           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7548             nCol++;
7549             j++;
7550           }
7551         }
7552         regBase = sqlite3GetTempRange(pParse, nCol);
7553         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7554         j = nGroupBy;
7555         pAggInfo->directMode = 1;
7556         for(i=0; i<pAggInfo->nColumn; i++){
7557           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7558           if( pCol->iSorterColumn>=j ){
7559             sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
7560             j++;
7561           }
7562         }
7563         pAggInfo->directMode = 0;
7564         regRecord = sqlite3GetTempReg(pParse);
7565         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7566         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7567         sqlite3ReleaseTempReg(pParse, regRecord);
7568         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7569         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7570         sqlite3WhereEnd(pWInfo);
7571         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7572         sortOut = sqlite3GetTempReg(pParse);
7573         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7574         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7575         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7576         pAggInfo->useSortingIdx = 1;
7577       }
7578 
7579       /* If the index or temporary table used by the GROUP BY sort
7580       ** will naturally deliver rows in the order required by the ORDER BY
7581       ** clause, cancel the ephemeral table open coded earlier.
7582       **
7583       ** This is an optimization - the correct answer should result regardless.
7584       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7585       ** disable this optimization for testing purposes.  */
7586       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7587        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7588       ){
7589         sSort.pOrderBy = 0;
7590         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7591       }
7592 
7593       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7594       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7595       ** Then compare the current GROUP BY terms against the GROUP BY terms
7596       ** from the previous row currently stored in a0, a1, a2...
7597       */
7598       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7599       if( groupBySort ){
7600         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7601                           sortOut, sortPTab);
7602       }
7603       for(j=0; j<pGroupBy->nExpr; j++){
7604         if( groupBySort ){
7605           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7606         }else{
7607           pAggInfo->directMode = 1;
7608           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7609         }
7610       }
7611       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7612                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7613       addr1 = sqlite3VdbeCurrentAddr(v);
7614       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7615 
7616       /* Generate code that runs whenever the GROUP BY changes.
7617       ** Changes in the GROUP BY are detected by the previous code
7618       ** block.  If there were no changes, this block is skipped.
7619       **
7620       ** This code copies current group by terms in b0,b1,b2,...
7621       ** over to a0,a1,a2.  It then calls the output subroutine
7622       ** and resets the aggregate accumulator registers in preparation
7623       ** for the next GROUP BY batch.
7624       */
7625       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7626       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7627       VdbeComment((v, "output one row"));
7628       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7629       VdbeComment((v, "check abort flag"));
7630       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7631       VdbeComment((v, "reset accumulator"));
7632 
7633       /* Update the aggregate accumulators based on the content of
7634       ** the current row
7635       */
7636       sqlite3VdbeJumpHere(v, addr1);
7637       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7638       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7639       VdbeComment((v, "indicate data in accumulator"));
7640 
7641       /* End of the loop
7642       */
7643       if( groupBySort ){
7644         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7645         VdbeCoverage(v);
7646       }else{
7647         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7648         sqlite3WhereEnd(pWInfo);
7649         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7650       }
7651       sqlite3ExprListDelete(db, pDistinct);
7652 
7653       /* Output the final row of result
7654       */
7655       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7656       VdbeComment((v, "output final row"));
7657 
7658       /* Jump over the subroutines
7659       */
7660       sqlite3VdbeGoto(v, addrEnd);
7661 
7662       /* Generate a subroutine that outputs a single row of the result
7663       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7664       ** is less than or equal to zero, the subroutine is a no-op.  If
7665       ** the processing calls for the query to abort, this subroutine
7666       ** increments the iAbortFlag memory location before returning in
7667       ** order to signal the caller to abort.
7668       */
7669       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7670       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7671       VdbeComment((v, "set abort flag"));
7672       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7673       sqlite3VdbeResolveLabel(v, addrOutputRow);
7674       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7675       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7676       VdbeCoverage(v);
7677       VdbeComment((v, "Groupby result generator entry point"));
7678       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7679       finalizeAggFunctions(pParse, pAggInfo);
7680       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7681       selectInnerLoop(pParse, p, -1, &sSort,
7682                       &sDistinct, pDest,
7683                       addrOutputRow+1, addrSetAbort);
7684       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7685       VdbeComment((v, "end groupby result generator"));
7686 
7687       /* Generate a subroutine that will reset the group-by accumulator
7688       */
7689       sqlite3VdbeResolveLabel(v, addrReset);
7690       resetAccumulator(pParse, pAggInfo);
7691       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7692       VdbeComment((v, "indicate accumulator empty"));
7693       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7694 
7695       if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
7696         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7697         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7698       }
7699     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7700     else {
7701       Table *pTab;
7702       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7703         /* If isSimpleCount() returns a pointer to a Table structure, then
7704         ** the SQL statement is of the form:
7705         **
7706         **   SELECT count(*) FROM <tbl>
7707         **
7708         ** where the Table structure returned represents table <tbl>.
7709         **
7710         ** This statement is so common that it is optimized specially. The
7711         ** OP_Count instruction is executed either on the intkey table that
7712         ** contains the data for table <tbl> or on one of its indexes. It
7713         ** is better to execute the op on an index, as indexes are almost
7714         ** always spread across less pages than their corresponding tables.
7715         */
7716         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7717         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7718         Index *pIdx;                         /* Iterator variable */
7719         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7720         Index *pBest = 0;                    /* Best index found so far */
7721         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7722 
7723         sqlite3CodeVerifySchema(pParse, iDb);
7724         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7725 
7726         /* Search for the index that has the lowest scan cost.
