1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iParm = iParm; 40 pDest->affinity = 0; 41 pDest->iMem = 0; 42 pDest->nMem = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 int isDistinct, /* true if the DISTINCT keyword is present */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 assert( db->mallocFailed ); 69 pNew = &standin; 70 memset(pNew, 0, sizeof(*pNew)); 71 } 72 if( pEList==0 ){ 73 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 74 } 75 pNew->pEList = pEList; 76 pNew->pSrc = pSrc; 77 pNew->pWhere = pWhere; 78 pNew->pGroupBy = pGroupBy; 79 pNew->pHaving = pHaving; 80 pNew->pOrderBy = pOrderBy; 81 pNew->selFlags = isDistinct ? SF_Distinct : 0; 82 pNew->op = TK_SELECT; 83 pNew->pLimit = pLimit; 84 pNew->pOffset = pOffset; 85 assert( pOffset==0 || pLimit!=0 ); 86 pNew->addrOpenEphm[0] = -1; 87 pNew->addrOpenEphm[1] = -1; 88 pNew->addrOpenEphm[2] = -1; 89 if( db->mallocFailed ) { 90 clearSelect(db, pNew); 91 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 92 pNew = 0; 93 }else{ 94 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 95 } 96 assert( pNew!=&standin ); 97 return pNew; 98 } 99 100 /* 101 ** Delete the given Select structure and all of its substructures. 102 */ 103 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 104 if( p ){ 105 clearSelect(db, p); 106 sqlite3DbFree(db, p); 107 } 108 } 109 110 /* 111 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 112 ** type of join. Return an integer constant that expresses that type 113 ** in terms of the following bit values: 114 ** 115 ** JT_INNER 116 ** JT_CROSS 117 ** JT_OUTER 118 ** JT_NATURAL 119 ** JT_LEFT 120 ** JT_RIGHT 121 ** 122 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 123 ** 124 ** If an illegal or unsupported join type is seen, then still return 125 ** a join type, but put an error in the pParse structure. 126 */ 127 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 128 int jointype = 0; 129 Token *apAll[3]; 130 Token *p; 131 /* 0123456789 123456789 123456789 123 */ 132 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 133 static const struct { 134 u8 i; /* Beginning of keyword text in zKeyText[] */ 135 u8 nChar; /* Length of the keyword in characters */ 136 u8 code; /* Join type mask */ 137 } aKeyword[] = { 138 /* natural */ { 0, 7, JT_NATURAL }, 139 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 140 /* outer */ { 10, 5, JT_OUTER }, 141 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 142 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 143 /* inner */ { 23, 5, JT_INNER }, 144 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 145 }; 146 int i, j; 147 apAll[0] = pA; 148 apAll[1] = pB; 149 apAll[2] = pC; 150 for(i=0; i<3 && apAll[i]; i++){ 151 p = apAll[i]; 152 for(j=0; j<ArraySize(aKeyword); j++){ 153 if( p->n==aKeyword[j].nChar 154 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 155 jointype |= aKeyword[j].code; 156 break; 157 } 158 } 159 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 160 if( j>=ArraySize(aKeyword) ){ 161 jointype |= JT_ERROR; 162 break; 163 } 164 } 165 if( 166 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 167 (jointype & JT_ERROR)!=0 168 ){ 169 const char *zSp = " "; 170 assert( pB!=0 ); 171 if( pC==0 ){ zSp++; } 172 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 173 "%T %T%s%T", pA, pB, zSp, pC); 174 jointype = JT_INNER; 175 }else if( (jointype & JT_OUTER)!=0 176 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 177 sqlite3ErrorMsg(pParse, 178 "RIGHT and FULL OUTER JOINs are not currently supported"); 179 jointype = JT_INNER; 180 } 181 return jointype; 182 } 183 184 /* 185 ** Return the index of a column in a table. Return -1 if the column 186 ** is not contained in the table. 187 */ 188 static int columnIndex(Table *pTab, const char *zCol){ 189 int i; 190 for(i=0; i<pTab->nCol; i++){ 191 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 192 } 193 return -1; 194 } 195 196 /* 197 ** Search the first N tables in pSrc, from left to right, looking for a 198 ** table that has a column named zCol. 199 ** 200 ** When found, set *piTab and *piCol to the table index and column index 201 ** of the matching column and return TRUE. 202 ** 203 ** If not found, return FALSE. 