xref: /sqlite-3.40.0/src/select.c (revision 42d3d37a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 */
34 typedef struct SortCtx SortCtx;
35 struct SortCtx {
36   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
37   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
38   int iECursor;         /* Cursor number for the sorter */
39   int regReturn;        /* Register holding block-output return address */
40   int labelBkOut;       /* Start label for the block-output subroutine */
41   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
42   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
43 };
44 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
45 
46 /*
47 ** Delete all the content of a Select structure but do not deallocate
48 ** the select structure itself.
49 */
50 static void clearSelect(sqlite3 *db, Select *p){
51   sqlite3ExprListDelete(db, p->pEList);
52   sqlite3SrcListDelete(db, p->pSrc);
53   sqlite3ExprDelete(db, p->pWhere);
54   sqlite3ExprListDelete(db, p->pGroupBy);
55   sqlite3ExprDelete(db, p->pHaving);
56   sqlite3ExprListDelete(db, p->pOrderBy);
57   sqlite3SelectDelete(db, p->pPrior);
58   sqlite3ExprDelete(db, p->pLimit);
59   sqlite3ExprDelete(db, p->pOffset);
60   sqlite3WithDelete(db, p->pWith);
61 }
62 
63 /*
64 ** Initialize a SelectDest structure.
65 */
66 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
67   pDest->eDest = (u8)eDest;
68   pDest->iSDParm = iParm;
69   pDest->affSdst = 0;
70   pDest->iSdst = 0;
71   pDest->nSdst = 0;
72 }
73 
74 
75 /*
76 ** Allocate a new Select structure and return a pointer to that
77 ** structure.
78 */
79 Select *sqlite3SelectNew(
80   Parse *pParse,        /* Parsing context */
81   ExprList *pEList,     /* which columns to include in the result */
82   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
83   Expr *pWhere,         /* the WHERE clause */
84   ExprList *pGroupBy,   /* the GROUP BY clause */
85   Expr *pHaving,        /* the HAVING clause */
86   ExprList *pOrderBy,   /* the ORDER BY clause */
87   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
88   Expr *pLimit,         /* LIMIT value.  NULL means not used */
89   Expr *pOffset         /* OFFSET value.  NULL means no offset */
90 ){
91   Select *pNew;
92   Select standin;
93   sqlite3 *db = pParse->db;
94   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
95   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
96   if( pNew==0 ){
97     assert( db->mallocFailed );
98     pNew = &standin;
99     memset(pNew, 0, sizeof(*pNew));
100   }
101   if( pEList==0 ){
102     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
103   }
104   pNew->pEList = pEList;
105   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
106   pNew->pSrc = pSrc;
107   pNew->pWhere = pWhere;
108   pNew->pGroupBy = pGroupBy;
109   pNew->pHaving = pHaving;
110   pNew->pOrderBy = pOrderBy;
111   pNew->selFlags = selFlags;
112   pNew->op = TK_SELECT;
113   pNew->pLimit = pLimit;
114   pNew->pOffset = pOffset;
115   assert( pOffset==0 || pLimit!=0 );
116   pNew->addrOpenEphm[0] = -1;
117   pNew->addrOpenEphm[1] = -1;
118   if( db->mallocFailed ) {
119     clearSelect(db, pNew);
120     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
121     pNew = 0;
122   }else{
123     assert( pNew->pSrc!=0 || pParse->nErr>0 );
124   }
125   assert( pNew!=&standin );
126   return pNew;
127 }
128 
129 /*
130 ** Delete the given Select structure and all of its substructures.
131 */
132 void sqlite3SelectDelete(sqlite3 *db, Select *p){
133   if( p ){
134     clearSelect(db, p);
135     sqlite3DbFree(db, p);
136   }
137 }
138 
139 /*
140 ** Return a pointer to the right-most SELECT statement in a compound.
141 */
142 static Select *findRightmost(Select *p){
143   while( p->pNext ) p = p->pNext;
144   return p;
145 }
146 
147 /*
148 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
149 ** type of join.  Return an integer constant that expresses that type
150 ** in terms of the following bit values:
151 **
152 **     JT_INNER
153 **     JT_CROSS
154 **     JT_OUTER
155 **     JT_NATURAL
156 **     JT_LEFT
157 **     JT_RIGHT
158 **
159 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
160 **
161 ** If an illegal or unsupported join type is seen, then still return
162 ** a join type, but put an error in the pParse structure.
163 */
164 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
165   int jointype = 0;
166   Token *apAll[3];
167   Token *p;
168                              /*   0123456789 123456789 123456789 123 */
169   static const char zKeyText[] = "naturaleftouterightfullinnercross";
170   static const struct {
171     u8 i;        /* Beginning of keyword text in zKeyText[] */
172     u8 nChar;    /* Length of the keyword in characters */
173     u8 code;     /* Join type mask */
174   } aKeyword[] = {
175     /* natural */ { 0,  7, JT_NATURAL                },
176     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
177     /* outer   */ { 10, 5, JT_OUTER                  },
178     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
179     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
180     /* inner   */ { 23, 5, JT_INNER                  },
181     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
182   };
183   int i, j;
184   apAll[0] = pA;
185   apAll[1] = pB;
186   apAll[2] = pC;
187   for(i=0; i<3 && apAll[i]; i++){
188     p = apAll[i];
189     for(j=0; j<ArraySize(aKeyword); j++){
190       if( p->n==aKeyword[j].nChar
191           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
192         jointype |= aKeyword[j].code;
193         break;
194       }
195     }
196     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
197     if( j>=ArraySize(aKeyword) ){
198       jointype |= JT_ERROR;
199       break;
200     }
201   }
202   if(
203      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
204      (jointype & JT_ERROR)!=0
205   ){
206     const char *zSp = " ";
207     assert( pB!=0 );
208     if( pC==0 ){ zSp++; }
209     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
210        "%T %T%s%T", pA, pB, zSp, pC);
211     jointype = JT_INNER;
212   }else if( (jointype & JT_OUTER)!=0
213          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
214     sqlite3ErrorMsg(pParse,
215       "RIGHT and FULL OUTER JOINs are not currently supported");
216     jointype = JT_INNER;
217   }
218   return jointype;
219 }
220 
221 /*
222 ** Return the index of a column in a table.  Return -1 if the column
223 ** is not contained in the table.
224 */
225 static int columnIndex(Table *pTab, const char *zCol){
226   int i;
227   for(i=0; i<pTab->nCol; i++){
228     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
229   }
230   return -1;
231 }
232 
233 /*
234 ** Search the first N tables in pSrc, from left to right, looking for a
235 ** table that has a column named zCol.
236 **
237 ** When found, set *piTab and *piCol to the table index and column index
238 ** of the matching column and return TRUE.
239 **
240 ** If not found, return FALSE.
241 */
242 static int tableAndColumnIndex(
243   SrcList *pSrc,       /* Array of tables to search */
244   int N,               /* Number of tables in pSrc->a[] to search */
245   const char *zCol,    /* Name of the column we are looking for */
246   int *piTab,          /* Write index of pSrc->a[] here */
247   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
248 ){
249   int i;               /* For looping over tables in pSrc */
250   int iCol;            /* Index of column matching zCol */
251 
252   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
253   for(i=0; i<N; i++){
254     iCol = columnIndex(pSrc->a[i].pTab, zCol);
255     if( iCol>=0 ){
256       if( piTab ){
257         *piTab = i;
258         *piCol = iCol;
259       }
260       return 1;
261     }
262   }
263   return 0;
264 }
265 
266 /*
267 ** This function is used to add terms implied by JOIN syntax to the
268 ** WHERE clause expression of a SELECT statement. The new term, which
269 ** is ANDed with the existing WHERE clause, is of the form:
270 **
271 **    (tab1.col1 = tab2.col2)
272 **
273 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
274 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
275 ** column iColRight of tab2.
276 */
277 static void addWhereTerm(
278   Parse *pParse,                  /* Parsing context */
279   SrcList *pSrc,                  /* List of tables in FROM clause */
280   int iLeft,                      /* Index of first table to join in pSrc */
281   int iColLeft,                   /* Index of column in first table */
282   int iRight,                     /* Index of second table in pSrc */
283   int iColRight,                  /* Index of column in second table */
284   int isOuterJoin,                /* True if this is an OUTER join */
285   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
286 ){
287   sqlite3 *db = pParse->db;
288   Expr *pE1;
289   Expr *pE2;
290   Expr *pEq;
291 
292   assert( iLeft<iRight );
293   assert( pSrc->nSrc>iRight );
294   assert( pSrc->a[iLeft].pTab );
295   assert( pSrc->a[iRight].pTab );
296 
297   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
298   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
299 
300   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
301   if( pEq && isOuterJoin ){
302     ExprSetProperty(pEq, EP_FromJoin);
303     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
304     ExprSetVVAProperty(pEq, EP_NoReduce);
305     pEq->iRightJoinTable = (i16)pE2->iTable;
306   }
307   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
308 }
309 
310 /*
311 ** Set the EP_FromJoin property on all terms of the given expression.
312 ** And set the Expr.iRightJoinTable to iTable for every term in the
313 ** expression.
314 **
315 ** The EP_FromJoin property is used on terms of an expression to tell
316 ** the LEFT OUTER JOIN processing logic that this term is part of the
317 ** join restriction specified in the ON or USING clause and not a part
318 ** of the more general WHERE clause.  These terms are moved over to the
319 ** WHERE clause during join processing but we need to remember that they
320 ** originated in the ON or USING clause.
321 **
322 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
323 ** expression depends on table iRightJoinTable even if that table is not
324 ** explicitly mentioned in the expression.  That information is needed
325 ** for cases like this:
326 **
327 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
328 **
329 ** The where clause needs to defer the handling of the t1.x=5
330 ** term until after the t2 loop of the join.  In that way, a
331 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
332 ** defer the handling of t1.x=5, it will be processed immediately
333 ** after the t1 loop and rows with t1.x!=5 will never appear in
334 ** the output, which is incorrect.
335 */
336 static void setJoinExpr(Expr *p, int iTable){
337   while( p ){
338     ExprSetProperty(p, EP_FromJoin);
339     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(p, EP_NoReduce);
341     p->iRightJoinTable = (i16)iTable;
342     setJoinExpr(p->pLeft, iTable);
343     p = p->pRight;
344   }
345 }
346 
347 /*
348 ** This routine processes the join information for a SELECT statement.
349 ** ON and USING clauses are converted into extra terms of the WHERE clause.
350 ** NATURAL joins also create extra WHERE clause terms.
351 **
352 ** The terms of a FROM clause are contained in the Select.pSrc structure.
353 ** The left most table is the first entry in Select.pSrc.  The right-most
354 ** table is the last entry.  The join operator is held in the entry to
355 ** the left.  Thus entry 0 contains the join operator for the join between
356 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
357 ** also attached to the left entry.
358 **
359 ** This routine returns the number of errors encountered.
360 */
361 static int sqliteProcessJoin(Parse *pParse, Select *p){
362   SrcList *pSrc;                  /* All tables in the FROM clause */
363   int i, j;                       /* Loop counters */
364   struct SrcList_item *pLeft;     /* Left table being joined */
365   struct SrcList_item *pRight;    /* Right table being joined */
366 
367   pSrc = p->pSrc;
368   pLeft = &pSrc->a[0];
369   pRight = &pLeft[1];
370   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
371     Table *pLeftTab = pLeft->pTab;
372     Table *pRightTab = pRight->pTab;
373     int isOuter;
374 
375     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
376     isOuter = (pRight->jointype & JT_OUTER)!=0;
377 
378     /* When the NATURAL keyword is present, add WHERE clause terms for
379     ** every column that the two tables have in common.
380     */
381     if( pRight->jointype & JT_NATURAL ){
382       if( pRight->pOn || pRight->pUsing ){
383         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
384            "an ON or USING clause", 0);
385         return 1;
386       }
387       for(j=0; j<pRightTab->nCol; j++){
388         char *zName;   /* Name of column in the right table */
389         int iLeft;     /* Matching left table */
390         int iLeftCol;  /* Matching column in the left table */
391 
392         zName = pRightTab->aCol[j].zName;
393         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
394           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
395                        isOuter, &p->pWhere);
396         }
397       }
398     }
399 
400     /* Disallow both ON and USING clauses in the same join
401     */
402     if( pRight->pOn && pRight->pUsing ){
403       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
404         "clauses in the same join");
405       return 1;
406     }
407 
408     /* Add the ON clause to the end of the WHERE clause, connected by
409     ** an AND operator.
410     */
411     if( pRight->pOn ){
412       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
413       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
414       pRight->pOn = 0;
415     }
416 
417     /* Create extra terms on the WHERE clause for each column named
418     ** in the USING clause.  Example: If the two tables to be joined are
419     ** A and B and the USING clause names X, Y, and Z, then add this
420     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
421     ** Report an error if any column mentioned in the USING clause is
422     ** not contained in both tables to be joined.
423     */
424     if( pRight->pUsing ){
425       IdList *pList = pRight->pUsing;
426       for(j=0; j<pList->nId; j++){
427         char *zName;     /* Name of the term in the USING clause */
428         int iLeft;       /* Table on the left with matching column name */
429         int iLeftCol;    /* Column number of matching column on the left */
430         int iRightCol;   /* Column number of matching column on the right */
431 
432         zName = pList->a[j].zName;
433         iRightCol = columnIndex(pRightTab, zName);
434         if( iRightCol<0
435          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
436         ){
437           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
438             "not present in both tables", zName);
439           return 1;
440         }
441         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
442                      isOuter, &p->pWhere);
443       }
444     }
445   }
446   return 0;
447 }
448 
449 /* Forward reference */
450 static KeyInfo *keyInfoFromExprList(
451   Parse *pParse,       /* Parsing context */
452   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
453   int iStart,          /* Begin with this column of pList */
454   int nExtra           /* Add this many extra columns to the end */
455 );
456 
457 /*
458 ** Insert code into "v" that will push the record in register regData
459 ** into the sorter.
460 */
461 static void pushOntoSorter(
462   Parse *pParse,         /* Parser context */
463   SortCtx *pSort,        /* Information about the ORDER BY clause */
464   Select *pSelect,       /* The whole SELECT statement */
465   int regData            /* Register holding data to be sorted */
466 ){
467   Vdbe *v = pParse->pVdbe;
468   int nExpr = pSort->pOrderBy->nExpr;
469   int regRecord = ++pParse->nMem;
470   int regBase = pParse->nMem+1;
471   int nOBSat = pSort->nOBSat;
472   int op;
473 
474   pParse->nMem += nExpr+2;        /* nExpr+2 registers allocated at regBase */
475   sqlite3ExprCacheClear(pParse);
476   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, 0);
477   sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
478   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
479   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nExpr+2-nOBSat,regRecord);
480   if( nOBSat>0 ){
481     int regPrevKey;   /* The first nOBSat columns of the previous row */
482     int addrFirst;    /* Address of the OP_IfNot opcode */
483     int addrJmp;      /* Address of the OP_Jump opcode */
484     VdbeOp *pOp;      /* Opcode that opens the sorter */
485     int nKey;         /* Number of sorting key columns, including OP_Sequence */
486     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
487 
488     regPrevKey = pParse->nMem+1;
489     pParse->nMem += pSort->nOBSat;
490     nKey = nExpr - pSort->nOBSat + 1;
491     addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); VdbeCoverage(v);
492     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
493     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
494     if( pParse->db->mallocFailed ) return;
495     pOp->p2 = nKey + 1;
496     pKI = pOp->p4.pKeyInfo;
497     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
498     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
499     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
500     addrJmp = sqlite3VdbeCurrentAddr(v);
501     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
502     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
503     pSort->regReturn = ++pParse->nMem;
504     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
505     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
506     sqlite3VdbeJumpHere(v, addrFirst);
507     sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat);
508     sqlite3VdbeJumpHere(v, addrJmp);
509   }
510   if( pSort->sortFlags & SORTFLAG_UseSorter ){
511     op = OP_SorterInsert;
512   }else{
513     op = OP_IdxInsert;
514   }
515   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
516   if( pSelect->iLimit ){
517     int addr1, addr2;
518     int iLimit;
519     if( pSelect->iOffset ){
520       iLimit = pSelect->iOffset+1;
521     }else{
522       iLimit = pSelect->iLimit;
523     }
524     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
525     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
526     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
527     sqlite3VdbeJumpHere(v, addr1);
528     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
529     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
530     sqlite3VdbeJumpHere(v, addr2);
531   }
532 }
533 
534 /*
535 ** Add code to implement the OFFSET
536 */
537 static void codeOffset(
538   Vdbe *v,          /* Generate code into this VM */
539   int iOffset,      /* Register holding the offset counter */
540   int iContinue     /* Jump here to skip the current record */
541 ){
542   if( iOffset>0 ){
543     int addr;
544     sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1);
545     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v);
546     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
547     VdbeComment((v, "skip OFFSET records"));
548     sqlite3VdbeJumpHere(v, addr);
549   }
550 }
551 
552 /*
553 ** Add code that will check to make sure the N registers starting at iMem
554 ** form a distinct entry.  iTab is a sorting index that holds previously
555 ** seen combinations of the N values.  A new entry is made in iTab
556 ** if the current N values are new.
557 **
558 ** A jump to addrRepeat is made and the N+1 values are popped from the
559 ** stack if the top N elements are not distinct.
560 */
561 static void codeDistinct(
562   Parse *pParse,     /* Parsing and code generating context */
563   int iTab,          /* A sorting index used to test for distinctness */
564   int addrRepeat,    /* Jump to here if not distinct */
565   int N,             /* Number of elements */
566   int iMem           /* First element */
567 ){
568   Vdbe *v;
569   int r1;
570 
571   v = pParse->pVdbe;
572   r1 = sqlite3GetTempReg(pParse);
573   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
574   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
575   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
576   sqlite3ReleaseTempReg(pParse, r1);
577 }
578 
579 #ifndef SQLITE_OMIT_SUBQUERY
580 /*
581 ** Generate an error message when a SELECT is used within a subexpression
582 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
583 ** column.  We do this in a subroutine because the error used to occur
584 ** in multiple places.  (The error only occurs in one place now, but we
585 ** retain the subroutine to minimize code disruption.)
586 */
587 static int checkForMultiColumnSelectError(
588   Parse *pParse,       /* Parse context. */
589   SelectDest *pDest,   /* Destination of SELECT results */
590   int nExpr            /* Number of result columns returned by SELECT */
591 ){
592   int eDest = pDest->eDest;
593   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
594     sqlite3ErrorMsg(pParse, "only a single result allowed for "
595        "a SELECT that is part of an expression");
596     return 1;
597   }else{
598     return 0;
599   }
600 }
601 #endif
602 
603 /*
604 ** This routine generates the code for the inside of the inner loop
605 ** of a SELECT.
606 **
607 ** If srcTab is negative, then the pEList expressions
608 ** are evaluated in order to get the data for this row.  If srcTab is
609 ** zero or more, then data is pulled from srcTab and pEList is used only
610 ** to get number columns and the datatype for each column.
611 */
612 static void selectInnerLoop(
613   Parse *pParse,          /* The parser context */
614   Select *p,              /* The complete select statement being coded */
615   ExprList *pEList,       /* List of values being extracted */
616   int srcTab,             /* Pull data from this table */
617   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
618   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
619   SelectDest *pDest,      /* How to dispose of the results */
620   int iContinue,          /* Jump here to continue with next row */
621   int iBreak              /* Jump here to break out of the inner loop */
622 ){
623   Vdbe *v = pParse->pVdbe;
624   int i;
625   int hasDistinct;        /* True if the DISTINCT keyword is present */
626   int regResult;              /* Start of memory holding result set */
627   int eDest = pDest->eDest;   /* How to dispose of results */
628   int iParm = pDest->iSDParm; /* First argument to disposal method */
629   int nResultCol;             /* Number of result columns */
630 
631   assert( v );
632   assert( pEList!=0 );
633   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
634   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
635   if( pSort==0 && !hasDistinct ){
636     assert( iContinue!=0 );
637     codeOffset(v, p->iOffset, iContinue);
638   }
639 
640   /* Pull the requested columns.
641   */
642   nResultCol = pEList->nExpr;
643 
644   if( pDest->iSdst==0 ){
645     pDest->iSdst = pParse->nMem+1;
646     pParse->nMem += nResultCol;
647   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
648     /* This is an error condition that can result, for example, when a SELECT
649     ** on the right-hand side of an INSERT contains more result columns than
650     ** there are columns in the table on the left.  The error will be caught
651     ** and reported later.  But we need to make sure enough memory is allocated
652     ** to avoid other spurious errors in the meantime. */
653     pParse->nMem += nResultCol;
654   }
655   pDest->nSdst = nResultCol;
656   regResult = pDest->iSdst;
657   if( srcTab>=0 ){
658     for(i=0; i<nResultCol; i++){
659       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
660       VdbeComment((v, "%s", pEList->a[i].zName));
661     }
662   }else if( eDest!=SRT_Exists ){
663     /* If the destination is an EXISTS(...) expression, the actual
664     ** values returned by the SELECT are not required.
665     */
666     sqlite3ExprCodeExprList(pParse, pEList, regResult,
667                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
668   }
669 
670   /* If the DISTINCT keyword was present on the SELECT statement
671   ** and this row has been seen before, then do not make this row
672   ** part of the result.
673   */
674   if( hasDistinct ){
675     switch( pDistinct->eTnctType ){
676       case WHERE_DISTINCT_ORDERED: {
677         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
678         int iJump;              /* Jump destination */
679         int regPrev;            /* Previous row content */
680 
681         /* Allocate space for the previous row */
682         regPrev = pParse->nMem+1;
683         pParse->nMem += nResultCol;
684 
685         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
686         ** sets the MEM_Cleared bit on the first register of the
687         ** previous value.  This will cause the OP_Ne below to always
688         ** fail on the first iteration of the loop even if the first
689         ** row is all NULLs.
