1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 */ 34 typedef struct SortCtx SortCtx; 35 struct SortCtx { 36 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 37 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 38 int iECursor; /* Cursor number for the sorter */ 39 int regReturn; /* Register holding block-output return address */ 40 int labelBkOut; /* Start label for the block-output subroutine */ 41 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 42 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 43 }; 44 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 45 46 /* 47 ** Delete all the content of a Select structure but do not deallocate 48 ** the select structure itself. 49 */ 50 static void clearSelect(sqlite3 *db, Select *p){ 51 sqlite3ExprListDelete(db, p->pEList); 52 sqlite3SrcListDelete(db, p->pSrc); 53 sqlite3ExprDelete(db, p->pWhere); 54 sqlite3ExprListDelete(db, p->pGroupBy); 55 sqlite3ExprDelete(db, p->pHaving); 56 sqlite3ExprListDelete(db, p->pOrderBy); 57 sqlite3SelectDelete(db, p->pPrior); 58 sqlite3ExprDelete(db, p->pLimit); 59 sqlite3ExprDelete(db, p->pOffset); 60 sqlite3WithDelete(db, p->pWith); 61 } 62 63 /* 64 ** Initialize a SelectDest structure. 65 */ 66 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 67 pDest->eDest = (u8)eDest; 68 pDest->iSDParm = iParm; 69 pDest->affSdst = 0; 70 pDest->iSdst = 0; 71 pDest->nSdst = 0; 72 } 73 74 75 /* 76 ** Allocate a new Select structure and return a pointer to that 77 ** structure. 78 */ 79 Select *sqlite3SelectNew( 80 Parse *pParse, /* Parsing context */ 81 ExprList *pEList, /* which columns to include in the result */ 82 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 83 Expr *pWhere, /* the WHERE clause */ 84 ExprList *pGroupBy, /* the GROUP BY clause */ 85 Expr *pHaving, /* the HAVING clause */ 86 ExprList *pOrderBy, /* the ORDER BY clause */ 87 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 88 Expr *pLimit, /* LIMIT value. NULL means not used */ 89 Expr *pOffset /* OFFSET value. NULL means no offset */ 90 ){ 91 Select *pNew; 92 Select standin; 93 sqlite3 *db = pParse->db; 94 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 95 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 96 if( pNew==0 ){ 97 assert( db->mallocFailed ); 98 pNew = &standin; 99 memset(pNew, 0, sizeof(*pNew)); 100 } 101 if( pEList==0 ){ 102 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 103 } 104 pNew->pEList = pEList; 105 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 106 pNew->pSrc = pSrc; 107 pNew->pWhere = pWhere; 108 pNew->pGroupBy = pGroupBy; 109 pNew->pHaving = pHaving; 110 pNew->pOrderBy = pOrderBy; 111 pNew->selFlags = selFlags; 112 pNew->op = TK_SELECT; 113 pNew->pLimit = pLimit; 114 pNew->pOffset = pOffset; 115 assert( pOffset==0 || pLimit!=0 ); 116 pNew->addrOpenEphm[0] = -1; 117 pNew->addrOpenEphm[1] = -1; 118 if( db->mallocFailed ) { 119 clearSelect(db, pNew); 120 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 121 pNew = 0; 122 }else{ 123 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 124 } 125 assert( pNew!=&standin ); 126 return pNew; 127 } 128 129 /* 130 ** Delete the given Select structure and all of its substructures. 131 */ 132 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 133 if( p ){ 134 clearSelect(db, p); 135 sqlite3DbFree(db, p); 136 } 137 } 138 139 /* 140 ** Return a pointer to the right-most SELECT statement in a compound. 141 */ 142 static Select *findRightmost(Select *p){ 143 while( p->pNext ) p = p->pNext; 144 return p; 145 } 146 147 /* 148 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 149 ** type of join. Return an integer constant that expresses that type 150 ** in terms of the following bit values: 151 ** 152 ** JT_INNER 153 ** JT_CROSS 154 ** JT_OUTER 155 ** JT_NATURAL 156 ** JT_LEFT 157 ** JT_RIGHT 158 ** 159 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 160 ** 161 ** If an illegal or unsupported join type is seen, then still return 162 ** a join type, but put an error in the pParse structure. 163 */ 164 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 165 int jointype = 0; 166 Token *apAll[3]; 167 Token *p; 168 /* 0123456789 123456789 123456789 123 */ 169 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 170 static const struct { 171 u8 i; /* Beginning of keyword text in zKeyText[] */ 172 u8 nChar; /* Length of the keyword in characters */ 173 u8 code; /* Join type mask */ 174 } aKeyword[] = { 175 /* natural */ { 0, 7, JT_NATURAL }, 176 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 177 /* outer */ { 10, 5, JT_OUTER }, 178 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 179 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 180 /* inner */ { 23, 5, JT_INNER }, 181 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 182 }; 183 int i, j; 184 apAll[0] = pA; 185 apAll[1] = pB; 186 apAll[2] = pC; 187 for(i=0; i<3 && apAll[i]; i++){ 188 p = apAll[i]; 189 for(j=0; j<ArraySize(aKeyword); j++){ 190 if( p->n==aKeyword[j].nChar 191 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 192 jointype |= aKeyword[j].code; 193 break; 194 } 195 } 196 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 197 if( j>=ArraySize(aKeyword) ){ 198 jointype |= JT_ERROR; 199 break; 200 } 201 } 202 if( 203 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 204 (jointype & JT_ERROR)!=0 205 ){ 206 const char *zSp = " "; 207 assert( pB!=0 ); 208 if( pC==0 ){ zSp++; } 209 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 210 "%T %T%s%T", pA, pB, zSp, pC); 211 jointype = JT_INNER; 212 }else if( (jointype & JT_OUTER)!=0 213 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 214 sqlite3ErrorMsg(pParse, 215 "RIGHT and FULL OUTER JOINs are not currently supported"); 216 jointype = JT_INNER; 217 } 218 return jointype; 219 } 220 221 /* 222 ** Return the index of a column in a table. Return -1 if the column 223 ** is not contained in the table. 224 */ 225 static int columnIndex(Table *pTab, const char *zCol){ 226 int i; 227 for(i=0; i<pTab->nCol; i++){ 228 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 229 } 230 return -1; 231 } 232 233 /* 234 ** Search the first N tables in pSrc, from left to right, looking for a 235 ** table that has a column named zCol. 236 ** 237 ** When found, set *piTab and *piCol to the table index and column index 238 ** of the matching column and return TRUE. 239 ** 240 ** If not found, return FALSE. 241 */ 242 static int tableAndColumnIndex( 243 SrcList *pSrc, /* Array of tables to search */ 244 int N, /* Number of tables in pSrc->a[] to search */ 245 const char *zCol, /* Name of the column we are looking for */ 246 int *piTab, /* Write index of pSrc->a[] here */ 247 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 248 ){ 249 int i; /* For looping over tables in pSrc */ 250 int iCol; /* Index of column matching zCol */ 251 252 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 253 for(i=0; i<N; i++){ 254 iCol = columnIndex(pSrc->a[i].pTab, zCol); 255 if( iCol>=0 ){ 256 if( piTab ){ 257 *piTab = i; 258 *piCol = iCol; 259 } 260 return 1; 261 } 262 } 263 return 0; 264 } 265 266 /* 267 ** This function is used to add terms implied by JOIN syntax to the 268 ** WHERE clause expression of a SELECT statement. The new term, which 269 ** is ANDed with the existing WHERE clause, is of the form: 270 ** 271 ** (tab1.col1 = tab2.col2) 272 ** 273 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 274 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 275 ** column iColRight of tab2. 276 */ 277 static void addWhereTerm( 278 Parse *pParse, /* Parsing context */ 279 SrcList *pSrc, /* List of tables in FROM clause */ 280 int iLeft, /* Index of first table to join in pSrc */ 281 int iColLeft, /* Index of column in first table */ 282 int iRight, /* Index of second table in pSrc */ 283 int iColRight, /* Index of column in second table */ 284 int isOuterJoin, /* True if this is an OUTER join */ 285 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 286 ){ 287 sqlite3 *db = pParse->db; 288 Expr *pE1; 289 Expr *pE2; 290 Expr *pEq; 291 292 assert( iLeft<iRight ); 293 assert( pSrc->nSrc>iRight ); 294 assert( pSrc->a[iLeft].pTab ); 295 assert( pSrc->a[iRight].pTab ); 296 297 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 298 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 299 300 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 301 if( pEq && isOuterJoin ){ 302 ExprSetProperty(pEq, EP_FromJoin); 303 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 304 ExprSetVVAProperty(pEq, EP_NoReduce); 305 pEq->iRightJoinTable = (i16)pE2->iTable; 306 } 307 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 308 } 309 310 /* 311 ** Set the EP_FromJoin property on all terms of the given expression. 312 ** And set the Expr.iRightJoinTable to iTable for every term in the 313 ** expression. 314 ** 315 ** The EP_FromJoin property is used on terms of an expression to tell 316 ** the LEFT OUTER JOIN processing logic that this term is part of the 317 ** join restriction specified in the ON or USING clause and not a part 318 ** of the more general WHERE clause. These terms are moved over to the 319 ** WHERE clause during join processing but we need to remember that they 320 ** originated in the ON or USING clause. 321 ** 322 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 323 ** expression depends on table iRightJoinTable even if that table is not 324 ** explicitly mentioned in the expression. That information is needed 325 ** for cases like this: 326 ** 327 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 328 ** 329 ** The where clause needs to defer the handling of the t1.x=5 330 ** term until after the t2 loop of the join. In that way, a 331 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 332 ** defer the handling of t1.x=5, it will be processed immediately 333 ** after the t1 loop and rows with t1.x!=5 will never appear in 334 ** the output, which is incorrect. 335 */ 336 static void setJoinExpr(Expr *p, int iTable){ 337 while( p ){ 338 ExprSetProperty(p, EP_FromJoin); 339 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(p, EP_NoReduce); 341 p->iRightJoinTable = (i16)iTable; 342 setJoinExpr(p->pLeft, iTable); 343 p = p->pRight; 344 } 345 } 346 347 /* 348 ** This routine processes the join information for a SELECT statement. 349 ** ON and USING clauses are converted into extra terms of the WHERE clause. 350 ** NATURAL joins also create extra WHERE clause terms. 351 ** 352 ** The terms of a FROM clause are contained in the Select.pSrc structure. 353 ** The left most table is the first entry in Select.pSrc. The right-most 354 ** table is the last entry. The join operator is held in the entry to 355 ** the left. Thus entry 0 contains the join operator for the join between 356 ** entries 0 and 1. Any ON or USING clauses associated with the join are 357 ** also attached to the left entry. 358 ** 359 ** This routine returns the number of errors encountered. 360 */ 361 static int sqliteProcessJoin(Parse *pParse, Select *p){ 362 SrcList *pSrc; /* All tables in the FROM clause */ 363 int i, j; /* Loop counters */ 364 struct SrcList_item *pLeft; /* Left table being joined */ 365 struct SrcList_item *pRight; /* Right table being joined */ 366 367 pSrc = p->pSrc; 368 pLeft = &pSrc->a[0]; 369 pRight = &pLeft[1]; 370 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 371 Table *pLeftTab = pLeft->pTab; 372 Table *pRightTab = pRight->pTab; 373 int isOuter; 374 375 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 376 isOuter = (pRight->jointype & JT_OUTER)!=0; 377 378 /* When the NATURAL keyword is present, add WHERE clause terms for 379 ** every column that the two tables have in common. 380 */ 381 if( pRight->jointype & JT_NATURAL ){ 382 if( pRight->pOn || pRight->pUsing ){ 383 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 384 "an ON or USING clause", 0); 385 return 1; 386 } 387 for(j=0; j<pRightTab->nCol; j++){ 388 char *zName; /* Name of column in the right table */ 389 int iLeft; /* Matching left table */ 390 int iLeftCol; /* Matching column in the left table */ 391 392 zName = pRightTab->aCol[j].zName; 393 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 394 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 395 isOuter, &p->pWhere); 396 } 397 } 398 } 399 400 /* Disallow both ON and USING clauses in the same join 401 */ 402 if( pRight->pOn && pRight->pUsing ){ 403 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 404 "clauses in the same join"); 405 return 1; 406 } 407 408 /* Add the ON clause to the end of the WHERE clause, connected by 409 ** an AND operator. 410 */ 411 if( pRight->pOn ){ 412 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 413 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 414 pRight->pOn = 0; 415 } 416 417 /* Create extra terms on the WHERE clause for each column named 418 ** in the USING clause. Example: If the two tables to be joined are 419 ** A and B and the USING clause names X, Y, and Z, then add this 420 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 421 ** Report an error if any column mentioned in the USING clause is 422 ** not contained in both tables to be joined. 423 */ 424 if( pRight->pUsing ){ 425 IdList *pList = pRight->pUsing; 426 for(j=0; j<pList->nId; j++){ 427 char *zName; /* Name of the term in the USING clause */ 428 int iLeft; /* Table on the left with matching column name */ 429 int iLeftCol; /* Column number of matching column on the left */ 430 int iRightCol; /* Column number of matching column on the right */ 431 432 zName = pList->a[j].zName; 433 iRightCol = columnIndex(pRightTab, zName); 434 if( iRightCol<0 435 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 436 ){ 437 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 438 "not present in both tables", zName); 439 return 1; 440 } 441 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 442 isOuter, &p->pWhere); 443 } 444 } 445 } 446 return 0; 447 } 448 449 /* Forward reference */ 450 static KeyInfo *keyInfoFromExprList( 451 Parse *pParse, /* Parsing context */ 452 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 453 int iStart, /* Begin with this column of pList */ 454 int nExtra /* Add this many extra columns to the end */ 455 ); 456 457 /* 458 ** Insert code into "v" that will push the record in register regData 459 ** into the sorter. 460 */ 461 static void pushOntoSorter( 462 Parse *pParse, /* Parser context */ 463 SortCtx *pSort, /* Information about the ORDER BY clause */ 464 Select *pSelect, /* The whole SELECT statement */ 465 int regData /* Register holding data to be sorted */ 466 ){ 467 Vdbe *v = pParse->pVdbe; 468 int nExpr = pSort->pOrderBy->nExpr; 469 int regRecord = ++pParse->nMem; 470 int regBase = pParse->nMem+1; 471 int nOBSat = pSort->nOBSat; 472 int op; 473 474 pParse->nMem += nExpr+2; /* nExpr+2 registers allocated at regBase */ 475 sqlite3ExprCacheClear(pParse); 476 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, 0); 477 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 478 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 479 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nExpr+2-nOBSat,regRecord); 480 if( nOBSat>0 ){ 481 int regPrevKey; /* The first nOBSat columns of the previous row */ 482 int addrFirst; /* Address of the OP_IfNot opcode */ 483 int addrJmp; /* Address of the OP_Jump opcode */ 484 VdbeOp *pOp; /* Opcode that opens the sorter */ 485 int nKey; /* Number of sorting key columns, including OP_Sequence */ 486 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 487 488 regPrevKey = pParse->nMem+1; 489 pParse->nMem += pSort->nOBSat; 490 nKey = nExpr - pSort->nOBSat + 1; 491 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); VdbeCoverage(v); 492 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 493 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 494 if( pParse->db->mallocFailed ) return; 495 pOp->p2 = nKey + 1; 496 pKI = pOp->p4.pKeyInfo; 497 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 498 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 499 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); 500 addrJmp = sqlite3VdbeCurrentAddr(v); 501 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 502 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 503 pSort->regReturn = ++pParse->nMem; 504 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 505 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 506 sqlite3VdbeJumpHere(v, addrFirst); 507 sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat); 508 sqlite3VdbeJumpHere(v, addrJmp); 509 } 510 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 511 op = OP_SorterInsert; 512 }else{ 513 op = OP_IdxInsert; 514 } 515 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 516 if( pSelect->iLimit ){ 517 int addr1, addr2; 518 int iLimit; 519 if( pSelect->iOffset ){ 520 iLimit = pSelect->iOffset+1; 521 }else{ 522 iLimit = pSelect->iLimit; 523 } 524 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); 525 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 526 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 527 sqlite3VdbeJumpHere(v, addr1); 528 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 529 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 530 sqlite3VdbeJumpHere(v, addr2); 531 } 532 } 533 534 /* 535 ** Add code to implement the OFFSET 536 */ 537 static void codeOffset( 538 Vdbe *v, /* Generate code into this VM */ 539 int iOffset, /* Register holding the offset counter */ 540 int iContinue /* Jump here to skip the current record */ 541 ){ 542 if( iOffset>0 ){ 543 int addr; 544 sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1); 545 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v); 546 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 547 VdbeComment((v, "skip OFFSET records")); 548 sqlite3VdbeJumpHere(v, addr); 549 } 550 } 551 552 /* 553 ** Add code that will check to make sure the N registers starting at iMem 554 ** form a distinct entry. iTab is a sorting index that holds previously 555 ** seen combinations of the N values. A new entry is made in iTab 556 ** if the current N values are new. 557 ** 558 ** A jump to addrRepeat is made and the N+1 values are popped from the 559 ** stack if the top N elements are not distinct. 560 */ 561 static void codeDistinct( 562 Parse *pParse, /* Parsing and code generating context */ 563 int iTab, /* A sorting index used to test for distinctness */ 564 int addrRepeat, /* Jump to here if not distinct */ 565 int N, /* Number of elements */ 566 int iMem /* First element */ 567 ){ 568 Vdbe *v; 569 int r1; 570 571 v = pParse->pVdbe; 572 r1 = sqlite3GetTempReg(pParse); 573 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 574 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 575 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 576 sqlite3ReleaseTempReg(pParse, r1); 577 } 578 579 #ifndef SQLITE_OMIT_SUBQUERY 580 /* 581 ** Generate an error message when a SELECT is used within a subexpression 582 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 583 ** column. We do this in a subroutine because the error used to occur 584 ** in multiple places. (The error only occurs in one place now, but we 585 ** retain the subroutine to minimize code disruption.) 586 */ 587 static int checkForMultiColumnSelectError( 588 Parse *pParse, /* Parse context. */ 589 SelectDest *pDest, /* Destination of SELECT results */ 590 int nExpr /* Number of result columns returned by SELECT */ 591 ){ 592 int eDest = pDest->eDest; 593 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 594 sqlite3ErrorMsg(pParse, "only a single result allowed for " 595 "a SELECT that is part of an expression"); 596 return 1; 597 }else{ 598 return 0; 599 } 600 } 601 #endif 602 603 /* 604 ** This routine generates the code for the inside of the inner loop 605 ** of a SELECT. 606 ** 607 ** If srcTab is negative, then the pEList expressions 608 ** are evaluated in order to get the data for this row. If srcTab is 609 ** zero or more, then data is pulled from srcTab and pEList is used only 610 ** to get number columns and the datatype for each column. 611 */ 612 static void selectInnerLoop( 613 Parse *pParse, /* The parser context */ 614 Select *p, /* The complete select statement being coded */ 615 ExprList *pEList, /* List of values being extracted */ 616 int srcTab, /* Pull data from this table */ 617 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 618 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 619 SelectDest *pDest, /* How to dispose of the results */ 620 int iContinue, /* Jump here to continue with next row */ 621 int iBreak /* Jump here to break out of the inner loop */ 622 ){ 623 Vdbe *v = pParse->pVdbe; 624 int i; 625 int hasDistinct; /* True if the DISTINCT keyword is present */ 626 int regResult; /* Start of memory holding result set */ 627 int eDest = pDest->eDest; /* How to dispose of results */ 628 int iParm = pDest->iSDParm; /* First argument to disposal method */ 629 int nResultCol; /* Number of result columns */ 630 631 assert( v ); 632 assert( pEList!=0 ); 633 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 634 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 635 if( pSort==0 && !hasDistinct ){ 636 assert( iContinue!=0 ); 637 codeOffset(v, p->iOffset, iContinue); 638 } 639 640 /* Pull the requested columns. 641 */ 642 nResultCol = pEList->nExpr; 643 644 if( pDest->iSdst==0 ){ 645 pDest->iSdst = pParse->nMem+1; 646 pParse->nMem += nResultCol; 647 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 648 /* This is an error condition that can result, for example, when a SELECT 649 ** on the right-hand side of an INSERT contains more result columns than 650 ** there are columns in the table on the left. The error will be caught 651 ** and reported later. But we need to make sure enough memory is allocated 652 ** to avoid other spurious errors in the meantime. */ 653 pParse->nMem += nResultCol; 654 } 655 pDest->nSdst = nResultCol; 656 regResult = pDest->iSdst; 657 if( srcTab>=0 ){ 658 for(i=0; i<nResultCol; i++){ 659 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 660 VdbeComment((v, "%s", pEList->a[i].zName)); 661 } 662 }else if( eDest!=SRT_Exists ){ 663 /* If the destination is an EXISTS(...) expression, the actual 664 ** values returned by the SELECT are not required. 665 */ 666 sqlite3ExprCodeExprList(pParse, pEList, regResult, 667 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 668 } 669 670 /* If the DISTINCT keyword was present on the SELECT statement 671 ** and this row has been seen before, then do not make this row 672 ** part of the result. 673 */ 674 if( hasDistinct ){ 675 switch( pDistinct->eTnctType ){ 676 case WHERE_DISTINCT_ORDERED: { 677 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 678 int iJump; /* Jump destination */ 679 int regPrev; /* Previous row content */ 680 681 /* Allocate space for the previous row */ 682 regPrev = pParse->nMem+1; 683 pParse->nMem += nResultCol; 684 685 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 686 ** sets the MEM_Cleared bit on the first register of the 687 ** previous value. This will cause the OP_Ne below to always 688 ** fail on the first iteration of the loop even if the first 689 ** row is all NULLs. 690 */ 691 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 692 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 693 pOp->opcode = OP_Null; 694 pOp->p1 = 1; 695 pOp->p2 = regPrev; 696 697 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 698 for(i=0; i<nResultCol; i++){ 699 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 700 if( i<nResultCol-1 ){ 701 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 702 VdbeCoverage(v); 703 }else{ 704 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 705 VdbeCoverage(v); 706 } 707 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 708 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 709 } 710 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 711 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 712 break; 713 } 714 715 case WHERE_DISTINCT_UNIQUE: { 716 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 717 break; 718 } 719 720 default: { 721 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 722 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 723 break; 724 } 725 } 726 if( pSort==0 ){ 727 codeOffset(v, p->iOffset, iContinue); 728 } 729 } 730 731 switch( eDest ){ 732 /* In this mode, write each query result to the key of the temporary 733 ** table iParm. 