1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iSDParm = iParm; 40 pDest->affSdst = 0; 41 pDest->iSdst = 0; 42 pDest->nSdst = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 assert( db->mallocFailed ); 69 pNew = &standin; 70 memset(pNew, 0, sizeof(*pNew)); 71 } 72 if( pEList==0 ){ 73 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 74 } 75 pNew->pEList = pEList; 76 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = selFlags; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 assert( pOffset==0 || pLimit!=0 ); 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( db->mallocFailed ) { 91 clearSelect(db, pNew); 92 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 93 pNew = 0; 94 }else{ 95 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 96 } 97 assert( pNew!=&standin ); 98 return pNew; 99 } 100 101 /* 102 ** Delete the given Select structure and all of its substructures. 103 */ 104 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 105 if( p ){ 106 clearSelect(db, p); 107 sqlite3DbFree(db, p); 108 } 109 } 110 111 /* 112 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 113 ** type of join. Return an integer constant that expresses that type 114 ** in terms of the following bit values: 115 ** 116 ** JT_INNER 117 ** JT_CROSS 118 ** JT_OUTER 119 ** JT_NATURAL 120 ** JT_LEFT 121 ** JT_RIGHT 122 ** 123 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 124 ** 125 ** If an illegal or unsupported join type is seen, then still return 126 ** a join type, but put an error in the pParse structure. 127 */ 128 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 129 int jointype = 0; 130 Token *apAll[3]; 131 Token *p; 132 /* 0123456789 123456789 123456789 123 */ 133 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 134 static const struct { 135 u8 i; /* Beginning of keyword text in zKeyText[] */ 136 u8 nChar; /* Length of the keyword in characters */ 137 u8 code; /* Join type mask */ 138 } aKeyword[] = { 139 /* natural */ { 0, 7, JT_NATURAL }, 140 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 141 /* outer */ { 10, 5, JT_OUTER }, 142 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 143 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 144 /* inner */ { 23, 5, JT_INNER }, 145 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 146 }; 147 int i, j; 148 apAll[0] = pA; 149 apAll[1] = pB; 150 apAll[2] = pC; 151 for(i=0; i<3 && apAll[i]; i++){ 152 p = apAll[i]; 153 for(j=0; j<ArraySize(aKeyword); j++){ 154 if( p->n==aKeyword[j].nChar 155 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 156 jointype |= aKeyword[j].code; 157 break; 158 } 159 } 160 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 161 if( j>=ArraySize(aKeyword) ){ 162 jointype |= JT_ERROR; 163 break; 164 } 165 } 166 if( 167 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 168 (jointype & JT_ERROR)!=0 169 ){ 170 const char *zSp = " "; 171 assert( pB!=0 ); 172 if( pC==0 ){ zSp++; } 173 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 174 "%T %T%s%T", pA, pB, zSp, pC); 175 jointype = JT_INNER; 176 }else if( (jointype & JT_OUTER)!=0 177 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 178 sqlite3ErrorMsg(pParse, 179 "RIGHT and FULL OUTER JOINs are not currently supported"); 180 jointype = JT_INNER; 181 } 182 return jointype; 183 } 184 185 /* 186 ** Return the index of a column in a table. Return -1 if the column 187 ** is not contained in the table. 188 */ 189 static int columnIndex(Table *pTab, const char *zCol){ 190 int i; 191 for(i=0; i<pTab->nCol; i++){ 192 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 193 } 194 return -1; 195 } 196 197 /* 198 ** Search the first N tables in pSrc, from left to right, looking for a 199 ** table that has a column named zCol. 200 ** 201 ** When found, set *piTab and *piCol to the table index and column index 202 ** of the matching column and return TRUE. 203 ** 204 ** If not found, return FALSE. 205 */ 206 static int tableAndColumnIndex( 207 SrcList *pSrc, /* Array of tables to search */ 208 int N, /* Number of tables in pSrc->a[] to search */ 209 const char *zCol, /* Name of the column we are looking for */ 210 int *piTab, /* Write index of pSrc->a[] here */ 211 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 212 ){ 213 int i; /* For looping over tables in pSrc */ 214 int iCol; /* Index of column matching zCol */ 215 216 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 217 for(i=0; i<N; i++){ 218 iCol = columnIndex(pSrc->a[i].pTab, zCol); 219 if( iCol>=0 ){ 220 if( piTab ){ 221 *piTab = i; 222 *piCol = iCol; 223 } 224 return 1; 225 } 226 } 227 return 0; 228 } 229 230 /* 231 ** This function is used to add terms implied by JOIN syntax to the 232 ** WHERE clause expression of a SELECT statement. The new term, which 233 ** is ANDed with the existing WHERE clause, is of the form: 234 ** 235 ** (tab1.col1 = tab2.col2) 236 ** 237 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 238 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 239 ** column iColRight of tab2. 240 */ 241 static void addWhereTerm( 242 Parse *pParse, /* Parsing context */ 243 SrcList *pSrc, /* List of tables in FROM clause */ 244 int iLeft, /* Index of first table to join in pSrc */ 245 int iColLeft, /* Index of column in first table */ 246 int iRight, /* Index of second table in pSrc */ 247 int iColRight, /* Index of column in second table */ 248 int isOuterJoin, /* True if this is an OUTER join */ 249 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 250 ){ 251 sqlite3 *db = pParse->db; 252 Expr *pE1; 253 Expr *pE2; 254 Expr *pEq; 255 256 assert( iLeft<iRight ); 257 assert( pSrc->nSrc>iRight ); 258 assert( pSrc->a[iLeft].pTab ); 259 assert( pSrc->a[iRight].pTab ); 260 261 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 262 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 263 264 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 265 if( pEq && isOuterJoin ){ 266 ExprSetProperty(pEq, EP_FromJoin); 267 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 268 ExprSetIrreducible(pEq); 269 pEq->iRightJoinTable = (i16)pE2->iTable; 270 } 271 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 272 } 273 274 /* 275 ** Set the EP_FromJoin property on all terms of the given expression. 276 ** And set the Expr.iRightJoinTable to iTable for every term in the 277 ** expression. 278 ** 279 ** The EP_FromJoin property is used on terms of an expression to tell 280 ** the LEFT OUTER JOIN processing logic that this term is part of the 281 ** join restriction specified in the ON or USING clause and not a part 282 ** of the more general WHERE clause. These terms are moved over to the 283 ** WHERE clause during join processing but we need to remember that they 284 ** originated in the ON or USING clause. 285 ** 286 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 287 ** expression depends on table iRightJoinTable even if that table is not 288 ** explicitly mentioned in the expression. That information is needed 289 ** for cases like this: 290 ** 291 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 292 ** 293 ** The where clause needs to defer the handling of the t1.x=5 294 ** term until after the t2 loop of the join. In that way, a 295 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 296 ** defer the handling of t1.x=5, it will be processed immediately 297 ** after the t1 loop and rows with t1.x!=5 will never appear in 298 ** the output, which is incorrect. 299 */ 300 static void setJoinExpr(Expr *p, int iTable){ 301 while( p ){ 302 ExprSetProperty(p, EP_FromJoin); 303 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 304 ExprSetIrreducible(p); 305 p->iRightJoinTable = (i16)iTable; 306 setJoinExpr(p->pLeft, iTable); 307 p = p->pRight; 308 } 309 } 310 311 /* 312 ** This routine processes the join information for a SELECT statement. 313 ** ON and USING clauses are converted into extra terms of the WHERE clause. 314 ** NATURAL joins also create extra WHERE clause terms. 315 ** 316 ** The terms of a FROM clause are contained in the Select.pSrc structure. 317 ** The left most table is the first entry in Select.pSrc. The right-most 318 ** table is the last entry. The join operator is held in the entry to 319 ** the left. Thus entry 0 contains the join operator for the join between 320 ** entries 0 and 1. Any ON or USING clauses associated with the join are 321 ** also attached to the left entry. 322 ** 323 ** This routine returns the number of errors encountered. 324 */ 325 static int sqliteProcessJoin(Parse *pParse, Select *p){ 326 SrcList *pSrc; /* All tables in the FROM clause */ 327 int i, j; /* Loop counters */ 328 struct SrcList_item *pLeft; /* Left table being joined */ 329 struct SrcList_item *pRight; /* Right table being joined */ 330 331 pSrc = p->pSrc; 332 pLeft = &pSrc->a[0]; 333 pRight = &pLeft[1]; 334 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 335 Table *pLeftTab = pLeft->pTab; 336 Table *pRightTab = pRight->pTab; 337 int isOuter; 338 339 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 340 isOuter = (pRight->jointype & JT_OUTER)!=0; 341 342 /* When the NATURAL keyword is present, add WHERE clause terms for 343 ** every column that the two tables have in common. 344 */ 345 if( pRight->jointype & JT_NATURAL ){ 346 if( pRight->pOn || pRight->pUsing ){ 347 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 348 "an ON or USING clause", 0); 349 return 1; 350 } 351 for(j=0; j<pRightTab->nCol; j++){ 352 char *zName; /* Name of column in the right table */ 353 int iLeft; /* Matching left table */ 354 int iLeftCol; /* Matching column in the left table */ 355 356 zName = pRightTab->aCol[j].zName; 357 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 358 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 359 isOuter, &p->pWhere); 360 } 361 } 362 } 363 364 /* Disallow both ON and USING clauses in the same join 365 */ 366 if( pRight->pOn && pRight->pUsing ){ 367 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 368 "clauses in the same join"); 369 return 1; 370 } 371 372 /* Add the ON clause to the end of the WHERE clause, connected by 373 ** an AND operator. 374 */ 375 if( pRight->pOn ){ 376 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 377 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 378 pRight->pOn = 0; 379 } 380 381 /* Create extra terms on the WHERE clause for each column named 382 ** in the USING clause. Example: If the two tables to be joined are 383 ** A and B and the USING clause names X, Y, and Z, then add this 384 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 385 ** Report an error if any column mentioned in the USING clause is 386 ** not contained in both tables to be joined. 387 */ 388 if( pRight->pUsing ){ 389 IdList *pList = pRight->pUsing; 390 for(j=0; j<pList->nId; j++){ 391 char *zName; /* Name of the term in the USING clause */ 392 int iLeft; /* Table on the left with matching column name */ 393 int iLeftCol; /* Column number of matching column on the left */ 394 int iRightCol; /* Column number of matching column on the right */ 395 396 zName = pList->a[j].zName; 397 iRightCol = columnIndex(pRightTab, zName); 398 if( iRightCol<0 399 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 400 ){ 401 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 402 "not present in both tables", zName); 403 return 1; 404 } 405 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 406 isOuter, &p->pWhere); 407 } 408 } 409 } 410 return 0; 411 } 412 413 /* 414 ** Insert code into "v" that will push the record on the top of the 415 ** stack into the sorter. 416 */ 417 static void pushOntoSorter( 418 Parse *pParse, /* Parser context */ 419 ExprList *pOrderBy, /* The ORDER BY clause */ 420 Select *pSelect, /* The whole SELECT statement */ 421 int regData /* Register holding data to be sorted */ 422 ){ 423 Vdbe *v = pParse->pVdbe; 424 int nExpr = pOrderBy->nExpr; 425 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 426 int regRecord = sqlite3GetTempReg(pParse); 427 int op; 428 sqlite3ExprCacheClear(pParse); 429 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 430 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 431 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 432 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 433 if( pSelect->selFlags & SF_UseSorter ){ 434 op = OP_SorterInsert; 435 }else{ 436 op = OP_IdxInsert; 437 } 438 sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord); 439 sqlite3ReleaseTempReg(pParse, regRecord); 440 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 441 if( pSelect->iLimit ){ 442 int addr1, addr2; 443 int iLimit; 444 if( pSelect->iOffset ){ 445 iLimit = pSelect->iOffset+1; 446 }else{ 447 iLimit = pSelect->iLimit; 448 } 449 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 450 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 451 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 452 sqlite3VdbeJumpHere(v, addr1); 453 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 454 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 455 sqlite3VdbeJumpHere(v, addr2); 456 } 457 } 458 459 /* 460 ** Add code to implement the OFFSET 461 */ 462 static void codeOffset( 463 Vdbe *v, /* Generate code into this VM */ 464 Select *p, /* The SELECT statement being coded */ 465 int iContinue /* Jump here to skip the current record */ 466 ){ 467 if( p->iOffset && iContinue!=0 ){ 468 int addr; 469 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 470 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 471 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 472 VdbeComment((v, "skip OFFSET records")); 473 sqlite3VdbeJumpHere(v, addr); 474 } 475 } 476 477 /* 478 ** Add code that will check to make sure the N registers starting at iMem 479 ** form a distinct entry. iTab is a sorting index that holds previously 480 ** seen combinations of the N values. A new entry is made in iTab 481 ** if the current N values are new. 482 ** 483 ** A jump to addrRepeat is made and the N+1 values are popped from the 484 ** stack if the top N elements are not distinct. 485 */ 486 static void codeDistinct( 487 Parse *pParse, /* Parsing and code generating context */ 488 int iTab, /* A sorting index used to test for distinctness */ 489 int addrRepeat, /* Jump to here if not distinct */ 490 int N, /* Number of elements */ 491 int iMem /* First element */ 492 ){ 493 Vdbe *v; 494 int r1; 495 496 v = pParse->pVdbe; 497 r1 = sqlite3GetTempReg(pParse); 498 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 499 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 500 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 501 sqlite3ReleaseTempReg(pParse, r1); 502 } 503 504 #ifndef SQLITE_OMIT_SUBQUERY 505 /* 506 ** Generate an error message when a SELECT is used within a subexpression 507 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 508 ** column. We do this in a subroutine because the error used to occur 509 ** in multiple places. (The error only occurs in one place now, but we 510 ** retain the subroutine to minimize code disruption.) 511 */ 512 static int checkForMultiColumnSelectError( 513 Parse *pParse, /* Parse context. */ 514 SelectDest *pDest, /* Destination of SELECT results */ 515 int nExpr /* Number of result columns returned by SELECT */ 516 ){ 517 int eDest = pDest->eDest; 518 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 519 sqlite3ErrorMsg(pParse, "only a single result allowed for " 520 "a SELECT that is part of an expression"); 521 return 1; 522 }else{ 523 return 0; 524 } 525 } 526 #endif 527 528 /* 529 ** An instance of the following object is used to record information about 530 ** how to process the DISTINCT keyword, to simplify passing that information 531 ** into the selectInnerLoop() routine. 532 */ 533 typedef struct DistinctCtx DistinctCtx; 534 struct DistinctCtx { 535 u8 isTnct; /* True if the DISTINCT keyword is present */ 536 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 537 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 538 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 539 }; 540 541 /* 542 ** This routine generates the code for the inside of the inner loop 543 ** of a SELECT. 544 ** 545 ** If srcTab and nColumn are both zero, then the pEList expressions 546 ** are evaluated in order to get the data for this row. If nColumn>0 547 ** then data is pulled from srcTab and pEList is used only to get the 548 ** datatypes for each column. 549 */ 550 static void selectInnerLoop( 551 Parse *pParse, /* The parser context */ 552 Select *p, /* The complete select statement being coded */ 553 ExprList *pEList, /* List of values being extracted */ 554 int srcTab, /* Pull data from this table */ 555 int nColumn, /* Number of columns in the source table */ 556 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 557 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 558 SelectDest *pDest, /* How to dispose of the results */ 559 int iContinue, /* Jump here to continue with next row */ 560 int iBreak /* Jump here to break out of the inner loop */ 561 ){ 562 Vdbe *v = pParse->pVdbe; 563 int i; 564 int hasDistinct; /* True if the DISTINCT keyword is present */ 565 int regResult; /* Start of memory holding result set */ 566 int eDest = pDest->eDest; /* How to dispose of results */ 567 int iParm = pDest->iSDParm; /* First argument to disposal method */ 568 int nResultCol; /* Number of result columns */ 569 570 assert( v ); 571 if( NEVER(v==0) ) return; 572 assert( pEList!=0 ); 573 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 574 if( pOrderBy==0 && !hasDistinct ){ 575 codeOffset(v, p, iContinue); 576 } 577 578 /* Pull the requested columns. 579 */ 580 if( nColumn>0 ){ 581 nResultCol = nColumn; 582 }else{ 583 nResultCol = pEList->nExpr; 584 } 585 if( pDest->iSdst==0 ){ 586 pDest->iSdst = pParse->nMem+1; 587 pDest->nSdst = nResultCol; 588 pParse->nMem += nResultCol; 589 }else{ 590 assert( pDest->nSdst==nResultCol ); 591 } 592 regResult = pDest->iSdst; 593 if( nColumn>0 ){ 594 for(i=0; i<nColumn; i++){ 595 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 596 } 597 }else if( eDest!=SRT_Exists ){ 598 /* If the destination is an EXISTS(...) expression, the actual 599 ** values returned by the SELECT are not required. 600 */ 601 sqlite3ExprCacheClear(pParse); 602 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 603 } 604 nColumn = nResultCol; 605 606 /* If the DISTINCT keyword was present on the SELECT statement 607 ** and this row has been seen before, then do not make this row 608 ** part of the result. 609 */ 610 if( hasDistinct ){ 611 assert( pEList!=0 ); 612 assert( pEList->nExpr==nColumn ); 613 switch( pDistinct->eTnctType ){ 614 case WHERE_DISTINCT_ORDERED: { 615 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 616 int iJump; /* Jump destination */ 617 int regPrev; /* Previous row content */ 618 619 /* Allocate space for the previous row */ 620 regPrev = pParse->nMem+1; 621 pParse->nMem += nColumn; 622 623 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 624 ** sets the MEM_Cleared bit on the first register of the 625 ** previous value. This will cause the OP_Ne below to always 626 ** fail on the first iteration of the loop even if the first 627 ** row is all NULLs. 628 */ 629 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 630 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 631 pOp->opcode = OP_Null; 632 pOp->p1 = 1; 633 pOp->p2 = regPrev; 634 635 iJump = sqlite3VdbeCurrentAddr(v) + nColumn; 636 for(i=0; i<nColumn; i++){ 637 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 638 if( i<nColumn-1 ){ 639 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 640 }else{ 641 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 642 } 643 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 644 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 645 } 646 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 647 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nColumn-1); 648 break; 649 } 650 651 case WHERE_DISTINCT_UNIQUE: { 652 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 653 break; 654 } 655 656 default: { 657 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 658 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nColumn, regResult); 659 break; 660 } 661 } 662 if( pOrderBy==0 ){ 663 codeOffset(v, p, iContinue); 664 } 665 } 666 667 switch( eDest ){ 668 /* In this mode, write each query result to the key of the temporary 669 ** table iParm. 670 */ 671 #ifndef SQLITE_OMIT_COMPOUND_SELECT 672 case SRT_Union: { 673 int r1; 674 r1 = sqlite3GetTempReg(pParse); 675 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 676 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 677 sqlite3ReleaseTempReg(pParse, r1); 678 break; 679 } 680 681 /* Construct a record from the query result, but instead of 682 ** saving that record, use it as a key to delete elements from 683 ** the temporary table iParm. 