xref: /sqlite-3.40.0/src/select.c (revision 48864df9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iSDParm = iParm;
40   pDest->affSdst = 0;
41   pDest->iSdst = 0;
42   pDest->nSdst = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     assert( db->mallocFailed );
69     pNew = &standin;
70     memset(pNew, 0, sizeof(*pNew));
71   }
72   if( pEList==0 ){
73     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
74   }
75   pNew->pEList = pEList;
76   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = selFlags;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   assert( pOffset==0 || pLimit!=0 );
87   pNew->addrOpenEphm[0] = -1;
88   pNew->addrOpenEphm[1] = -1;
89   pNew->addrOpenEphm[2] = -1;
90   if( db->mallocFailed ) {
91     clearSelect(db, pNew);
92     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
93     pNew = 0;
94   }else{
95     assert( pNew->pSrc!=0 || pParse->nErr>0 );
96   }
97   assert( pNew!=&standin );
98   return pNew;
99 }
100 
101 /*
102 ** Delete the given Select structure and all of its substructures.
103 */
104 void sqlite3SelectDelete(sqlite3 *db, Select *p){
105   if( p ){
106     clearSelect(db, p);
107     sqlite3DbFree(db, p);
108   }
109 }
110 
111 /*
112 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
113 ** type of join.  Return an integer constant that expresses that type
114 ** in terms of the following bit values:
115 **
116 **     JT_INNER
117 **     JT_CROSS
118 **     JT_OUTER
119 **     JT_NATURAL
120 **     JT_LEFT
121 **     JT_RIGHT
122 **
123 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
124 **
125 ** If an illegal or unsupported join type is seen, then still return
126 ** a join type, but put an error in the pParse structure.
127 */
128 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
129   int jointype = 0;
130   Token *apAll[3];
131   Token *p;
132                              /*   0123456789 123456789 123456789 123 */
133   static const char zKeyText[] = "naturaleftouterightfullinnercross";
134   static const struct {
135     u8 i;        /* Beginning of keyword text in zKeyText[] */
136     u8 nChar;    /* Length of the keyword in characters */
137     u8 code;     /* Join type mask */
138   } aKeyword[] = {
139     /* natural */ { 0,  7, JT_NATURAL                },
140     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
141     /* outer   */ { 10, 5, JT_OUTER                  },
142     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
143     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
144     /* inner   */ { 23, 5, JT_INNER                  },
145     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
146   };
147   int i, j;
148   apAll[0] = pA;
149   apAll[1] = pB;
150   apAll[2] = pC;
151   for(i=0; i<3 && apAll[i]; i++){
152     p = apAll[i];
153     for(j=0; j<ArraySize(aKeyword); j++){
154       if( p->n==aKeyword[j].nChar
155           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
156         jointype |= aKeyword[j].code;
157         break;
158       }
159     }
160     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
161     if( j>=ArraySize(aKeyword) ){
162       jointype |= JT_ERROR;
163       break;
164     }
165   }
166   if(
167      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
168      (jointype & JT_ERROR)!=0
169   ){
170     const char *zSp = " ";
171     assert( pB!=0 );
172     if( pC==0 ){ zSp++; }
173     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
174        "%T %T%s%T", pA, pB, zSp, pC);
175     jointype = JT_INNER;
176   }else if( (jointype & JT_OUTER)!=0
177          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
178     sqlite3ErrorMsg(pParse,
179       "RIGHT and FULL OUTER JOINs are not currently supported");
180     jointype = JT_INNER;
181   }
182   return jointype;
183 }
184 
185 /*
186 ** Return the index of a column in a table.  Return -1 if the column
187 ** is not contained in the table.
188 */
189 static int columnIndex(Table *pTab, const char *zCol){
190   int i;
191   for(i=0; i<pTab->nCol; i++){
192     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
193   }
194   return -1;
195 }
196 
197 /*
198 ** Search the first N tables in pSrc, from left to right, looking for a
199 ** table that has a column named zCol.
200 **
201 ** When found, set *piTab and *piCol to the table index and column index
202 ** of the matching column and return TRUE.
203 **
204 ** If not found, return FALSE.
205 */
206 static int tableAndColumnIndex(
207   SrcList *pSrc,       /* Array of tables to search */
208   int N,               /* Number of tables in pSrc->a[] to search */
209   const char *zCol,    /* Name of the column we are looking for */
210   int *piTab,          /* Write index of pSrc->a[] here */
211   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
212 ){
213   int i;               /* For looping over tables in pSrc */
214   int iCol;            /* Index of column matching zCol */
215 
216   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
217   for(i=0; i<N; i++){
218     iCol = columnIndex(pSrc->a[i].pTab, zCol);
219     if( iCol>=0 ){
220       if( piTab ){
221         *piTab = i;
222         *piCol = iCol;
223       }
224       return 1;
225     }
226   }
227   return 0;
228 }
229 
230 /*
231 ** This function is used to add terms implied by JOIN syntax to the
232 ** WHERE clause expression of a SELECT statement. The new term, which
233 ** is ANDed with the existing WHERE clause, is of the form:
234 **
235 **    (tab1.col1 = tab2.col2)
236 **
237 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
238 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
239 ** column iColRight of tab2.
240 */
241 static void addWhereTerm(
242   Parse *pParse,                  /* Parsing context */
243   SrcList *pSrc,                  /* List of tables in FROM clause */
244   int iLeft,                      /* Index of first table to join in pSrc */
245   int iColLeft,                   /* Index of column in first table */
246   int iRight,                     /* Index of second table in pSrc */
247   int iColRight,                  /* Index of column in second table */
248   int isOuterJoin,                /* True if this is an OUTER join */
249   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
250 ){
251   sqlite3 *db = pParse->db;
252   Expr *pE1;
253   Expr *pE2;
254   Expr *pEq;
255 
256   assert( iLeft<iRight );
257   assert( pSrc->nSrc>iRight );
258   assert( pSrc->a[iLeft].pTab );
259   assert( pSrc->a[iRight].pTab );
260 
261   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
262   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
263 
264   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
265   if( pEq && isOuterJoin ){
266     ExprSetProperty(pEq, EP_FromJoin);
267     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
268     ExprSetIrreducible(pEq);
269     pEq->iRightJoinTable = (i16)pE2->iTable;
270   }
271   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
272 }
273 
274 /*
275 ** Set the EP_FromJoin property on all terms of the given expression.
276 ** And set the Expr.iRightJoinTable to iTable for every term in the
277 ** expression.
278 **
279 ** The EP_FromJoin property is used on terms of an expression to tell
280 ** the LEFT OUTER JOIN processing logic that this term is part of the
281 ** join restriction specified in the ON or USING clause and not a part
282 ** of the more general WHERE clause.  These terms are moved over to the
283 ** WHERE clause during join processing but we need to remember that they
284 ** originated in the ON or USING clause.
285 **
286 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
287 ** expression depends on table iRightJoinTable even if that table is not
288 ** explicitly mentioned in the expression.  That information is needed
289 ** for cases like this:
290 **
291 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
292 **
293 ** The where clause needs to defer the handling of the t1.x=5
294 ** term until after the t2 loop of the join.  In that way, a
295 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
296 ** defer the handling of t1.x=5, it will be processed immediately
297 ** after the t1 loop and rows with t1.x!=5 will never appear in
298 ** the output, which is incorrect.
299 */
300 static void setJoinExpr(Expr *p, int iTable){
301   while( p ){
302     ExprSetProperty(p, EP_FromJoin);
303     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
304     ExprSetIrreducible(p);
305     p->iRightJoinTable = (i16)iTable;
306     setJoinExpr(p->pLeft, iTable);
307     p = p->pRight;
308   }
309 }
310 
311 /*
312 ** This routine processes the join information for a SELECT statement.
313 ** ON and USING clauses are converted into extra terms of the WHERE clause.
314 ** NATURAL joins also create extra WHERE clause terms.
315 **
316 ** The terms of a FROM clause are contained in the Select.pSrc structure.
317 ** The left most table is the first entry in Select.pSrc.  The right-most
318 ** table is the last entry.  The join operator is held in the entry to
319 ** the left.  Thus entry 0 contains the join operator for the join between
320 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
321 ** also attached to the left entry.
322 **
323 ** This routine returns the number of errors encountered.
324 */
325 static int sqliteProcessJoin(Parse *pParse, Select *p){
326   SrcList *pSrc;                  /* All tables in the FROM clause */
327   int i, j;                       /* Loop counters */
328   struct SrcList_item *pLeft;     /* Left table being joined */
329   struct SrcList_item *pRight;    /* Right table being joined */
330 
331   pSrc = p->pSrc;
332   pLeft = &pSrc->a[0];
333   pRight = &pLeft[1];
334   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
335     Table *pLeftTab = pLeft->pTab;
336     Table *pRightTab = pRight->pTab;
337     int isOuter;
338 
339     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
340     isOuter = (pRight->jointype & JT_OUTER)!=0;
341 
342     /* When the NATURAL keyword is present, add WHERE clause terms for
343     ** every column that the two tables have in common.
344     */
345     if( pRight->jointype & JT_NATURAL ){
346       if( pRight->pOn || pRight->pUsing ){
347         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
348            "an ON or USING clause", 0);
349         return 1;
350       }
351       for(j=0; j<pRightTab->nCol; j++){
352         char *zName;   /* Name of column in the right table */
353         int iLeft;     /* Matching left table */
354         int iLeftCol;  /* Matching column in the left table */
355 
356         zName = pRightTab->aCol[j].zName;
357         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
358           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
359                        isOuter, &p->pWhere);
360         }
361       }
362     }
363 
364     /* Disallow both ON and USING clauses in the same join
365     */
366     if( pRight->pOn && pRight->pUsing ){
367       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
368         "clauses in the same join");
369       return 1;
370     }
371 
372     /* Add the ON clause to the end of the WHERE clause, connected by
373     ** an AND operator.
374     */
375     if( pRight->pOn ){
376       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
377       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
378       pRight->pOn = 0;
379     }
380 
381     /* Create extra terms on the WHERE clause for each column named
382     ** in the USING clause.  Example: If the two tables to be joined are
383     ** A and B and the USING clause names X, Y, and Z, then add this
384     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
385     ** Report an error if any column mentioned in the USING clause is
386     ** not contained in both tables to be joined.
387     */
388     if( pRight->pUsing ){
389       IdList *pList = pRight->pUsing;
390       for(j=0; j<pList->nId; j++){
391         char *zName;     /* Name of the term in the USING clause */
392         int iLeft;       /* Table on the left with matching column name */
393         int iLeftCol;    /* Column number of matching column on the left */
394         int iRightCol;   /* Column number of matching column on the right */
395 
396         zName = pList->a[j].zName;
397         iRightCol = columnIndex(pRightTab, zName);
398         if( iRightCol<0
399          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
400         ){
401           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
402             "not present in both tables", zName);
403           return 1;
404         }
405         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
406                      isOuter, &p->pWhere);
407       }
408     }
409   }
410   return 0;
411 }
412 
413 /*
414 ** Insert code into "v" that will push the record on the top of the
415 ** stack into the sorter.
416 */
417 static void pushOntoSorter(
418   Parse *pParse,         /* Parser context */
419   ExprList *pOrderBy,    /* The ORDER BY clause */
420   Select *pSelect,       /* The whole SELECT statement */
421   int regData            /* Register holding data to be sorted */
422 ){
423   Vdbe *v = pParse->pVdbe;
424   int nExpr = pOrderBy->nExpr;
425   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
426   int regRecord = sqlite3GetTempReg(pParse);
427   int op;
428   sqlite3ExprCacheClear(pParse);
429   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
430   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
431   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
432   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
433   if( pSelect->selFlags & SF_UseSorter ){
434     op = OP_SorterInsert;
435   }else{
436     op = OP_IdxInsert;
437   }
438   sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
439   sqlite3ReleaseTempReg(pParse, regRecord);
440   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
441   if( pSelect->iLimit ){
442     int addr1, addr2;
443     int iLimit;
444     if( pSelect->iOffset ){
445       iLimit = pSelect->iOffset+1;
446     }else{
447       iLimit = pSelect->iLimit;
448     }
449     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
450     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
451     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
452     sqlite3VdbeJumpHere(v, addr1);
453     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
454     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
455     sqlite3VdbeJumpHere(v, addr2);
456   }
457 }
458 
459 /*
460 ** Add code to implement the OFFSET
461 */
462 static void codeOffset(
463   Vdbe *v,          /* Generate code into this VM */
464   Select *p,        /* The SELECT statement being coded */
465   int iContinue     /* Jump here to skip the current record */
466 ){
467   if( p->iOffset && iContinue!=0 ){
468     int addr;
469     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
470     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
471     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
472     VdbeComment((v, "skip OFFSET records"));
473     sqlite3VdbeJumpHere(v, addr);
474   }
475 }
476 
477 /*
478 ** Add code that will check to make sure the N registers starting at iMem
479 ** form a distinct entry.  iTab is a sorting index that holds previously
480 ** seen combinations of the N values.  A new entry is made in iTab
481 ** if the current N values are new.
482 **
483 ** A jump to addrRepeat is made and the N+1 values are popped from the
484 ** stack if the top N elements are not distinct.
485 */
486 static void codeDistinct(
487   Parse *pParse,     /* Parsing and code generating context */
488   int iTab,          /* A sorting index used to test for distinctness */
489   int addrRepeat,    /* Jump to here if not distinct */
490   int N,             /* Number of elements */
491   int iMem           /* First element */
492 ){
493   Vdbe *v;
494   int r1;
495 
496   v = pParse->pVdbe;
497   r1 = sqlite3GetTempReg(pParse);
498   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
499   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
500   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
501   sqlite3ReleaseTempReg(pParse, r1);
502 }
503 
504 #ifndef SQLITE_OMIT_SUBQUERY
505 /*
506 ** Generate an error message when a SELECT is used within a subexpression
507 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
508 ** column.  We do this in a subroutine because the error used to occur
509 ** in multiple places.  (The error only occurs in one place now, but we
510 ** retain the subroutine to minimize code disruption.)
511 */
512 static int checkForMultiColumnSelectError(
513   Parse *pParse,       /* Parse context. */
514   SelectDest *pDest,   /* Destination of SELECT results */
515   int nExpr            /* Number of result columns returned by SELECT */
516 ){
517   int eDest = pDest->eDest;
518   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
519     sqlite3ErrorMsg(pParse, "only a single result allowed for "
520        "a SELECT that is part of an expression");
521     return 1;
522   }else{
523     return 0;
524   }
525 }
526 #endif
527 
528 /*
529 ** An instance of the following object is used to record information about
530 ** how to process the DISTINCT keyword, to simplify passing that information
531 ** into the selectInnerLoop() routine.
532 */
533 typedef struct DistinctCtx DistinctCtx;
534 struct DistinctCtx {
535   u8 isTnct;      /* True if the DISTINCT keyword is present */
536   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
537   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
538   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
539 };
540 
541 /*
542 ** This routine generates the code for the inside of the inner loop
543 ** of a SELECT.
544 **
545 ** If srcTab and nColumn are both zero, then the pEList expressions
546 ** are evaluated in order to get the data for this row.  If nColumn>0
547 ** then data is pulled from srcTab and pEList is used only to get the
548 ** datatypes for each column.
549 */
550 static void selectInnerLoop(
551   Parse *pParse,          /* The parser context */
552   Select *p,              /* The complete select statement being coded */
553   ExprList *pEList,       /* List of values being extracted */
554   int srcTab,             /* Pull data from this table */
555   int nColumn,            /* Number of columns in the source table */
556   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
557   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
558   SelectDest *pDest,      /* How to dispose of the results */
559   int iContinue,          /* Jump here to continue with next row */
560   int iBreak              /* Jump here to break out of the inner loop */
561 ){
562   Vdbe *v = pParse->pVdbe;
563   int i;
564   int hasDistinct;        /* True if the DISTINCT keyword is present */
565   int regResult;              /* Start of memory holding result set */
566   int eDest = pDest->eDest;   /* How to dispose of results */
567   int iParm = pDest->iSDParm; /* First argument to disposal method */
568   int nResultCol;             /* Number of result columns */
569 
570   assert( v );
571   if( NEVER(v==0) ) return;
572   assert( pEList!=0 );
573   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
574   if( pOrderBy==0 && !hasDistinct ){
575     codeOffset(v, p, iContinue);
576   }
577 
578   /* Pull the requested columns.
579   */
580   if( nColumn>0 ){
581     nResultCol = nColumn;
582   }else{
583     nResultCol = pEList->nExpr;
584   }
585   if( pDest->iSdst==0 ){
586     pDest->iSdst = pParse->nMem+1;
587     pDest->nSdst = nResultCol;
588     pParse->nMem += nResultCol;
589   }else{
590     assert( pDest->nSdst==nResultCol );
591   }
592   regResult = pDest->iSdst;
593   if( nColumn>0 ){
594     for(i=0; i<nColumn; i++){
595       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
596     }
597   }else if( eDest!=SRT_Exists ){
598     /* If the destination is an EXISTS(...) expression, the actual
599     ** values returned by the SELECT are not required.
600     */
601     sqlite3ExprCacheClear(pParse);
602     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
603   }
604   nColumn = nResultCol;
605 
606   /* If the DISTINCT keyword was present on the SELECT statement
607   ** and this row has been seen before, then do not make this row
608   ** part of the result.
609   */
610   if( hasDistinct ){
611     assert( pEList!=0 );
612     assert( pEList->nExpr==nColumn );
613     switch( pDistinct->eTnctType ){
614       case WHERE_DISTINCT_ORDERED: {
615         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
616         int iJump;              /* Jump destination */
617         int regPrev;            /* Previous row content */
618 
619         /* Allocate space for the previous row */
620         regPrev = pParse->nMem+1;
621         pParse->nMem += nColumn;
622 
623         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
624         ** sets the MEM_Cleared bit on the first register of the
625         ** previous value.  This will cause the OP_Ne below to always
626         ** fail on the first iteration of the loop even if the first
627         ** row is all NULLs.
628         */
629         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
630         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
631         pOp->opcode = OP_Null;
632         pOp->p1 = 1;
633         pOp->p2 = regPrev;
634 
635         iJump = sqlite3VdbeCurrentAddr(v) + nColumn;
636         for(i=0; i<nColumn; i++){
637           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
638           if( i<nColumn-1 ){
639             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
640           }else{
641             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
642           }
643           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
644           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
645         }
646         assert( sqlite3VdbeCurrentAddr(v)==iJump );
647         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nColumn-1);
648         break;
649       }
650 
651       case WHERE_DISTINCT_UNIQUE: {
652         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
653         break;
654       }
655 
656       default: {
657         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
658         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nColumn, regResult);
659         break;
660       }
661     }
662     if( pOrderBy==0 ){
663       codeOffset(v, p, iContinue);
664     }
665   }
666 
667   switch( eDest ){
668     /* In this mode, write each query result to the key of the temporary
669     ** table iParm.
