1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%s/%p: ",(S)->zSelName,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 58 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 59 }; 60 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 61 62 /* 63 ** Delete all the content of a Select structure. Deallocate the structure 64 ** itself only if bFree is true. 65 */ 66 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 67 while( p ){ 68 Select *pPrior = p->pPrior; 69 sqlite3ExprListDelete(db, p->pEList); 70 sqlite3SrcListDelete(db, p->pSrc); 71 sqlite3ExprDelete(db, p->pWhere); 72 sqlite3ExprListDelete(db, p->pGroupBy); 73 sqlite3ExprDelete(db, p->pHaving); 74 sqlite3ExprListDelete(db, p->pOrderBy); 75 sqlite3ExprDelete(db, p->pLimit); 76 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 77 if( bFree ) sqlite3DbFreeNN(db, p); 78 p = pPrior; 79 bFree = 1; 80 } 81 } 82 83 /* 84 ** Initialize a SelectDest structure. 85 */ 86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 87 pDest->eDest = (u8)eDest; 88 pDest->iSDParm = iParm; 89 pDest->zAffSdst = 0; 90 pDest->iSdst = 0; 91 pDest->nSdst = 0; 92 } 93 94 95 /* 96 ** Allocate a new Select structure and return a pointer to that 97 ** structure. 98 */ 99 Select *sqlite3SelectNew( 100 Parse *pParse, /* Parsing context */ 101 ExprList *pEList, /* which columns to include in the result */ 102 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 103 Expr *pWhere, /* the WHERE clause */ 104 ExprList *pGroupBy, /* the GROUP BY clause */ 105 Expr *pHaving, /* the HAVING clause */ 106 ExprList *pOrderBy, /* the ORDER BY clause */ 107 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 108 Expr *pLimit /* LIMIT value. NULL means not used */ 109 ){ 110 Select *pNew; 111 Select standin; 112 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 113 if( pNew==0 ){ 114 assert( pParse->db->mallocFailed ); 115 pNew = &standin; 116 } 117 if( pEList==0 ){ 118 pEList = sqlite3ExprListAppend(pParse, 0, 119 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 120 } 121 pNew->pEList = pEList; 122 pNew->op = TK_SELECT; 123 pNew->selFlags = selFlags; 124 pNew->iLimit = 0; 125 pNew->iOffset = 0; 126 #if SELECTTRACE_ENABLED 127 pNew->zSelName[0] = 0; 128 #endif 129 pNew->addrOpenEphm[0] = -1; 130 pNew->addrOpenEphm[1] = -1; 131 pNew->nSelectRow = 0; 132 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 133 pNew->pSrc = pSrc; 134 pNew->pWhere = pWhere; 135 pNew->pGroupBy = pGroupBy; 136 pNew->pHaving = pHaving; 137 pNew->pOrderBy = pOrderBy; 138 pNew->pPrior = 0; 139 pNew->pNext = 0; 140 pNew->pLimit = pLimit; 141 pNew->pWith = 0; 142 if( pParse->db->mallocFailed ) { 143 clearSelect(pParse->db, pNew, pNew!=&standin); 144 pNew = 0; 145 }else{ 146 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 147 } 148 assert( pNew!=&standin ); 149 return pNew; 150 } 151 152 #if SELECTTRACE_ENABLED 153 /* 154 ** Set the name of a Select object 155 */ 156 void sqlite3SelectSetName(Select *p, const char *zName){ 157 if( p && zName ){ 158 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 159 } 160 } 161 #endif 162 163 164 /* 165 ** Delete the given Select structure and all of its substructures. 166 */ 167 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 168 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 169 } 170 171 /* 172 ** Return a pointer to the right-most SELECT statement in a compound. 173 */ 174 static Select *findRightmost(Select *p){ 175 while( p->pNext ) p = p->pNext; 176 return p; 177 } 178 179 /* 180 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 181 ** type of join. Return an integer constant that expresses that type 182 ** in terms of the following bit values: 183 ** 184 ** JT_INNER 185 ** JT_CROSS 186 ** JT_OUTER 187 ** JT_NATURAL 188 ** JT_LEFT 189 ** JT_RIGHT 190 ** 191 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 192 ** 193 ** If an illegal or unsupported join type is seen, then still return 194 ** a join type, but put an error in the pParse structure. 195 */ 196 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 197 int jointype = 0; 198 Token *apAll[3]; 199 Token *p; 200 /* 0123456789 123456789 123456789 123 */ 201 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 202 static const struct { 203 u8 i; /* Beginning of keyword text in zKeyText[] */ 204 u8 nChar; /* Length of the keyword in characters */ 205 u8 code; /* Join type mask */ 206 } aKeyword[] = { 207 /* natural */ { 0, 7, JT_NATURAL }, 208 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 209 /* outer */ { 10, 5, JT_OUTER }, 210 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 211 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 212 /* inner */ { 23, 5, JT_INNER }, 213 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 214 }; 215 int i, j; 216 apAll[0] = pA; 217 apAll[1] = pB; 218 apAll[2] = pC; 219 for(i=0; i<3 && apAll[i]; i++){ 220 p = apAll[i]; 221 for(j=0; j<ArraySize(aKeyword); j++){ 222 if( p->n==aKeyword[j].nChar 223 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 224 jointype |= aKeyword[j].code; 225 break; 226 } 227 } 228 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 229 if( j>=ArraySize(aKeyword) ){ 230 jointype |= JT_ERROR; 231 break; 232 } 233 } 234 if( 235 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 236 (jointype & JT_ERROR)!=0 237 ){ 238 const char *zSp = " "; 239 assert( pB!=0 ); 240 if( pC==0 ){ zSp++; } 241 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 242 "%T %T%s%T", pA, pB, zSp, pC); 243 jointype = JT_INNER; 244 }else if( (jointype & JT_OUTER)!=0 245 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 246 sqlite3ErrorMsg(pParse, 247 "RIGHT and FULL OUTER JOINs are not currently supported"); 248 jointype = JT_INNER; 249 } 250 return jointype; 251 } 252 253 /* 254 ** Return the index of a column in a table. Return -1 if the column 255 ** is not contained in the table. 256 */ 257 static int columnIndex(Table *pTab, const char *zCol){ 258 int i; 259 for(i=0; i<pTab->nCol; i++){ 260 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 261 } 262 return -1; 263 } 264 265 /* 266 ** Search the first N tables in pSrc, from left to right, looking for a 267 ** table that has a column named zCol. 268 ** 269 ** When found, set *piTab and *piCol to the table index and column index 270 ** of the matching column and return TRUE. 271 ** 272 ** If not found, return FALSE. 273 */ 274 static int tableAndColumnIndex( 275 SrcList *pSrc, /* Array of tables to search */ 276 int N, /* Number of tables in pSrc->a[] to search */ 277 const char *zCol, /* Name of the column we are looking for */ 278 int *piTab, /* Write index of pSrc->a[] here */ 279 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 280 ){ 281 int i; /* For looping over tables in pSrc */ 282 int iCol; /* Index of column matching zCol */ 283 284 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 285 for(i=0; i<N; i++){ 286 iCol = columnIndex(pSrc->a[i].pTab, zCol); 287 if( iCol>=0 ){ 288 if( piTab ){ 289 *piTab = i; 290 *piCol = iCol; 291 } 292 return 1; 293 } 294 } 295 return 0; 296 } 297 298 /* 299 ** This function is used to add terms implied by JOIN syntax to the 300 ** WHERE clause expression of a SELECT statement. The new term, which 301 ** is ANDed with the existing WHERE clause, is of the form: 302 ** 303 ** (tab1.col1 = tab2.col2) 304 ** 305 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 306 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 307 ** column iColRight of tab2. 308 */ 309 static void addWhereTerm( 310 Parse *pParse, /* Parsing context */ 311 SrcList *pSrc, /* List of tables in FROM clause */ 312 int iLeft, /* Index of first table to join in pSrc */ 313 int iColLeft, /* Index of column in first table */ 314 int iRight, /* Index of second table in pSrc */ 315 int iColRight, /* Index of column in second table */ 316 int isOuterJoin, /* True if this is an OUTER join */ 317 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 318 ){ 319 sqlite3 *db = pParse->db; 320 Expr *pE1; 321 Expr *pE2; 322 Expr *pEq; 323 324 assert( iLeft<iRight ); 325 assert( pSrc->nSrc>iRight ); 326 assert( pSrc->a[iLeft].pTab ); 327 assert( pSrc->a[iRight].pTab ); 328 329 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 330 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 331 332 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 333 if( pEq && isOuterJoin ){ 334 ExprSetProperty(pEq, EP_FromJoin); 335 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 336 ExprSetVVAProperty(pEq, EP_NoReduce); 337 pEq->iRightJoinTable = (i16)pE2->iTable; 338 } 339 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 340 } 341 342 /* 343 ** Set the EP_FromJoin property on all terms of the given expression. 344 ** And set the Expr.iRightJoinTable to iTable for every term in the 345 ** expression. 346 ** 347 ** The EP_FromJoin property is used on terms of an expression to tell 348 ** the LEFT OUTER JOIN processing logic that this term is part of the 349 ** join restriction specified in the ON or USING clause and not a part 350 ** of the more general WHERE clause. These terms are moved over to the 351 ** WHERE clause during join processing but we need to remember that they 352 ** originated in the ON or USING clause. 353 ** 354 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 355 ** expression depends on table iRightJoinTable even if that table is not 356 ** explicitly mentioned in the expression. That information is needed 357 ** for cases like this: 358 ** 359 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 360 ** 361 ** The where clause needs to defer the handling of the t1.x=5 362 ** term until after the t2 loop of the join. In that way, a 363 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 364 ** defer the handling of t1.x=5, it will be processed immediately 365 ** after the t1 loop and rows with t1.x!=5 will never appear in 366 ** the output, which is incorrect. 367 */ 368 static void setJoinExpr(Expr *p, int iTable){ 369 while( p ){ 370 ExprSetProperty(p, EP_FromJoin); 371 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 372 ExprSetVVAProperty(p, EP_NoReduce); 373 p->iRightJoinTable = (i16)iTable; 374 if( p->op==TK_FUNCTION && p->x.pList ){ 375 int i; 376 for(i=0; i<p->x.pList->nExpr; i++){ 377 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 378 } 379 } 380 setJoinExpr(p->pLeft, iTable); 381 p = p->pRight; 382 } 383 } 384 385 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 386 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 387 ** an ordinary term that omits the EP_FromJoin mark. 388 ** 389 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 390 */ 391 static void unsetJoinExpr(Expr *p, int iTable){ 392 while( p ){ 393 if( ExprHasProperty(p, EP_FromJoin) 394 && (iTable<0 || p->iRightJoinTable==iTable) ){ 395 ExprClearProperty(p, EP_FromJoin); 396 } 397 if( p->op==TK_FUNCTION && p->x.pList ){ 398 int i; 399 for(i=0; i<p->x.pList->nExpr; i++){ 400 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 401 } 402 } 403 unsetJoinExpr(p->pLeft, iTable); 404 p = p->pRight; 405 } 406 } 407 408 /* 409 ** This routine processes the join information for a SELECT statement. 410 ** ON and USING clauses are converted into extra terms of the WHERE clause. 411 ** NATURAL joins also create extra WHERE clause terms. 412 ** 413 ** The terms of a FROM clause are contained in the Select.pSrc structure. 414 ** The left most table is the first entry in Select.pSrc. The right-most 415 ** table is the last entry. The join operator is held in the entry to 416 ** the left. Thus entry 0 contains the join operator for the join between 417 ** entries 0 and 1. Any ON or USING clauses associated with the join are 418 ** also attached to the left entry. 419 ** 420 ** This routine returns the number of errors encountered. 421 */ 422 static int sqliteProcessJoin(Parse *pParse, Select *p){ 423 SrcList *pSrc; /* All tables in the FROM clause */ 424 int i, j; /* Loop counters */ 425 struct SrcList_item *pLeft; /* Left table being joined */ 426 struct SrcList_item *pRight; /* Right table being joined */ 427 428 pSrc = p->pSrc; 429 pLeft = &pSrc->a[0]; 430 pRight = &pLeft[1]; 431 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 432 Table *pRightTab = pRight->pTab; 433 int isOuter; 434 435 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 436 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 437 438 /* When the NATURAL keyword is present, add WHERE clause terms for 439 ** every column that the two tables have in common. 440 */ 441 if( pRight->fg.jointype & JT_NATURAL ){ 442 if( pRight->pOn || pRight->pUsing ){ 443 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 444 "an ON or USING clause", 0); 445 return 1; 446 } 447 for(j=0; j<pRightTab->nCol; j++){ 448 char *zName; /* Name of column in the right table */ 449 int iLeft; /* Matching left table */ 450 int iLeftCol; /* Matching column in the left table */ 451 452 zName = pRightTab->aCol[j].zName; 453 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 454 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 455 isOuter, &p->pWhere); 456 } 457 } 458 } 459 460 /* Disallow both ON and USING clauses in the same join 461 */ 462 if( pRight->pOn && pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 464 "clauses in the same join"); 465 return 1; 466 } 467 468 /* Add the ON clause to the end of the WHERE clause, connected by 469 ** an AND operator. 470 */ 471 if( pRight->pOn ){ 472 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 473 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 474 pRight->pOn = 0; 475 } 476 477 /* Create extra terms on the WHERE clause for each column named 478 ** in the USING clause. Example: If the two tables to be joined are 479 ** A and B and the USING clause names X, Y, and Z, then add this 480 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 481 ** Report an error if any column mentioned in the USING clause is 482 ** not contained in both tables to be joined. 483 */ 484 if( pRight->pUsing ){ 485 IdList *pList = pRight->pUsing; 486 for(j=0; j<pList->nId; j++){ 487 char *zName; /* Name of the term in the USING clause */ 488 int iLeft; /* Table on the left with matching column name */ 489 int iLeftCol; /* Column number of matching column on the left */ 490 int iRightCol; /* Column number of matching column on the right */ 491 492 zName = pList->a[j].zName; 493 iRightCol = columnIndex(pRightTab, zName); 494 if( iRightCol<0 495 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 496 ){ 497 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 498 "not present in both tables", zName); 499 return 1; 500 } 501 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 502 isOuter, &p->pWhere); 503 } 504 } 505 } 506 return 0; 507 } 508 509 /* Forward reference */ 510 static KeyInfo *keyInfoFromExprList( 511 Parse *pParse, /* Parsing context */ 512 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 513 int iStart, /* Begin with this column of pList */ 514 int nExtra /* Add this many extra columns to the end */ 515 ); 516 517 /* 518 ** Generate code that will push the record in registers regData 519 ** through regData+nData-1 onto the sorter. 520 */ 521 static void pushOntoSorter( 522 Parse *pParse, /* Parser context */ 523 SortCtx *pSort, /* Information about the ORDER BY clause */ 524 Select *pSelect, /* The whole SELECT statement */ 525 int regData, /* First register holding data to be sorted */ 526 int regOrigData, /* First register holding data before packing */ 527 int nData, /* Number of elements in the data array */ 528 int nPrefixReg /* No. of reg prior to regData available for use */ 529 ){ 530 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 531 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 532 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 533 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 534 int regBase; /* Regs for sorter record */ 535 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 536 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 537 int op; /* Opcode to add sorter record to sorter */ 538 int iLimit; /* LIMIT counter */ 539 540 assert( bSeq==0 || bSeq==1 ); 541 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 542 if( nPrefixReg ){ 543 assert( nPrefixReg==nExpr+bSeq ); 544 regBase = regData - nExpr - bSeq; 545 }else{ 546 regBase = pParse->nMem + 1; 547 pParse->nMem += nBase; 548 } 549 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 550 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 551 pSort->labelDone = sqlite3VdbeMakeLabel(v); 552 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 553 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 554 if( bSeq ){ 555 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 556 } 557 if( nPrefixReg==0 && nData>0 ){ 558 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 559 } 560 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 561 if( nOBSat>0 ){ 562 int regPrevKey; /* The first nOBSat columns of the previous row */ 563 int addrFirst; /* Address of the OP_IfNot opcode */ 564 int addrJmp; /* Address of the OP_Jump opcode */ 565 VdbeOp *pOp; /* Opcode that opens the sorter */ 566 int nKey; /* Number of sorting key columns, including OP_Sequence */ 567 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 568 569 regPrevKey = pParse->nMem+1; 570 pParse->nMem += pSort->nOBSat; 571 nKey = nExpr - pSort->nOBSat + bSeq; 572 if( bSeq ){ 573 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 574 }else{ 575 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 576 } 577 VdbeCoverage(v); 578 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 579 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 580 if( pParse->db->mallocFailed ) return; 581 pOp->p2 = nKey + nData; 582 pKI = pOp->p4.pKeyInfo; 583 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 584 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 585 testcase( pKI->nAllField > pKI->nKeyField+2 ); 586 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 587 pKI->nAllField-pKI->nKeyField-1); 588 addrJmp = sqlite3VdbeCurrentAddr(v); 589 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 590 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 591 pSort->regReturn = ++pParse->nMem; 592 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 593 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 594 if( iLimit ){ 595 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 596 VdbeCoverage(v); 597 } 598 sqlite3VdbeJumpHere(v, addrFirst); 599 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 600 sqlite3VdbeJumpHere(v, addrJmp); 601 } 602 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 603 op = OP_SorterInsert; 604 }else{ 605 op = OP_IdxInsert; 606 } 607 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 608 regBase+nOBSat, nBase-nOBSat); 609 if( iLimit ){ 610 int addr; 611 int r1 = 0; 612 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 613 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 614 ** fills up, delete the least entry in the sorter after each insert. 615 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 616 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 617 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 618 if( pSort->bOrderedInnerLoop ){ 619 r1 = ++pParse->nMem; 620 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 621 VdbeComment((v, "seq")); 622 } 623 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 624 if( pSort->bOrderedInnerLoop ){ 625 /* If the inner loop is driven by an index such that values from 626 ** the same iteration of the inner loop are in sorted order, then 627 ** immediately jump to the next iteration of an inner loop if the 628 ** entry from the current iteration does not fit into the top 629 ** LIMIT+OFFSET entries of the sorter. */ 630 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 631 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 632 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 633 VdbeCoverage(v); 634 } 635 sqlite3VdbeJumpHere(v, addr); 636 } 637 } 638 639 /* 640 ** Add code to implement the OFFSET 641 */ 642 static void codeOffset( 643 Vdbe *v, /* Generate code into this VM */ 644 int iOffset, /* Register holding the offset counter */ 645 int iContinue /* Jump here to skip the current record */ 646 ){ 647 if( iOffset>0 ){ 648 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 649 VdbeComment((v, "OFFSET")); 650 } 651 } 652 653 /* 654 ** Add code that will check to make sure the N registers starting at iMem 655 ** form a distinct entry. iTab is a sorting index that holds previously 656 ** seen combinations of the N values. A new entry is made in iTab 657 ** if the current N values are new. 658 ** 659 ** A jump to addrRepeat is made and the N+1 values are popped from the 660 ** stack if the top N elements are not distinct. 661 */ 662 static void codeDistinct( 663 Parse *pParse, /* Parsing and code generating context */ 664 int iTab, /* A sorting index used to test for distinctness */ 665 int addrRepeat, /* Jump to here if not distinct */ 666 int N, /* Number of elements */ 667 int iMem /* First element */ 668 ){ 669 Vdbe *v; 670 int r1; 671 672 v = pParse->pVdbe; 673 r1 = sqlite3GetTempReg(pParse); 674 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 675 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 676 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 677 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 678 sqlite3ReleaseTempReg(pParse, r1); 679 } 680 681 /* 682 ** This routine generates the code for the inside of the inner loop 683 ** of a SELECT. 684 ** 685 ** If srcTab is negative, then the p->pEList expressions 686 ** are evaluated in order to get the data for this row. If srcTab is 687 ** zero or more, then data is pulled from srcTab and p->pEList is used only 688 ** to get the number of columns and the collation sequence for each column. 689 */ 690 static void selectInnerLoop( 691 Parse *pParse, /* The parser context */ 692 Select *p, /* The complete select statement being coded */ 693 int srcTab, /* Pull data from this table if non-negative */ 694 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 695 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 696 SelectDest *pDest, /* How to dispose of the results */ 697 int iContinue, /* Jump here to continue with next row */ 698 int iBreak /* Jump here to break out of the inner loop */ 699 ){ 700 Vdbe *v = pParse->pVdbe; 701 int i; 702 int hasDistinct; /* True if the DISTINCT keyword is present */ 703 int eDest = pDest->eDest; /* How to dispose of results */ 704 int iParm = pDest->iSDParm; /* First argument to disposal method */ 705 int nResultCol; /* Number of result columns */ 706 int nPrefixReg = 0; /* Number of extra registers before regResult */ 707 708 /* Usually, regResult is the first cell in an array of memory cells 709 ** containing the current result row. In this case regOrig is set to the 710 ** same value. However, if the results are being sent to the sorter, the 711 ** values for any expressions that are also part of the sort-key are omitted 712 ** from this array. In this case regOrig is set to zero. */ 713 int regResult; /* Start of memory holding current results */ 714 int regOrig; /* Start of memory holding full result (or 0) */ 715 716 assert( v ); 717 assert( p->pEList!=0 ); 718 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 719 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 720 if( pSort==0 && !hasDistinct ){ 721 assert( iContinue!=0 ); 722 codeOffset(v, p->iOffset, iContinue); 723 } 724 725 /* Pull the requested columns. 726 */ 727 nResultCol = p->pEList->nExpr; 728 729 if( pDest->iSdst==0 ){ 730 if( pSort ){ 731 nPrefixReg = pSort->pOrderBy->nExpr; 732 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 733 pParse->nMem += nPrefixReg; 734 } 735 pDest->iSdst = pParse->nMem+1; 736 pParse->nMem += nResultCol; 737 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 738 /* This is an error condition that can result, for example, when a SELECT 739 ** on the right-hand side of an INSERT contains more result columns than 740 ** there are columns in the table on the left. The error will be caught 741 ** and reported later. But we need to make sure enough memory is allocated 742 ** to avoid other spurious errors in the meantime. */ 743 pParse->nMem += nResultCol; 744 } 745 pDest->nSdst = nResultCol; 746 regOrig = regResult = pDest->iSdst; 747 if( srcTab>=0 ){ 748 for(i=0; i<nResultCol; i++){ 749 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 750 VdbeComment((v, "%s", p->pEList->a[i].zName)); 751 } 752 }else if( eDest!=SRT_Exists ){ 753 /* If the destination is an EXISTS(...) expression, the actual 754 ** values returned by the SELECT are not required. 755 */ 756 u8 ecelFlags; 757 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 758 ecelFlags = SQLITE_ECEL_DUP; 759 }else{ 760 ecelFlags = 0; 761 } 762 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 763 /* For each expression in p->pEList that is a copy of an expression in 764 ** the ORDER BY clause (pSort->pOrderBy), set the associated 765 ** iOrderByCol value to one more than the index of the ORDER BY 766 ** expression within the sort-key that pushOntoSorter() will generate. 767 ** This allows the p->pEList field to be omitted from the sorted record, 768 ** saving space and CPU cycles. */ 769 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 770 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 771 int j; 772 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 773 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 774 } 775 } 776 regOrig = 0; 777 assert( eDest==SRT_Set || eDest==SRT_Mem 778 || eDest==SRT_Coroutine || eDest==SRT_Output ); 779 } 780 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult, 781 0,ecelFlags); 782 } 783 784 /* If the DISTINCT keyword was present on the SELECT statement 785 ** and this row has been seen before, then do not make this row 786 ** part of the result. 787 */ 788 if( hasDistinct ){ 789 switch( pDistinct->eTnctType ){ 790 case WHERE_DISTINCT_ORDERED: { 791 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 792 int iJump; /* Jump destination */ 793 int regPrev; /* Previous row content */ 794 795 /* Allocate space for the previous row */ 796 regPrev = pParse->nMem+1; 797 pParse->nMem += nResultCol; 798 799 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 800 ** sets the MEM_Cleared bit on the first register of the 801 ** previous value. This will cause the OP_Ne below to always 802 ** fail on the first iteration of the loop even if the first 803 ** row is all NULLs. 