xref: /sqlite-3.40.0/src/select.c (revision 43a9385d)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%s/%p: ",(S)->zSelName,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
58   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
59 };
60 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
61 
62 /*
63 ** Delete all the content of a Select structure.  Deallocate the structure
64 ** itself only if bFree is true.
65 */
66 static void clearSelect(sqlite3 *db, Select *p, int bFree){
67   while( p ){
68     Select *pPrior = p->pPrior;
69     sqlite3ExprListDelete(db, p->pEList);
70     sqlite3SrcListDelete(db, p->pSrc);
71     sqlite3ExprDelete(db, p->pWhere);
72     sqlite3ExprListDelete(db, p->pGroupBy);
73     sqlite3ExprDelete(db, p->pHaving);
74     sqlite3ExprListDelete(db, p->pOrderBy);
75     sqlite3ExprDelete(db, p->pLimit);
76     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
77     if( bFree ) sqlite3DbFreeNN(db, p);
78     p = pPrior;
79     bFree = 1;
80   }
81 }
82 
83 /*
84 ** Initialize a SelectDest structure.
85 */
86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
87   pDest->eDest = (u8)eDest;
88   pDest->iSDParm = iParm;
89   pDest->zAffSdst = 0;
90   pDest->iSdst = 0;
91   pDest->nSdst = 0;
92 }
93 
94 
95 /*
96 ** Allocate a new Select structure and return a pointer to that
97 ** structure.
98 */
99 Select *sqlite3SelectNew(
100   Parse *pParse,        /* Parsing context */
101   ExprList *pEList,     /* which columns to include in the result */
102   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
103   Expr *pWhere,         /* the WHERE clause */
104   ExprList *pGroupBy,   /* the GROUP BY clause */
105   Expr *pHaving,        /* the HAVING clause */
106   ExprList *pOrderBy,   /* the ORDER BY clause */
107   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
108   Expr *pLimit          /* LIMIT value.  NULL means not used */
109 ){
110   Select *pNew;
111   Select standin;
112   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
113   if( pNew==0 ){
114     assert( pParse->db->mallocFailed );
115     pNew = &standin;
116   }
117   if( pEList==0 ){
118     pEList = sqlite3ExprListAppend(pParse, 0,
119                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
120   }
121   pNew->pEList = pEList;
122   pNew->op = TK_SELECT;
123   pNew->selFlags = selFlags;
124   pNew->iLimit = 0;
125   pNew->iOffset = 0;
126 #if SELECTTRACE_ENABLED
127   pNew->zSelName[0] = 0;
128 #endif
129   pNew->addrOpenEphm[0] = -1;
130   pNew->addrOpenEphm[1] = -1;
131   pNew->nSelectRow = 0;
132   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
133   pNew->pSrc = pSrc;
134   pNew->pWhere = pWhere;
135   pNew->pGroupBy = pGroupBy;
136   pNew->pHaving = pHaving;
137   pNew->pOrderBy = pOrderBy;
138   pNew->pPrior = 0;
139   pNew->pNext = 0;
140   pNew->pLimit = pLimit;
141   pNew->pWith = 0;
142   if( pParse->db->mallocFailed ) {
143     clearSelect(pParse->db, pNew, pNew!=&standin);
144     pNew = 0;
145   }else{
146     assert( pNew->pSrc!=0 || pParse->nErr>0 );
147   }
148   assert( pNew!=&standin );
149   return pNew;
150 }
151 
152 #if SELECTTRACE_ENABLED
153 /*
154 ** Set the name of a Select object
155 */
156 void sqlite3SelectSetName(Select *p, const char *zName){
157   if( p && zName ){
158     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
159   }
160 }
161 #endif
162 
163 
164 /*
165 ** Delete the given Select structure and all of its substructures.
166 */
167 void sqlite3SelectDelete(sqlite3 *db, Select *p){
168   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
169 }
170 
171 /*
172 ** Return a pointer to the right-most SELECT statement in a compound.
173 */
174 static Select *findRightmost(Select *p){
175   while( p->pNext ) p = p->pNext;
176   return p;
177 }
178 
179 /*
180 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
181 ** type of join.  Return an integer constant that expresses that type
182 ** in terms of the following bit values:
183 **
184 **     JT_INNER
185 **     JT_CROSS
186 **     JT_OUTER
187 **     JT_NATURAL
188 **     JT_LEFT
189 **     JT_RIGHT
190 **
191 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
192 **
193 ** If an illegal or unsupported join type is seen, then still return
194 ** a join type, but put an error in the pParse structure.
195 */
196 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
197   int jointype = 0;
198   Token *apAll[3];
199   Token *p;
200                              /*   0123456789 123456789 123456789 123 */
201   static const char zKeyText[] = "naturaleftouterightfullinnercross";
202   static const struct {
203     u8 i;        /* Beginning of keyword text in zKeyText[] */
204     u8 nChar;    /* Length of the keyword in characters */
205     u8 code;     /* Join type mask */
206   } aKeyword[] = {
207     /* natural */ { 0,  7, JT_NATURAL                },
208     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
209     /* outer   */ { 10, 5, JT_OUTER                  },
210     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
211     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
212     /* inner   */ { 23, 5, JT_INNER                  },
213     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
214   };
215   int i, j;
216   apAll[0] = pA;
217   apAll[1] = pB;
218   apAll[2] = pC;
219   for(i=0; i<3 && apAll[i]; i++){
220     p = apAll[i];
221     for(j=0; j<ArraySize(aKeyword); j++){
222       if( p->n==aKeyword[j].nChar
223           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
224         jointype |= aKeyword[j].code;
225         break;
226       }
227     }
228     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
229     if( j>=ArraySize(aKeyword) ){
230       jointype |= JT_ERROR;
231       break;
232     }
233   }
234   if(
235      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
236      (jointype & JT_ERROR)!=0
237   ){
238     const char *zSp = " ";
239     assert( pB!=0 );
240     if( pC==0 ){ zSp++; }
241     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
242        "%T %T%s%T", pA, pB, zSp, pC);
243     jointype = JT_INNER;
244   }else if( (jointype & JT_OUTER)!=0
245          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
246     sqlite3ErrorMsg(pParse,
247       "RIGHT and FULL OUTER JOINs are not currently supported");
248     jointype = JT_INNER;
249   }
250   return jointype;
251 }
252 
253 /*
254 ** Return the index of a column in a table.  Return -1 if the column
255 ** is not contained in the table.
256 */
257 static int columnIndex(Table *pTab, const char *zCol){
258   int i;
259   for(i=0; i<pTab->nCol; i++){
260     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
261   }
262   return -1;
263 }
264 
265 /*
266 ** Search the first N tables in pSrc, from left to right, looking for a
267 ** table that has a column named zCol.
268 **
269 ** When found, set *piTab and *piCol to the table index and column index
270 ** of the matching column and return TRUE.
271 **
272 ** If not found, return FALSE.
273 */
274 static int tableAndColumnIndex(
275   SrcList *pSrc,       /* Array of tables to search */
276   int N,               /* Number of tables in pSrc->a[] to search */
277   const char *zCol,    /* Name of the column we are looking for */
278   int *piTab,          /* Write index of pSrc->a[] here */
279   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
280 ){
281   int i;               /* For looping over tables in pSrc */
282   int iCol;            /* Index of column matching zCol */
283 
284   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
285   for(i=0; i<N; i++){
286     iCol = columnIndex(pSrc->a[i].pTab, zCol);
287     if( iCol>=0 ){
288       if( piTab ){
289         *piTab = i;
290         *piCol = iCol;
291       }
292       return 1;
293     }
294   }
295   return 0;
296 }
297 
298 /*
299 ** This function is used to add terms implied by JOIN syntax to the
300 ** WHERE clause expression of a SELECT statement. The new term, which
301 ** is ANDed with the existing WHERE clause, is of the form:
302 **
303 **    (tab1.col1 = tab2.col2)
304 **
305 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
306 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
307 ** column iColRight of tab2.
308 */
309 static void addWhereTerm(
310   Parse *pParse,                  /* Parsing context */
311   SrcList *pSrc,                  /* List of tables in FROM clause */
312   int iLeft,                      /* Index of first table to join in pSrc */
313   int iColLeft,                   /* Index of column in first table */
314   int iRight,                     /* Index of second table in pSrc */
315   int iColRight,                  /* Index of column in second table */
316   int isOuterJoin,                /* True if this is an OUTER join */
317   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
318 ){
319   sqlite3 *db = pParse->db;
320   Expr *pE1;
321   Expr *pE2;
322   Expr *pEq;
323 
324   assert( iLeft<iRight );
325   assert( pSrc->nSrc>iRight );
326   assert( pSrc->a[iLeft].pTab );
327   assert( pSrc->a[iRight].pTab );
328 
329   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
330   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
331 
332   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
333   if( pEq && isOuterJoin ){
334     ExprSetProperty(pEq, EP_FromJoin);
335     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
336     ExprSetVVAProperty(pEq, EP_NoReduce);
337     pEq->iRightJoinTable = (i16)pE2->iTable;
338   }
339   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
340 }
341 
342 /*
343 ** Set the EP_FromJoin property on all terms of the given expression.
344 ** And set the Expr.iRightJoinTable to iTable for every term in the
345 ** expression.
346 **
347 ** The EP_FromJoin property is used on terms of an expression to tell
348 ** the LEFT OUTER JOIN processing logic that this term is part of the
349 ** join restriction specified in the ON or USING clause and not a part
350 ** of the more general WHERE clause.  These terms are moved over to the
351 ** WHERE clause during join processing but we need to remember that they
352 ** originated in the ON or USING clause.
353 **
354 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
355 ** expression depends on table iRightJoinTable even if that table is not
356 ** explicitly mentioned in the expression.  That information is needed
357 ** for cases like this:
358 **
359 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
360 **
361 ** The where clause needs to defer the handling of the t1.x=5
362 ** term until after the t2 loop of the join.  In that way, a
363 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
364 ** defer the handling of t1.x=5, it will be processed immediately
365 ** after the t1 loop and rows with t1.x!=5 will never appear in
366 ** the output, which is incorrect.
367 */
368 static void setJoinExpr(Expr *p, int iTable){
369   while( p ){
370     ExprSetProperty(p, EP_FromJoin);
371     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
372     ExprSetVVAProperty(p, EP_NoReduce);
373     p->iRightJoinTable = (i16)iTable;
374     if( p->op==TK_FUNCTION && p->x.pList ){
375       int i;
376       for(i=0; i<p->x.pList->nExpr; i++){
377         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
378       }
379     }
380     setJoinExpr(p->pLeft, iTable);
381     p = p->pRight;
382   }
383 }
384 
385 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
386 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
387 ** an ordinary term that omits the EP_FromJoin mark.
388 **
389 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
390 */
391 static void unsetJoinExpr(Expr *p, int iTable){
392   while( p ){
393     if( ExprHasProperty(p, EP_FromJoin)
394      && (iTable<0 || p->iRightJoinTable==iTable) ){
395       ExprClearProperty(p, EP_FromJoin);
396     }
397     if( p->op==TK_FUNCTION && p->x.pList ){
398       int i;
399       for(i=0; i<p->x.pList->nExpr; i++){
400         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
401       }
402     }
403     unsetJoinExpr(p->pLeft, iTable);
404     p = p->pRight;
405   }
406 }
407 
408 /*
409 ** This routine processes the join information for a SELECT statement.
410 ** ON and USING clauses are converted into extra terms of the WHERE clause.
411 ** NATURAL joins also create extra WHERE clause terms.
412 **
413 ** The terms of a FROM clause are contained in the Select.pSrc structure.
414 ** The left most table is the first entry in Select.pSrc.  The right-most
415 ** table is the last entry.  The join operator is held in the entry to
416 ** the left.  Thus entry 0 contains the join operator for the join between
417 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
418 ** also attached to the left entry.
419 **
420 ** This routine returns the number of errors encountered.
421 */
422 static int sqliteProcessJoin(Parse *pParse, Select *p){
423   SrcList *pSrc;                  /* All tables in the FROM clause */
424   int i, j;                       /* Loop counters */
425   struct SrcList_item *pLeft;     /* Left table being joined */
426   struct SrcList_item *pRight;    /* Right table being joined */
427 
428   pSrc = p->pSrc;
429   pLeft = &pSrc->a[0];
430   pRight = &pLeft[1];
431   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
432     Table *pRightTab = pRight->pTab;
433     int isOuter;
434 
435     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
436     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
437 
438     /* When the NATURAL keyword is present, add WHERE clause terms for
439     ** every column that the two tables have in common.
440     */
441     if( pRight->fg.jointype & JT_NATURAL ){
442       if( pRight->pOn || pRight->pUsing ){
443         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
444            "an ON or USING clause", 0);
445         return 1;
446       }
447       for(j=0; j<pRightTab->nCol; j++){
448         char *zName;   /* Name of column in the right table */
449         int iLeft;     /* Matching left table */
450         int iLeftCol;  /* Matching column in the left table */
451 
452         zName = pRightTab->aCol[j].zName;
453         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
454           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
455                        isOuter, &p->pWhere);
456         }
457       }
458     }
459 
460     /* Disallow both ON and USING clauses in the same join
461     */
462     if( pRight->pOn && pRight->pUsing ){
463       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
464         "clauses in the same join");
465       return 1;
466     }
467 
468     /* Add the ON clause to the end of the WHERE clause, connected by
469     ** an AND operator.
470     */
471     if( pRight->pOn ){
472       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
473       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
474       pRight->pOn = 0;
475     }
476 
477     /* Create extra terms on the WHERE clause for each column named
478     ** in the USING clause.  Example: If the two tables to be joined are
479     ** A and B and the USING clause names X, Y, and Z, then add this
480     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
481     ** Report an error if any column mentioned in the USING clause is
482     ** not contained in both tables to be joined.
483     */
484     if( pRight->pUsing ){
485       IdList *pList = pRight->pUsing;
486       for(j=0; j<pList->nId; j++){
487         char *zName;     /* Name of the term in the USING clause */
488         int iLeft;       /* Table on the left with matching column name */
489         int iLeftCol;    /* Column number of matching column on the left */
490         int iRightCol;   /* Column number of matching column on the right */
491 
492         zName = pList->a[j].zName;
493         iRightCol = columnIndex(pRightTab, zName);
494         if( iRightCol<0
495          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
496         ){
497           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
498             "not present in both tables", zName);
499           return 1;
500         }
501         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
502                      isOuter, &p->pWhere);
503       }
504     }
505   }
506   return 0;
507 }
508 
509 /* Forward reference */
510 static KeyInfo *keyInfoFromExprList(
511   Parse *pParse,       /* Parsing context */
512   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
513   int iStart,          /* Begin with this column of pList */
514   int nExtra           /* Add this many extra columns to the end */
515 );
516 
517 /*
518 ** Generate code that will push the record in registers regData
519 ** through regData+nData-1 onto the sorter.
520 */
521 static void pushOntoSorter(
522   Parse *pParse,         /* Parser context */
523   SortCtx *pSort,        /* Information about the ORDER BY clause */
524   Select *pSelect,       /* The whole SELECT statement */
525   int regData,           /* First register holding data to be sorted */
526   int regOrigData,       /* First register holding data before packing */
527   int nData,             /* Number of elements in the data array */
528   int nPrefixReg         /* No. of reg prior to regData available for use */
529 ){
530   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
531   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
532   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
533   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
534   int regBase;                                     /* Regs for sorter record */
535   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
536   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
537   int op;                            /* Opcode to add sorter record to sorter */
538   int iLimit;                        /* LIMIT counter */
539 
540   assert( bSeq==0 || bSeq==1 );
541   assert( nData==1 || regData==regOrigData || regOrigData==0 );
542   if( nPrefixReg ){
543     assert( nPrefixReg==nExpr+bSeq );
544     regBase = regData - nExpr - bSeq;
545   }else{
546     regBase = pParse->nMem + 1;
547     pParse->nMem += nBase;
548   }
549   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
550   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
551   pSort->labelDone = sqlite3VdbeMakeLabel(v);
552   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
553                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
554   if( bSeq ){
555     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
556   }
557   if( nPrefixReg==0 && nData>0 ){
558     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
559   }
560   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
561   if( nOBSat>0 ){
562     int regPrevKey;   /* The first nOBSat columns of the previous row */
563     int addrFirst;    /* Address of the OP_IfNot opcode */
564     int addrJmp;      /* Address of the OP_Jump opcode */
565     VdbeOp *pOp;      /* Opcode that opens the sorter */
566     int nKey;         /* Number of sorting key columns, including OP_Sequence */
567     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
568 
569     regPrevKey = pParse->nMem+1;
570     pParse->nMem += pSort->nOBSat;
571     nKey = nExpr - pSort->nOBSat + bSeq;
572     if( bSeq ){
573       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
574     }else{
575       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
576     }
577     VdbeCoverage(v);
578     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
579     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
580     if( pParse->db->mallocFailed ) return;
581     pOp->p2 = nKey + nData;
582     pKI = pOp->p4.pKeyInfo;
583     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
584     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
585     testcase( pKI->nAllField > pKI->nKeyField+2 );
586     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
587                                            pKI->nAllField-pKI->nKeyField-1);
588     addrJmp = sqlite3VdbeCurrentAddr(v);
589     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
590     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
591     pSort->regReturn = ++pParse->nMem;
592     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
593     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
594     if( iLimit ){
595       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
596       VdbeCoverage(v);
597     }
598     sqlite3VdbeJumpHere(v, addrFirst);
599     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
600     sqlite3VdbeJumpHere(v, addrJmp);
601   }
602   if( pSort->sortFlags & SORTFLAG_UseSorter ){
603     op = OP_SorterInsert;
604   }else{
605     op = OP_IdxInsert;
606   }
607   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
608                        regBase+nOBSat, nBase-nOBSat);
609   if( iLimit ){
610     int addr;
611     int r1 = 0;
612     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
613     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
614     ** fills up, delete the least entry in the sorter after each insert.
615     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
616     addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
617     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
618     if( pSort->bOrderedInnerLoop ){
619       r1 = ++pParse->nMem;
620       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
621       VdbeComment((v, "seq"));
622     }
623     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
624     if( pSort->bOrderedInnerLoop ){
625       /* If the inner loop is driven by an index such that values from
626       ** the same iteration of the inner loop are in sorted order, then
627       ** immediately jump to the next iteration of an inner loop if the
628       ** entry from the current iteration does not fit into the top
629       ** LIMIT+OFFSET entries of the sorter. */
630       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
631       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
632       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
633       VdbeCoverage(v);
634     }
635     sqlite3VdbeJumpHere(v, addr);
636   }
637 }
638 
639 /*
640 ** Add code to implement the OFFSET
641 */
642 static void codeOffset(
643   Vdbe *v,          /* Generate code into this VM */
644   int iOffset,      /* Register holding the offset counter */
645   int iContinue     /* Jump here to skip the current record */
646 ){
647   if( iOffset>0 ){
648     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
649     VdbeComment((v, "OFFSET"));
650   }
651 }
652 
653 /*
654 ** Add code that will check to make sure the N registers starting at iMem
655 ** form a distinct entry.  iTab is a sorting index that holds previously
656 ** seen combinations of the N values.  A new entry is made in iTab
657 ** if the current N values are new.
658 **
659 ** A jump to addrRepeat is made and the N+1 values are popped from the
660 ** stack if the top N elements are not distinct.
661 */
662 static void codeDistinct(
663   Parse *pParse,     /* Parsing and code generating context */
664   int iTab,          /* A sorting index used to test for distinctness */
665   int addrRepeat,    /* Jump to here if not distinct */
666   int N,             /* Number of elements */
667   int iMem           /* First element */
668 ){
669   Vdbe *v;
670   int r1;
671 
672   v = pParse->pVdbe;
673   r1 = sqlite3GetTempReg(pParse);
674   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
675   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
676   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
677   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
678   sqlite3ReleaseTempReg(pParse, r1);
679 }
680 
681 /*
682 ** This routine generates the code for the inside of the inner loop
683 ** of a SELECT.
684 **
685 ** If srcTab is negative, then the p->pEList expressions
686 ** are evaluated in order to get the data for this row.  If srcTab is
687 ** zero or more, then data is pulled from srcTab and p->pEList is used only
688 ** to get the number of columns and the collation sequence for each column.
689 */
690 static void selectInnerLoop(
691   Parse *pParse,          /* The parser context */
692   Select *p,              /* The complete select statement being coded */
693   int srcTab,             /* Pull data from this table if non-negative */
694   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
695   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
696   SelectDest *pDest,      /* How to dispose of the results */
697   int iContinue,          /* Jump here to continue with next row */
698   int iBreak              /* Jump here to break out of the inner loop */
699 ){
700   Vdbe *v = pParse->pVdbe;
701   int i;
702   int hasDistinct;            /* True if the DISTINCT keyword is present */
703   int eDest = pDest->eDest;   /* How to dispose of results */
704   int iParm = pDest->iSDParm; /* First argument to disposal method */
705   int nResultCol;             /* Number of result columns */
706   int nPrefixReg = 0;         /* Number of extra registers before regResult */
707 
708   /* Usually, regResult is the first cell in an array of memory cells
709   ** containing the current result row. In this case regOrig is set to the
710   ** same value. However, if the results are being sent to the sorter, the
711   ** values for any expressions that are also part of the sort-key are omitted
712   ** from this array. In this case regOrig is set to zero.  */
713   int regResult;              /* Start of memory holding current results */
714   int regOrig;                /* Start of memory holding full result (or 0) */
715 
716   assert( v );
717   assert( p->pEList!=0 );
718   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
719   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
720   if( pSort==0 && !hasDistinct ){
721     assert( iContinue!=0 );
722     codeOffset(v, p->iOffset, iContinue);
723   }
724 
725   /* Pull the requested columns.
726   */
727   nResultCol = p->pEList->nExpr;
728 
729   if( pDest->iSdst==0 ){
730     if( pSort ){
731       nPrefixReg = pSort->pOrderBy->nExpr;
732       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
733       pParse->nMem += nPrefixReg;
734     }
735     pDest->iSdst = pParse->nMem+1;
736     pParse->nMem += nResultCol;
737   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
738     /* This is an error condition that can result, for example, when a SELECT
739     ** on the right-hand side of an INSERT contains more result columns than
740     ** there are columns in the table on the left.  The error will be caught
741     ** and reported later.  But we need to make sure enough memory is allocated
742     ** to avoid other spurious errors in the meantime. */
743     pParse->nMem += nResultCol;
744   }
745   pDest->nSdst = nResultCol;
746   regOrig = regResult = pDest->iSdst;
747   if( srcTab>=0 ){
748     for(i=0; i<nResultCol; i++){
749       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
750       VdbeComment((v, "%s", p->pEList->a[i].zName));
751     }
752   }else if( eDest!=SRT_Exists ){
753     /* If the destination is an EXISTS(...) expression, the actual
754     ** values returned by the SELECT are not required.
755     */
756     u8 ecelFlags;
757     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
758       ecelFlags = SQLITE_ECEL_DUP;
759     }else{
760       ecelFlags = 0;
761     }
762     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
763       /* For each expression in p->pEList that is a copy of an expression in
764       ** the ORDER BY clause (pSort->pOrderBy), set the associated
765       ** iOrderByCol value to one more than the index of the ORDER BY
766       ** expression within the sort-key that pushOntoSorter() will generate.
767       ** This allows the p->pEList field to be omitted from the sorted record,
768       ** saving space and CPU cycles.  */
769       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
770       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
771         int j;
772         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
773           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
774         }
775       }
776       regOrig = 0;
777       assert( eDest==SRT_Set || eDest==SRT_Mem
778            || eDest==SRT_Coroutine || eDest==SRT_Output );
779     }
780     nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
781                                          0,ecelFlags);
782   }
783 
784   /* If the DISTINCT keyword was present on the SELECT statement
785   ** and this row has been seen before, then do not make this row
786   ** part of the result.
787   */
788   if( hasDistinct ){
789     switch( pDistinct->eTnctType ){
790       case WHERE_DISTINCT_ORDERED: {
791         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
792         int iJump;              /* Jump destination */
793         int regPrev;            /* Previous row content */
794 
795         /* Allocate space for the previous row */
796         regPrev = pParse->nMem+1;
797         pParse->nMem += nResultCol;
798 
799         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
800         ** sets the MEM_Cleared bit on the first register of the
801         ** previous value.  This will cause the OP_Ne below to always
802         ** fail on the first iteration of the loop even if the first
803         ** row is all NULLs.