670     */
671 #ifndef SQLITE_OMIT_COMPOUND_SELECT
672     case SRT_Union: {
673       int r1;
674       r1 = sqlite3GetTempReg(pParse);
675       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
676       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
677       sqlite3ReleaseTempReg(pParse, r1);
678       break;
679     }
680 
681     /* Construct a record from the query result, but instead of
682     ** saving that record, use it as a key to delete elements from
683     ** the temporary table iParm.
684     */
685     case SRT_Except: {
686       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
687       break;
688     }
689 #endif
690 
691     /* Store the result as data using a unique key.
692     */
693     case SRT_Table:
694     case SRT_EphemTab: {
695       int r1 = sqlite3GetTempReg(pParse);
696       testcase( eDest==SRT_Table );
697       testcase( eDest==SRT_EphemTab );
698       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
699       if( pOrderBy ){
700         pushOntoSorter(pParse, pOrderBy, p, r1);
701       }else{
702         int r2 = sqlite3GetTempReg(pParse);
703         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
704         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
705         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
706         sqlite3ReleaseTempReg(pParse, r2);
707       }
708       sqlite3ReleaseTempReg(pParse, r1);
709       break;
710     }
711 
712 #ifndef SQLITE_OMIT_SUBQUERY
713     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
714     ** then there should be a single item on the stack.  Write this
715     ** item into the set table with bogus data.
716     */
717     case SRT_Set: {
718       assert( nColumn==1 );
719       pDest->affSdst =
720                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
721       if( pOrderBy ){
722         /* At first glance you would think we could optimize out the
723         ** ORDER BY in this case since the order of entries in the set
724         ** does not matter.  But there might be a LIMIT clause, in which
725         ** case the order does matter */
726         pushOntoSorter(pParse, pOrderBy, p, regResult);
727       }else{
728         int r1 = sqlite3GetTempReg(pParse);
729         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
730         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
731         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
732         sqlite3ReleaseTempReg(pParse, r1);
733       }
734       break;
735     }
736 
737     /* If any row exist in the result set, record that fact and abort.
738     */
739     case SRT_Exists: {
740       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
741       /* The LIMIT clause will terminate the loop for us */
742       break;
743     }
744 
745     /* If this is a scalar select that is part of an expression, then
746     ** store the results in the appropriate memory cell and break out
747     ** of the scan loop.
748     */
749     case SRT_Mem: {
750       assert( nColumn==1 );
751       if( pOrderBy ){
752         pushOntoSorter(pParse, pOrderBy, p, regResult);
753       }else{
754         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
755         /* The LIMIT clause will jump out of the loop for us */
756       }
757       break;
758     }
759 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
760 
761     /* Send the data to the callback function or to a subroutine.  In the
762     ** case of a subroutine, the subroutine itself is responsible for
763     ** popping the data from the stack.
764     */
765     case SRT_Coroutine:
766     case SRT_Output: {
767       testcase( eDest==SRT_Coroutine );
768       testcase( eDest==SRT_Output );
769       if( pOrderBy ){
770         int r1 = sqlite3GetTempReg(pParse);
771         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
772         pushOntoSorter(pParse, pOrderBy, p, r1);
773         sqlite3ReleaseTempReg(pParse, r1);
774       }else if( eDest==SRT_Coroutine ){
775         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
776       }else{
777         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
778         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
779       }
780       break;
781     }
782 
783 #if !defined(SQLITE_OMIT_TRIGGER)
784     /* Discard the results.  This is used for SELECT statements inside
785     ** the body of a TRIGGER.  The purpose of such selects is to call
786     ** user-defined functions that have side effects.  We do not care
787     ** about the actual results of the select.
788     */
789     default: {
790       assert( eDest==SRT_Discard );
791       break;
792     }
793 #endif
794   }
795 
796   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
797   ** there is a sorter, in which case the sorter has already limited
798   ** the output for us.
799   */
800   if( pOrderBy==0 && p->iLimit ){
801     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
802   }
803 }
804 
805 /*
806 ** Given an expression list, generate a KeyInfo structure that records
807 ** the collating sequence for each expression in that expression list.
808 **
809 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
810 ** KeyInfo structure is appropriate for initializing a virtual index to
811 ** implement that clause.  If the ExprList is the result set of a SELECT
812 ** then the KeyInfo structure is appropriate for initializing a virtual
813 ** index to implement a DISTINCT test.
814 **
815 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
816 ** function is responsible for seeing that this structure is eventually
817 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
818 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
819 */
820 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
821   sqlite3 *db = pParse->db;
822   int nExpr;
823   KeyInfo *pInfo;
824   struct ExprList_item *pItem;
825   int i;
826 
827   nExpr = pList->nExpr;
828   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
829   if( pInfo ){
830     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
831     pInfo->nField = (u16)nExpr;
832     pInfo->enc = ENC(db);
833     pInfo->db = db;
834     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
835       CollSeq *pColl;
836       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
837       if( !pColl ){
838         pColl = db->pDfltColl;
839       }
840       pInfo->aColl[i] = pColl;
841       pInfo->aSortOrder[i] = pItem->sortOrder;
842     }
843   }
844   return pInfo;
845 }
846 
847 #ifndef SQLITE_OMIT_COMPOUND_SELECT
848 /*
849 ** Name of the connection operator, used for error messages.
850 */
851 static const char *selectOpName(int id){
852   char *z;
853   switch( id ){
854     case TK_ALL:       z = "UNION ALL";   break;
855     case TK_INTERSECT: z = "INTERSECT";   break;
856     case TK_EXCEPT:    z = "EXCEPT";      break;
857     default:           z = "UNION";       break;
858   }
859   return z;
860 }
861 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
862 
863 #ifndef SQLITE_OMIT_EXPLAIN
864 /*
865 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
866 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
867 ** where the caption is of the form:
868 **
869 **   "USE TEMP B-TREE FOR xxx"
870 **
871 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
872 ** is determined by the zUsage argument.
873 */
874 static void explainTempTable(Parse *pParse, const char *zUsage){
875   if( pParse->explain==2 ){
876     Vdbe *v = pParse->pVdbe;
877     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
878     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
879   }
880 }
881 
882 /*
883 ** Assign expression b to lvalue a. A second, no-op, version of this macro
884 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
885 ** in sqlite3Select() to assign values to structure member variables that
886 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
887 ** code with #ifndef directives.
888 */
889 # define explainSetInteger(a, b) a = b
890 
891 #else
892 /* No-op versions of the explainXXX() functions and macros. */
893 # define explainTempTable(y,z)
894 # define explainSetInteger(y,z)
895 #endif
896 
897 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
898 /*
899 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
900 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
901 ** where the caption is of one of the two forms:
902 **
903 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
904 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
905 **
906 ** where iSub1 and iSub2 are the integers passed as the corresponding
907 ** function parameters, and op is the text representation of the parameter
908 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
909 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
910 ** false, or the second form if it is true.
911 */
912 static void explainComposite(
913   Parse *pParse,                  /* Parse context */
914   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
915   int iSub1,                      /* Subquery id 1 */
916   int iSub2,                      /* Subquery id 2 */
917   int bUseTmp                     /* True if a temp table was used */
918 ){
919   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
920   if( pParse->explain==2 ){
921     Vdbe *v = pParse->pVdbe;
922     char *zMsg = sqlite3MPrintf(
923         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
924         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
925     );
926     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
927   }
928 }
929 #else
930 /* No-op versions of the explainXXX() functions and macros. */
931 # define explainComposite(v,w,x,y,z)
932 #endif
933 
934 /*
935 ** If the inner loop was generated using a non-null pOrderBy argument,
936 ** then the results were placed in a sorter.  After the loop is terminated
937 ** we need to run the sorter and output the results.  The following
938 ** routine generates the code needed to do that.
939 */
940 static void generateSortTail(
941   Parse *pParse,    /* Parsing context */
942   Select *p,        /* The SELECT statement */
943   Vdbe *v,          /* Generate code into this VDBE */
944   int nColumn,      /* Number of columns of data */
945   SelectDest *pDest /* Write the sorted results here */
946 ){
947   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
948   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
949   int addr;
950   int iTab;
951   int pseudoTab = 0;
952   ExprList *pOrderBy = p->pOrderBy;
953 
954   int eDest = pDest->eDest;
955   int iParm = pDest->iSDParm;
956 
957   int regRow;
958   int regRowid;
959 
960   iTab = pOrderBy->iECursor;
961   regRow = sqlite3GetTempReg(pParse);
962   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
963     pseudoTab = pParse->nTab++;
964     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
965     regRowid = 0;
966   }else{
967     regRowid = sqlite3GetTempReg(pParse);
968   }
969   if( p->selFlags & SF_UseSorter ){
970     int regSortOut = ++pParse->nMem;
971     int ptab2 = pParse->nTab++;
972     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
973     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
974     codeOffset(v, p, addrContinue);
975     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
976     sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
977     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
978   }else{
979     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
980     codeOffset(v, p, addrContinue);
981     sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
982   }
983   switch( eDest ){
984     case SRT_Table:
985     case SRT_EphemTab: {
986       testcase( eDest==SRT_Table );
987       testcase( eDest==SRT_EphemTab );
988       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
989       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
990       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
991       break;
992     }
993 #ifndef SQLITE_OMIT_SUBQUERY
994     case SRT_Set: {
995       assert( nColumn==1 );
996       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
997                         &pDest->affSdst, 1);
998       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
999       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1000       break;
1001     }
1002     case SRT_Mem: {
1003       assert( nColumn==1 );
1004       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1005       /* The LIMIT clause will terminate the loop for us */
1006       break;
1007     }
1008 #endif
1009     default: {
1010       int i;
1011       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1012       testcase( eDest==SRT_Output );
1013       testcase( eDest==SRT_Coroutine );
1014       for(i=0; i<nColumn; i++){
1015         assert( regRow!=pDest->iSdst+i );
1016         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
1017         if( i==0 ){
1018           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1019         }
1020       }
1021       if( eDest==SRT_Output ){
1022         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1023         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1024       }else{
1025         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1026       }
1027       break;
1028     }
1029   }
1030   sqlite3ReleaseTempReg(pParse, regRow);
1031   sqlite3ReleaseTempReg(pParse, regRowid);
1032 
1033   /* The bottom of the loop
1034   */
1035   sqlite3VdbeResolveLabel(v, addrContinue);
1036   if( p->selFlags & SF_UseSorter ){
1037     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
1038   }else{
1039     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
1040   }
1041   sqlite3VdbeResolveLabel(v, addrBreak);
1042   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1043     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
1044   }
1045 }
1046 
1047 /*
1048 ** Return a pointer to a string containing the 'declaration type' of the
1049 ** expression pExpr. The string may be treated as static by the caller.
1050 **
1051 ** The declaration type is the exact datatype definition extracted from the
1052 ** original CREATE TABLE statement if the expression is a column. The
1053 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1054 ** is considered a column can be complex in the presence of subqueries. The
1055 ** result-set expression in all of the following SELECT statements is
1056 ** considered a column by this function.
1057 **
1058 **   SELECT col FROM tbl;
1059 **   SELECT (SELECT col FROM tbl;
1060 **   SELECT (SELECT col FROM tbl);
1061 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1062 **
1063 ** The declaration type for any expression other than a column is NULL.
1064 */
1065 static const char *columnType(
1066   NameContext *pNC,
1067   Expr *pExpr,
1068   const char **pzOriginDb,
1069   const char **pzOriginTab,
1070   const char **pzOriginCol
1071 ){
1072   char const *zType = 0;
1073   char const *zOriginDb = 0;
1074   char const *zOriginTab = 0;
1075   char const *zOriginCol = 0;
1076   int j;
1077   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1078 
1079   switch( pExpr->op ){
1080     case TK_AGG_COLUMN:
1081     case TK_COLUMN: {
1082       /* The expression is a column. Locate the table the column is being
1083       ** extracted from in NameContext.pSrcList. This table may be real
1084       ** database table or a subquery.
1085       */
1086       Table *pTab = 0;            /* Table structure column is extracted from */
1087       Select *pS = 0;             /* Select the column is extracted from */
1088       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1089       testcase( pExpr->op==TK_AGG_COLUMN );
1090       testcase( pExpr->op==TK_COLUMN );
1091       while( pNC && !pTab ){
1092         SrcList *pTabList = pNC->pSrcList;
1093         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1094         if( j<pTabList->nSrc ){
1095           pTab = pTabList->a[j].pTab;
1096           pS = pTabList->a[j].pSelect;
1097         }else{
1098           pNC = pNC->pNext;
1099         }
1100       }
1101 
1102       if( pTab==0 ){
1103         /* At one time, code such as "SELECT new.x" within a trigger would
1104         ** cause this condition to run.  Since then, we have restructured how
1105         ** trigger code is generated and so this condition is no longer
1106         ** possible. However, it can still be true for statements like
1107         ** the following:
1108         **
1109         **   CREATE TABLE t1(col INTEGER);
1110         **   SELECT (SELECT t1.col) FROM FROM t1;
1111         **
1112         ** when columnType() is called on the expression "t1.col" in the
1113         ** sub-select. In this case, set the column type to NULL, even
1114         ** though it should really be "INTEGER".
1115         **
1116         ** This is not a problem, as the column type of "t1.col" is never
1117         ** used. When columnType() is called on the expression
1118         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1119         ** branch below.  */
1120         break;
1121       }
1122 
1123       assert( pTab && pExpr->pTab==pTab );
1124       if( pS ){
1125         /* The "table" is actually a sub-select or a view in the FROM clause
1126         ** of the SELECT statement. Return the declaration type and origin
1127         ** data for the result-set column of the sub-select.
1128         */
1129         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1130           /* If iCol is less than zero, then the expression requests the
1131           ** rowid of the sub-select or view. This expression is legal (see
1132           ** test case misc2.2.2) - it always evaluates to NULL.
1133           */
1134           NameContext sNC;
1135           Expr *p = pS->pEList->a[iCol].pExpr;
1136           sNC.pSrcList = pS->pSrc;
1137           sNC.pNext = pNC;
1138           sNC.pParse = pNC->pParse;
1139           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1140         }
1141       }else if( ALWAYS(pTab->pSchema) ){
1142         /* A real table */
1143         assert( !pS );
1144         if( iCol<0 ) iCol = pTab->iPKey;
1145         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1146         if( iCol<0 ){
1147           zType = "INTEGER";
1148           zOriginCol = "rowid";
1149         }else{
1150           zType = pTab->aCol[iCol].zType;
1151           zOriginCol = pTab->aCol[iCol].zName;
1152         }
1153         zOriginTab = pTab->zName;
1154         if( pNC->pParse ){
1155           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1156           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
1157         }
1158       }
1159       break;
1160     }
1161 #ifndef SQLITE_OMIT_SUBQUERY
1162     case TK_SELECT: {
1163       /* The expression is a sub-select. Return the declaration type and
1164       ** origin info for the single column in the result set of the SELECT
1165       ** statement.
1166       */
1167       NameContext sNC;
1168       Select *pS = pExpr->x.pSelect;
1169       Expr *p = pS->pEList->a[0].pExpr;
1170       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1171       sNC.pSrcList = pS->pSrc;
1172       sNC.pNext = pNC;
1173       sNC.pParse = pNC->pParse;
1174       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1175       break;
1176     }
1177 #endif
1178   }
1179 
1180   if( pzOriginDb ){
1181     assert( pzOriginTab && pzOriginCol );
1182     *pzOriginDb = zOriginDb;
1183     *pzOriginTab = zOriginTab;
1184     *pzOriginCol = zOriginCol;
1185   }
1186   return zType;
1187 }
1188 
1189 /*
1190 ** Generate code that will tell the VDBE the declaration types of columns
1191 ** in the result set.
1192 */
1193 static void generateColumnTypes(
1194   Parse *pParse,      /* Parser context */
1195   SrcList *pTabList,  /* List of tables */
1196   ExprList *pEList    /* Expressions defining the result set */
1197 ){
1198 #ifndef SQLITE_OMIT_DECLTYPE
1199   Vdbe *v = pParse->pVdbe;
1200   int i;
1201   NameContext sNC;
1202   sNC.pSrcList = pTabList;
1203   sNC.pParse = pParse;
1204   for(i=0; i<pEList->nExpr; i++){
1205     Expr *p = pEList->a[i].pExpr;
1206     const char *zType;
1207 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1208     const char *zOrigDb = 0;
1209     const char *zOrigTab = 0;
1210     const char *zOrigCol = 0;
1211     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1212 
1213     /* The vdbe must make its own copy of the column-type and other
1214     ** column specific strings, in case the schema is reset before this
1215     ** virtual machine is deleted.
1216     */
1217     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1218     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1219     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1220 #else
1221     zType = columnType(&sNC, p, 0, 0, 0);
1222 #endif
1223     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1224   }
1225 #endif /* SQLITE_OMIT_DECLTYPE */
1226 }
1227 
1228 /*
1229 ** Generate code that will tell the VDBE the names of columns
1230 ** in the result set.  This information is used to provide the
1231 ** azCol[] values in the callback.
1232 */
1233 static void generateColumnNames(
1234   Parse *pParse,      /* Parser context */
1235   SrcList *pTabList,  /* List of tables */
1236   ExprList *pEList    /* Expressions defining the result set */
1237 ){
1238   Vdbe *v = pParse->pVdbe;
1239   int i, j;
1240   sqlite3 *db = pParse->db;
1241   int fullNames, shortNames;
1242 
1243 #ifndef SQLITE_OMIT_EXPLAIN
1244   /* If this is an EXPLAIN, skip this step */
1245   if( pParse->explain ){
1246     return;
1247   }
1248 #endif
1249 
1250   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1251   pParse->colNamesSet = 1;
1252   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1253   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1254   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1255   for(i=0; i<pEList->nExpr; i++){
1256     Expr *p;
1257     p = pEList->a[i].pExpr;
1258     if( NEVER(p==0) ) continue;
1259     if( pEList->a[i].zName ){
1260       char *zName = pEList->a[i].zName;
1261       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1262     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1263       Table *pTab;
1264       char *zCol;
1265       int iCol = p->iColumn;
1266       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1267         if( pTabList->a[j].iCursor==p->iTable ) break;
1268       }
1269       assert( j<pTabList->nSrc );
1270       pTab = pTabList->a[j].pTab;
1271       if( iCol<0 ) iCol = pTab->iPKey;
1272       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1273       if( iCol<0 ){
1274         zCol = "rowid";
1275       }else{
1276         zCol = pTab->aCol[iCol].zName;
1277       }
1278       if( !shortNames && !fullNames ){
1279         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1280             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1281       }else if( fullNames ){
1282         char *zName = 0;
1283         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1284         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1285       }else{
1286         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1287       }
1288     }else{
1289       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1290           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1291     }
1292   }
1293   generateColumnTypes(pParse, pTabList, pEList);
1294 }
1295 
1296 /*
1297 ** Given a an expression list (which is really the list of expressions
1298 ** that form the result set of a SELECT statement) compute appropriate
1299 ** column names for a table that would hold the expression list.
1300 **
1301 ** All column names will be unique.
1302 **
1303 ** Only the column names are computed.  Column.zType, Column.zColl,
1304 ** and other fields of Column are zeroed.