690         */
691         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
692         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
693         pOp->opcode = OP_Null;
694         pOp->p1 = 1;
695         pOp->p2 = regPrev;
696 
697         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
698         for(i=0; i<nResultCol; i++){
699           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
700           if( i<nResultCol-1 ){
701             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
702             VdbeCoverage(v);
703           }else{
704             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
705             VdbeCoverage(v);
706            }
707           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
708           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
709         }
710         assert( sqlite3VdbeCurrentAddr(v)==iJump );
711         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
712         break;
713       }
714 
715       case WHERE_DISTINCT_UNIQUE: {
716         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
717         break;
718       }
719 
720       default: {
721         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
722         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
723         break;
724       }
725     }
726     if( pSort==0 ){
727       codeOffset(v, p->iOffset, iContinue);
728     }
729   }
730 
731   switch( eDest ){
732     /* In this mode, write each query result to the key of the temporary
733     ** table iParm.
734     */
735 #ifndef SQLITE_OMIT_COMPOUND_SELECT
736     case SRT_Union: {
737       int r1;
738       r1 = sqlite3GetTempReg(pParse);
739       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
740       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
741       sqlite3ReleaseTempReg(pParse, r1);
742       break;
743     }
744 
745     /* Construct a record from the query result, but instead of
746     ** saving that record, use it as a key to delete elements from
747     ** the temporary table iParm.
748     */
749     case SRT_Except: {
750       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
751       break;
752     }
753 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
754 
755     /* Store the result as data using a unique key.
756     */
757     case SRT_Fifo:
758     case SRT_DistFifo:
759     case SRT_Table:
760     case SRT_EphemTab: {
761       int r1 = sqlite3GetTempReg(pParse);
762       testcase( eDest==SRT_Table );
763       testcase( eDest==SRT_EphemTab );
764       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
765 #ifndef SQLITE_OMIT_CTE
766       if( eDest==SRT_DistFifo ){
767         /* If the destination is DistFifo, then cursor (iParm+1) is open
768         ** on an ephemeral index. If the current row is already present
769         ** in the index, do not write it to the output. If not, add the
770         ** current row to the index and proceed with writing it to the
771         ** output table as well.  */
772         int addr = sqlite3VdbeCurrentAddr(v) + 4;
773         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
774         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
775         assert( pSort==0 );
776       }
777 #endif
778       if( pSort ){
779         pushOntoSorter(pParse, pSort, p, r1);
780       }else{
781         int r2 = sqlite3GetTempReg(pParse);
782         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
783         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
784         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
785         sqlite3ReleaseTempReg(pParse, r2);
786       }
787       sqlite3ReleaseTempReg(pParse, r1);
788       break;
789     }
790 
791 #ifndef SQLITE_OMIT_SUBQUERY
792     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
793     ** then there should be a single item on the stack.  Write this
794     ** item into the set table with bogus data.
795     */
796     case SRT_Set: {
797       assert( nResultCol==1 );
798       pDest->affSdst =
799                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
800       if( pSort ){
801         /* At first glance you would think we could optimize out the
802         ** ORDER BY in this case since the order of entries in the set
803         ** does not matter.  But there might be a LIMIT clause, in which
804         ** case the order does matter */
805         pushOntoSorter(pParse, pSort, p, regResult);
806       }else{
807         int r1 = sqlite3GetTempReg(pParse);
808         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
809         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
810         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
811         sqlite3ReleaseTempReg(pParse, r1);
812       }
813       break;
814     }
815 
816     /* If any row exist in the result set, record that fact and abort.
817     */
818     case SRT_Exists: {
819       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
820       /* The LIMIT clause will terminate the loop for us */
821       break;
822     }
823 
824     /* If this is a scalar select that is part of an expression, then
825     ** store the results in the appropriate memory cell and break out
826     ** of the scan loop.
827     */
828     case SRT_Mem: {
829       assert( nResultCol==1 );
830       if( pSort ){
831         pushOntoSorter(pParse, pSort, p, regResult);
832       }else{
833         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
834         /* The LIMIT clause will jump out of the loop for us */
835       }
836       break;
837     }
838 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
839 
840     case SRT_Coroutine:       /* Send data to a co-routine */
841     case SRT_Output: {        /* Return the results */
842       testcase( eDest==SRT_Coroutine );
843       testcase( eDest==SRT_Output );
844       if( pSort ){
845         int r1 = sqlite3GetTempReg(pParse);
846         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
847         pushOntoSorter(pParse, pSort, p, r1);
848         sqlite3ReleaseTempReg(pParse, r1);
849       }else if( eDest==SRT_Coroutine ){
850         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
851       }else{
852         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
853         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
854       }
855       break;
856     }
857 
858 #ifndef SQLITE_OMIT_CTE
859     /* Write the results into a priority queue that is order according to
860     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
861     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
862     ** pSO->nExpr columns, then make sure all keys are unique by adding a
863     ** final OP_Sequence column.  The last column is the record as a blob.
864     */
865     case SRT_DistQueue:
866     case SRT_Queue: {
867       int nKey;
868       int r1, r2, r3;
869       int addrTest = 0;
870       ExprList *pSO;
871       pSO = pDest->pOrderBy;
872       assert( pSO );
873       nKey = pSO->nExpr;
874       r1 = sqlite3GetTempReg(pParse);
875       r2 = sqlite3GetTempRange(pParse, nKey+2);
876       r3 = r2+nKey+1;
877       if( eDest==SRT_DistQueue ){
878         /* If the destination is DistQueue, then cursor (iParm+1) is open
879         ** on a second ephemeral index that holds all values every previously
880         ** added to the queue. */
881         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
882                                         regResult, nResultCol);
883         VdbeCoverage(v);
884       }
885       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
886       if( eDest==SRT_DistQueue ){
887         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
888         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
889       }
890       for(i=0; i<nKey; i++){
891         sqlite3VdbeAddOp2(v, OP_SCopy,
892                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
893                           r2+i);
894       }
895       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
896       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
897       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
898       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
899       sqlite3ReleaseTempReg(pParse, r1);
900       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
901       break;
902     }
903 #endif /* SQLITE_OMIT_CTE */
904 
905 
906 
907 #if !defined(SQLITE_OMIT_TRIGGER)
908     /* Discard the results.  This is used for SELECT statements inside
909     ** the body of a TRIGGER.  The purpose of such selects is to call
910     ** user-defined functions that have side effects.  We do not care
911     ** about the actual results of the select.
912     */
913     default: {
914       assert( eDest==SRT_Discard );
915       break;
916     }
917 #endif
918   }
919 
920   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
921   ** there is a sorter, in which case the sorter has already limited
922   ** the output for us.
923   */
924   if( pSort==0 && p->iLimit ){
925     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
926   }
927 }
928 
929 /*
930 ** Allocate a KeyInfo object sufficient for an index of N key columns and
931 ** X extra columns.
932 */
933 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
934   KeyInfo *p = sqlite3DbMallocZero(0,
935                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
936   if( p ){
937     p->aSortOrder = (u8*)&p->aColl[N+X];
938     p->nField = (u16)N;
939     p->nXField = (u16)X;
940     p->enc = ENC(db);
941     p->db = db;
942     p->nRef = 1;
943   }else{
944     db->mallocFailed = 1;
945   }
946   return p;
947 }
948 
949 /*
950 ** Deallocate a KeyInfo object
951 */
952 void sqlite3KeyInfoUnref(KeyInfo *p){
953   if( p ){
954     assert( p->nRef>0 );
955     p->nRef--;
956     if( p->nRef==0 ) sqlite3DbFree(0, p);
957   }
958 }
959 
960 /*
961 ** Make a new pointer to a KeyInfo object
962 */
963 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
964   if( p ){
965     assert( p->nRef>0 );
966     p->nRef++;
967   }
968   return p;
969 }
970 
971 #ifdef SQLITE_DEBUG
972 /*
973 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
974 ** can only be changed if this is just a single reference to the object.
975 **
976 ** This routine is used only inside of assert() statements.
977 */
978 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
979 #endif /* SQLITE_DEBUG */
980 
981 /*
982 ** Given an expression list, generate a KeyInfo structure that records
983 ** the collating sequence for each expression in that expression list.
984 **
985 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
986 ** KeyInfo structure is appropriate for initializing a virtual index to
987 ** implement that clause.  If the ExprList is the result set of a SELECT
988 ** then the KeyInfo structure is appropriate for initializing a virtual
989 ** index to implement a DISTINCT test.
990 **
991 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
992 ** function is responsible for seeing that this structure is eventually
993 ** freed.
994 */
995 static KeyInfo *keyInfoFromExprList(
996   Parse *pParse,       /* Parsing context */
997   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
998   int iStart,          /* Begin with this column of pList */
999   int nExtra           /* Add this many extra columns to the end */
1000 ){
1001   int nExpr;
1002   KeyInfo *pInfo;
1003   struct ExprList_item *pItem;
1004   sqlite3 *db = pParse->db;
1005   int i;
1006 
1007   nExpr = pList->nExpr;
1008   pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
1009   if( pInfo ){
1010     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1011     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1012       CollSeq *pColl;
1013       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1014       if( !pColl ) pColl = db->pDfltColl;
1015       pInfo->aColl[i-iStart] = pColl;
1016       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1017     }
1018   }
1019   return pInfo;
1020 }
1021 
1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1023 /*
1024 ** Name of the connection operator, used for error messages.
1025 */
1026 static const char *selectOpName(int id){
1027   char *z;
1028   switch( id ){
1029     case TK_ALL:       z = "UNION ALL";   break;
1030     case TK_INTERSECT: z = "INTERSECT";   break;
1031     case TK_EXCEPT:    z = "EXCEPT";      break;
1032     default:           z = "UNION";       break;
1033   }
1034   return z;
1035 }
1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1037 
1038 #ifndef SQLITE_OMIT_EXPLAIN
1039 /*
1040 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1041 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1042 ** where the caption is of the form:
1043 **
1044 **   "USE TEMP B-TREE FOR xxx"
1045 **
1046 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1047 ** is determined by the zUsage argument.
1048 */
1049 static void explainTempTable(Parse *pParse, const char *zUsage){
1050   if( pParse->explain==2 ){
1051     Vdbe *v = pParse->pVdbe;
1052     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1053     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1054   }
1055 }
1056 
1057 /*
1058 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1059 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1060 ** in sqlite3Select() to assign values to structure member variables that
1061 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1062 ** code with #ifndef directives.
1063 */
1064 # define explainSetInteger(a, b) a = b
1065 
1066 #else
1067 /* No-op versions of the explainXXX() functions and macros. */
1068 # define explainTempTable(y,z)
1069 # define explainSetInteger(y,z)
1070 #endif
1071 
1072 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1073 /*
1074 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1075 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1076 ** where the caption is of one of the two forms:
1077 **
1078 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1079 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1080 **
1081 ** where iSub1 and iSub2 are the integers passed as the corresponding
1082 ** function parameters, and op is the text representation of the parameter
1083 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1084 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1085 ** false, or the second form if it is true.
1086 */
1087 static void explainComposite(
1088   Parse *pParse,                  /* Parse context */
1089   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1090   int iSub1,                      /* Subquery id 1 */
1091   int iSub2,                      /* Subquery id 2 */
1092   int bUseTmp                     /* True if a temp table was used */
1093 ){
1094   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1095   if( pParse->explain==2 ){
1096     Vdbe *v = pParse->pVdbe;
1097     char *zMsg = sqlite3MPrintf(
1098         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1099         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1100     );
1101     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1102   }
1103 }
1104 #else
1105 /* No-op versions of the explainXXX() functions and macros. */
1106 # define explainComposite(v,w,x,y,z)
1107 #endif
1108 
1109 /*
1110 ** If the inner loop was generated using a non-null pOrderBy argument,
1111 ** then the results were placed in a sorter.  After the loop is terminated
1112 ** we need to run the sorter and output the results.  The following
1113 ** routine generates the code needed to do that.
1114 */
1115 static void generateSortTail(
1116   Parse *pParse,    /* Parsing context */
1117   Select *p,        /* The SELECT statement */
1118   SortCtx *pSort,   /* Information on the ORDER BY clause */
1119   int nColumn,      /* Number of columns of data */
1120   SelectDest *pDest /* Write the sorted results here */
1121 ){
1122   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1123   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1124   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1125   int addr;
1126   int addrOnce = 0;
1127   int iTab;
1128   int pseudoTab = 0;
1129   ExprList *pOrderBy = pSort->pOrderBy;
1130   int eDest = pDest->eDest;
1131   int iParm = pDest->iSDParm;
1132   int regRow;
1133   int regRowid;
1134   int nKey;
1135 
1136   if( pSort->labelBkOut ){
1137     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1138     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1139     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1140     addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1141   }
1142   iTab = pSort->iECursor;
1143   regRow = sqlite3GetTempReg(pParse);
1144   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1145     pseudoTab = pParse->nTab++;
1146     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
1147     regRowid = 0;
1148   }else{
1149     regRowid = sqlite3GetTempReg(pParse);
1150   }
1151   nKey = pOrderBy->nExpr - pSort->nOBSat;
1152   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1153     int regSortOut = ++pParse->nMem;
1154     int ptab2 = pParse->nTab++;
1155     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, nKey+2);
1156     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1157     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1158     VdbeCoverage(v);
1159     codeOffset(v, p->iOffset, addrContinue);
1160     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
1161     sqlite3VdbeAddOp3(v, OP_Column, ptab2, nKey+1, regRow);
1162     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1163   }else{
1164     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1165     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1166     codeOffset(v, p->iOffset, addrContinue);
1167     sqlite3VdbeAddOp3(v, OP_Column, iTab, nKey+1, regRow);
1168   }
1169   switch( eDest ){
1170     case SRT_Table:
1171     case SRT_EphemTab: {
1172       testcase( eDest==SRT_Table );
1173       testcase( eDest==SRT_EphemTab );
1174       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1175       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1176       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1177       break;
1178     }
1179 #ifndef SQLITE_OMIT_SUBQUERY
1180     case SRT_Set: {
1181       assert( nColumn==1 );
1182       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1183                         &pDest->affSdst, 1);
1184       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1185       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1186       break;
1187     }
1188     case SRT_Mem: {
1189       assert( nColumn==1 );
1190       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1191       /* The LIMIT clause will terminate the loop for us */
1192       break;
1193     }
1194 #endif
1195     default: {
1196       int i;
1197       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1198       testcase( eDest==SRT_Output );
1199       testcase( eDest==SRT_Coroutine );
1200       for(i=0; i<nColumn; i++){
1201         assert( regRow!=pDest->iSdst+i );
1202         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
1203         if( i==0 ){
1204           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1205         }
1206       }
1207       if( eDest==SRT_Output ){
1208         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1209         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1210       }else{
1211         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1212       }
1213       break;
1214     }
1215   }
1216   sqlite3ReleaseTempReg(pParse, regRow);
1217   sqlite3ReleaseTempReg(pParse, regRowid);
1218 
1219   /* The bottom of the loop
1220   */
1221   sqlite3VdbeResolveLabel(v, addrContinue);
1222   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1223     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1224   }else{
1225     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1226   }
1227   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1228   sqlite3VdbeResolveLabel(v, addrBreak);
1229 }
1230 
1231 /*
1232 ** Return a pointer to a string containing the 'declaration type' of the
1233 ** expression pExpr. The string may be treated as static by the caller.
1234 **
1235 ** Also try to estimate the size of the returned value and return that
1236 ** result in *pEstWidth.
1237 **
1238 ** The declaration type is the exact datatype definition extracted from the
1239 ** original CREATE TABLE statement if the expression is a column. The
1240 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1241 ** is considered a column can be complex in the presence of subqueries. The
1242 ** result-set expression in all of the following SELECT statements is
1243 ** considered a column by this function.
1244 **
1245 **   SELECT col FROM tbl;
1246 **   SELECT (SELECT col FROM tbl;
1247 **   SELECT (SELECT col FROM tbl);
1248 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1249 **
1250 ** The declaration type for any expression other than a column is NULL.
1251 **
1252 ** This routine has either 3 or 6 parameters depending on whether or not
1253 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1254 */
1255 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1256 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1257 static const char *columnTypeImpl(
1258   NameContext *pNC,
1259   Expr *pExpr,
1260   const char **pzOrigDb,
1261   const char **pzOrigTab,
1262   const char **pzOrigCol,
1263   u8 *pEstWidth
1264 ){
1265   char const *zOrigDb = 0;
1266   char const *zOrigTab = 0;
1267   char const *zOrigCol = 0;
1268 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1269 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1270 static const char *columnTypeImpl(
1271   NameContext *pNC,
1272   Expr *pExpr,
1273   u8 *pEstWidth
1274 ){
1275 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1276   char const *zType = 0;
1277   int j;
1278   u8 estWidth = 1;
1279 
1280   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1281   switch( pExpr->op ){
1282     case TK_AGG_COLUMN:
1283     case TK_COLUMN: {
1284       /* The expression is a column. Locate the table the column is being
1285       ** extracted from in NameContext.pSrcList. This table may be real
1286       ** database table or a subquery.
1287       */
1288       Table *pTab = 0;            /* Table structure column is extracted from */
1289       Select *pS = 0;             /* Select the column is extracted from */
1290       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1291       testcase( pExpr->op==TK_AGG_COLUMN );
1292       testcase( pExpr->op==TK_COLUMN );
1293       while( pNC && !pTab ){
1294         SrcList *pTabList = pNC->pSrcList;
1295         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1296         if( j<pTabList->nSrc ){
1297           pTab = pTabList->a[j].pTab;
1298           pS = pTabList->a[j].pSelect;
1299         }else{
1300           pNC = pNC->pNext;
1301         }
1302       }
1303 
1304       if( pTab==0 ){
1305         /* At one time, code such as "SELECT new.x" within a trigger would
1306         ** cause this condition to run.  Since then, we have restructured how
1307         ** trigger code is generated and so this condition is no longer
1308         ** possible. However, it can still be true for statements like
1309         ** the following:
1310         **
1311         **   CREATE TABLE t1(col INTEGER);
1312         **   SELECT (SELECT t1.col) FROM FROM t1;
1313         **
1314         ** when columnType() is called on the expression "t1.col" in the
1315         ** sub-select. In this case, set the column type to NULL, even
1316         ** though it should really be "INTEGER".
1317         **
1318         ** This is not a problem, as the column type of "t1.col" is never
1319         ** used. When columnType() is called on the expression
1320         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1321         ** branch below.  */
1322         break;
1323       }
1324 
1325       assert( pTab && pExpr->pTab==pTab );
1326       if( pS ){
1327         /* The "table" is actually a sub-select or a view in the FROM clause
1328         ** of the SELECT statement. Return the declaration type and origin
1329         ** data for the result-set column of the sub-select.
1330         */
1331         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1332           /* If iCol is less than zero, then the expression requests the
1333           ** rowid of the sub-select or view. This expression is legal (see
1334           ** test case misc2.2.2) - it always evaluates to NULL.
1335           */
1336           NameContext sNC;
1337           Expr *p = pS->pEList->a[iCol].pExpr;
1338           sNC.pSrcList = pS->pSrc;
1339           sNC.pNext = pNC;
1340           sNC.pParse = pNC->pParse;
1341           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1342         }
1343       }else if( pTab->pSchema ){
1344         /* A real table */
1345         assert( !pS );
1346         if( iCol<0 ) iCol = pTab->iPKey;
1347         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1348 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1349         if( iCol<0 ){
1350           zType = "INTEGER";
1351           zOrigCol = "rowid";
1352         }else{
1353           zType = pTab->aCol[iCol].zType;
1354           zOrigCol = pTab->aCol[iCol].zName;
1355           estWidth = pTab->aCol[iCol].szEst;
1356         }
1357         zOrigTab = pTab->zName;
1358         if( pNC->pParse ){
1359           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1360           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1361         }
1362 #else
1363         if( iCol<0 ){
1364           zType = "INTEGER";
1365         }else{
1366           zType = pTab->aCol[iCol].zType;
1367           estWidth = pTab->aCol[iCol].szEst;
1368         }
1369 #endif
1370       }
1371       break;
1372     }
1373 #ifndef SQLITE_OMIT_SUBQUERY
1374     case TK_SELECT: {
1375       /* The expression is a sub-select. Return the declaration type and
1376       ** origin info for the single column in the result set of the SELECT
1377       ** statement.
1378       */
1379       NameContext sNC;
1380       Select *pS = pExpr->x.pSelect;
1381       Expr *p = pS->pEList->a[0].pExpr;
1382       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1383       sNC.pSrcList = pS->pSrc;
1384       sNC.pNext = pNC;
1385       sNC.pParse = pNC->pParse;
1386       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1387       break;
1388     }
1389 #endif
1390   }
1391 
1392 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1393   if( pzOrigDb ){
1394     assert( pzOrigTab && pzOrigCol );
1395     *pzOrigDb = zOrigDb;
1396     *pzOrigTab = zOrigTab;
1397     *pzOrigCol = zOrigCol;
1398   }
1399 #endif
1400   if( pEstWidth ) *pEstWidth = estWidth;
1401   return zType;
1402 }
1403 
1404 /*
1405 ** Generate code that will tell the VDBE the declaration types of columns
1406 ** in the result set.