734 */ 735 #ifndef SQLITE_OMIT_COMPOUND_SELECT 736 case SRT_Union: { 737 int r1; 738 r1 = sqlite3GetTempReg(pParse); 739 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 740 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 741 sqlite3ReleaseTempReg(pParse, r1); 742 break; 743 } 744 745 /* Construct a record from the query result, but instead of 746 ** saving that record, use it as a key to delete elements from 747 ** the temporary table iParm. 748 */ 749 case SRT_Except: { 750 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 751 break; 752 } 753 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 754 755 /* Store the result as data using a unique key. 756 */ 757 case SRT_Fifo: 758 case SRT_DistFifo: 759 case SRT_Table: 760 case SRT_EphemTab: { 761 int r1 = sqlite3GetTempReg(pParse); 762 testcase( eDest==SRT_Table ); 763 testcase( eDest==SRT_EphemTab ); 764 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 765 #ifndef SQLITE_OMIT_CTE 766 if( eDest==SRT_DistFifo ){ 767 /* If the destination is DistFifo, then cursor (iParm+1) is open 768 ** on an ephemeral index. If the current row is already present 769 ** in the index, do not write it to the output. If not, add the 770 ** current row to the index and proceed with writing it to the 771 ** output table as well. */ 772 int addr = sqlite3VdbeCurrentAddr(v) + 4; 773 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 774 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 775 assert( pSort==0 ); 776 } 777 #endif 778 if( pSort ){ 779 pushOntoSorter(pParse, pSort, p, r1); 780 }else{ 781 int r2 = sqlite3GetTempReg(pParse); 782 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 783 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 784 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 785 sqlite3ReleaseTempReg(pParse, r2); 786 } 787 sqlite3ReleaseTempReg(pParse, r1); 788 break; 789 } 790 791 #ifndef SQLITE_OMIT_SUBQUERY 792 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 793 ** then there should be a single item on the stack. Write this 794 ** item into the set table with bogus data. 795 */ 796 case SRT_Set: { 797 assert( nResultCol==1 ); 798 pDest->affSdst = 799 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 800 if( pSort ){ 801 /* At first glance you would think we could optimize out the 802 ** ORDER BY in this case since the order of entries in the set 803 ** does not matter. But there might be a LIMIT clause, in which 804 ** case the order does matter */ 805 pushOntoSorter(pParse, pSort, p, regResult); 806 }else{ 807 int r1 = sqlite3GetTempReg(pParse); 808 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 809 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 810 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 811 sqlite3ReleaseTempReg(pParse, r1); 812 } 813 break; 814 } 815 816 /* If any row exist in the result set, record that fact and abort. 817 */ 818 case SRT_Exists: { 819 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 820 /* The LIMIT clause will terminate the loop for us */ 821 break; 822 } 823 824 /* If this is a scalar select that is part of an expression, then 825 ** store the results in the appropriate memory cell and break out 826 ** of the scan loop. 827 */ 828 case SRT_Mem: { 829 assert( nResultCol==1 ); 830 if( pSort ){ 831 pushOntoSorter(pParse, pSort, p, regResult); 832 }else{ 833 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 834 /* The LIMIT clause will jump out of the loop for us */ 835 } 836 break; 837 } 838 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 839 840 case SRT_Coroutine: /* Send data to a co-routine */ 841 case SRT_Output: { /* Return the results */ 842 testcase( eDest==SRT_Coroutine ); 843 testcase( eDest==SRT_Output ); 844 if( pSort ){ 845 int r1 = sqlite3GetTempReg(pParse); 846 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 847 pushOntoSorter(pParse, pSort, p, r1); 848 sqlite3ReleaseTempReg(pParse, r1); 849 }else if( eDest==SRT_Coroutine ){ 850 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 851 }else{ 852 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 853 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 854 } 855 break; 856 } 857 858 #ifndef SQLITE_OMIT_CTE 859 /* Write the results into a priority queue that is order according to 860 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 861 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 862 ** pSO->nExpr columns, then make sure all keys are unique by adding a 863 ** final OP_Sequence column. The last column is the record as a blob. 864 */ 865 case SRT_DistQueue: 866 case SRT_Queue: { 867 int nKey; 868 int r1, r2, r3; 869 int addrTest = 0; 870 ExprList *pSO; 871 pSO = pDest->pOrderBy; 872 assert( pSO ); 873 nKey = pSO->nExpr; 874 r1 = sqlite3GetTempReg(pParse); 875 r2 = sqlite3GetTempRange(pParse, nKey+2); 876 r3 = r2+nKey+1; 877 if( eDest==SRT_DistQueue ){ 878 /* If the destination is DistQueue, then cursor (iParm+1) is open 879 ** on a second ephemeral index that holds all values every previously 880 ** added to the queue. */ 881 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 882 regResult, nResultCol); 883 VdbeCoverage(v); 884 } 885 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 886 if( eDest==SRT_DistQueue ){ 887 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 888 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 889 } 890 for(i=0; i<nKey; i++){ 891 sqlite3VdbeAddOp2(v, OP_SCopy, 892 regResult + pSO->a[i].u.x.iOrderByCol - 1, 893 r2+i); 894 } 895 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 896 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 897 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 898 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 899 sqlite3ReleaseTempReg(pParse, r1); 900 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 901 break; 902 } 903 #endif /* SQLITE_OMIT_CTE */ 904 905 906 907 #if !defined(SQLITE_OMIT_TRIGGER) 908 /* Discard the results. This is used for SELECT statements inside 909 ** the body of a TRIGGER. The purpose of such selects is to call 910 ** user-defined functions that have side effects. We do not care 911 ** about the actual results of the select. 912 */ 913 default: { 914 assert( eDest==SRT_Discard ); 915 break; 916 } 917 #endif 918 } 919 920 /* Jump to the end of the loop if the LIMIT is reached. Except, if 921 ** there is a sorter, in which case the sorter has already limited 922 ** the output for us. 923 */ 924 if( pSort==0 && p->iLimit ){ 925 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 926 } 927 } 928 929 /* 930 ** Allocate a KeyInfo object sufficient for an index of N key columns and 931 ** X extra columns. 932 */ 933 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 934 KeyInfo *p = sqlite3DbMallocZero(0, 935 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 936 if( p ){ 937 p->aSortOrder = (u8*)&p->aColl[N+X]; 938 p->nField = (u16)N; 939 p->nXField = (u16)X; 940 p->enc = ENC(db); 941 p->db = db; 942 p->nRef = 1; 943 }else{ 944 db->mallocFailed = 1; 945 } 946 return p; 947 } 948 949 /* 950 ** Deallocate a KeyInfo object 951 */ 952 void sqlite3KeyInfoUnref(KeyInfo *p){ 953 if( p ){ 954 assert( p->nRef>0 ); 955 p->nRef--; 956 if( p->nRef==0 ) sqlite3DbFree(0, p); 957 } 958 } 959 960 /* 961 ** Make a new pointer to a KeyInfo object 962 */ 963 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 964 if( p ){ 965 assert( p->nRef>0 ); 966 p->nRef++; 967 } 968 return p; 969 } 970 971 #ifdef SQLITE_DEBUG 972 /* 973 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 974 ** can only be changed if this is just a single reference to the object. 975 ** 976 ** This routine is used only inside of assert() statements. 977 */ 978 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 979 #endif /* SQLITE_DEBUG */ 980 981 /* 982 ** Given an expression list, generate a KeyInfo structure that records 983 ** the collating sequence for each expression in that expression list. 984 ** 985 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 986 ** KeyInfo structure is appropriate for initializing a virtual index to 987 ** implement that clause. If the ExprList is the result set of a SELECT 988 ** then the KeyInfo structure is appropriate for initializing a virtual 989 ** index to implement a DISTINCT test. 990 ** 991 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 992 ** function is responsible for seeing that this structure is eventually 993 ** freed. 994 */ 995 static KeyInfo *keyInfoFromExprList( 996 Parse *pParse, /* Parsing context */ 997 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 998 int iStart, /* Begin with this column of pList */ 999 int nExtra /* Add this many extra columns to the end */ 1000 ){ 1001 int nExpr; 1002 KeyInfo *pInfo; 1003 struct ExprList_item *pItem; 1004 sqlite3 *db = pParse->db; 1005 int i; 1006 1007 nExpr = pList->nExpr; 1008 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); 1009 if( pInfo ){ 1010 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1011 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1012 CollSeq *pColl; 1013 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1014 if( !pColl ) pColl = db->pDfltColl; 1015 pInfo->aColl[i-iStart] = pColl; 1016 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1017 } 1018 } 1019 return pInfo; 1020 } 1021 1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1023 /* 1024 ** Name of the connection operator, used for error messages. 1025 */ 1026 static const char *selectOpName(int id){ 1027 char *z; 1028 switch( id ){ 1029 case TK_ALL: z = "UNION ALL"; break; 1030 case TK_INTERSECT: z = "INTERSECT"; break; 1031 case TK_EXCEPT: z = "EXCEPT"; break; 1032 default: z = "UNION"; break; 1033 } 1034 return z; 1035 } 1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1037 1038 #ifndef SQLITE_OMIT_EXPLAIN 1039 /* 1040 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1041 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1042 ** where the caption is of the form: 1043 ** 1044 ** "USE TEMP B-TREE FOR xxx" 1045 ** 1046 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1047 ** is determined by the zUsage argument. 1048 */ 1049 static void explainTempTable(Parse *pParse, const char *zUsage){ 1050 if( pParse->explain==2 ){ 1051 Vdbe *v = pParse->pVdbe; 1052 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1053 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1054 } 1055 } 1056 1057 /* 1058 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1059 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1060 ** in sqlite3Select() to assign values to structure member variables that 1061 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1062 ** code with #ifndef directives. 1063 */ 1064 # define explainSetInteger(a, b) a = b 1065 1066 #else 1067 /* No-op versions of the explainXXX() functions and macros. */ 1068 # define explainTempTable(y,z) 1069 # define explainSetInteger(y,z) 1070 #endif 1071 1072 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1073 /* 1074 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1075 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1076 ** where the caption is of one of the two forms: 1077 ** 1078 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1079 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1080 ** 1081 ** where iSub1 and iSub2 are the integers passed as the corresponding 1082 ** function parameters, and op is the text representation of the parameter 1083 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1084 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1085 ** false, or the second form if it is true. 1086 */ 1087 static void explainComposite( 1088 Parse *pParse, /* Parse context */ 1089 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1090 int iSub1, /* Subquery id 1 */ 1091 int iSub2, /* Subquery id 2 */ 1092 int bUseTmp /* True if a temp table was used */ 1093 ){ 1094 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1095 if( pParse->explain==2 ){ 1096 Vdbe *v = pParse->pVdbe; 1097 char *zMsg = sqlite3MPrintf( 1098 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1099 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1100 ); 1101 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1102 } 1103 } 1104 #else 1105 /* No-op versions of the explainXXX() functions and macros. */ 1106 # define explainComposite(v,w,x,y,z) 1107 #endif 1108 1109 /* 1110 ** If the inner loop was generated using a non-null pOrderBy argument, 1111 ** then the results were placed in a sorter. After the loop is terminated 1112 ** we need to run the sorter and output the results. The following 1113 ** routine generates the code needed to do that. 1114 */ 1115 static void generateSortTail( 1116 Parse *pParse, /* Parsing context */ 1117 Select *p, /* The SELECT statement */ 1118 SortCtx *pSort, /* Information on the ORDER BY clause */ 1119 int nColumn, /* Number of columns of data */ 1120 SelectDest *pDest /* Write the sorted results here */ 1121 ){ 1122 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1123 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1124 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1125 int addr; 1126 int addrOnce = 0; 1127 int iTab; 1128 int pseudoTab = 0; 1129 ExprList *pOrderBy = pSort->pOrderBy; 1130 int eDest = pDest->eDest; 1131 int iParm = pDest->iSDParm; 1132 int regRow; 1133 int regRowid; 1134 int nKey; 1135 1136 if( pSort->labelBkOut ){ 1137 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1138 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1139 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1140 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1141 } 1142 iTab = pSort->iECursor; 1143 regRow = sqlite3GetTempReg(pParse); 1144 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1145 pseudoTab = pParse->nTab++; 1146 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 1147 regRowid = 0; 1148 }else{ 1149 regRowid = sqlite3GetTempReg(pParse); 1150 } 1151 nKey = pOrderBy->nExpr - pSort->nOBSat; 1152 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1153 int regSortOut = ++pParse->nMem; 1154 int ptab2 = pParse->nTab++; 1155 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, nKey+2); 1156 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1157 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1158 VdbeCoverage(v); 1159 codeOffset(v, p->iOffset, addrContinue); 1160 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 1161 sqlite3VdbeAddOp3(v, OP_Column, ptab2, nKey+1, regRow); 1162 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1163 }else{ 1164 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1165 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1166 codeOffset(v, p->iOffset, addrContinue); 1167 sqlite3VdbeAddOp3(v, OP_Column, iTab, nKey+1, regRow); 1168 } 1169 switch( eDest ){ 1170 case SRT_Table: 1171 case SRT_EphemTab: { 1172 testcase( eDest==SRT_Table ); 1173 testcase( eDest==SRT_EphemTab ); 1174 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1175 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1176 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1177 break; 1178 } 1179 #ifndef SQLITE_OMIT_SUBQUERY 1180 case SRT_Set: { 1181 assert( nColumn==1 ); 1182 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1183 &pDest->affSdst, 1); 1184 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1185 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1186 break; 1187 } 1188 case SRT_Mem: { 1189 assert( nColumn==1 ); 1190 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1191 /* The LIMIT clause will terminate the loop for us */ 1192 break; 1193 } 1194 #endif 1195 default: { 1196 int i; 1197 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1198 testcase( eDest==SRT_Output ); 1199 testcase( eDest==SRT_Coroutine ); 1200 for(i=0; i<nColumn; i++){ 1201 assert( regRow!=pDest->iSdst+i ); 1202 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i); 1203 if( i==0 ){ 1204 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1205 } 1206 } 1207 if( eDest==SRT_Output ){ 1208 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1209 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1210 }else{ 1211 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1212 } 1213 break; 1214 } 1215 } 1216 sqlite3ReleaseTempReg(pParse, regRow); 1217 sqlite3ReleaseTempReg(pParse, regRowid); 1218 1219 /* The bottom of the loop 1220 */ 1221 sqlite3VdbeResolveLabel(v, addrContinue); 1222 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1223 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1224 }else{ 1225 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1226 } 1227 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1228 sqlite3VdbeResolveLabel(v, addrBreak); 1229 } 1230 1231 /* 1232 ** Return a pointer to a string containing the 'declaration type' of the 1233 ** expression pExpr. The string may be treated as static by the caller. 1234 ** 1235 ** Also try to estimate the size of the returned value and return that 1236 ** result in *pEstWidth. 1237 ** 1238 ** The declaration type is the exact datatype definition extracted from the 1239 ** original CREATE TABLE statement if the expression is a column. The 1240 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1241 ** is considered a column can be complex in the presence of subqueries. The 1242 ** result-set expression in all of the following SELECT statements is 1243 ** considered a column by this function. 1244 ** 1245 ** SELECT col FROM tbl; 1246 ** SELECT (SELECT col FROM tbl; 1247 ** SELECT (SELECT col FROM tbl); 1248 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1249 ** 1250 ** The declaration type for any expression other than a column is NULL. 1251 ** 1252 ** This routine has either 3 or 6 parameters depending on whether or not 1253 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1254 */ 1255 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1256 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1257 static const char *columnTypeImpl( 1258 NameContext *pNC, 1259 Expr *pExpr, 1260 const char **pzOrigDb, 1261 const char **pzOrigTab, 1262 const char **pzOrigCol, 1263 u8 *pEstWidth 1264 ){ 1265 char const *zOrigDb = 0; 1266 char const *zOrigTab = 0; 1267 char const *zOrigCol = 0; 1268 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1269 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1270 static const char *columnTypeImpl( 1271 NameContext *pNC, 1272 Expr *pExpr, 1273 u8 *pEstWidth 1274 ){ 1275 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1276 char const *zType = 0; 1277 int j; 1278 u8 estWidth = 1; 1279 1280 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1281 switch( pExpr->op ){ 1282 case TK_AGG_COLUMN: 1283 case TK_COLUMN: { 1284 /* The expression is a column. Locate the table the column is being 1285 ** extracted from in NameContext.pSrcList. This table may be real 1286 ** database table or a subquery. 1287 */ 1288 Table *pTab = 0; /* Table structure column is extracted from */ 1289 Select *pS = 0; /* Select the column is extracted from */ 1290 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1291 testcase( pExpr->op==TK_AGG_COLUMN ); 1292 testcase( pExpr->op==TK_COLUMN ); 1293 while( pNC && !pTab ){ 1294 SrcList *pTabList = pNC->pSrcList; 1295 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1296 if( j<pTabList->nSrc ){ 1297 pTab = pTabList->a[j].pTab; 1298 pS = pTabList->a[j].pSelect; 1299 }else{ 1300 pNC = pNC->pNext; 1301 } 1302 } 1303 1304 if( pTab==0 ){ 1305 /* At one time, code such as "SELECT new.x" within a trigger would 1306 ** cause this condition to run. Since then, we have restructured how 1307 ** trigger code is generated and so this condition is no longer 1308 ** possible. However, it can still be true for statements like 1309 ** the following: 1310 ** 1311 ** CREATE TABLE t1(col INTEGER); 1312 ** SELECT (SELECT t1.col) FROM FROM t1; 1313 ** 1314 ** when columnType() is called on the expression "t1.col" in the 1315 ** sub-select. In this case, set the column type to NULL, even 1316 ** though it should really be "INTEGER". 1317 ** 1318 ** This is not a problem, as the column type of "t1.col" is never 1319 ** used. When columnType() is called on the expression 1320 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1321 ** branch below. */ 1322 break; 1323 } 1324 1325 assert( pTab && pExpr->pTab==pTab ); 1326 if( pS ){ 1327 /* The "table" is actually a sub-select or a view in the FROM clause 1328 ** of the SELECT statement. Return the declaration type and origin 1329 ** data for the result-set column of the sub-select. 1330 */ 1331 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1332 /* If iCol is less than zero, then the expression requests the 1333 ** rowid of the sub-select or view. This expression is legal (see 1334 ** test case misc2.2.2) - it always evaluates to NULL. 1335 */ 1336 NameContext sNC; 1337 Expr *p = pS->pEList->a[iCol].pExpr; 1338 sNC.pSrcList = pS->pSrc; 1339 sNC.pNext = pNC; 1340 sNC.pParse = pNC->pParse; 1341 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1342 } 1343 }else if( pTab->pSchema ){ 1344 /* A real table */ 1345 assert( !pS ); 1346 if( iCol<0 ) iCol = pTab->iPKey; 1347 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1348 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1349 if( iCol<0 ){ 1350 zType = "INTEGER"; 1351 zOrigCol = "rowid"; 1352 }else{ 1353 zType = pTab->aCol[iCol].zType; 1354 zOrigCol = pTab->aCol[iCol].zName; 1355 estWidth = pTab->aCol[iCol].szEst; 1356 } 1357 zOrigTab = pTab->zName; 1358 if( pNC->pParse ){ 1359 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1360 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1361 } 1362 #else 1363 if( iCol<0 ){ 1364 zType = "INTEGER"; 1365 }else{ 1366 zType = pTab->aCol[iCol].zType; 1367 estWidth = pTab->aCol[iCol].szEst; 1368 } 1369 #endif 1370 } 1371 break; 1372 } 1373 #ifndef SQLITE_OMIT_SUBQUERY 1374 case TK_SELECT: { 1375 /* The expression is a sub-select. Return the declaration type and 1376 ** origin info for the single column in the result set of the SELECT 1377 ** statement. 1378 */ 1379 NameContext sNC; 1380 Select *pS = pExpr->x.pSelect; 1381 Expr *p = pS->pEList->a[0].pExpr; 1382 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1383 sNC.pSrcList = pS->pSrc; 1384 sNC.pNext = pNC; 1385 sNC.pParse = pNC->pParse; 1386 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1387 break; 1388 } 1389 #endif 1390 } 1391 1392 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1393 if( pzOrigDb ){ 1394 assert( pzOrigTab && pzOrigCol ); 1395 *pzOrigDb = zOrigDb; 1396 *pzOrigTab = zOrigTab; 1397 *pzOrigCol = zOrigCol; 1398 } 1399 #endif 1400 if( pEstWidth ) *pEstWidth = estWidth; 1401 return zType; 1402 } 1403 1404 /* 1405 ** Generate code that will tell the VDBE the declaration types of columns 1406 ** in the result set. 1407 */ 1408 static void generateColumnTypes( 1409 Parse *pParse, /* Parser context */ 1410 SrcList *pTabList, /* List of tables */ 1411 ExprList *pEList /* Expressions defining the result set */ 1412 ){ 1413 #ifndef SQLITE_OMIT_DECLTYPE 1414 Vdbe *v = pParse->pVdbe; 1415 int i; 1416 NameContext sNC; 1417 sNC.pSrcList = pTabList; 1418 sNC.pParse = pParse; 1419 for(i=0; i<pEList->nExpr; i++){ 1420 Expr *p = pEList->a[i].pExpr; 1421 const char *zType; 1422 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1423 const char *zOrigDb = 0; 1424 const char *zOrigTab = 0; 1425 const char *zOrigCol = 0; 1426 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1427 1428 /* The vdbe must make its own copy of the column-type and other 1429 ** column specific strings, in case the schema is reset before this 1430 ** virtual machine is deleted. 