1305 **
1306 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1307 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1308 */
1309 static int selectColumnsFromExprList(
1310   Parse *pParse,          /* Parsing context */
1311   ExprList *pEList,       /* Expr list from which to derive column names */
1312   i16 *pnCol,             /* Write the number of columns here */
1313   Column **paCol          /* Write the new column list here */
1314 ){
1315   sqlite3 *db = pParse->db;   /* Database connection */
1316   int i, j;                   /* Loop counters */
1317   int cnt;                    /* Index added to make the name unique */
1318   Column *aCol, *pCol;        /* For looping over result columns */
1319   int nCol;                   /* Number of columns in the result set */
1320   Expr *p;                    /* Expression for a single result column */
1321   char *zName;                /* Column name */
1322   int nName;                  /* Size of name in zName[] */
1323 
1324   if( pEList ){
1325     nCol = pEList->nExpr;
1326     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1327     testcase( aCol==0 );
1328   }else{
1329     nCol = 0;
1330     aCol = 0;
1331   }
1332   *pnCol = nCol;
1333   *paCol = aCol;
1334 
1335   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1336     /* Get an appropriate name for the column
1337     */
1338     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1339     if( (zName = pEList->a[i].zName)!=0 ){
1340       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1341       zName = sqlite3DbStrDup(db, zName);
1342     }else{
1343       Expr *pColExpr = p;  /* The expression that is the result column name */
1344       Table *pTab;         /* Table associated with this expression */
1345       while( pColExpr->op==TK_DOT ){
1346         pColExpr = pColExpr->pRight;
1347         assert( pColExpr!=0 );
1348       }
1349       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1350         /* For columns use the column name name */
1351         int iCol = pColExpr->iColumn;
1352         pTab = pColExpr->pTab;
1353         if( iCol<0 ) iCol = pTab->iPKey;
1354         zName = sqlite3MPrintf(db, "%s",
1355                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1356       }else if( pColExpr->op==TK_ID ){
1357         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1358         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1359       }else{
1360         /* Use the original text of the column expression as its name */
1361         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1362       }
1363     }
1364     if( db->mallocFailed ){
1365       sqlite3DbFree(db, zName);
1366       break;
1367     }
1368 
1369     /* Make sure the column name is unique.  If the name is not unique,
1370     ** append a integer to the name so that it becomes unique.
1371     */
1372     nName = sqlite3Strlen30(zName);
1373     for(j=cnt=0; j<i; j++){
1374       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1375         char *zNewName;
1376         int k;
1377         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1378         if( zName[k]==':' ) nName = k;
1379         zName[nName] = 0;
1380         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1381         sqlite3DbFree(db, zName);
1382         zName = zNewName;
1383         j = -1;
1384         if( zName==0 ) break;
1385       }
1386     }
1387     pCol->zName = zName;
1388   }
1389   if( db->mallocFailed ){
1390     for(j=0; j<i; j++){
1391       sqlite3DbFree(db, aCol[j].zName);
1392     }
1393     sqlite3DbFree(db, aCol);
1394     *paCol = 0;
1395     *pnCol = 0;
1396     return SQLITE_NOMEM;
1397   }
1398   return SQLITE_OK;
1399 }
1400 
1401 /*
1402 ** Add type and collation information to a column list based on
1403 ** a SELECT statement.
1404 **
1405 ** The column list presumably came from selectColumnNamesFromExprList().
1406 ** The column list has only names, not types or collations.  This
1407 ** routine goes through and adds the types and collations.
1408 **
1409 ** This routine requires that all identifiers in the SELECT
1410 ** statement be resolved.
1411 */
1412 static void selectAddColumnTypeAndCollation(
1413   Parse *pParse,        /* Parsing contexts */
1414   int nCol,             /* Number of columns */
1415   Column *aCol,         /* List of columns */
1416   Select *pSelect       /* SELECT used to determine types and collations */
1417 ){
1418   sqlite3 *db = pParse->db;
1419   NameContext sNC;
1420   Column *pCol;
1421   CollSeq *pColl;
1422   int i;
1423   Expr *p;
1424   struct ExprList_item *a;
1425 
1426   assert( pSelect!=0 );
1427   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1428   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1429   if( db->mallocFailed ) return;
1430   memset(&sNC, 0, sizeof(sNC));
1431   sNC.pSrcList = pSelect->pSrc;
1432   a = pSelect->pEList->a;
1433   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1434     p = a[i].pExpr;
1435     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1436     pCol->affinity = sqlite3ExprAffinity(p);
1437     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1438     pColl = sqlite3ExprCollSeq(pParse, p);
1439     if( pColl ){
1440       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1441     }
1442   }
1443 }
1444 
1445 /*
1446 ** Given a SELECT statement, generate a Table structure that describes
1447 ** the result set of that SELECT.
1448 */
1449 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1450   Table *pTab;
1451   sqlite3 *db = pParse->db;
1452   int savedFlags;
1453 
1454   savedFlags = db->flags;
1455   db->flags &= ~SQLITE_FullColNames;
1456   db->flags |= SQLITE_ShortColNames;
1457   sqlite3SelectPrep(pParse, pSelect, 0);
1458   if( pParse->nErr ) return 0;
1459   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1460   db->flags = savedFlags;
1461   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1462   if( pTab==0 ){
1463     return 0;
1464   }
1465   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1466   ** is disabled */
1467   assert( db->lookaside.bEnabled==0 );
1468   pTab->nRef = 1;
1469   pTab->zName = 0;
1470   pTab->nRowEst = 1000000;
1471   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1472   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1473   pTab->iPKey = -1;
1474   if( db->mallocFailed ){
1475     sqlite3DeleteTable(db, pTab);
1476     return 0;
1477   }
1478   return pTab;
1479 }
1480 
1481 /*
1482 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1483 ** If an error occurs, return NULL and leave a message in pParse.
1484 */
1485 Vdbe *sqlite3GetVdbe(Parse *pParse){
1486   Vdbe *v = pParse->pVdbe;
1487   if( v==0 ){
1488     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1489 #ifndef SQLITE_OMIT_TRACE
1490     if( v ){
1491       sqlite3VdbeAddOp0(v, OP_Trace);
1492     }
1493 #endif
1494   }
1495   return v;
1496 }
1497 
1498 
1499 /*
1500 ** Compute the iLimit and iOffset fields of the SELECT based on the
1501 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1502 ** that appear in the original SQL statement after the LIMIT and OFFSET
1503 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1504 ** are the integer memory register numbers for counters used to compute
1505 ** the limit and offset.  If there is no limit and/or offset, then
1506 ** iLimit and iOffset are negative.
1507 **
1508 ** This routine changes the values of iLimit and iOffset only if
1509 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1510 ** iOffset should have been preset to appropriate default values
1511 ** (usually but not always -1) prior to calling this routine.
1512 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1513 ** redefined.  The UNION ALL operator uses this property to force
1514 ** the reuse of the same limit and offset registers across multiple
1515 ** SELECT statements.
1516 */
1517 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1518   Vdbe *v = 0;
1519   int iLimit = 0;
1520   int iOffset;
1521   int addr1, n;
1522   if( p->iLimit ) return;
1523 
1524   /*
1525   ** "LIMIT -1" always shows all rows.  There is some
1526   ** contraversy about what the correct behavior should be.
1527   ** The current implementation interprets "LIMIT 0" to mean
1528   ** no rows.
1529   */
1530   sqlite3ExprCacheClear(pParse);
1531   assert( p->pOffset==0 || p->pLimit!=0 );
1532   if( p->pLimit ){
1533     p->iLimit = iLimit = ++pParse->nMem;
1534     v = sqlite3GetVdbe(pParse);
1535     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1536     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1537       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1538       VdbeComment((v, "LIMIT counter"));
1539       if( n==0 ){
1540         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1541       }else{
1542         if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
1543       }
1544     }else{
1545       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1546       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1547       VdbeComment((v, "LIMIT counter"));
1548       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1549     }
1550     if( p->pOffset ){
1551       p->iOffset = iOffset = ++pParse->nMem;
1552       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1553       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1554       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1555       VdbeComment((v, "OFFSET counter"));
1556       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1557       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1558       sqlite3VdbeJumpHere(v, addr1);
1559       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1560       VdbeComment((v, "LIMIT+OFFSET"));
1561       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1562       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1563       sqlite3VdbeJumpHere(v, addr1);
1564     }
1565   }
1566 }
1567 
1568 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1569 /*
1570 ** Return the appropriate collating sequence for the iCol-th column of
1571 ** the result set for the compound-select statement "p".  Return NULL if
1572 ** the column has no default collating sequence.
1573 **
1574 ** The collating sequence for the compound select is taken from the
1575 ** left-most term of the select that has a collating sequence.
1576 */
1577 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1578   CollSeq *pRet;
1579   if( p->pPrior ){
1580     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1581   }else{
1582     pRet = 0;
1583   }
1584   assert( iCol>=0 );
1585   if( pRet==0 && iCol<p->pEList->nExpr ){
1586     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1587   }
1588   return pRet;
1589 }
1590 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1591 
1592 /* Forward reference */
1593 static int multiSelectOrderBy(
1594   Parse *pParse,        /* Parsing context */
1595   Select *p,            /* The right-most of SELECTs to be coded */
1596   SelectDest *pDest     /* What to do with query results */
1597 );
1598 
1599 
1600 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1601 /*
1602 ** This routine is called to process a compound query form from
1603 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1604 ** INTERSECT
1605 **
1606 ** "p" points to the right-most of the two queries.  the query on the
1607 ** left is p->pPrior.  The left query could also be a compound query
1608 ** in which case this routine will be called recursively.
1609 **
1610 ** The results of the total query are to be written into a destination
1611 ** of type eDest with parameter iParm.
1612 **
1613 ** Example 1:  Consider a three-way compound SQL statement.
1614 **
1615 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1616 **
1617 ** This statement is parsed up as follows:
1618 **
1619 **     SELECT c FROM t3
1620 **      |
1621 **      `----->  SELECT b FROM t2
1622 **                |
1623 **                `------>  SELECT a FROM t1
1624 **
1625 ** The arrows in the diagram above represent the Select.pPrior pointer.
1626 ** So if this routine is called with p equal to the t3 query, then
1627 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1628 **
1629 ** Notice that because of the way SQLite parses compound SELECTs, the
1630 ** individual selects always group from left to right.
1631 */
1632 static int multiSelect(
1633   Parse *pParse,        /* Parsing context */
1634   Select *p,            /* The right-most of SELECTs to be coded */
1635   SelectDest *pDest     /* What to do with query results */
1636 ){
1637   int rc = SQLITE_OK;   /* Success code from a subroutine */
1638   Select *pPrior;       /* Another SELECT immediately to our left */
1639   Vdbe *v;              /* Generate code to this VDBE */
1640   SelectDest dest;      /* Alternative data destination */
1641   Select *pDelete = 0;  /* Chain of simple selects to delete */
1642   sqlite3 *db;          /* Database connection */
1643 #ifndef SQLITE_OMIT_EXPLAIN
1644   int iSub1;            /* EQP id of left-hand query */
1645   int iSub2;            /* EQP id of right-hand query */
1646 #endif
1647 
1648   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1649   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1650   */
1651   assert( p && p->pPrior );  /* Calling function guarantees this much */
1652   db = pParse->db;
1653   pPrior = p->pPrior;
1654   assert( pPrior->pRightmost!=pPrior );
1655   assert( pPrior->pRightmost==p->pRightmost );
1656   dest = *pDest;
1657   if( pPrior->pOrderBy ){
1658     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1659       selectOpName(p->op));
1660     rc = 1;
1661     goto multi_select_end;
1662   }
1663   if( pPrior->pLimit ){
1664     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1665       selectOpName(p->op));
1666     rc = 1;
1667     goto multi_select_end;
1668   }
1669 
1670   v = sqlite3GetVdbe(pParse);
1671   assert( v!=0 );  /* The VDBE already created by calling function */
1672 
1673   /* Create the destination temporary table if necessary
1674   */
1675   if( dest.eDest==SRT_EphemTab ){
1676     assert( p->pEList );
1677     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
1678     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1679     dest.eDest = SRT_Table;
1680   }
1681 
1682   /* Make sure all SELECTs in the statement have the same number of elements
1683   ** in their result sets.
1684   */
1685   assert( p->pEList && pPrior->pEList );
1686   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1687     if( p->selFlags & SF_Values ){
1688       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
1689     }else{
1690       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1691         " do not have the same number of result columns", selectOpName(p->op));
1692     }
1693     rc = 1;
1694     goto multi_select_end;
1695   }
1696 
1697   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1698   */
1699   if( p->pOrderBy ){
1700     return multiSelectOrderBy(pParse, p, pDest);
1701   }
1702 
1703   /* Generate code for the left and right SELECT statements.
1704   */
1705   switch( p->op ){
1706     case TK_ALL: {
1707       int addr = 0;
1708       int nLimit;
1709       assert( !pPrior->pLimit );
1710       pPrior->iLimit = p->iLimit;
1711       pPrior->iOffset = p->iOffset;
1712       pPrior->pLimit = p->pLimit;
1713       pPrior->pOffset = p->pOffset;
1714       explainSetInteger(iSub1, pParse->iNextSelectId);
1715       rc = sqlite3Select(pParse, pPrior, &dest);
1716       p->pLimit = 0;
1717       p->pOffset = 0;
1718       if( rc ){
1719         goto multi_select_end;
1720       }
1721       p->pPrior = 0;
1722       p->iLimit = pPrior->iLimit;
1723       p->iOffset = pPrior->iOffset;
1724       if( p->iLimit ){
1725         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1726         VdbeComment((v, "Jump ahead if LIMIT reached"));
1727       }
1728       explainSetInteger(iSub2, pParse->iNextSelectId);
1729       rc = sqlite3Select(pParse, p, &dest);
1730       testcase( rc!=SQLITE_OK );
1731       pDelete = p->pPrior;
1732       p->pPrior = pPrior;
1733       p->nSelectRow += pPrior->nSelectRow;
1734       if( pPrior->pLimit
1735        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1736        && p->nSelectRow > (double)nLimit
1737       ){
1738         p->nSelectRow = (double)nLimit;
1739       }
1740       if( addr ){
1741         sqlite3VdbeJumpHere(v, addr);
1742       }
1743       break;
1744     }
1745     case TK_EXCEPT:
1746     case TK_UNION: {
1747       int unionTab;    /* Cursor number of the temporary table holding result */
1748       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1749       int priorOp;     /* The SRT_ operation to apply to prior selects */
1750       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1751       int addr;
1752       SelectDest uniondest;
1753 
1754       testcase( p->op==TK_EXCEPT );
1755       testcase( p->op==TK_UNION );
1756       priorOp = SRT_Union;
1757       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1758         /* We can reuse a temporary table generated by a SELECT to our
1759         ** right.
1760         */
1761         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1762                                      ** of a 3-way or more compound */
1763         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1764         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1765         unionTab = dest.iSDParm;
1766       }else{
1767         /* We will need to create our own temporary table to hold the
1768         ** intermediate results.
1769         */
1770         unionTab = pParse->nTab++;
1771         assert( p->pOrderBy==0 );
1772         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1773         assert( p->addrOpenEphm[0] == -1 );
1774         p->addrOpenEphm[0] = addr;
1775         p->pRightmost->selFlags |= SF_UsesEphemeral;
1776         assert( p->pEList );
1777       }
1778 
1779       /* Code the SELECT statements to our left
1780       */
1781       assert( !pPrior->pOrderBy );
1782       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1783       explainSetInteger(iSub1, pParse->iNextSelectId);
1784       rc = sqlite3Select(pParse, pPrior, &uniondest);
1785       if( rc ){
1786         goto multi_select_end;
1787       }
1788 
1789       /* Code the current SELECT statement
1790       */
1791       if( p->op==TK_EXCEPT ){
1792         op = SRT_Except;
1793       }else{
1794         assert( p->op==TK_UNION );
1795         op = SRT_Union;
1796       }
1797       p->pPrior = 0;
1798       pLimit = p->pLimit;
1799       p->pLimit = 0;
1800       pOffset = p->pOffset;
1801       p->pOffset = 0;
1802       uniondest.eDest = op;
1803       explainSetInteger(iSub2, pParse->iNextSelectId);
1804       rc = sqlite3Select(pParse, p, &uniondest);
1805       testcase( rc!=SQLITE_OK );
1806       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1807       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1808       sqlite3ExprListDelete(db, p->pOrderBy);
1809       pDelete = p->pPrior;
1810       p->pPrior = pPrior;
1811       p->pOrderBy = 0;
1812       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1813       sqlite3ExprDelete(db, p->pLimit);
1814       p->pLimit = pLimit;
1815       p->pOffset = pOffset;
1816       p->iLimit = 0;
1817       p->iOffset = 0;
1818 
1819       /* Convert the data in the temporary table into whatever form
1820       ** it is that we currently need.
1821       */
1822       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
1823       if( dest.eDest!=priorOp ){
1824         int iCont, iBreak, iStart;
1825         assert( p->pEList );
1826         if( dest.eDest==SRT_Output ){
1827           Select *pFirst = p;
1828           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1829           generateColumnNames(pParse, 0, pFirst->pEList);
1830         }
1831         iBreak = sqlite3VdbeMakeLabel(v);
1832         iCont = sqlite3VdbeMakeLabel(v);
1833         computeLimitRegisters(pParse, p, iBreak);
1834         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1835         iStart = sqlite3VdbeCurrentAddr(v);
1836         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1837                         0, 0, &dest, iCont, iBreak);
1838         sqlite3VdbeResolveLabel(v, iCont);
1839         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1840         sqlite3VdbeResolveLabel(v, iBreak);
1841         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1842       }
1843       break;
1844     }
1845     default: assert( p->op==TK_INTERSECT ); {
1846       int tab1, tab2;
1847       int iCont, iBreak, iStart;
1848       Expr *pLimit, *pOffset;
1849       int addr;
1850       SelectDest intersectdest;
1851       int r1;
1852 
1853       /* INTERSECT is different from the others since it requires
1854       ** two temporary tables.  Hence it has its own case.  Begin
1855       ** by allocating the tables we will need.
1856       */
1857       tab1 = pParse->nTab++;
1858       tab2 = pParse->nTab++;
1859       assert( p->pOrderBy==0 );
1860 
1861       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1862       assert( p->addrOpenEphm[0] == -1 );
1863       p->addrOpenEphm[0] = addr;
1864       p->pRightmost->selFlags |= SF_UsesEphemeral;
1865       assert( p->pEList );
1866 
1867       /* Code the SELECTs to our left into temporary table "tab1".
1868       */
1869       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1870       explainSetInteger(iSub1, pParse->iNextSelectId);
1871       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1872       if( rc ){
1873         goto multi_select_end;
1874       }
1875 
1876       /* Code the current SELECT into temporary table "tab2"
1877       */
1878       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1879       assert( p->addrOpenEphm[1] == -1 );
1880       p->addrOpenEphm[1] = addr;
1881       p->pPrior = 0;
1882       pLimit = p->pLimit;
1883       p->pLimit = 0;
1884       pOffset = p->pOffset;
1885       p->pOffset = 0;
1886       intersectdest.iSDParm = tab2;
1887       explainSetInteger(iSub2, pParse->iNextSelectId);
1888       rc = sqlite3Select(pParse, p, &intersectdest);
1889       testcase( rc!=SQLITE_OK );
1890       pDelete = p->pPrior;
1891       p->pPrior = pPrior;
1892       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1893       sqlite3ExprDelete(db, p->pLimit);
1894       p->pLimit = pLimit;
1895       p->pOffset = pOffset;
1896 
1897       /* Generate code to take the intersection of the two temporary
1898       ** tables.