684 */ 685 case SRT_Except: { 686 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 687 break; 688 } 689 #endif 690 691 /* Store the result as data using a unique key. 692 */ 693 case SRT_Table: 694 case SRT_EphemTab: { 695 int r1 = sqlite3GetTempReg(pParse); 696 testcase( eDest==SRT_Table ); 697 testcase( eDest==SRT_EphemTab ); 698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 699 if( pOrderBy ){ 700 pushOntoSorter(pParse, pOrderBy, p, r1); 701 }else{ 702 int r2 = sqlite3GetTempReg(pParse); 703 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 704 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 705 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 706 sqlite3ReleaseTempReg(pParse, r2); 707 } 708 sqlite3ReleaseTempReg(pParse, r1); 709 break; 710 } 711 712 #ifndef SQLITE_OMIT_SUBQUERY 713 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 714 ** then there should be a single item on the stack. Write this 715 ** item into the set table with bogus data. 716 */ 717 case SRT_Set: { 718 assert( nColumn==1 ); 719 pDest->affSdst = 720 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 721 if( pOrderBy ){ 722 /* At first glance you would think we could optimize out the 723 ** ORDER BY in this case since the order of entries in the set 724 ** does not matter. But there might be a LIMIT clause, in which 725 ** case the order does matter */ 726 pushOntoSorter(pParse, pOrderBy, p, regResult); 727 }else{ 728 int r1 = sqlite3GetTempReg(pParse); 729 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 730 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 731 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 732 sqlite3ReleaseTempReg(pParse, r1); 733 } 734 break; 735 } 736 737 /* If any row exist in the result set, record that fact and abort. 738 */ 739 case SRT_Exists: { 740 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 741 /* The LIMIT clause will terminate the loop for us */ 742 break; 743 } 744 745 /* If this is a scalar select that is part of an expression, then 746 ** store the results in the appropriate memory cell and break out 747 ** of the scan loop. 748 */ 749 case SRT_Mem: { 750 assert( nColumn==1 ); 751 if( pOrderBy ){ 752 pushOntoSorter(pParse, pOrderBy, p, regResult); 753 }else{ 754 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 755 /* The LIMIT clause will jump out of the loop for us */ 756 } 757 break; 758 } 759 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 760 761 /* Send the data to the callback function or to a subroutine. In the 762 ** case of a subroutine, the subroutine itself is responsible for 763 ** popping the data from the stack. 764 */ 765 case SRT_Coroutine: 766 case SRT_Output: { 767 testcase( eDest==SRT_Coroutine ); 768 testcase( eDest==SRT_Output ); 769 if( pOrderBy ){ 770 int r1 = sqlite3GetTempReg(pParse); 771 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 772 pushOntoSorter(pParse, pOrderBy, p, r1); 773 sqlite3ReleaseTempReg(pParse, r1); 774 }else if( eDest==SRT_Coroutine ){ 775 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 776 }else{ 777 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 778 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 779 } 780 break; 781 } 782 783 #if !defined(SQLITE_OMIT_TRIGGER) 784 /* Discard the results. This is used for SELECT statements inside 785 ** the body of a TRIGGER. The purpose of such selects is to call 786 ** user-defined functions that have side effects. We do not care 787 ** about the actual results of the select. 788 */ 789 default: { 790 assert( eDest==SRT_Discard ); 791 break; 792 } 793 #endif 794 } 795 796 /* Jump to the end of the loop if the LIMIT is reached. Except, if 797 ** there is a sorter, in which case the sorter has already limited 798 ** the output for us. 799 */ 800 if( pOrderBy==0 && p->iLimit ){ 801 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 802 } 803 } 804 805 /* 806 ** Given an expression list, generate a KeyInfo structure that records 807 ** the collating sequence for each expression in that expression list. 808 ** 809 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 810 ** KeyInfo structure is appropriate for initializing a virtual index to 811 ** implement that clause. If the ExprList is the result set of a SELECT 812 ** then the KeyInfo structure is appropriate for initializing a virtual 813 ** index to implement a DISTINCT test. 814 ** 815 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 816 ** function is responsible for seeing that this structure is eventually 817 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 818 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 819 */ 820 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 821 sqlite3 *db = pParse->db; 822 int nExpr; 823 KeyInfo *pInfo; 824 struct ExprList_item *pItem; 825 int i; 826 827 nExpr = pList->nExpr; 828 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 829 if( pInfo ){ 830 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 831 pInfo->nField = (u16)nExpr; 832 pInfo->enc = ENC(db); 833 pInfo->db = db; 834 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 835 CollSeq *pColl; 836 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 837 if( !pColl ){ 838 pColl = db->pDfltColl; 839 } 840 pInfo->aColl[i] = pColl; 841 pInfo->aSortOrder[i] = pItem->sortOrder; 842 } 843 } 844 return pInfo; 845 } 846 847 #ifndef SQLITE_OMIT_COMPOUND_SELECT 848 /* 849 ** Name of the connection operator, used for error messages. 850 */ 851 static const char *selectOpName(int id){ 852 char *z; 853 switch( id ){ 854 case TK_ALL: z = "UNION ALL"; break; 855 case TK_INTERSECT: z = "INTERSECT"; break; 856 case TK_EXCEPT: z = "EXCEPT"; break; 857 default: z = "UNION"; break; 858 } 859 return z; 860 } 861 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 862 863 #ifndef SQLITE_OMIT_EXPLAIN 864 /* 865 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 866 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 867 ** where the caption is of the form: 868 ** 869 ** "USE TEMP B-TREE FOR xxx" 870 ** 871 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 872 ** is determined by the zUsage argument. 873 */ 874 static void explainTempTable(Parse *pParse, const char *zUsage){ 875 if( pParse->explain==2 ){ 876 Vdbe *v = pParse->pVdbe; 877 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 878 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 879 } 880 } 881 882 /* 883 ** Assign expression b to lvalue a. A second, no-op, version of this macro 884 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 885 ** in sqlite3Select() to assign values to structure member variables that 886 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 887 ** code with #ifndef directives. 888 */ 889 # define explainSetInteger(a, b) a = b 890 891 #else 892 /* No-op versions of the explainXXX() functions and macros. */ 893 # define explainTempTable(y,z) 894 # define explainSetInteger(y,z) 895 #endif 896 897 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 898 /* 899 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 900 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 901 ** where the caption is of one of the two forms: 902 ** 903 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 904 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 905 ** 906 ** where iSub1 and iSub2 are the integers passed as the corresponding 907 ** function parameters, and op is the text representation of the parameter 908 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 909 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 910 ** false, or the second form if it is true. 911 */ 912 static void explainComposite( 913 Parse *pParse, /* Parse context */ 914 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 915 int iSub1, /* Subquery id 1 */ 916 int iSub2, /* Subquery id 2 */ 917 int bUseTmp /* True if a temp table was used */ 918 ){ 919 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 920 if( pParse->explain==2 ){ 921 Vdbe *v = pParse->pVdbe; 922 char *zMsg = sqlite3MPrintf( 923 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 924 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 925 ); 926 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 927 } 928 } 929 #else 930 /* No-op versions of the explainXXX() functions and macros. */ 931 # define explainComposite(v,w,x,y,z) 932 #endif 933 934 /* 935 ** If the inner loop was generated using a non-null pOrderBy argument, 936 ** then the results were placed in a sorter. After the loop is terminated 937 ** we need to run the sorter and output the results. The following 938 ** routine generates the code needed to do that. 939 */ 940 static void generateSortTail( 941 Parse *pParse, /* Parsing context */ 942 Select *p, /* The SELECT statement */ 943 Vdbe *v, /* Generate code into this VDBE */ 944 int nColumn, /* Number of columns of data */ 945 SelectDest *pDest /* Write the sorted results here */ 946 ){ 947 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 948 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 949 int addr; 950 int iTab; 951 int pseudoTab = 0; 952 ExprList *pOrderBy = p->pOrderBy; 953 954 int eDest = pDest->eDest; 955 int iParm = pDest->iSDParm; 956 957 int regRow; 958 int regRowid; 959 960 iTab = pOrderBy->iECursor; 961 regRow = sqlite3GetTempReg(pParse); 962 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 963 pseudoTab = pParse->nTab++; 964 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 965 regRowid = 0; 966 }else{ 967 regRowid = sqlite3GetTempReg(pParse); 968 } 969 if( p->selFlags & SF_UseSorter ){ 970 int regSortOut = ++pParse->nMem; 971 int ptab2 = pParse->nTab++; 972 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); 973 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 974 codeOffset(v, p, addrContinue); 975 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 976 sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); 977 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 978 }else{ 979 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 980 codeOffset(v, p, addrContinue); 981 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); 982 } 983 switch( eDest ){ 984 case SRT_Table: 985 case SRT_EphemTab: { 986 testcase( eDest==SRT_Table ); 987 testcase( eDest==SRT_EphemTab ); 988 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 989 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 990 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 991 break; 992 } 993 #ifndef SQLITE_OMIT_SUBQUERY 994 case SRT_Set: { 995 assert( nColumn==1 ); 996 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 997 &pDest->affSdst, 1); 998 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 999 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1000 break; 1001 } 1002 case SRT_Mem: { 1003 assert( nColumn==1 ); 1004 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1005 /* The LIMIT clause will terminate the loop for us */ 1006 break; 1007 } 1008 #endif 1009 default: { 1010 int i; 1011 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1012 testcase( eDest==SRT_Output ); 1013 testcase( eDest==SRT_Coroutine ); 1014 for(i=0; i<nColumn; i++){ 1015 assert( regRow!=pDest->iSdst+i ); 1016 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i); 1017 if( i==0 ){ 1018 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1019 } 1020 } 1021 if( eDest==SRT_Output ){ 1022 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1023 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1024 }else{ 1025 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1026 } 1027 break; 1028 } 1029 } 1030 sqlite3ReleaseTempReg(pParse, regRow); 1031 sqlite3ReleaseTempReg(pParse, regRowid); 1032 1033 /* The bottom of the loop 1034 */ 1035 sqlite3VdbeResolveLabel(v, addrContinue); 1036 if( p->selFlags & SF_UseSorter ){ 1037 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); 1038 }else{ 1039 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 1040 } 1041 sqlite3VdbeResolveLabel(v, addrBreak); 1042 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1043 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 1044 } 1045 } 1046 1047 /* 1048 ** Return a pointer to a string containing the 'declaration type' of the 1049 ** expression pExpr. The string may be treated as static by the caller. 1050 ** 1051 ** The declaration type is the exact datatype definition extracted from the 1052 ** original CREATE TABLE statement if the expression is a column. The 1053 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1054 ** is considered a column can be complex in the presence of subqueries. The 1055 ** result-set expression in all of the following SELECT statements is 1056 ** considered a column by this function. 1057 ** 1058 ** SELECT col FROM tbl; 1059 ** SELECT (SELECT col FROM tbl; 1060 ** SELECT (SELECT col FROM tbl); 1061 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1062 ** 1063 ** The declaration type for any expression other than a column is NULL. 1064 */ 1065 static const char *columnType( 1066 NameContext *pNC, 1067 Expr *pExpr, 1068 const char **pzOriginDb, 1069 const char **pzOriginTab, 1070 const char **pzOriginCol 1071 ){ 1072 char const *zType = 0; 1073 char const *zOriginDb = 0; 1074 char const *zOriginTab = 0; 1075 char const *zOriginCol = 0; 1076 int j; 1077 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1078 1079 switch( pExpr->op ){ 1080 case TK_AGG_COLUMN: 1081 case TK_COLUMN: { 1082 /* The expression is a column. Locate the table the column is being 1083 ** extracted from in NameContext.pSrcList. This table may be real 1084 ** database table or a subquery. 1085 */ 1086 Table *pTab = 0; /* Table structure column is extracted from */ 1087 Select *pS = 0; /* Select the column is extracted from */ 1088 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1089 testcase( pExpr->op==TK_AGG_COLUMN ); 1090 testcase( pExpr->op==TK_COLUMN ); 1091 while( pNC && !pTab ){ 1092 SrcList *pTabList = pNC->pSrcList; 1093 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1094 if( j<pTabList->nSrc ){ 1095 pTab = pTabList->a[j].pTab; 1096 pS = pTabList->a[j].pSelect; 1097 }else{ 1098 pNC = pNC->pNext; 1099 } 1100 } 1101 1102 if( pTab==0 ){ 1103 /* At one time, code such as "SELECT new.x" within a trigger would 1104 ** cause this condition to run. Since then, we have restructured how 1105 ** trigger code is generated and so this condition is no longer 1106 ** possible. However, it can still be true for statements like 1107 ** the following: 1108 ** 1109 ** CREATE TABLE t1(col INTEGER); 1110 ** SELECT (SELECT t1.col) FROM FROM t1; 1111 ** 1112 ** when columnType() is called on the expression "t1.col" in the 1113 ** sub-select. In this case, set the column type to NULL, even 1114 ** though it should really be "INTEGER". 1115 ** 1116 ** This is not a problem, as the column type of "t1.col" is never 1117 ** used. When columnType() is called on the expression 1118 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1119 ** branch below. */ 1120 break; 1121 } 1122 1123 assert( pTab && pExpr->pTab==pTab ); 1124 if( pS ){ 1125 /* The "table" is actually a sub-select or a view in the FROM clause 1126 ** of the SELECT statement. Return the declaration type and origin 1127 ** data for the result-set column of the sub-select. 1128 */ 1129 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1130 /* If iCol is less than zero, then the expression requests the 1131 ** rowid of the sub-select or view. This expression is legal (see 1132 ** test case misc2.2.2) - it always evaluates to NULL. 1133 */ 1134 NameContext sNC; 1135 Expr *p = pS->pEList->a[iCol].pExpr; 1136 sNC.pSrcList = pS->pSrc; 1137 sNC.pNext = pNC; 1138 sNC.pParse = pNC->pParse; 1139 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1140 } 1141 }else if( ALWAYS(pTab->pSchema) ){ 1142 /* A real table */ 1143 assert( !pS ); 1144 if( iCol<0 ) iCol = pTab->iPKey; 1145 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1146 if( iCol<0 ){ 1147 zType = "INTEGER"; 1148 zOriginCol = "rowid"; 1149 }else{ 1150 zType = pTab->aCol[iCol].zType; 1151 zOriginCol = pTab->aCol[iCol].zName; 1152 } 1153 zOriginTab = pTab->zName; 1154 if( pNC->pParse ){ 1155 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1156 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 1157 } 1158 } 1159 break; 1160 } 1161 #ifndef SQLITE_OMIT_SUBQUERY 1162 case TK_SELECT: { 1163 /* The expression is a sub-select. Return the declaration type and 1164 ** origin info for the single column in the result set of the SELECT 1165 ** statement. 1166 */ 1167 NameContext sNC; 1168 Select *pS = pExpr->x.pSelect; 1169 Expr *p = pS->pEList->a[0].pExpr; 1170 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1171 sNC.pSrcList = pS->pSrc; 1172 sNC.pNext = pNC; 1173 sNC.pParse = pNC->pParse; 1174 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1175 break; 1176 } 1177 #endif 1178 } 1179 1180 if( pzOriginDb ){ 1181 assert( pzOriginTab && pzOriginCol ); 1182 *pzOriginDb = zOriginDb; 1183 *pzOriginTab = zOriginTab; 1184 *pzOriginCol = zOriginCol; 1185 } 1186 return zType; 1187 } 1188 1189 /* 1190 ** Generate code that will tell the VDBE the declaration types of columns 1191 ** in the result set. 1192 */ 1193 static void generateColumnTypes( 1194 Parse *pParse, /* Parser context */ 1195 SrcList *pTabList, /* List of tables */ 1196 ExprList *pEList /* Expressions defining the result set */ 1197 ){ 1198 #ifndef SQLITE_OMIT_DECLTYPE 1199 Vdbe *v = pParse->pVdbe; 1200 int i; 1201 NameContext sNC; 1202 sNC.pSrcList = pTabList; 1203 sNC.pParse = pParse; 1204 for(i=0; i<pEList->nExpr; i++){ 1205 Expr *p = pEList->a[i].pExpr; 1206 const char *zType; 1207 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1208 const char *zOrigDb = 0; 1209 const char *zOrigTab = 0; 1210 const char *zOrigCol = 0; 1211 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1212 1213 /* The vdbe must make its own copy of the column-type and other 1214 ** column specific strings, in case the schema is reset before this 1215 ** virtual machine is deleted. 1216 */ 1217 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1218 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1219 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1220 #else 1221 zType = columnType(&sNC, p, 0, 0, 0); 1222 #endif 1223 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1224 } 1225 #endif /* SQLITE_OMIT_DECLTYPE */ 1226 } 1227 1228 /* 1229 ** Generate code that will tell the VDBE the names of columns 1230 ** in the result set. This information is used to provide the 1231 ** azCol[] values in the callback. 1232 */ 1233 static void generateColumnNames( 1234 Parse *pParse, /* Parser context */ 1235 SrcList *pTabList, /* List of tables */ 1236 ExprList *pEList /* Expressions defining the result set */ 1237 ){ 1238 Vdbe *v = pParse->pVdbe; 1239 int i, j; 1240 sqlite3 *db = pParse->db; 1241 int fullNames, shortNames; 1242 1243 #ifndef SQLITE_OMIT_EXPLAIN 1244 /* If this is an EXPLAIN, skip this step */ 1245 if( pParse->explain ){ 1246 return; 1247 } 1248 #endif 1249 1250 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1251 pParse->colNamesSet = 1; 1252 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1253 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1254 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1255 for(i=0; i<pEList->nExpr; i++){ 1256 Expr *p; 1257 p = pEList->a[i].pExpr; 1258 if( NEVER(p==0) ) continue; 1259 if( pEList->a[i].zName ){ 1260 char *zName = pEList->a[i].zName; 1261 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1262 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1263 Table *pTab; 1264 char *zCol; 1265 int iCol = p->iColumn; 1266 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1267 if( pTabList->a[j].iCursor==p->iTable ) break; 1268 } 1269 assert( j<pTabList->nSrc ); 1270 pTab = pTabList->a[j].pTab; 1271 if( iCol<0 ) iCol = pTab->iPKey; 1272 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1273 if( iCol<0 ){ 1274 zCol = "rowid"; 1275 }else{ 1276 zCol = pTab->aCol[iCol].zName; 1277 } 1278 if( !shortNames && !fullNames ){ 1279 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1280 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1281 }else if( fullNames ){ 1282 char *zName = 0; 1283 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1284 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1285 }else{ 1286 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1287 } 1288 }else{ 1289 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1290 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1291 } 1292 } 1293 generateColumnTypes(pParse, pTabList, pEList); 1294 } 1295 1296 /* 1297 ** Given a an expression list (which is really the list of expressions 1298 ** that form the result set of a SELECT statement) compute appropriate 1299 ** column names for a table that would hold the expression list. 1300 ** 1301 ** All column names will be unique. 1302 ** 1303 ** Only the column names are computed. Column.zType, Column.zColl, 1304 ** and other fields of Column are zeroed. 