1407 */
1408 static void generateColumnTypes(
1409   Parse *pParse,      /* Parser context */
1410   SrcList *pTabList,  /* List of tables */
1411   ExprList *pEList    /* Expressions defining the result set */
1412 ){
1413 #ifndef SQLITE_OMIT_DECLTYPE
1414   Vdbe *v = pParse->pVdbe;
1415   int i;
1416   NameContext sNC;
1417   sNC.pSrcList = pTabList;
1418   sNC.pParse = pParse;
1419   for(i=0; i<pEList->nExpr; i++){
1420     Expr *p = pEList->a[i].pExpr;
1421     const char *zType;
1422 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1423     const char *zOrigDb = 0;
1424     const char *zOrigTab = 0;
1425     const char *zOrigCol = 0;
1426     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1427 
1428     /* The vdbe must make its own copy of the column-type and other
1429     ** column specific strings, in case the schema is reset before this
1430     ** virtual machine is deleted.
1431     */
1432     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1433     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1434     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1435 #else
1436     zType = columnType(&sNC, p, 0, 0, 0, 0);
1437 #endif
1438     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1439   }
1440 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1441 }
1442 
1443 /*
1444 ** Generate code that will tell the VDBE the names of columns
1445 ** in the result set.  This information is used to provide the
1446 ** azCol[] values in the callback.
1447 */
1448 static void generateColumnNames(
1449   Parse *pParse,      /* Parser context */
1450   SrcList *pTabList,  /* List of tables */
1451   ExprList *pEList    /* Expressions defining the result set */
1452 ){
1453   Vdbe *v = pParse->pVdbe;
1454   int i, j;
1455   sqlite3 *db = pParse->db;
1456   int fullNames, shortNames;
1457 
1458 #ifndef SQLITE_OMIT_EXPLAIN
1459   /* If this is an EXPLAIN, skip this step */
1460   if( pParse->explain ){
1461     return;
1462   }
1463 #endif
1464 
1465   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1466   pParse->colNamesSet = 1;
1467   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1468   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1469   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1470   for(i=0; i<pEList->nExpr; i++){
1471     Expr *p;
1472     p = pEList->a[i].pExpr;
1473     if( NEVER(p==0) ) continue;
1474     if( pEList->a[i].zName ){
1475       char *zName = pEList->a[i].zName;
1476       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1477     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1478       Table *pTab;
1479       char *zCol;
1480       int iCol = p->iColumn;
1481       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1482         if( pTabList->a[j].iCursor==p->iTable ) break;
1483       }
1484       assert( j<pTabList->nSrc );
1485       pTab = pTabList->a[j].pTab;
1486       if( iCol<0 ) iCol = pTab->iPKey;
1487       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1488       if( iCol<0 ){
1489         zCol = "rowid";
1490       }else{
1491         zCol = pTab->aCol[iCol].zName;
1492       }
1493       if( !shortNames && !fullNames ){
1494         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1495             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1496       }else if( fullNames ){
1497         char *zName = 0;
1498         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1499         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1500       }else{
1501         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1502       }
1503     }else{
1504       const char *z = pEList->a[i].zSpan;
1505       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1506       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1507     }
1508   }
1509   generateColumnTypes(pParse, pTabList, pEList);
1510 }
1511 
1512 /*
1513 ** Given a an expression list (which is really the list of expressions
1514 ** that form the result set of a SELECT statement) compute appropriate
1515 ** column names for a table that would hold the expression list.
1516 **
1517 ** All column names will be unique.
1518 **
1519 ** Only the column names are computed.  Column.zType, Column.zColl,
1520 ** and other fields of Column are zeroed.
1521 **
1522 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1523 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1524 */
1525 static int selectColumnsFromExprList(
1526   Parse *pParse,          /* Parsing context */
1527   ExprList *pEList,       /* Expr list from which to derive column names */
1528   i16 *pnCol,             /* Write the number of columns here */
1529   Column **paCol          /* Write the new column list here */
1530 ){
1531   sqlite3 *db = pParse->db;   /* Database connection */
1532   int i, j;                   /* Loop counters */
1533   int cnt;                    /* Index added to make the name unique */
1534   Column *aCol, *pCol;        /* For looping over result columns */
1535   int nCol;                   /* Number of columns in the result set */
1536   Expr *p;                    /* Expression for a single result column */
1537   char *zName;                /* Column name */
1538   int nName;                  /* Size of name in zName[] */
1539 
1540   if( pEList ){
1541     nCol = pEList->nExpr;
1542     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1543     testcase( aCol==0 );
1544   }else{
1545     nCol = 0;
1546     aCol = 0;
1547   }
1548   *pnCol = nCol;
1549   *paCol = aCol;
1550 
1551   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1552     /* Get an appropriate name for the column
1553     */
1554     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1555     if( (zName = pEList->a[i].zName)!=0 ){
1556       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1557       zName = sqlite3DbStrDup(db, zName);
1558     }else{
1559       Expr *pColExpr = p;  /* The expression that is the result column name */
1560       Table *pTab;         /* Table associated with this expression */
1561       while( pColExpr->op==TK_DOT ){
1562         pColExpr = pColExpr->pRight;
1563         assert( pColExpr!=0 );
1564       }
1565       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1566         /* For columns use the column name name */
1567         int iCol = pColExpr->iColumn;
1568         pTab = pColExpr->pTab;
1569         if( iCol<0 ) iCol = pTab->iPKey;
1570         zName = sqlite3MPrintf(db, "%s",
1571                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1572       }else if( pColExpr->op==TK_ID ){
1573         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1574         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1575       }else{
1576         /* Use the original text of the column expression as its name */
1577         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1578       }
1579     }
1580     if( db->mallocFailed ){
1581       sqlite3DbFree(db, zName);
1582       break;
1583     }
1584 
1585     /* Make sure the column name is unique.  If the name is not unique,
1586     ** append a integer to the name so that it becomes unique.
1587     */
1588     nName = sqlite3Strlen30(zName);
1589     for(j=cnt=0; j<i; j++){
1590       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1591         char *zNewName;
1592         int k;
1593         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1594         if( k>=0 && zName[k]==':' ) nName = k;
1595         zName[nName] = 0;
1596         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1597         sqlite3DbFree(db, zName);
1598         zName = zNewName;
1599         j = -1;
1600         if( zName==0 ) break;
1601       }
1602     }
1603     pCol->zName = zName;
1604   }
1605   if( db->mallocFailed ){
1606     for(j=0; j<i; j++){
1607       sqlite3DbFree(db, aCol[j].zName);
1608     }
1609     sqlite3DbFree(db, aCol);
1610     *paCol = 0;
1611     *pnCol = 0;
1612     return SQLITE_NOMEM;
1613   }
1614   return SQLITE_OK;
1615 }
1616 
1617 /*
1618 ** Add type and collation information to a column list based on
1619 ** a SELECT statement.
1620 **
1621 ** The column list presumably came from selectColumnNamesFromExprList().
1622 ** The column list has only names, not types or collations.  This
1623 ** routine goes through and adds the types and collations.
1624 **
1625 ** This routine requires that all identifiers in the SELECT
1626 ** statement be resolved.
1627 */
1628 static void selectAddColumnTypeAndCollation(
1629   Parse *pParse,        /* Parsing contexts */
1630   Table *pTab,          /* Add column type information to this table */
1631   Select *pSelect       /* SELECT used to determine types and collations */
1632 ){
1633   sqlite3 *db = pParse->db;
1634   NameContext sNC;
1635   Column *pCol;
1636   CollSeq *pColl;
1637   int i;
1638   Expr *p;
1639   struct ExprList_item *a;
1640   u64 szAll = 0;
1641 
1642   assert( pSelect!=0 );
1643   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1644   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1645   if( db->mallocFailed ) return;
1646   memset(&sNC, 0, sizeof(sNC));
1647   sNC.pSrcList = pSelect->pSrc;
1648   a = pSelect->pEList->a;
1649   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1650     p = a[i].pExpr;
1651     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1652     szAll += pCol->szEst;
1653     pCol->affinity = sqlite3ExprAffinity(p);
1654     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1655     pColl = sqlite3ExprCollSeq(pParse, p);
1656     if( pColl ){
1657       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1658     }
1659   }
1660   pTab->szTabRow = sqlite3LogEst(szAll*4);
1661 }
1662 
1663 /*
1664 ** Given a SELECT statement, generate a Table structure that describes
1665 ** the result set of that SELECT.
1666 */
1667 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1668   Table *pTab;
1669   sqlite3 *db = pParse->db;
1670   int savedFlags;
1671 
1672   savedFlags = db->flags;
1673   db->flags &= ~SQLITE_FullColNames;
1674   db->flags |= SQLITE_ShortColNames;
1675   sqlite3SelectPrep(pParse, pSelect, 0);
1676   if( pParse->nErr ) return 0;
1677   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1678   db->flags = savedFlags;
1679   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1680   if( pTab==0 ){
1681     return 0;
1682   }
1683   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1684   ** is disabled */
1685   assert( db->lookaside.bEnabled==0 );
1686   pTab->nRef = 1;
1687   pTab->zName = 0;
1688   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1689   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1690   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1691   pTab->iPKey = -1;
1692   if( db->mallocFailed ){
1693     sqlite3DeleteTable(db, pTab);
1694     return 0;
1695   }
1696   return pTab;
1697 }
1698 
1699 /*
1700 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1701 ** If an error occurs, return NULL and leave a message in pParse.
1702 */
1703 Vdbe *sqlite3GetVdbe(Parse *pParse){
1704   Vdbe *v = pParse->pVdbe;
1705   if( v==0 ){
1706     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1707     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1708     if( pParse->pToplevel==0
1709      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1710     ){
1711       pParse->okConstFactor = 1;
1712     }
1713 
1714   }
1715   return v;
1716 }
1717 
1718 
1719 /*
1720 ** Compute the iLimit and iOffset fields of the SELECT based on the
1721 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1722 ** that appear in the original SQL statement after the LIMIT and OFFSET
1723 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1724 ** are the integer memory register numbers for counters used to compute
1725 ** the limit and offset.  If there is no limit and/or offset, then
1726 ** iLimit and iOffset are negative.
1727 **
1728 ** This routine changes the values of iLimit and iOffset only if
1729 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1730 ** iOffset should have been preset to appropriate default values (zero)
1731 ** prior to calling this routine.
1732 **
1733 ** The iOffset register (if it exists) is initialized to the value
1734 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1735 ** iOffset+1 is initialized to LIMIT+OFFSET.
1736 **
1737 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1738 ** redefined.  The UNION ALL operator uses this property to force
1739 ** the reuse of the same limit and offset registers across multiple
1740 ** SELECT statements.
1741 */
1742 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1743   Vdbe *v = 0;
1744   int iLimit = 0;
1745   int iOffset;
1746   int addr1, n;
1747   if( p->iLimit ) return;
1748 
1749   /*
1750   ** "LIMIT -1" always shows all rows.  There is some
1751   ** controversy about what the correct behavior should be.
1752   ** The current implementation interprets "LIMIT 0" to mean
1753   ** no rows.
1754   */
1755   sqlite3ExprCacheClear(pParse);
1756   assert( p->pOffset==0 || p->pLimit!=0 );
1757   if( p->pLimit ){
1758     p->iLimit = iLimit = ++pParse->nMem;
1759     v = sqlite3GetVdbe(pParse);
1760     assert( v!=0 );
1761     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1762       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1763       VdbeComment((v, "LIMIT counter"));
1764       if( n==0 ){
1765         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1766       }else if( n>=0 && p->nSelectRow>(u64)n ){
1767         p->nSelectRow = n;
1768       }
1769     }else{
1770       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1771       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1772       VdbeComment((v, "LIMIT counter"));
1773       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1774     }
1775     if( p->pOffset ){
1776       p->iOffset = iOffset = ++pParse->nMem;
1777       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1778       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1779       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1780       VdbeComment((v, "OFFSET counter"));
1781       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1782       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1783       sqlite3VdbeJumpHere(v, addr1);
1784       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1785       VdbeComment((v, "LIMIT+OFFSET"));
1786       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1787       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1788       sqlite3VdbeJumpHere(v, addr1);
1789     }
1790   }
1791 }
1792 
1793 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1794 /*
1795 ** Return the appropriate collating sequence for the iCol-th column of
1796 ** the result set for the compound-select statement "p".  Return NULL if
1797 ** the column has no default collating sequence.
1798 **
1799 ** The collating sequence for the compound select is taken from the
1800 ** left-most term of the select that has a collating sequence.
1801 */
1802 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1803   CollSeq *pRet;
1804   if( p->pPrior ){
1805     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1806   }else{
1807     pRet = 0;
1808   }
1809   assert( iCol>=0 );
1810   if( pRet==0 && iCol<p->pEList->nExpr ){
1811     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1812   }
1813   return pRet;
1814 }
1815 
1816 /*
1817 ** The select statement passed as the second parameter is a compound SELECT
1818 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1819 ** structure suitable for implementing the ORDER BY.
1820 **
1821 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1822 ** function is responsible for ensuring that this structure is eventually
1823 ** freed.
1824 */
1825 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1826   ExprList *pOrderBy = p->pOrderBy;
1827   int nOrderBy = p->pOrderBy->nExpr;
1828   sqlite3 *db = pParse->db;
1829   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1830   if( pRet ){
1831     int i;
1832     for(i=0; i<nOrderBy; i++){
1833       struct ExprList_item *pItem = &pOrderBy->a[i];
1834       Expr *pTerm = pItem->pExpr;
1835       CollSeq *pColl;
1836 
1837       if( pTerm->flags & EP_Collate ){
1838         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1839       }else{
1840         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1841         if( pColl==0 ) pColl = db->pDfltColl;
1842         pOrderBy->a[i].pExpr =
1843           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1844       }
1845       assert( sqlite3KeyInfoIsWriteable(pRet) );
1846       pRet->aColl[i] = pColl;
1847       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1848     }
1849   }
1850 
1851   return pRet;
1852 }
1853 
1854 #ifndef SQLITE_OMIT_CTE
1855 /*
1856 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1857 ** query of the form:
1858 **
1859 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1860 **                         \___________/             \_______________/
1861 **                           p->pPrior                      p
1862 **
1863 **
1864 ** There is exactly one reference to the recursive-table in the FROM clause
1865 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1866 **
1867 ** The setup-query runs once to generate an initial set of rows that go
1868 ** into a Queue table.  Rows are extracted from the Queue table one by
1869 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1870 ** extracted row (now in the iCurrent table) becomes the content of the
1871 ** recursive-table for a recursive-query run.  The output of the recursive-query
1872 ** is added back into the Queue table.  Then another row is extracted from Queue
1873 ** and the iteration continues until the Queue table is empty.
1874 **
1875 ** If the compound query operator is UNION then no duplicate rows are ever
1876 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1877 ** that have ever been inserted into Queue and causes duplicates to be
1878 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1879 **
1880 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1881 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1882 ** an ORDER BY, the Queue table is just a FIFO.
1883 **
1884 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1885 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1886 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1887 ** with a positive value, then the first OFFSET outputs are discarded rather
1888 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1889 ** rows have been skipped.
1890 */
1891 static void generateWithRecursiveQuery(
1892   Parse *pParse,        /* Parsing context */
1893   Select *p,            /* The recursive SELECT to be coded */
1894   SelectDest *pDest     /* What to do with query results */
1895 ){
1896   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1897   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1898   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1899   Select *pSetup = p->pPrior;   /* The setup query */
1900   int addrTop;                  /* Top of the loop */
1901   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1902   int iCurrent = 0;             /* The Current table */
1903   int regCurrent;               /* Register holding Current table */
1904   int iQueue;                   /* The Queue table */
1905   int iDistinct = 0;            /* To ensure unique results if UNION */
1906   int eDest = SRT_Fifo;         /* How to write to Queue */
1907   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1908   int i;                        /* Loop counter */
1909   int rc;                       /* Result code */
1910   ExprList *pOrderBy;           /* The ORDER BY clause */
1911   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1912   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1913 
1914   /* Obtain authorization to do a recursive query */
1915   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1916 
1917   /* Process the LIMIT and OFFSET clauses, if they exist */
1918   addrBreak = sqlite3VdbeMakeLabel(v);
1919   computeLimitRegisters(pParse, p, addrBreak);
1920   pLimit = p->pLimit;
1921   pOffset = p->pOffset;
1922   regLimit = p->iLimit;
1923   regOffset = p->iOffset;
1924   p->pLimit = p->pOffset = 0;
1925   p->iLimit = p->iOffset = 0;
1926   pOrderBy = p->pOrderBy;
1927 
1928   /* Locate the cursor number of the Current table */
1929   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1930     if( pSrc->a[i].isRecursive ){
1931       iCurrent = pSrc->a[i].iCursor;
1932       break;
1933     }
1934   }
1935 
1936   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1937   ** the Distinct table must be exactly one greater than Queue in order
1938   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1939   iQueue = pParse->nTab++;
1940   if( p->op==TK_UNION ){
1941     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1942     iDistinct = pParse->nTab++;
1943   }else{
1944     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1945   }
1946   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
1947 
1948   /* Allocate cursors for Current, Queue, and Distinct. */
1949   regCurrent = ++pParse->nMem;
1950   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
1951   if( pOrderBy ){
1952     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
1953     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
1954                       (char*)pKeyInfo, P4_KEYINFO);
1955     destQueue.pOrderBy = pOrderBy;
1956   }else{
1957     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
1958   }
1959   VdbeComment((v, "Queue table"));
1960   if( iDistinct ){
1961     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
1962     p->selFlags |= SF_UsesEphemeral;
1963   }
1964 
1965   /* Detach the ORDER BY clause from the compound SELECT */
1966   p->pOrderBy = 0;
1967 
1968   /* Store the results of the setup-query in Queue. */
1969   pSetup->pNext = 0;
1970   rc = sqlite3Select(pParse, pSetup, &destQueue);
1971   pSetup->pNext = p;
1972   if( rc ) goto end_of_recursive_query;
1973 
1974   /* Find the next row in the Queue and output that row */
1975   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
1976 
1977   /* Transfer the next row in Queue over to Current */
1978   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
1979   if( pOrderBy ){
1980     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
1981   }else{
1982     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
1983   }
1984   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
1985 
1986   /* Output the single row in Current */
1987   addrCont = sqlite3VdbeMakeLabel(v);
1988   codeOffset(v, regOffset, addrCont);
1989   selectInnerLoop(pParse, p, p->pEList, iCurrent,
1990       0, 0, pDest, addrCont, addrBreak);
1991   if( regLimit ){
1992     sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
1993     VdbeCoverage(v);
1994   }
1995   sqlite3VdbeResolveLabel(v, addrCont);
1996 
1997   /* Execute the recursive SELECT taking the single row in Current as
1998   ** the value for the recursive-table. Store the results in the Queue.
1999   */
2000   p->pPrior = 0;
2001   sqlite3Select(pParse, p, &destQueue);
2002   assert( p->pPrior==0 );
2003   p->pPrior = pSetup;
2004 
2005   /* Keep running the loop until the Queue is empty */
2006   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2007   sqlite3VdbeResolveLabel(v, addrBreak);
2008 
2009 end_of_recursive_query:
2010   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2011   p->pOrderBy = pOrderBy;
2012   p->pLimit = pLimit;
2013   p->pOffset = pOffset;
2014   return;
2015 }
2016 #endif /* SQLITE_OMIT_CTE */
2017 
2018 /* Forward references */
2019 static int multiSelectOrderBy(
2020   Parse *pParse,        /* Parsing context */
2021   Select *p,            /* The right-most of SELECTs to be coded */
2022   SelectDest *pDest     /* What to do with query results */
2023 );
2024 
2025 
2026 /*
2027 ** This routine is called to process a compound query form from
2028 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2029 ** INTERSECT
2030 **
2031 ** "p" points to the right-most of the two queries.  the query on the
2032 ** left is p->pPrior.  The left query could also be a compound query
2033 ** in which case this routine will be called recursively.
2034 **
2035 ** The results of the total query are to be written into a destination
2036 ** of type eDest with parameter iParm.
2037 **
2038 ** Example 1:  Consider a three-way compound SQL statement.
2039 **
2040 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2041 **
2042 ** This statement is parsed up as follows:
2043 **
2044 **     SELECT c FROM t3
2045 **      |
2046 **      `----->  SELECT b FROM t2
2047 **                |
2048 **                `------>  SELECT a FROM t1
2049 **
2050 ** The arrows in the diagram above represent the Select.pPrior pointer.
2051 ** So if this routine is called with p equal to the t3 query, then
2052 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2053 **
2054 ** Notice that because of the way SQLite parses compound SELECTs, the
2055 ** individual selects always group from left to right.
2056 */
2057 static int multiSelect(
2058   Parse *pParse,        /* Parsing context */
2059   Select *p,            /* The right-most of SELECTs to be coded */
2060   SelectDest *pDest     /* What to do with query results */
2061 ){
2062   int rc = SQLITE_OK;   /* Success code from a subroutine */
2063   Select *pPrior;       /* Another SELECT immediately to our left */
2064   Vdbe *v;              /* Generate code to this VDBE */
2065   SelectDest dest;      /* Alternative data destination */
2066   Select *pDelete = 0;  /* Chain of simple selects to delete */
2067   sqlite3 *db;          /* Database connection */
2068 #ifndef SQLITE_OMIT_EXPLAIN
2069   int iSub1 = 0;        /* EQP id of left-hand query */
2070   int iSub2 = 0;        /* EQP id of right-hand query */
2071 #endif
2072 
2073   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2074   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2075   */
2076   assert( p && p->pPrior );  /* Calling function guarantees this much */
2077   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2078   db = pParse->db;
2079   pPrior = p->pPrior;
2080   dest = *pDest;
2081   if( pPrior->pOrderBy ){
2082     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2083       selectOpName(p->op));
2084     rc = 1;
2085     goto multi_select_end;
2086   }
2087   if( pPrior->pLimit ){
2088     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2089       selectOpName(p->op));
2090     rc = 1;
2091     goto multi_select_end;
2092   }
2093 
2094   v = sqlite3GetVdbe(pParse);
2095   assert( v!=0 );  /* The VDBE already created by calling function */
2096 
2097   /* Create the destination temporary table if necessary
2098   */
2099   if( dest.eDest==SRT_EphemTab ){
2100     assert( p->pEList );
2101     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2102     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2103     dest.eDest = SRT_Table;
2104   }
2105 
2106   /* Make sure all SELECTs in the statement have the same number of elements
2107   ** in their result sets.