7727         **
7728         ** (2011-04-15) Do not do a full scan of an unordered index.
7729         **
7730         ** (2013-10-03) Do not count the entries in a partial index.
7731         **
7732         ** In practice the KeyInfo structure will not be used. It is only
7733         ** passed to keep OP_OpenRead happy.
7734         */
7735         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7736         if( !p->pSrc->a[0].fg.notIndexed ){
7737           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7738             if( pIdx->bUnordered==0
7739              && pIdx->szIdxRow<pTab->szTabRow
7740              && pIdx->pPartIdxWhere==0
7741              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7742             ){
7743               pBest = pIdx;
7744             }
7745           }
7746         }
7747         if( pBest ){
7748           iRoot = pBest->tnum;
7749           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7750         }
7751 
7752         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7753         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7754         if( pKeyInfo ){
7755           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7756         }
7757         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7758         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7759         explainSimpleCount(pParse, pTab, pBest);
7760       }else{
7761         int regAcc = 0;           /* "populate accumulators" flag */
7762         ExprList *pDistinct = 0;
7763         u16 distFlag = 0;
7764         int eDist;
7765 
7766         /* If there are accumulator registers but no min() or max() functions
7767         ** without FILTER clauses, allocate register regAcc. Register regAcc
7768         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7769         ** The code generated by updateAccumulator() uses this to ensure
7770         ** that the accumulator registers are (a) updated only once if
7771         ** there are no min() or max functions or (b) always updated for the
7772         ** first row visited by the aggregate, so that they are updated at
7773         ** least once even if the FILTER clause means the min() or max()
7774         ** function visits zero rows.  */
7775         if( pAggInfo->nAccumulator ){
7776           for(i=0; i<pAggInfo->nFunc; i++){
7777             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7778               continue;
7779             }
7780             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7781               break;
7782             }
7783           }
7784           if( i==pAggInfo->nFunc ){
7785             regAcc = ++pParse->nMem;
7786             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7787           }
7788         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7789           assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7790           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7791           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7792         }
7793 
7794         /* This case runs if the aggregate has no GROUP BY clause.  The
7795         ** processing is much simpler since there is only a single row
7796         ** of output.
7797         */
7798         assert( p->pGroupBy==0 );
7799         resetAccumulator(pParse, pAggInfo);
7800 
7801         /* If this query is a candidate for the min/max optimization, then
7802         ** minMaxFlag will have been previously set to either
7803         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7804         ** be an appropriate ORDER BY expression for the optimization.
7805         */
7806         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7807         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7808 
7809         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7810         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7811                                    pDistinct, 0, minMaxFlag|distFlag, 0);
7812         if( pWInfo==0 ){
7813           goto select_end;
7814         }
7815         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7816         eDist = sqlite3WhereIsDistinct(pWInfo);
7817         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7818         if( eDist!=WHERE_DISTINCT_NOOP ){
7819           struct AggInfo_func *pF = pAggInfo->aFunc;
7820           if( pF ){
7821             fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7822           }
7823         }
7824 
7825         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7826         if( minMaxFlag ){
7827           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7828         }
7829         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7830         sqlite3WhereEnd(pWInfo);
7831         finalizeAggFunctions(pParse, pAggInfo);
7832       }
7833 
7834       sSort.pOrderBy = 0;
7835       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7836       selectInnerLoop(pParse, p, -1, 0, 0,
7837                       pDest, addrEnd, addrEnd);
7838     }
7839     sqlite3VdbeResolveLabel(v, addrEnd);
7840 
7841   } /* endif aggregate query */
7842 
7843   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7844     explainTempTable(pParse, "DISTINCT");
7845   }
7846 
7847   /* If there is an ORDER BY clause, then we need to sort the results
7848   ** and send them to the callback one by one.
7849   */
7850   if( sSort.pOrderBy ){
7851     explainTempTable(pParse,
7852                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7853     assert( p->pEList==pEList );
7854     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7855   }
7856 
7857   /* Jump here to skip this query
7858   */
7859   sqlite3VdbeResolveLabel(v, iEnd);
7860 
7861   /* The SELECT has been coded. If there is an error in the Parse structure,
7862   ** set the return code to 1. Otherwise 0. */
7863   rc = (pParse->nErr>0);
7864 
7865   /* Control jumps to here if an error is encountered above, or upon
7866   ** successful coding of the SELECT.
7867   */
7868 select_end:
7869   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7870   assert( db->mallocFailed==0 || pParse->nErr!=0 );
7871   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7872 #ifdef SQLITE_DEBUG
7873   if( pAggInfo && !db->mallocFailed ){
7874     for(i=0; i<pAggInfo->nColumn; i++){
7875       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7876       assert( pExpr!=0 );
7877       assert( pExpr->pAggInfo==pAggInfo );
7878       assert( pExpr->iAgg==i );
7879     }
7880     for(i=0; i<pAggInfo->nFunc; i++){
7881       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7882       assert( pExpr!=0 );
7883       assert( pExpr->pAggInfo==pAggInfo );
7884       assert( pExpr->iAgg==i );
7885     }
7886   }
7887 #endif
7888 
7889 #if TREETRACE_ENABLED
7890   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7891   if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7892     sqlite3TreeViewSelect(0, p, 0);
7893   }
7894 #endif
7895   ExplainQueryPlanPop(pParse);
7896   return rc;
7897 }
7898