1431 */ 1432 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1433 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1434 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1435 #else 1436 zType = columnType(&sNC, p, 0, 0, 0, 0); 1437 #endif 1438 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1439 } 1440 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1441 } 1442 1443 /* 1444 ** Generate code that will tell the VDBE the names of columns 1445 ** in the result set. This information is used to provide the 1446 ** azCol[] values in the callback. 1447 */ 1448 static void generateColumnNames( 1449 Parse *pParse, /* Parser context */ 1450 SrcList *pTabList, /* List of tables */ 1451 ExprList *pEList /* Expressions defining the result set */ 1452 ){ 1453 Vdbe *v = pParse->pVdbe; 1454 int i, j; 1455 sqlite3 *db = pParse->db; 1456 int fullNames, shortNames; 1457 1458 #ifndef SQLITE_OMIT_EXPLAIN 1459 /* If this is an EXPLAIN, skip this step */ 1460 if( pParse->explain ){ 1461 return; 1462 } 1463 #endif 1464 1465 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1466 pParse->colNamesSet = 1; 1467 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1468 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1469 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1470 for(i=0; i<pEList->nExpr; i++){ 1471 Expr *p; 1472 p = pEList->a[i].pExpr; 1473 if( NEVER(p==0) ) continue; 1474 if( pEList->a[i].zName ){ 1475 char *zName = pEList->a[i].zName; 1476 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1477 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1478 Table *pTab; 1479 char *zCol; 1480 int iCol = p->iColumn; 1481 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1482 if( pTabList->a[j].iCursor==p->iTable ) break; 1483 } 1484 assert( j<pTabList->nSrc ); 1485 pTab = pTabList->a[j].pTab; 1486 if( iCol<0 ) iCol = pTab->iPKey; 1487 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1488 if( iCol<0 ){ 1489 zCol = "rowid"; 1490 }else{ 1491 zCol = pTab->aCol[iCol].zName; 1492 } 1493 if( !shortNames && !fullNames ){ 1494 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1495 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1496 }else if( fullNames ){ 1497 char *zName = 0; 1498 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1499 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1500 }else{ 1501 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1502 } 1503 }else{ 1504 const char *z = pEList->a[i].zSpan; 1505 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1506 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1507 } 1508 } 1509 generateColumnTypes(pParse, pTabList, pEList); 1510 } 1511 1512 /* 1513 ** Given a an expression list (which is really the list of expressions 1514 ** that form the result set of a SELECT statement) compute appropriate 1515 ** column names for a table that would hold the expression list. 1516 ** 1517 ** All column names will be unique. 1518 ** 1519 ** Only the column names are computed. Column.zType, Column.zColl, 1520 ** and other fields of Column are zeroed. 1521 ** 1522 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1523 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1524 */ 1525 static int selectColumnsFromExprList( 1526 Parse *pParse, /* Parsing context */ 1527 ExprList *pEList, /* Expr list from which to derive column names */ 1528 i16 *pnCol, /* Write the number of columns here */ 1529 Column **paCol /* Write the new column list here */ 1530 ){ 1531 sqlite3 *db = pParse->db; /* Database connection */ 1532 int i, j; /* Loop counters */ 1533 int cnt; /* Index added to make the name unique */ 1534 Column *aCol, *pCol; /* For looping over result columns */ 1535 int nCol; /* Number of columns in the result set */ 1536 Expr *p; /* Expression for a single result column */ 1537 char *zName; /* Column name */ 1538 int nName; /* Size of name in zName[] */ 1539 1540 if( pEList ){ 1541 nCol = pEList->nExpr; 1542 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1543 testcase( aCol==0 ); 1544 }else{ 1545 nCol = 0; 1546 aCol = 0; 1547 } 1548 *pnCol = nCol; 1549 *paCol = aCol; 1550 1551 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1552 /* Get an appropriate name for the column 1553 */ 1554 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1555 if( (zName = pEList->a[i].zName)!=0 ){ 1556 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1557 zName = sqlite3DbStrDup(db, zName); 1558 }else{ 1559 Expr *pColExpr = p; /* The expression that is the result column name */ 1560 Table *pTab; /* Table associated with this expression */ 1561 while( pColExpr->op==TK_DOT ){ 1562 pColExpr = pColExpr->pRight; 1563 assert( pColExpr!=0 ); 1564 } 1565 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1566 /* For columns use the column name name */ 1567 int iCol = pColExpr->iColumn; 1568 pTab = pColExpr->pTab; 1569 if( iCol<0 ) iCol = pTab->iPKey; 1570 zName = sqlite3MPrintf(db, "%s", 1571 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1572 }else if( pColExpr->op==TK_ID ){ 1573 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1574 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1575 }else{ 1576 /* Use the original text of the column expression as its name */ 1577 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1578 } 1579 } 1580 if( db->mallocFailed ){ 1581 sqlite3DbFree(db, zName); 1582 break; 1583 } 1584 1585 /* Make sure the column name is unique. If the name is not unique, 1586 ** append a integer to the name so that it becomes unique. 1587 */ 1588 nName = sqlite3Strlen30(zName); 1589 for(j=cnt=0; j<i; j++){ 1590 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1591 char *zNewName; 1592 int k; 1593 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1594 if( k>=0 && zName[k]==':' ) nName = k; 1595 zName[nName] = 0; 1596 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1597 sqlite3DbFree(db, zName); 1598 zName = zNewName; 1599 j = -1; 1600 if( zName==0 ) break; 1601 } 1602 } 1603 pCol->zName = zName; 1604 } 1605 if( db->mallocFailed ){ 1606 for(j=0; j<i; j++){ 1607 sqlite3DbFree(db, aCol[j].zName); 1608 } 1609 sqlite3DbFree(db, aCol); 1610 *paCol = 0; 1611 *pnCol = 0; 1612 return SQLITE_NOMEM; 1613 } 1614 return SQLITE_OK; 1615 } 1616 1617 /* 1618 ** Add type and collation information to a column list based on 1619 ** a SELECT statement. 1620 ** 1621 ** The column list presumably came from selectColumnNamesFromExprList(). 1622 ** The column list has only names, not types or collations. This 1623 ** routine goes through and adds the types and collations. 1624 ** 1625 ** This routine requires that all identifiers in the SELECT 1626 ** statement be resolved. 1627 */ 1628 static void selectAddColumnTypeAndCollation( 1629 Parse *pParse, /* Parsing contexts */ 1630 Table *pTab, /* Add column type information to this table */ 1631 Select *pSelect /* SELECT used to determine types and collations */ 1632 ){ 1633 sqlite3 *db = pParse->db; 1634 NameContext sNC; 1635 Column *pCol; 1636 CollSeq *pColl; 1637 int i; 1638 Expr *p; 1639 struct ExprList_item *a; 1640 u64 szAll = 0; 1641 1642 assert( pSelect!=0 ); 1643 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1644 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1645 if( db->mallocFailed ) return; 1646 memset(&sNC, 0, sizeof(sNC)); 1647 sNC.pSrcList = pSelect->pSrc; 1648 a = pSelect->pEList->a; 1649 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1650 p = a[i].pExpr; 1651 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1652 szAll += pCol->szEst; 1653 pCol->affinity = sqlite3ExprAffinity(p); 1654 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1655 pColl = sqlite3ExprCollSeq(pParse, p); 1656 if( pColl ){ 1657 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1658 } 1659 } 1660 pTab->szTabRow = sqlite3LogEst(szAll*4); 1661 } 1662 1663 /* 1664 ** Given a SELECT statement, generate a Table structure that describes 1665 ** the result set of that SELECT. 1666 */ 1667 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1668 Table *pTab; 1669 sqlite3 *db = pParse->db; 1670 int savedFlags; 1671 1672 savedFlags = db->flags; 1673 db->flags &= ~SQLITE_FullColNames; 1674 db->flags |= SQLITE_ShortColNames; 1675 sqlite3SelectPrep(pParse, pSelect, 0); 1676 if( pParse->nErr ) return 0; 1677 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1678 db->flags = savedFlags; 1679 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1680 if( pTab==0 ){ 1681 return 0; 1682 } 1683 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1684 ** is disabled */ 1685 assert( db->lookaside.bEnabled==0 ); 1686 pTab->nRef = 1; 1687 pTab->zName = 0; 1688 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1689 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1690 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1691 pTab->iPKey = -1; 1692 if( db->mallocFailed ){ 1693 sqlite3DeleteTable(db, pTab); 1694 return 0; 1695 } 1696 return pTab; 1697 } 1698 1699 /* 1700 ** Get a VDBE for the given parser context. Create a new one if necessary. 1701 ** If an error occurs, return NULL and leave a message in pParse. 1702 */ 1703 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1704 Vdbe *v = pParse->pVdbe; 1705 if( v==0 ){ 1706 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1707 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1708 if( pParse->pToplevel==0 1709 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1710 ){ 1711 pParse->okConstFactor = 1; 1712 } 1713 1714 } 1715 return v; 1716 } 1717 1718 1719 /* 1720 ** Compute the iLimit and iOffset fields of the SELECT based on the 1721 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1722 ** that appear in the original SQL statement after the LIMIT and OFFSET 1723 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1724 ** are the integer memory register numbers for counters used to compute 1725 ** the limit and offset. If there is no limit and/or offset, then 1726 ** iLimit and iOffset are negative. 1727 ** 1728 ** This routine changes the values of iLimit and iOffset only if 1729 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1730 ** iOffset should have been preset to appropriate default values (zero) 1731 ** prior to calling this routine. 1732 ** 1733 ** The iOffset register (if it exists) is initialized to the value 1734 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1735 ** iOffset+1 is initialized to LIMIT+OFFSET. 1736 ** 1737 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1738 ** redefined. The UNION ALL operator uses this property to force 1739 ** the reuse of the same limit and offset registers across multiple 1740 ** SELECT statements. 1741 */ 1742 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1743 Vdbe *v = 0; 1744 int iLimit = 0; 1745 int iOffset; 1746 int addr1, n; 1747 if( p->iLimit ) return; 1748 1749 /* 1750 ** "LIMIT -1" always shows all rows. There is some 1751 ** controversy about what the correct behavior should be. 1752 ** The current implementation interprets "LIMIT 0" to mean 1753 ** no rows. 1754 */ 1755 sqlite3ExprCacheClear(pParse); 1756 assert( p->pOffset==0 || p->pLimit!=0 ); 1757 if( p->pLimit ){ 1758 p->iLimit = iLimit = ++pParse->nMem; 1759 v = sqlite3GetVdbe(pParse); 1760 assert( v!=0 ); 1761 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1762 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1763 VdbeComment((v, "LIMIT counter")); 1764 if( n==0 ){ 1765 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1766 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1767 p->nSelectRow = n; 1768 } 1769 }else{ 1770 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1771 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1772 VdbeComment((v, "LIMIT counter")); 1773 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); 1774 } 1775 if( p->pOffset ){ 1776 p->iOffset = iOffset = ++pParse->nMem; 1777 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1778 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1779 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1780 VdbeComment((v, "OFFSET counter")); 1781 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1782 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1783 sqlite3VdbeJumpHere(v, addr1); 1784 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1785 VdbeComment((v, "LIMIT+OFFSET")); 1786 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1787 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1788 sqlite3VdbeJumpHere(v, addr1); 1789 } 1790 } 1791 } 1792 1793 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1794 /* 1795 ** Return the appropriate collating sequence for the iCol-th column of 1796 ** the result set for the compound-select statement "p". Return NULL if 1797 ** the column has no default collating sequence. 1798 ** 1799 ** The collating sequence for the compound select is taken from the 1800 ** left-most term of the select that has a collating sequence. 1801 */ 1802 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1803 CollSeq *pRet; 1804 if( p->pPrior ){ 1805 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1806 }else{ 1807 pRet = 0; 1808 } 1809 assert( iCol>=0 ); 1810 if( pRet==0 && iCol<p->pEList->nExpr ){ 1811 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1812 } 1813 return pRet; 1814 } 1815 1816 /* 1817 ** The select statement passed as the second parameter is a compound SELECT 1818 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1819 ** structure suitable for implementing the ORDER BY. 1820 ** 1821 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1822 ** function is responsible for ensuring that this structure is eventually 1823 ** freed. 1824 */ 1825 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1826 ExprList *pOrderBy = p->pOrderBy; 1827 int nOrderBy = p->pOrderBy->nExpr; 1828 sqlite3 *db = pParse->db; 1829 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1830 if( pRet ){ 1831 int i; 1832 for(i=0; i<nOrderBy; i++){ 1833 struct ExprList_item *pItem = &pOrderBy->a[i]; 1834 Expr *pTerm = pItem->pExpr; 1835 CollSeq *pColl; 1836 1837 if( pTerm->flags & EP_Collate ){ 1838 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1839 }else{ 1840 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1841 if( pColl==0 ) pColl = db->pDfltColl; 1842 pOrderBy->a[i].pExpr = 1843 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1844 } 1845 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1846 pRet->aColl[i] = pColl; 1847 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1848 } 1849 } 1850 1851 return pRet; 1852 } 1853 1854 #ifndef SQLITE_OMIT_CTE 1855 /* 1856 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1857 ** query of the form: 1858 ** 1859 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1860 ** \___________/ \_______________/ 1861 ** p->pPrior p 1862 ** 1863 ** 1864 ** There is exactly one reference to the recursive-table in the FROM clause 1865 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1866 ** 1867 ** The setup-query runs once to generate an initial set of rows that go 1868 ** into a Queue table. Rows are extracted from the Queue table one by 1869 ** one. Each row extracted from Queue is output to pDest. Then the single 1870 ** extracted row (now in the iCurrent table) becomes the content of the 1871 ** recursive-table for a recursive-query run. The output of the recursive-query 1872 ** is added back into the Queue table. Then another row is extracted from Queue 1873 ** and the iteration continues until the Queue table is empty. 1874 ** 1875 ** If the compound query operator is UNION then no duplicate rows are ever 1876 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1877 ** that have ever been inserted into Queue and causes duplicates to be 1878 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1879 ** 1880 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1881 ** ORDER BY order and the first entry is extracted for each cycle. Without 1882 ** an ORDER BY, the Queue table is just a FIFO. 1883 ** 1884 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1885 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1886 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1887 ** with a positive value, then the first OFFSET outputs are discarded rather 1888 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1889 ** rows have been skipped. 1890 */ 1891 static void generateWithRecursiveQuery( 1892 Parse *pParse, /* Parsing context */ 1893 Select *p, /* The recursive SELECT to be coded */ 1894 SelectDest *pDest /* What to do with query results */ 1895 ){ 1896 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1897 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1898 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1899 Select *pSetup = p->pPrior; /* The setup query */ 1900 int addrTop; /* Top of the loop */ 1901 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1902 int iCurrent = 0; /* The Current table */ 1903 int regCurrent; /* Register holding Current table */ 1904 int iQueue; /* The Queue table */ 1905 int iDistinct = 0; /* To ensure unique results if UNION */ 1906 int eDest = SRT_Fifo; /* How to write to Queue */ 1907 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1908 int i; /* Loop counter */ 1909 int rc; /* Result code */ 1910 ExprList *pOrderBy; /* The ORDER BY clause */ 1911 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1912 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1913 1914 /* Obtain authorization to do a recursive query */ 1915 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1916 1917 /* Process the LIMIT and OFFSET clauses, if they exist */ 1918 addrBreak = sqlite3VdbeMakeLabel(v); 1919 computeLimitRegisters(pParse, p, addrBreak); 1920 pLimit = p->pLimit; 1921 pOffset = p->pOffset; 1922 regLimit = p->iLimit; 1923 regOffset = p->iOffset; 1924 p->pLimit = p->pOffset = 0; 1925 p->iLimit = p->iOffset = 0; 1926 pOrderBy = p->pOrderBy; 1927 1928 /* Locate the cursor number of the Current table */ 1929 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1930 if( pSrc->a[i].isRecursive ){ 1931 iCurrent = pSrc->a[i].iCursor; 1932 break; 1933 } 1934 } 1935 1936 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1937 ** the Distinct table must be exactly one greater than Queue in order 1938 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1939 iQueue = pParse->nTab++; 1940 if( p->op==TK_UNION ){ 1941 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1942 iDistinct = pParse->nTab++; 1943 }else{ 1944 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 1945 } 1946 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 1947 1948 /* Allocate cursors for Current, Queue, and Distinct. */ 1949 regCurrent = ++pParse->nMem; 1950 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 1951 if( pOrderBy ){ 1952 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 1953 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 1954 (char*)pKeyInfo, P4_KEYINFO); 1955 destQueue.pOrderBy = pOrderBy; 1956 }else{ 1957 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 1958 } 1959 VdbeComment((v, "Queue table")); 1960 if( iDistinct ){ 1961 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 1962 p->selFlags |= SF_UsesEphemeral; 1963 } 1964 1965 /* Detach the ORDER BY clause from the compound SELECT */ 1966 p->pOrderBy = 0; 1967 1968 /* Store the results of the setup-query in Queue. */ 1969 pSetup->pNext = 0; 1970 rc = sqlite3Select(pParse, pSetup, &destQueue); 1971 pSetup->pNext = p; 1972 if( rc ) goto end_of_recursive_query; 1973 1974 /* Find the next row in the Queue and output that row */ 1975 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 1976 1977 /* Transfer the next row in Queue over to Current */ 1978 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 1979 if( pOrderBy ){ 1980 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 1981 }else{ 1982 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 1983 } 1984 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 1985 1986 /* Output the single row in Current */ 1987 addrCont = sqlite3VdbeMakeLabel(v); 1988 codeOffset(v, regOffset, addrCont); 1989 selectInnerLoop(pParse, p, p->pEList, iCurrent, 1990 0, 0, pDest, addrCont, addrBreak); 1991 if( regLimit ){ 1992 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 1993 VdbeCoverage(v); 1994 } 1995 sqlite3VdbeResolveLabel(v, addrCont); 1996 1997 /* Execute the recursive SELECT taking the single row in Current as 1998 ** the value for the recursive-table. Store the results in the Queue. 1999 */ 2000 p->pPrior = 0; 2001 sqlite3Select(pParse, p, &destQueue); 2002 assert( p->pPrior==0 ); 2003 p->pPrior = pSetup; 2004 2005 /* Keep running the loop until the Queue is empty */ 2006 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2007 sqlite3VdbeResolveLabel(v, addrBreak); 2008 2009 end_of_recursive_query: 2010 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2011 p->pOrderBy = pOrderBy; 2012 p->pLimit = pLimit; 2013 p->pOffset = pOffset; 2014 return; 2015 } 2016 #endif /* SQLITE_OMIT_CTE */ 2017 2018 /* Forward references */ 2019 static int multiSelectOrderBy( 2020 Parse *pParse, /* Parsing context */ 2021 Select *p, /* The right-most of SELECTs to be coded */ 2022 SelectDest *pDest /* What to do with query results */ 2023 ); 2024 2025 2026 /* 2027 ** This routine is called to process a compound query form from 2028 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2029 ** INTERSECT 2030 ** 2031 ** "p" points to the right-most of the two queries. the query on the 2032 ** left is p->pPrior. The left query could also be a compound query 2033 ** in which case this routine will be called recursively. 2034 ** 2035 ** The results of the total query are to be written into a destination 2036 ** of type eDest with parameter iParm. 2037 ** 2038 ** Example 1: Consider a three-way compound SQL statement. 2039 ** 2040 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2041 ** 2042 ** This statement is parsed up as follows: 2043 ** 2044 ** SELECT c FROM t3 2045 ** | 2046 ** `-----> SELECT b FROM t2 2047 ** | 2048 ** `------> SELECT a FROM t1 2049 ** 2050 ** The arrows in the diagram above represent the Select.pPrior pointer. 2051 ** So if this routine is called with p equal to the t3 query, then 2052 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2053 ** 2054 ** Notice that because of the way SQLite parses compound SELECTs, the 2055 ** individual selects always group from left to right. 2056 */ 2057 static int multiSelect( 2058 Parse *pParse, /* Parsing context */ 2059 Select *p, /* The right-most of SELECTs to be coded */ 2060 SelectDest *pDest /* What to do with query results */ 2061 ){ 2062 int rc = SQLITE_OK; /* Success code from a subroutine */ 2063 Select *pPrior; /* Another SELECT immediately to our left */ 2064 Vdbe *v; /* Generate code to this VDBE */ 2065 SelectDest dest; /* Alternative data destination */ 2066 Select *pDelete = 0; /* Chain of simple selects to delete */ 2067 sqlite3 *db; /* Database connection */ 2068 #ifndef SQLITE_OMIT_EXPLAIN 2069 int iSub1 = 0; /* EQP id of left-hand query */ 2070 int iSub2 = 0; /* EQP id of right-hand query */ 2071 #endif 2072 2073 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2074 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2075 */ 2076 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2077 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2078 db = pParse->db; 2079 pPrior = p->pPrior; 2080 dest = *pDest; 2081 if( pPrior->pOrderBy ){ 2082 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2083 selectOpName(p->op)); 2084 rc = 1; 2085 goto multi_select_end; 2086 } 2087 if( pPrior->pLimit ){ 2088 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2089 selectOpName(p->op)); 2090 rc = 1; 2091 goto multi_select_end; 2092 } 2093 2094 v = sqlite3GetVdbe(pParse); 2095 assert( v!