2108   */
2109   assert( p->pEList && pPrior->pEList );
2110   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2111     if( p->selFlags & SF_Values ){
2112       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2113     }else{
2114       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2115         " do not have the same number of result columns", selectOpName(p->op));
2116     }
2117     rc = 1;
2118     goto multi_select_end;
2119   }
2120 
2121 #ifndef SQLITE_OMIT_CTE
2122   if( p->selFlags & SF_Recursive ){
2123     generateWithRecursiveQuery(pParse, p, &dest);
2124   }else
2125 #endif
2126 
2127   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2128   */
2129   if( p->pOrderBy ){
2130     return multiSelectOrderBy(pParse, p, pDest);
2131   }else
2132 
2133   /* Generate code for the left and right SELECT statements.
2134   */
2135   switch( p->op ){
2136     case TK_ALL: {
2137       int addr = 0;
2138       int nLimit;
2139       assert( !pPrior->pLimit );
2140       pPrior->iLimit = p->iLimit;
2141       pPrior->iOffset = p->iOffset;
2142       pPrior->pLimit = p->pLimit;
2143       pPrior->pOffset = p->pOffset;
2144       explainSetInteger(iSub1, pParse->iNextSelectId);
2145       rc = sqlite3Select(pParse, pPrior, &dest);
2146       p->pLimit = 0;
2147       p->pOffset = 0;
2148       if( rc ){
2149         goto multi_select_end;
2150       }
2151       p->pPrior = 0;
2152       p->iLimit = pPrior->iLimit;
2153       p->iOffset = pPrior->iOffset;
2154       if( p->iLimit ){
2155         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
2156         VdbeComment((v, "Jump ahead if LIMIT reached"));
2157       }
2158       explainSetInteger(iSub2, pParse->iNextSelectId);
2159       rc = sqlite3Select(pParse, p, &dest);
2160       testcase( rc!=SQLITE_OK );
2161       pDelete = p->pPrior;
2162       p->pPrior = pPrior;
2163       p->nSelectRow += pPrior->nSelectRow;
2164       if( pPrior->pLimit
2165        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2166        && nLimit>0 && p->nSelectRow > (u64)nLimit
2167       ){
2168         p->nSelectRow = nLimit;
2169       }
2170       if( addr ){
2171         sqlite3VdbeJumpHere(v, addr);
2172       }
2173       break;
2174     }
2175     case TK_EXCEPT:
2176     case TK_UNION: {
2177       int unionTab;    /* Cursor number of the temporary table holding result */
2178       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2179       int priorOp;     /* The SRT_ operation to apply to prior selects */
2180       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2181       int addr;
2182       SelectDest uniondest;
2183 
2184       testcase( p->op==TK_EXCEPT );
2185       testcase( p->op==TK_UNION );
2186       priorOp = SRT_Union;
2187       if( dest.eDest==priorOp ){
2188         /* We can reuse a temporary table generated by a SELECT to our
2189         ** right.
2190         */
2191         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2192         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2193         unionTab = dest.iSDParm;
2194       }else{
2195         /* We will need to create our own temporary table to hold the
2196         ** intermediate results.
2197         */
2198         unionTab = pParse->nTab++;
2199         assert( p->pOrderBy==0 );
2200         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2201         assert( p->addrOpenEphm[0] == -1 );
2202         p->addrOpenEphm[0] = addr;
2203         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2204         assert( p->pEList );
2205       }
2206 
2207       /* Code the SELECT statements to our left
2208       */
2209       assert( !pPrior->pOrderBy );
2210       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2211       explainSetInteger(iSub1, pParse->iNextSelectId);
2212       rc = sqlite3Select(pParse, pPrior, &uniondest);
2213       if( rc ){
2214         goto multi_select_end;
2215       }
2216 
2217       /* Code the current SELECT statement
2218       */
2219       if( p->op==TK_EXCEPT ){
2220         op = SRT_Except;
2221       }else{
2222         assert( p->op==TK_UNION );
2223         op = SRT_Union;
2224       }
2225       p->pPrior = 0;
2226       pLimit = p->pLimit;
2227       p->pLimit = 0;
2228       pOffset = p->pOffset;
2229       p->pOffset = 0;
2230       uniondest.eDest = op;
2231       explainSetInteger(iSub2, pParse->iNextSelectId);
2232       rc = sqlite3Select(pParse, p, &uniondest);
2233       testcase( rc!=SQLITE_OK );
2234       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2235       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2236       sqlite3ExprListDelete(db, p->pOrderBy);
2237       pDelete = p->pPrior;
2238       p->pPrior = pPrior;
2239       p->pOrderBy = 0;
2240       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2241       sqlite3ExprDelete(db, p->pLimit);
2242       p->pLimit = pLimit;
2243       p->pOffset = pOffset;
2244       p->iLimit = 0;
2245       p->iOffset = 0;
2246 
2247       /* Convert the data in the temporary table into whatever form
2248       ** it is that we currently need.
2249       */
2250       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2251       if( dest.eDest!=priorOp ){
2252         int iCont, iBreak, iStart;
2253         assert( p->pEList );
2254         if( dest.eDest==SRT_Output ){
2255           Select *pFirst = p;
2256           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2257           generateColumnNames(pParse, 0, pFirst->pEList);
2258         }
2259         iBreak = sqlite3VdbeMakeLabel(v);
2260         iCont = sqlite3VdbeMakeLabel(v);
2261         computeLimitRegisters(pParse, p, iBreak);
2262         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2263         iStart = sqlite3VdbeCurrentAddr(v);
2264         selectInnerLoop(pParse, p, p->pEList, unionTab,
2265                         0, 0, &dest, iCont, iBreak);
2266         sqlite3VdbeResolveLabel(v, iCont);
2267         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2268         sqlite3VdbeResolveLabel(v, iBreak);
2269         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2270       }
2271       break;
2272     }
2273     default: assert( p->op==TK_INTERSECT ); {
2274       int tab1, tab2;
2275       int iCont, iBreak, iStart;
2276       Expr *pLimit, *pOffset;
2277       int addr;
2278       SelectDest intersectdest;
2279       int r1;
2280 
2281       /* INTERSECT is different from the others since it requires
2282       ** two temporary tables.  Hence it has its own case.  Begin
2283       ** by allocating the tables we will need.
2284       */
2285       tab1 = pParse->nTab++;
2286       tab2 = pParse->nTab++;
2287       assert( p->pOrderBy==0 );
2288 
2289       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2290       assert( p->addrOpenEphm[0] == -1 );
2291       p->addrOpenEphm[0] = addr;
2292       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2293       assert( p->pEList );
2294 
2295       /* Code the SELECTs to our left into temporary table "tab1".
2296       */
2297       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2298       explainSetInteger(iSub1, pParse->iNextSelectId);
2299       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2300       if( rc ){
2301         goto multi_select_end;
2302       }
2303 
2304       /* Code the current SELECT into temporary table "tab2"
2305       */
2306       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2307       assert( p->addrOpenEphm[1] == -1 );
2308       p->addrOpenEphm[1] = addr;
2309       p->pPrior = 0;
2310       pLimit = p->pLimit;
2311       p->pLimit = 0;
2312       pOffset = p->pOffset;
2313       p->pOffset = 0;
2314       intersectdest.iSDParm = tab2;
2315       explainSetInteger(iSub2, pParse->iNextSelectId);
2316       rc = sqlite3Select(pParse, p, &intersectdest);
2317       testcase( rc!=SQLITE_OK );
2318       pDelete = p->pPrior;
2319       p->pPrior = pPrior;
2320       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2321       sqlite3ExprDelete(db, p->pLimit);
2322       p->pLimit = pLimit;
2323       p->pOffset = pOffset;
2324 
2325       /* Generate code to take the intersection of the two temporary
2326       ** tables.
2327       */
2328       assert( p->pEList );
2329       if( dest.eDest==SRT_Output ){
2330         Select *pFirst = p;
2331         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2332         generateColumnNames(pParse, 0, pFirst->pEList);
2333       }
2334       iBreak = sqlite3VdbeMakeLabel(v);
2335       iCont = sqlite3VdbeMakeLabel(v);
2336       computeLimitRegisters(pParse, p, iBreak);
2337       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2338       r1 = sqlite3GetTempReg(pParse);
2339       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2340       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2341       sqlite3ReleaseTempReg(pParse, r1);
2342       selectInnerLoop(pParse, p, p->pEList, tab1,
2343                       0, 0, &dest, iCont, iBreak);
2344       sqlite3VdbeResolveLabel(v, iCont);
2345       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2346       sqlite3VdbeResolveLabel(v, iBreak);
2347       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2348       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2349       break;
2350     }
2351   }
2352 
2353   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2354 
2355   /* Compute collating sequences used by
2356   ** temporary tables needed to implement the compound select.
2357   ** Attach the KeyInfo structure to all temporary tables.
2358   **
2359   ** This section is run by the right-most SELECT statement only.
2360   ** SELECT statements to the left always skip this part.  The right-most
2361   ** SELECT might also skip this part if it has no ORDER BY clause and
2362   ** no temp tables are required.
2363   */
2364   if( p->selFlags & SF_UsesEphemeral ){
2365     int i;                        /* Loop counter */
2366     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2367     Select *pLoop;                /* For looping through SELECT statements */
2368     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2369     int nCol;                     /* Number of columns in result set */
2370 
2371     assert( p->pNext==0 );
2372     nCol = p->pEList->nExpr;
2373     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2374     if( !pKeyInfo ){
2375       rc = SQLITE_NOMEM;
2376       goto multi_select_end;
2377     }
2378     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2379       *apColl = multiSelectCollSeq(pParse, p, i);
2380       if( 0==*apColl ){
2381         *apColl = db->pDfltColl;
2382       }
2383     }
2384 
2385     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2386       for(i=0; i<2; i++){
2387         int addr = pLoop->addrOpenEphm[i];
2388         if( addr<0 ){
2389           /* If [0] is unused then [1] is also unused.  So we can
2390           ** always safely abort as soon as the first unused slot is found */
2391           assert( pLoop->addrOpenEphm[1]<0 );
2392           break;
2393         }
2394         sqlite3VdbeChangeP2(v, addr, nCol);
2395         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2396                             P4_KEYINFO);
2397         pLoop->addrOpenEphm[i] = -1;
2398       }
2399     }
2400     sqlite3KeyInfoUnref(pKeyInfo);
2401   }
2402 
2403 multi_select_end:
2404   pDest->iSdst = dest.iSdst;
2405   pDest->nSdst = dest.nSdst;
2406   sqlite3SelectDelete(db, pDelete);
2407   return rc;
2408 }
2409 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2410 
2411 /*
2412 ** Code an output subroutine for a coroutine implementation of a
2413 ** SELECT statment.
2414 **
2415 ** The data to be output is contained in pIn->iSdst.  There are
2416 ** pIn->nSdst columns to be output.  pDest is where the output should
2417 ** be sent.
2418 **
2419 ** regReturn is the number of the register holding the subroutine
2420 ** return address.
2421 **
2422 ** If regPrev>0 then it is the first register in a vector that
2423 ** records the previous output.  mem[regPrev] is a flag that is false
2424 ** if there has been no previous output.  If regPrev>0 then code is
2425 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2426 ** keys.
2427 **
2428 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2429 ** iBreak.
2430 */
2431 static int generateOutputSubroutine(
2432   Parse *pParse,          /* Parsing context */
2433   Select *p,              /* The SELECT statement */
2434   SelectDest *pIn,        /* Coroutine supplying data */
2435   SelectDest *pDest,      /* Where to send the data */
2436   int regReturn,          /* The return address register */
2437   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2438   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2439   int iBreak              /* Jump here if we hit the LIMIT */
2440 ){
2441   Vdbe *v = pParse->pVdbe;
2442   int iContinue;
2443   int addr;
2444 
2445   addr = sqlite3VdbeCurrentAddr(v);
2446   iContinue = sqlite3VdbeMakeLabel(v);
2447 
2448   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2449   */
2450   if( regPrev ){
2451     int j1, j2;
2452     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2453     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2454                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2455     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2456     sqlite3VdbeJumpHere(v, j1);
2457     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2458     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2459   }
2460   if( pParse->db->mallocFailed ) return 0;
2461 
2462   /* Suppress the first OFFSET entries if there is an OFFSET clause
2463   */
2464   codeOffset(v, p->iOffset, iContinue);
2465 
2466   switch( pDest->eDest ){
2467     /* Store the result as data using a unique key.
2468     */
2469     case SRT_Table:
2470     case SRT_EphemTab: {
2471       int r1 = sqlite3GetTempReg(pParse);
2472       int r2 = sqlite3GetTempReg(pParse);
2473       testcase( pDest->eDest==SRT_Table );
2474       testcase( pDest->eDest==SRT_EphemTab );
2475       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2476       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2477       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2478       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2479       sqlite3ReleaseTempReg(pParse, r2);
2480       sqlite3ReleaseTempReg(pParse, r1);
2481       break;
2482     }
2483 
2484 #ifndef SQLITE_OMIT_SUBQUERY
2485     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2486     ** then there should be a single item on the stack.  Write this
2487     ** item into the set table with bogus data.
2488     */
2489     case SRT_Set: {
2490       int r1;
2491       assert( pIn->nSdst==1 );
2492       pDest->affSdst =
2493          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2494       r1 = sqlite3GetTempReg(pParse);
2495       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2496       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2497       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2498       sqlite3ReleaseTempReg(pParse, r1);
2499       break;
2500     }
2501 
2502 #if 0  /* Never occurs on an ORDER BY query */
2503     /* If any row exist in the result set, record that fact and abort.
2504     */
2505     case SRT_Exists: {
2506       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2507       /* The LIMIT clause will terminate the loop for us */
2508       break;
2509     }
2510 #endif
2511 
2512     /* If this is a scalar select that is part of an expression, then
2513     ** store the results in the appropriate memory cell and break out
2514     ** of the scan loop.
2515     */
2516     case SRT_Mem: {
2517       assert( pIn->nSdst==1 );
2518       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2519       /* The LIMIT clause will jump out of the loop for us */
2520       break;
2521     }
2522 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2523 
2524     /* The results are stored in a sequence of registers
2525     ** starting at pDest->iSdst.  Then the co-routine yields.
2526     */
2527     case SRT_Coroutine: {
2528       if( pDest->iSdst==0 ){
2529         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2530         pDest->nSdst = pIn->nSdst;
2531       }
2532       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2533       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2534       break;
2535     }
2536 
2537     /* If none of the above, then the result destination must be
2538     ** SRT_Output.  This routine is never called with any other
2539     ** destination other than the ones handled above or SRT_Output.
2540     **
2541     ** For SRT_Output, results are stored in a sequence of registers.
2542     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2543     ** return the next row of result.
2544     */
2545     default: {
2546       assert( pDest->eDest==SRT_Output );
2547       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2548       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2549       break;
2550     }
2551   }
2552 
2553   /* Jump to the end of the loop if the LIMIT is reached.
2554   */
2555   if( p->iLimit ){
2556     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2557   }
2558 
2559   /* Generate the subroutine return
2560   */
2561   sqlite3VdbeResolveLabel(v, iContinue);
2562   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2563 
2564   return addr;
2565 }
2566 
2567 /*
2568 ** Alternative compound select code generator for cases when there
2569 ** is an ORDER BY clause.
2570 **
2571 ** We assume a query of the following form:
2572 **
2573 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2574 **
2575 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2576 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2577 ** co-routines.  Then run the co-routines in parallel and merge the results
2578 ** into the output.  In addition to the two coroutines (called selectA and
2579 ** selectB) there are 7 subroutines:
2580 **
2581 **    outA:    Move the output of the selectA coroutine into the output
2582 **             of the compound query.
2583 **
2584 **    outB:    Move the output of the selectB coroutine into the output
2585 **             of the compound query.  (Only generated for UNION and
2586 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2587 **             appears only in B.)
2588 **
2589 **    AltB:    Called when there is data from both coroutines and A<B.
2590 **
2591 **    AeqB:    Called when there is data from both coroutines and A==B.
2592 **
2593 **    AgtB:    Called when there is data from both coroutines and A>B.
2594 **
2595 **    EofA:    Called when data is exhausted from selectA.
2596 **
2597 **    EofB:    Called when data is exhausted from selectB.
2598 **
2599 ** The implementation of the latter five subroutines depend on which
2600 ** <operator> is used:
2601 **
2602 **
2603 **             UNION ALL         UNION            EXCEPT          INTERSECT
2604 **          -------------  -----------------  --------------  -----------------
2605 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2606 **
2607 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2608 **
2609 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2610 **
2611 **   EofA:   outB, nextB      outB, nextB          halt             halt
2612 **
2613 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2614 **
2615 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2616 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2617 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2618 ** following nextX causes a jump to the end of the select processing.
2619 **
2620 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2621 ** within the output subroutine.  The regPrev register set holds the previously
2622 ** output value.  A comparison is made against this value and the output
2623 ** is skipped if the next results would be the same as the previous.
2624 **
2625 ** The implementation plan is to implement the two coroutines and seven
2626 ** subroutines first, then put the control logic at the bottom.  Like this:
2627 **
2628 **          goto Init
2629 **     coA: coroutine for left query (A)
2630 **     coB: coroutine for right query (B)
2631 **    outA: output one row of A
2632 **    outB: output one row of B (UNION and UNION ALL only)
2633 **    EofA: ...
2634 **    EofB: ...
2635 **    AltB: ...
2636 **    AeqB: ...
2637 **    AgtB: ...
2638 **    Init: initialize coroutine registers
2639 **          yield coA
2640 **          if eof(A) goto EofA
2641 **          yield coB
2642 **          if eof(B) goto EofB
2643 **    Cmpr: Compare A, B
2644 **          Jump AltB, AeqB, AgtB
2645 **     End: ...
2646 **
2647 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2648 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2649 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2650 ** and AgtB jump to either L2 or to one of EofA or EofB.
2651 */
2652 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2653 static int multiSelectOrderBy(
2654   Parse *pParse,        /* Parsing context */
2655   Select *p,            /* The right-most of SELECTs to be coded */
2656   SelectDest *pDest     /* What to do with query results */
2657 ){
2658   int i, j;             /* Loop counters */
2659   Select *pPrior;       /* Another SELECT immediately to our left */
2660   Vdbe *v;              /* Generate code to this VDBE */
2661   SelectDest destA;     /* Destination for coroutine A */
2662   SelectDest destB;     /* Destination for coroutine B */
2663   int regAddrA;         /* Address register for select-A coroutine */
2664   int regAddrB;         /* Address register for select-B coroutine */
2665   int addrSelectA;      /* Address of the select-A coroutine */
2666   int addrSelectB;      /* Address of the select-B coroutine */
2667   int regOutA;          /* Address register for the output-A subroutine */
2668   int regOutB;          /* Address register for the output-B subroutine */
2669   int addrOutA;         /* Address of the output-A subroutine */
2670   int addrOutB = 0;     /* Address of the output-B subroutine */
2671   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2672   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2673   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2674   int addrAltB;         /* Address of the A<B subroutine */
2675   int addrAeqB;         /* Address of the A==B subroutine */
2676   int addrAgtB;         /* Address of the A>B subroutine */
2677   int regLimitA;        /* Limit register for select-A */
2678   int regLimitB;        /* Limit register for select-A */
2679   int regPrev;          /* A range of registers to hold previous output */
2680   int savedLimit;       /* Saved value of p->iLimit */
2681   int savedOffset;      /* Saved value of p->iOffset */
2682   int labelCmpr;        /* Label for the start of the merge algorithm */
2683   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2684   int j1;               /* Jump instructions that get retargetted */
2685   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2686   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2687   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2688   sqlite3 *db;          /* Database connection */
2689   ExprList *pOrderBy;   /* The ORDER BY clause */
2690   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2691   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2692 #ifndef SQLITE_OMIT_EXPLAIN
2693   int iSub1;            /* EQP id of left-hand query */
2694   int iSub2;            /* EQP id of right-hand query */
2695 #endif
2696 
2697   assert( p->pOrderBy!=0 );
2698   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2699   db = pParse->db;
2700   v = pParse->pVdbe;
2701   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2702   labelEnd = sqlite3VdbeMakeLabel(v);
2703   labelCmpr = sqlite3VdbeMakeLabel(v);
2704 
2705 
2706   /* Patch up the ORDER BY clause
2707   */
2708   op = p->op;
2709   pPrior = p->pPrior;
2710   assert( pPrior->pOrderBy==0 );
2711   pOrderBy = p->pOrderBy;
2712   assert( pOrderBy );
2713   nOrderBy = pOrderBy->nExpr;
2714 
2715   /* For operators other than UNION ALL we have to make sure that
2716   ** the ORDER BY clause covers every term of the result set.  Add
2717   ** terms to the ORDER BY clause as necessary.