1899       */
1900       assert( p->pEList );
1901       if( dest.eDest==SRT_Output ){
1902         Select *pFirst = p;
1903         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1904         generateColumnNames(pParse, 0, pFirst->pEList);
1905       }
1906       iBreak = sqlite3VdbeMakeLabel(v);
1907       iCont = sqlite3VdbeMakeLabel(v);
1908       computeLimitRegisters(pParse, p, iBreak);
1909       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1910       r1 = sqlite3GetTempReg(pParse);
1911       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1912       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1913       sqlite3ReleaseTempReg(pParse, r1);
1914       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1915                       0, 0, &dest, iCont, iBreak);
1916       sqlite3VdbeResolveLabel(v, iCont);
1917       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1918       sqlite3VdbeResolveLabel(v, iBreak);
1919       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1920       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1921       break;
1922     }
1923   }
1924 
1925   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1926 
1927   /* Compute collating sequences used by
1928   ** temporary tables needed to implement the compound select.
1929   ** Attach the KeyInfo structure to all temporary tables.
1930   **
1931   ** This section is run by the right-most SELECT statement only.
1932   ** SELECT statements to the left always skip this part.  The right-most
1933   ** SELECT might also skip this part if it has no ORDER BY clause and
1934   ** no temp tables are required.
1935   */
1936   if( p->selFlags & SF_UsesEphemeral ){
1937     int i;                        /* Loop counter */
1938     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1939     Select *pLoop;                /* For looping through SELECT statements */
1940     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1941     int nCol;                     /* Number of columns in result set */
1942 
1943     assert( p->pRightmost==p );
1944     nCol = p->pEList->nExpr;
1945     pKeyInfo = sqlite3DbMallocZero(db,
1946                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1947     if( !pKeyInfo ){
1948       rc = SQLITE_NOMEM;
1949       goto multi_select_end;
1950     }
1951 
1952     pKeyInfo->enc = ENC(db);
1953     pKeyInfo->nField = (u16)nCol;
1954 
1955     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1956       *apColl = multiSelectCollSeq(pParse, p, i);
1957       if( 0==*apColl ){
1958         *apColl = db->pDfltColl;
1959       }
1960     }
1961     pKeyInfo->aSortOrder = (u8*)apColl;
1962 
1963     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1964       for(i=0; i<2; i++){
1965         int addr = pLoop->addrOpenEphm[i];
1966         if( addr<0 ){
1967           /* If [0] is unused then [1] is also unused.  So we can
1968           ** always safely abort as soon as the first unused slot is found */
1969           assert( pLoop->addrOpenEphm[1]<0 );
1970           break;
1971         }
1972         sqlite3VdbeChangeP2(v, addr, nCol);
1973         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1974         pLoop->addrOpenEphm[i] = -1;
1975       }
1976     }
1977     sqlite3DbFree(db, pKeyInfo);
1978   }
1979 
1980 multi_select_end:
1981   pDest->iSdst = dest.iSdst;
1982   pDest->nSdst = dest.nSdst;
1983   sqlite3SelectDelete(db, pDelete);
1984   return rc;
1985 }
1986 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1987 
1988 /*
1989 ** Code an output subroutine for a coroutine implementation of a
1990 ** SELECT statment.
1991 **
1992 ** The data to be output is contained in pIn->iSdst.  There are
1993 ** pIn->nSdst columns to be output.  pDest is where the output should
1994 ** be sent.
1995 **
1996 ** regReturn is the number of the register holding the subroutine
1997 ** return address.
1998 **
1999 ** If regPrev>0 then it is the first register in a vector that
2000 ** records the previous output.  mem[regPrev] is a flag that is false
2001 ** if there has been no previous output.  If regPrev>0 then code is
2002 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2003 ** keys.
2004 **
2005 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2006 ** iBreak.
2007 */
2008 static int generateOutputSubroutine(
2009   Parse *pParse,          /* Parsing context */
2010   Select *p,              /* The SELECT statement */
2011   SelectDest *pIn,        /* Coroutine supplying data */
2012   SelectDest *pDest,      /* Where to send the data */
2013   int regReturn,          /* The return address register */
2014   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2015   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2016   int p4type,             /* The p4 type for pKeyInfo */
2017   int iBreak              /* Jump here if we hit the LIMIT */
2018 ){
2019   Vdbe *v = pParse->pVdbe;
2020   int iContinue;
2021   int addr;
2022 
2023   addr = sqlite3VdbeCurrentAddr(v);
2024   iContinue = sqlite3VdbeMakeLabel(v);
2025 
2026   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2027   */
2028   if( regPrev ){
2029     int j1, j2;
2030     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
2031     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2032                               (char*)pKeyInfo, p4type);
2033     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
2034     sqlite3VdbeJumpHere(v, j1);
2035     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2036     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2037   }
2038   if( pParse->db->mallocFailed ) return 0;
2039 
2040   /* Suppress the first OFFSET entries if there is an OFFSET clause
2041   */
2042   codeOffset(v, p, iContinue);
2043 
2044   switch( pDest->eDest ){
2045     /* Store the result as data using a unique key.
2046     */
2047     case SRT_Table:
2048     case SRT_EphemTab: {
2049       int r1 = sqlite3GetTempReg(pParse);
2050       int r2 = sqlite3GetTempReg(pParse);
2051       testcase( pDest->eDest==SRT_Table );
2052       testcase( pDest->eDest==SRT_EphemTab );
2053       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2054       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2055       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2056       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2057       sqlite3ReleaseTempReg(pParse, r2);
2058       sqlite3ReleaseTempReg(pParse, r1);
2059       break;
2060     }
2061 
2062 #ifndef SQLITE_OMIT_SUBQUERY
2063     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2064     ** then there should be a single item on the stack.  Write this
2065     ** item into the set table with bogus data.
2066     */
2067     case SRT_Set: {
2068       int r1;
2069       assert( pIn->nSdst==1 );
2070       pDest->affSdst =
2071          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2072       r1 = sqlite3GetTempReg(pParse);
2073       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2074       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2075       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2076       sqlite3ReleaseTempReg(pParse, r1);
2077       break;
2078     }
2079 
2080 #if 0  /* Never occurs on an ORDER BY query */
2081     /* If any row exist in the result set, record that fact and abort.
2082     */
2083     case SRT_Exists: {
2084       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2085       /* The LIMIT clause will terminate the loop for us */
2086       break;
2087     }
2088 #endif
2089 
2090     /* If this is a scalar select that is part of an expression, then
2091     ** store the results in the appropriate memory cell and break out
2092     ** of the scan loop.
2093     */
2094     case SRT_Mem: {
2095       assert( pIn->nSdst==1 );
2096       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2097       /* The LIMIT clause will jump out of the loop for us */
2098       break;
2099     }
2100 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2101 
2102     /* The results are stored in a sequence of registers
2103     ** starting at pDest->iSdst.  Then the co-routine yields.
2104     */
2105     case SRT_Coroutine: {
2106       if( pDest->iSdst==0 ){
2107         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2108         pDest->nSdst = pIn->nSdst;
2109       }
2110       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2111       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2112       break;
2113     }
2114 
2115     /* If none of the above, then the result destination must be
2116     ** SRT_Output.  This routine is never called with any other
2117     ** destination other than the ones handled above or SRT_Output.
2118     **
2119     ** For SRT_Output, results are stored in a sequence of registers.
2120     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2121     ** return the next row of result.
2122     */
2123     default: {
2124       assert( pDest->eDest==SRT_Output );
2125       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2126       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2127       break;
2128     }
2129   }
2130 
2131   /* Jump to the end of the loop if the LIMIT is reached.
2132   */
2133   if( p->iLimit ){
2134     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2135   }
2136 
2137   /* Generate the subroutine return
2138   */
2139   sqlite3VdbeResolveLabel(v, iContinue);
2140   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2141 
2142   return addr;
2143 }
2144 
2145 /*
2146 ** Alternative compound select code generator for cases when there
2147 ** is an ORDER BY clause.
2148 **
2149 ** We assume a query of the following form:
2150 **
2151 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2152 **
2153 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2154 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2155 ** co-routines.  Then run the co-routines in parallel and merge the results
2156 ** into the output.  In addition to the two coroutines (called selectA and
2157 ** selectB) there are 7 subroutines:
2158 **
2159 **    outA:    Move the output of the selectA coroutine into the output
2160 **             of the compound query.
2161 **
2162 **    outB:    Move the output of the selectB coroutine into the output
2163 **             of the compound query.  (Only generated for UNION and
2164 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2165 **             appears only in B.)
2166 **
2167 **    AltB:    Called when there is data from both coroutines and A<B.
2168 **
2169 **    AeqB:    Called when there is data from both coroutines and A==B.
2170 **
2171 **    AgtB:    Called when there is data from both coroutines and A>B.
2172 **
2173 **    EofA:    Called when data is exhausted from selectA.
2174 **
2175 **    EofB:    Called when data is exhausted from selectB.
2176 **
2177 ** The implementation of the latter five subroutines depend on which
2178 ** <operator> is used:
2179 **
2180 **
2181 **             UNION ALL         UNION            EXCEPT          INTERSECT
2182 **          -------------  -----------------  --------------  -----------------
2183 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2184 **
2185 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2186 **
2187 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2188 **
2189 **   EofA:   outB, nextB      outB, nextB          halt             halt
2190 **
2191 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2192 **
2193 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2194 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2195 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2196 ** following nextX causes a jump to the end of the select processing.
2197 **
2198 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2199 ** within the output subroutine.  The regPrev register set holds the previously
2200 ** output value.  A comparison is made against this value and the output
2201 ** is skipped if the next results would be the same as the previous.
2202 **
2203 ** The implementation plan is to implement the two coroutines and seven
2204 ** subroutines first, then put the control logic at the bottom.  Like this:
2205 **
2206 **          goto Init
2207 **     coA: coroutine for left query (A)
2208 **     coB: coroutine for right query (B)
2209 **    outA: output one row of A
2210 **    outB: output one row of B (UNION and UNION ALL only)
2211 **    EofA: ...
2212 **    EofB: ...
2213 **    AltB: ...
2214 **    AeqB: ...
2215 **    AgtB: ...
2216 **    Init: initialize coroutine registers
2217 **          yield coA
2218 **          if eof(A) goto EofA
2219 **          yield coB
2220 **          if eof(B) goto EofB
2221 **    Cmpr: Compare A, B
2222 **          Jump AltB, AeqB, AgtB
2223 **     End: ...
2224 **
2225 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2226 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2227 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2228 ** and AgtB jump to either L2 or to one of EofA or EofB.
2229 */
2230 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2231 static int multiSelectOrderBy(
2232   Parse *pParse,        /* Parsing context */
2233   Select *p,            /* The right-most of SELECTs to be coded */
2234   SelectDest *pDest     /* What to do with query results */
2235 ){
2236   int i, j;             /* Loop counters */
2237   Select *pPrior;       /* Another SELECT immediately to our left */
2238   Vdbe *v;              /* Generate code to this VDBE */
2239   SelectDest destA;     /* Destination for coroutine A */
2240   SelectDest destB;     /* Destination for coroutine B */
2241   int regAddrA;         /* Address register for select-A coroutine */
2242   int regEofA;          /* Flag to indicate when select-A is complete */
2243   int regAddrB;         /* Address register for select-B coroutine */
2244   int regEofB;          /* Flag to indicate when select-B is complete */
2245   int addrSelectA;      /* Address of the select-A coroutine */
2246   int addrSelectB;      /* Address of the select-B coroutine */
2247   int regOutA;          /* Address register for the output-A subroutine */
2248   int regOutB;          /* Address register for the output-B subroutine */
2249   int addrOutA;         /* Address of the output-A subroutine */
2250   int addrOutB = 0;     /* Address of the output-B subroutine */
2251   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2252   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2253   int addrAltB;         /* Address of the A<B subroutine */
2254   int addrAeqB;         /* Address of the A==B subroutine */
2255   int addrAgtB;         /* Address of the A>B subroutine */
2256   int regLimitA;        /* Limit register for select-A */
2257   int regLimitB;        /* Limit register for select-A */
2258   int regPrev;          /* A range of registers to hold previous output */
2259   int savedLimit;       /* Saved value of p->iLimit */
2260   int savedOffset;      /* Saved value of p->iOffset */
2261   int labelCmpr;        /* Label for the start of the merge algorithm */
2262   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2263   int j1;               /* Jump instructions that get retargetted */
2264   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2265   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2266   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2267   sqlite3 *db;          /* Database connection */
2268   ExprList *pOrderBy;   /* The ORDER BY clause */
2269   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2270   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2271 #ifndef SQLITE_OMIT_EXPLAIN
2272   int iSub1;            /* EQP id of left-hand query */
2273   int iSub2;            /* EQP id of right-hand query */
2274 #endif
2275 
2276   assert( p->pOrderBy!=0 );
2277   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2278   db = pParse->db;
2279   v = pParse->pVdbe;
2280   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2281   labelEnd = sqlite3VdbeMakeLabel(v);
2282   labelCmpr = sqlite3VdbeMakeLabel(v);
2283 
2284 
2285   /* Patch up the ORDER BY clause
2286   */
2287   op = p->op;
2288   pPrior = p->pPrior;
2289   assert( pPrior->pOrderBy==0 );
2290   pOrderBy = p->pOrderBy;
2291   assert( pOrderBy );
2292   nOrderBy = pOrderBy->nExpr;
2293 
2294   /* For operators other than UNION ALL we have to make sure that
2295   ** the ORDER BY clause covers every term of the result set.  Add
2296   ** terms to the ORDER BY clause as necessary.
2297   */
2298   if( op!=TK_ALL ){
2299     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2300       struct ExprList_item *pItem;
2301       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2302         assert( pItem->iOrderByCol>0 );
2303         if( pItem->iOrderByCol==i ) break;
2304       }
2305       if( j==nOrderBy ){
2306         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2307         if( pNew==0 ) return SQLITE_NOMEM;
2308         pNew->flags |= EP_IntValue;
2309         pNew->u.iValue = i;
2310         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2311         if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i;
2312       }
2313     }
2314   }
2315 
2316   /* Compute the comparison permutation and keyinfo that is used with
2317   ** the permutation used to determine if the next
2318   ** row of results comes from selectA or selectB.  Also add explicit
2319   ** collations to the ORDER BY clause terms so that when the subqueries
2320   ** to the right and the left are evaluated, they use the correct
2321   ** collation.
2322   */
2323   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2324   if( aPermute ){
2325     struct ExprList_item *pItem;
2326     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2327       assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
2328       aPermute[i] = pItem->iOrderByCol - 1;
2329     }
2330     pKeyMerge =
2331       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2332     if( pKeyMerge ){
2333       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2334       pKeyMerge->nField = (u16)nOrderBy;
2335       pKeyMerge->enc = ENC(db);
2336       for(i=0; i<nOrderBy; i++){
2337         CollSeq *pColl;
2338         Expr *pTerm = pOrderBy->a[i].pExpr;
2339         if( pTerm->flags & EP_Collate ){
2340           pColl = sqlite3ExprCollSeq(pParse, pTerm);
2341         }else{
2342           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2343           if( pColl==0 ) pColl = db->pDfltColl;
2344           pOrderBy->a[i].pExpr =
2345              sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2346         }
2347         pKeyMerge->aColl[i] = pColl;
2348         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2349       }
2350     }
2351   }else{
2352     pKeyMerge = 0;
2353   }
2354 
2355   /* Reattach the ORDER BY clause to the query.
2356   */
2357   p->pOrderBy = pOrderBy;
2358   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2359 
2360   /* Allocate a range of temporary registers and the KeyInfo needed
2361   ** for the logic that removes duplicate result rows when the
2362   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2363   */
2364   if( op==TK_ALL ){
2365     regPrev = 0;
2366   }else{
2367     int nExpr = p->pEList->nExpr;
2368     assert( nOrderBy>=nExpr || db->mallocFailed );
2369     regPrev = pParse->nMem+1;
2370     pParse->nMem += nExpr+1;
2371     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2372     pKeyDup = sqlite3DbMallocZero(db,
2373                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2374     if( pKeyDup ){
2375       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2376       pKeyDup->nField = (u16)nExpr;
2377       pKeyDup->enc = ENC(db);
2378       for(i=0; i<nExpr; i++){
2379         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2380         pKeyDup->aSortOrder[i] = 0;
2381       }
2382     }
2383   }
2384 
2385   /* Separate the left and the right query from one another
2386   */
2387   p->pPrior = 0;
2388   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2389   if( pPrior->pPrior==0 ){
2390     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2391   }
2392 
2393   /* Compute the limit registers */
2394   computeLimitRegisters(pParse, p, labelEnd);
2395   if( p->iLimit && op==TK_ALL ){
2396     regLimitA = ++pParse->nMem;
2397     regLimitB = ++pParse->nMem;
2398     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2399                                   regLimitA);
2400     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2401   }else{
2402     regLimitA = regLimitB = 0;
2403   }
2404   sqlite3ExprDelete(db, p->pLimit);
2405   p->pLimit = 0;
2406   sqlite3ExprDelete(db, p->pOffset);
2407   p->pOffset = 0;
2408 
2409   regAddrA = ++pParse->nMem;
2410   regEofA = ++pParse->nMem;
2411   regAddrB = ++pParse->nMem;
2412   regEofB = ++pParse->nMem;
2413   regOutA = ++pParse->nMem;
2414   regOutB = ++pParse->nMem;
2415   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2416   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2417 
2418   /* Jump past the various subroutines and coroutines to the main
2419   ** merge loop
2420   */
2421   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2422   addrSelectA = sqlite3VdbeCurrentAddr(v);
2423 
2424 
2425   /* Generate a coroutine to evaluate the SELECT statement to the
2426   ** left of the compound operator - the "A" select.
2427   */
2428   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2429   pPrior->iLimit = regLimitA;
2430   explainSetInteger(iSub1, pParse->iNextSelectId);
2431   sqlite3Select(pParse, pPrior, &destA);
2432   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2433   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2434   VdbeNoopComment((v, "End coroutine for left SELECT"));
2435 
2436   /* Generate a coroutine to evaluate the SELECT statement on
2437   ** the right - the "B" select
2438   */
2439   addrSelectB = sqlite3VdbeCurrentAddr(v);
2440   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2441   savedLimit = p->iLimit;
2442   savedOffset = p->iOffset;
2443   p->iLimit = regLimitB;
2444   p->iOffset = 0;
2445   explainSetInteger(iSub2, pParse->iNextSelectId);
2446   sqlite3Select(pParse, p, &destB);
2447   p->iLimit = savedLimit;
2448   p->iOffset = savedOffset;
2449   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2450   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2451   VdbeNoopComment((v, "End coroutine for right SELECT"));
2452 
2453   /* Generate a subroutine that outputs the current row of the A
2454   ** select as the next output row of the compound select.
