1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 sqlite3ExprDelete(db, p->pOffset); 78 if( p->pWith ) sqlite3WithDelete(db, p->pWith); 79 if( bFree ) sqlite3DbFreeNN(db, p); 80 p = pPrior; 81 bFree = 1; 82 } 83 } 84 85 /* 86 ** Initialize a SelectDest structure. 87 */ 88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 89 pDest->eDest = (u8)eDest; 90 pDest->iSDParm = iParm; 91 pDest->zAffSdst = 0; 92 pDest->iSdst = 0; 93 pDest->nSdst = 0; 94 } 95 96 97 /* 98 ** Allocate a new Select structure and return a pointer to that 99 ** structure. 100 */ 101 Select *sqlite3SelectNew( 102 Parse *pParse, /* Parsing context */ 103 ExprList *pEList, /* which columns to include in the result */ 104 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 105 Expr *pWhere, /* the WHERE clause */ 106 ExprList *pGroupBy, /* the GROUP BY clause */ 107 Expr *pHaving, /* the HAVING clause */ 108 ExprList *pOrderBy, /* the ORDER BY clause */ 109 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 110 Expr *pLimit, /* LIMIT value. NULL means not used */ 111 Expr *pOffset /* OFFSET value. NULL means no offset */ 112 ){ 113 Select *pNew; 114 Select standin; 115 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 116 if( pNew==0 ){ 117 assert( pParse->db->mallocFailed ); 118 pNew = &standin; 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0)); 122 } 123 pNew->pEList = pEList; 124 pNew->op = TK_SELECT; 125 pNew->selFlags = selFlags; 126 pNew->iLimit = 0; 127 pNew->iOffset = 0; 128 #if SELECTTRACE_ENABLED 129 pNew->zSelName[0] = 0; 130 #endif 131 pNew->addrOpenEphm[0] = -1; 132 pNew->addrOpenEphm[1] = -1; 133 pNew->nSelectRow = 0; 134 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 135 pNew->pSrc = pSrc; 136 pNew->pWhere = pWhere; 137 pNew->pGroupBy = pGroupBy; 138 pNew->pHaving = pHaving; 139 pNew->pOrderBy = pOrderBy; 140 pNew->pPrior = 0; 141 pNew->pNext = 0; 142 pNew->pLimit = pLimit; 143 pNew->pOffset = pOffset; 144 pNew->pWith = 0; 145 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 ); 146 if( pParse->db->mallocFailed ) { 147 clearSelect(pParse->db, pNew, pNew!=&standin); 148 pNew = 0; 149 }else{ 150 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 151 } 152 assert( pNew!=&standin ); 153 return pNew; 154 } 155 156 #if SELECTTRACE_ENABLED 157 /* 158 ** Set the name of a Select object 159 */ 160 void sqlite3SelectSetName(Select *p, const char *zName){ 161 if( p && zName ){ 162 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 163 } 164 } 165 #endif 166 167 168 /* 169 ** Delete the given Select structure and all of its substructures. 170 */ 171 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 172 if( p ) clearSelect(db, p, 1); 173 } 174 175 /* 176 ** Return a pointer to the right-most SELECT statement in a compound. 177 */ 178 static Select *findRightmost(Select *p){ 179 while( p->pNext ) p = p->pNext; 180 return p; 181 } 182 183 /* 184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 185 ** type of join. Return an integer constant that expresses that type 186 ** in terms of the following bit values: 187 ** 188 ** JT_INNER 189 ** JT_CROSS 190 ** JT_OUTER 191 ** JT_NATURAL 192 ** JT_LEFT 193 ** JT_RIGHT 194 ** 195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 196 ** 197 ** If an illegal or unsupported join type is seen, then still return 198 ** a join type, but put an error in the pParse structure. 199 */ 200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 201 int jointype = 0; 202 Token *apAll[3]; 203 Token *p; 204 /* 0123456789 123456789 123456789 123 */ 205 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 206 static const struct { 207 u8 i; /* Beginning of keyword text in zKeyText[] */ 208 u8 nChar; /* Length of the keyword in characters */ 209 u8 code; /* Join type mask */ 210 } aKeyword[] = { 211 /* natural */ { 0, 7, JT_NATURAL }, 212 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 213 /* outer */ { 10, 5, JT_OUTER }, 214 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 215 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 216 /* inner */ { 23, 5, JT_INNER }, 217 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 218 }; 219 int i, j; 220 apAll[0] = pA; 221 apAll[1] = pB; 222 apAll[2] = pC; 223 for(i=0; i<3 && apAll[i]; i++){ 224 p = apAll[i]; 225 for(j=0; j<ArraySize(aKeyword); j++){ 226 if( p->n==aKeyword[j].nChar 227 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 228 jointype |= aKeyword[j].code; 229 break; 230 } 231 } 232 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 233 if( j>=ArraySize(aKeyword) ){ 234 jointype |= JT_ERROR; 235 break; 236 } 237 } 238 if( 239 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 240 (jointype & JT_ERROR)!=0 241 ){ 242 const char *zSp = " "; 243 assert( pB!=0 ); 244 if( pC==0 ){ zSp++; } 245 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 246 "%T %T%s%T", pA, pB, zSp, pC); 247 jointype = JT_INNER; 248 }else if( (jointype & JT_OUTER)!=0 249 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 250 sqlite3ErrorMsg(pParse, 251 "RIGHT and FULL OUTER JOINs are not currently supported"); 252 jointype = JT_INNER; 253 } 254 return jointype; 255 } 256 257 /* 258 ** Return the index of a column in a table. Return -1 if the column 259 ** is not contained in the table. 260 */ 261 static int columnIndex(Table *pTab, const char *zCol){ 262 int i; 263 for(i=0; i<pTab->nCol; i++){ 264 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 265 } 266 return -1; 267 } 268 269 /* 270 ** Search the first N tables in pSrc, from left to right, looking for a 271 ** table that has a column named zCol. 272 ** 273 ** When found, set *piTab and *piCol to the table index and column index 274 ** of the matching column and return TRUE. 275 ** 276 ** If not found, return FALSE. 277 */ 278 static int tableAndColumnIndex( 279 SrcList *pSrc, /* Array of tables to search */ 280 int N, /* Number of tables in pSrc->a[] to search */ 281 const char *zCol, /* Name of the column we are looking for */ 282 int *piTab, /* Write index of pSrc->a[] here */ 283 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 284 ){ 285 int i; /* For looping over tables in pSrc */ 286 int iCol; /* Index of column matching zCol */ 287 288 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 289 for(i=0; i<N; i++){ 290 iCol = columnIndex(pSrc->a[i].pTab, zCol); 291 if( iCol>=0 ){ 292 if( piTab ){ 293 *piTab = i; 294 *piCol = iCol; 295 } 296 return 1; 297 } 298 } 299 return 0; 300 } 301 302 /* 303 ** This function is used to add terms implied by JOIN syntax to the 304 ** WHERE clause expression of a SELECT statement. The new term, which 305 ** is ANDed with the existing WHERE clause, is of the form: 306 ** 307 ** (tab1.col1 = tab2.col2) 308 ** 309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 311 ** column iColRight of tab2. 312 */ 313 static void addWhereTerm( 314 Parse *pParse, /* Parsing context */ 315 SrcList *pSrc, /* List of tables in FROM clause */ 316 int iLeft, /* Index of first table to join in pSrc */ 317 int iColLeft, /* Index of column in first table */ 318 int iRight, /* Index of second table in pSrc */ 319 int iColRight, /* Index of column in second table */ 320 int isOuterJoin, /* True if this is an OUTER join */ 321 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 322 ){ 323 sqlite3 *db = pParse->db; 324 Expr *pE1; 325 Expr *pE2; 326 Expr *pEq; 327 328 assert( iLeft<iRight ); 329 assert( pSrc->nSrc>iRight ); 330 assert( pSrc->a[iLeft].pTab ); 331 assert( pSrc->a[iRight].pTab ); 332 333 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 334 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 335 336 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 337 if( pEq && isOuterJoin ){ 338 ExprSetProperty(pEq, EP_FromJoin); 339 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(pEq, EP_NoReduce); 341 pEq->iRightJoinTable = (i16)pE2->iTable; 342 } 343 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 344 } 345 346 /* 347 ** Set the EP_FromJoin property on all terms of the given expression. 348 ** And set the Expr.iRightJoinTable to iTable for every term in the 349 ** expression. 350 ** 351 ** The EP_FromJoin property is used on terms of an expression to tell 352 ** the LEFT OUTER JOIN processing logic that this term is part of the 353 ** join restriction specified in the ON or USING clause and not a part 354 ** of the more general WHERE clause. These terms are moved over to the 355 ** WHERE clause during join processing but we need to remember that they 356 ** originated in the ON or USING clause. 357 ** 358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 359 ** expression depends on table iRightJoinTable even if that table is not 360 ** explicitly mentioned in the expression. That information is needed 361 ** for cases like this: 362 ** 363 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 364 ** 365 ** The where clause needs to defer the handling of the t1.x=5 366 ** term until after the t2 loop of the join. In that way, a 367 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 368 ** defer the handling of t1.x=5, it will be processed immediately 369 ** after the t1 loop and rows with t1.x!=5 will never appear in 370 ** the output, which is incorrect. 371 */ 372 static void setJoinExpr(Expr *p, int iTable){ 373 while( p ){ 374 ExprSetProperty(p, EP_FromJoin); 375 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(p, EP_NoReduce); 377 p->iRightJoinTable = (i16)iTable; 378 if( p->op==TK_FUNCTION && p->x.pList ){ 379 int i; 380 for(i=0; i<p->x.pList->nExpr; i++){ 381 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 382 } 383 } 384 setJoinExpr(p->pLeft, iTable); 385 p = p->pRight; 386 } 387 } 388 389 /* 390 ** This routine processes the join information for a SELECT statement. 391 ** ON and USING clauses are converted into extra terms of the WHERE clause. 392 ** NATURAL joins also create extra WHERE clause terms. 393 ** 394 ** The terms of a FROM clause are contained in the Select.pSrc structure. 395 ** The left most table is the first entry in Select.pSrc. The right-most 396 ** table is the last entry. The join operator is held in the entry to 397 ** the left. Thus entry 0 contains the join operator for the join between 398 ** entries 0 and 1. Any ON or USING clauses associated with the join are 399 ** also attached to the left entry. 400 ** 401 ** This routine returns the number of errors encountered. 402 */ 403 static int sqliteProcessJoin(Parse *pParse, Select *p){ 404 SrcList *pSrc; /* All tables in the FROM clause */ 405 int i, j; /* Loop counters */ 406 struct SrcList_item *pLeft; /* Left table being joined */ 407 struct SrcList_item *pRight; /* Right table being joined */ 408 409 pSrc = p->pSrc; 410 pLeft = &pSrc->a[0]; 411 pRight = &pLeft[1]; 412 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 413 Table *pLeftTab = pLeft->pTab; 414 Table *pRightTab = pRight->pTab; 415 int isOuter; 416 417 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 418 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 419 420 /* When the NATURAL keyword is present, add WHERE clause terms for 421 ** every column that the two tables have in common. 422 */ 423 if( pRight->fg.jointype & JT_NATURAL ){ 424 if( pRight->pOn || pRight->pUsing ){ 425 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 426 "an ON or USING clause", 0); 427 return 1; 428 } 429 for(j=0; j<pRightTab->nCol; j++){ 430 char *zName; /* Name of column in the right table */ 431 int iLeft; /* Matching left table */ 432 int iLeftCol; /* Matching column in the left table */ 433 434 zName = pRightTab->aCol[j].zName; 435 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 436 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 437 isOuter, &p->pWhere); 438 } 439 } 440 } 441 442 /* Disallow both ON and USING clauses in the same join 443 */ 444 if( pRight->pOn && pRight->pUsing ){ 445 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 446 "clauses in the same join"); 447 return 1; 448 } 449 450 /* Add the ON clause to the end of the WHERE clause, connected by 451 ** an AND operator. 452 */ 453 if( pRight->pOn ){ 454 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 455 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 456 pRight->pOn = 0; 457 } 458 459 /* Create extra terms on the WHERE clause for each column named 460 ** in the USING clause. Example: If the two tables to be joined are 461 ** A and B and the USING clause names X, Y, and Z, then add this 462 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 463 ** Report an error if any column mentioned in the USING clause is 464 ** not contained in both tables to be joined. 465 */ 466 if( pRight->pUsing ){ 467 IdList *pList = pRight->pUsing; 468 for(j=0; j<pList->nId; j++){ 469 char *zName; /* Name of the term in the USING clause */ 470 int iLeft; /* Table on the left with matching column name */ 471 int iLeftCol; /* Column number of matching column on the left */ 472 int iRightCol; /* Column number of matching column on the right */ 473 474 zName = pList->a[j].zName; 475 iRightCol = columnIndex(pRightTab, zName); 476 if( iRightCol<0 477 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 478 ){ 479 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 480 "not present in both tables", zName); 481 return 1; 482 } 483 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 484 isOuter, &p->pWhere); 485 } 486 } 487 } 488 return 0; 489 } 490 491 /* Forward reference */ 492 static KeyInfo *keyInfoFromExprList( 493 Parse *pParse, /* Parsing context */ 494 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 495 int iStart, /* Begin with this column of pList */ 496 int nExtra /* Add this many extra columns to the end */ 497 ); 498 499 /* 500 ** Generate code that will push the record in registers regData 501 ** through regData+nData-1 onto the sorter. 502 */ 503 static void pushOntoSorter( 504 Parse *pParse, /* Parser context */ 505 SortCtx *pSort, /* Information about the ORDER BY clause */ 506 Select *pSelect, /* The whole SELECT statement */ 507 int regData, /* First register holding data to be sorted */ 508 int regOrigData, /* First register holding data before packing */ 509 int nData, /* Number of elements in the data array */ 510 int nPrefixReg /* No. of reg prior to regData available for use */ 511 ){ 512 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 513 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 514 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 515 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 516 int regBase; /* Regs for sorter record */ 517 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 518 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 519 int op; /* Opcode to add sorter record to sorter */ 520 int iLimit; /* LIMIT counter */ 521 522 assert( bSeq==0 || bSeq==1 ); 523 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 524 if( nPrefixReg ){ 525 assert( nPrefixReg==nExpr+bSeq ); 526 regBase = regData - nExpr - bSeq; 527 }else{ 528 regBase = pParse->nMem + 1; 529 pParse->nMem += nBase; 530 } 531 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 532 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 533 pSort->labelDone = sqlite3VdbeMakeLabel(v); 534 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 535 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 536 if( bSeq ){ 537 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 538 } 539 if( nPrefixReg==0 && nData>0 ){ 540 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 541 } 542 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 543 if( nOBSat>0 ){ 544 int regPrevKey; /* The first nOBSat columns of the previous row */ 545 int addrFirst; /* Address of the OP_IfNot opcode */ 546 int addrJmp; /* Address of the OP_Jump opcode */ 547 VdbeOp *pOp; /* Opcode that opens the sorter */ 548 int nKey; /* Number of sorting key columns, including OP_Sequence */ 549 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 550 551 regPrevKey = pParse->nMem+1; 552 pParse->nMem += pSort->nOBSat; 553 nKey = nExpr - pSort->nOBSat + bSeq; 554 if( bSeq ){ 555 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 556 }else{ 557 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 558 } 559 VdbeCoverage(v); 560 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 561 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 562 if( pParse->db->mallocFailed ) return; 563 pOp->p2 = nKey + nData; 564 pKI = pOp->p4.pKeyInfo; 565 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 566 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 567 testcase( pKI->nXField>2 ); 568 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 569 pKI->nXField-1); 570 addrJmp = sqlite3VdbeCurrentAddr(v); 571 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 572 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 573 pSort->regReturn = ++pParse->nMem; 574 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 575 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 576 if( iLimit ){ 577 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 578 VdbeCoverage(v); 579 } 580 sqlite3VdbeJumpHere(v, addrFirst); 581 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 582 sqlite3VdbeJumpHere(v, addrJmp); 583 } 584 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 585 op = OP_SorterInsert; 586 }else{ 587 op = OP_IdxInsert; 588 } 589 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 590 regBase+nOBSat, nBase-nOBSat); 591 if( iLimit ){ 592 int addr; 593 int r1 = 0; 594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 596 ** fills up, delete the least entry in the sorter after each insert. 597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 598 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 599 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 600 if( pSort->bOrderedInnerLoop ){ 601 r1 = ++pParse->nMem; 602 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 603 VdbeComment((v, "seq")); 604 } 605 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 606 if( pSort->bOrderedInnerLoop ){ 607 /* If the inner loop is driven by an index such that values from 608 ** the same iteration of the inner loop are in sorted order, then 609 ** immediately jump to the next iteration of an inner loop if the 610 ** entry from the current iteration does not fit into the top 611 ** LIMIT+OFFSET entries of the sorter. */ 612 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 613 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 614 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 615 VdbeCoverage(v); 616 } 617 sqlite3VdbeJumpHere(v, addr); 618 } 619 } 620 621 /* 622 ** Add code to implement the OFFSET 623 */ 624 static void codeOffset( 625 Vdbe *v, /* Generate code into this VM */ 626 int iOffset, /* Register holding the offset counter */ 627 int iContinue /* Jump here to skip the current record */ 628 ){ 629 if( iOffset>0 ){ 630 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 631 VdbeComment((v, "OFFSET")); 632 } 633 } 634 635 /* 636 ** Add code that will check to make sure the N registers starting at iMem 637 ** form a distinct entry. iTab is a sorting index that holds previously 638 ** seen combinations of the N values. A new entry is made in iTab 639 ** if the current N values are new. 640 ** 641 ** A jump to addrRepeat is made and the N+1 values are popped from the 642 ** stack if the top N elements are not distinct. 643 */ 644 static void codeDistinct( 645 Parse *pParse, /* Parsing and code generating context */ 646 int iTab, /* A sorting index used to test for distinctness */ 647 int addrRepeat, /* Jump to here if not distinct */ 648 int N, /* Number of elements */ 649 int iMem /* First element */ 650 ){ 651 Vdbe *v; 652 int r1; 653 654 v = pParse->pVdbe; 655 r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 657 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 658 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 659 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 660 sqlite3ReleaseTempReg(pParse, r1); 661 } 662 663 /* 664 ** This routine generates the code for the inside of the inner loop 665 ** of a SELECT. 666 ** 667 ** If srcTab is negative, then the pEList expressions 668 ** are evaluated in order to get the data for this row. If srcTab is 669 ** zero or more, then data is pulled from srcTab and pEList is used only 670 ** to get the number of columns and the collation sequence for each column. 671 */ 672 static void selectInnerLoop( 673 Parse *pParse, /* The parser context */ 674 Select *p, /* The complete select statement being coded */ 675 ExprList *pEList, /* List of values being extracted */ 676 int srcTab, /* Pull data from this table */ 677 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 678 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 679 SelectDest *pDest, /* How to dispose of the results */ 680 int iContinue, /* Jump here to continue with next row */ 681 int iBreak /* Jump here to break out of the inner loop */ 682 ){ 683 Vdbe *v = pParse->pVdbe; 684 int i; 685 int hasDistinct; /* True if the DISTINCT keyword is present */ 686 int eDest = pDest->eDest; /* How to dispose of results */ 687 int iParm = pDest->iSDParm; /* First argument to disposal method */ 688 int nResultCol; /* Number of result columns */ 689 int nPrefixReg = 0; /* Number of extra registers before regResult */ 690 691 /* Usually, regResult is the first cell in an array of memory cells 692 ** containing the current result row. In this case regOrig is set to the 693 ** same value. However, if the results are being sent to the sorter, the 694 ** values for any expressions that are also part of the sort-key are omitted 695 ** from this array. In this case regOrig is set to zero. */ 696 int regResult; /* Start of memory holding current results */ 697 int regOrig; /* Start of memory holding full result (or 0) */ 698 699 assert( v ); 700 assert( pEList!=0 ); 701 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 702 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 703 if( pSort==0 && !hasDistinct ){ 704 assert( iContinue!=0 ); 705 codeOffset(v, p->iOffset, iContinue); 706 } 707 708 /* Pull the requested columns. 709 */ 710 nResultCol = pEList->nExpr; 711 712 if( pDest->iSdst==0 ){ 713 if( pSort ){ 714 nPrefixReg = pSort->pOrderBy->nExpr; 715 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 716 pParse->nMem += nPrefixReg; 717 } 718 pDest->iSdst = pParse->nMem+1; 719 pParse->nMem += nResultCol; 720 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 721 /* This is an error condition that can result, for example, when a SELECT 722 ** on the right-hand side of an INSERT contains more result columns than 723 ** there are columns in the table on the left. The error will be caught 724 ** and reported later. But we need to make sure enough memory is allocated 725 ** to avoid other spurious errors in the meantime. */ 726 pParse->nMem += nResultCol; 727 } 728 pDest->nSdst = nResultCol; 729 regOrig = regResult = pDest->iSdst; 730 if( srcTab>=0 ){ 731 for(i=0; i<nResultCol; i++){ 732 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 733 VdbeComment((v, "%s", pEList->a[i].zName)); 734 } 735 }else if( eDest!=SRT_Exists ){ 736 /* If the destination is an EXISTS(...) expression, the actual 737 ** values returned by the SELECT are not required. 738 */ 739 u8 ecelFlags; 740 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 741 ecelFlags = SQLITE_ECEL_DUP; 742 }else{ 743 ecelFlags = 0; 744 } 745 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 746 /* For each expression in pEList that is a copy of an expression in 747 ** the ORDER BY clause (pSort->pOrderBy), set the associated 748 ** iOrderByCol value to one more than the index of the ORDER BY 749 ** expression within the sort-key that pushOntoSorter() will generate. 750 ** This allows the pEList field to be omitted from the sorted record, 751 ** saving space and CPU cycles. */ 752 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 753 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 754 int j; 755 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 756 pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 757 } 758 } 759 regOrig = 0; 760 assert( eDest==SRT_Set || eDest==SRT_Mem 761 || eDest==SRT_Coroutine || eDest==SRT_Output ); 762 } 763 nResultCol = sqlite3ExprCodeExprList(pParse,pEList,regResult,0,ecelFlags); 764 } 765 766 /* If the DISTINCT keyword was present on the SELECT statement 767 ** and this row has been seen before, then do not make this row 768 ** part of the result. 769 */ 770 if( hasDistinct ){ 771 switch( pDistinct->eTnctType ){ 772 case WHERE_DISTINCT_ORDERED: { 773 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 774 int iJump; /* Jump destination */ 775 int regPrev; /* Previous row content */ 776 777 /* Allocate space for the previous row */ 778 regPrev = pParse->nMem+1; 779 pParse->nMem += nResultCol; 780 781 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 782 ** sets the MEM_Cleared bit on the first register of the 783 ** previous value. This will cause the OP_Ne below to always 784 ** fail on the first iteration of the loop even if the first 785 ** row is all NULLs. 786 */ 787 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 788 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 789 pOp->opcode = OP_Null; 790 pOp->p1 = 1; 791 pOp->p2 = regPrev; 792 793 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 794 for(i=0; i<nResultCol; i++){ 795 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 796 if( i<nResultCol-1 ){ 797 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 798 VdbeCoverage(v); 799 }else{ 800 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 801 VdbeCoverage(v); 802 } 803 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 804 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 805 } 806 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 807 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 808 break; 809 } 810 811 case WHERE_DISTINCT_UNIQUE: { 812 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 813 break; 814 } 815 816 default: { 817 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 818 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 819 regResult); 820 break; 821 } 822 } 823 if( pSort==0 ){ 824 codeOffset(v, p->iOffset, iContinue); 825 } 826 } 827 828 switch( eDest ){ 829 /* In this mode, write each query result to the key of the temporary 830 ** table iParm. 831 */ 832 #ifndef SQLITE_OMIT_COMPOUND_SELECT 833 case SRT_Union: { 834 int r1; 835 r1 = sqlite3GetTempReg(pParse); 836 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 837 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 838 sqlite3ReleaseTempReg(pParse, r1); 839 break; 840 } 841 842 /* Construct a record from the query result, but instead of 843 ** saving that record, use it as a key to delete elements from 844 ** the temporary table iParm. 