1305 ** 1306 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1307 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1308 */ 1309 static int selectColumnsFromExprList( 1310 Parse *pParse, /* Parsing context */ 1311 ExprList *pEList, /* Expr list from which to derive column names */ 1312 i16 *pnCol, /* Write the number of columns here */ 1313 Column **paCol /* Write the new column list here */ 1314 ){ 1315 sqlite3 *db = pParse->db; /* Database connection */ 1316 int i, j; /* Loop counters */ 1317 int cnt; /* Index added to make the name unique */ 1318 Column *aCol, *pCol; /* For looping over result columns */ 1319 int nCol; /* Number of columns in the result set */ 1320 Expr *p; /* Expression for a single result column */ 1321 char *zName; /* Column name */ 1322 int nName; /* Size of name in zName[] */ 1323 1324 if( pEList ){ 1325 nCol = pEList->nExpr; 1326 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1327 testcase( aCol==0 ); 1328 }else{ 1329 nCol = 0; 1330 aCol = 0; 1331 } 1332 *pnCol = nCol; 1333 *paCol = aCol; 1334 1335 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1336 /* Get an appropriate name for the column 1337 */ 1338 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1339 if( (zName = pEList->a[i].zName)!=0 ){ 1340 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1341 zName = sqlite3DbStrDup(db, zName); 1342 }else{ 1343 Expr *pColExpr = p; /* The expression that is the result column name */ 1344 Table *pTab; /* Table associated with this expression */ 1345 while( pColExpr->op==TK_DOT ){ 1346 pColExpr = pColExpr->pRight; 1347 assert( pColExpr!=0 ); 1348 } 1349 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1350 /* For columns use the column name name */ 1351 int iCol = pColExpr->iColumn; 1352 pTab = pColExpr->pTab; 1353 if( iCol<0 ) iCol = pTab->iPKey; 1354 zName = sqlite3MPrintf(db, "%s", 1355 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1356 }else if( pColExpr->op==TK_ID ){ 1357 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1358 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1359 }else{ 1360 /* Use the original text of the column expression as its name */ 1361 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1362 } 1363 } 1364 if( db->mallocFailed ){ 1365 sqlite3DbFree(db, zName); 1366 break; 1367 } 1368 1369 /* Make sure the column name is unique. If the name is not unique, 1370 ** append a integer to the name so that it becomes unique. 1371 */ 1372 nName = sqlite3Strlen30(zName); 1373 for(j=cnt=0; j<i; j++){ 1374 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1375 char *zNewName; 1376 int k; 1377 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1378 if( zName[k]==':' ) nName = k; 1379 zName[nName] = 0; 1380 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1381 sqlite3DbFree(db, zName); 1382 zName = zNewName; 1383 j = -1; 1384 if( zName==0 ) break; 1385 } 1386 } 1387 pCol->zName = zName; 1388 } 1389 if( db->mallocFailed ){ 1390 for(j=0; j<i; j++){ 1391 sqlite3DbFree(db, aCol[j].zName); 1392 } 1393 sqlite3DbFree(db, aCol); 1394 *paCol = 0; 1395 *pnCol = 0; 1396 return SQLITE_NOMEM; 1397 } 1398 return SQLITE_OK; 1399 } 1400 1401 /* 1402 ** Add type and collation information to a column list based on 1403 ** a SELECT statement. 1404 ** 1405 ** The column list presumably came from selectColumnNamesFromExprList(). 1406 ** The column list has only names, not types or collations. This 1407 ** routine goes through and adds the types and collations. 1408 ** 1409 ** This routine requires that all identifiers in the SELECT 1410 ** statement be resolved. 1411 */ 1412 static void selectAddColumnTypeAndCollation( 1413 Parse *pParse, /* Parsing contexts */ 1414 int nCol, /* Number of columns */ 1415 Column *aCol, /* List of columns */ 1416 Select *pSelect /* SELECT used to determine types and collations */ 1417 ){ 1418 sqlite3 *db = pParse->db; 1419 NameContext sNC; 1420 Column *pCol; 1421 CollSeq *pColl; 1422 int i; 1423 Expr *p; 1424 struct ExprList_item *a; 1425 1426 assert( pSelect!=0 ); 1427 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1428 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1429 if( db->mallocFailed ) return; 1430 memset(&sNC, 0, sizeof(sNC)); 1431 sNC.pSrcList = pSelect->pSrc; 1432 a = pSelect->pEList->a; 1433 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1434 p = a[i].pExpr; 1435 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1436 pCol->affinity = sqlite3ExprAffinity(p); 1437 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1438 pColl = sqlite3ExprCollSeq(pParse, p); 1439 if( pColl ){ 1440 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1441 } 1442 } 1443 } 1444 1445 /* 1446 ** Given a SELECT statement, generate a Table structure that describes 1447 ** the result set of that SELECT. 1448 */ 1449 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1450 Table *pTab; 1451 sqlite3 *db = pParse->db; 1452 int savedFlags; 1453 1454 savedFlags = db->flags; 1455 db->flags &= ~SQLITE_FullColNames; 1456 db->flags |= SQLITE_ShortColNames; 1457 sqlite3SelectPrep(pParse, pSelect, 0); 1458 if( pParse->nErr ) return 0; 1459 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1460 db->flags = savedFlags; 1461 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1462 if( pTab==0 ){ 1463 return 0; 1464 } 1465 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1466 ** is disabled */ 1467 assert( db->lookaside.bEnabled==0 ); 1468 pTab->nRef = 1; 1469 pTab->zName = 0; 1470 pTab->nRowEst = 1000000; 1471 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1472 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1473 pTab->iPKey = -1; 1474 if( db->mallocFailed ){ 1475 sqlite3DeleteTable(db, pTab); 1476 return 0; 1477 } 1478 return pTab; 1479 } 1480 1481 /* 1482 ** Get a VDBE for the given parser context. Create a new one if necessary. 1483 ** If an error occurs, return NULL and leave a message in pParse. 1484 */ 1485 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1486 Vdbe *v = pParse->pVdbe; 1487 if( v==0 ){ 1488 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1489 #ifndef SQLITE_OMIT_TRACE 1490 if( v ){ 1491 sqlite3VdbeAddOp0(v, OP_Trace); 1492 } 1493 #endif 1494 } 1495 return v; 1496 } 1497 1498 1499 /* 1500 ** Compute the iLimit and iOffset fields of the SELECT based on the 1501 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1502 ** that appear in the original SQL statement after the LIMIT and OFFSET 1503 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1504 ** are the integer memory register numbers for counters used to compute 1505 ** the limit and offset. If there is no limit and/or offset, then 1506 ** iLimit and iOffset are negative. 1507 ** 1508 ** This routine changes the values of iLimit and iOffset only if 1509 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1510 ** iOffset should have been preset to appropriate default values 1511 ** (usually but not always -1) prior to calling this routine. 1512 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1513 ** redefined. The UNION ALL operator uses this property to force 1514 ** the reuse of the same limit and offset registers across multiple 1515 ** SELECT statements. 1516 */ 1517 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1518 Vdbe *v = 0; 1519 int iLimit = 0; 1520 int iOffset; 1521 int addr1, n; 1522 if( p->iLimit ) return; 1523 1524 /* 1525 ** "LIMIT -1" always shows all rows. There is some 1526 ** contraversy about what the correct behavior should be. 1527 ** The current implementation interprets "LIMIT 0" to mean 1528 ** no rows. 1529 */ 1530 sqlite3ExprCacheClear(pParse); 1531 assert( p->pOffset==0 || p->pLimit!=0 ); 1532 if( p->pLimit ){ 1533 p->iLimit = iLimit = ++pParse->nMem; 1534 v = sqlite3GetVdbe(pParse); 1535 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1536 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1537 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1538 VdbeComment((v, "LIMIT counter")); 1539 if( n==0 ){ 1540 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1541 }else{ 1542 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; 1543 } 1544 }else{ 1545 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1546 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1547 VdbeComment((v, "LIMIT counter")); 1548 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1549 } 1550 if( p->pOffset ){ 1551 p->iOffset = iOffset = ++pParse->nMem; 1552 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1553 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1554 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1555 VdbeComment((v, "OFFSET counter")); 1556 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1557 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1558 sqlite3VdbeJumpHere(v, addr1); 1559 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1560 VdbeComment((v, "LIMIT+OFFSET")); 1561 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1562 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1563 sqlite3VdbeJumpHere(v, addr1); 1564 } 1565 } 1566 } 1567 1568 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1569 /* 1570 ** Return the appropriate collating sequence for the iCol-th column of 1571 ** the result set for the compound-select statement "p". Return NULL if 1572 ** the column has no default collating sequence. 1573 ** 1574 ** The collating sequence for the compound select is taken from the 1575 ** left-most term of the select that has a collating sequence. 1576 */ 1577 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1578 CollSeq *pRet; 1579 if( p->pPrior ){ 1580 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1581 }else{ 1582 pRet = 0; 1583 } 1584 assert( iCol>=0 ); 1585 if( pRet==0 && iCol<p->pEList->nExpr ){ 1586 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1587 } 1588 return pRet; 1589 } 1590 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1591 1592 /* Forward reference */ 1593 static int multiSelectOrderBy( 1594 Parse *pParse, /* Parsing context */ 1595 Select *p, /* The right-most of SELECTs to be coded */ 1596 SelectDest *pDest /* What to do with query results */ 1597 ); 1598 1599 1600 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1601 /* 1602 ** This routine is called to process a compound query form from 1603 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1604 ** INTERSECT 1605 ** 1606 ** "p" points to the right-most of the two queries. the query on the 1607 ** left is p->pPrior. The left query could also be a compound query 1608 ** in which case this routine will be called recursively. 1609 ** 1610 ** The results of the total query are to be written into a destination 1611 ** of type eDest with parameter iParm. 1612 ** 1613 ** Example 1: Consider a three-way compound SQL statement. 1614 ** 1615 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1616 ** 1617 ** This statement is parsed up as follows: 1618 ** 1619 ** SELECT c FROM t3 1620 ** | 1621 ** `-----> SELECT b FROM t2 1622 ** | 1623 ** `------> SELECT a FROM t1 1624 ** 1625 ** The arrows in the diagram above represent the Select.pPrior pointer. 1626 ** So if this routine is called with p equal to the t3 query, then 1627 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1628 ** 1629 ** Notice that because of the way SQLite parses compound SELECTs, the 1630 ** individual selects always group from left to right. 1631 */ 1632 static int multiSelect( 1633 Parse *pParse, /* Parsing context */ 1634 Select *p, /* The right-most of SELECTs to be coded */ 1635 SelectDest *pDest /* What to do with query results */ 1636 ){ 1637 int rc = SQLITE_OK; /* Success code from a subroutine */ 1638 Select *pPrior; /* Another SELECT immediately to our left */ 1639 Vdbe *v; /* Generate code to this VDBE */ 1640 SelectDest dest; /* Alternative data destination */ 1641 Select *pDelete = 0; /* Chain of simple selects to delete */ 1642 sqlite3 *db; /* Database connection */ 1643 #ifndef SQLITE_OMIT_EXPLAIN 1644 int iSub1; /* EQP id of left-hand query */ 1645 int iSub2; /* EQP id of right-hand query */ 1646 #endif 1647 1648 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1649 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1650 */ 1651 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1652 db = pParse->db; 1653 pPrior = p->pPrior; 1654 assert( pPrior->pRightmost!=pPrior ); 1655 assert( pPrior->pRightmost==p->pRightmost ); 1656 dest = *pDest; 1657 if( pPrior->pOrderBy ){ 1658 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1659 selectOpName(p->op)); 1660 rc = 1; 1661 goto multi_select_end; 1662 } 1663 if( pPrior->pLimit ){ 1664 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1665 selectOpName(p->op)); 1666 rc = 1; 1667 goto multi_select_end; 1668 } 1669 1670 v = sqlite3GetVdbe(pParse); 1671 assert( v!=0 ); /* The VDBE already created by calling function */ 1672 1673 /* Create the destination temporary table if necessary 1674 */ 1675 if( dest.eDest==SRT_EphemTab ){ 1676 assert( p->pEList ); 1677 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 1678 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1679 dest.eDest = SRT_Table; 1680 } 1681 1682 /* Make sure all SELECTs in the statement have the same number of elements 1683 ** in their result sets. 1684 */ 1685 assert( p->pEList && pPrior->pEList ); 1686 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1687 if( p->selFlags & SF_Values ){ 1688 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 1689 }else{ 1690 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1691 " do not have the same number of result columns", selectOpName(p->op)); 1692 } 1693 rc = 1; 1694 goto multi_select_end; 1695 } 1696 1697 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1698 */ 1699 if( p->pOrderBy ){ 1700 return multiSelectOrderBy(pParse, p, pDest); 1701 } 1702 1703 /* Generate code for the left and right SELECT statements. 1704 */ 1705 switch( p->op ){ 1706 case TK_ALL: { 1707 int addr = 0; 1708 int nLimit; 1709 assert( !pPrior->pLimit ); 1710 pPrior->iLimit = p->iLimit; 1711 pPrior->iOffset = p->iOffset; 1712 pPrior->pLimit = p->pLimit; 1713 pPrior->pOffset = p->pOffset; 1714 explainSetInteger(iSub1, pParse->iNextSelectId); 1715 rc = sqlite3Select(pParse, pPrior, &dest); 1716 p->pLimit = 0; 1717 p->pOffset = 0; 1718 if( rc ){ 1719 goto multi_select_end; 1720 } 1721 p->pPrior = 0; 1722 p->iLimit = pPrior->iLimit; 1723 p->iOffset = pPrior->iOffset; 1724 if( p->iLimit ){ 1725 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1726 VdbeComment((v, "Jump ahead if LIMIT reached")); 1727 } 1728 explainSetInteger(iSub2, pParse->iNextSelectId); 1729 rc = sqlite3Select(pParse, p, &dest); 1730 testcase( rc!=SQLITE_OK ); 1731 pDelete = p->pPrior; 1732 p->pPrior = pPrior; 1733 p->nSelectRow += pPrior->nSelectRow; 1734 if( pPrior->pLimit 1735 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 1736 && p->nSelectRow > (double)nLimit 1737 ){ 1738 p->nSelectRow = (double)nLimit; 1739 } 1740 if( addr ){ 1741 sqlite3VdbeJumpHere(v, addr); 1742 } 1743 break; 1744 } 1745 case TK_EXCEPT: 1746 case TK_UNION: { 1747 int unionTab; /* Cursor number of the temporary table holding result */ 1748 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1749 int priorOp; /* The SRT_ operation to apply to prior selects */ 1750 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1751 int addr; 1752 SelectDest uniondest; 1753 1754 testcase( p->op==TK_EXCEPT ); 1755 testcase( p->op==TK_UNION ); 1756 priorOp = SRT_Union; 1757 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1758 /* We can reuse a temporary table generated by a SELECT to our 1759 ** right. 1760 */ 1761 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1762 ** of a 3-way or more compound */ 1763 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1764 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1765 unionTab = dest.iSDParm; 1766 }else{ 1767 /* We will need to create our own temporary table to hold the 1768 ** intermediate results. 1769 */ 1770 unionTab = pParse->nTab++; 1771 assert( p->pOrderBy==0 ); 1772 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1773 assert( p->addrOpenEphm[0] == -1 ); 1774 p->addrOpenEphm[0] = addr; 1775 p->pRightmost->selFlags |= SF_UsesEphemeral; 1776 assert( p->pEList ); 1777 } 1778 1779 /* Code the SELECT statements to our left 1780 */ 1781 assert( !pPrior->pOrderBy ); 1782 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1783 explainSetInteger(iSub1, pParse->iNextSelectId); 1784 rc = sqlite3Select(pParse, pPrior, &uniondest); 1785 if( rc ){ 1786 goto multi_select_end; 1787 } 1788 1789 /* Code the current SELECT statement 1790 */ 1791 if( p->op==TK_EXCEPT ){ 1792 op = SRT_Except; 1793 }else{ 1794 assert( p->op==TK_UNION ); 1795 op = SRT_Union; 1796 } 1797 p->pPrior = 0; 1798 pLimit = p->pLimit; 1799 p->pLimit = 0; 1800 pOffset = p->pOffset; 1801 p->pOffset = 0; 1802 uniondest.eDest = op; 1803 explainSetInteger(iSub2, pParse->iNextSelectId); 1804 rc = sqlite3Select(pParse, p, &uniondest); 1805 testcase( rc!=SQLITE_OK ); 1806 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1807 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1808 sqlite3ExprListDelete(db, p->pOrderBy); 1809 pDelete = p->pPrior; 1810 p->pPrior = pPrior; 1811 p->pOrderBy = 0; 1812 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 1813 sqlite3ExprDelete(db, p->pLimit); 1814 p->pLimit = pLimit; 1815 p->pOffset = pOffset; 1816 p->iLimit = 0; 1817 p->iOffset = 0; 1818 1819 /* Convert the data in the temporary table into whatever form 1820 ** it is that we currently need. 1821 */ 1822 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 1823 if( dest.eDest!=priorOp ){ 1824 int iCont, iBreak, iStart; 1825 assert( p->pEList ); 1826 if( dest.eDest==SRT_Output ){ 1827 Select *pFirst = p; 1828 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1829 generateColumnNames(pParse, 0, pFirst->pEList); 1830 } 1831 iBreak = sqlite3VdbeMakeLabel(v); 1832 iCont = sqlite3VdbeMakeLabel(v); 1833 computeLimitRegisters(pParse, p, iBreak); 1834 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1835 iStart = sqlite3VdbeCurrentAddr(v); 1836 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1837 0, 0, &dest, iCont, iBreak); 1838 sqlite3VdbeResolveLabel(v, iCont); 1839 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1840 sqlite3VdbeResolveLabel(v, iBreak); 1841 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1842 } 1843 break; 1844 } 1845 default: assert( p->op==TK_INTERSECT ); { 1846 int tab1, tab2; 1847 int iCont, iBreak, iStart; 1848 Expr *pLimit, *pOffset; 1849 int addr; 1850 SelectDest intersectdest; 1851 int r1; 1852 1853 /* INTERSECT is different from the others since it requires 1854 ** two temporary tables. Hence it has its own case. Begin 1855 ** by allocating the tables we will need. 1856 */ 1857 tab1 = pParse->nTab++; 1858 tab2 = pParse->nTab++; 1859 assert( p->pOrderBy==0 ); 1860 1861 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1862 assert( p->addrOpenEphm[0] == -1 ); 1863 p->addrOpenEphm[0] = addr; 1864 p->pRightmost->selFlags |= SF_UsesEphemeral; 1865 assert( p->pEList ); 1866 1867 /* Code the SELECTs to our left into temporary table "tab1". 1868 */ 1869 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1870 explainSetInteger(iSub1, pParse->iNextSelectId); 1871 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1872 if( rc ){ 1873 goto multi_select_end; 1874 } 1875 1876 /* Code the current SELECT into temporary table "tab2" 1877 */ 1878 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1879 assert( p->addrOpenEphm[1] == -1 ); 1880 p->addrOpenEphm[1] = addr; 1881 p->pPrior = 0; 1882 pLimit = p->pLimit; 1883 p->pLimit = 0; 1884 pOffset = p->pOffset; 1885 p->pOffset = 0; 1886 intersectdest.iSDParm = tab2; 1887 explainSetInteger(iSub2, pParse->iNextSelectId); 1888 rc = sqlite3Select(pParse, p, &intersectdest); 1889 testcase( rc!=SQLITE_OK ); 1890 pDelete = p->pPrior; 1891 p->pPrior = pPrior; 1892 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 1893 sqlite3ExprDelete(db, p->pLimit); 1894 p->pLimit = pLimit; 1895 p->pOffset = pOffset; 1896 1897 /* Generate code to take the intersection of the two temporary 1898 ** tables. 1899 */ 1900 assert( p->pEList ); 1901 if( dest.eDest==SRT_Output ){ 1902 Select *pFirst = p; 1903 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1904 generateColumnNames(pParse, 0, pFirst->pEList); 1905 } 1906 iBreak = sqlite3VdbeMakeLabel(v); 1907 iCont = sqlite3VdbeMakeLabel(v); 1908 computeLimitRegisters(pParse, p, iBreak); 1909 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1910 r1 = sqlite3GetTempReg(pParse); 1911 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1912 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1913 sqlite3ReleaseTempReg(pParse, r1); 1914 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1915 0, 0, &dest, iCont, iBreak); 1916 sqlite3VdbeResolveLabel(v, iCont); 1917 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1918 sqlite3VdbeResolveLabel(v, iBreak); 1919 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1920 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1921 break; 1922 } 1923 } 1924 1925 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 1926 1927 /* Compute collating sequences used by 1928 ** temporary tables needed to implement the compound select. 