=0 ); /* The VDBE already created by calling function */ 2096 2097 /* Create the destination temporary table if necessary 2098 */ 2099 if( dest.eDest==SRT_EphemTab ){ 2100 assert( p->pEList ); 2101 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2102 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2103 dest.eDest = SRT_Table; 2104 } 2105 2106 /* Make sure all SELECTs in the statement have the same number of elements 2107 ** in their result sets. 2108 */ 2109 assert( p->pEList && pPrior->pEList ); 2110 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2111 if( p->selFlags & SF_Values ){ 2112 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2113 }else{ 2114 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2115 " do not have the same number of result columns", selectOpName(p->op)); 2116 } 2117 rc = 1; 2118 goto multi_select_end; 2119 } 2120 2121 #ifndef SQLITE_OMIT_CTE 2122 if( p->selFlags & SF_Recursive ){ 2123 generateWithRecursiveQuery(pParse, p, &dest); 2124 }else 2125 #endif 2126 2127 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2128 */ 2129 if( p->pOrderBy ){ 2130 return multiSelectOrderBy(pParse, p, pDest); 2131 }else 2132 2133 /* Generate code for the left and right SELECT statements. 2134 */ 2135 switch( p->op ){ 2136 case TK_ALL: { 2137 int addr = 0; 2138 int nLimit; 2139 assert( !pPrior->pLimit ); 2140 pPrior->iLimit = p->iLimit; 2141 pPrior->iOffset = p->iOffset; 2142 pPrior->pLimit = p->pLimit; 2143 pPrior->pOffset = p->pOffset; 2144 explainSetInteger(iSub1, pParse->iNextSelectId); 2145 rc = sqlite3Select(pParse, pPrior, &dest); 2146 p->pLimit = 0; 2147 p->pOffset = 0; 2148 if( rc ){ 2149 goto multi_select_end; 2150 } 2151 p->pPrior = 0; 2152 p->iLimit = pPrior->iLimit; 2153 p->iOffset = pPrior->iOffset; 2154 if( p->iLimit ){ 2155 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); 2156 VdbeComment((v, "Jump ahead if LIMIT reached")); 2157 } 2158 explainSetInteger(iSub2, pParse->iNextSelectId); 2159 rc = sqlite3Select(pParse, p, &dest); 2160 testcase( rc!=SQLITE_OK ); 2161 pDelete = p->pPrior; 2162 p->pPrior = pPrior; 2163 p->nSelectRow += pPrior->nSelectRow; 2164 if( pPrior->pLimit 2165 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2166 && nLimit>0 && p->nSelectRow > (u64)nLimit 2167 ){ 2168 p->nSelectRow = nLimit; 2169 } 2170 if( addr ){ 2171 sqlite3VdbeJumpHere(v, addr); 2172 } 2173 break; 2174 } 2175 case TK_EXCEPT: 2176 case TK_UNION: { 2177 int unionTab; /* Cursor number of the temporary table holding result */ 2178 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2179 int priorOp; /* The SRT_ operation to apply to prior selects */ 2180 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2181 int addr; 2182 SelectDest uniondest; 2183 2184 testcase( p->op==TK_EXCEPT ); 2185 testcase( p->op==TK_UNION ); 2186 priorOp = SRT_Union; 2187 if( dest.eDest==priorOp ){ 2188 /* We can reuse a temporary table generated by a SELECT to our 2189 ** right. 2190 */ 2191 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2192 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2193 unionTab = dest.iSDParm; 2194 }else{ 2195 /* We will need to create our own temporary table to hold the 2196 ** intermediate results. 2197 */ 2198 unionTab = pParse->nTab++; 2199 assert( p->pOrderBy==0 ); 2200 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2201 assert( p->addrOpenEphm[0] == -1 ); 2202 p->addrOpenEphm[0] = addr; 2203 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2204 assert( p->pEList ); 2205 } 2206 2207 /* Code the SELECT statements to our left 2208 */ 2209 assert( !pPrior->pOrderBy ); 2210 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2211 explainSetInteger(iSub1, pParse->iNextSelectId); 2212 rc = sqlite3Select(pParse, pPrior, &uniondest); 2213 if( rc ){ 2214 goto multi_select_end; 2215 } 2216 2217 /* Code the current SELECT statement 2218 */ 2219 if( p->op==TK_EXCEPT ){ 2220 op = SRT_Except; 2221 }else{ 2222 assert( p->op==TK_UNION ); 2223 op = SRT_Union; 2224 } 2225 p->pPrior = 0; 2226 pLimit = p->pLimit; 2227 p->pLimit = 0; 2228 pOffset = p->pOffset; 2229 p->pOffset = 0; 2230 uniondest.eDest = op; 2231 explainSetInteger(iSub2, pParse->iNextSelectId); 2232 rc = sqlite3Select(pParse, p, &uniondest); 2233 testcase( rc!=SQLITE_OK ); 2234 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2235 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2236 sqlite3ExprListDelete(db, p->pOrderBy); 2237 pDelete = p->pPrior; 2238 p->pPrior = pPrior; 2239 p->pOrderBy = 0; 2240 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2241 sqlite3ExprDelete(db, p->pLimit); 2242 p->pLimit = pLimit; 2243 p->pOffset = pOffset; 2244 p->iLimit = 0; 2245 p->iOffset = 0; 2246 2247 /* Convert the data in the temporary table into whatever form 2248 ** it is that we currently need. 2249 */ 2250 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2251 if( dest.eDest!=priorOp ){ 2252 int iCont, iBreak, iStart; 2253 assert( p->pEList ); 2254 if( dest.eDest==SRT_Output ){ 2255 Select *pFirst = p; 2256 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2257 generateColumnNames(pParse, 0, pFirst->pEList); 2258 } 2259 iBreak = sqlite3VdbeMakeLabel(v); 2260 iCont = sqlite3VdbeMakeLabel(v); 2261 computeLimitRegisters(pParse, p, iBreak); 2262 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2263 iStart = sqlite3VdbeCurrentAddr(v); 2264 selectInnerLoop(pParse, p, p->pEList, unionTab, 2265 0, 0, &dest, iCont, iBreak); 2266 sqlite3VdbeResolveLabel(v, iCont); 2267 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2268 sqlite3VdbeResolveLabel(v, iBreak); 2269 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2270 } 2271 break; 2272 } 2273 default: assert( p->op==TK_INTERSECT ); { 2274 int tab1, tab2; 2275 int iCont, iBreak, iStart; 2276 Expr *pLimit, *pOffset; 2277 int addr; 2278 SelectDest intersectdest; 2279 int r1; 2280 2281 /* INTERSECT is different from the others since it requires 2282 ** two temporary tables. Hence it has its own case. Begin 2283 ** by allocating the tables we will need. 2284 */ 2285 tab1 = pParse->nTab++; 2286 tab2 = pParse->nTab++; 2287 assert( p->pOrderBy==0 ); 2288 2289 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2290 assert( p->addrOpenEphm[0] == -1 ); 2291 p->addrOpenEphm[0] = addr; 2292 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2293 assert( p->pEList ); 2294 2295 /* Code the SELECTs to our left into temporary table "tab1". 2296 */ 2297 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2298 explainSetInteger(iSub1, pParse->iNextSelectId); 2299 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2300 if( rc ){ 2301 goto multi_select_end; 2302 } 2303 2304 /* Code the current SELECT into temporary table "tab2" 2305 */ 2306 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2307 assert( p->addrOpenEphm[1] == -1 ); 2308 p->addrOpenEphm[1] = addr; 2309 p->pPrior = 0; 2310 pLimit = p->pLimit; 2311 p->pLimit = 0; 2312 pOffset = p->pOffset; 2313 p->pOffset = 0; 2314 intersectdest.iSDParm = tab2; 2315 explainSetInteger(iSub2, pParse->iNextSelectId); 2316 rc = sqlite3Select(pParse, p, &intersectdest); 2317 testcase( rc!=SQLITE_OK ); 2318 pDelete = p->pPrior; 2319 p->pPrior = pPrior; 2320 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2321 sqlite3ExprDelete(db, p->pLimit); 2322 p->pLimit = pLimit; 2323 p->pOffset = pOffset; 2324 2325 /* Generate code to take the intersection of the two temporary 2326 ** tables. 2327 */ 2328 assert( p->pEList ); 2329 if( dest.eDest==SRT_Output ){ 2330 Select *pFirst = p; 2331 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2332 generateColumnNames(pParse, 0, pFirst->pEList); 2333 } 2334 iBreak = sqlite3VdbeMakeLabel(v); 2335 iCont = sqlite3VdbeMakeLabel(v); 2336 computeLimitRegisters(pParse, p, iBreak); 2337 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2338 r1 = sqlite3GetTempReg(pParse); 2339 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2340 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2341 sqlite3ReleaseTempReg(pParse, r1); 2342 selectInnerLoop(pParse, p, p->pEList, tab1, 2343 0, 0, &dest, iCont, iBreak); 2344 sqlite3VdbeResolveLabel(v, iCont); 2345 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2346 sqlite3VdbeResolveLabel(v, iBreak); 2347 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2348 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2349 break; 2350 } 2351 } 2352 2353 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2354 2355 /* Compute collating sequences used by 2356 ** temporary tables needed to implement the compound select. 2357 ** Attach the KeyInfo structure to all temporary tables. 2358 ** 2359 ** This section is run by the right-most SELECT statement only. 2360 ** SELECT statements to the left always skip this part. The right-most 2361 ** SELECT might also skip this part if it has no ORDER BY clause and 2362 ** no temp tables are required. 2363 */ 2364 if( p->selFlags & SF_UsesEphemeral ){ 2365 int i; /* Loop counter */ 2366 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2367 Select *pLoop; /* For looping through SELECT statements */ 2368 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2369 int nCol; /* Number of columns in result set */ 2370 2371 assert( p->pNext==0 ); 2372 nCol = p->pEList->nExpr; 2373 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2374 if( !pKeyInfo ){ 2375 rc = SQLITE_NOMEM; 2376 goto multi_select_end; 2377 } 2378 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2379 *apColl = multiSelectCollSeq(pParse, p, i); 2380 if( 0==*apColl ){ 2381 *apColl = db->pDfltColl; 2382 } 2383 } 2384 2385 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2386 for(i=0; i<2; i++){ 2387 int addr = pLoop->addrOpenEphm[i]; 2388 if( addr<0 ){ 2389 /* If [0] is unused then [1] is also unused. So we can 2390 ** always safely abort as soon as the first unused slot is found */ 2391 assert( pLoop->addrOpenEphm[1]<0 ); 2392 break; 2393 } 2394 sqlite3VdbeChangeP2(v, addr, nCol); 2395 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2396 P4_KEYINFO); 2397 pLoop->addrOpenEphm[i] = -1; 2398 } 2399 } 2400 sqlite3KeyInfoUnref(pKeyInfo); 2401 } 2402 2403 multi_select_end: 2404 pDest->iSdst = dest.iSdst; 2405 pDest->nSdst = dest.nSdst; 2406 sqlite3SelectDelete(db, pDelete); 2407 return rc; 2408 } 2409 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2410 2411 /* 2412 ** Code an output subroutine for a coroutine implementation of a 2413 ** SELECT statment. 2414 ** 2415 ** The data to be output is contained in pIn->iSdst. There are 2416 ** pIn->nSdst columns to be output. pDest is where the output should 2417 ** be sent. 2418 ** 2419 ** regReturn is the number of the register holding the subroutine 2420 ** return address. 2421 ** 2422 ** If regPrev>0 then it is the first register in a vector that 2423 ** records the previous output. mem[regPrev] is a flag that is false 2424 ** if there has been no previous output. If regPrev>0 then code is 2425 ** generated to suppress duplicates. pKeyInfo is used for comparing 2426 ** keys. 2427 ** 2428 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2429 ** iBreak. 2430 */ 2431 static int generateOutputSubroutine( 2432 Parse *pParse, /* Parsing context */ 2433 Select *p, /* The SELECT statement */ 2434 SelectDest *pIn, /* Coroutine supplying data */ 2435 SelectDest *pDest, /* Where to send the data */ 2436 int regReturn, /* The return address register */ 2437 int regPrev, /* Previous result register. No uniqueness if 0 */ 2438 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2439 int iBreak /* Jump here if we hit the LIMIT */ 2440 ){ 2441 Vdbe *v = pParse->pVdbe; 2442 int iContinue; 2443 int addr; 2444 2445 addr = sqlite3VdbeCurrentAddr(v); 2446 iContinue = sqlite3VdbeMakeLabel(v); 2447 2448 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2449 */ 2450 if( regPrev ){ 2451 int j1, j2; 2452 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2453 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2454 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2455 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2456 sqlite3VdbeJumpHere(v, j1); 2457 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2458 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2459 } 2460 if( pParse->db->mallocFailed ) return 0; 2461 2462 /* Suppress the first OFFSET entries if there is an OFFSET clause 2463 */ 2464 codeOffset(v, p->iOffset, iContinue); 2465 2466 switch( pDest->eDest ){ 2467 /* Store the result as data using a unique key. 2468 */ 2469 case SRT_Table: 2470 case SRT_EphemTab: { 2471 int r1 = sqlite3GetTempReg(pParse); 2472 int r2 = sqlite3GetTempReg(pParse); 2473 testcase( pDest->eDest==SRT_Table ); 2474 testcase( pDest->eDest==SRT_EphemTab ); 2475 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2476 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2477 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2478 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2479 sqlite3ReleaseTempReg(pParse, r2); 2480 sqlite3ReleaseTempReg(pParse, r1); 2481 break; 2482 } 2483 2484 #ifndef SQLITE_OMIT_SUBQUERY 2485 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2486 ** then there should be a single item on the stack. Write this 2487 ** item into the set table with bogus data. 2488 */ 2489 case SRT_Set: { 2490 int r1; 2491 assert( pIn->nSdst==1 ); 2492 pDest->affSdst = 2493 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2494 r1 = sqlite3GetTempReg(pParse); 2495 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2496 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2497 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2498 sqlite3ReleaseTempReg(pParse, r1); 2499 break; 2500 } 2501 2502 #if 0 /* Never occurs on an ORDER BY query */ 2503 /* If any row exist in the result set, record that fact and abort. 2504 */ 2505 case SRT_Exists: { 2506 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2507 /* The LIMIT clause will terminate the loop for us */ 2508 break; 2509 } 2510 #endif 2511 2512 /* If this is a scalar select that is part of an expression, then 2513 ** store the results in the appropriate memory cell and break out 2514 ** of the scan loop. 2515 */ 2516 case SRT_Mem: { 2517 assert( pIn->nSdst==1 ); 2518 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2519 /* The LIMIT clause will jump out of the loop for us */ 2520 break; 2521 } 2522 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2523 2524 /* The results are stored in a sequence of registers 2525 ** starting at pDest->iSdst. Then the co-routine yields. 2526 */ 2527 case SRT_Coroutine: { 2528 if( pDest->iSdst==0 ){ 2529 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2530 pDest->nSdst = pIn->nSdst; 2531 } 2532 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2533 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2534 break; 2535 } 2536 2537 /* If none of the above, then the result destination must be 2538 ** SRT_Output. This routine is never called with any other 2539 ** destination other than the ones handled above or SRT_Output. 2540 ** 2541 ** For SRT_Output, results are stored in a sequence of registers. 2542 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2543 ** return the next row of result. 2544 */ 2545 default: { 2546 assert( pDest->eDest==SRT_Output ); 2547 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2548 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2549 break; 2550 } 2551 } 2552 2553 /* Jump to the end of the loop if the LIMIT is reached. 2554 */ 2555 if( p->iLimit ){ 2556 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 2557 } 2558 2559 /* Generate the subroutine return 2560 */ 2561 sqlite3VdbeResolveLabel(v, iContinue); 2562 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2563 2564 return addr; 2565 } 2566 2567 /* 2568 ** Alternative compound select code generator for cases when there 2569 ** is an ORDER BY clause. 2570 ** 2571 ** We assume a query of the following form: 2572 ** 2573 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2574 ** 2575 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2576 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2577 ** co-routines. Then run the co-routines in parallel and merge the results 2578 ** into the output. In addition to the two coroutines (called selectA and 2579 ** selectB) there are 7 subroutines: 2580 ** 2581 ** outA: Move the output of the selectA coroutine into the output 2582 ** of the compound query. 2583 ** 2584 ** outB: Move the output of the selectB coroutine into the output 2585 ** of the compound query. (Only generated for UNION and 2586 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2587 ** appears only in B.) 2588 ** 2589 ** AltB: Called when there is data from both coroutines and A<B. 2590 ** 2591 ** AeqB: Called when there is data from both coroutines and A==B. 2592 ** 2593 ** AgtB: Called when there is data from both coroutines and A>B. 2594 ** 2595 ** EofA: Called when data is exhausted from selectA. 2596 ** 2597 ** EofB: Called when data is exhausted from selectB. 2598 ** 2599 ** The implementation of the latter five subroutines depend on which 2600 ** <operator> is used: 2601 ** 2602 ** 2603 ** UNION ALL UNION EXCEPT INTERSECT 2604 ** ------------- ----------------- -------------- ----------------- 2605 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2606 ** 2607 ** AeqB: outA, nextA nextA nextA outA, nextA 2608 ** 2609 ** AgtB: outB, nextB outB, nextB nextB nextB 2610 ** 2611 ** EofA: outB, nextB outB, nextB halt halt 2612 ** 2613 ** EofB: outA, nextA outA, nextA outA, nextA halt 2614 ** 2615 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2616 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2617 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2618 ** following nextX causes a jump to the end of the select processing. 2619 ** 2620 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2621 ** within the output subroutine. The regPrev register set holds the previously 2622 ** output value. A comparison is made against this value and the output 2623 ** is skipped if the next results would be the same as the previous. 2624 ** 2625 ** The implementation plan is to implement the two coroutines and seven 2626 ** subroutines first, then put the control logic at the bottom. Like this: 2627 ** 2628 ** goto Init 2629 ** coA: coroutine for left query (A) 2630 ** coB: coroutine for right query (B) 2631 ** outA: output one row of A 2632 ** outB: output one row of B (UNION and UNION ALL only) 2633 ** EofA: ... 2634 ** EofB: ... 2635 ** AltB: ... 2636 ** AeqB: ... 2637 ** AgtB: ... 2638 ** Init: initialize coroutine registers 2639 ** yield coA 2640 ** if eof(A) goto EofA 2641 ** yield coB 2642 ** if eof(B) goto EofB 2643 ** Cmpr: Compare A, B 2644 ** Jump AltB, AeqB, AgtB 2645 ** End: ... 2646 ** 2647 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2648 ** actually called using Gosub and they do not Return. EofA and EofB loop 2649 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2650 ** and AgtB jump to either L2 or to one of EofA or EofB. 2651 */ 2652 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2653 static int multiSelectOrderBy( 2654 Parse *pParse, /* Parsing context */ 2655 Select *p, /* The right-most of SELECTs to be coded */ 2656 SelectDest *pDest /* What to do with query results */ 2657 ){ 2658 int i, j; /* Loop counters */ 2659 Select *pPrior; /* Another SELECT immediately to our left */ 2660 Vdbe *v; /* Generate code to this VDBE */ 2661 SelectDest destA; /* Destination for coroutine A */ 2662 SelectDest destB; /* Destination for coroutine B */ 2663 int regAddrA; /* Address register for select-A coroutine */ 2664 int regAddrB; /* Address register for select-B coroutine */ 2665 int addrSelectA; /* Address of the select-A coroutine */ 2666 int addrSelectB; /* Address of the select-B coroutine */ 2667 int regOutA; /* Address register for the output-A subroutine */ 2668 int regOutB; /* Address register for the output-B subroutine */ 2669 int addrOutA; /* Address of the output-A subroutine */ 2670 int addrOutB = 0; /* Address of the output-B subroutine */ 2671 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2672 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2673 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2674 int addrAltB; /* Address of the A<B subroutine */ 2675 int addrAeqB; /* Address of the A==B subroutine */ 2676 int addrAgtB; /* Address of the A>B subroutine */ 2677 int regLimitA; /* Limit register for select-A */ 2678 int regLimitB; /* Limit register for select-A */ 2679 int regPrev; /* A range of registers to hold previous output */ 2680 int savedLimit; /* Saved value of p->iLimit */ 2681 int savedOffset; /* Saved value of p->iOffset */ 2682 int labelCmpr; /* Label for the start of the merge algorithm */ 2683 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2684 int j1; /* Jump instructions that get retargetted */ 2685 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2686 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2687 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2688 sqlite3 *db; /* Database connection */ 2689 ExprList *pOrderBy; /* The ORDER BY clause */ 2690 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2691 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2692 #ifndef SQLITE_OMIT_EXPLAIN 2693 int iSub1; /* EQP id of left-hand query */ 2694 int iSub2; /* EQP id of right-hand query */ 2695 #endif 2696 2697 assert( p->pOrderBy!=0 ); 2698 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2699 db = pParse->db; 2700 v = pParse->pVdbe; 2701 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2702 labelEnd = sqlite3VdbeMakeLabel(v); 2703 labelCmpr = sqlite3VdbeMakeLabel(v); 2704 2705 2706 /* Patch up the ORDER BY clause 2707 */ 2708 op = p->op; 2709 pPrior = p->pPrior; 2710 assert( pPrior->pOrderBy==0 ); 2711 pOrderBy = p->pOrderBy; 2712 assert( pOrderBy ); 2713 nOrderBy = pOrderBy->nExpr; 2714 2715 /* For operators other than UNION ALL we have to make sure that 2716 ** the ORDER BY clause covers every term of the result set. Add 2717 ** terms to the ORDER BY clause as necessary. 2718 */ 2719 if( op!=TK_ALL ){ 2720 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2721 struct ExprList_item *pItem; 2722 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2723 assert( pItem->u.x.iOrderByCol>0 ); 2724 if( pItem->u.x.iOrderByCol==i ) break; 2725 } 2726 if( j==nOrderBy ){ 2727 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2728 if( pNew==0 ) return SQLITE_NOMEM; 2729 pNew->flags |= EP_IntValue; 2730 pNew->u.iValue = i; 2731 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2732 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2733 } 2734 } 2735 } 2736 2737 /* Compute the comparison permutation and keyinfo that is used with 2738 ** the permutation used to determine if the next 2739 ** row of results comes from selectA or selectB. Also add explicit 2740 ** collations to the ORDER BY clause terms so that when the subqueries 2741 ** to the right and the left are evaluated, they use the correct 2742 ** collation. 2743 */ 2744 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2745 if( aPermute ){ 2746 struct ExprList_item *pItem; 2747 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2748 assert( pItem->u.x.iOrderByCol>0 2749 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2750 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2751 } 2752 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2753 }else{ 2754 pKeyMerge = 0; 2755 } 2756 2757 /* Reattach the ORDER BY clause to the query. 