xref: /sqlite-3.40.0/src/select.c (revision 4b8035e6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 };
61 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
62 
63 /*
64 ** Delete all the content of a Select structure.  Deallocate the structure
65 ** itself only if bFree is true.
66 */
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68   while( p ){
69     Select *pPrior = p->pPrior;
70     sqlite3ExprListDelete(db, p->pEList);
71     sqlite3SrcListDelete(db, p->pSrc);
72     sqlite3ExprDelete(db, p->pWhere);
73     sqlite3ExprListDelete(db, p->pGroupBy);
74     sqlite3ExprDelete(db, p->pHaving);
75     sqlite3ExprListDelete(db, p->pOrderBy);
76     sqlite3ExprDelete(db, p->pLimit);
77     sqlite3ExprDelete(db, p->pOffset);
78     if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79     if( bFree ) sqlite3DbFreeNN(db, p);
80     p = pPrior;
81     bFree = 1;
82   }
83 }
84 
85 /*
86 ** Initialize a SelectDest structure.
87 */
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89   pDest->eDest = (u8)eDest;
90   pDest->iSDParm = iParm;
91   pDest->zAffSdst = 0;
92   pDest->iSdst = 0;
93   pDest->nSdst = 0;
94 }
95 
96 
97 /*
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
100 */
101 Select *sqlite3SelectNew(
102   Parse *pParse,        /* Parsing context */
103   ExprList *pEList,     /* which columns to include in the result */
104   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
105   Expr *pWhere,         /* the WHERE clause */
106   ExprList *pGroupBy,   /* the GROUP BY clause */
107   Expr *pHaving,        /* the HAVING clause */
108   ExprList *pOrderBy,   /* the ORDER BY clause */
109   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
110   Expr *pLimit,         /* LIMIT value.  NULL means not used */
111   Expr *pOffset         /* OFFSET value.  NULL means no offset */
112 ){
113   Select *pNew;
114   Select standin;
115   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
116   if( pNew==0 ){
117     assert( pParse->db->mallocFailed );
118     pNew = &standin;
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0));
122   }
123   pNew->pEList = pEList;
124   pNew->op = TK_SELECT;
125   pNew->selFlags = selFlags;
126   pNew->iLimit = 0;
127   pNew->iOffset = 0;
128 #if SELECTTRACE_ENABLED
129   pNew->zSelName[0] = 0;
130 #endif
131   pNew->addrOpenEphm[0] = -1;
132   pNew->addrOpenEphm[1] = -1;
133   pNew->nSelectRow = 0;
134   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
135   pNew->pSrc = pSrc;
136   pNew->pWhere = pWhere;
137   pNew->pGroupBy = pGroupBy;
138   pNew->pHaving = pHaving;
139   pNew->pOrderBy = pOrderBy;
140   pNew->pPrior = 0;
141   pNew->pNext = 0;
142   pNew->pLimit = pLimit;
143   pNew->pOffset = pOffset;
144   pNew->pWith = 0;
145   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 );
146   if( pParse->db->mallocFailed ) {
147     clearSelect(pParse->db, pNew, pNew!=&standin);
148     pNew = 0;
149   }else{
150     assert( pNew->pSrc!=0 || pParse->nErr>0 );
151   }
152   assert( pNew!=&standin );
153   return pNew;
154 }
155 
156 #if SELECTTRACE_ENABLED
157 /*
158 ** Set the name of a Select object
159 */
160 void sqlite3SelectSetName(Select *p, const char *zName){
161   if( p && zName ){
162     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
163   }
164 }
165 #endif
166 
167 
168 /*
169 ** Delete the given Select structure and all of its substructures.
170 */
171 void sqlite3SelectDelete(sqlite3 *db, Select *p){
172   if( p ) clearSelect(db, p, 1);
173 }
174 
175 /*
176 ** Return a pointer to the right-most SELECT statement in a compound.
177 */
178 static Select *findRightmost(Select *p){
179   while( p->pNext ) p = p->pNext;
180   return p;
181 }
182 
183 /*
184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
185 ** type of join.  Return an integer constant that expresses that type
186 ** in terms of the following bit values:
187 **
188 **     JT_INNER
189 **     JT_CROSS
190 **     JT_OUTER
191 **     JT_NATURAL
192 **     JT_LEFT
193 **     JT_RIGHT
194 **
195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
196 **
197 ** If an illegal or unsupported join type is seen, then still return
198 ** a join type, but put an error in the pParse structure.
199 */
200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
201   int jointype = 0;
202   Token *apAll[3];
203   Token *p;
204                              /*   0123456789 123456789 123456789 123 */
205   static const char zKeyText[] = "naturaleftouterightfullinnercross";
206   static const struct {
207     u8 i;        /* Beginning of keyword text in zKeyText[] */
208     u8 nChar;    /* Length of the keyword in characters */
209     u8 code;     /* Join type mask */
210   } aKeyword[] = {
211     /* natural */ { 0,  7, JT_NATURAL                },
212     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
213     /* outer   */ { 10, 5, JT_OUTER                  },
214     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
215     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
216     /* inner   */ { 23, 5, JT_INNER                  },
217     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
218   };
219   int i, j;
220   apAll[0] = pA;
221   apAll[1] = pB;
222   apAll[2] = pC;
223   for(i=0; i<3 && apAll[i]; i++){
224     p = apAll[i];
225     for(j=0; j<ArraySize(aKeyword); j++){
226       if( p->n==aKeyword[j].nChar
227           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
228         jointype |= aKeyword[j].code;
229         break;
230       }
231     }
232     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
233     if( j>=ArraySize(aKeyword) ){
234       jointype |= JT_ERROR;
235       break;
236     }
237   }
238   if(
239      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
240      (jointype & JT_ERROR)!=0
241   ){
242     const char *zSp = " ";
243     assert( pB!=0 );
244     if( pC==0 ){ zSp++; }
245     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
246        "%T %T%s%T", pA, pB, zSp, pC);
247     jointype = JT_INNER;
248   }else if( (jointype & JT_OUTER)!=0
249          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
250     sqlite3ErrorMsg(pParse,
251       "RIGHT and FULL OUTER JOINs are not currently supported");
252     jointype = JT_INNER;
253   }
254   return jointype;
255 }
256 
257 /*
258 ** Return the index of a column in a table.  Return -1 if the column
259 ** is not contained in the table.
260 */
261 static int columnIndex(Table *pTab, const char *zCol){
262   int i;
263   for(i=0; i<pTab->nCol; i++){
264     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
265   }
266   return -1;
267 }
268 
269 /*
270 ** Search the first N tables in pSrc, from left to right, looking for a
271 ** table that has a column named zCol.
272 **
273 ** When found, set *piTab and *piCol to the table index and column index
274 ** of the matching column and return TRUE.
275 **
276 ** If not found, return FALSE.
277 */
278 static int tableAndColumnIndex(
279   SrcList *pSrc,       /* Array of tables to search */
280   int N,               /* Number of tables in pSrc->a[] to search */
281   const char *zCol,    /* Name of the column we are looking for */
282   int *piTab,          /* Write index of pSrc->a[] here */
283   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
284 ){
285   int i;               /* For looping over tables in pSrc */
286   int iCol;            /* Index of column matching zCol */
287 
288   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
289   for(i=0; i<N; i++){
290     iCol = columnIndex(pSrc->a[i].pTab, zCol);
291     if( iCol>=0 ){
292       if( piTab ){
293         *piTab = i;
294         *piCol = iCol;
295       }
296       return 1;
297     }
298   }
299   return 0;
300 }
301 
302 /*
303 ** This function is used to add terms implied by JOIN syntax to the
304 ** WHERE clause expression of a SELECT statement. The new term, which
305 ** is ANDed with the existing WHERE clause, is of the form:
306 **
307 **    (tab1.col1 = tab2.col2)
308 **
309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
311 ** column iColRight of tab2.
312 */
313 static void addWhereTerm(
314   Parse *pParse,                  /* Parsing context */
315   SrcList *pSrc,                  /* List of tables in FROM clause */
316   int iLeft,                      /* Index of first table to join in pSrc */
317   int iColLeft,                   /* Index of column in first table */
318   int iRight,                     /* Index of second table in pSrc */
319   int iColRight,                  /* Index of column in second table */
320   int isOuterJoin,                /* True if this is an OUTER join */
321   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
322 ){
323   sqlite3 *db = pParse->db;
324   Expr *pE1;
325   Expr *pE2;
326   Expr *pEq;
327 
328   assert( iLeft<iRight );
329   assert( pSrc->nSrc>iRight );
330   assert( pSrc->a[iLeft].pTab );
331   assert( pSrc->a[iRight].pTab );
332 
333   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
334   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
335 
336   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
337   if( pEq && isOuterJoin ){
338     ExprSetProperty(pEq, EP_FromJoin);
339     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(pEq, EP_NoReduce);
341     pEq->iRightJoinTable = (i16)pE2->iTable;
342   }
343   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
344 }
345 
346 /*
347 ** Set the EP_FromJoin property on all terms of the given expression.
348 ** And set the Expr.iRightJoinTable to iTable for every term in the
349 ** expression.
350 **
351 ** The EP_FromJoin property is used on terms of an expression to tell
352 ** the LEFT OUTER JOIN processing logic that this term is part of the
353 ** join restriction specified in the ON or USING clause and not a part
354 ** of the more general WHERE clause.  These terms are moved over to the
355 ** WHERE clause during join processing but we need to remember that they
356 ** originated in the ON or USING clause.
357 **
358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
359 ** expression depends on table iRightJoinTable even if that table is not
360 ** explicitly mentioned in the expression.  That information is needed
361 ** for cases like this:
362 **
363 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
364 **
365 ** The where clause needs to defer the handling of the t1.x=5
366 ** term until after the t2 loop of the join.  In that way, a
367 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
368 ** defer the handling of t1.x=5, it will be processed immediately
369 ** after the t1 loop and rows with t1.x!=5 will never appear in
370 ** the output, which is incorrect.
371 */
372 static void setJoinExpr(Expr *p, int iTable){
373   while( p ){
374     ExprSetProperty(p, EP_FromJoin);
375     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
376     ExprSetVVAProperty(p, EP_NoReduce);
377     p->iRightJoinTable = (i16)iTable;
378     if( p->op==TK_FUNCTION && p->x.pList ){
379       int i;
380       for(i=0; i<p->x.pList->nExpr; i++){
381         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
382       }
383     }
384     setJoinExpr(p->pLeft, iTable);
385     p = p->pRight;
386   }
387 }
388 
389 /*
390 ** This routine processes the join information for a SELECT statement.
391 ** ON and USING clauses are converted into extra terms of the WHERE clause.
392 ** NATURAL joins also create extra WHERE clause terms.
393 **
394 ** The terms of a FROM clause are contained in the Select.pSrc structure.
395 ** The left most table is the first entry in Select.pSrc.  The right-most
396 ** table is the last entry.  The join operator is held in the entry to
397 ** the left.  Thus entry 0 contains the join operator for the join between
398 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
399 ** also attached to the left entry.
400 **
401 ** This routine returns the number of errors encountered.
402 */
403 static int sqliteProcessJoin(Parse *pParse, Select *p){
404   SrcList *pSrc;                  /* All tables in the FROM clause */
405   int i, j;                       /* Loop counters */
406   struct SrcList_item *pLeft;     /* Left table being joined */
407   struct SrcList_item *pRight;    /* Right table being joined */
408 
409   pSrc = p->pSrc;
410   pLeft = &pSrc->a[0];
411   pRight = &pLeft[1];
412   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
413     Table *pLeftTab = pLeft->pTab;
414     Table *pRightTab = pRight->pTab;
415     int isOuter;
416 
417     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
418     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
419 
420     /* When the NATURAL keyword is present, add WHERE clause terms for
421     ** every column that the two tables have in common.
422     */
423     if( pRight->fg.jointype & JT_NATURAL ){
424       if( pRight->pOn || pRight->pUsing ){
425         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
426            "an ON or USING clause", 0);
427         return 1;
428       }
429       for(j=0; j<pRightTab->nCol; j++){
430         char *zName;   /* Name of column in the right table */
431         int iLeft;     /* Matching left table */
432         int iLeftCol;  /* Matching column in the left table */
433 
434         zName = pRightTab->aCol[j].zName;
435         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
436           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
437                        isOuter, &p->pWhere);
438         }
439       }
440     }
441 
442     /* Disallow both ON and USING clauses in the same join
443     */
444     if( pRight->pOn && pRight->pUsing ){
445       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
446         "clauses in the same join");
447       return 1;
448     }
449 
450     /* Add the ON clause to the end of the WHERE clause, connected by
451     ** an AND operator.
452     */
453     if( pRight->pOn ){
454       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
455       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
456       pRight->pOn = 0;
457     }
458 
459     /* Create extra terms on the WHERE clause for each column named
460     ** in the USING clause.  Example: If the two tables to be joined are
461     ** A and B and the USING clause names X, Y, and Z, then add this
462     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
463     ** Report an error if any column mentioned in the USING clause is
464     ** not contained in both tables to be joined.
465     */
466     if( pRight->pUsing ){
467       IdList *pList = pRight->pUsing;
468       for(j=0; j<pList->nId; j++){
469         char *zName;     /* Name of the term in the USING clause */
470         int iLeft;       /* Table on the left with matching column name */
471         int iLeftCol;    /* Column number of matching column on the left */
472         int iRightCol;   /* Column number of matching column on the right */
473 
474         zName = pList->a[j].zName;
475         iRightCol = columnIndex(pRightTab, zName);
476         if( iRightCol<0
477          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
478         ){
479           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
480             "not present in both tables", zName);
481           return 1;
482         }
483         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
484                      isOuter, &p->pWhere);
485       }
486     }
487   }
488   return 0;
489 }
490 
491 /* Forward reference */
492 static KeyInfo *keyInfoFromExprList(
493   Parse *pParse,       /* Parsing context */
494   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
495   int iStart,          /* Begin with this column of pList */
496   int nExtra           /* Add this many extra columns to the end */
497 );
498 
499 /*
500 ** Generate code that will push the record in registers regData
501 ** through regData+nData-1 onto the sorter.
502 */
503 static void pushOntoSorter(
504   Parse *pParse,         /* Parser context */
505   SortCtx *pSort,        /* Information about the ORDER BY clause */
506   Select *pSelect,       /* The whole SELECT statement */
507   int regData,           /* First register holding data to be sorted */
508   int regOrigData,       /* First register holding data before packing */
509   int nData,             /* Number of elements in the data array */
510   int nPrefixReg         /* No. of reg prior to regData available for use */
511 ){
512   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
513   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
514   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
515   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
516   int regBase;                                     /* Regs for sorter record */
517   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
518   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
519   int op;                            /* Opcode to add sorter record to sorter */
520   int iLimit;                        /* LIMIT counter */
521 
522   assert( bSeq==0 || bSeq==1 );
523   assert( nData==1 || regData==regOrigData || regOrigData==0 );
524   if( nPrefixReg ){
525     assert( nPrefixReg==nExpr+bSeq );
526     regBase = regData - nExpr - bSeq;
527   }else{
528     regBase = pParse->nMem + 1;
529     pParse->nMem += nBase;
530   }
531   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
532   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
533   pSort->labelDone = sqlite3VdbeMakeLabel(v);
534   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
535                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
536   if( bSeq ){
537     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
538   }
539   if( nPrefixReg==0 && nData>0 ){
540     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
541   }
542   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
543   if( nOBSat>0 ){
544     int regPrevKey;   /* The first nOBSat columns of the previous row */
545     int addrFirst;    /* Address of the OP_IfNot opcode */
546     int addrJmp;      /* Address of the OP_Jump opcode */
547     VdbeOp *pOp;      /* Opcode that opens the sorter */
548     int nKey;         /* Number of sorting key columns, including OP_Sequence */
549     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
550 
551     regPrevKey = pParse->nMem+1;
552     pParse->nMem += pSort->nOBSat;
553     nKey = nExpr - pSort->nOBSat + bSeq;
554     if( bSeq ){
555       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
556     }else{
557       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
558     }
559     VdbeCoverage(v);
560     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
561     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
562     if( pParse->db->mallocFailed ) return;
563     pOp->p2 = nKey + nData;
564     pKI = pOp->p4.pKeyInfo;
565     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
566     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
567     testcase( pKI->nXField>2 );
568     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
569                                            pKI->nXField-1);
570     addrJmp = sqlite3VdbeCurrentAddr(v);
571     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
572     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
573     pSort->regReturn = ++pParse->nMem;
574     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
575     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
576     if( iLimit ){
577       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
578       VdbeCoverage(v);
579     }
580     sqlite3VdbeJumpHere(v, addrFirst);
581     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
582     sqlite3VdbeJumpHere(v, addrJmp);
583   }
584   if( pSort->sortFlags & SORTFLAG_UseSorter ){
585     op = OP_SorterInsert;
586   }else{
587     op = OP_IdxInsert;
588   }
589   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
590                        regBase+nOBSat, nBase-nOBSat);
591   if( iLimit ){
592     int addr;
593     int r1 = 0;
594     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
595     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
596     ** fills up, delete the least entry in the sorter after each insert.
597     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598     addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
599     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
600     if( pSort->bOrderedInnerLoop ){
601       r1 = ++pParse->nMem;
602       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
603       VdbeComment((v, "seq"));
604     }
605     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
606     if( pSort->bOrderedInnerLoop ){
607       /* If the inner loop is driven by an index such that values from
608       ** the same iteration of the inner loop are in sorted order, then
609       ** immediately jump to the next iteration of an inner loop if the
610       ** entry from the current iteration does not fit into the top
611       ** LIMIT+OFFSET entries of the sorter. */
612       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
613       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
614       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
615       VdbeCoverage(v);
616     }
617     sqlite3VdbeJumpHere(v, addr);
618   }
619 }
620 
621 /*
622 ** Add code to implement the OFFSET
623 */
624 static void codeOffset(
625   Vdbe *v,          /* Generate code into this VM */
626   int iOffset,      /* Register holding the offset counter */
627   int iContinue     /* Jump here to skip the current record */
628 ){
629   if( iOffset>0 ){
630     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
631     VdbeComment((v, "OFFSET"));
632   }
633 }
634 
635 /*
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry.  iTab is a sorting index that holds previously
638 ** seen combinations of the N values.  A new entry is made in iTab
639 ** if the current N values are new.
640 **
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
643 */
644 static void codeDistinct(
645   Parse *pParse,     /* Parsing and code generating context */
646   int iTab,          /* A sorting index used to test for distinctness */
647   int addrRepeat,    /* Jump to here if not distinct */
648   int N,             /* Number of elements */
649   int iMem           /* First element */
650 ){
651   Vdbe *v;
652   int r1;
653 
654   v = pParse->pVdbe;
655   r1 = sqlite3GetTempReg(pParse);
656   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
657   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
658   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
659   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
660   sqlite3ReleaseTempReg(pParse, r1);
661 }
662 
663 /*
664 ** This routine generates the code for the inside of the inner loop
665 ** of a SELECT.
666 **
667 ** If srcTab is negative, then the pEList expressions
668 ** are evaluated in order to get the data for this row.  If srcTab is
669 ** zero or more, then data is pulled from srcTab and pEList is used only
670 ** to get the number of columns and the collation sequence for each column.
671 */
672 static void selectInnerLoop(
673   Parse *pParse,          /* The parser context */
674   Select *p,              /* The complete select statement being coded */
675   ExprList *pEList,       /* List of values being extracted */
676   int srcTab,             /* Pull data from this table */
677   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
678   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
679   SelectDest *pDest,      /* How to dispose of the results */
680   int iContinue,          /* Jump here to continue with next row */
681   int iBreak              /* Jump here to break out of the inner loop */
682 ){
683   Vdbe *v = pParse->pVdbe;
684   int i;
685   int hasDistinct;            /* True if the DISTINCT keyword is present */
686   int eDest = pDest->eDest;   /* How to dispose of results */
687   int iParm = pDest->iSDParm; /* First argument to disposal method */
688   int nResultCol;             /* Number of result columns */
689   int nPrefixReg = 0;         /* Number of extra registers before regResult */
690 
691   /* Usually, regResult is the first cell in an array of memory cells
692   ** containing the current result row. In this case regOrig is set to the
693   ** same value. However, if the results are being sent to the sorter, the
694   ** values for any expressions that are also part of the sort-key are omitted
695   ** from this array. In this case regOrig is set to zero.  */
696   int regResult;              /* Start of memory holding current results */
697   int regOrig;                /* Start of memory holding full result (or 0) */
698 
699   assert( v );
700   assert( pEList!=0 );
701   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
702   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
703   if( pSort==0 && !hasDistinct ){
704     assert( iContinue!=0 );
705     codeOffset(v, p->iOffset, iContinue);
706   }
707 
708   /* Pull the requested columns.
709   */
710   nResultCol = pEList->nExpr;
711 
712   if( pDest->iSdst==0 ){
713     if( pSort ){
714       nPrefixReg = pSort->pOrderBy->nExpr;
715       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
716       pParse->nMem += nPrefixReg;
717     }
718     pDest->iSdst = pParse->nMem+1;
719     pParse->nMem += nResultCol;
720   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
721     /* This is an error condition that can result, for example, when a SELECT
722     ** on the right-hand side of an INSERT contains more result columns than
723     ** there are columns in the table on the left.  The error will be caught
724     ** and reported later.  But we need to make sure enough memory is allocated
725     ** to avoid other spurious errors in the meantime. */
726     pParse->nMem += nResultCol;
727   }
728   pDest->nSdst = nResultCol;
729   regOrig = regResult = pDest->iSdst;
730   if( srcTab>=0 ){
731     for(i=0; i<nResultCol; i++){
732       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
733       VdbeComment((v, "%s", pEList->a[i].zName));
734     }
735   }else if( eDest!=SRT_Exists ){
736     /* If the destination is an EXISTS(...) expression, the actual
737     ** values returned by the SELECT are not required.
738     */
739     u8 ecelFlags;
740     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
741       ecelFlags = SQLITE_ECEL_DUP;
742     }else{
743       ecelFlags = 0;
744     }
745     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
746       /* For each expression in pEList that is a copy of an expression in
747       ** the ORDER BY clause (pSort->pOrderBy), set the associated
748       ** iOrderByCol value to one more than the index of the ORDER BY
749       ** expression within the sort-key that pushOntoSorter() will generate.
750       ** This allows the pEList field to be omitted from the sorted record,
751       ** saving space and CPU cycles.  */
752       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
753       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
754         int j;
755         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
756           pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
757         }
758       }
759       regOrig = 0;
760       assert( eDest==SRT_Set || eDest==SRT_Mem
761            || eDest==SRT_Coroutine || eDest==SRT_Output );
762     }
763     nResultCol = sqlite3ExprCodeExprList(pParse,pEList,regResult,0,ecelFlags);
764   }
765 
766   /* If the DISTINCT keyword was present on the SELECT statement
767   ** and this row has been seen before, then do not make this row
768   ** part of the result.
769   */
770   if( hasDistinct ){
771     switch( pDistinct->eTnctType ){
772       case WHERE_DISTINCT_ORDERED: {
773         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
774         int iJump;              /* Jump destination */
775         int regPrev;            /* Previous row content */
776 
777         /* Allocate space for the previous row */
778         regPrev = pParse->nMem+1;
779         pParse->nMem += nResultCol;
780 
781         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
782         ** sets the MEM_Cleared bit on the first register of the
783         ** previous value.  This will cause the OP_Ne below to always
784         ** fail on the first iteration of the loop even if the first
785         ** row is all NULLs.
786         */
787         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
788         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
789         pOp->opcode = OP_Null;
790         pOp->p1 = 1;
791         pOp->p2 = regPrev;
792 
793         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
794         for(i=0; i<nResultCol; i++){
795           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
796           if( i<nResultCol-1 ){
797             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
798             VdbeCoverage(v);
799           }else{
800             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
801             VdbeCoverage(v);
802            }
803           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
804           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
805         }
806         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
807         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
808         break;
809       }
810 
811       case WHERE_DISTINCT_UNIQUE: {
812         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
813         break;
814       }
815 
816       default: {
817         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
818         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
819                      regResult);
820         break;
821       }
822     }
823     if( pSort==0 ){
824       codeOffset(v, p->iOffset, iContinue);
825     }
826   }
827 
828   switch( eDest ){
829     /* In this mode, write each query result to the key of the temporary
830     ** table iParm.