1929 ** Attach the KeyInfo structure to all temporary tables. 1930 ** 1931 ** This section is run by the right-most SELECT statement only. 1932 ** SELECT statements to the left always skip this part. The right-most 1933 ** SELECT might also skip this part if it has no ORDER BY clause and 1934 ** no temp tables are required. 1935 */ 1936 if( p->selFlags & SF_UsesEphemeral ){ 1937 int i; /* Loop counter */ 1938 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1939 Select *pLoop; /* For looping through SELECT statements */ 1940 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1941 int nCol; /* Number of columns in result set */ 1942 1943 assert( p->pRightmost==p ); 1944 nCol = p->pEList->nExpr; 1945 pKeyInfo = sqlite3DbMallocZero(db, 1946 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1947 if( !pKeyInfo ){ 1948 rc = SQLITE_NOMEM; 1949 goto multi_select_end; 1950 } 1951 1952 pKeyInfo->enc = ENC(db); 1953 pKeyInfo->nField = (u16)nCol; 1954 1955 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1956 *apColl = multiSelectCollSeq(pParse, p, i); 1957 if( 0==*apColl ){ 1958 *apColl = db->pDfltColl; 1959 } 1960 } 1961 pKeyInfo->aSortOrder = (u8*)apColl; 1962 1963 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1964 for(i=0; i<2; i++){ 1965 int addr = pLoop->addrOpenEphm[i]; 1966 if( addr<0 ){ 1967 /* If [0] is unused then [1] is also unused. So we can 1968 ** always safely abort as soon as the first unused slot is found */ 1969 assert( pLoop->addrOpenEphm[1]<0 ); 1970 break; 1971 } 1972 sqlite3VdbeChangeP2(v, addr, nCol); 1973 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1974 pLoop->addrOpenEphm[i] = -1; 1975 } 1976 } 1977 sqlite3DbFree(db, pKeyInfo); 1978 } 1979 1980 multi_select_end: 1981 pDest->iSdst = dest.iSdst; 1982 pDest->nSdst = dest.nSdst; 1983 sqlite3SelectDelete(db, pDelete); 1984 return rc; 1985 } 1986 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1987 1988 /* 1989 ** Code an output subroutine for a coroutine implementation of a 1990 ** SELECT statment. 1991 ** 1992 ** The data to be output is contained in pIn->iSdst. There are 1993 ** pIn->nSdst columns to be output. pDest is where the output should 1994 ** be sent. 1995 ** 1996 ** regReturn is the number of the register holding the subroutine 1997 ** return address. 1998 ** 1999 ** If regPrev>0 then it is the first register in a vector that 2000 ** records the previous output. mem[regPrev] is a flag that is false 2001 ** if there has been no previous output. If regPrev>0 then code is 2002 ** generated to suppress duplicates. pKeyInfo is used for comparing 2003 ** keys. 2004 ** 2005 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2006 ** iBreak. 2007 */ 2008 static int generateOutputSubroutine( 2009 Parse *pParse, /* Parsing context */ 2010 Select *p, /* The SELECT statement */ 2011 SelectDest *pIn, /* Coroutine supplying data */ 2012 SelectDest *pDest, /* Where to send the data */ 2013 int regReturn, /* The return address register */ 2014 int regPrev, /* Previous result register. No uniqueness if 0 */ 2015 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2016 int p4type, /* The p4 type for pKeyInfo */ 2017 int iBreak /* Jump here if we hit the LIMIT */ 2018 ){ 2019 Vdbe *v = pParse->pVdbe; 2020 int iContinue; 2021 int addr; 2022 2023 addr = sqlite3VdbeCurrentAddr(v); 2024 iContinue = sqlite3VdbeMakeLabel(v); 2025 2026 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2027 */ 2028 if( regPrev ){ 2029 int j1, j2; 2030 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 2031 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2032 (char*)pKeyInfo, p4type); 2033 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 2034 sqlite3VdbeJumpHere(v, j1); 2035 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2036 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2037 } 2038 if( pParse->db->mallocFailed ) return 0; 2039 2040 /* Suppress the first OFFSET entries if there is an OFFSET clause 2041 */ 2042 codeOffset(v, p, iContinue); 2043 2044 switch( pDest->eDest ){ 2045 /* Store the result as data using a unique key. 2046 */ 2047 case SRT_Table: 2048 case SRT_EphemTab: { 2049 int r1 = sqlite3GetTempReg(pParse); 2050 int r2 = sqlite3GetTempReg(pParse); 2051 testcase( pDest->eDest==SRT_Table ); 2052 testcase( pDest->eDest==SRT_EphemTab ); 2053 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2054 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2055 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2056 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2057 sqlite3ReleaseTempReg(pParse, r2); 2058 sqlite3ReleaseTempReg(pParse, r1); 2059 break; 2060 } 2061 2062 #ifndef SQLITE_OMIT_SUBQUERY 2063 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2064 ** then there should be a single item on the stack. Write this 2065 ** item into the set table with bogus data. 2066 */ 2067 case SRT_Set: { 2068 int r1; 2069 assert( pIn->nSdst==1 ); 2070 pDest->affSdst = 2071 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2072 r1 = sqlite3GetTempReg(pParse); 2073 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2074 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2075 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2076 sqlite3ReleaseTempReg(pParse, r1); 2077 break; 2078 } 2079 2080 #if 0 /* Never occurs on an ORDER BY query */ 2081 /* If any row exist in the result set, record that fact and abort. 2082 */ 2083 case SRT_Exists: { 2084 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2085 /* The LIMIT clause will terminate the loop for us */ 2086 break; 2087 } 2088 #endif 2089 2090 /* If this is a scalar select that is part of an expression, then 2091 ** store the results in the appropriate memory cell and break out 2092 ** of the scan loop. 2093 */ 2094 case SRT_Mem: { 2095 assert( pIn->nSdst==1 ); 2096 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2097 /* The LIMIT clause will jump out of the loop for us */ 2098 break; 2099 } 2100 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2101 2102 /* The results are stored in a sequence of registers 2103 ** starting at pDest->iSdst. Then the co-routine yields. 2104 */ 2105 case SRT_Coroutine: { 2106 if( pDest->iSdst==0 ){ 2107 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2108 pDest->nSdst = pIn->nSdst; 2109 } 2110 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2111 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2112 break; 2113 } 2114 2115 /* If none of the above, then the result destination must be 2116 ** SRT_Output. This routine is never called with any other 2117 ** destination other than the ones handled above or SRT_Output. 2118 ** 2119 ** For SRT_Output, results are stored in a sequence of registers. 2120 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2121 ** return the next row of result. 2122 */ 2123 default: { 2124 assert( pDest->eDest==SRT_Output ); 2125 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2126 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2127 break; 2128 } 2129 } 2130 2131 /* Jump to the end of the loop if the LIMIT is reached. 2132 */ 2133 if( p->iLimit ){ 2134 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2135 } 2136 2137 /* Generate the subroutine return 2138 */ 2139 sqlite3VdbeResolveLabel(v, iContinue); 2140 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2141 2142 return addr; 2143 } 2144 2145 /* 2146 ** Alternative compound select code generator for cases when there 2147 ** is an ORDER BY clause. 2148 ** 2149 ** We assume a query of the following form: 2150 ** 2151 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2152 ** 2153 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2154 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2155 ** co-routines. Then run the co-routines in parallel and merge the results 2156 ** into the output. In addition to the two coroutines (called selectA and 2157 ** selectB) there are 7 subroutines: 2158 ** 2159 ** outA: Move the output of the selectA coroutine into the output 2160 ** of the compound query. 2161 ** 2162 ** outB: Move the output of the selectB coroutine into the output 2163 ** of the compound query. (Only generated for UNION and 2164 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2165 ** appears only in B.) 2166 ** 2167 ** AltB: Called when there is data from both coroutines and A<B. 2168 ** 2169 ** AeqB: Called when there is data from both coroutines and A==B. 2170 ** 2171 ** AgtB: Called when there is data from both coroutines and A>B. 2172 ** 2173 ** EofA: Called when data is exhausted from selectA. 2174 ** 2175 ** EofB: Called when data is exhausted from selectB. 2176 ** 2177 ** The implementation of the latter five subroutines depend on which 2178 ** <operator> is used: 2179 ** 2180 ** 2181 ** UNION ALL UNION EXCEPT INTERSECT 2182 ** ------------- ----------------- -------------- ----------------- 2183 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2184 ** 2185 ** AeqB: outA, nextA nextA nextA outA, nextA 2186 ** 2187 ** AgtB: outB, nextB outB, nextB nextB nextB 2188 ** 2189 ** EofA: outB, nextB outB, nextB halt halt 2190 ** 2191 ** EofB: outA, nextA outA, nextA outA, nextA halt 2192 ** 2193 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2194 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2195 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2196 ** following nextX causes a jump to the end of the select processing. 2197 ** 2198 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2199 ** within the output subroutine. The regPrev register set holds the previously 2200 ** output value. A comparison is made against this value and the output 2201 ** is skipped if the next results would be the same as the previous. 2202 ** 2203 ** The implementation plan is to implement the two coroutines and seven 2204 ** subroutines first, then put the control logic at the bottom. Like this: 2205 ** 2206 ** goto Init 2207 ** coA: coroutine for left query (A) 2208 ** coB: coroutine for right query (B) 2209 ** outA: output one row of A 2210 ** outB: output one row of B (UNION and UNION ALL only) 2211 ** EofA: ... 2212 ** EofB: ... 2213 ** AltB: ... 2214 ** AeqB: ... 2215 ** AgtB: ... 2216 ** Init: initialize coroutine registers 2217 ** yield coA 2218 ** if eof(A) goto EofA 2219 ** yield coB 2220 ** if eof(B) goto EofB 2221 ** Cmpr: Compare A, B 2222 ** Jump AltB, AeqB, AgtB 2223 ** End: ... 2224 ** 2225 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2226 ** actually called using Gosub and they do not Return. EofA and EofB loop 2227 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2228 ** and AgtB jump to either L2 or to one of EofA or EofB. 2229 */ 2230 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2231 static int multiSelectOrderBy( 2232 Parse *pParse, /* Parsing context */ 2233 Select *p, /* The right-most of SELECTs to be coded */ 2234 SelectDest *pDest /* What to do with query results */ 2235 ){ 2236 int i, j; /* Loop counters */ 2237 Select *pPrior; /* Another SELECT immediately to our left */ 2238 Vdbe *v; /* Generate code to this VDBE */ 2239 SelectDest destA; /* Destination for coroutine A */ 2240 SelectDest destB; /* Destination for coroutine B */ 2241 int regAddrA; /* Address register for select-A coroutine */ 2242 int regEofA; /* Flag to indicate when select-A is complete */ 2243 int regAddrB; /* Address register for select-B coroutine */ 2244 int regEofB; /* Flag to indicate when select-B is complete */ 2245 int addrSelectA; /* Address of the select-A coroutine */ 2246 int addrSelectB; /* Address of the select-B coroutine */ 2247 int regOutA; /* Address register for the output-A subroutine */ 2248 int regOutB; /* Address register for the output-B subroutine */ 2249 int addrOutA; /* Address of the output-A subroutine */ 2250 int addrOutB = 0; /* Address of the output-B subroutine */ 2251 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2252 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2253 int addrAltB; /* Address of the A<B subroutine */ 2254 int addrAeqB; /* Address of the A==B subroutine */ 2255 int addrAgtB; /* Address of the A>B subroutine */ 2256 int regLimitA; /* Limit register for select-A */ 2257 int regLimitB; /* Limit register for select-A */ 2258 int regPrev; /* A range of registers to hold previous output */ 2259 int savedLimit; /* Saved value of p->iLimit */ 2260 int savedOffset; /* Saved value of p->iOffset */ 2261 int labelCmpr; /* Label for the start of the merge algorithm */ 2262 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2263 int j1; /* Jump instructions that get retargetted */ 2264 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2265 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2266 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2267 sqlite3 *db; /* Database connection */ 2268 ExprList *pOrderBy; /* The ORDER BY clause */ 2269 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2270 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2271 #ifndef SQLITE_OMIT_EXPLAIN 2272 int iSub1; /* EQP id of left-hand query */ 2273 int iSub2; /* EQP id of right-hand query */ 2274 #endif 2275 2276 assert( p->pOrderBy!=0 ); 2277 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2278 db = pParse->db; 2279 v = pParse->pVdbe; 2280 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2281 labelEnd = sqlite3VdbeMakeLabel(v); 2282 labelCmpr = sqlite3VdbeMakeLabel(v); 2283 2284 2285 /* Patch up the ORDER BY clause 2286 */ 2287 op = p->op; 2288 pPrior = p->pPrior; 2289 assert( pPrior->pOrderBy==0 ); 2290 pOrderBy = p->pOrderBy; 2291 assert( pOrderBy ); 2292 nOrderBy = pOrderBy->nExpr; 2293 2294 /* For operators other than UNION ALL we have to make sure that 2295 ** the ORDER BY clause covers every term of the result set. Add 2296 ** terms to the ORDER BY clause as necessary. 2297 */ 2298 if( op!=TK_ALL ){ 2299 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2300 struct ExprList_item *pItem; 2301 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2302 assert( pItem->iOrderByCol>0 ); 2303 if( pItem->iOrderByCol==i ) break; 2304 } 2305 if( j==nOrderBy ){ 2306 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2307 if( pNew==0 ) return SQLITE_NOMEM; 2308 pNew->flags |= EP_IntValue; 2309 pNew->u.iValue = i; 2310 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2311 if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i; 2312 } 2313 } 2314 } 2315 2316 /* Compute the comparison permutation and keyinfo that is used with 2317 ** the permutation used to determine if the next 2318 ** row of results comes from selectA or selectB. Also add explicit 2319 ** collations to the ORDER BY clause terms so that when the subqueries 2320 ** to the right and the left are evaluated, they use the correct 2321 ** collation. 2322 */ 2323 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2324 if( aPermute ){ 2325 struct ExprList_item *pItem; 2326 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2327 assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr ); 2328 aPermute[i] = pItem->iOrderByCol - 1; 2329 } 2330 pKeyMerge = 2331 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2332 if( pKeyMerge ){ 2333 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2334 pKeyMerge->nField = (u16)nOrderBy; 2335 pKeyMerge->enc = ENC(db); 2336 for(i=0; i<nOrderBy; i++){ 2337 CollSeq *pColl; 2338 Expr *pTerm = pOrderBy->a[i].pExpr; 2339 if( pTerm->flags & EP_Collate ){ 2340 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2341 }else{ 2342 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2343 if( pColl==0 ) pColl = db->pDfltColl; 2344 pOrderBy->a[i].pExpr = 2345 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2346 } 2347 pKeyMerge->aColl[i] = pColl; 2348 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2349 } 2350 } 2351 }else{ 2352 pKeyMerge = 0; 2353 } 2354 2355 /* Reattach the ORDER BY clause to the query. 2356 */ 2357 p->pOrderBy = pOrderBy; 2358 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2359 2360 /* Allocate a range of temporary registers and the KeyInfo needed 2361 ** for the logic that removes duplicate result rows when the 2362 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2363 */ 2364 if( op==TK_ALL ){ 2365 regPrev = 0; 2366 }else{ 2367 int nExpr = p->pEList->nExpr; 2368 assert( nOrderBy>=nExpr || db->mallocFailed ); 2369 regPrev = pParse->nMem+1; 2370 pParse->nMem += nExpr+1; 2371 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2372 pKeyDup = sqlite3DbMallocZero(db, 2373 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2374 if( pKeyDup ){ 2375 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2376 pKeyDup->nField = (u16)nExpr; 2377 pKeyDup->enc = ENC(db); 2378 for(i=0; i<nExpr; i++){ 2379 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2380 pKeyDup->aSortOrder[i] = 0; 2381 } 2382 } 2383 } 2384 2385 /* Separate the left and the right query from one another 2386 */ 2387 p->pPrior = 0; 2388 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2389 if( pPrior->pPrior==0 ){ 2390 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2391 } 2392 2393 /* Compute the limit registers */ 2394 computeLimitRegisters(pParse, p, labelEnd); 2395 if( p->iLimit && op==TK_ALL ){ 2396 regLimitA = ++pParse->nMem; 2397 regLimitB = ++pParse->nMem; 2398 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2399 regLimitA); 2400 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2401 }else{ 2402 regLimitA = regLimitB = 0; 2403 } 2404 sqlite3ExprDelete(db, p->pLimit); 2405 p->pLimit = 0; 2406 sqlite3ExprDelete(db, p->pOffset); 2407 p->pOffset = 0; 2408 2409 regAddrA = ++pParse->nMem; 2410 regEofA = ++pParse->nMem; 2411 regAddrB = ++pParse->nMem; 2412 regEofB = ++pParse->nMem; 2413 regOutA = ++pParse->nMem; 2414 regOutB = ++pParse->nMem; 2415 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2416 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2417 2418 /* Jump past the various subroutines and coroutines to the main 2419 ** merge loop 2420 */ 2421 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2422 addrSelectA = sqlite3VdbeCurrentAddr(v); 2423 2424 2425 /* Generate a coroutine to evaluate the SELECT statement to the 2426 ** left of the compound operator - the "A" select. 2427 */ 2428 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2429 pPrior->iLimit = regLimitA; 2430 explainSetInteger(iSub1, pParse->iNextSelectId); 2431 sqlite3Select(pParse, pPrior, &destA); 2432 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2433 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2434 VdbeNoopComment((v, "End coroutine for left SELECT")); 2435 2436 /* Generate a coroutine to evaluate the SELECT statement on 2437 ** the right - the "B" select 2438 */ 2439 addrSelectB = sqlite3VdbeCurrentAddr(v); 2440 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2441 savedLimit = p->iLimit; 2442 savedOffset = p->iOffset; 2443 p->iLimit = regLimitB; 2444 p->iOffset = 0; 2445 explainSetInteger(iSub2, pParse->iNextSelectId); 2446 sqlite3Select(pParse, p, &destB); 2447 p->iLimit = savedLimit; 2448 p->iOffset = savedOffset; 2449 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2450 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2451 VdbeNoopComment((v, "End coroutine for right SELECT")); 2452 2453 /* Generate a subroutine that outputs the current row of the A 2454 ** select as the next output row of the compound select. 2455 */ 2456 VdbeNoopComment((v, "Output routine for A")); 2457 addrOutA = generateOutputSubroutine(pParse, 2458 p, &destA, pDest, regOutA, 2459 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2460 2461 /* Generate a subroutine that outputs the current row of the B 2462 ** select as the next output row of the compound select. 2463 */ 2464 if( op==TK_ALL || op==TK_UNION ){ 2465 VdbeNoopComment((v, "Output routine for B")); 2466 addrOutB = generateOutputSubroutine(pParse, 2467 p, &destB, pDest, regOutB, 2468 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2469 } 2470 2471 /* Generate a subroutine to run when the results from select A 2472 ** are exhausted and only data in select B remains. 2473 */ 2474 VdbeNoopComment((v, "eof-A subroutine")); 2475 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2476 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2477 }else{ 2478 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2479 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2480 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2481 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2482 p->nSelectRow += pPrior->nSelectRow; 2483 } 2484 2485 /* Generate a subroutine to run when the results from select B 2486 ** are exhausted and only data in select A remains. 