804         */
805         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
806         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
807         pOp->opcode = OP_Null;
808         pOp->p1 = 1;
809         pOp->p2 = regPrev;
810 
811         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
812         for(i=0; i<nResultCol; i++){
813           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
814           if( i<nResultCol-1 ){
815             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
816             VdbeCoverage(v);
817           }else{
818             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
819             VdbeCoverage(v);
820            }
821           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
822           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
823         }
824         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
825         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
826         break;
827       }
828 
829       case WHERE_DISTINCT_UNIQUE: {
830         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
831         break;
832       }
833 
834       default: {
835         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
836         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
837                      regResult);
838         break;
839       }
840     }
841     if( pSort==0 ){
842       codeOffset(v, p->iOffset, iContinue);
843     }
844   }
845 
846   switch( eDest ){
847     /* In this mode, write each query result to the key of the temporary
848     ** table iParm.
849     */
850 #ifndef SQLITE_OMIT_COMPOUND_SELECT
851     case SRT_Union: {
852       int r1;
853       r1 = sqlite3GetTempReg(pParse);
854       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
855       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
856       sqlite3ReleaseTempReg(pParse, r1);
857       break;
858     }
859 
860     /* Construct a record from the query result, but instead of
861     ** saving that record, use it as a key to delete elements from
862     ** the temporary table iParm.
863     */
864     case SRT_Except: {
865       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
866       break;
867     }
868 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
869 
870     /* Store the result as data using a unique key.
871     */
872     case SRT_Fifo:
873     case SRT_DistFifo:
874     case SRT_Table:
875     case SRT_EphemTab: {
876       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
877       testcase( eDest==SRT_Table );
878       testcase( eDest==SRT_EphemTab );
879       testcase( eDest==SRT_Fifo );
880       testcase( eDest==SRT_DistFifo );
881       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
882 #ifndef SQLITE_OMIT_CTE
883       if( eDest==SRT_DistFifo ){
884         /* If the destination is DistFifo, then cursor (iParm+1) is open
885         ** on an ephemeral index. If the current row is already present
886         ** in the index, do not write it to the output. If not, add the
887         ** current row to the index and proceed with writing it to the
888         ** output table as well.  */
889         int addr = sqlite3VdbeCurrentAddr(v) + 4;
890         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
891         VdbeCoverage(v);
892         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
893         assert( pSort==0 );
894       }
895 #endif
896       if( pSort ){
897         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
898       }else{
899         int r2 = sqlite3GetTempReg(pParse);
900         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
901         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
902         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
903         sqlite3ReleaseTempReg(pParse, r2);
904       }
905       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
906       break;
907     }
908 
909 #ifndef SQLITE_OMIT_SUBQUERY
910     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
911     ** then there should be a single item on the stack.  Write this
912     ** item into the set table with bogus data.
913     */
914     case SRT_Set: {
915       if( pSort ){
916         /* At first glance you would think we could optimize out the
917         ** ORDER BY in this case since the order of entries in the set
918         ** does not matter.  But there might be a LIMIT clause, in which
919         ** case the order does matter */
920         pushOntoSorter(
921             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
922       }else{
923         int r1 = sqlite3GetTempReg(pParse);
924         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
925         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
926             r1, pDest->zAffSdst, nResultCol);
927         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
928         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
929         sqlite3ReleaseTempReg(pParse, r1);
930       }
931       break;
932     }
933 
934     /* If any row exist in the result set, record that fact and abort.
935     */
936     case SRT_Exists: {
937       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
938       /* The LIMIT clause will terminate the loop for us */
939       break;
940     }
941 
942     /* If this is a scalar select that is part of an expression, then
943     ** store the results in the appropriate memory cell or array of
944     ** memory cells and break out of the scan loop.
945     */
946     case SRT_Mem: {
947       if( pSort ){
948         assert( nResultCol<=pDest->nSdst );
949         pushOntoSorter(
950             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
951       }else{
952         assert( nResultCol==pDest->nSdst );
953         assert( regResult==iParm );
954         /* The LIMIT clause will jump out of the loop for us */
955       }
956       break;
957     }
958 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
959 
960     case SRT_Coroutine:       /* Send data to a co-routine */
961     case SRT_Output: {        /* Return the results */
962       testcase( eDest==SRT_Coroutine );
963       testcase( eDest==SRT_Output );
964       if( pSort ){
965         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
966                        nPrefixReg);
967       }else if( eDest==SRT_Coroutine ){
968         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
969       }else{
970         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
971         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
972       }
973       break;
974     }
975 
976 #ifndef SQLITE_OMIT_CTE
977     /* Write the results into a priority queue that is order according to
978     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
979     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
980     ** pSO->nExpr columns, then make sure all keys are unique by adding a
981     ** final OP_Sequence column.  The last column is the record as a blob.
982     */
983     case SRT_DistQueue:
984     case SRT_Queue: {
985       int nKey;
986       int r1, r2, r3;
987       int addrTest = 0;
988       ExprList *pSO;
989       pSO = pDest->pOrderBy;
990       assert( pSO );
991       nKey = pSO->nExpr;
992       r1 = sqlite3GetTempReg(pParse);
993       r2 = sqlite3GetTempRange(pParse, nKey+2);
994       r3 = r2+nKey+1;
995       if( eDest==SRT_DistQueue ){
996         /* If the destination is DistQueue, then cursor (iParm+1) is open
997         ** on a second ephemeral index that holds all values every previously
998         ** added to the queue. */
999         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1000                                         regResult, nResultCol);
1001         VdbeCoverage(v);
1002       }
1003       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1004       if( eDest==SRT_DistQueue ){
1005         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1006         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1007       }
1008       for(i=0; i<nKey; i++){
1009         sqlite3VdbeAddOp2(v, OP_SCopy,
1010                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1011                           r2+i);
1012       }
1013       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1014       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1015       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1016       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1017       sqlite3ReleaseTempReg(pParse, r1);
1018       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1019       break;
1020     }
1021 #endif /* SQLITE_OMIT_CTE */
1022 
1023 
1024 
1025 #if !defined(SQLITE_OMIT_TRIGGER)
1026     /* Discard the results.  This is used for SELECT statements inside
1027     ** the body of a TRIGGER.  The purpose of such selects is to call
1028     ** user-defined functions that have side effects.  We do not care
1029     ** about the actual results of the select.
1030     */
1031     default: {
1032       assert( eDest==SRT_Discard );
1033       break;
1034     }
1035 #endif
1036   }
1037 
1038   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1039   ** there is a sorter, in which case the sorter has already limited
1040   ** the output for us.
1041   */
1042   if( pSort==0 && p->iLimit ){
1043     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1044   }
1045 }
1046 
1047 /*
1048 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1049 ** X extra columns.
1050 */
1051 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1052   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1053   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1054   if( p ){
1055     p->aSortOrder = (u8*)&p->aColl[N+X];
1056     p->nKeyField = (u16)N;
1057     p->nAllField = (u16)(N+X);
1058     p->enc = ENC(db);
1059     p->db = db;
1060     p->nRef = 1;
1061     memset(&p[1], 0, nExtra);
1062   }else{
1063     sqlite3OomFault(db);
1064   }
1065   return p;
1066 }
1067 
1068 /*
1069 ** Deallocate a KeyInfo object
1070 */
1071 void sqlite3KeyInfoUnref(KeyInfo *p){
1072   if( p ){
1073     assert( p->nRef>0 );
1074     p->nRef--;
1075     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1076   }
1077 }
1078 
1079 /*
1080 ** Make a new pointer to a KeyInfo object
1081 */
1082 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1083   if( p ){
1084     assert( p->nRef>0 );
1085     p->nRef++;
1086   }
1087   return p;
1088 }
1089 
1090 #ifdef SQLITE_DEBUG
1091 /*
1092 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1093 ** can only be changed if this is just a single reference to the object.
1094 **
1095 ** This routine is used only inside of assert() statements.
1096 */
1097 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1098 #endif /* SQLITE_DEBUG */
1099 
1100 /*
1101 ** Given an expression list, generate a KeyInfo structure that records
1102 ** the collating sequence for each expression in that expression list.
1103 **
1104 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1105 ** KeyInfo structure is appropriate for initializing a virtual index to
1106 ** implement that clause.  If the ExprList is the result set of a SELECT
1107 ** then the KeyInfo structure is appropriate for initializing a virtual
1108 ** index to implement a DISTINCT test.
1109 **
1110 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1111 ** function is responsible for seeing that this structure is eventually
1112 ** freed.
1113 */
1114 static KeyInfo *keyInfoFromExprList(
1115   Parse *pParse,       /* Parsing context */
1116   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1117   int iStart,          /* Begin with this column of pList */
1118   int nExtra           /* Add this many extra columns to the end */
1119 ){
1120   int nExpr;
1121   KeyInfo *pInfo;
1122   struct ExprList_item *pItem;
1123   sqlite3 *db = pParse->db;
1124   int i;
1125 
1126   nExpr = pList->nExpr;
1127   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1128   if( pInfo ){
1129     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1130     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1131       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1132       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1133     }
1134   }
1135   return pInfo;
1136 }
1137 
1138 /*
1139 ** Name of the connection operator, used for error messages.
1140 */
1141 static const char *selectOpName(int id){
1142   char *z;
1143   switch( id ){
1144     case TK_ALL:       z = "UNION ALL";   break;
1145     case TK_INTERSECT: z = "INTERSECT";   break;
1146     case TK_EXCEPT:    z = "EXCEPT";      break;
1147     default:           z = "UNION";       break;
1148   }
1149   return z;
1150 }
1151 
1152 #ifndef SQLITE_OMIT_EXPLAIN
1153 /*
1154 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1155 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1156 ** where the caption is of the form:
1157 **
1158 **   "USE TEMP B-TREE FOR xxx"
1159 **
1160 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1161 ** is determined by the zUsage argument.
1162 */
1163 static void explainTempTable(Parse *pParse, const char *zUsage){
1164   if( pParse->explain==2 ){
1165     Vdbe *v = pParse->pVdbe;
1166     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1167     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1168   }
1169 }
1170 
1171 /*
1172 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1173 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1174 ** in sqlite3Select() to assign values to structure member variables that
1175 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1176 ** code with #ifndef directives.
1177 */
1178 # define explainSetInteger(a, b) a = b
1179 
1180 #else
1181 /* No-op versions of the explainXXX() functions and macros. */
1182 # define explainTempTable(y,z)
1183 # define explainSetInteger(y,z)
1184 #endif
1185 
1186 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1187 /*
1188 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1189 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1190 ** where the caption is of one of the two forms:
1191 **
1192 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1193 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1194 **
1195 ** where iSub1 and iSub2 are the integers passed as the corresponding
1196 ** function parameters, and op is the text representation of the parameter
1197 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1198 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1199 ** false, or the second form if it is true.
1200 */
1201 static void explainComposite(
1202   Parse *pParse,                  /* Parse context */
1203   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1204   int iSub1,                      /* Subquery id 1 */
1205   int iSub2,                      /* Subquery id 2 */
1206   int bUseTmp                     /* True if a temp table was used */
1207 ){
1208   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1209   if( pParse->explain==2 ){
1210     Vdbe *v = pParse->pVdbe;
1211     char *zMsg = sqlite3MPrintf(
1212         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1213         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1214     );
1215     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1216   }
1217 }
1218 #else
1219 /* No-op versions of the explainXXX() functions and macros. */
1220 # define explainComposite(v,w,x,y,z)
1221 #endif
1222 
1223 /*
1224 ** If the inner loop was generated using a non-null pOrderBy argument,
1225 ** then the results were placed in a sorter.  After the loop is terminated
1226 ** we need to run the sorter and output the results.  The following
1227 ** routine generates the code needed to do that.
1228 */
1229 static void generateSortTail(
1230   Parse *pParse,    /* Parsing context */
1231   Select *p,        /* The SELECT statement */
1232   SortCtx *pSort,   /* Information on the ORDER BY clause */
1233   int nColumn,      /* Number of columns of data */
1234   SelectDest *pDest /* Write the sorted results here */
1235 ){
1236   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1237   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1238   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1239   int addr;
1240   int addrOnce = 0;
1241   int iTab;
1242   ExprList *pOrderBy = pSort->pOrderBy;
1243   int eDest = pDest->eDest;
1244   int iParm = pDest->iSDParm;
1245   int regRow;
1246   int regRowid;
1247   int iCol;
1248   int nKey;
1249   int iSortTab;                   /* Sorter cursor to read from */
1250   int nSortData;                  /* Trailing values to read from sorter */
1251   int i;
1252   int bSeq;                       /* True if sorter record includes seq. no. */
1253   struct ExprList_item *aOutEx = p->pEList->a;
1254 
1255   assert( addrBreak<0 );
1256   if( pSort->labelBkOut ){
1257     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1258     sqlite3VdbeGoto(v, addrBreak);
1259     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1260   }
1261   iTab = pSort->iECursor;
1262   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1263     regRowid = 0;
1264     regRow = pDest->iSdst;
1265     nSortData = nColumn;
1266   }else{
1267     regRowid = sqlite3GetTempReg(pParse);
1268     regRow = sqlite3GetTempRange(pParse, nColumn);
1269     nSortData = nColumn;
1270   }
1271   nKey = pOrderBy->nExpr - pSort->nOBSat;
1272   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1273     int regSortOut = ++pParse->nMem;
1274     iSortTab = pParse->nTab++;
1275     if( pSort->labelBkOut ){
1276       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1277     }
1278     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1279     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1280     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1281     VdbeCoverage(v);
1282     codeOffset(v, p->iOffset, addrContinue);
1283     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1284     bSeq = 0;
1285   }else{
1286     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1287     codeOffset(v, p->iOffset, addrContinue);
1288     iSortTab = iTab;
1289     bSeq = 1;
1290   }
1291   for(i=0, iCol=nKey+bSeq-1; i<nSortData; i++){
1292     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1293   }
1294   for(i=nSortData-1; i>=0; i--){
1295     int iRead;
1296     if( aOutEx[i].u.x.iOrderByCol ){
1297       iRead = aOutEx[i].u.x.iOrderByCol-1;
1298     }else{
1299       iRead = iCol--;
1300     }
1301     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1302     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1303   }
1304   switch( eDest ){
1305     case SRT_Table:
1306     case SRT_EphemTab: {
1307       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1308       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1309       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1310       break;
1311     }
1312 #ifndef SQLITE_OMIT_SUBQUERY
1313     case SRT_Set: {
1314       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1315       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1316                         pDest->zAffSdst, nColumn);
1317       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1318       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1319       break;
1320     }
1321     case SRT_Mem: {
1322       /* The LIMIT clause will terminate the loop for us */
1323       break;
1324     }
1325 #endif
1326     default: {
1327       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1328       testcase( eDest==SRT_Output );
1329       testcase( eDest==SRT_Coroutine );
1330       if( eDest==SRT_Output ){
1331         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1332         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1333       }else{
1334         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1335       }
1336       break;
1337     }
1338   }
1339   if( regRowid ){
1340     if( eDest==SRT_Set ){
1341       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1342     }else{
1343       sqlite3ReleaseTempReg(pParse, regRow);
1344     }
1345     sqlite3ReleaseTempReg(pParse, regRowid);
1346   }
1347   /* The bottom of the loop
1348   */
1349   sqlite3VdbeResolveLabel(v, addrContinue);
1350   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1351     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1352   }else{
1353     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1354   }
1355   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1356   sqlite3VdbeResolveLabel(v, addrBreak);
1357 }
1358 
1359 /*
1360 ** Return a pointer to a string containing the 'declaration type' of the
1361 ** expression pExpr. The string may be treated as static by the caller.
1362 **
1363 ** Also try to estimate the size of the returned value and return that
1364 ** result in *pEstWidth.
1365 **
1366 ** The declaration type is the exact datatype definition extracted from the
1367 ** original CREATE TABLE statement if the expression is a column. The
1368 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1369 ** is considered a column can be complex in the presence of subqueries. The
1370 ** result-set expression in all of the following SELECT statements is
1371 ** considered a column by this function.
1372 **
1373 **   SELECT col FROM tbl;
1374 **   SELECT (SELECT col FROM tbl;
1375 **   SELECT (SELECT col FROM tbl);
1376 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1377 **
1378 ** The declaration type for any expression other than a column is NULL.
1379 **
1380 ** This routine has either 3 or 6 parameters depending on whether or not
1381 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1382 */
1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1384 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1385 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1386 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1387 #endif
1388 static const char *columnTypeImpl(
1389   NameContext *pNC,
1390 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1391   Expr *pExpr
1392 #else
1393   Expr *pExpr,
1394   const char **pzOrigDb,
1395   const char **pzOrigTab,
1396   const char **pzOrigCol
1397 #endif
1398 ){
1399   char const *zType = 0;
1400   int j;
1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1402   char const *zOrigDb = 0;
1403   char const *zOrigTab = 0;
1404   char const *zOrigCol = 0;
1405 #endif
1406 
1407   assert( pExpr!=0 );
1408   assert( pNC->pSrcList!=0 );
1409   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1410                                        ** are processed */
1411   switch( pExpr->op ){
1412     case TK_COLUMN: {
1413       /* The expression is a column. Locate the table the column is being
1414       ** extracted from in NameContext.pSrcList. This table may be real
1415       ** database table or a subquery.
1416       */
1417       Table *pTab = 0;            /* Table structure column is extracted from */
1418       Select *pS = 0;             /* Select the column is extracted from */
1419       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1420       while( pNC && !pTab ){
1421         SrcList *pTabList = pNC->pSrcList;
1422         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1423         if( j<pTabList->nSrc ){
1424           pTab = pTabList->a[j].pTab;
1425           pS = pTabList->a[j].pSelect;
1426         }else{
1427           pNC = pNC->pNext;
1428         }
1429       }
1430 
1431       if( pTab==0 ){
1432         /* At one time, code such as "SELECT new.x" within a trigger would
1433         ** cause this condition to run.  Since then, we have restructured how
1434         ** trigger code is generated and so this condition is no longer
1435         ** possible. However, it can still be true for statements like
1436         ** the following:
1437         **
1438         **   CREATE TABLE t1(col INTEGER);
1439         **   SELECT (SELECT t1.col) FROM FROM t1;
1440         **
1441         ** when columnType() is called on the expression "t1.col" in the
1442         ** sub-select. In this case, set the column type to NULL, even
1443         ** though it should really be "INTEGER".
1444         **
1445         ** This is not a problem, as the column type of "t1.col" is never
1446         ** used. When columnType() is called on the expression
1447         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1448         ** branch below.  */
1449         break;
1450       }
1451 
1452       assert( pTab && pExpr->pTab==pTab );
1453       if( pS ){
1454         /* The "table" is actually a sub-select or a view in the FROM clause
1455         ** of the SELECT statement. Return the declaration type and origin
1456         ** data for the result-set column of the sub-select.
1457         */
1458         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1459           /* If iCol is less than zero, then the expression requests the
1460           ** rowid of the sub-select or view. This expression is legal (see
1461           ** test case misc2.2.2) - it always evaluates to NULL.
1462           */
1463           NameContext sNC;
1464           Expr *p = pS->pEList->a[iCol].pExpr;
1465           sNC.pSrcList = pS->pSrc;
1466           sNC.pNext = pNC;
1467           sNC.pParse = pNC->pParse;
1468           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1469         }
1470       }else{
1471         /* A real table or a CTE table */
1472         assert( !pS );
1473 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1474         if( iCol<0 ) iCol = pTab->iPKey;
1475         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1476         if( iCol<0 ){
1477           zType = "INTEGER";
1478           zOrigCol = "rowid";
1479         }else{
1480           zOrigCol = pTab->aCol[iCol].zName;
1481           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1482         }
1483         zOrigTab = pTab->zName;
1484         if( pNC->pParse && pTab->pSchema ){
1485           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1486           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1487         }
1488 #else
1489         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1490         if( iCol<0 ){
1491           zType = "INTEGER";
1492         }else{
1493           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1494         }
1495 #endif
1496       }
1497       break;
1498     }
1499 #ifndef SQLITE_OMIT_SUBQUERY
1500     case TK_SELECT: {
1501       /* The expression is a sub-select. Return the declaration type and
1502       ** origin info for the single column in the result set of the SELECT
1503       ** statement.
1504       */
1505       NameContext sNC;
1506       Select *pS = pExpr->x.pSelect;
1507       Expr *p = pS->pEList->a[0].pExpr;
1508       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1509       sNC.pSrcList = pS->pSrc;
1510       sNC.pNext = pNC;
1511       sNC.pParse = pNC->pParse;
1512       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1513       break;
1514     }
1515 #endif
1516   }
1517 
1518 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1519   if( pzOrigDb ){
1520     assert( pzOrigTab && pzOrigCol );
1521     *pzOrigDb = zOrigDb;
1522     *pzOrigTab = zOrigTab;
1523     *pzOrigCol = zOrigCol;
1524   }
1525 #endif
1526   return zType;
1527 }
1528 
1529 /*
1530 ** Generate code that will tell the VDBE the declaration types of columns
1531 ** in the result set.
1532 */
1533 static void generateColumnTypes(
1534   Parse *pParse,      /* Parser context */
1535   SrcList *pTabList,  /* List of tables */
1536   ExprList *pEList    /* Expressions defining the result set */
1537 ){
1538 #ifndef SQLITE_OMIT_DECLTYPE
1539   Vdbe *v = pParse->pVdbe;
1540   int i;
1541   NameContext sNC;
1542   sNC.pSrcList = pTabList;
1543   sNC.pParse = pParse;
1544   sNC.pNext = 0;
1545   for(i=0; i<pEList->nExpr; i++){
1546     Expr *p = pEList->a[i].pExpr;
1547     const char *zType;
1548 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1549     const char *zOrigDb = 0;
1550     const char *zOrigTab = 0;
1551     const char *zOrigCol = 0;
1552     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1553 
1554     /* The vdbe must make its own copy of the column-type and other
1555     ** column specific strings, in case the schema is reset before this
1556     ** virtual machine is deleted.
1557     */
1558     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1559     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1560     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1561 #else
1562     zType = columnType(&sNC, p, 0, 0, 0);
1563 #endif
1564     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1565   }
1566 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1567 }
1568 
1569 
1570 /*
1571 ** Compute the column names for a SELECT statement.
1572 **
1573 ** The only guarantee that SQLite makes about column names is that if the
1574 ** column has an AS clause assigning it a name, that will be the name used.
1575 ** That is the only documented guarantee.  However, countless applications
1576 ** developed over the years have made baseless assumptions about column names
1577 ** and will break if those assumptions changes.  Hence, use extreme caution
1578 ** when modifying this routine to avoid breaking legacy.
1579 **
1580 ** See Also: sqlite3ColumnsFromExprList()
1581 **
1582 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1583 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1584 ** applications should operate this way.  Nevertheless, we need to support the
1585 ** other modes for legacy:
1586 **
1587 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1588 **                              originally appears in the SELECT statement.  In
1589 **                              other words, the zSpan of the result expression.
1590 **
1591 **    short=ON, full=OFF:       (This is the default setting).  If the result
1592 **                              refers directly to a table column, then the
1593 **                              result column name is just the table column
1594 **                              name: COLUMN.  Otherwise use zSpan.
1595 **
1596 **    full=ON, short=ANY:       If the result refers directly to a table column,
1597 **                              then the result column name with the table name
1598 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1599 */
1600 static void generateColumnNames(
1601   Parse *pParse,      /* Parser context */
1602   Select *pSelect     /* Generate column names for this SELECT statement */
1603 ){
1604   Vdbe *v = pParse->pVdbe;
1605   int i;
1606   Table *pTab;
1607   SrcList *pTabList;
1608   ExprList *pEList;
1609   sqlite3 *db = pParse->db;
1610   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1611   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1612 
1613 #ifndef SQLITE_OMIT_EXPLAIN
1614   /* If this is an EXPLAIN, skip this step */
1615   if( pParse->explain ){
1616     return;
1617   }
1618 #endif
1619 
1620   if( pParse->colNamesSet || db->mallocFailed ) return;
1621   /* Column names are determined by the left-most term of a compound select */
1622   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1623   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1624   pTabList = pSelect->pSrc;
1625   pEList = pSelect->pEList;
1626   assert( v!=0 );
1627   assert( pTabList!=0 );
1628   pParse->colNamesSet = 1;
1629   fullName = (db->flags & SQLITE_FullColNames)!=0;
1630   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1631   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1632   for(i=0; i<pEList->nExpr; i++){
1633     Expr *p = pEList->a[i].pExpr;
1634 
1635     assert( p!=0 );
1636     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1637     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1638     if( pEList->a[i].zName ){
1639       /* An AS clause always takes first priority */
1640       char *zName = pEList->a[i].zName;
1641       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1642     }else if( srcName && p->op==TK_COLUMN ){
1643       char *zCol;
1644       int iCol = p->iColumn;
1645       pTab = p->pTab;
1646       assert( pTab!=0 );
1647       if( iCol<0 ) iCol = pTab->iPKey;
1648       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1649       if( iCol<0 ){
1650         zCol = "rowid";
1651       }else{
1652         zCol = pTab->aCol[iCol].zName;
1653       }
1654       if( fullName ){
1655         char *zName = 0;
1656         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1657         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1658       }else{
1659         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1660       }
1661     }else{
1662       const char *z = pEList->a[i].zSpan;
1663       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1664       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1665     }
1666   }
1667   generateColumnTypes(pParse, pTabList, pEList);
1668 }
1669 
1670 /*
1671 ** Given an expression list (which is really the list of expressions
1672 ** that form the result set of a SELECT statement) compute appropriate
1673 ** column names for a table that would hold the expression list.