2455   */
2456   VdbeNoopComment((v, "Output routine for A"));
2457   addrOutA = generateOutputSubroutine(pParse,
2458                  p, &destA, pDest, regOutA,
2459                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2460 
2461   /* Generate a subroutine that outputs the current row of the B
2462   ** select as the next output row of the compound select.
2463   */
2464   if( op==TK_ALL || op==TK_UNION ){
2465     VdbeNoopComment((v, "Output routine for B"));
2466     addrOutB = generateOutputSubroutine(pParse,
2467                  p, &destB, pDest, regOutB,
2468                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2469   }
2470 
2471   /* Generate a subroutine to run when the results from select A
2472   ** are exhausted and only data in select B remains.
2473   */
2474   VdbeNoopComment((v, "eof-A subroutine"));
2475   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2476     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2477   }else{
2478     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2479     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2480     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2481     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2482     p->nSelectRow += pPrior->nSelectRow;
2483   }
2484 
2485   /* Generate a subroutine to run when the results from select B
2486   ** are exhausted and only data in select A remains.
2487   */
2488   if( op==TK_INTERSECT ){
2489     addrEofB = addrEofA;
2490     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2491   }else{
2492     VdbeNoopComment((v, "eof-B subroutine"));
2493     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2494     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2495     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2496     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2497   }
2498 
2499   /* Generate code to handle the case of A<B
2500   */
2501   VdbeNoopComment((v, "A-lt-B subroutine"));
2502   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2503   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2504   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2505   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2506 
2507   /* Generate code to handle the case of A==B
2508   */
2509   if( op==TK_ALL ){
2510     addrAeqB = addrAltB;
2511   }else if( op==TK_INTERSECT ){
2512     addrAeqB = addrAltB;
2513     addrAltB++;
2514   }else{
2515     VdbeNoopComment((v, "A-eq-B subroutine"));
2516     addrAeqB =
2517     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2518     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2519     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2520   }
2521 
2522   /* Generate code to handle the case of A>B
2523   */
2524   VdbeNoopComment((v, "A-gt-B subroutine"));
2525   addrAgtB = sqlite3VdbeCurrentAddr(v);
2526   if( op==TK_ALL || op==TK_UNION ){
2527     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2528   }
2529   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2530   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2531   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2532 
2533   /* This code runs once to initialize everything.
2534   */
2535   sqlite3VdbeJumpHere(v, j1);
2536   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2537   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2538   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2539   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2540   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2541   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2542 
2543   /* Implement the main merge loop
2544   */
2545   sqlite3VdbeResolveLabel(v, labelCmpr);
2546   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2547   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2548                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2549   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2550   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2551 
2552   /* Jump to the this point in order to terminate the query.
2553   */
2554   sqlite3VdbeResolveLabel(v, labelEnd);
2555 
2556   /* Set the number of output columns
2557   */
2558   if( pDest->eDest==SRT_Output ){
2559     Select *pFirst = pPrior;
2560     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2561     generateColumnNames(pParse, 0, pFirst->pEList);
2562   }
2563 
2564   /* Reassembly the compound query so that it will be freed correctly
2565   ** by the calling function */
2566   if( p->pPrior ){
2567     sqlite3SelectDelete(db, p->pPrior);
2568   }
2569   p->pPrior = pPrior;
2570 
2571   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2572   **** subqueries ****/
2573   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2574   return SQLITE_OK;
2575 }
2576 #endif
2577 
2578 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2579 /* Forward Declarations */
2580 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2581 static void substSelect(sqlite3*, Select *, int, ExprList *);
2582 
2583 /*
2584 ** Scan through the expression pExpr.  Replace every reference to
2585 ** a column in table number iTable with a copy of the iColumn-th
2586 ** entry in pEList.  (But leave references to the ROWID column
2587 ** unchanged.)
2588 **
2589 ** This routine is part of the flattening procedure.  A subquery
2590 ** whose result set is defined by pEList appears as entry in the
2591 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2592 ** FORM clause entry is iTable.  This routine make the necessary
2593 ** changes to pExpr so that it refers directly to the source table
2594 ** of the subquery rather the result set of the subquery.
2595 */
2596 static Expr *substExpr(
2597   sqlite3 *db,        /* Report malloc errors to this connection */
2598   Expr *pExpr,        /* Expr in which substitution occurs */
2599   int iTable,         /* Table to be substituted */
2600   ExprList *pEList    /* Substitute expressions */
2601 ){
2602   if( pExpr==0 ) return 0;
2603   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2604     if( pExpr->iColumn<0 ){
2605       pExpr->op = TK_NULL;
2606     }else{
2607       Expr *pNew;
2608       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2609       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2610       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2611       sqlite3ExprDelete(db, pExpr);
2612       pExpr = pNew;
2613     }
2614   }else{
2615     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2616     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2617     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2618       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2619     }else{
2620       substExprList(db, pExpr->x.pList, iTable, pEList);
2621     }
2622   }
2623   return pExpr;
2624 }
2625 static void substExprList(
2626   sqlite3 *db,         /* Report malloc errors here */
2627   ExprList *pList,     /* List to scan and in which to make substitutes */
2628   int iTable,          /* Table to be substituted */
2629   ExprList *pEList     /* Substitute values */
2630 ){
2631   int i;
2632   if( pList==0 ) return;
2633   for(i=0; i<pList->nExpr; i++){
2634     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2635   }
2636 }
2637 static void substSelect(
2638   sqlite3 *db,         /* Report malloc errors here */
2639   Select *p,           /* SELECT statement in which to make substitutions */
2640   int iTable,          /* Table to be replaced */
2641   ExprList *pEList     /* Substitute values */
2642 ){
2643   SrcList *pSrc;
2644   struct SrcList_item *pItem;
2645   int i;
2646   if( !p ) return;
2647   substExprList(db, p->pEList, iTable, pEList);
2648   substExprList(db, p->pGroupBy, iTable, pEList);
2649   substExprList(db, p->pOrderBy, iTable, pEList);
2650   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2651   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2652   substSelect(db, p->pPrior, iTable, pEList);
2653   pSrc = p->pSrc;
2654   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2655   if( ALWAYS(pSrc) ){
2656     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2657       substSelect(db, pItem->pSelect, iTable, pEList);
2658     }
2659   }
2660 }
2661 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2662 
2663 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2664 /*
2665 ** This routine attempts to flatten subqueries as a performance optimization.
2666 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
2667 **
2668 ** To understand the concept of flattening, consider the following
2669 ** query:
2670 **
2671 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2672 **
2673 ** The default way of implementing this query is to execute the
2674 ** subquery first and store the results in a temporary table, then
2675 ** run the outer query on that temporary table.  This requires two
2676 ** passes over the data.  Furthermore, because the temporary table
2677 ** has no indices, the WHERE clause on the outer query cannot be
2678 ** optimized.
2679 **
2680 ** This routine attempts to rewrite queries such as the above into
2681 ** a single flat select, like this:
2682 **
2683 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2684 **
2685 ** The code generated for this simpification gives the same result
2686 ** but only has to scan the data once.  And because indices might
2687 ** exist on the table t1, a complete scan of the data might be
2688 ** avoided.
2689 **
2690 ** Flattening is only attempted if all of the following are true:
2691 **
2692 **   (1)  The subquery and the outer query do not both use aggregates.
2693 **
2694 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2695 **
2696 **   (3)  The subquery is not the right operand of a left outer join
2697 **        (Originally ticket #306.  Strengthened by ticket #3300)
2698 **
2699 **   (4)  The subquery is not DISTINCT.
2700 **
2701 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
2702 **        sub-queries that were excluded from this optimization. Restriction
2703 **        (4) has since been expanded to exclude all DISTINCT subqueries.
2704 **
2705 **   (6)  The subquery does not use aggregates or the outer query is not
2706 **        DISTINCT.
2707 **
2708 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
2709 **        A FROM clause, consider adding a FROM close with the special
2710 **        table sqlite_once that consists of a single row containing a
2711 **        single NULL.
2712 **
2713 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2714 **
2715 **   (9)  The subquery does not use LIMIT or the outer query does not use
2716 **        aggregates.
2717 **
2718 **  (10)  The subquery does not use aggregates or the outer query does not
2719 **        use LIMIT.
2720 **
2721 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2722 **
2723 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
2724 **        a separate restriction deriving from ticket #350.
2725 **
2726 **  (13)  The subquery and outer query do not both use LIMIT.
2727 **
2728 **  (14)  The subquery does not use OFFSET.
2729 **
2730 **  (15)  The outer query is not part of a compound select or the
2731 **        subquery does not have a LIMIT clause.
2732 **        (See ticket #2339 and ticket [02a8e81d44]).
2733 **
2734 **  (16)  The outer query is not an aggregate or the subquery does
2735 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2736 **        until we introduced the group_concat() function.
2737 **
2738 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2739 **        compound clause made up entirely of non-aggregate queries, and
2740 **        the parent query:
2741 **
2742 **          * is not itself part of a compound select,
2743 **          * is not an aggregate or DISTINCT query, and
2744 **          * is not a join
2745 **
2746 **        The parent and sub-query may contain WHERE clauses. Subject to
2747 **        rules (11), (13) and (14), they may also contain ORDER BY,
2748 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
2749 **        operator other than UNION ALL because all the other compound
2750 **        operators have an implied DISTINCT which is disallowed by
2751 **        restriction (4).
2752 **
2753 **        Also, each component of the sub-query must return the same number
2754 **        of result columns. This is actually a requirement for any compound
2755 **        SELECT statement, but all the code here does is make sure that no
2756 **        such (illegal) sub-query is flattened. The caller will detect the
2757 **        syntax error and return a detailed message.
2758 **
2759 **  (18)  If the sub-query is a compound select, then all terms of the
2760 **        ORDER by clause of the parent must be simple references to
2761 **        columns of the sub-query.
2762 **
2763 **  (19)  The subquery does not use LIMIT or the outer query does not
2764 **        have a WHERE clause.
2765 **
2766 **  (20)  If the sub-query is a compound select, then it must not use
2767 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2768 **        somewhat by saying that the terms of the ORDER BY clause must
2769 **        appear as unmodified result columns in the outer query.  But we
2770 **        have other optimizations in mind to deal with that case.
2771 **
2772 **  (21)  The subquery does not use LIMIT or the outer query is not
2773 **        DISTINCT.  (See ticket [752e1646fc]).
2774 **
2775 ** In this routine, the "p" parameter is a pointer to the outer query.
2776 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2777 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2778 **
2779 ** If flattening is not attempted, this routine is a no-op and returns 0.
2780 ** If flattening is attempted this routine returns 1.
2781 **
2782 ** All of the expression analysis must occur on both the outer query and
2783 ** the subquery before this routine runs.
2784 */
2785 static int flattenSubquery(
2786   Parse *pParse,       /* Parsing context */
2787   Select *p,           /* The parent or outer SELECT statement */
2788   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2789   int isAgg,           /* True if outer SELECT uses aggregate functions */
2790   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2791 ){
2792   const char *zSavedAuthContext = pParse->zAuthContext;
2793   Select *pParent;
2794   Select *pSub;       /* The inner query or "subquery" */
2795   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2796   SrcList *pSrc;      /* The FROM clause of the outer query */
2797   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2798   ExprList *pList;    /* The result set of the outer query */
2799   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2800   int i;              /* Loop counter */
2801   Expr *pWhere;                    /* The WHERE clause */
2802   struct SrcList_item *pSubitem;   /* The subquery */
2803   sqlite3 *db = pParse->db;
2804 
2805   /* Check to see if flattening is permitted.  Return 0 if not.
2806   */
2807   assert( p!=0 );
2808   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2809   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
2810   pSrc = p->pSrc;
2811   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2812   pSubitem = &pSrc->a[iFrom];
2813   iParent = pSubitem->iCursor;
2814   pSub = pSubitem->pSelect;
2815   assert( pSub!=0 );
2816   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2817   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2818   pSubSrc = pSub->pSrc;
2819   assert( pSubSrc );
2820   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2821   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2822   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2823   ** became arbitrary expressions, we were forced to add restrictions (13)
2824   ** and (14). */
2825   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2826   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2827   if( p->pRightmost && pSub->pLimit ){
2828     return 0;                                            /* Restriction (15) */
2829   }
2830   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2831   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
2832   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2833      return 0;         /* Restrictions (8)(9) */
2834   }
2835   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2836      return 0;         /* Restriction (6)  */
2837   }
2838   if( p->pOrderBy && pSub->pOrderBy ){
2839      return 0;                                           /* Restriction (11) */
2840   }
2841   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2842   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2843   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2844      return 0;         /* Restriction (21) */
2845   }
2846 
2847   /* OBSOLETE COMMENT 1:
2848   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2849   ** not used as the right operand of an outer join.  Examples of why this
2850   ** is not allowed:
2851   **
2852   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2853   **
2854   ** If we flatten the above, we would get
2855   **
2856   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2857   **
2858   ** which is not at all the same thing.
2859   **
2860   ** OBSOLETE COMMENT 2:
2861   ** Restriction 12:  If the subquery is the right operand of a left outer
2862   ** join, make sure the subquery has no WHERE clause.
2863   ** An examples of why this is not allowed:
2864   **
2865   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2866   **
2867   ** If we flatten the above, we would get
2868   **
2869   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2870   **
2871   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2872   ** effectively converts the OUTER JOIN into an INNER JOIN.
2873   **
2874   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2875   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2876   ** is fraught with danger.  Best to avoid the whole thing.  If the
2877   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2878   */
2879   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2880     return 0;
2881   }
2882 
2883   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2884   ** use only the UNION ALL operator. And none of the simple select queries
2885   ** that make up the compound SELECT are allowed to be aggregate or distinct
2886   ** queries.
2887   */
2888   if( pSub->pPrior ){
2889     if( pSub->pOrderBy ){
2890       return 0;  /* Restriction 20 */
2891     }
2892     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2893       return 0;
2894     }
2895     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2896       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2897       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2898       assert( pSub->pSrc!=0 );
2899       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2900        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2901        || pSub1->pSrc->nSrc<1
2902        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
2903       ){
2904         return 0;
2905       }
2906       testcase( pSub1->pSrc->nSrc>1 );
2907     }
2908 
2909     /* Restriction 18. */
2910     if( p->pOrderBy ){
2911       int ii;
2912       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2913         if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0;
2914       }
2915     }
2916   }
2917 
2918   /***** If we reach this point, flattening is permitted. *****/
2919 
2920   /* Authorize the subquery */
2921   pParse->zAuthContext = pSubitem->zName;
2922   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2923   testcase( i==SQLITE_DENY );
2924   pParse->zAuthContext = zSavedAuthContext;
2925 
2926   /* If the sub-query is a compound SELECT statement, then (by restrictions
2927   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2928   ** be of the form:
2929   **
2930   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2931   **
2932   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2933   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2934   ** OFFSET clauses and joins them to the left-hand-side of the original
2935   ** using UNION ALL operators. In this case N is the number of simple
2936   ** select statements in the compound sub-query.
2937   **
2938   ** Example:
2939   **
2940   **     SELECT a+1 FROM (
2941   **        SELECT x FROM tab
2942   **        UNION ALL
2943   **        SELECT y FROM tab
2944   **        UNION ALL
2945   **        SELECT abs(z*2) FROM tab2
2946   **     ) WHERE a!=5 ORDER BY 1
2947   **
2948   ** Transformed into:
2949   **
2950   **     SELECT x+1 FROM tab WHERE x+1!=5
2951   **     UNION ALL
2952   **     SELECT y+1 FROM tab WHERE y+1!=5
2953   **     UNION ALL
2954   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2955   **     ORDER BY 1
2956   **
2957   ** We call this the "compound-subquery flattening".
2958   */
2959   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2960     Select *pNew;
2961     ExprList *pOrderBy = p->pOrderBy;
2962     Expr *pLimit = p->pLimit;
2963     Expr *pOffset = p->pOffset;
2964     Select *pPrior = p->pPrior;
2965     p->pOrderBy = 0;
2966     p->pSrc = 0;
2967     p->pPrior = 0;
2968     p->pLimit = 0;
2969     p->pOffset = 0;
2970     pNew = sqlite3SelectDup(db, p, 0);
2971     p->pOffset = pOffset;
2972     p->pLimit = pLimit;
2973     p->pOrderBy = pOrderBy;
2974     p->pSrc = pSrc;
2975     p->op = TK_ALL;
2976     p->pRightmost = 0;
2977     if( pNew==0 ){
2978       pNew = pPrior;
2979     }else{
2980       pNew->pPrior = pPrior;
2981       pNew->pRightmost = 0;
2982     }
2983     p->pPrior = pNew;
2984     if( db->mallocFailed ) return 1;
2985   }
2986 
2987   /* Begin flattening the iFrom-th entry of the FROM clause
2988   ** in the outer query.
2989   */
2990   pSub = pSub1 = pSubitem->pSelect;
2991 
2992   /* Delete the transient table structure associated with the
2993   ** subquery
2994   */
2995   sqlite3DbFree(db, pSubitem->zDatabase);
2996   sqlite3DbFree(db, pSubitem->zName);
2997   sqlite3DbFree(db, pSubitem->zAlias);
2998   pSubitem->zDatabase = 0;
2999   pSubitem->zName = 0;
3000   pSubitem->zAlias = 0;
3001   pSubitem->pSelect = 0;
3002 
3003   /* Defer deleting the Table object associated with the
3004   ** subquery until code generation is
3005   ** complete, since there may still exist Expr.pTab entries that
3006   ** refer to the subquery even after flattening.  Ticket #3346.
3007   **
3008   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3009   */
3010   if( ALWAYS(pSubitem->pTab!=0) ){
3011     Table *pTabToDel = pSubitem->pTab;
3012     if( pTabToDel->nRef==1 ){
3013       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3014       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3015       pToplevel->pZombieTab = pTabToDel;
3016     }else{
3017       pTabToDel->nRef--;
3018     }
3019     pSubitem->pTab = 0;
3020   }
3021 
3022   /* The following loop runs once for each term in a compound-subquery
3023   ** flattening (as described above).  If we are doing a different kind
3024   ** of flattening - a flattening other than a compound-subquery flattening -
3025   ** then this loop only runs once.
3026   **
3027   ** This loop moves all of the FROM elements of the subquery into the
3028   ** the FROM clause of the outer query.  Before doing this, remember
3029   ** the cursor number for the original outer query FROM element in
3030   ** iParent.  The iParent cursor will never be used.  Subsequent code
3031   ** will scan expressions looking for iParent references and replace
3032   ** those references with expressions that resolve to the subquery FROM
3033   ** elements we are now copying in.