2487 */ 2488 if( op==TK_INTERSECT ){ 2489 addrEofB = addrEofA; 2490 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2491 }else{ 2492 VdbeNoopComment((v, "eof-B subroutine")); 2493 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2494 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2495 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2496 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2497 } 2498 2499 /* Generate code to handle the case of A<B 2500 */ 2501 VdbeNoopComment((v, "A-lt-B subroutine")); 2502 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2503 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2504 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2505 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2506 2507 /* Generate code to handle the case of A==B 2508 */ 2509 if( op==TK_ALL ){ 2510 addrAeqB = addrAltB; 2511 }else if( op==TK_INTERSECT ){ 2512 addrAeqB = addrAltB; 2513 addrAltB++; 2514 }else{ 2515 VdbeNoopComment((v, "A-eq-B subroutine")); 2516 addrAeqB = 2517 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2518 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2519 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2520 } 2521 2522 /* Generate code to handle the case of A>B 2523 */ 2524 VdbeNoopComment((v, "A-gt-B subroutine")); 2525 addrAgtB = sqlite3VdbeCurrentAddr(v); 2526 if( op==TK_ALL || op==TK_UNION ){ 2527 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2528 } 2529 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2530 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2531 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2532 2533 /* This code runs once to initialize everything. 2534 */ 2535 sqlite3VdbeJumpHere(v, j1); 2536 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2537 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2538 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2539 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2540 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2541 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2542 2543 /* Implement the main merge loop 2544 */ 2545 sqlite3VdbeResolveLabel(v, labelCmpr); 2546 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2547 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 2548 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2549 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 2550 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2551 2552 /* Jump to the this point in order to terminate the query. 2553 */ 2554 sqlite3VdbeResolveLabel(v, labelEnd); 2555 2556 /* Set the number of output columns 2557 */ 2558 if( pDest->eDest==SRT_Output ){ 2559 Select *pFirst = pPrior; 2560 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2561 generateColumnNames(pParse, 0, pFirst->pEList); 2562 } 2563 2564 /* Reassembly the compound query so that it will be freed correctly 2565 ** by the calling function */ 2566 if( p->pPrior ){ 2567 sqlite3SelectDelete(db, p->pPrior); 2568 } 2569 p->pPrior = pPrior; 2570 2571 /*** TBD: Insert subroutine calls to close cursors on incomplete 2572 **** subqueries ****/ 2573 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2574 return SQLITE_OK; 2575 } 2576 #endif 2577 2578 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2579 /* Forward Declarations */ 2580 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2581 static void substSelect(sqlite3*, Select *, int, ExprList *); 2582 2583 /* 2584 ** Scan through the expression pExpr. Replace every reference to 2585 ** a column in table number iTable with a copy of the iColumn-th 2586 ** entry in pEList. (But leave references to the ROWID column 2587 ** unchanged.) 2588 ** 2589 ** This routine is part of the flattening procedure. A subquery 2590 ** whose result set is defined by pEList appears as entry in the 2591 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2592 ** FORM clause entry is iTable. This routine make the necessary 2593 ** changes to pExpr so that it refers directly to the source table 2594 ** of the subquery rather the result set of the subquery. 2595 */ 2596 static Expr *substExpr( 2597 sqlite3 *db, /* Report malloc errors to this connection */ 2598 Expr *pExpr, /* Expr in which substitution occurs */ 2599 int iTable, /* Table to be substituted */ 2600 ExprList *pEList /* Substitute expressions */ 2601 ){ 2602 if( pExpr==0 ) return 0; 2603 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2604 if( pExpr->iColumn<0 ){ 2605 pExpr->op = TK_NULL; 2606 }else{ 2607 Expr *pNew; 2608 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2609 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2610 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2611 sqlite3ExprDelete(db, pExpr); 2612 pExpr = pNew; 2613 } 2614 }else{ 2615 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2616 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2617 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2618 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2619 }else{ 2620 substExprList(db, pExpr->x.pList, iTable, pEList); 2621 } 2622 } 2623 return pExpr; 2624 } 2625 static void substExprList( 2626 sqlite3 *db, /* Report malloc errors here */ 2627 ExprList *pList, /* List to scan and in which to make substitutes */ 2628 int iTable, /* Table to be substituted */ 2629 ExprList *pEList /* Substitute values */ 2630 ){ 2631 int i; 2632 if( pList==0 ) return; 2633 for(i=0; i<pList->nExpr; i++){ 2634 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2635 } 2636 } 2637 static void substSelect( 2638 sqlite3 *db, /* Report malloc errors here */ 2639 Select *p, /* SELECT statement in which to make substitutions */ 2640 int iTable, /* Table to be replaced */ 2641 ExprList *pEList /* Substitute values */ 2642 ){ 2643 SrcList *pSrc; 2644 struct SrcList_item *pItem; 2645 int i; 2646 if( !p ) return; 2647 substExprList(db, p->pEList, iTable, pEList); 2648 substExprList(db, p->pGroupBy, iTable, pEList); 2649 substExprList(db, p->pOrderBy, iTable, pEList); 2650 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2651 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2652 substSelect(db, p->pPrior, iTable, pEList); 2653 pSrc = p->pSrc; 2654 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2655 if( ALWAYS(pSrc) ){ 2656 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2657 substSelect(db, pItem->pSelect, iTable, pEList); 2658 } 2659 } 2660 } 2661 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2662 2663 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2664 /* 2665 ** This routine attempts to flatten subqueries as a performance optimization. 2666 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 2667 ** 2668 ** To understand the concept of flattening, consider the following 2669 ** query: 2670 ** 2671 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2672 ** 2673 ** The default way of implementing this query is to execute the 2674 ** subquery first and store the results in a temporary table, then 2675 ** run the outer query on that temporary table. This requires two 2676 ** passes over the data. Furthermore, because the temporary table 2677 ** has no indices, the WHERE clause on the outer query cannot be 2678 ** optimized. 2679 ** 2680 ** This routine attempts to rewrite queries such as the above into 2681 ** a single flat select, like this: 2682 ** 2683 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2684 ** 2685 ** The code generated for this simpification gives the same result 2686 ** but only has to scan the data once. And because indices might 2687 ** exist on the table t1, a complete scan of the data might be 2688 ** avoided. 2689 ** 2690 ** Flattening is only attempted if all of the following are true: 2691 ** 2692 ** (1) The subquery and the outer query do not both use aggregates. 2693 ** 2694 ** (2) The subquery is not an aggregate or the outer query is not a join. 2695 ** 2696 ** (3) The subquery is not the right operand of a left outer join 2697 ** (Originally ticket #306. Strengthened by ticket #3300) 2698 ** 2699 ** (4) The subquery is not DISTINCT. 2700 ** 2701 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 2702 ** sub-queries that were excluded from this optimization. Restriction 2703 ** (4) has since been expanded to exclude all DISTINCT subqueries. 2704 ** 2705 ** (6) The subquery does not use aggregates or the outer query is not 2706 ** DISTINCT. 2707 ** 2708 ** (7) The subquery has a FROM clause. TODO: For subqueries without 2709 ** A FROM clause, consider adding a FROM close with the special 2710 ** table sqlite_once that consists of a single row containing a 2711 ** single NULL. 2712 ** 2713 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2714 ** 2715 ** (9) The subquery does not use LIMIT or the outer query does not use 2716 ** aggregates. 2717 ** 2718 ** (10) The subquery does not use aggregates or the outer query does not 2719 ** use LIMIT. 2720 ** 2721 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2722 ** 2723 ** (**) Not implemented. Subsumed into restriction (3). Was previously 2724 ** a separate restriction deriving from ticket #350. 2725 ** 2726 ** (13) The subquery and outer query do not both use LIMIT. 2727 ** 2728 ** (14) The subquery does not use OFFSET. 2729 ** 2730 ** (15) The outer query is not part of a compound select or the 2731 ** subquery does not have a LIMIT clause. 2732 ** (See ticket #2339 and ticket [02a8e81d44]). 2733 ** 2734 ** (16) The outer query is not an aggregate or the subquery does 2735 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2736 ** until we introduced the group_concat() function. 2737 ** 2738 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2739 ** compound clause made up entirely of non-aggregate queries, and 2740 ** the parent query: 2741 ** 2742 ** * is not itself part of a compound select, 2743 ** * is not an aggregate or DISTINCT query, and 2744 ** * is not a join 2745 ** 2746 ** The parent and sub-query may contain WHERE clauses. Subject to 2747 ** rules (11), (13) and (14), they may also contain ORDER BY, 2748 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 2749 ** operator other than UNION ALL because all the other compound 2750 ** operators have an implied DISTINCT which is disallowed by 2751 ** restriction (4). 2752 ** 2753 ** Also, each component of the sub-query must return the same number 2754 ** of result columns. This is actually a requirement for any compound 2755 ** SELECT statement, but all the code here does is make sure that no 2756 ** such (illegal) sub-query is flattened. The caller will detect the 2757 ** syntax error and return a detailed message. 2758 ** 2759 ** (18) If the sub-query is a compound select, then all terms of the 2760 ** ORDER by clause of the parent must be simple references to 2761 ** columns of the sub-query. 2762 ** 2763 ** (19) The subquery does not use LIMIT or the outer query does not 2764 ** have a WHERE clause. 2765 ** 2766 ** (20) If the sub-query is a compound select, then it must not use 2767 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2768 ** somewhat by saying that the terms of the ORDER BY clause must 2769 ** appear as unmodified result columns in the outer query. But we 2770 ** have other optimizations in mind to deal with that case. 2771 ** 2772 ** (21) The subquery does not use LIMIT or the outer query is not 2773 ** DISTINCT. (See ticket [752e1646fc]). 2774 ** 2775 ** In this routine, the "p" parameter is a pointer to the outer query. 2776 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2777 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2778 ** 2779 ** If flattening is not attempted, this routine is a no-op and returns 0. 2780 ** If flattening is attempted this routine returns 1. 2781 ** 2782 ** All of the expression analysis must occur on both the outer query and 2783 ** the subquery before this routine runs. 2784 */ 2785 static int flattenSubquery( 2786 Parse *pParse, /* Parsing context */ 2787 Select *p, /* The parent or outer SELECT statement */ 2788 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2789 int isAgg, /* True if outer SELECT uses aggregate functions */ 2790 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2791 ){ 2792 const char *zSavedAuthContext = pParse->zAuthContext; 2793 Select *pParent; 2794 Select *pSub; /* The inner query or "subquery" */ 2795 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2796 SrcList *pSrc; /* The FROM clause of the outer query */ 2797 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2798 ExprList *pList; /* The result set of the outer query */ 2799 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2800 int i; /* Loop counter */ 2801 Expr *pWhere; /* The WHERE clause */ 2802 struct SrcList_item *pSubitem; /* The subquery */ 2803 sqlite3 *db = pParse->db; 2804 2805 /* Check to see if flattening is permitted. Return 0 if not. 2806 */ 2807 assert( p!=0 ); 2808 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2809 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 2810 pSrc = p->pSrc; 2811 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2812 pSubitem = &pSrc->a[iFrom]; 2813 iParent = pSubitem->iCursor; 2814 pSub = pSubitem->pSelect; 2815 assert( pSub!=0 ); 2816 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2817 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2818 pSubSrc = pSub->pSrc; 2819 assert( pSubSrc ); 2820 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2821 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2822 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2823 ** became arbitrary expressions, we were forced to add restrictions (13) 2824 ** and (14). */ 2825 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2826 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2827 if( p->pRightmost && pSub->pLimit ){ 2828 return 0; /* Restriction (15) */ 2829 } 2830 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2831 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 2832 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 2833 return 0; /* Restrictions (8)(9) */ 2834 } 2835 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2836 return 0; /* Restriction (6) */ 2837 } 2838 if( p->pOrderBy && pSub->pOrderBy ){ 2839 return 0; /* Restriction (11) */ 2840 } 2841 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2842 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2843 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 2844 return 0; /* Restriction (21) */ 2845 } 2846 2847 /* OBSOLETE COMMENT 1: 2848 ** Restriction 3: If the subquery is a join, make sure the subquery is 2849 ** not used as the right operand of an outer join. Examples of why this 2850 ** is not allowed: 2851 ** 2852 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2853 ** 2854 ** If we flatten the above, we would get 2855 ** 2856 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2857 ** 2858 ** which is not at all the same thing. 2859 ** 2860 ** OBSOLETE COMMENT 2: 2861 ** Restriction 12: If the subquery is the right operand of a left outer 2862 ** join, make sure the subquery has no WHERE clause. 2863 ** An examples of why this is not allowed: 2864 ** 2865 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2866 ** 2867 ** If we flatten the above, we would get 2868 ** 2869 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2870 ** 2871 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2872 ** effectively converts the OUTER JOIN into an INNER JOIN. 2873 ** 2874 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2875 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2876 ** is fraught with danger. Best to avoid the whole thing. If the 2877 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2878 */ 2879 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2880 return 0; 2881 } 2882 2883 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2884 ** use only the UNION ALL operator. And none of the simple select queries 2885 ** that make up the compound SELECT are allowed to be aggregate or distinct 2886 ** queries. 2887 */ 2888 if( pSub->pPrior ){ 2889 if( pSub->pOrderBy ){ 2890 return 0; /* Restriction 20 */ 2891 } 2892 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2893 return 0; 2894 } 2895 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2896 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2897 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2898 assert( pSub->pSrc!=0 ); 2899 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2900 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2901 || pSub1->pSrc->nSrc<1 2902 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 2903 ){ 2904 return 0; 2905 } 2906 testcase( pSub1->pSrc->nSrc>1 ); 2907 } 2908 2909 /* Restriction 18. */ 2910 if( p->pOrderBy ){ 2911 int ii; 2912 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2913 if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0; 2914 } 2915 } 2916 } 2917 2918 /***** If we reach this point, flattening is permitted. *****/ 2919 2920 /* Authorize the subquery */ 2921 pParse->zAuthContext = pSubitem->zName; 2922 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2923 testcase( i==SQLITE_DENY ); 2924 pParse->zAuthContext = zSavedAuthContext; 2925 2926 /* If the sub-query is a compound SELECT statement, then (by restrictions 2927 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2928 ** be of the form: 2929 ** 2930 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2931 ** 2932 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2933 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2934 ** OFFSET clauses and joins them to the left-hand-side of the original 2935 ** using UNION ALL operators. In this case N is the number of simple 2936 ** select statements in the compound sub-query. 2937 ** 2938 ** Example: 2939 ** 2940 ** SELECT a+1 FROM ( 2941 ** SELECT x FROM tab 2942 ** UNION ALL 2943 ** SELECT y FROM tab 2944 ** UNION ALL 2945 ** SELECT abs(z*2) FROM tab2 2946 ** ) WHERE a!=5 ORDER BY 1 2947 ** 2948 ** Transformed into: 2949 ** 2950 ** SELECT x+1 FROM tab WHERE x+1!=5 2951 ** UNION ALL 2952 ** SELECT y+1 FROM tab WHERE y+1!=5 2953 ** UNION ALL 2954 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2955 ** ORDER BY 1 2956 ** 2957 ** We call this the "compound-subquery flattening". 2958 */ 2959 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2960 Select *pNew; 2961 ExprList *pOrderBy = p->pOrderBy; 2962 Expr *pLimit = p->pLimit; 2963 Expr *pOffset = p->pOffset; 2964 Select *pPrior = p->pPrior; 2965 p->pOrderBy = 0; 2966 p->pSrc = 0; 2967 p->pPrior = 0; 2968 p->pLimit = 0; 2969 p->pOffset = 0; 2970 pNew = sqlite3SelectDup(db, p, 0); 2971 p->pOffset = pOffset; 2972 p->pLimit = pLimit; 2973 p->pOrderBy = pOrderBy; 2974 p->pSrc = pSrc; 2975 p->op = TK_ALL; 2976 p->pRightmost = 0; 2977 if( pNew==0 ){ 2978 pNew = pPrior; 2979 }else{ 2980 pNew->pPrior = pPrior; 2981 pNew->pRightmost = 0; 2982 } 2983 p->pPrior = pNew; 2984 if( db->mallocFailed ) return 1; 2985 } 2986 2987 /* Begin flattening the iFrom-th entry of the FROM clause 2988 ** in the outer query. 2989 */ 2990 pSub = pSub1 = pSubitem->pSelect; 2991 2992 /* Delete the transient table structure associated with the 2993 ** subquery 2994 */ 2995 sqlite3DbFree(db, pSubitem->zDatabase); 2996 sqlite3DbFree(db, pSubitem->zName); 2997 sqlite3DbFree(db, pSubitem->zAlias); 2998 pSubitem->zDatabase = 0; 2999 pSubitem->zName = 0; 3000 pSubitem->zAlias = 0; 3001 pSubitem->pSelect = 0; 3002 3003 /* Defer deleting the Table object associated with the 3004 ** subquery until code generation is 3005 ** complete, since there may still exist Expr.pTab entries that 3006 ** refer to the subquery even after flattening. Ticket #3346. 3007 ** 3008 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3009 */ 3010 if( ALWAYS(pSubitem->pTab!=0) ){ 3011 Table *pTabToDel = pSubitem->pTab; 3012 if( pTabToDel->nRef==1 ){ 3013 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3014 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3015 pToplevel->pZombieTab = pTabToDel; 3016 }else{ 3017 pTabToDel->nRef--; 3018 } 3019 pSubitem->pTab = 0; 3020 } 3021 3022 /* The following loop runs once for each term in a compound-subquery 3023 ** flattening (as described above). If we are doing a different kind 3024 ** of flattening - a flattening other than a compound-subquery flattening - 3025 ** then this loop only runs once. 3026 ** 3027 ** This loop moves all of the FROM elements of the subquery into the 3028 ** the FROM clause of the outer query. Before doing this, remember 3029 ** the cursor number for the original outer query FROM element in 3030 ** iParent. The iParent cursor will never be used. Subsequent code 3031 ** will scan expressions looking for iParent references and replace 3032 ** those references with expressions that resolve to the subquery FROM 3033 ** elements we are now copying in. 3034 */ 3035 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3036 int nSubSrc; 3037 u8 jointype = 0; 3038 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3039 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3040 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3041 3042 if( pSrc ){ 3043 assert( pParent==p ); /* First time through the loop */ 3044 jointype = pSubitem->jointype; 3045 }else{ 3046 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3047 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3048 if( pSrc==0 ){ 3049 assert( db->mallocFailed ); 3050 break; 3051 } 3052 } 3053 3054 /* The subquery uses a single slot of the FROM clause of the outer 3055 ** query. If the subquery has more than one element in its FROM clause, 3056 ** then expand the outer query to make space for it to hold all elements 3057 ** of the subquery. 