1674 **
1675 ** All column names will be unique.
1676 **
1677 ** Only the column names are computed.  Column.zType, Column.zColl,
1678 ** and other fields of Column are zeroed.
1679 **
1680 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1681 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1682 **
1683 ** The only guarantee that SQLite makes about column names is that if the
1684 ** column has an AS clause assigning it a name, that will be the name used.
1685 ** That is the only documented guarantee.  However, countless applications
1686 ** developed over the years have made baseless assumptions about column names
1687 ** and will break if those assumptions changes.  Hence, use extreme caution
1688 ** when modifying this routine to avoid breaking legacy.
1689 **
1690 ** See Also: generateColumnNames()
1691 */
1692 int sqlite3ColumnsFromExprList(
1693   Parse *pParse,          /* Parsing context */
1694   ExprList *pEList,       /* Expr list from which to derive column names */
1695   i16 *pnCol,             /* Write the number of columns here */
1696   Column **paCol          /* Write the new column list here */
1697 ){
1698   sqlite3 *db = pParse->db;   /* Database connection */
1699   int i, j;                   /* Loop counters */
1700   u32 cnt;                    /* Index added to make the name unique */
1701   Column *aCol, *pCol;        /* For looping over result columns */
1702   int nCol;                   /* Number of columns in the result set */
1703   char *zName;                /* Column name */
1704   int nName;                  /* Size of name in zName[] */
1705   Hash ht;                    /* Hash table of column names */
1706 
1707   sqlite3HashInit(&ht);
1708   if( pEList ){
1709     nCol = pEList->nExpr;
1710     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1711     testcase( aCol==0 );
1712     if( nCol>32767 ) nCol = 32767;
1713   }else{
1714     nCol = 0;
1715     aCol = 0;
1716   }
1717   assert( nCol==(i16)nCol );
1718   *pnCol = nCol;
1719   *paCol = aCol;
1720 
1721   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1722     /* Get an appropriate name for the column
1723     */
1724     if( (zName = pEList->a[i].zName)!=0 ){
1725       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1726     }else{
1727       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1728       while( pColExpr->op==TK_DOT ){
1729         pColExpr = pColExpr->pRight;
1730         assert( pColExpr!=0 );
1731       }
1732       assert( pColExpr->op!=TK_AGG_COLUMN );
1733       if( pColExpr->op==TK_COLUMN ){
1734         /* For columns use the column name name */
1735         int iCol = pColExpr->iColumn;
1736         Table *pTab = pColExpr->pTab;
1737         assert( pTab!=0 );
1738         if( iCol<0 ) iCol = pTab->iPKey;
1739         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1740       }else if( pColExpr->op==TK_ID ){
1741         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1742         zName = pColExpr->u.zToken;
1743       }else{
1744         /* Use the original text of the column expression as its name */
1745         zName = pEList->a[i].zSpan;
1746       }
1747     }
1748     if( zName ){
1749       zName = sqlite3DbStrDup(db, zName);
1750     }else{
1751       zName = sqlite3MPrintf(db,"column%d",i+1);
1752     }
1753 
1754     /* Make sure the column name is unique.  If the name is not unique,
1755     ** append an integer to the name so that it becomes unique.
1756     */
1757     cnt = 0;
1758     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1759       nName = sqlite3Strlen30(zName);
1760       if( nName>0 ){
1761         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1762         if( zName[j]==':' ) nName = j;
1763       }
1764       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1765       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1766     }
1767     pCol->zName = zName;
1768     sqlite3ColumnPropertiesFromName(0, pCol);
1769     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1770       sqlite3OomFault(db);
1771     }
1772   }
1773   sqlite3HashClear(&ht);
1774   if( db->mallocFailed ){
1775     for(j=0; j<i; j++){
1776       sqlite3DbFree(db, aCol[j].zName);
1777     }
1778     sqlite3DbFree(db, aCol);
1779     *paCol = 0;
1780     *pnCol = 0;
1781     return SQLITE_NOMEM_BKPT;
1782   }
1783   return SQLITE_OK;
1784 }
1785 
1786 /*
1787 ** Add type and collation information to a column list based on
1788 ** a SELECT statement.
1789 **
1790 ** The column list presumably came from selectColumnNamesFromExprList().
1791 ** The column list has only names, not types or collations.  This
1792 ** routine goes through and adds the types and collations.
1793 **
1794 ** This routine requires that all identifiers in the SELECT
1795 ** statement be resolved.
1796 */
1797 void sqlite3SelectAddColumnTypeAndCollation(
1798   Parse *pParse,        /* Parsing contexts */
1799   Table *pTab,          /* Add column type information to this table */
1800   Select *pSelect       /* SELECT used to determine types and collations */
1801 ){
1802   sqlite3 *db = pParse->db;
1803   NameContext sNC;
1804   Column *pCol;
1805   CollSeq *pColl;
1806   int i;
1807   Expr *p;
1808   struct ExprList_item *a;
1809 
1810   assert( pSelect!=0 );
1811   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1812   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1813   if( db->mallocFailed ) return;
1814   memset(&sNC, 0, sizeof(sNC));
1815   sNC.pSrcList = pSelect->pSrc;
1816   a = pSelect->pEList->a;
1817   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1818     const char *zType;
1819     int n, m;
1820     p = a[i].pExpr;
1821     zType = columnType(&sNC, p, 0, 0, 0);
1822     /* pCol->szEst = ... // Column size est for SELECT tables never used */
1823     pCol->affinity = sqlite3ExprAffinity(p);
1824     if( zType ){
1825       m = sqlite3Strlen30(zType);
1826       n = sqlite3Strlen30(pCol->zName);
1827       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1828       if( pCol->zName ){
1829         memcpy(&pCol->zName[n+1], zType, m+1);
1830         pCol->colFlags |= COLFLAG_HASTYPE;
1831       }
1832     }
1833     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1834     pColl = sqlite3ExprCollSeq(pParse, p);
1835     if( pColl && pCol->zColl==0 ){
1836       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1837     }
1838   }
1839   pTab->szTabRow = 1; /* Any non-zero value works */
1840 }
1841 
1842 /*
1843 ** Given a SELECT statement, generate a Table structure that describes
1844 ** the result set of that SELECT.
1845 */
1846 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1847   Table *pTab;
1848   sqlite3 *db = pParse->db;
1849   int savedFlags;
1850 
1851   savedFlags = db->flags;
1852   db->flags &= ~SQLITE_FullColNames;
1853   db->flags |= SQLITE_ShortColNames;
1854   sqlite3SelectPrep(pParse, pSelect, 0);
1855   if( pParse->nErr ) return 0;
1856   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1857   db->flags = savedFlags;
1858   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1859   if( pTab==0 ){
1860     return 0;
1861   }
1862   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1863   ** is disabled */
1864   assert( db->lookaside.bDisable );
1865   pTab->nTabRef = 1;
1866   pTab->zName = 0;
1867   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1868   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1869   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1870   pTab->iPKey = -1;
1871   if( db->mallocFailed ){
1872     sqlite3DeleteTable(db, pTab);
1873     return 0;
1874   }
1875   return pTab;
1876 }
1877 
1878 /*
1879 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1880 ** If an error occurs, return NULL and leave a message in pParse.
1881 */
1882 Vdbe *sqlite3GetVdbe(Parse *pParse){
1883   if( pParse->pVdbe ){
1884     return pParse->pVdbe;
1885   }
1886   if( pParse->pToplevel==0
1887    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1888   ){
1889     pParse->okConstFactor = 1;
1890   }
1891   return sqlite3VdbeCreate(pParse);
1892 }
1893 
1894 
1895 /*
1896 ** Compute the iLimit and iOffset fields of the SELECT based on the
1897 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
1898 ** that appear in the original SQL statement after the LIMIT and OFFSET
1899 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1900 ** are the integer memory register numbers for counters used to compute
1901 ** the limit and offset.  If there is no limit and/or offset, then
1902 ** iLimit and iOffset are negative.
1903 **
1904 ** This routine changes the values of iLimit and iOffset only if
1905 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
1906 ** and iOffset should have been preset to appropriate default values (zero)
1907 ** prior to calling this routine.
1908 **
1909 ** The iOffset register (if it exists) is initialized to the value
1910 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1911 ** iOffset+1 is initialized to LIMIT+OFFSET.
1912 **
1913 ** Only if pLimit->pLeft!=0 do the limit registers get
1914 ** redefined.  The UNION ALL operator uses this property to force
1915 ** the reuse of the same limit and offset registers across multiple
1916 ** SELECT statements.
1917 */
1918 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1919   Vdbe *v = 0;
1920   int iLimit = 0;
1921   int iOffset;
1922   int n;
1923   Expr *pLimit = p->pLimit;
1924 
1925   if( p->iLimit ) return;
1926 
1927   /*
1928   ** "LIMIT -1" always shows all rows.  There is some
1929   ** controversy about what the correct behavior should be.
1930   ** The current implementation interprets "LIMIT 0" to mean
1931   ** no rows.
1932   */
1933   sqlite3ExprCacheClear(pParse);
1934   if( pLimit ){
1935     assert( pLimit->op==TK_LIMIT );
1936     assert( pLimit->pLeft!=0 );
1937     p->iLimit = iLimit = ++pParse->nMem;
1938     v = sqlite3GetVdbe(pParse);
1939     assert( v!=0 );
1940     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
1941       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1942       VdbeComment((v, "LIMIT counter"));
1943       if( n==0 ){
1944         sqlite3VdbeGoto(v, iBreak);
1945       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1946         p->nSelectRow = sqlite3LogEst((u64)n);
1947         p->selFlags |= SF_FixedLimit;
1948       }
1949     }else{
1950       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
1951       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1952       VdbeComment((v, "LIMIT counter"));
1953       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1954     }
1955     if( pLimit->pRight ){
1956       p->iOffset = iOffset = ++pParse->nMem;
1957       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1958       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
1959       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1960       VdbeComment((v, "OFFSET counter"));
1961       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1962       VdbeComment((v, "LIMIT+OFFSET"));
1963     }
1964   }
1965 }
1966 
1967 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1968 /*
1969 ** Return the appropriate collating sequence for the iCol-th column of
1970 ** the result set for the compound-select statement "p".  Return NULL if
1971 ** the column has no default collating sequence.
1972 **
1973 ** The collating sequence for the compound select is taken from the
1974 ** left-most term of the select that has a collating sequence.
1975 */
1976 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1977   CollSeq *pRet;
1978   if( p->pPrior ){
1979     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1980   }else{
1981     pRet = 0;
1982   }
1983   assert( iCol>=0 );
1984   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1985   ** have been thrown during name resolution and we would not have gotten
1986   ** this far */
1987   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1988     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1989   }
1990   return pRet;
1991 }
1992 
1993 /*
1994 ** The select statement passed as the second parameter is a compound SELECT
1995 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1996 ** structure suitable for implementing the ORDER BY.
1997 **
1998 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1999 ** function is responsible for ensuring that this structure is eventually
2000 ** freed.
2001 */
2002 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2003   ExprList *pOrderBy = p->pOrderBy;
2004   int nOrderBy = p->pOrderBy->nExpr;
2005   sqlite3 *db = pParse->db;
2006   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2007   if( pRet ){
2008     int i;
2009     for(i=0; i<nOrderBy; i++){
2010       struct ExprList_item *pItem = &pOrderBy->a[i];
2011       Expr *pTerm = pItem->pExpr;
2012       CollSeq *pColl;
2013 
2014       if( pTerm->flags & EP_Collate ){
2015         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2016       }else{
2017         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2018         if( pColl==0 ) pColl = db->pDfltColl;
2019         pOrderBy->a[i].pExpr =
2020           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2021       }
2022       assert( sqlite3KeyInfoIsWriteable(pRet) );
2023       pRet->aColl[i] = pColl;
2024       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2025     }
2026   }
2027 
2028   return pRet;
2029 }
2030 
2031 #ifndef SQLITE_OMIT_CTE
2032 /*
2033 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2034 ** query of the form:
2035 **
2036 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2037 **                         \___________/             \_______________/
2038 **                           p->pPrior                      p
2039 **
2040 **
2041 ** There is exactly one reference to the recursive-table in the FROM clause
2042 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2043 **
2044 ** The setup-query runs once to generate an initial set of rows that go
2045 ** into a Queue table.  Rows are extracted from the Queue table one by
2046 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2047 ** extracted row (now in the iCurrent table) becomes the content of the
2048 ** recursive-table for a recursive-query run.  The output of the recursive-query
2049 ** is added back into the Queue table.  Then another row is extracted from Queue
2050 ** and the iteration continues until the Queue table is empty.
2051 **
2052 ** If the compound query operator is UNION then no duplicate rows are ever
2053 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2054 ** that have ever been inserted into Queue and causes duplicates to be
2055 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2056 **
2057 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2058 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2059 ** an ORDER BY, the Queue table is just a FIFO.
2060 **
2061 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2062 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2063 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2064 ** with a positive value, then the first OFFSET outputs are discarded rather
2065 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2066 ** rows have been skipped.
2067 */
2068 static void generateWithRecursiveQuery(
2069   Parse *pParse,        /* Parsing context */
2070   Select *p,            /* The recursive SELECT to be coded */
2071   SelectDest *pDest     /* What to do with query results */
2072 ){
2073   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2074   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2075   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2076   Select *pSetup = p->pPrior;   /* The setup query */
2077   int addrTop;                  /* Top of the loop */
2078   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2079   int iCurrent = 0;             /* The Current table */
2080   int regCurrent;               /* Register holding Current table */
2081   int iQueue;                   /* The Queue table */
2082   int iDistinct = 0;            /* To ensure unique results if UNION */
2083   int eDest = SRT_Fifo;         /* How to write to Queue */
2084   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2085   int i;                        /* Loop counter */
2086   int rc;                       /* Result code */
2087   ExprList *pOrderBy;           /* The ORDER BY clause */
2088   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2089   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2090 
2091   /* Obtain authorization to do a recursive query */
2092   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2093 
2094   /* Process the LIMIT and OFFSET clauses, if they exist */
2095   addrBreak = sqlite3VdbeMakeLabel(v);
2096   p->nSelectRow = 320;  /* 4 billion rows */
2097   computeLimitRegisters(pParse, p, addrBreak);
2098   pLimit = p->pLimit;
2099   regLimit = p->iLimit;
2100   regOffset = p->iOffset;
2101   p->pLimit = 0;
2102   p->iLimit = p->iOffset = 0;
2103   pOrderBy = p->pOrderBy;
2104 
2105   /* Locate the cursor number of the Current table */
2106   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2107     if( pSrc->a[i].fg.isRecursive ){
2108       iCurrent = pSrc->a[i].iCursor;
2109       break;
2110     }
2111   }
2112 
2113   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2114   ** the Distinct table must be exactly one greater than Queue in order
2115   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2116   iQueue = pParse->nTab++;
2117   if( p->op==TK_UNION ){
2118     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2119     iDistinct = pParse->nTab++;
2120   }else{
2121     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2122   }
2123   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2124 
2125   /* Allocate cursors for Current, Queue, and Distinct. */
2126   regCurrent = ++pParse->nMem;
2127   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2128   if( pOrderBy ){
2129     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2130     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2131                       (char*)pKeyInfo, P4_KEYINFO);
2132     destQueue.pOrderBy = pOrderBy;
2133   }else{
2134     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2135   }
2136   VdbeComment((v, "Queue table"));
2137   if( iDistinct ){
2138     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2139     p->selFlags |= SF_UsesEphemeral;
2140   }
2141 
2142   /* Detach the ORDER BY clause from the compound SELECT */
2143   p->pOrderBy = 0;
2144 
2145   /* Store the results of the setup-query in Queue. */
2146   pSetup->pNext = 0;
2147   rc = sqlite3Select(pParse, pSetup, &destQueue);
2148   pSetup->pNext = p;
2149   if( rc ) goto end_of_recursive_query;
2150 
2151   /* Find the next row in the Queue and output that row */
2152   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2153 
2154   /* Transfer the next row in Queue over to Current */
2155   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2156   if( pOrderBy ){
2157     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2158   }else{
2159     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2160   }
2161   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2162 
2163   /* Output the single row in Current */
2164   addrCont = sqlite3VdbeMakeLabel(v);
2165   codeOffset(v, regOffset, addrCont);
2166   selectInnerLoop(pParse, p, iCurrent,
2167       0, 0, pDest, addrCont, addrBreak);
2168   if( regLimit ){
2169     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2170     VdbeCoverage(v);
2171   }
2172   sqlite3VdbeResolveLabel(v, addrCont);
2173 
2174   /* Execute the recursive SELECT taking the single row in Current as
2175   ** the value for the recursive-table. Store the results in the Queue.
2176   */
2177   if( p->selFlags & SF_Aggregate ){
2178     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2179   }else{
2180     p->pPrior = 0;
2181     sqlite3Select(pParse, p, &destQueue);
2182     assert( p->pPrior==0 );
2183     p->pPrior = pSetup;
2184   }
2185 
2186   /* Keep running the loop until the Queue is empty */
2187   sqlite3VdbeGoto(v, addrTop);
2188   sqlite3VdbeResolveLabel(v, addrBreak);
2189 
2190 end_of_recursive_query:
2191   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2192   p->pOrderBy = pOrderBy;
2193   p->pLimit = pLimit;
2194   return;
2195 }
2196 #endif /* SQLITE_OMIT_CTE */
2197 
2198 /* Forward references */
2199 static int multiSelectOrderBy(
2200   Parse *pParse,        /* Parsing context */
2201   Select *p,            /* The right-most of SELECTs to be coded */
2202   SelectDest *pDest     /* What to do with query results */
2203 );
2204 
2205 /*
2206 ** Handle the special case of a compound-select that originates from a
2207 ** VALUES clause.  By handling this as a special case, we avoid deep
2208 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2209 ** on a VALUES clause.
2210 **
2211 ** Because the Select object originates from a VALUES clause:
2212 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2213 **   (2) All terms are UNION ALL
2214 **   (3) There is no ORDER BY clause
2215 **
2216 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2217 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2218 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2219 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2220 */
2221 static int multiSelectValues(
2222   Parse *pParse,        /* Parsing context */
2223   Select *p,            /* The right-most of SELECTs to be coded */
2224   SelectDest *pDest     /* What to do with query results */
2225 ){
2226   Select *pPrior;
2227   Select *pRightmost = p;
2228   int nRow = 1;
2229   int rc = 0;
2230   assert( p->selFlags & SF_MultiValue );
2231   do{
2232     assert( p->selFlags & SF_Values );
2233     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2234     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2235     if( p->pPrior==0 ) break;
2236     assert( p->pPrior->pNext==p );
2237     p = p->pPrior;
2238     nRow++;
2239   }while(1);
2240   while( p ){
2241     pPrior = p->pPrior;
2242     p->pPrior = 0;
2243     rc = sqlite3Select(pParse, p, pDest);
2244     p->pPrior = pPrior;
2245     if( rc || pRightmost->pLimit ) break;
2246     p->nSelectRow = nRow;
2247     p = p->pNext;
2248   }
2249   return rc;
2250 }
2251 
2252 /*
2253 ** This routine is called to process a compound query form from
2254 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2255 ** INTERSECT
2256 **
2257 ** "p" points to the right-most of the two queries.  the query on the
2258 ** left is p->pPrior.  The left query could also be a compound query
2259 ** in which case this routine will be called recursively.
2260 **
2261 ** The results of the total query are to be written into a destination
2262 ** of type eDest with parameter iParm.
2263 **
2264 ** Example 1:  Consider a three-way compound SQL statement.
2265 **
2266 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2267 **
2268 ** This statement is parsed up as follows:
2269 **
2270 **     SELECT c FROM t3
2271 **      |
2272 **      `----->  SELECT b FROM t2
2273 **                |
2274 **                `------>  SELECT a FROM t1
2275 **
2276 ** The arrows in the diagram above represent the Select.pPrior pointer.
2277 ** So if this routine is called with p equal to the t3 query, then
2278 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2279 **
2280 ** Notice that because of the way SQLite parses compound SELECTs, the
2281 ** individual selects always group from left to right.
2282 */
2283 static int multiSelect(
2284   Parse *pParse,        /* Parsing context */
2285   Select *p,            /* The right-most of SELECTs to be coded */
2286   SelectDest *pDest     /* What to do with query results */
2287 ){
2288   int rc = SQLITE_OK;   /* Success code from a subroutine */
2289   Select *pPrior;       /* Another SELECT immediately to our left */
2290   Vdbe *v;              /* Generate code to this VDBE */
2291   SelectDest dest;      /* Alternative data destination */
2292   Select *pDelete = 0;  /* Chain of simple selects to delete */
2293   sqlite3 *db;          /* Database connection */
2294 #ifndef SQLITE_OMIT_EXPLAIN
2295   int iSub1 = 0;        /* EQP id of left-hand query */
2296   int iSub2 = 0;        /* EQP id of right-hand query */
2297 #endif
2298 
2299   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2300   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2301   */
2302   assert( p && p->pPrior );  /* Calling function guarantees this much */
2303   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2304   db = pParse->db;
2305   pPrior = p->pPrior;
2306   dest = *pDest;
2307   if( pPrior->pOrderBy || pPrior->pLimit ){
2308     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2309       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2310     rc = 1;
2311     goto multi_select_end;
2312   }
2313 
2314   v = sqlite3GetVdbe(pParse);
2315   assert( v!=0 );  /* The VDBE already created by calling function */
2316 
2317   /* Create the destination temporary table if necessary
2318   */
2319   if( dest.eDest==SRT_EphemTab ){
2320     assert( p->pEList );
2321     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2322     dest.eDest = SRT_Table;
2323   }
2324 
2325   /* Special handling for a compound-select that originates as a VALUES clause.
2326   */
2327   if( p->selFlags & SF_MultiValue ){
2328     rc = multiSelectValues(pParse, p, &dest);
2329     goto multi_select_end;
2330   }
2331 
2332   /* Make sure all SELECTs in the statement have the same number of elements
2333   ** in their result sets.
2334   */
2335   assert( p->pEList && pPrior->pEList );
2336   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2337 
2338 #ifndef SQLITE_OMIT_CTE
2339   if( p->selFlags & SF_Recursive ){
2340     generateWithRecursiveQuery(pParse, p, &dest);
2341   }else
2342 #endif
2343 
2344   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2345   */
2346   if( p->pOrderBy ){
2347     return multiSelectOrderBy(pParse, p, pDest);
2348   }else
2349 
2350   /* Generate code for the left and right SELECT statements.