845 */ 846 case SRT_Except: { 847 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 848 break; 849 } 850 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 851 852 /* Store the result as data using a unique key. 853 */ 854 case SRT_Fifo: 855 case SRT_DistFifo: 856 case SRT_Table: 857 case SRT_EphemTab: { 858 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 859 testcase( eDest==SRT_Table ); 860 testcase( eDest==SRT_EphemTab ); 861 testcase( eDest==SRT_Fifo ); 862 testcase( eDest==SRT_DistFifo ); 863 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 864 #ifndef SQLITE_OMIT_CTE 865 if( eDest==SRT_DistFifo ){ 866 /* If the destination is DistFifo, then cursor (iParm+1) is open 867 ** on an ephemeral index. If the current row is already present 868 ** in the index, do not write it to the output. If not, add the 869 ** current row to the index and proceed with writing it to the 870 ** output table as well. */ 871 int addr = sqlite3VdbeCurrentAddr(v) + 4; 872 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 873 VdbeCoverage(v); 874 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 875 assert( pSort==0 ); 876 } 877 #endif 878 if( pSort ){ 879 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 880 }else{ 881 int r2 = sqlite3GetTempReg(pParse); 882 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 883 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 884 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 885 sqlite3ReleaseTempReg(pParse, r2); 886 } 887 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 888 break; 889 } 890 891 #ifndef SQLITE_OMIT_SUBQUERY 892 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 893 ** then there should be a single item on the stack. Write this 894 ** item into the set table with bogus data. 895 */ 896 case SRT_Set: { 897 if( pSort ){ 898 /* At first glance you would think we could optimize out the 899 ** ORDER BY in this case since the order of entries in the set 900 ** does not matter. But there might be a LIMIT clause, in which 901 ** case the order does matter */ 902 pushOntoSorter( 903 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 904 }else{ 905 int r1 = sqlite3GetTempReg(pParse); 906 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 907 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 908 r1, pDest->zAffSdst, nResultCol); 909 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 910 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 911 sqlite3ReleaseTempReg(pParse, r1); 912 } 913 break; 914 } 915 916 /* If any row exist in the result set, record that fact and abort. 917 */ 918 case SRT_Exists: { 919 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 920 /* The LIMIT clause will terminate the loop for us */ 921 break; 922 } 923 924 /* If this is a scalar select that is part of an expression, then 925 ** store the results in the appropriate memory cell or array of 926 ** memory cells and break out of the scan loop. 927 */ 928 case SRT_Mem: { 929 if( pSort ){ 930 assert( nResultCol<=pDest->nSdst ); 931 pushOntoSorter( 932 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 933 }else{ 934 assert( nResultCol==pDest->nSdst ); 935 assert( regResult==iParm ); 936 /* The LIMIT clause will jump out of the loop for us */ 937 } 938 break; 939 } 940 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 941 942 case SRT_Coroutine: /* Send data to a co-routine */ 943 case SRT_Output: { /* Return the results */ 944 testcase( eDest==SRT_Coroutine ); 945 testcase( eDest==SRT_Output ); 946 if( pSort ){ 947 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 948 nPrefixReg); 949 }else if( eDest==SRT_Coroutine ){ 950 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 951 }else{ 952 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 953 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 954 } 955 break; 956 } 957 958 #ifndef SQLITE_OMIT_CTE 959 /* Write the results into a priority queue that is order according to 960 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 961 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 962 ** pSO->nExpr columns, then make sure all keys are unique by adding a 963 ** final OP_Sequence column. The last column is the record as a blob. 964 */ 965 case SRT_DistQueue: 966 case SRT_Queue: { 967 int nKey; 968 int r1, r2, r3; 969 int addrTest = 0; 970 ExprList *pSO; 971 pSO = pDest->pOrderBy; 972 assert( pSO ); 973 nKey = pSO->nExpr; 974 r1 = sqlite3GetTempReg(pParse); 975 r2 = sqlite3GetTempRange(pParse, nKey+2); 976 r3 = r2+nKey+1; 977 if( eDest==SRT_DistQueue ){ 978 /* If the destination is DistQueue, then cursor (iParm+1) is open 979 ** on a second ephemeral index that holds all values every previously 980 ** added to the queue. */ 981 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 982 regResult, nResultCol); 983 VdbeCoverage(v); 984 } 985 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 986 if( eDest==SRT_DistQueue ){ 987 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 988 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 989 } 990 for(i=0; i<nKey; i++){ 991 sqlite3VdbeAddOp2(v, OP_SCopy, 992 regResult + pSO->a[i].u.x.iOrderByCol - 1, 993 r2+i); 994 } 995 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 996 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 997 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 998 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 999 sqlite3ReleaseTempReg(pParse, r1); 1000 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1001 break; 1002 } 1003 #endif /* SQLITE_OMIT_CTE */ 1004 1005 1006 1007 #if !defined(SQLITE_OMIT_TRIGGER) 1008 /* Discard the results. This is used for SELECT statements inside 1009 ** the body of a TRIGGER. The purpose of such selects is to call 1010 ** user-defined functions that have side effects. We do not care 1011 ** about the actual results of the select. 1012 */ 1013 default: { 1014 assert( eDest==SRT_Discard ); 1015 break; 1016 } 1017 #endif 1018 } 1019 1020 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1021 ** there is a sorter, in which case the sorter has already limited 1022 ** the output for us. 1023 */ 1024 if( pSort==0 && p->iLimit ){ 1025 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1026 } 1027 } 1028 1029 /* 1030 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1031 ** X extra columns. 1032 */ 1033 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1034 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1035 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1036 if( p ){ 1037 p->aSortOrder = (u8*)&p->aColl[N+X]; 1038 p->nField = (u16)N; 1039 p->nXField = (u16)X; 1040 p->enc = ENC(db); 1041 p->db = db; 1042 p->nRef = 1; 1043 memset(&p[1], 0, nExtra); 1044 }else{ 1045 sqlite3OomFault(db); 1046 } 1047 return p; 1048 } 1049 1050 /* 1051 ** Deallocate a KeyInfo object 1052 */ 1053 void sqlite3KeyInfoUnref(KeyInfo *p){ 1054 if( p ){ 1055 assert( p->nRef>0 ); 1056 p->nRef--; 1057 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1058 } 1059 } 1060 1061 /* 1062 ** Make a new pointer to a KeyInfo object 1063 */ 1064 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1065 if( p ){ 1066 assert( p->nRef>0 ); 1067 p->nRef++; 1068 } 1069 return p; 1070 } 1071 1072 #ifdef SQLITE_DEBUG 1073 /* 1074 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1075 ** can only be changed if this is just a single reference to the object. 1076 ** 1077 ** This routine is used only inside of assert() statements. 1078 */ 1079 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1080 #endif /* SQLITE_DEBUG */ 1081 1082 /* 1083 ** Given an expression list, generate a KeyInfo structure that records 1084 ** the collating sequence for each expression in that expression list. 1085 ** 1086 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1087 ** KeyInfo structure is appropriate for initializing a virtual index to 1088 ** implement that clause. If the ExprList is the result set of a SELECT 1089 ** then the KeyInfo structure is appropriate for initializing a virtual 1090 ** index to implement a DISTINCT test. 1091 ** 1092 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1093 ** function is responsible for seeing that this structure is eventually 1094 ** freed. 1095 */ 1096 static KeyInfo *keyInfoFromExprList( 1097 Parse *pParse, /* Parsing context */ 1098 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1099 int iStart, /* Begin with this column of pList */ 1100 int nExtra /* Add this many extra columns to the end */ 1101 ){ 1102 int nExpr; 1103 KeyInfo *pInfo; 1104 struct ExprList_item *pItem; 1105 sqlite3 *db = pParse->db; 1106 int i; 1107 1108 nExpr = pList->nExpr; 1109 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1110 if( pInfo ){ 1111 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1112 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1113 CollSeq *pColl; 1114 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1115 if( !pColl ) pColl = db->pDfltColl; 1116 pInfo->aColl[i-iStart] = pColl; 1117 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1118 } 1119 } 1120 return pInfo; 1121 } 1122 1123 /* 1124 ** Name of the connection operator, used for error messages. 1125 */ 1126 static const char *selectOpName(int id){ 1127 char *z; 1128 switch( id ){ 1129 case TK_ALL: z = "UNION ALL"; break; 1130 case TK_INTERSECT: z = "INTERSECT"; break; 1131 case TK_EXCEPT: z = "EXCEPT"; break; 1132 default: z = "UNION"; break; 1133 } 1134 return z; 1135 } 1136 1137 #ifndef SQLITE_OMIT_EXPLAIN 1138 /* 1139 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1140 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1141 ** where the caption is of the form: 1142 ** 1143 ** "USE TEMP B-TREE FOR xxx" 1144 ** 1145 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1146 ** is determined by the zUsage argument. 1147 */ 1148 static void explainTempTable(Parse *pParse, const char *zUsage){ 1149 if( pParse->explain==2 ){ 1150 Vdbe *v = pParse->pVdbe; 1151 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1152 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1153 } 1154 } 1155 1156 /* 1157 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1158 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1159 ** in sqlite3Select() to assign values to structure member variables that 1160 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1161 ** code with #ifndef directives. 1162 */ 1163 # define explainSetInteger(a, b) a = b 1164 1165 #else 1166 /* No-op versions of the explainXXX() functions and macros. */ 1167 # define explainTempTable(y,z) 1168 # define explainSetInteger(y,z) 1169 #endif 1170 1171 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1172 /* 1173 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1174 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1175 ** where the caption is of one of the two forms: 1176 ** 1177 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1178 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1179 ** 1180 ** where iSub1 and iSub2 are the integers passed as the corresponding 1181 ** function parameters, and op is the text representation of the parameter 1182 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1183 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1184 ** false, or the second form if it is true. 1185 */ 1186 static void explainComposite( 1187 Parse *pParse, /* Parse context */ 1188 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1189 int iSub1, /* Subquery id 1 */ 1190 int iSub2, /* Subquery id 2 */ 1191 int bUseTmp /* True if a temp table was used */ 1192 ){ 1193 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1194 if( pParse->explain==2 ){ 1195 Vdbe *v = pParse->pVdbe; 1196 char *zMsg = sqlite3MPrintf( 1197 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1198 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1199 ); 1200 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1201 } 1202 } 1203 #else 1204 /* No-op versions of the explainXXX() functions and macros. */ 1205 # define explainComposite(v,w,x,y,z) 1206 #endif 1207 1208 /* 1209 ** If the inner loop was generated using a non-null pOrderBy argument, 1210 ** then the results were placed in a sorter. After the loop is terminated 1211 ** we need to run the sorter and output the results. The following 1212 ** routine generates the code needed to do that. 1213 */ 1214 static void generateSortTail( 1215 Parse *pParse, /* Parsing context */ 1216 Select *p, /* The SELECT statement */ 1217 SortCtx *pSort, /* Information on the ORDER BY clause */ 1218 int nColumn, /* Number of columns of data */ 1219 SelectDest *pDest /* Write the sorted results here */ 1220 ){ 1221 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1222 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1223 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1224 int addr; 1225 int addrOnce = 0; 1226 int iTab; 1227 ExprList *pOrderBy = pSort->pOrderBy; 1228 int eDest = pDest->eDest; 1229 int iParm = pDest->iSDParm; 1230 int regRow; 1231 int regRowid; 1232 int iCol; 1233 int nKey; 1234 int iSortTab; /* Sorter cursor to read from */ 1235 int nSortData; /* Trailing values to read from sorter */ 1236 int i; 1237 int bSeq; /* True if sorter record includes seq. no. */ 1238 struct ExprList_item *aOutEx = p->pEList->a; 1239 1240 assert( addrBreak<0 ); 1241 if( pSort->labelBkOut ){ 1242 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1243 sqlite3VdbeGoto(v, addrBreak); 1244 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1245 } 1246 iTab = pSort->iECursor; 1247 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1248 regRowid = 0; 1249 regRow = pDest->iSdst; 1250 nSortData = nColumn; 1251 }else{ 1252 regRowid = sqlite3GetTempReg(pParse); 1253 regRow = sqlite3GetTempRange(pParse, nColumn); 1254 nSortData = nColumn; 1255 } 1256 nKey = pOrderBy->nExpr - pSort->nOBSat; 1257 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1258 int regSortOut = ++pParse->nMem; 1259 iSortTab = pParse->nTab++; 1260 if( pSort->labelBkOut ){ 1261 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1262 } 1263 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1264 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1265 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1266 VdbeCoverage(v); 1267 codeOffset(v, p->iOffset, addrContinue); 1268 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1269 bSeq = 0; 1270 }else{ 1271 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1272 codeOffset(v, p->iOffset, addrContinue); 1273 iSortTab = iTab; 1274 bSeq = 1; 1275 } 1276 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){ 1277 int iRead; 1278 if( aOutEx[i].u.x.iOrderByCol ){ 1279 iRead = aOutEx[i].u.x.iOrderByCol-1; 1280 }else{ 1281 iRead = iCol++; 1282 } 1283 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1284 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1285 } 1286 switch( eDest ){ 1287 case SRT_Table: 1288 case SRT_EphemTab: { 1289 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1290 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1291 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1292 break; 1293 } 1294 #ifndef SQLITE_OMIT_SUBQUERY 1295 case SRT_Set: { 1296 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1297 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1298 pDest->zAffSdst, nColumn); 1299 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1300 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1301 break; 1302 } 1303 case SRT_Mem: { 1304 /* The LIMIT clause will terminate the loop for us */ 1305 break; 1306 } 1307 #endif 1308 default: { 1309 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1310 testcase( eDest==SRT_Output ); 1311 testcase( eDest==SRT_Coroutine ); 1312 if( eDest==SRT_Output ){ 1313 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1314 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1315 }else{ 1316 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1317 } 1318 break; 1319 } 1320 } 1321 if( regRowid ){ 1322 if( eDest==SRT_Set ){ 1323 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1324 }else{ 1325 sqlite3ReleaseTempReg(pParse, regRow); 1326 } 1327 sqlite3ReleaseTempReg(pParse, regRowid); 1328 } 1329 /* The bottom of the loop 1330 */ 1331 sqlite3VdbeResolveLabel(v, addrContinue); 1332 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1333 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1334 }else{ 1335 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1336 } 1337 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1338 sqlite3VdbeResolveLabel(v, addrBreak); 1339 } 1340 1341 /* 1342 ** Return a pointer to a string containing the 'declaration type' of the 1343 ** expression pExpr. The string may be treated as static by the caller. 1344 ** 1345 ** Also try to estimate the size of the returned value and return that 1346 ** result in *pEstWidth. 1347 ** 1348 ** The declaration type is the exact datatype definition extracted from the 1349 ** original CREATE TABLE statement if the expression is a column. The 1350 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1351 ** is considered a column can be complex in the presence of subqueries. The 1352 ** result-set expression in all of the following SELECT statements is 1353 ** considered a column by this function. 1354 ** 1355 ** SELECT col FROM tbl; 1356 ** SELECT (SELECT col FROM tbl; 1357 ** SELECT (SELECT col FROM tbl); 1358 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1359 ** 1360 ** The declaration type for any expression other than a column is NULL. 1361 ** 1362 ** This routine has either 3 or 6 parameters depending on whether or not 1363 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1364 */ 1365 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1366 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1367 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1368 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1369 #endif 1370 static const char *columnTypeImpl( 1371 NameContext *pNC, 1372 Expr *pExpr, 1373 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1374 const char **pzOrigDb, 1375 const char **pzOrigTab, 1376 const char **pzOrigCol, 1377 #endif 1378 u8 *pEstWidth 1379 ){ 1380 char const *zType = 0; 1381 int j; 1382 u8 estWidth = 1; 1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1384 char const *zOrigDb = 0; 1385 char const *zOrigTab = 0; 1386 char const *zOrigCol = 0; 1387 #endif 1388 1389 assert( pExpr!=0 ); 1390 assert( pNC->pSrcList!=0 ); 1391 switch( pExpr->op ){ 1392 case TK_AGG_COLUMN: 1393 case TK_COLUMN: { 1394 /* The expression is a column. Locate the table the column is being 1395 ** extracted from in NameContext.pSrcList. This table may be real 1396 ** database table or a subquery. 1397 */ 1398 Table *pTab = 0; /* Table structure column is extracted from */ 1399 Select *pS = 0; /* Select the column is extracted from */ 1400 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1401 testcase( pExpr->op==TK_AGG_COLUMN ); 1402 testcase( pExpr->op==TK_COLUMN ); 1403 while( pNC && !pTab ){ 1404 SrcList *pTabList = pNC->pSrcList; 1405 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1406 if( j<pTabList->nSrc ){ 1407 pTab = pTabList->a[j].pTab; 1408 pS = pTabList->a[j].pSelect; 1409 }else{ 1410 pNC = pNC->pNext; 1411 } 1412 } 1413 1414 if( pTab==0 ){ 1415 /* At one time, code such as "SELECT new.x" within a trigger would 1416 ** cause this condition to run. Since then, we have restructured how 1417 ** trigger code is generated and so this condition is no longer 1418 ** possible. However, it can still be true for statements like 1419 ** the following: 1420 ** 1421 ** CREATE TABLE t1(col INTEGER); 1422 ** SELECT (SELECT t1.col) FROM FROM t1; 1423 ** 1424 ** when columnType() is called on the expression "t1.col" in the 1425 ** sub-select. In this case, set the column type to NULL, even 1426 ** though it should really be "INTEGER". 1427 ** 1428 ** This is not a problem, as the column type of "t1.col" is never 1429 ** used. When columnType() is called on the expression 1430 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1431 ** branch below. */ 1432 break; 1433 } 1434 1435 assert( pTab && pExpr->pTab==pTab ); 1436 if( pS ){ 1437 /* The "table" is actually a sub-select or a view in the FROM clause 1438 ** of the SELECT statement. Return the declaration type and origin 1439 ** data for the result-set column of the sub-select. 1440 */ 1441 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1442 /* If iCol is less than zero, then the expression requests the 1443 ** rowid of the sub-select or view. This expression is legal (see 1444 ** test case misc2.2.2) - it always evaluates to NULL. 1445 ** 1446 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1447 ** caught already by name resolution. 1448 */ 1449 NameContext sNC; 1450 Expr *p = pS->pEList->a[iCol].pExpr; 1451 sNC.pSrcList = pS->pSrc; 1452 sNC.pNext = pNC; 1453 sNC.pParse = pNC->pParse; 1454 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1455 } 1456 }else if( pTab->pSchema ){ 1457 /* A real table */ 1458 assert( !pS ); 1459 if( iCol<0 ) iCol = pTab->iPKey; 1460 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1461 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1462 if( iCol<0 ){ 1463 zType = "INTEGER"; 1464 zOrigCol = "rowid"; 1465 }else{ 1466 zOrigCol = pTab->aCol[iCol].zName; 1467 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1468 estWidth = pTab->aCol[iCol].szEst; 1469 } 1470 zOrigTab = pTab->zName; 1471 if( pNC->pParse ){ 1472 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1473 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1474 } 1475 #else 1476 if( iCol<0 ){ 1477 zType = "INTEGER"; 1478 }else{ 1479 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1480 estWidth = pTab->aCol[iCol].szEst; 1481 } 1482 #endif 1483 } 1484 break; 1485 } 1486 #ifndef SQLITE_OMIT_SUBQUERY 1487 case TK_SELECT: { 1488 /* The expression is a sub-select. Return the declaration type and 1489 ** origin info for the single column in the result set of the SELECT 1490 ** statement. 1491 */ 1492 NameContext sNC; 1493 Select *pS = pExpr->x.pSelect; 1494 Expr *p = pS->pEList->a[0].pExpr; 1495 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1496 sNC.pSrcList = pS->pSrc; 1497 sNC.pNext = pNC; 1498 sNC.pParse = pNC->pParse; 1499 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1500 break; 1501 } 1502 #endif 1503 } 1504 1505 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1506 if( pzOrigDb ){ 1507 assert( pzOrigTab && pzOrigCol ); 1508 *pzOrigDb = zOrigDb; 1509 *pzOrigTab = zOrigTab; 1510 *pzOrigCol = zOrigCol; 1511 } 1512 #endif 1513 if( pEstWidth ) *pEstWidth = estWidth; 1514 return zType; 1515 } 1516 1517 /* 1518 ** Generate code that will tell the VDBE the declaration types of columns 1519 ** in the result set. 1520 */ 1521 static void generateColumnTypes( 1522 Parse *pParse, /* Parser context */ 1523 SrcList *pTabList, /* List of tables */ 1524 ExprList *pEList /* Expressions defining the result set */ 1525 ){ 1526 #ifndef SQLITE_OMIT_DECLTYPE 1527 Vdbe *v = pParse->pVdbe; 1528 int i; 1529 NameContext sNC; 1530 sNC.pSrcList = pTabList; 1531 sNC.pParse = pParse; 1532 sNC.pNext = 0; 1533 for(i=0; i<pEList->nExpr; i++){ 1534 Expr *p = pEList->a[i].pExpr; 1535 const char *zType; 1536 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1537 const char *zOrigDb = 0; 1538 const char *zOrigTab = 0; 1539 const char *zOrigCol = 0; 1540 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1541 1542 /* The vdbe must make its own copy of the column-type and other 1543 ** column specific strings, in case the schema is reset before this 1544 ** virtual machine is deleted. 1545 */ 1546 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1547 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1548 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1549 #else 1550 zType = columnType(&sNC, p, 0, 0, 0, 0); 1551 #endif 1552 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1553 } 1554 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1555 } 1556 1557 /* 1558 ** Return the Table objecct in the SrcList that has cursor iCursor. 1559 ** Or return NULL if no such Table object exists in the SrcList. 1560 */ 1561 static Table *tableWithCursor(SrcList *pList, int iCursor){ 1562 int j; 1563 for(j=0; j<pList->nSrc; j++){ 1564 if( pList->a[j].iCursor==iCursor ) return pList->a[j].pTab; 1565 } 1566 return 0; 1567 } 1568 1569 1570 /* 1571 ** Compute the column names for a SELECT statement. 1572 ** 1573 ** The only guarantee that SQLite makes about column names is that if the 1574 ** column has an AS clause assigning it a name, that will be the name used. 1575 ** That is the only documented guarantee. However, countless applications 1576 ** developed over the years have made baseless assumptions about column names 1577 ** and will break if those assumptions changes. Hence, use extreme caution 1578 ** when modifying this routine to avoid breaking legacy. 1579 ** 1580 ** See Also: sqlite3ColumnsFromExprList() 1581 ** 1582 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1583 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1584 ** applications should operate this way. Nevertheless, we need to support the 1585 ** other modes for legacy: 1586 ** 1587 ** short=OFF, full=OFF: Column name is the text of the expression has it 1588 ** originally appears in the SELECT statement. In 1589 ** other words, the zSpan of the result expression. 1590 ** 1591 ** short=ON, full=OFF: (This is the default setting). If the result 1592 ** refers directly to a table column, then the result 1593 ** column name is just the table column name: COLUMN. 1594 ** Otherwise use zSpan. 1595 ** 1596 ** full=ON, short=ANY: If the result refers directly to a table column, 1597 ** then the result column name with the table name 1598 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1599 */ 1600 static void generateColumnNames( 1601 Parse *pParse, /* Parser context */ 1602 SrcList *pTabList, /* The FROM clause of the SELECT */ 1603 ExprList *pEList /* Expressions defining the result set */ 1604 ){ 1605 Vdbe *v = pParse->pVdbe; 1606 int i; 1607 Table *pTab; 1608 sqlite3 *db = pParse->db; 1609 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1610 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1611 1612 #ifndef SQLITE_OMIT_EXPLAIN 1613 /* If this is an EXPLAIN, skip this step */ 1614 if( pParse->explain ){ 1615 return; 1616 } 1617 #endif 1618 1619 if( pParse->colNamesSet || db->mallocFailed ) return; 1620 assert( v!=0 ); 1621 assert( pTabList!=0 ); 1622 pParse->colNamesSet = 1; 1623 fullName = (db->flags & SQLITE_FullColNames)!