204 */ 205 static int tableAndColumnIndex( 206 SrcList *pSrc, /* Array of tables to search */ 207 int N, /* Number of tables in pSrc->a[] to search */ 208 const char *zCol, /* Name of the column we are looking for */ 209 int *piTab, /* Write index of pSrc->a[] here */ 210 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 211 ){ 212 int i; /* For looping over tables in pSrc */ 213 int iCol; /* Index of column matching zCol */ 214 215 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 216 for(i=0; i<N; i++){ 217 iCol = columnIndex(pSrc->a[i].pTab, zCol); 218 if( iCol>=0 ){ 219 if( piTab ){ 220 *piTab = i; 221 *piCol = iCol; 222 } 223 return 1; 224 } 225 } 226 return 0; 227 } 228 229 /* 230 ** This function is used to add terms implied by JOIN syntax to the 231 ** WHERE clause expression of a SELECT statement. The new term, which 232 ** is ANDed with the existing WHERE clause, is of the form: 233 ** 234 ** (tab1.col1 = tab2.col2) 235 ** 236 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 237 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 238 ** column iColRight of tab2. 239 */ 240 static void addWhereTerm( 241 Parse *pParse, /* Parsing context */ 242 SrcList *pSrc, /* List of tables in FROM clause */ 243 int iLeft, /* Index of first table to join in pSrc */ 244 int iColLeft, /* Index of column in first table */ 245 int iRight, /* Index of second table in pSrc */ 246 int iColRight, /* Index of column in second table */ 247 int isOuterJoin, /* True if this is an OUTER join */ 248 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 249 ){ 250 sqlite3 *db = pParse->db; 251 Expr *pE1; 252 Expr *pE2; 253 Expr *pEq; 254 255 assert( iLeft<iRight ); 256 assert( pSrc->nSrc>iRight ); 257 assert( pSrc->a[iLeft].pTab ); 258 assert( pSrc->a[iRight].pTab ); 259 260 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 261 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 262 263 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 264 if( pEq && isOuterJoin ){ 265 ExprSetProperty(pEq, EP_FromJoin); 266 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 267 ExprSetIrreducible(pEq); 268 pEq->iRightJoinTable = (i16)pE2->iTable; 269 } 270 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 271 } 272 273 /* 274 ** Set the EP_FromJoin property on all terms of the given expression. 275 ** And set the Expr.iRightJoinTable to iTable for every term in the 276 ** expression. 277 ** 278 ** The EP_FromJoin property is used on terms of an expression to tell 279 ** the LEFT OUTER JOIN processing logic that this term is part of the 280 ** join restriction specified in the ON or USING clause and not a part 281 ** of the more general WHERE clause. These terms are moved over to the 282 ** WHERE clause during join processing but we need to remember that they 283 ** originated in the ON or USING clause. 284 ** 285 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 286 ** expression depends on table iRightJoinTable even if that table is not 287 ** explicitly mentioned in the expression. That information is needed 288 ** for cases like this: 289 ** 290 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 291 ** 292 ** The where clause needs to defer the handling of the t1.x=5 293 ** term until after the t2 loop of the join. In that way, a 294 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 295 ** defer the handling of t1.x=5, it will be processed immediately 296 ** after the t1 loop and rows with t1.x!=5 will never appear in 297 ** the output, which is incorrect. 298 */ 299 static void setJoinExpr(Expr *p, int iTable){ 300 while( p ){ 301 ExprSetProperty(p, EP_FromJoin); 302 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 303 ExprSetIrreducible(p); 304 p->iRightJoinTable = (i16)iTable; 305 setJoinExpr(p->pLeft, iTable); 306 p = p->pRight; 307 } 308 } 309 310 /* 311 ** This routine processes the join information for a SELECT statement. 312 ** ON and USING clauses are converted into extra terms of the WHERE clause. 313 ** NATURAL joins also create extra WHERE clause terms. 314 ** 315 ** The terms of a FROM clause are contained in the Select.pSrc structure. 316 ** The left most table is the first entry in Select.pSrc. The right-most 317 ** table is the last entry. The join operator is held in the entry to 318 ** the left. Thus entry 0 contains the join operator for the join between 319 ** entries 0 and 1. Any ON or USING clauses associated with the join are 320 ** also attached to the left entry. 