804 */ 805 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 806 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 807 pOp->opcode = OP_Null; 808 pOp->p1 = 1; 809 pOp->p2 = regPrev; 810 811 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 812 for(i=0; i<nResultCol; i++){ 813 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 814 if( i<nResultCol-1 ){ 815 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 816 VdbeCoverage(v); 817 }else{ 818 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 819 VdbeCoverage(v); 820 } 821 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 822 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 823 } 824 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 825 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 826 break; 827 } 828 829 case WHERE_DISTINCT_UNIQUE: { 830 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 831 break; 832 } 833 834 default: { 835 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 836 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 837 regResult); 838 break; 839 } 840 } 841 if( pSort==0 ){ 842 codeOffset(v, p->iOffset, iContinue); 843 } 844 } 845 846 switch( eDest ){ 847 /* In this mode, write each query result to the key of the temporary 848 ** table iParm. 849 */ 850 #ifndef SQLITE_OMIT_COMPOUND_SELECT 851 case SRT_Union: { 852 int r1; 853 r1 = sqlite3GetTempReg(pParse); 854 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 855 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 856 sqlite3ReleaseTempReg(pParse, r1); 857 break; 858 } 859 860 /* Construct a record from the query result, but instead of 861 ** saving that record, use it as a key to delete elements from 862 ** the temporary table iParm. 863 */ 864 case SRT_Except: { 865 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 866 break; 867 } 868 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 869 870 /* Store the result as data using a unique key. 871 */ 872 case SRT_Fifo: 873 case SRT_DistFifo: 874 case SRT_Table: 875 case SRT_EphemTab: { 876 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 877 testcase( eDest==SRT_Table ); 878 testcase( eDest==SRT_EphemTab ); 879 testcase( eDest==SRT_Fifo ); 880 testcase( eDest==SRT_DistFifo ); 881 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 882 #ifndef SQLITE_OMIT_CTE 883 if( eDest==SRT_DistFifo ){ 884 /* If the destination is DistFifo, then cursor (iParm+1) is open 885 ** on an ephemeral index. If the current row is already present 886 ** in the index, do not write it to the output. If not, add the 887 ** current row to the index and proceed with writing it to the 888 ** output table as well. */ 889 int addr = sqlite3VdbeCurrentAddr(v) + 4; 890 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 891 VdbeCoverage(v); 892 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 893 assert( pSort==0 ); 894 } 895 #endif 896 if( pSort ){ 897 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 898 }else{ 899 int r2 = sqlite3GetTempReg(pParse); 900 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 901 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 902 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 903 sqlite3ReleaseTempReg(pParse, r2); 904 } 905 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 906 break; 907 } 908 909 #ifndef SQLITE_OMIT_SUBQUERY 910 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 911 ** then there should be a single item on the stack. Write this 912 ** item into the set table with bogus data. 913 */ 914 case SRT_Set: { 915 if( pSort ){ 916 /* At first glance you would think we could optimize out the 917 ** ORDER BY in this case since the order of entries in the set 918 ** does not matter. But there might be a LIMIT clause, in which 919 ** case the order does matter */ 920 pushOntoSorter( 921 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 922 }else{ 923 int r1 = sqlite3GetTempReg(pParse); 924 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 925 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 926 r1, pDest->zAffSdst, nResultCol); 927 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 928 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 929 sqlite3ReleaseTempReg(pParse, r1); 930 } 931 break; 932 } 933 934 /* If any row exist in the result set, record that fact and abort. 935 */ 936 case SRT_Exists: { 937 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 938 /* The LIMIT clause will terminate the loop for us */ 939 break; 940 } 941 942 /* If this is a scalar select that is part of an expression, then 943 ** store the results in the appropriate memory cell or array of 944 ** memory cells and break out of the scan loop. 945 */ 946 case SRT_Mem: { 947 if( pSort ){ 948 assert( nResultCol<=pDest->nSdst ); 949 pushOntoSorter( 950 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 951 }else{ 952 assert( nResultCol==pDest->nSdst ); 953 assert( regResult==iParm ); 954 /* The LIMIT clause will jump out of the loop for us */ 955 } 956 break; 957 } 958 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 959 960 case SRT_Coroutine: /* Send data to a co-routine */ 961 case SRT_Output: { /* Return the results */ 962 testcase( eDest==SRT_Coroutine ); 963 testcase( eDest==SRT_Output ); 964 if( pSort ){ 965 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 966 nPrefixReg); 967 }else if( eDest==SRT_Coroutine ){ 968 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 969 }else{ 970 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 971 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 972 } 973 break; 974 } 975 976 #ifndef SQLITE_OMIT_CTE 977 /* Write the results into a priority queue that is order according to 978 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 979 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 980 ** pSO->nExpr columns, then make sure all keys are unique by adding a 981 ** final OP_Sequence column. The last column is the record as a blob. 982 */ 983 case SRT_DistQueue: 984 case SRT_Queue: { 985 int nKey; 986 int r1, r2, r3; 987 int addrTest = 0; 988 ExprList *pSO; 989 pSO = pDest->pOrderBy; 990 assert( pSO ); 991 nKey = pSO->nExpr; 992 r1 = sqlite3GetTempReg(pParse); 993 r2 = sqlite3GetTempRange(pParse, nKey+2); 994 r3 = r2+nKey+1; 995 if( eDest==SRT_DistQueue ){ 996 /* If the destination is DistQueue, then cursor (iParm+1) is open 997 ** on a second ephemeral index that holds all values every previously 998 ** added to the queue. */ 999 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1000 regResult, nResultCol); 1001 VdbeCoverage(v); 1002 } 1003 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1004 if( eDest==SRT_DistQueue ){ 1005 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1006 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1007 } 1008 for(i=0; i<nKey; i++){ 1009 sqlite3VdbeAddOp2(v, OP_SCopy, 1010 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1011 r2+i); 1012 } 1013 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1014 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1015 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1016 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1017 sqlite3ReleaseTempReg(pParse, r1); 1018 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1019 break; 1020 } 1021 #endif /* SQLITE_OMIT_CTE */ 1022 1023 1024 1025 #if !defined(SQLITE_OMIT_TRIGGER) 1026 /* Discard the results. This is used for SELECT statements inside 1027 ** the body of a TRIGGER. The purpose of such selects is to call 1028 ** user-defined functions that have side effects. We do not care 1029 ** about the actual results of the select. 1030 */ 1031 default: { 1032 assert( eDest==SRT_Discard ); 1033 break; 1034 } 1035 #endif 1036 } 1037 1038 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1039 ** there is a sorter, in which case the sorter has already limited 1040 ** the output for us. 1041 */ 1042 if( pSort==0 && p->iLimit ){ 1043 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1044 } 1045 } 1046 1047 /* 1048 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1049 ** X extra columns. 1050 */ 1051 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1052 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1053 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1054 if( p ){ 1055 p->aSortOrder = (u8*)&p->aColl[N+X]; 1056 p->nKeyField = (u16)N; 1057 p->nAllField = (u16)(N+X); 1058 p->enc = ENC(db); 1059 p->db = db; 1060 p->nRef = 1; 1061 memset(&p[1], 0, nExtra); 1062 }else{ 1063 sqlite3OomFault(db); 1064 } 1065 return p; 1066 } 1067 1068 /* 1069 ** Deallocate a KeyInfo object 1070 */ 1071 void sqlite3KeyInfoUnref(KeyInfo *p){ 1072 if( p ){ 1073 assert( p->nRef>0 ); 1074 p->nRef--; 1075 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1076 } 1077 } 1078 1079 /* 1080 ** Make a new pointer to a KeyInfo object 1081 */ 1082 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1083 if( p ){ 1084 assert( p->nRef>0 ); 1085 p->nRef++; 1086 } 1087 return p; 1088 } 1089 1090 #ifdef SQLITE_DEBUG 1091 /* 1092 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1093 ** can only be changed if this is just a single reference to the object. 1094 ** 1095 ** This routine is used only inside of assert() statements. 1096 */ 1097 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1098 #endif /* SQLITE_DEBUG */ 1099 1100 /* 1101 ** Given an expression list, generate a KeyInfo structure that records 1102 ** the collating sequence for each expression in that expression list. 1103 ** 1104 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1105 ** KeyInfo structure is appropriate for initializing a virtual index to 1106 ** implement that clause. If the ExprList is the result set of a SELECT 1107 ** then the KeyInfo structure is appropriate for initializing a virtual 1108 ** index to implement a DISTINCT test. 1109 ** 1110 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1111 ** function is responsible for seeing that this structure is eventually 1112 ** freed. 1113 */ 1114 static KeyInfo *keyInfoFromExprList( 1115 Parse *pParse, /* Parsing context */ 1116 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1117 int iStart, /* Begin with this column of pList */ 1118 int nExtra /* Add this many extra columns to the end */ 1119 ){ 1120 int nExpr; 1121 KeyInfo *pInfo; 1122 struct ExprList_item *pItem; 1123 sqlite3 *db = pParse->db; 1124 int i; 1125 1126 nExpr = pList->nExpr; 1127 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1128 if( pInfo ){ 1129 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1130 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1131 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1132 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1133 } 1134 } 1135 return pInfo; 1136 } 1137 1138 /* 1139 ** Name of the connection operator, used for error messages. 1140 */ 1141 static const char *selectOpName(int id){ 1142 char *z; 1143 switch( id ){ 1144 case TK_ALL: z = "UNION ALL"; break; 1145 case TK_INTERSECT: z = "INTERSECT"; break; 1146 case TK_EXCEPT: z = "EXCEPT"; break; 1147 default: z = "UNION"; break; 1148 } 1149 return z; 1150 } 1151 1152 #ifndef SQLITE_OMIT_EXPLAIN 1153 /* 1154 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1155 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1156 ** where the caption is of the form: 1157 ** 1158 ** "USE TEMP B-TREE FOR xxx" 1159 ** 1160 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1161 ** is determined by the zUsage argument. 1162 */ 1163 static void explainTempTable(Parse *pParse, const char *zUsage){ 1164 if( pParse->explain==2 ){ 1165 Vdbe *v = pParse->pVdbe; 1166 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1167 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1168 } 1169 } 1170 1171 /* 1172 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1173 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1174 ** in sqlite3Select() to assign values to structure member variables that 1175 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1176 ** code with #ifndef directives. 1177 */ 1178 # define explainSetInteger(a, b) a = b 1179 1180 #else 1181 /* No-op versions of the explainXXX() functions and macros. */ 1182 # define explainTempTable(y,z) 1183 # define explainSetInteger(y,z) 1184 #endif 1185 1186 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1187 /* 1188 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1189 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1190 ** where the caption is of one of the two forms: 1191 ** 1192 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1193 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1194 ** 1195 ** where iSub1 and iSub2 are the integers passed as the corresponding 1196 ** function parameters, and op is the text representation of the parameter 1197 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1198 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1199 ** false, or the second form if it is true. 1200 */ 1201 static void explainComposite( 1202 Parse *pParse, /* Parse context */ 1203 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1204 int iSub1, /* Subquery id 1 */ 1205 int iSub2, /* Subquery id 2 */ 1206 int bUseTmp /* True if a temp table was used */ 1207 ){ 1208 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1209 if( pParse->explain==2 ){ 1210 Vdbe *v = pParse->pVdbe; 1211 char *zMsg = sqlite3MPrintf( 1212 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1213 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1214 ); 1215 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1216 } 1217 } 1218 #else 1219 /* No-op versions of the explainXXX() functions and macros. */ 1220 # define explainComposite(v,w,x,y,z) 1221 #endif 1222 1223 /* 1224 ** If the inner loop was generated using a non-null pOrderBy argument, 1225 ** then the results were placed in a sorter. After the loop is terminated 1226 ** we need to run the sorter and output the results. The following 1227 ** routine generates the code needed to do that. 1228 */ 1229 static void generateSortTail( 1230 Parse *pParse, /* Parsing context */ 1231 Select *p, /* The SELECT statement */ 1232 SortCtx *pSort, /* Information on the ORDER BY clause */ 1233 int nColumn, /* Number of columns of data */ 1234 SelectDest *pDest /* Write the sorted results here */ 1235 ){ 1236 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1237 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1238 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1239 int addr; 1240 int addrOnce = 0; 1241 int iTab; 1242 ExprList *pOrderBy = pSort->pOrderBy; 1243 int eDest = pDest->eDest; 1244 int iParm = pDest->iSDParm; 1245 int regRow; 1246 int regRowid; 1247 int iCol; 1248 int nKey; 1249 int iSortTab; /* Sorter cursor to read from */ 1250 int nSortData; /* Trailing values to read from sorter */ 1251 int i; 1252 int bSeq; /* True if sorter record includes seq. no. */ 1253 struct ExprList_item *aOutEx = p->pEList->a; 1254 1255 assert( addrBreak<0 ); 1256 if( pSort->labelBkOut ){ 1257 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1258 sqlite3VdbeGoto(v, addrBreak); 1259 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1260 } 1261 iTab = pSort->iECursor; 1262 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1263 regRowid = 0; 1264 regRow = pDest->iSdst; 1265 nSortData = nColumn; 1266 }else{ 1267 regRowid = sqlite3GetTempReg(pParse); 1268 regRow = sqlite3GetTempRange(pParse, nColumn); 1269 nSortData = nColumn; 1270 } 1271 nKey = pOrderBy->nExpr - pSort->nOBSat; 1272 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1273 int regSortOut = ++pParse->nMem; 1274 iSortTab = pParse->nTab++; 1275 if( pSort->labelBkOut ){ 1276 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1277 } 1278 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1279 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1280 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1281 VdbeCoverage(v); 1282 codeOffset(v, p->iOffset, addrContinue); 1283 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1284 bSeq = 0; 1285 }else{ 1286 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1287 codeOffset(v, p->iOffset, addrContinue); 1288 iSortTab = iTab; 1289 bSeq = 1; 1290 } 1291 for(i=0, iCol=nKey+bSeq-1; i<nSortData; i++){ 1292 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1293 } 1294 for(i=nSortData-1; i>=0; i--){ 1295 int iRead; 1296 if( aOutEx[i].u.x.iOrderByCol ){ 1297 iRead = aOutEx[i].u.x.iOrderByCol-1; 1298 }else{ 1299 iRead = iCol--; 1300 } 1301 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1302 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1303 } 1304 switch( eDest ){ 1305 case SRT_Table: 1306 case SRT_EphemTab: { 1307 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1308 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1309 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1310 break; 1311 } 1312 #ifndef SQLITE_OMIT_SUBQUERY 1313 case SRT_Set: { 1314 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1315 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1316 pDest->zAffSdst, nColumn); 1317 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1318 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1319 break; 1320 } 1321 case SRT_Mem: { 1322 /* The LIMIT clause will terminate the loop for us */ 1323 break; 1324 } 1325 #endif 1326 default: { 1327 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1328 testcase( eDest==SRT_Output ); 1329 testcase( eDest==SRT_Coroutine ); 1330 if( eDest==SRT_Output ){ 1331 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1332 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1333 }else{ 1334 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1335 } 1336 break; 1337 } 1338 } 1339 if( regRowid ){ 1340 if( eDest==SRT_Set ){ 1341 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1342 }else{ 1343 sqlite3ReleaseTempReg(pParse, regRow); 1344 } 1345 sqlite3ReleaseTempReg(pParse, regRowid); 1346 } 1347 /* The bottom of the loop 1348 */ 1349 sqlite3VdbeResolveLabel(v, addrContinue); 1350 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1351 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1352 }else{ 1353 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1354 } 1355 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1356 sqlite3VdbeResolveLabel(v, addrBreak); 1357 } 1358 1359 /* 1360 ** Return a pointer to a string containing the 'declaration type' of the 1361 ** expression pExpr. The string may be treated as static by the caller. 1362 ** 1363 ** Also try to estimate the size of the returned value and return that 1364 ** result in *pEstWidth. 1365 ** 1366 ** The declaration type is the exact datatype definition extracted from the 1367 ** original CREATE TABLE statement if the expression is a column. The 1368 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1369 ** is considered a column can be complex in the presence of subqueries. The 1370 ** result-set expression in all of the following SELECT statements is 1371 ** considered a column by this function. 1372 ** 1373 ** SELECT col FROM tbl; 1374 ** SELECT (SELECT col FROM tbl; 1375 ** SELECT (SELECT col FROM tbl); 1376 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1377 ** 1378 ** The declaration type for any expression other than a column is NULL. 1379 ** 1380 ** This routine has either 3 or 6 parameters depending on whether or not 1381 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1382 */ 1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1384 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1385 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1386 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1387 #endif 1388 static const char *columnTypeImpl( 1389 NameContext *pNC, 1390 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1391 Expr *pExpr 1392 #else 1393 Expr *pExpr, 1394 const char **pzOrigDb, 1395 const char **pzOrigTab, 1396 const char **pzOrigCol 1397 #endif 1398 ){ 1399 char const *zType = 0; 1400 int j; 1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1402 char const *zOrigDb = 0; 1403 char const *zOrigTab = 0; 1404 char const *zOrigCol = 0; 1405 #endif 1406 1407 assert( pExpr!=0 ); 1408 assert( pNC->pSrcList!=0 ); 1409 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1410 ** are processed */ 1411 switch( pExpr->op ){ 1412 case TK_COLUMN: { 1413 /* The expression is a column. Locate the table the column is being 1414 ** extracted from in NameContext.pSrcList. This table may be real 1415 ** database table or a subquery. 1416 */ 1417 Table *pTab = 0; /* Table structure column is extracted from */ 1418 Select *pS = 0; /* Select the column is extracted from */ 1419 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1420 while( pNC && !pTab ){ 1421 SrcList *pTabList = pNC->pSrcList; 1422 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1423 if( j<pTabList->nSrc ){ 1424 pTab = pTabList->a[j].pTab; 1425 pS = pTabList->a[j].pSelect; 1426 }else{ 1427 pNC = pNC->pNext; 1428 } 1429 } 1430 1431 if( pTab==0 ){ 1432 /* At one time, code such as "SELECT new.x" within a trigger would 1433 ** cause this condition to run. Since then, we have restructured how 1434 ** trigger code is generated and so this condition is no longer 1435 ** possible. However, it can still be true for statements like 1436 ** the following: 1437 ** 1438 ** CREATE TABLE t1(col INTEGER); 1439 ** SELECT (SELECT t1.col) FROM FROM t1; 1440 ** 1441 ** when columnType() is called on the expression "t1.col" in the 1442 ** sub-select. In this case, set the column type to NULL, even 1443 ** though it should really be "INTEGER". 1444 ** 1445 ** This is not a problem, as the column type of "t1.col" is never 1446 ** used. When columnType() is called on the expression 1447 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1448 ** branch below. */ 1449 break; 1450 } 1451 1452 assert( pTab && pExpr->pTab==pTab ); 1453 if( pS ){ 1454 /* The "table" is actually a sub-select or a view in the FROM clause 1455 ** of the SELECT statement. Return the declaration type and origin 1456 ** data for the result-set column of the sub-select. 1457 */ 1458 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1459 /* If iCol is less than zero, then the expression requests the 1460 ** rowid of the sub-select or view. This expression is legal (see 1461 ** test case misc2.2.2) - it always evaluates to NULL. 1462 */ 1463 NameContext sNC; 1464 Expr *p = pS->pEList->a[iCol].pExpr; 1465 sNC.pSrcList = pS->pSrc; 1466 sNC.pNext = pNC; 1467 sNC.pParse = pNC->pParse; 1468 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1469 } 1470 }else{ 1471 /* A real table or a CTE table */ 1472 assert( !pS ); 1473 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1474 if( iCol<0 ) iCol = pTab->iPKey; 1475 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1476 if( iCol<0 ){ 1477 zType = "INTEGER"; 1478 zOrigCol = "rowid"; 1479 }else{ 1480 zOrigCol = pTab->aCol[iCol].zName; 1481 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1482 } 1483 zOrigTab = pTab->zName; 1484 if( pNC->pParse && pTab->pSchema ){ 1485 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1486 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1487 } 1488 #else 1489 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1490 if( iCol<0 ){ 1491 zType = "INTEGER"; 1492 }else{ 1493 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1494 } 1495 #endif 1496 } 1497 break; 1498 } 1499 #ifndef SQLITE_OMIT_SUBQUERY 1500 case TK_SELECT: { 1501 /* The expression is a sub-select. Return the declaration type and 1502 ** origin info for the single column in the result set of the SELECT 1503 ** statement. 1504 */ 1505 NameContext sNC; 1506 Select *pS = pExpr->x.pSelect; 1507 Expr *p = pS->pEList->a[0].pExpr; 1508 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1509 sNC.pSrcList = pS->pSrc; 1510 sNC.pNext = pNC; 1511 sNC.pParse = pNC->pParse; 1512 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1513 break; 1514 } 1515 #endif 1516 } 1517 1518 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1519 if( pzOrigDb ){ 1520 assert( pzOrigTab && pzOrigCol ); 1521 *pzOrigDb = zOrigDb; 1522 *pzOrigTab = zOrigTab; 1523 *pzOrigCol = zOrigCol; 1524 } 1525 #endif 1526 return zType; 1527 } 1528 1529 /* 1530 ** Generate code that will tell the VDBE the declaration types of columns 1531 ** in the result set. 1532 */ 1533 static void generateColumnTypes( 1534 Parse *pParse, /* Parser context */ 1535 SrcList *pTabList, /* List of tables */ 1536 ExprList *pEList /* Expressions defining the result set */ 1537 ){ 1538 #ifndef SQLITE_OMIT_DECLTYPE 1539 Vdbe *v = pParse->pVdbe; 1540 int i; 1541 NameContext sNC; 1542 sNC.pSrcList = pTabList; 1543 sNC.pParse = pParse; 1544 sNC.pNext = 0; 1545 for(i=0; i<pEList->nExpr; i++){ 1546 Expr *p = pEList->a[i].pExpr; 1547 const char *zType; 1548 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1549 const char *zOrigDb = 0; 1550 const char *zOrigTab = 0; 1551 const char *zOrigCol = 0; 1552 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1553 1554 /* The vdbe must make its own copy of the column-type and other 1555 ** column specific strings, in case the schema is reset before this 1556 ** virtual machine is deleted. 1557 */ 1558 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1559 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1560 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1561 #else 1562 zType = columnType(&sNC, p, 0, 0, 0); 1563 #endif 1564 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1565 } 1566 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1567 } 1568 1569 1570 /* 1571 ** Compute the column names for a SELECT statement. 1572 ** 1573 ** The only guarantee that SQLite makes about column names is that if the 1574 ** column has an AS clause assigning it a name, that will be the name used. 1575 ** That is the only documented guarantee. However, countless applications 1576 ** developed over the years have made baseless assumptions about column names 1577 ** and will break if those assumptions changes. Hence, use extreme caution 1578 ** when modifying this routine to avoid breaking legacy. 1579 ** 1580 ** See Also: sqlite3ColumnsFromExprList() 1581 ** 1582 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1583 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1584 ** applications should operate this way. Nevertheless, we need to support the 1585 ** other modes for legacy: 1586 ** 1587 ** short=OFF, full=OFF: Column name is the text of the expression has it 1588 ** originally appears in the SELECT statement. In 1589 ** other words, the zSpan of the result expression. 1590 ** 1591 ** short=ON, full=OFF: (This is the default setting). If the result 1592 ** refers directly to a table column, then the 1593 ** result column name is just the table column 1594 ** name: COLUMN. Otherwise use zSpan. 1595 ** 1596 ** full=ON, short=ANY: If the result refers directly to a table column, 1597 ** then the result column name with the table name 1598 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1599 */ 1600 static void generateColumnNames( 1601 Parse *pParse, /* Parser context */ 1602 Select *pSelect /* Generate column names for this SELECT statement */ 1603 ){ 1604 Vdbe *v = pParse->pVdbe; 1605 int i; 1606 Table *pTab; 1607 SrcList *pTabList; 1608 ExprList *pEList; 1609 sqlite3 *db = pParse->db; 1610 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1611 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1612 1613 #ifndef SQLITE_OMIT_EXPLAIN 1614 /* If this is an EXPLAIN, skip this step */ 1615 if( pParse->explain ){ 1616 return; 1617 } 1618 #endif 1619 1620 if( pParse->colNamesSet || db->mallocFailed ) return; 1621 /* Column names are determined by the left-most term of a compound select */ 1622 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1623 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1624 pTabList = pSelect->pSrc; 1625 pEList = pSelect->pEList; 1626 assert( v!