2718   */
2719   if( op!=TK_ALL ){
2720     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2721       struct ExprList_item *pItem;
2722       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2723         assert( pItem->u.x.iOrderByCol>0 );
2724         if( pItem->u.x.iOrderByCol==i ) break;
2725       }
2726       if( j==nOrderBy ){
2727         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2728         if( pNew==0 ) return SQLITE_NOMEM;
2729         pNew->flags |= EP_IntValue;
2730         pNew->u.iValue = i;
2731         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2732         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2733       }
2734     }
2735   }
2736 
2737   /* Compute the comparison permutation and keyinfo that is used with
2738   ** the permutation used to determine if the next
2739   ** row of results comes from selectA or selectB.  Also add explicit
2740   ** collations to the ORDER BY clause terms so that when the subqueries
2741   ** to the right and the left are evaluated, they use the correct
2742   ** collation.
2743   */
2744   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2745   if( aPermute ){
2746     struct ExprList_item *pItem;
2747     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2748       assert( pItem->u.x.iOrderByCol>0
2749           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2750       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2751     }
2752     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2753   }else{
2754     pKeyMerge = 0;
2755   }
2756 
2757   /* Reattach the ORDER BY clause to the query.
2758   */
2759   p->pOrderBy = pOrderBy;
2760   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2761 
2762   /* Allocate a range of temporary registers and the KeyInfo needed
2763   ** for the logic that removes duplicate result rows when the
2764   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2765   */
2766   if( op==TK_ALL ){
2767     regPrev = 0;
2768   }else{
2769     int nExpr = p->pEList->nExpr;
2770     assert( nOrderBy>=nExpr || db->mallocFailed );
2771     regPrev = pParse->nMem+1;
2772     pParse->nMem += nExpr+1;
2773     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2774     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2775     if( pKeyDup ){
2776       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2777       for(i=0; i<nExpr; i++){
2778         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2779         pKeyDup->aSortOrder[i] = 0;
2780       }
2781     }
2782   }
2783 
2784   /* Separate the left and the right query from one another
2785   */
2786   p->pPrior = 0;
2787   pPrior->pNext = 0;
2788   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2789   if( pPrior->pPrior==0 ){
2790     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2791   }
2792 
2793   /* Compute the limit registers */
2794   computeLimitRegisters(pParse, p, labelEnd);
2795   if( p->iLimit && op==TK_ALL ){
2796     regLimitA = ++pParse->nMem;
2797     regLimitB = ++pParse->nMem;
2798     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2799                                   regLimitA);
2800     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2801   }else{
2802     regLimitA = regLimitB = 0;
2803   }
2804   sqlite3ExprDelete(db, p->pLimit);
2805   p->pLimit = 0;
2806   sqlite3ExprDelete(db, p->pOffset);
2807   p->pOffset = 0;
2808 
2809   regAddrA = ++pParse->nMem;
2810   regAddrB = ++pParse->nMem;
2811   regOutA = ++pParse->nMem;
2812   regOutB = ++pParse->nMem;
2813   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2814   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2815 
2816   /* Generate a coroutine to evaluate the SELECT statement to the
2817   ** left of the compound operator - the "A" select.
2818   */
2819   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2820   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2821   VdbeComment((v, "left SELECT"));
2822   pPrior->iLimit = regLimitA;
2823   explainSetInteger(iSub1, pParse->iNextSelectId);
2824   sqlite3Select(pParse, pPrior, &destA);
2825   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2826   sqlite3VdbeJumpHere(v, j1);
2827 
2828   /* Generate a coroutine to evaluate the SELECT statement on
2829   ** the right - the "B" select
2830   */
2831   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2832   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2833   VdbeComment((v, "right SELECT"));
2834   savedLimit = p->iLimit;
2835   savedOffset = p->iOffset;
2836   p->iLimit = regLimitB;
2837   p->iOffset = 0;
2838   explainSetInteger(iSub2, pParse->iNextSelectId);
2839   sqlite3Select(pParse, p, &destB);
2840   p->iLimit = savedLimit;
2841   p->iOffset = savedOffset;
2842   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2843 
2844   /* Generate a subroutine that outputs the current row of the A
2845   ** select as the next output row of the compound select.
2846   */
2847   VdbeNoopComment((v, "Output routine for A"));
2848   addrOutA = generateOutputSubroutine(pParse,
2849                  p, &destA, pDest, regOutA,
2850                  regPrev, pKeyDup, labelEnd);
2851 
2852   /* Generate a subroutine that outputs the current row of the B
2853   ** select as the next output row of the compound select.
2854   */
2855   if( op==TK_ALL || op==TK_UNION ){
2856     VdbeNoopComment((v, "Output routine for B"));
2857     addrOutB = generateOutputSubroutine(pParse,
2858                  p, &destB, pDest, regOutB,
2859                  regPrev, pKeyDup, labelEnd);
2860   }
2861   sqlite3KeyInfoUnref(pKeyDup);
2862 
2863   /* Generate a subroutine to run when the results from select A
2864   ** are exhausted and only data in select B remains.
2865   */
2866   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2867     addrEofA_noB = addrEofA = labelEnd;
2868   }else{
2869     VdbeNoopComment((v, "eof-A subroutine"));
2870     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2871     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2872                                      VdbeCoverage(v);
2873     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2874     p->nSelectRow += pPrior->nSelectRow;
2875   }
2876 
2877   /* Generate a subroutine to run when the results from select B
2878   ** are exhausted and only data in select A remains.
2879   */
2880   if( op==TK_INTERSECT ){
2881     addrEofB = addrEofA;
2882     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2883   }else{
2884     VdbeNoopComment((v, "eof-B subroutine"));
2885     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2886     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
2887     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2888   }
2889 
2890   /* Generate code to handle the case of A<B
2891   */
2892   VdbeNoopComment((v, "A-lt-B subroutine"));
2893   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2894   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2895   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2896 
2897   /* Generate code to handle the case of A==B
2898   */
2899   if( op==TK_ALL ){
2900     addrAeqB = addrAltB;
2901   }else if( op==TK_INTERSECT ){
2902     addrAeqB = addrAltB;
2903     addrAltB++;
2904   }else{
2905     VdbeNoopComment((v, "A-eq-B subroutine"));
2906     addrAeqB =
2907     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2908     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2909   }
2910 
2911   /* Generate code to handle the case of A>B
2912   */
2913   VdbeNoopComment((v, "A-gt-B subroutine"));
2914   addrAgtB = sqlite3VdbeCurrentAddr(v);
2915   if( op==TK_ALL || op==TK_UNION ){
2916     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2917   }
2918   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2919   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2920 
2921   /* This code runs once to initialize everything.
2922   */
2923   sqlite3VdbeJumpHere(v, j1);
2924   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
2925   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2926 
2927   /* Implement the main merge loop
2928   */
2929   sqlite3VdbeResolveLabel(v, labelCmpr);
2930   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2931   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2932                          (char*)pKeyMerge, P4_KEYINFO);
2933   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2934   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
2935 
2936   /* Jump to the this point in order to terminate the query.
2937   */
2938   sqlite3VdbeResolveLabel(v, labelEnd);
2939 
2940   /* Set the number of output columns
2941   */
2942   if( pDest->eDest==SRT_Output ){
2943     Select *pFirst = pPrior;
2944     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2945     generateColumnNames(pParse, 0, pFirst->pEList);
2946   }
2947 
2948   /* Reassembly the compound query so that it will be freed correctly
2949   ** by the calling function */
2950   if( p->pPrior ){
2951     sqlite3SelectDelete(db, p->pPrior);
2952   }
2953   p->pPrior = pPrior;
2954   pPrior->pNext = p;
2955 
2956   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2957   **** subqueries ****/
2958   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2959   return SQLITE_OK;
2960 }
2961 #endif
2962 
2963 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2964 /* Forward Declarations */
2965 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2966 static void substSelect(sqlite3*, Select *, int, ExprList *);
2967 
2968 /*
2969 ** Scan through the expression pExpr.  Replace every reference to
2970 ** a column in table number iTable with a copy of the iColumn-th
2971 ** entry in pEList.  (But leave references to the ROWID column
2972 ** unchanged.)
2973 **
2974 ** This routine is part of the flattening procedure.  A subquery
2975 ** whose result set is defined by pEList appears as entry in the
2976 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2977 ** FORM clause entry is iTable.  This routine make the necessary
2978 ** changes to pExpr so that it refers directly to the source table
2979 ** of the subquery rather the result set of the subquery.
2980 */
2981 static Expr *substExpr(
2982   sqlite3 *db,        /* Report malloc errors to this connection */
2983   Expr *pExpr,        /* Expr in which substitution occurs */
2984   int iTable,         /* Table to be substituted */
2985   ExprList *pEList    /* Substitute expressions */
2986 ){
2987   if( pExpr==0 ) return 0;
2988   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2989     if( pExpr->iColumn<0 ){
2990       pExpr->op = TK_NULL;
2991     }else{
2992       Expr *pNew;
2993       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2994       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2995       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2996       sqlite3ExprDelete(db, pExpr);
2997       pExpr = pNew;
2998     }
2999   }else{
3000     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3001     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3002     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3003       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3004     }else{
3005       substExprList(db, pExpr->x.pList, iTable, pEList);
3006     }
3007   }
3008   return pExpr;
3009 }
3010 static void substExprList(
3011   sqlite3 *db,         /* Report malloc errors here */
3012   ExprList *pList,     /* List to scan and in which to make substitutes */
3013   int iTable,          /* Table to be substituted */
3014   ExprList *pEList     /* Substitute values */
3015 ){
3016   int i;
3017   if( pList==0 ) return;
3018   for(i=0; i<pList->nExpr; i++){
3019     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3020   }
3021 }
3022 static void substSelect(
3023   sqlite3 *db,         /* Report malloc errors here */
3024   Select *p,           /* SELECT statement in which to make substitutions */
3025   int iTable,          /* Table to be replaced */
3026   ExprList *pEList     /* Substitute values */
3027 ){
3028   SrcList *pSrc;
3029   struct SrcList_item *pItem;
3030   int i;
3031   if( !p ) return;
3032   substExprList(db, p->pEList, iTable, pEList);
3033   substExprList(db, p->pGroupBy, iTable, pEList);
3034   substExprList(db, p->pOrderBy, iTable, pEList);
3035   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3036   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3037   substSelect(db, p->pPrior, iTable, pEList);
3038   pSrc = p->pSrc;
3039   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3040   if( ALWAYS(pSrc) ){
3041     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3042       substSelect(db, pItem->pSelect, iTable, pEList);
3043     }
3044   }
3045 }
3046 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3047 
3048 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3049 /*
3050 ** This routine attempts to flatten subqueries as a performance optimization.
3051 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3052 **
3053 ** To understand the concept of flattening, consider the following
3054 ** query:
3055 **
3056 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3057 **
3058 ** The default way of implementing this query is to execute the
3059 ** subquery first and store the results in a temporary table, then
3060 ** run the outer query on that temporary table.  This requires two
3061 ** passes over the data.  Furthermore, because the temporary table
3062 ** has no indices, the WHERE clause on the outer query cannot be
3063 ** optimized.
3064 **
3065 ** This routine attempts to rewrite queries such as the above into
3066 ** a single flat select, like this:
3067 **
3068 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3069 **
3070 ** The code generated for this simpification gives the same result
3071 ** but only has to scan the data once.  And because indices might
3072 ** exist on the table t1, a complete scan of the data might be
3073 ** avoided.
3074 **
3075 ** Flattening is only attempted if all of the following are true:
3076 **
3077 **   (1)  The subquery and the outer query do not both use aggregates.
3078 **
3079 **   (2)  The subquery is not an aggregate or the outer query is not a join.
3080 **
3081 **   (3)  The subquery is not the right operand of a left outer join
3082 **        (Originally ticket #306.  Strengthened by ticket #3300)
3083 **
3084 **   (4)  The subquery is not DISTINCT.
3085 **
3086 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3087 **        sub-queries that were excluded from this optimization. Restriction
3088 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3089 **
3090 **   (6)  The subquery does not use aggregates or the outer query is not
3091 **        DISTINCT.
3092 **
3093 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3094 **        A FROM clause, consider adding a FROM close with the special
3095 **        table sqlite_once that consists of a single row containing a
3096 **        single NULL.
3097 **
3098 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3099 **
3100 **   (9)  The subquery does not use LIMIT or the outer query does not use
3101 **        aggregates.
3102 **
3103 **  (10)  The subquery does not use aggregates or the outer query does not
3104 **        use LIMIT.
3105 **
3106 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3107 **
3108 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3109 **        a separate restriction deriving from ticket #350.
3110 **
3111 **  (13)  The subquery and outer query do not both use LIMIT.
3112 **
3113 **  (14)  The subquery does not use OFFSET.
3114 **
3115 **  (15)  The outer query is not part of a compound select or the
3116 **        subquery does not have a LIMIT clause.
3117 **        (See ticket #2339 and ticket [02a8e81d44]).
3118 **
3119 **  (16)  The outer query is not an aggregate or the subquery does
3120 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3121 **        until we introduced the group_concat() function.
3122 **
3123 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3124 **        compound clause made up entirely of non-aggregate queries, and
3125 **        the parent query:
3126 **
3127 **          * is not itself part of a compound select,
3128 **          * is not an aggregate or DISTINCT query, and
3129 **          * is not a join
3130 **
3131 **        The parent and sub-query may contain WHERE clauses. Subject to
3132 **        rules (11), (13) and (14), they may also contain ORDER BY,
3133 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3134 **        operator other than UNION ALL because all the other compound
3135 **        operators have an implied DISTINCT which is disallowed by
3136 **        restriction (4).
3137 **
3138 **        Also, each component of the sub-query must return the same number
3139 **        of result columns. This is actually a requirement for any compound
3140 **        SELECT statement, but all the code here does is make sure that no
3141 **        such (illegal) sub-query is flattened. The caller will detect the
3142 **        syntax error and return a detailed message.
3143 **
3144 **  (18)  If the sub-query is a compound select, then all terms of the
3145 **        ORDER by clause of the parent must be simple references to
3146 **        columns of the sub-query.
3147 **
3148 **  (19)  The subquery does not use LIMIT or the outer query does not
3149 **        have a WHERE clause.
3150 **
3151 **  (20)  If the sub-query is a compound select, then it must not use
3152 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3153 **        somewhat by saying that the terms of the ORDER BY clause must
3154 **        appear as unmodified result columns in the outer query.  But we
3155 **        have other optimizations in mind to deal with that case.
3156 **
3157 **  (21)  The subquery does not use LIMIT or the outer query is not
3158 **        DISTINCT.  (See ticket [752e1646fc]).
3159 **
3160 **  (22)  The subquery is not a recursive CTE.
3161 **
3162 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3163 **        compound query. This restriction is because transforming the
3164 **        parent to a compound query confuses the code that handles
3165 **        recursive queries in multiSelect().
3166 **
3167 **
3168 ** In this routine, the "p" parameter is a pointer to the outer query.
3169 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3170 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3171 **
3172 ** If flattening is not attempted, this routine is a no-op and returns 0.
3173 ** If flattening is attempted this routine returns 1.
3174 **
3175 ** All of the expression analysis must occur on both the outer query and
3176 ** the subquery before this routine runs.
3177 */
3178 static int flattenSubquery(
3179   Parse *pParse,       /* Parsing context */
3180   Select *p,           /* The parent or outer SELECT statement */
3181   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3182   int isAgg,           /* True if outer SELECT uses aggregate functions */
3183   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3184 ){
3185   const char *zSavedAuthContext = pParse->zAuthContext;
3186   Select *pParent;
3187   Select *pSub;       /* The inner query or "subquery" */
3188   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3189   SrcList *pSrc;      /* The FROM clause of the outer query */
3190   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3191   ExprList *pList;    /* The result set of the outer query */
3192   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3193   int i;              /* Loop counter */
3194   Expr *pWhere;                    /* The WHERE clause */
3195   struct SrcList_item *pSubitem;   /* The subquery */
3196   sqlite3 *db = pParse->db;
3197 
3198   /* Check to see if flattening is permitted.  Return 0 if not.
3199   */
3200   assert( p!=0 );
3201   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3202   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3203   pSrc = p->pSrc;
3204   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3205   pSubitem = &pSrc->a[iFrom];
3206   iParent = pSubitem->iCursor;
3207   pSub = pSubitem->pSelect;
3208   assert( pSub!=0 );
3209   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3210   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3211   pSubSrc = pSub->pSrc;
3212   assert( pSubSrc );
3213   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3214   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
3215   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3216   ** became arbitrary expressions, we were forced to add restrictions (13)
3217   ** and (14). */
3218   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3219   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3220   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3221     return 0;                                            /* Restriction (15) */
3222   }
3223   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3224   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3225   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3226      return 0;         /* Restrictions (8)(9) */
3227   }
3228   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3229      return 0;         /* Restriction (6)  */
3230   }
3231   if( p->pOrderBy && pSub->pOrderBy ){
3232      return 0;                                           /* Restriction (11) */
3233   }
3234   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3235   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3236   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3237      return 0;         /* Restriction (21) */
3238   }
3239   if( pSub->selFlags & SF_Recursive ) return 0;          /* Restriction (22)  */
3240   if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0;       /* (23)  */
3241 
3242   /* OBSOLETE COMMENT 1:
3243   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3244   ** not used as the right operand of an outer join.  Examples of why this
3245   ** is not allowed:
3246   **
3247   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3248   **
3249   ** If we flatten the above, we would get
3250   **
3251   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3252   **
3253   ** which is not at all the same thing.
3254   **
3255   ** OBSOLETE COMMENT 2:
3256   ** Restriction 12:  If the subquery is the right operand of a left outer
3257   ** join, make sure the subquery has no WHERE clause.
3258   ** An examples of why this is not allowed:
3259   **
3260   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3261   **
3262   ** If we flatten the above, we would get
3263   **
3264   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3265   **
3266   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3267   ** effectively converts the OUTER JOIN into an INNER JOIN.
3268   **
3269   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3270   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3271   ** is fraught with danger.  Best to avoid the whole thing.  If the
3272   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3273   */
3274   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3275     return 0;
3276   }
3277 
3278   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3279   ** use only the UNION ALL operator. And none of the simple select queries
3280   ** that make up the compound SELECT are allowed to be aggregate or distinct
3281   ** queries.
3282   */
3283   if( pSub->pPrior ){
3284     if( pSub->pOrderBy ){
3285       return 0;  /* Restriction 20 */
3286     }
3287     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3288       return 0;
3289     }
3290     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3291       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3292       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3293       assert( pSub->pSrc!=0 );
3294       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3295        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3296        || pSub1->pSrc->nSrc<1
3297        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3298       ){
3299         return 0;
3300       }
3301       testcase( pSub1->pSrc->nSrc>1 );
3302     }
3303 
3304     /* Restriction 18. */
3305     if( p->pOrderBy ){
3306       int ii;
3307       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3308         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3309       }
3310     }
3311   }
3312 
3313   /***** If we reach this point, flattening is permitted. *****/
3314 
3315   /* Authorize the subquery */
3316   pParse->zAuthContext = pSubitem->zName;
3317   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3318   testcase( i==SQLITE_DENY );
3319   pParse->zAuthContext = zSavedAuthContext;
3320 
3321   /* If the sub-query is a compound SELECT statement, then (by restrictions
3322   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3323   ** be of the form:
3324   **
3325   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3326   **
3327   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3328   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3329   ** OFFSET clauses and joins them to the left-hand-side of the original
3330   ** using UNION ALL operators. In this case N is the number of simple
3331   ** select statements in the compound sub-query.
3332   **
3333   ** Example:
3334   **
3335   **     SELECT a+1 FROM (
3336   **        SELECT x FROM tab
3337   **        UNION ALL
3338   **        SELECT y FROM tab
3339   **        UNION ALL
3340   **        SELECT abs(z*2) FROM tab2
3341   **     ) WHERE a!=5 ORDER BY 1
3342   **
3343   ** Transformed into:
3344   **
3345   **     SELECT x+1 FROM tab WHERE x+1!=5
3346   **     UNION ALL
3347   **     SELECT y+1 FROM tab WHERE y+1!=5
3348   **     UNION ALL
3349   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3350   **     ORDER BY 1
3351   **
3352   ** We call this the "compound-subquery flattening".
3353   */
3354   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3355     Select *pNew;
3356     ExprList *pOrderBy = p->pOrderBy;
3357     Expr *pLimit = p->pLimit;
3358     Expr *pOffset = p->pOffset;
3359     Select *pPrior = p->pPrior;
3360     p->pOrderBy = 0;
3361     p->pSrc = 0;
3362     p->pPrior = 0;
3363     p->pLimit = 0;
3364     p->pOffset = 0;
3365     pNew = sqlite3SelectDup(db, p, 0);
3366     p->pOffset = pOffset;
3367     p->pLimit = pLimit;
3368     p->pOrderBy = pOrderBy;
3369     p->pSrc = pSrc;
3370     p->op = TK_ALL;
3371     if( pNew==0 ){
3372       p->pPrior = pPrior;
3373     }else{
3374       pNew->pPrior = pPrior;
3375       if( pPrior ) pPrior->pNext = pNew;
3376       pNew->pNext = p;
3377       p->pPrior = pNew;
3378     }
3379     if( db->mallocFailed ) return 1;
3380   }
3381 
3382   /* Begin flattening the iFrom-th entry of the FROM clause
3383   ** in the outer query.
3384   */
3385   pSub = pSub1 = pSubitem->pSelect;
3386 
3387   /* Delete the transient table structure associated with the
3388   ** subquery
3389   */
3390   sqlite3DbFree(db, pSubitem->zDatabase);
3391   sqlite3DbFree(db, pSubitem->zName);
3392   sqlite3DbFree(db, pSubitem->zAlias);
3393   pSubitem->zDatabase = 0;
3394   pSubitem->zName = 0;
3395   pSubitem->zAlias = 0;
3396   pSubitem->pSelect = 0;
3397 
3398   /* Defer deleting the Table object associated with the
3399   ** subquery until code generation is
3400   ** complete, since there may still exist Expr.pTab entries that
3401   ** refer to the subquery even after flattening.  Ticket #3346.