3034   */
3035   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3036     int nSubSrc;
3037     u8 jointype = 0;
3038     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3039     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3040     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3041 
3042     if( pSrc ){
3043       assert( pParent==p );  /* First time through the loop */
3044       jointype = pSubitem->jointype;
3045     }else{
3046       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3047       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3048       if( pSrc==0 ){
3049         assert( db->mallocFailed );
3050         break;
3051       }
3052     }
3053 
3054     /* The subquery uses a single slot of the FROM clause of the outer
3055     ** query.  If the subquery has more than one element in its FROM clause,
3056     ** then expand the outer query to make space for it to hold all elements
3057     ** of the subquery.
3058     **
3059     ** Example:
3060     **
3061     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3062     **
3063     ** The outer query has 3 slots in its FROM clause.  One slot of the
3064     ** outer query (the middle slot) is used by the subquery.  The next
3065     ** block of code will expand the out query to 4 slots.  The middle
3066     ** slot is expanded to two slots in order to make space for the
3067     ** two elements in the FROM clause of the subquery.
3068     */
3069     if( nSubSrc>1 ){
3070       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3071       if( db->mallocFailed ){
3072         break;
3073       }
3074     }
3075 
3076     /* Transfer the FROM clause terms from the subquery into the
3077     ** outer query.
3078     */
3079     for(i=0; i<nSubSrc; i++){
3080       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3081       pSrc->a[i+iFrom] = pSubSrc->a[i];
3082       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3083     }
3084     pSrc->a[iFrom].jointype = jointype;
3085 
3086     /* Now begin substituting subquery result set expressions for
3087     ** references to the iParent in the outer query.
3088     **
3089     ** Example:
3090     **
3091     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3092     **   \                     \_____________ subquery __________/          /
3093     **    \_____________________ outer query ______________________________/
3094     **
3095     ** We look at every expression in the outer query and every place we see
3096     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3097     */
3098     pList = pParent->pEList;
3099     for(i=0; i<pList->nExpr; i++){
3100       if( pList->a[i].zName==0 ){
3101         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3102         sqlite3Dequote(zName);
3103         pList->a[i].zName = zName;
3104       }
3105     }
3106     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3107     if( isAgg ){
3108       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3109       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3110     }
3111     if( pSub->pOrderBy ){
3112       assert( pParent->pOrderBy==0 );
3113       pParent->pOrderBy = pSub->pOrderBy;
3114       pSub->pOrderBy = 0;
3115     }else if( pParent->pOrderBy ){
3116       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3117     }
3118     if( pSub->pWhere ){
3119       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3120     }else{
3121       pWhere = 0;
3122     }
3123     if( subqueryIsAgg ){
3124       assert( pParent->pHaving==0 );
3125       pParent->pHaving = pParent->pWhere;
3126       pParent->pWhere = pWhere;
3127       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3128       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3129                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3130       assert( pParent->pGroupBy==0 );
3131       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3132     }else{
3133       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3134       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3135     }
3136 
3137     /* The flattened query is distinct if either the inner or the
3138     ** outer query is distinct.
3139     */
3140     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3141 
3142     /*
3143     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3144     **
3145     ** One is tempted to try to add a and b to combine the limits.  But this
3146     ** does not work if either limit is negative.
3147     */
3148     if( pSub->pLimit ){
3149       pParent->pLimit = pSub->pLimit;
3150       pSub->pLimit = 0;
3151     }
3152   }
3153 
3154   /* Finially, delete what is left of the subquery and return
3155   ** success.
3156   */
3157   sqlite3SelectDelete(db, pSub1);
3158 
3159   return 1;
3160 }
3161 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3162 
3163 /*
3164 ** Based on the contents of the AggInfo structure indicated by the first
3165 ** argument, this function checks if the following are true:
3166 **
3167 **    * the query contains just a single aggregate function,
3168 **    * the aggregate function is either min() or max(), and
3169 **    * the argument to the aggregate function is a column value.
3170 **
3171 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3172 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3173 ** list of arguments passed to the aggregate before returning.
3174 **
3175 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3176 ** WHERE_ORDERBY_NORMAL is returned.
3177 */
3178 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3179   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3180 
3181   *ppMinMax = 0;
3182   if( pAggInfo->nFunc==1 ){
3183     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3184     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3185 
3186     assert( pExpr->op==TK_AGG_FUNCTION );
3187     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3188       const char *zFunc = pExpr->u.zToken;
3189       if( sqlite3StrICmp(zFunc, "min")==0 ){
3190         eRet = WHERE_ORDERBY_MIN;
3191         *ppMinMax = pEList;
3192       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3193         eRet = WHERE_ORDERBY_MAX;
3194         *ppMinMax = pEList;
3195       }
3196     }
3197   }
3198 
3199   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3200   return eRet;
3201 }
3202 
3203 /*
3204 ** The select statement passed as the first argument is an aggregate query.
3205 ** The second argment is the associated aggregate-info object. This
3206 ** function tests if the SELECT is of the form:
3207 **
3208 **   SELECT count(*) FROM <tbl>
3209 **
3210 ** where table is a database table, not a sub-select or view. If the query
3211 ** does match this pattern, then a pointer to the Table object representing
3212 ** <tbl> is returned. Otherwise, 0 is returned.
3213 */
3214 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3215   Table *pTab;
3216   Expr *pExpr;
3217 
3218   assert( !p->pGroupBy );
3219 
3220   if( p->pWhere || p->pEList->nExpr!=1
3221    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3222   ){
3223     return 0;
3224   }
3225   pTab = p->pSrc->a[0].pTab;
3226   pExpr = p->pEList->a[0].pExpr;
3227   assert( pTab && !pTab->pSelect && pExpr );
3228 
3229   if( IsVirtual(pTab) ) return 0;
3230   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3231   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3232   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3233   if( pExpr->flags&EP_Distinct ) return 0;
3234 
3235   return pTab;
3236 }
3237 
3238 /*
3239 ** If the source-list item passed as an argument was augmented with an
3240 ** INDEXED BY clause, then try to locate the specified index. If there
3241 ** was such a clause and the named index cannot be found, return
3242 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3243 ** pFrom->pIndex and return SQLITE_OK.
3244 */
3245 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3246   if( pFrom->pTab && pFrom->zIndex ){
3247     Table *pTab = pFrom->pTab;
3248     char *zIndex = pFrom->zIndex;
3249     Index *pIdx;
3250     for(pIdx=pTab->pIndex;
3251         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3252         pIdx=pIdx->pNext
3253     );
3254     if( !pIdx ){
3255       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3256       pParse->checkSchema = 1;
3257       return SQLITE_ERROR;
3258     }
3259     pFrom->pIndex = pIdx;
3260   }
3261   return SQLITE_OK;
3262 }
3263 
3264 /*
3265 ** This routine is a Walker callback for "expanding" a SELECT statement.
3266 ** "Expanding" means to do the following:
3267 **
3268 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3269 **         element of the FROM clause.
3270 **
3271 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3272 **         defines FROM clause.  When views appear in the FROM clause,
3273 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3274 **         that implements the view.  A copy is made of the view's SELECT
3275 **         statement so that we can freely modify or delete that statement
3276 **         without worrying about messing up the presistent representation
3277 **         of the view.
3278 **
3279 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3280 **         on joins and the ON and USING clause of joins.
3281 **
3282 **    (4)  Scan the list of columns in the result set (pEList) looking
3283 **         for instances of the "*" operator or the TABLE.* operator.
3284 **         If found, expand each "*" to be every column in every table
3285 **         and TABLE.* to be every column in TABLE.
3286 **
3287 */
3288 static int selectExpander(Walker *pWalker, Select *p){
3289   Parse *pParse = pWalker->pParse;
3290   int i, j, k;
3291   SrcList *pTabList;
3292   ExprList *pEList;
3293   struct SrcList_item *pFrom;
3294   sqlite3 *db = pParse->db;
3295   Expr *pE, *pRight, *pExpr;
3296   u16 selFlags = p->selFlags;
3297 
3298   p->selFlags |= SF_Expanded;
3299   if( db->mallocFailed  ){
3300     return WRC_Abort;
3301   }
3302   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
3303     return WRC_Prune;
3304   }
3305   pTabList = p->pSrc;
3306   pEList = p->pEList;
3307 
3308   /* Make sure cursor numbers have been assigned to all entries in
3309   ** the FROM clause of the SELECT statement.
3310   */
3311   sqlite3SrcListAssignCursors(pParse, pTabList);
3312 
3313   /* Look up every table named in the FROM clause of the select.  If
3314   ** an entry of the FROM clause is a subquery instead of a table or view,
3315   ** then create a transient table structure to describe the subquery.
3316   */
3317   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3318     Table *pTab;
3319     if( pFrom->pTab!=0 ){
3320       /* This statement has already been prepared.  There is no need
3321       ** to go further. */
3322       assert( i==0 );
3323       return WRC_Prune;
3324     }
3325     if( pFrom->zName==0 ){
3326 #ifndef SQLITE_OMIT_SUBQUERY
3327       Select *pSel = pFrom->pSelect;
3328       /* A sub-query in the FROM clause of a SELECT */
3329       assert( pSel!=0 );
3330       assert( pFrom->pTab==0 );
3331       sqlite3WalkSelect(pWalker, pSel);
3332       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3333       if( pTab==0 ) return WRC_Abort;
3334       pTab->nRef = 1;
3335       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3336       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3337       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3338       pTab->iPKey = -1;
3339       pTab->nRowEst = 1000000;
3340       pTab->tabFlags |= TF_Ephemeral;
3341 #endif
3342     }else{
3343       /* An ordinary table or view name in the FROM clause */
3344       assert( pFrom->pTab==0 );
3345       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
3346       if( pTab==0 ) return WRC_Abort;
3347       if( pTab->nRef==0xffff ){
3348         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
3349            pTab->zName);
3350         pFrom->pTab = 0;
3351         return WRC_Abort;
3352       }
3353       pTab->nRef++;
3354 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3355       if( pTab->pSelect || IsVirtual(pTab) ){
3356         /* We reach here if the named table is a really a view */
3357         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3358         assert( pFrom->pSelect==0 );
3359         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3360         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3361       }
3362 #endif
3363     }
3364 
3365     /* Locate the index named by the INDEXED BY clause, if any. */
3366     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3367       return WRC_Abort;
3368     }
3369   }
3370 
3371   /* Process NATURAL keywords, and ON and USING clauses of joins.
3372   */
3373   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3374     return WRC_Abort;
3375   }
3376 
3377   /* For every "*" that occurs in the column list, insert the names of
3378   ** all columns in all tables.  And for every TABLE.* insert the names
3379   ** of all columns in TABLE.  The parser inserted a special expression
3380   ** with the TK_ALL operator for each "*" that it found in the column list.
3381   ** The following code just has to locate the TK_ALL expressions and expand
3382   ** each one to the list of all columns in all tables.
3383   **
3384   ** The first loop just checks to see if there are any "*" operators
3385   ** that need expanding.
3386   */
3387   for(k=0; k<pEList->nExpr; k++){
3388     pE = pEList->a[k].pExpr;
3389     if( pE->op==TK_ALL ) break;
3390     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3391     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3392     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3393   }
3394   if( k<pEList->nExpr ){
3395     /*
3396     ** If we get here it means the result set contains one or more "*"
3397     ** operators that need to be expanded.  Loop through each expression
3398     ** in the result set and expand them one by one.
3399     */
3400     struct ExprList_item *a = pEList->a;
3401     ExprList *pNew = 0;
3402     int flags = pParse->db->flags;
3403     int longNames = (flags & SQLITE_FullColNames)!=0
3404                       && (flags & SQLITE_ShortColNames)==0;
3405 
3406     /* When processing FROM-clause subqueries, it is always the case
3407     ** that full_column_names=OFF and short_column_names=ON.  The
3408     ** sqlite3ResultSetOfSelect() routine makes it so. */
3409     assert( (p->selFlags & SF_NestedFrom)==0
3410           || ((flags & SQLITE_FullColNames)==0 &&
3411               (flags & SQLITE_ShortColNames)!=0) );
3412 
3413     for(k=0; k<pEList->nExpr; k++){
3414       pE = a[k].pExpr;
3415       pRight = pE->pRight;
3416       assert( pE->op!=TK_DOT || pRight!=0 );
3417       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
3418         /* This particular expression does not need to be expanded.
3419         */
3420         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3421         if( pNew ){
3422           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3423           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3424           a[k].zName = 0;
3425           a[k].zSpan = 0;
3426         }
3427         a[k].pExpr = 0;
3428       }else{
3429         /* This expression is a "*" or a "TABLE.*" and needs to be
3430         ** expanded. */
3431         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3432         char *zTName = 0;       /* text of name of TABLE */
3433         if( pE->op==TK_DOT ){
3434           assert( pE->pLeft!=0 );
3435           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3436           zTName = pE->pLeft->u.zToken;
3437         }
3438         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3439           Table *pTab = pFrom->pTab;
3440           Select *pSub = pFrom->pSelect;
3441           char *zTabName = pFrom->zAlias;
3442           const char *zSchemaName = 0;
3443           int iDb;
3444           if( zTabName==0 ){
3445             zTabName = pTab->zName;
3446           }
3447           if( db->mallocFailed ) break;
3448           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
3449             pSub = 0;
3450             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3451               continue;
3452             }
3453             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3454             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
3455           }
3456           for(j=0; j<pTab->nCol; j++){
3457             char *zName = pTab->aCol[j].zName;
3458             char *zColname;  /* The computed column name */
3459             char *zToFree;   /* Malloced string that needs to be freed */
3460             Token sColname;  /* Computed column name as a token */
3461 
3462             assert( zName );
3463             if( zTName && pSub
3464              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
3465             ){
3466               continue;
3467             }
3468 
3469             /* If a column is marked as 'hidden' (currently only possible
3470             ** for virtual tables), do not include it in the expanded
3471             ** result-set list.
3472             */
3473             if( IsHiddenColumn(&pTab->aCol[j]) ){
3474               assert(IsVirtual(pTab));
3475               continue;
3476             }
3477             tableSeen = 1;
3478 
3479             if( i>0 && zTName==0 ){
3480               if( (pFrom->jointype & JT_NATURAL)!=0
3481                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3482               ){
3483                 /* In a NATURAL join, omit the join columns from the
3484                 ** table to the right of the join */
3485                 continue;
3486               }
3487               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3488                 /* In a join with a USING clause, omit columns in the
3489                 ** using clause from the table on the right. */
3490                 continue;
3491               }
3492             }
3493             pRight = sqlite3Expr(db, TK_ID, zName);
3494             zColname = zName;
3495             zToFree = 0;
3496             if( longNames || pTabList->nSrc>1 ){
3497               Expr *pLeft;
3498               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3499               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3500               if( zSchemaName ){
3501                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
3502                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
3503               }
3504               if( longNames ){
3505                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3506                 zToFree = zColname;
3507               }
3508             }else{
3509               pExpr = pRight;
3510             }
3511             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3512             sColname.z = zColname;
3513             sColname.n = sqlite3Strlen30(zColname);
3514             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3515             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
3516               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
3517               if( pSub ){
3518                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
3519                 testcase( pX->zSpan==0 );
3520               }else{
3521                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
3522                                            zSchemaName, zTabName, zColname);
3523                 testcase( pX->zSpan==0 );
3524               }
3525               pX->bSpanIsTab = 1;
3526             }
3527             sqlite3DbFree(db, zToFree);
3528           }
3529         }
3530         if( !tableSeen ){
3531           if( zTName ){
3532             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3533           }else{
3534             sqlite3ErrorMsg(pParse, "no tables specified");
3535           }
3536         }
3537       }
3538     }
3539     sqlite3ExprListDelete(db, pEList);
3540     p->pEList = pNew;
3541   }
3542 #if SQLITE_MAX_COLUMN
3543   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3544     sqlite3ErrorMsg(pParse, "too many columns in result set");
3545   }
3546 #endif
3547   return WRC_Continue;
3548 }
3549 
3550 /*
3551 ** No-op routine for the parse-tree walker.
3552 **
3553 ** When this routine is the Walker.xExprCallback then expression trees
3554 ** are walked without any actions being taken at each node.  Presumably,
3555 ** when this routine is used for Walker.xExprCallback then
3556 ** Walker.xSelectCallback is set to do something useful for every
3557 ** subquery in the parser tree.
3558 */
3559 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3560   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3561   return WRC_Continue;
3562 }
3563 
3564 /*
3565 ** This routine "expands" a SELECT statement and all of its subqueries.
3566 ** For additional information on what it means to "expand" a SELECT
3567 ** statement, see the comment on the selectExpand worker callback above.
3568 **
3569 ** Expanding a SELECT statement is the first step in processing a
3570 ** SELECT statement.  The SELECT statement must be expanded before
3571 ** name resolution is performed.
3572 **
3573 ** If anything goes wrong, an error message is written into pParse.
3574 ** The calling function can detect the problem by looking at pParse->nErr
3575 ** and/or pParse->db->mallocFailed.
3576 */
3577 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3578   Walker w;
3579   w.xSelectCallback = selectExpander;
3580   w.xExprCallback = exprWalkNoop;
3581   w.pParse = pParse;
3582   sqlite3WalkSelect(&w, pSelect);
3583 }
3584 
3585 
3586 #ifndef SQLITE_OMIT_SUBQUERY
3587 /*
3588 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3589 ** interface.
3590 **
3591 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3592 ** information to the Table structure that represents the result set
3593 ** of that subquery.
3594 **
3595 ** The Table structure that represents the result set was constructed
3596 ** by selectExpander() but the type and collation information was omitted
3597 ** at that point because identifiers had not yet been resolved.  This
3598 ** routine is called after identifier resolution.
3599 */
3600 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3601   Parse *pParse;
3602   int i;
3603   SrcList *pTabList;
3604   struct SrcList_item *pFrom;
3605 
3606   assert( p->selFlags & SF_Resolved );
3607   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3608     p->selFlags |= SF_HasTypeInfo;
3609     pParse = pWalker->pParse;
3610     pTabList = p->pSrc;
3611     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3612       Table *pTab = pFrom->pTab;
3613       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3614         /* A sub-query in the FROM clause of a SELECT */
3615         Select *pSel = pFrom->pSelect;
3616         assert( pSel );
3617         while( pSel->pPrior ) pSel = pSel->pPrior;
3618         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3619       }
3620     }
3621   }
3622   return WRC_Continue;
3623 }
3624 #endif
3625 
3626 
3627 /*
3628 ** This routine adds datatype and collating sequence information to
3629 ** the Table structures of all FROM-clause subqueries in a
3630 ** SELECT statement.
3631 **
3632 ** Use this routine after name resolution.
3633 */
3634 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3635 #ifndef SQLITE_OMIT_SUBQUERY
3636   Walker w;
3637   w.xSelectCallback = selectAddSubqueryTypeInfo;
3638   w.xExprCallback = exprWalkNoop;
3639   w.pParse = pParse;
3640   sqlite3WalkSelect(&w, pSelect);
3641 #endif
3642 }
3643 
3644 
3645 /*
3646 ** This routine sets up a SELECT statement for processing.  The
3647 ** following is accomplished:
3648 **
3649 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3650 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3651 **     *  ON and USING clauses are shifted into WHERE statements
3652 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3653 **     *  Identifiers in expression are matched to tables.
3654 **
3655 ** This routine acts recursively on all subqueries within the SELECT.