=0; 1624 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1625 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1626 for(i=0; i<pEList->nExpr; i++){ 1627 Expr *p = pEList->a[i].pExpr; 1628 1629 assert( p!=0 ); 1630 if( pEList->a[i].zName ){ 1631 /* An AS clause always takes first priority */ 1632 char *zName = pEList->a[i].zName; 1633 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1634 }else if( srcName 1635 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 1636 && (pTab = tableWithCursor(pTabList, p->iTable))!=0 1637 ){ 1638 char *zCol; 1639 int iCol = p->iColumn; 1640 if( iCol<0 ) iCol = pTab->iPKey; 1641 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1642 if( iCol<0 ){ 1643 zCol = "rowid"; 1644 }else{ 1645 zCol = pTab->aCol[iCol].zName; 1646 } 1647 if( fullName ){ 1648 char *zName = 0; 1649 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1650 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1651 }else{ 1652 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1653 } 1654 }else{ 1655 const char *z = pEList->a[i].zSpan; 1656 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1657 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1658 } 1659 } 1660 generateColumnTypes(pParse, pTabList, pEList); 1661 } 1662 1663 /* 1664 ** Given an expression list (which is really the list of expressions 1665 ** that form the result set of a SELECT statement) compute appropriate 1666 ** column names for a table that would hold the expression list. 1667 ** 1668 ** All column names will be unique. 1669 ** 1670 ** Only the column names are computed. Column.zType, Column.zColl, 1671 ** and other fields of Column are zeroed. 1672 ** 1673 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1674 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1675 ** 1676 ** The only guarantee that SQLite makes about column names is that if the 1677 ** column has an AS clause assigning it a name, that will be the name used. 1678 ** That is the only documented guarantee. However, countless applications 1679 ** developed over the years have made baseless assumptions about column names 1680 ** and will break if those assumptions changes. Hence, use extreme caution 1681 ** when modifying this routine to avoid breaking legacy. 1682 ** 1683 ** See Also: generateColumnNames() 1684 */ 1685 int sqlite3ColumnsFromExprList( 1686 Parse *pParse, /* Parsing context */ 1687 ExprList *pEList, /* Expr list from which to derive column names */ 1688 i16 *pnCol, /* Write the number of columns here */ 1689 Column **paCol /* Write the new column list here */ 1690 ){ 1691 sqlite3 *db = pParse->db; /* Database connection */ 1692 int i, j; /* Loop counters */ 1693 u32 cnt; /* Index added to make the name unique */ 1694 Column *aCol, *pCol; /* For looping over result columns */ 1695 int nCol; /* Number of columns in the result set */ 1696 char *zName; /* Column name */ 1697 int nName; /* Size of name in zName[] */ 1698 Hash ht; /* Hash table of column names */ 1699 1700 sqlite3HashInit(&ht); 1701 if( pEList ){ 1702 nCol = pEList->nExpr; 1703 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1704 testcase( aCol==0 ); 1705 }else{ 1706 nCol = 0; 1707 aCol = 0; 1708 } 1709 assert( nCol==(i16)nCol ); 1710 *pnCol = nCol; 1711 *paCol = aCol; 1712 1713 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1714 /* Get an appropriate name for the column 1715 */ 1716 if( (zName = pEList->a[i].zName)!=0 ){ 1717 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1718 }else{ 1719 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1720 while( pColExpr->op==TK_DOT ){ 1721 pColExpr = pColExpr->pRight; 1722 assert( pColExpr!=0 ); 1723 } 1724 if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){ 1725 /* For columns use the column name name */ 1726 int iCol = pColExpr->iColumn; 1727 Table *pTab = pColExpr->pTab; 1728 if( iCol<0 ) iCol = pTab->iPKey; 1729 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1730 }else if( pColExpr->op==TK_ID ){ 1731 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1732 zName = pColExpr->u.zToken; 1733 }else{ 1734 /* Use the original text of the column expression as its name */ 1735 zName = pEList->a[i].zSpan; 1736 } 1737 } 1738 if( zName ){ 1739 zName = sqlite3DbStrDup(db, zName); 1740 }else{ 1741 zName = sqlite3MPrintf(db,"column%d",i+1); 1742 } 1743 1744 /* Make sure the column name is unique. If the name is not unique, 1745 ** append an integer to the name so that it becomes unique. 1746 */ 1747 cnt = 0; 1748 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1749 nName = sqlite3Strlen30(zName); 1750 if( nName>0 ){ 1751 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1752 if( zName[j]==':' ) nName = j; 1753 } 1754 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1755 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1756 } 1757 pCol->zName = zName; 1758 sqlite3ColumnPropertiesFromName(0, pCol); 1759 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1760 sqlite3OomFault(db); 1761 } 1762 } 1763 sqlite3HashClear(&ht); 1764 if( db->mallocFailed ){ 1765 for(j=0; j<i; j++){ 1766 sqlite3DbFree(db, aCol[j].zName); 1767 } 1768 sqlite3DbFree(db, aCol); 1769 *paCol = 0; 1770 *pnCol = 0; 1771 return SQLITE_NOMEM_BKPT; 1772 } 1773 return SQLITE_OK; 1774 } 1775 1776 /* 1777 ** Add type and collation information to a column list based on 1778 ** a SELECT statement. 1779 ** 1780 ** The column list presumably came from selectColumnNamesFromExprList(). 1781 ** The column list has only names, not types or collations. This 1782 ** routine goes through and adds the types and collations. 1783 ** 1784 ** This routine requires that all identifiers in the SELECT 1785 ** statement be resolved. 1786 */ 1787 void sqlite3SelectAddColumnTypeAndCollation( 1788 Parse *pParse, /* Parsing contexts */ 1789 Table *pTab, /* Add column type information to this table */ 1790 Select *pSelect /* SELECT used to determine types and collations */ 1791 ){ 1792 sqlite3 *db = pParse->db; 1793 NameContext sNC; 1794 Column *pCol; 1795 CollSeq *pColl; 1796 int i; 1797 Expr *p; 1798 struct ExprList_item *a; 1799 u64 szAll = 0; 1800 1801 assert( pSelect!=0 ); 1802 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1803 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1804 if( db->mallocFailed ) return; 1805 memset(&sNC, 0, sizeof(sNC)); 1806 sNC.pSrcList = pSelect->pSrc; 1807 a = pSelect->pEList->a; 1808 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1809 const char *zType; 1810 int n, m; 1811 p = a[i].pExpr; 1812 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1813 szAll += pCol->szEst; 1814 pCol->affinity = sqlite3ExprAffinity(p); 1815 if( zType && (m = sqlite3Strlen30(zType))>0 ){ 1816 n = sqlite3Strlen30(pCol->zName); 1817 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1818 if( pCol->zName ){ 1819 memcpy(&pCol->zName[n+1], zType, m+1); 1820 pCol->colFlags |= COLFLAG_HASTYPE; 1821 } 1822 } 1823 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1824 pColl = sqlite3ExprCollSeq(pParse, p); 1825 if( pColl && pCol->zColl==0 ){ 1826 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1827 } 1828 } 1829 pTab->szTabRow = sqlite3LogEst(szAll*4); 1830 } 1831 1832 /* 1833 ** Given a SELECT statement, generate a Table structure that describes 1834 ** the result set of that SELECT. 1835 */ 1836 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1837 Table *pTab; 1838 sqlite3 *db = pParse->db; 1839 int savedFlags; 1840 1841 savedFlags = db->flags; 1842 db->flags &= ~SQLITE_FullColNames; 1843 db->flags |= SQLITE_ShortColNames; 1844 sqlite3SelectPrep(pParse, pSelect, 0); 1845 if( pParse->nErr ) return 0; 1846 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1847 db->flags = savedFlags; 1848 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1849 if( pTab==0 ){ 1850 return 0; 1851 } 1852 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1853 ** is disabled */ 1854 assert( db->lookaside.bDisable ); 1855 pTab->nTabRef = 1; 1856 pTab->zName = 0; 1857 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1858 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1859 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1860 pTab->iPKey = -1; 1861 if( db->mallocFailed ){ 1862 sqlite3DeleteTable(db, pTab); 1863 return 0; 1864 } 1865 return pTab; 1866 } 1867 1868 /* 1869 ** Get a VDBE for the given parser context. Create a new one if necessary. 1870 ** If an error occurs, return NULL and leave a message in pParse. 1871 */ 1872 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){ 1873 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1874 if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1); 1875 if( pParse->pToplevel==0 1876 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1877 ){ 1878 pParse->okConstFactor = 1; 1879 } 1880 return v; 1881 } 1882 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1883 Vdbe *v = pParse->pVdbe; 1884 return v ? v : allocVdbe(pParse); 1885 } 1886 1887 1888 /* 1889 ** Compute the iLimit and iOffset fields of the SELECT based on the 1890 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1891 ** that appear in the original SQL statement after the LIMIT and OFFSET 1892 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1893 ** are the integer memory register numbers for counters used to compute 1894 ** the limit and offset. If there is no limit and/or offset, then 1895 ** iLimit and iOffset are negative. 1896 ** 1897 ** This routine changes the values of iLimit and iOffset only if 1898 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1899 ** iOffset should have been preset to appropriate default values (zero) 1900 ** prior to calling this routine. 1901 ** 1902 ** The iOffset register (if it exists) is initialized to the value 1903 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1904 ** iOffset+1 is initialized to LIMIT+OFFSET. 1905 ** 1906 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1907 ** redefined. The UNION ALL operator uses this property to force 1908 ** the reuse of the same limit and offset registers across multiple 1909 ** SELECT statements. 1910 */ 1911 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1912 Vdbe *v = 0; 1913 int iLimit = 0; 1914 int iOffset; 1915 int n; 1916 if( p->iLimit ) return; 1917 1918 /* 1919 ** "LIMIT -1" always shows all rows. There is some 1920 ** controversy about what the correct behavior should be. 1921 ** The current implementation interprets "LIMIT 0" to mean 1922 ** no rows. 1923 */ 1924 sqlite3ExprCacheClear(pParse); 1925 assert( p->pOffset==0 || p->pLimit!=0 ); 1926 if( p->pLimit ){ 1927 p->iLimit = iLimit = ++pParse->nMem; 1928 v = sqlite3GetVdbe(pParse); 1929 assert( v!=0 ); 1930 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1931 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1932 VdbeComment((v, "LIMIT counter")); 1933 if( n==0 ){ 1934 sqlite3VdbeGoto(v, iBreak); 1935 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1936 p->nSelectRow = sqlite3LogEst((u64)n); 1937 p->selFlags |= SF_FixedLimit; 1938 } 1939 }else{ 1940 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1941 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1942 VdbeComment((v, "LIMIT counter")); 1943 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1944 } 1945 if( p->pOffset ){ 1946 p->iOffset = iOffset = ++pParse->nMem; 1947 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1948 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1949 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1950 VdbeComment((v, "OFFSET counter")); 1951 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1952 VdbeComment((v, "LIMIT+OFFSET")); 1953 } 1954 } 1955 } 1956 1957 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1958 /* 1959 ** Return the appropriate collating sequence for the iCol-th column of 1960 ** the result set for the compound-select statement "p". Return NULL if 1961 ** the column has no default collating sequence. 1962 ** 1963 ** The collating sequence for the compound select is taken from the 1964 ** left-most term of the select that has a collating sequence. 1965 */ 1966 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1967 CollSeq *pRet; 1968 if( p->pPrior ){ 1969 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1970 }else{ 1971 pRet = 0; 1972 } 1973 assert( iCol>=0 ); 1974 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1975 ** have been thrown during name resolution and we would not have gotten 1976 ** this far */ 1977 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1978 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1979 } 1980 return pRet; 1981 } 1982 1983 /* 1984 ** The select statement passed as the second parameter is a compound SELECT 1985 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1986 ** structure suitable for implementing the ORDER BY. 1987 ** 1988 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1989 ** function is responsible for ensuring that this structure is eventually 1990 ** freed. 1991 */ 1992 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1993 ExprList *pOrderBy = p->pOrderBy; 1994 int nOrderBy = p->pOrderBy->nExpr; 1995 sqlite3 *db = pParse->db; 1996 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1997 if( pRet ){ 1998 int i; 1999 for(i=0; i<nOrderBy; i++){ 2000 struct ExprList_item *pItem = &pOrderBy->a[i]; 2001 Expr *pTerm = pItem->pExpr; 2002 CollSeq *pColl; 2003 2004 if( pTerm->flags & EP_Collate ){ 2005 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2006 }else{ 2007 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2008 if( pColl==0 ) pColl = db->pDfltColl; 2009 pOrderBy->a[i].pExpr = 2010 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2011 } 2012 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2013 pRet->aColl[i] = pColl; 2014 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2015 } 2016 } 2017 2018 return pRet; 2019 } 2020 2021 #ifndef SQLITE_OMIT_CTE 2022 /* 2023 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2024 ** query of the form: 2025 ** 2026 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2027 ** \___________/ \_______________/ 2028 ** p->pPrior p 2029 ** 2030 ** 2031 ** There is exactly one reference to the recursive-table in the FROM clause 2032 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2033 ** 2034 ** The setup-query runs once to generate an initial set of rows that go 2035 ** into a Queue table. Rows are extracted from the Queue table one by 2036 ** one. Each row extracted from Queue is output to pDest. Then the single 2037 ** extracted row (now in the iCurrent table) becomes the content of the 2038 ** recursive-table for a recursive-query run. The output of the recursive-query 2039 ** is added back into the Queue table. Then another row is extracted from Queue 2040 ** and the iteration continues until the Queue table is empty. 2041 ** 2042 ** If the compound query operator is UNION then no duplicate rows are ever 2043 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2044 ** that have ever been inserted into Queue and causes duplicates to be 2045 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2046 ** 2047 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2048 ** ORDER BY order and the first entry is extracted for each cycle. Without 2049 ** an ORDER BY, the Queue table is just a FIFO. 2050 ** 2051 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2052 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2053 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2054 ** with a positive value, then the first OFFSET outputs are discarded rather 2055 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2056 ** rows have been skipped. 2057 */ 2058 static void generateWithRecursiveQuery( 2059 Parse *pParse, /* Parsing context */ 2060 Select *p, /* The recursive SELECT to be coded */ 2061 SelectDest *pDest /* What to do with query results */ 2062 ){ 2063 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2064 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2065 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2066 Select *pSetup = p->pPrior; /* The setup query */ 2067 int addrTop; /* Top of the loop */ 2068 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2069 int iCurrent = 0; /* The Current table */ 2070 int regCurrent; /* Register holding Current table */ 2071 int iQueue; /* The Queue table */ 2072 int iDistinct = 0; /* To ensure unique results if UNION */ 2073 int eDest = SRT_Fifo; /* How to write to Queue */ 2074 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2075 int i; /* Loop counter */ 2076 int rc; /* Result code */ 2077 ExprList *pOrderBy; /* The ORDER BY clause */ 2078 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 2079 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2080 2081 /* Obtain authorization to do a recursive query */ 2082 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2083 2084 /* Process the LIMIT and OFFSET clauses, if they exist */ 2085 addrBreak = sqlite3VdbeMakeLabel(v); 2086 p->nSelectRow = 320; /* 4 billion rows */ 2087 computeLimitRegisters(pParse, p, addrBreak); 2088 pLimit = p->pLimit; 2089 pOffset = p->pOffset; 2090 regLimit = p->iLimit; 2091 regOffset = p->iOffset; 2092 p->pLimit = p->pOffset = 0; 2093 p->iLimit = p->iOffset = 0; 2094 pOrderBy = p->pOrderBy; 2095 2096 /* Locate the cursor number of the Current table */ 2097 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2098 if( pSrc->a[i].fg.isRecursive ){ 2099 iCurrent = pSrc->a[i].iCursor; 2100 break; 2101 } 2102 } 2103 2104 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2105 ** the Distinct table must be exactly one greater than Queue in order 2106 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2107 iQueue = pParse->nTab++; 2108 if( p->op==TK_UNION ){ 2109 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2110 iDistinct = pParse->nTab++; 2111 }else{ 2112 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2113 } 2114 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2115 2116 /* Allocate cursors for Current, Queue, and Distinct. */ 2117 regCurrent = ++pParse->nMem; 2118 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2119 if( pOrderBy ){ 2120 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2121 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2122 (char*)pKeyInfo, P4_KEYINFO); 2123 destQueue.pOrderBy = pOrderBy; 2124 }else{ 2125 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2126 } 2127 VdbeComment((v, "Queue table")); 2128 if( iDistinct ){ 2129 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2130 p->selFlags |= SF_UsesEphemeral; 2131 } 2132 2133 /* Detach the ORDER BY clause from the compound SELECT */ 2134 p->pOrderBy = 0; 2135 2136 /* Store the results of the setup-query in Queue. */ 2137 pSetup->pNext = 0; 2138 rc = sqlite3Select(pParse, pSetup, &destQueue); 2139 pSetup->pNext = p; 2140 if( rc ) goto end_of_recursive_query; 2141 2142 /* Find the next row in the Queue and output that row */ 2143 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2144 2145 /* Transfer the next row in Queue over to Current */ 2146 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2147 if( pOrderBy ){ 2148 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2149 }else{ 2150 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2151 } 2152 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2153 2154 /* Output the single row in Current */ 2155 addrCont = sqlite3VdbeMakeLabel(v); 2156 codeOffset(v, regOffset, addrCont); 2157 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2158 0, 0, pDest, addrCont, addrBreak); 2159 if( regLimit ){ 2160 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2161 VdbeCoverage(v); 2162 } 2163 sqlite3VdbeResolveLabel(v, addrCont); 2164 2165 /* Execute the recursive SELECT taking the single row in Current as 2166 ** the value for the recursive-table. Store the results in the Queue. 2167 */ 2168 if( p->selFlags & SF_Aggregate ){ 2169 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2170 }else{ 2171 p->pPrior = 0; 2172 sqlite3Select(pParse, p, &destQueue); 2173 assert( p->pPrior==0 ); 2174 p->pPrior = pSetup; 2175 } 2176 2177 /* Keep running the loop until the Queue is empty */ 2178 sqlite3VdbeGoto(v, addrTop); 2179 sqlite3VdbeResolveLabel(v, addrBreak); 2180 2181 end_of_recursive_query: 2182 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2183 p->pOrderBy = pOrderBy; 2184 p->pLimit = pLimit; 2185 p->pOffset = pOffset; 2186 return; 2187 } 2188 #endif /* SQLITE_OMIT_CTE */ 2189 2190 /* Forward references */ 2191 static int multiSelectOrderBy( 2192 Parse *pParse, /* Parsing context */ 2193 Select *p, /* The right-most of SELECTs to be coded */ 2194 SelectDest *pDest /* What to do with query results */ 2195 ); 2196 2197 /* 2198 ** Handle the special case of a compound-select that originates from a 2199 ** VALUES clause. By handling this as a special case, we avoid deep 2200 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2201 ** on a VALUES clause. 2202 ** 2203 ** Because the Select object originates from a VALUES clause: 2204 ** (1) It has no LIMIT or OFFSET 2205 ** (2) All terms are UNION ALL 2206 ** (3) There is no ORDER BY clause 2207 */ 2208 static int multiSelectValues( 2209 Parse *pParse, /* Parsing context */ 2210 Select *p, /* The right-most of SELECTs to be coded */ 2211 SelectDest *pDest /* What to do with query results */ 2212 ){ 2213 Select *pPrior; 2214 int nRow = 1; 2215 int rc = 0; 2216 assert( p->selFlags & SF_MultiValue ); 2217 do{ 2218 assert( p->selFlags & SF_Values ); 2219 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2220 assert( p->pLimit==0 ); 2221 assert( p->pOffset==0 ); 2222 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2223 if( p->pPrior==0 ) break; 2224 assert( p->pPrior->pNext==p ); 2225 p = p->pPrior; 2226 nRow++; 2227 }while(1); 2228 while( p ){ 2229 pPrior = p->pPrior; 2230 p->pPrior = 0; 2231 rc = sqlite3Select(pParse, p, pDest); 2232 p->pPrior = pPrior; 2233 if( rc ) break; 2234 p->nSelectRow = nRow; 2235 p = p->pNext; 2236 } 2237 return rc; 2238 } 2239 2240 /* 2241 ** This routine is called to process a compound query form from 2242 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2243 ** INTERSECT 2244 ** 2245 ** "p" points to the right-most of the two queries. the query on the 2246 ** left is p->pPrior. The left query could also be a compound query 2247 ** in which case this routine will be called recursively. 2248 ** 2249 ** The results of the total query are to be written into a destination 2250 ** of type eDest with parameter iParm. 2251 ** 2252 ** Example 1: Consider a three-way compound SQL statement. 2253 ** 2254 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2255 ** 2256 ** This statement is parsed up as follows: 2257 ** 2258 ** SELECT c FROM t3 2259 ** | 2260 ** `-----> SELECT b FROM t2 2261 ** | 2262 ** `------> SELECT a FROM t1 2263 ** 2264 ** The arrows in the diagram above represent the Select.pPrior pointer. 2265 ** So if this routine is called with p equal to the t3 query, then 2266 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2267 ** 2268 ** Notice that because of the way SQLite parses compound SELECTs, the 2269 ** individual selects always group from left to right. 2270 */ 2271 static int multiSelect( 2272 Parse *pParse, /* Parsing context */ 2273 Select *p, /* The right-most of SELECTs to be coded */ 2274 SelectDest *pDest /* What to do with query results */ 2275 ){ 2276 int rc = SQLITE_OK; /* Success code from a subroutine */ 2277 Select *pPrior; /* Another SELECT immediately to our left */ 2278 Vdbe *v; /* Generate code to this VDBE */ 2279 SelectDest dest; /* Alternative data destination */ 2280 Select *pDelete = 0; /* Chain of simple selects to delete */ 2281 sqlite3 *db; /* Database connection */ 2282 #ifndef SQLITE_OMIT_EXPLAIN 2283 int iSub1 = 0; /* EQP id of left-hand query */ 2284 int iSub2 = 0; /* EQP id of right-hand query */ 2285 #endif 2286 2287 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2288 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2289 */ 2290 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2291 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2292 db = pParse->db; 2293 pPrior = p->pPrior; 2294 dest = *pDest; 2295 if( pPrior->pOrderBy ){ 2296 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2297 selectOpName(p->op)); 2298 rc = 1; 2299 goto multi_select_end; 2300 } 2301 if( pPrior->pLimit ){ 2302 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2303 selectOpName(p->op)); 2304 rc = 1; 2305 goto multi_select_end; 2306 } 2307 2308 v = sqlite3GetVdbe(pParse); 2309 assert( v!=0 ); /* The VDBE already created by calling function */ 2310 2311 /* Create the destination temporary table if necessary 2312 */ 2313 if( dest.eDest==SRT_EphemTab ){ 2314 assert( p->pEList ); 2315 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2316 dest.eDest = SRT_Table; 2317 } 2318 2319 /* Special handling for a compound-select that originates as a VALUES clause. 2320 */ 2321 if( p->selFlags & SF_MultiValue ){ 2322 rc = multiSelectValues(pParse, p, &dest); 2323 goto multi_select_end; 2324 } 2325 2326 /* Make sure all SELECTs in the statement have the same number of elements 2327 ** in their result sets. 2328 */ 2329 assert( p->pEList && pPrior->pEList ); 2330 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2331 2332 #ifndef SQLITE_OMIT_CTE 2333 if( p->selFlags & SF_Recursive ){ 2334 generateWithRecursiveQuery(pParse, p, &dest); 2335 }else 2336 #endif 2337 2338 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2339 */ 2340 if( p->pOrderBy ){ 2341 return multiSelectOrderBy(pParse, p, pDest); 2342 }else 2343 2344 /* Generate code for the left and right SELECT statements. 2345 */ 2346 switch( p->op ){ 2347 case TK_ALL: { 2348 int addr = 0; 2349 int nLimit; 2350 assert( !pPrior->pLimit ); 2351 pPrior->iLimit = p->iLimit; 2352 pPrior->iOffset = p->iOffset; 2353 pPrior->pLimit = p->pLimit; 2354 pPrior->pOffset = p->pOffset; 2355 explainSetInteger(iSub1, pParse->iNextSelectId); 2356 rc = sqlite3Select(pParse, pPrior, &dest); 2357 p->pLimit = 0; 2358 p->pOffset = 0; 2359 if( rc ){ 2360 goto multi_select_end; 2361 } 2362 p->pPrior = 0; 2363 p->iLimit = pPrior->iLimit; 2364 p->iOffset = pPrior->iOffset; 2365 if( p->iLimit ){ 2366 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2367 VdbeComment((v, "Jump ahead if LIMIT reached")); 2368 if( p->iOffset ){ 2369 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2370 p->iLimit, p->iOffset+1, p->iOffset); 2371 } 2372 } 2373 explainSetInteger(iSub2, pParse->iNextSelectId); 2374 rc = sqlite3Select(pParse, p, &dest); 2375 testcase( rc!