831     */
832 #ifndef SQLITE_OMIT_COMPOUND_SELECT
833     case SRT_Union: {
834       int r1;
835       r1 = sqlite3GetTempReg(pParse);
836       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
837       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
838       sqlite3ReleaseTempReg(pParse, r1);
839       break;
840     }
841 
842     /* Construct a record from the query result, but instead of
843     ** saving that record, use it as a key to delete elements from
844     ** the temporary table iParm.
845     */
846     case SRT_Except: {
847       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
848       break;
849     }
850 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
851 
852     /* Store the result as data using a unique key.
853     */
854     case SRT_Fifo:
855     case SRT_DistFifo:
856     case SRT_Table:
857     case SRT_EphemTab: {
858       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
859       testcase( eDest==SRT_Table );
860       testcase( eDest==SRT_EphemTab );
861       testcase( eDest==SRT_Fifo );
862       testcase( eDest==SRT_DistFifo );
863       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
864 #ifndef SQLITE_OMIT_CTE
865       if( eDest==SRT_DistFifo ){
866         /* If the destination is DistFifo, then cursor (iParm+1) is open
867         ** on an ephemeral index. If the current row is already present
868         ** in the index, do not write it to the output. If not, add the
869         ** current row to the index and proceed with writing it to the
870         ** output table as well.  */
871         int addr = sqlite3VdbeCurrentAddr(v) + 4;
872         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
873         VdbeCoverage(v);
874         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
875         assert( pSort==0 );
876       }
877 #endif
878       if( pSort ){
879         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
880       }else{
881         int r2 = sqlite3GetTempReg(pParse);
882         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
883         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
884         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
885         sqlite3ReleaseTempReg(pParse, r2);
886       }
887       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
888       break;
889     }
890 
891 #ifndef SQLITE_OMIT_SUBQUERY
892     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
893     ** then there should be a single item on the stack.  Write this
894     ** item into the set table with bogus data.
895     */
896     case SRT_Set: {
897       if( pSort ){
898         /* At first glance you would think we could optimize out the
899         ** ORDER BY in this case since the order of entries in the set
900         ** does not matter.  But there might be a LIMIT clause, in which
901         ** case the order does matter */
902         pushOntoSorter(
903             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
904       }else{
905         int r1 = sqlite3GetTempReg(pParse);
906         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
907         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
908             r1, pDest->zAffSdst, nResultCol);
909         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
910         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
911         sqlite3ReleaseTempReg(pParse, r1);
912       }
913       break;
914     }
915 
916     /* If any row exist in the result set, record that fact and abort.
917     */
918     case SRT_Exists: {
919       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
920       /* The LIMIT clause will terminate the loop for us */
921       break;
922     }
923 
924     /* If this is a scalar select that is part of an expression, then
925     ** store the results in the appropriate memory cell or array of
926     ** memory cells and break out of the scan loop.
927     */
928     case SRT_Mem: {
929       if( pSort ){
930         assert( nResultCol<=pDest->nSdst );
931         pushOntoSorter(
932             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
933       }else{
934         assert( nResultCol==pDest->nSdst );
935         assert( regResult==iParm );
936         /* The LIMIT clause will jump out of the loop for us */
937       }
938       break;
939     }
940 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
941 
942     case SRT_Coroutine:       /* Send data to a co-routine */
943     case SRT_Output: {        /* Return the results */
944       testcase( eDest==SRT_Coroutine );
945       testcase( eDest==SRT_Output );
946       if( pSort ){
947         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
948                        nPrefixReg);
949       }else if( eDest==SRT_Coroutine ){
950         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
951       }else{
952         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
953         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
954       }
955       break;
956     }
957 
958 #ifndef SQLITE_OMIT_CTE
959     /* Write the results into a priority queue that is order according to
960     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
961     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
962     ** pSO->nExpr columns, then make sure all keys are unique by adding a
963     ** final OP_Sequence column.  The last column is the record as a blob.
964     */
965     case SRT_DistQueue:
966     case SRT_Queue: {
967       int nKey;
968       int r1, r2, r3;
969       int addrTest = 0;
970       ExprList *pSO;
971       pSO = pDest->pOrderBy;
972       assert( pSO );
973       nKey = pSO->nExpr;
974       r1 = sqlite3GetTempReg(pParse);
975       r2 = sqlite3GetTempRange(pParse, nKey+2);
976       r3 = r2+nKey+1;
977       if( eDest==SRT_DistQueue ){
978         /* If the destination is DistQueue, then cursor (iParm+1) is open
979         ** on a second ephemeral index that holds all values every previously
980         ** added to the queue. */
981         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
982                                         regResult, nResultCol);
983         VdbeCoverage(v);
984       }
985       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
986       if( eDest==SRT_DistQueue ){
987         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
988         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
989       }
990       for(i=0; i<nKey; i++){
991         sqlite3VdbeAddOp2(v, OP_SCopy,
992                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
993                           r2+i);
994       }
995       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
996       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
997       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
998       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
999       sqlite3ReleaseTempReg(pParse, r1);
1000       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1001       break;
1002     }
1003 #endif /* SQLITE_OMIT_CTE */
1004 
1005 
1006 
1007 #if !defined(SQLITE_OMIT_TRIGGER)
1008     /* Discard the results.  This is used for SELECT statements inside
1009     ** the body of a TRIGGER.  The purpose of such selects is to call
1010     ** user-defined functions that have side effects.  We do not care
1011     ** about the actual results of the select.
1012     */
1013     default: {
1014       assert( eDest==SRT_Discard );
1015       break;
1016     }
1017 #endif
1018   }
1019 
1020   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1021   ** there is a sorter, in which case the sorter has already limited
1022   ** the output for us.
1023   */
1024   if( pSort==0 && p->iLimit ){
1025     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1026   }
1027 }
1028 
1029 /*
1030 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1031 ** X extra columns.
1032 */
1033 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1034   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1035   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1036   if( p ){
1037     p->aSortOrder = (u8*)&p->aColl[N+X];
1038     p->nField = (u16)N;
1039     p->nXField = (u16)X;
1040     p->enc = ENC(db);
1041     p->db = db;
1042     p->nRef = 1;
1043     memset(&p[1], 0, nExtra);
1044   }else{
1045     sqlite3OomFault(db);
1046   }
1047   return p;
1048 }
1049 
1050 /*
1051 ** Deallocate a KeyInfo object
1052 */
1053 void sqlite3KeyInfoUnref(KeyInfo *p){
1054   if( p ){
1055     assert( p->nRef>0 );
1056     p->nRef--;
1057     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1058   }
1059 }
1060 
1061 /*
1062 ** Make a new pointer to a KeyInfo object
1063 */
1064 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1065   if( p ){
1066     assert( p->nRef>0 );
1067     p->nRef++;
1068   }
1069   return p;
1070 }
1071 
1072 #ifdef SQLITE_DEBUG
1073 /*
1074 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1075 ** can only be changed if this is just a single reference to the object.
1076 **
1077 ** This routine is used only inside of assert() statements.
1078 */
1079 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1080 #endif /* SQLITE_DEBUG */
1081 
1082 /*
1083 ** Given an expression list, generate a KeyInfo structure that records
1084 ** the collating sequence for each expression in that expression list.
1085 **
1086 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1087 ** KeyInfo structure is appropriate for initializing a virtual index to
1088 ** implement that clause.  If the ExprList is the result set of a SELECT
1089 ** then the KeyInfo structure is appropriate for initializing a virtual
1090 ** index to implement a DISTINCT test.
1091 **
1092 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1093 ** function is responsible for seeing that this structure is eventually
1094 ** freed.
1095 */
1096 static KeyInfo *keyInfoFromExprList(
1097   Parse *pParse,       /* Parsing context */
1098   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1099   int iStart,          /* Begin with this column of pList */
1100   int nExtra           /* Add this many extra columns to the end */
1101 ){
1102   int nExpr;
1103   KeyInfo *pInfo;
1104   struct ExprList_item *pItem;
1105   sqlite3 *db = pParse->db;
1106   int i;
1107 
1108   nExpr = pList->nExpr;
1109   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1110   if( pInfo ){
1111     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1112     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1113       CollSeq *pColl;
1114       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1115       if( !pColl ) pColl = db->pDfltColl;
1116       pInfo->aColl[i-iStart] = pColl;
1117       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1118     }
1119   }
1120   return pInfo;
1121 }
1122 
1123 /*
1124 ** Name of the connection operator, used for error messages.
1125 */
1126 static const char *selectOpName(int id){
1127   char *z;
1128   switch( id ){
1129     case TK_ALL:       z = "UNION ALL";   break;
1130     case TK_INTERSECT: z = "INTERSECT";   break;
1131     case TK_EXCEPT:    z = "EXCEPT";      break;
1132     default:           z = "UNION";       break;
1133   }
1134   return z;
1135 }
1136 
1137 #ifndef SQLITE_OMIT_EXPLAIN
1138 /*
1139 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1140 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1141 ** where the caption is of the form:
1142 **
1143 **   "USE TEMP B-TREE FOR xxx"
1144 **
1145 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1146 ** is determined by the zUsage argument.
1147 */
1148 static void explainTempTable(Parse *pParse, const char *zUsage){
1149   if( pParse->explain==2 ){
1150     Vdbe *v = pParse->pVdbe;
1151     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1152     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1153   }
1154 }
1155 
1156 /*
1157 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1158 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1159 ** in sqlite3Select() to assign values to structure member variables that
1160 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1161 ** code with #ifndef directives.
1162 */
1163 # define explainSetInteger(a, b) a = b
1164 
1165 #else
1166 /* No-op versions of the explainXXX() functions and macros. */
1167 # define explainTempTable(y,z)
1168 # define explainSetInteger(y,z)
1169 #endif
1170 
1171 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1172 /*
1173 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1174 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1175 ** where the caption is of one of the two forms:
1176 **
1177 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1178 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1179 **
1180 ** where iSub1 and iSub2 are the integers passed as the corresponding
1181 ** function parameters, and op is the text representation of the parameter
1182 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1183 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1184 ** false, or the second form if it is true.
1185 */
1186 static void explainComposite(
1187   Parse *pParse,                  /* Parse context */
1188   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1189   int iSub1,                      /* Subquery id 1 */
1190   int iSub2,                      /* Subquery id 2 */
1191   int bUseTmp                     /* True if a temp table was used */
1192 ){
1193   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1194   if( pParse->explain==2 ){
1195     Vdbe *v = pParse->pVdbe;
1196     char *zMsg = sqlite3MPrintf(
1197         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1198         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1199     );
1200     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1201   }
1202 }
1203 #else
1204 /* No-op versions of the explainXXX() functions and macros. */
1205 # define explainComposite(v,w,x,y,z)
1206 #endif
1207 
1208 /*
1209 ** If the inner loop was generated using a non-null pOrderBy argument,
1210 ** then the results were placed in a sorter.  After the loop is terminated
1211 ** we need to run the sorter and output the results.  The following
1212 ** routine generates the code needed to do that.
1213 */
1214 static void generateSortTail(
1215   Parse *pParse,    /* Parsing context */
1216   Select *p,        /* The SELECT statement */
1217   SortCtx *pSort,   /* Information on the ORDER BY clause */
1218   int nColumn,      /* Number of columns of data */
1219   SelectDest *pDest /* Write the sorted results here */
1220 ){
1221   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1222   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1223   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1224   int addr;
1225   int addrOnce = 0;
1226   int iTab;
1227   ExprList *pOrderBy = pSort->pOrderBy;
1228   int eDest = pDest->eDest;
1229   int iParm = pDest->iSDParm;
1230   int regRow;
1231   int regRowid;
1232   int iCol;
1233   int nKey;
1234   int iSortTab;                   /* Sorter cursor to read from */
1235   int nSortData;                  /* Trailing values to read from sorter */
1236   int i;
1237   int bSeq;                       /* True if sorter record includes seq. no. */
1238   struct ExprList_item *aOutEx = p->pEList->a;
1239 
1240   assert( addrBreak<0 );
1241   if( pSort->labelBkOut ){
1242     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1243     sqlite3VdbeGoto(v, addrBreak);
1244     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1245   }
1246   iTab = pSort->iECursor;
1247   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1248     regRowid = 0;
1249     regRow = pDest->iSdst;
1250     nSortData = nColumn;
1251   }else{
1252     regRowid = sqlite3GetTempReg(pParse);
1253     regRow = sqlite3GetTempRange(pParse, nColumn);
1254     nSortData = nColumn;
1255   }
1256   nKey = pOrderBy->nExpr - pSort->nOBSat;
1257   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1258     int regSortOut = ++pParse->nMem;
1259     iSortTab = pParse->nTab++;
1260     if( pSort->labelBkOut ){
1261       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1262     }
1263     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1264     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1265     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1266     VdbeCoverage(v);
1267     codeOffset(v, p->iOffset, addrContinue);
1268     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1269     bSeq = 0;
1270   }else{
1271     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1272     codeOffset(v, p->iOffset, addrContinue);
1273     iSortTab = iTab;
1274     bSeq = 1;
1275   }
1276   for(i=0, iCol=nKey+bSeq; i<nSortData; i++){
1277     int iRead;
1278     if( aOutEx[i].u.x.iOrderByCol ){
1279       iRead = aOutEx[i].u.x.iOrderByCol-1;
1280     }else{
1281       iRead = iCol++;
1282     }
1283     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1284     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1285   }
1286   switch( eDest ){
1287     case SRT_Table:
1288     case SRT_EphemTab: {
1289       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1290       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1291       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1292       break;
1293     }
1294 #ifndef SQLITE_OMIT_SUBQUERY
1295     case SRT_Set: {
1296       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1297       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1298                         pDest->zAffSdst, nColumn);
1299       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1300       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1301       break;
1302     }
1303     case SRT_Mem: {
1304       /* The LIMIT clause will terminate the loop for us */
1305       break;
1306     }
1307 #endif
1308     default: {
1309       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1310       testcase( eDest==SRT_Output );
1311       testcase( eDest==SRT_Coroutine );
1312       if( eDest==SRT_Output ){
1313         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1314         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1315       }else{
1316         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1317       }
1318       break;
1319     }
1320   }
1321   if( regRowid ){
1322     if( eDest==SRT_Set ){
1323       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1324     }else{
1325       sqlite3ReleaseTempReg(pParse, regRow);
1326     }
1327     sqlite3ReleaseTempReg(pParse, regRowid);
1328   }
1329   /* The bottom of the loop
1330   */
1331   sqlite3VdbeResolveLabel(v, addrContinue);
1332   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1333     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1334   }else{
1335     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1336   }
1337   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1338   sqlite3VdbeResolveLabel(v, addrBreak);
1339 }
1340 
1341 /*
1342 ** Return a pointer to a string containing the 'declaration type' of the
1343 ** expression pExpr. The string may be treated as static by the caller.
1344 **
1345 ** Also try to estimate the size of the returned value and return that
1346 ** result in *pEstWidth.
1347 **
1348 ** The declaration type is the exact datatype definition extracted from the
1349 ** original CREATE TABLE statement if the expression is a column. The
1350 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1351 ** is considered a column can be complex in the presence of subqueries. The
1352 ** result-set expression in all of the following SELECT statements is
1353 ** considered a column by this function.
1354 **
1355 **   SELECT col FROM tbl;
1356 **   SELECT (SELECT col FROM tbl;
1357 **   SELECT (SELECT col FROM tbl);
1358 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1359 **
1360 ** The declaration type for any expression other than a column is NULL.
1361 **
1362 ** This routine has either 3 or 6 parameters depending on whether or not
1363 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1364 */
1365 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1366 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1367 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1368 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1369 #endif
1370 static const char *columnTypeImpl(
1371   NameContext *pNC,
1372   Expr *pExpr,
1373 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1374   const char **pzOrigDb,
1375   const char **pzOrigTab,
1376   const char **pzOrigCol,
1377 #endif
1378   u8 *pEstWidth
1379 ){
1380   char const *zType = 0;
1381   int j;
1382   u8 estWidth = 1;
1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1384   char const *zOrigDb = 0;
1385   char const *zOrigTab = 0;
1386   char const *zOrigCol = 0;
1387 #endif
1388 
1389   assert( pExpr!=0 );
1390   assert( pNC->pSrcList!=0 );
1391   switch( pExpr->op ){
1392     case TK_AGG_COLUMN:
1393     case TK_COLUMN: {
1394       /* The expression is a column. Locate the table the column is being
1395       ** extracted from in NameContext.pSrcList. This table may be real
1396       ** database table or a subquery.
1397       */
1398       Table *pTab = 0;            /* Table structure column is extracted from */
1399       Select *pS = 0;             /* Select the column is extracted from */
1400       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1401       testcase( pExpr->op==TK_AGG_COLUMN );
1402       testcase( pExpr->op==TK_COLUMN );
1403       while( pNC && !pTab ){
1404         SrcList *pTabList = pNC->pSrcList;
1405         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1406         if( j<pTabList->nSrc ){
1407           pTab = pTabList->a[j].pTab;
1408           pS = pTabList->a[j].pSelect;
1409         }else{
1410           pNC = pNC->pNext;
1411         }
1412       }
1413 
1414       if( pTab==0 ){
1415         /* At one time, code such as "SELECT new.x" within a trigger would
1416         ** cause this condition to run.  Since then, we have restructured how
1417         ** trigger code is generated and so this condition is no longer
1418         ** possible. However, it can still be true for statements like
1419         ** the following:
1420         **
1421         **   CREATE TABLE t1(col INTEGER);
1422         **   SELECT (SELECT t1.col) FROM FROM t1;
1423         **
1424         ** when columnType() is called on the expression "t1.col" in the
1425         ** sub-select. In this case, set the column type to NULL, even
1426         ** though it should really be "INTEGER".
1427         **
1428         ** This is not a problem, as the column type of "t1.col" is never
1429         ** used. When columnType() is called on the expression
1430         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1431         ** branch below.  */
1432         break;
1433       }
1434 
1435       assert( pTab && pExpr->pTab==pTab );
1436       if( pS ){
1437         /* The "table" is actually a sub-select or a view in the FROM clause
1438         ** of the SELECT statement. Return the declaration type and origin
1439         ** data for the result-set column of the sub-select.
1440         */
1441         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1442           /* If iCol is less than zero, then the expression requests the
1443           ** rowid of the sub-select or view. This expression is legal (see
1444           ** test case misc2.2.2) - it always evaluates to NULL.
1445           **
1446           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1447           ** caught already by name resolution.
1448           */
1449           NameContext sNC;
1450           Expr *p = pS->pEList->a[iCol].pExpr;
1451           sNC.pSrcList = pS->pSrc;
1452           sNC.pNext = pNC;
1453           sNC.pParse = pNC->pParse;
1454           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1455         }
1456       }else if( pTab->pSchema ){
1457         /* A real table */
1458         assert( !pS );
1459         if( iCol<0 ) iCol = pTab->iPKey;
1460         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1461 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1462         if( iCol<0 ){
1463           zType = "INTEGER";
1464           zOrigCol = "rowid";
1465         }else{
1466           zOrigCol = pTab->aCol[iCol].zName;
1467           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1468           estWidth = pTab->aCol[iCol].szEst;
1469         }
1470         zOrigTab = pTab->zName;
1471         if( pNC->pParse ){
1472           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1473           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1474         }
1475 #else
1476         if( iCol<0 ){
1477           zType = "INTEGER";
1478         }else{
1479           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1480           estWidth = pTab->aCol[iCol].szEst;
1481         }
1482 #endif
1483       }
1484       break;
1485     }
1486 #ifndef SQLITE_OMIT_SUBQUERY
1487     case TK_SELECT: {
1488       /* The expression is a sub-select. Return the declaration type and
1489       ** origin info for the single column in the result set of the SELECT
1490       ** statement.
1491       */
1492       NameContext sNC;
1493       Select *pS = pExpr->x.pSelect;
1494       Expr *p = pS->pEList->a[0].pExpr;
1495       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1496       sNC.pSrcList = pS->pSrc;
1497       sNC.pNext = pNC;
1498       sNC.pParse = pNC->pParse;
1499       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1500       break;
1501     }
1502 #endif
1503   }
1504 
1505 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1506   if( pzOrigDb ){
1507     assert( pzOrigTab && pzOrigCol );
1508     *pzOrigDb = zOrigDb;
1509     *pzOrigTab = zOrigTab;
1510     *pzOrigCol = zOrigCol;
1511   }
1512 #endif
1513   if( pEstWidth ) *pEstWidth = estWidth;
1514   return zType;
1515 }
1516 
1517 /*
1518 ** Generate code that will tell the VDBE the declaration types of columns
1519 ** in the result set.
1520 */
1521 static void generateColumnTypes(
1522   Parse *pParse,      /* Parser context */
1523   SrcList *pTabList,  /* List of tables */
1524   ExprList *pEList    /* Expressions defining the result set */
1525 ){
1526 #ifndef SQLITE_OMIT_DECLTYPE
1527   Vdbe *v = pParse->pVdbe;
1528   int i;
1529   NameContext sNC;
1530   sNC.pSrcList = pTabList;
1531   sNC.pParse = pParse;
1532   sNC.pNext = 0;
1533   for(i=0; i<pEList->nExpr; i++){
1534     Expr *p = pEList->a[i].pExpr;
1535     const char *zType;
1536 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1537     const char *zOrigDb = 0;
1538     const char *zOrigTab = 0;
1539     const char *zOrigCol = 0;
1540     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1541 
1542     /* The vdbe must make its own copy of the column-type and other
1543     ** column specific strings, in case the schema is reset before this
1544     ** virtual machine is deleted.
1545     */
1546     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1547     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1548     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1549 #else
1550     zType = columnType(&sNC, p, 0, 0, 0, 0);
1551 #endif
1552     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1553   }
1554 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1555 }
1556 
1557 /*
1558 ** Return the Table objecct in the SrcList that has cursor iCursor.
1559 ** Or return NULL if no such Table object exists in the SrcList.
1560 */
1561 static Table *tableWithCursor(SrcList *pList, int iCursor){
1562   int j;
1563   for(j=0; j<pList->nSrc; j++){
1564     if( pList->a[j].iCursor==iCursor ) return pList->a[j].pTab;
1565   }
1566   return 0;
1567 }
1568 
1569 
1570 /*
1571 ** Compute the column names for a SELECT statement.
1572 **
1573 ** The only guarantee that SQLite makes about column names is that if the
1574 ** column has an AS clause assigning it a name, that will be the name used.
1575 ** That is the only documented guarantee.  However, countless applications
1576 ** developed over the years have made baseless assumptions about column names
1577 ** and will break if those assumptions changes.  Hence, use extreme caution
1578 ** when modifying this routine to avoid breaking legacy.
1579 **
1580 ** See Also: sqlite3ColumnsFromExprList()
1581 **
1582 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1583 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1584 ** applications should operate this way.  Nevertheless, we need to support the
1585 ** other modes for legacy:
1586 **
1587 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1588 **                              originally appears in the SELECT statement.  In
1589 **                              other words, the zSpan of the result expression.
1590 **
1591 **    short=ON, full=OFF:       (This is the default setting).  If the result
1592 **                              refers directly to a table column, then the result
1593 **                              column name is just the table column name: COLUMN.
1594 **                              Otherwise use zSpan.