3402   **
3403   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3404   */
3405   if( ALWAYS(pSubitem->pTab!=0) ){
3406     Table *pTabToDel = pSubitem->pTab;
3407     if( pTabToDel->nRef==1 ){
3408       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3409       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3410       pToplevel->pZombieTab = pTabToDel;
3411     }else{
3412       pTabToDel->nRef--;
3413     }
3414     pSubitem->pTab = 0;
3415   }
3416 
3417   /* The following loop runs once for each term in a compound-subquery
3418   ** flattening (as described above).  If we are doing a different kind
3419   ** of flattening - a flattening other than a compound-subquery flattening -
3420   ** then this loop only runs once.
3421   **
3422   ** This loop moves all of the FROM elements of the subquery into the
3423   ** the FROM clause of the outer query.  Before doing this, remember
3424   ** the cursor number for the original outer query FROM element in
3425   ** iParent.  The iParent cursor will never be used.  Subsequent code
3426   ** will scan expressions looking for iParent references and replace
3427   ** those references with expressions that resolve to the subquery FROM
3428   ** elements we are now copying in.
3429   */
3430   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3431     int nSubSrc;
3432     u8 jointype = 0;
3433     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3434     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3435     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3436 
3437     if( pSrc ){
3438       assert( pParent==p );  /* First time through the loop */
3439       jointype = pSubitem->jointype;
3440     }else{
3441       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3442       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3443       if( pSrc==0 ){
3444         assert( db->mallocFailed );
3445         break;
3446       }
3447     }
3448 
3449     /* The subquery uses a single slot of the FROM clause of the outer
3450     ** query.  If the subquery has more than one element in its FROM clause,
3451     ** then expand the outer query to make space for it to hold all elements
3452     ** of the subquery.
3453     **
3454     ** Example:
3455     **
3456     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3457     **
3458     ** The outer query has 3 slots in its FROM clause.  One slot of the
3459     ** outer query (the middle slot) is used by the subquery.  The next
3460     ** block of code will expand the out query to 4 slots.  The middle
3461     ** slot is expanded to two slots in order to make space for the
3462     ** two elements in the FROM clause of the subquery.
3463     */
3464     if( nSubSrc>1 ){
3465       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3466       if( db->mallocFailed ){
3467         break;
3468       }
3469     }
3470 
3471     /* Transfer the FROM clause terms from the subquery into the
3472     ** outer query.
3473     */
3474     for(i=0; i<nSubSrc; i++){
3475       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3476       pSrc->a[i+iFrom] = pSubSrc->a[i];
3477       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3478     }
3479     pSrc->a[iFrom].jointype = jointype;
3480 
3481     /* Now begin substituting subquery result set expressions for
3482     ** references to the iParent in the outer query.
3483     **
3484     ** Example:
3485     **
3486     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3487     **   \                     \_____________ subquery __________/          /
3488     **    \_____________________ outer query ______________________________/
3489     **
3490     ** We look at every expression in the outer query and every place we see
3491     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3492     */
3493     pList = pParent->pEList;
3494     for(i=0; i<pList->nExpr; i++){
3495       if( pList->a[i].zName==0 ){
3496         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3497         sqlite3Dequote(zName);
3498         pList->a[i].zName = zName;
3499       }
3500     }
3501     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3502     if( isAgg ){
3503       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3504       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3505     }
3506     if( pSub->pOrderBy ){
3507       assert( pParent->pOrderBy==0 );
3508       pParent->pOrderBy = pSub->pOrderBy;
3509       pSub->pOrderBy = 0;
3510     }else if( pParent->pOrderBy ){
3511       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3512     }
3513     if( pSub->pWhere ){
3514       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3515     }else{
3516       pWhere = 0;
3517     }
3518     if( subqueryIsAgg ){
3519       assert( pParent->pHaving==0 );
3520       pParent->pHaving = pParent->pWhere;
3521       pParent->pWhere = pWhere;
3522       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3523       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3524                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3525       assert( pParent->pGroupBy==0 );
3526       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3527     }else{
3528       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3529       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3530     }
3531 
3532     /* The flattened query is distinct if either the inner or the
3533     ** outer query is distinct.
3534     */
3535     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3536 
3537     /*
3538     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3539     **
3540     ** One is tempted to try to add a and b to combine the limits.  But this
3541     ** does not work if either limit is negative.
3542     */
3543     if( pSub->pLimit ){
3544       pParent->pLimit = pSub->pLimit;
3545       pSub->pLimit = 0;
3546     }
3547   }
3548 
3549   /* Finially, delete what is left of the subquery and return
3550   ** success.
3551   */
3552   sqlite3SelectDelete(db, pSub1);
3553 
3554   return 1;
3555 }
3556 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3557 
3558 /*
3559 ** Based on the contents of the AggInfo structure indicated by the first
3560 ** argument, this function checks if the following are true:
3561 **
3562 **    * the query contains just a single aggregate function,
3563 **    * the aggregate function is either min() or max(), and
3564 **    * the argument to the aggregate function is a column value.
3565 **
3566 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3567 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3568 ** list of arguments passed to the aggregate before returning.
3569 **
3570 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3571 ** WHERE_ORDERBY_NORMAL is returned.
3572 */
3573 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3574   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3575 
3576   *ppMinMax = 0;
3577   if( pAggInfo->nFunc==1 ){
3578     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3579     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3580 
3581     assert( pExpr->op==TK_AGG_FUNCTION );
3582     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3583       const char *zFunc = pExpr->u.zToken;
3584       if( sqlite3StrICmp(zFunc, "min")==0 ){
3585         eRet = WHERE_ORDERBY_MIN;
3586         *ppMinMax = pEList;
3587       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3588         eRet = WHERE_ORDERBY_MAX;
3589         *ppMinMax = pEList;
3590       }
3591     }
3592   }
3593 
3594   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3595   return eRet;
3596 }
3597 
3598 /*
3599 ** The select statement passed as the first argument is an aggregate query.
3600 ** The second argment is the associated aggregate-info object. This
3601 ** function tests if the SELECT is of the form:
3602 **
3603 **   SELECT count(*) FROM <tbl>
3604 **
3605 ** where table is a database table, not a sub-select or view. If the query
3606 ** does match this pattern, then a pointer to the Table object representing
3607 ** <tbl> is returned. Otherwise, 0 is returned.
3608 */
3609 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3610   Table *pTab;
3611   Expr *pExpr;
3612 
3613   assert( !p->pGroupBy );
3614 
3615   if( p->pWhere || p->pEList->nExpr!=1
3616    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3617   ){
3618     return 0;
3619   }
3620   pTab = p->pSrc->a[0].pTab;
3621   pExpr = p->pEList->a[0].pExpr;
3622   assert( pTab && !pTab->pSelect && pExpr );
3623 
3624   if( IsVirtual(pTab) ) return 0;
3625   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3626   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3627   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3628   if( pExpr->flags&EP_Distinct ) return 0;
3629 
3630   return pTab;
3631 }
3632 
3633 /*
3634 ** If the source-list item passed as an argument was augmented with an
3635 ** INDEXED BY clause, then try to locate the specified index. If there
3636 ** was such a clause and the named index cannot be found, return
3637 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3638 ** pFrom->pIndex and return SQLITE_OK.
3639 */
3640 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3641   if( pFrom->pTab && pFrom->zIndex ){
3642     Table *pTab = pFrom->pTab;
3643     char *zIndex = pFrom->zIndex;
3644     Index *pIdx;
3645     for(pIdx=pTab->pIndex;
3646         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3647         pIdx=pIdx->pNext
3648     );
3649     if( !pIdx ){
3650       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3651       pParse->checkSchema = 1;
3652       return SQLITE_ERROR;
3653     }
3654     pFrom->pIndex = pIdx;
3655   }
3656   return SQLITE_OK;
3657 }
3658 /*
3659 ** Detect compound SELECT statements that use an ORDER BY clause with
3660 ** an alternative collating sequence.
3661 **
3662 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3663 **
3664 ** These are rewritten as a subquery:
3665 **
3666 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3667 **     ORDER BY ... COLLATE ...
3668 **
3669 ** This transformation is necessary because the multiSelectOrderBy() routine
3670 ** above that generates the code for a compound SELECT with an ORDER BY clause
3671 ** uses a merge algorithm that requires the same collating sequence on the
3672 ** result columns as on the ORDER BY clause.  See ticket
3673 ** http://www.sqlite.org/src/info/6709574d2a
3674 **
3675 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3676 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3677 ** there are COLLATE terms in the ORDER BY.
3678 */
3679 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3680   int i;
3681   Select *pNew;
3682   Select *pX;
3683   sqlite3 *db;
3684   struct ExprList_item *a;
3685   SrcList *pNewSrc;
3686   Parse *pParse;
3687   Token dummy;
3688 
3689   if( p->pPrior==0 ) return WRC_Continue;
3690   if( p->pOrderBy==0 ) return WRC_Continue;
3691   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3692   if( pX==0 ) return WRC_Continue;
3693   a = p->pOrderBy->a;
3694   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3695     if( a[i].pExpr->flags & EP_Collate ) break;
3696   }
3697   if( i<0 ) return WRC_Continue;
3698 
3699   /* If we reach this point, that means the transformation is required. */
3700 
3701   pParse = pWalker->pParse;
3702   db = pParse->db;
3703   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3704   if( pNew==0 ) return WRC_Abort;
3705   memset(&dummy, 0, sizeof(dummy));
3706   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3707   if( pNewSrc==0 ) return WRC_Abort;
3708   *pNew = *p;
3709   p->pSrc = pNewSrc;
3710   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3711   p->op = TK_SELECT;
3712   p->pWhere = 0;
3713   pNew->pGroupBy = 0;
3714   pNew->pHaving = 0;
3715   pNew->pOrderBy = 0;
3716   p->pPrior = 0;
3717   p->pNext = 0;
3718   p->selFlags &= ~SF_Compound;
3719   assert( pNew->pPrior!=0 );
3720   pNew->pPrior->pNext = pNew;
3721   pNew->pLimit = 0;
3722   pNew->pOffset = 0;
3723   return WRC_Continue;
3724 }
3725 
3726 #ifndef SQLITE_OMIT_CTE
3727 /*
3728 ** Argument pWith (which may be NULL) points to a linked list of nested
3729 ** WITH contexts, from inner to outermost. If the table identified by
3730 ** FROM clause element pItem is really a common-table-expression (CTE)
3731 ** then return a pointer to the CTE definition for that table. Otherwise
3732 ** return NULL.
3733 **
3734 ** If a non-NULL value is returned, set *ppContext to point to the With
3735 ** object that the returned CTE belongs to.
3736 */
3737 static struct Cte *searchWith(
3738   With *pWith,                    /* Current outermost WITH clause */
3739   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3740   With **ppContext                /* OUT: WITH clause return value belongs to */
3741 ){
3742   const char *zName;
3743   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3744     With *p;
3745     for(p=pWith; p; p=p->pOuter){
3746       int i;
3747       for(i=0; i<p->nCte; i++){
3748         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3749           *ppContext = p;
3750           return &p->a[i];
3751         }
3752       }
3753     }
3754   }
3755   return 0;
3756 }
3757 
3758 /* The code generator maintains a stack of active WITH clauses
3759 ** with the inner-most WITH clause being at the top of the stack.
3760 **
3761 ** This routine pushes the WITH clause passed as the second argument
3762 ** onto the top of the stack. If argument bFree is true, then this
3763 ** WITH clause will never be popped from the stack. In this case it
3764 ** should be freed along with the Parse object. In other cases, when
3765 ** bFree==0, the With object will be freed along with the SELECT
3766 ** statement with which it is associated.
3767 */
3768 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3769   assert( bFree==0 || pParse->pWith==0 );
3770   if( pWith ){
3771     pWith->pOuter = pParse->pWith;
3772     pParse->pWith = pWith;
3773     pParse->bFreeWith = bFree;
3774   }
3775 }
3776 
3777 /*
3778 ** This function checks if argument pFrom refers to a CTE declared by
3779 ** a WITH clause on the stack currently maintained by the parser. And,
3780 ** if currently processing a CTE expression, if it is a recursive
3781 ** reference to the current CTE.
3782 **
3783 ** If pFrom falls into either of the two categories above, pFrom->pTab
3784 ** and other fields are populated accordingly. The caller should check
3785 ** (pFrom->pTab!=0) to determine whether or not a successful match
3786 ** was found.
3787 **
3788 ** Whether or not a match is found, SQLITE_OK is returned if no error
3789 ** occurs. If an error does occur, an error message is stored in the
3790 ** parser and some error code other than SQLITE_OK returned.
3791 */
3792 static int withExpand(
3793   Walker *pWalker,
3794   struct SrcList_item *pFrom
3795 ){
3796   Parse *pParse = pWalker->pParse;
3797   sqlite3 *db = pParse->db;
3798   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3799   With *pWith;                    /* WITH clause that pCte belongs to */
3800 
3801   assert( pFrom->pTab==0 );
3802 
3803   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3804   if( pCte ){
3805     Table *pTab;
3806     ExprList *pEList;
3807     Select *pSel;
3808     Select *pLeft;                /* Left-most SELECT statement */
3809     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3810     With *pSavedWith;             /* Initial value of pParse->pWith */
3811 
3812     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3813     ** recursive reference to CTE pCte. Leave an error in pParse and return
3814     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3815     ** In this case, proceed.  */
3816     if( pCte->zErr ){
3817       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3818       return SQLITE_ERROR;
3819     }
3820 
3821     assert( pFrom->pTab==0 );
3822     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3823     if( pTab==0 ) return WRC_Abort;
3824     pTab->nRef = 1;
3825     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3826     pTab->iPKey = -1;
3827     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3828     pTab->tabFlags |= TF_Ephemeral;
3829     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3830     if( db->mallocFailed ) return SQLITE_NOMEM;
3831     assert( pFrom->pSelect );
3832 
3833     /* Check if this is a recursive CTE. */
3834     pSel = pFrom->pSelect;
3835     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3836     if( bMayRecursive ){
3837       int i;
3838       SrcList *pSrc = pFrom->pSelect->pSrc;
3839       for(i=0; i<pSrc->nSrc; i++){
3840         struct SrcList_item *pItem = &pSrc->a[i];
3841         if( pItem->zDatabase==0
3842          && pItem->zName!=0
3843          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
3844           ){
3845           pItem->pTab = pTab;
3846           pItem->isRecursive = 1;
3847           pTab->nRef++;
3848           pSel->selFlags |= SF_Recursive;
3849         }
3850       }
3851     }
3852 
3853     /* Only one recursive reference is permitted. */
3854     if( pTab->nRef>2 ){
3855       sqlite3ErrorMsg(
3856           pParse, "multiple references to recursive table: %s", pCte->zName
3857       );
3858       return SQLITE_ERROR;
3859     }
3860     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
3861 
3862     pCte->zErr = "circular reference: %s";
3863     pSavedWith = pParse->pWith;
3864     pParse->pWith = pWith;
3865     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
3866 
3867     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
3868     pEList = pLeft->pEList;
3869     if( pCte->pCols ){
3870       if( pEList->nExpr!=pCte->pCols->nExpr ){
3871         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
3872             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
3873         );
3874         pParse->pWith = pSavedWith;
3875         return SQLITE_ERROR;
3876       }
3877       pEList = pCte->pCols;
3878     }
3879 
3880     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
3881     if( bMayRecursive ){
3882       if( pSel->selFlags & SF_Recursive ){
3883         pCte->zErr = "multiple recursive references: %s";
3884       }else{
3885         pCte->zErr = "recursive reference in a subquery: %s";
3886       }
3887       sqlite3WalkSelect(pWalker, pSel);
3888     }
3889     pCte->zErr = 0;
3890     pParse->pWith = pSavedWith;
3891   }
3892 
3893   return SQLITE_OK;
3894 }
3895 #endif
3896 
3897 #ifndef SQLITE_OMIT_CTE
3898 /*
3899 ** If the SELECT passed as the second argument has an associated WITH
3900 ** clause, pop it from the stack stored as part of the Parse object.
3901 **
3902 ** This function is used as the xSelectCallback2() callback by
3903 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3904 ** names and other FROM clause elements.
3905 */
3906 static void selectPopWith(Walker *pWalker, Select *p){
3907   Parse *pParse = pWalker->pParse;
3908   With *pWith = findRightmost(p)->pWith;
3909   if( pWith!=0 ){
3910     assert( pParse->pWith==pWith );
3911     pParse->pWith = pWith->pOuter;
3912   }
3913 }
3914 #else
3915 #define selectPopWith 0
3916 #endif
3917 
3918 /*
3919 ** This routine is a Walker callback for "expanding" a SELECT statement.
3920 ** "Expanding" means to do the following:
3921 **
3922 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3923 **         element of the FROM clause.
3924 **
3925 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3926 **         defines FROM clause.  When views appear in the FROM clause,
3927 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3928 **         that implements the view.  A copy is made of the view's SELECT
3929 **         statement so that we can freely modify or delete that statement
3930 **         without worrying about messing up the presistent representation
3931 **         of the view.
3932 **
3933 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3934 **         on joins and the ON and USING clause of joins.
3935 **
3936 **    (4)  Scan the list of columns in the result set (pEList) looking
3937 **         for instances of the "*" operator or the TABLE.* operator.
3938 **         If found, expand each "*" to be every column in every table
3939 **         and TABLE.* to be every column in TABLE.
3940 **
3941 */
3942 static int selectExpander(Walker *pWalker, Select *p){
3943   Parse *pParse = pWalker->pParse;
3944   int i, j, k;
3945   SrcList *pTabList;
3946   ExprList *pEList;
3947   struct SrcList_item *pFrom;
3948   sqlite3 *db = pParse->db;
3949   Expr *pE, *pRight, *pExpr;
3950   u16 selFlags = p->selFlags;
3951 
3952   p->selFlags |= SF_Expanded;
3953   if( db->mallocFailed  ){
3954     return WRC_Abort;
3955   }
3956   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
3957     return WRC_Prune;
3958   }
3959   pTabList = p->pSrc;
3960   pEList = p->pEList;
3961   sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
3962 
3963   /* Make sure cursor numbers have been assigned to all entries in
3964   ** the FROM clause of the SELECT statement.
3965   */
3966   sqlite3SrcListAssignCursors(pParse, pTabList);
3967 
3968   /* Look up every table named in the FROM clause of the select.  If
3969   ** an entry of the FROM clause is a subquery instead of a table or view,
3970   ** then create a transient table structure to describe the subquery.
3971   */
3972   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3973     Table *pTab;
3974     assert( pFrom->isRecursive==0 || pFrom->pTab );
3975     if( pFrom->isRecursive ) continue;
3976     if( pFrom->pTab!=0 ){
3977       /* This statement has already been prepared.  There is no need
3978       ** to go further. */
3979       assert( i==0 );
3980 #ifndef SQLITE_OMIT_CTE
3981       selectPopWith(pWalker, p);
3982 #endif
3983       return WRC_Prune;
3984     }
3985 #ifndef SQLITE_OMIT_CTE
3986     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
3987     if( pFrom->pTab ) {} else
3988 #endif
3989     if( pFrom->zName==0 ){
3990 #ifndef SQLITE_OMIT_SUBQUERY
3991       Select *pSel = pFrom->pSelect;
3992       /* A sub-query in the FROM clause of a SELECT */
3993       assert( pSel!=0 );
3994       assert( pFrom->pTab==0 );
3995       sqlite3WalkSelect(pWalker, pSel);
3996       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3997       if( pTab==0 ) return WRC_Abort;
3998       pTab->nRef = 1;
3999       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4000       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4001       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4002       pTab->iPKey = -1;
4003       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4004       pTab->tabFlags |= TF_Ephemeral;
4005 #endif
4006     }else{
4007       /* An ordinary table or view name in the FROM clause */
4008       assert( pFrom->pTab==0 );
4009       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4010       if( pTab==0 ) return WRC_Abort;
4011       if( pTab->nRef==0xffff ){
4012         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4013            pTab->zName);
4014         pFrom->pTab = 0;
4015         return WRC_Abort;
4016       }
4017       pTab->nRef++;
4018 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4019       if( pTab->pSelect || IsVirtual(pTab) ){
4020         /* We reach here if the named table is a really a view */
4021         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4022         assert( pFrom->pSelect==0 );
4023         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4024         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4025       }
4026 #endif
4027     }
4028 
4029     /* Locate the index named by the INDEXED BY clause, if any. */
4030     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4031       return WRC_Abort;
4032     }
4033   }
4034 
4035   /* Process NATURAL keywords, and ON and USING clauses of joins.
4036   */
4037   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4038     return WRC_Abort;
4039   }
4040 
4041   /* For every "*" that occurs in the column list, insert the names of
4042   ** all columns in all tables.  And for every TABLE.* insert the names
4043   ** of all columns in TABLE.  The parser inserted a special expression
4044   ** with the TK_ALL operator for each "*" that it found in the column list.
4045   ** The following code just has to locate the TK_ALL expressions and expand
4046   ** each one to the list of all columns in all tables.
4047   **
4048   ** The first loop just checks to see if there are any "*" operators
4049   ** that need expanding.
4050   */
4051   for(k=0; k<pEList->nExpr; k++){
4052     pE = pEList->a[k].pExpr;
4053     if( pE->op==TK_ALL ) break;
4054     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4055     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4056     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4057   }
4058   if( k<pEList->nExpr ){
4059     /*
4060     ** If we get here it means the result set contains one or more "*"
4061     ** operators that need to be expanded.  Loop through each expression
4062     ** in the result set and expand them one by one.