3656 */
3657 void sqlite3SelectPrep(
3658   Parse *pParse,         /* The parser context */
3659   Select *p,             /* The SELECT statement being coded. */
3660   NameContext *pOuterNC  /* Name context for container */
3661 ){
3662   sqlite3 *db;
3663   if( NEVER(p==0) ) return;
3664   db = pParse->db;
3665   if( db->mallocFailed ) return;
3666   if( p->selFlags & SF_HasTypeInfo ) return;
3667   sqlite3SelectExpand(pParse, p);
3668   if( pParse->nErr || db->mallocFailed ) return;
3669   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3670   if( pParse->nErr || db->mallocFailed ) return;
3671   sqlite3SelectAddTypeInfo(pParse, p);
3672 }
3673 
3674 /*
3675 ** Reset the aggregate accumulator.
3676 **
3677 ** The aggregate accumulator is a set of memory cells that hold
3678 ** intermediate results while calculating an aggregate.  This
3679 ** routine generates code that stores NULLs in all of those memory
3680 ** cells.
3681 */
3682 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3683   Vdbe *v = pParse->pVdbe;
3684   int i;
3685   struct AggInfo_func *pFunc;
3686   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3687     return;
3688   }
3689   for(i=0; i<pAggInfo->nColumn; i++){
3690     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3691   }
3692   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3693     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3694     if( pFunc->iDistinct>=0 ){
3695       Expr *pE = pFunc->pExpr;
3696       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3697       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3698         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3699            "argument");
3700         pFunc->iDistinct = -1;
3701       }else{
3702         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3703         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3704                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3705       }
3706     }
3707   }
3708 }
3709 
3710 /*
3711 ** Invoke the OP_AggFinalize opcode for every aggregate function
3712 ** in the AggInfo structure.
3713 */
3714 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3715   Vdbe *v = pParse->pVdbe;
3716   int i;
3717   struct AggInfo_func *pF;
3718   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3719     ExprList *pList = pF->pExpr->x.pList;
3720     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3721     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3722                       (void*)pF->pFunc, P4_FUNCDEF);
3723   }
3724 }
3725 
3726 /*
3727 ** Update the accumulator memory cells for an aggregate based on
3728 ** the current cursor position.
3729 */
3730 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3731   Vdbe *v = pParse->pVdbe;
3732   int i;
3733   int regHit = 0;
3734   int addrHitTest = 0;
3735   struct AggInfo_func *pF;
3736   struct AggInfo_col *pC;
3737 
3738   pAggInfo->directMode = 1;
3739   sqlite3ExprCacheClear(pParse);
3740   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3741     int nArg;
3742     int addrNext = 0;
3743     int regAgg;
3744     ExprList *pList = pF->pExpr->x.pList;
3745     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3746     if( pList ){
3747       nArg = pList->nExpr;
3748       regAgg = sqlite3GetTempRange(pParse, nArg);
3749       sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
3750     }else{
3751       nArg = 0;
3752       regAgg = 0;
3753     }
3754     if( pF->iDistinct>=0 ){
3755       addrNext = sqlite3VdbeMakeLabel(v);
3756       assert( nArg==1 );
3757       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3758     }
3759     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3760       CollSeq *pColl = 0;
3761       struct ExprList_item *pItem;
3762       int j;
3763       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3764       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3765         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3766       }
3767       if( !pColl ){
3768         pColl = pParse->db->pDfltColl;
3769       }
3770       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
3771       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
3772     }
3773     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3774                       (void*)pF->pFunc, P4_FUNCDEF);
3775     sqlite3VdbeChangeP5(v, (u8)nArg);
3776     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3777     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3778     if( addrNext ){
3779       sqlite3VdbeResolveLabel(v, addrNext);
3780       sqlite3ExprCacheClear(pParse);
3781     }
3782   }
3783 
3784   /* Before populating the accumulator registers, clear the column cache.
3785   ** Otherwise, if any of the required column values are already present
3786   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3787   ** to pC->iMem. But by the time the value is used, the original register
3788   ** may have been used, invalidating the underlying buffer holding the
3789   ** text or blob value. See ticket [883034dcb5].
3790   **
3791   ** Another solution would be to change the OP_SCopy used to copy cached
3792   ** values to an OP_Copy.
3793   */
3794   if( regHit ){
3795     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit);
3796   }
3797   sqlite3ExprCacheClear(pParse);
3798   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3799     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3800   }
3801   pAggInfo->directMode = 0;
3802   sqlite3ExprCacheClear(pParse);
3803   if( addrHitTest ){
3804     sqlite3VdbeJumpHere(v, addrHitTest);
3805   }
3806 }
3807 
3808 /*
3809 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3810 ** count(*) query ("SELECT count(*) FROM pTab").
3811 */
3812 #ifndef SQLITE_OMIT_EXPLAIN
3813 static void explainSimpleCount(
3814   Parse *pParse,                  /* Parse context */
3815   Table *pTab,                    /* Table being queried */
3816   Index *pIdx                     /* Index used to optimize scan, or NULL */
3817 ){
3818   if( pParse->explain==2 ){
3819     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
3820         pTab->zName,
3821         pIdx ? "USING COVERING INDEX " : "",
3822         pIdx ? pIdx->zName : "",
3823         pTab->nRowEst
3824     );
3825     sqlite3VdbeAddOp4(
3826         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3827     );
3828   }
3829 }
3830 #else
3831 # define explainSimpleCount(a,b,c)
3832 #endif
3833 
3834 /*
3835 ** Generate code for the SELECT statement given in the p argument.
3836 **
3837 ** The results are distributed in various ways depending on the
3838 ** contents of the SelectDest structure pointed to by argument pDest
3839 ** as follows:
3840 **
3841 **     pDest->eDest    Result
3842 **     ------------    -------------------------------------------
3843 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3844 **                     opcode) for each row in the result set.
3845 **
3846 **     SRT_Mem         Only valid if the result is a single column.
3847 **                     Store the first column of the first result row
3848 **                     in register pDest->iSDParm then abandon the rest
3849 **                     of the query.  This destination implies "LIMIT 1".
3850 **
3851 **     SRT_Set         The result must be a single column.  Store each
3852 **                     row of result as the key in table pDest->iSDParm.
3853 **                     Apply the affinity pDest->affSdst before storing
3854 **                     results.  Used to implement "IN (SELECT ...)".
3855 **
3856 **     SRT_Union       Store results as a key in a temporary table
3857 **                     identified by pDest->iSDParm.
3858 **
3859 **     SRT_Except      Remove results from the temporary table pDest->iSDParm.
3860 **
3861 **     SRT_Table       Store results in temporary table pDest->iSDParm.
3862 **                     This is like SRT_EphemTab except that the table
3863 **                     is assumed to already be open.
3864 **
3865 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
3866 **                     the result there. The cursor is left open after
3867 **                     returning.  This is like SRT_Table except that
3868 **                     this destination uses OP_OpenEphemeral to create
3869 **                     the table first.
3870 **
3871 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3872 **                     results each time it is invoked.  The entry point
3873 **                     of the co-routine is stored in register pDest->iSDParm.
3874 **
3875 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
3876 **                     set is not empty.
3877 **
3878 **     SRT_Discard     Throw the results away.  This is used by SELECT
3879 **                     statements within triggers whose only purpose is
3880 **                     the side-effects of functions.
3881 **
3882 ** This routine returns the number of errors.  If any errors are
3883 ** encountered, then an appropriate error message is left in
3884 ** pParse->zErrMsg.
3885 **
3886 ** This routine does NOT free the Select structure passed in.  The
3887 ** calling function needs to do that.
3888 */
3889 int sqlite3Select(
3890   Parse *pParse,         /* The parser context */
3891   Select *p,             /* The SELECT statement being coded. */
3892   SelectDest *pDest      /* What to do with the query results */
3893 ){
3894   int i, j;              /* Loop counters */
3895   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3896   Vdbe *v;               /* The virtual machine under construction */
3897   int isAgg;             /* True for select lists like "count(*)" */
3898   ExprList *pEList;      /* List of columns to extract. */
3899   SrcList *pTabList;     /* List of tables to select from */
3900   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3901   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3902   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3903   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3904   int rc = 1;            /* Value to return from this function */
3905   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3906   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
3907   AggInfo sAggInfo;      /* Information used by aggregate queries */
3908   int iEnd;              /* Address of the end of the query */
3909   sqlite3 *db;           /* The database connection */
3910 
3911 #ifndef SQLITE_OMIT_EXPLAIN
3912   int iRestoreSelectId = pParse->iSelectId;
3913   pParse->iSelectId = pParse->iNextSelectId++;
3914 #endif
3915 
3916   db = pParse->db;
3917   if( p==0 || db->mallocFailed || pParse->nErr ){
3918     return 1;
3919   }
3920   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3921   memset(&sAggInfo, 0, sizeof(sAggInfo));
3922 
3923   if( IgnorableOrderby(pDest) ){
3924     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3925            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3926     /* If ORDER BY makes no difference in the output then neither does
3927     ** DISTINCT so it can be removed too. */
3928     sqlite3ExprListDelete(db, p->pOrderBy);
3929     p->pOrderBy = 0;
3930     p->selFlags &= ~SF_Distinct;
3931   }
3932   sqlite3SelectPrep(pParse, p, 0);
3933   pOrderBy = p->pOrderBy;
3934   pTabList = p->pSrc;
3935   pEList = p->pEList;
3936   if( pParse->nErr || db->mallocFailed ){
3937     goto select_end;
3938   }
3939   isAgg = (p->selFlags & SF_Aggregate)!=0;
3940   assert( pEList!=0 );
3941 
3942   /* Begin generating code.
3943   */
3944   v = sqlite3GetVdbe(pParse);
3945   if( v==0 ) goto select_end;
3946 
3947   /* If writing to memory or generating a set
3948   ** only a single column may be output.
3949   */
3950 #ifndef SQLITE_OMIT_SUBQUERY
3951   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3952     goto select_end;
3953   }
3954 #endif
3955 
3956   /* Generate code for all sub-queries in the FROM clause
3957   */
3958 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3959   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3960     struct SrcList_item *pItem = &pTabList->a[i];
3961     SelectDest dest;
3962     Select *pSub = pItem->pSelect;
3963     int isAggSub;
3964 
3965     if( pSub==0 ) continue;
3966 
3967     /* Sometimes the code for a subquery will be generated more than
3968     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
3969     ** for example.  In that case, do not regenerate the code to manifest
3970     ** a view or the co-routine to implement a view.  The first instance
3971     ** is sufficient, though the subroutine to manifest the view does need
3972     ** to be invoked again. */
3973     if( pItem->addrFillSub ){
3974       if( pItem->viaCoroutine==0 ){
3975         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
3976       }
3977       continue;
3978     }
3979 
3980     /* Increment Parse.nHeight by the height of the largest expression
3981     ** tree refered to by this, the parent select. The child select
3982     ** may contain expression trees of at most
3983     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3984     ** more conservative than necessary, but much easier than enforcing
3985     ** an exact limit.
3986     */
3987     pParse->nHeight += sqlite3SelectExprHeight(p);
3988 
3989     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3990     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3991       /* This subquery can be absorbed into its parent. */
3992       if( isAggSub ){
3993         isAgg = 1;
3994         p->selFlags |= SF_Aggregate;
3995       }
3996       i = -1;
3997     }else if( pTabList->nSrc==1 && (p->selFlags & SF_Materialize)==0
3998       && OptimizationEnabled(db, SQLITE_SubqCoroutine)
3999     ){
4000       /* Implement a co-routine that will return a single row of the result
4001       ** set on each invocation.
4002       */
4003       int addrTop;
4004       int addrEof;
4005       pItem->regReturn = ++pParse->nMem;
4006       addrEof = ++pParse->nMem;
4007       /* Before coding the OP_Goto to jump to the start of the main routine,
4008       ** ensure that the jump to the verify-schema routine has already
4009       ** been coded. Otherwise, the verify-schema would likely be coded as
4010       ** part of the co-routine. If the main routine then accessed the
4011       ** database before invoking the co-routine for the first time (for
4012       ** example to initialize a LIMIT register from a sub-select), it would
4013       ** be doing so without having verified the schema version and obtained
4014       ** the required db locks. See ticket d6b36be38.  */
4015       sqlite3CodeVerifySchema(pParse, -1);
4016       sqlite3VdbeAddOp0(v, OP_Goto);
4017       addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor);
4018       sqlite3VdbeChangeP5(v, 1);
4019       VdbeComment((v, "coroutine for %s", pItem->pTab->zName));
4020       pItem->addrFillSub = addrTop;
4021       sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof);
4022       sqlite3VdbeChangeP5(v, 1);
4023       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4024       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4025       sqlite3Select(pParse, pSub, &dest);
4026       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
4027       pItem->viaCoroutine = 1;
4028       sqlite3VdbeChangeP2(v, addrTop, dest.iSdst);
4029       sqlite3VdbeChangeP3(v, addrTop, dest.nSdst);
4030       sqlite3VdbeAddOp2(v, OP_Integer, 1, addrEof);
4031       sqlite3VdbeAddOp1(v, OP_Yield, pItem->regReturn);
4032       VdbeComment((v, "end %s", pItem->pTab->zName));
4033       sqlite3VdbeJumpHere(v, addrTop-1);
4034       sqlite3ClearTempRegCache(pParse);
4035     }else{
4036       /* Generate a subroutine that will fill an ephemeral table with
4037       ** the content of this subquery.  pItem->addrFillSub will point
4038       ** to the address of the generated subroutine.  pItem->regReturn
4039       ** is a register allocated to hold the subroutine return address
4040       */
4041       int topAddr;
4042       int onceAddr = 0;
4043       int retAddr;
4044       assert( pItem->addrFillSub==0 );
4045       pItem->regReturn = ++pParse->nMem;
4046       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4047       pItem->addrFillSub = topAddr+1;
4048       VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
4049       if( pItem->isCorrelated==0 ){
4050         /* If the subquery is no correlated and if we are not inside of
4051         ** a trigger, then we only need to compute the value of the subquery
4052         ** once. */
4053         onceAddr = sqlite3CodeOnce(pParse);
4054       }
4055       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4056       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4057       sqlite3Select(pParse, pSub, &dest);
4058       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
4059       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4060       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4061       VdbeComment((v, "end %s", pItem->pTab->zName));
4062       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4063       sqlite3ClearTempRegCache(pParse);
4064     }
4065     if( /*pParse->nErr ||*/ db->mallocFailed ){
4066       goto select_end;
4067     }
4068     pParse->nHeight -= sqlite3SelectExprHeight(p);
4069     pTabList = p->pSrc;
4070     if( !IgnorableOrderby(pDest) ){
4071       pOrderBy = p->pOrderBy;
4072     }
4073   }
4074   pEList = p->pEList;
4075 #endif
4076   pWhere = p->pWhere;
4077   pGroupBy = p->pGroupBy;
4078   pHaving = p->pHaving;
4079   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4080 
4081 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4082   /* If there is are a sequence of queries, do the earlier ones first.
4083   */
4084   if( p->pPrior ){
4085     if( p->pRightmost==0 ){
4086       Select *pLoop, *pRight = 0;
4087       int cnt = 0;
4088       int mxSelect;
4089       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
4090         pLoop->pRightmost = p;
4091         pLoop->pNext = pRight;
4092         pRight = pLoop;
4093       }
4094       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
4095       if( mxSelect && cnt>mxSelect ){
4096         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
4097         goto select_end;
4098       }
4099     }
4100     rc = multiSelect(pParse, p, pDest);
4101     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4102     return rc;
4103   }
4104 #endif
4105 
4106   /* If there is both a GROUP BY and an ORDER BY clause and they are
4107   ** identical, then disable the ORDER BY clause since the GROUP BY
4108   ** will cause elements to come out in the correct order.  This is
4109   ** an optimization - the correct answer should result regardless.
4110   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
4111   ** to disable this optimization for testing purposes.
4112   */
4113   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
4114          && OptimizationEnabled(db, SQLITE_GroupByOrder) ){
4115     pOrderBy = 0;
4116   }
4117 
4118   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4119   ** if the select-list is the same as the ORDER BY list, then this query
4120   ** can be rewritten as a GROUP BY. In other words, this:
4121   **
4122   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4123   **
4124   ** is transformed to:
4125   **
4126   **     SELECT xyz FROM ... GROUP BY xyz
4127   **
4128   ** The second form is preferred as a single index (or temp-table) may be
4129   ** used for both the ORDER BY and DISTINCT processing. As originally
4130   ** written the query must use a temp-table for at least one of the ORDER
4131   ** BY and DISTINCT, and an index or separate temp-table for the other.
4132   */
4133   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4134    && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
4135   ){
4136     p->selFlags &= ~SF_Distinct;
4137     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4138     pGroupBy = p->pGroupBy;
4139     pOrderBy = 0;
4140     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4141     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4142     ** original setting of the SF_Distinct flag, not the current setting */
4143     assert( sDistinct.isTnct );
4144   }
4145 
4146   /* If there is an ORDER BY clause, then this sorting
4147   ** index might end up being unused if the data can be
4148   ** extracted in pre-sorted order.  If that is the case, then the
4149   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4150   ** we figure out that the sorting index is not needed.  The addrSortIndex
4151   ** variable is used to facilitate that change.
4152   */
4153   if( pOrderBy ){
4154     KeyInfo *pKeyInfo;
4155     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
4156     pOrderBy->iECursor = pParse->nTab++;
4157     p->addrOpenEphm[2] = addrSortIndex =
4158       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4159                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
4160                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4161   }else{
4162     addrSortIndex = -1;
4163   }
4164 
4165   /* If the output is destined for a temporary table, open that table.
4166   */
4167   if( pDest->eDest==SRT_EphemTab ){
4168     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4169   }
4170 
4171   /* Set the limiter.
4172   */
4173   iEnd = sqlite3VdbeMakeLabel(v);
4174   p->nSelectRow = (double)LARGEST_INT64;
4175   computeLimitRegisters(pParse, p, iEnd);
4176   if( p->iLimit==0 && addrSortIndex>=0 ){
4177     sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
4178     p->selFlags |= SF_UseSorter;
4179   }
4180 
4181   /* Open a virtual index to use for the distinct set.
4182   */
4183   if( p->selFlags & SF_Distinct ){
4184     sDistinct.tabTnct = pParse->nTab++;
4185     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4186                                 sDistinct.tabTnct, 0, 0,
4187                                 (char*)keyInfoFromExprList(pParse, p->pEList),
4188                                 P4_KEYINFO_HANDOFF);
4189     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4190     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4191   }else{
4192     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4193   }
4194 
4195   if( !isAgg && pGroupBy==0 ){
4196     /* No aggregate functions and no GROUP BY clause */
4197     ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0);
4198 
4199     /* Begin the database scan. */
4200     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0);
4201     if( pWInfo==0 ) goto select_end;
4202     if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
4203     if( pWInfo->eDistinct ) sDistinct.eTnctType = pWInfo->eDistinct;
4204     if( pOrderBy && pWInfo->nOBSat==pOrderBy->nExpr ) pOrderBy = 0;
4205 
4206     /* If sorting index that was created by a prior OP_OpenEphemeral
4207     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4208     ** into an OP_Noop.