1595 **
1596 **    full=ON, short=ANY:       If the result refers directly to a table column,
1597 **                              then the result column name with the table name
1598 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1599 */
1600 static void generateColumnNames(
1601   Parse *pParse,      /* Parser context */
1602   SrcList *pTabList,  /* The FROM clause of the SELECT */
1603   ExprList *pEList    /* Expressions defining the result set */
1604 ){
1605   Vdbe *v = pParse->pVdbe;
1606   int i;
1607   Table *pTab;
1608   sqlite3 *db = pParse->db;
1609   int fullName;      /* TABLE.COLUMN if no AS clause and is a direct table ref */
1610   int srcName;       /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1611 
1612 #ifndef SQLITE_OMIT_EXPLAIN
1613   /* If this is an EXPLAIN, skip this step */
1614   if( pParse->explain ){
1615     return;
1616   }
1617 #endif
1618 
1619   if( pParse->colNamesSet || db->mallocFailed ) return;
1620   assert( v!=0 );
1621   assert( pTabList!=0 );
1622   pParse->colNamesSet = 1;
1623   fullName = (db->flags & SQLITE_FullColNames)!=0;
1624   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1625   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1626   for(i=0; i<pEList->nExpr; i++){
1627     Expr *p = pEList->a[i].pExpr;
1628 
1629     assert( p!=0 );
1630     if( pEList->a[i].zName ){
1631       /* An AS clause always takes first priority */
1632       char *zName = pEList->a[i].zName;
1633       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1634     }else if( srcName
1635            && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
1636            && (pTab = tableWithCursor(pTabList, p->iTable))!=0
1637     ){
1638       char *zCol;
1639       int iCol = p->iColumn;
1640       if( iCol<0 ) iCol = pTab->iPKey;
1641       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1642       if( iCol<0 ){
1643         zCol = "rowid";
1644       }else{
1645         zCol = pTab->aCol[iCol].zName;
1646       }
1647       if( fullName ){
1648         char *zName = 0;
1649         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1650         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1651       }else{
1652         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1653       }
1654     }else{
1655       const char *z = pEList->a[i].zSpan;
1656       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1657       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1658     }
1659   }
1660   generateColumnTypes(pParse, pTabList, pEList);
1661 }
1662 
1663 /*
1664 ** Given an expression list (which is really the list of expressions
1665 ** that form the result set of a SELECT statement) compute appropriate
1666 ** column names for a table that would hold the expression list.
1667 **
1668 ** All column names will be unique.
1669 **
1670 ** Only the column names are computed.  Column.zType, Column.zColl,
1671 ** and other fields of Column are zeroed.
1672 **
1673 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1674 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1675 **
1676 ** The only guarantee that SQLite makes about column names is that if the
1677 ** column has an AS clause assigning it a name, that will be the name used.
1678 ** That is the only documented guarantee.  However, countless applications
1679 ** developed over the years have made baseless assumptions about column names
1680 ** and will break if those assumptions changes.  Hence, use extreme caution
1681 ** when modifying this routine to avoid breaking legacy.
1682 **
1683 ** See Also: generateColumnNames()
1684 */
1685 int sqlite3ColumnsFromExprList(
1686   Parse *pParse,          /* Parsing context */
1687   ExprList *pEList,       /* Expr list from which to derive column names */
1688   i16 *pnCol,             /* Write the number of columns here */
1689   Column **paCol          /* Write the new column list here */
1690 ){
1691   sqlite3 *db = pParse->db;   /* Database connection */
1692   int i, j;                   /* Loop counters */
1693   u32 cnt;                    /* Index added to make the name unique */
1694   Column *aCol, *pCol;        /* For looping over result columns */
1695   int nCol;                   /* Number of columns in the result set */
1696   char *zName;                /* Column name */
1697   int nName;                  /* Size of name in zName[] */
1698   Hash ht;                    /* Hash table of column names */
1699 
1700   sqlite3HashInit(&ht);
1701   if( pEList ){
1702     nCol = pEList->nExpr;
1703     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1704     testcase( aCol==0 );
1705   }else{
1706     nCol = 0;
1707     aCol = 0;
1708   }
1709   assert( nCol==(i16)nCol );
1710   *pnCol = nCol;
1711   *paCol = aCol;
1712 
1713   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1714     /* Get an appropriate name for the column
1715     */
1716     if( (zName = pEList->a[i].zName)!=0 ){
1717       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1718     }else{
1719       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1720       while( pColExpr->op==TK_DOT ){
1721         pColExpr = pColExpr->pRight;
1722         assert( pColExpr!=0 );
1723       }
1724       if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){
1725         /* For columns use the column name name */
1726         int iCol = pColExpr->iColumn;
1727         Table *pTab = pColExpr->pTab;
1728         if( iCol<0 ) iCol = pTab->iPKey;
1729         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1730       }else if( pColExpr->op==TK_ID ){
1731         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1732         zName = pColExpr->u.zToken;
1733       }else{
1734         /* Use the original text of the column expression as its name */
1735         zName = pEList->a[i].zSpan;
1736       }
1737     }
1738     if( zName ){
1739       zName = sqlite3DbStrDup(db, zName);
1740     }else{
1741       zName = sqlite3MPrintf(db,"column%d",i+1);
1742     }
1743 
1744     /* Make sure the column name is unique.  If the name is not unique,
1745     ** append an integer to the name so that it becomes unique.
1746     */
1747     cnt = 0;
1748     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1749       nName = sqlite3Strlen30(zName);
1750       if( nName>0 ){
1751         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1752         if( zName[j]==':' ) nName = j;
1753       }
1754       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1755       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1756     }
1757     pCol->zName = zName;
1758     sqlite3ColumnPropertiesFromName(0, pCol);
1759     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1760       sqlite3OomFault(db);
1761     }
1762   }
1763   sqlite3HashClear(&ht);
1764   if( db->mallocFailed ){
1765     for(j=0; j<i; j++){
1766       sqlite3DbFree(db, aCol[j].zName);
1767     }
1768     sqlite3DbFree(db, aCol);
1769     *paCol = 0;
1770     *pnCol = 0;
1771     return SQLITE_NOMEM_BKPT;
1772   }
1773   return SQLITE_OK;
1774 }
1775 
1776 /*
1777 ** Add type and collation information to a column list based on
1778 ** a SELECT statement.
1779 **
1780 ** The column list presumably came from selectColumnNamesFromExprList().
1781 ** The column list has only names, not types or collations.  This
1782 ** routine goes through and adds the types and collations.
1783 **
1784 ** This routine requires that all identifiers in the SELECT
1785 ** statement be resolved.
1786 */
1787 void sqlite3SelectAddColumnTypeAndCollation(
1788   Parse *pParse,        /* Parsing contexts */
1789   Table *pTab,          /* Add column type information to this table */
1790   Select *pSelect       /* SELECT used to determine types and collations */
1791 ){
1792   sqlite3 *db = pParse->db;
1793   NameContext sNC;
1794   Column *pCol;
1795   CollSeq *pColl;
1796   int i;
1797   Expr *p;
1798   struct ExprList_item *a;
1799   u64 szAll = 0;
1800 
1801   assert( pSelect!=0 );
1802   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1803   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1804   if( db->mallocFailed ) return;
1805   memset(&sNC, 0, sizeof(sNC));
1806   sNC.pSrcList = pSelect->pSrc;
1807   a = pSelect->pEList->a;
1808   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1809     const char *zType;
1810     int n, m;
1811     p = a[i].pExpr;
1812     zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1813     szAll += pCol->szEst;
1814     pCol->affinity = sqlite3ExprAffinity(p);
1815     if( zType && (m = sqlite3Strlen30(zType))>0 ){
1816       n = sqlite3Strlen30(pCol->zName);
1817       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1818       if( pCol->zName ){
1819         memcpy(&pCol->zName[n+1], zType, m+1);
1820         pCol->colFlags |= COLFLAG_HASTYPE;
1821       }
1822     }
1823     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1824     pColl = sqlite3ExprCollSeq(pParse, p);
1825     if( pColl && pCol->zColl==0 ){
1826       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1827     }
1828   }
1829   pTab->szTabRow = sqlite3LogEst(szAll*4);
1830 }
1831 
1832 /*
1833 ** Given a SELECT statement, generate a Table structure that describes
1834 ** the result set of that SELECT.
1835 */
1836 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1837   Table *pTab;
1838   sqlite3 *db = pParse->db;
1839   int savedFlags;
1840 
1841   savedFlags = db->flags;
1842   db->flags &= ~SQLITE_FullColNames;
1843   db->flags |= SQLITE_ShortColNames;
1844   sqlite3SelectPrep(pParse, pSelect, 0);
1845   if( pParse->nErr ) return 0;
1846   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1847   db->flags = savedFlags;
1848   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1849   if( pTab==0 ){
1850     return 0;
1851   }
1852   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1853   ** is disabled */
1854   assert( db->lookaside.bDisable );
1855   pTab->nTabRef = 1;
1856   pTab->zName = 0;
1857   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1858   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1859   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1860   pTab->iPKey = -1;
1861   if( db->mallocFailed ){
1862     sqlite3DeleteTable(db, pTab);
1863     return 0;
1864   }
1865   return pTab;
1866 }
1867 
1868 /*
1869 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1870 ** If an error occurs, return NULL and leave a message in pParse.
1871 */
1872 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
1873   Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1874   if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1);
1875   if( pParse->pToplevel==0
1876    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1877   ){
1878     pParse->okConstFactor = 1;
1879   }
1880   return v;
1881 }
1882 Vdbe *sqlite3GetVdbe(Parse *pParse){
1883   Vdbe *v = pParse->pVdbe;
1884   return v ? v : allocVdbe(pParse);
1885 }
1886 
1887 
1888 /*
1889 ** Compute the iLimit and iOffset fields of the SELECT based on the
1890 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1891 ** that appear in the original SQL statement after the LIMIT and OFFSET
1892 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1893 ** are the integer memory register numbers for counters used to compute
1894 ** the limit and offset.  If there is no limit and/or offset, then
1895 ** iLimit and iOffset are negative.
1896 **
1897 ** This routine changes the values of iLimit and iOffset only if
1898 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1899 ** iOffset should have been preset to appropriate default values (zero)
1900 ** prior to calling this routine.
1901 **
1902 ** The iOffset register (if it exists) is initialized to the value
1903 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1904 ** iOffset+1 is initialized to LIMIT+OFFSET.
1905 **
1906 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1907 ** redefined.  The UNION ALL operator uses this property to force
1908 ** the reuse of the same limit and offset registers across multiple
1909 ** SELECT statements.
1910 */
1911 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1912   Vdbe *v = 0;
1913   int iLimit = 0;
1914   int iOffset;
1915   int n;
1916   if( p->iLimit ) return;
1917 
1918   /*
1919   ** "LIMIT -1" always shows all rows.  There is some
1920   ** controversy about what the correct behavior should be.
1921   ** The current implementation interprets "LIMIT 0" to mean
1922   ** no rows.
1923   */
1924   sqlite3ExprCacheClear(pParse);
1925   assert( p->pOffset==0 || p->pLimit!=0 );
1926   if( p->pLimit ){
1927     p->iLimit = iLimit = ++pParse->nMem;
1928     v = sqlite3GetVdbe(pParse);
1929     assert( v!=0 );
1930     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1931       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1932       VdbeComment((v, "LIMIT counter"));
1933       if( n==0 ){
1934         sqlite3VdbeGoto(v, iBreak);
1935       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1936         p->nSelectRow = sqlite3LogEst((u64)n);
1937         p->selFlags |= SF_FixedLimit;
1938       }
1939     }else{
1940       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1941       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1942       VdbeComment((v, "LIMIT counter"));
1943       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1944     }
1945     if( p->pOffset ){
1946       p->iOffset = iOffset = ++pParse->nMem;
1947       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1948       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1949       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1950       VdbeComment((v, "OFFSET counter"));
1951       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1952       VdbeComment((v, "LIMIT+OFFSET"));
1953     }
1954   }
1955 }
1956 
1957 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1958 /*
1959 ** Return the appropriate collating sequence for the iCol-th column of
1960 ** the result set for the compound-select statement "p".  Return NULL if
1961 ** the column has no default collating sequence.
1962 **
1963 ** The collating sequence for the compound select is taken from the
1964 ** left-most term of the select that has a collating sequence.
1965 */
1966 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1967   CollSeq *pRet;
1968   if( p->pPrior ){
1969     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1970   }else{
1971     pRet = 0;
1972   }
1973   assert( iCol>=0 );
1974   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1975   ** have been thrown during name resolution and we would not have gotten
1976   ** this far */
1977   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1978     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1979   }
1980   return pRet;
1981 }
1982 
1983 /*
1984 ** The select statement passed as the second parameter is a compound SELECT
1985 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1986 ** structure suitable for implementing the ORDER BY.
1987 **
1988 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1989 ** function is responsible for ensuring that this structure is eventually
1990 ** freed.
1991 */
1992 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1993   ExprList *pOrderBy = p->pOrderBy;
1994   int nOrderBy = p->pOrderBy->nExpr;
1995   sqlite3 *db = pParse->db;
1996   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1997   if( pRet ){
1998     int i;
1999     for(i=0; i<nOrderBy; i++){
2000       struct ExprList_item *pItem = &pOrderBy->a[i];
2001       Expr *pTerm = pItem->pExpr;
2002       CollSeq *pColl;
2003 
2004       if( pTerm->flags & EP_Collate ){
2005         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2006       }else{
2007         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2008         if( pColl==0 ) pColl = db->pDfltColl;
2009         pOrderBy->a[i].pExpr =
2010           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2011       }
2012       assert( sqlite3KeyInfoIsWriteable(pRet) );
2013       pRet->aColl[i] = pColl;
2014       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2015     }
2016   }
2017 
2018   return pRet;
2019 }
2020 
2021 #ifndef SQLITE_OMIT_CTE
2022 /*
2023 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2024 ** query of the form:
2025 **
2026 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2027 **                         \___________/             \_______________/
2028 **                           p->pPrior                      p
2029 **
2030 **
2031 ** There is exactly one reference to the recursive-table in the FROM clause
2032 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2033 **
2034 ** The setup-query runs once to generate an initial set of rows that go
2035 ** into a Queue table.  Rows are extracted from the Queue table one by
2036 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2037 ** extracted row (now in the iCurrent table) becomes the content of the
2038 ** recursive-table for a recursive-query run.  The output of the recursive-query
2039 ** is added back into the Queue table.  Then another row is extracted from Queue
2040 ** and the iteration continues until the Queue table is empty.
2041 **
2042 ** If the compound query operator is UNION then no duplicate rows are ever
2043 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2044 ** that have ever been inserted into Queue and causes duplicates to be
2045 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2046 **
2047 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2048 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2049 ** an ORDER BY, the Queue table is just a FIFO.
2050 **
2051 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2052 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2053 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2054 ** with a positive value, then the first OFFSET outputs are discarded rather
2055 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2056 ** rows have been skipped.
2057 */
2058 static void generateWithRecursiveQuery(
2059   Parse *pParse,        /* Parsing context */
2060   Select *p,            /* The recursive SELECT to be coded */
2061   SelectDest *pDest     /* What to do with query results */
2062 ){
2063   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2064   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2065   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2066   Select *pSetup = p->pPrior;   /* The setup query */
2067   int addrTop;                  /* Top of the loop */
2068   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2069   int iCurrent = 0;             /* The Current table */
2070   int regCurrent;               /* Register holding Current table */
2071   int iQueue;                   /* The Queue table */
2072   int iDistinct = 0;            /* To ensure unique results if UNION */
2073   int eDest = SRT_Fifo;         /* How to write to Queue */
2074   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2075   int i;                        /* Loop counter */
2076   int rc;                       /* Result code */
2077   ExprList *pOrderBy;           /* The ORDER BY clause */
2078   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
2079   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2080 
2081   /* Obtain authorization to do a recursive query */
2082   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2083 
2084   /* Process the LIMIT and OFFSET clauses, if they exist */
2085   addrBreak = sqlite3VdbeMakeLabel(v);
2086   p->nSelectRow = 320;  /* 4 billion rows */
2087   computeLimitRegisters(pParse, p, addrBreak);
2088   pLimit = p->pLimit;
2089   pOffset = p->pOffset;
2090   regLimit = p->iLimit;
2091   regOffset = p->iOffset;
2092   p->pLimit = p->pOffset = 0;
2093   p->iLimit = p->iOffset = 0;
2094   pOrderBy = p->pOrderBy;
2095 
2096   /* Locate the cursor number of the Current table */
2097   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2098     if( pSrc->a[i].fg.isRecursive ){
2099       iCurrent = pSrc->a[i].iCursor;
2100       break;
2101     }
2102   }
2103 
2104   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2105   ** the Distinct table must be exactly one greater than Queue in order
2106   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2107   iQueue = pParse->nTab++;
2108   if( p->op==TK_UNION ){
2109     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2110     iDistinct = pParse->nTab++;
2111   }else{
2112     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2113   }
2114   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2115 
2116   /* Allocate cursors for Current, Queue, and Distinct. */
2117   regCurrent = ++pParse->nMem;
2118   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2119   if( pOrderBy ){
2120     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2121     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2122                       (char*)pKeyInfo, P4_KEYINFO);
2123     destQueue.pOrderBy = pOrderBy;
2124   }else{
2125     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2126   }
2127   VdbeComment((v, "Queue table"));
2128   if( iDistinct ){
2129     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2130     p->selFlags |= SF_UsesEphemeral;
2131   }
2132 
2133   /* Detach the ORDER BY clause from the compound SELECT */
2134   p->pOrderBy = 0;
2135 
2136   /* Store the results of the setup-query in Queue. */
2137   pSetup->pNext = 0;
2138   rc = sqlite3Select(pParse, pSetup, &destQueue);
2139   pSetup->pNext = p;
2140   if( rc ) goto end_of_recursive_query;
2141 
2142   /* Find the next row in the Queue and output that row */
2143   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2144 
2145   /* Transfer the next row in Queue over to Current */
2146   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2147   if( pOrderBy ){
2148     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2149   }else{
2150     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2151   }
2152   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2153 
2154   /* Output the single row in Current */
2155   addrCont = sqlite3VdbeMakeLabel(v);
2156   codeOffset(v, regOffset, addrCont);
2157   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2158       0, 0, pDest, addrCont, addrBreak);
2159   if( regLimit ){
2160     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2161     VdbeCoverage(v);
2162   }
2163   sqlite3VdbeResolveLabel(v, addrCont);
2164 
2165   /* Execute the recursive SELECT taking the single row in Current as
2166   ** the value for the recursive-table. Store the results in the Queue.
2167   */
2168   if( p->selFlags & SF_Aggregate ){
2169     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2170   }else{
2171     p->pPrior = 0;
2172     sqlite3Select(pParse, p, &destQueue);
2173     assert( p->pPrior==0 );
2174     p->pPrior = pSetup;
2175   }
2176 
2177   /* Keep running the loop until the Queue is empty */
2178   sqlite3VdbeGoto(v, addrTop);
2179   sqlite3VdbeResolveLabel(v, addrBreak);
2180 
2181 end_of_recursive_query:
2182   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2183   p->pOrderBy = pOrderBy;
2184   p->pLimit = pLimit;
2185   p->pOffset = pOffset;
2186   return;
2187 }
2188 #endif /* SQLITE_OMIT_CTE */
2189 
2190 /* Forward references */
2191 static int multiSelectOrderBy(
2192   Parse *pParse,        /* Parsing context */
2193   Select *p,            /* The right-most of SELECTs to be coded */
2194   SelectDest *pDest     /* What to do with query results */
2195 );
2196 
2197 /*
2198 ** Handle the special case of a compound-select that originates from a
2199 ** VALUES clause.  By handling this as a special case, we avoid deep
2200 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2201 ** on a VALUES clause.
2202 **
2203 ** Because the Select object originates from a VALUES clause:
2204 **   (1) It has no LIMIT or OFFSET
2205 **   (2) All terms are UNION ALL
2206 **   (3) There is no ORDER BY clause
2207 */
2208 static int multiSelectValues(
2209   Parse *pParse,        /* Parsing context */
2210   Select *p,            /* The right-most of SELECTs to be coded */
2211   SelectDest *pDest     /* What to do with query results */
2212 ){
2213   Select *pPrior;
2214   int nRow = 1;
2215   int rc = 0;
2216   assert( p->selFlags & SF_MultiValue );
2217   do{
2218     assert( p->selFlags & SF_Values );
2219     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2220     assert( p->pLimit==0 );
2221     assert( p->pOffset==0 );
2222     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2223     if( p->pPrior==0 ) break;
2224     assert( p->pPrior->pNext==p );
2225     p = p->pPrior;
2226     nRow++;
2227   }while(1);
2228   while( p ){
2229     pPrior = p->pPrior;
2230     p->pPrior = 0;
2231     rc = sqlite3Select(pParse, p, pDest);
2232     p->pPrior = pPrior;
2233     if( rc ) break;
2234     p->nSelectRow = nRow;
2235     p = p->pNext;
2236   }
2237   return rc;
2238 }
2239 
2240 /*
2241 ** This routine is called to process a compound query form from
2242 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2243 ** INTERSECT
2244 **
2245 ** "p" points to the right-most of the two queries.  the query on the
2246 ** left is p->pPrior.  The left query could also be a compound query
2247 ** in which case this routine will be called recursively.
2248 **
2249 ** The results of the total query are to be written into a destination
2250 ** of type eDest with parameter iParm.
2251 **
2252 ** Example 1:  Consider a three-way compound SQL statement.
2253 **
2254 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2255 **
2256 ** This statement is parsed up as follows:
2257 **
2258 **     SELECT c FROM t3
2259 **      |
2260 **      `----->  SELECT b FROM t2
2261 **                |
2262 **                `------>  SELECT a FROM t1
2263 **
2264 ** The arrows in the diagram above represent the Select.pPrior pointer.
2265 ** So if this routine is called with p equal to the t3 query, then
2266 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2267 **
2268 ** Notice that because of the way SQLite parses compound SELECTs, the
2269 ** individual selects always group from left to right.
2270 */
2271 static int multiSelect(
2272   Parse *pParse,        /* Parsing context */
2273   Select *p,            /* The right-most of SELECTs to be coded */
2274   SelectDest *pDest     /* What to do with query results */
2275 ){
2276   int rc = SQLITE_OK;   /* Success code from a subroutine */
2277   Select *pPrior;       /* Another SELECT immediately to our left */
2278   Vdbe *v;              /* Generate code to this VDBE */
2279   SelectDest dest;      /* Alternative data destination */
2280   Select *pDelete = 0;  /* Chain of simple selects to delete */
2281   sqlite3 *db;          /* Database connection */
2282 #ifndef SQLITE_OMIT_EXPLAIN
2283   int iSub1 = 0;        /* EQP id of left-hand query */
2284   int iSub2 = 0;        /* EQP id of right-hand query */
2285 #endif
2286 
2287   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2288   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2289   */
2290   assert( p && p->pPrior );  /* Calling function guarantees this much */
2291   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2292   db = pParse->db;
2293   pPrior = p->pPrior;
2294   dest = *pDest;
2295   if( pPrior->pOrderBy ){
2296     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2297       selectOpName(p->op));
2298     rc = 1;
2299     goto multi_select_end;
2300   }
2301   if( pPrior->pLimit ){
2302     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2303       selectOpName(p->op));
2304     rc = 1;
2305     goto multi_select_end;
2306   }
2307 
2308   v = sqlite3GetVdbe(pParse);
2309   assert( v!=0 );  /* The VDBE already created by calling function */
2310 
2311   /* Create the destination temporary table if necessary
2312   */
2313   if( dest.eDest==SRT_EphemTab ){
2314     assert( p->pEList );
2315     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2316     dest.eDest = SRT_Table;
2317   }
2318 
2319   /* Special handling for a compound-select that originates as a VALUES clause.
2320   */
2321   if( p->selFlags & SF_MultiValue ){
2322     rc = multiSelectValues(pParse, p, &dest);
2323     goto multi_select_end;
2324   }
2325 
2326   /* Make sure all SELECTs in the statement have the same number of elements
2327   ** in their result sets.
2328   */
2329   assert( p->pEList && pPrior->pEList );
2330   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2331 
2332 #ifndef SQLITE_OMIT_CTE
2333   if( p->selFlags & SF_Recursive ){
2334     generateWithRecursiveQuery(pParse, p, &dest);
2335   }else
2336 #endif
2337 
2338   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2339   */
2340   if( p->pOrderBy ){
2341     return multiSelectOrderBy(pParse, p, pDest);
2342   }else
2343 
2344   /* Generate code for the left and right SELECT statements.