=0 ); 1627 assert( pTabList!=0 ); 1628 pParse->colNamesSet = 1; 1629 fullName = (db->flags & SQLITE_FullColNames)!=0; 1630 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1631 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1632 for(i=0; i<pEList->nExpr; i++){ 1633 Expr *p = pEList->a[i].pExpr; 1634 1635 assert( p!=0 ); 1636 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1637 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1638 if( pEList->a[i].zName ){ 1639 /* An AS clause always takes first priority */ 1640 char *zName = pEList->a[i].zName; 1641 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1642 }else if( srcName && p->op==TK_COLUMN ){ 1643 char *zCol; 1644 int iCol = p->iColumn; 1645 pTab = p->pTab; 1646 assert( pTab!=0 ); 1647 if( iCol<0 ) iCol = pTab->iPKey; 1648 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1649 if( iCol<0 ){ 1650 zCol = "rowid"; 1651 }else{ 1652 zCol = pTab->aCol[iCol].zName; 1653 } 1654 if( fullName ){ 1655 char *zName = 0; 1656 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1657 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1658 }else{ 1659 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1660 } 1661 }else{ 1662 const char *z = pEList->a[i].zSpan; 1663 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1664 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1665 } 1666 } 1667 generateColumnTypes(pParse, pTabList, pEList); 1668 } 1669 1670 /* 1671 ** Given an expression list (which is really the list of expressions 1672 ** that form the result set of a SELECT statement) compute appropriate 1673 ** column names for a table that would hold the expression list. 1674 ** 1675 ** All column names will be unique. 1676 ** 1677 ** Only the column names are computed. Column.zType, Column.zColl, 1678 ** and other fields of Column are zeroed. 1679 ** 1680 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1681 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1682 ** 1683 ** The only guarantee that SQLite makes about column names is that if the 1684 ** column has an AS clause assigning it a name, that will be the name used. 1685 ** That is the only documented guarantee. However, countless applications 1686 ** developed over the years have made baseless assumptions about column names 1687 ** and will break if those assumptions changes. Hence, use extreme caution 1688 ** when modifying this routine to avoid breaking legacy. 1689 ** 1690 ** See Also: generateColumnNames() 1691 */ 1692 int sqlite3ColumnsFromExprList( 1693 Parse *pParse, /* Parsing context */ 1694 ExprList *pEList, /* Expr list from which to derive column names */ 1695 i16 *pnCol, /* Write the number of columns here */ 1696 Column **paCol /* Write the new column list here */ 1697 ){ 1698 sqlite3 *db = pParse->db; /* Database connection */ 1699 int i, j; /* Loop counters */ 1700 u32 cnt; /* Index added to make the name unique */ 1701 Column *aCol, *pCol; /* For looping over result columns */ 1702 int nCol; /* Number of columns in the result set */ 1703 char *zName; /* Column name */ 1704 int nName; /* Size of name in zName[] */ 1705 Hash ht; /* Hash table of column names */ 1706 1707 sqlite3HashInit(&ht); 1708 if( pEList ){ 1709 nCol = pEList->nExpr; 1710 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1711 testcase( aCol==0 ); 1712 if( nCol>32767 ) nCol = 32767; 1713 }else{ 1714 nCol = 0; 1715 aCol = 0; 1716 } 1717 assert( nCol==(i16)nCol ); 1718 *pnCol = nCol; 1719 *paCol = aCol; 1720 1721 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1722 /* Get an appropriate name for the column 1723 */ 1724 if( (zName = pEList->a[i].zName)!=0 ){ 1725 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1726 }else{ 1727 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1728 while( pColExpr->op==TK_DOT ){ 1729 pColExpr = pColExpr->pRight; 1730 assert( pColExpr!=0 ); 1731 } 1732 assert( pColExpr->op!=TK_AGG_COLUMN ); 1733 if( pColExpr->op==TK_COLUMN ){ 1734 /* For columns use the column name name */ 1735 int iCol = pColExpr->iColumn; 1736 Table *pTab = pColExpr->pTab; 1737 assert( pTab!=0 ); 1738 if( iCol<0 ) iCol = pTab->iPKey; 1739 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1740 }else if( pColExpr->op==TK_ID ){ 1741 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1742 zName = pColExpr->u.zToken; 1743 }else{ 1744 /* Use the original text of the column expression as its name */ 1745 zName = pEList->a[i].zSpan; 1746 } 1747 } 1748 if( zName ){ 1749 zName = sqlite3DbStrDup(db, zName); 1750 }else{ 1751 zName = sqlite3MPrintf(db,"column%d",i+1); 1752 } 1753 1754 /* Make sure the column name is unique. If the name is not unique, 1755 ** append an integer to the name so that it becomes unique. 1756 */ 1757 cnt = 0; 1758 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1759 nName = sqlite3Strlen30(zName); 1760 if( nName>0 ){ 1761 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1762 if( zName[j]==':' ) nName = j; 1763 } 1764 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1765 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1766 } 1767 pCol->zName = zName; 1768 sqlite3ColumnPropertiesFromName(0, pCol); 1769 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1770 sqlite3OomFault(db); 1771 } 1772 } 1773 sqlite3HashClear(&ht); 1774 if( db->mallocFailed ){ 1775 for(j=0; j<i; j++){ 1776 sqlite3DbFree(db, aCol[j].zName); 1777 } 1778 sqlite3DbFree(db, aCol); 1779 *paCol = 0; 1780 *pnCol = 0; 1781 return SQLITE_NOMEM_BKPT; 1782 } 1783 return SQLITE_OK; 1784 } 1785 1786 /* 1787 ** Add type and collation information to a column list based on 1788 ** a SELECT statement. 1789 ** 1790 ** The column list presumably came from selectColumnNamesFromExprList(). 1791 ** The column list has only names, not types or collations. This 1792 ** routine goes through and adds the types and collations. 1793 ** 1794 ** This routine requires that all identifiers in the SELECT 1795 ** statement be resolved. 1796 */ 1797 void sqlite3SelectAddColumnTypeAndCollation( 1798 Parse *pParse, /* Parsing contexts */ 1799 Table *pTab, /* Add column type information to this table */ 1800 Select *pSelect /* SELECT used to determine types and collations */ 1801 ){ 1802 sqlite3 *db = pParse->db; 1803 NameContext sNC; 1804 Column *pCol; 1805 CollSeq *pColl; 1806 int i; 1807 Expr *p; 1808 struct ExprList_item *a; 1809 1810 assert( pSelect!=0 ); 1811 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1812 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1813 if( db->mallocFailed ) return; 1814 memset(&sNC, 0, sizeof(sNC)); 1815 sNC.pSrcList = pSelect->pSrc; 1816 a = pSelect->pEList->a; 1817 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1818 const char *zType; 1819 int n, m; 1820 p = a[i].pExpr; 1821 zType = columnType(&sNC, p, 0, 0, 0); 1822 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 1823 pCol->affinity = sqlite3ExprAffinity(p); 1824 if( zType ){ 1825 m = sqlite3Strlen30(zType); 1826 n = sqlite3Strlen30(pCol->zName); 1827 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1828 if( pCol->zName ){ 1829 memcpy(&pCol->zName[n+1], zType, m+1); 1830 pCol->colFlags |= COLFLAG_HASTYPE; 1831 } 1832 } 1833 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1834 pColl = sqlite3ExprCollSeq(pParse, p); 1835 if( pColl && pCol->zColl==0 ){ 1836 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1837 } 1838 } 1839 pTab->szTabRow = 1; /* Any non-zero value works */ 1840 } 1841 1842 /* 1843 ** Given a SELECT statement, generate a Table structure that describes 1844 ** the result set of that SELECT. 1845 */ 1846 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1847 Table *pTab; 1848 sqlite3 *db = pParse->db; 1849 int savedFlags; 1850 1851 savedFlags = db->flags; 1852 db->flags &= ~SQLITE_FullColNames; 1853 db->flags |= SQLITE_ShortColNames; 1854 sqlite3SelectPrep(pParse, pSelect, 0); 1855 if( pParse->nErr ) return 0; 1856 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1857 db->flags = savedFlags; 1858 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1859 if( pTab==0 ){ 1860 return 0; 1861 } 1862 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1863 ** is disabled */ 1864 assert( db->lookaside.bDisable ); 1865 pTab->nTabRef = 1; 1866 pTab->zName = 0; 1867 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1868 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1869 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1870 pTab->iPKey = -1; 1871 if( db->mallocFailed ){ 1872 sqlite3DeleteTable(db, pTab); 1873 return 0; 1874 } 1875 return pTab; 1876 } 1877 1878 /* 1879 ** Get a VDBE for the given parser context. Create a new one if necessary. 1880 ** If an error occurs, return NULL and leave a message in pParse. 1881 */ 1882 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1883 if( pParse->pVdbe ){ 1884 return pParse->pVdbe; 1885 } 1886 if( pParse->pToplevel==0 1887 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1888 ){ 1889 pParse->okConstFactor = 1; 1890 } 1891 return sqlite3VdbeCreate(pParse); 1892 } 1893 1894 1895 /* 1896 ** Compute the iLimit and iOffset fields of the SELECT based on the 1897 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 1898 ** that appear in the original SQL statement after the LIMIT and OFFSET 1899 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1900 ** are the integer memory register numbers for counters used to compute 1901 ** the limit and offset. If there is no limit and/or offset, then 1902 ** iLimit and iOffset are negative. 1903 ** 1904 ** This routine changes the values of iLimit and iOffset only if 1905 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 1906 ** and iOffset should have been preset to appropriate default values (zero) 1907 ** prior to calling this routine. 1908 ** 1909 ** The iOffset register (if it exists) is initialized to the value 1910 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1911 ** iOffset+1 is initialized to LIMIT+OFFSET. 1912 ** 1913 ** Only if pLimit->pLeft!=0 do the limit registers get 1914 ** redefined. The UNION ALL operator uses this property to force 1915 ** the reuse of the same limit and offset registers across multiple 1916 ** SELECT statements. 1917 */ 1918 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1919 Vdbe *v = 0; 1920 int iLimit = 0; 1921 int iOffset; 1922 int n; 1923 Expr *pLimit = p->pLimit; 1924 1925 if( p->iLimit ) return; 1926 1927 /* 1928 ** "LIMIT -1" always shows all rows. There is some 1929 ** controversy about what the correct behavior should be. 1930 ** The current implementation interprets "LIMIT 0" to mean 1931 ** no rows. 1932 */ 1933 sqlite3ExprCacheClear(pParse); 1934 if( pLimit ){ 1935 assert( pLimit->op==TK_LIMIT ); 1936 assert( pLimit->pLeft!=0 ); 1937 p->iLimit = iLimit = ++pParse->nMem; 1938 v = sqlite3GetVdbe(pParse); 1939 assert( v!=0 ); 1940 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 1941 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1942 VdbeComment((v, "LIMIT counter")); 1943 if( n==0 ){ 1944 sqlite3VdbeGoto(v, iBreak); 1945 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1946 p->nSelectRow = sqlite3LogEst((u64)n); 1947 p->selFlags |= SF_FixedLimit; 1948 } 1949 }else{ 1950 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 1951 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1952 VdbeComment((v, "LIMIT counter")); 1953 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1954 } 1955 if( pLimit->pRight ){ 1956 p->iOffset = iOffset = ++pParse->nMem; 1957 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1958 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 1959 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1960 VdbeComment((v, "OFFSET counter")); 1961 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1962 VdbeComment((v, "LIMIT+OFFSET")); 1963 } 1964 } 1965 } 1966 1967 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1968 /* 1969 ** Return the appropriate collating sequence for the iCol-th column of 1970 ** the result set for the compound-select statement "p". Return NULL if 1971 ** the column has no default collating sequence. 1972 ** 1973 ** The collating sequence for the compound select is taken from the 1974 ** left-most term of the select that has a collating sequence. 1975 */ 1976 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1977 CollSeq *pRet; 1978 if( p->pPrior ){ 1979 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1980 }else{ 1981 pRet = 0; 1982 } 1983 assert( iCol>=0 ); 1984 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1985 ** have been thrown during name resolution and we would not have gotten 1986 ** this far */ 1987 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1988 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1989 } 1990 return pRet; 1991 } 1992 1993 /* 1994 ** The select statement passed as the second parameter is a compound SELECT 1995 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1996 ** structure suitable for implementing the ORDER BY. 1997 ** 1998 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1999 ** function is responsible for ensuring that this structure is eventually 2000 ** freed. 2001 */ 2002 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2003 ExprList *pOrderBy = p->pOrderBy; 2004 int nOrderBy = p->pOrderBy->nExpr; 2005 sqlite3 *db = pParse->db; 2006 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2007 if( pRet ){ 2008 int i; 2009 for(i=0; i<nOrderBy; i++){ 2010 struct ExprList_item *pItem = &pOrderBy->a[i]; 2011 Expr *pTerm = pItem->pExpr; 2012 CollSeq *pColl; 2013 2014 if( pTerm->flags & EP_Collate ){ 2015 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2016 }else{ 2017 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2018 if( pColl==0 ) pColl = db->pDfltColl; 2019 pOrderBy->a[i].pExpr = 2020 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2021 } 2022 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2023 pRet->aColl[i] = pColl; 2024 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2025 } 2026 } 2027 2028 return pRet; 2029 } 2030 2031 #ifndef SQLITE_OMIT_CTE 2032 /* 2033 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2034 ** query of the form: 2035 ** 2036 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2037 ** \___________/ \_______________/ 2038 ** p->pPrior p 2039 ** 2040 ** 2041 ** There is exactly one reference to the recursive-table in the FROM clause 2042 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2043 ** 2044 ** The setup-query runs once to generate an initial set of rows that go 2045 ** into a Queue table. Rows are extracted from the Queue table one by 2046 ** one. Each row extracted from Queue is output to pDest. Then the single 2047 ** extracted row (now in the iCurrent table) becomes the content of the 2048 ** recursive-table for a recursive-query run. The output of the recursive-query 2049 ** is added back into the Queue table. Then another row is extracted from Queue 2050 ** and the iteration continues until the Queue table is empty. 2051 ** 2052 ** If the compound query operator is UNION then no duplicate rows are ever 2053 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2054 ** that have ever been inserted into Queue and causes duplicates to be 2055 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2056 ** 2057 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2058 ** ORDER BY order and the first entry is extracted for each cycle. Without 2059 ** an ORDER BY, the Queue table is just a FIFO. 2060 ** 2061 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2062 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2063 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2064 ** with a positive value, then the first OFFSET outputs are discarded rather 2065 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2066 ** rows have been skipped. 2067 */ 2068 static void generateWithRecursiveQuery( 2069 Parse *pParse, /* Parsing context */ 2070 Select *p, /* The recursive SELECT to be coded */ 2071 SelectDest *pDest /* What to do with query results */ 2072 ){ 2073 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2074 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2075 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2076 Select *pSetup = p->pPrior; /* The setup query */ 2077 int addrTop; /* Top of the loop */ 2078 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2079 int iCurrent = 0; /* The Current table */ 2080 int regCurrent; /* Register holding Current table */ 2081 int iQueue; /* The Queue table */ 2082 int iDistinct = 0; /* To ensure unique results if UNION */ 2083 int eDest = SRT_Fifo; /* How to write to Queue */ 2084 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2085 int i; /* Loop counter */ 2086 int rc; /* Result code */ 2087 ExprList *pOrderBy; /* The ORDER BY clause */ 2088 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2089 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2090 2091 /* Obtain authorization to do a recursive query */ 2092 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2093 2094 /* Process the LIMIT and OFFSET clauses, if they exist */ 2095 addrBreak = sqlite3VdbeMakeLabel(v); 2096 p->nSelectRow = 320; /* 4 billion rows */ 2097 computeLimitRegisters(pParse, p, addrBreak); 2098 pLimit = p->pLimit; 2099 regLimit = p->iLimit; 2100 regOffset = p->iOffset; 2101 p->pLimit = 0; 2102 p->iLimit = p->iOffset = 0; 2103 pOrderBy = p->pOrderBy; 2104 2105 /* Locate the cursor number of the Current table */ 2106 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2107 if( pSrc->a[i].fg.isRecursive ){ 2108 iCurrent = pSrc->a[i].iCursor; 2109 break; 2110 } 2111 } 2112 2113 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2114 ** the Distinct table must be exactly one greater than Queue in order 2115 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2116 iQueue = pParse->nTab++; 2117 if( p->op==TK_UNION ){ 2118 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2119 iDistinct = pParse->nTab++; 2120 }else{ 2121 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2122 } 2123 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2124 2125 /* Allocate cursors for Current, Queue, and Distinct. */ 2126 regCurrent = ++pParse->nMem; 2127 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2128 if( pOrderBy ){ 2129 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2130 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2131 (char*)pKeyInfo, P4_KEYINFO); 2132 destQueue.pOrderBy = pOrderBy; 2133 }else{ 2134 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2135 } 2136 VdbeComment((v, "Queue table")); 2137 if( iDistinct ){ 2138 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2139 p->selFlags |= SF_UsesEphemeral; 2140 } 2141 2142 /* Detach the ORDER BY clause from the compound SELECT */ 2143 p->pOrderBy = 0; 2144 2145 /* Store the results of the setup-query in Queue. */ 2146 pSetup->pNext = 0; 2147 rc = sqlite3Select(pParse, pSetup, &destQueue); 2148 pSetup->pNext = p; 2149 if( rc ) goto end_of_recursive_query; 2150 2151 /* Find the next row in the Queue and output that row */ 2152 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2153 2154 /* Transfer the next row in Queue over to Current */ 2155 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2156 if( pOrderBy ){ 2157 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2158 }else{ 2159 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2160 } 2161 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2162 2163 /* Output the single row in Current */ 2164 addrCont = sqlite3VdbeMakeLabel(v); 2165 codeOffset(v, regOffset, addrCont); 2166 selectInnerLoop(pParse, p, iCurrent, 2167 0, 0, pDest, addrCont, addrBreak); 2168 if( regLimit ){ 2169 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2170 VdbeCoverage(v); 2171 } 2172 sqlite3VdbeResolveLabel(v, addrCont); 2173 2174 /* Execute the recursive SELECT taking the single row in Current as 2175 ** the value for the recursive-table. Store the results in the Queue. 2176 */ 2177 if( p->selFlags & SF_Aggregate ){ 2178 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2179 }else{ 2180 p->pPrior = 0; 2181 sqlite3Select(pParse, p, &destQueue); 2182 assert( p->pPrior==0 ); 2183 p->pPrior = pSetup; 2184 } 2185 2186 /* Keep running the loop until the Queue is empty */ 2187 sqlite3VdbeGoto(v, addrTop); 2188 sqlite3VdbeResolveLabel(v, addrBreak); 2189 2190 end_of_recursive_query: 2191 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2192 p->pOrderBy = pOrderBy; 2193 p->pLimit = pLimit; 2194 return; 2195 } 2196 #endif /* SQLITE_OMIT_CTE */ 2197 2198 /* Forward references */ 2199 static int multiSelectOrderBy( 2200 Parse *pParse, /* Parsing context */ 2201 Select *p, /* The right-most of SELECTs to be coded */ 2202 SelectDest *pDest /* What to do with query results */ 2203 ); 2204 2205 /* 2206 ** Handle the special case of a compound-select that originates from a 2207 ** VALUES clause. By handling this as a special case, we avoid deep 2208 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2209 ** on a VALUES clause. 2210 ** 2211 ** Because the Select object originates from a VALUES clause: 2212 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2213 ** (2) All terms are UNION ALL 2214 ** (3) There is no ORDER BY clause 2215 ** 2216 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2217 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2218 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2219 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2220 */ 2221 static int multiSelectValues( 2222 Parse *pParse, /* Parsing context */ 2223 Select *p, /* The right-most of SELECTs to be coded */ 2224 SelectDest *pDest /* What to do with query results */ 2225 ){ 2226 Select *pPrior; 2227 Select *pRightmost = p; 2228 int nRow = 1; 2229 int rc = 0; 2230 assert( p->selFlags & SF_MultiValue ); 2231 do{ 2232 assert( p->selFlags & SF_Values ); 2233 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2234 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2235 if( p->pPrior==0 ) break; 2236 assert( p->pPrior->pNext==p ); 2237 p = p->pPrior; 2238 nRow++; 2239 }while(1); 2240 while( p ){ 2241 pPrior = p->pPrior; 2242 p->pPrior = 0; 2243 rc = sqlite3Select(pParse, p, pDest); 2244 p->pPrior = pPrior; 2245 if( rc || pRightmost->pLimit ) break; 2246 p->nSelectRow = nRow; 2247 p = p->pNext; 2248 } 2249 return rc; 2250 } 2251 2252 /* 2253 ** This routine is called to process a compound query form from 2254 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2255 ** INTERSECT 2256 ** 2257 ** "p" points to the right-most of the two queries. the query on the 2258 ** left is p->pPrior. The left query could also be a compound query 2259 ** in which case this routine will be called recursively. 2260 ** 2261 ** The results of the total query are to be written into a destination 2262 ** of type eDest with parameter iParm. 2263 ** 2264 ** Example 1: Consider a three-way compound SQL statement. 2265 ** 2266 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2267 ** 2268 ** This statement is parsed up as follows: 2269 ** 2270 ** SELECT c FROM t3 2271 ** | 2272 ** `-----> SELECT b FROM t2 2273 ** | 2274 ** `------> SELECT a FROM t1 2275 ** 2276 ** The arrows in the diagram above represent the Select.pPrior pointer. 2277 ** So if this routine is called with p equal to the t3 query, then 2278 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2279 ** 2280 ** Notice that because of the way SQLite parses compound SELECTs, the 2281 ** individual selects always group from left to right. 2282 */ 2283 static int multiSelect( 2284 Parse *pParse, /* Parsing context */ 2285 Select *p, /* The right-most of SELECTs to be coded */ 2286 SelectDest *pDest /* What to do with query results */ 2287 ){ 2288 int rc = SQLITE_OK; /* Success code from a subroutine */ 2289 Select *pPrior; /* Another SELECT immediately to our left */ 2290 Vdbe *v; /* Generate code to this VDBE */ 2291 SelectDest dest; /* Alternative data destination */ 2292 Select *pDelete = 0; /* Chain of simple selects to delete */ 2293 sqlite3 *db; /* Database connection */ 2294 #ifndef SQLITE_OMIT_EXPLAIN 2295 int iSub1 = 0; /* EQP id of left-hand query */ 2296 int iSub2 = 0; /* EQP id of right-hand query */ 2297 #endif 2298 2299 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2300 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2301 */ 2302 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2303 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2304 db = pParse->db; 2305 pPrior = p->pPrior; 2306 dest = *pDest; 2307 if( pPrior->pOrderBy || pPrior->pLimit ){ 2308 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2309 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2310 rc = 1; 2311 goto multi_select_end; 2312 } 2313 2314 v = sqlite3GetVdbe(pParse); 2315 assert( v!=0 ); /* The VDBE already created by calling function */ 2316 2317 /* Create the destination temporary table if necessary 2318 */ 2319 if( dest.eDest==SRT_EphemTab ){ 2320 assert( p->pEList ); 2321 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2322 dest.eDest = SRT_Table; 2323 } 2324 2325 /* Special handling for a compound-select that originates as a VALUES clause. 2326 */ 2327 if( p->selFlags & SF_MultiValue ){ 2328 rc = multiSelectValues(pParse, p, &dest); 2329 goto multi_select_end; 2330 } 2331 2332 /* Make sure all SELECTs in the statement have the same number of elements 2333 ** in their result sets. 2334 */ 2335 assert( p->pEList && pPrior->pEList ); 2336 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2337 2338 #ifndef SQLITE_OMIT_CTE 2339 if( p->selFlags & SF_Recursive ){ 2340 generateWithRecursiveQuery(pParse, p, &dest); 2341 }else 2342 #endif 2343 2344 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2345 */ 2346 if( p->pOrderBy ){ 2347 return multiSelectOrderBy(pParse, p, pDest); 2348 }else 2349 2350 /* Generate code for the left and right SELECT statements. 2351 */ 2352 switch( p->op ){ 2353 case TK_ALL: { 2354 int addr = 0; 2355 int nLimit; 2356 assert( !pPrior->pLimit ); 2357 pPrior->iLimit = p->iLimit; 2358 pPrior->iOffset = p->iOffset; 2359 pPrior->pLimit = p->pLimit; 2360 explainSetInteger(iSub1, pParse->iNextSelectId); 2361 rc = sqlite3Select(pParse, pPrior, &dest); 2362 p->pLimit = 0; 2363 if( rc ){ 2364 goto multi_select_end; 2365 } 2366 p->pPrior = 0; 2367 p->iLimit = pPrior->iLimit; 2368 p->iOffset = pPrior->iOffset; 2369 if( p->iLimit ){ 2370 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2371 VdbeComment((v, "Jump ahead if LIMIT reached")); 2372 if( p->iOffset ){ 2373 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2374 p->iLimit, p->iOffset+1, p->iOffset); 2375 } 2376 } 2377 explainSetInteger(iSub2, pParse->iNextSelectId); 2378 rc = sqlite3Select(pParse, p, &dest); 2379 testcase( rc!