4209     */
4210     if( addrSortIndex>=0 && pOrderBy==0 ){
4211       sqlite3VdbeChangeToNoop(v, addrSortIndex);
4212       p->addrOpenEphm[2] = -1;
4213     }
4214 
4215     /* Use the standard inner loop. */
4216     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest,
4217                     pWInfo->iContinue, pWInfo->iBreak);
4218 
4219     /* End the database scan loop.
4220     */
4221     sqlite3WhereEnd(pWInfo);
4222   }else{
4223     /* This case when there exist aggregate functions or a GROUP BY clause
4224     ** or both */
4225     NameContext sNC;    /* Name context for processing aggregate information */
4226     int iAMem;          /* First Mem address for storing current GROUP BY */
4227     int iBMem;          /* First Mem address for previous GROUP BY */
4228     int iUseFlag;       /* Mem address holding flag indicating that at least
4229                         ** one row of the input to the aggregator has been
4230                         ** processed */
4231     int iAbortFlag;     /* Mem address which causes query abort if positive */
4232     int groupBySort;    /* Rows come from source in GROUP BY order */
4233     int addrEnd;        /* End of processing for this SELECT */
4234     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4235     int sortOut = 0;    /* Output register from the sorter */
4236 
4237     /* Remove any and all aliases between the result set and the
4238     ** GROUP BY clause.
4239     */
4240     if( pGroupBy ){
4241       int k;                        /* Loop counter */
4242       struct ExprList_item *pItem;  /* For looping over expression in a list */
4243 
4244       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4245         pItem->iAlias = 0;
4246       }
4247       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4248         pItem->iAlias = 0;
4249       }
4250       if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
4251     }else{
4252       p->nSelectRow = (double)1;
4253     }
4254 
4255 
4256     /* Create a label to jump to when we want to abort the query */
4257     addrEnd = sqlite3VdbeMakeLabel(v);
4258 
4259     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4260     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4261     ** SELECT statement.
4262     */
4263     memset(&sNC, 0, sizeof(sNC));
4264     sNC.pParse = pParse;
4265     sNC.pSrcList = pTabList;
4266     sNC.pAggInfo = &sAggInfo;
4267     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4268     sAggInfo.pGroupBy = pGroupBy;
4269     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4270     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
4271     if( pHaving ){
4272       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4273     }
4274     sAggInfo.nAccumulator = sAggInfo.nColumn;
4275     for(i=0; i<sAggInfo.nFunc; i++){
4276       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4277       sNC.ncFlags |= NC_InAggFunc;
4278       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4279       sNC.ncFlags &= ~NC_InAggFunc;
4280     }
4281     if( db->mallocFailed ) goto select_end;
4282 
4283     /* Processing for aggregates with GROUP BY is very different and
4284     ** much more complex than aggregates without a GROUP BY.
4285     */
4286     if( pGroupBy ){
4287       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4288       int j1;             /* A-vs-B comparision jump */
4289       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4290       int regOutputRow;   /* Return address register for output subroutine */
4291       int addrSetAbort;   /* Set the abort flag and return */
4292       int addrTopOfLoop;  /* Top of the input loop */
4293       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4294       int addrReset;      /* Subroutine for resetting the accumulator */
4295       int regReset;       /* Return address register for reset subroutine */
4296 
4297       /* If there is a GROUP BY clause we might need a sorting index to
4298       ** implement it.  Allocate that sorting index now.  If it turns out
4299       ** that we do not need it after all, the OP_SorterOpen instruction
4300       ** will be converted into a Noop.
4301       */
4302       sAggInfo.sortingIdx = pParse->nTab++;
4303       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
4304       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4305           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4306           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4307 
4308       /* Initialize memory locations used by GROUP BY aggregate processing
4309       */
4310       iUseFlag = ++pParse->nMem;
4311       iAbortFlag = ++pParse->nMem;
4312       regOutputRow = ++pParse->nMem;
4313       addrOutputRow = sqlite3VdbeMakeLabel(v);
4314       regReset = ++pParse->nMem;
4315       addrReset = sqlite3VdbeMakeLabel(v);
4316       iAMem = pParse->nMem + 1;
4317       pParse->nMem += pGroupBy->nExpr;
4318       iBMem = pParse->nMem + 1;
4319       pParse->nMem += pGroupBy->nExpr;
4320       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4321       VdbeComment((v, "clear abort flag"));
4322       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4323       VdbeComment((v, "indicate accumulator empty"));
4324       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4325 
4326       /* Begin a loop that will extract all source rows in GROUP BY order.
4327       ** This might involve two separate loops with an OP_Sort in between, or
4328       ** it might be a single loop that uses an index to extract information
4329       ** in the right order to begin with.
4330       */
4331       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4332       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 0, 0);
4333       if( pWInfo==0 ) goto select_end;
4334       if( pWInfo->nOBSat==pGroupBy->nExpr ){
4335         /* The optimizer is able to deliver rows in group by order so
4336         ** we do not have to sort.  The OP_OpenEphemeral table will be
4337         ** cancelled later because we still need to use the pKeyInfo
4338         */
4339         groupBySort = 0;
4340       }else{
4341         /* Rows are coming out in undetermined order.  We have to push
4342         ** each row into a sorting index, terminate the first loop,
4343         ** then loop over the sorting index in order to get the output
4344         ** in sorted order
4345         */
4346         int regBase;
4347         int regRecord;
4348         int nCol;
4349         int nGroupBy;
4350 
4351         explainTempTable(pParse,
4352             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
4353                     "DISTINCT" : "GROUP BY");
4354 
4355         groupBySort = 1;
4356         nGroupBy = pGroupBy->nExpr;
4357         nCol = nGroupBy + 1;
4358         j = nGroupBy+1;
4359         for(i=0; i<sAggInfo.nColumn; i++){
4360           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4361             nCol++;
4362             j++;
4363           }
4364         }
4365         regBase = sqlite3GetTempRange(pParse, nCol);
4366         sqlite3ExprCacheClear(pParse);
4367         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4368         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4369         j = nGroupBy+1;
4370         for(i=0; i<sAggInfo.nColumn; i++){
4371           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4372           if( pCol->iSorterColumn>=j ){
4373             int r1 = j + regBase;
4374             int r2;
4375 
4376             r2 = sqlite3ExprCodeGetColumn(pParse,
4377                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
4378             if( r1!=r2 ){
4379               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4380             }
4381             j++;
4382           }
4383         }
4384         regRecord = sqlite3GetTempReg(pParse);
4385         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4386         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
4387         sqlite3ReleaseTempReg(pParse, regRecord);
4388         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4389         sqlite3WhereEnd(pWInfo);
4390         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
4391         sortOut = sqlite3GetTempReg(pParse);
4392         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
4393         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
4394         VdbeComment((v, "GROUP BY sort"));
4395         sAggInfo.useSortingIdx = 1;
4396         sqlite3ExprCacheClear(pParse);
4397       }
4398 
4399       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4400       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4401       ** Then compare the current GROUP BY terms against the GROUP BY terms
4402       ** from the previous row currently stored in a0, a1, a2...
4403       */
4404       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4405       sqlite3ExprCacheClear(pParse);
4406       if( groupBySort ){
4407         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
4408       }
4409       for(j=0; j<pGroupBy->nExpr; j++){
4410         if( groupBySort ){
4411           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
4412           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
4413         }else{
4414           sAggInfo.directMode = 1;
4415           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4416         }
4417       }
4418       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4419                           (char*)pKeyInfo, P4_KEYINFO);
4420       j1 = sqlite3VdbeCurrentAddr(v);
4421       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4422 
4423       /* Generate code that runs whenever the GROUP BY changes.
4424       ** Changes in the GROUP BY are detected by the previous code
4425       ** block.  If there were no changes, this block is skipped.
4426       **
4427       ** This code copies current group by terms in b0,b1,b2,...
4428       ** over to a0,a1,a2.  It then calls the output subroutine
4429       ** and resets the aggregate accumulator registers in preparation
4430       ** for the next GROUP BY batch.
4431       */
4432       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4433       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4434       VdbeComment((v, "output one row"));
4435       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4436       VdbeComment((v, "check abort flag"));
4437       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4438       VdbeComment((v, "reset accumulator"));
4439 
4440       /* Update the aggregate accumulators based on the content of
4441       ** the current row
4442       */
4443       sqlite3VdbeJumpHere(v, j1);
4444       updateAccumulator(pParse, &sAggInfo);
4445       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4446       VdbeComment((v, "indicate data in accumulator"));
4447 
4448       /* End of the loop
4449       */
4450       if( groupBySort ){
4451         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
4452       }else{
4453         sqlite3WhereEnd(pWInfo);
4454         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
4455       }
4456 
4457       /* Output the final row of result
4458       */
4459       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4460       VdbeComment((v, "output final row"));
4461 
4462       /* Jump over the subroutines
4463       */
4464       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4465 
4466       /* Generate a subroutine that outputs a single row of the result
4467       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4468       ** is less than or equal to zero, the subroutine is a no-op.  If
4469       ** the processing calls for the query to abort, this subroutine
4470       ** increments the iAbortFlag memory location before returning in
4471       ** order to signal the caller to abort.
4472       */
4473       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4474       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4475       VdbeComment((v, "set abort flag"));
4476       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4477       sqlite3VdbeResolveLabel(v, addrOutputRow);
4478       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4479       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4480       VdbeComment((v, "Groupby result generator entry point"));
4481       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4482       finalizeAggFunctions(pParse, &sAggInfo);
4483       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4484       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4485                       &sDistinct, pDest,
4486                       addrOutputRow+1, addrSetAbort);
4487       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4488       VdbeComment((v, "end groupby result generator"));
4489 
4490       /* Generate a subroutine that will reset the group-by accumulator
4491       */
4492       sqlite3VdbeResolveLabel(v, addrReset);
4493       resetAccumulator(pParse, &sAggInfo);
4494       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4495 
4496     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4497     else {
4498       ExprList *pDel = 0;
4499 #ifndef SQLITE_OMIT_BTREECOUNT
4500       Table *pTab;
4501       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4502         /* If isSimpleCount() returns a pointer to a Table structure, then
4503         ** the SQL statement is of the form:
4504         **
4505         **   SELECT count(*) FROM <tbl>
4506         **
4507         ** where the Table structure returned represents table <tbl>.
4508         **
4509         ** This statement is so common that it is optimized specially. The
4510         ** OP_Count instruction is executed either on the intkey table that
4511         ** contains the data for table <tbl> or on one of its indexes. It
4512         ** is better to execute the op on an index, as indexes are almost
4513         ** always spread across less pages than their corresponding tables.
4514         */
4515         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4516         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4517         Index *pIdx;                         /* Iterator variable */
4518         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4519         Index *pBest = 0;                    /* Best index found so far */
4520         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4521 
4522         sqlite3CodeVerifySchema(pParse, iDb);
4523         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4524 
4525         /* Search for the index that has the least amount of columns. If
4526         ** there is such an index, and it has less columns than the table
4527         ** does, then we can assume that it consumes less space on disk and
4528         ** will therefore be cheaper to scan to determine the query result.
4529         ** In this case set iRoot to the root page number of the index b-tree
4530         ** and pKeyInfo to the KeyInfo structure required to navigate the
4531         ** index.
4532         **
4533         ** (2011-04-15) Do not do a full scan of an unordered index.
4534         **
4535         ** In practice the KeyInfo structure will not be used. It is only
4536         ** passed to keep OP_OpenRead happy.
4537         */
4538         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4539           if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){
4540             pBest = pIdx;
4541           }
4542         }
4543         if( pBest && pBest->nColumn<pTab->nCol ){
4544           iRoot = pBest->tnum;
4545           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4546         }
4547 
4548         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4549         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4550         if( pKeyInfo ){
4551           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4552         }
4553         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4554         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4555         explainSimpleCount(pParse, pTab, pBest);
4556       }else
4557 #endif /* SQLITE_OMIT_BTREECOUNT */
4558       {
4559         /* Check if the query is of one of the following forms:
4560         **
4561         **   SELECT min(x) FROM ...
4562         **   SELECT max(x) FROM ...
4563         **
4564         ** If it is, then ask the code in where.c to attempt to sort results
4565         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4566         ** If where.c is able to produce results sorted in this order, then
4567         ** add vdbe code to break out of the processing loop after the
4568         ** first iteration (since the first iteration of the loop is
4569         ** guaranteed to operate on the row with the minimum or maximum
4570         ** value of x, the only row required).
4571         **
4572         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4573         ** modify behavior as follows:
4574         **
4575         **   + If the query is a "SELECT min(x)", then the loop coded by
4576         **     where.c should not iterate over any values with a NULL value
4577         **     for x.
4578         **
4579         **   + The optimizer code in where.c (the thing that decides which
4580         **     index or indices to use) should place a different priority on
4581         **     satisfying the 'ORDER BY' clause than it does in other cases.
4582         **     Refer to code and comments in where.c for details.
4583         */
4584         ExprList *pMinMax = 0;
4585         u8 flag = WHERE_ORDERBY_NORMAL;
4586 
4587         assert( p->pGroupBy==0 );
4588         assert( flag==0 );
4589         if( p->pHaving==0 ){
4590           flag = minMaxQuery(&sAggInfo, &pMinMax);
4591         }
4592         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
4593 
4594         if( flag ){
4595           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
4596           pDel = pMinMax;
4597           if( pMinMax && !db->mallocFailed ){
4598             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4599             pMinMax->a[0].pExpr->op = TK_COLUMN;
4600           }
4601         }
4602 
4603         /* This case runs if the aggregate has no GROUP BY clause.  The
4604         ** processing is much simpler since there is only a single row
4605         ** of output.
4606         */
4607         resetAccumulator(pParse, &sAggInfo);
4608         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
4609         if( pWInfo==0 ){
4610           sqlite3ExprListDelete(db, pDel);
4611           goto select_end;
4612         }
4613         updateAccumulator(pParse, &sAggInfo);
4614         assert( pMinMax==0 || pMinMax->nExpr==1 );
4615         if( pWInfo->nOBSat>0 ){
4616           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4617           VdbeComment((v, "%s() by index",
4618                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4619         }
4620         sqlite3WhereEnd(pWInfo);
4621         finalizeAggFunctions(pParse, &sAggInfo);
4622       }
4623 
4624       pOrderBy = 0;
4625       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4626       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, 0,
4627                       pDest, addrEnd, addrEnd);
4628       sqlite3ExprListDelete(db, pDel);
4629     }
4630     sqlite3VdbeResolveLabel(v, addrEnd);
4631 
4632   } /* endif aggregate query */
4633 
4634   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
4635     explainTempTable(pParse, "DISTINCT");
4636   }
4637 
4638   /* If there is an ORDER BY clause, then we need to sort the results
4639   ** and send them to the callback one by one.
4640   */
4641   if( pOrderBy ){
4642     explainTempTable(pParse, "ORDER BY");
4643     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4644   }
4645 
4646   /* Jump here to skip this query
4647   */
4648   sqlite3VdbeResolveLabel(v, iEnd);
4649 
4650   /* The SELECT was successfully coded.   Set the return code to 0
4651   ** to indicate no errors.
4652   */
4653   rc = 0;
4654 
4655   /* Control jumps to here if an error is encountered above, or upon
4656   ** successful coding of the SELECT.
4657   */
4658 select_end:
4659   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4660 
4661   /* Identify column names if results of the SELECT are to be output.
4662   */
4663   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4664     generateColumnNames(pParse, pTabList, pEList);
4665   }
4666 
4667   sqlite3DbFree(db, sAggInfo.aCol);
4668   sqlite3DbFree(db, sAggInfo.aFunc);
4669   return rc;
4670 }
4671 
4672 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
4673 /*
4674 ** Generate a human-readable description of a the Select object.
4675 */
4676 static void explainOneSelect(Vdbe *pVdbe, Select *p){
4677   sqlite3ExplainPrintf(pVdbe, "SELECT ");
4678   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
4679     if( p->selFlags & SF_Distinct ){
4680       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
4681     }
4682     if( p->selFlags & SF_Aggregate ){
4683       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
4684     }
4685     sqlite3ExplainNL(pVdbe);
4686     sqlite3ExplainPrintf(pVdbe, "   ");
4687   }
4688   sqlite3ExplainExprList(pVdbe, p->pEList);
4689   sqlite3ExplainNL(pVdbe);
4690   if( p->pSrc && p->pSrc->nSrc ){
4691     int i;
4692     sqlite3ExplainPrintf(pVdbe, "FROM ");
4693     sqlite3ExplainPush(pVdbe);
4694     for(i=0; i<p->pSrc->nSrc; i++){
4695       struct SrcList_item *pItem = &p->pSrc->a[i];
4696       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
4697       if( pItem->pSelect ){
4698         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
4699         if( pItem->pTab ){
4700           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
4701         }
4702       }else if( pItem->zName ){
4703         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
4704       }
4705       if( pItem->zAlias ){
4706         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
4707       }
4708       if( pItem->jointype & JT_LEFT ){
4709         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
4710       }
4711       sqlite3ExplainNL(pVdbe);
4712     }
4713     sqlite3ExplainPop(pVdbe);
4714   }
4715   if( p->pWhere ){
4716     sqlite3ExplainPrintf(pVdbe, "WHERE ");
4717     sqlite3ExplainExpr(pVdbe, p->pWhere);
4718     sqlite3ExplainNL(pVdbe);
4719   }
4720   if( p->pGroupBy ){
4721     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
4722     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
4723     sqlite3ExplainNL(pVdbe);
4724   }
4725   if( p->pHaving ){
4726     sqlite3ExplainPrintf(pVdbe, "HAVING ");
4727     sqlite3ExplainExpr(pVdbe, p->pHaving);
4728     sqlite3ExplainNL(pVdbe);
4729   }
4730   if( p->pOrderBy ){
4731     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
4732     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
4733     sqlite3ExplainNL(pVdbe);
4734   }
4735   if( p->pLimit ){
4736     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
4737     sqlite3ExplainExpr(pVdbe, p->pLimit);
4738     sqlite3ExplainNL(pVdbe);
4739   }
4740   if( p->pOffset ){
4741     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
4742     sqlite3ExplainExpr(pVdbe, p->pOffset);
4743     sqlite3ExplainNL(pVdbe);
4744   }
4745 }
4746 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
4747   if( p==0 ){
4748     sqlite3ExplainPrintf(pVdbe, "(null-select)");
4749     return;
4750   }
4751   while( p->pPrior ){
4752     p->pPrior->pNext = p;
4753     p = p->pPrior;
4754   }
4755   sqlite3ExplainPush(pVdbe);
4756   while( p ){
4757     explainOneSelect(pVdbe, p);
4758     p = p->pNext;
4759     if( p==0 ) break;
4760     sqlite3ExplainNL(pVdbe);
4761     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
4762   }
4763   sqlite3ExplainPrintf(pVdbe, "END");
4764   sqlite3ExplainPop(pVdbe);
4765 }
4766 
4767 /* End of the structure debug printing code
4768 *****************************************************************************/
4769 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
4770