2345   */
2346   switch( p->op ){
2347     case TK_ALL: {
2348       int addr = 0;
2349       int nLimit;
2350       assert( !pPrior->pLimit );
2351       pPrior->iLimit = p->iLimit;
2352       pPrior->iOffset = p->iOffset;
2353       pPrior->pLimit = p->pLimit;
2354       pPrior->pOffset = p->pOffset;
2355       explainSetInteger(iSub1, pParse->iNextSelectId);
2356       rc = sqlite3Select(pParse, pPrior, &dest);
2357       p->pLimit = 0;
2358       p->pOffset = 0;
2359       if( rc ){
2360         goto multi_select_end;
2361       }
2362       p->pPrior = 0;
2363       p->iLimit = pPrior->iLimit;
2364       p->iOffset = pPrior->iOffset;
2365       if( p->iLimit ){
2366         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2367         VdbeComment((v, "Jump ahead if LIMIT reached"));
2368         if( p->iOffset ){
2369           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2370                             p->iLimit, p->iOffset+1, p->iOffset);
2371         }
2372       }
2373       explainSetInteger(iSub2, pParse->iNextSelectId);
2374       rc = sqlite3Select(pParse, p, &dest);
2375       testcase( rc!=SQLITE_OK );
2376       pDelete = p->pPrior;
2377       p->pPrior = pPrior;
2378       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2379       if( pPrior->pLimit
2380        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2381        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2382       ){
2383         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2384       }
2385       if( addr ){
2386         sqlite3VdbeJumpHere(v, addr);
2387       }
2388       break;
2389     }
2390     case TK_EXCEPT:
2391     case TK_UNION: {
2392       int unionTab;    /* Cursor number of the temporary table holding result */
2393       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2394       int priorOp;     /* The SRT_ operation to apply to prior selects */
2395       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2396       int addr;
2397       SelectDest uniondest;
2398 
2399       testcase( p->op==TK_EXCEPT );
2400       testcase( p->op==TK_UNION );
2401       priorOp = SRT_Union;
2402       if( dest.eDest==priorOp ){
2403         /* We can reuse a temporary table generated by a SELECT to our
2404         ** right.
2405         */
2406         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2407         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2408         unionTab = dest.iSDParm;
2409       }else{
2410         /* We will need to create our own temporary table to hold the
2411         ** intermediate results.
2412         */
2413         unionTab = pParse->nTab++;
2414         assert( p->pOrderBy==0 );
2415         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2416         assert( p->addrOpenEphm[0] == -1 );
2417         p->addrOpenEphm[0] = addr;
2418         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2419         assert( p->pEList );
2420       }
2421 
2422       /* Code the SELECT statements to our left
2423       */
2424       assert( !pPrior->pOrderBy );
2425       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2426       explainSetInteger(iSub1, pParse->iNextSelectId);
2427       rc = sqlite3Select(pParse, pPrior, &uniondest);
2428       if( rc ){
2429         goto multi_select_end;
2430       }
2431 
2432       /* Code the current SELECT statement
2433       */
2434       if( p->op==TK_EXCEPT ){
2435         op = SRT_Except;
2436       }else{
2437         assert( p->op==TK_UNION );
2438         op = SRT_Union;
2439       }
2440       p->pPrior = 0;
2441       pLimit = p->pLimit;
2442       p->pLimit = 0;
2443       pOffset = p->pOffset;
2444       p->pOffset = 0;
2445       uniondest.eDest = op;
2446       explainSetInteger(iSub2, pParse->iNextSelectId);
2447       rc = sqlite3Select(pParse, p, &uniondest);
2448       testcase( rc!=SQLITE_OK );
2449       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2450       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2451       sqlite3ExprListDelete(db, p->pOrderBy);
2452       pDelete = p->pPrior;
2453       p->pPrior = pPrior;
2454       p->pOrderBy = 0;
2455       if( p->op==TK_UNION ){
2456         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2457       }
2458       sqlite3ExprDelete(db, p->pLimit);
2459       p->pLimit = pLimit;
2460       p->pOffset = pOffset;
2461       p->iLimit = 0;
2462       p->iOffset = 0;
2463 
2464       /* Convert the data in the temporary table into whatever form
2465       ** it is that we currently need.
2466       */
2467       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2468       if( dest.eDest!=priorOp ){
2469         int iCont, iBreak, iStart;
2470         assert( p->pEList );
2471         if( dest.eDest==SRT_Output ){
2472           Select *pFirst = p;
2473           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2474           generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2475         }
2476         iBreak = sqlite3VdbeMakeLabel(v);
2477         iCont = sqlite3VdbeMakeLabel(v);
2478         computeLimitRegisters(pParse, p, iBreak);
2479         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2480         iStart = sqlite3VdbeCurrentAddr(v);
2481         selectInnerLoop(pParse, p, p->pEList, unionTab,
2482                         0, 0, &dest, iCont, iBreak);
2483         sqlite3VdbeResolveLabel(v, iCont);
2484         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2485         sqlite3VdbeResolveLabel(v, iBreak);
2486         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2487       }
2488       break;
2489     }
2490     default: assert( p->op==TK_INTERSECT ); {
2491       int tab1, tab2;
2492       int iCont, iBreak, iStart;
2493       Expr *pLimit, *pOffset;
2494       int addr;
2495       SelectDest intersectdest;
2496       int r1;
2497 
2498       /* INTERSECT is different from the others since it requires
2499       ** two temporary tables.  Hence it has its own case.  Begin
2500       ** by allocating the tables we will need.
2501       */
2502       tab1 = pParse->nTab++;
2503       tab2 = pParse->nTab++;
2504       assert( p->pOrderBy==0 );
2505 
2506       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2507       assert( p->addrOpenEphm[0] == -1 );
2508       p->addrOpenEphm[0] = addr;
2509       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2510       assert( p->pEList );
2511 
2512       /* Code the SELECTs to our left into temporary table "tab1".
2513       */
2514       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2515       explainSetInteger(iSub1, pParse->iNextSelectId);
2516       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2517       if( rc ){
2518         goto multi_select_end;
2519       }
2520 
2521       /* Code the current SELECT into temporary table "tab2"
2522       */
2523       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2524       assert( p->addrOpenEphm[1] == -1 );
2525       p->addrOpenEphm[1] = addr;
2526       p->pPrior = 0;
2527       pLimit = p->pLimit;
2528       p->pLimit = 0;
2529       pOffset = p->pOffset;
2530       p->pOffset = 0;
2531       intersectdest.iSDParm = tab2;
2532       explainSetInteger(iSub2, pParse->iNextSelectId);
2533       rc = sqlite3Select(pParse, p, &intersectdest);
2534       testcase( rc!=SQLITE_OK );
2535       pDelete = p->pPrior;
2536       p->pPrior = pPrior;
2537       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2538       sqlite3ExprDelete(db, p->pLimit);
2539       p->pLimit = pLimit;
2540       p->pOffset = pOffset;
2541 
2542       /* Generate code to take the intersection of the two temporary
2543       ** tables.
2544       */
2545       assert( p->pEList );
2546       if( dest.eDest==SRT_Output ){
2547         Select *pFirst = p;
2548         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2549         generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2550       }
2551       iBreak = sqlite3VdbeMakeLabel(v);
2552       iCont = sqlite3VdbeMakeLabel(v);
2553       computeLimitRegisters(pParse, p, iBreak);
2554       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2555       r1 = sqlite3GetTempReg(pParse);
2556       iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2557       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2558       sqlite3ReleaseTempReg(pParse, r1);
2559       selectInnerLoop(pParse, p, p->pEList, tab1,
2560                       0, 0, &dest, iCont, iBreak);
2561       sqlite3VdbeResolveLabel(v, iCont);
2562       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2563       sqlite3VdbeResolveLabel(v, iBreak);
2564       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2565       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2566       break;
2567     }
2568   }
2569 
2570   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2571 
2572   /* Compute collating sequences used by
2573   ** temporary tables needed to implement the compound select.
2574   ** Attach the KeyInfo structure to all temporary tables.
2575   **
2576   ** This section is run by the right-most SELECT statement only.
2577   ** SELECT statements to the left always skip this part.  The right-most
2578   ** SELECT might also skip this part if it has no ORDER BY clause and
2579   ** no temp tables are required.
2580   */
2581   if( p->selFlags & SF_UsesEphemeral ){
2582     int i;                        /* Loop counter */
2583     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2584     Select *pLoop;                /* For looping through SELECT statements */
2585     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2586     int nCol;                     /* Number of columns in result set */
2587 
2588     assert( p->pNext==0 );
2589     nCol = p->pEList->nExpr;
2590     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2591     if( !pKeyInfo ){
2592       rc = SQLITE_NOMEM_BKPT;
2593       goto multi_select_end;
2594     }
2595     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2596       *apColl = multiSelectCollSeq(pParse, p, i);
2597       if( 0==*apColl ){
2598         *apColl = db->pDfltColl;
2599       }
2600     }
2601 
2602     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2603       for(i=0; i<2; i++){
2604         int addr = pLoop->addrOpenEphm[i];
2605         if( addr<0 ){
2606           /* If [0] is unused then [1] is also unused.  So we can
2607           ** always safely abort as soon as the first unused slot is found */
2608           assert( pLoop->addrOpenEphm[1]<0 );
2609           break;
2610         }
2611         sqlite3VdbeChangeP2(v, addr, nCol);
2612         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2613                             P4_KEYINFO);
2614         pLoop->addrOpenEphm[i] = -1;
2615       }
2616     }
2617     sqlite3KeyInfoUnref(pKeyInfo);
2618   }
2619 
2620 multi_select_end:
2621   pDest->iSdst = dest.iSdst;
2622   pDest->nSdst = dest.nSdst;
2623   sqlite3SelectDelete(db, pDelete);
2624   return rc;
2625 }
2626 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2627 
2628 /*
2629 ** Error message for when two or more terms of a compound select have different
2630 ** size result sets.
2631 */
2632 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2633   if( p->selFlags & SF_Values ){
2634     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2635   }else{
2636     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2637       " do not have the same number of result columns", selectOpName(p->op));
2638   }
2639 }
2640 
2641 /*
2642 ** Code an output subroutine for a coroutine implementation of a
2643 ** SELECT statment.
2644 **
2645 ** The data to be output is contained in pIn->iSdst.  There are
2646 ** pIn->nSdst columns to be output.  pDest is where the output should
2647 ** be sent.
2648 **
2649 ** regReturn is the number of the register holding the subroutine
2650 ** return address.
2651 **
2652 ** If regPrev>0 then it is the first register in a vector that
2653 ** records the previous output.  mem[regPrev] is a flag that is false
2654 ** if there has been no previous output.  If regPrev>0 then code is
2655 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2656 ** keys.
2657 **
2658 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2659 ** iBreak.
2660 */
2661 static int generateOutputSubroutine(
2662   Parse *pParse,          /* Parsing context */
2663   Select *p,              /* The SELECT statement */
2664   SelectDest *pIn,        /* Coroutine supplying data */
2665   SelectDest *pDest,      /* Where to send the data */
2666   int regReturn,          /* The return address register */
2667   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2668   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2669   int iBreak              /* Jump here if we hit the LIMIT */
2670 ){
2671   Vdbe *v = pParse->pVdbe;
2672   int iContinue;
2673   int addr;
2674 
2675   addr = sqlite3VdbeCurrentAddr(v);
2676   iContinue = sqlite3VdbeMakeLabel(v);
2677 
2678   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2679   */
2680   if( regPrev ){
2681     int addr1, addr2;
2682     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2683     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2684                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2685     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2686     sqlite3VdbeJumpHere(v, addr1);
2687     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2688     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2689   }
2690   if( pParse->db->mallocFailed ) return 0;
2691 
2692   /* Suppress the first OFFSET entries if there is an OFFSET clause
2693   */
2694   codeOffset(v, p->iOffset, iContinue);
2695 
2696   assert( pDest->eDest!=SRT_Exists );
2697   assert( pDest->eDest!=SRT_Table );
2698   switch( pDest->eDest ){
2699     /* Store the result as data using a unique key.
2700     */
2701     case SRT_EphemTab: {
2702       int r1 = sqlite3GetTempReg(pParse);
2703       int r2 = sqlite3GetTempReg(pParse);
2704       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2705       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2706       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2707       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2708       sqlite3ReleaseTempReg(pParse, r2);
2709       sqlite3ReleaseTempReg(pParse, r1);
2710       break;
2711     }
2712 
2713 #ifndef SQLITE_OMIT_SUBQUERY
2714     /* If we are creating a set for an "expr IN (SELECT ...)".
2715     */
2716     case SRT_Set: {
2717       int r1;
2718       testcase( pIn->nSdst>1 );
2719       r1 = sqlite3GetTempReg(pParse);
2720       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2721           r1, pDest->zAffSdst, pIn->nSdst);
2722       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2723       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2724                            pIn->iSdst, pIn->nSdst);
2725       sqlite3ReleaseTempReg(pParse, r1);
2726       break;
2727     }
2728 
2729     /* If this is a scalar select that is part of an expression, then
2730     ** store the results in the appropriate memory cell and break out
2731     ** of the scan loop.
2732     */
2733     case SRT_Mem: {
2734       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2735       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2736       /* The LIMIT clause will jump out of the loop for us */
2737       break;
2738     }
2739 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2740 
2741     /* The results are stored in a sequence of registers
2742     ** starting at pDest->iSdst.  Then the co-routine yields.
2743     */
2744     case SRT_Coroutine: {
2745       if( pDest->iSdst==0 ){
2746         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2747         pDest->nSdst = pIn->nSdst;
2748       }
2749       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2750       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2751       break;
2752     }
2753 
2754     /* If none of the above, then the result destination must be
2755     ** SRT_Output.  This routine is never called with any other
2756     ** destination other than the ones handled above or SRT_Output.
2757     **
2758     ** For SRT_Output, results are stored in a sequence of registers.
2759     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2760     ** return the next row of result.
2761     */
2762     default: {
2763       assert( pDest->eDest==SRT_Output );
2764       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2765       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2766       break;
2767     }
2768   }
2769 
2770   /* Jump to the end of the loop if the LIMIT is reached.
2771   */
2772   if( p->iLimit ){
2773     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2774   }
2775 
2776   /* Generate the subroutine return
2777   */
2778   sqlite3VdbeResolveLabel(v, iContinue);
2779   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2780 
2781   return addr;
2782 }
2783 
2784 /*
2785 ** Alternative compound select code generator for cases when there
2786 ** is an ORDER BY clause.
2787 **
2788 ** We assume a query of the following form:
2789 **
2790 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2791 **
2792 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2793 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2794 ** co-routines.  Then run the co-routines in parallel and merge the results
2795 ** into the output.  In addition to the two coroutines (called selectA and
2796 ** selectB) there are 7 subroutines:
2797 **
2798 **    outA:    Move the output of the selectA coroutine into the output
2799 **             of the compound query.
2800 **
2801 **    outB:    Move the output of the selectB coroutine into the output
2802 **             of the compound query.  (Only generated for UNION and
2803 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2804 **             appears only in B.)
2805 **
2806 **    AltB:    Called when there is data from both coroutines and A<B.
2807 **
2808 **    AeqB:    Called when there is data from both coroutines and A==B.
2809 **
2810 **    AgtB:    Called when there is data from both coroutines and A>B.
2811 **
2812 **    EofA:    Called when data is exhausted from selectA.
2813 **
2814 **    EofB:    Called when data is exhausted from selectB.
2815 **
2816 ** The implementation of the latter five subroutines depend on which
2817 ** <operator> is used:
2818 **
2819 **
2820 **             UNION ALL         UNION            EXCEPT          INTERSECT
2821 **          -------------  -----------------  --------------  -----------------
2822 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2823 **
2824 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2825 **
2826 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2827 **
2828 **   EofA:   outB, nextB      outB, nextB          halt             halt
2829 **
2830 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2831 **
2832 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2833 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2834 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2835 ** following nextX causes a jump to the end of the select processing.
2836 **
2837 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2838 ** within the output subroutine.  The regPrev register set holds the previously
2839 ** output value.  A comparison is made against this value and the output
2840 ** is skipped if the next results would be the same as the previous.
2841 **
2842 ** The implementation plan is to implement the two coroutines and seven
2843 ** subroutines first, then put the control logic at the bottom.  Like this:
2844 **
2845 **          goto Init
2846 **     coA: coroutine for left query (A)
2847 **     coB: coroutine for right query (B)
2848 **    outA: output one row of A
2849 **    outB: output one row of B (UNION and UNION ALL only)
2850 **    EofA: ...
2851 **    EofB: ...
2852 **    AltB: ...
2853 **    AeqB: ...
2854 **    AgtB: ...
2855 **    Init: initialize coroutine registers
2856 **          yield coA
2857 **          if eof(A) goto EofA
2858 **          yield coB
2859 **          if eof(B) goto EofB
2860 **    Cmpr: Compare A, B
2861 **          Jump AltB, AeqB, AgtB
2862 **     End: ...
2863 **
2864 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2865 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2866 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2867 ** and AgtB jump to either L2 or to one of EofA or EofB.
2868 */
2869 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2870 static int multiSelectOrderBy(
2871   Parse *pParse,        /* Parsing context */
2872   Select *p,            /* The right-most of SELECTs to be coded */
2873   SelectDest *pDest     /* What to do with query results */
2874 ){
2875   int i, j;             /* Loop counters */
2876   Select *pPrior;       /* Another SELECT immediately to our left */
2877   Vdbe *v;              /* Generate code to this VDBE */
2878   SelectDest destA;     /* Destination for coroutine A */
2879   SelectDest destB;     /* Destination for coroutine B */
2880   int regAddrA;         /* Address register for select-A coroutine */
2881   int regAddrB;         /* Address register for select-B coroutine */
2882   int addrSelectA;      /* Address of the select-A coroutine */
2883   int addrSelectB;      /* Address of the select-B coroutine */
2884   int regOutA;          /* Address register for the output-A subroutine */
2885   int regOutB;          /* Address register for the output-B subroutine */
2886   int addrOutA;         /* Address of the output-A subroutine */
2887   int addrOutB = 0;     /* Address of the output-B subroutine */
2888   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2889   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2890   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2891   int addrAltB;         /* Address of the A<B subroutine */
2892   int addrAeqB;         /* Address of the A==B subroutine */
2893   int addrAgtB;         /* Address of the A>B subroutine */
2894   int regLimitA;        /* Limit register for select-A */
2895   int regLimitB;        /* Limit register for select-A */
2896   int regPrev;          /* A range of registers to hold previous output */
2897   int savedLimit;       /* Saved value of p->iLimit */
2898   int savedOffset;      /* Saved value of p->iOffset */
2899   int labelCmpr;        /* Label for the start of the merge algorithm */
2900   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2901   int addr1;            /* Jump instructions that get retargetted */
2902   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2903   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2904   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2905   sqlite3 *db;          /* Database connection */
2906   ExprList *pOrderBy;   /* The ORDER BY clause */
2907   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2908   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2909 #ifndef SQLITE_OMIT_EXPLAIN
2910   int iSub1;            /* EQP id of left-hand query */
2911   int iSub2;            /* EQP id of right-hand query */
2912 #endif
2913 
2914   assert( p->pOrderBy!=0 );
2915   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2916   db = pParse->db;
2917   v = pParse->pVdbe;
2918   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2919   labelEnd = sqlite3VdbeMakeLabel(v);
2920   labelCmpr = sqlite3VdbeMakeLabel(v);
2921 
2922 
2923   /* Patch up the ORDER BY clause
2924   */
2925   op = p->op;
2926   pPrior = p->pPrior;
2927   assert( pPrior->pOrderBy==0 );
2928   pOrderBy = p->pOrderBy;
2929   assert( pOrderBy );
2930   nOrderBy = pOrderBy->nExpr;
2931 
2932   /* For operators other than UNION ALL we have to make sure that
2933   ** the ORDER BY clause covers every term of the result set.  Add
2934   ** terms to the ORDER BY clause as necessary.
2935   */
2936   if( op!=TK_ALL ){
2937     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2938       struct ExprList_item *pItem;
2939       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2940         assert( pItem->u.x.iOrderByCol>0 );
2941         if( pItem->u.x.iOrderByCol==i ) break;
2942       }
2943       if( j==nOrderBy ){
2944         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2945         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2946         pNew->flags |= EP_IntValue;
2947         pNew->u.iValue = i;
2948         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2949         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2950       }
2951     }
2952   }
2953 
2954   /* Compute the comparison permutation and keyinfo that is used with
2955   ** the permutation used to determine if the next
2956   ** row of results comes from selectA or selectB.  Also add explicit
2957   ** collations to the ORDER BY clause terms so that when the subqueries
2958   ** to the right and the left are evaluated, they use the correct
2959   ** collation.
2960   */
2961   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2962   if( aPermute ){
2963     struct ExprList_item *pItem;
2964     aPermute[0] = nOrderBy;
2965     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2966       assert( pItem->u.x.iOrderByCol>0 );
2967       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2968       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2969     }
2970     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2971   }else{
2972     pKeyMerge = 0;
2973   }
2974 
2975   /* Reattach the ORDER BY clause to the query.
2976   */
2977   p->pOrderBy = pOrderBy;
2978   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2979 
2980   /* Allocate a range of temporary registers and the KeyInfo needed
2981   ** for the logic that removes duplicate result rows when the
2982   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2983   */
2984   if( op==TK_ALL ){
2985     regPrev = 0;
2986   }else{
2987     int nExpr = p->pEList->nExpr;
2988     assert( nOrderBy>=nExpr || db->mallocFailed );
2989     regPrev = pParse->nMem+1;
2990     pParse->nMem += nExpr+1;
2991     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2992     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2993     if( pKeyDup ){
2994       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2995       for(i=0; i<nExpr; i++){
2996         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2997         pKeyDup->aSortOrder[i] = 0;
2998       }
2999     }
3000   }
3001 
3002   /* Separate the left and the right query from one another
3003   */
3004   p->pPrior = 0;
3005   pPrior->pNext = 0;
3006   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3007   if( pPrior->pPrior==0 ){
3008     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3009   }
3010 
3011   /* Compute the limit registers */
3012   computeLimitRegisters(pParse, p, labelEnd);
3013   if( p->iLimit && op==TK_ALL ){
3014     regLimitA = ++pParse->nMem;
3015     regLimitB = ++pParse->nMem;
3016     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3017                                   regLimitA);
3018     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3019   }else{
3020     regLimitA = regLimitB = 0;
3021   }
3022   sqlite3ExprDelete(db, p->pLimit);
3023   p->pLimit = 0;
3024   sqlite3ExprDelete(db, p->pOffset);
3025   p->pOffset = 0;
3026 
3027   regAddrA = ++pParse->nMem;
3028   regAddrB = ++pParse->nMem;
3029   regOutA = ++pParse->nMem;
3030   regOutB = ++pParse->nMem;
3031   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3032   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3033 
3034   /* Generate a coroutine to evaluate the SELECT statement to the
3035   ** left of the compound operator - the "A" select.
3036   */
3037   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3038   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3039   VdbeComment((v, "left SELECT"));
3040   pPrior->iLimit = regLimitA;
3041   explainSetInteger(iSub1, pParse->iNextSelectId);
3042   sqlite3Select(pParse, pPrior, &destA);
3043   sqlite3VdbeEndCoroutine(v, regAddrA);
3044   sqlite3VdbeJumpHere(v, addr1);
3045 
3046   /* Generate a coroutine to evaluate the SELECT statement on
3047   ** the right - the "B" select
3048   */
3049   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3050   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3051   VdbeComment((v, "right SELECT"));
3052   savedLimit = p->iLimit;
3053   savedOffset = p->iOffset;
3054   p->iLimit = regLimitB;
3055   p->iOffset = 0;
3056   explainSetInteger(iSub2, pParse->iNextSelectId);
3057   sqlite3Select(pParse, p, &destB);
3058   p->iLimit = savedLimit;
3059   p->iOffset = savedOffset;
3060   sqlite3VdbeEndCoroutine(v, regAddrB);
3061 
3062   /* Generate a subroutine that outputs the current row of the A
3063   ** select as the next output row of the compound select.
3064   */
3065   VdbeNoopComment((v, "Output routine for A"));
3066   addrOutA = generateOutputSubroutine(pParse,
3067                  p, &destA, pDest, regOutA,
3068                  regPrev, pKeyDup, labelEnd);
3069 
3070   /* Generate a subroutine that outputs the current row of the B
3071   ** select as the next output row of the compound select.
3072   */
3073   if( op==TK_ALL || op==TK_UNION ){
3074     VdbeNoopComment((v, "Output routine for B"));
3075     addrOutB = generateOutputSubroutine(pParse,
3076                  p, &destB, pDest, regOutB,
3077                  regPrev, pKeyDup, labelEnd);
3078   }
3079   sqlite3KeyInfoUnref(pKeyDup);
3080 
3081   /* Generate a subroutine to run when the results from select A
3082   ** are exhausted and only data in select B remains.