3058 ** 3059 ** Example: 3060 ** 3061 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3062 ** 3063 ** The outer query has 3 slots in its FROM clause. One slot of the 3064 ** outer query (the middle slot) is used by the subquery. The next 3065 ** block of code will expand the out query to 4 slots. The middle 3066 ** slot is expanded to two slots in order to make space for the 3067 ** two elements in the FROM clause of the subquery. 3068 */ 3069 if( nSubSrc>1 ){ 3070 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3071 if( db->mallocFailed ){ 3072 break; 3073 } 3074 } 3075 3076 /* Transfer the FROM clause terms from the subquery into the 3077 ** outer query. 3078 */ 3079 for(i=0; i<nSubSrc; i++){ 3080 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3081 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3082 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3083 } 3084 pSrc->a[iFrom].jointype = jointype; 3085 3086 /* Now begin substituting subquery result set expressions for 3087 ** references to the iParent in the outer query. 3088 ** 3089 ** Example: 3090 ** 3091 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3092 ** \ \_____________ subquery __________/ / 3093 ** \_____________________ outer query ______________________________/ 3094 ** 3095 ** We look at every expression in the outer query and every place we see 3096 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3097 */ 3098 pList = pParent->pEList; 3099 for(i=0; i<pList->nExpr; i++){ 3100 if( pList->a[i].zName==0 ){ 3101 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3102 sqlite3Dequote(zName); 3103 pList->a[i].zName = zName; 3104 } 3105 } 3106 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3107 if( isAgg ){ 3108 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3109 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3110 } 3111 if( pSub->pOrderBy ){ 3112 assert( pParent->pOrderBy==0 ); 3113 pParent->pOrderBy = pSub->pOrderBy; 3114 pSub->pOrderBy = 0; 3115 }else if( pParent->pOrderBy ){ 3116 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3117 } 3118 if( pSub->pWhere ){ 3119 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3120 }else{ 3121 pWhere = 0; 3122 } 3123 if( subqueryIsAgg ){ 3124 assert( pParent->pHaving==0 ); 3125 pParent->pHaving = pParent->pWhere; 3126 pParent->pWhere = pWhere; 3127 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3128 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3129 sqlite3ExprDup(db, pSub->pHaving, 0)); 3130 assert( pParent->pGroupBy==0 ); 3131 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3132 }else{ 3133 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3134 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3135 } 3136 3137 /* The flattened query is distinct if either the inner or the 3138 ** outer query is distinct. 3139 */ 3140 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3141 3142 /* 3143 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3144 ** 3145 ** One is tempted to try to add a and b to combine the limits. But this 3146 ** does not work if either limit is negative. 3147 */ 3148 if( pSub->pLimit ){ 3149 pParent->pLimit = pSub->pLimit; 3150 pSub->pLimit = 0; 3151 } 3152 } 3153 3154 /* Finially, delete what is left of the subquery and return 3155 ** success. 3156 */ 3157 sqlite3SelectDelete(db, pSub1); 3158 3159 return 1; 3160 } 3161 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3162 3163 /* 3164 ** Based on the contents of the AggInfo structure indicated by the first 3165 ** argument, this function checks if the following are true: 3166 ** 3167 ** * the query contains just a single aggregate function, 3168 ** * the aggregate function is either min() or max(), and 3169 ** * the argument to the aggregate function is a column value. 3170 ** 3171 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3172 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3173 ** list of arguments passed to the aggregate before returning. 3174 ** 3175 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3176 ** WHERE_ORDERBY_NORMAL is returned. 3177 */ 3178 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3179 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3180 3181 *ppMinMax = 0; 3182 if( pAggInfo->nFunc==1 ){ 3183 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3184 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3185 3186 assert( pExpr->op==TK_AGG_FUNCTION ); 3187 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3188 const char *zFunc = pExpr->u.zToken; 3189 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3190 eRet = WHERE_ORDERBY_MIN; 3191 *ppMinMax = pEList; 3192 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3193 eRet = WHERE_ORDERBY_MAX; 3194 *ppMinMax = pEList; 3195 } 3196 } 3197 } 3198 3199 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3200 return eRet; 3201 } 3202 3203 /* 3204 ** The select statement passed as the first argument is an aggregate query. 3205 ** The second argment is the associated aggregate-info object. This 3206 ** function tests if the SELECT is of the form: 3207 ** 3208 ** SELECT count(*) FROM <tbl> 3209 ** 3210 ** where table is a database table, not a sub-select or view. If the query 3211 ** does match this pattern, then a pointer to the Table object representing 3212 ** <tbl> is returned. Otherwise, 0 is returned. 3213 */ 3214 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3215 Table *pTab; 3216 Expr *pExpr; 3217 3218 assert( !p->pGroupBy ); 3219 3220 if( p->pWhere || p->pEList->nExpr!=1 3221 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3222 ){ 3223 return 0; 3224 } 3225 pTab = p->pSrc->a[0].pTab; 3226 pExpr = p->pEList->a[0].pExpr; 3227 assert( pTab && !pTab->pSelect && pExpr ); 3228 3229 if( IsVirtual(pTab) ) return 0; 3230 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3231 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3232 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 3233 if( pExpr->flags&EP_Distinct ) return 0; 3234 3235 return pTab; 3236 } 3237 3238 /* 3239 ** If the source-list item passed as an argument was augmented with an 3240 ** INDEXED BY clause, then try to locate the specified index. If there 3241 ** was such a clause and the named index cannot be found, return 3242 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3243 ** pFrom->pIndex and return SQLITE_OK. 3244 */ 3245 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3246 if( pFrom->pTab && pFrom->zIndex ){ 3247 Table *pTab = pFrom->pTab; 3248 char *zIndex = pFrom->zIndex; 3249 Index *pIdx; 3250 for(pIdx=pTab->pIndex; 3251 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3252 pIdx=pIdx->pNext 3253 ); 3254 if( !pIdx ){ 3255 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3256 pParse->checkSchema = 1; 3257 return SQLITE_ERROR; 3258 } 3259 pFrom->pIndex = pIdx; 3260 } 3261 return SQLITE_OK; 3262 } 3263 3264 /* 3265 ** This routine is a Walker callback for "expanding" a SELECT statement. 3266 ** "Expanding" means to do the following: 3267 ** 3268 ** (1) Make sure VDBE cursor numbers have been assigned to every 3269 ** element of the FROM clause. 3270 ** 3271 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3272 ** defines FROM clause. When views appear in the FROM clause, 3273 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3274 ** that implements the view. A copy is made of the view's SELECT 3275 ** statement so that we can freely modify or delete that statement 3276 ** without worrying about messing up the presistent representation 3277 ** of the view. 3278 ** 3279 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3280 ** on joins and the ON and USING clause of joins. 3281 ** 3282 ** (4) Scan the list of columns in the result set (pEList) looking 3283 ** for instances of the "*" operator or the TABLE.* operator. 3284 ** If found, expand each "*" to be every column in every table 3285 ** and TABLE.* to be every column in TABLE. 3286 ** 3287 */ 3288 static int selectExpander(Walker *pWalker, Select *p){ 3289 Parse *pParse = pWalker->pParse; 3290 int i, j, k; 3291 SrcList *pTabList; 3292 ExprList *pEList; 3293 struct SrcList_item *pFrom; 3294 sqlite3 *db = pParse->db; 3295 Expr *pE, *pRight, *pExpr; 3296 u16 selFlags = p->selFlags; 3297 3298 p->selFlags |= SF_Expanded; 3299 if( db->mallocFailed ){ 3300 return WRC_Abort; 3301 } 3302 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 3303 return WRC_Prune; 3304 } 3305 pTabList = p->pSrc; 3306 pEList = p->pEList; 3307 3308 /* Make sure cursor numbers have been assigned to all entries in 3309 ** the FROM clause of the SELECT statement. 3310 */ 3311 sqlite3SrcListAssignCursors(pParse, pTabList); 3312 3313 /* Look up every table named in the FROM clause of the select. If 3314 ** an entry of the FROM clause is a subquery instead of a table or view, 3315 ** then create a transient table structure to describe the subquery. 3316 */ 3317 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3318 Table *pTab; 3319 if( pFrom->pTab!=0 ){ 3320 /* This statement has already been prepared. There is no need 3321 ** to go further. */ 3322 assert( i==0 ); 3323 return WRC_Prune; 3324 } 3325 if( pFrom->zName==0 ){ 3326 #ifndef SQLITE_OMIT_SUBQUERY 3327 Select *pSel = pFrom->pSelect; 3328 /* A sub-query in the FROM clause of a SELECT */ 3329 assert( pSel!=0 ); 3330 assert( pFrom->pTab==0 ); 3331 sqlite3WalkSelect(pWalker, pSel); 3332 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3333 if( pTab==0 ) return WRC_Abort; 3334 pTab->nRef = 1; 3335 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3336 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3337 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3338 pTab->iPKey = -1; 3339 pTab->nRowEst = 1000000; 3340 pTab->tabFlags |= TF_Ephemeral; 3341 #endif 3342 }else{ 3343 /* An ordinary table or view name in the FROM clause */ 3344 assert( pFrom->pTab==0 ); 3345 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 3346 if( pTab==0 ) return WRC_Abort; 3347 if( pTab->nRef==0xffff ){ 3348 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 3349 pTab->zName); 3350 pFrom->pTab = 0; 3351 return WRC_Abort; 3352 } 3353 pTab->nRef++; 3354 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3355 if( pTab->pSelect || IsVirtual(pTab) ){ 3356 /* We reach here if the named table is a really a view */ 3357 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3358 assert( pFrom->pSelect==0 ); 3359 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3360 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3361 } 3362 #endif 3363 } 3364 3365 /* Locate the index named by the INDEXED BY clause, if any. */ 3366 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3367 return WRC_Abort; 3368 } 3369 } 3370 3371 /* Process NATURAL keywords, and ON and USING clauses of joins. 3372 */ 3373 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3374 return WRC_Abort; 3375 } 3376 3377 /* For every "*" that occurs in the column list, insert the names of 3378 ** all columns in all tables. And for every TABLE.* insert the names 3379 ** of all columns in TABLE. The parser inserted a special expression 3380 ** with the TK_ALL operator for each "*" that it found in the column list. 3381 ** The following code just has to locate the TK_ALL expressions and expand 3382 ** each one to the list of all columns in all tables. 3383 ** 3384 ** The first loop just checks to see if there are any "*" operators 3385 ** that need expanding. 3386 */ 3387 for(k=0; k<pEList->nExpr; k++){ 3388 pE = pEList->a[k].pExpr; 3389 if( pE->op==TK_ALL ) break; 3390 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3391 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3392 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3393 } 3394 if( k<pEList->nExpr ){ 3395 /* 3396 ** If we get here it means the result set contains one or more "*" 3397 ** operators that need to be expanded. Loop through each expression 3398 ** in the result set and expand them one by one. 3399 */ 3400 struct ExprList_item *a = pEList->a; 3401 ExprList *pNew = 0; 3402 int flags = pParse->db->flags; 3403 int longNames = (flags & SQLITE_FullColNames)!=0 3404 && (flags & SQLITE_ShortColNames)==0; 3405 3406 /* When processing FROM-clause subqueries, it is always the case 3407 ** that full_column_names=OFF and short_column_names=ON. The 3408 ** sqlite3ResultSetOfSelect() routine makes it so. */ 3409 assert( (p->selFlags & SF_NestedFrom)==0 3410 || ((flags & SQLITE_FullColNames)==0 && 3411 (flags & SQLITE_ShortColNames)!=0) ); 3412 3413 for(k=0; k<pEList->nExpr; k++){ 3414 pE = a[k].pExpr; 3415 pRight = pE->pRight; 3416 assert( pE->op!=TK_DOT || pRight!=0 ); 3417 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 3418 /* This particular expression does not need to be expanded. 3419 */ 3420 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3421 if( pNew ){ 3422 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3423 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3424 a[k].zName = 0; 3425 a[k].zSpan = 0; 3426 } 3427 a[k].pExpr = 0; 3428 }else{ 3429 /* This expression is a "*" or a "TABLE.*" and needs to be 3430 ** expanded. */ 3431 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3432 char *zTName = 0; /* text of name of TABLE */ 3433 if( pE->op==TK_DOT ){ 3434 assert( pE->pLeft!=0 ); 3435 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3436 zTName = pE->pLeft->u.zToken; 3437 } 3438 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3439 Table *pTab = pFrom->pTab; 3440 Select *pSub = pFrom->pSelect; 3441 char *zTabName = pFrom->zAlias; 3442 const char *zSchemaName = 0; 3443 int iDb; 3444 if( zTabName==0 ){ 3445 zTabName = pTab->zName; 3446 } 3447 if( db->mallocFailed ) break; 3448 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 3449 pSub = 0; 3450 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3451 continue; 3452 } 3453 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3454 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 3455 } 3456 for(j=0; j<pTab->nCol; j++){ 3457 char *zName = pTab->aCol[j].zName; 3458 char *zColname; /* The computed column name */ 3459 char *zToFree; /* Malloced string that needs to be freed */ 3460 Token sColname; /* Computed column name as a token */ 3461 3462 assert( zName ); 3463 if( zTName && pSub 3464 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 3465 ){ 3466 continue; 3467 } 3468 3469 /* If a column is marked as 'hidden' (currently only possible 3470 ** for virtual tables), do not include it in the expanded 3471 ** result-set list. 3472 */ 3473 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3474 assert(IsVirtual(pTab)); 3475 continue; 3476 } 3477 tableSeen = 1; 3478 3479 if( i>0 && zTName==0 ){ 3480 if( (pFrom->jointype & JT_NATURAL)!=0 3481 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 3482 ){ 3483 /* In a NATURAL join, omit the join columns from the 3484 ** table to the right of the join */ 3485 continue; 3486 } 3487 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 3488 /* In a join with a USING clause, omit columns in the 3489 ** using clause from the table on the right. */ 3490 continue; 3491 } 3492 } 3493 pRight = sqlite3Expr(db, TK_ID, zName); 3494 zColname = zName; 3495 zToFree = 0; 3496 if( longNames || pTabList->nSrc>1 ){ 3497 Expr *pLeft; 3498 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3499 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3500 if( zSchemaName ){ 3501 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 3502 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 3503 } 3504 if( longNames ){ 3505 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3506 zToFree = zColname; 3507 } 3508 }else{ 3509 pExpr = pRight; 3510 } 3511 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3512 sColname.z = zColname; 3513 sColname.n = sqlite3Strlen30(zColname); 3514 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3515 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 3516 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 3517 if( pSub ){ 3518 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 3519 testcase( pX->zSpan==0 ); 3520 }else{ 3521 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 3522 zSchemaName, zTabName, zColname); 3523 testcase( pX->zSpan==0 ); 3524 } 3525 pX->bSpanIsTab = 1; 3526 } 3527 sqlite3DbFree(db, zToFree); 3528 } 3529 } 3530 if( !tableSeen ){ 3531 if( zTName ){ 3532 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3533 }else{ 3534 sqlite3ErrorMsg(pParse, "no tables specified"); 3535 } 3536 } 3537 } 3538 } 3539 sqlite3ExprListDelete(db, pEList); 3540 p->pEList = pNew; 3541 } 3542 #if SQLITE_MAX_COLUMN 3543 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3544 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3545 } 3546 #endif 3547 return WRC_Continue; 3548 } 3549 3550 /* 3551 ** No-op routine for the parse-tree walker. 3552 ** 3553 ** When this routine is the Walker.xExprCallback then expression trees 3554 ** are walked without any actions being taken at each node. Presumably, 3555 ** when this routine is used for Walker.xExprCallback then 3556 ** Walker.xSelectCallback is set to do something useful for every 3557 ** subquery in the parser tree. 3558 */ 3559 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3560 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3561 return WRC_Continue; 3562 } 3563 3564 /* 3565 ** This routine "expands" a SELECT statement and all of its subqueries. 3566 ** For additional information on what it means to "expand" a SELECT 3567 ** statement, see the comment on the selectExpand worker callback above. 3568 ** 3569 ** Expanding a SELECT statement is the first step in processing a 3570 ** SELECT statement. The SELECT statement must be expanded before 3571 ** name resolution is performed. 3572 ** 3573 ** If anything goes wrong, an error message is written into pParse. 3574 ** The calling function can detect the problem by looking at pParse->nErr 3575 ** and/or pParse->db->mallocFailed. 3576 */ 3577 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3578 Walker w; 3579 w.xSelectCallback = selectExpander; 3580 w.xExprCallback = exprWalkNoop; 3581 w.pParse = pParse; 3582 sqlite3WalkSelect(&w, pSelect); 3583 } 3584 3585 3586 #ifndef SQLITE_OMIT_SUBQUERY 3587 /* 3588 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3589 ** interface. 3590 ** 3591 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3592 ** information to the Table structure that represents the result set 3593 ** of that subquery. 3594 ** 3595 ** The Table structure that represents the result set was constructed 3596 ** by selectExpander() but the type and collation information was omitted 3597 ** at that point because identifiers had not yet been resolved. This 3598 ** routine is called after identifier resolution. 3599 */ 3600 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3601 Parse *pParse; 3602 int i; 3603 SrcList *pTabList; 3604 struct SrcList_item *pFrom; 3605 3606 assert( p->selFlags & SF_Resolved ); 3607 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3608 p->selFlags |= SF_HasTypeInfo; 3609 pParse = pWalker->pParse; 3610 pTabList = p->pSrc; 3611 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3612 Table *pTab = pFrom->pTab; 3613 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3614 /* A sub-query in the FROM clause of a SELECT */ 3615 Select *pSel = pFrom->pSelect; 3616 assert( pSel ); 3617 while( pSel->pPrior ) pSel = pSel->pPrior; 3618 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3619 } 3620 } 3621 } 3622 return WRC_Continue; 3623 } 3624 #endif 3625 3626 3627 /* 3628 ** This routine adds datatype and collating sequence information to 3629 ** the Table structures of all FROM-clause subqueries in a 3630 ** SELECT statement. 3631 ** 3632 ** Use this routine after name resolution. 3633 */ 3634 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3635 #ifndef SQLITE_OMIT_SUBQUERY 3636 Walker w; 3637 w.xSelectCallback = selectAddSubqueryTypeInfo; 3638 w.xExprCallback = exprWalkNoop; 3639 w.pParse = pParse; 3640 sqlite3WalkSelect(&w, pSelect); 3641 #endif 3642 } 3643 3644 3645 /* 3646 ** This routine sets up a SELECT statement for processing. The 3647 ** following is accomplished: 3648 ** 3649 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3650 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3651 ** * ON and USING clauses are shifted into WHERE statements 3652 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3653 ** * Identifiers in expression are matched to tables. 