=SQLITE_OK ); 2380 pDelete = p->pPrior; 2381 p->pPrior = pPrior; 2382 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2383 if( pPrior->pLimit 2384 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2385 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2386 ){ 2387 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2388 } 2389 if( addr ){ 2390 sqlite3VdbeJumpHere(v, addr); 2391 } 2392 break; 2393 } 2394 case TK_EXCEPT: 2395 case TK_UNION: { 2396 int unionTab; /* Cursor number of the temporary table holding result */ 2397 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2398 int priorOp; /* The SRT_ operation to apply to prior selects */ 2399 Expr *pLimit; /* Saved values of p->nLimit */ 2400 int addr; 2401 SelectDest uniondest; 2402 2403 testcase( p->op==TK_EXCEPT ); 2404 testcase( p->op==TK_UNION ); 2405 priorOp = SRT_Union; 2406 if( dest.eDest==priorOp ){ 2407 /* We can reuse a temporary table generated by a SELECT to our 2408 ** right. 2409 */ 2410 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2411 unionTab = dest.iSDParm; 2412 }else{ 2413 /* We will need to create our own temporary table to hold the 2414 ** intermediate results. 2415 */ 2416 unionTab = pParse->nTab++; 2417 assert( p->pOrderBy==0 ); 2418 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2419 assert( p->addrOpenEphm[0] == -1 ); 2420 p->addrOpenEphm[0] = addr; 2421 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2422 assert( p->pEList ); 2423 } 2424 2425 /* Code the SELECT statements to our left 2426 */ 2427 assert( !pPrior->pOrderBy ); 2428 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2429 explainSetInteger(iSub1, pParse->iNextSelectId); 2430 rc = sqlite3Select(pParse, pPrior, &uniondest); 2431 if( rc ){ 2432 goto multi_select_end; 2433 } 2434 2435 /* Code the current SELECT statement 2436 */ 2437 if( p->op==TK_EXCEPT ){ 2438 op = SRT_Except; 2439 }else{ 2440 assert( p->op==TK_UNION ); 2441 op = SRT_Union; 2442 } 2443 p->pPrior = 0; 2444 pLimit = p->pLimit; 2445 p->pLimit = 0; 2446 uniondest.eDest = op; 2447 explainSetInteger(iSub2, pParse->iNextSelectId); 2448 rc = sqlite3Select(pParse, p, &uniondest); 2449 testcase( rc!=SQLITE_OK ); 2450 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2451 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2452 sqlite3ExprListDelete(db, p->pOrderBy); 2453 pDelete = p->pPrior; 2454 p->pPrior = pPrior; 2455 p->pOrderBy = 0; 2456 if( p->op==TK_UNION ){ 2457 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2458 } 2459 sqlite3ExprDelete(db, p->pLimit); 2460 p->pLimit = pLimit; 2461 p->iLimit = 0; 2462 p->iOffset = 0; 2463 2464 /* Convert the data in the temporary table into whatever form 2465 ** it is that we currently need. 2466 */ 2467 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2468 if( dest.eDest!=priorOp ){ 2469 int iCont, iBreak, iStart; 2470 assert( p->pEList ); 2471 iBreak = sqlite3VdbeMakeLabel(v); 2472 iCont = sqlite3VdbeMakeLabel(v); 2473 computeLimitRegisters(pParse, p, iBreak); 2474 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2475 iStart = sqlite3VdbeCurrentAddr(v); 2476 selectInnerLoop(pParse, p, unionTab, 2477 0, 0, &dest, iCont, iBreak); 2478 sqlite3VdbeResolveLabel(v, iCont); 2479 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2480 sqlite3VdbeResolveLabel(v, iBreak); 2481 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2482 } 2483 break; 2484 } 2485 default: assert( p->op==TK_INTERSECT ); { 2486 int tab1, tab2; 2487 int iCont, iBreak, iStart; 2488 Expr *pLimit; 2489 int addr; 2490 SelectDest intersectdest; 2491 int r1; 2492 2493 /* INTERSECT is different from the others since it requires 2494 ** two temporary tables. Hence it has its own case. Begin 2495 ** by allocating the tables we will need. 2496 */ 2497 tab1 = pParse->nTab++; 2498 tab2 = pParse->nTab++; 2499 assert( p->pOrderBy==0 ); 2500 2501 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2502 assert( p->addrOpenEphm[0] == -1 ); 2503 p->addrOpenEphm[0] = addr; 2504 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2505 assert( p->pEList ); 2506 2507 /* Code the SELECTs to our left into temporary table "tab1". 2508 */ 2509 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2510 explainSetInteger(iSub1, pParse->iNextSelectId); 2511 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2512 if( rc ){ 2513 goto multi_select_end; 2514 } 2515 2516 /* Code the current SELECT into temporary table "tab2" 2517 */ 2518 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2519 assert( p->addrOpenEphm[1] == -1 ); 2520 p->addrOpenEphm[1] = addr; 2521 p->pPrior = 0; 2522 pLimit = p->pLimit; 2523 p->pLimit = 0; 2524 intersectdest.iSDParm = tab2; 2525 explainSetInteger(iSub2, pParse->iNextSelectId); 2526 rc = sqlite3Select(pParse, p, &intersectdest); 2527 testcase( rc!=SQLITE_OK ); 2528 pDelete = p->pPrior; 2529 p->pPrior = pPrior; 2530 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2531 sqlite3ExprDelete(db, p->pLimit); 2532 p->pLimit = pLimit; 2533 2534 /* Generate code to take the intersection of the two temporary 2535 ** tables. 2536 */ 2537 assert( p->pEList ); 2538 iBreak = sqlite3VdbeMakeLabel(v); 2539 iCont = sqlite3VdbeMakeLabel(v); 2540 computeLimitRegisters(pParse, p, iBreak); 2541 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2542 r1 = sqlite3GetTempReg(pParse); 2543 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2544 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2545 sqlite3ReleaseTempReg(pParse, r1); 2546 selectInnerLoop(pParse, p, tab1, 2547 0, 0, &dest, iCont, iBreak); 2548 sqlite3VdbeResolveLabel(v, iCont); 2549 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2550 sqlite3VdbeResolveLabel(v, iBreak); 2551 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2552 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2553 break; 2554 } 2555 } 2556 2557 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2558 2559 /* Compute collating sequences used by 2560 ** temporary tables needed to implement the compound select. 2561 ** Attach the KeyInfo structure to all temporary tables. 2562 ** 2563 ** This section is run by the right-most SELECT statement only. 2564 ** SELECT statements to the left always skip this part. The right-most 2565 ** SELECT might also skip this part if it has no ORDER BY clause and 2566 ** no temp tables are required. 2567 */ 2568 if( p->selFlags & SF_UsesEphemeral ){ 2569 int i; /* Loop counter */ 2570 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2571 Select *pLoop; /* For looping through SELECT statements */ 2572 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2573 int nCol; /* Number of columns in result set */ 2574 2575 assert( p->pNext==0 ); 2576 nCol = p->pEList->nExpr; 2577 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2578 if( !pKeyInfo ){ 2579 rc = SQLITE_NOMEM_BKPT; 2580 goto multi_select_end; 2581 } 2582 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2583 *apColl = multiSelectCollSeq(pParse, p, i); 2584 if( 0==*apColl ){ 2585 *apColl = db->pDfltColl; 2586 } 2587 } 2588 2589 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2590 for(i=0; i<2; i++){ 2591 int addr = pLoop->addrOpenEphm[i]; 2592 if( addr<0 ){ 2593 /* If [0] is unused then [1] is also unused. So we can 2594 ** always safely abort as soon as the first unused slot is found */ 2595 assert( pLoop->addrOpenEphm[1]<0 ); 2596 break; 2597 } 2598 sqlite3VdbeChangeP2(v, addr, nCol); 2599 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2600 P4_KEYINFO); 2601 pLoop->addrOpenEphm[i] = -1; 2602 } 2603 } 2604 sqlite3KeyInfoUnref(pKeyInfo); 2605 } 2606 2607 multi_select_end: 2608 pDest->iSdst = dest.iSdst; 2609 pDest->nSdst = dest.nSdst; 2610 sqlite3SelectDelete(db, pDelete); 2611 return rc; 2612 } 2613 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2614 2615 /* 2616 ** Error message for when two or more terms of a compound select have different 2617 ** size result sets. 2618 */ 2619 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2620 if( p->selFlags & SF_Values ){ 2621 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2622 }else{ 2623 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2624 " do not have the same number of result columns", selectOpName(p->op)); 2625 } 2626 } 2627 2628 /* 2629 ** Code an output subroutine for a coroutine implementation of a 2630 ** SELECT statment. 2631 ** 2632 ** The data to be output is contained in pIn->iSdst. There are 2633 ** pIn->nSdst columns to be output. pDest is where the output should 2634 ** be sent. 2635 ** 2636 ** regReturn is the number of the register holding the subroutine 2637 ** return address. 2638 ** 2639 ** If regPrev>0 then it is the first register in a vector that 2640 ** records the previous output. mem[regPrev] is a flag that is false 2641 ** if there has been no previous output. If regPrev>0 then code is 2642 ** generated to suppress duplicates. pKeyInfo is used for comparing 2643 ** keys. 2644 ** 2645 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2646 ** iBreak. 2647 */ 2648 static int generateOutputSubroutine( 2649 Parse *pParse, /* Parsing context */ 2650 Select *p, /* The SELECT statement */ 2651 SelectDest *pIn, /* Coroutine supplying data */ 2652 SelectDest *pDest, /* Where to send the data */ 2653 int regReturn, /* The return address register */ 2654 int regPrev, /* Previous result register. No uniqueness if 0 */ 2655 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2656 int iBreak /* Jump here if we hit the LIMIT */ 2657 ){ 2658 Vdbe *v = pParse->pVdbe; 2659 int iContinue; 2660 int addr; 2661 2662 addr = sqlite3VdbeCurrentAddr(v); 2663 iContinue = sqlite3VdbeMakeLabel(v); 2664 2665 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2666 */ 2667 if( regPrev ){ 2668 int addr1, addr2; 2669 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2670 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2671 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2672 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2673 sqlite3VdbeJumpHere(v, addr1); 2674 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2675 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2676 } 2677 if( pParse->db->mallocFailed ) return 0; 2678 2679 /* Suppress the first OFFSET entries if there is an OFFSET clause 2680 */ 2681 codeOffset(v, p->iOffset, iContinue); 2682 2683 assert( pDest->eDest!=SRT_Exists ); 2684 assert( pDest->eDest!=SRT_Table ); 2685 switch( pDest->eDest ){ 2686 /* Store the result as data using a unique key. 2687 */ 2688 case SRT_EphemTab: { 2689 int r1 = sqlite3GetTempReg(pParse); 2690 int r2 = sqlite3GetTempReg(pParse); 2691 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2692 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2693 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2694 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2695 sqlite3ReleaseTempReg(pParse, r2); 2696 sqlite3ReleaseTempReg(pParse, r1); 2697 break; 2698 } 2699 2700 #ifndef SQLITE_OMIT_SUBQUERY 2701 /* If we are creating a set for an "expr IN (SELECT ...)". 2702 */ 2703 case SRT_Set: { 2704 int r1; 2705 testcase( pIn->nSdst>1 ); 2706 r1 = sqlite3GetTempReg(pParse); 2707 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2708 r1, pDest->zAffSdst, pIn->nSdst); 2709 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2710 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2711 pIn->iSdst, pIn->nSdst); 2712 sqlite3ReleaseTempReg(pParse, r1); 2713 break; 2714 } 2715 2716 /* If this is a scalar select that is part of an expression, then 2717 ** store the results in the appropriate memory cell and break out 2718 ** of the scan loop. 2719 */ 2720 case SRT_Mem: { 2721 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2722 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2723 /* The LIMIT clause will jump out of the loop for us */ 2724 break; 2725 } 2726 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2727 2728 /* The results are stored in a sequence of registers 2729 ** starting at pDest->iSdst. Then the co-routine yields. 2730 */ 2731 case SRT_Coroutine: { 2732 if( pDest->iSdst==0 ){ 2733 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2734 pDest->nSdst = pIn->nSdst; 2735 } 2736 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2737 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2738 break; 2739 } 2740 2741 /* If none of the above, then the result destination must be 2742 ** SRT_Output. This routine is never called with any other 2743 ** destination other than the ones handled above or SRT_Output. 2744 ** 2745 ** For SRT_Output, results are stored in a sequence of registers. 2746 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2747 ** return the next row of result. 2748 */ 2749 default: { 2750 assert( pDest->eDest==SRT_Output ); 2751 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2752 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2753 break; 2754 } 2755 } 2756 2757 /* Jump to the end of the loop if the LIMIT is reached. 2758 */ 2759 if( p->iLimit ){ 2760 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2761 } 2762 2763 /* Generate the subroutine return 2764 */ 2765 sqlite3VdbeResolveLabel(v, iContinue); 2766 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2767 2768 return addr; 2769 } 2770 2771 /* 2772 ** Alternative compound select code generator for cases when there 2773 ** is an ORDER BY clause. 2774 ** 2775 ** We assume a query of the following form: 2776 ** 2777 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2778 ** 2779 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2780 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2781 ** co-routines. Then run the co-routines in parallel and merge the results 2782 ** into the output. In addition to the two coroutines (called selectA and 2783 ** selectB) there are 7 subroutines: 2784 ** 2785 ** outA: Move the output of the selectA coroutine into the output 2786 ** of the compound query. 2787 ** 2788 ** outB: Move the output of the selectB coroutine into the output 2789 ** of the compound query. (Only generated for UNION and 2790 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2791 ** appears only in B.) 2792 ** 2793 ** AltB: Called when there is data from both coroutines and A<B. 2794 ** 2795 ** AeqB: Called when there is data from both coroutines and A==B. 2796 ** 2797 ** AgtB: Called when there is data from both coroutines and A>B. 2798 ** 2799 ** EofA: Called when data is exhausted from selectA. 2800 ** 2801 ** EofB: Called when data is exhausted from selectB. 2802 ** 2803 ** The implementation of the latter five subroutines depend on which 2804 ** <operator> is used: 2805 ** 2806 ** 2807 ** UNION ALL UNION EXCEPT INTERSECT 2808 ** ------------- ----------------- -------------- ----------------- 2809 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2810 ** 2811 ** AeqB: outA, nextA nextA nextA outA, nextA 2812 ** 2813 ** AgtB: outB, nextB outB, nextB nextB nextB 2814 ** 2815 ** EofA: outB, nextB outB, nextB halt halt 2816 ** 2817 ** EofB: outA, nextA outA, nextA outA, nextA halt 2818 ** 2819 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2820 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2821 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2822 ** following nextX causes a jump to the end of the select processing. 2823 ** 2824 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2825 ** within the output subroutine. The regPrev register set holds the previously 2826 ** output value. A comparison is made against this value and the output 2827 ** is skipped if the next results would be the same as the previous. 2828 ** 2829 ** The implementation plan is to implement the two coroutines and seven 2830 ** subroutines first, then put the control logic at the bottom. Like this: 2831 ** 2832 ** goto Init 2833 ** coA: coroutine for left query (A) 2834 ** coB: coroutine for right query (B) 2835 ** outA: output one row of A 2836 ** outB: output one row of B (UNION and UNION ALL only) 2837 ** EofA: ... 2838 ** EofB: ... 2839 ** AltB: ... 2840 ** AeqB: ... 2841 ** AgtB: ... 2842 ** Init: initialize coroutine registers 2843 ** yield coA 2844 ** if eof(A) goto EofA 2845 ** yield coB 2846 ** if eof(B) goto EofB 2847 ** Cmpr: Compare A, B 2848 ** Jump AltB, AeqB, AgtB 2849 ** End: ... 2850 ** 2851 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2852 ** actually called using Gosub and they do not Return. EofA and EofB loop 2853 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2854 ** and AgtB jump to either L2 or to one of EofA or EofB. 2855 */ 2856 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2857 static int multiSelectOrderBy( 2858 Parse *pParse, /* Parsing context */ 2859 Select *p, /* The right-most of SELECTs to be coded */ 2860 SelectDest *pDest /* What to do with query results */ 2861 ){ 2862 int i, j; /* Loop counters */ 2863 Select *pPrior; /* Another SELECT immediately to our left */ 2864 Vdbe *v; /* Generate code to this VDBE */ 2865 SelectDest destA; /* Destination for coroutine A */ 2866 SelectDest destB; /* Destination for coroutine B */ 2867 int regAddrA; /* Address register for select-A coroutine */ 2868 int regAddrB; /* Address register for select-B coroutine */ 2869 int addrSelectA; /* Address of the select-A coroutine */ 2870 int addrSelectB; /* Address of the select-B coroutine */ 2871 int regOutA; /* Address register for the output-A subroutine */ 2872 int regOutB; /* Address register for the output-B subroutine */ 2873 int addrOutA; /* Address of the output-A subroutine */ 2874 int addrOutB = 0; /* Address of the output-B subroutine */ 2875 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2876 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2877 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2878 int addrAltB; /* Address of the A<B subroutine */ 2879 int addrAeqB; /* Address of the A==B subroutine */ 2880 int addrAgtB; /* Address of the A>B subroutine */ 2881 int regLimitA; /* Limit register for select-A */ 2882 int regLimitB; /* Limit register for select-A */ 2883 int regPrev; /* A range of registers to hold previous output */ 2884 int savedLimit; /* Saved value of p->iLimit */ 2885 int savedOffset; /* Saved value of p->iOffset */ 2886 int labelCmpr; /* Label for the start of the merge algorithm */ 2887 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2888 int addr1; /* Jump instructions that get retargetted */ 2889 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2890 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2891 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2892 sqlite3 *db; /* Database connection */ 2893 ExprList *pOrderBy; /* The ORDER BY clause */ 2894 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2895 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2896 #ifndef SQLITE_OMIT_EXPLAIN 2897 int iSub1; /* EQP id of left-hand query */ 2898 int iSub2; /* EQP id of right-hand query */ 2899 #endif 2900 2901 assert( p->pOrderBy!=0 ); 2902 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2903 db = pParse->db; 2904 v = pParse->pVdbe; 2905 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2906 labelEnd = sqlite3VdbeMakeLabel(v); 2907 labelCmpr = sqlite3VdbeMakeLabel(v); 2908 2909 2910 /* Patch up the ORDER BY clause 2911 */ 2912 op = p->op; 2913 pPrior = p->pPrior; 2914 assert( pPrior->pOrderBy==0 ); 2915 pOrderBy = p->pOrderBy; 2916 assert( pOrderBy ); 2917 nOrderBy = pOrderBy->nExpr; 2918 2919 /* For operators other than UNION ALL we have to make sure that 2920 ** the ORDER BY clause covers every term of the result set. Add 2921 ** terms to the ORDER BY clause as necessary. 2922 */ 2923 if( op!=TK_ALL ){ 2924 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2925 struct ExprList_item *pItem; 2926 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2927 assert( pItem->u.x.iOrderByCol>0 ); 2928 if( pItem->u.x.iOrderByCol==i ) break; 2929 } 2930 if( j==nOrderBy ){ 2931 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2932 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2933 pNew->flags |= EP_IntValue; 2934 pNew->u.iValue = i; 2935 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2936 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2937 } 2938 } 2939 } 2940 2941 /* Compute the comparison permutation and keyinfo that is used with 2942 ** the permutation used to determine if the next 2943 ** row of results comes from selectA or selectB. Also add explicit 2944 ** collations to the ORDER BY clause terms so that when the subqueries 2945 ** to the right and the left are evaluated, they use the correct 2946 ** collation. 2947 */ 2948 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2949 if( aPermute ){ 2950 struct ExprList_item *pItem; 2951 aPermute[0] = nOrderBy; 2952 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2953 assert( pItem->u.x.iOrderByCol>0 ); 2954 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2955 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2956 } 2957 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2958 }else{ 2959 pKeyMerge = 0; 2960 } 2961 2962 /* Reattach the ORDER BY clause to the query. 2963 */ 2964 p->pOrderBy = pOrderBy; 2965 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2966 2967 /* Allocate a range of temporary registers and the KeyInfo needed 2968 ** for the logic that removes duplicate result rows when the 2969 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2970 */ 2971 if( op==TK_ALL ){ 2972 regPrev = 0; 2973 }else{ 2974 int nExpr = p->pEList->nExpr; 2975 assert( nOrderBy>=nExpr || db->mallocFailed ); 2976 regPrev = pParse->nMem+1; 2977 pParse->nMem += nExpr+1; 2978 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2979 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2980 if( pKeyDup ){ 2981 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2982 for(i=0; i<nExpr; i++){ 2983 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2984 pKeyDup->aSortOrder[i] = 0; 2985 } 2986 } 2987 } 2988 2989 /* Separate the left and the right query from one another 2990 */ 2991 p->pPrior = 0; 2992 pPrior->pNext = 0; 2993 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2994 if( pPrior->pPrior==0 ){ 2995 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2996 } 2997 2998 /* Compute the limit registers */ 2999 computeLimitRegisters(pParse, p, labelEnd); 3000 if( p->iLimit && op==TK_ALL ){ 3001 regLimitA = ++pParse->nMem; 3002 regLimitB = ++pParse->nMem; 3003 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3004 regLimitA); 3005 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3006 }else{ 3007 regLimitA = regLimitB = 0; 3008 } 3009 sqlite3ExprDelete(db, p->pLimit); 3010 p->pLimit = 0; 3011 3012 regAddrA = ++pParse->nMem; 3013 regAddrB = ++pParse->nMem; 3014 regOutA = ++pParse->nMem; 3015 regOutB = ++pParse->nMem; 3016 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3017 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3018 3019 /* Generate a coroutine to evaluate the SELECT statement to the 3020 ** left of the compound operator - the "A" select. 3021 */ 3022 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3023 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3024 VdbeComment((v, "left SELECT")); 3025 pPrior->iLimit = regLimitA; 3026 explainSetInteger(iSub1, pParse->iNextSelectId); 3027 sqlite3Select(pParse, pPrior, &destA); 3028 sqlite3VdbeEndCoroutine(v, regAddrA); 3029 sqlite3VdbeJumpHere(v, addr1); 3030 3031 /* Generate a coroutine to evaluate the SELECT statement on 3032 ** the right - the "B" select 3033 */ 3034 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3035 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3036 VdbeComment((v, "right SELECT")); 3037 savedLimit = p->iLimit; 3038 savedOffset = p->iOffset; 3039 p->iLimit = regLimitB; 3040 p->iOffset = 0; 3041 explainSetInteger(iSub2, pParse->iNextSelectId); 3042 sqlite3Select(pParse, p, &destB); 3043 p->iLimit = savedLimit; 3044 p->iOffset = savedOffset; 3045 sqlite3VdbeEndCoroutine(v, regAddrB); 3046 3047 /* Generate a subroutine that outputs the current row of the A 3048 ** select as the next output row of the compound select. 3049 */ 3050 VdbeNoopComment((v, "Output routine for A")); 3051 addrOutA = generateOutputSubroutine(pParse, 3052 p, &destA, pDest, regOutA, 3053 regPrev, pKeyDup, labelEnd); 3054 3055 /* Generate a subroutine that outputs the current row of the B 3056 ** select as the next output row of the compound select. 3057 */ 3058 if( op==TK_ALL || op==TK_UNION ){ 3059 VdbeNoopComment((v, "Output routine for B")); 3060 addrOutB = generateOutputSubroutine(pParse, 3061 p, &destB, pDest, regOutB, 3062 regPrev, pKeyDup, labelEnd); 3063 } 3064 sqlite3KeyInfoUnref(pKeyDup); 3065 3066 /* Generate a subroutine to run when the results from select A 3067 ** are exhausted and only data in select B remains. 3068 */ 3069 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3070 addrEofA_noB = addrEofA = labelEnd; 3071 }else{ 3072 VdbeNoopComment((v, "eof-A subroutine")); 3073 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3074 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3075 VdbeCoverage(v); 3076 sqlite3VdbeGoto(v, addrEofA); 3077 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3078 } 3079 3080 /* Generate a subroutine to run when the results from select B 3081 ** are exhausted and only data in select A remains. 3082 */ 3083 if( op==TK_INTERSECT ){ 3084 addrEofB = addrEofA; 3085 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3086 }else{ 3087 VdbeNoopComment((v, "eof-B subroutine")); 3088 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3089 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3090 sqlite3VdbeGoto(v, addrEofB); 3091 } 3092 3093 /* Generate code to handle the case of A<B 3094 */ 3095 VdbeNoopComment((v, "A-lt-B subroutine")); 3096 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3097 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3098 sqlite3VdbeGoto(v, labelCmpr); 3099 3100 /* Generate code to handle the case of A==B 3101 */ 3102 if( op==TK_ALL ){ 3103 addrAeqB = addrAltB; 3104 }else if( op==TK_INTERSECT ){ 3105 addrAeqB = addrAltB; 3106 addrAltB++; 3107 }else{ 3108 VdbeNoopComment((v, "A-eq-B subroutine")); 3109 addrAeqB = 3110 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3111 sqlite3VdbeGoto(v, labelCmpr); 3112 } 3113 3114 /* Generate code to handle the case of A>B 3115 */ 3116 VdbeNoopComment((v, "A-gt-B subroutine")); 3117 addrAgtB = sqlite3VdbeCurrentAddr(v); 3118 if( op==TK_ALL || op==TK_UNION ){ 3119 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3120 } 3121 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3122 sqlite3VdbeGoto(v, labelCmpr); 3123 3124 /* This code runs once to initialize everything. 3125 */ 3126 sqlite3VdbeJumpHere(v, addr1); 3127 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3128 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3129 3130 /* Implement the main merge loop 3131 */ 3132 sqlite3VdbeResolveLabel(v, labelCmpr); 3133 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3134 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3135 (char*)pKeyMerge, P4_KEYINFO); 3136 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3137 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3138 3139 /* Jump to the this point in order to terminate the query. 