3083   */
3084   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3085     addrEofA_noB = addrEofA = labelEnd;
3086   }else{
3087     VdbeNoopComment((v, "eof-A subroutine"));
3088     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3089     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3090                                      VdbeCoverage(v);
3091     sqlite3VdbeGoto(v, addrEofA);
3092     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3093   }
3094 
3095   /* Generate a subroutine to run when the results from select B
3096   ** are exhausted and only data in select A remains.
3097   */
3098   if( op==TK_INTERSECT ){
3099     addrEofB = addrEofA;
3100     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3101   }else{
3102     VdbeNoopComment((v, "eof-B subroutine"));
3103     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3104     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3105     sqlite3VdbeGoto(v, addrEofB);
3106   }
3107 
3108   /* Generate code to handle the case of A<B
3109   */
3110   VdbeNoopComment((v, "A-lt-B subroutine"));
3111   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3112   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3113   sqlite3VdbeGoto(v, labelCmpr);
3114 
3115   /* Generate code to handle the case of A==B
3116   */
3117   if( op==TK_ALL ){
3118     addrAeqB = addrAltB;
3119   }else if( op==TK_INTERSECT ){
3120     addrAeqB = addrAltB;
3121     addrAltB++;
3122   }else{
3123     VdbeNoopComment((v, "A-eq-B subroutine"));
3124     addrAeqB =
3125     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3126     sqlite3VdbeGoto(v, labelCmpr);
3127   }
3128 
3129   /* Generate code to handle the case of A>B
3130   */
3131   VdbeNoopComment((v, "A-gt-B subroutine"));
3132   addrAgtB = sqlite3VdbeCurrentAddr(v);
3133   if( op==TK_ALL || op==TK_UNION ){
3134     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3135   }
3136   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3137   sqlite3VdbeGoto(v, labelCmpr);
3138 
3139   /* This code runs once to initialize everything.
3140   */
3141   sqlite3VdbeJumpHere(v, addr1);
3142   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3143   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3144 
3145   /* Implement the main merge loop
3146   */
3147   sqlite3VdbeResolveLabel(v, labelCmpr);
3148   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3149   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3150                          (char*)pKeyMerge, P4_KEYINFO);
3151   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3152   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3153 
3154   /* Jump to the this point in order to terminate the query.
3155   */
3156   sqlite3VdbeResolveLabel(v, labelEnd);
3157 
3158   /* Set the number of output columns
3159   */
3160   if( pDest->eDest==SRT_Output ){
3161     Select *pFirst = pPrior;
3162     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3163     generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
3164   }
3165 
3166   /* Reassembly the compound query so that it will be freed correctly
3167   ** by the calling function */
3168   if( p->pPrior ){
3169     sqlite3SelectDelete(db, p->pPrior);
3170   }
3171   p->pPrior = pPrior;
3172   pPrior->pNext = p;
3173 
3174   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3175   **** subqueries ****/
3176   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3177   return pParse->nErr!=0;
3178 }
3179 #endif
3180 
3181 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3182 
3183 /* An instance of the SubstContext object describes an substitution edit
3184 ** to be performed on a parse tree.
3185 **
3186 ** All references to columns in table iTable are to be replaced by corresponding
3187 ** expressions in pEList.
3188 */
3189 typedef struct SubstContext {
3190   Parse *pParse;            /* The parsing context */
3191   int iTable;               /* Replace references to this table */
3192   int iNewTable;            /* New table number */
3193   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3194   ExprList *pEList;         /* Replacement expressions */
3195 } SubstContext;
3196 
3197 /* Forward Declarations */
3198 static void substExprList(SubstContext*, ExprList*);
3199 static void substSelect(SubstContext*, Select*, int);
3200 
3201 /*
3202 ** Scan through the expression pExpr.  Replace every reference to
3203 ** a column in table number iTable with a copy of the iColumn-th
3204 ** entry in pEList.  (But leave references to the ROWID column
3205 ** unchanged.)
3206 **
3207 ** This routine is part of the flattening procedure.  A subquery
3208 ** whose result set is defined by pEList appears as entry in the
3209 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3210 ** FORM clause entry is iTable.  This routine makes the necessary
3211 ** changes to pExpr so that it refers directly to the source table
3212 ** of the subquery rather the result set of the subquery.
3213 */
3214 static Expr *substExpr(
3215   SubstContext *pSubst,  /* Description of the substitution */
3216   Expr *pExpr            /* Expr in which substitution occurs */
3217 ){
3218   if( pExpr==0 ) return 0;
3219   if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){
3220     pExpr->iRightJoinTable = pSubst->iNewTable;
3221   }
3222   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3223     if( pExpr->iColumn<0 ){
3224       pExpr->op = TK_NULL;
3225     }else{
3226       Expr *pNew;
3227       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3228       Expr ifNullRow;
3229       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3230       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3231       if( sqlite3ExprIsVector(pCopy) ){
3232         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3233       }else{
3234         sqlite3 *db = pSubst->pParse->db;
3235         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3236           memset(&ifNullRow, 0, sizeof(ifNullRow));
3237           ifNullRow.op = TK_IF_NULL_ROW;
3238           ifNullRow.pLeft = pCopy;
3239           ifNullRow.iTable = pSubst->iNewTable;
3240           pCopy = &ifNullRow;
3241         }
3242         pNew = sqlite3ExprDup(db, pCopy, 0);
3243         if( pNew && pSubst->isLeftJoin ){
3244           ExprSetProperty(pNew, EP_CanBeNull);
3245         }
3246         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3247           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3248           ExprSetProperty(pNew, EP_FromJoin);
3249         }
3250         sqlite3ExprDelete(db, pExpr);
3251         pExpr = pNew;
3252       }
3253     }
3254   }else{
3255     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3256       pExpr->iTable = pSubst->iNewTable;
3257     }
3258     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3259     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3260     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3261       substSelect(pSubst, pExpr->x.pSelect, 1);
3262     }else{
3263       substExprList(pSubst, pExpr->x.pList);
3264     }
3265   }
3266   return pExpr;
3267 }
3268 static void substExprList(
3269   SubstContext *pSubst, /* Description of the substitution */
3270   ExprList *pList       /* List to scan and in which to make substitutes */
3271 ){
3272   int i;
3273   if( pList==0 ) return;
3274   for(i=0; i<pList->nExpr; i++){
3275     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3276   }
3277 }
3278 static void substSelect(
3279   SubstContext *pSubst, /* Description of the substitution */
3280   Select *p,            /* SELECT statement in which to make substitutions */
3281   int doPrior           /* Do substitutes on p->pPrior too */
3282 ){
3283   SrcList *pSrc;
3284   struct SrcList_item *pItem;
3285   int i;
3286   if( !p ) return;
3287   do{
3288     substExprList(pSubst, p->pEList);
3289     substExprList(pSubst, p->pGroupBy);
3290     substExprList(pSubst, p->pOrderBy);
3291     p->pHaving = substExpr(pSubst, p->pHaving);
3292     p->pWhere = substExpr(pSubst, p->pWhere);
3293     pSrc = p->pSrc;
3294     assert( pSrc!=0 );
3295     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3296       substSelect(pSubst, pItem->pSelect, 1);
3297       if( pItem->fg.isTabFunc ){
3298         substExprList(pSubst, pItem->u1.pFuncArg);
3299       }
3300     }
3301   }while( doPrior && (p = p->pPrior)!=0 );
3302 }
3303 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3304 
3305 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3306 /*
3307 ** This routine attempts to flatten subqueries as a performance optimization.
3308 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3309 **
3310 ** To understand the concept of flattening, consider the following
3311 ** query:
3312 **
3313 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3314 **
3315 ** The default way of implementing this query is to execute the
3316 ** subquery first and store the results in a temporary table, then
3317 ** run the outer query on that temporary table.  This requires two
3318 ** passes over the data.  Furthermore, because the temporary table
3319 ** has no indices, the WHERE clause on the outer query cannot be
3320 ** optimized.
3321 **
3322 ** This routine attempts to rewrite queries such as the above into
3323 ** a single flat select, like this:
3324 **
3325 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3326 **
3327 ** The code generated for this simplification gives the same result
3328 ** but only has to scan the data once.  And because indices might
3329 ** exist on the table t1, a complete scan of the data might be
3330 ** avoided.
3331 **
3332 ** Flattening is only attempted if all of the following are true:
3333 **
3334 **   (1)  The subquery and the outer query do not both use aggregates.
3335 **
3336 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3337 **        and (2b) the outer query does not use subqueries other than the one
3338 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3339 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3340 **
3341 **   (3)  The subquery is not the right operand of a LEFT JOIN
3342 **        or the subquery is not itself a join and the outer query is not
3343 **        an aggregate.
3344 **
3345 **   (4)  The subquery is not DISTINCT.
3346 **
3347 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3348 **        sub-queries that were excluded from this optimization. Restriction
3349 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3350 **
3351 **   (6)  The subquery does not use aggregates or the outer query is not
3352 **        DISTINCT.
3353 **
3354 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3355 **        A FROM clause, consider adding a FROM clause with the special
3356 **        table sqlite_once that consists of a single row containing a
3357 **        single NULL.
3358 **
3359 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3360 **
3361 **   (9)  The subquery does not use LIMIT or the outer query does not use
3362 **        aggregates.
3363 **
3364 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3365 **        accidently carried the comment forward until 2014-09-15.  Original
3366 **        text: "The subquery does not use aggregates or the outer query
3367 **        does not use LIMIT."
3368 **
3369 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3370 **
3371 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3372 **        a separate restriction deriving from ticket #350.
3373 **
3374 **  (13)  The subquery and outer query do not both use LIMIT.
3375 **
3376 **  (14)  The subquery does not use OFFSET.
3377 **
3378 **  (15)  The outer query is not part of a compound select or the
3379 **        subquery does not have a LIMIT clause.
3380 **        (See ticket #2339 and ticket [02a8e81d44]).
3381 **
3382 **  (16)  The outer query is not an aggregate or the subquery does
3383 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3384 **        until we introduced the group_concat() function.
3385 **
3386 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3387 **        compound clause made up entirely of non-aggregate queries, and
3388 **        the parent query:
3389 **
3390 **          * is not itself part of a compound select,
3391 **          * is not an aggregate or DISTINCT query, and
3392 **          * is not a join
3393 **
3394 **        The parent and sub-query may contain WHERE clauses. Subject to
3395 **        rules (11), (13) and (14), they may also contain ORDER BY,
3396 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3397 **        operator other than UNION ALL because all the other compound
3398 **        operators have an implied DISTINCT which is disallowed by
3399 **        restriction (4).
3400 **
3401 **        Also, each component of the sub-query must return the same number
3402 **        of result columns. This is actually a requirement for any compound
3403 **        SELECT statement, but all the code here does is make sure that no
3404 **        such (illegal) sub-query is flattened. The caller will detect the
3405 **        syntax error and return a detailed message.
3406 **
3407 **  (18)  If the sub-query is a compound select, then all terms of the
3408 **        ORDER by clause of the parent must be simple references to
3409 **        columns of the sub-query.
3410 **
3411 **  (19)  The subquery does not use LIMIT or the outer query does not
3412 **        have a WHERE clause.
3413 **
3414 **  (20)  If the sub-query is a compound select, then it must not use
3415 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3416 **        somewhat by saying that the terms of the ORDER BY clause must
3417 **        appear as unmodified result columns in the outer query.  But we
3418 **        have other optimizations in mind to deal with that case.
3419 **
3420 **  (21)  The subquery does not use LIMIT or the outer query is not
3421 **        DISTINCT.  (See ticket [752e1646fc]).
3422 **
3423 **  (22)  The subquery is not a recursive CTE.
3424 **
3425 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3426 **        compound query. This restriction is because transforming the
3427 **        parent to a compound query confuses the code that handles
3428 **        recursive queries in multiSelect().
3429 **
3430 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3431 **        or max() functions.  (Without this restriction, a query like:
3432 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3433 **        return the value X for which Y was maximal.)
3434 **
3435 **
3436 ** In this routine, the "p" parameter is a pointer to the outer query.
3437 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3438 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3439 **
3440 ** If flattening is not attempted, this routine is a no-op and returns 0.
3441 ** If flattening is attempted this routine returns 1.
3442 **
3443 ** All of the expression analysis must occur on both the outer query and
3444 ** the subquery before this routine runs.
3445 */
3446 static int flattenSubquery(
3447   Parse *pParse,       /* Parsing context */
3448   Select *p,           /* The parent or outer SELECT statement */
3449   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3450   int isAgg,           /* True if outer SELECT uses aggregate functions */
3451   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3452 ){
3453   const char *zSavedAuthContext = pParse->zAuthContext;
3454   Select *pParent;    /* Current UNION ALL term of the other query */
3455   Select *pSub;       /* The inner query or "subquery" */
3456   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3457   SrcList *pSrc;      /* The FROM clause of the outer query */
3458   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3459   ExprList *pList;    /* The result set of the outer query */
3460   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3461   int iNewParent = -1;/* Replacement table for iParent */
3462   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3463   int i;              /* Loop counter */
3464   Expr *pWhere;                    /* The WHERE clause */
3465   struct SrcList_item *pSubitem;   /* The subquery */
3466   sqlite3 *db = pParse->db;
3467 
3468   /* Check to see if flattening is permitted.  Return 0 if not.
3469   */
3470   assert( p!=0 );
3471   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3472   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3473   pSrc = p->pSrc;
3474   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3475   pSubitem = &pSrc->a[iFrom];
3476   iParent = pSubitem->iCursor;
3477   pSub = pSubitem->pSelect;
3478   assert( pSub!=0 );
3479   if( subqueryIsAgg ){
3480     if( isAgg ) return 0;                                /* Restriction (1)   */
3481     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3482     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3483      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3484      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3485     ){
3486       return 0;                                          /* Restriction (2b)  */
3487     }
3488   }
3489 
3490   pSubSrc = pSub->pSrc;
3491   assert( pSubSrc );
3492   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3493   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3494   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3495   ** became arbitrary expressions, we were forced to add restrictions (13)
3496   ** and (14). */
3497   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3498   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3499   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3500     return 0;                                            /* Restriction (15) */
3501   }
3502   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3503   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3504   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3505      return 0;         /* Restrictions (8)(9) */
3506   }
3507   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3508      return 0;         /* Restriction (6)  */
3509   }
3510   if( p->pOrderBy && pSub->pOrderBy ){
3511      return 0;                                           /* Restriction (11) */
3512   }
3513   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3514   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3515   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3516      return 0;         /* Restriction (21) */
3517   }
3518   testcase( pSub->selFlags & SF_Recursive );
3519   testcase( pSub->selFlags & SF_MinMaxAgg );
3520   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3521     return 0; /* Restrictions (22) and (24) */
3522   }
3523   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3524     return 0; /* Restriction (23) */
3525   }
3526 
3527   /*
3528   ** If the subquery is the right operand of a LEFT JOIN, then the
3529   ** subquery may not be a join itself.  Example of why this is not allowed:
3530   **
3531   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3532   **
3533   ** If we flatten the above, we would get
3534   **
3535   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3536   **
3537   ** which is not at all the same thing.
3538   **
3539   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3540   ** query cannot be an aggregate.  This is an artifact of the way aggregates
3541   ** are processed - there is no mechanism to determine if the LEFT JOIN
3542   ** table should be all-NULL.
3543   **
3544   ** See also tickets #306, #350, and #3300.
3545   */
3546   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3547     isLeftJoin = 1;
3548     if( pSubSrc->nSrc>1 || isAgg ){
3549       return 0; /* Restriction (3) */
3550     }
3551   }
3552 #ifdef SQLITE_EXTRA_IFNULLROW
3553   else if( iFrom>0 && !isAgg ){
3554     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3555     ** every reference to any result column from subquery in a join, even though
3556     ** they are not necessary.  This will stress-test the OP_IfNullRow opcode. */
3557     isLeftJoin = -1;
3558   }
3559 #endif
3560 
3561   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3562   ** use only the UNION ALL operator. And none of the simple select queries
3563   ** that make up the compound SELECT are allowed to be aggregate or distinct
3564   ** queries.
3565   */
3566   if( pSub->pPrior ){
3567     if( pSub->pOrderBy ){
3568       return 0;  /* Restriction 20 */
3569     }
3570     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3571       return 0;
3572     }
3573     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3574       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3575       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3576       assert( pSub->pSrc!=0 );
3577       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3578       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3579        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3580        || pSub1->pSrc->nSrc<1
3581       ){
3582         return 0;
3583       }
3584       testcase( pSub1->pSrc->nSrc>1 );
3585     }
3586 
3587     /* Restriction 18. */
3588     if( p->pOrderBy ){
3589       int ii;
3590       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3591         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3592       }
3593     }
3594   }
3595 
3596   /***** If we reach this point, flattening is permitted. *****/
3597   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3598                    pSub->zSelName, pSub, iFrom));
3599 
3600   /* Authorize the subquery */
3601   pParse->zAuthContext = pSubitem->zName;
3602   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3603   testcase( i==SQLITE_DENY );
3604   pParse->zAuthContext = zSavedAuthContext;
3605 
3606   /* If the sub-query is a compound SELECT statement, then (by restrictions
3607   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3608   ** be of the form:
3609   **
3610   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3611   **
3612   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3613   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3614   ** OFFSET clauses and joins them to the left-hand-side of the original
3615   ** using UNION ALL operators. In this case N is the number of simple
3616   ** select statements in the compound sub-query.
3617   **
3618   ** Example:
3619   **
3620   **     SELECT a+1 FROM (
3621   **        SELECT x FROM tab
3622   **        UNION ALL
3623   **        SELECT y FROM tab
3624   **        UNION ALL
3625   **        SELECT abs(z*2) FROM tab2
3626   **     ) WHERE a!=5 ORDER BY 1
3627   **
3628   ** Transformed into:
3629   **
3630   **     SELECT x+1 FROM tab WHERE x+1!=5
3631   **     UNION ALL
3632   **     SELECT y+1 FROM tab WHERE y+1!=5
3633   **     UNION ALL
3634   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3635   **     ORDER BY 1
3636   **
3637   ** We call this the "compound-subquery flattening".
3638   */
3639   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3640     Select *pNew;
3641     ExprList *pOrderBy = p->pOrderBy;
3642     Expr *pLimit = p->pLimit;
3643     Expr *pOffset = p->pOffset;
3644     Select *pPrior = p->pPrior;
3645     p->pOrderBy = 0;
3646     p->pSrc = 0;
3647     p->pPrior = 0;
3648     p->pLimit = 0;
3649     p->pOffset = 0;
3650     pNew = sqlite3SelectDup(db, p, 0);
3651     sqlite3SelectSetName(pNew, pSub->zSelName);
3652     p->pOffset = pOffset;
3653     p->pLimit = pLimit;
3654     p->pOrderBy = pOrderBy;
3655     p->pSrc = pSrc;
3656     p->op = TK_ALL;
3657     if( pNew==0 ){
3658       p->pPrior = pPrior;
3659     }else{
3660       pNew->pPrior = pPrior;
3661       if( pPrior ) pPrior->pNext = pNew;
3662       pNew->pNext = p;
3663       p->pPrior = pNew;
3664       SELECTTRACE(2,pParse,p,
3665          ("compound-subquery flattener creates %s.%p as peer\n",
3666          pNew->zSelName, pNew));
3667     }
3668     if( db->mallocFailed ) return 1;
3669   }
3670 
3671   /* Begin flattening the iFrom-th entry of the FROM clause
3672   ** in the outer query.
3673   */
3674   pSub = pSub1 = pSubitem->pSelect;
3675 
3676   /* Delete the transient table structure associated with the
3677   ** subquery
3678   */
3679   sqlite3DbFree(db, pSubitem->zDatabase);
3680   sqlite3DbFree(db, pSubitem->zName);
3681   sqlite3DbFree(db, pSubitem->zAlias);
3682   pSubitem->zDatabase = 0;
3683   pSubitem->zName = 0;
3684   pSubitem->zAlias = 0;
3685   pSubitem->pSelect = 0;
3686 
3687   /* Defer deleting the Table object associated with the
3688   ** subquery until code generation is
3689   ** complete, since there may still exist Expr.pTab entries that
3690   ** refer to the subquery even after flattening.  Ticket #3346.
3691   **
3692   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3693   */
3694   if( ALWAYS(pSubitem->pTab!=0) ){
3695     Table *pTabToDel = pSubitem->pTab;
3696     if( pTabToDel->nTabRef==1 ){
3697       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3698       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3699       pToplevel->pZombieTab = pTabToDel;
3700     }else{
3701       pTabToDel->nTabRef--;
3702     }
3703     pSubitem->pTab = 0;
3704   }
3705 
3706   /* The following loop runs once for each term in a compound-subquery
3707   ** flattening (as described above).  If we are doing a different kind
3708   ** of flattening - a flattening other than a compound-subquery flattening -
3709   ** then this loop only runs once.
3710   **
3711   ** This loop moves all of the FROM elements of the subquery into the
3712   ** the FROM clause of the outer query.  Before doing this, remember
3713   ** the cursor number for the original outer query FROM element in
3714   ** iParent.  The iParent cursor will never be used.  Subsequent code
3715   ** will scan expressions looking for iParent references and replace
3716   ** those references with expressions that resolve to the subquery FROM
3717   ** elements we are now copying in.
3718   */
3719   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3720     int nSubSrc;
3721     u8 jointype = 0;
3722     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3723     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3724     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3725 
3726     if( pSrc ){
3727       assert( pParent==p );  /* First time through the loop */
3728       jointype = pSubitem->fg.jointype;
3729     }else{
3730       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3731       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3732       if( pSrc==0 ){
3733         assert( db->mallocFailed );
3734         break;
3735       }
3736     }
3737 
3738     /* The subquery uses a single slot of the FROM clause of the outer
3739     ** query.  If the subquery has more than one element in its FROM clause,
3740     ** then expand the outer query to make space for it to hold all elements
3741     ** of the subquery.
3742     **
3743     ** Example:
3744     **
3745     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3746     **
3747     ** The outer query has 3 slots in its FROM clause.  One slot of the
3748     ** outer query (the middle slot) is used by the subquery.  The next
3749     ** block of code will expand the outer query FROM clause to 4 slots.
3750     ** The middle slot is expanded to two slots in order to make space
3751     ** for the two elements in the FROM clause of the subquery.
3752     */
3753     if( nSubSrc>1 ){
3754       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3755       if( db->mallocFailed ){
3756         break;
3757       }
3758     }
3759 
3760     /* Transfer the FROM clause terms from the subquery into the
3761     ** outer query.
3762     */
3763     for(i=0; i<nSubSrc; i++){
3764       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3765       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3766       pSrc->a[i+iFrom] = pSubSrc->a[i];
3767       iNewParent = pSubSrc->a[i].iCursor;
3768       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3769     }
3770     pSrc->a[iFrom].fg.jointype = jointype;
3771 
3772     /* Now begin substituting subquery result set expressions for
3773     ** references to the iParent in the outer query.
3774     **
3775     ** Example:
3776     **
3777     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3778     **   \                     \_____________ subquery __________/          /
3779     **    \_____________________ outer query ______________________________/
3780     **
3781     ** We look at every expression in the outer query and every place we see
3782     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3783     */
3784     pList = pParent->pEList;
3785     for(i=0; i<pList->nExpr; i++){
3786       if( pList->a[i].zName==0 ){
3787         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3788         sqlite3Dequote(zName);
3789         pList->a[i].zName = zName;
3790       }
3791     }
3792     if( pSub->pOrderBy ){
3793       /* At this point, any non-zero iOrderByCol values indicate that the
3794       ** ORDER BY column expression is identical to the iOrderByCol'th
3795       ** expression returned by SELECT statement pSub. Since these values
3796       ** do not necessarily correspond to columns in SELECT statement pParent,
3797       ** zero them before transfering the ORDER BY clause.