3654 ** 3655 ** This routine acts recursively on all subqueries within the SELECT. 3656 */ 3657 void sqlite3SelectPrep( 3658 Parse *pParse, /* The parser context */ 3659 Select *p, /* The SELECT statement being coded. */ 3660 NameContext *pOuterNC /* Name context for container */ 3661 ){ 3662 sqlite3 *db; 3663 if( NEVER(p==0) ) return; 3664 db = pParse->db; 3665 if( db->mallocFailed ) return; 3666 if( p->selFlags & SF_HasTypeInfo ) return; 3667 sqlite3SelectExpand(pParse, p); 3668 if( pParse->nErr || db->mallocFailed ) return; 3669 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3670 if( pParse->nErr || db->mallocFailed ) return; 3671 sqlite3SelectAddTypeInfo(pParse, p); 3672 } 3673 3674 /* 3675 ** Reset the aggregate accumulator. 3676 ** 3677 ** The aggregate accumulator is a set of memory cells that hold 3678 ** intermediate results while calculating an aggregate. This 3679 ** routine generates code that stores NULLs in all of those memory 3680 ** cells. 3681 */ 3682 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3683 Vdbe *v = pParse->pVdbe; 3684 int i; 3685 struct AggInfo_func *pFunc; 3686 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3687 return; 3688 } 3689 for(i=0; i<pAggInfo->nColumn; i++){ 3690 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3691 } 3692 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3693 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3694 if( pFunc->iDistinct>=0 ){ 3695 Expr *pE = pFunc->pExpr; 3696 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3697 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3698 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3699 "argument"); 3700 pFunc->iDistinct = -1; 3701 }else{ 3702 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3703 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3704 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3705 } 3706 } 3707 } 3708 } 3709 3710 /* 3711 ** Invoke the OP_AggFinalize opcode for every aggregate function 3712 ** in the AggInfo structure. 3713 */ 3714 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3715 Vdbe *v = pParse->pVdbe; 3716 int i; 3717 struct AggInfo_func *pF; 3718 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3719 ExprList *pList = pF->pExpr->x.pList; 3720 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3721 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3722 (void*)pF->pFunc, P4_FUNCDEF); 3723 } 3724 } 3725 3726 /* 3727 ** Update the accumulator memory cells for an aggregate based on 3728 ** the current cursor position. 3729 */ 3730 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3731 Vdbe *v = pParse->pVdbe; 3732 int i; 3733 int regHit = 0; 3734 int addrHitTest = 0; 3735 struct AggInfo_func *pF; 3736 struct AggInfo_col *pC; 3737 3738 pAggInfo->directMode = 1; 3739 sqlite3ExprCacheClear(pParse); 3740 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3741 int nArg; 3742 int addrNext = 0; 3743 int regAgg; 3744 ExprList *pList = pF->pExpr->x.pList; 3745 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3746 if( pList ){ 3747 nArg = pList->nExpr; 3748 regAgg = sqlite3GetTempRange(pParse, nArg); 3749 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); 3750 }else{ 3751 nArg = 0; 3752 regAgg = 0; 3753 } 3754 if( pF->iDistinct>=0 ){ 3755 addrNext = sqlite3VdbeMakeLabel(v); 3756 assert( nArg==1 ); 3757 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3758 } 3759 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3760 CollSeq *pColl = 0; 3761 struct ExprList_item *pItem; 3762 int j; 3763 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3764 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3765 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3766 } 3767 if( !pColl ){ 3768 pColl = pParse->db->pDfltColl; 3769 } 3770 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 3771 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 3772 } 3773 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3774 (void*)pF->pFunc, P4_FUNCDEF); 3775 sqlite3VdbeChangeP5(v, (u8)nArg); 3776 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3777 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3778 if( addrNext ){ 3779 sqlite3VdbeResolveLabel(v, addrNext); 3780 sqlite3ExprCacheClear(pParse); 3781 } 3782 } 3783 3784 /* Before populating the accumulator registers, clear the column cache. 3785 ** Otherwise, if any of the required column values are already present 3786 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 3787 ** to pC->iMem. But by the time the value is used, the original register 3788 ** may have been used, invalidating the underlying buffer holding the 3789 ** text or blob value. See ticket [883034dcb5]. 3790 ** 3791 ** Another solution would be to change the OP_SCopy used to copy cached 3792 ** values to an OP_Copy. 3793 */ 3794 if( regHit ){ 3795 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); 3796 } 3797 sqlite3ExprCacheClear(pParse); 3798 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3799 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3800 } 3801 pAggInfo->directMode = 0; 3802 sqlite3ExprCacheClear(pParse); 3803 if( addrHitTest ){ 3804 sqlite3VdbeJumpHere(v, addrHitTest); 3805 } 3806 } 3807 3808 /* 3809 ** Add a single OP_Explain instruction to the VDBE to explain a simple 3810 ** count(*) query ("SELECT count(*) FROM pTab"). 3811 */ 3812 #ifndef SQLITE_OMIT_EXPLAIN 3813 static void explainSimpleCount( 3814 Parse *pParse, /* Parse context */ 3815 Table *pTab, /* Table being queried */ 3816 Index *pIdx /* Index used to optimize scan, or NULL */ 3817 ){ 3818 if( pParse->explain==2 ){ 3819 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", 3820 pTab->zName, 3821 pIdx ? "USING COVERING INDEX " : "", 3822 pIdx ? pIdx->zName : "", 3823 pTab->nRowEst 3824 ); 3825 sqlite3VdbeAddOp4( 3826 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 3827 ); 3828 } 3829 } 3830 #else 3831 # define explainSimpleCount(a,b,c) 3832 #endif 3833 3834 /* 3835 ** Generate code for the SELECT statement given in the p argument. 3836 ** 3837 ** The results are distributed in various ways depending on the 3838 ** contents of the SelectDest structure pointed to by argument pDest 3839 ** as follows: 3840 ** 3841 ** pDest->eDest Result 3842 ** ------------ ------------------------------------------- 3843 ** SRT_Output Generate a row of output (using the OP_ResultRow 3844 ** opcode) for each row in the result set. 3845 ** 3846 ** SRT_Mem Only valid if the result is a single column. 3847 ** Store the first column of the first result row 3848 ** in register pDest->iSDParm then abandon the rest 3849 ** of the query. This destination implies "LIMIT 1". 3850 ** 3851 ** SRT_Set The result must be a single column. Store each 3852 ** row of result as the key in table pDest->iSDParm. 3853 ** Apply the affinity pDest->affSdst before storing 3854 ** results. Used to implement "IN (SELECT ...)". 3855 ** 3856 ** SRT_Union Store results as a key in a temporary table 3857 ** identified by pDest->iSDParm. 3858 ** 3859 ** SRT_Except Remove results from the temporary table pDest->iSDParm. 3860 ** 3861 ** SRT_Table Store results in temporary table pDest->iSDParm. 3862 ** This is like SRT_EphemTab except that the table 3863 ** is assumed to already be open. 3864 ** 3865 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 3866 ** the result there. The cursor is left open after 3867 ** returning. This is like SRT_Table except that 3868 ** this destination uses OP_OpenEphemeral to create 3869 ** the table first. 3870 ** 3871 ** SRT_Coroutine Generate a co-routine that returns a new row of 3872 ** results each time it is invoked. The entry point 3873 ** of the co-routine is stored in register pDest->iSDParm. 3874 ** 3875 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 3876 ** set is not empty. 3877 ** 3878 ** SRT_Discard Throw the results away. This is used by SELECT 3879 ** statements within triggers whose only purpose is 3880 ** the side-effects of functions. 3881 ** 3882 ** This routine returns the number of errors. If any errors are 3883 ** encountered, then an appropriate error message is left in 3884 ** pParse->zErrMsg. 3885 ** 3886 ** This routine does NOT free the Select structure passed in. The 3887 ** calling function needs to do that. 3888 */ 3889 int sqlite3Select( 3890 Parse *pParse, /* The parser context */ 3891 Select *p, /* The SELECT statement being coded. */ 3892 SelectDest *pDest /* What to do with the query results */ 3893 ){ 3894 int i, j; /* Loop counters */ 3895 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3896 Vdbe *v; /* The virtual machine under construction */ 3897 int isAgg; /* True for select lists like "count(*)" */ 3898 ExprList *pEList; /* List of columns to extract. */ 3899 SrcList *pTabList; /* List of tables to select from */ 3900 Expr *pWhere; /* The WHERE clause. May be NULL */ 3901 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3902 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3903 Expr *pHaving; /* The HAVING clause. May be NULL */ 3904 int rc = 1; /* Value to return from this function */ 3905 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3906 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 3907 AggInfo sAggInfo; /* Information used by aggregate queries */ 3908 int iEnd; /* Address of the end of the query */ 3909 sqlite3 *db; /* The database connection */ 3910 3911 #ifndef SQLITE_OMIT_EXPLAIN 3912 int iRestoreSelectId = pParse->iSelectId; 3913 pParse->iSelectId = pParse->iNextSelectId++; 3914 #endif 3915 3916 db = pParse->db; 3917 if( p==0 || db->mallocFailed || pParse->nErr ){ 3918 return 1; 3919 } 3920 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3921 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3922 3923 if( IgnorableOrderby(pDest) ){ 3924 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3925 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3926 /* If ORDER BY makes no difference in the output then neither does 3927 ** DISTINCT so it can be removed too. */ 3928 sqlite3ExprListDelete(db, p->pOrderBy); 3929 p->pOrderBy = 0; 3930 p->selFlags &= ~SF_Distinct; 3931 } 3932 sqlite3SelectPrep(pParse, p, 0); 3933 pOrderBy = p->pOrderBy; 3934 pTabList = p->pSrc; 3935 pEList = p->pEList; 3936 if( pParse->nErr || db->mallocFailed ){ 3937 goto select_end; 3938 } 3939 isAgg = (p->selFlags & SF_Aggregate)!=0; 3940 assert( pEList!=0 ); 3941 3942 /* Begin generating code. 3943 */ 3944 v = sqlite3GetVdbe(pParse); 3945 if( v==0 ) goto select_end; 3946 3947 /* If writing to memory or generating a set 3948 ** only a single column may be output. 3949 */ 3950 #ifndef SQLITE_OMIT_SUBQUERY 3951 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3952 goto select_end; 3953 } 3954 #endif 3955 3956 /* Generate code for all sub-queries in the FROM clause 3957 */ 3958 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3959 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3960 struct SrcList_item *pItem = &pTabList->a[i]; 3961 SelectDest dest; 3962 Select *pSub = pItem->pSelect; 3963 int isAggSub; 3964 3965 if( pSub==0 ) continue; 3966 3967 /* Sometimes the code for a subquery will be generated more than 3968 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 3969 ** for example. In that case, do not regenerate the code to manifest 3970 ** a view or the co-routine to implement a view. The first instance 3971 ** is sufficient, though the subroutine to manifest the view does need 3972 ** to be invoked again. */ 3973 if( pItem->addrFillSub ){ 3974 if( pItem->viaCoroutine==0 ){ 3975 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 3976 } 3977 continue; 3978 } 3979 3980 /* Increment Parse.nHeight by the height of the largest expression 3981 ** tree refered to by this, the parent select. The child select 3982 ** may contain expression trees of at most 3983 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3984 ** more conservative than necessary, but much easier than enforcing 3985 ** an exact limit. 3986 */ 3987 pParse->nHeight += sqlite3SelectExprHeight(p); 3988 3989 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3990 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3991 /* This subquery can be absorbed into its parent. */ 3992 if( isAggSub ){ 3993 isAgg = 1; 3994 p->selFlags |= SF_Aggregate; 3995 } 3996 i = -1; 3997 }else if( pTabList->nSrc==1 && (p->selFlags & SF_Materialize)==0 3998 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 3999 ){ 4000 /* Implement a co-routine that will return a single row of the result 4001 ** set on each invocation. 4002 */ 4003 int addrTop; 4004 int addrEof; 4005 pItem->regReturn = ++pParse->nMem; 4006 addrEof = ++pParse->nMem; 4007 /* Before coding the OP_Goto to jump to the start of the main routine, 4008 ** ensure that the jump to the verify-schema routine has already 4009 ** been coded. Otherwise, the verify-schema would likely be coded as 4010 ** part of the co-routine. If the main routine then accessed the 4011 ** database before invoking the co-routine for the first time (for 4012 ** example to initialize a LIMIT register from a sub-select), it would 4013 ** be doing so without having verified the schema version and obtained 4014 ** the required db locks. See ticket d6b36be38. */ 4015 sqlite3CodeVerifySchema(pParse, -1); 4016 sqlite3VdbeAddOp0(v, OP_Goto); 4017 addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor); 4018 sqlite3VdbeChangeP5(v, 1); 4019 VdbeComment((v, "coroutine for %s", pItem->pTab->zName)); 4020 pItem->addrFillSub = addrTop; 4021 sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof); 4022 sqlite3VdbeChangeP5(v, 1); 4023 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4024 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4025 sqlite3Select(pParse, pSub, &dest); 4026 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 4027 pItem->viaCoroutine = 1; 4028 sqlite3VdbeChangeP2(v, addrTop, dest.iSdst); 4029 sqlite3VdbeChangeP3(v, addrTop, dest.nSdst); 4030 sqlite3VdbeAddOp2(v, OP_Integer, 1, addrEof); 4031 sqlite3VdbeAddOp1(v, OP_Yield, pItem->regReturn); 4032 VdbeComment((v, "end %s", pItem->pTab->zName)); 4033 sqlite3VdbeJumpHere(v, addrTop-1); 4034 sqlite3ClearTempRegCache(pParse); 4035 }else{ 4036 /* Generate a subroutine that will fill an ephemeral table with 4037 ** the content of this subquery. pItem->addrFillSub will point 4038 ** to the address of the generated subroutine. pItem->regReturn 4039 ** is a register allocated to hold the subroutine return address 4040 */ 4041 int topAddr; 4042 int onceAddr = 0; 4043 int retAddr; 4044 assert( pItem->addrFillSub==0 ); 4045 pItem->regReturn = ++pParse->nMem; 4046 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4047 pItem->addrFillSub = topAddr+1; 4048 VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); 4049 if( pItem->isCorrelated==0 ){ 4050 /* If the subquery is no correlated and if we are not inside of 4051 ** a trigger, then we only need to compute the value of the subquery 4052 ** once. */ 4053 onceAddr = sqlite3CodeOnce(pParse); 4054 } 4055 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4056 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4057 sqlite3Select(pParse, pSub, &dest); 4058 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 4059 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4060 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4061 VdbeComment((v, "end %s", pItem->pTab->zName)); 4062 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4063 sqlite3ClearTempRegCache(pParse); 4064 } 4065 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4066 goto select_end; 4067 } 4068 pParse->nHeight -= sqlite3SelectExprHeight(p); 4069 pTabList = p->pSrc; 4070 if( !IgnorableOrderby(pDest) ){ 4071 pOrderBy = p->pOrderBy; 4072 } 4073 } 4074 pEList = p->pEList; 4075 #endif 4076 pWhere = p->pWhere; 4077 pGroupBy = p->pGroupBy; 4078 pHaving = p->pHaving; 4079 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4080 4081 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4082 /* If there is are a sequence of queries, do the earlier ones first. 4083 */ 4084 if( p->pPrior ){ 4085 if( p->pRightmost==0 ){ 4086 Select *pLoop, *pRight = 0; 4087 int cnt = 0; 4088 int mxSelect; 4089 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 4090 pLoop->pRightmost = p; 4091 pLoop->pNext = pRight; 4092 pRight = pLoop; 4093 } 4094 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 4095 if( mxSelect && cnt>mxSelect ){ 4096 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 4097 goto select_end; 4098 } 4099 } 4100 rc = multiSelect(pParse, p, pDest); 4101 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4102 return rc; 4103 } 4104 #endif 4105 4106 /* If there is both a GROUP BY and an ORDER BY clause and they are 4107 ** identical, then disable the ORDER BY clause since the GROUP BY 4108 ** will cause elements to come out in the correct order. This is 4109 ** an optimization - the correct answer should result regardless. 4110 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 4111 ** to disable this optimization for testing purposes. 4112 */ 4113 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 4114 && OptimizationEnabled(db, SQLITE_GroupByOrder) ){ 4115 pOrderBy = 0; 4116 } 4117 4118 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4119 ** if the select-list is the same as the ORDER BY list, then this query 4120 ** can be rewritten as a GROUP BY. In other words, this: 4121 ** 4122 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4123 ** 4124 ** is transformed to: 4125 ** 4126 ** SELECT xyz FROM ... GROUP BY xyz 4127 ** 4128 ** The second form is preferred as a single index (or temp-table) may be 4129 ** used for both the ORDER BY and DISTINCT processing. As originally 4130 ** written the query must use a temp-table for at least one of the ORDER 4131 ** BY and DISTINCT, and an index or separate temp-table for the other. 4132 */ 4133 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4134 && sqlite3ExprListCompare(pOrderBy, p->pEList)==0 4135 ){ 4136 p->selFlags &= ~SF_Distinct; 4137 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4138 pGroupBy = p->pGroupBy; 4139 pOrderBy = 0; 4140 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4141 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4142 ** original setting of the SF_Distinct flag, not the current setting */ 4143 assert( sDistinct.isTnct ); 4144 } 4145 4146 /* If there is an ORDER BY clause, then this sorting 4147 ** index might end up being unused if the data can be 4148 ** extracted in pre-sorted order. If that is the case, then the 4149 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4150 ** we figure out that the sorting index is not needed. The addrSortIndex 4151 ** variable is used to facilitate that change. 4152 */ 4153 if( pOrderBy ){ 4154 KeyInfo *pKeyInfo; 4155 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 4156 pOrderBy->iECursor = pParse->nTab++; 4157 p->addrOpenEphm[2] = addrSortIndex = 4158 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4159 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 4160 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4161 }else{ 4162 addrSortIndex = -1; 4163 } 4164 4165 /* If the output is destined for a temporary table, open that table. 4166 */ 4167 if( pDest->eDest==SRT_EphemTab ){ 4168 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4169 } 4170 4171 /* Set the limiter. 