3140 */ 3141 sqlite3VdbeResolveLabel(v, labelEnd); 3142 3143 /* Reassembly the compound query so that it will be freed correctly 3144 ** by the calling function */ 3145 if( p->pPrior ){ 3146 sqlite3SelectDelete(db, p->pPrior); 3147 } 3148 p->pPrior = pPrior; 3149 pPrior->pNext = p; 3150 3151 /*** TBD: Insert subroutine calls to close cursors on incomplete 3152 **** subqueries ****/ 3153 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3154 return pParse->nErr!=0; 3155 } 3156 #endif 3157 3158 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3159 3160 /* An instance of the SubstContext object describes an substitution edit 3161 ** to be performed on a parse tree. 3162 ** 3163 ** All references to columns in table iTable are to be replaced by corresponding 3164 ** expressions in pEList. 3165 */ 3166 typedef struct SubstContext { 3167 Parse *pParse; /* The parsing context */ 3168 int iTable; /* Replace references to this table */ 3169 int iNewTable; /* New table number */ 3170 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3171 ExprList *pEList; /* Replacement expressions */ 3172 } SubstContext; 3173 3174 /* Forward Declarations */ 3175 static void substExprList(SubstContext*, ExprList*); 3176 static void substSelect(SubstContext*, Select*, int); 3177 3178 /* 3179 ** Scan through the expression pExpr. Replace every reference to 3180 ** a column in table number iTable with a copy of the iColumn-th 3181 ** entry in pEList. (But leave references to the ROWID column 3182 ** unchanged.) 3183 ** 3184 ** This routine is part of the flattening procedure. A subquery 3185 ** whose result set is defined by pEList appears as entry in the 3186 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3187 ** FORM clause entry is iTable. This routine makes the necessary 3188 ** changes to pExpr so that it refers directly to the source table 3189 ** of the subquery rather the result set of the subquery. 3190 */ 3191 static Expr *substExpr( 3192 SubstContext *pSubst, /* Description of the substitution */ 3193 Expr *pExpr /* Expr in which substitution occurs */ 3194 ){ 3195 if( pExpr==0 ) return 0; 3196 if( ExprHasProperty(pExpr, EP_FromJoin) 3197 && pExpr->iRightJoinTable==pSubst->iTable 3198 ){ 3199 pExpr->iRightJoinTable = pSubst->iNewTable; 3200 } 3201 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3202 if( pExpr->iColumn<0 ){ 3203 pExpr->op = TK_NULL; 3204 }else{ 3205 Expr *pNew; 3206 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3207 Expr ifNullRow; 3208 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3209 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3210 if( sqlite3ExprIsVector(pCopy) ){ 3211 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3212 }else{ 3213 sqlite3 *db = pSubst->pParse->db; 3214 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3215 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3216 ifNullRow.op = TK_IF_NULL_ROW; 3217 ifNullRow.pLeft = pCopy; 3218 ifNullRow.iTable = pSubst->iNewTable; 3219 pCopy = &ifNullRow; 3220 } 3221 pNew = sqlite3ExprDup(db, pCopy, 0); 3222 if( pNew && pSubst->isLeftJoin ){ 3223 ExprSetProperty(pNew, EP_CanBeNull); 3224 } 3225 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3226 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3227 ExprSetProperty(pNew, EP_FromJoin); 3228 } 3229 sqlite3ExprDelete(db, pExpr); 3230 pExpr = pNew; 3231 } 3232 } 3233 }else{ 3234 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3235 pExpr->iTable = pSubst->iNewTable; 3236 } 3237 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3238 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3239 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3240 substSelect(pSubst, pExpr->x.pSelect, 1); 3241 }else{ 3242 substExprList(pSubst, pExpr->x.pList); 3243 } 3244 } 3245 return pExpr; 3246 } 3247 static void substExprList( 3248 SubstContext *pSubst, /* Description of the substitution */ 3249 ExprList *pList /* List to scan and in which to make substitutes */ 3250 ){ 3251 int i; 3252 if( pList==0 ) return; 3253 for(i=0; i<pList->nExpr; i++){ 3254 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3255 } 3256 } 3257 static void substSelect( 3258 SubstContext *pSubst, /* Description of the substitution */ 3259 Select *p, /* SELECT statement in which to make substitutions */ 3260 int doPrior /* Do substitutes on p->pPrior too */ 3261 ){ 3262 SrcList *pSrc; 3263 struct SrcList_item *pItem; 3264 int i; 3265 if( !p ) return; 3266 do{ 3267 substExprList(pSubst, p->pEList); 3268 substExprList(pSubst, p->pGroupBy); 3269 substExprList(pSubst, p->pOrderBy); 3270 p->pHaving = substExpr(pSubst, p->pHaving); 3271 p->pWhere = substExpr(pSubst, p->pWhere); 3272 pSrc = p->pSrc; 3273 assert( pSrc!=0 ); 3274 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3275 substSelect(pSubst, pItem->pSelect, 1); 3276 if( pItem->fg.isTabFunc ){ 3277 substExprList(pSubst, pItem->u1.pFuncArg); 3278 } 3279 } 3280 }while( doPrior && (p = p->pPrior)!=0 ); 3281 } 3282 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3283 3284 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3285 /* 3286 ** This routine attempts to flatten subqueries as a performance optimization. 3287 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3288 ** 3289 ** To understand the concept of flattening, consider the following 3290 ** query: 3291 ** 3292 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3293 ** 3294 ** The default way of implementing this query is to execute the 3295 ** subquery first and store the results in a temporary table, then 3296 ** run the outer query on that temporary table. This requires two 3297 ** passes over the data. Furthermore, because the temporary table 3298 ** has no indices, the WHERE clause on the outer query cannot be 3299 ** optimized. 3300 ** 3301 ** This routine attempts to rewrite queries such as the above into 3302 ** a single flat select, like this: 3303 ** 3304 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3305 ** 3306 ** The code generated for this simplification gives the same result 3307 ** but only has to scan the data once. And because indices might 3308 ** exist on the table t1, a complete scan of the data might be 3309 ** avoided. 3310 ** 3311 ** Flattening is subject to the following constraints: 3312 ** 3313 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3314 ** The subquery and the outer query cannot both be aggregates. 3315 ** 3316 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3317 ** (2) If the subquery is an aggregate then 3318 ** (2a) the outer query must not be a join and 3319 ** (2b) the outer query must not use subqueries 3320 ** other than the one FROM-clause subquery that is a candidate 3321 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3322 ** from 2015-02-09.) 3323 ** 3324 ** (3) If the subquery is the right operand of a LEFT JOIN then 3325 ** (3a) the subquery may not be a join and 3326 ** (3b) the FROM clause of the subquery may not contain a virtual 3327 ** table and 3328 ** (3c) the outer query may not be an aggregate. 3329 ** 3330 ** (4) The subquery can not be DISTINCT. 3331 ** 3332 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3333 ** sub-queries that were excluded from this optimization. Restriction 3334 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3335 ** 3336 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3337 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3338 ** 3339 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3340 ** A FROM clause, consider adding a FROM clause with the special 3341 ** table sqlite_once that consists of a single row containing a 3342 ** single NULL. 3343 ** 3344 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3345 ** 3346 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3347 ** 3348 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3349 ** accidently carried the comment forward until 2014-09-15. Original 3350 ** constraint: "If the subquery is aggregate then the outer query 3351 ** may not use LIMIT." 3352 ** 3353 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3354 ** 3355 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3356 ** a separate restriction deriving from ticket #350. 3357 ** 3358 ** (13) The subquery and outer query may not both use LIMIT. 3359 ** 3360 ** (14) The subquery may not use OFFSET. 3361 ** 3362 ** (15) If the outer query is part of a compound select, then the 3363 ** subquery may not use LIMIT. 3364 ** (See ticket #2339 and ticket [02a8e81d44]). 3365 ** 3366 ** (16) If the outer query is aggregate, then the subquery may not 3367 ** use ORDER BY. (Ticket #2942) This used to not matter 3368 ** until we introduced the group_concat() function. 3369 ** 3370 ** (17) If the subquery is a compound select, then 3371 ** (17a) all compound operators must be a UNION ALL, and 3372 ** (17b) no terms within the subquery compound may be aggregate 3373 ** or DISTINCT, and 3374 ** (17c) every term within the subquery compound must have a FROM clause 3375 ** (17d) the outer query may not be 3376 ** (17d1) aggregate, or 3377 ** (17d2) DISTINCT, or 3378 ** (17d3) a join. 3379 ** 3380 ** The parent and sub-query may contain WHERE clauses. Subject to 3381 ** rules (11), (13) and (14), they may also contain ORDER BY, 3382 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3383 ** operator other than UNION ALL because all the other compound 3384 ** operators have an implied DISTINCT which is disallowed by 3385 ** restriction (4). 3386 ** 3387 ** Also, each component of the sub-query must return the same number 3388 ** of result columns. This is actually a requirement for any compound 3389 ** SELECT statement, but all the code here does is make sure that no 3390 ** such (illegal) sub-query is flattened. The caller will detect the 3391 ** syntax error and return a detailed message. 3392 ** 3393 ** (18) If the sub-query is a compound select, then all terms of the 3394 ** ORDER BY clause of the parent must be simple references to 3395 ** columns of the sub-query. 3396 ** 3397 ** (19) If the subquery uses LIMIT then the outer query may not 3398 ** have a WHERE clause. 3399 ** 3400 ** (20) If the sub-query is a compound select, then it must not use 3401 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3402 ** somewhat by saying that the terms of the ORDER BY clause must 3403 ** appear as unmodified result columns in the outer query. But we 3404 ** have other optimizations in mind to deal with that case. 3405 ** 3406 ** (21) If the subquery uses LIMIT then the outer query may not be 3407 ** DISTINCT. (See ticket [752e1646fc]). 3408 ** 3409 ** (22) The subquery may not be a recursive CTE. 3410 ** 3411 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3412 ** a recursive CTE, then the sub-query may not be a compound query. 3413 ** This restriction is because transforming the 3414 ** parent to a compound query confuses the code that handles 3415 ** recursive queries in multiSelect(). 3416 ** 3417 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3418 ** The subquery may not be an aggregate that uses the built-in min() or 3419 ** or max() functions. (Without this restriction, a query like: 3420 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3421 ** return the value X for which Y was maximal.) 3422 ** 3423 ** 3424 ** In this routine, the "p" parameter is a pointer to the outer query. 3425 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3426 ** uses aggregates. 3427 ** 3428 ** If flattening is not attempted, this routine is a no-op and returns 0. 3429 ** If flattening is attempted this routine returns 1. 3430 ** 3431 ** All of the expression analysis must occur on both the outer query and 3432 ** the subquery before this routine runs. 3433 */ 3434 static int flattenSubquery( 3435 Parse *pParse, /* Parsing context */ 3436 Select *p, /* The parent or outer SELECT statement */ 3437 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3438 int isAgg /* True if outer SELECT uses aggregate functions */ 3439 ){ 3440 const char *zSavedAuthContext = pParse->zAuthContext; 3441 Select *pParent; /* Current UNION ALL term of the other query */ 3442 Select *pSub; /* The inner query or "subquery" */ 3443 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3444 SrcList *pSrc; /* The FROM clause of the outer query */ 3445 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3446 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3447 int iNewParent = -1;/* Replacement table for iParent */ 3448 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3449 int i; /* Loop counter */ 3450 Expr *pWhere; /* The WHERE clause */ 3451 struct SrcList_item *pSubitem; /* The subquery */ 3452 sqlite3 *db = pParse->db; 3453 3454 /* Check to see if flattening is permitted. Return 0 if not. 3455 */ 3456 assert( p!=0 ); 3457 assert( p->pPrior==0 ); 3458 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3459 pSrc = p->pSrc; 3460 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3461 pSubitem = &pSrc->a[iFrom]; 3462 iParent = pSubitem->iCursor; 3463 pSub = pSubitem->pSelect; 3464 assert( pSub!=0 ); 3465 3466 pSubSrc = pSub->pSrc; 3467 assert( pSubSrc ); 3468 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3469 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3470 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3471 ** became arbitrary expressions, we were forced to add restrictions (13) 3472 ** and (14). */ 3473 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3474 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3475 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3476 return 0; /* Restriction (15) */ 3477 } 3478 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3479 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3480 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3481 return 0; /* Restrictions (8)(9) */ 3482 } 3483 if( p->pOrderBy && pSub->pOrderBy ){ 3484 return 0; /* Restriction (11) */ 3485 } 3486 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3487 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3488 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3489 return 0; /* Restriction (21) */ 3490 } 3491 if( pSub->selFlags & (SF_Recursive) ){ 3492 return 0; /* Restrictions (22) */ 3493 } 3494 3495 /* 3496 ** If the subquery is the right operand of a LEFT JOIN, then the 3497 ** subquery may not be a join itself (3a). Example of why this is not 3498 ** allowed: 3499 ** 3500 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3501 ** 3502 ** If we flatten the above, we would get 3503 ** 3504 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3505 ** 3506 ** which is not at all the same thing. 3507 ** 3508 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3509 ** query cannot be an aggregate. (3c) This is an artifact of the way 3510 ** aggregates are processed - there is no mechanism to determine if 3511 ** the LEFT JOIN table should be all-NULL. 3512 ** 3513 ** See also tickets #306, #350, and #3300. 3514 */ 3515 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3516 isLeftJoin = 1; 3517 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3518 /* (3a) (3c) (3b) */ 3519 return 0; 3520 } 3521 } 3522 #ifdef SQLITE_EXTRA_IFNULLROW 3523 else if( iFrom>0 && !isAgg ){ 3524 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3525 ** every reference to any result column from subquery in a join, even 3526 ** though they are not necessary. This will stress-test the OP_IfNullRow 3527 ** opcode. */ 3528 isLeftJoin = -1; 3529 } 3530 #endif 3531 3532 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3533 ** use only the UNION ALL operator. And none of the simple select queries 3534 ** that make up the compound SELECT are allowed to be aggregate or distinct 3535 ** queries. 3536 */ 3537 if( pSub->pPrior ){ 3538 if( pSub->pOrderBy ){ 3539 return 0; /* Restriction (20) */ 3540 } 3541 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3542 return 0; /* (17d1), (17d2), or (17d3) */ 3543 } 3544 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3545 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3546 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3547 assert( pSub->pSrc!=0 ); 3548 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3549 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3550 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3551 || pSub1->pSrc->nSrc<1 /* (17c) */ 3552 ){ 3553 return 0; 3554 } 3555 testcase( pSub1->pSrc->nSrc>1 ); 3556 } 3557 3558 /* Restriction (18). */ 3559 if( p->pOrderBy ){ 3560 int ii; 3561 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3562 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3563 } 3564 } 3565 } 3566 3567 /* Ex-restriction (23): 3568 ** The only way that the recursive part of a CTE can contain a compound 3569 ** subquery is for the subquery to be one term of a join. But if the 3570 ** subquery is a join, then the flattening has already been stopped by 3571 ** restriction (17d3) 3572 */ 3573 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3574 3575 /***** If we reach this point, flattening is permitted. *****/ 3576 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3577 pSub->zSelName, pSub, iFrom)); 3578 3579 /* Authorize the subquery */ 3580 pParse->zAuthContext = pSubitem->zName; 3581 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3582 testcase( i==SQLITE_DENY ); 3583 pParse->zAuthContext = zSavedAuthContext; 3584 3585 /* If the sub-query is a compound SELECT statement, then (by restrictions 3586 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3587 ** be of the form: 3588 ** 3589 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3590 ** 3591 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3592 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3593 ** OFFSET clauses and joins them to the left-hand-side of the original 3594 ** using UNION ALL operators. In this case N is the number of simple 3595 ** select statements in the compound sub-query. 3596 ** 3597 ** Example: 3598 ** 3599 ** SELECT a+1 FROM ( 3600 ** SELECT x FROM tab 3601 ** UNION ALL 3602 ** SELECT y FROM tab 3603 ** UNION ALL 3604 ** SELECT abs(z*2) FROM tab2 3605 ** ) WHERE a!=5 ORDER BY 1 3606 ** 3607 ** Transformed into: 3608 ** 3609 ** SELECT x+1 FROM tab WHERE x+1!=5 3610 ** UNION ALL 3611 ** SELECT y+1 FROM tab WHERE y+1!=5 3612 ** UNION ALL 3613 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3614 ** ORDER BY 1 3615 ** 3616 ** We call this the "compound-subquery flattening". 3617 */ 3618 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3619 Select *pNew; 3620 ExprList *pOrderBy = p->pOrderBy; 3621 Expr *pLimit = p->pLimit; 3622 Select *pPrior = p->pPrior; 3623 p->pOrderBy = 0; 3624 p->pSrc = 0; 3625 p->pPrior = 0; 3626 p->pLimit = 0; 3627 pNew = sqlite3SelectDup(db, p, 0); 3628 sqlite3SelectSetName(pNew, pSub->zSelName); 3629 p->pLimit = pLimit; 3630 p->pOrderBy = pOrderBy; 3631 p->pSrc = pSrc; 3632 p->op = TK_ALL; 3633 if( pNew==0 ){ 3634 p->pPrior = pPrior; 3635 }else{ 3636 pNew->pPrior = pPrior; 3637 if( pPrior ) pPrior->pNext = pNew; 3638 pNew->pNext = p; 3639 p->pPrior = pNew; 3640 SELECTTRACE(2,pParse,p, 3641 ("compound-subquery flattener creates %s.%p as peer\n", 3642 pNew->zSelName, pNew)); 3643 } 3644 if( db->mallocFailed ) return 1; 3645 } 3646 3647 /* Begin flattening the iFrom-th entry of the FROM clause 3648 ** in the outer query. 3649 */ 3650 pSub = pSub1 = pSubitem->pSelect; 3651 3652 /* Delete the transient table structure associated with the 3653 ** subquery 3654 */ 3655 sqlite3DbFree(db, pSubitem->zDatabase); 3656 sqlite3DbFree(db, pSubitem->zName); 3657 sqlite3DbFree(db, pSubitem->zAlias); 3658 pSubitem->zDatabase = 0; 3659 pSubitem->zName = 0; 3660 pSubitem->zAlias = 0; 3661 pSubitem->pSelect = 0; 3662 3663 /* Defer deleting the Table object associated with the 3664 ** subquery until code generation is 3665 ** complete, since there may still exist Expr.pTab entries that 3666 ** refer to the subquery even after flattening. Ticket #3346. 3667 ** 3668 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3669 */ 3670 if( ALWAYS(pSubitem->pTab!=0) ){ 3671 Table *pTabToDel = pSubitem->pTab; 3672 if( pTabToDel->nTabRef==1 ){ 3673 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3674 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3675 pToplevel->pZombieTab = pTabToDel; 3676 }else{ 3677 pTabToDel->nTabRef--; 3678 } 3679 pSubitem->pTab = 0; 3680 } 3681 3682 /* The following loop runs once for each term in a compound-subquery 3683 ** flattening (as described above). If we are doing a different kind 3684 ** of flattening - a flattening other than a compound-subquery flattening - 3685 ** then this loop only runs once. 3686 ** 3687 ** This loop moves all of the FROM elements of the subquery into the 3688 ** the FROM clause of the outer query. Before doing this, remember 3689 ** the cursor number for the original outer query FROM element in 3690 ** iParent. The iParent cursor will never be used. Subsequent code 3691 ** will scan expressions looking for iParent references and replace 3692 ** those references with expressions that resolve to the subquery FROM 3693 ** elements we are now copying in. 3694 */ 3695 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3696 int nSubSrc; 3697 u8 jointype = 0; 3698 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3699 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3700 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3701 3702 if( pSrc ){ 3703 assert( pParent==p ); /* First time through the loop */ 3704 jointype = pSubitem->fg.jointype; 3705 }else{ 3706 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3707 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3708 if( pSrc==0 ){ 3709 assert( db->mallocFailed ); 3710 break; 3711 } 3712 } 3713 3714 /* The subquery uses a single slot of the FROM clause of the outer 3715 ** query. If the subquery has more than one element in its FROM clause, 3716 ** then expand the outer query to make space for it to hold all elements 3717 ** of the subquery. 3718 ** 3719 ** Example: 3720 ** 3721 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3722 ** 3723 ** The outer query has 3 slots in its FROM clause. One slot of the 3724 ** outer query (the middle slot) is used by the subquery. The next 3725 ** block of code will expand the outer query FROM clause to 4 slots. 3726 ** The middle slot is expanded to two slots in order to make space 3727 ** for the two elements in the FROM clause of the subquery. 3728 */ 3729 if( nSubSrc>1 ){ 3730 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3731 if( db->mallocFailed ){ 3732 break; 3733 } 3734 } 3735 3736 /* Transfer the FROM clause terms from the subquery into the 3737 ** outer query. 3738 */ 3739 for(i=0; i<nSubSrc; i++){ 3740 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3741 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3742 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3743 iNewParent = pSubSrc->a[i].iCursor; 3744 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3745 } 3746 pSrc->a[iFrom].fg.jointype = jointype; 3747 3748 /* Now begin substituting subquery result set expressions for 3749 ** references to the iParent in the outer query. 3750 ** 3751 ** Example: 3752 ** 3753 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3754 ** \ \_____________ subquery __________/ / 3755 ** \_____________________ outer query ______________________________/ 3756 ** 3757 ** We look at every expression in the outer query and every place we see 3758 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3759 */ 3760 if( pSub->pOrderBy ){ 3761 /* At this point, any non-zero iOrderByCol values indicate that the 3762 ** ORDER BY column expression is identical to the iOrderByCol'th 3763 ** expression returned by SELECT statement pSub. Since these values 3764 ** do not necessarily correspond to columns in SELECT statement pParent, 3765 ** zero them before transfering the ORDER BY clause. 3766 ** 3767 ** Not doing this may cause an error if a subsequent call to this 3768 ** function attempts to flatten a compound sub-query into pParent 3769 ** (the only way this can happen is if the compound sub-query is 3770 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3771 ExprList *pOrderBy = pSub->pOrderBy; 3772 for(i=0; i<pOrderBy->nExpr; i++){ 3773 pOrderBy->a[i].u.x.iOrderByCol = 0; 3774 } 3775 assert( pParent->pOrderBy==0 ); 3776 assert( pSub->pPrior==0 ); 3777 pParent->pOrderBy = pOrderBy; 3778 pSub->pOrderBy = 0; 3779 } 3780 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3781 if( isLeftJoin>0 ){ 3782 setJoinExpr(pWhere, iNewParent); 3783 } 3784 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3785 if( db->mallocFailed==0 ){ 3786 SubstContext x; 3787 x.pParse = pParse; 3788 x.iTable = iParent; 3789 x.iNewTable = iNewParent; 3790 x.isLeftJoin = isLeftJoin; 3791 x.pEList = pSub->pEList; 3792 substSelect(&x, pParent, 0); 3793 } 3794 3795 /* The flattened query is distinct if either the inner or the 3796 ** outer query is distinct. 3797 */ 3798 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3799 3800 /* 3801 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3802 ** 3803 ** One is tempted to try to add a and b to combine the limits. But this 3804 ** does not work if either limit is negative. 3805 */ 3806 if( pSub->pLimit ){ 3807 pParent->pLimit = pSub->pLimit; 3808 pSub->pLimit = 0; 3809 } 3810 } 3811 3812 /* Finially, delete what is left of the subquery and return 3813 ** success. 3814 */ 3815 sqlite3SelectDelete(db, pSub1); 3816 3817 #if SELECTTRACE_ENABLED 3818 if( sqlite3SelectTrace & 0x100 ){ 3819 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3820 sqlite3TreeViewSelect(0, p, 0); 3821 } 3822 #endif 3823 3824 return 1; 3825 } 3826 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3827 3828 3829 3830 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3831 /* 3832 ** Make copies of relevant WHERE clause terms of the outer query into 3833 ** the WHERE clause of subquery. Example: 3834 ** 3835 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3836 ** 3837 ** Transformed into: 3838 ** 3839 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3840 ** WHERE x=5 AND y=10; 3841 ** 3842 ** The hope is that the terms added to the inner query will make it more 3843 ** efficient. 3844 ** 3845 ** Do not attempt this optimization if: 3846 ** 3847 ** (1) (** This restriction was removed on 2017-09-29. We used to 3848 ** disallow this optimization for aggregate subqueries, but now 3849 ** it is allowed by putting the extra terms on the HAVING clause. 3850 ** The added HAVING clause is pointless if the subquery lacks 3851 ** a GROUP BY clause. But such a HAVING clause is also harmless 3852 ** so there does not appear to be any reason to add extra logic 3853 ** to suppress it. **) 3854 ** 3855 ** (2) The inner query is the recursive part of a common table expression. 