3798       **
3799       ** Not doing this may cause an error if a subsequent call to this
3800       ** function attempts to flatten a compound sub-query into pParent
3801       ** (the only way this can happen is if the compound sub-query is
3802       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3803       ExprList *pOrderBy = pSub->pOrderBy;
3804       for(i=0; i<pOrderBy->nExpr; i++){
3805         pOrderBy->a[i].u.x.iOrderByCol = 0;
3806       }
3807       assert( pParent->pOrderBy==0 );
3808       assert( pSub->pPrior==0 );
3809       pParent->pOrderBy = pOrderBy;
3810       pSub->pOrderBy = 0;
3811     }
3812     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3813     if( isLeftJoin>0 ){
3814       setJoinExpr(pWhere, iNewParent);
3815     }
3816     if( subqueryIsAgg ){
3817       assert( pParent->pHaving==0 );
3818       pParent->pHaving = pParent->pWhere;
3819       pParent->pWhere = pWhere;
3820       pParent->pHaving = sqlite3ExprAnd(db,
3821           sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
3822       );
3823       assert( pParent->pGroupBy==0 );
3824       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3825     }else{
3826       pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3827     }
3828     if( db->mallocFailed==0 ){
3829       SubstContext x;
3830       x.pParse = pParse;
3831       x.iTable = iParent;
3832       x.iNewTable = iNewParent;
3833       x.isLeftJoin = isLeftJoin;
3834       x.pEList = pSub->pEList;
3835       substSelect(&x, pParent, 0);
3836     }
3837 
3838     /* The flattened query is distinct if either the inner or the
3839     ** outer query is distinct.
3840     */
3841     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3842 
3843     /*
3844     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3845     **
3846     ** One is tempted to try to add a and b to combine the limits.  But this
3847     ** does not work if either limit is negative.
3848     */
3849     if( pSub->pLimit ){
3850       pParent->pLimit = pSub->pLimit;
3851       pSub->pLimit = 0;
3852     }
3853   }
3854 
3855   /* Finially, delete what is left of the subquery and return
3856   ** success.
3857   */
3858   sqlite3SelectDelete(db, pSub1);
3859 
3860 #if SELECTTRACE_ENABLED
3861   if( sqlite3SelectTrace & 0x100 ){
3862     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3863     sqlite3TreeViewSelect(0, p, 0);
3864   }
3865 #endif
3866 
3867   return 1;
3868 }
3869 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3870 
3871 
3872 
3873 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3874 /*
3875 ** Make copies of relevant WHERE clause terms of the outer query into
3876 ** the WHERE clause of subquery.  Example:
3877 **
3878 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3879 **
3880 ** Transformed into:
3881 **
3882 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3883 **     WHERE x=5 AND y=10;
3884 **
3885 ** The hope is that the terms added to the inner query will make it more
3886 ** efficient.
3887 **
3888 ** Do not attempt this optimization if:
3889 **
3890 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3891 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3892 **       inner query.  But they probably won't help there so do not bother.)
3893 **
3894 **   (2) The inner query is the recursive part of a common table expression.
3895 **
3896 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3897 **       close would change the meaning of the LIMIT).
3898 **
3899 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3900 **       enforces this restriction since this routine does not have enough
3901 **       information to know.)
3902 **
3903 **   (5) The WHERE clause expression originates in the ON or USING clause
3904 **       of a LEFT JOIN.
3905 **
3906 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3907 ** terms are duplicated into the subquery.
3908 */
3909 static int pushDownWhereTerms(
3910   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
3911   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3912   Expr *pWhere,         /* The WHERE clause of the outer query */
3913   int iCursor           /* Cursor number of the subquery */
3914 ){
3915   Expr *pNew;
3916   int nChng = 0;
3917   Select *pX;           /* For looping over compound SELECTs in pSubq */
3918   if( pWhere==0 ) return 0;
3919   for(pX=pSubq; pX; pX=pX->pPrior){
3920     if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3921       testcase( pX->selFlags & SF_Aggregate );
3922       testcase( pX->selFlags & SF_Recursive );
3923       testcase( pX!=pSubq );
3924       return 0; /* restrictions (1) and (2) */
3925     }
3926   }
3927   if( pSubq->pLimit!=0 ){
3928     return 0; /* restriction (3) */
3929   }
3930   while( pWhere->op==TK_AND ){
3931     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3932     pWhere = pWhere->pLeft;
3933   }
3934   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3935   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3936     nChng++;
3937     while( pSubq ){
3938       SubstContext x;
3939       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3940       x.pParse = pParse;
3941       x.iTable = iCursor;
3942       x.iNewTable = iCursor;
3943       x.isLeftJoin = 0;
3944       x.pEList = pSubq->pEList;
3945       pNew = substExpr(&x, pNew);
3946       pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3947       pSubq = pSubq->pPrior;
3948     }
3949   }
3950   return nChng;
3951 }
3952 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3953 
3954 /*
3955 ** Based on the contents of the AggInfo structure indicated by the first
3956 ** argument, this function checks if the following are true:
3957 **
3958 **    * the query contains just a single aggregate function,
3959 **    * the aggregate function is either min() or max(), and
3960 **    * the argument to the aggregate function is a column value.
3961 **
3962 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3963 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3964 ** list of arguments passed to the aggregate before returning.
3965 **
3966 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3967 ** WHERE_ORDERBY_NORMAL is returned.
3968 */
3969 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3970   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3971 
3972   *ppMinMax = 0;
3973   if( pAggInfo->nFunc==1 ){
3974     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3975     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3976 
3977     assert( pExpr->op==TK_AGG_FUNCTION );
3978     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3979       const char *zFunc = pExpr->u.zToken;
3980       if( sqlite3StrICmp(zFunc, "min")==0 ){
3981         eRet = WHERE_ORDERBY_MIN;
3982         *ppMinMax = pEList;
3983       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3984         eRet = WHERE_ORDERBY_MAX;
3985         *ppMinMax = pEList;
3986       }
3987     }
3988   }
3989 
3990   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3991   return eRet;
3992 }
3993 
3994 /*
3995 ** The select statement passed as the first argument is an aggregate query.
3996 ** The second argument is the associated aggregate-info object. This
3997 ** function tests if the SELECT is of the form:
3998 **
3999 **   SELECT count(*) FROM <tbl>
4000 **
4001 ** where table is a database table, not a sub-select or view. If the query
4002 ** does match this pattern, then a pointer to the Table object representing
4003 ** <tbl> is returned. Otherwise, 0 is returned.
4004 */
4005 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4006   Table *pTab;
4007   Expr *pExpr;
4008 
4009   assert( !p->pGroupBy );
4010 
4011   if( p->pWhere || p->pEList->nExpr!=1
4012    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4013   ){
4014     return 0;
4015   }
4016   pTab = p->pSrc->a[0].pTab;
4017   pExpr = p->pEList->a[0].pExpr;
4018   assert( pTab && !pTab->pSelect && pExpr );
4019 
4020   if( IsVirtual(pTab) ) return 0;
4021   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4022   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4023   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4024   if( pExpr->flags&EP_Distinct ) return 0;
4025 
4026   return pTab;
4027 }
4028 
4029 /*
4030 ** If the source-list item passed as an argument was augmented with an
4031 ** INDEXED BY clause, then try to locate the specified index. If there
4032 ** was such a clause and the named index cannot be found, return
4033 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4034 ** pFrom->pIndex and return SQLITE_OK.
4035 */
4036 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4037   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4038     Table *pTab = pFrom->pTab;
4039     char *zIndexedBy = pFrom->u1.zIndexedBy;
4040     Index *pIdx;
4041     for(pIdx=pTab->pIndex;
4042         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4043         pIdx=pIdx->pNext
4044     );
4045     if( !pIdx ){
4046       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4047       pParse->checkSchema = 1;
4048       return SQLITE_ERROR;
4049     }
4050     pFrom->pIBIndex = pIdx;
4051   }
4052   return SQLITE_OK;
4053 }
4054 /*
4055 ** Detect compound SELECT statements that use an ORDER BY clause with
4056 ** an alternative collating sequence.
4057 **
4058 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4059 **
4060 ** These are rewritten as a subquery:
4061 **
4062 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4063 **     ORDER BY ... COLLATE ...
4064 **
4065 ** This transformation is necessary because the multiSelectOrderBy() routine
4066 ** above that generates the code for a compound SELECT with an ORDER BY clause
4067 ** uses a merge algorithm that requires the same collating sequence on the
4068 ** result columns as on the ORDER BY clause.  See ticket
4069 ** http://www.sqlite.org/src/info/6709574d2a
4070 **
4071 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4072 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4073 ** there are COLLATE terms in the ORDER BY.
4074 */
4075 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4076   int i;
4077   Select *pNew;
4078   Select *pX;
4079   sqlite3 *db;
4080   struct ExprList_item *a;
4081   SrcList *pNewSrc;
4082   Parse *pParse;
4083   Token dummy;
4084 
4085   if( p->pPrior==0 ) return WRC_Continue;
4086   if( p->pOrderBy==0 ) return WRC_Continue;
4087   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4088   if( pX==0 ) return WRC_Continue;
4089   a = p->pOrderBy->a;
4090   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4091     if( a[i].pExpr->flags & EP_Collate ) break;
4092   }
4093   if( i<0 ) return WRC_Continue;
4094 
4095   /* If we reach this point, that means the transformation is required. */
4096 
4097   pParse = pWalker->pParse;
4098   db = pParse->db;
4099   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4100   if( pNew==0 ) return WRC_Abort;
4101   memset(&dummy, 0, sizeof(dummy));
4102   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4103   if( pNewSrc==0 ) return WRC_Abort;
4104   *pNew = *p;
4105   p->pSrc = pNewSrc;
4106   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4107   p->op = TK_SELECT;
4108   p->pWhere = 0;
4109   pNew->pGroupBy = 0;
4110   pNew->pHaving = 0;
4111   pNew->pOrderBy = 0;
4112   p->pPrior = 0;
4113   p->pNext = 0;
4114   p->pWith = 0;
4115   p->selFlags &= ~SF_Compound;
4116   assert( (p->selFlags & SF_Converted)==0 );
4117   p->selFlags |= SF_Converted;
4118   assert( pNew->pPrior!=0 );
4119   pNew->pPrior->pNext = pNew;
4120   pNew->pLimit = 0;
4121   pNew->pOffset = 0;
4122   return WRC_Continue;
4123 }
4124 
4125 /*
4126 ** Check to see if the FROM clause term pFrom has table-valued function
4127 ** arguments.  If it does, leave an error message in pParse and return
4128 ** non-zero, since pFrom is not allowed to be a table-valued function.
4129 */
4130 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4131   if( pFrom->fg.isTabFunc ){
4132     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4133     return 1;
4134   }
4135   return 0;
4136 }
4137 
4138 #ifndef SQLITE_OMIT_CTE
4139 /*
4140 ** Argument pWith (which may be NULL) points to a linked list of nested
4141 ** WITH contexts, from inner to outermost. If the table identified by
4142 ** FROM clause element pItem is really a common-table-expression (CTE)
4143 ** then return a pointer to the CTE definition for that table. Otherwise
4144 ** return NULL.
4145 **
4146 ** If a non-NULL value is returned, set *ppContext to point to the With
4147 ** object that the returned CTE belongs to.
4148 */
4149 static struct Cte *searchWith(
4150   With *pWith,                    /* Current innermost WITH clause */
4151   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4152   With **ppContext                /* OUT: WITH clause return value belongs to */
4153 ){
4154   const char *zName;
4155   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4156     With *p;
4157     for(p=pWith; p; p=p->pOuter){
4158       int i;
4159       for(i=0; i<p->nCte; i++){
4160         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4161           *ppContext = p;
4162           return &p->a[i];
4163         }
4164       }
4165     }
4166   }
4167   return 0;
4168 }
4169 
4170 /* The code generator maintains a stack of active WITH clauses
4171 ** with the inner-most WITH clause being at the top of the stack.
4172 **
4173 ** This routine pushes the WITH clause passed as the second argument
4174 ** onto the top of the stack. If argument bFree is true, then this
4175 ** WITH clause will never be popped from the stack. In this case it
4176 ** should be freed along with the Parse object. In other cases, when
4177 ** bFree==0, the With object will be freed along with the SELECT
4178 ** statement with which it is associated.
4179 */
4180 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4181   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4182   if( pWith ){
4183     assert( pParse->pWith!=pWith );
4184     pWith->pOuter = pParse->pWith;
4185     pParse->pWith = pWith;
4186     if( bFree ) pParse->pWithToFree = pWith;
4187   }
4188 }
4189 
4190 /*
4191 ** This function checks if argument pFrom refers to a CTE declared by
4192 ** a WITH clause on the stack currently maintained by the parser. And,
4193 ** if currently processing a CTE expression, if it is a recursive
4194 ** reference to the current CTE.
4195 **
4196 ** If pFrom falls into either of the two categories above, pFrom->pTab
4197 ** and other fields are populated accordingly. The caller should check
4198 ** (pFrom->pTab!=0) to determine whether or not a successful match
4199 ** was found.
4200 **
4201 ** Whether or not a match is found, SQLITE_OK is returned if no error
4202 ** occurs. If an error does occur, an error message is stored in the
4203 ** parser and some error code other than SQLITE_OK returned.
4204 */
4205 static int withExpand(
4206   Walker *pWalker,
4207   struct SrcList_item *pFrom
4208 ){
4209   Parse *pParse = pWalker->pParse;
4210   sqlite3 *db = pParse->db;
4211   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4212   With *pWith;                    /* WITH clause that pCte belongs to */
4213 
4214   assert( pFrom->pTab==0 );
4215 
4216   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4217   if( pCte ){
4218     Table *pTab;
4219     ExprList *pEList;
4220     Select *pSel;
4221     Select *pLeft;                /* Left-most SELECT statement */
4222     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4223     With *pSavedWith;             /* Initial value of pParse->pWith */
4224 
4225     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4226     ** recursive reference to CTE pCte. Leave an error in pParse and return
4227     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4228     ** In this case, proceed.  */
4229     if( pCte->zCteErr ){
4230       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4231       return SQLITE_ERROR;
4232     }
4233     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4234 
4235     assert( pFrom->pTab==0 );
4236     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4237     if( pTab==0 ) return WRC_Abort;
4238     pTab->nTabRef = 1;
4239     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4240     pTab->iPKey = -1;
4241     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4242     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4243     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4244     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4245     assert( pFrom->pSelect );
4246 
4247     /* Check if this is a recursive CTE. */
4248     pSel = pFrom->pSelect;
4249     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4250     if( bMayRecursive ){
4251       int i;
4252       SrcList *pSrc = pFrom->pSelect->pSrc;
4253       for(i=0; i<pSrc->nSrc; i++){
4254         struct SrcList_item *pItem = &pSrc->a[i];
4255         if( pItem->zDatabase==0
4256          && pItem->zName!=0
4257          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4258           ){
4259           pItem->pTab = pTab;
4260           pItem->fg.isRecursive = 1;
4261           pTab->nTabRef++;
4262           pSel->selFlags |= SF_Recursive;
4263         }
4264       }
4265     }
4266 
4267     /* Only one recursive reference is permitted. */
4268     if( pTab->nTabRef>2 ){
4269       sqlite3ErrorMsg(
4270           pParse, "multiple references to recursive table: %s", pCte->zName
4271       );
4272       return SQLITE_ERROR;
4273     }
4274     assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4275 
4276     pCte->zCteErr = "circular reference: %s";
4277     pSavedWith = pParse->pWith;
4278     pParse->pWith = pWith;
4279     if( bMayRecursive ){
4280       Select *pPrior = pSel->pPrior;
4281       assert( pPrior->pWith==0 );
4282       pPrior->pWith = pSel->pWith;
4283       sqlite3WalkSelect(pWalker, pPrior);
4284       pPrior->pWith = 0;
4285     }else{
4286       sqlite3WalkSelect(pWalker, pSel);
4287     }
4288     pParse->pWith = pWith;
4289 
4290     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4291     pEList = pLeft->pEList;
4292     if( pCte->pCols ){
4293       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4294         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4295             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4296         );
4297         pParse->pWith = pSavedWith;
4298         return SQLITE_ERROR;
4299       }
4300       pEList = pCte->pCols;
4301     }
4302 
4303     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4304     if( bMayRecursive ){
4305       if( pSel->selFlags & SF_Recursive ){
4306         pCte->zCteErr = "multiple recursive references: %s";
4307       }else{
4308         pCte->zCteErr = "recursive reference in a subquery: %s";
4309       }
4310       sqlite3WalkSelect(pWalker, pSel);
4311     }
4312     pCte->zCteErr = 0;
4313     pParse->pWith = pSavedWith;
4314   }
4315 
4316   return SQLITE_OK;
4317 }
4318 #endif
4319 
4320 #ifndef SQLITE_OMIT_CTE
4321 /*
4322 ** If the SELECT passed as the second argument has an associated WITH
4323 ** clause, pop it from the stack stored as part of the Parse object.
4324 **
4325 ** This function is used as the xSelectCallback2() callback by
4326 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4327 ** names and other FROM clause elements.
4328 */
4329 static void selectPopWith(Walker *pWalker, Select *p){
4330   Parse *pParse = pWalker->pParse;
4331   if( pParse->pWith && p->pPrior==0 ){
4332     With *pWith = findRightmost(p)->pWith;
4333     if( pWith!=0 ){
4334       assert( pParse->pWith==pWith );
4335       pParse->pWith = pWith->pOuter;
4336     }
4337   }
4338 }
4339 #else
4340 #define selectPopWith 0
4341 #endif
4342 
4343 /*
4344 ** This routine is a Walker callback for "expanding" a SELECT statement.
4345 ** "Expanding" means to do the following:
4346 **
4347 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4348 **         element of the FROM clause.
4349 **
4350 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4351 **         defines FROM clause.  When views appear in the FROM clause,
4352 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4353 **         that implements the view.  A copy is made of the view's SELECT
4354 **         statement so that we can freely modify or delete that statement
4355 **         without worrying about messing up the persistent representation
4356 **         of the view.
4357 **
4358 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4359 **         on joins and the ON and USING clause of joins.
4360 **
4361 **    (4)  Scan the list of columns in the result set (pEList) looking
4362 **         for instances of the "*" operator or the TABLE.* operator.
4363 **         If found, expand each "*" to be every column in every table
4364 **         and TABLE.* to be every column in TABLE.
4365 **
4366 */
4367 static int selectExpander(Walker *pWalker, Select *p){
4368   Parse *pParse = pWalker->pParse;
4369   int i, j, k;
4370   SrcList *pTabList;
4371   ExprList *pEList;
4372   struct SrcList_item *pFrom;
4373   sqlite3 *db = pParse->db;
4374   Expr *pE, *pRight, *pExpr;
4375   u16 selFlags = p->selFlags;
4376 
4377   p->selFlags |= SF_Expanded;
4378   if( db->mallocFailed  ){
4379     return WRC_Abort;
4380   }
4381   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4382     return WRC_Prune;
4383   }
4384   pTabList = p->pSrc;
4385   pEList = p->pEList;
4386   if( p->pWith ){
4387     sqlite3WithPush(pParse, p->pWith, 0);
4388   }
4389 
4390   /* Make sure cursor numbers have been assigned to all entries in
4391   ** the FROM clause of the SELECT statement.
4392   */
4393   sqlite3SrcListAssignCursors(pParse, pTabList);
4394 
4395   /* Look up every table named in the FROM clause of the select.  If
4396   ** an entry of the FROM clause is a subquery instead of a table or view,
4397   ** then create a transient table structure to describe the subquery.
4398   */
4399   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4400     Table *pTab;
4401     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4402     if( pFrom->fg.isRecursive ) continue;
4403     assert( pFrom->pTab==0 );
4404 #ifndef SQLITE_OMIT_CTE
4405     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4406     if( pFrom->pTab ) {} else
4407 #endif
4408     if( pFrom->zName==0 ){
4409 #ifndef SQLITE_OMIT_SUBQUERY
4410       Select *pSel = pFrom->pSelect;
4411       /* A sub-query in the FROM clause of a SELECT */
4412       assert( pSel!=0 );
4413       assert( pFrom->pTab==0 );
4414       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4415       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4416       if( pTab==0 ) return WRC_Abort;
4417       pTab->nTabRef = 1;
4418       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4419       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4420       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4421       pTab->iPKey = -1;
4422       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4423       pTab->tabFlags |= TF_Ephemeral;
4424 #endif
4425     }else{
4426       /* An ordinary table or view name in the FROM clause */
4427       assert( pFrom->pTab==0 );
4428       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4429       if( pTab==0 ) return WRC_Abort;
4430       if( pTab->nTabRef>=0xffff ){
4431         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4432            pTab->zName);
4433         pFrom->pTab = 0;
4434         return WRC_Abort;
4435       }
4436       pTab->nTabRef++;
4437       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4438         return WRC_Abort;
4439       }
4440 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4441       if( IsVirtual(pTab) || pTab->pSelect ){
4442         i16 nCol;
4443         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4444         assert( pFrom->pSelect==0 );
4445         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4446         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4447         nCol = pTab->nCol;
4448         pTab->nCol = -1;
4449         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4450         pTab->nCol = nCol;
4451       }
4452 #endif
4453     }
4454 
4455     /* Locate the index named by the INDEXED BY clause, if any. */
4456     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4457       return WRC_Abort;
4458     }
4459   }
4460 
4461   /* Process NATURAL keywords, and ON and USING clauses of joins.
4462   */
4463   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4464     return WRC_Abort;
4465   }
4466 
4467   /* For every "*" that occurs in the column list, insert the names of
4468   ** all columns in all tables.  And for every TABLE.* insert the names
4469   ** of all columns in TABLE.  The parser inserted a special expression
4470   ** with the TK_ASTERISK operator for each "*" that it found in the column
4471   ** list.  The following code just has to locate the TK_ASTERISK
4472   ** expressions and expand each one to the list of all columns in
4473   ** all tables.
4474   **
4475   ** The first loop just checks to see if there are any "*" operators
4476   ** that need expanding.
4477   */
4478   for(k=0; k<pEList->nExpr; k++){
4479     pE = pEList->a[k].pExpr;
4480     if( pE->op==TK_ASTERISK ) break;
4481     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4482     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4483     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4484   }
4485   if( k<pEList->nExpr ){
4486     /*
4487     ** If we get here it means the result set contains one or more "*"
4488     ** operators that need to be expanded.  Loop through each expression
4489     ** in the result set and expand them one by one.
4490     */
4491     struct ExprList_item *a = pEList->a;
4492     ExprList *pNew = 0;
4493     int flags = pParse->db->flags;
4494     int longNames = (flags & SQLITE_FullColNames)!=0
4495                       && (flags & SQLITE_ShortColNames)==0;
4496 
4497     for(k=0; k<pEList->nExpr; k++){
4498       pE = a[k].pExpr;
4499       pRight = pE->pRight;
4500       assert( pE->op!=TK_DOT || pRight!=0 );
4501       if( pE->op!=TK_ASTERISK
4502        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4503       ){
4504         /* This particular expression does not need to be expanded.
4505         */
4506         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4507         if( pNew ){
4508           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4509           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4510           a[k].zName = 0;
4511           a[k].zSpan = 0;
4512         }
4513         a[k].pExpr = 0;
4514       }else{
4515         /* This expression is a "*" or a "TABLE.*" and needs to be
4516         ** expanded. */
4517         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4518         char *zTName = 0;       /* text of name of TABLE */
4519         if( pE->op==TK_DOT ){
4520           assert( pE->pLeft!=0 );
4521           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4522           zTName = pE->pLeft->u.zToken;
4523         }
4524         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4525           Table *pTab = pFrom->pTab;
4526           Select *pSub = pFrom->pSelect;
4527           char *zTabName = pFrom->zAlias;
4528           const char *zSchemaName = 0;
4529           int iDb;
4530           if( zTabName==0 ){
4531             zTabName = pTab->zName;
4532           }
4533           if( db->mallocFailed ) break;
4534           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4535             pSub = 0;
4536             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4537               continue;
4538             }
4539             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4540             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4541           }
4542           for(j=0; j<pTab->nCol; j++){
4543             char *zName = pTab->aCol[j].zName;
4544             char *zColname;  /* The computed column name */
4545             char *zToFree;   /* Malloced string that needs to be freed */
4546             Token sColname;  /* Computed column name as a token */
4547 
4548             assert( zName );
4549             if( zTName && pSub
4550              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4551             ){
4552               continue;
4553             }
4554 
4555             /* If a column is marked as 'hidden', omit it from the expanded
4556             ** result-set list unless the SELECT has the SF_IncludeHidden
4557             ** bit set.