2758 */ 2759 p->pOrderBy = pOrderBy; 2760 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2761 2762 /* Allocate a range of temporary registers and the KeyInfo needed 2763 ** for the logic that removes duplicate result rows when the 2764 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2765 */ 2766 if( op==TK_ALL ){ 2767 regPrev = 0; 2768 }else{ 2769 int nExpr = p->pEList->nExpr; 2770 assert( nOrderBy>=nExpr || db->mallocFailed ); 2771 regPrev = pParse->nMem+1; 2772 pParse->nMem += nExpr+1; 2773 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2774 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2775 if( pKeyDup ){ 2776 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2777 for(i=0; i<nExpr; i++){ 2778 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2779 pKeyDup->aSortOrder[i] = 0; 2780 } 2781 } 2782 } 2783 2784 /* Separate the left and the right query from one another 2785 */ 2786 p->pPrior = 0; 2787 pPrior->pNext = 0; 2788 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2789 if( pPrior->pPrior==0 ){ 2790 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2791 } 2792 2793 /* Compute the limit registers */ 2794 computeLimitRegisters(pParse, p, labelEnd); 2795 if( p->iLimit && op==TK_ALL ){ 2796 regLimitA = ++pParse->nMem; 2797 regLimitB = ++pParse->nMem; 2798 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2799 regLimitA); 2800 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2801 }else{ 2802 regLimitA = regLimitB = 0; 2803 } 2804 sqlite3ExprDelete(db, p->pLimit); 2805 p->pLimit = 0; 2806 sqlite3ExprDelete(db, p->pOffset); 2807 p->pOffset = 0; 2808 2809 regAddrA = ++pParse->nMem; 2810 regAddrB = ++pParse->nMem; 2811 regOutA = ++pParse->nMem; 2812 regOutB = ++pParse->nMem; 2813 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2814 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2815 2816 /* Generate a coroutine to evaluate the SELECT statement to the 2817 ** left of the compound operator - the "A" select. 2818 */ 2819 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2820 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2821 VdbeComment((v, "left SELECT")); 2822 pPrior->iLimit = regLimitA; 2823 explainSetInteger(iSub1, pParse->iNextSelectId); 2824 sqlite3Select(pParse, pPrior, &destA); 2825 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2826 sqlite3VdbeJumpHere(v, j1); 2827 2828 /* Generate a coroutine to evaluate the SELECT statement on 2829 ** the right - the "B" select 2830 */ 2831 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2832 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2833 VdbeComment((v, "right SELECT")); 2834 savedLimit = p->iLimit; 2835 savedOffset = p->iOffset; 2836 p->iLimit = regLimitB; 2837 p->iOffset = 0; 2838 explainSetInteger(iSub2, pParse->iNextSelectId); 2839 sqlite3Select(pParse, p, &destB); 2840 p->iLimit = savedLimit; 2841 p->iOffset = savedOffset; 2842 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2843 2844 /* Generate a subroutine that outputs the current row of the A 2845 ** select as the next output row of the compound select. 2846 */ 2847 VdbeNoopComment((v, "Output routine for A")); 2848 addrOutA = generateOutputSubroutine(pParse, 2849 p, &destA, pDest, regOutA, 2850 regPrev, pKeyDup, labelEnd); 2851 2852 /* Generate a subroutine that outputs the current row of the B 2853 ** select as the next output row of the compound select. 2854 */ 2855 if( op==TK_ALL || op==TK_UNION ){ 2856 VdbeNoopComment((v, "Output routine for B")); 2857 addrOutB = generateOutputSubroutine(pParse, 2858 p, &destB, pDest, regOutB, 2859 regPrev, pKeyDup, labelEnd); 2860 } 2861 sqlite3KeyInfoUnref(pKeyDup); 2862 2863 /* Generate a subroutine to run when the results from select A 2864 ** are exhausted and only data in select B remains. 2865 */ 2866 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2867 addrEofA_noB = addrEofA = labelEnd; 2868 }else{ 2869 VdbeNoopComment((v, "eof-A subroutine")); 2870 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2871 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2872 VdbeCoverage(v); 2873 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2874 p->nSelectRow += pPrior->nSelectRow; 2875 } 2876 2877 /* Generate a subroutine to run when the results from select B 2878 ** are exhausted and only data in select A remains. 2879 */ 2880 if( op==TK_INTERSECT ){ 2881 addrEofB = addrEofA; 2882 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2883 }else{ 2884 VdbeNoopComment((v, "eof-B subroutine")); 2885 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2886 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 2887 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2888 } 2889 2890 /* Generate code to handle the case of A<B 2891 */ 2892 VdbeNoopComment((v, "A-lt-B subroutine")); 2893 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2894 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2895 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2896 2897 /* Generate code to handle the case of A==B 2898 */ 2899 if( op==TK_ALL ){ 2900 addrAeqB = addrAltB; 2901 }else if( op==TK_INTERSECT ){ 2902 addrAeqB = addrAltB; 2903 addrAltB++; 2904 }else{ 2905 VdbeNoopComment((v, "A-eq-B subroutine")); 2906 addrAeqB = 2907 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2908 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2909 } 2910 2911 /* Generate code to handle the case of A>B 2912 */ 2913 VdbeNoopComment((v, "A-gt-B subroutine")); 2914 addrAgtB = sqlite3VdbeCurrentAddr(v); 2915 if( op==TK_ALL || op==TK_UNION ){ 2916 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2917 } 2918 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2919 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2920 2921 /* This code runs once to initialize everything. 2922 */ 2923 sqlite3VdbeJumpHere(v, j1); 2924 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 2925 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2926 2927 /* Implement the main merge loop 2928 */ 2929 sqlite3VdbeResolveLabel(v, labelCmpr); 2930 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2931 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 2932 (char*)pKeyMerge, P4_KEYINFO); 2933 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 2934 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 2935 2936 /* Jump to the this point in order to terminate the query. 2937 */ 2938 sqlite3VdbeResolveLabel(v, labelEnd); 2939 2940 /* Set the number of output columns 2941 */ 2942 if( pDest->eDest==SRT_Output ){ 2943 Select *pFirst = pPrior; 2944 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2945 generateColumnNames(pParse, 0, pFirst->pEList); 2946 } 2947 2948 /* Reassembly the compound query so that it will be freed correctly 2949 ** by the calling function */ 2950 if( p->pPrior ){ 2951 sqlite3SelectDelete(db, p->pPrior); 2952 } 2953 p->pPrior = pPrior; 2954 pPrior->pNext = p; 2955 2956 /*** TBD: Insert subroutine calls to close cursors on incomplete 2957 **** subqueries ****/ 2958 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2959 return SQLITE_OK; 2960 } 2961 #endif 2962 2963 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2964 /* Forward Declarations */ 2965 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2966 static void substSelect(sqlite3*, Select *, int, ExprList *); 2967 2968 /* 2969 ** Scan through the expression pExpr. Replace every reference to 2970 ** a column in table number iTable with a copy of the iColumn-th 2971 ** entry in pEList. (But leave references to the ROWID column 2972 ** unchanged.) 2973 ** 2974 ** This routine is part of the flattening procedure. A subquery 2975 ** whose result set is defined by pEList appears as entry in the 2976 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2977 ** FORM clause entry is iTable. This routine make the necessary 2978 ** changes to pExpr so that it refers directly to the source table 2979 ** of the subquery rather the result set of the subquery. 2980 */ 2981 static Expr *substExpr( 2982 sqlite3 *db, /* Report malloc errors to this connection */ 2983 Expr *pExpr, /* Expr in which substitution occurs */ 2984 int iTable, /* Table to be substituted */ 2985 ExprList *pEList /* Substitute expressions */ 2986 ){ 2987 if( pExpr==0 ) return 0; 2988 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2989 if( pExpr->iColumn<0 ){ 2990 pExpr->op = TK_NULL; 2991 }else{ 2992 Expr *pNew; 2993 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2994 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2995 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2996 sqlite3ExprDelete(db, pExpr); 2997 pExpr = pNew; 2998 } 2999 }else{ 3000 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3001 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3002 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3003 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3004 }else{ 3005 substExprList(db, pExpr->x.pList, iTable, pEList); 3006 } 3007 } 3008 return pExpr; 3009 } 3010 static void substExprList( 3011 sqlite3 *db, /* Report malloc errors here */ 3012 ExprList *pList, /* List to scan and in which to make substitutes */ 3013 int iTable, /* Table to be substituted */ 3014 ExprList *pEList /* Substitute values */ 3015 ){ 3016 int i; 3017 if( pList==0 ) return; 3018 for(i=0; i<pList->nExpr; i++){ 3019 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3020 } 3021 } 3022 static void substSelect( 3023 sqlite3 *db, /* Report malloc errors here */ 3024 Select *p, /* SELECT statement in which to make substitutions */ 3025 int iTable, /* Table to be replaced */ 3026 ExprList *pEList /* Substitute values */ 3027 ){ 3028 SrcList *pSrc; 3029 struct SrcList_item *pItem; 3030 int i; 3031 if( !p ) return; 3032 substExprList(db, p->pEList, iTable, pEList); 3033 substExprList(db, p->pGroupBy, iTable, pEList); 3034 substExprList(db, p->pOrderBy, iTable, pEList); 3035 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3036 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3037 substSelect(db, p->pPrior, iTable, pEList); 3038 pSrc = p->pSrc; 3039 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3040 if( ALWAYS(pSrc) ){ 3041 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3042 substSelect(db, pItem->pSelect, iTable, pEList); 3043 } 3044 } 3045 } 3046 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3047 3048 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3049 /* 3050 ** This routine attempts to flatten subqueries as a performance optimization. 3051 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3052 ** 3053 ** To understand the concept of flattening, consider the following 3054 ** query: 3055 ** 3056 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3057 ** 3058 ** The default way of implementing this query is to execute the 3059 ** subquery first and store the results in a temporary table, then 3060 ** run the outer query on that temporary table. This requires two 3061 ** passes over the data. Furthermore, because the temporary table 3062 ** has no indices, the WHERE clause on the outer query cannot be 3063 ** optimized. 3064 ** 3065 ** This routine attempts to rewrite queries such as the above into 3066 ** a single flat select, like this: 3067 ** 3068 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3069 ** 3070 ** The code generated for this simpification gives the same result 3071 ** but only has to scan the data once. And because indices might 3072 ** exist on the table t1, a complete scan of the data might be 3073 ** avoided. 3074 ** 3075 ** Flattening is only attempted if all of the following are true: 3076 ** 3077 ** (1) The subquery and the outer query do not both use aggregates. 3078 ** 3079 ** (2) The subquery is not an aggregate or the outer query is not a join. 3080 ** 3081 ** (3) The subquery is not the right operand of a left outer join 3082 ** (Originally ticket #306. Strengthened by ticket #3300) 3083 ** 3084 ** (4) The subquery is not DISTINCT. 3085 ** 3086 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3087 ** sub-queries that were excluded from this optimization. Restriction 3088 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3089 ** 3090 ** (6) The subquery does not use aggregates or the outer query is not 3091 ** DISTINCT. 3092 ** 3093 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3094 ** A FROM clause, consider adding a FROM close with the special 3095 ** table sqlite_once that consists of a single row containing a 3096 ** single NULL. 3097 ** 3098 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3099 ** 3100 ** (9) The subquery does not use LIMIT or the outer query does not use 3101 ** aggregates. 3102 ** 3103 ** (10) The subquery does not use aggregates or the outer query does not 3104 ** use LIMIT. 3105 ** 3106 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3107 ** 3108 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3109 ** a separate restriction deriving from ticket #350. 3110 ** 3111 ** (13) The subquery and outer query do not both use LIMIT. 3112 ** 3113 ** (14) The subquery does not use OFFSET. 3114 ** 3115 ** (15) The outer query is not part of a compound select or the 3116 ** subquery does not have a LIMIT clause. 3117 ** (See ticket #2339 and ticket [02a8e81d44]). 3118 ** 3119 ** (16) The outer query is not an aggregate or the subquery does 3120 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3121 ** until we introduced the group_concat() function. 3122 ** 3123 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3124 ** compound clause made up entirely of non-aggregate queries, and 3125 ** the parent query: 3126 ** 3127 ** * is not itself part of a compound select, 3128 ** * is not an aggregate or DISTINCT query, and 3129 ** * is not a join 3130 ** 3131 ** The parent and sub-query may contain WHERE clauses. Subject to 3132 ** rules (11), (13) and (14), they may also contain ORDER BY, 3133 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3134 ** operator other than UNION ALL because all the other compound 3135 ** operators have an implied DISTINCT which is disallowed by 3136 ** restriction (4). 3137 ** 3138 ** Also, each component of the sub-query must return the same number 3139 ** of result columns. This is actually a requirement for any compound 3140 ** SELECT statement, but all the code here does is make sure that no 3141 ** such (illegal) sub-query is flattened. The caller will detect the 3142 ** syntax error and return a detailed message. 3143 ** 3144 ** (18) If the sub-query is a compound select, then all terms of the 3145 ** ORDER by clause of the parent must be simple references to 3146 ** columns of the sub-query. 3147 ** 3148 ** (19) The subquery does not use LIMIT or the outer query does not 3149 ** have a WHERE clause. 3150 ** 3151 ** (20) If the sub-query is a compound select, then it must not use 3152 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3153 ** somewhat by saying that the terms of the ORDER BY clause must 3154 ** appear as unmodified result columns in the outer query. But we 3155 ** have other optimizations in mind to deal with that case. 3156 ** 3157 ** (21) The subquery does not use LIMIT or the outer query is not 3158 ** DISTINCT. (See ticket [752e1646fc]). 3159 ** 3160 ** (22) The subquery is not a recursive CTE. 3161 ** 3162 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3163 ** compound query. This restriction is because transforming the 3164 ** parent to a compound query confuses the code that handles 3165 ** recursive queries in multiSelect(). 3166 ** 3167 ** 3168 ** In this routine, the "p" parameter is a pointer to the outer query. 3169 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3170 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3171 ** 3172 ** If flattening is not attempted, this routine is a no-op and returns 0. 3173 ** If flattening is attempted this routine returns 1. 3174 ** 3175 ** All of the expression analysis must occur on both the outer query and 3176 ** the subquery before this routine runs. 3177 */ 3178 static int flattenSubquery( 3179 Parse *pParse, /* Parsing context */ 3180 Select *p, /* The parent or outer SELECT statement */ 3181 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3182 int isAgg, /* True if outer SELECT uses aggregate functions */ 3183 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3184 ){ 3185 const char *zSavedAuthContext = pParse->zAuthContext; 3186 Select *pParent; 3187 Select *pSub; /* The inner query or "subquery" */ 3188 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3189 SrcList *pSrc; /* The FROM clause of the outer query */ 3190 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3191 ExprList *pList; /* The result set of the outer query */ 3192 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3193 int i; /* Loop counter */ 3194 Expr *pWhere; /* The WHERE clause */ 3195 struct SrcList_item *pSubitem; /* The subquery */ 3196 sqlite3 *db = pParse->db; 3197 3198 /* Check to see if flattening is permitted. Return 0 if not. 3199 */ 3200 assert( p!=0 ); 3201 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3202 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3203 pSrc = p->pSrc; 3204 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3205 pSubitem = &pSrc->a[iFrom]; 3206 iParent = pSubitem->iCursor; 3207 pSub = pSubitem->pSelect; 3208 assert( pSub!=0 ); 3209 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3210 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3211 pSubSrc = pSub->pSrc; 3212 assert( pSubSrc ); 3213 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3214 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 3215 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3216 ** became arbitrary expressions, we were forced to add restrictions (13) 3217 ** and (14). */ 3218 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3219 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3220 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3221 return 0; /* Restriction (15) */ 3222 } 3223 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3224 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3225 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3226 return 0; /* Restrictions (8)(9) */ 3227 } 3228 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3229 return 0; /* Restriction (6) */ 3230 } 3231 if( p->pOrderBy && pSub->pOrderBy ){ 3232 return 0; /* Restriction (11) */ 3233 } 3234 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3235 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3236 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3237 return 0; /* Restriction (21) */ 3238 } 3239 if( pSub->selFlags & SF_Recursive ) return 0; /* Restriction (22) */ 3240 if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0; /* (23) */ 3241 3242 /* OBSOLETE COMMENT 1: 3243 ** Restriction 3: If the subquery is a join, make sure the subquery is 3244 ** not used as the right operand of an outer join. Examples of why this 3245 ** is not allowed: 3246 ** 3247 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3248 ** 3249 ** If we flatten the above, we would get 3250 ** 3251 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3252 ** 3253 ** which is not at all the same thing. 3254 ** 3255 ** OBSOLETE COMMENT 2: 3256 ** Restriction 12: If the subquery is the right operand of a left outer 3257 ** join, make sure the subquery has no WHERE clause. 3258 ** An examples of why this is not allowed: 3259 ** 3260 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3261 ** 3262 ** If we flatten the above, we would get 3263 ** 3264 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3265 ** 3266 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3267 ** effectively converts the OUTER JOIN into an INNER JOIN. 3268 ** 3269 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3270 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3271 ** is fraught with danger. Best to avoid the whole thing. If the 3272 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3273 */ 3274 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3275 return 0; 3276 } 3277 3278 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3279 ** use only the UNION ALL operator. And none of the simple select queries 3280 ** that make up the compound SELECT are allowed to be aggregate or distinct 3281 ** queries. 3282 */ 3283 if( pSub->pPrior ){ 3284 if( pSub->pOrderBy ){ 3285 return 0; /* Restriction 20 */ 3286 } 3287 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3288 return 0; 3289 } 3290 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3291 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3292 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3293 assert( pSub->pSrc!=0 ); 3294 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3295 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3296 || pSub1->pSrc->nSrc<1 3297 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3298 ){ 3299 return 0; 3300 } 3301 testcase( pSub1->pSrc->nSrc>1 ); 3302 } 3303 3304 /* Restriction 18. */ 3305 if( p->pOrderBy ){ 3306 int ii; 3307 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3308 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3309 } 3310 } 3311 } 3312 3313 /***** If we reach this point, flattening is permitted. *****/ 3314 3315 /* Authorize the subquery */ 3316 pParse->zAuthContext = pSubitem->zName; 3317 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3318 testcase( i==SQLITE_DENY ); 3319 pParse->zAuthContext = zSavedAuthContext; 3320 3321 /* If the sub-query is a compound SELECT statement, then (by restrictions 3322 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3323 ** be of the form: 3324 ** 3325 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3326 ** 3327 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3328 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3329 ** OFFSET clauses and joins them to the left-hand-side of the original 3330 ** using UNION ALL operators. In this case N is the number of simple 3331 ** select statements in the compound sub-query. 3332 ** 3333 ** Example: 3334 ** 3335 ** SELECT a+1 FROM ( 3336 ** SELECT x FROM tab 3337 ** UNION ALL 3338 ** SELECT y FROM tab 3339 ** UNION ALL 3340 ** SELECT abs(z*2) FROM tab2 3341 ** ) WHERE a!=5 ORDER BY 1 3342 ** 3343 ** Transformed into: 3344 ** 3345 ** SELECT x+1 FROM tab WHERE x+1!=5 3346 ** UNION ALL 3347 ** SELECT y+1 FROM tab WHERE y+1!=5 3348 ** UNION ALL 3349 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3350 ** ORDER BY 1 3351 ** 3352 ** We call this the "compound-subquery flattening". 3353 */ 3354 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3355 Select *pNew; 3356 ExprList *pOrderBy = p->pOrderBy; 3357 Expr *pLimit = p->pLimit; 3358 Expr *pOffset = p->pOffset; 3359 Select *pPrior = p->pPrior; 3360 p->pOrderBy = 0; 3361 p->pSrc = 0; 3362 p->pPrior = 0; 3363 p->pLimit = 0; 3364 p->pOffset = 0; 3365 pNew = sqlite3SelectDup(db, p, 0); 3366 p->pOffset = pOffset; 3367 p->pLimit = pLimit; 3368 p->pOrderBy = pOrderBy; 3369 p->pSrc = pSrc; 3370 p->op = TK_ALL; 3371 if( pNew==0 ){ 3372 p->pPrior = pPrior; 3373 }else{ 3374 pNew->pPrior = pPrior; 3375 if( pPrior ) pPrior->pNext = pNew; 3376 pNew->pNext = p; 3377 p->pPrior = pNew; 3378 } 3379 if( db->mallocFailed ) return 1; 3380 } 3381 3382 /* Begin flattening the iFrom-th entry of the FROM clause 3383 ** in the outer query. 3384 */ 3385 pSub = pSub1 = pSubitem->pSelect; 3386 3387 /* Delete the transient table structure associated with the 3388 ** subquery 3389 */ 3390 sqlite3DbFree(db, pSubitem->zDatabase); 3391 sqlite3DbFree(db, pSubitem->zName); 3392 sqlite3DbFree(db, pSubitem->zAlias); 3393 pSubitem->zDatabase = 0; 3394 pSubitem->zName = 0; 3395 pSubitem->zAlias = 0; 3396 pSubitem->pSelect = 0; 3397 3398 /* Defer deleting the Table object associated with the 3399 ** subquery until code generation is 3400 ** complete, since there may still exist Expr.pTab entries that 3401 ** refer to the subquery even after flattening. Ticket #3346. 3402 ** 3403 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3404 */ 3405 if( ALWAYS(pSubitem->pTab!