4172 */ 4173 iEnd = sqlite3VdbeMakeLabel(v); 4174 p->nSelectRow = (double)LARGEST_INT64; 4175 computeLimitRegisters(pParse, p, iEnd); 4176 if( p->iLimit==0 && addrSortIndex>=0 ){ 4177 sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; 4178 p->selFlags |= SF_UseSorter; 4179 } 4180 4181 /* Open a virtual index to use for the distinct set. 4182 */ 4183 if( p->selFlags & SF_Distinct ){ 4184 sDistinct.tabTnct = pParse->nTab++; 4185 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4186 sDistinct.tabTnct, 0, 0, 4187 (char*)keyInfoFromExprList(pParse, p->pEList), 4188 P4_KEYINFO_HANDOFF); 4189 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4190 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4191 }else{ 4192 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4193 } 4194 4195 if( !isAgg && pGroupBy==0 ){ 4196 /* No aggregate functions and no GROUP BY clause */ 4197 ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0); 4198 4199 /* Begin the database scan. */ 4200 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0); 4201 if( pWInfo==0 ) goto select_end; 4202 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; 4203 if( pWInfo->eDistinct ) sDistinct.eTnctType = pWInfo->eDistinct; 4204 if( pOrderBy && pWInfo->nOBSat==pOrderBy->nExpr ) pOrderBy = 0; 4205 4206 /* If sorting index that was created by a prior OP_OpenEphemeral 4207 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4208 ** into an OP_Noop. 4209 */ 4210 if( addrSortIndex>=0 && pOrderBy==0 ){ 4211 sqlite3VdbeChangeToNoop(v, addrSortIndex); 4212 p->addrOpenEphm[2] = -1; 4213 } 4214 4215 /* Use the standard inner loop. */ 4216 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest, 4217 pWInfo->iContinue, pWInfo->iBreak); 4218 4219 /* End the database scan loop. 4220 */ 4221 sqlite3WhereEnd(pWInfo); 4222 }else{ 4223 /* This case when there exist aggregate functions or a GROUP BY clause 4224 ** or both */ 4225 NameContext sNC; /* Name context for processing aggregate information */ 4226 int iAMem; /* First Mem address for storing current GROUP BY */ 4227 int iBMem; /* First Mem address for previous GROUP BY */ 4228 int iUseFlag; /* Mem address holding flag indicating that at least 4229 ** one row of the input to the aggregator has been 4230 ** processed */ 4231 int iAbortFlag; /* Mem address which causes query abort if positive */ 4232 int groupBySort; /* Rows come from source in GROUP BY order */ 4233 int addrEnd; /* End of processing for this SELECT */ 4234 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4235 int sortOut = 0; /* Output register from the sorter */ 4236 4237 /* Remove any and all aliases between the result set and the 4238 ** GROUP BY clause. 4239 */ 4240 if( pGroupBy ){ 4241 int k; /* Loop counter */ 4242 struct ExprList_item *pItem; /* For looping over expression in a list */ 4243 4244 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4245 pItem->iAlias = 0; 4246 } 4247 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4248 pItem->iAlias = 0; 4249 } 4250 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; 4251 }else{ 4252 p->nSelectRow = (double)1; 4253 } 4254 4255 4256 /* Create a label to jump to when we want to abort the query */ 4257 addrEnd = sqlite3VdbeMakeLabel(v); 4258 4259 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4260 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4261 ** SELECT statement. 4262 */ 4263 memset(&sNC, 0, sizeof(sNC)); 4264 sNC.pParse = pParse; 4265 sNC.pSrcList = pTabList; 4266 sNC.pAggInfo = &sAggInfo; 4267 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4268 sAggInfo.pGroupBy = pGroupBy; 4269 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4270 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 4271 if( pHaving ){ 4272 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4273 } 4274 sAggInfo.nAccumulator = sAggInfo.nColumn; 4275 for(i=0; i<sAggInfo.nFunc; i++){ 4276 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4277 sNC.ncFlags |= NC_InAggFunc; 4278 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4279 sNC.ncFlags &= ~NC_InAggFunc; 4280 } 4281 if( db->mallocFailed ) goto select_end; 4282 4283 /* Processing for aggregates with GROUP BY is very different and 4284 ** much more complex than aggregates without a GROUP BY. 4285 */ 4286 if( pGroupBy ){ 4287 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4288 int j1; /* A-vs-B comparision jump */ 4289 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4290 int regOutputRow; /* Return address register for output subroutine */ 4291 int addrSetAbort; /* Set the abort flag and return */ 4292 int addrTopOfLoop; /* Top of the input loop */ 4293 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4294 int addrReset; /* Subroutine for resetting the accumulator */ 4295 int regReset; /* Return address register for reset subroutine */ 4296 4297 /* If there is a GROUP BY clause we might need a sorting index to 4298 ** implement it. Allocate that sorting index now. If it turns out 4299 ** that we do not need it after all, the OP_SorterOpen instruction 4300 ** will be converted into a Noop. 4301 */ 4302 sAggInfo.sortingIdx = pParse->nTab++; 4303 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 4304 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4305 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4306 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4307 4308 /* Initialize memory locations used by GROUP BY aggregate processing 4309 */ 4310 iUseFlag = ++pParse->nMem; 4311 iAbortFlag = ++pParse->nMem; 4312 regOutputRow = ++pParse->nMem; 4313 addrOutputRow = sqlite3VdbeMakeLabel(v); 4314 regReset = ++pParse->nMem; 4315 addrReset = sqlite3VdbeMakeLabel(v); 4316 iAMem = pParse->nMem + 1; 4317 pParse->nMem += pGroupBy->nExpr; 4318 iBMem = pParse->nMem + 1; 4319 pParse->nMem += pGroupBy->nExpr; 4320 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4321 VdbeComment((v, "clear abort flag")); 4322 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4323 VdbeComment((v, "indicate accumulator empty")); 4324 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4325 4326 /* Begin a loop that will extract all source rows in GROUP BY order. 4327 ** This might involve two separate loops with an OP_Sort in between, or 4328 ** it might be a single loop that uses an index to extract information 4329 ** in the right order to begin with. 4330 */ 4331 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4332 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 0, 0); 4333 if( pWInfo==0 ) goto select_end; 4334 if( pWInfo->nOBSat==pGroupBy->nExpr ){ 4335 /* The optimizer is able to deliver rows in group by order so 4336 ** we do not have to sort. The OP_OpenEphemeral table will be 4337 ** cancelled later because we still need to use the pKeyInfo 4338 */ 4339 groupBySort = 0; 4340 }else{ 4341 /* Rows are coming out in undetermined order. We have to push 4342 ** each row into a sorting index, terminate the first loop, 4343 ** then loop over the sorting index in order to get the output 4344 ** in sorted order 4345 */ 4346 int regBase; 4347 int regRecord; 4348 int nCol; 4349 int nGroupBy; 4350 4351 explainTempTable(pParse, 4352 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 4353 "DISTINCT" : "GROUP BY"); 4354 4355 groupBySort = 1; 4356 nGroupBy = pGroupBy->nExpr; 4357 nCol = nGroupBy + 1; 4358 j = nGroupBy+1; 4359 for(i=0; i<sAggInfo.nColumn; i++){ 4360 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4361 nCol++; 4362 j++; 4363 } 4364 } 4365 regBase = sqlite3GetTempRange(pParse, nCol); 4366 sqlite3ExprCacheClear(pParse); 4367 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4368 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4369 j = nGroupBy+1; 4370 for(i=0; i<sAggInfo.nColumn; i++){ 4371 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4372 if( pCol->iSorterColumn>=j ){ 4373 int r1 = j + regBase; 4374 int r2; 4375 4376 r2 = sqlite3ExprCodeGetColumn(pParse, 4377 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 4378 if( r1!=r2 ){ 4379 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4380 } 4381 j++; 4382 } 4383 } 4384 regRecord = sqlite3GetTempReg(pParse); 4385 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4386 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 4387 sqlite3ReleaseTempReg(pParse, regRecord); 4388 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4389 sqlite3WhereEnd(pWInfo); 4390 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 4391 sortOut = sqlite3GetTempReg(pParse); 4392 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 4393 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 4394 VdbeComment((v, "GROUP BY sort")); 4395 sAggInfo.useSortingIdx = 1; 4396 sqlite3ExprCacheClear(pParse); 4397 } 4398 4399 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4400 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4401 ** Then compare the current GROUP BY terms against the GROUP BY terms 4402 ** from the previous row currently stored in a0, a1, a2... 4403 */ 4404 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4405 sqlite3ExprCacheClear(pParse); 4406 if( groupBySort ){ 4407 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 4408 } 4409 for(j=0; j<pGroupBy->nExpr; j++){ 4410 if( groupBySort ){ 4411 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 4412 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 4413 }else{ 4414 sAggInfo.directMode = 1; 4415 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4416 } 4417 } 4418 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4419 (char*)pKeyInfo, P4_KEYINFO); 4420 j1 = sqlite3VdbeCurrentAddr(v); 4421 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4422 4423 /* Generate code that runs whenever the GROUP BY changes. 4424 ** Changes in the GROUP BY are detected by the previous code 4425 ** block. If there were no changes, this block is skipped. 4426 ** 4427 ** This code copies current group by terms in b0,b1,b2,... 4428 ** over to a0,a1,a2. It then calls the output subroutine 4429 ** and resets the aggregate accumulator registers in preparation 4430 ** for the next GROUP BY batch. 4431 */ 4432 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4433 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4434 VdbeComment((v, "output one row")); 4435 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4436 VdbeComment((v, "check abort flag")); 4437 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4438 VdbeComment((v, "reset accumulator")); 4439 4440 /* Update the aggregate accumulators based on the content of 4441 ** the current row 4442 */ 4443 sqlite3VdbeJumpHere(v, j1); 4444 updateAccumulator(pParse, &sAggInfo); 4445 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4446 VdbeComment((v, "indicate data in accumulator")); 4447 4448 /* End of the loop 4449 */ 4450 if( groupBySort ){ 4451 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 4452 }else{ 4453 sqlite3WhereEnd(pWInfo); 4454 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 4455 } 4456 4457 /* Output the final row of result 4458 */ 4459 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4460 VdbeComment((v, "output final row")); 4461 4462 /* Jump over the subroutines 4463 */ 4464 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4465 4466 /* Generate a subroutine that outputs a single row of the result 4467 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4468 ** is less than or equal to zero, the subroutine is a no-op. If 4469 ** the processing calls for the query to abort, this subroutine 4470 ** increments the iAbortFlag memory location before returning in 4471 ** order to signal the caller to abort. 4472 */ 4473 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4474 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4475 VdbeComment((v, "set abort flag")); 4476 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4477 sqlite3VdbeResolveLabel(v, addrOutputRow); 4478 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4479 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4480 VdbeComment((v, "Groupby result generator entry point")); 4481 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4482 finalizeAggFunctions(pParse, &sAggInfo); 4483 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4484 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4485 &sDistinct, pDest, 4486 addrOutputRow+1, addrSetAbort); 4487 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4488 VdbeComment((v, "end groupby result generator")); 4489 4490 /* Generate a subroutine that will reset the group-by accumulator 4491 */ 4492 sqlite3VdbeResolveLabel(v, addrReset); 4493 resetAccumulator(pParse, &sAggInfo); 4494 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4495 4496 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4497 else { 4498 ExprList *pDel = 0; 4499 #ifndef SQLITE_OMIT_BTREECOUNT 4500 Table *pTab; 4501 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4502 /* If isSimpleCount() returns a pointer to a Table structure, then 4503 ** the SQL statement is of the form: 4504 ** 4505 ** SELECT count(*) FROM <tbl> 4506 ** 4507 ** where the Table structure returned represents table <tbl>. 4508 ** 4509 ** This statement is so common that it is optimized specially. The 4510 ** OP_Count instruction is executed either on the intkey table that 4511 ** contains the data for table <tbl> or on one of its indexes. It 4512 ** is better to execute the op on an index, as indexes are almost 4513 ** always spread across less pages than their corresponding tables. 4514 */ 4515 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4516 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4517 Index *pIdx; /* Iterator variable */ 4518 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4519 Index *pBest = 0; /* Best index found so far */ 4520 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4521 4522 sqlite3CodeVerifySchema(pParse, iDb); 4523 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4524 4525 /* Search for the index that has the least amount of columns. If 4526 ** there is such an index, and it has less columns than the table 4527 ** does, then we can assume that it consumes less space on disk and 4528 ** will therefore be cheaper to scan to determine the query result. 4529 ** In this case set iRoot to the root page number of the index b-tree 4530 ** and pKeyInfo to the KeyInfo structure required to navigate the 4531 ** index. 4532 ** 4533 ** (2011-04-15) Do not do a full scan of an unordered index. 4534 ** 4535 ** In practice the KeyInfo structure will not be used. It is only 4536 ** passed to keep OP_OpenRead happy. 4537 */ 4538 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4539 if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){ 4540 pBest = pIdx; 4541 } 4542 } 4543 if( pBest && pBest->nColumn<pTab->nCol ){ 4544 iRoot = pBest->tnum; 4545 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4546 } 4547 4548 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4549 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4550 if( pKeyInfo ){ 4551 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4552 } 4553 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4554 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4555 explainSimpleCount(pParse, pTab, pBest); 4556 }else 4557 #endif /* SQLITE_OMIT_BTREECOUNT */ 4558 { 4559 /* Check if the query is of one of the following forms: 4560 ** 4561 ** SELECT min(x) FROM ... 4562 ** SELECT max(x) FROM ... 4563 ** 4564 ** If it is, then ask the code in where.c to attempt to sort results 4565 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4566 ** If where.c is able to produce results sorted in this order, then 4567 ** add vdbe code to break out of the processing loop after the 4568 ** first iteration (since the first iteration of the loop is 4569 ** guaranteed to operate on the row with the minimum or maximum 4570 ** value of x, the only row required). 4571 ** 4572 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4573 ** modify behavior as follows: 4574 ** 4575 ** + If the query is a "SELECT min(x)", then the loop coded by 4576 ** where.c should not iterate over any values with a NULL value 4577 ** for x. 4578 ** 4579 ** + The optimizer code in where.c (the thing that decides which 4580 ** index or indices to use) should place a different priority on 4581 ** satisfying the 'ORDER BY' clause than it does in other cases. 4582 ** Refer to code and comments in where.c for details. 4583 */ 4584 ExprList *pMinMax = 0; 4585 u8 flag = WHERE_ORDERBY_NORMAL; 4586 4587 assert( p->pGroupBy==0 ); 4588 assert( flag==0 ); 4589 if( p->pHaving==0 ){ 4590 flag = minMaxQuery(&sAggInfo, &pMinMax); 4591 } 4592 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 4593 4594 if( flag ){ 4595 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 4596 pDel = pMinMax; 4597 if( pMinMax && !db->mallocFailed ){ 4598 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4599 pMinMax->a[0].pExpr->op = TK_COLUMN; 4600 } 4601 } 4602 4603 /* This case runs if the aggregate has no GROUP BY clause. The 4604 ** processing is much simpler since there is only a single row 4605 ** of output. 4606 */ 4607 resetAccumulator(pParse, &sAggInfo); 4608 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 4609 if( pWInfo==0 ){ 4610 sqlite3ExprListDelete(db, pDel); 4611 goto select_end; 4612 } 4613 updateAccumulator(pParse, &sAggInfo); 4614 assert( pMinMax==0 || pMinMax->nExpr==1 ); 4615 if( pWInfo->nOBSat>0 ){ 4616 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4617 VdbeComment((v, "%s() by index", 4618 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4619 } 4620 sqlite3WhereEnd(pWInfo); 4621 finalizeAggFunctions(pParse, &sAggInfo); 4622 } 4623 4624 pOrderBy = 0; 4625 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4626 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, 0, 4627 pDest, addrEnd, addrEnd); 4628 sqlite3ExprListDelete(db, pDel); 4629 } 4630 sqlite3VdbeResolveLabel(v, addrEnd); 4631 4632 } /* endif aggregate query */ 4633 4634 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 4635 explainTempTable(pParse, "DISTINCT"); 4636 } 4637 4638 /* If there is an ORDER BY clause, then we need to sort the results 4639 ** and send them to the callback one by one. 4640 */ 4641 if( pOrderBy ){ 4642 explainTempTable(pParse, "ORDER BY"); 4643 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4644 } 4645 4646 /* Jump here to skip this query 4647 */ 4648 sqlite3VdbeResolveLabel(v, iEnd); 4649 4650 /* The SELECT was successfully coded. Set the return code to 0 4651 ** to indicate no errors. 4652 */ 4653 rc = 0; 4654 4655 /* Control jumps to here if an error is encountered above, or upon 4656 ** successful coding of the SELECT. 4657 */ 4658 select_end: 4659 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4660 4661 /* Identify column names if results of the SELECT are to be output. 4662 */ 4663 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4664 generateColumnNames(pParse, pTabList, pEList); 4665 } 4666 4667 sqlite3DbFree(db, sAggInfo.aCol); 4668 sqlite3DbFree(db, sAggInfo.aFunc); 4669 return rc; 4670 } 4671 4672 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 4673 /* 4674 ** Generate a human-readable description of a the Select object. 4675 */ 4676 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 4677 sqlite3ExplainPrintf(pVdbe, "SELECT "); 4678 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 4679 if( p->selFlags & SF_Distinct ){ 4680 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 4681 } 4682 if( p->selFlags & SF_Aggregate ){ 4683 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 4684 } 4685 sqlite3ExplainNL(pVdbe); 4686 sqlite3ExplainPrintf(pVdbe, " "); 4687 } 4688 sqlite3ExplainExprList(pVdbe, p->pEList); 4689 sqlite3ExplainNL(pVdbe); 4690 if( p->pSrc && p->pSrc->nSrc ){ 4691 int i; 4692 sqlite3ExplainPrintf(pVdbe, "FROM "); 4693 sqlite3ExplainPush(pVdbe); 4694 for(i=0; i<p->pSrc->nSrc; i++){ 4695 struct SrcList_item *pItem = &p->pSrc->a[i]; 4696 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 4697 if( pItem->pSelect ){ 4698 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 4699 if( pItem->pTab ){ 4700 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 4701 } 4702 }else if( pItem->zName ){ 4703 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 4704 } 4705 if( pItem->zAlias ){ 4706 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 4707 } 4708 if( pItem->jointype & JT_LEFT ){ 4709 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 4710 } 4711 sqlite3ExplainNL(pVdbe); 4712 } 4713 sqlite3ExplainPop(pVdbe); 4714 } 4715 if( p->pWhere ){ 4716 sqlite3ExplainPrintf(pVdbe, "WHERE "); 4717 sqlite3ExplainExpr(pVdbe, p->pWhere); 4718 sqlite3ExplainNL(pVdbe); 4719 } 4720 if( p->pGroupBy ){ 4721 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 4722 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 4723 sqlite3ExplainNL(pVdbe); 4724 } 4725 if( p->pHaving ){ 4726 sqlite3ExplainPrintf(pVdbe, "HAVING "); 4727 sqlite3ExplainExpr(pVdbe, p->pHaving); 4728 sqlite3ExplainNL(pVdbe); 4729 } 4730 if( p->pOrderBy ){ 4731 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 4732 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 4733 sqlite3ExplainNL(pVdbe); 4734 } 4735 if( p->pLimit ){ 4736 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 4737 sqlite3ExplainExpr(pVdbe, p->pLimit); 4738 sqlite3ExplainNL(pVdbe); 4739 } 4740 if( p->pOffset ){ 4741 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 4742 sqlite3ExplainExpr(pVdbe, p->pOffset); 4743 sqlite3ExplainNL(pVdbe); 4744 } 4745 } 4746 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 4747 if( p==0 ){ 4748 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 4749 return; 4750 } 4751 while( p->pPrior ){ 4752 p->pPrior->pNext = p; 4753 p = p->pPrior; 4754 } 4755 sqlite3ExplainPush(pVdbe); 4756 while( p ){ 4757 explainOneSelect(pVdbe, p); 4758 p = p->pNext; 4759 if( p==0 ) break; 4760 sqlite3ExplainNL(pVdbe); 4761 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 4762 } 4763 sqlite3ExplainPrintf(pVdbe, "END"); 4764 sqlite3ExplainPop(pVdbe); 4765 } 4766 4767 /* End of the structure debug printing code 4768 *****************************************************************************/ 4769 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 4770