321 ** 322 ** This routine returns the number of errors encountered. 323 */ 324 static int sqliteProcessJoin(Parse *pParse, Select *p){ 325 SrcList *pSrc; /* All tables in the FROM clause */ 326 int i, j; /* Loop counters */ 327 struct SrcList_item *pLeft; /* Left table being joined */ 328 struct SrcList_item *pRight; /* Right table being joined */ 329 330 pSrc = p->pSrc; 331 pLeft = &pSrc->a[0]; 332 pRight = &pLeft[1]; 333 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 334 Table *pLeftTab = pLeft->pTab; 335 Table *pRightTab = pRight->pTab; 336 int isOuter; 337 338 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 339 isOuter = (pRight->jointype & JT_OUTER)!=0; 340 341 /* When the NATURAL keyword is present, add WHERE clause terms for 342 ** every column that the two tables have in common. 343 */ 344 if( pRight->jointype & JT_NATURAL ){ 345 if( pRight->pOn || pRight->pUsing ){ 346 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 347 "an ON or USING clause", 0); 348 return 1; 349 } 350 for(j=0; j<pRightTab->nCol; j++){ 351 char *zName; /* Name of column in the right table */ 352 int iLeft; /* Matching left table */ 353 int iLeftCol; /* Matching column in the left table */ 354 355 zName = pRightTab->aCol[j].zName; 356 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 357 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 358 isOuter, &p->pWhere); 359 } 360 } 361 } 362 363 /* Disallow both ON and USING clauses in the same join 364 */ 365 if( pRight->pOn && pRight->pUsing ){ 366 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 367 "clauses in the same join"); 368 return 1; 369 } 370 371 /* Add the ON clause to the end of the WHERE clause, connected by 372 ** an AND operator. 373 */ 374 if( pRight->pOn ){ 375 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 376 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 377 pRight->pOn = 0; 378 } 379 380 /* Create extra terms on the WHERE clause for each column named 381 ** in the USING clause. Example: If the two tables to be joined are 382 ** A and B and the USING clause names X, Y, and Z, then add this 383 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 384 ** Report an error if any column mentioned in the USING clause is 385 ** not contained in both tables to be joined. 386 */ 387 if( pRight->pUsing ){ 388 IdList *pList = pRight->pUsing; 389 for(j=0; j<pList->nId; j++){ 390 char *zName; /* Name of the term in the USING clause */ 391 int iLeft; /* Table on the left with matching column name */ 392 int iLeftCol; /* Column number of matching column on the left */ 393 int iRightCol; /* Column number of matching column on the right */ 394 395 zName = pList->a[j].zName; 396 iRightCol = columnIndex(pRightTab, zName); 397 if( iRightCol<0 398 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 399 ){ 400 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 401 "not present in both tables", zName); 402 return 1; 403 } 404 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 405 isOuter, &p->pWhere); 406 } 407 } 408 } 409 return 0; 410 } 411 412 /* 413 ** Insert code into "v" that will push the record on the top of the 414 ** stack into the sorter. 415 */ 416 static void pushOntoSorter( 417 Parse *pParse, /* Parser context */ 418 ExprList *pOrderBy, /* The ORDER BY clause */ 419 Select *pSelect, /* The whole SELECT statement */ 420 int regData /* Register holding data to be sorted */ 421 ){ 422 Vdbe *v = pParse->pVdbe; 423 int nExpr = pOrderBy->nExpr; 424 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 425 int regRecord = sqlite3GetTempReg(pParse); 426 int op; 427 sqlite3ExprCacheClear(pParse); 428 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 429 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 430 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 431 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 432 if( pSelect->selFlags & SF_UseSorter ){ 433 op = OP_SorterInsert; 434 }else{ 435 op = OP_IdxInsert; 436 } 437 sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord); 438 sqlite3ReleaseTempReg(pParse, regRecord); 439 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 440 if( pSelect->iLimit ){ 441 int addr1, addr2; 442 int iLimit; 443 if( pSelect->iOffset ){ 444 iLimit = pSelect->iOffset+1; 445 }else{ 446 iLimit = pSelect->iLimit; 447 } 448 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 449 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 450 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 451 sqlite3VdbeJumpHere(v, addr1); 452 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 453 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 454 sqlite3VdbeJumpHere(v, addr2); 455 } 456 } 457 458 /* 459 ** Add code to implement the OFFSET 460 */ 461 static void codeOffset( 462 Vdbe *v, /* Generate code into this VM */ 463 Select *p, /* The SELECT statement being coded */ 464 int iContinue /* Jump here to skip the current record */ 465 ){ 466 if( p->iOffset && iContinue!