=SQLITE_OK ); 2376 pDelete = p->pPrior; 2377 p->pPrior = pPrior; 2378 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2379 if( pPrior->pLimit 2380 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2381 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2382 ){ 2383 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2384 } 2385 if( addr ){ 2386 sqlite3VdbeJumpHere(v, addr); 2387 } 2388 break; 2389 } 2390 case TK_EXCEPT: 2391 case TK_UNION: { 2392 int unionTab; /* Cursor number of the temporary table holding result */ 2393 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2394 int priorOp; /* The SRT_ operation to apply to prior selects */ 2395 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2396 int addr; 2397 SelectDest uniondest; 2398 2399 testcase( p->op==TK_EXCEPT ); 2400 testcase( p->op==TK_UNION ); 2401 priorOp = SRT_Union; 2402 if( dest.eDest==priorOp ){ 2403 /* We can reuse a temporary table generated by a SELECT to our 2404 ** right. 2405 */ 2406 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2407 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2408 unionTab = dest.iSDParm; 2409 }else{ 2410 /* We will need to create our own temporary table to hold the 2411 ** intermediate results. 2412 */ 2413 unionTab = pParse->nTab++; 2414 assert( p->pOrderBy==0 ); 2415 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2416 assert( p->addrOpenEphm[0] == -1 ); 2417 p->addrOpenEphm[0] = addr; 2418 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2419 assert( p->pEList ); 2420 } 2421 2422 /* Code the SELECT statements to our left 2423 */ 2424 assert( !pPrior->pOrderBy ); 2425 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2426 explainSetInteger(iSub1, pParse->iNextSelectId); 2427 rc = sqlite3Select(pParse, pPrior, &uniondest); 2428 if( rc ){ 2429 goto multi_select_end; 2430 } 2431 2432 /* Code the current SELECT statement 2433 */ 2434 if( p->op==TK_EXCEPT ){ 2435 op = SRT_Except; 2436 }else{ 2437 assert( p->op==TK_UNION ); 2438 op = SRT_Union; 2439 } 2440 p->pPrior = 0; 2441 pLimit = p->pLimit; 2442 p->pLimit = 0; 2443 pOffset = p->pOffset; 2444 p->pOffset = 0; 2445 uniondest.eDest = op; 2446 explainSetInteger(iSub2, pParse->iNextSelectId); 2447 rc = sqlite3Select(pParse, p, &uniondest); 2448 testcase( rc!=SQLITE_OK ); 2449 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2450 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2451 sqlite3ExprListDelete(db, p->pOrderBy); 2452 pDelete = p->pPrior; 2453 p->pPrior = pPrior; 2454 p->pOrderBy = 0; 2455 if( p->op==TK_UNION ){ 2456 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2457 } 2458 sqlite3ExprDelete(db, p->pLimit); 2459 p->pLimit = pLimit; 2460 p->pOffset = pOffset; 2461 p->iLimit = 0; 2462 p->iOffset = 0; 2463 2464 /* Convert the data in the temporary table into whatever form 2465 ** it is that we currently need. 2466 */ 2467 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2468 if( dest.eDest!=priorOp ){ 2469 int iCont, iBreak, iStart; 2470 assert( p->pEList ); 2471 if( dest.eDest==SRT_Output ){ 2472 Select *pFirst = p; 2473 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2474 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2475 } 2476 iBreak = sqlite3VdbeMakeLabel(v); 2477 iCont = sqlite3VdbeMakeLabel(v); 2478 computeLimitRegisters(pParse, p, iBreak); 2479 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2480 iStart = sqlite3VdbeCurrentAddr(v); 2481 selectInnerLoop(pParse, p, p->pEList, unionTab, 2482 0, 0, &dest, iCont, iBreak); 2483 sqlite3VdbeResolveLabel(v, iCont); 2484 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2485 sqlite3VdbeResolveLabel(v, iBreak); 2486 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2487 } 2488 break; 2489 } 2490 default: assert( p->op==TK_INTERSECT ); { 2491 int tab1, tab2; 2492 int iCont, iBreak, iStart; 2493 Expr *pLimit, *pOffset; 2494 int addr; 2495 SelectDest intersectdest; 2496 int r1; 2497 2498 /* INTERSECT is different from the others since it requires 2499 ** two temporary tables. Hence it has its own case. Begin 2500 ** by allocating the tables we will need. 2501 */ 2502 tab1 = pParse->nTab++; 2503 tab2 = pParse->nTab++; 2504 assert( p->pOrderBy==0 ); 2505 2506 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2507 assert( p->addrOpenEphm[0] == -1 ); 2508 p->addrOpenEphm[0] = addr; 2509 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2510 assert( p->pEList ); 2511 2512 /* Code the SELECTs to our left into temporary table "tab1". 2513 */ 2514 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2515 explainSetInteger(iSub1, pParse->iNextSelectId); 2516 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2517 if( rc ){ 2518 goto multi_select_end; 2519 } 2520 2521 /* Code the current SELECT into temporary table "tab2" 2522 */ 2523 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2524 assert( p->addrOpenEphm[1] == -1 ); 2525 p->addrOpenEphm[1] = addr; 2526 p->pPrior = 0; 2527 pLimit = p->pLimit; 2528 p->pLimit = 0; 2529 pOffset = p->pOffset; 2530 p->pOffset = 0; 2531 intersectdest.iSDParm = tab2; 2532 explainSetInteger(iSub2, pParse->iNextSelectId); 2533 rc = sqlite3Select(pParse, p, &intersectdest); 2534 testcase( rc!=SQLITE_OK ); 2535 pDelete = p->pPrior; 2536 p->pPrior = pPrior; 2537 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2538 sqlite3ExprDelete(db, p->pLimit); 2539 p->pLimit = pLimit; 2540 p->pOffset = pOffset; 2541 2542 /* Generate code to take the intersection of the two temporary 2543 ** tables. 2544 */ 2545 assert( p->pEList ); 2546 if( dest.eDest==SRT_Output ){ 2547 Select *pFirst = p; 2548 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2549 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2550 } 2551 iBreak = sqlite3VdbeMakeLabel(v); 2552 iCont = sqlite3VdbeMakeLabel(v); 2553 computeLimitRegisters(pParse, p, iBreak); 2554 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2555 r1 = sqlite3GetTempReg(pParse); 2556 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2557 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2558 sqlite3ReleaseTempReg(pParse, r1); 2559 selectInnerLoop(pParse, p, p->pEList, tab1, 2560 0, 0, &dest, iCont, iBreak); 2561 sqlite3VdbeResolveLabel(v, iCont); 2562 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2563 sqlite3VdbeResolveLabel(v, iBreak); 2564 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2565 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2566 break; 2567 } 2568 } 2569 2570 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2571 2572 /* Compute collating sequences used by 2573 ** temporary tables needed to implement the compound select. 2574 ** Attach the KeyInfo structure to all temporary tables. 2575 ** 2576 ** This section is run by the right-most SELECT statement only. 2577 ** SELECT statements to the left always skip this part. The right-most 2578 ** SELECT might also skip this part if it has no ORDER BY clause and 2579 ** no temp tables are required. 2580 */ 2581 if( p->selFlags & SF_UsesEphemeral ){ 2582 int i; /* Loop counter */ 2583 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2584 Select *pLoop; /* For looping through SELECT statements */ 2585 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2586 int nCol; /* Number of columns in result set */ 2587 2588 assert( p->pNext==0 ); 2589 nCol = p->pEList->nExpr; 2590 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2591 if( !pKeyInfo ){ 2592 rc = SQLITE_NOMEM_BKPT; 2593 goto multi_select_end; 2594 } 2595 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2596 *apColl = multiSelectCollSeq(pParse, p, i); 2597 if( 0==*apColl ){ 2598 *apColl = db->pDfltColl; 2599 } 2600 } 2601 2602 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2603 for(i=0; i<2; i++){ 2604 int addr = pLoop->addrOpenEphm[i]; 2605 if( addr<0 ){ 2606 /* If [0] is unused then [1] is also unused. So we can 2607 ** always safely abort as soon as the first unused slot is found */ 2608 assert( pLoop->addrOpenEphm[1]<0 ); 2609 break; 2610 } 2611 sqlite3VdbeChangeP2(v, addr, nCol); 2612 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2613 P4_KEYINFO); 2614 pLoop->addrOpenEphm[i] = -1; 2615 } 2616 } 2617 sqlite3KeyInfoUnref(pKeyInfo); 2618 } 2619 2620 multi_select_end: 2621 pDest->iSdst = dest.iSdst; 2622 pDest->nSdst = dest.nSdst; 2623 sqlite3SelectDelete(db, pDelete); 2624 return rc; 2625 } 2626 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2627 2628 /* 2629 ** Error message for when two or more terms of a compound select have different 2630 ** size result sets. 2631 */ 2632 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2633 if( p->selFlags & SF_Values ){ 2634 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2635 }else{ 2636 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2637 " do not have the same number of result columns", selectOpName(p->op)); 2638 } 2639 } 2640 2641 /* 2642 ** Code an output subroutine for a coroutine implementation of a 2643 ** SELECT statment. 2644 ** 2645 ** The data to be output is contained in pIn->iSdst. There are 2646 ** pIn->nSdst columns to be output. pDest is where the output should 2647 ** be sent. 2648 ** 2649 ** regReturn is the number of the register holding the subroutine 2650 ** return address. 2651 ** 2652 ** If regPrev>0 then it is the first register in a vector that 2653 ** records the previous output. mem[regPrev] is a flag that is false 2654 ** if there has been no previous output. If regPrev>0 then code is 2655 ** generated to suppress duplicates. pKeyInfo is used for comparing 2656 ** keys. 2657 ** 2658 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2659 ** iBreak. 2660 */ 2661 static int generateOutputSubroutine( 2662 Parse *pParse, /* Parsing context */ 2663 Select *p, /* The SELECT statement */ 2664 SelectDest *pIn, /* Coroutine supplying data */ 2665 SelectDest *pDest, /* Where to send the data */ 2666 int regReturn, /* The return address register */ 2667 int regPrev, /* Previous result register. No uniqueness if 0 */ 2668 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2669 int iBreak /* Jump here if we hit the LIMIT */ 2670 ){ 2671 Vdbe *v = pParse->pVdbe; 2672 int iContinue; 2673 int addr; 2674 2675 addr = sqlite3VdbeCurrentAddr(v); 2676 iContinue = sqlite3VdbeMakeLabel(v); 2677 2678 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2679 */ 2680 if( regPrev ){ 2681 int addr1, addr2; 2682 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2683 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2684 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2685 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2686 sqlite3VdbeJumpHere(v, addr1); 2687 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2688 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2689 } 2690 if( pParse->db->mallocFailed ) return 0; 2691 2692 /* Suppress the first OFFSET entries if there is an OFFSET clause 2693 */ 2694 codeOffset(v, p->iOffset, iContinue); 2695 2696 assert( pDest->eDest!=SRT_Exists ); 2697 assert( pDest->eDest!=SRT_Table ); 2698 switch( pDest->eDest ){ 2699 /* Store the result as data using a unique key. 2700 */ 2701 case SRT_EphemTab: { 2702 int r1 = sqlite3GetTempReg(pParse); 2703 int r2 = sqlite3GetTempReg(pParse); 2704 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2705 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2706 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2707 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2708 sqlite3ReleaseTempReg(pParse, r2); 2709 sqlite3ReleaseTempReg(pParse, r1); 2710 break; 2711 } 2712 2713 #ifndef SQLITE_OMIT_SUBQUERY 2714 /* If we are creating a set for an "expr IN (SELECT ...)". 2715 */ 2716 case SRT_Set: { 2717 int r1; 2718 testcase( pIn->nSdst>1 ); 2719 r1 = sqlite3GetTempReg(pParse); 2720 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2721 r1, pDest->zAffSdst, pIn->nSdst); 2722 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2723 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2724 pIn->iSdst, pIn->nSdst); 2725 sqlite3ReleaseTempReg(pParse, r1); 2726 break; 2727 } 2728 2729 /* If this is a scalar select that is part of an expression, then 2730 ** store the results in the appropriate memory cell and break out 2731 ** of the scan loop. 2732 */ 2733 case SRT_Mem: { 2734 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2735 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2736 /* The LIMIT clause will jump out of the loop for us */ 2737 break; 2738 } 2739 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2740 2741 /* The results are stored in a sequence of registers 2742 ** starting at pDest->iSdst. Then the co-routine yields. 2743 */ 2744 case SRT_Coroutine: { 2745 if( pDest->iSdst==0 ){ 2746 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2747 pDest->nSdst = pIn->nSdst; 2748 } 2749 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2750 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2751 break; 2752 } 2753 2754 /* If none of the above, then the result destination must be 2755 ** SRT_Output. This routine is never called with any other 2756 ** destination other than the ones handled above or SRT_Output. 2757 ** 2758 ** For SRT_Output, results are stored in a sequence of registers. 2759 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2760 ** return the next row of result. 2761 */ 2762 default: { 2763 assert( pDest->eDest==SRT_Output ); 2764 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2765 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2766 break; 2767 } 2768 } 2769 2770 /* Jump to the end of the loop if the LIMIT is reached. 2771 */ 2772 if( p->iLimit ){ 2773 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2774 } 2775 2776 /* Generate the subroutine return 2777 */ 2778 sqlite3VdbeResolveLabel(v, iContinue); 2779 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2780 2781 return addr; 2782 } 2783 2784 /* 2785 ** Alternative compound select code generator for cases when there 2786 ** is an ORDER BY clause. 2787 ** 2788 ** We assume a query of the following form: 2789 ** 2790 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2791 ** 2792 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2793 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2794 ** co-routines. Then run the co-routines in parallel and merge the results 2795 ** into the output. In addition to the two coroutines (called selectA and 2796 ** selectB) there are 7 subroutines: 2797 ** 2798 ** outA: Move the output of the selectA coroutine into the output 2799 ** of the compound query. 2800 ** 2801 ** outB: Move the output of the selectB coroutine into the output 2802 ** of the compound query. (Only generated for UNION and 2803 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2804 ** appears only in B.) 2805 ** 2806 ** AltB: Called when there is data from both coroutines and A<B. 2807 ** 2808 ** AeqB: Called when there is data from both coroutines and A==B. 2809 ** 2810 ** AgtB: Called when there is data from both coroutines and A>B. 2811 ** 2812 ** EofA: Called when data is exhausted from selectA. 2813 ** 2814 ** EofB: Called when data is exhausted from selectB. 2815 ** 2816 ** The implementation of the latter five subroutines depend on which 2817 ** <operator> is used: 2818 ** 2819 ** 2820 ** UNION ALL UNION EXCEPT INTERSECT 2821 ** ------------- ----------------- -------------- ----------------- 2822 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2823 ** 2824 ** AeqB: outA, nextA nextA nextA outA, nextA 2825 ** 2826 ** AgtB: outB, nextB outB, nextB nextB nextB 2827 ** 2828 ** EofA: outB, nextB outB, nextB halt halt 2829 ** 2830 ** EofB: outA, nextA outA, nextA outA, nextA halt 2831 ** 2832 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2833 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2834 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2835 ** following nextX causes a jump to the end of the select processing. 2836 ** 2837 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2838 ** within the output subroutine. The regPrev register set holds the previously 2839 ** output value. A comparison is made against this value and the output 2840 ** is skipped if the next results would be the same as the previous. 2841 ** 2842 ** The implementation plan is to implement the two coroutines and seven 2843 ** subroutines first, then put the control logic at the bottom. Like this: 2844 ** 2845 ** goto Init 2846 ** coA: coroutine for left query (A) 2847 ** coB: coroutine for right query (B) 2848 ** outA: output one row of A 2849 ** outB: output one row of B (UNION and UNION ALL only) 2850 ** EofA: ... 2851 ** EofB: ... 2852 ** AltB: ... 2853 ** AeqB: ... 2854 ** AgtB: ... 2855 ** Init: initialize coroutine registers 2856 ** yield coA 2857 ** if eof(A) goto EofA 2858 ** yield coB 2859 ** if eof(B) goto EofB 2860 ** Cmpr: Compare A, B 2861 ** Jump AltB, AeqB, AgtB 2862 ** End: ... 2863 ** 2864 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2865 ** actually called using Gosub and they do not Return. EofA and EofB loop 2866 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2867 ** and AgtB jump to either L2 or to one of EofA or EofB. 2868 */ 2869 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2870 static int multiSelectOrderBy( 2871 Parse *pParse, /* Parsing context */ 2872 Select *p, /* The right-most of SELECTs to be coded */ 2873 SelectDest *pDest /* What to do with query results */ 2874 ){ 2875 int i, j; /* Loop counters */ 2876 Select *pPrior; /* Another SELECT immediately to our left */ 2877 Vdbe *v; /* Generate code to this VDBE */ 2878 SelectDest destA; /* Destination for coroutine A */ 2879 SelectDest destB; /* Destination for coroutine B */ 2880 int regAddrA; /* Address register for select-A coroutine */ 2881 int regAddrB; /* Address register for select-B coroutine */ 2882 int addrSelectA; /* Address of the select-A coroutine */ 2883 int addrSelectB; /* Address of the select-B coroutine */ 2884 int regOutA; /* Address register for the output-A subroutine */ 2885 int regOutB; /* Address register for the output-B subroutine */ 2886 int addrOutA; /* Address of the output-A subroutine */ 2887 int addrOutB = 0; /* Address of the output-B subroutine */ 2888 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2889 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2890 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2891 int addrAltB; /* Address of the A<B subroutine */ 2892 int addrAeqB; /* Address of the A==B subroutine */ 2893 int addrAgtB; /* Address of the A>B subroutine */ 2894 int regLimitA; /* Limit register for select-A */ 2895 int regLimitB; /* Limit register for select-A */ 2896 int regPrev; /* A range of registers to hold previous output */ 2897 int savedLimit; /* Saved value of p->iLimit */ 2898 int savedOffset; /* Saved value of p->iOffset */ 2899 int labelCmpr; /* Label for the start of the merge algorithm */ 2900 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2901 int addr1; /* Jump instructions that get retargetted */ 2902 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2903 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2904 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2905 sqlite3 *db; /* Database connection */ 2906 ExprList *pOrderBy; /* The ORDER BY clause */ 2907 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2908 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2909 #ifndef SQLITE_OMIT_EXPLAIN 2910 int iSub1; /* EQP id of left-hand query */ 2911 int iSub2; /* EQP id of right-hand query */ 2912 #endif 2913 2914 assert( p->pOrderBy!=0 ); 2915 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2916 db = pParse->db; 2917 v = pParse->pVdbe; 2918 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2919 labelEnd = sqlite3VdbeMakeLabel(v); 2920 labelCmpr = sqlite3VdbeMakeLabel(v); 2921 2922 2923 /* Patch up the ORDER BY clause 2924 */ 2925 op = p->op; 2926 pPrior = p->pPrior; 2927 assert( pPrior->pOrderBy==0 ); 2928 pOrderBy = p->pOrderBy; 2929 assert( pOrderBy ); 2930 nOrderBy = pOrderBy->nExpr; 2931 2932 /* For operators other than UNION ALL we have to make sure that 2933 ** the ORDER BY clause covers every term of the result set. Add 2934 ** terms to the ORDER BY clause as necessary. 2935 */ 2936 if( op!=TK_ALL ){ 2937 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2938 struct ExprList_item *pItem; 2939 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2940 assert( pItem->u.x.iOrderByCol>0 ); 2941 if( pItem->u.x.iOrderByCol==i ) break; 2942 } 2943 if( j==nOrderBy ){ 2944 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2945 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2946 pNew->flags |= EP_IntValue; 2947 pNew->u.iValue = i; 2948 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2949 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2950 } 2951 } 2952 } 2953 2954 /* Compute the comparison permutation and keyinfo that is used with 2955 ** the permutation used to determine if the next 2956 ** row of results comes from selectA or selectB. Also add explicit 2957 ** collations to the ORDER BY clause terms so that when the subqueries 2958 ** to the right and the left are evaluated, they use the correct 2959 ** collation. 2960 */ 2961 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2962 if( aPermute ){ 2963 struct ExprList_item *pItem; 2964 aPermute[0] = nOrderBy; 2965 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2966 assert( pItem->u.x.iOrderByCol>0 ); 2967 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2968 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2969 } 2970 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2971 }else{ 2972 pKeyMerge = 0; 2973 } 2974 2975 /* Reattach the ORDER BY clause to the query. 2976 */ 2977 p->pOrderBy = pOrderBy; 2978 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2979 2980 /* Allocate a range of temporary registers and the KeyInfo needed 2981 ** for the logic that removes duplicate result rows when the 2982 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2983 */ 2984 if( op==TK_ALL ){ 2985 regPrev = 0; 2986 }else{ 2987 int nExpr = p->pEList->nExpr; 2988 assert( nOrderBy>=nExpr || db->mallocFailed ); 2989 regPrev = pParse->nMem+1; 2990 pParse->nMem += nExpr+1; 2991 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2992 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2993 if( pKeyDup ){ 2994 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2995 for(i=0; i<nExpr; i++){ 2996 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2997 pKeyDup->aSortOrder[i] = 0; 2998 } 2999 } 3000 } 3001 3002 /* Separate the left and the right query from one another 3003 */ 3004 p->pPrior = 0; 3005 pPrior->pNext = 0; 3006 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3007 if( pPrior->pPrior==0 ){ 3008 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3009 } 3010 3011 /* Compute the limit registers */ 3012 computeLimitRegisters(pParse, p, labelEnd); 3013 if( p->iLimit && op==TK_ALL ){ 3014 regLimitA = ++pParse->nMem; 3015 regLimitB = ++pParse->nMem; 3016 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3017 regLimitA); 3018 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3019 }else{ 3020 regLimitA = regLimitB = 0; 3021 } 3022 sqlite3ExprDelete(db, p->pLimit); 3023 p->pLimit = 0; 3024 sqlite3ExprDelete(db, p->pOffset); 3025 p->pOffset = 0; 3026 3027 regAddrA = ++pParse->nMem; 3028 regAddrB = ++pParse->nMem; 3029 regOutA = ++pParse->nMem; 3030 regOutB = ++pParse->nMem; 3031 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3032 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3033 3034 /* Generate a coroutine to evaluate the SELECT statement to the 3035 ** left of the compound operator - the "A" select. 3036 */ 3037 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3038 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3039 VdbeComment((v, "left SELECT")); 3040 pPrior->iLimit = regLimitA; 3041 explainSetInteger(iSub1, pParse->iNextSelectId); 3042 sqlite3Select(pParse, pPrior, &destA); 3043 sqlite3VdbeEndCoroutine(v, regAddrA); 3044 sqlite3VdbeJumpHere(v, addr1); 3045 3046 /* Generate a coroutine to evaluate the SELECT statement on 3047 ** the right - the "B" select 3048 */ 3049 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3050 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3051 VdbeComment((v, "right SELECT")); 3052 savedLimit = p->iLimit; 3053 savedOffset = p->iOffset; 3054 p->iLimit = regLimitB; 3055 p->iOffset = 0; 3056 explainSetInteger(iSub2, pParse->iNextSelectId); 3057 sqlite3Select(pParse, p, &destB); 3058 p->iLimit = savedLimit; 3059 p->iOffset = savedOffset; 3060 sqlite3VdbeEndCoroutine(v, regAddrB); 3061 3062 /* Generate a subroutine that outputs the current row of the A 3063 ** select as the next output row of the compound select. 3064 */ 3065 VdbeNoopComment((v, "Output routine for A")); 3066 addrOutA = generateOutputSubroutine(pParse, 3067 p, &destA, pDest, regOutA, 3068 regPrev, pKeyDup, labelEnd); 3069 3070 /* Generate a subroutine that outputs the current row of the B 3071 ** select as the next output row of the compound select. 3072 */ 3073 if( op==TK_ALL || op==TK_UNION ){ 3074 VdbeNoopComment((v, "Output routine for B")); 3075 addrOutB = generateOutputSubroutine(pParse, 3076 p, &destB, pDest, regOutB, 3077 regPrev, pKeyDup, labelEnd); 3078 } 3079 sqlite3KeyInfoUnref(pKeyDup); 3080 3081 /* Generate a subroutine to run when the results from select A 3082 ** are exhausted and only data in select B remains. 3083 */ 3084 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3085 addrEofA_noB = addrEofA = labelEnd; 3086 }else{ 3087 VdbeNoopComment((v, "eof-A subroutine")); 3088 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3089 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3090 VdbeCoverage(v); 3091 sqlite3VdbeGoto(v, addrEofA); 3092 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3093 } 3094 3095 /* Generate a subroutine to run when the results from select B 3096 ** are exhausted and only data in select A remains. 3097 */ 3098 if( op==TK_INTERSECT ){ 3099 addrEofB = addrEofA; 3100 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3101 }else{ 3102 VdbeNoopComment((v, "eof-B subroutine")); 3103 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3104 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3105 sqlite3VdbeGoto(v, addrEofB); 3106 } 3107 3108 /* Generate code to handle the case of A<B 3109 */ 3110 VdbeNoopComment((v, "A-lt-B subroutine")); 3111 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3112 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3113 sqlite3VdbeGoto(v, labelCmpr); 3114 3115 /* Generate code to handle the case of A==B 3116 */ 3117 if( op==TK_ALL ){ 3118 addrAeqB = addrAltB; 3119 }else if( op==TK_INTERSECT ){ 3120 addrAeqB = addrAltB; 3121 addrAltB++; 3122 }else{ 3123 VdbeNoopComment((v, "A-eq-B subroutine")); 3124 addrAeqB = 3125 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3126 sqlite3VdbeGoto(v, labelCmpr); 3127 } 3128 3129 /* Generate code to handle the case of A>B 3130 */ 3131 VdbeNoopComment((v, "A-gt-B subroutine")); 3132 addrAgtB = sqlite3VdbeCurrentAddr(v); 3133 if( op==TK_ALL || op==TK_UNION ){ 3134 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3135 } 3136 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3137 sqlite3VdbeGoto(v, labelCmpr); 3138 3139 /* This code runs once to initialize everything. 