3856 ** 3857 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3858 ** close would change the meaning of the LIMIT). 3859 ** 3860 ** (4) The inner query is the right operand of a LEFT JOIN and the 3861 ** expression to be pushed down does not come from the ON clause 3862 ** on that LEFT JOIN. 3863 ** 3864 ** (5) The WHERE clause expression originates in the ON or USING clause 3865 ** of a LEFT JOIN where iCursor is not the right-hand table of that 3866 ** left join. An example: 3867 ** 3868 ** SELECT * 3869 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 3870 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 3871 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 3872 ** 3873 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 3874 ** But if the (b2=2) term were to be pushed down into the bb subquery, 3875 ** then the (1,1,NULL) row would be suppressed. 3876 ** 3877 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3878 ** terms are duplicated into the subquery. 3879 */ 3880 static int pushDownWhereTerms( 3881 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3882 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3883 Expr *pWhere, /* The WHERE clause of the outer query */ 3884 int iCursor, /* Cursor number of the subquery */ 3885 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 3886 ){ 3887 Expr *pNew; 3888 int nChng = 0; 3889 if( pWhere==0 ) return 0; 3890 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 3891 3892 #ifdef SQLITE_DEBUG 3893 /* Only the first term of a compound can have a WITH clause. But make 3894 ** sure no other terms are marked SF_Recursive in case something changes 3895 ** in the future. 3896 */ 3897 { 3898 Select *pX; 3899 for(pX=pSubq; pX; pX=pX->pPrior){ 3900 assert( (pX->selFlags & (SF_Recursive))==0 ); 3901 } 3902 } 3903 #endif 3904 3905 if( pSubq->pLimit!=0 ){ 3906 return 0; /* restriction (3) */ 3907 } 3908 while( pWhere->op==TK_AND ){ 3909 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 3910 iCursor, isLeftJoin); 3911 pWhere = pWhere->pLeft; 3912 } 3913 if( isLeftJoin 3914 && (ExprHasProperty(pWhere,EP_FromJoin)==0 3915 || pWhere->iRightJoinTable!=iCursor) 3916 ){ 3917 return 0; /* restriction (4) */ 3918 } 3919 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 3920 return 0; /* restriction (5) */ 3921 } 3922 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3923 nChng++; 3924 while( pSubq ){ 3925 SubstContext x; 3926 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3927 unsetJoinExpr(pNew, -1); 3928 x.pParse = pParse; 3929 x.iTable = iCursor; 3930 x.iNewTable = iCursor; 3931 x.isLeftJoin = 0; 3932 x.pEList = pSubq->pEList; 3933 pNew = substExpr(&x, pNew); 3934 if( pSubq->selFlags & SF_Aggregate ){ 3935 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 3936 }else{ 3937 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3938 } 3939 pSubq = pSubq->pPrior; 3940 } 3941 } 3942 return nChng; 3943 } 3944 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3945 3946 /* 3947 ** The pFunc is the only aggregate function in the query. Check to see 3948 ** if the query is a candidate for the min/max optimization. 3949 ** 3950 ** If the query is a candidate for the min/max optimization, then set 3951 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 3952 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 3953 ** whether pFunc is a min() or max() function. 3954 ** 3955 ** If the query is not a candidate for the min/max optimization, return 3956 ** WHERE_ORDERBY_NORMAL (which must be zero). 3957 ** 3958 ** This routine must be called after aggregate functions have been 3959 ** located but before their arguments have been subjected to aggregate 3960 ** analysis. 3961 */ 3962 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 3963 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3964 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 3965 const char *zFunc; /* Name of aggregate function pFunc */ 3966 ExprList *pOrderBy; 3967 u8 sortOrder; 3968 3969 assert( *ppMinMax==0 ); 3970 assert( pFunc->op==TK_AGG_FUNCTION ); 3971 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 3972 zFunc = pFunc->u.zToken; 3973 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3974 eRet = WHERE_ORDERBY_MIN; 3975 sortOrder = SQLITE_SO_ASC; 3976 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3977 eRet = WHERE_ORDERBY_MAX; 3978 sortOrder = SQLITE_SO_DESC; 3979 }else{ 3980 return eRet; 3981 } 3982 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 3983 assert( pOrderBy!=0 || db->mallocFailed ); 3984 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 3985 return eRet; 3986 } 3987 3988 /* 3989 ** The select statement passed as the first argument is an aggregate query. 3990 ** The second argument is the associated aggregate-info object. This 3991 ** function tests if the SELECT is of the form: 3992 ** 3993 ** SELECT count(*) FROM <tbl> 3994 ** 3995 ** where table is a database table, not a sub-select or view. If the query 3996 ** does match this pattern, then a pointer to the Table object representing 3997 ** <tbl> is returned. Otherwise, 0 is returned. 3998 */ 3999 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4000 Table *pTab; 4001 Expr *pExpr; 4002 4003 assert( !p->pGroupBy ); 4004 4005 if( p->pWhere || p->pEList->nExpr!=1 4006 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4007 ){ 4008 return 0; 4009 } 4010 pTab = p->pSrc->a[0].pTab; 4011 pExpr = p->pEList->a[0].pExpr; 4012 assert( pTab && !pTab->pSelect && pExpr ); 4013 4014 if( IsVirtual(pTab) ) return 0; 4015 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4016 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4017 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4018 if( pExpr->flags&EP_Distinct ) return 0; 4019 4020 return pTab; 4021 } 4022 4023 /* 4024 ** If the source-list item passed as an argument was augmented with an 4025 ** INDEXED BY clause, then try to locate the specified index. If there 4026 ** was such a clause and the named index cannot be found, return 4027 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4028 ** pFrom->pIndex and return SQLITE_OK. 4029 */ 4030 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4031 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4032 Table *pTab = pFrom->pTab; 4033 char *zIndexedBy = pFrom->u1.zIndexedBy; 4034 Index *pIdx; 4035 for(pIdx=pTab->pIndex; 4036 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4037 pIdx=pIdx->pNext 4038 ); 4039 if( !pIdx ){ 4040 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4041 pParse->checkSchema = 1; 4042 return SQLITE_ERROR; 4043 } 4044 pFrom->pIBIndex = pIdx; 4045 } 4046 return SQLITE_OK; 4047 } 4048 /* 4049 ** Detect compound SELECT statements that use an ORDER BY clause with 4050 ** an alternative collating sequence. 4051 ** 4052 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4053 ** 4054 ** These are rewritten as a subquery: 4055 ** 4056 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4057 ** ORDER BY ... COLLATE ... 4058 ** 4059 ** This transformation is necessary because the multiSelectOrderBy() routine 4060 ** above that generates the code for a compound SELECT with an ORDER BY clause 4061 ** uses a merge algorithm that requires the same collating sequence on the 4062 ** result columns as on the ORDER BY clause. See ticket 4063 ** http://www.sqlite.org/src/info/6709574d2a 4064 ** 4065 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4066 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4067 ** there are COLLATE terms in the ORDER BY. 4068 */ 4069 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4070 int i; 4071 Select *pNew; 4072 Select *pX; 4073 sqlite3 *db; 4074 struct ExprList_item *a; 4075 SrcList *pNewSrc; 4076 Parse *pParse; 4077 Token dummy; 4078 4079 if( p->pPrior==0 ) return WRC_Continue; 4080 if( p->pOrderBy==0 ) return WRC_Continue; 4081 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4082 if( pX==0 ) return WRC_Continue; 4083 a = p->pOrderBy->a; 4084 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4085 if( a[i].pExpr->flags & EP_Collate ) break; 4086 } 4087 if( i<0 ) return WRC_Continue; 4088 4089 /* If we reach this point, that means the transformation is required. */ 4090 4091 pParse = pWalker->pParse; 4092 db = pParse->db; 4093 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4094 if( pNew==0 ) return WRC_Abort; 4095 memset(&dummy, 0, sizeof(dummy)); 4096 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4097 if( pNewSrc==0 ) return WRC_Abort; 4098 *pNew = *p; 4099 p->pSrc = pNewSrc; 4100 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4101 p->op = TK_SELECT; 4102 p->pWhere = 0; 4103 pNew->pGroupBy = 0; 4104 pNew->pHaving = 0; 4105 pNew->pOrderBy = 0; 4106 p->pPrior = 0; 4107 p->pNext = 0; 4108 p->pWith = 0; 4109 p->selFlags &= ~SF_Compound; 4110 assert( (p->selFlags & SF_Converted)==0 ); 4111 p->selFlags |= SF_Converted; 4112 assert( pNew->pPrior!=0 ); 4113 pNew->pPrior->pNext = pNew; 4114 pNew->pLimit = 0; 4115 return WRC_Continue; 4116 } 4117 4118 /* 4119 ** Check to see if the FROM clause term pFrom has table-valued function 4120 ** arguments. If it does, leave an error message in pParse and return 4121 ** non-zero, since pFrom is not allowed to be a table-valued function. 4122 */ 4123 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4124 if( pFrom->fg.isTabFunc ){ 4125 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4126 return 1; 4127 } 4128 return 0; 4129 } 4130 4131 #ifndef SQLITE_OMIT_CTE 4132 /* 4133 ** Argument pWith (which may be NULL) points to a linked list of nested 4134 ** WITH contexts, from inner to outermost. If the table identified by 4135 ** FROM clause element pItem is really a common-table-expression (CTE) 4136 ** then return a pointer to the CTE definition for that table. Otherwise 4137 ** return NULL. 4138 ** 4139 ** If a non-NULL value is returned, set *ppContext to point to the With 4140 ** object that the returned CTE belongs to. 4141 */ 4142 static struct Cte *searchWith( 4143 With *pWith, /* Current innermost WITH clause */ 4144 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4145 With **ppContext /* OUT: WITH clause return value belongs to */ 4146 ){ 4147 const char *zName; 4148 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4149 With *p; 4150 for(p=pWith; p; p=p->pOuter){ 4151 int i; 4152 for(i=0; i<p->nCte; i++){ 4153 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4154 *ppContext = p; 4155 return &p->a[i]; 4156 } 4157 } 4158 } 4159 } 4160 return 0; 4161 } 4162 4163 /* The code generator maintains a stack of active WITH clauses 4164 ** with the inner-most WITH clause being at the top of the stack. 4165 ** 4166 ** This routine pushes the WITH clause passed as the second argument 4167 ** onto the top of the stack. If argument bFree is true, then this 4168 ** WITH clause will never be popped from the stack. In this case it 4169 ** should be freed along with the Parse object. In other cases, when 4170 ** bFree==0, the With object will be freed along with the SELECT 4171 ** statement with which it is associated. 4172 */ 4173 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4174 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4175 if( pWith ){ 4176 assert( pParse->pWith!=pWith ); 4177 pWith->pOuter = pParse->pWith; 4178 pParse->pWith = pWith; 4179 if( bFree ) pParse->pWithToFree = pWith; 4180 } 4181 } 4182 4183 /* 4184 ** This function checks if argument pFrom refers to a CTE declared by 4185 ** a WITH clause on the stack currently maintained by the parser. And, 4186 ** if currently processing a CTE expression, if it is a recursive 4187 ** reference to the current CTE. 4188 ** 4189 ** If pFrom falls into either of the two categories above, pFrom->pTab 4190 ** and other fields are populated accordingly. The caller should check 4191 ** (pFrom->pTab!=0) to determine whether or not a successful match 4192 ** was found. 4193 ** 4194 ** Whether or not a match is found, SQLITE_OK is returned if no error 4195 ** occurs. If an error does occur, an error message is stored in the 4196 ** parser and some error code other than SQLITE_OK returned. 4197 */ 4198 static int withExpand( 4199 Walker *pWalker, 4200 struct SrcList_item *pFrom 4201 ){ 4202 Parse *pParse = pWalker->pParse; 4203 sqlite3 *db = pParse->db; 4204 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4205 With *pWith; /* WITH clause that pCte belongs to */ 4206 4207 assert( pFrom->pTab==0 ); 4208 4209 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4210 if( pCte ){ 4211 Table *pTab; 4212 ExprList *pEList; 4213 Select *pSel; 4214 Select *pLeft; /* Left-most SELECT statement */ 4215 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4216 With *pSavedWith; /* Initial value of pParse->pWith */ 4217 4218 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4219 ** recursive reference to CTE pCte. Leave an error in pParse and return 4220 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4221 ** In this case, proceed. */ 4222 if( pCte->zCteErr ){ 4223 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4224 return SQLITE_ERROR; 4225 } 4226 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4227 4228 assert( pFrom->pTab==0 ); 4229 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4230 if( pTab==0 ) return WRC_Abort; 4231 pTab->nTabRef = 1; 4232 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4233 pTab->iPKey = -1; 4234 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4235 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4236 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4237 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4238 assert( pFrom->pSelect ); 4239 4240 /* Check if this is a recursive CTE. */ 4241 pSel = pFrom->pSelect; 4242 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4243 if( bMayRecursive ){ 4244 int i; 4245 SrcList *pSrc = pFrom->pSelect->pSrc; 4246 for(i=0; i<pSrc->nSrc; i++){ 4247 struct SrcList_item *pItem = &pSrc->a[i]; 4248 if( pItem->zDatabase==0 4249 && pItem->zName!=0 4250 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4251 ){ 4252 pItem->pTab = pTab; 4253 pItem->fg.isRecursive = 1; 4254 pTab->nTabRef++; 4255 pSel->selFlags |= SF_Recursive; 4256 } 4257 } 4258 } 4259 4260 /* Only one recursive reference is permitted. */ 4261 if( pTab->nTabRef>2 ){ 4262 sqlite3ErrorMsg( 4263 pParse, "multiple references to recursive table: %s", pCte->zName 4264 ); 4265 return SQLITE_ERROR; 4266 } 4267 assert( pTab->nTabRef==1 || 4268 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4269 4270 pCte->zCteErr = "circular reference: %s"; 4271 pSavedWith = pParse->pWith; 4272 pParse->pWith = pWith; 4273 if( bMayRecursive ){ 4274 Select *pPrior = pSel->pPrior; 4275 assert( pPrior->pWith==0 ); 4276 pPrior->pWith = pSel->pWith; 4277 sqlite3WalkSelect(pWalker, pPrior); 4278 pPrior->pWith = 0; 4279 }else{ 4280 sqlite3WalkSelect(pWalker, pSel); 4281 } 4282 pParse->pWith = pWith; 4283 4284 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4285 pEList = pLeft->pEList; 4286 if( pCte->pCols ){ 4287 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4288 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4289 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4290 ); 4291 pParse->pWith = pSavedWith; 4292 return SQLITE_ERROR; 4293 } 4294 pEList = pCte->pCols; 4295 } 4296 4297 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4298 if( bMayRecursive ){ 4299 if( pSel->selFlags & SF_Recursive ){ 4300 pCte->zCteErr = "multiple recursive references: %s"; 4301 }else{ 4302 pCte->zCteErr = "recursive reference in a subquery: %s"; 4303 } 4304 sqlite3WalkSelect(pWalker, pSel); 4305 } 4306 pCte->zCteErr = 0; 4307 pParse->pWith = pSavedWith; 4308 } 4309 4310 return SQLITE_OK; 4311 } 4312 #endif 4313 4314 #ifndef SQLITE_OMIT_CTE 4315 /* 4316 ** If the SELECT passed as the second argument has an associated WITH 4317 ** clause, pop it from the stack stored as part of the Parse object. 4318 ** 4319 ** This function is used as the xSelectCallback2() callback by 4320 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4321 ** names and other FROM clause elements. 4322 */ 4323 static void selectPopWith(Walker *pWalker, Select *p){ 4324 Parse *pParse = pWalker->pParse; 4325 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4326 With *pWith = findRightmost(p)->pWith; 4327 if( pWith!=0 ){ 4328 assert( pParse->pWith==pWith ); 4329 pParse->pWith = pWith->pOuter; 4330 } 4331 } 4332 } 4333 #else 4334 #define selectPopWith 0 4335 #endif 4336 4337 /* 4338 ** This routine is a Walker callback for "expanding" a SELECT statement. 4339 ** "Expanding" means to do the following: 4340 ** 4341 ** (1) Make sure VDBE cursor numbers have been assigned to every 4342 ** element of the FROM clause. 4343 ** 4344 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4345 ** defines FROM clause. When views appear in the FROM clause, 4346 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4347 ** that implements the view. A copy is made of the view's SELECT 4348 ** statement so that we can freely modify or delete that statement 4349 ** without worrying about messing up the persistent representation 4350 ** of the view. 4351 ** 4352 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4353 ** on joins and the ON and USING clause of joins. 4354 ** 4355 ** (4) Scan the list of columns in the result set (pEList) looking 4356 ** for instances of the "*" operator or the TABLE.* operator. 4357 ** If found, expand each "*" to be every column in every table 4358 ** and TABLE.* to be every column in TABLE. 4359 ** 4360 */ 4361 static int selectExpander(Walker *pWalker, Select *p){ 4362 Parse *pParse = pWalker->pParse; 4363 int i, j, k; 4364 SrcList *pTabList; 4365 ExprList *pEList; 4366 struct SrcList_item *pFrom; 4367 sqlite3 *db = pParse->db; 4368 Expr *pE, *pRight, *pExpr; 4369 u16 selFlags = p->selFlags; 4370 u32 elistFlags = 0; 4371 4372 p->selFlags |= SF_Expanded; 4373 if( db->mallocFailed ){ 4374 return WRC_Abort; 4375 } 4376 assert( p->pSrc!=0 ); 4377 if( (selFlags & SF_Expanded)!=0 ){ 4378 return WRC_Prune; 4379 } 4380 pTabList = p->pSrc; 4381 pEList = p->pEList; 4382 if( OK_IF_ALWAYS_TRUE(p->pWith) ){ 4383 sqlite3WithPush(pParse, p->pWith, 0); 4384 } 4385 4386 /* Make sure cursor numbers have been assigned to all entries in 4387 ** the FROM clause of the SELECT statement. 4388 */ 4389 sqlite3SrcListAssignCursors(pParse, pTabList); 4390 4391 /* Look up every table named in the FROM clause of the select. If 4392 ** an entry of the FROM clause is a subquery instead of a table or view, 4393 ** then create a transient table structure to describe the subquery. 4394 */ 4395 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4396 Table *pTab; 4397 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4398 if( pFrom->fg.isRecursive ) continue; 4399 assert( pFrom->pTab==0 ); 4400 #ifndef SQLITE_OMIT_CTE 4401 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4402 if( pFrom->pTab ) {} else 4403 #endif 4404 if( pFrom->zName==0 ){ 4405 #ifndef SQLITE_OMIT_SUBQUERY 4406 Select *pSel = pFrom->pSelect; 4407 /* A sub-query in the FROM clause of a SELECT */ 4408 assert( pSel!=0 ); 4409 assert( pFrom->pTab==0 ); 4410 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4411 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4412 if( pTab==0 ) return WRC_Abort; 4413 pTab->nTabRef = 1; 4414 if( pFrom->zAlias ){ 4415 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias); 4416 }else{ 4417 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab); 4418 } 4419 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4420 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4421 pTab->iPKey = -1; 4422 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4423 pTab->tabFlags |= TF_Ephemeral; 4424 #endif 4425 }else{ 4426 /* An ordinary table or view name in the FROM clause */ 4427 assert( pFrom->pTab==0 ); 4428 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4429 if( pTab==0 ) return WRC_Abort; 4430 if( pTab->nTabRef>=0xffff ){ 4431 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4432 pTab->zName); 4433 pFrom->pTab = 0; 4434 return WRC_Abort; 4435 } 4436 pTab->nTabRef++; 4437 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4438 return WRC_Abort; 4439 } 4440 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4441 if( IsVirtual(pTab) || pTab->pSelect ){ 4442 i16 nCol; 4443 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4444 assert( pFrom->pSelect==0 ); 4445 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4446 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4447 nCol = pTab->nCol; 4448 pTab->nCol = -1; 4449 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4450 pTab->nCol = nCol; 4451 } 4452 #endif 4453 } 4454 4455 /* Locate the index named by the INDEXED BY clause, if any. */ 4456 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4457 return WRC_Abort; 4458 } 4459 } 4460 4461 /* Process NATURAL keywords, and ON and USING clauses of joins. 4462 */ 4463 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4464 return WRC_Abort; 4465 } 4466 4467 /* For every "*" that occurs in the column list, insert the names of 4468 ** all columns in all tables. And for every TABLE.* insert the names 4469 ** of all columns in TABLE. The parser inserted a special expression 4470 ** with the TK_ASTERISK operator for each "*" that it found in the column 4471 ** list. The following code just has to locate the TK_ASTERISK 4472 ** expressions and expand each one to the list of all columns in 4473 ** all tables. 4474 ** 4475 ** The first loop just checks to see if there are any "*" operators 4476 ** that need expanding. 4477 */ 4478 for(k=0; k<pEList->nExpr; k++){ 4479 pE = pEList->a[k].pExpr; 4480 if( pE->op==TK_ASTERISK ) break; 4481 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4482 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4483 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4484 elistFlags |= pE->flags; 4485 } 4486 if( k<pEList->nExpr ){ 4487 /* 4488 ** If we get here it means the result set contains one or more "*" 4489 ** operators that need to be expanded. Loop through each expression 4490 ** in the result set and expand them one by one. 4491 */ 4492 struct ExprList_item *a = pEList->a; 4493 ExprList *pNew = 0; 4494 int flags = pParse->db->flags; 4495 int longNames = (flags & SQLITE_FullColNames)!=0 4496 && (flags & SQLITE_ShortColNames)==0; 4497 4498 for(k=0; k<pEList->nExpr; k++){ 4499 pE = a[k].pExpr; 4500 elistFlags |= pE->flags; 4501 pRight = pE->pRight; 4502 assert( pE->op!=TK_DOT || pRight!=0 ); 4503 if( pE->op!=TK_ASTERISK 4504 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4505 ){ 4506 /* This particular expression does not need to be expanded. 4507 */ 4508 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4509 if( pNew ){ 4510 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4511 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4512 a[k].zName = 0; 4513 a[k].zSpan = 0; 4514 } 4515 a[k].pExpr = 0; 4516 }else{ 4517 /* This expression is a "*" or a "TABLE.*" and needs to be 4518 ** expanded. */ 4519 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4520 char *zTName = 0; /* text of name of TABLE */ 4521 if( pE->op==TK_DOT ){ 4522 assert( pE->pLeft!=0 ); 4523 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4524 zTName = pE->pLeft->u.zToken; 4525 } 4526 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4527 Table *pTab = pFrom->pTab; 4528 Select *pSub = pFrom->pSelect; 4529 char *zTabName = pFrom->zAlias; 4530 const char *zSchemaName = 0; 4531 int iDb; 4532 if( zTabName==0 ){ 4533 zTabName = pTab->zName; 4534 } 4535 if( db->mallocFailed ) break; 4536 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4537 pSub = 0; 4538 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4539 continue; 4540 } 4541 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4542 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4543 } 4544 for(j=0; j<pTab->nCol; j++){ 4545 char *zName = pTab->aCol[j].zName; 4546 char *zColname; /* The computed column name */ 4547 char *zToFree; /* Malloced string that needs to be freed */ 4548 Token sColname; /* Computed column name as a token */ 4549 4550 assert( zName ); 4551 if( zTName && pSub 4552 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4553 ){ 4554 continue; 4555 } 4556 4557 /* If a column is marked as 'hidden', omit it from the expanded 4558 ** result-set list unless the SELECT has the SF_IncludeHidden 4559 ** bit set. 4560 */ 4561 if( (p->selFlags & SF_IncludeHidden)==0 4562 && IsHiddenColumn(&pTab->aCol[j]) 4563 ){ 4564 continue; 4565 } 4566 tableSeen = 1; 4567 4568 if( i>0 && zTName==0 ){ 4569 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4570 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4571 ){ 4572 /* In a NATURAL join, omit the join columns from the 4573 ** table to the right of the join */ 4574 continue; 4575 } 4576 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4577 /* In a join with a USING clause, omit columns in the 4578 ** using clause from the table on the right. */ 4579 continue; 4580 } 4581 } 4582 pRight = sqlite3Expr(db, TK_ID, zName); 4583 zColname = zName; 4584 zToFree = 0; 4585 if( longNames || pTabList->nSrc>1 ){ 4586 Expr *pLeft; 4587 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4588 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4589 if( zSchemaName ){ 4590 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4591 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4592 } 4593 if( longNames ){ 4594 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4595 zToFree = zColname; 4596 } 4597 }else{ 4598 pExpr = pRight; 4599 } 4600 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4601 sqlite3TokenInit(&sColname, zColname); 4602 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4603 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4604 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4605 if( pSub ){ 4606 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4607 testcase( pX->zSpan==0 ); 4608 }else{ 4609 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4610 zSchemaName, zTabName, zColname); 4611 testcase( pX->zSpan==0 ); 4612 } 4613 pX->bSpanIsTab = 1; 4614 } 4615 sqlite3DbFree(db, zToFree); 4616 } 4617 } 4618 if( !tableSeen ){ 4619 if( zTName ){ 4620 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4621 }else{ 4622 sqlite3ErrorMsg(pParse, "no tables specified"); 4623 } 4624 } 4625 } 4626 } 4627 sqlite3ExprListDelete(db, pEList); 4628 p->pEList = pNew; 4629 } 4630 if( p->pEList ){ 4631 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4632 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4633 return WRC_Abort; 4634 } 4635 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4636 p->selFlags |= SF_ComplexResult; 4637 } 4638 } 4639 return WRC_Continue; 4640 } 4641 4642 /* 4643 ** No-op routine for the parse-tree walker. 