2351   */
2352   switch( p->op ){
2353     case TK_ALL: {
2354       int addr = 0;
2355       int nLimit;
2356       assert( !pPrior->pLimit );
2357       pPrior->iLimit = p->iLimit;
2358       pPrior->iOffset = p->iOffset;
2359       pPrior->pLimit = p->pLimit;
2360       explainSetInteger(iSub1, pParse->iNextSelectId);
2361       rc = sqlite3Select(pParse, pPrior, &dest);
2362       p->pLimit = 0;
2363       if( rc ){
2364         goto multi_select_end;
2365       }
2366       p->pPrior = 0;
2367       p->iLimit = pPrior->iLimit;
2368       p->iOffset = pPrior->iOffset;
2369       if( p->iLimit ){
2370         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2371         VdbeComment((v, "Jump ahead if LIMIT reached"));
2372         if( p->iOffset ){
2373           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2374                             p->iLimit, p->iOffset+1, p->iOffset);
2375         }
2376       }
2377       explainSetInteger(iSub2, pParse->iNextSelectId);
2378       rc = sqlite3Select(pParse, p, &dest);
2379       testcase( rc!=SQLITE_OK );
2380       pDelete = p->pPrior;
2381       p->pPrior = pPrior;
2382       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2383       if( pPrior->pLimit
2384        && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2385        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2386       ){
2387         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2388       }
2389       if( addr ){
2390         sqlite3VdbeJumpHere(v, addr);
2391       }
2392       break;
2393     }
2394     case TK_EXCEPT:
2395     case TK_UNION: {
2396       int unionTab;    /* Cursor number of the temporary table holding result */
2397       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2398       int priorOp;     /* The SRT_ operation to apply to prior selects */
2399       Expr *pLimit;    /* Saved values of p->nLimit  */
2400       int addr;
2401       SelectDest uniondest;
2402 
2403       testcase( p->op==TK_EXCEPT );
2404       testcase( p->op==TK_UNION );
2405       priorOp = SRT_Union;
2406       if( dest.eDest==priorOp ){
2407         /* We can reuse a temporary table generated by a SELECT to our
2408         ** right.
2409         */
2410         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2411         unionTab = dest.iSDParm;
2412       }else{
2413         /* We will need to create our own temporary table to hold the
2414         ** intermediate results.
2415         */
2416         unionTab = pParse->nTab++;
2417         assert( p->pOrderBy==0 );
2418         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2419         assert( p->addrOpenEphm[0] == -1 );
2420         p->addrOpenEphm[0] = addr;
2421         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2422         assert( p->pEList );
2423       }
2424 
2425       /* Code the SELECT statements to our left
2426       */
2427       assert( !pPrior->pOrderBy );
2428       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2429       explainSetInteger(iSub1, pParse->iNextSelectId);
2430       rc = sqlite3Select(pParse, pPrior, &uniondest);
2431       if( rc ){
2432         goto multi_select_end;
2433       }
2434 
2435       /* Code the current SELECT statement
2436       */
2437       if( p->op==TK_EXCEPT ){
2438         op = SRT_Except;
2439       }else{
2440         assert( p->op==TK_UNION );
2441         op = SRT_Union;
2442       }
2443       p->pPrior = 0;
2444       pLimit = p->pLimit;
2445       p->pLimit = 0;
2446       uniondest.eDest = op;
2447       explainSetInteger(iSub2, pParse->iNextSelectId);
2448       rc = sqlite3Select(pParse, p, &uniondest);
2449       testcase( rc!=SQLITE_OK );
2450       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2451       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2452       sqlite3ExprListDelete(db, p->pOrderBy);
2453       pDelete = p->pPrior;
2454       p->pPrior = pPrior;
2455       p->pOrderBy = 0;
2456       if( p->op==TK_UNION ){
2457         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2458       }
2459       sqlite3ExprDelete(db, p->pLimit);
2460       p->pLimit = pLimit;
2461       p->iLimit = 0;
2462       p->iOffset = 0;
2463 
2464       /* Convert the data in the temporary table into whatever form
2465       ** it is that we currently need.
2466       */
2467       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2468       if( dest.eDest!=priorOp ){
2469         int iCont, iBreak, iStart;
2470         assert( p->pEList );
2471         iBreak = sqlite3VdbeMakeLabel(v);
2472         iCont = sqlite3VdbeMakeLabel(v);
2473         computeLimitRegisters(pParse, p, iBreak);
2474         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2475         iStart = sqlite3VdbeCurrentAddr(v);
2476         selectInnerLoop(pParse, p, unionTab,
2477                         0, 0, &dest, iCont, iBreak);
2478         sqlite3VdbeResolveLabel(v, iCont);
2479         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2480         sqlite3VdbeResolveLabel(v, iBreak);
2481         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2482       }
2483       break;
2484     }
2485     default: assert( p->op==TK_INTERSECT ); {
2486       int tab1, tab2;
2487       int iCont, iBreak, iStart;
2488       Expr *pLimit;
2489       int addr;
2490       SelectDest intersectdest;
2491       int r1;
2492 
2493       /* INTERSECT is different from the others since it requires
2494       ** two temporary tables.  Hence it has its own case.  Begin
2495       ** by allocating the tables we will need.
2496       */
2497       tab1 = pParse->nTab++;
2498       tab2 = pParse->nTab++;
2499       assert( p->pOrderBy==0 );
2500 
2501       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2502       assert( p->addrOpenEphm[0] == -1 );
2503       p->addrOpenEphm[0] = addr;
2504       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2505       assert( p->pEList );
2506 
2507       /* Code the SELECTs to our left into temporary table "tab1".
2508       */
2509       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2510       explainSetInteger(iSub1, pParse->iNextSelectId);
2511       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2512       if( rc ){
2513         goto multi_select_end;
2514       }
2515 
2516       /* Code the current SELECT into temporary table "tab2"
2517       */
2518       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2519       assert( p->addrOpenEphm[1] == -1 );
2520       p->addrOpenEphm[1] = addr;
2521       p->pPrior = 0;
2522       pLimit = p->pLimit;
2523       p->pLimit = 0;
2524       intersectdest.iSDParm = tab2;
2525       explainSetInteger(iSub2, pParse->iNextSelectId);
2526       rc = sqlite3Select(pParse, p, &intersectdest);
2527       testcase( rc!=SQLITE_OK );
2528       pDelete = p->pPrior;
2529       p->pPrior = pPrior;
2530       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2531       sqlite3ExprDelete(db, p->pLimit);
2532       p->pLimit = pLimit;
2533 
2534       /* Generate code to take the intersection of the two temporary
2535       ** tables.
2536       */
2537       assert( p->pEList );
2538       iBreak = sqlite3VdbeMakeLabel(v);
2539       iCont = sqlite3VdbeMakeLabel(v);
2540       computeLimitRegisters(pParse, p, iBreak);
2541       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2542       r1 = sqlite3GetTempReg(pParse);
2543       iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2544       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2545       sqlite3ReleaseTempReg(pParse, r1);
2546       selectInnerLoop(pParse, p, tab1,
2547                       0, 0, &dest, iCont, iBreak);
2548       sqlite3VdbeResolveLabel(v, iCont);
2549       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2550       sqlite3VdbeResolveLabel(v, iBreak);
2551       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2552       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2553       break;
2554     }
2555   }
2556 
2557   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2558 
2559   /* Compute collating sequences used by
2560   ** temporary tables needed to implement the compound select.
2561   ** Attach the KeyInfo structure to all temporary tables.
2562   **
2563   ** This section is run by the right-most SELECT statement only.
2564   ** SELECT statements to the left always skip this part.  The right-most
2565   ** SELECT might also skip this part if it has no ORDER BY clause and
2566   ** no temp tables are required.
2567   */
2568   if( p->selFlags & SF_UsesEphemeral ){
2569     int i;                        /* Loop counter */
2570     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2571     Select *pLoop;                /* For looping through SELECT statements */
2572     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2573     int nCol;                     /* Number of columns in result set */
2574 
2575     assert( p->pNext==0 );
2576     nCol = p->pEList->nExpr;
2577     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2578     if( !pKeyInfo ){
2579       rc = SQLITE_NOMEM_BKPT;
2580       goto multi_select_end;
2581     }
2582     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2583       *apColl = multiSelectCollSeq(pParse, p, i);
2584       if( 0==*apColl ){
2585         *apColl = db->pDfltColl;
2586       }
2587     }
2588 
2589     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2590       for(i=0; i<2; i++){
2591         int addr = pLoop->addrOpenEphm[i];
2592         if( addr<0 ){
2593           /* If [0] is unused then [1] is also unused.  So we can
2594           ** always safely abort as soon as the first unused slot is found */
2595           assert( pLoop->addrOpenEphm[1]<0 );
2596           break;
2597         }
2598         sqlite3VdbeChangeP2(v, addr, nCol);
2599         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2600                             P4_KEYINFO);
2601         pLoop->addrOpenEphm[i] = -1;
2602       }
2603     }
2604     sqlite3KeyInfoUnref(pKeyInfo);
2605   }
2606 
2607 multi_select_end:
2608   pDest->iSdst = dest.iSdst;
2609   pDest->nSdst = dest.nSdst;
2610   sqlite3SelectDelete(db, pDelete);
2611   return rc;
2612 }
2613 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2614 
2615 /*
2616 ** Error message for when two or more terms of a compound select have different
2617 ** size result sets.
2618 */
2619 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2620   if( p->selFlags & SF_Values ){
2621     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2622   }else{
2623     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2624       " do not have the same number of result columns", selectOpName(p->op));
2625   }
2626 }
2627 
2628 /*
2629 ** Code an output subroutine for a coroutine implementation of a
2630 ** SELECT statment.
2631 **
2632 ** The data to be output is contained in pIn->iSdst.  There are
2633 ** pIn->nSdst columns to be output.  pDest is where the output should
2634 ** be sent.
2635 **
2636 ** regReturn is the number of the register holding the subroutine
2637 ** return address.
2638 **
2639 ** If regPrev>0 then it is the first register in a vector that
2640 ** records the previous output.  mem[regPrev] is a flag that is false
2641 ** if there has been no previous output.  If regPrev>0 then code is
2642 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2643 ** keys.
2644 **
2645 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2646 ** iBreak.
2647 */
2648 static int generateOutputSubroutine(
2649   Parse *pParse,          /* Parsing context */
2650   Select *p,              /* The SELECT statement */
2651   SelectDest *pIn,        /* Coroutine supplying data */
2652   SelectDest *pDest,      /* Where to send the data */
2653   int regReturn,          /* The return address register */
2654   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2655   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2656   int iBreak              /* Jump here if we hit the LIMIT */
2657 ){
2658   Vdbe *v = pParse->pVdbe;
2659   int iContinue;
2660   int addr;
2661 
2662   addr = sqlite3VdbeCurrentAddr(v);
2663   iContinue = sqlite3VdbeMakeLabel(v);
2664 
2665   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2666   */
2667   if( regPrev ){
2668     int addr1, addr2;
2669     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2670     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2671                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2672     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2673     sqlite3VdbeJumpHere(v, addr1);
2674     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2675     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2676   }
2677   if( pParse->db->mallocFailed ) return 0;
2678 
2679   /* Suppress the first OFFSET entries if there is an OFFSET clause
2680   */
2681   codeOffset(v, p->iOffset, iContinue);
2682 
2683   assert( pDest->eDest!=SRT_Exists );
2684   assert( pDest->eDest!=SRT_Table );
2685   switch( pDest->eDest ){
2686     /* Store the result as data using a unique key.
2687     */
2688     case SRT_EphemTab: {
2689       int r1 = sqlite3GetTempReg(pParse);
2690       int r2 = sqlite3GetTempReg(pParse);
2691       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2692       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2693       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2694       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2695       sqlite3ReleaseTempReg(pParse, r2);
2696       sqlite3ReleaseTempReg(pParse, r1);
2697       break;
2698     }
2699 
2700 #ifndef SQLITE_OMIT_SUBQUERY
2701     /* If we are creating a set for an "expr IN (SELECT ...)".
2702     */
2703     case SRT_Set: {
2704       int r1;
2705       testcase( pIn->nSdst>1 );
2706       r1 = sqlite3GetTempReg(pParse);
2707       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2708           r1, pDest->zAffSdst, pIn->nSdst);
2709       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2710       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2711                            pIn->iSdst, pIn->nSdst);
2712       sqlite3ReleaseTempReg(pParse, r1);
2713       break;
2714     }
2715 
2716     /* If this is a scalar select that is part of an expression, then
2717     ** store the results in the appropriate memory cell and break out
2718     ** of the scan loop.
2719     */
2720     case SRT_Mem: {
2721       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2722       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2723       /* The LIMIT clause will jump out of the loop for us */
2724       break;
2725     }
2726 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2727 
2728     /* The results are stored in a sequence of registers
2729     ** starting at pDest->iSdst.  Then the co-routine yields.
2730     */
2731     case SRT_Coroutine: {
2732       if( pDest->iSdst==0 ){
2733         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2734         pDest->nSdst = pIn->nSdst;
2735       }
2736       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2737       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2738       break;
2739     }
2740 
2741     /* If none of the above, then the result destination must be
2742     ** SRT_Output.  This routine is never called with any other
2743     ** destination other than the ones handled above or SRT_Output.
2744     **
2745     ** For SRT_Output, results are stored in a sequence of registers.
2746     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2747     ** return the next row of result.
2748     */
2749     default: {
2750       assert( pDest->eDest==SRT_Output );
2751       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2752       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2753       break;
2754     }
2755   }
2756 
2757   /* Jump to the end of the loop if the LIMIT is reached.
2758   */
2759   if( p->iLimit ){
2760     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2761   }
2762 
2763   /* Generate the subroutine return
2764   */
2765   sqlite3VdbeResolveLabel(v, iContinue);
2766   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2767 
2768   return addr;
2769 }
2770 
2771 /*
2772 ** Alternative compound select code generator for cases when there
2773 ** is an ORDER BY clause.
2774 **
2775 ** We assume a query of the following form:
2776 **
2777 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2778 **
2779 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2780 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2781 ** co-routines.  Then run the co-routines in parallel and merge the results
2782 ** into the output.  In addition to the two coroutines (called selectA and
2783 ** selectB) there are 7 subroutines:
2784 **
2785 **    outA:    Move the output of the selectA coroutine into the output
2786 **             of the compound query.
2787 **
2788 **    outB:    Move the output of the selectB coroutine into the output
2789 **             of the compound query.  (Only generated for UNION and
2790 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2791 **             appears only in B.)
2792 **
2793 **    AltB:    Called when there is data from both coroutines and A<B.
2794 **
2795 **    AeqB:    Called when there is data from both coroutines and A==B.
2796 **
2797 **    AgtB:    Called when there is data from both coroutines and A>B.
2798 **
2799 **    EofA:    Called when data is exhausted from selectA.
2800 **
2801 **    EofB:    Called when data is exhausted from selectB.
2802 **
2803 ** The implementation of the latter five subroutines depend on which
2804 ** <operator> is used:
2805 **
2806 **
2807 **             UNION ALL         UNION            EXCEPT          INTERSECT
2808 **          -------------  -----------------  --------------  -----------------
2809 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2810 **
2811 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2812 **
2813 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2814 **
2815 **   EofA:   outB, nextB      outB, nextB          halt             halt
2816 **
2817 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2818 **
2819 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2820 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2821 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2822 ** following nextX causes a jump to the end of the select processing.
2823 **
2824 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2825 ** within the output subroutine.  The regPrev register set holds the previously
2826 ** output value.  A comparison is made against this value and the output
2827 ** is skipped if the next results would be the same as the previous.
2828 **
2829 ** The implementation plan is to implement the two coroutines and seven
2830 ** subroutines first, then put the control logic at the bottom.  Like this:
2831 **
2832 **          goto Init
2833 **     coA: coroutine for left query (A)
2834 **     coB: coroutine for right query (B)
2835 **    outA: output one row of A
2836 **    outB: output one row of B (UNION and UNION ALL only)
2837 **    EofA: ...
2838 **    EofB: ...
2839 **    AltB: ...
2840 **    AeqB: ...
2841 **    AgtB: ...
2842 **    Init: initialize coroutine registers
2843 **          yield coA
2844 **          if eof(A) goto EofA
2845 **          yield coB
2846 **          if eof(B) goto EofB
2847 **    Cmpr: Compare A, B
2848 **          Jump AltB, AeqB, AgtB
2849 **     End: ...
2850 **
2851 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2852 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2853 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2854 ** and AgtB jump to either L2 or to one of EofA or EofB.
2855 */
2856 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2857 static int multiSelectOrderBy(
2858   Parse *pParse,        /* Parsing context */
2859   Select *p,            /* The right-most of SELECTs to be coded */
2860   SelectDest *pDest     /* What to do with query results */
2861 ){
2862   int i, j;             /* Loop counters */
2863   Select *pPrior;       /* Another SELECT immediately to our left */
2864   Vdbe *v;              /* Generate code to this VDBE */
2865   SelectDest destA;     /* Destination for coroutine A */
2866   SelectDest destB;     /* Destination for coroutine B */
2867   int regAddrA;         /* Address register for select-A coroutine */
2868   int regAddrB;         /* Address register for select-B coroutine */
2869   int addrSelectA;      /* Address of the select-A coroutine */
2870   int addrSelectB;      /* Address of the select-B coroutine */
2871   int regOutA;          /* Address register for the output-A subroutine */
2872   int regOutB;          /* Address register for the output-B subroutine */
2873   int addrOutA;         /* Address of the output-A subroutine */
2874   int addrOutB = 0;     /* Address of the output-B subroutine */
2875   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2876   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2877   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2878   int addrAltB;         /* Address of the A<B subroutine */
2879   int addrAeqB;         /* Address of the A==B subroutine */
2880   int addrAgtB;         /* Address of the A>B subroutine */
2881   int regLimitA;        /* Limit register for select-A */
2882   int regLimitB;        /* Limit register for select-A */
2883   int regPrev;          /* A range of registers to hold previous output */
2884   int savedLimit;       /* Saved value of p->iLimit */
2885   int savedOffset;      /* Saved value of p->iOffset */
2886   int labelCmpr;        /* Label for the start of the merge algorithm */
2887   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2888   int addr1;            /* Jump instructions that get retargetted */
2889   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2890   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2891   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2892   sqlite3 *db;          /* Database connection */
2893   ExprList *pOrderBy;   /* The ORDER BY clause */
2894   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2895   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2896 #ifndef SQLITE_OMIT_EXPLAIN
2897   int iSub1;            /* EQP id of left-hand query */
2898   int iSub2;            /* EQP id of right-hand query */
2899 #endif
2900 
2901   assert( p->pOrderBy!=0 );
2902   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2903   db = pParse->db;
2904   v = pParse->pVdbe;
2905   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2906   labelEnd = sqlite3VdbeMakeLabel(v);
2907   labelCmpr = sqlite3VdbeMakeLabel(v);
2908 
2909 
2910   /* Patch up the ORDER BY clause
2911   */
2912   op = p->op;
2913   pPrior = p->pPrior;
2914   assert( pPrior->pOrderBy==0 );
2915   pOrderBy = p->pOrderBy;
2916   assert( pOrderBy );
2917   nOrderBy = pOrderBy->nExpr;
2918 
2919   /* For operators other than UNION ALL we have to make sure that
2920   ** the ORDER BY clause covers every term of the result set.  Add
2921   ** terms to the ORDER BY clause as necessary.
2922   */
2923   if( op!=TK_ALL ){
2924     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2925       struct ExprList_item *pItem;
2926       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2927         assert( pItem->u.x.iOrderByCol>0 );
2928         if( pItem->u.x.iOrderByCol==i ) break;
2929       }
2930       if( j==nOrderBy ){
2931         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2932         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2933         pNew->flags |= EP_IntValue;
2934         pNew->u.iValue = i;
2935         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2936         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2937       }
2938     }
2939   }
2940 
2941   /* Compute the comparison permutation and keyinfo that is used with
2942   ** the permutation used to determine if the next
2943   ** row of results comes from selectA or selectB.  Also add explicit
2944   ** collations to the ORDER BY clause terms so that when the subqueries
2945   ** to the right and the left are evaluated, they use the correct
2946   ** collation.
2947   */
2948   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2949   if( aPermute ){
2950     struct ExprList_item *pItem;
2951     aPermute[0] = nOrderBy;
2952     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2953       assert( pItem->u.x.iOrderByCol>0 );
2954       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2955       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2956     }
2957     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2958   }else{
2959     pKeyMerge = 0;
2960   }
2961 
2962   /* Reattach the ORDER BY clause to the query.
2963   */
2964   p->pOrderBy = pOrderBy;
2965   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2966 
2967   /* Allocate a range of temporary registers and the KeyInfo needed
2968   ** for the logic that removes duplicate result rows when the
2969   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2970   */
2971   if( op==TK_ALL ){
2972     regPrev = 0;
2973   }else{
2974     int nExpr = p->pEList->nExpr;
2975     assert( nOrderBy>=nExpr || db->mallocFailed );
2976     regPrev = pParse->nMem+1;
2977     pParse->nMem += nExpr+1;
2978     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2979     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2980     if( pKeyDup ){
2981       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2982       for(i=0; i<nExpr; i++){
2983         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2984         pKeyDup->aSortOrder[i] = 0;
2985       }
2986     }
2987   }
2988 
2989   /* Separate the left and the right query from one another
2990   */
2991   p->pPrior = 0;
2992   pPrior->pNext = 0;
2993   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2994   if( pPrior->pPrior==0 ){
2995     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2996   }
2997 
2998   /* Compute the limit registers */
2999   computeLimitRegisters(pParse, p, labelEnd);
3000   if( p->iLimit && op==TK_ALL ){
3001     regLimitA = ++pParse->nMem;
3002     regLimitB = ++pParse->nMem;
3003     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3004                                   regLimitA);
3005     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3006   }else{
3007     regLimitA = regLimitB = 0;
3008   }
3009   sqlite3ExprDelete(db, p->pLimit);
3010   p->pLimit = 0;
3011 
3012   regAddrA = ++pParse->nMem;
3013   regAddrB = ++pParse->nMem;
3014   regOutA = ++pParse->nMem;
3015   regOutB = ++pParse->nMem;
3016   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3017   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3018 
3019   /* Generate a coroutine to evaluate the SELECT statement to the
3020   ** left of the compound operator - the "A" select.
3021   */
3022   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3023   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3024   VdbeComment((v, "left SELECT"));
3025   pPrior->iLimit = regLimitA;
3026   explainSetInteger(iSub1, pParse->iNextSelectId);
3027   sqlite3Select(pParse, pPrior, &destA);
3028   sqlite3VdbeEndCoroutine(v, regAddrA);
3029   sqlite3VdbeJumpHere(v, addr1);
3030 
3031   /* Generate a coroutine to evaluate the SELECT statement on
3032   ** the right - the "B" select
3033   */
3034   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3035   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3036   VdbeComment((v, "right SELECT"));
3037   savedLimit = p->iLimit;
3038   savedOffset = p->iOffset;
3039   p->iLimit = regLimitB;
3040   p->iOffset = 0;
3041   explainSetInteger(iSub2, pParse->iNextSelectId);
3042   sqlite3Select(pParse, p, &destB);
3043   p->iLimit = savedLimit;
3044   p->iOffset = savedOffset;
3045   sqlite3VdbeEndCoroutine(v, regAddrB);
3046 
3047   /* Generate a subroutine that outputs the current row of the A
3048   ** select as the next output row of the compound select.
3049   */
3050   VdbeNoopComment((v, "Output routine for A"));
3051   addrOutA = generateOutputSubroutine(pParse,
3052                  p, &destA, pDest, regOutA,
3053                  regPrev, pKeyDup, labelEnd);
3054 
3055   /* Generate a subroutine that outputs the current row of the B
3056   ** select as the next output row of the compound select.
3057   */
3058   if( op==TK_ALL || op==TK_UNION ){
3059     VdbeNoopComment((v, "Output routine for B"));
3060     addrOutB = generateOutputSubroutine(pParse,
3061                  p, &destB, pDest, regOutB,
3062                  regPrev, pKeyDup, labelEnd);
3063   }
3064   sqlite3KeyInfoUnref(pKeyDup);
3065 
3066   /* Generate a subroutine to run when the results from select A
3067   ** are exhausted and only data in select B remains.
3068   */
3069   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3070     addrEofA_noB = addrEofA = labelEnd;
3071   }else{
3072     VdbeNoopComment((v, "eof-A subroutine"));
3073     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3074     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3075                                      VdbeCoverage(v);
3076     sqlite3VdbeGoto(v, addrEofA);
3077     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3078   }
3079 
3080   /* Generate a subroutine to run when the results from select B
3081   ** are exhausted and only data in select A remains.