3140 */ 3141 sqlite3VdbeJumpHere(v, addr1); 3142 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3143 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3144 3145 /* Implement the main merge loop 3146 */ 3147 sqlite3VdbeResolveLabel(v, labelCmpr); 3148 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3149 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3150 (char*)pKeyMerge, P4_KEYINFO); 3151 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3152 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3153 3154 /* Jump to the this point in order to terminate the query. 3155 */ 3156 sqlite3VdbeResolveLabel(v, labelEnd); 3157 3158 /* Set the number of output columns 3159 */ 3160 if( pDest->eDest==SRT_Output ){ 3161 Select *pFirst = pPrior; 3162 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3163 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3164 } 3165 3166 /* Reassembly the compound query so that it will be freed correctly 3167 ** by the calling function */ 3168 if( p->pPrior ){ 3169 sqlite3SelectDelete(db, p->pPrior); 3170 } 3171 p->pPrior = pPrior; 3172 pPrior->pNext = p; 3173 3174 /*** TBD: Insert subroutine calls to close cursors on incomplete 3175 **** subqueries ****/ 3176 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3177 return pParse->nErr!=0; 3178 } 3179 #endif 3180 3181 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3182 3183 /* An instance of the SubstContext object describes an substitution edit 3184 ** to be performed on a parse tree. 3185 ** 3186 ** All references to columns in table iTable are to be replaced by corresponding 3187 ** expressions in pEList. 3188 */ 3189 typedef struct SubstContext { 3190 Parse *pParse; /* The parsing context */ 3191 int iTable; /* Replace references to this table */ 3192 int iNewTable; /* New table number */ 3193 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3194 ExprList *pEList; /* Replacement expressions */ 3195 } SubstContext; 3196 3197 /* Forward Declarations */ 3198 static void substExprList(SubstContext*, ExprList*); 3199 static void substSelect(SubstContext*, Select*, int); 3200 3201 /* 3202 ** Scan through the expression pExpr. Replace every reference to 3203 ** a column in table number iTable with a copy of the iColumn-th 3204 ** entry in pEList. (But leave references to the ROWID column 3205 ** unchanged.) 3206 ** 3207 ** This routine is part of the flattening procedure. A subquery 3208 ** whose result set is defined by pEList appears as entry in the 3209 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3210 ** FORM clause entry is iTable. This routine makes the necessary 3211 ** changes to pExpr so that it refers directly to the source table 3212 ** of the subquery rather the result set of the subquery. 3213 */ 3214 static Expr *substExpr( 3215 SubstContext *pSubst, /* Description of the substitution */ 3216 Expr *pExpr /* Expr in which substitution occurs */ 3217 ){ 3218 if( pExpr==0 ) return 0; 3219 if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){ 3220 pExpr->iRightJoinTable = pSubst->iNewTable; 3221 } 3222 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3223 if( pExpr->iColumn<0 ){ 3224 pExpr->op = TK_NULL; 3225 }else{ 3226 Expr *pNew; 3227 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3228 Expr ifNullRow; 3229 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3230 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3231 if( sqlite3ExprIsVector(pCopy) ){ 3232 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3233 }else{ 3234 sqlite3 *db = pSubst->pParse->db; 3235 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3236 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3237 ifNullRow.op = TK_IF_NULL_ROW; 3238 ifNullRow.pLeft = pCopy; 3239 ifNullRow.iTable = pSubst->iNewTable; 3240 pCopy = &ifNullRow; 3241 } 3242 pNew = sqlite3ExprDup(db, pCopy, 0); 3243 if( pNew && pSubst->isLeftJoin ){ 3244 ExprSetProperty(pNew, EP_CanBeNull); 3245 } 3246 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3247 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3248 ExprSetProperty(pNew, EP_FromJoin); 3249 } 3250 sqlite3ExprDelete(db, pExpr); 3251 pExpr = pNew; 3252 } 3253 } 3254 }else{ 3255 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3256 pExpr->iTable = pSubst->iNewTable; 3257 } 3258 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3259 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3260 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3261 substSelect(pSubst, pExpr->x.pSelect, 1); 3262 }else{ 3263 substExprList(pSubst, pExpr->x.pList); 3264 } 3265 } 3266 return pExpr; 3267 } 3268 static void substExprList( 3269 SubstContext *pSubst, /* Description of the substitution */ 3270 ExprList *pList /* List to scan and in which to make substitutes */ 3271 ){ 3272 int i; 3273 if( pList==0 ) return; 3274 for(i=0; i<pList->nExpr; i++){ 3275 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3276 } 3277 } 3278 static void substSelect( 3279 SubstContext *pSubst, /* Description of the substitution */ 3280 Select *p, /* SELECT statement in which to make substitutions */ 3281 int doPrior /* Do substitutes on p->pPrior too */ 3282 ){ 3283 SrcList *pSrc; 3284 struct SrcList_item *pItem; 3285 int i; 3286 if( !p ) return; 3287 do{ 3288 substExprList(pSubst, p->pEList); 3289 substExprList(pSubst, p->pGroupBy); 3290 substExprList(pSubst, p->pOrderBy); 3291 p->pHaving = substExpr(pSubst, p->pHaving); 3292 p->pWhere = substExpr(pSubst, p->pWhere); 3293 pSrc = p->pSrc; 3294 assert( pSrc!=0 ); 3295 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3296 substSelect(pSubst, pItem->pSelect, 1); 3297 if( pItem->fg.isTabFunc ){ 3298 substExprList(pSubst, pItem->u1.pFuncArg); 3299 } 3300 } 3301 }while( doPrior && (p = p->pPrior)!=0 ); 3302 } 3303 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3304 3305 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3306 /* 3307 ** This routine attempts to flatten subqueries as a performance optimization. 3308 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3309 ** 3310 ** To understand the concept of flattening, consider the following 3311 ** query: 3312 ** 3313 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3314 ** 3315 ** The default way of implementing this query is to execute the 3316 ** subquery first and store the results in a temporary table, then 3317 ** run the outer query on that temporary table. This requires two 3318 ** passes over the data. Furthermore, because the temporary table 3319 ** has no indices, the WHERE clause on the outer query cannot be 3320 ** optimized. 3321 ** 3322 ** This routine attempts to rewrite queries such as the above into 3323 ** a single flat select, like this: 3324 ** 3325 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3326 ** 3327 ** The code generated for this simplification gives the same result 3328 ** but only has to scan the data once. And because indices might 3329 ** exist on the table t1, a complete scan of the data might be 3330 ** avoided. 3331 ** 3332 ** Flattening is only attempted if all of the following are true: 3333 ** 3334 ** (1) The subquery and the outer query do not both use aggregates. 3335 ** 3336 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3337 ** and (2b) the outer query does not use subqueries other than the one 3338 ** FROM-clause subquery that is a candidate for flattening. (2b is 3339 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3340 ** 3341 ** (3) The subquery is not the right operand of a LEFT JOIN 3342 ** or the subquery is not itself a join and the outer query is not 3343 ** an aggregate. 3344 ** 3345 ** (4) The subquery is not DISTINCT. 3346 ** 3347 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3348 ** sub-queries that were excluded from this optimization. Restriction 3349 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3350 ** 3351 ** (6) The subquery does not use aggregates or the outer query is not 3352 ** DISTINCT. 3353 ** 3354 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3355 ** A FROM clause, consider adding a FROM clause with the special 3356 ** table sqlite_once that consists of a single row containing a 3357 ** single NULL. 3358 ** 3359 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3360 ** 3361 ** (9) The subquery does not use LIMIT or the outer query does not use 3362 ** aggregates. 3363 ** 3364 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3365 ** accidently carried the comment forward until 2014-09-15. Original 3366 ** text: "The subquery does not use aggregates or the outer query 3367 ** does not use LIMIT." 3368 ** 3369 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3370 ** 3371 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3372 ** a separate restriction deriving from ticket #350. 3373 ** 3374 ** (13) The subquery and outer query do not both use LIMIT. 3375 ** 3376 ** (14) The subquery does not use OFFSET. 3377 ** 3378 ** (15) The outer query is not part of a compound select or the 3379 ** subquery does not have a LIMIT clause. 3380 ** (See ticket #2339 and ticket [02a8e81d44]). 3381 ** 3382 ** (16) The outer query is not an aggregate or the subquery does 3383 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3384 ** until we introduced the group_concat() function. 3385 ** 3386 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3387 ** compound clause made up entirely of non-aggregate queries, and 3388 ** the parent query: 3389 ** 3390 ** * is not itself part of a compound select, 3391 ** * is not an aggregate or DISTINCT query, and 3392 ** * is not a join 3393 ** 3394 ** The parent and sub-query may contain WHERE clauses. Subject to 3395 ** rules (11), (13) and (14), they may also contain ORDER BY, 3396 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3397 ** operator other than UNION ALL because all the other compound 3398 ** operators have an implied DISTINCT which is disallowed by 3399 ** restriction (4). 3400 ** 3401 ** Also, each component of the sub-query must return the same number 3402 ** of result columns. This is actually a requirement for any compound 3403 ** SELECT statement, but all the code here does is make sure that no 3404 ** such (illegal) sub-query is flattened. The caller will detect the 3405 ** syntax error and return a detailed message. 3406 ** 3407 ** (18) If the sub-query is a compound select, then all terms of the 3408 ** ORDER by clause of the parent must be simple references to 3409 ** columns of the sub-query. 3410 ** 3411 ** (19) The subquery does not use LIMIT or the outer query does not 3412 ** have a WHERE clause. 3413 ** 3414 ** (20) If the sub-query is a compound select, then it must not use 3415 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3416 ** somewhat by saying that the terms of the ORDER BY clause must 3417 ** appear as unmodified result columns in the outer query. But we 3418 ** have other optimizations in mind to deal with that case. 3419 ** 3420 ** (21) The subquery does not use LIMIT or the outer query is not 3421 ** DISTINCT. (See ticket [752e1646fc]). 3422 ** 3423 ** (22) The subquery is not a recursive CTE. 3424 ** 3425 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3426 ** compound query. This restriction is because transforming the 3427 ** parent to a compound query confuses the code that handles 3428 ** recursive queries in multiSelect(). 3429 ** 3430 ** (24) The subquery is not an aggregate that uses the built-in min() or 3431 ** or max() functions. (Without this restriction, a query like: 3432 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3433 ** return the value X for which Y was maximal.) 3434 ** 3435 ** 3436 ** In this routine, the "p" parameter is a pointer to the outer query. 3437 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3438 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3439 ** 3440 ** If flattening is not attempted, this routine is a no-op and returns 0. 3441 ** If flattening is attempted this routine returns 1. 3442 ** 3443 ** All of the expression analysis must occur on both the outer query and 3444 ** the subquery before this routine runs. 3445 */ 3446 static int flattenSubquery( 3447 Parse *pParse, /* Parsing context */ 3448 Select *p, /* The parent or outer SELECT statement */ 3449 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3450 int isAgg, /* True if outer SELECT uses aggregate functions */ 3451 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3452 ){ 3453 const char *zSavedAuthContext = pParse->zAuthContext; 3454 Select *pParent; /* Current UNION ALL term of the other query */ 3455 Select *pSub; /* The inner query or "subquery" */ 3456 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3457 SrcList *pSrc; /* The FROM clause of the outer query */ 3458 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3459 ExprList *pList; /* The result set of the outer query */ 3460 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3461 int iNewParent = -1;/* Replacement table for iParent */ 3462 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3463 int i; /* Loop counter */ 3464 Expr *pWhere; /* The WHERE clause */ 3465 struct SrcList_item *pSubitem; /* The subquery */ 3466 sqlite3 *db = pParse->db; 3467 3468 /* Check to see if flattening is permitted. Return 0 if not. 3469 */ 3470 assert( p!=0 ); 3471 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3472 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3473 pSrc = p->pSrc; 3474 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3475 pSubitem = &pSrc->a[iFrom]; 3476 iParent = pSubitem->iCursor; 3477 pSub = pSubitem->pSelect; 3478 assert( pSub!=0 ); 3479 if( subqueryIsAgg ){ 3480 if( isAgg ) return 0; /* Restriction (1) */ 3481 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3482 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3483 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3484 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3485 ){ 3486 return 0; /* Restriction (2b) */ 3487 } 3488 } 3489 3490 pSubSrc = pSub->pSrc; 3491 assert( pSubSrc ); 3492 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3493 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3494 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3495 ** became arbitrary expressions, we were forced to add restrictions (13) 3496 ** and (14). */ 3497 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3498 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3499 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3500 return 0; /* Restriction (15) */ 3501 } 3502 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3503 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3504 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3505 return 0; /* Restrictions (8)(9) */ 3506 } 3507 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3508 return 0; /* Restriction (6) */ 3509 } 3510 if( p->pOrderBy && pSub->pOrderBy ){ 3511 return 0; /* Restriction (11) */ 3512 } 3513 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3514 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3515 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3516 return 0; /* Restriction (21) */ 3517 } 3518 testcase( pSub->selFlags & SF_Recursive ); 3519 testcase( pSub->selFlags & SF_MinMaxAgg ); 3520 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3521 return 0; /* Restrictions (22) and (24) */ 3522 } 3523 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3524 return 0; /* Restriction (23) */ 3525 } 3526 3527 /* 3528 ** If the subquery is the right operand of a LEFT JOIN, then the 3529 ** subquery may not be a join itself. Example of why this is not allowed: 3530 ** 3531 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3532 ** 3533 ** If we flatten the above, we would get 3534 ** 3535 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3536 ** 3537 ** which is not at all the same thing. 3538 ** 3539 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3540 ** query cannot be an aggregate. This is an artifact of the way aggregates 3541 ** are processed - there is no mechanism to determine if the LEFT JOIN 3542 ** table should be all-NULL. 3543 ** 3544 ** See also tickets #306, #350, and #3300. 3545 */ 3546 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3547 isLeftJoin = 1; 3548 if( pSubSrc->nSrc>1 || isAgg ){ 3549 return 0; /* Restriction (3) */ 3550 } 3551 } 3552 #ifdef SQLITE_EXTRA_IFNULLROW 3553 else if( iFrom>0 && !isAgg ){ 3554 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3555 ** every reference to any result column from subquery in a join, even though 3556 ** they are not necessary. This will stress-test the OP_IfNullRow opcode. */ 3557 isLeftJoin = -1; 3558 } 3559 #endif 3560 3561 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3562 ** use only the UNION ALL operator. And none of the simple select queries 3563 ** that make up the compound SELECT are allowed to be aggregate or distinct 3564 ** queries. 3565 */ 3566 if( pSub->pPrior ){ 3567 if( pSub->pOrderBy ){ 3568 return 0; /* Restriction 20 */ 3569 } 3570 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3571 return 0; 3572 } 3573 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3574 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3575 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3576 assert( pSub->pSrc!=0 ); 3577 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3578 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3579 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3580 || pSub1->pSrc->nSrc<1 3581 ){ 3582 return 0; 3583 } 3584 testcase( pSub1->pSrc->nSrc>1 ); 3585 } 3586 3587 /* Restriction 18. */ 3588 if( p->pOrderBy ){ 3589 int ii; 3590 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3591 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3592 } 3593 } 3594 } 3595 3596 /***** If we reach this point, flattening is permitted. *****/ 3597 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3598 pSub->zSelName, pSub, iFrom)); 3599 3600 /* Authorize the subquery */ 3601 pParse->zAuthContext = pSubitem->zName; 3602 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3603 testcase( i==SQLITE_DENY ); 3604 pParse->zAuthContext = zSavedAuthContext; 3605 3606 /* If the sub-query is a compound SELECT statement, then (by restrictions 3607 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3608 ** be of the form: 3609 ** 3610 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3611 ** 3612 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3613 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3614 ** OFFSET clauses and joins them to the left-hand-side of the original 3615 ** using UNION ALL operators. In this case N is the number of simple 3616 ** select statements in the compound sub-query. 3617 ** 3618 ** Example: 3619 ** 3620 ** SELECT a+1 FROM ( 3621 ** SELECT x FROM tab 3622 ** UNION ALL 3623 ** SELECT y FROM tab 3624 ** UNION ALL 3625 ** SELECT abs(z*2) FROM tab2 3626 ** ) WHERE a!=5 ORDER BY 1 3627 ** 3628 ** Transformed into: 3629 ** 3630 ** SELECT x+1 FROM tab WHERE x+1!=5 3631 ** UNION ALL 3632 ** SELECT y+1 FROM tab WHERE y+1!=5 3633 ** UNION ALL 3634 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3635 ** ORDER BY 1 3636 ** 3637 ** We call this the "compound-subquery flattening". 3638 */ 3639 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3640 Select *pNew; 3641 ExprList *pOrderBy = p->pOrderBy; 3642 Expr *pLimit = p->pLimit; 3643 Expr *pOffset = p->pOffset; 3644 Select *pPrior = p->pPrior; 3645 p->pOrderBy = 0; 3646 p->pSrc = 0; 3647 p->pPrior = 0; 3648 p->pLimit = 0; 3649 p->pOffset = 0; 3650 pNew = sqlite3SelectDup(db, p, 0); 3651 sqlite3SelectSetName(pNew, pSub->zSelName); 3652 p->pOffset = pOffset; 3653 p->pLimit = pLimit; 3654 p->pOrderBy = pOrderBy; 3655 p->pSrc = pSrc; 3656 p->op = TK_ALL; 3657 if( pNew==0 ){ 3658 p->pPrior = pPrior; 3659 }else{ 3660 pNew->pPrior = pPrior; 3661 if( pPrior ) pPrior->pNext = pNew; 3662 pNew->pNext = p; 3663 p->pPrior = pNew; 3664 SELECTTRACE(2,pParse,p, 3665 ("compound-subquery flattener creates %s.%p as peer\n", 3666 pNew->zSelName, pNew)); 3667 } 3668 if( db->mallocFailed ) return 1; 3669 } 3670 3671 /* Begin flattening the iFrom-th entry of the FROM clause 3672 ** in the outer query. 3673 */ 3674 pSub = pSub1 = pSubitem->pSelect; 3675 3676 /* Delete the transient table structure associated with the 3677 ** subquery 3678 */ 3679 sqlite3DbFree(db, pSubitem->zDatabase); 3680 sqlite3DbFree(db, pSubitem->zName); 3681 sqlite3DbFree(db, pSubitem->zAlias); 3682 pSubitem->zDatabase = 0; 3683 pSubitem->zName = 0; 3684 pSubitem->zAlias = 0; 3685 pSubitem->pSelect = 0; 3686 3687 /* Defer deleting the Table object associated with the 3688 ** subquery until code generation is 3689 ** complete, since there may still exist Expr.pTab entries that 3690 ** refer to the subquery even after flattening. Ticket #3346. 3691 ** 3692 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3693 */ 3694 if( ALWAYS(pSubitem->pTab!=0) ){ 3695 Table *pTabToDel = pSubitem->pTab; 3696 if( pTabToDel->nTabRef==1 ){ 3697 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3698 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3699 pToplevel->pZombieTab = pTabToDel; 3700 }else{ 3701 pTabToDel->nTabRef--; 3702 } 3703 pSubitem->pTab = 0; 3704 } 3705 3706 /* The following loop runs once for each term in a compound-subquery 3707 ** flattening (as described above). If we are doing a different kind 3708 ** of flattening - a flattening other than a compound-subquery flattening - 3709 ** then this loop only runs once. 3710 ** 3711 ** This loop moves all of the FROM elements of the subquery into the 3712 ** the FROM clause of the outer query. Before doing this, remember 3713 ** the cursor number for the original outer query FROM element in 3714 ** iParent. The iParent cursor will never be used. Subsequent code 3715 ** will scan expressions looking for iParent references and replace 3716 ** those references with expressions that resolve to the subquery FROM 3717 ** elements we are now copying in. 3718 */ 3719 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3720 int nSubSrc; 3721 u8 jointype = 0; 3722 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3723 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3724 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3725 3726 if( pSrc ){ 3727 assert( pParent==p ); /* First time through the loop */ 3728 jointype = pSubitem->fg.jointype; 3729 }else{ 3730 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3731 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3732 if( pSrc==0 ){ 3733 assert( db->mallocFailed ); 3734 break; 3735 } 3736 } 3737 3738 /* The subquery uses a single slot of the FROM clause of the outer 3739 ** query. If the subquery has more than one element in its FROM clause, 3740 ** then expand the outer query to make space for it to hold all elements 3741 ** of the subquery. 3742 ** 3743 ** Example: 3744 ** 3745 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3746 ** 3747 ** The outer query has 3 slots in its FROM clause. One slot of the 3748 ** outer query (the middle slot) is used by the subquery. The next 3749 ** block of code will expand the outer query FROM clause to 4 slots. 3750 ** The middle slot is expanded to two slots in order to make space 3751 ** for the two elements in the FROM clause of the subquery. 3752 */ 3753 if( nSubSrc>1 ){ 3754 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3755 if( db->mallocFailed ){ 3756 break; 3757 } 3758 } 3759 3760 /* Transfer the FROM clause terms from the subquery into the 3761 ** outer query. 3762 */ 3763 for(i=0; i<nSubSrc; i++){ 3764 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3765 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3766 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3767 iNewParent = pSubSrc->a[i].iCursor; 3768 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3769 } 3770 pSrc->a[iFrom].fg.jointype = jointype; 3771 3772 /* Now begin substituting subquery result set expressions for 3773 ** references to the iParent in the outer query. 3774 ** 3775 ** Example: 3776 ** 3777 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3778 ** \ \_____________ subquery __________/ / 3779 ** \_____________________ outer query ______________________________/ 3780 ** 3781 ** We look at every expression in the outer query and every place we see 3782 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3783 */ 3784 pList = pParent->pEList; 3785 for(i=0; i<pList->nExpr; i++){ 3786 if( pList->a[i].zName==0 ){ 3787 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3788 sqlite3Dequote(zName); 3789 pList->a[i].zName = zName; 3790 } 3791 } 3792 if( pSub->pOrderBy ){ 3793 /* At this point, any non-zero iOrderByCol values indicate that the 3794 ** ORDER BY column expression is identical to the iOrderByCol'th 3795 ** expression returned by SELECT statement pSub. Since these values 3796 ** do not necessarily correspond to columns in SELECT statement pParent, 3797 ** zero them before transfering the ORDER BY clause. 3798 ** 3799 ** Not doing this may cause an error if a subsequent call to this 3800 ** function attempts to flatten a compound sub-query into pParent 3801 ** (the only way this can happen is if the compound sub-query is 3802 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3803 ExprList *pOrderBy = pSub->pOrderBy; 3804 for(i=0; i<pOrderBy->nExpr; i++){ 3805 pOrderBy->a[i].u.x.iOrderByCol = 0; 3806 } 3807 assert( pParent->pOrderBy==0 ); 3808 assert( pSub->pPrior==0 ); 3809 pParent->pOrderBy = pOrderBy; 3810 pSub->pOrderBy = 0; 3811 } 3812 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3813 if( isLeftJoin>0 ){ 3814 setJoinExpr(pWhere, iNewParent); 3815 } 3816 if( subqueryIsAgg ){ 3817 assert( pParent->pHaving==0 ); 3818 pParent->pHaving = pParent->pWhere; 3819 pParent->pWhere = pWhere; 3820 pParent->pHaving = sqlite3ExprAnd(db, 3821 sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving 3822 ); 3823 assert( pParent->pGroupBy==0 ); 3824 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3825 }else{ 3826 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3827 } 3828 if( db->mallocFailed==0 ){ 3829 SubstContext x; 3830 x.pParse = pParse; 3831 x.iTable = iParent; 3832 x.iNewTable = iNewParent; 3833 x.isLeftJoin = isLeftJoin; 3834 x.pEList = pSub->pEList; 3835 substSelect(&x, pParent, 0); 3836 } 3837 3838 /* The flattened query is distinct if either the inner or the 3839 ** outer query is distinct. 