4644 ** 4645 ** When this routine is the Walker.xExprCallback then expression trees 4646 ** are walked without any actions being taken at each node. Presumably, 4647 ** when this routine is used for Walker.xExprCallback then 4648 ** Walker.xSelectCallback is set to do something useful for every 4649 ** subquery in the parser tree. 4650 */ 4651 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4652 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4653 return WRC_Continue; 4654 } 4655 4656 /* 4657 ** No-op routine for the parse-tree walker for SELECT statements. 4658 ** subquery in the parser tree. 4659 */ 4660 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4661 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4662 return WRC_Continue; 4663 } 4664 4665 #if SQLITE_DEBUG 4666 /* 4667 ** Always assert. This xSelectCallback2 implementation proves that the 4668 ** xSelectCallback2 is never invoked. 4669 */ 4670 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4671 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4672 assert( 0 ); 4673 } 4674 #endif 4675 /* 4676 ** This routine "expands" a SELECT statement and all of its subqueries. 4677 ** For additional information on what it means to "expand" a SELECT 4678 ** statement, see the comment on the selectExpand worker callback above. 4679 ** 4680 ** Expanding a SELECT statement is the first step in processing a 4681 ** SELECT statement. The SELECT statement must be expanded before 4682 ** name resolution is performed. 4683 ** 4684 ** If anything goes wrong, an error message is written into pParse. 4685 ** The calling function can detect the problem by looking at pParse->nErr 4686 ** and/or pParse->db->mallocFailed. 4687 */ 4688 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4689 Walker w; 4690 w.xExprCallback = sqlite3ExprWalkNoop; 4691 w.pParse = pParse; 4692 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4693 w.xSelectCallback = convertCompoundSelectToSubquery; 4694 w.xSelectCallback2 = 0; 4695 sqlite3WalkSelect(&w, pSelect); 4696 } 4697 w.xSelectCallback = selectExpander; 4698 w.xSelectCallback2 = selectPopWith; 4699 sqlite3WalkSelect(&w, pSelect); 4700 } 4701 4702 4703 #ifndef SQLITE_OMIT_SUBQUERY 4704 /* 4705 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4706 ** interface. 4707 ** 4708 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4709 ** information to the Table structure that represents the result set 4710 ** of that subquery. 4711 ** 4712 ** The Table structure that represents the result set was constructed 4713 ** by selectExpander() but the type and collation information was omitted 4714 ** at that point because identifiers had not yet been resolved. This 4715 ** routine is called after identifier resolution. 4716 */ 4717 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4718 Parse *pParse; 4719 int i; 4720 SrcList *pTabList; 4721 struct SrcList_item *pFrom; 4722 4723 assert( p->selFlags & SF_Resolved ); 4724 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4725 p->selFlags |= SF_HasTypeInfo; 4726 pParse = pWalker->pParse; 4727 pTabList = p->pSrc; 4728 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4729 Table *pTab = pFrom->pTab; 4730 assert( pTab!=0 ); 4731 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4732 /* A sub-query in the FROM clause of a SELECT */ 4733 Select *pSel = pFrom->pSelect; 4734 if( pSel ){ 4735 while( pSel->pPrior ) pSel = pSel->pPrior; 4736 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4737 } 4738 } 4739 } 4740 } 4741 #endif 4742 4743 4744 /* 4745 ** This routine adds datatype and collating sequence information to 4746 ** the Table structures of all FROM-clause subqueries in a 4747 ** SELECT statement. 4748 ** 4749 ** Use this routine after name resolution. 4750 */ 4751 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4752 #ifndef SQLITE_OMIT_SUBQUERY 4753 Walker w; 4754 w.xSelectCallback = sqlite3SelectWalkNoop; 4755 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4756 w.xExprCallback = sqlite3ExprWalkNoop; 4757 w.pParse = pParse; 4758 sqlite3WalkSelect(&w, pSelect); 4759 #endif 4760 } 4761 4762 4763 /* 4764 ** This routine sets up a SELECT statement for processing. The 4765 ** following is accomplished: 4766 ** 4767 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4768 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4769 ** * ON and USING clauses are shifted into WHERE statements 4770 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4771 ** * Identifiers in expression are matched to tables. 4772 ** 4773 ** This routine acts recursively on all subqueries within the SELECT. 4774 */ 4775 void sqlite3SelectPrep( 4776 Parse *pParse, /* The parser context */ 4777 Select *p, /* The SELECT statement being coded. */ 4778 NameContext *pOuterNC /* Name context for container */ 4779 ){ 4780 assert( p!=0 || pParse->db->mallocFailed ); 4781 if( pParse->db->mallocFailed ) return; 4782 if( p->selFlags & SF_HasTypeInfo ) return; 4783 sqlite3SelectExpand(pParse, p); 4784 if( pParse->nErr || pParse->db->mallocFailed ) return; 4785 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4786 if( pParse->nErr || pParse->db->mallocFailed ) return; 4787 sqlite3SelectAddTypeInfo(pParse, p); 4788 } 4789 4790 /* 4791 ** Reset the aggregate accumulator. 4792 ** 4793 ** The aggregate accumulator is a set of memory cells that hold 4794 ** intermediate results while calculating an aggregate. This 4795 ** routine generates code that stores NULLs in all of those memory 4796 ** cells. 4797 */ 4798 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4799 Vdbe *v = pParse->pVdbe; 4800 int i; 4801 struct AggInfo_func *pFunc; 4802 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4803 if( nReg==0 ) return; 4804 #ifdef SQLITE_DEBUG 4805 /* Verify that all AggInfo registers are within the range specified by 4806 ** AggInfo.mnReg..AggInfo.mxReg */ 4807 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4808 for(i=0; i<pAggInfo->nColumn; i++){ 4809 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4810 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4811 } 4812 for(i=0; i<pAggInfo->nFunc; i++){ 4813 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4814 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4815 } 4816 #endif 4817 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4818 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4819 if( pFunc->iDistinct>=0 ){ 4820 Expr *pE = pFunc->pExpr; 4821 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4822 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4823 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4824 "argument"); 4825 pFunc->iDistinct = -1; 4826 }else{ 4827 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4828 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4829 (char*)pKeyInfo, P4_KEYINFO); 4830 } 4831 } 4832 } 4833 } 4834 4835 /* 4836 ** Invoke the OP_AggFinalize opcode for every aggregate function 4837 ** in the AggInfo structure. 4838 */ 4839 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4840 Vdbe *v = pParse->pVdbe; 4841 int i; 4842 struct AggInfo_func *pF; 4843 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4844 ExprList *pList = pF->pExpr->x.pList; 4845 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4846 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4847 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4848 } 4849 } 4850 4851 /* 4852 ** Update the accumulator memory cells for an aggregate based on 4853 ** the current cursor position. 4854 */ 4855 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4856 Vdbe *v = pParse->pVdbe; 4857 int i; 4858 int regHit = 0; 4859 int addrHitTest = 0; 4860 struct AggInfo_func *pF; 4861 struct AggInfo_col *pC; 4862 4863 pAggInfo->directMode = 1; 4864 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4865 int nArg; 4866 int addrNext = 0; 4867 int regAgg; 4868 ExprList *pList = pF->pExpr->x.pList; 4869 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4870 if( pList ){ 4871 nArg = pList->nExpr; 4872 regAgg = sqlite3GetTempRange(pParse, nArg); 4873 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4874 }else{ 4875 nArg = 0; 4876 regAgg = 0; 4877 } 4878 if( pF->iDistinct>=0 ){ 4879 addrNext = sqlite3VdbeMakeLabel(v); 4880 testcase( nArg==0 ); /* Error condition */ 4881 testcase( nArg>1 ); /* Also an error */ 4882 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4883 } 4884 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4885 CollSeq *pColl = 0; 4886 struct ExprList_item *pItem; 4887 int j; 4888 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4889 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4890 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4891 } 4892 if( !pColl ){ 4893 pColl = pParse->db->pDfltColl; 4894 } 4895 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4896 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4897 } 4898 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4899 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4900 sqlite3VdbeChangeP5(v, (u8)nArg); 4901 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4902 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4903 if( addrNext ){ 4904 sqlite3VdbeResolveLabel(v, addrNext); 4905 sqlite3ExprCacheClear(pParse); 4906 } 4907 } 4908 4909 /* Before populating the accumulator registers, clear the column cache. 4910 ** Otherwise, if any of the required column values are already present 4911 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4912 ** to pC->iMem. But by the time the value is used, the original register 4913 ** may have been used, invalidating the underlying buffer holding the 4914 ** text or blob value. See ticket [883034dcb5]. 4915 ** 4916 ** Another solution would be to change the OP_SCopy used to copy cached 4917 ** values to an OP_Copy. 4918 */ 4919 if( regHit ){ 4920 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4921 } 4922 sqlite3ExprCacheClear(pParse); 4923 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4924 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4925 } 4926 pAggInfo->directMode = 0; 4927 sqlite3ExprCacheClear(pParse); 4928 if( addrHitTest ){ 4929 sqlite3VdbeJumpHere(v, addrHitTest); 4930 } 4931 } 4932 4933 /* 4934 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4935 ** count(*) query ("SELECT count(*) FROM pTab"). 4936 */ 4937 #ifndef SQLITE_OMIT_EXPLAIN 4938 static void explainSimpleCount( 4939 Parse *pParse, /* Parse context */ 4940 Table *pTab, /* Table being queried */ 4941 Index *pIdx /* Index used to optimize scan, or NULL */ 4942 ){ 4943 if( pParse->explain==2 ){ 4944 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4945 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4946 pTab->zName, 4947 bCover ? " USING COVERING INDEX " : "", 4948 bCover ? pIdx->zName : "" 4949 ); 4950 sqlite3VdbeAddOp4( 4951 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4952 ); 4953 } 4954 } 4955 #else 4956 # define explainSimpleCount(a,b,c) 4957 #endif 4958 4959 /* 4960 ** sqlite3WalkExpr() callback used by havingToWhere(). 4961 ** 4962 ** If the node passed to the callback is a TK_AND node, return 4963 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 4964 ** 4965 ** Otherwise, return WRC_Prune. In this case, also check if the 4966 ** sub-expression matches the criteria for being moved to the WHERE 4967 ** clause. If so, add it to the WHERE clause and replace the sub-expression 4968 ** within the HAVING expression with a constant "1". 4969 */ 4970 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 4971 if( pExpr->op!=TK_AND ){ 4972 Select *pS = pWalker->u.pSelect; 4973 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 4974 sqlite3 *db = pWalker->pParse->db; 4975 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 4976 if( pNew ){ 4977 Expr *pWhere = pS->pWhere; 4978 SWAP(Expr, *pNew, *pExpr); 4979 pNew = sqlite3ExprAnd(db, pWhere, pNew); 4980 pS->pWhere = pNew; 4981 pWalker->eCode = 1; 4982 } 4983 } 4984 return WRC_Prune; 4985 } 4986 return WRC_Continue; 4987 } 4988 4989 /* 4990 ** Transfer eligible terms from the HAVING clause of a query, which is 4991 ** processed after grouping, to the WHERE clause, which is processed before 4992 ** grouping. For example, the query: 4993 ** 4994 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 4995 ** 4996 ** can be rewritten as: 4997 ** 4998 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 4999 ** 5000 ** A term of the HAVING expression is eligible for transfer if it consists 5001 ** entirely of constants and expressions that are also GROUP BY terms that 5002 ** use the "BINARY" collation sequence. 5003 */ 5004 static void havingToWhere(Parse *pParse, Select *p){ 5005 Walker sWalker; 5006 memset(&sWalker, 0, sizeof(sWalker)); 5007 sWalker.pParse = pParse; 5008 sWalker.xExprCallback = havingToWhereExprCb; 5009 sWalker.u.pSelect = p; 5010 sqlite3WalkExpr(&sWalker, p->pHaving); 5011 #if SELECTTRACE_ENABLED 5012 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5013 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5014 sqlite3TreeViewSelect(0, p, 0); 5015 } 5016 #endif 5017 } 5018 5019 /* 5020 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5021 ** If it is, then return the SrcList_item for the prior view. If it is not, 5022 ** then return 0. 5023 */ 5024 static struct SrcList_item *isSelfJoinView( 5025 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5026 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5027 ){ 5028 struct SrcList_item *pItem; 5029 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5030 if( pItem->pSelect==0 ) continue; 5031 if( pItem->fg.viaCoroutine ) continue; 5032 if( pItem->zName==0 ) continue; 5033 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5034 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5035 if( sqlite3ExprCompare(0, 5036 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5037 ){ 5038 /* The view was modified by some other optimization such as 5039 ** pushDownWhereTerms() */ 5040 continue; 5041 } 5042 return pItem; 5043 } 5044 return 0; 5045 } 5046 5047 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5048 /* 5049 ** Attempt to transform a query of the form 5050 ** 5051 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5052 ** 5053 ** Into this: 5054 ** 5055 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5056 ** 5057 ** The transformation only works if all of the following are true: 5058 ** 5059 ** * The subquery is a UNION ALL of two or more terms 5060 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5061 ** * The outer query is a simple count(*) 5062 ** 5063 ** Return TRUE if the optimization is undertaken. 5064 */ 5065 static int countOfViewOptimization(Parse *pParse, Select *p){ 5066 Select *pSub, *pPrior; 5067 Expr *pExpr; 5068 Expr *pCount; 5069 sqlite3 *db; 5070 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5071 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5072 pExpr = p->pEList->a[0].pExpr; 5073 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5074 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5075 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5076 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5077 pSub = p->pSrc->a[0].pSelect; 5078 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5079 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5080 do{ 5081 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5082 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5083 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5084 pSub = pSub->pPrior; /* Repeat over compound */ 5085 }while( pSub ); 5086 5087 /* If we reach this point then it is OK to perform the transformation */ 5088 5089 db = pParse->db; 5090 pCount = pExpr; 5091 pExpr = 0; 5092 pSub = p->pSrc->a[0].pSelect; 5093 p->pSrc->a[0].pSelect = 0; 5094 sqlite3SrcListDelete(db, p->pSrc); 5095 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5096 while( pSub ){ 5097 Expr *pTerm; 5098 pPrior = pSub->pPrior; 5099 pSub->pPrior = 0; 5100 pSub->pNext = 0; 5101 pSub->selFlags |= SF_Aggregate; 5102 pSub->selFlags &= ~SF_Compound; 5103 pSub->nSelectRow = 0; 5104 sqlite3ExprListDelete(db, pSub->pEList); 5105 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5106 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5107 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5108 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5109 if( pExpr==0 ){ 5110 pExpr = pTerm; 5111 }else{ 5112 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5113 } 5114 pSub = pPrior; 5115 } 5116 p->pEList->a[0].pExpr = pExpr; 5117 p->selFlags &= ~SF_Aggregate; 5118 5119 #if SELECTTRACE_ENABLED 5120 if( sqlite3SelectTrace & 0x400 ){ 5121 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5122 sqlite3TreeViewSelect(0, p, 0); 5123 } 5124 #endif 5125 return 1; 5126 } 5127 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5128 5129 /* 5130 ** Generate code for the SELECT statement given in the p argument. 5131 ** 5132 ** The results are returned according to the SelectDest structure. 5133 ** See comments in sqliteInt.h for further information. 5134 ** 5135 ** This routine returns the number of errors. If any errors are 5136 ** encountered, then an appropriate error message is left in 5137 ** pParse->zErrMsg. 5138 ** 5139 ** This routine does NOT free the Select structure passed in. The 5140 ** calling function needs to do that. 5141 */ 5142 int sqlite3Select( 5143 Parse *pParse, /* The parser context */ 5144 Select *p, /* The SELECT statement being coded. */ 5145 SelectDest *pDest /* What to do with the query results */ 5146 ){ 5147 int i, j; /* Loop counters */ 5148 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5149 Vdbe *v; /* The virtual machine under construction */ 5150 int isAgg; /* True for select lists like "count(*)" */ 5151 ExprList *pEList = 0; /* List of columns to extract. */ 5152 SrcList *pTabList; /* List of tables to select from */ 5153 Expr *pWhere; /* The WHERE clause. May be NULL */ 5154 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5155 Expr *pHaving; /* The HAVING clause. May be NULL */ 5156 int rc = 1; /* Value to return from this function */ 5157 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5158 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5159 AggInfo sAggInfo; /* Information used by aggregate queries */ 5160 int iEnd; /* Address of the end of the query */ 5161 sqlite3 *db; /* The database connection */ 5162 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5163 u8 minMaxFlag; /* Flag for min/max queries */ 5164 5165 #ifndef SQLITE_OMIT_EXPLAIN 5166 int iRestoreSelectId = pParse->iSelectId; 5167 pParse->iSelectId = pParse->iNextSelectId++; 5168 #endif 5169 5170 db = pParse->db; 5171 if( p==0 || db->mallocFailed || pParse->nErr ){ 5172 return 1; 5173 } 5174 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5175 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5176 #if SELECTTRACE_ENABLED 5177 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5178 if( sqlite3SelectTrace & 0x100 ){ 5179 sqlite3TreeViewSelect(0, p, 0); 5180 } 5181 #endif 5182 5183 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5184 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5185 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5186 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5187 if( IgnorableOrderby(pDest) ){ 5188 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5189 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5190 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5191 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5192 /* If ORDER BY makes no difference in the output then neither does 5193 ** DISTINCT so it can be removed too. */ 5194 sqlite3ExprListDelete(db, p->pOrderBy); 5195 p->pOrderBy = 0; 5196 p->selFlags &= ~SF_Distinct; 5197 } 5198 sqlite3SelectPrep(pParse, p, 0); 5199 memset(&sSort, 0, sizeof(sSort)); 5200 sSort.pOrderBy = p->pOrderBy; 5201 pTabList = p->pSrc; 5202 if( pParse->nErr || db->mallocFailed ){ 5203 goto select_end; 5204 } 5205 assert( p->pEList!=0 ); 5206 isAgg = (p->selFlags & SF_Aggregate)!=0; 5207 #if SELECTTRACE_ENABLED 5208 if( sqlite3SelectTrace & 0x100 ){ 5209 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5210 sqlite3TreeViewSelect(0, p, 0); 5211 } 5212 #endif 5213 5214 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5215 ** does not already exist */ 5216 v = sqlite3GetVdbe(pParse); 5217 if( v==0 ) goto select_end; 5218 if( pDest->eDest==SRT_Output ){ 5219 generateColumnNames(pParse, p); 5220 } 5221 5222 /* Try to various optimizations (flattening subqueries, and strength 5223 ** reduction of join operators) in the FROM clause up into the main query 5224 */ 5225 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5226 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5227 struct SrcList_item *pItem = &pTabList->a[i]; 5228 Select *pSub = pItem->pSelect; 5229 Table *pTab = pItem->pTab; 5230 5231 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5232 ** of the LEFT JOIN used in the WHERE clause. 5233 */ 5234 if( (pItem->fg.jointype & JT_LEFT)!=0 5235 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5236 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5237 ){ 5238 SELECTTRACE(0x100,pParse,p, 5239 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5240 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5241 unsetJoinExpr(p->pWhere, pItem->iCursor); 5242 } 5243 5244 /* No futher action if this term of the FROM clause is no a subquery */ 5245 if( pSub==0 ) continue; 5246 5247 /* Catch mismatch in the declared columns of a view and the number of 5248 ** columns in the SELECT on the RHS */ 5249 if( pTab->nCol!=pSub->pEList->nExpr ){ 5250 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5251 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5252 goto select_end; 5253 } 5254 5255 /* Do not try to flatten an aggregate subquery. 5256 ** 5257 ** Flattening an aggregate subquery is only possible if the outer query 5258 ** is not a join. But if the outer query is not a join, then the subquery 5259 ** will be implemented as a co-routine and there is no advantage to 5260 ** flattening in that case. 5261 */ 5262 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5263 assert( pSub->pGroupBy==0 ); 5264 5265 /* If the outer query contains a "complex" result set (that is, 5266 ** if the result set of the outer query uses functions or subqueries) 5267 ** and if the subquery contains an ORDER BY clause and if 5268 ** it will be implemented as a co-routine, then do not flatten. This 5269 ** restriction allows SQL constructs like this: 5270 ** 5271 ** SELECT expensive_function(x) 5272 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5273 ** 5274 ** The expensive_function() is only computed on the 10 rows that 5275 ** are output, rather than every row of the table. 5276 ** 5277 ** The requirement that the outer query have a complex result set 5278 ** means that flattening does occur on simpler SQL constraints without 5279 ** the expensive_function() like: 5280 ** 5281 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5282 */ 5283 if( pSub->pOrderBy!=0 5284 && i==0 5285 && (p->selFlags & SF_ComplexResult)!=0 5286 && (pTabList->nSrc==1 5287 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5288 ){ 5289 continue; 5290 } 5291 5292 if( flattenSubquery(pParse, p, i, isAgg) ){ 5293 /* This subquery can be absorbed into its parent. */ 5294 i = -1; 5295 } 5296 pTabList = p->pSrc; 5297 if( db->mallocFailed ) goto select_end; 5298 if( !IgnorableOrderby(pDest) ){ 5299 sSort.pOrderBy = p->pOrderBy; 5300 } 5301 } 5302 #endif 5303 5304 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5305 /* Handle compound SELECT statements using the separate multiSelect() 5306 ** procedure. 5307 */ 5308 if( p->pPrior ){ 5309 rc = multiSelect(pParse, p, pDest); 5310 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5311 #if SELECTTRACE_ENABLED 5312 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5313 #endif 5314 return rc; 5315 } 5316 #endif 5317 5318 /* For each term in the FROM clause, do two things: 5319 ** (1) Authorized unreferenced tables 5320 ** (2) Generate code for all sub-queries 5321 */ 5322 for(i=0; i<pTabList->nSrc; i++){ 5323 struct SrcList_item *pItem = &pTabList->a[i]; 5324 SelectDest dest; 5325 Select *pSub; 5326 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5327 const char *zSavedAuthContext; 5328 #endif 5329 5330 /* Issue SQLITE_READ authorizations with a fake column name for any 5331 ** tables that are referenced but from which no values are extracted. 5332 ** Examples of where these kinds of null SQLITE_READ authorizations 5333 ** would occur: 5334 ** 5335 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5336 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5337 ** 5338 ** The fake column name is an empty string. It is possible for a table to 5339 ** have a column named by the empty string, in which case there is no way to 5340 ** distinguish between an unreferenced table and an actual reference to the 5341 ** "" column. The original design was for the fake column name to be a NULL, 5342 ** which would be unambiguous. But legacy authorization callbacks might 5343 ** assume the column name is non-NULL and segfault. The use of an empty 5344 ** string for the fake column name seems safer. 5345 */ 5346 if( pItem->colUsed==0 ){ 5347 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5348 } 5349 5350 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5351 /* Generate code for all sub-queries in the FROM clause 5352 */ 5353 pSub = pItem->pSelect; 5354 if( pSub==0 ) continue; 5355 5356 /* Sometimes the code for a subquery will be generated more than 5357 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5358 ** for example. In that case, do not regenerate the code to manifest 5359 ** a view or the co-routine to implement a view. The first instance 5360 ** is sufficient, though the subroutine to manifest the view does need 5361 ** to be invoked again. */ 5362 if( pItem->addrFillSub ){ 5363 if( pItem->fg.viaCoroutine==0 ){ 5364 /* The subroutine that manifests the view might be a one-time routine, 5365 ** or it might need to be rerun on each iteration because it 5366 ** encodes a correlated subquery. */ 5367 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5368 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5369 } 5370 continue; 5371 } 5372 5373 /* Increment Parse.nHeight by the height of the largest expression 5374 ** tree referred to by this, the parent select. The child select 5375 ** may contain expression trees of at most 5376 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5377 ** more conservative than necessary, but much easier than enforcing 5378 ** an exact limit. 5379 */ 5380 pParse->nHeight += sqlite3SelectExprHeight(p); 5381 5382 /* Make copies of constant WHERE-clause terms in the outer query down 5383 ** inside the subquery. This can help the subquery to run more efficiently. 5384 */ 5385 if( OptimizationEnabled(db, SQLITE_PushDown) 5386 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5387 (pItem->fg.jointype & JT_OUTER)!