4063     */
4064     struct ExprList_item *a = pEList->a;
4065     ExprList *pNew = 0;
4066     int flags = pParse->db->flags;
4067     int longNames = (flags & SQLITE_FullColNames)!=0
4068                       && (flags & SQLITE_ShortColNames)==0;
4069 
4070     /* When processing FROM-clause subqueries, it is always the case
4071     ** that full_column_names=OFF and short_column_names=ON.  The
4072     ** sqlite3ResultSetOfSelect() routine makes it so. */
4073     assert( (p->selFlags & SF_NestedFrom)==0
4074           || ((flags & SQLITE_FullColNames)==0 &&
4075               (flags & SQLITE_ShortColNames)!=0) );
4076 
4077     for(k=0; k<pEList->nExpr; k++){
4078       pE = a[k].pExpr;
4079       pRight = pE->pRight;
4080       assert( pE->op!=TK_DOT || pRight!=0 );
4081       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4082         /* This particular expression does not need to be expanded.
4083         */
4084         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4085         if( pNew ){
4086           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4087           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4088           a[k].zName = 0;
4089           a[k].zSpan = 0;
4090         }
4091         a[k].pExpr = 0;
4092       }else{
4093         /* This expression is a "*" or a "TABLE.*" and needs to be
4094         ** expanded. */
4095         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4096         char *zTName = 0;       /* text of name of TABLE */
4097         if( pE->op==TK_DOT ){
4098           assert( pE->pLeft!=0 );
4099           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4100           zTName = pE->pLeft->u.zToken;
4101         }
4102         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4103           Table *pTab = pFrom->pTab;
4104           Select *pSub = pFrom->pSelect;
4105           char *zTabName = pFrom->zAlias;
4106           const char *zSchemaName = 0;
4107           int iDb;
4108           if( zTabName==0 ){
4109             zTabName = pTab->zName;
4110           }
4111           if( db->mallocFailed ) break;
4112           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4113             pSub = 0;
4114             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4115               continue;
4116             }
4117             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4118             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4119           }
4120           for(j=0; j<pTab->nCol; j++){
4121             char *zName = pTab->aCol[j].zName;
4122             char *zColname;  /* The computed column name */
4123             char *zToFree;   /* Malloced string that needs to be freed */
4124             Token sColname;  /* Computed column name as a token */
4125 
4126             assert( zName );
4127             if( zTName && pSub
4128              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4129             ){
4130               continue;
4131             }
4132 
4133             /* If a column is marked as 'hidden' (currently only possible
4134             ** for virtual tables), do not include it in the expanded
4135             ** result-set list.
4136             */
4137             if( IsHiddenColumn(&pTab->aCol[j]) ){
4138               assert(IsVirtual(pTab));
4139               continue;
4140             }
4141             tableSeen = 1;
4142 
4143             if( i>0 && zTName==0 ){
4144               if( (pFrom->jointype & JT_NATURAL)!=0
4145                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4146               ){
4147                 /* In a NATURAL join, omit the join columns from the
4148                 ** table to the right of the join */
4149                 continue;
4150               }
4151               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4152                 /* In a join with a USING clause, omit columns in the
4153                 ** using clause from the table on the right. */
4154                 continue;
4155               }
4156             }
4157             pRight = sqlite3Expr(db, TK_ID, zName);
4158             zColname = zName;
4159             zToFree = 0;
4160             if( longNames || pTabList->nSrc>1 ){
4161               Expr *pLeft;
4162               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4163               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4164               if( zSchemaName ){
4165                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4166                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4167               }
4168               if( longNames ){
4169                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4170                 zToFree = zColname;
4171               }
4172             }else{
4173               pExpr = pRight;
4174             }
4175             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4176             sColname.z = zColname;
4177             sColname.n = sqlite3Strlen30(zColname);
4178             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4179             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4180               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4181               if( pSub ){
4182                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4183                 testcase( pX->zSpan==0 );
4184               }else{
4185                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4186                                            zSchemaName, zTabName, zColname);
4187                 testcase( pX->zSpan==0 );
4188               }
4189               pX->bSpanIsTab = 1;
4190             }
4191             sqlite3DbFree(db, zToFree);
4192           }
4193         }
4194         if( !tableSeen ){
4195           if( zTName ){
4196             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4197           }else{
4198             sqlite3ErrorMsg(pParse, "no tables specified");
4199           }
4200         }
4201       }
4202     }
4203     sqlite3ExprListDelete(db, pEList);
4204     p->pEList = pNew;
4205   }
4206 #if SQLITE_MAX_COLUMN
4207   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4208     sqlite3ErrorMsg(pParse, "too many columns in result set");
4209   }
4210 #endif
4211   return WRC_Continue;
4212 }
4213 
4214 /*
4215 ** No-op routine for the parse-tree walker.
4216 **
4217 ** When this routine is the Walker.xExprCallback then expression trees
4218 ** are walked without any actions being taken at each node.  Presumably,
4219 ** when this routine is used for Walker.xExprCallback then
4220 ** Walker.xSelectCallback is set to do something useful for every
4221 ** subquery in the parser tree.
4222 */
4223 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4224   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4225   return WRC_Continue;
4226 }
4227 
4228 /*
4229 ** This routine "expands" a SELECT statement and all of its subqueries.
4230 ** For additional information on what it means to "expand" a SELECT
4231 ** statement, see the comment on the selectExpand worker callback above.
4232 **
4233 ** Expanding a SELECT statement is the first step in processing a
4234 ** SELECT statement.  The SELECT statement must be expanded before
4235 ** name resolution is performed.
4236 **
4237 ** If anything goes wrong, an error message is written into pParse.
4238 ** The calling function can detect the problem by looking at pParse->nErr
4239 ** and/or pParse->db->mallocFailed.
4240 */
4241 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4242   Walker w;
4243   memset(&w, 0, sizeof(w));
4244   w.xExprCallback = exprWalkNoop;
4245   w.pParse = pParse;
4246   if( pParse->hasCompound ){
4247     w.xSelectCallback = convertCompoundSelectToSubquery;
4248     sqlite3WalkSelect(&w, pSelect);
4249   }
4250   w.xSelectCallback = selectExpander;
4251   w.xSelectCallback2 = selectPopWith;
4252   sqlite3WalkSelect(&w, pSelect);
4253 }
4254 
4255 
4256 #ifndef SQLITE_OMIT_SUBQUERY
4257 /*
4258 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4259 ** interface.
4260 **
4261 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4262 ** information to the Table structure that represents the result set
4263 ** of that subquery.
4264 **
4265 ** The Table structure that represents the result set was constructed
4266 ** by selectExpander() but the type and collation information was omitted
4267 ** at that point because identifiers had not yet been resolved.  This
4268 ** routine is called after identifier resolution.
4269 */
4270 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4271   Parse *pParse;
4272   int i;
4273   SrcList *pTabList;
4274   struct SrcList_item *pFrom;
4275 
4276   assert( p->selFlags & SF_Resolved );
4277   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4278     p->selFlags |= SF_HasTypeInfo;
4279     pParse = pWalker->pParse;
4280     pTabList = p->pSrc;
4281     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4282       Table *pTab = pFrom->pTab;
4283       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4284         /* A sub-query in the FROM clause of a SELECT */
4285         Select *pSel = pFrom->pSelect;
4286         if( pSel ){
4287           while( pSel->pPrior ) pSel = pSel->pPrior;
4288           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4289         }
4290       }
4291     }
4292   }
4293 }
4294 #endif
4295 
4296 
4297 /*
4298 ** This routine adds datatype and collating sequence information to
4299 ** the Table structures of all FROM-clause subqueries in a
4300 ** SELECT statement.
4301 **
4302 ** Use this routine after name resolution.
4303 */
4304 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4305 #ifndef SQLITE_OMIT_SUBQUERY
4306   Walker w;
4307   memset(&w, 0, sizeof(w));
4308   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4309   w.xExprCallback = exprWalkNoop;
4310   w.pParse = pParse;
4311   sqlite3WalkSelect(&w, pSelect);
4312 #endif
4313 }
4314 
4315 
4316 /*
4317 ** This routine sets up a SELECT statement for processing.  The
4318 ** following is accomplished:
4319 **
4320 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4321 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4322 **     *  ON and USING clauses are shifted into WHERE statements
4323 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4324 **     *  Identifiers in expression are matched to tables.
4325 **
4326 ** This routine acts recursively on all subqueries within the SELECT.
4327 */
4328 void sqlite3SelectPrep(
4329   Parse *pParse,         /* The parser context */
4330   Select *p,             /* The SELECT statement being coded. */
4331   NameContext *pOuterNC  /* Name context for container */
4332 ){
4333   sqlite3 *db;
4334   if( NEVER(p==0) ) return;
4335   db = pParse->db;
4336   if( db->mallocFailed ) return;
4337   if( p->selFlags & SF_HasTypeInfo ) return;
4338   sqlite3SelectExpand(pParse, p);
4339   if( pParse->nErr || db->mallocFailed ) return;
4340   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4341   if( pParse->nErr || db->mallocFailed ) return;
4342   sqlite3SelectAddTypeInfo(pParse, p);
4343 }
4344 
4345 /*
4346 ** Reset the aggregate accumulator.
4347 **
4348 ** The aggregate accumulator is a set of memory cells that hold
4349 ** intermediate results while calculating an aggregate.  This
4350 ** routine generates code that stores NULLs in all of those memory
4351 ** cells.
4352 */
4353 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4354   Vdbe *v = pParse->pVdbe;
4355   int i;
4356   struct AggInfo_func *pFunc;
4357   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4358   if( nReg==0 ) return;
4359 #ifdef SQLITE_DEBUG
4360   /* Verify that all AggInfo registers are within the range specified by
4361   ** AggInfo.mnReg..AggInfo.mxReg */
4362   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4363   for(i=0; i<pAggInfo->nColumn; i++){
4364     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4365          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4366   }
4367   for(i=0; i<pAggInfo->nFunc; i++){
4368     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4369          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4370   }
4371 #endif
4372   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4373   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4374     if( pFunc->iDistinct>=0 ){
4375       Expr *pE = pFunc->pExpr;
4376       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4377       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4378         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4379            "argument");
4380         pFunc->iDistinct = -1;
4381       }else{
4382         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4383         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4384                           (char*)pKeyInfo, P4_KEYINFO);
4385       }
4386     }
4387   }
4388 }
4389 
4390 /*
4391 ** Invoke the OP_AggFinalize opcode for every aggregate function
4392 ** in the AggInfo structure.
4393 */
4394 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4395   Vdbe *v = pParse->pVdbe;
4396   int i;
4397   struct AggInfo_func *pF;
4398   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4399     ExprList *pList = pF->pExpr->x.pList;
4400     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4401     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4402                       (void*)pF->pFunc, P4_FUNCDEF);
4403   }
4404 }
4405 
4406 /*
4407 ** Update the accumulator memory cells for an aggregate based on
4408 ** the current cursor position.
4409 */
4410 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4411   Vdbe *v = pParse->pVdbe;
4412   int i;
4413   int regHit = 0;
4414   int addrHitTest = 0;
4415   struct AggInfo_func *pF;
4416   struct AggInfo_col *pC;
4417 
4418   pAggInfo->directMode = 1;
4419   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4420     int nArg;
4421     int addrNext = 0;
4422     int regAgg;
4423     ExprList *pList = pF->pExpr->x.pList;
4424     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4425     if( pList ){
4426       nArg = pList->nExpr;
4427       regAgg = sqlite3GetTempRange(pParse, nArg);
4428       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4429     }else{
4430       nArg = 0;
4431       regAgg = 0;
4432     }
4433     if( pF->iDistinct>=0 ){
4434       addrNext = sqlite3VdbeMakeLabel(v);
4435       assert( nArg==1 );
4436       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4437     }
4438     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4439       CollSeq *pColl = 0;
4440       struct ExprList_item *pItem;
4441       int j;
4442       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4443       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4444         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4445       }
4446       if( !pColl ){
4447         pColl = pParse->db->pDfltColl;
4448       }
4449       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4450       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4451     }
4452     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4453                       (void*)pF->pFunc, P4_FUNCDEF);
4454     sqlite3VdbeChangeP5(v, (u8)nArg);
4455     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4456     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4457     if( addrNext ){
4458       sqlite3VdbeResolveLabel(v, addrNext);
4459       sqlite3ExprCacheClear(pParse);
4460     }
4461   }
4462 
4463   /* Before populating the accumulator registers, clear the column cache.
4464   ** Otherwise, if any of the required column values are already present
4465   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4466   ** to pC->iMem. But by the time the value is used, the original register
4467   ** may have been used, invalidating the underlying buffer holding the
4468   ** text or blob value. See ticket [883034dcb5].
4469   **
4470   ** Another solution would be to change the OP_SCopy used to copy cached
4471   ** values to an OP_Copy.
4472   */
4473   if( regHit ){
4474     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4475   }
4476   sqlite3ExprCacheClear(pParse);
4477   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4478     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4479   }
4480   pAggInfo->directMode = 0;
4481   sqlite3ExprCacheClear(pParse);
4482   if( addrHitTest ){
4483     sqlite3VdbeJumpHere(v, addrHitTest);
4484   }
4485 }
4486 
4487 /*
4488 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4489 ** count(*) query ("SELECT count(*) FROM pTab").
4490 */
4491 #ifndef SQLITE_OMIT_EXPLAIN
4492 static void explainSimpleCount(
4493   Parse *pParse,                  /* Parse context */
4494   Table *pTab,                    /* Table being queried */
4495   Index *pIdx                     /* Index used to optimize scan, or NULL */
4496 ){
4497   if( pParse->explain==2 ){
4498     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4499     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4500         pTab->zName,
4501         bCover ? " USING COVERING INDEX " : "",
4502         bCover ? pIdx->zName : ""
4503     );
4504     sqlite3VdbeAddOp4(
4505         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4506     );
4507   }
4508 }
4509 #else
4510 # define explainSimpleCount(a,b,c)
4511 #endif
4512 
4513 /*
4514 ** Generate code for the SELECT statement given in the p argument.
4515 **
4516 ** The results are returned according to the SelectDest structure.
4517 ** See comments in sqliteInt.h for further information.
4518 **
4519 ** This routine returns the number of errors.  If any errors are
4520 ** encountered, then an appropriate error message is left in
4521 ** pParse->zErrMsg.
4522 **
4523 ** This routine does NOT free the Select structure passed in.  The
4524 ** calling function needs to do that.
4525 */
4526 int sqlite3Select(
4527   Parse *pParse,         /* The parser context */
4528   Select *p,             /* The SELECT statement being coded. */
4529   SelectDest *pDest      /* What to do with the query results */
4530 ){
4531   int i, j;              /* Loop counters */
4532   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4533   Vdbe *v;               /* The virtual machine under construction */
4534   int isAgg;             /* True for select lists like "count(*)" */
4535   ExprList *pEList;      /* List of columns to extract. */
4536   SrcList *pTabList;     /* List of tables to select from */
4537   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4538   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4539   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4540   int rc = 1;            /* Value to return from this function */
4541   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4542   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4543   AggInfo sAggInfo;      /* Information used by aggregate queries */
4544   int iEnd;              /* Address of the end of the query */
4545   sqlite3 *db;           /* The database connection */
4546 
4547 #ifndef SQLITE_OMIT_EXPLAIN
4548   int iRestoreSelectId = pParse->iSelectId;
4549   pParse->iSelectId = pParse->iNextSelectId++;
4550 #endif
4551 
4552   db = pParse->db;
4553   if( p==0 || db->mallocFailed || pParse->nErr ){
4554     return 1;
4555   }
4556   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4557   memset(&sAggInfo, 0, sizeof(sAggInfo));
4558 
4559   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4560   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4561   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4562   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4563   if( IgnorableOrderby(pDest) ){
4564     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4565            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4566            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4567            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4568     /* If ORDER BY makes no difference in the output then neither does
4569     ** DISTINCT so it can be removed too. */
4570     sqlite3ExprListDelete(db, p->pOrderBy);
4571     p->pOrderBy = 0;
4572     p->selFlags &= ~SF_Distinct;
4573   }
4574   sqlite3SelectPrep(pParse, p, 0);
4575   memset(&sSort, 0, sizeof(sSort));
4576   sSort.pOrderBy = p->pOrderBy;
4577   pTabList = p->pSrc;
4578   pEList = p->pEList;
4579   if( pParse->nErr || db->mallocFailed ){
4580     goto select_end;
4581   }
4582   isAgg = (p->selFlags & SF_Aggregate)!=0;
4583   assert( pEList!=0 );
4584 
4585   /* Begin generating code.
4586   */
4587   v = sqlite3GetVdbe(pParse);
4588   if( v==0 ) goto select_end;
4589 
4590   /* If writing to memory or generating a set
4591   ** only a single column may be output.
4592   */
4593 #ifndef SQLITE_OMIT_SUBQUERY
4594   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4595     goto select_end;
4596   }
4597 #endif
4598 
4599   /* Generate code for all sub-queries in the FROM clause
4600   */
4601 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4602   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4603     struct SrcList_item *pItem = &pTabList->a[i];
4604     SelectDest dest;
4605     Select *pSub = pItem->pSelect;
4606     int isAggSub;
4607 
4608     if( pSub==0 ) continue;
4609 
4610     /* Sometimes the code for a subquery will be generated more than
4611     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4612     ** for example.  In that case, do not regenerate the code to manifest
4613     ** a view or the co-routine to implement a view.  The first instance
4614     ** is sufficient, though the subroutine to manifest the view does need
4615     ** to be invoked again. */
4616     if( pItem->addrFillSub ){
4617       if( pItem->viaCoroutine==0 ){
4618         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4619       }
4620       continue;
4621     }
4622 
4623     /* Increment Parse.nHeight by the height of the largest expression
4624     ** tree referred to by this, the parent select. The child select
4625     ** may contain expression trees of at most
4626     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4627     ** more conservative than necessary, but much easier than enforcing
4628     ** an exact limit.
4629     */
4630     pParse->nHeight += sqlite3SelectExprHeight(p);
4631 
4632     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4633     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4634       /* This subquery can be absorbed into its parent. */
4635       if( isAggSub ){
4636         isAgg = 1;
4637         p->selFlags |= SF_Aggregate;
4638       }
4639       i = -1;
4640     }else if( pTabList->nSrc==1
4641            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4642     ){
4643       /* Implement a co-routine that will return a single row of the result
4644       ** set on each invocation.
4645       */
4646       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4647       pItem->regReturn = ++pParse->nMem;
4648       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4649       VdbeComment((v, "%s", pItem->pTab->zName));
4650       pItem->addrFillSub = addrTop;
4651       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4652       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4653       sqlite3Select(pParse, pSub, &dest);
4654       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4655       pItem->viaCoroutine = 1;
4656       pItem->regResult = dest.iSdst;
4657       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4658       sqlite3VdbeJumpHere(v, addrTop-1);
4659       sqlite3ClearTempRegCache(pParse);
4660     }else{
4661       /* Generate a subroutine that will fill an ephemeral table with
4662       ** the content of this subquery.  pItem->addrFillSub will point
4663       ** to the address of the generated subroutine.  pItem->regReturn
4664       ** is a register allocated to hold the subroutine return address
4665       */
4666       int topAddr;
4667       int onceAddr = 0;
4668       int retAddr;
4669       assert( pItem->addrFillSub==0 );
4670       pItem->regReturn = ++pParse->nMem;
4671       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4672       pItem->addrFillSub = topAddr+1;
4673       if( pItem->isCorrelated==0 ){
4674         /* If the subquery is not correlated and if we are not inside of
4675         ** a trigger, then we only need to compute the value of the subquery
4676         ** once. */
4677         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4678         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4679       }else{
4680         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4681       }
4682       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4683       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4684       sqlite3Select(pParse, pSub, &dest);
4685       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4686       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4687       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4688       VdbeComment((v, "end %s", pItem->pTab->zName));
4689       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4690       sqlite3ClearTempRegCache(pParse);
4691     }
4692     if( /*pParse->nErr ||*/ db->mallocFailed ){
4693       goto select_end;
4694     }
4695     pParse->nHeight -= sqlite3SelectExprHeight(p);
4696     pTabList = p->pSrc;
4697     if( !IgnorableOrderby(pDest) ){
4698       sSort.pOrderBy = p->pOrderBy;
4699     }
4700   }
4701   pEList = p->pEList;
4702 #endif
4703   pWhere = p->pWhere;
4704   pGroupBy = p->pGroupBy;
4705   pHaving = p->pHaving;
4706   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4707 
4708 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4709   /* If there is are a sequence of queries, do the earlier ones first.
4710   */
4711   if( p->pPrior ){
4712     rc = multiSelect(pParse, p, pDest);
4713     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4714     return rc;
4715   }
4716 #endif
4717 
4718   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4719   ** if the select-list is the same as the ORDER BY list, then this query
4720   ** can be rewritten as a GROUP BY. In other words, this:
4721   **
4722   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4723   **
4724   ** is transformed to:
4725   **
4726   **     SELECT xyz FROM ... GROUP BY xyz
4727   **
4728   ** The second form is preferred as a single index (or temp-table) may be
4729   ** used for both the ORDER BY and DISTINCT processing. As originally
4730   ** written the query must use a temp-table for at least one of the ORDER
4731   ** BY and DISTINCT, and an index or separate temp-table for the other.
4732   */
4733   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4734    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4735   ){
4736     p->selFlags &= ~SF_Distinct;
4737     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4738     pGroupBy = p->pGroupBy;
4739     sSort.pOrderBy = 0;
4740     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4741     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4742     ** original setting of the SF_Distinct flag, not the current setting */
4743     assert( sDistinct.isTnct );
4744   }
4745 
4746   /* If there is an ORDER BY clause, then this sorting
4747   ** index might end up being unused if the data can be
4748   ** extracted in pre-sorted order.  If that is the case, then the
4749   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4750   ** we figure out that the sorting index is not needed.  The addrSortIndex
4751   ** variable is used to facilitate that change.