3840 */ 3841 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3842 3843 /* 3844 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3845 ** 3846 ** One is tempted to try to add a and b to combine the limits. But this 3847 ** does not work if either limit is negative. 3848 */ 3849 if( pSub->pLimit ){ 3850 pParent->pLimit = pSub->pLimit; 3851 pSub->pLimit = 0; 3852 } 3853 } 3854 3855 /* Finially, delete what is left of the subquery and return 3856 ** success. 3857 */ 3858 sqlite3SelectDelete(db, pSub1); 3859 3860 #if SELECTTRACE_ENABLED 3861 if( sqlite3SelectTrace & 0x100 ){ 3862 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3863 sqlite3TreeViewSelect(0, p, 0); 3864 } 3865 #endif 3866 3867 return 1; 3868 } 3869 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3870 3871 3872 3873 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3874 /* 3875 ** Make copies of relevant WHERE clause terms of the outer query into 3876 ** the WHERE clause of subquery. Example: 3877 ** 3878 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3879 ** 3880 ** Transformed into: 3881 ** 3882 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3883 ** WHERE x=5 AND y=10; 3884 ** 3885 ** The hope is that the terms added to the inner query will make it more 3886 ** efficient. 3887 ** 3888 ** Do not attempt this optimization if: 3889 ** 3890 ** (1) The inner query is an aggregate. (In that case, we'd really want 3891 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3892 ** inner query. But they probably won't help there so do not bother.) 3893 ** 3894 ** (2) The inner query is the recursive part of a common table expression. 3895 ** 3896 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3897 ** close would change the meaning of the LIMIT). 3898 ** 3899 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3900 ** enforces this restriction since this routine does not have enough 3901 ** information to know.) 3902 ** 3903 ** (5) The WHERE clause expression originates in the ON or USING clause 3904 ** of a LEFT JOIN. 3905 ** 3906 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3907 ** terms are duplicated into the subquery. 3908 */ 3909 static int pushDownWhereTerms( 3910 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3911 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3912 Expr *pWhere, /* The WHERE clause of the outer query */ 3913 int iCursor /* Cursor number of the subquery */ 3914 ){ 3915 Expr *pNew; 3916 int nChng = 0; 3917 Select *pX; /* For looping over compound SELECTs in pSubq */ 3918 if( pWhere==0 ) return 0; 3919 for(pX=pSubq; pX; pX=pX->pPrior){ 3920 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3921 testcase( pX->selFlags & SF_Aggregate ); 3922 testcase( pX->selFlags & SF_Recursive ); 3923 testcase( pX!=pSubq ); 3924 return 0; /* restrictions (1) and (2) */ 3925 } 3926 } 3927 if( pSubq->pLimit!=0 ){ 3928 return 0; /* restriction (3) */ 3929 } 3930 while( pWhere->op==TK_AND ){ 3931 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); 3932 pWhere = pWhere->pLeft; 3933 } 3934 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3935 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3936 nChng++; 3937 while( pSubq ){ 3938 SubstContext x; 3939 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3940 x.pParse = pParse; 3941 x.iTable = iCursor; 3942 x.iNewTable = iCursor; 3943 x.isLeftJoin = 0; 3944 x.pEList = pSubq->pEList; 3945 pNew = substExpr(&x, pNew); 3946 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3947 pSubq = pSubq->pPrior; 3948 } 3949 } 3950 return nChng; 3951 } 3952 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3953 3954 /* 3955 ** Based on the contents of the AggInfo structure indicated by the first 3956 ** argument, this function checks if the following are true: 3957 ** 3958 ** * the query contains just a single aggregate function, 3959 ** * the aggregate function is either min() or max(), and 3960 ** * the argument to the aggregate function is a column value. 3961 ** 3962 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3963 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3964 ** list of arguments passed to the aggregate before returning. 3965 ** 3966 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3967 ** WHERE_ORDERBY_NORMAL is returned. 3968 */ 3969 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3970 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3971 3972 *ppMinMax = 0; 3973 if( pAggInfo->nFunc==1 ){ 3974 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3975 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3976 3977 assert( pExpr->op==TK_AGG_FUNCTION ); 3978 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3979 const char *zFunc = pExpr->u.zToken; 3980 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3981 eRet = WHERE_ORDERBY_MIN; 3982 *ppMinMax = pEList; 3983 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3984 eRet = WHERE_ORDERBY_MAX; 3985 *ppMinMax = pEList; 3986 } 3987 } 3988 } 3989 3990 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3991 return eRet; 3992 } 3993 3994 /* 3995 ** The select statement passed as the first argument is an aggregate query. 3996 ** The second argument is the associated aggregate-info object. This 3997 ** function tests if the SELECT is of the form: 3998 ** 3999 ** SELECT count(*) FROM <tbl> 4000 ** 4001 ** where table is a database table, not a sub-select or view. If the query 4002 ** does match this pattern, then a pointer to the Table object representing 4003 ** <tbl> is returned. Otherwise, 0 is returned. 4004 */ 4005 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4006 Table *pTab; 4007 Expr *pExpr; 4008 4009 assert( !p->pGroupBy ); 4010 4011 if( p->pWhere || p->pEList->nExpr!=1 4012 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4013 ){ 4014 return 0; 4015 } 4016 pTab = p->pSrc->a[0].pTab; 4017 pExpr = p->pEList->a[0].pExpr; 4018 assert( pTab && !pTab->pSelect && pExpr ); 4019 4020 if( IsVirtual(pTab) ) return 0; 4021 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4022 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4023 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4024 if( pExpr->flags&EP_Distinct ) return 0; 4025 4026 return pTab; 4027 } 4028 4029 /* 4030 ** If the source-list item passed as an argument was augmented with an 4031 ** INDEXED BY clause, then try to locate the specified index. If there 4032 ** was such a clause and the named index cannot be found, return 4033 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4034 ** pFrom->pIndex and return SQLITE_OK. 4035 */ 4036 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4037 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4038 Table *pTab = pFrom->pTab; 4039 char *zIndexedBy = pFrom->u1.zIndexedBy; 4040 Index *pIdx; 4041 for(pIdx=pTab->pIndex; 4042 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4043 pIdx=pIdx->pNext 4044 ); 4045 if( !pIdx ){ 4046 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4047 pParse->checkSchema = 1; 4048 return SQLITE_ERROR; 4049 } 4050 pFrom->pIBIndex = pIdx; 4051 } 4052 return SQLITE_OK; 4053 } 4054 /* 4055 ** Detect compound SELECT statements that use an ORDER BY clause with 4056 ** an alternative collating sequence. 4057 ** 4058 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4059 ** 4060 ** These are rewritten as a subquery: 4061 ** 4062 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4063 ** ORDER BY ... COLLATE ... 4064 ** 4065 ** This transformation is necessary because the multiSelectOrderBy() routine 4066 ** above that generates the code for a compound SELECT with an ORDER BY clause 4067 ** uses a merge algorithm that requires the same collating sequence on the 4068 ** result columns as on the ORDER BY clause. See ticket 4069 ** http://www.sqlite.org/src/info/6709574d2a 4070 ** 4071 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4072 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4073 ** there are COLLATE terms in the ORDER BY. 4074 */ 4075 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4076 int i; 4077 Select *pNew; 4078 Select *pX; 4079 sqlite3 *db; 4080 struct ExprList_item *a; 4081 SrcList *pNewSrc; 4082 Parse *pParse; 4083 Token dummy; 4084 4085 if( p->pPrior==0 ) return WRC_Continue; 4086 if( p->pOrderBy==0 ) return WRC_Continue; 4087 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4088 if( pX==0 ) return WRC_Continue; 4089 a = p->pOrderBy->a; 4090 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4091 if( a[i].pExpr->flags & EP_Collate ) break; 4092 } 4093 if( i<0 ) return WRC_Continue; 4094 4095 /* If we reach this point, that means the transformation is required. */ 4096 4097 pParse = pWalker->pParse; 4098 db = pParse->db; 4099 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4100 if( pNew==0 ) return WRC_Abort; 4101 memset(&dummy, 0, sizeof(dummy)); 4102 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4103 if( pNewSrc==0 ) return WRC_Abort; 4104 *pNew = *p; 4105 p->pSrc = pNewSrc; 4106 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4107 p->op = TK_SELECT; 4108 p->pWhere = 0; 4109 pNew->pGroupBy = 0; 4110 pNew->pHaving = 0; 4111 pNew->pOrderBy = 0; 4112 p->pPrior = 0; 4113 p->pNext = 0; 4114 p->pWith = 0; 4115 p->selFlags &= ~SF_Compound; 4116 assert( (p->selFlags & SF_Converted)==0 ); 4117 p->selFlags |= SF_Converted; 4118 assert( pNew->pPrior!=0 ); 4119 pNew->pPrior->pNext = pNew; 4120 pNew->pLimit = 0; 4121 pNew->pOffset = 0; 4122 return WRC_Continue; 4123 } 4124 4125 /* 4126 ** Check to see if the FROM clause term pFrom has table-valued function 4127 ** arguments. If it does, leave an error message in pParse and return 4128 ** non-zero, since pFrom is not allowed to be a table-valued function. 4129 */ 4130 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4131 if( pFrom->fg.isTabFunc ){ 4132 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4133 return 1; 4134 } 4135 return 0; 4136 } 4137 4138 #ifndef SQLITE_OMIT_CTE 4139 /* 4140 ** Argument pWith (which may be NULL) points to a linked list of nested 4141 ** WITH contexts, from inner to outermost. If the table identified by 4142 ** FROM clause element pItem is really a common-table-expression (CTE) 4143 ** then return a pointer to the CTE definition for that table. Otherwise 4144 ** return NULL. 4145 ** 4146 ** If a non-NULL value is returned, set *ppContext to point to the With 4147 ** object that the returned CTE belongs to. 4148 */ 4149 static struct Cte *searchWith( 4150 With *pWith, /* Current innermost WITH clause */ 4151 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4152 With **ppContext /* OUT: WITH clause return value belongs to */ 4153 ){ 4154 const char *zName; 4155 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4156 With *p; 4157 for(p=pWith; p; p=p->pOuter){ 4158 int i; 4159 for(i=0; i<p->nCte; i++){ 4160 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4161 *ppContext = p; 4162 return &p->a[i]; 4163 } 4164 } 4165 } 4166 } 4167 return 0; 4168 } 4169 4170 /* The code generator maintains a stack of active WITH clauses 4171 ** with the inner-most WITH clause being at the top of the stack. 4172 ** 4173 ** This routine pushes the WITH clause passed as the second argument 4174 ** onto the top of the stack. If argument bFree is true, then this 4175 ** WITH clause will never be popped from the stack. In this case it 4176 ** should be freed along with the Parse object. In other cases, when 4177 ** bFree==0, the With object will be freed along with the SELECT 4178 ** statement with which it is associated. 4179 */ 4180 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4181 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4182 if( pWith ){ 4183 assert( pParse->pWith!=pWith ); 4184 pWith->pOuter = pParse->pWith; 4185 pParse->pWith = pWith; 4186 if( bFree ) pParse->pWithToFree = pWith; 4187 } 4188 } 4189 4190 /* 4191 ** This function checks if argument pFrom refers to a CTE declared by 4192 ** a WITH clause on the stack currently maintained by the parser. And, 4193 ** if currently processing a CTE expression, if it is a recursive 4194 ** reference to the current CTE. 4195 ** 4196 ** If pFrom falls into either of the two categories above, pFrom->pTab 4197 ** and other fields are populated accordingly. The caller should check 4198 ** (pFrom->pTab!=0) to determine whether or not a successful match 4199 ** was found. 4200 ** 4201 ** Whether or not a match is found, SQLITE_OK is returned if no error 4202 ** occurs. If an error does occur, an error message is stored in the 4203 ** parser and some error code other than SQLITE_OK returned. 4204 */ 4205 static int withExpand( 4206 Walker *pWalker, 4207 struct SrcList_item *pFrom 4208 ){ 4209 Parse *pParse = pWalker->pParse; 4210 sqlite3 *db = pParse->db; 4211 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4212 With *pWith; /* WITH clause that pCte belongs to */ 4213 4214 assert( pFrom->pTab==0 ); 4215 4216 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4217 if( pCte ){ 4218 Table *pTab; 4219 ExprList *pEList; 4220 Select *pSel; 4221 Select *pLeft; /* Left-most SELECT statement */ 4222 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4223 With *pSavedWith; /* Initial value of pParse->pWith */ 4224 4225 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4226 ** recursive reference to CTE pCte. Leave an error in pParse and return 4227 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4228 ** In this case, proceed. */ 4229 if( pCte->zCteErr ){ 4230 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4231 return SQLITE_ERROR; 4232 } 4233 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4234 4235 assert( pFrom->pTab==0 ); 4236 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4237 if( pTab==0 ) return WRC_Abort; 4238 pTab->nTabRef = 1; 4239 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4240 pTab->iPKey = -1; 4241 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4242 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4243 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4244 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4245 assert( pFrom->pSelect ); 4246 4247 /* Check if this is a recursive CTE. */ 4248 pSel = pFrom->pSelect; 4249 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4250 if( bMayRecursive ){ 4251 int i; 4252 SrcList *pSrc = pFrom->pSelect->pSrc; 4253 for(i=0; i<pSrc->nSrc; i++){ 4254 struct SrcList_item *pItem = &pSrc->a[i]; 4255 if( pItem->zDatabase==0 4256 && pItem->zName!=0 4257 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4258 ){ 4259 pItem->pTab = pTab; 4260 pItem->fg.isRecursive = 1; 4261 pTab->nTabRef++; 4262 pSel->selFlags |= SF_Recursive; 4263 } 4264 } 4265 } 4266 4267 /* Only one recursive reference is permitted. */ 4268 if( pTab->nTabRef>2 ){ 4269 sqlite3ErrorMsg( 4270 pParse, "multiple references to recursive table: %s", pCte->zName 4271 ); 4272 return SQLITE_ERROR; 4273 } 4274 assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4275 4276 pCte->zCteErr = "circular reference: %s"; 4277 pSavedWith = pParse->pWith; 4278 pParse->pWith = pWith; 4279 if( bMayRecursive ){ 4280 Select *pPrior = pSel->pPrior; 4281 assert( pPrior->pWith==0 ); 4282 pPrior->pWith = pSel->pWith; 4283 sqlite3WalkSelect(pWalker, pPrior); 4284 pPrior->pWith = 0; 4285 }else{ 4286 sqlite3WalkSelect(pWalker, pSel); 4287 } 4288 pParse->pWith = pWith; 4289 4290 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4291 pEList = pLeft->pEList; 4292 if( pCte->pCols ){ 4293 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4294 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4295 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4296 ); 4297 pParse->pWith = pSavedWith; 4298 return SQLITE_ERROR; 4299 } 4300 pEList = pCte->pCols; 4301 } 4302 4303 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4304 if( bMayRecursive ){ 4305 if( pSel->selFlags & SF_Recursive ){ 4306 pCte->zCteErr = "multiple recursive references: %s"; 4307 }else{ 4308 pCte->zCteErr = "recursive reference in a subquery: %s"; 4309 } 4310 sqlite3WalkSelect(pWalker, pSel); 4311 } 4312 pCte->zCteErr = 0; 4313 pParse->pWith = pSavedWith; 4314 } 4315 4316 return SQLITE_OK; 4317 } 4318 #endif 4319 4320 #ifndef SQLITE_OMIT_CTE 4321 /* 4322 ** If the SELECT passed as the second argument has an associated WITH 4323 ** clause, pop it from the stack stored as part of the Parse object. 4324 ** 4325 ** This function is used as the xSelectCallback2() callback by 4326 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4327 ** names and other FROM clause elements. 4328 */ 4329 static void selectPopWith(Walker *pWalker, Select *p){ 4330 Parse *pParse = pWalker->pParse; 4331 if( pParse->pWith && p->pPrior==0 ){ 4332 With *pWith = findRightmost(p)->pWith; 4333 if( pWith!=0 ){ 4334 assert( pParse->pWith==pWith ); 4335 pParse->pWith = pWith->pOuter; 4336 } 4337 } 4338 } 4339 #else 4340 #define selectPopWith 0 4341 #endif 4342 4343 /* 4344 ** This routine is a Walker callback for "expanding" a SELECT statement. 4345 ** "Expanding" means to do the following: 4346 ** 4347 ** (1) Make sure VDBE cursor numbers have been assigned to every 4348 ** element of the FROM clause. 4349 ** 4350 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4351 ** defines FROM clause. When views appear in the FROM clause, 4352 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4353 ** that implements the view. A copy is made of the view's SELECT 4354 ** statement so that we can freely modify or delete that statement 4355 ** without worrying about messing up the persistent representation 4356 ** of the view. 4357 ** 4358 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4359 ** on joins and the ON and USING clause of joins. 4360 ** 4361 ** (4) Scan the list of columns in the result set (pEList) looking 4362 ** for instances of the "*" operator or the TABLE.* operator. 4363 ** If found, expand each "*" to be every column in every table 4364 ** and TABLE.* to be every column in TABLE. 4365 ** 4366 */ 4367 static int selectExpander(Walker *pWalker, Select *p){ 4368 Parse *pParse = pWalker->pParse; 4369 int i, j, k; 4370 SrcList *pTabList; 4371 ExprList *pEList; 4372 struct SrcList_item *pFrom; 4373 sqlite3 *db = pParse->db; 4374 Expr *pE, *pRight, *pExpr; 4375 u16 selFlags = p->selFlags; 4376 4377 p->selFlags |= SF_Expanded; 4378 if( db->mallocFailed ){ 4379 return WRC_Abort; 4380 } 4381 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4382 return WRC_Prune; 4383 } 4384 pTabList = p->pSrc; 4385 pEList = p->pEList; 4386 if( p->pWith ){ 4387 sqlite3WithPush(pParse, p->pWith, 0); 4388 } 4389 4390 /* Make sure cursor numbers have been assigned to all entries in 4391 ** the FROM clause of the SELECT statement. 4392 */ 4393 sqlite3SrcListAssignCursors(pParse, pTabList); 4394 4395 /* Look up every table named in the FROM clause of the select. If 4396 ** an entry of the FROM clause is a subquery instead of a table or view, 4397 ** then create a transient table structure to describe the subquery. 4398 */ 4399 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4400 Table *pTab; 4401 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4402 if( pFrom->fg.isRecursive ) continue; 4403 assert( pFrom->pTab==0 ); 4404 #ifndef SQLITE_OMIT_CTE 4405 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4406 if( pFrom->pTab ) {} else 4407 #endif 4408 if( pFrom->zName==0 ){ 4409 #ifndef SQLITE_OMIT_SUBQUERY 4410 Select *pSel = pFrom->pSelect; 4411 /* A sub-query in the FROM clause of a SELECT */ 4412 assert( pSel!=0 ); 4413 assert( pFrom->pTab==0 ); 4414 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4415 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4416 if( pTab==0 ) return WRC_Abort; 4417 pTab->nTabRef = 1; 4418 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4419 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4420 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4421 pTab->iPKey = -1; 4422 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4423 pTab->tabFlags |= TF_Ephemeral; 4424 #endif 4425 }else{ 4426 /* An ordinary table or view name in the FROM clause */ 4427 assert( pFrom->pTab==0 ); 4428 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4429 if( pTab==0 ) return WRC_Abort; 4430 if( pTab->nTabRef>=0xffff ){ 4431 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4432 pTab->zName); 4433 pFrom->pTab = 0; 4434 return WRC_Abort; 4435 } 4436 pTab->nTabRef++; 4437 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4438 return WRC_Abort; 4439 } 4440 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4441 if( IsVirtual(pTab) || pTab->pSelect ){ 4442 i16 nCol; 4443 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4444 assert( pFrom->pSelect==0 ); 4445 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4446 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4447 nCol = pTab->nCol; 4448 pTab->nCol = -1; 4449 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4450 pTab->nCol = nCol; 4451 } 4452 #endif 4453 } 4454 4455 /* Locate the index named by the INDEXED BY clause, if any. */ 4456 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4457 return WRC_Abort; 4458 } 4459 } 4460 4461 /* Process NATURAL keywords, and ON and USING clauses of joins. 4462 */ 4463 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4464 return WRC_Abort; 4465 } 4466 4467 /* For every "*" that occurs in the column list, insert the names of 4468 ** all columns in all tables. And for every TABLE.* insert the names 4469 ** of all columns in TABLE. The parser inserted a special expression 4470 ** with the TK_ASTERISK operator for each "*" that it found in the column 4471 ** list. The following code just has to locate the TK_ASTERISK 4472 ** expressions and expand each one to the list of all columns in 4473 ** all tables. 4474 ** 4475 ** The first loop just checks to see if there are any "*" operators 4476 ** that need expanding. 4477 */ 4478 for(k=0; k<pEList->nExpr; k++){ 4479 pE = pEList->a[k].pExpr; 4480 if( pE->op==TK_ASTERISK ) break; 4481 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4482 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4483 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4484 } 4485 if( k<pEList->nExpr ){ 4486 /* 4487 ** If we get here it means the result set contains one or more "*" 4488 ** operators that need to be expanded. Loop through each expression 4489 ** in the result set and expand them one by one. 4490 */ 4491 struct ExprList_item *a = pEList->a; 4492 ExprList *pNew = 0; 4493 int flags = pParse->db->flags; 4494 int longNames = (flags & SQLITE_FullColNames)!=0 4495 && (flags & SQLITE_ShortColNames)==0; 4496 4497 for(k=0; k<pEList->nExpr; k++){ 4498 pE = a[k].pExpr; 4499 pRight = pE->pRight; 4500 assert( pE->op!=TK_DOT || pRight!=0 ); 4501 if( pE->op!=TK_ASTERISK 4502 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4503 ){ 4504 /* This particular expression does not need to be expanded. 4505 */ 4506 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4507 if( pNew ){ 4508 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4509 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4510 a[k].zName = 0; 4511 a[k].zSpan = 0; 4512 } 4513 a[k].pExpr = 0; 4514 }else{ 4515 /* This expression is a "*" or a "TABLE.*" and needs to be 4516 ** expanded. */ 4517 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4518 char *zTName = 0; /* text of name of TABLE */ 4519 if( pE->op==TK_DOT ){ 4520 assert( pE->pLeft!=0 ); 4521 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4522 zTName = pE->pLeft->u.zToken; 4523 } 4524 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4525 Table *pTab = pFrom->pTab; 4526 Select *pSub = pFrom->pSelect; 4527 char *zTabName = pFrom->zAlias; 4528 const char *zSchemaName = 0; 4529 int iDb; 4530 if( zTabName==0 ){ 4531 zTabName = pTab->zName; 4532 } 4533 if( db->mallocFailed ) break; 4534 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4535 pSub = 0; 4536 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4537 continue; 4538 } 4539 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4540 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4541 } 4542 for(j=0; j<pTab->nCol; j++){ 4543 char *zName = pTab->aCol[j].zName; 4544 char *zColname; /* The computed column name */ 4545 char *zToFree; /* Malloced string that needs to be freed */ 4546 Token sColname; /* Computed column name as a token */ 4547 4548 assert( zName ); 4549 if( zTName && pSub 4550 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4551 ){ 4552 continue; 4553 } 4554 4555 /* If a column is marked as 'hidden', omit it from the expanded 4556 ** result-set list unless the SELECT has the SF_IncludeHidden 4557 ** bit set. 4558 */ 4559 if( (p->selFlags & SF_IncludeHidden)==0 4560 && IsHiddenColumn(&pTab->aCol[j]) 4561 ){ 4562 continue; 4563 } 4564 tableSeen = 1; 4565 4566 if( i>0 && zTName==0 ){ 4567 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4568 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4569 ){ 4570 /* In a NATURAL join, omit the join columns from the 4571 ** table to the right of the join */ 4572 continue; 4573 } 4574 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4575 /* In a join with a USING clause, omit columns in the 4576 ** using clause from the table on the right. */ 4577 continue; 4578 } 4579 } 4580 pRight = sqlite3Expr(db, TK_ID, zName); 4581 zColname = zName; 4582 zToFree = 0; 4583 if( longNames || pTabList->nSrc>1 ){ 4584 Expr *pLeft; 4585 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4586 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4587 if( zSchemaName ){ 4588 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4589 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4590 } 4591 if( longNames ){ 4592 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4593 zToFree = zColname; 4594 } 4595 }else{ 4596 pExpr = pRight; 4597 } 4598 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4599 sqlite3TokenInit(&sColname, zColname); 4600 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4601 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4602 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4603 if( pSub ){ 4604 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4605 testcase( pX->zSpan==0 ); 4606 }else{ 4607 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4608 zSchemaName, zTabName, zColname); 4609 testcase( pX->zSpan==0 ); 4610 } 4611 pX->bSpanIsTab = 1; 4612 } 4613 sqlite3DbFree(db, zToFree); 4614 } 4615 } 4616 if( !tableSeen ){ 4617 if( zTName ){ 4618 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4619 }else{ 4620 sqlite3ErrorMsg(pParse, "no tables specified"); 4621 } 4622 } 4623 } 4624 } 4625 sqlite3ExprListDelete(db, pEList); 4626 p->pEList = pNew; 4627 } 4628 #if SQLITE_MAX_COLUMN 4629 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4630 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4631 return WRC_Abort; 4632 } 4633 #endif 4634 return WRC_Continue; 4635 } 4636 4637 /* 4638 ** No-op routine for the parse-tree walker. 