=0) ){ 3406 Table *pTabToDel = pSubitem->pTab; 3407 if( pTabToDel->nRef==1 ){ 3408 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3409 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3410 pToplevel->pZombieTab = pTabToDel; 3411 }else{ 3412 pTabToDel->nRef--; 3413 } 3414 pSubitem->pTab = 0; 3415 } 3416 3417 /* The following loop runs once for each term in a compound-subquery 3418 ** flattening (as described above). If we are doing a different kind 3419 ** of flattening - a flattening other than a compound-subquery flattening - 3420 ** then this loop only runs once. 3421 ** 3422 ** This loop moves all of the FROM elements of the subquery into the 3423 ** the FROM clause of the outer query. Before doing this, remember 3424 ** the cursor number for the original outer query FROM element in 3425 ** iParent. The iParent cursor will never be used. Subsequent code 3426 ** will scan expressions looking for iParent references and replace 3427 ** those references with expressions that resolve to the subquery FROM 3428 ** elements we are now copying in. 3429 */ 3430 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3431 int nSubSrc; 3432 u8 jointype = 0; 3433 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3434 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3435 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3436 3437 if( pSrc ){ 3438 assert( pParent==p ); /* First time through the loop */ 3439 jointype = pSubitem->jointype; 3440 }else{ 3441 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3442 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3443 if( pSrc==0 ){ 3444 assert( db->mallocFailed ); 3445 break; 3446 } 3447 } 3448 3449 /* The subquery uses a single slot of the FROM clause of the outer 3450 ** query. If the subquery has more than one element in its FROM clause, 3451 ** then expand the outer query to make space for it to hold all elements 3452 ** of the subquery. 3453 ** 3454 ** Example: 3455 ** 3456 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3457 ** 3458 ** The outer query has 3 slots in its FROM clause. One slot of the 3459 ** outer query (the middle slot) is used by the subquery. The next 3460 ** block of code will expand the out query to 4 slots. The middle 3461 ** slot is expanded to two slots in order to make space for the 3462 ** two elements in the FROM clause of the subquery. 3463 */ 3464 if( nSubSrc>1 ){ 3465 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3466 if( db->mallocFailed ){ 3467 break; 3468 } 3469 } 3470 3471 /* Transfer the FROM clause terms from the subquery into the 3472 ** outer query. 3473 */ 3474 for(i=0; i<nSubSrc; i++){ 3475 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3476 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3477 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3478 } 3479 pSrc->a[iFrom].jointype = jointype; 3480 3481 /* Now begin substituting subquery result set expressions for 3482 ** references to the iParent in the outer query. 3483 ** 3484 ** Example: 3485 ** 3486 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3487 ** \ \_____________ subquery __________/ / 3488 ** \_____________________ outer query ______________________________/ 3489 ** 3490 ** We look at every expression in the outer query and every place we see 3491 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3492 */ 3493 pList = pParent->pEList; 3494 for(i=0; i<pList->nExpr; i++){ 3495 if( pList->a[i].zName==0 ){ 3496 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3497 sqlite3Dequote(zName); 3498 pList->a[i].zName = zName; 3499 } 3500 } 3501 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3502 if( isAgg ){ 3503 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3504 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3505 } 3506 if( pSub->pOrderBy ){ 3507 assert( pParent->pOrderBy==0 ); 3508 pParent->pOrderBy = pSub->pOrderBy; 3509 pSub->pOrderBy = 0; 3510 }else if( pParent->pOrderBy ){ 3511 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3512 } 3513 if( pSub->pWhere ){ 3514 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3515 }else{ 3516 pWhere = 0; 3517 } 3518 if( subqueryIsAgg ){ 3519 assert( pParent->pHaving==0 ); 3520 pParent->pHaving = pParent->pWhere; 3521 pParent->pWhere = pWhere; 3522 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3523 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3524 sqlite3ExprDup(db, pSub->pHaving, 0)); 3525 assert( pParent->pGroupBy==0 ); 3526 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3527 }else{ 3528 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3529 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3530 } 3531 3532 /* The flattened query is distinct if either the inner or the 3533 ** outer query is distinct. 3534 */ 3535 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3536 3537 /* 3538 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3539 ** 3540 ** One is tempted to try to add a and b to combine the limits. But this 3541 ** does not work if either limit is negative. 3542 */ 3543 if( pSub->pLimit ){ 3544 pParent->pLimit = pSub->pLimit; 3545 pSub->pLimit = 0; 3546 } 3547 } 3548 3549 /* Finially, delete what is left of the subquery and return 3550 ** success. 3551 */ 3552 sqlite3SelectDelete(db, pSub1); 3553 3554 return 1; 3555 } 3556 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3557 3558 /* 3559 ** Based on the contents of the AggInfo structure indicated by the first 3560 ** argument, this function checks if the following are true: 3561 ** 3562 ** * the query contains just a single aggregate function, 3563 ** * the aggregate function is either min() or max(), and 3564 ** * the argument to the aggregate function is a column value. 3565 ** 3566 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3567 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3568 ** list of arguments passed to the aggregate before returning. 3569 ** 3570 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3571 ** WHERE_ORDERBY_NORMAL is returned. 3572 */ 3573 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3574 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3575 3576 *ppMinMax = 0; 3577 if( pAggInfo->nFunc==1 ){ 3578 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3579 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3580 3581 assert( pExpr->op==TK_AGG_FUNCTION ); 3582 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3583 const char *zFunc = pExpr->u.zToken; 3584 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3585 eRet = WHERE_ORDERBY_MIN; 3586 *ppMinMax = pEList; 3587 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3588 eRet = WHERE_ORDERBY_MAX; 3589 *ppMinMax = pEList; 3590 } 3591 } 3592 } 3593 3594 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3595 return eRet; 3596 } 3597 3598 /* 3599 ** The select statement passed as the first argument is an aggregate query. 3600 ** The second argment is the associated aggregate-info object. This 3601 ** function tests if the SELECT is of the form: 3602 ** 3603 ** SELECT count(*) FROM <tbl> 3604 ** 3605 ** where table is a database table, not a sub-select or view. If the query 3606 ** does match this pattern, then a pointer to the Table object representing 3607 ** <tbl> is returned. Otherwise, 0 is returned. 3608 */ 3609 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3610 Table *pTab; 3611 Expr *pExpr; 3612 3613 assert( !p->pGroupBy ); 3614 3615 if( p->pWhere || p->pEList->nExpr!=1 3616 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3617 ){ 3618 return 0; 3619 } 3620 pTab = p->pSrc->a[0].pTab; 3621 pExpr = p->pEList->a[0].pExpr; 3622 assert( pTab && !pTab->pSelect && pExpr ); 3623 3624 if( IsVirtual(pTab) ) return 0; 3625 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3626 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3627 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3628 if( pExpr->flags&EP_Distinct ) return 0; 3629 3630 return pTab; 3631 } 3632 3633 /* 3634 ** If the source-list item passed as an argument was augmented with an 3635 ** INDEXED BY clause, then try to locate the specified index. If there 3636 ** was such a clause and the named index cannot be found, return 3637 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3638 ** pFrom->pIndex and return SQLITE_OK. 3639 */ 3640 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3641 if( pFrom->pTab && pFrom->zIndex ){ 3642 Table *pTab = pFrom->pTab; 3643 char *zIndex = pFrom->zIndex; 3644 Index *pIdx; 3645 for(pIdx=pTab->pIndex; 3646 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3647 pIdx=pIdx->pNext 3648 ); 3649 if( !pIdx ){ 3650 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3651 pParse->checkSchema = 1; 3652 return SQLITE_ERROR; 3653 } 3654 pFrom->pIndex = pIdx; 3655 } 3656 return SQLITE_OK; 3657 } 3658 /* 3659 ** Detect compound SELECT statements that use an ORDER BY clause with 3660 ** an alternative collating sequence. 3661 ** 3662 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3663 ** 3664 ** These are rewritten as a subquery: 3665 ** 3666 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3667 ** ORDER BY ... COLLATE ... 3668 ** 3669 ** This transformation is necessary because the multiSelectOrderBy() routine 3670 ** above that generates the code for a compound SELECT with an ORDER BY clause 3671 ** uses a merge algorithm that requires the same collating sequence on the 3672 ** result columns as on the ORDER BY clause. See ticket 3673 ** http://www.sqlite.org/src/info/6709574d2a 3674 ** 3675 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3676 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3677 ** there are COLLATE terms in the ORDER BY. 3678 */ 3679 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3680 int i; 3681 Select *pNew; 3682 Select *pX; 3683 sqlite3 *db; 3684 struct ExprList_item *a; 3685 SrcList *pNewSrc; 3686 Parse *pParse; 3687 Token dummy; 3688 3689 if( p->pPrior==0 ) return WRC_Continue; 3690 if( p->pOrderBy==0 ) return WRC_Continue; 3691 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3692 if( pX==0 ) return WRC_Continue; 3693 a = p->pOrderBy->a; 3694 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3695 if( a[i].pExpr->flags & EP_Collate ) break; 3696 } 3697 if( i<0 ) return WRC_Continue; 3698 3699 /* If we reach this point, that means the transformation is required. */ 3700 3701 pParse = pWalker->pParse; 3702 db = pParse->db; 3703 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3704 if( pNew==0 ) return WRC_Abort; 3705 memset(&dummy, 0, sizeof(dummy)); 3706 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3707 if( pNewSrc==0 ) return WRC_Abort; 3708 *pNew = *p; 3709 p->pSrc = pNewSrc; 3710 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3711 p->op = TK_SELECT; 3712 p->pWhere = 0; 3713 pNew->pGroupBy = 0; 3714 pNew->pHaving = 0; 3715 pNew->pOrderBy = 0; 3716 p->pPrior = 0; 3717 p->pNext = 0; 3718 p->selFlags &= ~SF_Compound; 3719 assert( pNew->pPrior!=0 ); 3720 pNew->pPrior->pNext = pNew; 3721 pNew->pLimit = 0; 3722 pNew->pOffset = 0; 3723 return WRC_Continue; 3724 } 3725 3726 #ifndef SQLITE_OMIT_CTE 3727 /* 3728 ** Argument pWith (which may be NULL) points to a linked list of nested 3729 ** WITH contexts, from inner to outermost. If the table identified by 3730 ** FROM clause element pItem is really a common-table-expression (CTE) 3731 ** then return a pointer to the CTE definition for that table. Otherwise 3732 ** return NULL. 3733 ** 3734 ** If a non-NULL value is returned, set *ppContext to point to the With 3735 ** object that the returned CTE belongs to. 3736 */ 3737 static struct Cte *searchWith( 3738 With *pWith, /* Current outermost WITH clause */ 3739 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3740 With **ppContext /* OUT: WITH clause return value belongs to */ 3741 ){ 3742 const char *zName; 3743 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3744 With *p; 3745 for(p=pWith; p; p=p->pOuter){ 3746 int i; 3747 for(i=0; i<p->nCte; i++){ 3748 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3749 *ppContext = p; 3750 return &p->a[i]; 3751 } 3752 } 3753 } 3754 } 3755 return 0; 3756 } 3757 3758 /* The code generator maintains a stack of active WITH clauses 3759 ** with the inner-most WITH clause being at the top of the stack. 3760 ** 3761 ** This routine pushes the WITH clause passed as the second argument 3762 ** onto the top of the stack. If argument bFree is true, then this 3763 ** WITH clause will never be popped from the stack. In this case it 3764 ** should be freed along with the Parse object. In other cases, when 3765 ** bFree==0, the With object will be freed along with the SELECT 3766 ** statement with which it is associated. 3767 */ 3768 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3769 assert( bFree==0 || pParse->pWith==0 ); 3770 if( pWith ){ 3771 pWith->pOuter = pParse->pWith; 3772 pParse->pWith = pWith; 3773 pParse->bFreeWith = bFree; 3774 } 3775 } 3776 3777 /* 3778 ** This function checks if argument pFrom refers to a CTE declared by 3779 ** a WITH clause on the stack currently maintained by the parser. And, 3780 ** if currently processing a CTE expression, if it is a recursive 3781 ** reference to the current CTE. 3782 ** 3783 ** If pFrom falls into either of the two categories above, pFrom->pTab 3784 ** and other fields are populated accordingly. The caller should check 3785 ** (pFrom->pTab!=0) to determine whether or not a successful match 3786 ** was found. 3787 ** 3788 ** Whether or not a match is found, SQLITE_OK is returned if no error 3789 ** occurs. If an error does occur, an error message is stored in the 3790 ** parser and some error code other than SQLITE_OK returned. 3791 */ 3792 static int withExpand( 3793 Walker *pWalker, 3794 struct SrcList_item *pFrom 3795 ){ 3796 Parse *pParse = pWalker->pParse; 3797 sqlite3 *db = pParse->db; 3798 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3799 With *pWith; /* WITH clause that pCte belongs to */ 3800 3801 assert( pFrom->pTab==0 ); 3802 3803 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3804 if( pCte ){ 3805 Table *pTab; 3806 ExprList *pEList; 3807 Select *pSel; 3808 Select *pLeft; /* Left-most SELECT statement */ 3809 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3810 With *pSavedWith; /* Initial value of pParse->pWith */ 3811 3812 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3813 ** recursive reference to CTE pCte. Leave an error in pParse and return 3814 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3815 ** In this case, proceed. */ 3816 if( pCte->zErr ){ 3817 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3818 return SQLITE_ERROR; 3819 } 3820 3821 assert( pFrom->pTab==0 ); 3822 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3823 if( pTab==0 ) return WRC_Abort; 3824 pTab->nRef = 1; 3825 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3826 pTab->iPKey = -1; 3827 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 3828 pTab->tabFlags |= TF_Ephemeral; 3829 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3830 if( db->mallocFailed ) return SQLITE_NOMEM; 3831 assert( pFrom->pSelect ); 3832 3833 /* Check if this is a recursive CTE. */ 3834 pSel = pFrom->pSelect; 3835 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3836 if( bMayRecursive ){ 3837 int i; 3838 SrcList *pSrc = pFrom->pSelect->pSrc; 3839 for(i=0; i<pSrc->nSrc; i++){ 3840 struct SrcList_item *pItem = &pSrc->a[i]; 3841 if( pItem->zDatabase==0 3842 && pItem->zName!=0 3843 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 3844 ){ 3845 pItem->pTab = pTab; 3846 pItem->isRecursive = 1; 3847 pTab->nRef++; 3848 pSel->selFlags |= SF_Recursive; 3849 } 3850 } 3851 } 3852 3853 /* Only one recursive reference is permitted. */ 3854 if( pTab->nRef>2 ){ 3855 sqlite3ErrorMsg( 3856 pParse, "multiple references to recursive table: %s", pCte->zName 3857 ); 3858 return SQLITE_ERROR; 3859 } 3860 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 3861 3862 pCte->zErr = "circular reference: %s"; 3863 pSavedWith = pParse->pWith; 3864 pParse->pWith = pWith; 3865 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 3866 3867 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 3868 pEList = pLeft->pEList; 3869 if( pCte->pCols ){ 3870 if( pEList->nExpr!=pCte->pCols->nExpr ){ 3871 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 3872 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 3873 ); 3874 pParse->pWith = pSavedWith; 3875 return SQLITE_ERROR; 3876 } 3877 pEList = pCte->pCols; 3878 } 3879 3880 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 3881 if( bMayRecursive ){ 3882 if( pSel->selFlags & SF_Recursive ){ 3883 pCte->zErr = "multiple recursive references: %s"; 3884 }else{ 3885 pCte->zErr = "recursive reference in a subquery: %s"; 3886 } 3887 sqlite3WalkSelect(pWalker, pSel); 3888 } 3889 pCte->zErr = 0; 3890 pParse->pWith = pSavedWith; 3891 } 3892 3893 return SQLITE_OK; 3894 } 3895 #endif 3896 3897 #ifndef SQLITE_OMIT_CTE 3898 /* 3899 ** If the SELECT passed as the second argument has an associated WITH 3900 ** clause, pop it from the stack stored as part of the Parse object. 3901 ** 3902 ** This function is used as the xSelectCallback2() callback by 3903 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 3904 ** names and other FROM clause elements. 3905 */ 3906 static void selectPopWith(Walker *pWalker, Select *p){ 3907 Parse *pParse = pWalker->pParse; 3908 With *pWith = findRightmost(p)->pWith; 3909 if( pWith!=0 ){ 3910 assert( pParse->pWith==pWith ); 3911 pParse->pWith = pWith->pOuter; 3912 } 3913 } 3914 #else 3915 #define selectPopWith 0 3916 #endif 3917 3918 /* 3919 ** This routine is a Walker callback for "expanding" a SELECT statement. 3920 ** "Expanding" means to do the following: 3921 ** 3922 ** (1) Make sure VDBE cursor numbers have been assigned to every 3923 ** element of the FROM clause. 3924 ** 3925 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3926 ** defines FROM clause. When views appear in the FROM clause, 3927 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3928 ** that implements the view. A copy is made of the view's SELECT 3929 ** statement so that we can freely modify or delete that statement 3930 ** without worrying about messing up the presistent representation 3931 ** of the view. 3932 ** 3933 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3934 ** on joins and the ON and USING clause of joins. 3935 ** 3936 ** (4) Scan the list of columns in the result set (pEList) looking 3937 ** for instances of the "*" operator or the TABLE.* operator. 3938 ** If found, expand each "*" to be every column in every table 3939 ** and TABLE.* to be every column in TABLE. 3940 ** 3941 */ 3942 static int selectExpander(Walker *pWalker, Select *p){ 3943 Parse *pParse = pWalker->pParse; 3944 int i, j, k; 3945 SrcList *pTabList; 3946 ExprList *pEList; 3947 struct SrcList_item *pFrom; 3948 sqlite3 *db = pParse->db; 3949 Expr *pE, *pRight, *pExpr; 3950 u16 selFlags = p->selFlags; 3951 3952 p->selFlags |= SF_Expanded; 3953 if( db->mallocFailed ){ 3954 return WRC_Abort; 3955 } 3956 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 3957 return WRC_Prune; 3958 } 3959 pTabList = p->pSrc; 3960 pEList = p->pEList; 3961 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 3962 3963 /* Make sure cursor numbers have been assigned to all entries in 3964 ** the FROM clause of the SELECT statement. 3965 */ 3966 sqlite3SrcListAssignCursors(pParse, pTabList); 3967 3968 /* Look up every table named in the FROM clause of the select. If 3969 ** an entry of the FROM clause is a subquery instead of a table or view, 3970 ** then create a transient table structure to describe the subquery. 3971 */ 3972 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3973 Table *pTab; 3974 assert( pFrom->isRecursive==0 || pFrom->pTab ); 3975 if( pFrom->isRecursive ) continue; 3976 if( pFrom->pTab!=0 ){ 3977 /* This statement has already been prepared. There is no need 3978 ** to go further. */ 3979 assert( i==0 ); 3980 #ifndef SQLITE_OMIT_CTE 3981 selectPopWith(pWalker, p); 3982 #endif 3983 return WRC_Prune; 3984 } 3985 #ifndef SQLITE_OMIT_CTE 3986 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 3987 if( pFrom->pTab ) {} else 3988 #endif 3989 if( pFrom->zName==0 ){ 3990 #ifndef SQLITE_OMIT_SUBQUERY 3991 Select *pSel = pFrom->pSelect; 3992 /* A sub-query in the FROM clause of a SELECT */ 3993 assert( pSel!=0 ); 3994 assert( pFrom->pTab==0 ); 3995 sqlite3WalkSelect(pWalker, pSel); 3996 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3997 if( pTab==0 ) return WRC_Abort; 3998 pTab->nRef = 1; 3999 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4000 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4001 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4002 pTab->iPKey = -1; 4003 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4004 pTab->tabFlags |= TF_Ephemeral; 4005 #endif 4006 }else{ 4007 /* An ordinary table or view name in the FROM clause */ 4008 assert( pFrom->pTab==0 ); 4009 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4010 if( pTab==0 ) return WRC_Abort; 4011 if( pTab->nRef==0xffff ){ 4012 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4013 pTab->zName); 4014 pFrom->pTab = 0; 4015 return WRC_Abort; 4016 } 4017 pTab->nRef++; 4018 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4019 if( pTab->pSelect || IsVirtual(pTab) ){ 4020 /* We reach here if the named table is a really a view */ 4021 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4022 assert( pFrom->pSelect==0 ); 4023 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4024 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4025 } 4026 #endif 4027 } 4028 4029 /* Locate the index named by the INDEXED BY clause, if any. */ 4030 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4031 return WRC_Abort; 4032 } 4033 } 4034 4035 /* Process NATURAL keywords, and ON and USING clauses of joins. 4036 */ 4037 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4038 return WRC_Abort; 4039 } 4040 4041 /* For every "*" that occurs in the column list, insert the names of 4042 ** all columns in all tables. And for every TABLE.* insert the names 4043 ** of all columns in TABLE. The parser inserted a special expression 4044 ** with the TK_ALL operator for each "*" that it found in the column list. 4045 ** The following code just has to locate the TK_ALL expressions and expand 4046 ** each one to the list of all columns in all tables. 4047 ** 4048 ** The first loop just checks to see if there are any "*" operators 4049 ** that need expanding. 4050 */ 4051 for(k=0; k<pEList->nExpr; k++){ 4052 pE = pEList->a[k].pExpr; 4053 if( pE->op==TK_ALL ) break; 4054 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4055 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4056 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4057 } 4058 if( k<pEList->nExpr ){ 4059 /* 4060 ** If we get here it means the result set contains one or more "*" 4061 ** operators that need to be expanded. Loop through each expression 4062 ** in the result set and expand them one by one. 4063 */ 4064 struct ExprList_item *a = pEList->a; 4065 ExprList *pNew = 0; 4066 int flags = pParse->db->flags; 4067 int longNames = (flags & SQLITE_FullColNames)!=0 4068 && (flags & SQLITE_ShortColNames)==0; 4069 4070 /* When processing FROM-clause subqueries, it is always the case 4071 ** that full_column_names=OFF and short_column_names=ON. The 4072 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4073 assert( (p->selFlags & SF_NestedFrom)==0 4074 || ((flags & SQLITE_FullColNames)==0 && 4075 (flags & SQLITE_ShortColNames)!=0) ); 4076 4077 for(k=0; k<pEList->nExpr; k++){ 4078 pE = a[k].pExpr; 4079 pRight = pE->pRight; 4080 assert( pE->op!=TK_DOT || pRight!=0 ); 4081 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4082 /* This particular expression does not need to be expanded. 4083 */ 4084 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4085 if( pNew ){ 4086 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4087 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4088 a[k].zName = 0; 4089 a[k].zSpan = 0; 4090 } 4091 a[k].pExpr = 0; 4092 }else{ 4093 /* This expression is a "*" or a "TABLE.