=0) 5388 ){ 5389 #if SELECTTRACE_ENABLED 5390 if( sqlite3SelectTrace & 0x100 ){ 5391 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5392 sqlite3TreeViewSelect(0, p, 0); 5393 } 5394 #endif 5395 }else{ 5396 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5397 } 5398 5399 zSavedAuthContext = pParse->zAuthContext; 5400 pParse->zAuthContext = pItem->zName; 5401 5402 /* Generate code to implement the subquery 5403 ** 5404 ** The subquery is implemented as a co-routine if the subquery is 5405 ** guaranteed to be the outer loop (so that it does not need to be 5406 ** computed more than once) 5407 ** 5408 ** TODO: Are there other reasons beside (1) to use a co-routine 5409 ** implementation? 5410 */ 5411 if( i==0 5412 && (pTabList->nSrc==1 5413 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5414 ){ 5415 /* Implement a co-routine that will return a single row of the result 5416 ** set on each invocation. 5417 */ 5418 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5419 5420 pItem->regReturn = ++pParse->nMem; 5421 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5422 VdbeComment((v, "%s", pItem->pTab->zName)); 5423 pItem->addrFillSub = addrTop; 5424 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5425 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5426 sqlite3Select(pParse, pSub, &dest); 5427 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5428 pItem->fg.viaCoroutine = 1; 5429 pItem->regResult = dest.iSdst; 5430 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5431 sqlite3VdbeJumpHere(v, addrTop-1); 5432 sqlite3ClearTempRegCache(pParse); 5433 }else{ 5434 /* Generate a subroutine that will fill an ephemeral table with 5435 ** the content of this subquery. pItem->addrFillSub will point 5436 ** to the address of the generated subroutine. pItem->regReturn 5437 ** is a register allocated to hold the subroutine return address 5438 */ 5439 int topAddr; 5440 int onceAddr = 0; 5441 int retAddr; 5442 struct SrcList_item *pPrior; 5443 5444 assert( pItem->addrFillSub==0 ); 5445 pItem->regReturn = ++pParse->nMem; 5446 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5447 pItem->addrFillSub = topAddr+1; 5448 if( pItem->fg.isCorrelated==0 ){ 5449 /* If the subquery is not correlated and if we are not inside of 5450 ** a trigger, then we only need to compute the value of the subquery 5451 ** once. */ 5452 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5453 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5454 }else{ 5455 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5456 } 5457 pPrior = isSelfJoinView(pTabList, pItem); 5458 if( pPrior ){ 5459 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5460 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5461 assert( pPrior->pSelect!=0 ); 5462 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5463 }else{ 5464 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5465 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5466 sqlite3Select(pParse, pSub, &dest); 5467 } 5468 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5469 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5470 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5471 VdbeComment((v, "end %s", pItem->pTab->zName)); 5472 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5473 sqlite3ClearTempRegCache(pParse); 5474 } 5475 if( db->mallocFailed ) goto select_end; 5476 pParse->nHeight -= sqlite3SelectExprHeight(p); 5477 pParse->zAuthContext = zSavedAuthContext; 5478 #endif 5479 } 5480 5481 /* Various elements of the SELECT copied into local variables for 5482 ** convenience */ 5483 pEList = p->pEList; 5484 pWhere = p->pWhere; 5485 pGroupBy = p->pGroupBy; 5486 pHaving = p->pHaving; 5487 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5488 5489 #if SELECTTRACE_ENABLED 5490 if( sqlite3SelectTrace & 0x400 ){ 5491 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5492 sqlite3TreeViewSelect(0, p, 0); 5493 } 5494 #endif 5495 5496 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5497 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5498 && countOfViewOptimization(pParse, p) 5499 ){ 5500 if( db->mallocFailed ) goto select_end; 5501 pEList = p->pEList; 5502 pTabList = p->pSrc; 5503 } 5504 #endif 5505 5506 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5507 ** if the select-list is the same as the ORDER BY list, then this query 5508 ** can be rewritten as a GROUP BY. In other words, this: 5509 ** 5510 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5511 ** 5512 ** is transformed to: 5513 ** 5514 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5515 ** 5516 ** The second form is preferred as a single index (or temp-table) may be 5517 ** used for both the ORDER BY and DISTINCT processing. As originally 5518 ** written the query must use a temp-table for at least one of the ORDER 5519 ** BY and DISTINCT, and an index or separate temp-table for the other. 5520 */ 5521 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5522 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5523 ){ 5524 p->selFlags &= ~SF_Distinct; 5525 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5526 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5527 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5528 ** original setting of the SF_Distinct flag, not the current setting */ 5529 assert( sDistinct.isTnct ); 5530 5531 #if SELECTTRACE_ENABLED 5532 if( sqlite3SelectTrace & 0x400 ){ 5533 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5534 sqlite3TreeViewSelect(0, p, 0); 5535 } 5536 #endif 5537 } 5538 5539 /* If there is an ORDER BY clause, then create an ephemeral index to 5540 ** do the sorting. But this sorting ephemeral index might end up 5541 ** being unused if the data can be extracted in pre-sorted order. 5542 ** If that is the case, then the OP_OpenEphemeral instruction will be 5543 ** changed to an OP_Noop once we figure out that the sorting index is 5544 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5545 ** that change. 5546 */ 5547 if( sSort.pOrderBy ){ 5548 KeyInfo *pKeyInfo; 5549 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5550 sSort.iECursor = pParse->nTab++; 5551 sSort.addrSortIndex = 5552 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5553 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5554 (char*)pKeyInfo, P4_KEYINFO 5555 ); 5556 }else{ 5557 sSort.addrSortIndex = -1; 5558 } 5559 5560 /* If the output is destined for a temporary table, open that table. 5561 */ 5562 if( pDest->eDest==SRT_EphemTab ){ 5563 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5564 } 5565 5566 /* Set the limiter. 5567 */ 5568 iEnd = sqlite3VdbeMakeLabel(v); 5569 if( (p->selFlags & SF_FixedLimit)==0 ){ 5570 p->nSelectRow = 320; /* 4 billion rows */ 5571 } 5572 computeLimitRegisters(pParse, p, iEnd); 5573 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5574 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5575 sSort.sortFlags |= SORTFLAG_UseSorter; 5576 } 5577 5578 /* Open an ephemeral index to use for the distinct set. 5579 */ 5580 if( p->selFlags & SF_Distinct ){ 5581 sDistinct.tabTnct = pParse->nTab++; 5582 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5583 sDistinct.tabTnct, 0, 0, 5584 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5585 P4_KEYINFO); 5586 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5587 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5588 }else{ 5589 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5590 } 5591 5592 if( !isAgg && pGroupBy==0 ){ 5593 /* No aggregate functions and no GROUP BY clause */ 5594 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5595 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5596 wctrlFlags |= p->selFlags & SF_FixedLimit; 5597 5598 /* Begin the database scan. */ 5599 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 5600 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5601 p->pEList, wctrlFlags, p->nSelectRow); 5602 if( pWInfo==0 ) goto select_end; 5603 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5604 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5605 } 5606 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5607 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5608 } 5609 if( sSort.pOrderBy ){ 5610 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5611 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5612 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5613 sSort.pOrderBy = 0; 5614 } 5615 } 5616 5617 /* If sorting index that was created by a prior OP_OpenEphemeral 5618 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5619 ** into an OP_Noop. 5620 */ 5621 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5622 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5623 } 5624 5625 /* Use the standard inner loop. */ 5626 assert( p->pEList==pEList ); 5627 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5628 sqlite3WhereContinueLabel(pWInfo), 5629 sqlite3WhereBreakLabel(pWInfo)); 5630 5631 /* End the database scan loop. 5632 */ 5633 sqlite3WhereEnd(pWInfo); 5634 }else{ 5635 /* This case when there exist aggregate functions or a GROUP BY clause 5636 ** or both */ 5637 NameContext sNC; /* Name context for processing aggregate information */ 5638 int iAMem; /* First Mem address for storing current GROUP BY */ 5639 int iBMem; /* First Mem address for previous GROUP BY */ 5640 int iUseFlag; /* Mem address holding flag indicating that at least 5641 ** one row of the input to the aggregator has been 5642 ** processed */ 5643 int iAbortFlag; /* Mem address which causes query abort if positive */ 5644 int groupBySort; /* Rows come from source in GROUP BY order */ 5645 int addrEnd; /* End of processing for this SELECT */ 5646 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5647 int sortOut = 0; /* Output register from the sorter */ 5648 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5649 5650 /* Remove any and all aliases between the result set and the 5651 ** GROUP BY clause. 5652 */ 5653 if( pGroupBy ){ 5654 int k; /* Loop counter */ 5655 struct ExprList_item *pItem; /* For looping over expression in a list */ 5656 5657 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5658 pItem->u.x.iAlias = 0; 5659 } 5660 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5661 pItem->u.x.iAlias = 0; 5662 } 5663 assert( 66==sqlite3LogEst(100) ); 5664 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5665 }else{ 5666 assert( 0==sqlite3LogEst(1) ); 5667 p->nSelectRow = 0; 5668 } 5669 5670 /* If there is both a GROUP BY and an ORDER BY clause and they are 5671 ** identical, then it may be possible to disable the ORDER BY clause 5672 ** on the grounds that the GROUP BY will cause elements to come out 5673 ** in the correct order. It also may not - the GROUP BY might use a 5674 ** database index that causes rows to be grouped together as required 5675 ** but not actually sorted. Either way, record the fact that the 5676 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5677 ** variable. */ 5678 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5679 orderByGrp = 1; 5680 } 5681 5682 /* Create a label to jump to when we want to abort the query */ 5683 addrEnd = sqlite3VdbeMakeLabel(v); 5684 5685 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5686 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5687 ** SELECT statement. 5688 */ 5689 memset(&sNC, 0, sizeof(sNC)); 5690 sNC.pParse = pParse; 5691 sNC.pSrcList = pTabList; 5692 sNC.pAggInfo = &sAggInfo; 5693 sAggInfo.mnReg = pParse->nMem+1; 5694 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5695 sAggInfo.pGroupBy = pGroupBy; 5696 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5697 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5698 if( pHaving ){ 5699 if( pGroupBy ){ 5700 assert( pWhere==p->pWhere ); 5701 assert( pHaving==p->pHaving ); 5702 assert( pGroupBy==p->pGroupBy ); 5703 havingToWhere(pParse, p); 5704 pWhere = p->pWhere; 5705 } 5706 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5707 } 5708 sAggInfo.nAccumulator = sAggInfo.nColumn; 5709 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 5710 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 5711 }else{ 5712 minMaxFlag = WHERE_ORDERBY_NORMAL; 5713 } 5714 for(i=0; i<sAggInfo.nFunc; i++){ 5715 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5716 sNC.ncFlags |= NC_InAggFunc; 5717 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5718 sNC.ncFlags &= ~NC_InAggFunc; 5719 } 5720 sAggInfo.mxReg = pParse->nMem; 5721 if( db->mallocFailed ) goto select_end; 5722 #if SELECTTRACE_ENABLED 5723 if( sqlite3SelectTrace & 0x400 ){ 5724 int ii; 5725 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 5726 sqlite3TreeViewSelect(0, p, 0); 5727 for(ii=0; ii<sAggInfo.nColumn; ii++){ 5728 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 5729 ii, sAggInfo.aCol[ii].iMem); 5730 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 5731 } 5732 for(ii=0; ii<sAggInfo.nFunc; ii++){ 5733 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 5734 ii, sAggInfo.aFunc[ii].iMem); 5735 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 5736 } 5737 } 5738 #endif 5739 5740 5741 /* Processing for aggregates with GROUP BY is very different and 5742 ** much more complex than aggregates without a GROUP BY. 5743 */ 5744 if( pGroupBy ){ 5745 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5746 int addr1; /* A-vs-B comparision jump */ 5747 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5748 int regOutputRow; /* Return address register for output subroutine */ 5749 int addrSetAbort; /* Set the abort flag and return */ 5750 int addrTopOfLoop; /* Top of the input loop */ 5751 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5752 int addrReset; /* Subroutine for resetting the accumulator */ 5753 int regReset; /* Return address register for reset subroutine */ 5754 5755 /* If there is a GROUP BY clause we might need a sorting index to 5756 ** implement it. Allocate that sorting index now. If it turns out 5757 ** that we do not need it after all, the OP_SorterOpen instruction 5758 ** will be converted into a Noop. 5759 */ 5760 sAggInfo.sortingIdx = pParse->nTab++; 5761 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5762 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5763 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5764 0, (char*)pKeyInfo, P4_KEYINFO); 5765 5766 /* Initialize memory locations used by GROUP BY aggregate processing 5767 */ 5768 iUseFlag = ++pParse->nMem; 5769 iAbortFlag = ++pParse->nMem; 5770 regOutputRow = ++pParse->nMem; 5771 addrOutputRow = sqlite3VdbeMakeLabel(v); 5772 regReset = ++pParse->nMem; 5773 addrReset = sqlite3VdbeMakeLabel(v); 5774 iAMem = pParse->nMem + 1; 5775 pParse->nMem += pGroupBy->nExpr; 5776 iBMem = pParse->nMem + 1; 5777 pParse->nMem += pGroupBy->nExpr; 5778 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5779 VdbeComment((v, "clear abort flag")); 5780 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5781 VdbeComment((v, "indicate accumulator empty")); 5782 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5783 5784 /* Begin a loop that will extract all source rows in GROUP BY order. 5785 ** This might involve two separate loops with an OP_Sort in between, or 5786 ** it might be a single loop that uses an index to extract information 5787 ** in the right order to begin with. 5788 */ 5789 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5790 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 5791 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5792 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5793 ); 5794 if( pWInfo==0 ) goto select_end; 5795 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5796 /* The optimizer is able to deliver rows in group by order so 5797 ** we do not have to sort. The OP_OpenEphemeral table will be 5798 ** cancelled later because we still need to use the pKeyInfo 5799 */ 5800 groupBySort = 0; 5801 }else{ 5802 /* Rows are coming out in undetermined order. We have to push 5803 ** each row into a sorting index, terminate the first loop, 5804 ** then loop over the sorting index in order to get the output 5805 ** in sorted order 5806 */ 5807 int regBase; 5808 int regRecord; 5809 int nCol; 5810 int nGroupBy; 5811 5812 explainTempTable(pParse, 5813 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5814 "DISTINCT" : "GROUP BY"); 5815 5816 groupBySort = 1; 5817 nGroupBy = pGroupBy->nExpr; 5818 nCol = nGroupBy; 5819 j = nGroupBy; 5820 for(i=0; i<sAggInfo.nColumn; i++){ 5821 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5822 nCol++; 5823 j++; 5824 } 5825 } 5826 regBase = sqlite3GetTempRange(pParse, nCol); 5827 sqlite3ExprCacheClear(pParse); 5828 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5829 j = nGroupBy; 5830 for(i=0; i<sAggInfo.nColumn; i++){ 5831 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5832 if( pCol->iSorterColumn>=j ){ 5833 int r1 = j + regBase; 5834 sqlite3ExprCodeGetColumnToReg(pParse, 5835 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5836 j++; 5837 } 5838 } 5839 regRecord = sqlite3GetTempReg(pParse); 5840 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5841 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5842 sqlite3ReleaseTempReg(pParse, regRecord); 5843 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5844 sqlite3WhereEnd(pWInfo); 5845 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5846 sortOut = sqlite3GetTempReg(pParse); 5847 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5848 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5849 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5850 sAggInfo.useSortingIdx = 1; 5851 sqlite3ExprCacheClear(pParse); 5852 5853 } 5854 5855 /* If the index or temporary table used by the GROUP BY sort 5856 ** will naturally deliver rows in the order required by the ORDER BY 5857 ** clause, cancel the ephemeral table open coded earlier. 5858 ** 5859 ** This is an optimization - the correct answer should result regardless. 5860 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5861 ** disable this optimization for testing purposes. */ 5862 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5863 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5864 ){ 5865 sSort.pOrderBy = 0; 5866 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5867 } 5868 5869 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5870 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5871 ** Then compare the current GROUP BY terms against the GROUP BY terms 5872 ** from the previous row currently stored in a0, a1, a2... 5873 */ 5874 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5875 sqlite3ExprCacheClear(pParse); 5876 if( groupBySort ){ 5877 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5878 sortOut, sortPTab); 5879 } 5880 for(j=0; j<pGroupBy->nExpr; j++){ 5881 if( groupBySort ){ 5882 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5883 }else{ 5884 sAggInfo.directMode = 1; 5885 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5886 } 5887 } 5888 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5889 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5890 addr1 = sqlite3VdbeCurrentAddr(v); 5891 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5892 5893 /* Generate code that runs whenever the GROUP BY changes. 5894 ** Changes in the GROUP BY are detected by the previous code 5895 ** block. If there were no changes, this block is skipped. 5896 ** 5897 ** This code copies current group by terms in b0,b1,b2,... 5898 ** over to a0,a1,a2. It then calls the output subroutine 5899 ** and resets the aggregate accumulator registers in preparation 5900 ** for the next GROUP BY batch. 5901 */ 5902 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5903 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5904 VdbeComment((v, "output one row")); 5905 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5906 VdbeComment((v, "check abort flag")); 5907 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5908 VdbeComment((v, "reset accumulator")); 5909 5910 /* Update the aggregate accumulators based on the content of 5911 ** the current row 5912 */ 5913 sqlite3VdbeJumpHere(v, addr1); 5914 updateAccumulator(pParse, &sAggInfo); 5915 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5916 VdbeComment((v, "indicate data in accumulator")); 5917 5918 /* End of the loop 5919 */ 5920 if( groupBySort ){ 5921 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5922 VdbeCoverage(v); 5923 }else{ 5924 sqlite3WhereEnd(pWInfo); 5925 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5926 } 5927 5928 /* Output the final row of result 5929 */ 5930 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5931 VdbeComment((v, "output final row")); 5932 5933 /* Jump over the subroutines 5934 */ 5935 sqlite3VdbeGoto(v, addrEnd); 5936 5937 /* Generate a subroutine that outputs a single row of the result 5938 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5939 ** is less than or equal to zero, the subroutine is a no-op. If 5940 ** the processing calls for the query to abort, this subroutine 5941 ** increments the iAbortFlag memory location before returning in 5942 ** order to signal the caller to abort. 5943 */ 5944 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5945 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5946 VdbeComment((v, "set abort flag")); 5947 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5948 sqlite3VdbeResolveLabel(v, addrOutputRow); 5949 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5950 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5951 VdbeCoverage(v); 5952 VdbeComment((v, "Groupby result generator entry point")); 5953 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5954 finalizeAggFunctions(pParse, &sAggInfo); 5955 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5956 selectInnerLoop(pParse, p, -1, &sSort, 5957 &sDistinct, pDest, 5958 addrOutputRow+1, addrSetAbort); 5959 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5960 VdbeComment((v, "end groupby result generator")); 5961 5962 /* Generate a subroutine that will reset the group-by accumulator 5963 */ 5964 sqlite3VdbeResolveLabel(v, addrReset); 5965 resetAccumulator(pParse, &sAggInfo); 5966 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5967 5968 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5969 else { 5970 #ifndef SQLITE_OMIT_BTREECOUNT 5971 Table *pTab; 5972 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5973 /* If isSimpleCount() returns a pointer to a Table structure, then 5974 ** the SQL statement is of the form: 5975 ** 5976 ** SELECT count(*) FROM <tbl> 5977 ** 5978 ** where the Table structure returned represents table <tbl>. 5979 ** 5980 ** This statement is so common that it is optimized specially. The 5981 ** OP_Count instruction is executed either on the intkey table that 5982 ** contains the data for table <tbl> or on one of its indexes. It 5983 ** is better to execute the op on an index, as indexes are almost 5984 ** always spread across less pages than their corresponding tables. 5985 */ 5986 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5987 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5988 Index *pIdx; /* Iterator variable */ 5989 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5990 Index *pBest = 0; /* Best index found so far */ 5991 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5992 5993 sqlite3CodeVerifySchema(pParse, iDb); 5994 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5995 5996 /* Search for the index that has the lowest scan cost. 5997 ** 5998 ** (2011-04-15) Do not do a full scan of an unordered index. 5999 ** 6000 ** (2013-10-03) Do not count the entries in a partial index. 6001 ** 6002 ** In practice the KeyInfo structure will not be used. It is only 6003 ** passed to keep OP_OpenRead happy. 6004 */ 6005 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6006 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6007 if( pIdx->bUnordered==0 6008 && pIdx->szIdxRow<pTab->szTabRow 6009 && pIdx->pPartIdxWhere==0 6010 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6011 ){ 6012 pBest = pIdx; 6013 } 6014 } 6015 if( pBest ){ 6016 iRoot = pBest->tnum; 6017 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6018 } 6019 6020 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6021 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6022 if( pKeyInfo ){ 6023 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6024 } 6025 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6026 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6027 explainSimpleCount(pParse, pTab, pBest); 6028 }else 6029 #endif /* SQLITE_OMIT_BTREECOUNT */ 6030 { 6031 /* This case runs if the aggregate has no GROUP BY clause. The 6032 ** processing is much simpler since there is only a single row 6033 ** of output. 6034 */ 6035 assert( p->pGroupBy==0 ); 6036 resetAccumulator(pParse, &sAggInfo); 6037 6038 /* If this query is a candidate for the min/max optimization, then 6039 ** minMaxFlag will have been previously set to either 6040 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6041 ** be an appropriate ORDER BY expression for the optimization. 6042 */ 6043 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6044 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6045 6046 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6047 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6048 0, minMaxFlag, 0); 6049 if( pWInfo==0 ){ 6050 goto select_end; 6051 } 6052 updateAccumulator(pParse, &sAggInfo); 6053 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6054 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6055 VdbeComment((v, "%s() by index", 6056 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6057 } 6058 sqlite3WhereEnd(pWInfo); 6059 finalizeAggFunctions(pParse, &sAggInfo); 6060 } 6061 6062 sSort.pOrderBy = 0; 6063 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6064 selectInnerLoop(pParse, p, -1, 0, 0, 6065 pDest, addrEnd, addrEnd); 6066 } 6067 sqlite3VdbeResolveLabel(v, addrEnd); 6068 6069 } /* endif aggregate query */ 6070 6071 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6072 explainTempTable(pParse, "DISTINCT"); 6073 } 6074 6075 /* If there is an ORDER BY clause, then we need to sort the results 6076 ** and send them to the callback one by one. 6077 */ 6078 if( sSort.pOrderBy ){ 6079 explainTempTable(pParse, 6080 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6081 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6082 } 6083 6084 /* Jump here to skip this query 6085 */ 6086 sqlite3VdbeResolveLabel(v, iEnd); 6087 6088 /* The SELECT has been coded. If there is an error in the Parse structure, 6089 ** set the return code to 1. Otherwise 0. */ 6090 rc = (pParse->nErr>0); 6091 6092 /* Control jumps to here if an error is encountered above, or upon 6093 ** successful coding of the SELECT. 6094 */ 6095 select_end: 6096 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 6097 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6098 sqlite3DbFree(db, sAggInfo.aCol); 6099 sqlite3DbFree(db, sAggInfo.aFunc); 6100 #if SELECTTRACE_ENABLED 6101 SELECTTRACE(1,pParse,p,("end processing\n")); 6102 #endif 6103 return rc; 6104 } 6105