4639 ** 4640 ** When this routine is the Walker.xExprCallback then expression trees 4641 ** are walked without any actions being taken at each node. Presumably, 4642 ** when this routine is used for Walker.xExprCallback then 4643 ** Walker.xSelectCallback is set to do something useful for every 4644 ** subquery in the parser tree. 4645 */ 4646 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4647 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4648 return WRC_Continue; 4649 } 4650 4651 /* 4652 ** No-op routine for the parse-tree walker for SELECT statements. 4653 ** subquery in the parser tree. 4654 */ 4655 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4656 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4657 return WRC_Continue; 4658 } 4659 4660 #if SQLITE_DEBUG 4661 /* 4662 ** Always assert. This xSelectCallback2 implementation proves that the 4663 ** xSelectCallback2 is never invoked. 4664 */ 4665 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4666 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4667 assert( 0 ); 4668 } 4669 #endif 4670 /* 4671 ** This routine "expands" a SELECT statement and all of its subqueries. 4672 ** For additional information on what it means to "expand" a SELECT 4673 ** statement, see the comment on the selectExpand worker callback above. 4674 ** 4675 ** Expanding a SELECT statement is the first step in processing a 4676 ** SELECT statement. The SELECT statement must be expanded before 4677 ** name resolution is performed. 4678 ** 4679 ** If anything goes wrong, an error message is written into pParse. 4680 ** The calling function can detect the problem by looking at pParse->nErr 4681 ** and/or pParse->db->mallocFailed. 4682 */ 4683 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4684 Walker w; 4685 w.xExprCallback = sqlite3ExprWalkNoop; 4686 w.pParse = pParse; 4687 if( pParse->hasCompound ){ 4688 w.xSelectCallback = convertCompoundSelectToSubquery; 4689 w.xSelectCallback2 = 0; 4690 sqlite3WalkSelect(&w, pSelect); 4691 } 4692 w.xSelectCallback = selectExpander; 4693 w.xSelectCallback2 = selectPopWith; 4694 sqlite3WalkSelect(&w, pSelect); 4695 } 4696 4697 4698 #ifndef SQLITE_OMIT_SUBQUERY 4699 /* 4700 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4701 ** interface. 4702 ** 4703 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4704 ** information to the Table structure that represents the result set 4705 ** of that subquery. 4706 ** 4707 ** The Table structure that represents the result set was constructed 4708 ** by selectExpander() but the type and collation information was omitted 4709 ** at that point because identifiers had not yet been resolved. This 4710 ** routine is called after identifier resolution. 4711 */ 4712 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4713 Parse *pParse; 4714 int i; 4715 SrcList *pTabList; 4716 struct SrcList_item *pFrom; 4717 4718 assert( p->selFlags & SF_Resolved ); 4719 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4720 p->selFlags |= SF_HasTypeInfo; 4721 pParse = pWalker->pParse; 4722 pTabList = p->pSrc; 4723 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4724 Table *pTab = pFrom->pTab; 4725 assert( pTab!=0 ); 4726 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4727 /* A sub-query in the FROM clause of a SELECT */ 4728 Select *pSel = pFrom->pSelect; 4729 if( pSel ){ 4730 while( pSel->pPrior ) pSel = pSel->pPrior; 4731 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4732 } 4733 } 4734 } 4735 } 4736 #endif 4737 4738 4739 /* 4740 ** This routine adds datatype and collating sequence information to 4741 ** the Table structures of all FROM-clause subqueries in a 4742 ** SELECT statement. 4743 ** 4744 ** Use this routine after name resolution. 4745 */ 4746 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4747 #ifndef SQLITE_OMIT_SUBQUERY 4748 Walker w; 4749 w.xSelectCallback = sqlite3SelectWalkNoop; 4750 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4751 w.xExprCallback = sqlite3ExprWalkNoop; 4752 w.pParse = pParse; 4753 sqlite3WalkSelect(&w, pSelect); 4754 #endif 4755 } 4756 4757 4758 /* 4759 ** This routine sets up a SELECT statement for processing. The 4760 ** following is accomplished: 4761 ** 4762 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4763 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4764 ** * ON and USING clauses are shifted into WHERE statements 4765 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4766 ** * Identifiers in expression are matched to tables. 4767 ** 4768 ** This routine acts recursively on all subqueries within the SELECT. 4769 */ 4770 void sqlite3SelectPrep( 4771 Parse *pParse, /* The parser context */ 4772 Select *p, /* The SELECT statement being coded. */ 4773 NameContext *pOuterNC /* Name context for container */ 4774 ){ 4775 sqlite3 *db; 4776 if( NEVER(p==0) ) return; 4777 db = pParse->db; 4778 if( db->mallocFailed ) return; 4779 if( p->selFlags & SF_HasTypeInfo ) return; 4780 sqlite3SelectExpand(pParse, p); 4781 if( pParse->nErr || db->mallocFailed ) return; 4782 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4783 if( pParse->nErr || db->mallocFailed ) return; 4784 sqlite3SelectAddTypeInfo(pParse, p); 4785 } 4786 4787 /* 4788 ** Reset the aggregate accumulator. 4789 ** 4790 ** The aggregate accumulator is a set of memory cells that hold 4791 ** intermediate results while calculating an aggregate. This 4792 ** routine generates code that stores NULLs in all of those memory 4793 ** cells. 4794 */ 4795 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4796 Vdbe *v = pParse->pVdbe; 4797 int i; 4798 struct AggInfo_func *pFunc; 4799 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4800 if( nReg==0 ) return; 4801 #ifdef SQLITE_DEBUG 4802 /* Verify that all AggInfo registers are within the range specified by 4803 ** AggInfo.mnReg..AggInfo.mxReg */ 4804 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4805 for(i=0; i<pAggInfo->nColumn; i++){ 4806 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4807 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4808 } 4809 for(i=0; i<pAggInfo->nFunc; i++){ 4810 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4811 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4812 } 4813 #endif 4814 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4815 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4816 if( pFunc->iDistinct>=0 ){ 4817 Expr *pE = pFunc->pExpr; 4818 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4819 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4820 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4821 "argument"); 4822 pFunc->iDistinct = -1; 4823 }else{ 4824 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4825 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4826 (char*)pKeyInfo, P4_KEYINFO); 4827 } 4828 } 4829 } 4830 } 4831 4832 /* 4833 ** Invoke the OP_AggFinalize opcode for every aggregate function 4834 ** in the AggInfo structure. 4835 */ 4836 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4837 Vdbe *v = pParse->pVdbe; 4838 int i; 4839 struct AggInfo_func *pF; 4840 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4841 ExprList *pList = pF->pExpr->x.pList; 4842 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4843 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4844 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4845 } 4846 } 4847 4848 /* 4849 ** Update the accumulator memory cells for an aggregate based on 4850 ** the current cursor position. 4851 */ 4852 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4853 Vdbe *v = pParse->pVdbe; 4854 int i; 4855 int regHit = 0; 4856 int addrHitTest = 0; 4857 struct AggInfo_func *pF; 4858 struct AggInfo_col *pC; 4859 4860 pAggInfo->directMode = 1; 4861 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4862 int nArg; 4863 int addrNext = 0; 4864 int regAgg; 4865 ExprList *pList = pF->pExpr->x.pList; 4866 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4867 if( pList ){ 4868 nArg = pList->nExpr; 4869 regAgg = sqlite3GetTempRange(pParse, nArg); 4870 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4871 }else{ 4872 nArg = 0; 4873 regAgg = 0; 4874 } 4875 if( pF->iDistinct>=0 ){ 4876 addrNext = sqlite3VdbeMakeLabel(v); 4877 testcase( nArg==0 ); /* Error condition */ 4878 testcase( nArg>1 ); /* Also an error */ 4879 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4880 } 4881 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4882 CollSeq *pColl = 0; 4883 struct ExprList_item *pItem; 4884 int j; 4885 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4886 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4887 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4888 } 4889 if( !pColl ){ 4890 pColl = pParse->db->pDfltColl; 4891 } 4892 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4893 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4894 } 4895 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4896 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4897 sqlite3VdbeChangeP5(v, (u8)nArg); 4898 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4899 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4900 if( addrNext ){ 4901 sqlite3VdbeResolveLabel(v, addrNext); 4902 sqlite3ExprCacheClear(pParse); 4903 } 4904 } 4905 4906 /* Before populating the accumulator registers, clear the column cache. 4907 ** Otherwise, if any of the required column values are already present 4908 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4909 ** to pC->iMem. But by the time the value is used, the original register 4910 ** may have been used, invalidating the underlying buffer holding the 4911 ** text or blob value. See ticket [883034dcb5]. 4912 ** 4913 ** Another solution would be to change the OP_SCopy used to copy cached 4914 ** values to an OP_Copy. 4915 */ 4916 if( regHit ){ 4917 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4918 } 4919 sqlite3ExprCacheClear(pParse); 4920 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4921 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4922 } 4923 pAggInfo->directMode = 0; 4924 sqlite3ExprCacheClear(pParse); 4925 if( addrHitTest ){ 4926 sqlite3VdbeJumpHere(v, addrHitTest); 4927 } 4928 } 4929 4930 /* 4931 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4932 ** count(*) query ("SELECT count(*) FROM pTab"). 4933 */ 4934 #ifndef SQLITE_OMIT_EXPLAIN 4935 static void explainSimpleCount( 4936 Parse *pParse, /* Parse context */ 4937 Table *pTab, /* Table being queried */ 4938 Index *pIdx /* Index used to optimize scan, or NULL */ 4939 ){ 4940 if( pParse->explain==2 ){ 4941 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4942 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4943 pTab->zName, 4944 bCover ? " USING COVERING INDEX " : "", 4945 bCover ? pIdx->zName : "" 4946 ); 4947 sqlite3VdbeAddOp4( 4948 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4949 ); 4950 } 4951 } 4952 #else 4953 # define explainSimpleCount(a,b,c) 4954 #endif 4955 4956 /* 4957 ** Context object for havingToWhereExprCb(). 4958 */ 4959 struct HavingToWhereCtx { 4960 Expr **ppWhere; 4961 ExprList *pGroupBy; 4962 }; 4963 4964 /* 4965 ** sqlite3WalkExpr() callback used by havingToWhere(). 4966 ** 4967 ** If the node passed to the callback is a TK_AND node, return 4968 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 4969 ** 4970 ** Otherwise, return WRC_Prune. In this case, also check if the 4971 ** sub-expression matches the criteria for being moved to the WHERE 4972 ** clause. If so, add it to the WHERE clause and replace the sub-expression 4973 ** within the HAVING expression with a constant "1". 4974 */ 4975 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 4976 if( pExpr->op!=TK_AND ){ 4977 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx; 4978 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){ 4979 sqlite3 *db = pWalker->pParse->db; 4980 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 4981 if( pNew ){ 4982 Expr *pWhere = *(p->ppWhere); 4983 SWAP(Expr, *pNew, *pExpr); 4984 pNew = sqlite3ExprAnd(db, pWhere, pNew); 4985 *(p->ppWhere) = pNew; 4986 } 4987 } 4988 return WRC_Prune; 4989 } 4990 return WRC_Continue; 4991 } 4992 4993 /* 4994 ** Transfer eligible terms from the HAVING clause of a query, which is 4995 ** processed after grouping, to the WHERE clause, which is processed before 4996 ** grouping. For example, the query: 4997 ** 4998 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 4999 ** 5000 ** can be rewritten as: 5001 ** 5002 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5003 ** 5004 ** A term of the HAVING expression is eligible for transfer if it consists 5005 ** entirely of constants and expressions that are also GROUP BY terms that 5006 ** use the "BINARY" collation sequence. 5007 */ 5008 static void havingToWhere( 5009 Parse *pParse, 5010 ExprList *pGroupBy, 5011 Expr *pHaving, 5012 Expr **ppWhere 5013 ){ 5014 struct HavingToWhereCtx sCtx; 5015 Walker sWalker; 5016 5017 sCtx.ppWhere = ppWhere; 5018 sCtx.pGroupBy = pGroupBy; 5019 5020 memset(&sWalker, 0, sizeof(sWalker)); 5021 sWalker.pParse = pParse; 5022 sWalker.xExprCallback = havingToWhereExprCb; 5023 sWalker.u.pHavingCtx = &sCtx; 5024 sqlite3WalkExpr(&sWalker, pHaving); 5025 } 5026 5027 /* 5028 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5029 ** If it is, then return the SrcList_item for the prior view. If it is not, 5030 ** then return 0. 5031 */ 5032 static struct SrcList_item *isSelfJoinView( 5033 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5034 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5035 ){ 5036 struct SrcList_item *pItem; 5037 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5038 if( pItem->pSelect==0 ) continue; 5039 if( pItem->fg.viaCoroutine ) continue; 5040 if( pItem->zName==0 ) continue; 5041 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5042 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5043 if( sqlite3ExprCompare(0, 5044 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5045 ){ 5046 /* The view was modified by some other optimization such as 5047 ** pushDownWhereTerms() */ 5048 continue; 5049 } 5050 return pItem; 5051 } 5052 return 0; 5053 } 5054 5055 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5056 /* 5057 ** Attempt to transform a query of the form 5058 ** 5059 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5060 ** 5061 ** Into this: 5062 ** 5063 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5064 ** 5065 ** The transformation only works if all of the following are true: 5066 ** 5067 ** * The subquery is a UNION ALL of two or more terms 5068 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5069 ** * The outer query is a simple count(*) 5070 ** 5071 ** Return TRUE if the optimization is undertaken. 5072 */ 5073 static int countOfViewOptimization(Parse *pParse, Select *p){ 5074 Select *pSub, *pPrior; 5075 Expr *pExpr; 5076 Expr *pCount; 5077 sqlite3 *db; 5078 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate query */ 5079 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5080 pExpr = p->pEList->a[0].pExpr; 5081 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5082 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Must be count() */ 5083 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5084 if( p->pSrc->nSrc!=1 ) return 0; /* One table in the FROM clause */ 5085 pSub = p->pSrc->a[0].pSelect; 5086 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5087 if( pSub->pPrior==0 ) return 0; /* Must be a compound subquery */ 5088 do{ 5089 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5090 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5091 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5092 pSub = pSub->pPrior; /* Repeat over compound terms */ 5093 }while( pSub ); 5094 5095 /* If we reach this point, that means it is OK to perform the transformation */ 5096 5097 db = pParse->db; 5098 pCount = pExpr; 5099 pExpr = 0; 5100 pSub = p->pSrc->a[0].pSelect; 5101 p->pSrc->a[0].pSelect = 0; 5102 sqlite3SrcListDelete(db, p->pSrc); 5103 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5104 while( pSub ){ 5105 Expr *pTerm; 5106 pPrior = pSub->pPrior; 5107 pSub->pPrior = 0; 5108 pSub->pNext = 0; 5109 pSub->selFlags |= SF_Aggregate; 5110 pSub->selFlags &= ~SF_Compound; 5111 pSub->nSelectRow = 0; 5112 sqlite3ExprListDelete(db, pSub->pEList); 5113 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5114 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5115 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5116 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5117 if( pExpr==0 ){ 5118 pExpr = pTerm; 5119 }else{ 5120 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5121 } 5122 pSub = pPrior; 5123 } 5124 p->pEList->a[0].pExpr = pExpr; 5125 p->selFlags &= ~SF_Aggregate; 5126 5127 #if SELECTTRACE_ENABLED 5128 if( sqlite3SelectTrace & 0x400 ){ 5129 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5130 sqlite3TreeViewSelect(0, p, 0); 5131 } 5132 #endif 5133 return 1; 5134 } 5135 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5136 5137 /* 5138 ** Generate code for the SELECT statement given in the p argument. 5139 ** 5140 ** The results are returned according to the SelectDest structure. 5141 ** See comments in sqliteInt.h for further information. 5142 ** 5143 ** This routine returns the number of errors. If any errors are 5144 ** encountered, then an appropriate error message is left in 5145 ** pParse->zErrMsg. 5146 ** 5147 ** This routine does NOT free the Select structure passed in. The 5148 ** calling function needs to do that. 5149 */ 5150 int sqlite3Select( 5151 Parse *pParse, /* The parser context */ 5152 Select *p, /* The SELECT statement being coded. */ 5153 SelectDest *pDest /* What to do with the query results */ 5154 ){ 5155 int i, j; /* Loop counters */ 5156 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5157 Vdbe *v; /* The virtual machine under construction */ 5158 int isAgg; /* True for select lists like "count(*)" */ 5159 ExprList *pEList = 0; /* List of columns to extract. */ 5160 SrcList *pTabList; /* List of tables to select from */ 5161 Expr *pWhere; /* The WHERE clause. May be NULL */ 5162 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5163 Expr *pHaving; /* The HAVING clause. May be NULL */ 5164 int rc = 1; /* Value to return from this function */ 5165 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5166 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5167 AggInfo sAggInfo; /* Information used by aggregate queries */ 5168 int iEnd; /* Address of the end of the query */ 5169 sqlite3 *db; /* The database connection */ 5170 5171 #ifndef SQLITE_OMIT_EXPLAIN 5172 int iRestoreSelectId = pParse->iSelectId; 5173 pParse->iSelectId = pParse->iNextSelectId++; 5174 #endif 5175 5176 db = pParse->db; 5177 if( p==0 || db->mallocFailed || pParse->nErr ){ 5178 return 1; 5179 } 5180 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5181 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5182 #if SELECTTRACE_ENABLED 5183 pParse->nSelectIndent++; 5184 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5185 if( sqlite3SelectTrace & 0x100 ){ 5186 sqlite3TreeViewSelect(0, p, 0); 5187 } 5188 #endif 5189 5190 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5191 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5192 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5193 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5194 if( IgnorableOrderby(pDest) ){ 5195 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5196 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5197 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5198 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5199 /* If ORDER BY makes no difference in the output then neither does 5200 ** DISTINCT so it can be removed too. */ 5201 sqlite3ExprListDelete(db, p->pOrderBy); 5202 p->pOrderBy = 0; 5203 p->selFlags &= ~SF_Distinct; 5204 } 5205 sqlite3SelectPrep(pParse, p, 0); 5206 memset(&sSort, 0, sizeof(sSort)); 5207 sSort.pOrderBy = p->pOrderBy; 5208 pTabList = p->pSrc; 5209 if( pParse->nErr || db->mallocFailed ){ 5210 goto select_end; 5211 } 5212 assert( p->pEList!=0 ); 5213 isAgg = (p->selFlags & SF_Aggregate)!=0; 5214 #if SELECTTRACE_ENABLED 5215 if( sqlite3SelectTrace & 0x100 ){ 5216 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5217 sqlite3TreeViewSelect(0, p, 0); 5218 } 5219 #endif 5220 5221 /* Try to flatten subqueries in the FROM clause up into the main query 5222 */ 5223 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5224 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5225 struct SrcList_item *pItem = &pTabList->a[i]; 5226 Select *pSub = pItem->pSelect; 5227 int isAggSub; 5228 Table *pTab = pItem->pTab; 5229 if( pSub==0 ) continue; 5230 5231 /* Catch mismatch in the declared columns of a view and the number of 5232 ** columns in the SELECT on the RHS */ 5233 if( pTab->nCol!=pSub->pEList->nExpr ){ 5234 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5235 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5236 goto select_end; 5237 } 5238 5239 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 5240 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 5241 /* This subquery can be absorbed into its parent. */ 5242 if( isAggSub ){ 5243 isAgg = 1; 5244 p->selFlags |= SF_Aggregate; 5245 } 5246 i = -1; 5247 } 5248 pTabList = p->pSrc; 5249 if( db->mallocFailed ) goto select_end; 5250 if( !IgnorableOrderby(pDest) ){ 5251 sSort.pOrderBy = p->pOrderBy; 5252 } 5253 } 5254 #endif 5255 5256 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5257 ** does not already exist */ 5258 v = sqlite3GetVdbe(pParse); 5259 if( v==0 ) goto select_end; 5260 5261 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5262 /* Handle compound SELECT statements using the separate multiSelect() 5263 ** procedure. 5264 */ 5265 if( p->pPrior ){ 5266 rc = multiSelect(pParse, p, pDest); 5267 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5268 #if SELECTTRACE_ENABLED 5269 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5270 pParse->nSelectIndent--; 5271 #endif 5272 return rc; 5273 } 5274 #endif 5275 5276 /* For each term in the FROM clause, do two things: 5277 ** (1) Authorized unreferenced tables 5278 ** (2) Generate code for all sub-queries 5279 */ 5280 for(i=0; i<pTabList->nSrc; i++){ 5281 struct SrcList_item *pItem = &pTabList->a[i]; 5282 SelectDest dest; 5283 Select *pSub; 5284 5285 /* Issue SQLITE_READ authorizations with a fake column name for any tables that 5286 ** are referenced but from which no values are extracted. Examples of where these 5287 ** kinds of null SQLITE_READ authorizations would occur: 5288 ** 5289 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5290 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5291 ** 5292 ** The fake column name is an empty string. It is possible for a table to 5293 ** have a column named by the empty string, in which case there is no way to 5294 ** distinguish between an unreferenced table and an actual reference to the 5295 ** "" column. The original design was for the fake column name to be a NULL, 5296 ** which would be unambiguous. But legacy authorization callbacks might 5297 ** assume the column name is non-NULL and segfault. The use of an empty string 5298 ** for the fake column name seems safer. 5299 */ 5300 if( pItem->colUsed==0 ){ 5301 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5302 } 5303 5304 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5305 /* Generate code for all sub-queries in the FROM clause 5306 */ 5307 pSub = pItem->pSelect; 5308 if( pSub==0 ) continue; 5309 5310 /* Sometimes the code for a subquery will be generated more than 5311 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5312 ** for example. In that case, do not regenerate the code to manifest 5313 ** a view or the co-routine to implement a view. The first instance 5314 ** is sufficient, though the subroutine to manifest the view does need 5315 ** to be invoked again. */ 5316 if( pItem->addrFillSub ){ 5317 if( pItem->fg.viaCoroutine==0 ){ 5318 /* The subroutine that manifests the view might be a one-time routine, 5319 ** or it might need to be rerun on each iteration because it 5320 ** encodes a correlated subquery. */ 5321 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5322 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5323 } 5324 continue; 5325 } 5326 5327 /* Increment Parse.nHeight by the height of the largest expression 5328 ** tree referred to by this, the parent select. The child select 5329 ** may contain expression trees of at most 5330 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5331 ** more conservative than necessary, but much easier than enforcing 5332 ** an exact limit. 5333 */ 5334 pParse->nHeight += sqlite3SelectExprHeight(p); 5335 5336 /* Make copies of constant WHERE-clause terms in the outer query down 5337 ** inside the subquery. This can help the subquery to run more efficiently. 5338 */ 5339 if( (pItem->fg.jointype & JT_OUTER)==0 5340 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) 5341 ){ 5342 #if SELECTTRACE_ENABLED 5343 if( sqlite3SelectTrace & 0x100 ){ 5344 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5345 sqlite3TreeViewSelect(0, p, 0); 5346 } 5347 #endif 5348 } 5349 5350 /* Generate code to implement the subquery 5351 ** 5352 ** The subquery is implemented as a co-routine if all of these are true: 5353 ** (1) The subquery is guaranteed to be the outer loop (so that it 5354 ** does not need to be computed more than once) 5355 ** (2) The ALL keyword after SELECT is omitted. (Applications are 5356 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 5357 ** the use of co-routines.) 5358 ** (3) Co-routines are not disabled using sqlite3_test_control() 5359 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 5360 ** 5361 ** TODO: Are there other reasons beside (1) to use a co-routine 5362 ** implementation? 5363 */ 5364 if( i==0 5365 && (pTabList->nSrc==1 5366 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5367 && (p->selFlags & SF_All)==0 /* (2) */ 5368 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 5369 ){ 5370 /* Implement a co-routine that will return a single row of the result 5371 ** set on each invocation. 