4558             */
4559             if( (p->selFlags & SF_IncludeHidden)==0
4560              && IsHiddenColumn(&pTab->aCol[j])
4561             ){
4562               continue;
4563             }
4564             tableSeen = 1;
4565 
4566             if( i>0 && zTName==0 ){
4567               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4568                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4569               ){
4570                 /* In a NATURAL join, omit the join columns from the
4571                 ** table to the right of the join */
4572                 continue;
4573               }
4574               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4575                 /* In a join with a USING clause, omit columns in the
4576                 ** using clause from the table on the right. */
4577                 continue;
4578               }
4579             }
4580             pRight = sqlite3Expr(db, TK_ID, zName);
4581             zColname = zName;
4582             zToFree = 0;
4583             if( longNames || pTabList->nSrc>1 ){
4584               Expr *pLeft;
4585               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4586               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4587               if( zSchemaName ){
4588                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4589                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4590               }
4591               if( longNames ){
4592                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4593                 zToFree = zColname;
4594               }
4595             }else{
4596               pExpr = pRight;
4597             }
4598             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4599             sqlite3TokenInit(&sColname, zColname);
4600             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4601             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4602               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4603               if( pSub ){
4604                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4605                 testcase( pX->zSpan==0 );
4606               }else{
4607                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4608                                            zSchemaName, zTabName, zColname);
4609                 testcase( pX->zSpan==0 );
4610               }
4611               pX->bSpanIsTab = 1;
4612             }
4613             sqlite3DbFree(db, zToFree);
4614           }
4615         }
4616         if( !tableSeen ){
4617           if( zTName ){
4618             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4619           }else{
4620             sqlite3ErrorMsg(pParse, "no tables specified");
4621           }
4622         }
4623       }
4624     }
4625     sqlite3ExprListDelete(db, pEList);
4626     p->pEList = pNew;
4627   }
4628 #if SQLITE_MAX_COLUMN
4629   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4630     sqlite3ErrorMsg(pParse, "too many columns in result set");
4631     return WRC_Abort;
4632   }
4633 #endif
4634   return WRC_Continue;
4635 }
4636 
4637 /*
4638 ** No-op routine for the parse-tree walker.
4639 **
4640 ** When this routine is the Walker.xExprCallback then expression trees
4641 ** are walked without any actions being taken at each node.  Presumably,
4642 ** when this routine is used for Walker.xExprCallback then
4643 ** Walker.xSelectCallback is set to do something useful for every
4644 ** subquery in the parser tree.
4645 */
4646 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4647   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4648   return WRC_Continue;
4649 }
4650 
4651 /*
4652 ** No-op routine for the parse-tree walker for SELECT statements.
4653 ** subquery in the parser tree.
4654 */
4655 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4656   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4657   return WRC_Continue;
4658 }
4659 
4660 #if SQLITE_DEBUG
4661 /*
4662 ** Always assert.  This xSelectCallback2 implementation proves that the
4663 ** xSelectCallback2 is never invoked.
4664 */
4665 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4666   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4667   assert( 0 );
4668 }
4669 #endif
4670 /*
4671 ** This routine "expands" a SELECT statement and all of its subqueries.
4672 ** For additional information on what it means to "expand" a SELECT
4673 ** statement, see the comment on the selectExpand worker callback above.
4674 **
4675 ** Expanding a SELECT statement is the first step in processing a
4676 ** SELECT statement.  The SELECT statement must be expanded before
4677 ** name resolution is performed.
4678 **
4679 ** If anything goes wrong, an error message is written into pParse.
4680 ** The calling function can detect the problem by looking at pParse->nErr
4681 ** and/or pParse->db->mallocFailed.
4682 */
4683 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4684   Walker w;
4685   w.xExprCallback = sqlite3ExprWalkNoop;
4686   w.pParse = pParse;
4687   if( pParse->hasCompound ){
4688     w.xSelectCallback = convertCompoundSelectToSubquery;
4689     w.xSelectCallback2 = 0;
4690     sqlite3WalkSelect(&w, pSelect);
4691   }
4692   w.xSelectCallback = selectExpander;
4693   w.xSelectCallback2 = selectPopWith;
4694   sqlite3WalkSelect(&w, pSelect);
4695 }
4696 
4697 
4698 #ifndef SQLITE_OMIT_SUBQUERY
4699 /*
4700 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4701 ** interface.
4702 **
4703 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4704 ** information to the Table structure that represents the result set
4705 ** of that subquery.
4706 **
4707 ** The Table structure that represents the result set was constructed
4708 ** by selectExpander() but the type and collation information was omitted
4709 ** at that point because identifiers had not yet been resolved.  This
4710 ** routine is called after identifier resolution.
4711 */
4712 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4713   Parse *pParse;
4714   int i;
4715   SrcList *pTabList;
4716   struct SrcList_item *pFrom;
4717 
4718   assert( p->selFlags & SF_Resolved );
4719   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4720   p->selFlags |= SF_HasTypeInfo;
4721   pParse = pWalker->pParse;
4722   pTabList = p->pSrc;
4723   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4724     Table *pTab = pFrom->pTab;
4725     assert( pTab!=0 );
4726     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4727       /* A sub-query in the FROM clause of a SELECT */
4728       Select *pSel = pFrom->pSelect;
4729       if( pSel ){
4730         while( pSel->pPrior ) pSel = pSel->pPrior;
4731         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4732       }
4733     }
4734   }
4735 }
4736 #endif
4737 
4738 
4739 /*
4740 ** This routine adds datatype and collating sequence information to
4741 ** the Table structures of all FROM-clause subqueries in a
4742 ** SELECT statement.
4743 **
4744 ** Use this routine after name resolution.
4745 */
4746 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4747 #ifndef SQLITE_OMIT_SUBQUERY
4748   Walker w;
4749   w.xSelectCallback = sqlite3SelectWalkNoop;
4750   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4751   w.xExprCallback = sqlite3ExprWalkNoop;
4752   w.pParse = pParse;
4753   sqlite3WalkSelect(&w, pSelect);
4754 #endif
4755 }
4756 
4757 
4758 /*
4759 ** This routine sets up a SELECT statement for processing.  The
4760 ** following is accomplished:
4761 **
4762 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4763 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4764 **     *  ON and USING clauses are shifted into WHERE statements
4765 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4766 **     *  Identifiers in expression are matched to tables.
4767 **
4768 ** This routine acts recursively on all subqueries within the SELECT.
4769 */
4770 void sqlite3SelectPrep(
4771   Parse *pParse,         /* The parser context */
4772   Select *p,             /* The SELECT statement being coded. */
4773   NameContext *pOuterNC  /* Name context for container */
4774 ){
4775   sqlite3 *db;
4776   if( NEVER(p==0) ) return;
4777   db = pParse->db;
4778   if( db->mallocFailed ) return;
4779   if( p->selFlags & SF_HasTypeInfo ) return;
4780   sqlite3SelectExpand(pParse, p);
4781   if( pParse->nErr || db->mallocFailed ) return;
4782   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4783   if( pParse->nErr || db->mallocFailed ) return;
4784   sqlite3SelectAddTypeInfo(pParse, p);
4785 }
4786 
4787 /*
4788 ** Reset the aggregate accumulator.
4789 **
4790 ** The aggregate accumulator is a set of memory cells that hold
4791 ** intermediate results while calculating an aggregate.  This
4792 ** routine generates code that stores NULLs in all of those memory
4793 ** cells.
4794 */
4795 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4796   Vdbe *v = pParse->pVdbe;
4797   int i;
4798   struct AggInfo_func *pFunc;
4799   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4800   if( nReg==0 ) return;
4801 #ifdef SQLITE_DEBUG
4802   /* Verify that all AggInfo registers are within the range specified by
4803   ** AggInfo.mnReg..AggInfo.mxReg */
4804   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4805   for(i=0; i<pAggInfo->nColumn; i++){
4806     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4807          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4808   }
4809   for(i=0; i<pAggInfo->nFunc; i++){
4810     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4811          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4812   }
4813 #endif
4814   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4815   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4816     if( pFunc->iDistinct>=0 ){
4817       Expr *pE = pFunc->pExpr;
4818       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4819       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4820         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4821            "argument");
4822         pFunc->iDistinct = -1;
4823       }else{
4824         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4825         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4826                           (char*)pKeyInfo, P4_KEYINFO);
4827       }
4828     }
4829   }
4830 }
4831 
4832 /*
4833 ** Invoke the OP_AggFinalize opcode for every aggregate function
4834 ** in the AggInfo structure.
4835 */
4836 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4837   Vdbe *v = pParse->pVdbe;
4838   int i;
4839   struct AggInfo_func *pF;
4840   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4841     ExprList *pList = pF->pExpr->x.pList;
4842     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4843     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4844     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4845   }
4846 }
4847 
4848 /*
4849 ** Update the accumulator memory cells for an aggregate based on
4850 ** the current cursor position.
4851 */
4852 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4853   Vdbe *v = pParse->pVdbe;
4854   int i;
4855   int regHit = 0;
4856   int addrHitTest = 0;
4857   struct AggInfo_func *pF;
4858   struct AggInfo_col *pC;
4859 
4860   pAggInfo->directMode = 1;
4861   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4862     int nArg;
4863     int addrNext = 0;
4864     int regAgg;
4865     ExprList *pList = pF->pExpr->x.pList;
4866     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4867     if( pList ){
4868       nArg = pList->nExpr;
4869       regAgg = sqlite3GetTempRange(pParse, nArg);
4870       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4871     }else{
4872       nArg = 0;
4873       regAgg = 0;
4874     }
4875     if( pF->iDistinct>=0 ){
4876       addrNext = sqlite3VdbeMakeLabel(v);
4877       testcase( nArg==0 );  /* Error condition */
4878       testcase( nArg>1 );   /* Also an error */
4879       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4880     }
4881     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4882       CollSeq *pColl = 0;
4883       struct ExprList_item *pItem;
4884       int j;
4885       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4886       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4887         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4888       }
4889       if( !pColl ){
4890         pColl = pParse->db->pDfltColl;
4891       }
4892       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4893       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4894     }
4895     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4896     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4897     sqlite3VdbeChangeP5(v, (u8)nArg);
4898     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4899     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4900     if( addrNext ){
4901       sqlite3VdbeResolveLabel(v, addrNext);
4902       sqlite3ExprCacheClear(pParse);
4903     }
4904   }
4905 
4906   /* Before populating the accumulator registers, clear the column cache.
4907   ** Otherwise, if any of the required column values are already present
4908   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4909   ** to pC->iMem. But by the time the value is used, the original register
4910   ** may have been used, invalidating the underlying buffer holding the
4911   ** text or blob value. See ticket [883034dcb5].
4912   **
4913   ** Another solution would be to change the OP_SCopy used to copy cached
4914   ** values to an OP_Copy.
4915   */
4916   if( regHit ){
4917     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4918   }
4919   sqlite3ExprCacheClear(pParse);
4920   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4921     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4922   }
4923   pAggInfo->directMode = 0;
4924   sqlite3ExprCacheClear(pParse);
4925   if( addrHitTest ){
4926     sqlite3VdbeJumpHere(v, addrHitTest);
4927   }
4928 }
4929 
4930 /*
4931 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4932 ** count(*) query ("SELECT count(*) FROM pTab").
4933 */
4934 #ifndef SQLITE_OMIT_EXPLAIN
4935 static void explainSimpleCount(
4936   Parse *pParse,                  /* Parse context */
4937   Table *pTab,                    /* Table being queried */
4938   Index *pIdx                     /* Index used to optimize scan, or NULL */
4939 ){
4940   if( pParse->explain==2 ){
4941     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4942     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4943         pTab->zName,
4944         bCover ? " USING COVERING INDEX " : "",
4945         bCover ? pIdx->zName : ""
4946     );
4947     sqlite3VdbeAddOp4(
4948         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4949     );
4950   }
4951 }
4952 #else
4953 # define explainSimpleCount(a,b,c)
4954 #endif
4955 
4956 /*
4957 ** Context object for havingToWhereExprCb().
4958 */
4959 struct HavingToWhereCtx {
4960   Expr **ppWhere;
4961   ExprList *pGroupBy;
4962 };
4963 
4964 /*
4965 ** sqlite3WalkExpr() callback used by havingToWhere().
4966 **
4967 ** If the node passed to the callback is a TK_AND node, return
4968 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4969 **
4970 ** Otherwise, return WRC_Prune. In this case, also check if the
4971 ** sub-expression matches the criteria for being moved to the WHERE
4972 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4973 ** within the HAVING expression with a constant "1".
4974 */
4975 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4976   if( pExpr->op!=TK_AND ){
4977     struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4978     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4979       sqlite3 *db = pWalker->pParse->db;
4980       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4981       if( pNew ){
4982         Expr *pWhere = *(p->ppWhere);
4983         SWAP(Expr, *pNew, *pExpr);
4984         pNew = sqlite3ExprAnd(db, pWhere, pNew);
4985         *(p->ppWhere) = pNew;
4986       }
4987     }
4988     return WRC_Prune;
4989   }
4990   return WRC_Continue;
4991 }
4992 
4993 /*
4994 ** Transfer eligible terms from the HAVING clause of a query, which is
4995 ** processed after grouping, to the WHERE clause, which is processed before
4996 ** grouping. For example, the query:
4997 **
4998 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4999 **
5000 ** can be rewritten as:
5001 **
5002 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5003 **
5004 ** A term of the HAVING expression is eligible for transfer if it consists
5005 ** entirely of constants and expressions that are also GROUP BY terms that
5006 ** use the "BINARY" collation sequence.
5007 */
5008 static void havingToWhere(
5009   Parse *pParse,
5010   ExprList *pGroupBy,
5011   Expr *pHaving,
5012   Expr **ppWhere
5013 ){
5014   struct HavingToWhereCtx sCtx;
5015   Walker sWalker;
5016 
5017   sCtx.ppWhere = ppWhere;
5018   sCtx.pGroupBy = pGroupBy;
5019 
5020   memset(&sWalker, 0, sizeof(sWalker));
5021   sWalker.pParse = pParse;
5022   sWalker.xExprCallback = havingToWhereExprCb;
5023   sWalker.u.pHavingCtx = &sCtx;
5024   sqlite3WalkExpr(&sWalker, pHaving);
5025 }
5026 
5027 /*
5028 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5029 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5030 ** then return 0.
5031 */
5032 static struct SrcList_item *isSelfJoinView(
5033   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5034   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5035 ){
5036   struct SrcList_item *pItem;
5037   for(pItem = pTabList->a; pItem<pThis; pItem++){
5038     if( pItem->pSelect==0 ) continue;
5039     if( pItem->fg.viaCoroutine ) continue;
5040     if( pItem->zName==0 ) continue;
5041     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5042     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5043     if( sqlite3ExprCompare(0,
5044           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5045     ){
5046       /* The view was modified by some other optimization such as
5047       ** pushDownWhereTerms() */
5048       continue;
5049     }
5050     return pItem;
5051   }
5052   return 0;
5053 }
5054 
5055 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5056 /*
5057 ** Attempt to transform a query of the form
5058 **
5059 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5060 **
5061 ** Into this:
5062 **
5063 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5064 **
5065 ** The transformation only works if all of the following are true:
5066 **
5067 **   *  The subquery is a UNION ALL of two or more terms
5068 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5069 **   *  The outer query is a simple count(*)
5070 **
5071 ** Return TRUE if the optimization is undertaken.
5072 */
5073 static int countOfViewOptimization(Parse *pParse, Select *p){
5074   Select *pSub, *pPrior;
5075   Expr *pExpr;
5076   Expr *pCount;
5077   sqlite3 *db;
5078   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate query */
5079   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5080   pExpr = p->pEList->a[0].pExpr;
5081   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5082   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Must be count() */
5083   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5084   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in the FROM clause */
5085   pSub = p->pSrc->a[0].pSelect;
5086   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5087   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound subquery */
5088   do{
5089     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5090     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5091     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5092     pSub = pSub->pPrior;                              /* Repeat over compound terms */
5093   }while( pSub );
5094 
5095   /* If we reach this point, that means it is OK to perform the transformation */
5096 
5097   db = pParse->db;
5098   pCount = pExpr;
5099   pExpr = 0;
5100   pSub = p->pSrc->a[0].pSelect;
5101   p->pSrc->a[0].pSelect = 0;
5102   sqlite3SrcListDelete(db, p->pSrc);
5103   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5104   while( pSub ){
5105     Expr *pTerm;
5106     pPrior = pSub->pPrior;
5107     pSub->pPrior = 0;
5108     pSub->pNext = 0;
5109     pSub->selFlags |= SF_Aggregate;
5110     pSub->selFlags &= ~SF_Compound;
5111     pSub->nSelectRow = 0;
5112     sqlite3ExprListDelete(db, pSub->pEList);
5113     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5114     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5115     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5116     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5117     if( pExpr==0 ){
5118       pExpr = pTerm;
5119     }else{
5120       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5121     }
5122     pSub = pPrior;
5123   }
5124   p->pEList->a[0].pExpr = pExpr;
5125   p->selFlags &= ~SF_Aggregate;
5126 
5127 #if SELECTTRACE_ENABLED
5128   if( sqlite3SelectTrace & 0x400 ){
5129     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5130     sqlite3TreeViewSelect(0, p, 0);
5131   }
5132 #endif
5133   return 1;
5134 }
5135 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5136 
5137 /*
5138 ** Generate code for the SELECT statement given in the p argument.
5139 **
5140 ** The results are returned according to the SelectDest structure.
5141 ** See comments in sqliteInt.h for further information.
5142 **
5143 ** This routine returns the number of errors.  If any errors are
5144 ** encountered, then an appropriate error message is left in
5145 ** pParse->zErrMsg.
5146 **
5147 ** This routine does NOT free the Select structure passed in.  The
5148 ** calling function needs to do that.
5149 */
5150 int sqlite3Select(
5151   Parse *pParse,         /* The parser context */
5152   Select *p,             /* The SELECT statement being coded. */
5153   SelectDest *pDest      /* What to do with the query results */
5154 ){
5155   int i, j;              /* Loop counters */
5156   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5157   Vdbe *v;               /* The virtual machine under construction */
5158   int isAgg;             /* True for select lists like "count(*)" */
5159   ExprList *pEList = 0;  /* List of columns to extract. */
5160   SrcList *pTabList;     /* List of tables to select from */
5161   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5162   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5163   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5164   int rc = 1;            /* Value to return from this function */
5165   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5166   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5167   AggInfo sAggInfo;      /* Information used by aggregate queries */
5168   int iEnd;              /* Address of the end of the query */
5169   sqlite3 *db;           /* The database connection */
5170 
5171 #ifndef SQLITE_OMIT_EXPLAIN
5172   int iRestoreSelectId = pParse->iSelectId;
5173   pParse->iSelectId = pParse->iNextSelectId++;
5174 #endif
5175 
5176   db = pParse->db;
5177   if( p==0 || db->mallocFailed || pParse->nErr ){
5178     return 1;
5179   }
5180   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5181   memset(&sAggInfo, 0, sizeof(sAggInfo));
5182 #if SELECTTRACE_ENABLED
5183   pParse->nSelectIndent++;
5184   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5185   if( sqlite3SelectTrace & 0x100 ){
5186     sqlite3TreeViewSelect(0, p, 0);
5187   }
5188 #endif
5189 
5190   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5191   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5192   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5193   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5194   if( IgnorableOrderby(pDest) ){
5195     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5196            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5197            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5198            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5199     /* If ORDER BY makes no difference in the output then neither does
5200     ** DISTINCT so it can be removed too. */
5201     sqlite3ExprListDelete(db, p->pOrderBy);
5202     p->pOrderBy = 0;
5203     p->selFlags &= ~SF_Distinct;
5204   }
5205   sqlite3SelectPrep(pParse, p, 0);
5206   memset(&sSort, 0, sizeof(sSort));
5207   sSort.pOrderBy = p->pOrderBy;
5208   pTabList = p->pSrc;
5209   if( pParse->nErr || db->mallocFailed ){
5210     goto select_end;
5211   }
5212   assert( p->pEList!=0 );
5213   isAgg = (p->selFlags & SF_Aggregate)!=0;
5214 #if SELECTTRACE_ENABLED
5215   if( sqlite3SelectTrace & 0x100 ){
5216     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5217     sqlite3TreeViewSelect(0, p, 0);
5218   }
5219 #endif
5220 
5221   /* Try to flatten subqueries in the FROM clause up into the main query
5222   */
5223 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5224   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5225     struct SrcList_item *pItem = &pTabList->a[i];
5226     Select *pSub = pItem->pSelect;
5227     int isAggSub;
5228     Table *pTab = pItem->pTab;
5229     if( pSub==0 ) continue;
5230 
5231     /* Catch mismatch in the declared columns of a view and the number of
5232     ** columns in the SELECT on the RHS */
5233     if( pTab->nCol!=pSub->pEList->nExpr ){
5234       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5235                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5236       goto select_end;
5237     }
5238 
5239     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
5240     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
5241       /* This subquery can be absorbed into its parent. */
5242       if( isAggSub ){
5243         isAgg = 1;
5244         p->selFlags |= SF_Aggregate;
5245       }
5246       i = -1;
5247     }
5248     pTabList = p->pSrc;
5249     if( db->mallocFailed ) goto select_end;
5250     if( !IgnorableOrderby(pDest) ){
5251       sSort.pOrderBy = p->pOrderBy;
5252     }
5253   }
5254 #endif
5255 
5256   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5257   ** does not already exist */
5258   v = sqlite3GetVdbe(pParse);
5259   if( v==0 ) goto select_end;
5260 
5261 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5262   /* Handle compound SELECT statements using the separate multiSelect()
5263   ** procedure.
5264   */
5265   if( p->pPrior ){
5266     rc = multiSelect(pParse, p, pDest);
5267     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5268 #if SELECTTRACE_ENABLED
5269     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5270     pParse->nSelectIndent--;
5271 #endif
5272     return rc;
5273   }
5274 #endif
5275 
5276   /* For each term in the FROM clause, do two things:
5277   ** (1) Authorized unreferenced tables
5278   ** (2) Generate code for all sub-queries
5279   */
5280   for(i=0; i<pTabList->nSrc; i++){
5281     struct SrcList_item *pItem = &pTabList->a[i];
5282     SelectDest dest;
5283     Select *pSub;
5284 
5285     /* Issue SQLITE_READ authorizations with a fake column name for any tables that
5286     ** are referenced but from which no values are extracted. Examples of where these
5287     ** kinds of null SQLITE_READ authorizations would occur:
5288     **
5289     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5290     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5291     **
5292     ** The fake column name is an empty string.  It is possible for a table to
5293     ** have a column named by the empty string, in which case there is no way to
5294     ** distinguish between an unreferenced table and an actual reference to the
5295     ** "" column.  The original design was for the fake column name to be a NULL,
5296     ** which would be unambiguous.  But legacy authorization callbacks might
5297     ** assume the column name is non-NULL and segfault.  The use of an empty string
5298     ** for the fake column name seems safer.
5299     */
5300     if( pItem->colUsed==0 ){
5301       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5302     }
5303 
5304 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5305     /* Generate code for all sub-queries in the FROM clause
5306     */
5307     pSub = pItem->pSelect;
5308     if( pSub==0 ) continue;
5309 
5310     /* Sometimes the code for a subquery will be generated more than
5311     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5312     ** for example.  In that case, do not regenerate the code to manifest
5313     ** a view or the co-routine to implement a view.  The first instance
5314     ** is sufficient, though the subroutine to manifest the view does need
5315     ** to be invoked again. */
5316     if( pItem->addrFillSub ){
5317       if( pItem->fg.viaCoroutine==0 ){
5318         /* The subroutine that manifests the view might be a one-time routine,
5319         ** or it might need to be rerun on each iteration because it
5320         ** encodes a correlated subquery. */
5321         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5322         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5323       }
5324       continue;
5325     }
5326 
5327     /* Increment Parse.nHeight by the height of the largest expression
5328     ** tree referred to by this, the parent select. The child select
5329     ** may contain expression trees of at most
5330     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5331     ** more conservative than necessary, but much easier than enforcing
5332     ** an exact limit.
5333     */
5334     pParse->nHeight += sqlite3SelectExprHeight(p);
5335 
5336     /* Make copies of constant WHERE-clause terms in the outer query down
5337     ** inside the subquery.  This can help the subquery to run more efficiently.