*" and needs to be 4094 ** expanded. */ 4095 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4096 char *zTName = 0; /* text of name of TABLE */ 4097 if( pE->op==TK_DOT ){ 4098 assert( pE->pLeft!=0 ); 4099 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4100 zTName = pE->pLeft->u.zToken; 4101 } 4102 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4103 Table *pTab = pFrom->pTab; 4104 Select *pSub = pFrom->pSelect; 4105 char *zTabName = pFrom->zAlias; 4106 const char *zSchemaName = 0; 4107 int iDb; 4108 if( zTabName==0 ){ 4109 zTabName = pTab->zName; 4110 } 4111 if( db->mallocFailed ) break; 4112 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4113 pSub = 0; 4114 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4115 continue; 4116 } 4117 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4118 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4119 } 4120 for(j=0; j<pTab->nCol; j++){ 4121 char *zName = pTab->aCol[j].zName; 4122 char *zColname; /* The computed column name */ 4123 char *zToFree; /* Malloced string that needs to be freed */ 4124 Token sColname; /* Computed column name as a token */ 4125 4126 assert( zName ); 4127 if( zTName && pSub 4128 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4129 ){ 4130 continue; 4131 } 4132 4133 /* If a column is marked as 'hidden' (currently only possible 4134 ** for virtual tables), do not include it in the expanded 4135 ** result-set list. 4136 */ 4137 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4138 assert(IsVirtual(pTab)); 4139 continue; 4140 } 4141 tableSeen = 1; 4142 4143 if( i>0 && zTName==0 ){ 4144 if( (pFrom->jointype & JT_NATURAL)!=0 4145 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4146 ){ 4147 /* In a NATURAL join, omit the join columns from the 4148 ** table to the right of the join */ 4149 continue; 4150 } 4151 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4152 /* In a join with a USING clause, omit columns in the 4153 ** using clause from the table on the right. */ 4154 continue; 4155 } 4156 } 4157 pRight = sqlite3Expr(db, TK_ID, zName); 4158 zColname = zName; 4159 zToFree = 0; 4160 if( longNames || pTabList->nSrc>1 ){ 4161 Expr *pLeft; 4162 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4163 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4164 if( zSchemaName ){ 4165 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4166 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4167 } 4168 if( longNames ){ 4169 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4170 zToFree = zColname; 4171 } 4172 }else{ 4173 pExpr = pRight; 4174 } 4175 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4176 sColname.z = zColname; 4177 sColname.n = sqlite3Strlen30(zColname); 4178 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4179 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4180 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4181 if( pSub ){ 4182 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4183 testcase( pX->zSpan==0 ); 4184 }else{ 4185 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4186 zSchemaName, zTabName, zColname); 4187 testcase( pX->zSpan==0 ); 4188 } 4189 pX->bSpanIsTab = 1; 4190 } 4191 sqlite3DbFree(db, zToFree); 4192 } 4193 } 4194 if( !tableSeen ){ 4195 if( zTName ){ 4196 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4197 }else{ 4198 sqlite3ErrorMsg(pParse, "no tables specified"); 4199 } 4200 } 4201 } 4202 } 4203 sqlite3ExprListDelete(db, pEList); 4204 p->pEList = pNew; 4205 } 4206 #if SQLITE_MAX_COLUMN 4207 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4208 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4209 } 4210 #endif 4211 return WRC_Continue; 4212 } 4213 4214 /* 4215 ** No-op routine for the parse-tree walker. 4216 ** 4217 ** When this routine is the Walker.xExprCallback then expression trees 4218 ** are walked without any actions being taken at each node. Presumably, 4219 ** when this routine is used for Walker.xExprCallback then 4220 ** Walker.xSelectCallback is set to do something useful for every 4221 ** subquery in the parser tree. 4222 */ 4223 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4224 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4225 return WRC_Continue; 4226 } 4227 4228 /* 4229 ** This routine "expands" a SELECT statement and all of its subqueries. 4230 ** For additional information on what it means to "expand" a SELECT 4231 ** statement, see the comment on the selectExpand worker callback above. 4232 ** 4233 ** Expanding a SELECT statement is the first step in processing a 4234 ** SELECT statement. The SELECT statement must be expanded before 4235 ** name resolution is performed. 4236 ** 4237 ** If anything goes wrong, an error message is written into pParse. 4238 ** The calling function can detect the problem by looking at pParse->nErr 4239 ** and/or pParse->db->mallocFailed. 4240 */ 4241 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4242 Walker w; 4243 memset(&w, 0, sizeof(w)); 4244 w.xExprCallback = exprWalkNoop; 4245 w.pParse = pParse; 4246 if( pParse->hasCompound ){ 4247 w.xSelectCallback = convertCompoundSelectToSubquery; 4248 sqlite3WalkSelect(&w, pSelect); 4249 } 4250 w.xSelectCallback = selectExpander; 4251 w.xSelectCallback2 = selectPopWith; 4252 sqlite3WalkSelect(&w, pSelect); 4253 } 4254 4255 4256 #ifndef SQLITE_OMIT_SUBQUERY 4257 /* 4258 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4259 ** interface. 4260 ** 4261 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4262 ** information to the Table structure that represents the result set 4263 ** of that subquery. 4264 ** 4265 ** The Table structure that represents the result set was constructed 4266 ** by selectExpander() but the type and collation information was omitted 4267 ** at that point because identifiers had not yet been resolved. This 4268 ** routine is called after identifier resolution. 4269 */ 4270 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4271 Parse *pParse; 4272 int i; 4273 SrcList *pTabList; 4274 struct SrcList_item *pFrom; 4275 4276 assert( p->selFlags & SF_Resolved ); 4277 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4278 p->selFlags |= SF_HasTypeInfo; 4279 pParse = pWalker->pParse; 4280 pTabList = p->pSrc; 4281 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4282 Table *pTab = pFrom->pTab; 4283 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4284 /* A sub-query in the FROM clause of a SELECT */ 4285 Select *pSel = pFrom->pSelect; 4286 if( pSel ){ 4287 while( pSel->pPrior ) pSel = pSel->pPrior; 4288 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4289 } 4290 } 4291 } 4292 } 4293 } 4294 #endif 4295 4296 4297 /* 4298 ** This routine adds datatype and collating sequence information to 4299 ** the Table structures of all FROM-clause subqueries in a 4300 ** SELECT statement. 4301 ** 4302 ** Use this routine after name resolution. 4303 */ 4304 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4305 #ifndef SQLITE_OMIT_SUBQUERY 4306 Walker w; 4307 memset(&w, 0, sizeof(w)); 4308 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4309 w.xExprCallback = exprWalkNoop; 4310 w.pParse = pParse; 4311 sqlite3WalkSelect(&w, pSelect); 4312 #endif 4313 } 4314 4315 4316 /* 4317 ** This routine sets up a SELECT statement for processing. The 4318 ** following is accomplished: 4319 ** 4320 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4321 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4322 ** * ON and USING clauses are shifted into WHERE statements 4323 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4324 ** * Identifiers in expression are matched to tables. 4325 ** 4326 ** This routine acts recursively on all subqueries within the SELECT. 4327 */ 4328 void sqlite3SelectPrep( 4329 Parse *pParse, /* The parser context */ 4330 Select *p, /* The SELECT statement being coded. */ 4331 NameContext *pOuterNC /* Name context for container */ 4332 ){ 4333 sqlite3 *db; 4334 if( NEVER(p==0) ) return; 4335 db = pParse->db; 4336 if( db->mallocFailed ) return; 4337 if( p->selFlags & SF_HasTypeInfo ) return; 4338 sqlite3SelectExpand(pParse, p); 4339 if( pParse->nErr || db->mallocFailed ) return; 4340 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4341 if( pParse->nErr || db->mallocFailed ) return; 4342 sqlite3SelectAddTypeInfo(pParse, p); 4343 } 4344 4345 /* 4346 ** Reset the aggregate accumulator. 4347 ** 4348 ** The aggregate accumulator is a set of memory cells that hold 4349 ** intermediate results while calculating an aggregate. This 4350 ** routine generates code that stores NULLs in all of those memory 4351 ** cells. 4352 */ 4353 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4354 Vdbe *v = pParse->pVdbe; 4355 int i; 4356 struct AggInfo_func *pFunc; 4357 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4358 if( nReg==0 ) return; 4359 #ifdef SQLITE_DEBUG 4360 /* Verify that all AggInfo registers are within the range specified by 4361 ** AggInfo.mnReg..AggInfo.mxReg */ 4362 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4363 for(i=0; i<pAggInfo->nColumn; i++){ 4364 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4365 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4366 } 4367 for(i=0; i<pAggInfo->nFunc; i++){ 4368 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4369 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4370 } 4371 #endif 4372 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4373 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4374 if( pFunc->iDistinct>=0 ){ 4375 Expr *pE = pFunc->pExpr; 4376 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4377 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4378 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4379 "argument"); 4380 pFunc->iDistinct = -1; 4381 }else{ 4382 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4383 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4384 (char*)pKeyInfo, P4_KEYINFO); 4385 } 4386 } 4387 } 4388 } 4389 4390 /* 4391 ** Invoke the OP_AggFinalize opcode for every aggregate function 4392 ** in the AggInfo structure. 4393 */ 4394 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4395 Vdbe *v = pParse->pVdbe; 4396 int i; 4397 struct AggInfo_func *pF; 4398 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4399 ExprList *pList = pF->pExpr->x.pList; 4400 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4401 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4402 (void*)pF->pFunc, P4_FUNCDEF); 4403 } 4404 } 4405 4406 /* 4407 ** Update the accumulator memory cells for an aggregate based on 4408 ** the current cursor position. 4409 */ 4410 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4411 Vdbe *v = pParse->pVdbe; 4412 int i; 4413 int regHit = 0; 4414 int addrHitTest = 0; 4415 struct AggInfo_func *pF; 4416 struct AggInfo_col *pC; 4417 4418 pAggInfo->directMode = 1; 4419 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4420 int nArg; 4421 int addrNext = 0; 4422 int regAgg; 4423 ExprList *pList = pF->pExpr->x.pList; 4424 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4425 if( pList ){ 4426 nArg = pList->nExpr; 4427 regAgg = sqlite3GetTempRange(pParse, nArg); 4428 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4429 }else{ 4430 nArg = 0; 4431 regAgg = 0; 4432 } 4433 if( pF->iDistinct>=0 ){ 4434 addrNext = sqlite3VdbeMakeLabel(v); 4435 assert( nArg==1 ); 4436 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4437 } 4438 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4439 CollSeq *pColl = 0; 4440 struct ExprList_item *pItem; 4441 int j; 4442 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4443 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4444 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4445 } 4446 if( !pColl ){ 4447 pColl = pParse->db->pDfltColl; 4448 } 4449 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4450 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4451 } 4452 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4453 (void*)pF->pFunc, P4_FUNCDEF); 4454 sqlite3VdbeChangeP5(v, (u8)nArg); 4455 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4456 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4457 if( addrNext ){ 4458 sqlite3VdbeResolveLabel(v, addrNext); 4459 sqlite3ExprCacheClear(pParse); 4460 } 4461 } 4462 4463 /* Before populating the accumulator registers, clear the column cache. 4464 ** Otherwise, if any of the required column values are already present 4465 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4466 ** to pC->iMem. But by the time the value is used, the original register 4467 ** may have been used, invalidating the underlying buffer holding the 4468 ** text or blob value. See ticket [883034dcb5]. 4469 ** 4470 ** Another solution would be to change the OP_SCopy used to copy cached 4471 ** values to an OP_Copy. 4472 */ 4473 if( regHit ){ 4474 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4475 } 4476 sqlite3ExprCacheClear(pParse); 4477 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4478 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4479 } 4480 pAggInfo->directMode = 0; 4481 sqlite3ExprCacheClear(pParse); 4482 if( addrHitTest ){ 4483 sqlite3VdbeJumpHere(v, addrHitTest); 4484 } 4485 } 4486 4487 /* 4488 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4489 ** count(*) query ("SELECT count(*) FROM pTab"). 4490 */ 4491 #ifndef SQLITE_OMIT_EXPLAIN 4492 static void explainSimpleCount( 4493 Parse *pParse, /* Parse context */ 4494 Table *pTab, /* Table being queried */ 4495 Index *pIdx /* Index used to optimize scan, or NULL */ 4496 ){ 4497 if( pParse->explain==2 ){ 4498 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4499 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4500 pTab->zName, 4501 bCover ? " USING COVERING INDEX " : "", 4502 bCover ? pIdx->zName : "" 4503 ); 4504 sqlite3VdbeAddOp4( 4505 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4506 ); 4507 } 4508 } 4509 #else 4510 # define explainSimpleCount(a,b,c) 4511 #endif 4512 4513 /* 4514 ** Generate code for the SELECT statement given in the p argument. 4515 ** 4516 ** The results are returned according to the SelectDest structure. 4517 ** See comments in sqliteInt.h for further information. 4518 ** 4519 ** This routine returns the number of errors. If any errors are 4520 ** encountered, then an appropriate error message is left in 4521 ** pParse->zErrMsg. 4522 ** 4523 ** This routine does NOT free the Select structure passed in. The 4524 ** calling function needs to do that. 4525 */ 4526 int sqlite3Select( 4527 Parse *pParse, /* The parser context */ 4528 Select *p, /* The SELECT statement being coded. */ 4529 SelectDest *pDest /* What to do with the query results */ 4530 ){ 4531 int i, j; /* Loop counters */ 4532 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4533 Vdbe *v; /* The virtual machine under construction */ 4534 int isAgg; /* True for select lists like "count(*)" */ 4535 ExprList *pEList; /* List of columns to extract. */ 4536 SrcList *pTabList; /* List of tables to select from */ 4537 Expr *pWhere; /* The WHERE clause. May be NULL */ 4538 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4539 Expr *pHaving; /* The HAVING clause. May be NULL */ 4540 int rc = 1; /* Value to return from this function */ 4541 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4542 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4543 AggInfo sAggInfo; /* Information used by aggregate queries */ 4544 int iEnd; /* Address of the end of the query */ 4545 sqlite3 *db; /* The database connection */ 4546 4547 #ifndef SQLITE_OMIT_EXPLAIN 4548 int iRestoreSelectId = pParse->iSelectId; 4549 pParse->iSelectId = pParse->iNextSelectId++; 4550 #endif 4551 4552 db = pParse->db; 4553 if( p==0 || db->mallocFailed || pParse->nErr ){ 4554 return 1; 4555 } 4556 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4557 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4558 4559 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4560 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4561 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4562 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4563 if( IgnorableOrderby(pDest) ){ 4564 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4565 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4566 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4567 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4568 /* If ORDER BY makes no difference in the output then neither does 4569 ** DISTINCT so it can be removed too. */ 4570 sqlite3ExprListDelete(db, p->pOrderBy); 4571 p->pOrderBy = 0; 4572 p->selFlags &= ~SF_Distinct; 4573 } 4574 sqlite3SelectPrep(pParse, p, 0); 4575 memset(&sSort, 0, sizeof(sSort)); 4576 sSort.pOrderBy = p->pOrderBy; 4577 pTabList = p->pSrc; 4578 pEList = p->pEList; 4579 if( pParse->nErr || db->mallocFailed ){ 4580 goto select_end; 4581 } 4582 isAgg = (p->selFlags & SF_Aggregate)!=0; 4583 assert( pEList!=0 ); 4584 4585 /* Begin generating code. 4586 */ 4587 v = sqlite3GetVdbe(pParse); 4588 if( v==0 ) goto select_end; 4589 4590 /* If writing to memory or generating a set 4591 ** only a single column may be output. 4592 */ 4593 #ifndef SQLITE_OMIT_SUBQUERY 4594 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4595 goto select_end; 4596 } 4597 #endif 4598 4599 /* Generate code for all sub-queries in the FROM clause 4600 */ 4601 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4602 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4603 struct SrcList_item *pItem = &pTabList->a[i]; 4604 SelectDest dest; 4605 Select *pSub = pItem->pSelect; 4606 int isAggSub; 4607 4608 if( pSub==0 ) continue; 4609 4610 /* Sometimes the code for a subquery will be generated more than 4611 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4612 ** for example. In that case, do not regenerate the code to manifest 4613 ** a view or the co-routine to implement a view. The first instance 4614 ** is sufficient, though the subroutine to manifest the view does need 4615 ** to be invoked again. */ 4616 if( pItem->addrFillSub ){ 4617 if( pItem->viaCoroutine==0 ){ 4618 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4619 } 4620 continue; 4621 } 4622 4623 /* Increment Parse.nHeight by the height of the largest expression 4624 ** tree referred to by this, the parent select. The child select 4625 ** may contain expression trees of at most 4626 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4627 ** more conservative than necessary, but much easier than enforcing 4628 ** an exact limit. 4629 */ 4630 pParse->nHeight += sqlite3SelectExprHeight(p); 4631 4632 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4633 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4634 /* This subquery can be absorbed into its parent. */ 4635 if( isAggSub ){ 4636 isAgg = 1; 4637 p->selFlags |= SF_Aggregate; 4638 } 4639 i = -1; 4640 }else if( pTabList->nSrc==1 4641 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4642 ){ 4643 /* Implement a co-routine that will return a single row of the result 4644 ** set on each invocation. 4645 */ 4646 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4647 pItem->regReturn = ++pParse->nMem; 4648 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4649 VdbeComment((v, "%s", pItem->pTab->zName)); 4650 pItem->addrFillSub = addrTop; 4651 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4652 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4653 sqlite3Select(pParse, pSub, &dest); 4654 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4655 pItem->viaCoroutine = 1; 4656 pItem->regResult = dest.iSdst; 4657 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4658 sqlite3VdbeJumpHere(v, addrTop-1); 4659 sqlite3ClearTempRegCache(pParse); 4660 }else{ 4661 /* Generate a subroutine that will fill an ephemeral table with 4662 ** the content of this subquery. pItem->addrFillSub will point 4663 ** to the address of the generated subroutine. pItem->regReturn 4664 ** is a register allocated to hold the subroutine return address 4665 */ 4666 int topAddr; 4667 int onceAddr = 0; 4668 int retAddr; 4669 assert( pItem->addrFillSub==0 ); 4670 pItem->regReturn = ++pParse->nMem; 4671 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4672 pItem->addrFillSub = topAddr+1; 4673 if( pItem->isCorrelated==0 ){ 4674 /* If the subquery is not correlated and if we are not inside of 4675 ** a trigger, then we only need to compute the value of the subquery 4676 ** once. */ 4677 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4678 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4679 }else{ 4680 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4681 } 4682 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4683 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4684 sqlite3Select(pParse, pSub, &dest); 4685 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4686 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4687 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4688 VdbeComment((v, "end %s", pItem->pTab->zName)); 4689 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4690 sqlite3ClearTempRegCache(pParse); 4691 } 4692 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4693 goto select_end; 4694 } 4695 pParse->nHeight -= sqlite3SelectExprHeight(p); 4696 pTabList = p->pSrc; 4697 if( !IgnorableOrderby(pDest) ){ 4698 sSort.pOrderBy = p->pOrderBy; 4699 } 4700 } 4701 pEList = p->pEList; 4702 #endif 4703 pWhere = p->pWhere; 4704 pGroupBy = p->pGroupBy; 4705 pHaving = p->pHaving; 4706 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4707 4708 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4709 /* If there is are a sequence of queries, do the earlier ones first. 4710 */ 4711 if( p->pPrior ){ 4712 rc = multiSelect(pParse, p, pDest); 4713 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4714 return rc; 4715 } 4716 #endif 4717 4718 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4719 ** if the select-list is the same as the ORDER BY list, then this query 4720 ** can be rewritten as a GROUP BY. In other words, this: 4721 ** 4722 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4723 ** 4724 ** is transformed to: 4725 ** 4726 ** SELECT xyz FROM ... GROUP BY xyz 4727 ** 4728 ** The second form is preferred as a single index (or temp-table) may be 4729 ** used for both the ORDER BY and DISTINCT processing. As originally 4730 ** written the query must use a temp-table for at least one of the ORDER 4731 ** BY and DISTINCT, and an index or separate temp-table for the other. 4732 */ 4733 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4734 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4735 ){ 4736 p->selFlags &= ~SF_Distinct; 4737 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4738 pGroupBy = p->pGroupBy; 4739 sSort.pOrderBy = 0; 4740 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4741 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4742 ** original setting of the SF_Distinct flag, not the current setting */ 4743 assert( sDistinct.isTnct ); 4744 } 4745 4746 /* If there is an ORDER BY clause, then this sorting 4747 ** index might end up being unused if the data can be 4748 ** extracted in pre-sorted order. If that is the case, then the 4749 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4750 ** we figure out that the sorting index is not needed. The addrSortIndex 4751 ** variable is used to facilitate that change. 4752 */ 4753 if( sSort.pOrderBy ){ 4754 KeyInfo *pKeyInfo; 4755 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); 4756 sSort.iECursor = pParse->nTab++; 4757 sSort.addrSortIndex = 4758 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4759 sSort.iECursor, sSort.pOrderBy->nExpr+2, 0, 4760 (char*)pKeyInfo, P4_KEYINFO); 4761 }else{ 4762 sSort.addrSortIndex = -1; 4763 } 4764 4765 /* If the output is destined for a temporary table, open that table. 