5372 */ 5373 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5374 pItem->regReturn = ++pParse->nMem; 5375 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5376 VdbeComment((v, "%s", pItem->pTab->zName)); 5377 pItem->addrFillSub = addrTop; 5378 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5379 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5380 sqlite3Select(pParse, pSub, &dest); 5381 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5382 pItem->fg.viaCoroutine = 1; 5383 pItem->regResult = dest.iSdst; 5384 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5385 sqlite3VdbeJumpHere(v, addrTop-1); 5386 sqlite3ClearTempRegCache(pParse); 5387 }else{ 5388 /* Generate a subroutine that will fill an ephemeral table with 5389 ** the content of this subquery. pItem->addrFillSub will point 5390 ** to the address of the generated subroutine. pItem->regReturn 5391 ** is a register allocated to hold the subroutine return address 5392 */ 5393 int topAddr; 5394 int onceAddr = 0; 5395 int retAddr; 5396 struct SrcList_item *pPrior; 5397 5398 assert( pItem->addrFillSub==0 ); 5399 pItem->regReturn = ++pParse->nMem; 5400 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5401 pItem->addrFillSub = topAddr+1; 5402 if( pItem->fg.isCorrelated==0 ){ 5403 /* If the subquery is not correlated and if we are not inside of 5404 ** a trigger, then we only need to compute the value of the subquery 5405 ** once. */ 5406 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5407 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5408 }else{ 5409 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5410 } 5411 pPrior = isSelfJoinView(pTabList, pItem); 5412 if( pPrior ){ 5413 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5414 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5415 assert( pPrior->pSelect!=0 ); 5416 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5417 }else{ 5418 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5419 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5420 sqlite3Select(pParse, pSub, &dest); 5421 } 5422 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5423 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5424 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5425 VdbeComment((v, "end %s", pItem->pTab->zName)); 5426 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5427 sqlite3ClearTempRegCache(pParse); 5428 } 5429 if( db->mallocFailed ) goto select_end; 5430 pParse->nHeight -= sqlite3SelectExprHeight(p); 5431 #endif 5432 } 5433 5434 /* Various elements of the SELECT copied into local variables for 5435 ** convenience */ 5436 pEList = p->pEList; 5437 pWhere = p->pWhere; 5438 pGroupBy = p->pGroupBy; 5439 pHaving = p->pHaving; 5440 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5441 5442 #if SELECTTRACE_ENABLED 5443 if( sqlite3SelectTrace & 0x400 ){ 5444 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5445 sqlite3TreeViewSelect(0, p, 0); 5446 } 5447 #endif 5448 5449 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5450 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5451 && countOfViewOptimization(pParse, p) 5452 ){ 5453 if( db->mallocFailed ) goto select_end; 5454 pEList = p->pEList; 5455 pTabList = p->pSrc; 5456 } 5457 #endif 5458 5459 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5460 ** if the select-list is the same as the ORDER BY list, then this query 5461 ** can be rewritten as a GROUP BY. In other words, this: 5462 ** 5463 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5464 ** 5465 ** is transformed to: 5466 ** 5467 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5468 ** 5469 ** The second form is preferred as a single index (or temp-table) may be 5470 ** used for both the ORDER BY and DISTINCT processing. As originally 5471 ** written the query must use a temp-table for at least one of the ORDER 5472 ** BY and DISTINCT, and an index or separate temp-table for the other. 5473 */ 5474 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5475 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5476 ){ 5477 p->selFlags &= ~SF_Distinct; 5478 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5479 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5480 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5481 ** original setting of the SF_Distinct flag, not the current setting */ 5482 assert( sDistinct.isTnct ); 5483 5484 #if SELECTTRACE_ENABLED 5485 if( sqlite3SelectTrace & 0x400 ){ 5486 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5487 sqlite3TreeViewSelect(0, p, 0); 5488 } 5489 #endif 5490 } 5491 5492 /* If there is an ORDER BY clause, then create an ephemeral index to 5493 ** do the sorting. But this sorting ephemeral index might end up 5494 ** being unused if the data can be extracted in pre-sorted order. 5495 ** If that is the case, then the OP_OpenEphemeral instruction will be 5496 ** changed to an OP_Noop once we figure out that the sorting index is 5497 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5498 ** that change. 5499 */ 5500 if( sSort.pOrderBy ){ 5501 KeyInfo *pKeyInfo; 5502 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5503 sSort.iECursor = pParse->nTab++; 5504 sSort.addrSortIndex = 5505 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5506 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5507 (char*)pKeyInfo, P4_KEYINFO 5508 ); 5509 }else{ 5510 sSort.addrSortIndex = -1; 5511 } 5512 5513 /* If the output is destined for a temporary table, open that table. 5514 */ 5515 if( pDest->eDest==SRT_EphemTab ){ 5516 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5517 } 5518 5519 /* Set the limiter. 5520 */ 5521 iEnd = sqlite3VdbeMakeLabel(v); 5522 if( (p->selFlags & SF_FixedLimit)==0 ){ 5523 p->nSelectRow = 320; /* 4 billion rows */ 5524 } 5525 computeLimitRegisters(pParse, p, iEnd); 5526 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5527 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5528 sSort.sortFlags |= SORTFLAG_UseSorter; 5529 } 5530 5531 /* Open an ephemeral index to use for the distinct set. 5532 */ 5533 if( p->selFlags & SF_Distinct ){ 5534 sDistinct.tabTnct = pParse->nTab++; 5535 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5536 sDistinct.tabTnct, 0, 0, 5537 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5538 P4_KEYINFO); 5539 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5540 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5541 }else{ 5542 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5543 } 5544 5545 if( !isAgg && pGroupBy==0 ){ 5546 /* No aggregate functions and no GROUP BY clause */ 5547 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5548 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5549 wctrlFlags |= p->selFlags & SF_FixedLimit; 5550 5551 /* Begin the database scan. */ 5552 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5553 p->pEList, wctrlFlags, p->nSelectRow); 5554 if( pWInfo==0 ) goto select_end; 5555 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5556 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5557 } 5558 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5559 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5560 } 5561 if( sSort.pOrderBy ){ 5562 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5563 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5564 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5565 sSort.pOrderBy = 0; 5566 } 5567 } 5568 5569 /* If sorting index that was created by a prior OP_OpenEphemeral 5570 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5571 ** into an OP_Noop. 5572 */ 5573 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5574 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5575 } 5576 5577 /* Use the standard inner loop. */ 5578 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5579 sqlite3WhereContinueLabel(pWInfo), 5580 sqlite3WhereBreakLabel(pWInfo)); 5581 5582 /* End the database scan loop. 5583 */ 5584 sqlite3WhereEnd(pWInfo); 5585 }else{ 5586 /* This case when there exist aggregate functions or a GROUP BY clause 5587 ** or both */ 5588 NameContext sNC; /* Name context for processing aggregate information */ 5589 int iAMem; /* First Mem address for storing current GROUP BY */ 5590 int iBMem; /* First Mem address for previous GROUP BY */ 5591 int iUseFlag; /* Mem address holding flag indicating that at least 5592 ** one row of the input to the aggregator has been 5593 ** processed */ 5594 int iAbortFlag; /* Mem address which causes query abort if positive */ 5595 int groupBySort; /* Rows come from source in GROUP BY order */ 5596 int addrEnd; /* End of processing for this SELECT */ 5597 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5598 int sortOut = 0; /* Output register from the sorter */ 5599 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5600 5601 /* Remove any and all aliases between the result set and the 5602 ** GROUP BY clause. 5603 */ 5604 if( pGroupBy ){ 5605 int k; /* Loop counter */ 5606 struct ExprList_item *pItem; /* For looping over expression in a list */ 5607 5608 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5609 pItem->u.x.iAlias = 0; 5610 } 5611 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5612 pItem->u.x.iAlias = 0; 5613 } 5614 assert( 66==sqlite3LogEst(100) ); 5615 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5616 }else{ 5617 assert( 0==sqlite3LogEst(1) ); 5618 p->nSelectRow = 0; 5619 } 5620 5621 /* If there is both a GROUP BY and an ORDER BY clause and they are 5622 ** identical, then it may be possible to disable the ORDER BY clause 5623 ** on the grounds that the GROUP BY will cause elements to come out 5624 ** in the correct order. It also may not - the GROUP BY might use a 5625 ** database index that causes rows to be grouped together as required 5626 ** but not actually sorted. Either way, record the fact that the 5627 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5628 ** variable. */ 5629 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5630 orderByGrp = 1; 5631 } 5632 5633 /* Create a label to jump to when we want to abort the query */ 5634 addrEnd = sqlite3VdbeMakeLabel(v); 5635 5636 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5637 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5638 ** SELECT statement. 5639 */ 5640 memset(&sNC, 0, sizeof(sNC)); 5641 sNC.pParse = pParse; 5642 sNC.pSrcList = pTabList; 5643 sNC.pAggInfo = &sAggInfo; 5644 sAggInfo.mnReg = pParse->nMem+1; 5645 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5646 sAggInfo.pGroupBy = pGroupBy; 5647 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5648 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5649 if( pHaving ){ 5650 if( pGroupBy ){ 5651 assert( pWhere==p->pWhere ); 5652 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere); 5653 pWhere = p->pWhere; 5654 } 5655 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5656 } 5657 sAggInfo.nAccumulator = sAggInfo.nColumn; 5658 for(i=0; i<sAggInfo.nFunc; i++){ 5659 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5660 sNC.ncFlags |= NC_InAggFunc; 5661 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5662 sNC.ncFlags &= ~NC_InAggFunc; 5663 } 5664 sAggInfo.mxReg = pParse->nMem; 5665 if( db->mallocFailed ) goto select_end; 5666 5667 /* Processing for aggregates with GROUP BY is very different and 5668 ** much more complex than aggregates without a GROUP BY. 5669 */ 5670 if( pGroupBy ){ 5671 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5672 int addr1; /* A-vs-B comparision jump */ 5673 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5674 int regOutputRow; /* Return address register for output subroutine */ 5675 int addrSetAbort; /* Set the abort flag and return */ 5676 int addrTopOfLoop; /* Top of the input loop */ 5677 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5678 int addrReset; /* Subroutine for resetting the accumulator */ 5679 int regReset; /* Return address register for reset subroutine */ 5680 5681 /* If there is a GROUP BY clause we might need a sorting index to 5682 ** implement it. Allocate that sorting index now. If it turns out 5683 ** that we do not need it after all, the OP_SorterOpen instruction 5684 ** will be converted into a Noop. 5685 */ 5686 sAggInfo.sortingIdx = pParse->nTab++; 5687 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5688 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5689 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5690 0, (char*)pKeyInfo, P4_KEYINFO); 5691 5692 /* Initialize memory locations used by GROUP BY aggregate processing 5693 */ 5694 iUseFlag = ++pParse->nMem; 5695 iAbortFlag = ++pParse->nMem; 5696 regOutputRow = ++pParse->nMem; 5697 addrOutputRow = sqlite3VdbeMakeLabel(v); 5698 regReset = ++pParse->nMem; 5699 addrReset = sqlite3VdbeMakeLabel(v); 5700 iAMem = pParse->nMem + 1; 5701 pParse->nMem += pGroupBy->nExpr; 5702 iBMem = pParse->nMem + 1; 5703 pParse->nMem += pGroupBy->nExpr; 5704 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5705 VdbeComment((v, "clear abort flag")); 5706 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5707 VdbeComment((v, "indicate accumulator empty")); 5708 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5709 5710 /* Begin a loop that will extract all source rows in GROUP BY order. 5711 ** This might involve two separate loops with an OP_Sort in between, or 5712 ** it might be a single loop that uses an index to extract information 5713 ** in the right order to begin with. 5714 */ 5715 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5716 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5717 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5718 ); 5719 if( pWInfo==0 ) goto select_end; 5720 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5721 /* The optimizer is able to deliver rows in group by order so 5722 ** we do not have to sort. The OP_OpenEphemeral table will be 5723 ** cancelled later because we still need to use the pKeyInfo 5724 */ 5725 groupBySort = 0; 5726 }else{ 5727 /* Rows are coming out in undetermined order. We have to push 5728 ** each row into a sorting index, terminate the first loop, 5729 ** then loop over the sorting index in order to get the output 5730 ** in sorted order 5731 */ 5732 int regBase; 5733 int regRecord; 5734 int nCol; 5735 int nGroupBy; 5736 5737 explainTempTable(pParse, 5738 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5739 "DISTINCT" : "GROUP BY"); 5740 5741 groupBySort = 1; 5742 nGroupBy = pGroupBy->nExpr; 5743 nCol = nGroupBy; 5744 j = nGroupBy; 5745 for(i=0; i<sAggInfo.nColumn; i++){ 5746 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5747 nCol++; 5748 j++; 5749 } 5750 } 5751 regBase = sqlite3GetTempRange(pParse, nCol); 5752 sqlite3ExprCacheClear(pParse); 5753 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5754 j = nGroupBy; 5755 for(i=0; i<sAggInfo.nColumn; i++){ 5756 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5757 if( pCol->iSorterColumn>=j ){ 5758 int r1 = j + regBase; 5759 sqlite3ExprCodeGetColumnToReg(pParse, 5760 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5761 j++; 5762 } 5763 } 5764 regRecord = sqlite3GetTempReg(pParse); 5765 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5766 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5767 sqlite3ReleaseTempReg(pParse, regRecord); 5768 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5769 sqlite3WhereEnd(pWInfo); 5770 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5771 sortOut = sqlite3GetTempReg(pParse); 5772 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5773 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5774 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5775 sAggInfo.useSortingIdx = 1; 5776 sqlite3ExprCacheClear(pParse); 5777 5778 } 5779 5780 /* If the index or temporary table used by the GROUP BY sort 5781 ** will naturally deliver rows in the order required by the ORDER BY 5782 ** clause, cancel the ephemeral table open coded earlier. 5783 ** 5784 ** This is an optimization - the correct answer should result regardless. 5785 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5786 ** disable this optimization for testing purposes. */ 5787 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5788 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5789 ){ 5790 sSort.pOrderBy = 0; 5791 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5792 } 5793 5794 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5795 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5796 ** Then compare the current GROUP BY terms against the GROUP BY terms 5797 ** from the previous row currently stored in a0, a1, a2... 5798 */ 5799 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5800 sqlite3ExprCacheClear(pParse); 5801 if( groupBySort ){ 5802 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5803 sortOut, sortPTab); 5804 } 5805 for(j=0; j<pGroupBy->nExpr; j++){ 5806 if( groupBySort ){ 5807 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5808 }else{ 5809 sAggInfo.directMode = 1; 5810 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5811 } 5812 } 5813 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5814 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5815 addr1 = sqlite3VdbeCurrentAddr(v); 5816 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5817 5818 /* Generate code that runs whenever the GROUP BY changes. 5819 ** Changes in the GROUP BY are detected by the previous code 5820 ** block. If there were no changes, this block is skipped. 5821 ** 5822 ** This code copies current group by terms in b0,b1,b2,... 5823 ** over to a0,a1,a2. It then calls the output subroutine 5824 ** and resets the aggregate accumulator registers in preparation 5825 ** for the next GROUP BY batch. 5826 */ 5827 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5828 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5829 VdbeComment((v, "output one row")); 5830 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5831 VdbeComment((v, "check abort flag")); 5832 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5833 VdbeComment((v, "reset accumulator")); 5834 5835 /* Update the aggregate accumulators based on the content of 5836 ** the current row 5837 */ 5838 sqlite3VdbeJumpHere(v, addr1); 5839 updateAccumulator(pParse, &sAggInfo); 5840 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5841 VdbeComment((v, "indicate data in accumulator")); 5842 5843 /* End of the loop 5844 */ 5845 if( groupBySort ){ 5846 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5847 VdbeCoverage(v); 5848 }else{ 5849 sqlite3WhereEnd(pWInfo); 5850 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5851 } 5852 5853 /* Output the final row of result 5854 */ 5855 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5856 VdbeComment((v, "output final row")); 5857 5858 /* Jump over the subroutines 5859 */ 5860 sqlite3VdbeGoto(v, addrEnd); 5861 5862 /* Generate a subroutine that outputs a single row of the result 5863 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5864 ** is less than or equal to zero, the subroutine is a no-op. If 5865 ** the processing calls for the query to abort, this subroutine 5866 ** increments the iAbortFlag memory location before returning in 5867 ** order to signal the caller to abort. 5868 */ 5869 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5870 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5871 VdbeComment((v, "set abort flag")); 5872 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5873 sqlite3VdbeResolveLabel(v, addrOutputRow); 5874 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5875 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5876 VdbeCoverage(v); 5877 VdbeComment((v, "Groupby result generator entry point")); 5878 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5879 finalizeAggFunctions(pParse, &sAggInfo); 5880 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5881 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5882 &sDistinct, pDest, 5883 addrOutputRow+1, addrSetAbort); 5884 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5885 VdbeComment((v, "end groupby result generator")); 5886 5887 /* Generate a subroutine that will reset the group-by accumulator 5888 */ 5889 sqlite3VdbeResolveLabel(v, addrReset); 5890 resetAccumulator(pParse, &sAggInfo); 5891 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5892 5893 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5894 else { 5895 ExprList *pDel = 0; 5896 #ifndef SQLITE_OMIT_BTREECOUNT 5897 Table *pTab; 5898 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5899 /* If isSimpleCount() returns a pointer to a Table structure, then 5900 ** the SQL statement is of the form: 5901 ** 5902 ** SELECT count(*) FROM <tbl> 5903 ** 5904 ** where the Table structure returned represents table <tbl>. 5905 ** 5906 ** This statement is so common that it is optimized specially. The 5907 ** OP_Count instruction is executed either on the intkey table that 5908 ** contains the data for table <tbl> or on one of its indexes. It 5909 ** is better to execute the op on an index, as indexes are almost 5910 ** always spread across less pages than their corresponding tables. 5911 */ 5912 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5913 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5914 Index *pIdx; /* Iterator variable */ 5915 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5916 Index *pBest = 0; /* Best index found so far */ 5917 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5918 5919 sqlite3CodeVerifySchema(pParse, iDb); 5920 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5921 5922 /* Search for the index that has the lowest scan cost. 5923 ** 5924 ** (2011-04-15) Do not do a full scan of an unordered index. 5925 ** 5926 ** (2013-10-03) Do not count the entries in a partial index. 5927 ** 5928 ** In practice the KeyInfo structure will not be used. It is only 5929 ** passed to keep OP_OpenRead happy. 5930 */ 5931 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5932 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5933 if( pIdx->bUnordered==0 5934 && pIdx->szIdxRow<pTab->szTabRow 5935 && pIdx->pPartIdxWhere==0 5936 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5937 ){ 5938 pBest = pIdx; 5939 } 5940 } 5941 if( pBest ){ 5942 iRoot = pBest->tnum; 5943 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5944 } 5945 5946 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5947 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5948 if( pKeyInfo ){ 5949 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5950 } 5951 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5952 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5953 explainSimpleCount(pParse, pTab, pBest); 5954 }else 5955 #endif /* SQLITE_OMIT_BTREECOUNT */ 5956 { 5957 /* Check if the query is of one of the following forms: 5958 ** 5959 ** SELECT min(x) FROM ... 5960 ** SELECT max(x) FROM ... 5961 ** 5962 ** If it is, then ask the code in where.c to attempt to sort results 5963 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5964 ** If where.c is able to produce results sorted in this order, then 5965 ** add vdbe code to break out of the processing loop after the 5966 ** first iteration (since the first iteration of the loop is 5967 ** guaranteed to operate on the row with the minimum or maximum 5968 ** value of x, the only row required). 5969 ** 5970 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5971 ** modify behavior as follows: 5972 ** 5973 ** + If the query is a "SELECT min(x)", then the loop coded by 5974 ** where.c should not iterate over any values with a NULL value 5975 ** for x. 5976 ** 5977 ** + The optimizer code in where.c (the thing that decides which 5978 ** index or indices to use) should place a different priority on 5979 ** satisfying the 'ORDER BY' clause than it does in other cases. 5980 ** Refer to code and comments in where.c for details. 5981 */ 5982 ExprList *pMinMax = 0; 5983 u8 flag = WHERE_ORDERBY_NORMAL; 5984 5985 assert( p->pGroupBy==0 ); 5986 assert( flag==0 ); 5987 if( p->pHaving==0 ){ 5988 flag = minMaxQuery(&sAggInfo, &pMinMax); 5989 } 5990 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5991 5992 if( flag ){ 5993 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5994 pDel = pMinMax; 5995 assert( db->mallocFailed || pMinMax!=0 ); 5996 if( !db->mallocFailed ){ 5997 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5998 pMinMax->a[0].pExpr->op = TK_COLUMN; 5999 } 6000 } 6001 6002 /* This case runs if the aggregate has no GROUP BY clause. The 6003 ** processing is much simpler since there is only a single row 6004 ** of output. 6005 */ 6006 resetAccumulator(pParse, &sAggInfo); 6007 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0); 6008 if( pWInfo==0 ){ 6009 sqlite3ExprListDelete(db, pDel); 6010 goto select_end; 6011 } 6012 updateAccumulator(pParse, &sAggInfo); 6013 assert( pMinMax==0 || pMinMax->nExpr==1 ); 6014 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6015 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6016 VdbeComment((v, "%s() by index", 6017 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 6018 } 6019 sqlite3WhereEnd(pWInfo); 6020 finalizeAggFunctions(pParse, &sAggInfo); 6021 } 6022 6023 sSort.pOrderBy = 0; 6024 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6025 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 6026 pDest, addrEnd, addrEnd); 6027 sqlite3ExprListDelete(db, pDel); 6028 } 6029 sqlite3VdbeResolveLabel(v, addrEnd); 6030 6031 } /* endif aggregate query */ 6032 6033 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6034 explainTempTable(pParse, "DISTINCT"); 6035 } 6036 6037 /* If there is an ORDER BY clause, then we need to sort the results 6038 ** and send them to the callback one by one. 6039 */ 6040 if( sSort.pOrderBy ){ 6041 explainTempTable(pParse, 6042 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6043 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6044 } 6045 6046 /* Jump here to skip this query 6047 */ 6048 sqlite3VdbeResolveLabel(v, iEnd); 6049 6050 /* The SELECT has been coded. If there is an error in the Parse structure, 6051 ** set the return code to 1. Otherwise 0. */ 6052 rc = (pParse->nErr>0); 6053 6054 /* Control jumps to here if an error is encountered above, or upon 6055 ** successful coding of the SELECT. 6056 */ 6057 select_end: 6058 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 6059 6060 /* Identify column names if results of the SELECT are to be output. 6061 */ 6062 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 6063 generateColumnNames(pParse, pTabList, pEList); 6064 } 6065 6066 sqlite3DbFree(db, sAggInfo.aCol); 6067 sqlite3DbFree(db, sAggInfo.aFunc); 6068 #if SELECTTRACE_ENABLED 6069 SELECTTRACE(1,pParse,p,("end processing\n")); 6070 pParse->nSelectIndent--; 6071 #endif 6072 return rc; 6073 } 6074