5338     */
5339     if( (pItem->fg.jointype & JT_OUTER)==0
5340      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5341     ){
5342 #if SELECTTRACE_ENABLED
5343       if( sqlite3SelectTrace & 0x100 ){
5344         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5345         sqlite3TreeViewSelect(0, p, 0);
5346       }
5347 #endif
5348     }
5349 
5350     /* Generate code to implement the subquery
5351     **
5352     ** The subquery is implemented as a co-routine if all of these are true:
5353     **   (1)  The subquery is guaranteed to be the outer loop (so that it
5354     **        does not need to be computed more than once)
5355     **   (2)  The ALL keyword after SELECT is omitted.  (Applications are
5356     **        allowed to say "SELECT ALL" instead of just "SELECT" to disable
5357     **        the use of co-routines.)
5358     **   (3)  Co-routines are not disabled using sqlite3_test_control()
5359     **        with SQLITE_TESTCTRL_OPTIMIZATIONS.
5360     **
5361     ** TODO: Are there other reasons beside (1) to use a co-routine
5362     ** implementation?
5363     */
5364     if( i==0
5365      && (pTabList->nSrc==1
5366             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5367      && (p->selFlags & SF_All)==0                                   /* (2) */
5368      && OptimizationEnabled(db, SQLITE_SubqCoroutine)               /* (3) */
5369     ){
5370       /* Implement a co-routine that will return a single row of the result
5371       ** set on each invocation.
5372       */
5373       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5374       pItem->regReturn = ++pParse->nMem;
5375       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5376       VdbeComment((v, "%s", pItem->pTab->zName));
5377       pItem->addrFillSub = addrTop;
5378       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5379       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5380       sqlite3Select(pParse, pSub, &dest);
5381       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5382       pItem->fg.viaCoroutine = 1;
5383       pItem->regResult = dest.iSdst;
5384       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5385       sqlite3VdbeJumpHere(v, addrTop-1);
5386       sqlite3ClearTempRegCache(pParse);
5387     }else{
5388       /* Generate a subroutine that will fill an ephemeral table with
5389       ** the content of this subquery.  pItem->addrFillSub will point
5390       ** to the address of the generated subroutine.  pItem->regReturn
5391       ** is a register allocated to hold the subroutine return address
5392       */
5393       int topAddr;
5394       int onceAddr = 0;
5395       int retAddr;
5396       struct SrcList_item *pPrior;
5397 
5398       assert( pItem->addrFillSub==0 );
5399       pItem->regReturn = ++pParse->nMem;
5400       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5401       pItem->addrFillSub = topAddr+1;
5402       if( pItem->fg.isCorrelated==0 ){
5403         /* If the subquery is not correlated and if we are not inside of
5404         ** a trigger, then we only need to compute the value of the subquery
5405         ** once. */
5406         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5407         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5408       }else{
5409         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5410       }
5411       pPrior = isSelfJoinView(pTabList, pItem);
5412       if( pPrior ){
5413         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5414         explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5415         assert( pPrior->pSelect!=0 );
5416         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5417       }else{
5418         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5419         explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5420         sqlite3Select(pParse, pSub, &dest);
5421       }
5422       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5423       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5424       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5425       VdbeComment((v, "end %s", pItem->pTab->zName));
5426       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5427       sqlite3ClearTempRegCache(pParse);
5428     }
5429     if( db->mallocFailed ) goto select_end;
5430     pParse->nHeight -= sqlite3SelectExprHeight(p);
5431 #endif
5432   }
5433 
5434   /* Various elements of the SELECT copied into local variables for
5435   ** convenience */
5436   pEList = p->pEList;
5437   pWhere = p->pWhere;
5438   pGroupBy = p->pGroupBy;
5439   pHaving = p->pHaving;
5440   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5441 
5442 #if SELECTTRACE_ENABLED
5443   if( sqlite3SelectTrace & 0x400 ){
5444     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5445     sqlite3TreeViewSelect(0, p, 0);
5446   }
5447 #endif
5448 
5449 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5450   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5451    && countOfViewOptimization(pParse, p)
5452   ){
5453     if( db->mallocFailed ) goto select_end;
5454     pEList = p->pEList;
5455     pTabList = p->pSrc;
5456   }
5457 #endif
5458 
5459   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5460   ** if the select-list is the same as the ORDER BY list, then this query
5461   ** can be rewritten as a GROUP BY. In other words, this:
5462   **
5463   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5464   **
5465   ** is transformed to:
5466   **
5467   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5468   **
5469   ** The second form is preferred as a single index (or temp-table) may be
5470   ** used for both the ORDER BY and DISTINCT processing. As originally
5471   ** written the query must use a temp-table for at least one of the ORDER
5472   ** BY and DISTINCT, and an index or separate temp-table for the other.
5473   */
5474   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5475    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5476   ){
5477     p->selFlags &= ~SF_Distinct;
5478     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5479     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5480     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5481     ** original setting of the SF_Distinct flag, not the current setting */
5482     assert( sDistinct.isTnct );
5483 
5484 #if SELECTTRACE_ENABLED
5485     if( sqlite3SelectTrace & 0x400 ){
5486       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5487       sqlite3TreeViewSelect(0, p, 0);
5488     }
5489 #endif
5490   }
5491 
5492   /* If there is an ORDER BY clause, then create an ephemeral index to
5493   ** do the sorting.  But this sorting ephemeral index might end up
5494   ** being unused if the data can be extracted in pre-sorted order.
5495   ** If that is the case, then the OP_OpenEphemeral instruction will be
5496   ** changed to an OP_Noop once we figure out that the sorting index is
5497   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5498   ** that change.
5499   */
5500   if( sSort.pOrderBy ){
5501     KeyInfo *pKeyInfo;
5502     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5503     sSort.iECursor = pParse->nTab++;
5504     sSort.addrSortIndex =
5505       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5506           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5507           (char*)pKeyInfo, P4_KEYINFO
5508       );
5509   }else{
5510     sSort.addrSortIndex = -1;
5511   }
5512 
5513   /* If the output is destined for a temporary table, open that table.
5514   */
5515   if( pDest->eDest==SRT_EphemTab ){
5516     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5517   }
5518 
5519   /* Set the limiter.
5520   */
5521   iEnd = sqlite3VdbeMakeLabel(v);
5522   if( (p->selFlags & SF_FixedLimit)==0 ){
5523     p->nSelectRow = 320;  /* 4 billion rows */
5524   }
5525   computeLimitRegisters(pParse, p, iEnd);
5526   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5527     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5528     sSort.sortFlags |= SORTFLAG_UseSorter;
5529   }
5530 
5531   /* Open an ephemeral index to use for the distinct set.
5532   */
5533   if( p->selFlags & SF_Distinct ){
5534     sDistinct.tabTnct = pParse->nTab++;
5535     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5536                              sDistinct.tabTnct, 0, 0,
5537                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5538                              P4_KEYINFO);
5539     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5540     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5541   }else{
5542     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5543   }
5544 
5545   if( !isAgg && pGroupBy==0 ){
5546     /* No aggregate functions and no GROUP BY clause */
5547     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5548     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5549     wctrlFlags |= p->selFlags & SF_FixedLimit;
5550 
5551     /* Begin the database scan. */
5552     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5553                                p->pEList, wctrlFlags, p->nSelectRow);
5554     if( pWInfo==0 ) goto select_end;
5555     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5556       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5557     }
5558     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5559       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5560     }
5561     if( sSort.pOrderBy ){
5562       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5563       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5564       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5565         sSort.pOrderBy = 0;
5566       }
5567     }
5568 
5569     /* If sorting index that was created by a prior OP_OpenEphemeral
5570     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5571     ** into an OP_Noop.
5572     */
5573     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5574       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5575     }
5576 
5577     /* Use the standard inner loop. */
5578     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5579                     sqlite3WhereContinueLabel(pWInfo),
5580                     sqlite3WhereBreakLabel(pWInfo));
5581 
5582     /* End the database scan loop.
5583     */
5584     sqlite3WhereEnd(pWInfo);
5585   }else{
5586     /* This case when there exist aggregate functions or a GROUP BY clause
5587     ** or both */
5588     NameContext sNC;    /* Name context for processing aggregate information */
5589     int iAMem;          /* First Mem address for storing current GROUP BY */
5590     int iBMem;          /* First Mem address for previous GROUP BY */
5591     int iUseFlag;       /* Mem address holding flag indicating that at least
5592                         ** one row of the input to the aggregator has been
5593                         ** processed */
5594     int iAbortFlag;     /* Mem address which causes query abort if positive */
5595     int groupBySort;    /* Rows come from source in GROUP BY order */
5596     int addrEnd;        /* End of processing for this SELECT */
5597     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5598     int sortOut = 0;    /* Output register from the sorter */
5599     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5600 
5601     /* Remove any and all aliases between the result set and the
5602     ** GROUP BY clause.
5603     */
5604     if( pGroupBy ){
5605       int k;                        /* Loop counter */
5606       struct ExprList_item *pItem;  /* For looping over expression in a list */
5607 
5608       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5609         pItem->u.x.iAlias = 0;
5610       }
5611       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5612         pItem->u.x.iAlias = 0;
5613       }
5614       assert( 66==sqlite3LogEst(100) );
5615       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5616     }else{
5617       assert( 0==sqlite3LogEst(1) );
5618       p->nSelectRow = 0;
5619     }
5620 
5621     /* If there is both a GROUP BY and an ORDER BY clause and they are
5622     ** identical, then it may be possible to disable the ORDER BY clause
5623     ** on the grounds that the GROUP BY will cause elements to come out
5624     ** in the correct order. It also may not - the GROUP BY might use a
5625     ** database index that causes rows to be grouped together as required
5626     ** but not actually sorted. Either way, record the fact that the
5627     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5628     ** variable.  */
5629     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5630       orderByGrp = 1;
5631     }
5632 
5633     /* Create a label to jump to when we want to abort the query */
5634     addrEnd = sqlite3VdbeMakeLabel(v);
5635 
5636     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5637     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5638     ** SELECT statement.
5639     */
5640     memset(&sNC, 0, sizeof(sNC));
5641     sNC.pParse = pParse;
5642     sNC.pSrcList = pTabList;
5643     sNC.pAggInfo = &sAggInfo;
5644     sAggInfo.mnReg = pParse->nMem+1;
5645     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5646     sAggInfo.pGroupBy = pGroupBy;
5647     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5648     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5649     if( pHaving ){
5650       if( pGroupBy ){
5651         assert( pWhere==p->pWhere );
5652         havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5653         pWhere = p->pWhere;
5654       }
5655       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5656     }
5657     sAggInfo.nAccumulator = sAggInfo.nColumn;
5658     for(i=0; i<sAggInfo.nFunc; i++){
5659       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5660       sNC.ncFlags |= NC_InAggFunc;
5661       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5662       sNC.ncFlags &= ~NC_InAggFunc;
5663     }
5664     sAggInfo.mxReg = pParse->nMem;
5665     if( db->mallocFailed ) goto select_end;
5666 
5667     /* Processing for aggregates with GROUP BY is very different and
5668     ** much more complex than aggregates without a GROUP BY.
5669     */
5670     if( pGroupBy ){
5671       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5672       int addr1;          /* A-vs-B comparision jump */
5673       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5674       int regOutputRow;   /* Return address register for output subroutine */
5675       int addrSetAbort;   /* Set the abort flag and return */
5676       int addrTopOfLoop;  /* Top of the input loop */
5677       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5678       int addrReset;      /* Subroutine for resetting the accumulator */
5679       int regReset;       /* Return address register for reset subroutine */
5680 
5681       /* If there is a GROUP BY clause we might need a sorting index to
5682       ** implement it.  Allocate that sorting index now.  If it turns out
5683       ** that we do not need it after all, the OP_SorterOpen instruction
5684       ** will be converted into a Noop.
5685       */
5686       sAggInfo.sortingIdx = pParse->nTab++;
5687       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5688       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5689           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5690           0, (char*)pKeyInfo, P4_KEYINFO);
5691 
5692       /* Initialize memory locations used by GROUP BY aggregate processing
5693       */
5694       iUseFlag = ++pParse->nMem;
5695       iAbortFlag = ++pParse->nMem;
5696       regOutputRow = ++pParse->nMem;
5697       addrOutputRow = sqlite3VdbeMakeLabel(v);
5698       regReset = ++pParse->nMem;
5699       addrReset = sqlite3VdbeMakeLabel(v);
5700       iAMem = pParse->nMem + 1;
5701       pParse->nMem += pGroupBy->nExpr;
5702       iBMem = pParse->nMem + 1;
5703       pParse->nMem += pGroupBy->nExpr;
5704       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5705       VdbeComment((v, "clear abort flag"));
5706       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5707       VdbeComment((v, "indicate accumulator empty"));
5708       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5709 
5710       /* Begin a loop that will extract all source rows in GROUP BY order.
5711       ** This might involve two separate loops with an OP_Sort in between, or
5712       ** it might be a single loop that uses an index to extract information
5713       ** in the right order to begin with.
5714       */
5715       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5716       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5717           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5718       );
5719       if( pWInfo==0 ) goto select_end;
5720       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5721         /* The optimizer is able to deliver rows in group by order so
5722         ** we do not have to sort.  The OP_OpenEphemeral table will be
5723         ** cancelled later because we still need to use the pKeyInfo
5724         */
5725         groupBySort = 0;
5726       }else{
5727         /* Rows are coming out in undetermined order.  We have to push
5728         ** each row into a sorting index, terminate the first loop,
5729         ** then loop over the sorting index in order to get the output
5730         ** in sorted order
5731         */
5732         int regBase;
5733         int regRecord;
5734         int nCol;
5735         int nGroupBy;
5736 
5737         explainTempTable(pParse,
5738             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5739                     "DISTINCT" : "GROUP BY");
5740 
5741         groupBySort = 1;
5742         nGroupBy = pGroupBy->nExpr;
5743         nCol = nGroupBy;
5744         j = nGroupBy;
5745         for(i=0; i<sAggInfo.nColumn; i++){
5746           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5747             nCol++;
5748             j++;
5749           }
5750         }
5751         regBase = sqlite3GetTempRange(pParse, nCol);
5752         sqlite3ExprCacheClear(pParse);
5753         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5754         j = nGroupBy;
5755         for(i=0; i<sAggInfo.nColumn; i++){
5756           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5757           if( pCol->iSorterColumn>=j ){
5758             int r1 = j + regBase;
5759             sqlite3ExprCodeGetColumnToReg(pParse,
5760                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5761             j++;
5762           }
5763         }
5764         regRecord = sqlite3GetTempReg(pParse);
5765         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5766         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5767         sqlite3ReleaseTempReg(pParse, regRecord);
5768         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5769         sqlite3WhereEnd(pWInfo);
5770         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5771         sortOut = sqlite3GetTempReg(pParse);
5772         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5773         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5774         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5775         sAggInfo.useSortingIdx = 1;
5776         sqlite3ExprCacheClear(pParse);
5777 
5778       }
5779 
5780       /* If the index or temporary table used by the GROUP BY sort
5781       ** will naturally deliver rows in the order required by the ORDER BY
5782       ** clause, cancel the ephemeral table open coded earlier.
5783       **
5784       ** This is an optimization - the correct answer should result regardless.
5785       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5786       ** disable this optimization for testing purposes.  */
5787       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5788        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5789       ){
5790         sSort.pOrderBy = 0;
5791         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5792       }
5793 
5794       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5795       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5796       ** Then compare the current GROUP BY terms against the GROUP BY terms
5797       ** from the previous row currently stored in a0, a1, a2...
5798       */
5799       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5800       sqlite3ExprCacheClear(pParse);
5801       if( groupBySort ){
5802         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5803                           sortOut, sortPTab);
5804       }
5805       for(j=0; j<pGroupBy->nExpr; j++){
5806         if( groupBySort ){
5807           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5808         }else{
5809           sAggInfo.directMode = 1;
5810           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5811         }
5812       }
5813       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5814                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5815       addr1 = sqlite3VdbeCurrentAddr(v);
5816       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5817 
5818       /* Generate code that runs whenever the GROUP BY changes.
5819       ** Changes in the GROUP BY are detected by the previous code
5820       ** block.  If there were no changes, this block is skipped.
5821       **
5822       ** This code copies current group by terms in b0,b1,b2,...
5823       ** over to a0,a1,a2.  It then calls the output subroutine
5824       ** and resets the aggregate accumulator registers in preparation
5825       ** for the next GROUP BY batch.
5826       */
5827       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5828       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5829       VdbeComment((v, "output one row"));
5830       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5831       VdbeComment((v, "check abort flag"));
5832       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5833       VdbeComment((v, "reset accumulator"));
5834 
5835       /* Update the aggregate accumulators based on the content of
5836       ** the current row
5837       */
5838       sqlite3VdbeJumpHere(v, addr1);
5839       updateAccumulator(pParse, &sAggInfo);
5840       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5841       VdbeComment((v, "indicate data in accumulator"));
5842 
5843       /* End of the loop
5844       */
5845       if( groupBySort ){
5846         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5847         VdbeCoverage(v);
5848       }else{
5849         sqlite3WhereEnd(pWInfo);
5850         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5851       }
5852 
5853       /* Output the final row of result
5854       */
5855       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5856       VdbeComment((v, "output final row"));
5857 
5858       /* Jump over the subroutines
5859       */
5860       sqlite3VdbeGoto(v, addrEnd);
5861 
5862       /* Generate a subroutine that outputs a single row of the result
5863       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5864       ** is less than or equal to zero, the subroutine is a no-op.  If
5865       ** the processing calls for the query to abort, this subroutine
5866       ** increments the iAbortFlag memory location before returning in
5867       ** order to signal the caller to abort.
5868       */
5869       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5870       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5871       VdbeComment((v, "set abort flag"));
5872       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5873       sqlite3VdbeResolveLabel(v, addrOutputRow);
5874       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5875       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5876       VdbeCoverage(v);
5877       VdbeComment((v, "Groupby result generator entry point"));
5878       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5879       finalizeAggFunctions(pParse, &sAggInfo);
5880       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5881       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5882                       &sDistinct, pDest,
5883                       addrOutputRow+1, addrSetAbort);
5884       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5885       VdbeComment((v, "end groupby result generator"));
5886 
5887       /* Generate a subroutine that will reset the group-by accumulator
5888       */
5889       sqlite3VdbeResolveLabel(v, addrReset);
5890       resetAccumulator(pParse, &sAggInfo);
5891       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5892 
5893     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5894     else {
5895       ExprList *pDel = 0;
5896 #ifndef SQLITE_OMIT_BTREECOUNT
5897       Table *pTab;
5898       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5899         /* If isSimpleCount() returns a pointer to a Table structure, then
5900         ** the SQL statement is of the form:
5901         **
5902         **   SELECT count(*) FROM <tbl>
5903         **
5904         ** where the Table structure returned represents table <tbl>.
5905         **
5906         ** This statement is so common that it is optimized specially. The
5907         ** OP_Count instruction is executed either on the intkey table that
5908         ** contains the data for table <tbl> or on one of its indexes. It
5909         ** is better to execute the op on an index, as indexes are almost
5910         ** always spread across less pages than their corresponding tables.
5911         */
5912         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5913         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5914         Index *pIdx;                         /* Iterator variable */
5915         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5916         Index *pBest = 0;                    /* Best index found so far */
5917         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5918 
5919         sqlite3CodeVerifySchema(pParse, iDb);
5920         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5921 
5922         /* Search for the index that has the lowest scan cost.
5923         **
5924         ** (2011-04-15) Do not do a full scan of an unordered index.
5925         **
5926         ** (2013-10-03) Do not count the entries in a partial index.
5927         **
5928         ** In practice the KeyInfo structure will not be used. It is only
5929         ** passed to keep OP_OpenRead happy.
5930         */
5931         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5932         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5933           if( pIdx->bUnordered==0
5934            && pIdx->szIdxRow<pTab->szTabRow
5935            && pIdx->pPartIdxWhere==0
5936            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5937           ){
5938             pBest = pIdx;
5939           }
5940         }
5941         if( pBest ){
5942           iRoot = pBest->tnum;
5943           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5944         }
5945 
5946         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5947         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5948         if( pKeyInfo ){
5949           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5950         }
5951         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5952         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5953         explainSimpleCount(pParse, pTab, pBest);
5954       }else
5955 #endif /* SQLITE_OMIT_BTREECOUNT */
5956       {
5957         /* Check if the query is of one of the following forms:
5958         **
5959         **   SELECT min(x) FROM ...
5960         **   SELECT max(x) FROM ...
5961         **
5962         ** If it is, then ask the code in where.c to attempt to sort results
5963         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5964         ** If where.c is able to produce results sorted in this order, then
5965         ** add vdbe code to break out of the processing loop after the
5966         ** first iteration (since the first iteration of the loop is
5967         ** guaranteed to operate on the row with the minimum or maximum
5968         ** value of x, the only row required).
5969         **
5970         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5971         ** modify behavior as follows:
5972         **
5973         **   + If the query is a "SELECT min(x)", then the loop coded by
5974         **     where.c should not iterate over any values with a NULL value
5975         **     for x.
5976         **
5977         **   + The optimizer code in where.c (the thing that decides which
5978         **     index or indices to use) should place a different priority on
5979         **     satisfying the 'ORDER BY' clause than it does in other cases.
5980         **     Refer to code and comments in where.c for details.
5981         */
5982         ExprList *pMinMax = 0;
5983         u8 flag = WHERE_ORDERBY_NORMAL;
5984 
5985         assert( p->pGroupBy==0 );
5986         assert( flag==0 );
5987         if( p->pHaving==0 ){
5988           flag = minMaxQuery(&sAggInfo, &pMinMax);
5989         }
5990         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5991 
5992         if( flag ){
5993           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5994           pDel = pMinMax;
5995           assert( db->mallocFailed || pMinMax!=0 );
5996           if( !db->mallocFailed ){
5997             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5998             pMinMax->a[0].pExpr->op = TK_COLUMN;
5999           }
6000         }
6001 
6002         /* This case runs if the aggregate has no GROUP BY clause.  The
6003         ** processing is much simpler since there is only a single row
6004         ** of output.
6005         */
6006         resetAccumulator(pParse, &sAggInfo);
6007         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0);
6008         if( pWInfo==0 ){
6009           sqlite3ExprListDelete(db, pDel);
6010           goto select_end;
6011         }
6012         updateAccumulator(pParse, &sAggInfo);
6013         assert( pMinMax==0 || pMinMax->nExpr==1 );
6014         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6015           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6016           VdbeComment((v, "%s() by index",
6017                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
6018         }
6019         sqlite3WhereEnd(pWInfo);
6020         finalizeAggFunctions(pParse, &sAggInfo);
6021       }
6022 
6023       sSort.pOrderBy = 0;
6024       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6025       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
6026                       pDest, addrEnd, addrEnd);
6027       sqlite3ExprListDelete(db, pDel);
6028     }
6029     sqlite3VdbeResolveLabel(v, addrEnd);
6030 
6031   } /* endif aggregate query */
6032 
6033   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6034     explainTempTable(pParse, "DISTINCT");
6035   }
6036 
6037   /* If there is an ORDER BY clause, then we need to sort the results
6038   ** and send them to the callback one by one.
6039   */
6040   if( sSort.pOrderBy ){
6041     explainTempTable(pParse,
6042                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6043     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6044   }
6045 
6046   /* Jump here to skip this query
6047   */
6048   sqlite3VdbeResolveLabel(v, iEnd);
6049 
6050   /* The SELECT has been coded. If there is an error in the Parse structure,
6051   ** set the return code to 1. Otherwise 0. */
6052   rc = (pParse->nErr>0);
6053 
6054   /* Control jumps to here if an error is encountered above, or upon
6055   ** successful coding of the SELECT.
6056   */
6057 select_end:
6058   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6059 
6060   /* Identify column names if results of the SELECT are to be output.
6061   */
6062   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
6063     generateColumnNames(pParse, pTabList, pEList);
6064   }
6065 
6066   sqlite3DbFree(db, sAggInfo.aCol);
6067   sqlite3DbFree(db, sAggInfo.aFunc);
6068 #if SELECTTRACE_ENABLED
6069   SELECTTRACE(1,pParse,p,("end processing\n"));
6070   pParse->nSelectIndent--;
6071 #endif
6072   return rc;
6073 }
6074