3082   */
3083   if( op==TK_INTERSECT ){
3084     addrEofB = addrEofA;
3085     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3086   }else{
3087     VdbeNoopComment((v, "eof-B subroutine"));
3088     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3089     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3090     sqlite3VdbeGoto(v, addrEofB);
3091   }
3092 
3093   /* Generate code to handle the case of A<B
3094   */
3095   VdbeNoopComment((v, "A-lt-B subroutine"));
3096   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3097   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3098   sqlite3VdbeGoto(v, labelCmpr);
3099 
3100   /* Generate code to handle the case of A==B
3101   */
3102   if( op==TK_ALL ){
3103     addrAeqB = addrAltB;
3104   }else if( op==TK_INTERSECT ){
3105     addrAeqB = addrAltB;
3106     addrAltB++;
3107   }else{
3108     VdbeNoopComment((v, "A-eq-B subroutine"));
3109     addrAeqB =
3110     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3111     sqlite3VdbeGoto(v, labelCmpr);
3112   }
3113 
3114   /* Generate code to handle the case of A>B
3115   */
3116   VdbeNoopComment((v, "A-gt-B subroutine"));
3117   addrAgtB = sqlite3VdbeCurrentAddr(v);
3118   if( op==TK_ALL || op==TK_UNION ){
3119     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3120   }
3121   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3122   sqlite3VdbeGoto(v, labelCmpr);
3123 
3124   /* This code runs once to initialize everything.
3125   */
3126   sqlite3VdbeJumpHere(v, addr1);
3127   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3128   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3129 
3130   /* Implement the main merge loop
3131   */
3132   sqlite3VdbeResolveLabel(v, labelCmpr);
3133   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3134   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3135                          (char*)pKeyMerge, P4_KEYINFO);
3136   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3137   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3138 
3139   /* Jump to the this point in order to terminate the query.
3140   */
3141   sqlite3VdbeResolveLabel(v, labelEnd);
3142 
3143   /* Reassembly the compound query so that it will be freed correctly
3144   ** by the calling function */
3145   if( p->pPrior ){
3146     sqlite3SelectDelete(db, p->pPrior);
3147   }
3148   p->pPrior = pPrior;
3149   pPrior->pNext = p;
3150 
3151   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3152   **** subqueries ****/
3153   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3154   return pParse->nErr!=0;
3155 }
3156 #endif
3157 
3158 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3159 
3160 /* An instance of the SubstContext object describes an substitution edit
3161 ** to be performed on a parse tree.
3162 **
3163 ** All references to columns in table iTable are to be replaced by corresponding
3164 ** expressions in pEList.
3165 */
3166 typedef struct SubstContext {
3167   Parse *pParse;            /* The parsing context */
3168   int iTable;               /* Replace references to this table */
3169   int iNewTable;            /* New table number */
3170   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3171   ExprList *pEList;         /* Replacement expressions */
3172 } SubstContext;
3173 
3174 /* Forward Declarations */
3175 static void substExprList(SubstContext*, ExprList*);
3176 static void substSelect(SubstContext*, Select*, int);
3177 
3178 /*
3179 ** Scan through the expression pExpr.  Replace every reference to
3180 ** a column in table number iTable with a copy of the iColumn-th
3181 ** entry in pEList.  (But leave references to the ROWID column
3182 ** unchanged.)
3183 **
3184 ** This routine is part of the flattening procedure.  A subquery
3185 ** whose result set is defined by pEList appears as entry in the
3186 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3187 ** FORM clause entry is iTable.  This routine makes the necessary
3188 ** changes to pExpr so that it refers directly to the source table
3189 ** of the subquery rather the result set of the subquery.
3190 */
3191 static Expr *substExpr(
3192   SubstContext *pSubst,  /* Description of the substitution */
3193   Expr *pExpr            /* Expr in which substitution occurs */
3194 ){
3195   if( pExpr==0 ) return 0;
3196   if( ExprHasProperty(pExpr, EP_FromJoin)
3197    && pExpr->iRightJoinTable==pSubst->iTable
3198   ){
3199     pExpr->iRightJoinTable = pSubst->iNewTable;
3200   }
3201   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3202     if( pExpr->iColumn<0 ){
3203       pExpr->op = TK_NULL;
3204     }else{
3205       Expr *pNew;
3206       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3207       Expr ifNullRow;
3208       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3209       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3210       if( sqlite3ExprIsVector(pCopy) ){
3211         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3212       }else{
3213         sqlite3 *db = pSubst->pParse->db;
3214         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3215           memset(&ifNullRow, 0, sizeof(ifNullRow));
3216           ifNullRow.op = TK_IF_NULL_ROW;
3217           ifNullRow.pLeft = pCopy;
3218           ifNullRow.iTable = pSubst->iNewTable;
3219           pCopy = &ifNullRow;
3220         }
3221         pNew = sqlite3ExprDup(db, pCopy, 0);
3222         if( pNew && pSubst->isLeftJoin ){
3223           ExprSetProperty(pNew, EP_CanBeNull);
3224         }
3225         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3226           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3227           ExprSetProperty(pNew, EP_FromJoin);
3228         }
3229         sqlite3ExprDelete(db, pExpr);
3230         pExpr = pNew;
3231       }
3232     }
3233   }else{
3234     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3235       pExpr->iTable = pSubst->iNewTable;
3236     }
3237     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3238     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3239     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3240       substSelect(pSubst, pExpr->x.pSelect, 1);
3241     }else{
3242       substExprList(pSubst, pExpr->x.pList);
3243     }
3244   }
3245   return pExpr;
3246 }
3247 static void substExprList(
3248   SubstContext *pSubst, /* Description of the substitution */
3249   ExprList *pList       /* List to scan and in which to make substitutes */
3250 ){
3251   int i;
3252   if( pList==0 ) return;
3253   for(i=0; i<pList->nExpr; i++){
3254     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3255   }
3256 }
3257 static void substSelect(
3258   SubstContext *pSubst, /* Description of the substitution */
3259   Select *p,            /* SELECT statement in which to make substitutions */
3260   int doPrior           /* Do substitutes on p->pPrior too */
3261 ){
3262   SrcList *pSrc;
3263   struct SrcList_item *pItem;
3264   int i;
3265   if( !p ) return;
3266   do{
3267     substExprList(pSubst, p->pEList);
3268     substExprList(pSubst, p->pGroupBy);
3269     substExprList(pSubst, p->pOrderBy);
3270     p->pHaving = substExpr(pSubst, p->pHaving);
3271     p->pWhere = substExpr(pSubst, p->pWhere);
3272     pSrc = p->pSrc;
3273     assert( pSrc!=0 );
3274     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3275       substSelect(pSubst, pItem->pSelect, 1);
3276       if( pItem->fg.isTabFunc ){
3277         substExprList(pSubst, pItem->u1.pFuncArg);
3278       }
3279     }
3280   }while( doPrior && (p = p->pPrior)!=0 );
3281 }
3282 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3283 
3284 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3285 /*
3286 ** This routine attempts to flatten subqueries as a performance optimization.
3287 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3288 **
3289 ** To understand the concept of flattening, consider the following
3290 ** query:
3291 **
3292 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3293 **
3294 ** The default way of implementing this query is to execute the
3295 ** subquery first and store the results in a temporary table, then
3296 ** run the outer query on that temporary table.  This requires two
3297 ** passes over the data.  Furthermore, because the temporary table
3298 ** has no indices, the WHERE clause on the outer query cannot be
3299 ** optimized.
3300 **
3301 ** This routine attempts to rewrite queries such as the above into
3302 ** a single flat select, like this:
3303 **
3304 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3305 **
3306 ** The code generated for this simplification gives the same result
3307 ** but only has to scan the data once.  And because indices might
3308 ** exist on the table t1, a complete scan of the data might be
3309 ** avoided.
3310 **
3311 ** Flattening is subject to the following constraints:
3312 **
3313 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3314 **        The subquery and the outer query cannot both be aggregates.
3315 **
3316 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3317 **        (2) If the subquery is an aggregate then
3318 **        (2a) the outer query must not be a join and
3319 **        (2b) the outer query must not use subqueries
3320 **             other than the one FROM-clause subquery that is a candidate
3321 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3322 **             from 2015-02-09.)
3323 **
3324 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3325 **        (3a) the subquery may not be a join and
3326 **        (3b) the FROM clause of the subquery may not contain a virtual
3327 **             table and
3328 **        (3c) the outer query may not be an aggregate.
3329 **
3330 **   (4)  The subquery can not be DISTINCT.
3331 **
3332 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3333 **        sub-queries that were excluded from this optimization. Restriction
3334 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3335 **
3336 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3337 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3338 **
3339 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3340 **        A FROM clause, consider adding a FROM clause with the special
3341 **        table sqlite_once that consists of a single row containing a
3342 **        single NULL.
3343 **
3344 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3345 **
3346 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3347 **
3348 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3349 **        accidently carried the comment forward until 2014-09-15.  Original
3350 **        constraint: "If the subquery is aggregate then the outer query
3351 **        may not use LIMIT."
3352 **
3353 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3354 **
3355 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3356 **        a separate restriction deriving from ticket #350.
3357 **
3358 **  (13)  The subquery and outer query may not both use LIMIT.
3359 **
3360 **  (14)  The subquery may not use OFFSET.
3361 **
3362 **  (15)  If the outer query is part of a compound select, then the
3363 **        subquery may not use LIMIT.
3364 **        (See ticket #2339 and ticket [02a8e81d44]).
3365 **
3366 **  (16)  If the outer query is aggregate, then the subquery may not
3367 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3368 **        until we introduced the group_concat() function.
3369 **
3370 **  (17)  If the subquery is a compound select, then
3371 **        (17a) all compound operators must be a UNION ALL, and
3372 **        (17b) no terms within the subquery compound may be aggregate
3373 **              or DISTINCT, and
3374 **        (17c) every term within the subquery compound must have a FROM clause
3375 **        (17d) the outer query may not be
3376 **              (17d1) aggregate, or
3377 **              (17d2) DISTINCT, or
3378 **              (17d3) a join.
3379 **
3380 **        The parent and sub-query may contain WHERE clauses. Subject to
3381 **        rules (11), (13) and (14), they may also contain ORDER BY,
3382 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3383 **        operator other than UNION ALL because all the other compound
3384 **        operators have an implied DISTINCT which is disallowed by
3385 **        restriction (4).
3386 **
3387 **        Also, each component of the sub-query must return the same number
3388 **        of result columns. This is actually a requirement for any compound
3389 **        SELECT statement, but all the code here does is make sure that no
3390 **        such (illegal) sub-query is flattened. The caller will detect the
3391 **        syntax error and return a detailed message.
3392 **
3393 **  (18)  If the sub-query is a compound select, then all terms of the
3394 **        ORDER BY clause of the parent must be simple references to
3395 **        columns of the sub-query.
3396 **
3397 **  (19)  If the subquery uses LIMIT then the outer query may not
3398 **        have a WHERE clause.
3399 **
3400 **  (20)  If the sub-query is a compound select, then it must not use
3401 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3402 **        somewhat by saying that the terms of the ORDER BY clause must
3403 **        appear as unmodified result columns in the outer query.  But we
3404 **        have other optimizations in mind to deal with that case.
3405 **
3406 **  (21)  If the subquery uses LIMIT then the outer query may not be
3407 **        DISTINCT.  (See ticket [752e1646fc]).
3408 **
3409 **  (22)  The subquery may not be a recursive CTE.
3410 **
3411 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3412 **        a recursive CTE, then the sub-query may not be a compound query.
3413 **        This restriction is because transforming the
3414 **        parent to a compound query confuses the code that handles
3415 **        recursive queries in multiSelect().
3416 **
3417 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3418 **        The subquery may not be an aggregate that uses the built-in min() or
3419 **        or max() functions.  (Without this restriction, a query like:
3420 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3421 **        return the value X for which Y was maximal.)
3422 **
3423 **
3424 ** In this routine, the "p" parameter is a pointer to the outer query.
3425 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3426 ** uses aggregates.
3427 **
3428 ** If flattening is not attempted, this routine is a no-op and returns 0.
3429 ** If flattening is attempted this routine returns 1.
3430 **
3431 ** All of the expression analysis must occur on both the outer query and
3432 ** the subquery before this routine runs.
3433 */
3434 static int flattenSubquery(
3435   Parse *pParse,       /* Parsing context */
3436   Select *p,           /* The parent or outer SELECT statement */
3437   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3438   int isAgg            /* True if outer SELECT uses aggregate functions */
3439 ){
3440   const char *zSavedAuthContext = pParse->zAuthContext;
3441   Select *pParent;    /* Current UNION ALL term of the other query */
3442   Select *pSub;       /* The inner query or "subquery" */
3443   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3444   SrcList *pSrc;      /* The FROM clause of the outer query */
3445   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3446   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3447   int iNewParent = -1;/* Replacement table for iParent */
3448   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3449   int i;              /* Loop counter */
3450   Expr *pWhere;                    /* The WHERE clause */
3451   struct SrcList_item *pSubitem;   /* The subquery */
3452   sqlite3 *db = pParse->db;
3453 
3454   /* Check to see if flattening is permitted.  Return 0 if not.
3455   */
3456   assert( p!=0 );
3457   assert( p->pPrior==0 );
3458   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3459   pSrc = p->pSrc;
3460   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3461   pSubitem = &pSrc->a[iFrom];
3462   iParent = pSubitem->iCursor;
3463   pSub = pSubitem->pSelect;
3464   assert( pSub!=0 );
3465 
3466   pSubSrc = pSub->pSrc;
3467   assert( pSubSrc );
3468   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3469   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3470   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3471   ** became arbitrary expressions, we were forced to add restrictions (13)
3472   ** and (14). */
3473   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3474   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3475   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3476     return 0;                                            /* Restriction (15) */
3477   }
3478   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3479   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3480   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3481      return 0;         /* Restrictions (8)(9) */
3482   }
3483   if( p->pOrderBy && pSub->pOrderBy ){
3484      return 0;                                           /* Restriction (11) */
3485   }
3486   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3487   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3488   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3489      return 0;         /* Restriction (21) */
3490   }
3491   if( pSub->selFlags & (SF_Recursive) ){
3492     return 0; /* Restrictions (22) */
3493   }
3494 
3495   /*
3496   ** If the subquery is the right operand of a LEFT JOIN, then the
3497   ** subquery may not be a join itself (3a). Example of why this is not
3498   ** allowed:
3499   **
3500   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3501   **
3502   ** If we flatten the above, we would get
3503   **
3504   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3505   **
3506   ** which is not at all the same thing.
3507   **
3508   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3509   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3510   ** aggregates are processed - there is no mechanism to determine if
3511   ** the LEFT JOIN table should be all-NULL.
3512   **
3513   ** See also tickets #306, #350, and #3300.
3514   */
3515   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3516     isLeftJoin = 1;
3517     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3518       /*  (3a)             (3c)     (3b) */
3519       return 0;
3520     }
3521   }
3522 #ifdef SQLITE_EXTRA_IFNULLROW
3523   else if( iFrom>0 && !isAgg ){
3524     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3525     ** every reference to any result column from subquery in a join, even
3526     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3527     ** opcode. */
3528     isLeftJoin = -1;
3529   }
3530 #endif
3531 
3532   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3533   ** use only the UNION ALL operator. And none of the simple select queries
3534   ** that make up the compound SELECT are allowed to be aggregate or distinct
3535   ** queries.
3536   */
3537   if( pSub->pPrior ){
3538     if( pSub->pOrderBy ){
3539       return 0;  /* Restriction (20) */
3540     }
3541     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3542       return 0; /* (17d1), (17d2), or (17d3) */
3543     }
3544     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3545       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3546       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3547       assert( pSub->pSrc!=0 );
3548       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3549       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3550        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3551        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3552       ){
3553         return 0;
3554       }
3555       testcase( pSub1->pSrc->nSrc>1 );
3556     }
3557 
3558     /* Restriction (18). */
3559     if( p->pOrderBy ){
3560       int ii;
3561       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3562         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3563       }
3564     }
3565   }
3566 
3567   /* Ex-restriction (23):
3568   ** The only way that the recursive part of a CTE can contain a compound
3569   ** subquery is for the subquery to be one term of a join.  But if the
3570   ** subquery is a join, then the flattening has already been stopped by
3571   ** restriction (17d3)
3572   */
3573   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3574 
3575   /***** If we reach this point, flattening is permitted. *****/
3576   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3577                    pSub->zSelName, pSub, iFrom));
3578 
3579   /* Authorize the subquery */
3580   pParse->zAuthContext = pSubitem->zName;
3581   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3582   testcase( i==SQLITE_DENY );
3583   pParse->zAuthContext = zSavedAuthContext;
3584 
3585   /* If the sub-query is a compound SELECT statement, then (by restrictions
3586   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3587   ** be of the form:
3588   **
3589   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3590   **
3591   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3592   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3593   ** OFFSET clauses and joins them to the left-hand-side of the original
3594   ** using UNION ALL operators. In this case N is the number of simple
3595   ** select statements in the compound sub-query.
3596   **
3597   ** Example:
3598   **
3599   **     SELECT a+1 FROM (
3600   **        SELECT x FROM tab
3601   **        UNION ALL
3602   **        SELECT y FROM tab
3603   **        UNION ALL
3604   **        SELECT abs(z*2) FROM tab2
3605   **     ) WHERE a!=5 ORDER BY 1
3606   **
3607   ** Transformed into:
3608   **
3609   **     SELECT x+1 FROM tab WHERE x+1!=5
3610   **     UNION ALL
3611   **     SELECT y+1 FROM tab WHERE y+1!=5
3612   **     UNION ALL
3613   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3614   **     ORDER BY 1
3615   **
3616   ** We call this the "compound-subquery flattening".
3617   */
3618   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3619     Select *pNew;
3620     ExprList *pOrderBy = p->pOrderBy;
3621     Expr *pLimit = p->pLimit;
3622     Select *pPrior = p->pPrior;
3623     p->pOrderBy = 0;
3624     p->pSrc = 0;
3625     p->pPrior = 0;
3626     p->pLimit = 0;
3627     pNew = sqlite3SelectDup(db, p, 0);
3628     sqlite3SelectSetName(pNew, pSub->zSelName);
3629     p->pLimit = pLimit;
3630     p->pOrderBy = pOrderBy;
3631     p->pSrc = pSrc;
3632     p->op = TK_ALL;
3633     if( pNew==0 ){
3634       p->pPrior = pPrior;
3635     }else{
3636       pNew->pPrior = pPrior;
3637       if( pPrior ) pPrior->pNext = pNew;
3638       pNew->pNext = p;
3639       p->pPrior = pNew;
3640       SELECTTRACE(2,pParse,p,
3641          ("compound-subquery flattener creates %s.%p as peer\n",
3642          pNew->zSelName, pNew));
3643     }
3644     if( db->mallocFailed ) return 1;
3645   }
3646 
3647   /* Begin flattening the iFrom-th entry of the FROM clause
3648   ** in the outer query.
3649   */
3650   pSub = pSub1 = pSubitem->pSelect;
3651 
3652   /* Delete the transient table structure associated with the
3653   ** subquery
3654   */
3655   sqlite3DbFree(db, pSubitem->zDatabase);
3656   sqlite3DbFree(db, pSubitem->zName);
3657   sqlite3DbFree(db, pSubitem->zAlias);
3658   pSubitem->zDatabase = 0;
3659   pSubitem->zName = 0;
3660   pSubitem->zAlias = 0;
3661   pSubitem->pSelect = 0;
3662 
3663   /* Defer deleting the Table object associated with the
3664   ** subquery until code generation is
3665   ** complete, since there may still exist Expr.pTab entries that
3666   ** refer to the subquery even after flattening.  Ticket #3346.
3667   **
3668   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3669   */
3670   if( ALWAYS(pSubitem->pTab!=0) ){
3671     Table *pTabToDel = pSubitem->pTab;
3672     if( pTabToDel->nTabRef==1 ){
3673       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3674       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3675       pToplevel->pZombieTab = pTabToDel;
3676     }else{
3677       pTabToDel->nTabRef--;
3678     }
3679     pSubitem->pTab = 0;
3680   }
3681 
3682   /* The following loop runs once for each term in a compound-subquery
3683   ** flattening (as described above).  If we are doing a different kind
3684   ** of flattening - a flattening other than a compound-subquery flattening -
3685   ** then this loop only runs once.
3686   **
3687   ** This loop moves all of the FROM elements of the subquery into the
3688   ** the FROM clause of the outer query.  Before doing this, remember
3689   ** the cursor number for the original outer query FROM element in
3690   ** iParent.  The iParent cursor will never be used.  Subsequent code
3691   ** will scan expressions looking for iParent references and replace
3692   ** those references with expressions that resolve to the subquery FROM
3693   ** elements we are now copying in.
3694   */
3695   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3696     int nSubSrc;
3697     u8 jointype = 0;
3698     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3699     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3700     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3701 
3702     if( pSrc ){
3703       assert( pParent==p );  /* First time through the loop */
3704       jointype = pSubitem->fg.jointype;
3705     }else{
3706       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3707       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3708       if( pSrc==0 ){
3709         assert( db->mallocFailed );
3710         break;
3711       }
3712     }
3713 
3714     /* The subquery uses a single slot of the FROM clause of the outer
3715     ** query.  If the subquery has more than one element in its FROM clause,
3716     ** then expand the outer query to make space for it to hold all elements
3717     ** of the subquery.
3718     **
3719     ** Example:
3720     **
3721     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3722     **
3723     ** The outer query has 3 slots in its FROM clause.  One slot of the
3724     ** outer query (the middle slot) is used by the subquery.  The next
3725     ** block of code will expand the outer query FROM clause to 4 slots.
3726     ** The middle slot is expanded to two slots in order to make space
3727     ** for the two elements in the FROM clause of the subquery.
3728     */
3729     if( nSubSrc>1 ){
3730       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3731       if( db->mallocFailed ){
3732         break;
3733       }
3734     }
3735 
3736     /* Transfer the FROM clause terms from the subquery into the
3737     ** outer query.
3738     */
3739     for(i=0; i<nSubSrc; i++){
3740       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3741       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3742       pSrc->a[i+iFrom] = pSubSrc->a[i];
3743       iNewParent = pSubSrc->a[i].iCursor;
3744       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3745     }
3746     pSrc->a[iFrom].fg.jointype = jointype;
3747 
3748     /* Now begin substituting subquery result set expressions for
3749     ** references to the iParent in the outer query.
3750     **
3751     ** Example:
3752     **
3753     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3754     **   \                     \_____________ subquery __________/          /
3755     **    \_____________________ outer query ______________________________/
3756     **
3757     ** We look at every expression in the outer query and every place we see
3758     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3759     */
3760     if( pSub->pOrderBy ){
3761       /* At this point, any non-zero iOrderByCol values indicate that the
3762       ** ORDER BY column expression is identical to the iOrderByCol'th
3763       ** expression returned by SELECT statement pSub. Since these values
3764       ** do not necessarily correspond to columns in SELECT statement pParent,
3765       ** zero them before transfering the ORDER BY clause.
3766       **
3767       ** Not doing this may cause an error if a subsequent call to this
3768       ** function attempts to flatten a compound sub-query into pParent
3769       ** (the only way this can happen is if the compound sub-query is
3770       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3771       ExprList *pOrderBy = pSub->pOrderBy;
3772       for(i=0; i<pOrderBy->nExpr; i++){
3773         pOrderBy->a[i].u.x.iOrderByCol = 0;
3774       }
3775       assert( pParent->pOrderBy==0 );
3776       assert( pSub->pPrior==0 );
3777       pParent->pOrderBy = pOrderBy;
3778       pSub->pOrderBy = 0;
3779     }
3780     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3781     if( isLeftJoin>0 ){
3782       setJoinExpr(pWhere, iNewParent);
3783     }
3784     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3785     if( db->mallocFailed==0 ){
3786       SubstContext x;
3787       x.pParse = pParse;
3788       x.iTable = iParent;
3789       x.iNewTable = iNewParent;
3790       x.isLeftJoin = isLeftJoin;
3791       x.pEList = pSub->pEList;
3792       substSelect(&x, pParent, 0);
3793     }
3794 
3795     /* The flattened query is distinct if either the inner or the
3796     ** outer query is distinct.
3797     */
3798     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3799 
3800     /*
3801     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3802     **
3803     ** One is tempted to try to add a and b to combine the limits.  But this
3804     ** does not work if either limit is negative.
3805     */
3806     if( pSub->pLimit ){
3807       pParent->pLimit = pSub->pLimit;
3808       pSub->pLimit = 0;
3809     }
3810   }
3811 
3812   /* Finially, delete what is left of the subquery and return
3813   ** success.
3814   */
3815   sqlite3SelectDelete(db, pSub1);
3816 
3817 #if SELECTTRACE_ENABLED
3818   if( sqlite3SelectTrace & 0x100 ){
3819     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3820     sqlite3TreeViewSelect(0, p, 0);
3821   }
3822 #endif
3823 
3824   return 1;
3825 }
3826 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3827 
3828 
3829 
3830 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3831 /*
3832 ** Make copies of relevant WHERE clause terms of the outer query into
3833 ** the WHERE clause of subquery.  Example:
3834 **
3835 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3836 **
3837 ** Transformed into:
3838 **
3839 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3840 **     WHERE x=5 AND y=10;
3841 **
3842 ** The hope is that the terms added to the inner query will make it more
3843 ** efficient.