4766 */ 4767 if( pDest->eDest==SRT_EphemTab ){ 4768 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4769 } 4770 4771 /* Set the limiter. 4772 */ 4773 iEnd = sqlite3VdbeMakeLabel(v); 4774 p->nSelectRow = LARGEST_INT64; 4775 computeLimitRegisters(pParse, p, iEnd); 4776 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4777 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4778 sSort.sortFlags |= SORTFLAG_UseSorter; 4779 } 4780 4781 /* Open a virtual index to use for the distinct set. 4782 */ 4783 if( p->selFlags & SF_Distinct ){ 4784 sDistinct.tabTnct = pParse->nTab++; 4785 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4786 sDistinct.tabTnct, 0, 0, 4787 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4788 P4_KEYINFO); 4789 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4790 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4791 }else{ 4792 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4793 } 4794 4795 if( !isAgg && pGroupBy==0 ){ 4796 /* No aggregate functions and no GROUP BY clause */ 4797 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4798 4799 /* Begin the database scan. */ 4800 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4801 p->pEList, wctrlFlags, 0); 4802 if( pWInfo==0 ) goto select_end; 4803 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4804 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4805 } 4806 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4807 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4808 } 4809 if( sSort.pOrderBy ){ 4810 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 4811 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 4812 sSort.pOrderBy = 0; 4813 } 4814 } 4815 4816 /* If sorting index that was created by a prior OP_OpenEphemeral 4817 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4818 ** into an OP_Noop. 4819 */ 4820 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 4821 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 4822 } 4823 4824 /* Use the standard inner loop. */ 4825 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 4826 sqlite3WhereContinueLabel(pWInfo), 4827 sqlite3WhereBreakLabel(pWInfo)); 4828 4829 /* End the database scan loop. 4830 */ 4831 sqlite3WhereEnd(pWInfo); 4832 }else{ 4833 /* This case when there exist aggregate functions or a GROUP BY clause 4834 ** or both */ 4835 NameContext sNC; /* Name context for processing aggregate information */ 4836 int iAMem; /* First Mem address for storing current GROUP BY */ 4837 int iBMem; /* First Mem address for previous GROUP BY */ 4838 int iUseFlag; /* Mem address holding flag indicating that at least 4839 ** one row of the input to the aggregator has been 4840 ** processed */ 4841 int iAbortFlag; /* Mem address which causes query abort if positive */ 4842 int groupBySort; /* Rows come from source in GROUP BY order */ 4843 int addrEnd; /* End of processing for this SELECT */ 4844 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4845 int sortOut = 0; /* Output register from the sorter */ 4846 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 4847 4848 /* Remove any and all aliases between the result set and the 4849 ** GROUP BY clause. 4850 */ 4851 if( pGroupBy ){ 4852 int k; /* Loop counter */ 4853 struct ExprList_item *pItem; /* For looping over expression in a list */ 4854 4855 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4856 pItem->u.x.iAlias = 0; 4857 } 4858 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4859 pItem->u.x.iAlias = 0; 4860 } 4861 if( p->nSelectRow>100 ) p->nSelectRow = 100; 4862 }else{ 4863 p->nSelectRow = 1; 4864 } 4865 4866 4867 /* If there is both a GROUP BY and an ORDER BY clause and they are 4868 ** identical, then it may be possible to disable the ORDER BY clause 4869 ** on the grounds that the GROUP BY will cause elements to come out 4870 ** in the correct order. It also may not - the GROUP BY may use a 4871 ** database index that causes rows to be grouped together as required 4872 ** but not actually sorted. Either way, record the fact that the 4873 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 4874 ** variable. */ 4875 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 4876 orderByGrp = 1; 4877 } 4878 4879 /* Create a label to jump to when we want to abort the query */ 4880 addrEnd = sqlite3VdbeMakeLabel(v); 4881 4882 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4883 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4884 ** SELECT statement. 4885 */ 4886 memset(&sNC, 0, sizeof(sNC)); 4887 sNC.pParse = pParse; 4888 sNC.pSrcList = pTabList; 4889 sNC.pAggInfo = &sAggInfo; 4890 sAggInfo.mnReg = pParse->nMem+1; 4891 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4892 sAggInfo.pGroupBy = pGroupBy; 4893 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4894 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 4895 if( pHaving ){ 4896 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4897 } 4898 sAggInfo.nAccumulator = sAggInfo.nColumn; 4899 for(i=0; i<sAggInfo.nFunc; i++){ 4900 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4901 sNC.ncFlags |= NC_InAggFunc; 4902 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4903 sNC.ncFlags &= ~NC_InAggFunc; 4904 } 4905 sAggInfo.mxReg = pParse->nMem; 4906 if( db->mallocFailed ) goto select_end; 4907 4908 /* Processing for aggregates with GROUP BY is very different and 4909 ** much more complex than aggregates without a GROUP BY. 4910 */ 4911 if( pGroupBy ){ 4912 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4913 int j1; /* A-vs-B comparision jump */ 4914 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4915 int regOutputRow; /* Return address register for output subroutine */ 4916 int addrSetAbort; /* Set the abort flag and return */ 4917 int addrTopOfLoop; /* Top of the input loop */ 4918 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4919 int addrReset; /* Subroutine for resetting the accumulator */ 4920 int regReset; /* Return address register for reset subroutine */ 4921 4922 /* If there is a GROUP BY clause we might need a sorting index to 4923 ** implement it. Allocate that sorting index now. If it turns out 4924 ** that we do not need it after all, the OP_SorterOpen instruction 4925 ** will be converted into a Noop. 4926 */ 4927 sAggInfo.sortingIdx = pParse->nTab++; 4928 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); 4929 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4930 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4931 0, (char*)pKeyInfo, P4_KEYINFO); 4932 4933 /* Initialize memory locations used by GROUP BY aggregate processing 4934 */ 4935 iUseFlag = ++pParse->nMem; 4936 iAbortFlag = ++pParse->nMem; 4937 regOutputRow = ++pParse->nMem; 4938 addrOutputRow = sqlite3VdbeMakeLabel(v); 4939 regReset = ++pParse->nMem; 4940 addrReset = sqlite3VdbeMakeLabel(v); 4941 iAMem = pParse->nMem + 1; 4942 pParse->nMem += pGroupBy->nExpr; 4943 iBMem = pParse->nMem + 1; 4944 pParse->nMem += pGroupBy->nExpr; 4945 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4946 VdbeComment((v, "clear abort flag")); 4947 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4948 VdbeComment((v, "indicate accumulator empty")); 4949 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4950 4951 /* Begin a loop that will extract all source rows in GROUP BY order. 4952 ** This might involve two separate loops with an OP_Sort in between, or 4953 ** it might be a single loop that uses an index to extract information 4954 ** in the right order to begin with. 4955 */ 4956 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4957 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 4958 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 4959 ); 4960 if( pWInfo==0 ) goto select_end; 4961 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 4962 /* The optimizer is able to deliver rows in group by order so 4963 ** we do not have to sort. The OP_OpenEphemeral table will be 4964 ** cancelled later because we still need to use the pKeyInfo 4965 */ 4966 groupBySort = 0; 4967 }else{ 4968 /* Rows are coming out in undetermined order. We have to push 4969 ** each row into a sorting index, terminate the first loop, 4970 ** then loop over the sorting index in order to get the output 4971 ** in sorted order 4972 */ 4973 int regBase; 4974 int regRecord; 4975 int nCol; 4976 int nGroupBy; 4977 4978 explainTempTable(pParse, 4979 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 4980 "DISTINCT" : "GROUP BY"); 4981 4982 groupBySort = 1; 4983 nGroupBy = pGroupBy->nExpr; 4984 nCol = nGroupBy + 1; 4985 j = nGroupBy+1; 4986 for(i=0; i<sAggInfo.nColumn; i++){ 4987 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4988 nCol++; 4989 j++; 4990 } 4991 } 4992 regBase = sqlite3GetTempRange(pParse, nCol); 4993 sqlite3ExprCacheClear(pParse); 4994 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4995 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4996 j = nGroupBy+1; 4997 for(i=0; i<sAggInfo.nColumn; i++){ 4998 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4999 if( pCol->iSorterColumn>=j ){ 5000 int r1 = j + regBase; 5001 int r2; 5002 5003 r2 = sqlite3ExprCodeGetColumn(pParse, 5004 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5005 if( r1!=r2 ){ 5006 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5007 } 5008 j++; 5009 } 5010 } 5011 regRecord = sqlite3GetTempReg(pParse); 5012 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5013 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5014 sqlite3ReleaseTempReg(pParse, regRecord); 5015 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5016 sqlite3WhereEnd(pWInfo); 5017 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5018 sortOut = sqlite3GetTempReg(pParse); 5019 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5020 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5021 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5022 sAggInfo.useSortingIdx = 1; 5023 sqlite3ExprCacheClear(pParse); 5024 5025 } 5026 5027 /* If the index or temporary table used by the GROUP BY sort 5028 ** will naturally deliver rows in the order required by the ORDER BY 5029 ** clause, cancel the ephemeral table open coded earlier. 5030 ** 5031 ** This is an optimization - the correct answer should result regardless. 5032 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5033 ** disable this optimization for testing purposes. */ 5034 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5035 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5036 ){ 5037 sSort.pOrderBy = 0; 5038 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5039 } 5040 5041 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5042 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5043 ** Then compare the current GROUP BY terms against the GROUP BY terms 5044 ** from the previous row currently stored in a0, a1, a2... 5045 */ 5046 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5047 sqlite3ExprCacheClear(pParse); 5048 if( groupBySort ){ 5049 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 5050 } 5051 for(j=0; j<pGroupBy->nExpr; j++){ 5052 if( groupBySort ){ 5053 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5054 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 5055 }else{ 5056 sAggInfo.directMode = 1; 5057 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5058 } 5059 } 5060 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5061 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5062 j1 = sqlite3VdbeCurrentAddr(v); 5063 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5064 5065 /* Generate code that runs whenever the GROUP BY changes. 5066 ** Changes in the GROUP BY are detected by the previous code 5067 ** block. If there were no changes, this block is skipped. 5068 ** 5069 ** This code copies current group by terms in b0,b1,b2,... 5070 ** over to a0,a1,a2. It then calls the output subroutine 5071 ** and resets the aggregate accumulator registers in preparation 5072 ** for the next GROUP BY batch. 5073 */ 5074 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5075 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5076 VdbeComment((v, "output one row")); 5077 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5078 VdbeComment((v, "check abort flag")); 5079 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5080 VdbeComment((v, "reset accumulator")); 5081 5082 /* Update the aggregate accumulators based on the content of 5083 ** the current row 5084 */ 5085 sqlite3VdbeJumpHere(v, j1); 5086 updateAccumulator(pParse, &sAggInfo); 5087 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5088 VdbeComment((v, "indicate data in accumulator")); 5089 5090 /* End of the loop 5091 */ 5092 if( groupBySort ){ 5093 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5094 VdbeCoverage(v); 5095 }else{ 5096 sqlite3WhereEnd(pWInfo); 5097 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5098 } 5099 5100 /* Output the final row of result 5101 */ 5102 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5103 VdbeComment((v, "output final row")); 5104 5105 /* Jump over the subroutines 5106 */ 5107 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5108 5109 /* Generate a subroutine that outputs a single row of the result 5110 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5111 ** is less than or equal to zero, the subroutine is a no-op. If 5112 ** the processing calls for the query to abort, this subroutine 5113 ** increments the iAbortFlag memory location before returning in 5114 ** order to signal the caller to abort. 5115 */ 5116 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5117 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5118 VdbeComment((v, "set abort flag")); 5119 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5120 sqlite3VdbeResolveLabel(v, addrOutputRow); 5121 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5122 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5123 VdbeComment((v, "Groupby result generator entry point")); 5124 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5125 finalizeAggFunctions(pParse, &sAggInfo); 5126 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5127 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5128 &sDistinct, pDest, 5129 addrOutputRow+1, addrSetAbort); 5130 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5131 VdbeComment((v, "end groupby result generator")); 5132 5133 /* Generate a subroutine that will reset the group-by accumulator 5134 */ 5135 sqlite3VdbeResolveLabel(v, addrReset); 5136 resetAccumulator(pParse, &sAggInfo); 5137 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5138 5139 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5140 else { 5141 ExprList *pDel = 0; 5142 #ifndef SQLITE_OMIT_BTREECOUNT 5143 Table *pTab; 5144 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5145 /* If isSimpleCount() returns a pointer to a Table structure, then 5146 ** the SQL statement is of the form: 5147 ** 5148 ** SELECT count(*) FROM <tbl> 5149 ** 5150 ** where the Table structure returned represents table <tbl>. 5151 ** 5152 ** This statement is so common that it is optimized specially. The 5153 ** OP_Count instruction is executed either on the intkey table that 5154 ** contains the data for table <tbl> or on one of its indexes. It 5155 ** is better to execute the op on an index, as indexes are almost 5156 ** always spread across less pages than their corresponding tables. 5157 */ 5158 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5159 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5160 Index *pIdx; /* Iterator variable */ 5161 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5162 Index *pBest = 0; /* Best index found so far */ 5163 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5164 5165 sqlite3CodeVerifySchema(pParse, iDb); 5166 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5167 5168 /* Search for the index that has the lowest scan cost. 5169 ** 5170 ** (2011-04-15) Do not do a full scan of an unordered index. 5171 ** 5172 ** (2013-10-03) Do not count the entries in a partial index. 5173 ** 5174 ** In practice the KeyInfo structure will not be used. It is only 5175 ** passed to keep OP_OpenRead happy. 5176 */ 5177 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5178 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5179 if( pIdx->bUnordered==0 5180 && pIdx->szIdxRow<pTab->szTabRow 5181 && pIdx->pPartIdxWhere==0 5182 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5183 ){ 5184 pBest = pIdx; 5185 } 5186 } 5187 if( pBest ){ 5188 iRoot = pBest->tnum; 5189 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5190 } 5191 5192 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5193 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5194 if( pKeyInfo ){ 5195 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5196 } 5197 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5198 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5199 explainSimpleCount(pParse, pTab, pBest); 5200 }else 5201 #endif /* SQLITE_OMIT_BTREECOUNT */ 5202 { 5203 /* Check if the query is of one of the following forms: 5204 ** 5205 ** SELECT min(x) FROM ... 5206 ** SELECT max(x) FROM ... 5207 ** 5208 ** If it is, then ask the code in where.c to attempt to sort results 5209 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5210 ** If where.c is able to produce results sorted in this order, then 5211 ** add vdbe code to break out of the processing loop after the 5212 ** first iteration (since the first iteration of the loop is 5213 ** guaranteed to operate on the row with the minimum or maximum 5214 ** value of x, the only row required). 5215 ** 5216 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5217 ** modify behavior as follows: 5218 ** 5219 ** + If the query is a "SELECT min(x)", then the loop coded by 5220 ** where.c should not iterate over any values with a NULL value 5221 ** for x. 5222 ** 5223 ** + The optimizer code in where.c (the thing that decides which 5224 ** index or indices to use) should place a different priority on 5225 ** satisfying the 'ORDER BY' clause than it does in other cases. 5226 ** Refer to code and comments in where.c for details. 5227 */ 5228 ExprList *pMinMax = 0; 5229 u8 flag = WHERE_ORDERBY_NORMAL; 5230 5231 assert( p->pGroupBy==0 ); 5232 assert( flag==0 ); 5233 if( p->pHaving==0 ){ 5234 flag = minMaxQuery(&sAggInfo, &pMinMax); 5235 } 5236 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5237 5238 if( flag ){ 5239 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5240 pDel = pMinMax; 5241 if( pMinMax && !db->mallocFailed ){ 5242 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5243 pMinMax->a[0].pExpr->op = TK_COLUMN; 5244 } 5245 } 5246 5247 /* This case runs if the aggregate has no GROUP BY clause. The 5248 ** processing is much simpler since there is only a single row 5249 ** of output. 5250 */ 5251 resetAccumulator(pParse, &sAggInfo); 5252 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5253 if( pWInfo==0 ){ 5254 sqlite3ExprListDelete(db, pDel); 5255 goto select_end; 5256 } 5257 updateAccumulator(pParse, &sAggInfo); 5258 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5259 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5260 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5261 VdbeComment((v, "%s() by index", 5262 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5263 } 5264 sqlite3WhereEnd(pWInfo); 5265 finalizeAggFunctions(pParse, &sAggInfo); 5266 } 5267 5268 sSort.pOrderBy = 0; 5269 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5270 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5271 pDest, addrEnd, addrEnd); 5272 sqlite3ExprListDelete(db, pDel); 5273 } 5274 sqlite3VdbeResolveLabel(v, addrEnd); 5275 5276 } /* endif aggregate query */ 5277 5278 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5279 explainTempTable(pParse, "DISTINCT"); 5280 } 5281 5282 /* If there is an ORDER BY clause, then we need to sort the results 5283 ** and send them to the callback one by one. 5284 */ 5285 if( sSort.pOrderBy ){ 5286 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5287 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5288 } 5289 5290 /* Jump here to skip this query 5291 */ 5292 sqlite3VdbeResolveLabel(v, iEnd); 5293 5294 /* The SELECT was successfully coded. Set the return code to 0 5295 ** to indicate no errors. 5296 */ 5297 rc = 0; 5298 5299 /* Control jumps to here if an error is encountered above, or upon 5300 ** successful coding of the SELECT. 5301 */ 5302 select_end: 5303 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5304 5305 /* Identify column names if results of the SELECT are to be output. 5306 */ 5307 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5308 generateColumnNames(pParse, pTabList, pEList); 5309 } 5310 5311 sqlite3DbFree(db, sAggInfo.aCol); 5312 sqlite3DbFree(db, sAggInfo.aFunc); 5313 return rc; 5314 } 5315 5316 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 5317 /* 5318 ** Generate a human-readable description of a the Select object. 5319 */ 5320 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 5321 sqlite3ExplainPrintf(pVdbe, "SELECT "); 5322 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 5323 if( p->selFlags & SF_Distinct ){ 5324 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 5325 } 5326 if( p->selFlags & SF_Aggregate ){ 5327 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 5328 } 5329 sqlite3ExplainNL(pVdbe); 5330 sqlite3ExplainPrintf(pVdbe, " "); 5331 } 5332 sqlite3ExplainExprList(pVdbe, p->pEList); 5333 sqlite3ExplainNL(pVdbe); 5334 if( p->pSrc && p->pSrc->nSrc ){ 5335 int i; 5336 sqlite3ExplainPrintf(pVdbe, "FROM "); 5337 sqlite3ExplainPush(pVdbe); 5338 for(i=0; i<p->pSrc->nSrc; i++){ 5339 struct SrcList_item *pItem = &p->pSrc->a[i]; 5340 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 5341 if( pItem->pSelect ){ 5342 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 5343 if( pItem->pTab ){ 5344 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 5345 } 5346 }else if( pItem->zName ){ 5347 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 5348 } 5349 if( pItem->zAlias ){ 5350 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 5351 } 5352 if( pItem->jointype & JT_LEFT ){ 5353 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 5354 } 5355 sqlite3ExplainNL(pVdbe); 5356 } 5357 sqlite3ExplainPop(pVdbe); 5358 } 5359 if( p->pWhere ){ 5360 sqlite3ExplainPrintf(pVdbe, "WHERE "); 5361 sqlite3ExplainExpr(pVdbe, p->pWhere); 5362 sqlite3ExplainNL(pVdbe); 5363 } 5364 if( p->pGroupBy ){ 5365 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 5366 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 5367 sqlite3ExplainNL(pVdbe); 5368 } 5369 if( p->pHaving ){ 5370 sqlite3ExplainPrintf(pVdbe, "HAVING "); 5371 sqlite3ExplainExpr(pVdbe, p->pHaving); 5372 sqlite3ExplainNL(pVdbe); 5373 } 5374 if( p->pOrderBy ){ 5375 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 5376 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 5377 sqlite3ExplainNL(pVdbe); 5378 } 5379 if( p->pLimit ){ 5380 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 5381 sqlite3ExplainExpr(pVdbe, p->pLimit); 5382 sqlite3ExplainNL(pVdbe); 5383 } 5384 if( p->pOffset ){ 5385 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 5386 sqlite3ExplainExpr(pVdbe, p->pOffset); 5387 sqlite3ExplainNL(pVdbe); 5388 } 5389 } 5390 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 5391 if( p==0 ){ 5392 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 5393 return; 5394 } 5395 sqlite3ExplainPush(pVdbe); 5396 while( p ){ 5397 explainOneSelect(pVdbe, p); 5398 p = p->pNext; 5399 if( p==0 ) break; 5400 sqlite3ExplainNL(pVdbe); 5401 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 5402 } 5403 sqlite3ExplainPrintf(pVdbe, "END"); 5404 sqlite3ExplainPop(pVdbe); 5405 } 5406 5407 /* End of the structure debug printing code 5408 *****************************************************************************/ 5409 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 5410