4752   */
4753   if( sSort.pOrderBy ){
4754     KeyInfo *pKeyInfo;
4755     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
4756     sSort.iECursor = pParse->nTab++;
4757     sSort.addrSortIndex =
4758       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4759                            sSort.iECursor, sSort.pOrderBy->nExpr+2, 0,
4760                            (char*)pKeyInfo, P4_KEYINFO);
4761   }else{
4762     sSort.addrSortIndex = -1;
4763   }
4764 
4765   /* If the output is destined for a temporary table, open that table.
4766   */
4767   if( pDest->eDest==SRT_EphemTab ){
4768     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4769   }
4770 
4771   /* Set the limiter.
4772   */
4773   iEnd = sqlite3VdbeMakeLabel(v);
4774   p->nSelectRow = LARGEST_INT64;
4775   computeLimitRegisters(pParse, p, iEnd);
4776   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4777     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4778     sSort.sortFlags |= SORTFLAG_UseSorter;
4779   }
4780 
4781   /* Open a virtual index to use for the distinct set.
4782   */
4783   if( p->selFlags & SF_Distinct ){
4784     sDistinct.tabTnct = pParse->nTab++;
4785     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4786                                 sDistinct.tabTnct, 0, 0,
4787                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4788                                 P4_KEYINFO);
4789     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4790     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4791   }else{
4792     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4793   }
4794 
4795   if( !isAgg && pGroupBy==0 ){
4796     /* No aggregate functions and no GROUP BY clause */
4797     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4798 
4799     /* Begin the database scan. */
4800     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4801                                p->pEList, wctrlFlags, 0);
4802     if( pWInfo==0 ) goto select_end;
4803     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4804       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4805     }
4806     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4807       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4808     }
4809     if( sSort.pOrderBy ){
4810       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4811       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4812         sSort.pOrderBy = 0;
4813       }
4814     }
4815 
4816     /* If sorting index that was created by a prior OP_OpenEphemeral
4817     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4818     ** into an OP_Noop.
4819     */
4820     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
4821       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4822     }
4823 
4824     /* Use the standard inner loop. */
4825     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
4826                     sqlite3WhereContinueLabel(pWInfo),
4827                     sqlite3WhereBreakLabel(pWInfo));
4828 
4829     /* End the database scan loop.
4830     */
4831     sqlite3WhereEnd(pWInfo);
4832   }else{
4833     /* This case when there exist aggregate functions or a GROUP BY clause
4834     ** or both */
4835     NameContext sNC;    /* Name context for processing aggregate information */
4836     int iAMem;          /* First Mem address for storing current GROUP BY */
4837     int iBMem;          /* First Mem address for previous GROUP BY */
4838     int iUseFlag;       /* Mem address holding flag indicating that at least
4839                         ** one row of the input to the aggregator has been
4840                         ** processed */
4841     int iAbortFlag;     /* Mem address which causes query abort if positive */
4842     int groupBySort;    /* Rows come from source in GROUP BY order */
4843     int addrEnd;        /* End of processing for this SELECT */
4844     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4845     int sortOut = 0;    /* Output register from the sorter */
4846     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
4847 
4848     /* Remove any and all aliases between the result set and the
4849     ** GROUP BY clause.
4850     */
4851     if( pGroupBy ){
4852       int k;                        /* Loop counter */
4853       struct ExprList_item *pItem;  /* For looping over expression in a list */
4854 
4855       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4856         pItem->u.x.iAlias = 0;
4857       }
4858       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4859         pItem->u.x.iAlias = 0;
4860       }
4861       if( p->nSelectRow>100 ) p->nSelectRow = 100;
4862     }else{
4863       p->nSelectRow = 1;
4864     }
4865 
4866 
4867     /* If there is both a GROUP BY and an ORDER BY clause and they are
4868     ** identical, then it may be possible to disable the ORDER BY clause
4869     ** on the grounds that the GROUP BY will cause elements to come out
4870     ** in the correct order. It also may not - the GROUP BY may use a
4871     ** database index that causes rows to be grouped together as required
4872     ** but not actually sorted. Either way, record the fact that the
4873     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
4874     ** variable.  */
4875     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
4876       orderByGrp = 1;
4877     }
4878 
4879     /* Create a label to jump to when we want to abort the query */
4880     addrEnd = sqlite3VdbeMakeLabel(v);
4881 
4882     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4883     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4884     ** SELECT statement.
4885     */
4886     memset(&sNC, 0, sizeof(sNC));
4887     sNC.pParse = pParse;
4888     sNC.pSrcList = pTabList;
4889     sNC.pAggInfo = &sAggInfo;
4890     sAggInfo.mnReg = pParse->nMem+1;
4891     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4892     sAggInfo.pGroupBy = pGroupBy;
4893     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4894     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
4895     if( pHaving ){
4896       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4897     }
4898     sAggInfo.nAccumulator = sAggInfo.nColumn;
4899     for(i=0; i<sAggInfo.nFunc; i++){
4900       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4901       sNC.ncFlags |= NC_InAggFunc;
4902       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4903       sNC.ncFlags &= ~NC_InAggFunc;
4904     }
4905     sAggInfo.mxReg = pParse->nMem;
4906     if( db->mallocFailed ) goto select_end;
4907 
4908     /* Processing for aggregates with GROUP BY is very different and
4909     ** much more complex than aggregates without a GROUP BY.
4910     */
4911     if( pGroupBy ){
4912       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4913       int j1;             /* A-vs-B comparision jump */
4914       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4915       int regOutputRow;   /* Return address register for output subroutine */
4916       int addrSetAbort;   /* Set the abort flag and return */
4917       int addrTopOfLoop;  /* Top of the input loop */
4918       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4919       int addrReset;      /* Subroutine for resetting the accumulator */
4920       int regReset;       /* Return address register for reset subroutine */
4921 
4922       /* If there is a GROUP BY clause we might need a sorting index to
4923       ** implement it.  Allocate that sorting index now.  If it turns out
4924       ** that we do not need it after all, the OP_SorterOpen instruction
4925       ** will be converted into a Noop.
4926       */
4927       sAggInfo.sortingIdx = pParse->nTab++;
4928       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
4929       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4930           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4931           0, (char*)pKeyInfo, P4_KEYINFO);
4932 
4933       /* Initialize memory locations used by GROUP BY aggregate processing
4934       */
4935       iUseFlag = ++pParse->nMem;
4936       iAbortFlag = ++pParse->nMem;
4937       regOutputRow = ++pParse->nMem;
4938       addrOutputRow = sqlite3VdbeMakeLabel(v);
4939       regReset = ++pParse->nMem;
4940       addrReset = sqlite3VdbeMakeLabel(v);
4941       iAMem = pParse->nMem + 1;
4942       pParse->nMem += pGroupBy->nExpr;
4943       iBMem = pParse->nMem + 1;
4944       pParse->nMem += pGroupBy->nExpr;
4945       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4946       VdbeComment((v, "clear abort flag"));
4947       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4948       VdbeComment((v, "indicate accumulator empty"));
4949       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4950 
4951       /* Begin a loop that will extract all source rows in GROUP BY order.
4952       ** This might involve two separate loops with an OP_Sort in between, or
4953       ** it might be a single loop that uses an index to extract information
4954       ** in the right order to begin with.
4955       */
4956       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4957       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
4958           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
4959       );
4960       if( pWInfo==0 ) goto select_end;
4961       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
4962         /* The optimizer is able to deliver rows in group by order so
4963         ** we do not have to sort.  The OP_OpenEphemeral table will be
4964         ** cancelled later because we still need to use the pKeyInfo
4965         */
4966         groupBySort = 0;
4967       }else{
4968         /* Rows are coming out in undetermined order.  We have to push
4969         ** each row into a sorting index, terminate the first loop,
4970         ** then loop over the sorting index in order to get the output
4971         ** in sorted order
4972         */
4973         int regBase;
4974         int regRecord;
4975         int nCol;
4976         int nGroupBy;
4977 
4978         explainTempTable(pParse,
4979             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
4980                     "DISTINCT" : "GROUP BY");
4981 
4982         groupBySort = 1;
4983         nGroupBy = pGroupBy->nExpr;
4984         nCol = nGroupBy + 1;
4985         j = nGroupBy+1;
4986         for(i=0; i<sAggInfo.nColumn; i++){
4987           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4988             nCol++;
4989             j++;
4990           }
4991         }
4992         regBase = sqlite3GetTempRange(pParse, nCol);
4993         sqlite3ExprCacheClear(pParse);
4994         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4995         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4996         j = nGroupBy+1;
4997         for(i=0; i<sAggInfo.nColumn; i++){
4998           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4999           if( pCol->iSorterColumn>=j ){
5000             int r1 = j + regBase;
5001             int r2;
5002 
5003             r2 = sqlite3ExprCodeGetColumn(pParse,
5004                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5005             if( r1!=r2 ){
5006               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5007             }
5008             j++;
5009           }
5010         }
5011         regRecord = sqlite3GetTempReg(pParse);
5012         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5013         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5014         sqlite3ReleaseTempReg(pParse, regRecord);
5015         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5016         sqlite3WhereEnd(pWInfo);
5017         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5018         sortOut = sqlite3GetTempReg(pParse);
5019         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5020         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5021         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5022         sAggInfo.useSortingIdx = 1;
5023         sqlite3ExprCacheClear(pParse);
5024 
5025       }
5026 
5027       /* If the index or temporary table used by the GROUP BY sort
5028       ** will naturally deliver rows in the order required by the ORDER BY
5029       ** clause, cancel the ephemeral table open coded earlier.
5030       **
5031       ** This is an optimization - the correct answer should result regardless.
5032       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5033       ** disable this optimization for testing purposes.  */
5034       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5035        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5036       ){
5037         sSort.pOrderBy = 0;
5038         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5039       }
5040 
5041       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5042       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5043       ** Then compare the current GROUP BY terms against the GROUP BY terms
5044       ** from the previous row currently stored in a0, a1, a2...
5045       */
5046       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5047       sqlite3ExprCacheClear(pParse);
5048       if( groupBySort ){
5049         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
5050       }
5051       for(j=0; j<pGroupBy->nExpr; j++){
5052         if( groupBySort ){
5053           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5054           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
5055         }else{
5056           sAggInfo.directMode = 1;
5057           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5058         }
5059       }
5060       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5061                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5062       j1 = sqlite3VdbeCurrentAddr(v);
5063       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5064 
5065       /* Generate code that runs whenever the GROUP BY changes.
5066       ** Changes in the GROUP BY are detected by the previous code
5067       ** block.  If there were no changes, this block is skipped.
5068       **
5069       ** This code copies current group by terms in b0,b1,b2,...
5070       ** over to a0,a1,a2.  It then calls the output subroutine
5071       ** and resets the aggregate accumulator registers in preparation
5072       ** for the next GROUP BY batch.
5073       */
5074       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5075       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5076       VdbeComment((v, "output one row"));
5077       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5078       VdbeComment((v, "check abort flag"));
5079       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5080       VdbeComment((v, "reset accumulator"));
5081 
5082       /* Update the aggregate accumulators based on the content of
5083       ** the current row
5084       */
5085       sqlite3VdbeJumpHere(v, j1);
5086       updateAccumulator(pParse, &sAggInfo);
5087       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5088       VdbeComment((v, "indicate data in accumulator"));
5089 
5090       /* End of the loop
5091       */
5092       if( groupBySort ){
5093         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5094         VdbeCoverage(v);
5095       }else{
5096         sqlite3WhereEnd(pWInfo);
5097         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5098       }
5099 
5100       /* Output the final row of result
5101       */
5102       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5103       VdbeComment((v, "output final row"));
5104 
5105       /* Jump over the subroutines
5106       */
5107       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5108 
5109       /* Generate a subroutine that outputs a single row of the result
5110       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5111       ** is less than or equal to zero, the subroutine is a no-op.  If
5112       ** the processing calls for the query to abort, this subroutine
5113       ** increments the iAbortFlag memory location before returning in
5114       ** order to signal the caller to abort.
5115       */
5116       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5117       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5118       VdbeComment((v, "set abort flag"));
5119       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5120       sqlite3VdbeResolveLabel(v, addrOutputRow);
5121       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5122       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5123       VdbeComment((v, "Groupby result generator entry point"));
5124       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5125       finalizeAggFunctions(pParse, &sAggInfo);
5126       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5127       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5128                       &sDistinct, pDest,
5129                       addrOutputRow+1, addrSetAbort);
5130       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5131       VdbeComment((v, "end groupby result generator"));
5132 
5133       /* Generate a subroutine that will reset the group-by accumulator
5134       */
5135       sqlite3VdbeResolveLabel(v, addrReset);
5136       resetAccumulator(pParse, &sAggInfo);
5137       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5138 
5139     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5140     else {
5141       ExprList *pDel = 0;
5142 #ifndef SQLITE_OMIT_BTREECOUNT
5143       Table *pTab;
5144       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5145         /* If isSimpleCount() returns a pointer to a Table structure, then
5146         ** the SQL statement is of the form:
5147         **
5148         **   SELECT count(*) FROM <tbl>
5149         **
5150         ** where the Table structure returned represents table <tbl>.
5151         **
5152         ** This statement is so common that it is optimized specially. The
5153         ** OP_Count instruction is executed either on the intkey table that
5154         ** contains the data for table <tbl> or on one of its indexes. It
5155         ** is better to execute the op on an index, as indexes are almost
5156         ** always spread across less pages than their corresponding tables.
5157         */
5158         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5159         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5160         Index *pIdx;                         /* Iterator variable */
5161         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5162         Index *pBest = 0;                    /* Best index found so far */
5163         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5164 
5165         sqlite3CodeVerifySchema(pParse, iDb);
5166         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5167 
5168         /* Search for the index that has the lowest scan cost.
5169         **
5170         ** (2011-04-15) Do not do a full scan of an unordered index.
5171         **
5172         ** (2013-10-03) Do not count the entries in a partial index.
5173         **
5174         ** In practice the KeyInfo structure will not be used. It is only
5175         ** passed to keep OP_OpenRead happy.
5176         */
5177         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5178         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5179           if( pIdx->bUnordered==0
5180            && pIdx->szIdxRow<pTab->szTabRow
5181            && pIdx->pPartIdxWhere==0
5182            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5183           ){
5184             pBest = pIdx;
5185           }
5186         }
5187         if( pBest ){
5188           iRoot = pBest->tnum;
5189           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5190         }
5191 
5192         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5193         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5194         if( pKeyInfo ){
5195           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5196         }
5197         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5198         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5199         explainSimpleCount(pParse, pTab, pBest);
5200       }else
5201 #endif /* SQLITE_OMIT_BTREECOUNT */
5202       {
5203         /* Check if the query is of one of the following forms:
5204         **
5205         **   SELECT min(x) FROM ...
5206         **   SELECT max(x) FROM ...
5207         **
5208         ** If it is, then ask the code in where.c to attempt to sort results
5209         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5210         ** If where.c is able to produce results sorted in this order, then
5211         ** add vdbe code to break out of the processing loop after the
5212         ** first iteration (since the first iteration of the loop is
5213         ** guaranteed to operate on the row with the minimum or maximum
5214         ** value of x, the only row required).
5215         **
5216         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5217         ** modify behavior as follows:
5218         **
5219         **   + If the query is a "SELECT min(x)", then the loop coded by
5220         **     where.c should not iterate over any values with a NULL value
5221         **     for x.
5222         **
5223         **   + The optimizer code in where.c (the thing that decides which
5224         **     index or indices to use) should place a different priority on
5225         **     satisfying the 'ORDER BY' clause than it does in other cases.
5226         **     Refer to code and comments in where.c for details.
5227         */
5228         ExprList *pMinMax = 0;
5229         u8 flag = WHERE_ORDERBY_NORMAL;
5230 
5231         assert( p->pGroupBy==0 );
5232         assert( flag==0 );
5233         if( p->pHaving==0 ){
5234           flag = minMaxQuery(&sAggInfo, &pMinMax);
5235         }
5236         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5237 
5238         if( flag ){
5239           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5240           pDel = pMinMax;
5241           if( pMinMax && !db->mallocFailed ){
5242             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5243             pMinMax->a[0].pExpr->op = TK_COLUMN;
5244           }
5245         }
5246 
5247         /* This case runs if the aggregate has no GROUP BY clause.  The
5248         ** processing is much simpler since there is only a single row
5249         ** of output.
5250         */
5251         resetAccumulator(pParse, &sAggInfo);
5252         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5253         if( pWInfo==0 ){
5254           sqlite3ExprListDelete(db, pDel);
5255           goto select_end;
5256         }
5257         updateAccumulator(pParse, &sAggInfo);
5258         assert( pMinMax==0 || pMinMax->nExpr==1 );
5259         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5260           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5261           VdbeComment((v, "%s() by index",
5262                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5263         }
5264         sqlite3WhereEnd(pWInfo);
5265         finalizeAggFunctions(pParse, &sAggInfo);
5266       }
5267 
5268       sSort.pOrderBy = 0;
5269       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5270       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5271                       pDest, addrEnd, addrEnd);
5272       sqlite3ExprListDelete(db, pDel);
5273     }
5274     sqlite3VdbeResolveLabel(v, addrEnd);
5275 
5276   } /* endif aggregate query */
5277 
5278   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5279     explainTempTable(pParse, "DISTINCT");
5280   }
5281 
5282   /* If there is an ORDER BY clause, then we need to sort the results
5283   ** and send them to the callback one by one.
5284   */
5285   if( sSort.pOrderBy ){
5286     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5287     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5288   }
5289 
5290   /* Jump here to skip this query
5291   */
5292   sqlite3VdbeResolveLabel(v, iEnd);
5293 
5294   /* The SELECT was successfully coded.   Set the return code to 0
5295   ** to indicate no errors.
5296   */
5297   rc = 0;
5298 
5299   /* Control jumps to here if an error is encountered above, or upon
5300   ** successful coding of the SELECT.
5301   */
5302 select_end:
5303   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5304 
5305   /* Identify column names if results of the SELECT are to be output.
5306   */
5307   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5308     generateColumnNames(pParse, pTabList, pEList);
5309   }
5310 
5311   sqlite3DbFree(db, sAggInfo.aCol);
5312   sqlite3DbFree(db, sAggInfo.aFunc);
5313   return rc;
5314 }
5315 
5316 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
5317 /*
5318 ** Generate a human-readable description of a the Select object.
5319 */
5320 static void explainOneSelect(Vdbe *pVdbe, Select *p){
5321   sqlite3ExplainPrintf(pVdbe, "SELECT ");
5322   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
5323     if( p->selFlags & SF_Distinct ){
5324       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
5325     }
5326     if( p->selFlags & SF_Aggregate ){
5327       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
5328     }
5329     sqlite3ExplainNL(pVdbe);
5330     sqlite3ExplainPrintf(pVdbe, "   ");
5331   }
5332   sqlite3ExplainExprList(pVdbe, p->pEList);
5333   sqlite3ExplainNL(pVdbe);
5334   if( p->pSrc && p->pSrc->nSrc ){
5335     int i;
5336     sqlite3ExplainPrintf(pVdbe, "FROM ");
5337     sqlite3ExplainPush(pVdbe);
5338     for(i=0; i<p->pSrc->nSrc; i++){
5339       struct SrcList_item *pItem = &p->pSrc->a[i];
5340       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
5341       if( pItem->pSelect ){
5342         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
5343         if( pItem->pTab ){
5344           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
5345         }
5346       }else if( pItem->zName ){
5347         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
5348       }
5349       if( pItem->zAlias ){
5350         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
5351       }
5352       if( pItem->jointype & JT_LEFT ){
5353         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
5354       }
5355       sqlite3ExplainNL(pVdbe);
5356     }
5357     sqlite3ExplainPop(pVdbe);
5358   }
5359   if( p->pWhere ){
5360     sqlite3ExplainPrintf(pVdbe, "WHERE ");
5361     sqlite3ExplainExpr(pVdbe, p->pWhere);
5362     sqlite3ExplainNL(pVdbe);
5363   }
5364   if( p->pGroupBy ){
5365     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
5366     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
5367     sqlite3ExplainNL(pVdbe);
5368   }
5369   if( p->pHaving ){
5370     sqlite3ExplainPrintf(pVdbe, "HAVING ");
5371     sqlite3ExplainExpr(pVdbe, p->pHaving);
5372     sqlite3ExplainNL(pVdbe);
5373   }
5374   if( p->pOrderBy ){
5375     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
5376     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
5377     sqlite3ExplainNL(pVdbe);
5378   }
5379   if( p->pLimit ){
5380     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
5381     sqlite3ExplainExpr(pVdbe, p->pLimit);
5382     sqlite3ExplainNL(pVdbe);
5383   }
5384   if( p->pOffset ){
5385     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
5386     sqlite3ExplainExpr(pVdbe, p->pOffset);
5387     sqlite3ExplainNL(pVdbe);
5388   }
5389 }
5390 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
5391   if( p==0 ){
5392     sqlite3ExplainPrintf(pVdbe, "(null-select)");
5393     return;
5394   }
5395   sqlite3ExplainPush(pVdbe);
5396   while( p ){
5397     explainOneSelect(pVdbe, p);
5398     p = p->pNext;
5399     if( p==0 ) break;
5400     sqlite3ExplainNL(pVdbe);
5401     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
5402   }
5403   sqlite3ExplainPrintf(pVdbe, "END");
5404   sqlite3ExplainPop(pVdbe);
5405 }
5406 
5407 /* End of the structure debug printing code
5408 *****************************************************************************/
5409 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
5410