3844 **
3845 ** Do not attempt this optimization if:
3846 **
3847 **   (1) (** This restriction was removed on 2017-09-29.  We used to
3848 **           disallow this optimization for aggregate subqueries, but now
3849 **           it is allowed by putting the extra terms on the HAVING clause.
3850 **           The added HAVING clause is pointless if the subquery lacks
3851 **           a GROUP BY clause.  But such a HAVING clause is also harmless
3852 **           so there does not appear to be any reason to add extra logic
3853 **           to suppress it. **)
3854 **
3855 **   (2) The inner query is the recursive part of a common table expression.
3856 **
3857 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3858 **       close would change the meaning of the LIMIT).
3859 **
3860 **   (4) The inner query is the right operand of a LEFT JOIN and the
3861 **       expression to be pushed down does not come from the ON clause
3862 **       on that LEFT JOIN.
3863 **
3864 **   (5) The WHERE clause expression originates in the ON or USING clause
3865 **       of a LEFT JOIN where iCursor is not the right-hand table of that
3866 **       left join.  An example:
3867 **
3868 **           SELECT *
3869 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
3870 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
3871 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
3872 **
3873 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
3874 **       But if the (b2=2) term were to be pushed down into the bb subquery,
3875 **       then the (1,1,NULL) row would be suppressed.
3876 **
3877 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3878 ** terms are duplicated into the subquery.
3879 */
3880 static int pushDownWhereTerms(
3881   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
3882   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3883   Expr *pWhere,         /* The WHERE clause of the outer query */
3884   int iCursor,          /* Cursor number of the subquery */
3885   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
3886 ){
3887   Expr *pNew;
3888   int nChng = 0;
3889   if( pWhere==0 ) return 0;
3890   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
3891 
3892 #ifdef SQLITE_DEBUG
3893   /* Only the first term of a compound can have a WITH clause.  But make
3894   ** sure no other terms are marked SF_Recursive in case something changes
3895   ** in the future.
3896   */
3897   {
3898     Select *pX;
3899     for(pX=pSubq; pX; pX=pX->pPrior){
3900       assert( (pX->selFlags & (SF_Recursive))==0 );
3901     }
3902   }
3903 #endif
3904 
3905   if( pSubq->pLimit!=0 ){
3906     return 0; /* restriction (3) */
3907   }
3908   while( pWhere->op==TK_AND ){
3909     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
3910                                 iCursor, isLeftJoin);
3911     pWhere = pWhere->pLeft;
3912   }
3913   if( isLeftJoin
3914    && (ExprHasProperty(pWhere,EP_FromJoin)==0
3915          || pWhere->iRightJoinTable!=iCursor)
3916   ){
3917     return 0; /* restriction (4) */
3918   }
3919   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
3920     return 0; /* restriction (5) */
3921   }
3922   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3923     nChng++;
3924     while( pSubq ){
3925       SubstContext x;
3926       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3927       unsetJoinExpr(pNew, -1);
3928       x.pParse = pParse;
3929       x.iTable = iCursor;
3930       x.iNewTable = iCursor;
3931       x.isLeftJoin = 0;
3932       x.pEList = pSubq->pEList;
3933       pNew = substExpr(&x, pNew);
3934       if( pSubq->selFlags & SF_Aggregate ){
3935         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
3936       }else{
3937         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3938       }
3939       pSubq = pSubq->pPrior;
3940     }
3941   }
3942   return nChng;
3943 }
3944 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3945 
3946 /*
3947 ** The pFunc is the only aggregate function in the query.  Check to see
3948 ** if the query is a candidate for the min/max optimization.
3949 **
3950 ** If the query is a candidate for the min/max optimization, then set
3951 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
3952 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
3953 ** whether pFunc is a min() or max() function.
3954 **
3955 ** If the query is not a candidate for the min/max optimization, return
3956 ** WHERE_ORDERBY_NORMAL (which must be zero).
3957 **
3958 ** This routine must be called after aggregate functions have been
3959 ** located but before their arguments have been subjected to aggregate
3960 ** analysis.
3961 */
3962 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
3963   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
3964   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
3965   const char *zFunc;                    /* Name of aggregate function pFunc */
3966   ExprList *pOrderBy;
3967   u8 sortOrder;
3968 
3969   assert( *ppMinMax==0 );
3970   assert( pFunc->op==TK_AGG_FUNCTION );
3971   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
3972   zFunc = pFunc->u.zToken;
3973   if( sqlite3StrICmp(zFunc, "min")==0 ){
3974     eRet = WHERE_ORDERBY_MIN;
3975     sortOrder = SQLITE_SO_ASC;
3976   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3977     eRet = WHERE_ORDERBY_MAX;
3978     sortOrder = SQLITE_SO_DESC;
3979   }else{
3980     return eRet;
3981   }
3982   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
3983   assert( pOrderBy!=0 || db->mallocFailed );
3984   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
3985   return eRet;
3986 }
3987 
3988 /*
3989 ** The select statement passed as the first argument is an aggregate query.
3990 ** The second argument is the associated aggregate-info object. This
3991 ** function tests if the SELECT is of the form:
3992 **
3993 **   SELECT count(*) FROM <tbl>
3994 **
3995 ** where table is a database table, not a sub-select or view. If the query
3996 ** does match this pattern, then a pointer to the Table object representing
3997 ** <tbl> is returned. Otherwise, 0 is returned.
3998 */
3999 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4000   Table *pTab;
4001   Expr *pExpr;
4002 
4003   assert( !p->pGroupBy );
4004 
4005   if( p->pWhere || p->pEList->nExpr!=1
4006    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4007   ){
4008     return 0;
4009   }
4010   pTab = p->pSrc->a[0].pTab;
4011   pExpr = p->pEList->a[0].pExpr;
4012   assert( pTab && !pTab->pSelect && pExpr );
4013 
4014   if( IsVirtual(pTab) ) return 0;
4015   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4016   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4017   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4018   if( pExpr->flags&EP_Distinct ) return 0;
4019 
4020   return pTab;
4021 }
4022 
4023 /*
4024 ** If the source-list item passed as an argument was augmented with an
4025 ** INDEXED BY clause, then try to locate the specified index. If there
4026 ** was such a clause and the named index cannot be found, return
4027 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4028 ** pFrom->pIndex and return SQLITE_OK.
4029 */
4030 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4031   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4032     Table *pTab = pFrom->pTab;
4033     char *zIndexedBy = pFrom->u1.zIndexedBy;
4034     Index *pIdx;
4035     for(pIdx=pTab->pIndex;
4036         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4037         pIdx=pIdx->pNext
4038     );
4039     if( !pIdx ){
4040       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4041       pParse->checkSchema = 1;
4042       return SQLITE_ERROR;
4043     }
4044     pFrom->pIBIndex = pIdx;
4045   }
4046   return SQLITE_OK;
4047 }
4048 /*
4049 ** Detect compound SELECT statements that use an ORDER BY clause with
4050 ** an alternative collating sequence.
4051 **
4052 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4053 **
4054 ** These are rewritten as a subquery:
4055 **
4056 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4057 **     ORDER BY ... COLLATE ...
4058 **
4059 ** This transformation is necessary because the multiSelectOrderBy() routine
4060 ** above that generates the code for a compound SELECT with an ORDER BY clause
4061 ** uses a merge algorithm that requires the same collating sequence on the
4062 ** result columns as on the ORDER BY clause.  See ticket
4063 ** http://www.sqlite.org/src/info/6709574d2a
4064 **
4065 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4066 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4067 ** there are COLLATE terms in the ORDER BY.
4068 */
4069 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4070   int i;
4071   Select *pNew;
4072   Select *pX;
4073   sqlite3 *db;
4074   struct ExprList_item *a;
4075   SrcList *pNewSrc;
4076   Parse *pParse;
4077   Token dummy;
4078 
4079   if( p->pPrior==0 ) return WRC_Continue;
4080   if( p->pOrderBy==0 ) return WRC_Continue;
4081   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4082   if( pX==0 ) return WRC_Continue;
4083   a = p->pOrderBy->a;
4084   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4085     if( a[i].pExpr->flags & EP_Collate ) break;
4086   }
4087   if( i<0 ) return WRC_Continue;
4088 
4089   /* If we reach this point, that means the transformation is required. */
4090 
4091   pParse = pWalker->pParse;
4092   db = pParse->db;
4093   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4094   if( pNew==0 ) return WRC_Abort;
4095   memset(&dummy, 0, sizeof(dummy));
4096   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4097   if( pNewSrc==0 ) return WRC_Abort;
4098   *pNew = *p;
4099   p->pSrc = pNewSrc;
4100   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4101   p->op = TK_SELECT;
4102   p->pWhere = 0;
4103   pNew->pGroupBy = 0;
4104   pNew->pHaving = 0;
4105   pNew->pOrderBy = 0;
4106   p->pPrior = 0;
4107   p->pNext = 0;
4108   p->pWith = 0;
4109   p->selFlags &= ~SF_Compound;
4110   assert( (p->selFlags & SF_Converted)==0 );
4111   p->selFlags |= SF_Converted;
4112   assert( pNew->pPrior!=0 );
4113   pNew->pPrior->pNext = pNew;
4114   pNew->pLimit = 0;
4115   return WRC_Continue;
4116 }
4117 
4118 /*
4119 ** Check to see if the FROM clause term pFrom has table-valued function
4120 ** arguments.  If it does, leave an error message in pParse and return
4121 ** non-zero, since pFrom is not allowed to be a table-valued function.
4122 */
4123 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4124   if( pFrom->fg.isTabFunc ){
4125     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4126     return 1;
4127   }
4128   return 0;
4129 }
4130 
4131 #ifndef SQLITE_OMIT_CTE
4132 /*
4133 ** Argument pWith (which may be NULL) points to a linked list of nested
4134 ** WITH contexts, from inner to outermost. If the table identified by
4135 ** FROM clause element pItem is really a common-table-expression (CTE)
4136 ** then return a pointer to the CTE definition for that table. Otherwise
4137 ** return NULL.
4138 **
4139 ** If a non-NULL value is returned, set *ppContext to point to the With
4140 ** object that the returned CTE belongs to.
4141 */
4142 static struct Cte *searchWith(
4143   With *pWith,                    /* Current innermost WITH clause */
4144   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4145   With **ppContext                /* OUT: WITH clause return value belongs to */
4146 ){
4147   const char *zName;
4148   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4149     With *p;
4150     for(p=pWith; p; p=p->pOuter){
4151       int i;
4152       for(i=0; i<p->nCte; i++){
4153         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4154           *ppContext = p;
4155           return &p->a[i];
4156         }
4157       }
4158     }
4159   }
4160   return 0;
4161 }
4162 
4163 /* The code generator maintains a stack of active WITH clauses
4164 ** with the inner-most WITH clause being at the top of the stack.
4165 **
4166 ** This routine pushes the WITH clause passed as the second argument
4167 ** onto the top of the stack. If argument bFree is true, then this
4168 ** WITH clause will never be popped from the stack. In this case it
4169 ** should be freed along with the Parse object. In other cases, when
4170 ** bFree==0, the With object will be freed along with the SELECT
4171 ** statement with which it is associated.
4172 */
4173 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4174   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4175   if( pWith ){
4176     assert( pParse->pWith!=pWith );
4177     pWith->pOuter = pParse->pWith;
4178     pParse->pWith = pWith;
4179     if( bFree ) pParse->pWithToFree = pWith;
4180   }
4181 }
4182 
4183 /*
4184 ** This function checks if argument pFrom refers to a CTE declared by
4185 ** a WITH clause on the stack currently maintained by the parser. And,
4186 ** if currently processing a CTE expression, if it is a recursive
4187 ** reference to the current CTE.
4188 **
4189 ** If pFrom falls into either of the two categories above, pFrom->pTab
4190 ** and other fields are populated accordingly. The caller should check
4191 ** (pFrom->pTab!=0) to determine whether or not a successful match
4192 ** was found.
4193 **
4194 ** Whether or not a match is found, SQLITE_OK is returned if no error
4195 ** occurs. If an error does occur, an error message is stored in the
4196 ** parser and some error code other than SQLITE_OK returned.
4197 */
4198 static int withExpand(
4199   Walker *pWalker,
4200   struct SrcList_item *pFrom
4201 ){
4202   Parse *pParse = pWalker->pParse;
4203   sqlite3 *db = pParse->db;
4204   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4205   With *pWith;                    /* WITH clause that pCte belongs to */
4206 
4207   assert( pFrom->pTab==0 );
4208 
4209   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4210   if( pCte ){
4211     Table *pTab;
4212     ExprList *pEList;
4213     Select *pSel;
4214     Select *pLeft;                /* Left-most SELECT statement */
4215     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4216     With *pSavedWith;             /* Initial value of pParse->pWith */
4217 
4218     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4219     ** recursive reference to CTE pCte. Leave an error in pParse and return
4220     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4221     ** In this case, proceed.  */
4222     if( pCte->zCteErr ){
4223       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4224       return SQLITE_ERROR;
4225     }
4226     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4227 
4228     assert( pFrom->pTab==0 );
4229     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4230     if( pTab==0 ) return WRC_Abort;
4231     pTab->nTabRef = 1;
4232     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4233     pTab->iPKey = -1;
4234     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4235     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4236     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4237     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4238     assert( pFrom->pSelect );
4239 
4240     /* Check if this is a recursive CTE. */
4241     pSel = pFrom->pSelect;
4242     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4243     if( bMayRecursive ){
4244       int i;
4245       SrcList *pSrc = pFrom->pSelect->pSrc;
4246       for(i=0; i<pSrc->nSrc; i++){
4247         struct SrcList_item *pItem = &pSrc->a[i];
4248         if( pItem->zDatabase==0
4249          && pItem->zName!=0
4250          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4251           ){
4252           pItem->pTab = pTab;
4253           pItem->fg.isRecursive = 1;
4254           pTab->nTabRef++;
4255           pSel->selFlags |= SF_Recursive;
4256         }
4257       }
4258     }
4259 
4260     /* Only one recursive reference is permitted. */
4261     if( pTab->nTabRef>2 ){
4262       sqlite3ErrorMsg(
4263           pParse, "multiple references to recursive table: %s", pCte->zName
4264       );
4265       return SQLITE_ERROR;
4266     }
4267     assert( pTab->nTabRef==1 ||
4268             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4269 
4270     pCte->zCteErr = "circular reference: %s";
4271     pSavedWith = pParse->pWith;
4272     pParse->pWith = pWith;
4273     if( bMayRecursive ){
4274       Select *pPrior = pSel->pPrior;
4275       assert( pPrior->pWith==0 );
4276       pPrior->pWith = pSel->pWith;
4277       sqlite3WalkSelect(pWalker, pPrior);
4278       pPrior->pWith = 0;
4279     }else{
4280       sqlite3WalkSelect(pWalker, pSel);
4281     }
4282     pParse->pWith = pWith;
4283 
4284     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4285     pEList = pLeft->pEList;
4286     if( pCte->pCols ){
4287       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4288         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4289             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4290         );
4291         pParse->pWith = pSavedWith;
4292         return SQLITE_ERROR;
4293       }
4294       pEList = pCte->pCols;
4295     }
4296 
4297     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4298     if( bMayRecursive ){
4299       if( pSel->selFlags & SF_Recursive ){
4300         pCte->zCteErr = "multiple recursive references: %s";
4301       }else{
4302         pCte->zCteErr = "recursive reference in a subquery: %s";
4303       }
4304       sqlite3WalkSelect(pWalker, pSel);
4305     }
4306     pCte->zCteErr = 0;
4307     pParse->pWith = pSavedWith;
4308   }
4309 
4310   return SQLITE_OK;
4311 }
4312 #endif
4313 
4314 #ifndef SQLITE_OMIT_CTE
4315 /*
4316 ** If the SELECT passed as the second argument has an associated WITH
4317 ** clause, pop it from the stack stored as part of the Parse object.
4318 **
4319 ** This function is used as the xSelectCallback2() callback by
4320 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4321 ** names and other FROM clause elements.
4322 */
4323 static void selectPopWith(Walker *pWalker, Select *p){
4324   Parse *pParse = pWalker->pParse;
4325   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4326     With *pWith = findRightmost(p)->pWith;
4327     if( pWith!=0 ){
4328       assert( pParse->pWith==pWith );
4329       pParse->pWith = pWith->pOuter;
4330     }
4331   }
4332 }
4333 #else
4334 #define selectPopWith 0
4335 #endif
4336 
4337 /*
4338 ** This routine is a Walker callback for "expanding" a SELECT statement.
4339 ** "Expanding" means to do the following:
4340 **
4341 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4342 **         element of the FROM clause.
4343 **
4344 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4345 **         defines FROM clause.  When views appear in the FROM clause,
4346 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4347 **         that implements the view.  A copy is made of the view's SELECT
4348 **         statement so that we can freely modify or delete that statement
4349 **         without worrying about messing up the persistent representation
4350 **         of the view.
4351 **
4352 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4353 **         on joins and the ON and USING clause of joins.
4354 **
4355 **    (4)  Scan the list of columns in the result set (pEList) looking
4356 **         for instances of the "*" operator or the TABLE.* operator.
4357 **         If found, expand each "*" to be every column in every table
4358 **         and TABLE.* to be every column in TABLE.
4359 **
4360 */
4361 static int selectExpander(Walker *pWalker, Select *p){
4362   Parse *pParse = pWalker->pParse;
4363   int i, j, k;
4364   SrcList *pTabList;
4365   ExprList *pEList;
4366   struct SrcList_item *pFrom;
4367   sqlite3 *db = pParse->db;
4368   Expr *pE, *pRight, *pExpr;
4369   u16 selFlags = p->selFlags;
4370   u32 elistFlags = 0;
4371 
4372   p->selFlags |= SF_Expanded;
4373   if( db->mallocFailed  ){
4374     return WRC_Abort;
4375   }
4376   assert( p->pSrc!=0 );
4377   if( (selFlags & SF_Expanded)!=0 ){
4378     return WRC_Prune;
4379   }
4380   pTabList = p->pSrc;
4381   pEList = p->pEList;
4382   if( OK_IF_ALWAYS_TRUE(p->pWith) ){
4383     sqlite3WithPush(pParse, p->pWith, 0);
4384   }
4385 
4386   /* Make sure cursor numbers have been assigned to all entries in
4387   ** the FROM clause of the SELECT statement.
4388   */
4389   sqlite3SrcListAssignCursors(pParse, pTabList);
4390 
4391   /* Look up every table named in the FROM clause of the select.  If
4392   ** an entry of the FROM clause is a subquery instead of a table or view,
4393   ** then create a transient table structure to describe the subquery.
4394   */
4395   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4396     Table *pTab;
4397     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4398     if( pFrom->fg.isRecursive ) continue;
4399     assert( pFrom->pTab==0 );
4400 #ifndef SQLITE_OMIT_CTE
4401     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4402     if( pFrom->pTab ) {} else
4403 #endif
4404     if( pFrom->zName==0 ){
4405 #ifndef SQLITE_OMIT_SUBQUERY
4406       Select *pSel = pFrom->pSelect;
4407       /* A sub-query in the FROM clause of a SELECT */
4408       assert( pSel!=0 );
4409       assert( pFrom->pTab==0 );
4410       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4411       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4412       if( pTab==0 ) return WRC_Abort;
4413       pTab->nTabRef = 1;
4414       if( pFrom->zAlias ){
4415         pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4416       }else{
4417         pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4418       }
4419       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4420       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4421       pTab->iPKey = -1;
4422       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4423       pTab->tabFlags |= TF_Ephemeral;
4424 #endif
4425     }else{
4426       /* An ordinary table or view name in the FROM clause */
4427       assert( pFrom->pTab==0 );
4428       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4429       if( pTab==0 ) return WRC_Abort;
4430       if( pTab->nTabRef>=0xffff ){
4431         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4432            pTab->zName);
4433         pFrom->pTab = 0;
4434         return WRC_Abort;
4435       }
4436       pTab->nTabRef++;
4437       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4438         return WRC_Abort;
4439       }
4440 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4441       if( IsVirtual(pTab) || pTab->pSelect ){
4442         i16 nCol;
4443         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4444         assert( pFrom->pSelect==0 );
4445         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4446         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4447         nCol = pTab->nCol;
4448         pTab->nCol = -1;
4449         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4450         pTab->nCol = nCol;
4451       }
4452 #endif
4453     }
4454 
4455     /* Locate the index named by the INDEXED BY clause, if any. */
4456     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4457       return WRC_Abort;
4458     }
4459   }
4460 
4461   /* Process NATURAL keywords, and ON and USING clauses of joins.
4462   */
4463   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4464     return WRC_Abort;
4465   }
4466 
4467   /* For every "*" that occurs in the column list, insert the names of
4468   ** all columns in all tables.  And for every TABLE.* insert the names
4469   ** of all columns in TABLE.  The parser inserted a special expression
4470   ** with the TK_ASTERISK operator for each "*" that it found in the column
4471   ** list.  The following code just has to locate the TK_ASTERISK
4472   ** expressions and expand each one to the list of all columns in
4473   ** all tables.
4474   **
4475   ** The first loop just checks to see if there are any "*" operators
4476   ** that need expanding.
4477   */
4478   for(k=0; k<pEList->nExpr; k++){
4479     pE = pEList->a[k].pExpr;
4480     if( pE->op==TK_ASTERISK ) break;
4481     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4482     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4483     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4484     elistFlags |= pE->flags;
4485   }
4486   if( k<pEList->nExpr ){
4487     /*
4488     ** If we get here it means the result set contains one or more "*"
4489     ** operators that need to be expanded.  Loop through each expression
4490     ** in the result set and expand them one by one.
4491     */
4492     struct ExprList_item *a = pEList->a;
4493     ExprList *pNew = 0;
4494     int flags = pParse->db->flags;
4495     int longNames = (flags & SQLITE_FullColNames)!=0
4496                       && (flags & SQLITE_ShortColNames)==0;
4497 
4498     for(k=0; k<pEList->nExpr; k++){
4499       pE = a[k].pExpr;
4500       elistFlags |= pE->flags;
4501       pRight = pE->pRight;
4502       assert( pE->op!=TK_DOT || pRight!=0 );
4503       if( pE->op!=TK_ASTERISK
4504        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4505       ){
4506         /* This particular expression does not need to be expanded.
4507         */
4508         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4509         if( pNew ){
4510           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4511           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4512           a[k].zName = 0;
4513           a[k].zSpan = 0;
4514         }
4515         a[k].pExpr = 0;
4516       }else{
4517         /* This expression is a "*" or a "TABLE.*" and needs to be
4518         ** expanded. */
4519         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4520         char *zTName = 0;       /* text of name of TABLE */
4521         if( pE->op==TK_DOT ){
4522           assert( pE->pLeft!=0 );
4523           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4524           zTName = pE->pLeft->u.zToken;
4525         }
4526         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4527           Table *pTab = pFrom->pTab;
4528           Select *pSub = pFrom->pSelect;
4529           char *zTabName = pFrom->zAlias;
4530           const char *zSchemaName = 0;
4531           int iDb;
4532           if( zTabName==0 ){
4533             zTabName = pTab->zName;
4534           }
4535           if( db->mallocFailed ) break;
4536           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4537             pSub = 0;
4538             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4539               continue;
4540             }
4541             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4542             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4543           }
4544           for(j=0; j<pTab->nCol; j++){
4545             char *zName = pTab->aCol[j].zName;
4546             char *zColname;  /* The computed column name */
4547             char *zToFree;   /* Malloced string that needs to be freed */
4548             Token sColname;  /* Computed column name as a token */
4549 
4550             assert( zName );
4551             if( zTName && pSub
4552              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4553             ){
4554               continue;
4555             }
4556 
4557             /* If a column is marked as 'hidden', omit it from the expanded
4558             ** result-set list unless the SELECT has the SF_IncludeHidden
4559             ** bit set.
4560             */
4561             if( (p->selFlags & SF_IncludeHidden)==0
4562              && IsHiddenColumn(&pTab->aCol[j])
4563             ){
4564               continue;
4565             }
4566             tableSeen = 1;
4567 
4568             if( i>0 && zTName==0 ){
4569               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4570                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4571               ){
4572                 /* In a NATURAL join, omit the join columns from the
4573                 ** table to the right of the join */
4574                 continue;
4575               }
4576               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4577                 /* In a join with a USING clause, omit columns in the
4578                 ** using clause from the table on the right. */
4579                 continue;
4580               }
4581             }
4582             pRight = sqlite3Expr(db, TK_ID, zName);
4583             zColname = zName;
4584             zToFree = 0;
4585             if( longNames || pTabList->nSrc>1 ){
4586               Expr *pLeft;
4587               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4588               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4589               if( zSchemaName ){
4590                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4591                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4592               }
4593               if( longNames ){
4594                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4595                 zToFree = zColname;
4596               }
4597             }else{
4598               pExpr = pRight;
4599             }
4600             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4601             sqlite3TokenInit(&sColname, zColname);
4602             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4603             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4604               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4605               if( pSub ){
4606                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4607                 testcase( pX->zSpan==0 );
4608               }else{
4609                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4610                                            zSchemaName, zTabName, zColname);
4611                 testcase( pX->zSpan==0 );
4612               }
4613               pX->bSpanIsTab = 1;
4614             }
4615             sqlite3DbFree(db, zToFree);
4616           }
4617         }
4618         if( !tableSeen ){
4619           if( zTName ){
4620             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4621           }else{
4622             sqlite3ErrorMsg(pParse, "no tables specified");
4623           }
4624         }
4625       }
4626     }
4627     sqlite3ExprListDelete(db, pEList);
4628     p->pEList = pNew;
4629   }
4630   if( p->pEList ){
4631     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4632       sqlite3ErrorMsg(pParse, "too many columns in result set");
4633       return WRC_Abort;
4634     }
4635     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4636       p->selFlags |= SF_ComplexResult;
4637     }
4638   }
4639   return WRC_Continue;
4640 }
4641 
4642 /*
4643 ** No-op routine for the parse-tree walker.
4644 **
4645 ** When this routine is the Walker.xExprCallback then expression trees
4646 ** are walked without any actions being taken at each node.  Presumably,
4647 ** when this routine is used for Walker.xExprCallback then
4648 ** Walker.xSelectCallback is set to do something useful for every
4649 ** subquery in the parser tree.
4650 */
4651 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4652   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4653   return WRC_Continue;
4654 }
4655 
4656 /*
4657 ** No-op routine for the parse-tree walker for SELECT statements.
4658 ** subquery in the parser tree.
4659 */
4660 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4661   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4662   return WRC_Continue;
4663 }
4664 
4665 #if SQLITE_DEBUG
4666 /*
4667 ** Always assert.  This xSelectCallback2 implementation proves that the
4668 ** xSelectCallback2 is never invoked.
4669 */
4670 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4671   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4672   assert( 0 );
4673 }
4674 #endif
4675 /*
4676 ** This routine "expands" a SELECT statement and all of its subqueries.
4677 ** For additional information on what it means to "expand" a SELECT
4678 ** statement, see the comment on the selectExpand worker callback above.
4679 **
4680 ** Expanding a SELECT statement is the first step in processing a
4681 ** SELECT statement.  The SELECT statement must be expanded before
4682 ** name resolution is performed.
4683 **
4684 ** If anything goes wrong, an error message is written into pParse.
4685 ** The calling function can detect the problem by looking at pParse->nErr
4686 ** and/or pParse->db->mallocFailed.
4687 */
4688 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4689   Walker w;
4690   w.xExprCallback = sqlite3ExprWalkNoop;
4691   w.pParse = pParse;
4692   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4693     w.xSelectCallback = convertCompoundSelectToSubquery;
4694     w.xSelectCallback2 = 0;
4695     sqlite3WalkSelect(&w, pSelect);
4696   }
4697   w.xSelectCallback = selectExpander;
4698   w.xSelectCallback2 = selectPopWith;
4699   sqlite3WalkSelect(&w, pSelect);
4700 }
4701 
4702 
4703 #ifndef SQLITE_OMIT_SUBQUERY
4704 /*
4705 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4706 ** interface.
4707 **
4708 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4709 ** information to the Table structure that represents the result set
4710 ** of that subquery.
4711 **
4712 ** The Table structure that represents the result set was constructed
4713 ** by selectExpander() but the type and collation information was omitted
4714 ** at that point because identifiers had not yet been resolved.  This
4715 ** routine is called after identifier resolution.
4716 */
4717 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4718   Parse *pParse;
4719   int i;
4720   SrcList *pTabList;
4721   struct SrcList_item *pFrom;
4722 
4723   assert( p->selFlags & SF_Resolved );
4724   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4725   p->selFlags |= SF_HasTypeInfo;
4726   pParse = pWalker->pParse;
4727   pTabList = p->pSrc;
4728   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4729     Table *pTab = pFrom->pTab;
4730     assert( pTab!=0 );
4731     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4732       /* A sub-query in the FROM clause of a SELECT */
4733       Select *pSel = pFrom->pSelect;
4734       if( pSel ){
4735         while( pSel->pPrior ) pSel = pSel->pPrior;
4736         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4737       }
4738     }
4739   }
4740 }
4741 #endif
4742 
4743 
4744 /*
4745 ** This routine adds datatype and collating sequence information to
4746 ** the Table structures of all FROM-clause subqueries in a
4747 ** SELECT statement.
4748 **
4749 ** Use this routine after name resolution.
4750 */
4751 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4752 #ifndef SQLITE_OMIT_SUBQUERY
4753   Walker w;
4754   w.xSelectCallback = sqlite3SelectWalkNoop;
4755   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4756   w.xExprCallback = sqlite3ExprWalkNoop;
4757   w.pParse = pParse;
4758   sqlite3WalkSelect(&w, pSelect);
4759 #endif
4760 }
4761 
4762 
4763 /*
4764 ** This routine sets up a SELECT statement for processing.  The
4765 ** following is accomplished:
4766 **
4767 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4768 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4769 **     *  ON and USING clauses are shifted into WHERE statements
4770 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4771 **     *  Identifiers in expression are matched to tables.
4772 **
4773 ** This routine acts recursively on all subqueries within the SELECT.
4774 */
4775 void sqlite3SelectPrep(
4776   Parse *pParse,         /* The parser context */
4777   Select *p,             /* The SELECT statement being coded. */
4778   NameContext *pOuterNC  /* Name context for container */
4779 ){
4780   assert( p!=0 || pParse->db->mallocFailed );
4781   if( pParse->db->mallocFailed ) return;
4782   if( p->selFlags & SF_HasTypeInfo ) return;
4783   sqlite3SelectExpand(pParse, p);
4784   if( pParse->nErr || pParse->db->mallocFailed ) return;
4785   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4786   if( pParse->nErr || pParse->db->mallocFailed ) return;
4787   sqlite3SelectAddTypeInfo(pParse, p);
4788 }
4789 
4790 /*
4791 ** Reset the aggregate accumulator.
4792 **
4793 ** The aggregate accumulator is a set of memory cells that hold
4794 ** intermediate results while calculating an aggregate.  This
4795 ** routine generates code that stores NULLs in all of those memory
4796 ** cells.
4797 */
4798 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4799   Vdbe *v = pParse->pVdbe;
4800   int i;
4801   struct AggInfo_func *pFunc;
4802   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4803   if( nReg==0 ) return;
4804 #ifdef SQLITE_DEBUG
4805   /* Verify that all AggInfo registers are within the range specified by
4806   ** AggInfo.mnReg..AggInfo.mxReg */
4807   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4808   for(i=0; i<pAggInfo->nColumn; i++){
4809     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4810          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4811   }
4812   for(i=0; i<pAggInfo->nFunc; i++){
4813     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4814          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4815   }
4816 #endif
4817   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4818   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4819     if( pFunc->iDistinct>=0 ){
4820       Expr *pE = pFunc->pExpr;
4821       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4822       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4823         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4824            "argument");
4825         pFunc->iDistinct = -1;
4826       }else{
4827         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4828         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4829                           (char*)pKeyInfo, P4_KEYINFO);
4830       }
4831     }
4832   }
4833 }
4834 
4835 /*
4836 ** Invoke the OP_AggFinalize opcode for every aggregate function
4837 ** in the AggInfo structure.
4838 */
4839 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4840   Vdbe *v = pParse->pVdbe;
4841   int i;
4842   struct AggInfo_func *pF;
4843   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4844     ExprList *pList = pF->pExpr->x.pList;
4845     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4846     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4847     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4848   }
4849 }
4850 
4851 /*
4852 ** Update the accumulator memory cells for an aggregate based on
4853 ** the current cursor position.
4854 */
4855 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4856   Vdbe *v = pParse->pVdbe;
4857   int i;
4858   int regHit = 0;
4859   int addrHitTest = 0;
4860   struct AggInfo_func *pF;
4861   struct AggInfo_col *pC;
4862 
4863   pAggInfo->directMode = 1;
4864   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4865     int nArg;
4866     int addrNext = 0;
4867     int regAgg;
4868     ExprList *pList = pF->pExpr->x.pList;
4869     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4870     if( pList ){
4871       nArg = pList->nExpr;
4872       regAgg = sqlite3GetTempRange(pParse, nArg);
4873       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4874     }else{
4875       nArg = 0;
4876       regAgg = 0;
4877     }
4878     if( pF->iDistinct>=0 ){
4879       addrNext = sqlite3VdbeMakeLabel(v);
4880       testcase( nArg==0 );  /* Error condition */
4881       testcase( nArg>1 );   /* Also an error */
4882       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4883     }
4884     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4885       CollSeq *pColl = 0;
4886       struct ExprList_item *pItem;
4887       int j;
4888       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4889       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4890         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4891       }
4892       if( !pColl ){
4893         pColl = pParse->db->pDfltColl;
4894       }
4895       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4896       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4897     }
4898     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4899     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4900     sqlite3VdbeChangeP5(v, (u8)nArg);
4901     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4902     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4903     if( addrNext ){
4904       sqlite3VdbeResolveLabel(v, addrNext);
4905       sqlite3ExprCacheClear(pParse);
4906     }
4907   }
4908 
4909   /* Before populating the accumulator registers, clear the column cache.
4910   ** Otherwise, if any of the required column values are already present
4911   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4912   ** to pC->iMem. But by the time the value is used, the original register
4913   ** may have been used, invalidating the underlying buffer holding the
4914   ** text or blob value. See ticket [883034dcb5].
4915   **
4916   ** Another solution would be to change the OP_SCopy used to copy cached
4917   ** values to an OP_Copy.
4918   */
4919   if( regHit ){
4920     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4921   }
4922   sqlite3ExprCacheClear(pParse);
4923   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4924     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4925   }
4926   pAggInfo->directMode = 0;
4927   sqlite3ExprCacheClear(pParse);
4928   if( addrHitTest ){
4929     sqlite3VdbeJumpHere(v, addrHitTest);
4930   }
4931 }
4932 
4933 /*
4934 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4935 ** count(*) query ("SELECT count(*) FROM pTab").
4936 */
4937 #ifndef SQLITE_OMIT_EXPLAIN
4938 static void explainSimpleCount(
4939   Parse *pParse,                  /* Parse context */
4940   Table *pTab,                    /* Table being queried */
4941   Index *pIdx                     /* Index used to optimize scan, or NULL */
4942 ){
4943   if( pParse->explain==2 ){
4944     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4945     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4946         pTab->zName,
4947         bCover ? " USING COVERING INDEX " : "",
4948         bCover ? pIdx->zName : ""
4949     );
4950     sqlite3VdbeAddOp4(
4951         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4952     );
4953   }
4954 }
4955 #else
4956 # define explainSimpleCount(a,b,c)
4957 #endif
4958 
4959 /*
4960 ** sqlite3WalkExpr() callback used by havingToWhere().
4961 **
4962 ** If the node passed to the callback is a TK_AND node, return
4963 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4964 **
4965 ** Otherwise, return WRC_Prune. In this case, also check if the
4966 ** sub-expression matches the criteria for being moved to the WHERE
4967 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4968 ** within the HAVING expression with a constant "1".
4969 */
4970 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4971   if( pExpr->op!=TK_AND ){
4972     Select *pS = pWalker->u.pSelect;
4973     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
4974       sqlite3 *db = pWalker->pParse->db;
4975       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4976       if( pNew ){
4977         Expr *pWhere = pS->pWhere;
4978         SWAP(Expr, *pNew, *pExpr);
4979         pNew = sqlite3ExprAnd(db, pWhere, pNew);
4980         pS->pWhere = pNew;
4981         pWalker->eCode = 1;
4982       }
4983     }
4984     return WRC_Prune;
4985   }
4986   return WRC_Continue;
4987 }
4988 
4989 /*
4990 ** Transfer eligible terms from the HAVING clause of a query, which is
4991 ** processed after grouping, to the WHERE clause, which is processed before
4992 ** grouping. For example, the query:
4993 **
4994 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4995 **
4996 ** can be rewritten as:
4997 **
4998 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4999 **
5000 ** A term of the HAVING expression is eligible for transfer if it consists
5001 ** entirely of constants and expressions that are also GROUP BY terms that
5002 ** use the "BINARY" collation sequence.
5003 */
5004 static void havingToWhere(Parse *pParse, Select *p){
5005   Walker sWalker;
5006   memset(&sWalker, 0, sizeof(sWalker));
5007   sWalker.pParse = pParse;
5008   sWalker.xExprCallback = havingToWhereExprCb;
5009   sWalker.u.pSelect = p;
5010   sqlite3WalkExpr(&sWalker, p->pHaving);
5011 #if SELECTTRACE_ENABLED
5012   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5013     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5014     sqlite3TreeViewSelect(0, p, 0);
5015   }
5016 #endif
5017 }
5018 
5019 /*
5020 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5021 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5022 ** then return 0.
5023 */
5024 static struct SrcList_item *isSelfJoinView(
5025   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5026   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5027 ){
5028   struct SrcList_item *pItem;
5029   for(pItem = pTabList->a; pItem<pThis; pItem++){
5030     if( pItem->pSelect==0 ) continue;
5031     if( pItem->fg.viaCoroutine ) continue;
5032     if( pItem->zName==0 ) continue;
5033     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5034     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5035     if( sqlite3ExprCompare(0,
5036           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5037     ){
5038       /* The view was modified by some other optimization such as
5039       ** pushDownWhereTerms() */
5040       continue;
5041     }
5042     return pItem;
5043   }
5044   return 0;
5045 }
5046 
5047 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5048 /*
5049 ** Attempt to transform a query of the form
5050 **
5051 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5052 **
5053 ** Into this:
5054 **
5055 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5056 **
5057 ** The transformation only works if all of the following are true:
5058 **
5059 **   *  The subquery is a UNION ALL of two or more terms
5060 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5061 **   *  The outer query is a simple count(*)
5062 **
5063 ** Return TRUE if the optimization is undertaken.
5064 */
5065 static int countOfViewOptimization(Parse *pParse, Select *p){
5066   Select *pSub, *pPrior;
5067   Expr *pExpr;
5068   Expr *pCount;
5069   sqlite3 *db;
5070   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5071   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5072   pExpr = p->pEList->a[0].pExpr;
5073   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5074   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5075   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5076   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5077   pSub = p->pSrc->a[0].pSelect;
5078   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5079   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5080   do{
5081     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5082     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5083     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5084     pSub = pSub->pPrior;                              /* Repeat over compound */
5085   }while( pSub );
5086 
5087   /* If we reach this point then it is OK to perform the transformation */
5088 
5089   db = pParse->db;
5090   pCount = pExpr;
5091   pExpr = 0;
5092   pSub = p->pSrc->a[0].pSelect;
5093   p->pSrc->a[0].pSelect = 0;
5094   sqlite3SrcListDelete(db, p->pSrc);
5095   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5096   while( pSub ){
5097     Expr *pTerm;
5098     pPrior = pSub->pPrior;
5099     pSub->pPrior = 0;
5100     pSub->pNext = 0;
5101     pSub->selFlags |= SF_Aggregate;
5102     pSub->selFlags &= ~SF_Compound;
5103     pSub->nSelectRow = 0;
5104     sqlite3ExprListDelete(db, pSub->pEList);
5105     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5106     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5107     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5108     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5109     if( pExpr==0 ){
5110       pExpr = pTerm;
5111     }else{
5112       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5113     }
5114     pSub = pPrior;
5115   }
5116   p->pEList->a[0].pExpr = pExpr;
5117   p->selFlags &= ~SF_Aggregate;
5118 
5119 #if SELECTTRACE_ENABLED
5120   if( sqlite3SelectTrace & 0x400 ){
5121     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5122     sqlite3TreeViewSelect(0, p, 0);
5123   }
5124 #endif
5125   return 1;
5126 }
5127 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5128 
5129 /*
5130 ** Generate code for the SELECT statement given in the p argument.
5131 **
5132 ** The results are returned according to the SelectDest structure.
5133 ** See comments in sqliteInt.h for further information.
5134 **
5135 ** This routine returns the number of errors.  If any errors are
5136 ** encountered, then an appropriate error message is left in
5137 ** pParse->zErrMsg.
5138 **
5139 ** This routine does NOT free the Select structure passed in.  The
5140 ** calling function needs to do that.
5141 */
5142 int sqlite3Select(
5143   Parse *pParse,         /* The parser context */
5144   Select *p,             /* The SELECT statement being coded. */
5145   SelectDest *pDest      /* What to do with the query results */
5146 ){
5147   int i, j;              /* Loop counters */
5148   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5149   Vdbe *v;               /* The virtual machine under construction */
5150   int isAgg;             /* True for select lists like "count(*)" */
5151   ExprList *pEList = 0;  /* List of columns to extract. */
5152   SrcList *pTabList;     /* List of tables to select from */
5153   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5154   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5155   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5156   int rc = 1;            /* Value to return from this function */
5157   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5158   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5159   AggInfo sAggInfo;      /* Information used by aggregate queries */
5160   int iEnd;              /* Address of the end of the query */
5161   sqlite3 *db;           /* The database connection */
5162   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5163   u8 minMaxFlag;                 /* Flag for min/max queries */
5164 
5165 #ifndef SQLITE_OMIT_EXPLAIN
5166   int iRestoreSelectId = pParse->iSelectId;
5167   pParse->iSelectId = pParse->iNextSelectId++;
5168 #endif
5169 
5170   db = pParse->db;
5171   if( p==0 || db->mallocFailed || pParse->nErr ){
5172     return 1;
5173   }
5174   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5175   memset(&sAggInfo, 0, sizeof(sAggInfo));
5176 #if SELECTTRACE_ENABLED
5177   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5178   if( sqlite3SelectTrace & 0x100 ){
5179     sqlite3TreeViewSelect(0, p, 0);
5180   }
5181 #endif
5182 
5183   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5184   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5185   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5186   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5187   if( IgnorableOrderby(pDest) ){
5188     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5189            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5190            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5191            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5192     /* If ORDER BY makes no difference in the output then neither does
5193     ** DISTINCT so it can be removed too. */
5194     sqlite3ExprListDelete(db, p->pOrderBy);
5195     p->pOrderBy = 0;
5196     p->selFlags &= ~SF_Distinct;
5197   }
5198   sqlite3SelectPrep(pParse, p, 0);
5199   memset(&sSort, 0, sizeof(sSort));
5200   sSort.pOrderBy = p->pOrderBy;
5201   pTabList = p->pSrc;
5202   if( pParse->nErr || db->mallocFailed ){
5203     goto select_end;
5204   }
5205   assert( p->pEList!=0 );
5206   isAgg = (p->selFlags & SF_Aggregate)!=0;
5207 #if SELECTTRACE_ENABLED
5208   if( sqlite3SelectTrace & 0x100 ){
5209     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5210     sqlite3TreeViewSelect(0, p, 0);
5211   }
5212 #endif
5213 
5214   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5215   ** does not already exist */
5216   v = sqlite3GetVdbe(pParse);
5217   if( v==0 ) goto select_end;
5218   if( pDest->eDest==SRT_Output ){
5219     generateColumnNames(pParse, p);
5220   }
5221 
5222   /* Try to various optimizations (flattening subqueries, and strength
5223   ** reduction of join operators) in the FROM clause up into the main query
5224   */
5225 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5226   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5227     struct SrcList_item *pItem = &pTabList->a[i];
5228     Select *pSub = pItem->pSelect;
5229     Table *pTab = pItem->pTab;
5230 
5231     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5232     ** of the LEFT JOIN used in the WHERE clause.
5233     */
5234     if( (pItem->fg.jointype & JT_LEFT)!=0
5235      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5236      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5237     ){
5238       SELECTTRACE(0x100,pParse,p,
5239                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5240       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5241       unsetJoinExpr(p->pWhere, pItem->iCursor);
5242     }
5243 
5244     /* No futher action if this term of the FROM clause is no a subquery */
5245     if( pSub==0 ) continue;
5246 
5247     /* Catch mismatch in the declared columns of a view and the number of
5248     ** columns in the SELECT on the RHS */
5249     if( pTab->nCol!=pSub->pEList->nExpr ){
5250       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5251                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5252       goto select_end;
5253     }
5254 
5255     /* Do not try to flatten an aggregate subquery.
5256     **
5257     ** Flattening an aggregate subquery is only possible if the outer query
5258     ** is not a join.  But if the outer query is not a join, then the subquery
5259     ** will be implemented as a co-routine and there is no advantage to
5260     ** flattening in that case.
5261     */
5262     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5263     assert( pSub->pGroupBy==0 );
5264 
5265     /* If the outer query contains a "complex" result set (that is,
5266     ** if the result set of the outer query uses functions or subqueries)
5267     ** and if the subquery contains an ORDER BY clause and if
5268     ** it will be implemented as a co-routine, then do not flatten.  This
5269     ** restriction allows SQL constructs like this:
5270     **
5271     **  SELECT expensive_function(x)
5272     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5273     **
5274     ** The expensive_function() is only computed on the 10 rows that
5275     ** are output, rather than every row of the table.
5276     **
5277     ** The requirement that the outer query have a complex result set
5278     ** means that flattening does occur on simpler SQL constraints without
5279     ** the expensive_function() like:
5280     **
5281     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5282     */
5283     if( pSub->pOrderBy!=0
5284      && i==0
5285      && (p->selFlags & SF_ComplexResult)!=0
5286      && (pTabList->nSrc==1
5287          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5288     ){
5289       continue;
5290     }
5291 
5292     if( flattenSubquery(pParse, p, i, isAgg) ){
5293       /* This subquery can be absorbed into its parent. */
5294       i = -1;
5295     }
5296     pTabList = p->pSrc;
5297     if( db->mallocFailed ) goto select_end;
5298     if( !IgnorableOrderby(pDest) ){
5299       sSort.pOrderBy = p->pOrderBy;
5300     }
5301   }
5302 #endif
5303 
5304 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5305   /* Handle compound SELECT statements using the separate multiSelect()
5306   ** procedure.
5307   */
5308   if( p->pPrior ){
5309     rc = multiSelect(pParse, p, pDest);
5310     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5311 #if SELECTTRACE_ENABLED
5312     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5313 #endif
5314     return rc;
5315   }
5316 #endif
5317 
5318   /* For each term in the FROM clause, do two things:
5319   ** (1) Authorized unreferenced tables
5320   ** (2) Generate code for all sub-queries
5321   */
5322   for(i=0; i<pTabList->nSrc; i++){
5323     struct SrcList_item *pItem = &pTabList->a[i];
5324     SelectDest dest;
5325     Select *pSub;
5326 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5327     const char *zSavedAuthContext;
5328 #endif
5329 
5330     /* Issue SQLITE_READ authorizations with a fake column name for any
5331     ** tables that are referenced but from which no values are extracted.
5332     ** Examples of where these kinds of null SQLITE_READ authorizations
5333     ** would occur:
5334     **
5335     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5336     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5337     **
5338     ** The fake column name is an empty string.  It is possible for a table to
5339     ** have a column named by the empty string, in which case there is no way to
5340     ** distinguish between an unreferenced table and an actual reference to the
5341     ** "" column. The original design was for the fake column name to be a NULL,
5342     ** which would be unambiguous.  But legacy authorization callbacks might
5343     ** assume the column name is non-NULL and segfault.  The use of an empty
5344     ** string for the fake column name seems safer.
5345     */
5346     if( pItem->colUsed==0 ){
5347       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5348     }
5349 
5350 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5351     /* Generate code for all sub-queries in the FROM clause
5352     */
5353     pSub = pItem->pSelect;
5354     if( pSub==0 ) continue;
5355 
5356     /* Sometimes the code for a subquery will be generated more than
5357     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5358     ** for example.  In that case, do not regenerate the code to manifest
5359     ** a view or the co-routine to implement a view.  The first instance
5360     ** is sufficient, though the subroutine to manifest the view does need
5361     ** to be invoked again. */
5362     if( pItem->addrFillSub ){
5363       if( pItem->fg.viaCoroutine==0 ){
5364         /* The subroutine that manifests the view might be a one-time routine,
5365         ** or it might need to be rerun on each iteration because it
5366         ** encodes a correlated subquery. */
5367         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5368         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5369       }
5370       continue;
5371     }
5372 
5373     /* Increment Parse.nHeight by the height of the largest expression
5374     ** tree referred to by this, the parent select. The child select
5375     ** may contain expression trees of at most
5376     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5377     ** more conservative than necessary, but much easier than enforcing
5378     ** an exact limit.
5379     */
5380     pParse->nHeight += sqlite3SelectExprHeight(p);
5381 
5382     /* Make copies of constant WHERE-clause terms in the outer query down
5383     ** inside the subquery.  This can help the subquery to run more efficiently.
5384     */
5385     if( OptimizationEnabled(db, SQLITE_PushDown)
5386      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5387                            (pItem->fg.jointype & JT_OUTER)!=0)
5388     ){
5389 #if SELECTTRACE_ENABLED
5390       if( sqlite3SelectTrace & 0x100 ){
5391         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5392         sqlite3TreeViewSelect(0, p, 0);
5393       }
5394 #endif
5395     }else{
5396       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5397     }
5398 
5399     zSavedAuthContext = pParse->zAuthContext;
5400     pParse->zAuthContext = pItem->zName;
5401 
5402     /* Generate code to implement the subquery
5403     **
5404     ** The subquery is implemented as a co-routine if the subquery is
5405     ** guaranteed to be the outer loop (so that it does not need to be
5406     ** computed more than once)
5407     **
5408     ** TODO: Are there other reasons beside (1) to use a co-routine
5409     ** implementation?
5410     */
5411     if( i==0
5412      && (pTabList->nSrc==1
5413             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5414     ){
5415       /* Implement a co-routine that will return a single row of the result
5416       ** set on each invocation.
5417       */
5418       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5419 
5420       pItem->regReturn = ++pParse->nMem;
5421       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5422       VdbeComment((v, "%s", pItem->pTab->zName));
5423       pItem->addrFillSub = addrTop;
5424       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5425       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5426       sqlite3Select(pParse, pSub, &dest);
5427       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5428       pItem->fg.viaCoroutine = 1;
5429       pItem->regResult = dest.iSdst;
5430       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5431       sqlite3VdbeJumpHere(v, addrTop-1);
5432       sqlite3ClearTempRegCache(pParse);
5433     }else{
5434       /* Generate a subroutine that will fill an ephemeral table with
5435       ** the content of this subquery.  pItem->addrFillSub will point
5436       ** to the address of the generated subroutine.  pItem->regReturn
5437       ** is a register allocated to hold the subroutine return address
5438       */
5439       int topAddr;
5440       int onceAddr = 0;
5441       int retAddr;
5442       struct SrcList_item *pPrior;
5443 
5444       assert( pItem->addrFillSub==0 );
5445       pItem->regReturn = ++pParse->nMem;
5446       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5447       pItem->addrFillSub = topAddr+1;
5448       if( pItem->fg.isCorrelated==0 ){
5449         /* If the subquery is not correlated and if we are not inside of
5450         ** a trigger, then we only need to compute the value of the subquery
5451         ** once. */
5452         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5453         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5454       }else{
5455         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5456       }
5457       pPrior = isSelfJoinView(pTabList, pItem);
5458       if( pPrior ){
5459         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5460         explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5461         assert( pPrior->pSelect!=0 );
5462         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5463       }else{
5464         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5465         explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5466         sqlite3Select(pParse, pSub, &dest);
5467       }
5468       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5469       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5470       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5471       VdbeComment((v, "end %s", pItem->pTab->zName));
5472       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5473       sqlite3ClearTempRegCache(pParse);
5474     }
5475     if( db->mallocFailed ) goto select_end;
5476     pParse->nHeight -= sqlite3SelectExprHeight(p);
5477     pParse->zAuthContext = zSavedAuthContext;
5478 #endif
5479   }
5480 
5481   /* Various elements of the SELECT copied into local variables for
5482   ** convenience */
5483   pEList = p->pEList;
5484   pWhere = p->pWhere;
5485   pGroupBy = p->pGroupBy;
5486   pHaving = p->pHaving;
5487   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5488 
5489 #if SELECTTRACE_ENABLED
5490   if( sqlite3SelectTrace & 0x400 ){
5491     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5492     sqlite3TreeViewSelect(0, p, 0);
5493   }
5494 #endif
5495 
5496 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5497   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5498    && countOfViewOptimization(pParse, p)
5499   ){
5500     if( db->mallocFailed ) goto select_end;
5501     pEList = p->pEList;
5502     pTabList = p->pSrc;
5503   }
5504 #endif
5505 
5506   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5507   ** if the select-list is the same as the ORDER BY list, then this query
5508   ** can be rewritten as a GROUP BY. In other words, this:
5509   **
5510   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5511   **
5512   ** is transformed to:
5513   **
5514   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5515   **
5516   ** The second form is preferred as a single index (or temp-table) may be
5517   ** used for both the ORDER BY and DISTINCT processing. As originally
5518   ** written the query must use a temp-table for at least one of the ORDER
5519   ** BY and DISTINCT, and an index or separate temp-table for the other.
5520   */
5521   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5522    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5523   ){
5524     p->selFlags &= ~SF_Distinct;
5525     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5526     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5527     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5528     ** original setting of the SF_Distinct flag, not the current setting */
5529     assert( sDistinct.isTnct );
5530 
5531 #if SELECTTRACE_ENABLED
5532     if( sqlite3SelectTrace & 0x400 ){
5533       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5534       sqlite3TreeViewSelect(0, p, 0);
5535     }
5536 #endif
5537   }
5538 
5539   /* If there is an ORDER BY clause, then create an ephemeral index to
5540   ** do the sorting.  But this sorting ephemeral index might end up
5541   ** being unused if the data can be extracted in pre-sorted order.
5542   ** If that is the case, then the OP_OpenEphemeral instruction will be
5543   ** changed to an OP_Noop once we figure out that the sorting index is
5544   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5545   ** that change.
5546   */
5547   if( sSort.pOrderBy ){
5548     KeyInfo *pKeyInfo;
5549     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5550     sSort.iECursor = pParse->nTab++;
5551     sSort.addrSortIndex =
5552       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5553           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5554           (char*)pKeyInfo, P4_KEYINFO
5555       );
5556   }else{
5557     sSort.addrSortIndex = -1;
5558   }
5559 
5560   /* If the output is destined for a temporary table, open that table.
5561   */
5562   if( pDest->eDest==SRT_EphemTab ){
5563     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5564   }
5565 
5566   /* Set the limiter.
5567   */
5568   iEnd = sqlite3VdbeMakeLabel(v);
5569   if( (p->selFlags & SF_FixedLimit)==0 ){
5570     p->nSelectRow = 320;  /* 4 billion rows */
5571   }
5572   computeLimitRegisters(pParse, p, iEnd);
5573   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5574     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5575     sSort.sortFlags |= SORTFLAG_UseSorter;
5576   }
5577 
5578   /* Open an ephemeral index to use for the distinct set.
5579   */
5580   if( p->selFlags & SF_Distinct ){
5581     sDistinct.tabTnct = pParse->nTab++;
5582     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5583                              sDistinct.tabTnct, 0, 0,
5584                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5585                              P4_KEYINFO);
5586     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5587     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5588   }else{
5589     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5590   }
5591 
5592   if( !isAgg && pGroupBy==0 ){
5593     /* No aggregate functions and no GROUP BY clause */
5594     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5595     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5596     wctrlFlags |= p->selFlags & SF_FixedLimit;
5597 
5598     /* Begin the database scan. */
5599     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5600     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5601                                p->pEList, wctrlFlags, p->nSelectRow);
5602     if( pWInfo==0 ) goto select_end;
5603     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5604       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5605     }
5606     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5607       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5608     }
5609     if( sSort.pOrderBy ){
5610       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5611       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5612       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5613         sSort.pOrderBy = 0;
5614       }
5615     }
5616 
5617     /* If sorting index that was created by a prior OP_OpenEphemeral
5618     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5619     ** into an OP_Noop.
5620     */
5621     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5622       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5623     }
5624 
5625     /* Use the standard inner loop. */
5626     assert( p->pEList==pEList );
5627     selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5628                     sqlite3WhereContinueLabel(pWInfo),
5629                     sqlite3WhereBreakLabel(pWInfo));
5630 
5631     /* End the database scan loop.
5632     */
5633     sqlite3WhereEnd(pWInfo);
5634   }else{
5635     /* This case when there exist aggregate functions or a GROUP BY clause
5636     ** or both */
5637     NameContext sNC;    /* Name context for processing aggregate information */
5638     int iAMem;          /* First Mem address for storing current GROUP BY */
5639     int iBMem;          /* First Mem address for previous GROUP BY */
5640     int iUseFlag;       /* Mem address holding flag indicating that at least
5641                         ** one row of the input to the aggregator has been
5642                         ** processed */
5643     int iAbortFlag;     /* Mem address which causes query abort if positive */
5644     int groupBySort;    /* Rows come from source in GROUP BY order */
5645     int addrEnd;        /* End of processing for this SELECT */
5646     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5647     int sortOut = 0;    /* Output register from the sorter */
5648     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5649 
5650     /* Remove any and all aliases between the result set and the
5651     ** GROUP BY clause.
5652     */
5653     if( pGroupBy ){
5654       int k;                        /* Loop counter */
5655       struct ExprList_item *pItem;  /* For looping over expression in a list */
5656 
5657       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5658         pItem->u.x.iAlias = 0;
5659       }
5660       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5661         pItem->u.x.iAlias = 0;
5662       }
5663       assert( 66==sqlite3LogEst(100) );
5664       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5665     }else{
5666       assert( 0==sqlite3LogEst(1) );
5667       p->nSelectRow = 0;
5668     }
5669 
5670     /* If there is both a GROUP BY and an ORDER BY clause and they are
5671     ** identical, then it may be possible to disable the ORDER BY clause
5672     ** on the grounds that the GROUP BY will cause elements to come out
5673     ** in the correct order. It also may not - the GROUP BY might use a
5674     ** database index that causes rows to be grouped together as required
5675     ** but not actually sorted. Either way, record the fact that the
5676     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5677     ** variable.  */
5678     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5679       orderByGrp = 1;
5680     }
5681 
5682     /* Create a label to jump to when we want to abort the query */
5683     addrEnd = sqlite3VdbeMakeLabel(v);
5684 
5685     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5686     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5687     ** SELECT statement.
5688     */
5689     memset(&sNC, 0, sizeof(sNC));
5690     sNC.pParse = pParse;
5691     sNC.pSrcList = pTabList;
5692     sNC.pAggInfo = &sAggInfo;
5693     sAggInfo.mnReg = pParse->nMem+1;
5694     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5695     sAggInfo.pGroupBy = pGroupBy;
5696     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5697     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5698     if( pHaving ){
5699       if( pGroupBy ){
5700         assert( pWhere==p->pWhere );
5701         assert( pHaving==p->pHaving );
5702         assert( pGroupBy==p->pGroupBy );
5703         havingToWhere(pParse, p);
5704         pWhere = p->pWhere;
5705       }
5706       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5707     }
5708     sAggInfo.nAccumulator = sAggInfo.nColumn;
5709     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5710       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5711     }else{
5712       minMaxFlag = WHERE_ORDERBY_NORMAL;
5713     }
5714     for(i=0; i<sAggInfo.nFunc; i++){
5715       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5716       sNC.ncFlags |= NC_InAggFunc;
5717       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5718       sNC.ncFlags &= ~NC_InAggFunc;
5719     }
5720     sAggInfo.mxReg = pParse->nMem;
5721     if( db->mallocFailed ) goto select_end;
5722 #if SELECTTRACE_ENABLED
5723     if( sqlite3SelectTrace & 0x400 ){
5724       int ii;
5725       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5726       sqlite3TreeViewSelect(0, p, 0);
5727       for(ii=0; ii<sAggInfo.nColumn; ii++){
5728         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5729             ii, sAggInfo.aCol[ii].iMem);
5730         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5731       }
5732       for(ii=0; ii<sAggInfo.nFunc; ii++){
5733         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5734             ii, sAggInfo.aFunc[ii].iMem);
5735         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5736       }
5737     }
5738 #endif
5739 
5740 
5741     /* Processing for aggregates with GROUP BY is very different and
5742     ** much more complex than aggregates without a GROUP BY.
5743     */
5744     if( pGroupBy ){
5745       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5746       int addr1;          /* A-vs-B comparision jump */
5747       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5748       int regOutputRow;   /* Return address register for output subroutine */
5749       int addrSetAbort;   /* Set the abort flag and return */
5750       int addrTopOfLoop;  /* Top of the input loop */
5751       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5752       int addrReset;      /* Subroutine for resetting the accumulator */
5753       int regReset;       /* Return address register for reset subroutine */
5754 
5755       /* If there is a GROUP BY clause we might need a sorting index to
5756       ** implement it.  Allocate that sorting index now.  If it turns out
5757       ** that we do not need it after all, the OP_SorterOpen instruction
5758       ** will be converted into a Noop.
5759       */
5760       sAggInfo.sortingIdx = pParse->nTab++;
5761       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5762       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5763           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5764           0, (char*)pKeyInfo, P4_KEYINFO);
5765 
5766       /* Initialize memory locations used by GROUP BY aggregate processing
5767       */
5768       iUseFlag = ++pParse->nMem;
5769       iAbortFlag = ++pParse->nMem;
5770       regOutputRow = ++pParse->nMem;
5771       addrOutputRow = sqlite3VdbeMakeLabel(v);
5772       regReset = ++pParse->nMem;
5773       addrReset = sqlite3VdbeMakeLabel(v);
5774       iAMem = pParse->nMem + 1;
5775       pParse->nMem += pGroupBy->nExpr;
5776       iBMem = pParse->nMem + 1;
5777       pParse->nMem += pGroupBy->nExpr;
5778       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5779       VdbeComment((v, "clear abort flag"));
5780       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5781       VdbeComment((v, "indicate accumulator empty"));
5782       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5783 
5784       /* Begin a loop that will extract all source rows in GROUP BY order.
5785       ** This might involve two separate loops with an OP_Sort in between, or
5786       ** it might be a single loop that uses an index to extract information
5787       ** in the right order to begin with.
5788       */
5789       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5790       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5791       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5792           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5793       );
5794       if( pWInfo==0 ) goto select_end;
5795       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5796         /* The optimizer is able to deliver rows in group by order so
5797         ** we do not have to sort.  The OP_OpenEphemeral table will be
5798         ** cancelled later because we still need to use the pKeyInfo
5799         */
5800         groupBySort = 0;
5801       }else{
5802         /* Rows are coming out in undetermined order.  We have to push
5803         ** each row into a sorting index, terminate the first loop,
5804         ** then loop over the sorting index in order to get the output
5805         ** in sorted order
5806         */
5807         int regBase;
5808         int regRecord;
5809         int nCol;
5810         int nGroupBy;
5811 
5812         explainTempTable(pParse,
5813             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5814                     "DISTINCT" : "GROUP BY");
5815 
5816         groupBySort = 1;
5817         nGroupBy = pGroupBy->nExpr;
5818         nCol = nGroupBy;
5819         j = nGroupBy;
5820         for(i=0; i<sAggInfo.nColumn; i++){
5821           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5822             nCol++;
5823             j++;
5824           }
5825         }
5826         regBase = sqlite3GetTempRange(pParse, nCol);
5827         sqlite3ExprCacheClear(pParse);
5828         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5829         j = nGroupBy;
5830         for(i=0; i<sAggInfo.nColumn; i++){
5831           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5832           if( pCol->iSorterColumn>=j ){
5833             int r1 = j + regBase;
5834             sqlite3ExprCodeGetColumnToReg(pParse,
5835                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5836             j++;
5837           }
5838         }
5839         regRecord = sqlite3GetTempReg(pParse);
5840         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5841         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5842         sqlite3ReleaseTempReg(pParse, regRecord);
5843         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5844         sqlite3WhereEnd(pWInfo);
5845         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5846         sortOut = sqlite3GetTempReg(pParse);
5847         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5848         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5849         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5850         sAggInfo.useSortingIdx = 1;
5851         sqlite3ExprCacheClear(pParse);
5852 
5853       }
5854 
5855       /* If the index or temporary table used by the GROUP BY sort
5856       ** will naturally deliver rows in the order required by the ORDER BY
5857       ** clause, cancel the ephemeral table open coded earlier.
5858       **
5859       ** This is an optimization - the correct answer should result regardless.
5860       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5861       ** disable this optimization for testing purposes.  */
5862       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5863        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5864       ){
5865         sSort.pOrderBy = 0;
5866         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5867       }
5868 
5869       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5870       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5871       ** Then compare the current GROUP BY terms against the GROUP BY terms
5872       ** from the previous row currently stored in a0, a1, a2...
5873       */
5874       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5875       sqlite3ExprCacheClear(pParse);
5876       if( groupBySort ){
5877         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5878                           sortOut, sortPTab);
5879       }
5880       for(j=0; j<pGroupBy->nExpr; j++){
5881         if( groupBySort ){
5882           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5883         }else{
5884           sAggInfo.directMode = 1;
5885           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5886         }
5887       }
5888       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5889                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5890       addr1 = sqlite3VdbeCurrentAddr(v);
5891       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5892 
5893       /* Generate code that runs whenever the GROUP BY changes.
5894       ** Changes in the GROUP BY are detected by the previous code
5895       ** block.  If there were no changes, this block is skipped.
5896       **
5897       ** This code copies current group by terms in b0,b1,b2,...
5898       ** over to a0,a1,a2.  It then calls the output subroutine
5899       ** and resets the aggregate accumulator registers in preparation
5900       ** for the next GROUP BY batch.
5901       */
5902       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5903       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5904       VdbeComment((v, "output one row"));
5905       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5906       VdbeComment((v, "check abort flag"));
5907       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5908       VdbeComment((v, "reset accumulator"));
5909 
5910       /* Update the aggregate accumulators based on the content of
5911       ** the current row
5912       */
5913       sqlite3VdbeJumpHere(v, addr1);
5914       updateAccumulator(pParse, &sAggInfo);
5915       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5916       VdbeComment((v, "indicate data in accumulator"));
5917 
5918       /* End of the loop
5919       */
5920       if( groupBySort ){
5921         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5922         VdbeCoverage(v);
5923       }else{
5924         sqlite3WhereEnd(pWInfo);
5925         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5926       }
5927 
5928       /* Output the final row of result
5929       */
5930       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5931       VdbeComment((v, "output final row"));
5932 
5933       /* Jump over the subroutines
5934       */
5935       sqlite3VdbeGoto(v, addrEnd);
5936 
5937       /* Generate a subroutine that outputs a single row of the result
5938       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5939       ** is less than or equal to zero, the subroutine is a no-op.  If
5940       ** the processing calls for the query to abort, this subroutine
5941       ** increments the iAbortFlag memory location before returning in
5942       ** order to signal the caller to abort.
5943       */
5944       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5945       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5946       VdbeComment((v, "set abort flag"));
5947       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5948       sqlite3VdbeResolveLabel(v, addrOutputRow);
5949       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5950       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5951       VdbeCoverage(v);
5952       VdbeComment((v, "Groupby result generator entry point"));
5953       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5954       finalizeAggFunctions(pParse, &sAggInfo);
5955       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5956       selectInnerLoop(pParse, p, -1, &sSort,
5957                       &sDistinct, pDest,
5958                       addrOutputRow+1, addrSetAbort);
5959       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5960       VdbeComment((v, "end groupby result generator"));
5961 
5962       /* Generate a subroutine that will reset the group-by accumulator
5963       */
5964       sqlite3VdbeResolveLabel(v, addrReset);
5965       resetAccumulator(pParse, &sAggInfo);
5966       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5967 
5968     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5969     else {
5970 #ifndef SQLITE_OMIT_BTREECOUNT
5971       Table *pTab;
5972       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5973         /* If isSimpleCount() returns a pointer to a Table structure, then
5974         ** the SQL statement is of the form:
5975         **
5976         **   SELECT count(*) FROM <tbl>
5977         **
5978         ** where the Table structure returned represents table <tbl>.
5979         **
5980         ** This statement is so common that it is optimized specially. The
5981         ** OP_Count instruction is executed either on the intkey table that
5982         ** contains the data for table <tbl> or on one of its indexes. It
5983         ** is better to execute the op on an index, as indexes are almost
5984         ** always spread across less pages than their corresponding tables.
5985         */
5986         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5987         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5988         Index *pIdx;                         /* Iterator variable */
5989         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5990         Index *pBest = 0;                    /* Best index found so far */
5991         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5992 
5993         sqlite3CodeVerifySchema(pParse, iDb);
5994         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5995 
5996         /* Search for the index that has the lowest scan cost.
5997         **
5998         ** (2011-04-15) Do not do a full scan of an unordered index.
5999         **
6000         ** (2013-10-03) Do not count the entries in a partial index.
6001         **
6002         ** In practice the KeyInfo structure will not be used. It is only
6003         ** passed to keep OP_OpenRead happy.
6004         */
6005         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6006         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6007           if( pIdx->bUnordered==0
6008            && pIdx->szIdxRow<pTab->szTabRow
6009            && pIdx->pPartIdxWhere==0
6010            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6011           ){
6012             pBest = pIdx;
6013           }
6014         }
6015         if( pBest ){
6016           iRoot = pBest->tnum;
6017           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6018         }
6019 
6020         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6021         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6022         if( pKeyInfo ){
6023           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6024         }
6025         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6026         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6027         explainSimpleCount(pParse, pTab, pBest);
6028       }else
6029 #endif /* SQLITE_OMIT_BTREECOUNT */
6030       {
6031         /* This case runs if the aggregate has no GROUP BY clause.  The
6032         ** processing is much simpler since there is only a single row
6033         ** of output.
6034         */
6035         assert( p->pGroupBy==0 );
6036         resetAccumulator(pParse, &sAggInfo);
6037 
6038         /* If this query is a candidate for the min/max optimization, then
6039         ** minMaxFlag will have been previously set to either
6040         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6041         ** be an appropriate ORDER BY expression for the optimization.
6042         */
6043         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6044         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6045 
6046         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6047         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6048                                    0, minMaxFlag, 0);
6049         if( pWInfo==0 ){
6050           goto select_end;
6051         }
6052         updateAccumulator(pParse, &sAggInfo);
6053         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6054           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6055           VdbeComment((v, "%s() by index",
6056                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6057         }
6058         sqlite3WhereEnd(pWInfo);
6059         finalizeAggFunctions(pParse, &sAggInfo);
6060       }
6061 
6062       sSort.pOrderBy = 0;
6063       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6064       selectInnerLoop(pParse, p, -1, 0, 0,
6065                       pDest, addrEnd, addrEnd);
6066     }
6067     sqlite3VdbeResolveLabel(v, addrEnd);
6068 
6069   } /* endif aggregate query */
6070 
6071   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6072     explainTempTable(pParse, "DISTINCT");
6073   }
6074 
6075   /* If there is an ORDER BY clause, then we need to sort the results
6076   ** and send them to the callback one by one.
6077   */
6078   if( sSort.pOrderBy ){
6079     explainTempTable(pParse,
6080                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6081     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6082   }
6083 
6084   /* Jump here to skip this query
6085   */
6086   sqlite3VdbeResolveLabel(v, iEnd);
6087 
6088   /* The SELECT has been coded. If there is an error in the Parse structure,
6089   ** set the return code to 1. Otherwise 0. */
6090   rc = (pParse->nErr>0);
6091 
6092   /* Control jumps to here if an error is encountered above, or upon
6093   ** successful coding of the SELECT.
6094   */
6095 select_end:
6096   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6097   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6098   sqlite3DbFree(db, sAggInfo.aCol);
6099   sqlite3DbFree(db, sAggInfo.aFunc);
6100 #if SELECTTRACE_ENABLED
6101   SELECTTRACE(1,pParse,p,("end processing\n"));
6102 #endif
6103   return rc;
6104 }
6105