=0 ){ 467 int addr; 468 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 469 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 470 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 471 VdbeComment((v, "skip OFFSET records")); 472 sqlite3VdbeJumpHere(v, addr); 473 } 474 } 475 476 /* 477 ** Add code that will check to make sure the N registers starting at iMem 478 ** form a distinct entry. iTab is a sorting index that holds previously 479 ** seen combinations of the N values. A new entry is made in iTab 480 ** if the current N values are new. 481 ** 482 ** A jump to addrRepeat is made and the N+1 values are popped from the 483 ** stack if the top N elements are not distinct. 484 */ 485 static void codeDistinct( 486 Parse *pParse, /* Parsing and code generating context */ 487 int iTab, /* A sorting index used to test for distinctness */ 488 int addrRepeat, /* Jump to here if not distinct */ 489 int N, /* Number of elements */ 490 int iMem /* First element */ 491 ){ 492 Vdbe *v; 493 int r1; 494 495 v = pParse->pVdbe; 496 r1 = sqlite3GetTempReg(pParse); 497 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 498 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 499 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 500 sqlite3ReleaseTempReg(pParse, r1); 501 } 502 503 #ifndef SQLITE_OMIT_SUBQUERY 504 /* 505 ** Generate an error message when a SELECT is used within a subexpression 506 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 507 ** column. We do this in a subroutine because the error used to occur 508 ** in multiple places. (The error only occurs in one place now, but we 509 ** retain the subroutine to minimize code disruption.) 510 */ 511 static int checkForMultiColumnSelectError( 512 Parse *pParse, /* Parse context. */ 513 SelectDest *pDest, /* Destination of SELECT results */ 514 int nExpr /* Number of result columns returned by SELECT */ 515 ){ 516 int eDest = pDest->eDest; 517 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 518 sqlite3ErrorMsg(pParse, "only a single result allowed for " 519 "a SELECT that is part of an expression"); 520 return 1; 521 }else{ 522 return 0; 523 } 524 } 525 #endif 526 527 /* 528 ** This routine generates the code for the inside of the inner loop 529 ** of a SELECT. 530 ** 531 ** If srcTab and nColumn are both zero, then the pEList expressions 532 ** are evaluated in order to get the data for this row. If nColumn>0 533 ** then data is pulled from srcTab and pEList is used only to get the 534 ** datatypes for each column. 535 */ 536 static void selectInnerLoop( 537 Parse *pParse, /* The parser context */ 538 Select *p, /* The complete select statement being coded */ 539 ExprList *pEList, /* List of values being extracted */ 540 int srcTab, /* Pull data from this table */ 541 int nColumn, /* Number of columns in the source table */ 542 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 543 int distinct, /* If >=0, make sure results are distinct */ 544 SelectDest *pDest, /* How to dispose of the results */ 545 int iContinue, /* Jump here to continue with next row */ 546 int iBreak /* Jump here to break out of the inner loop */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 int i; 550 int hasDistinct; /* True if the DISTINCT keyword is present */ 551 int regResult; /* Start of memory holding result set */ 552 int eDest = pDest->eDest; /* How to dispose of results */ 553 int iParm = pDest->iParm; /* First argument to disposal method */ 554 int nResultCol; /* Number of result columns */ 555 556 assert( v ); 557 if( NEVER(v==0) ) return; 558 assert( pEList!=0 ); 559 hasDistinct = distinct>=0; 560 if( pOrderBy==0 && !hasDistinct ){ 561 codeOffset(v, p, iContinue); 562 } 563 564 /* Pull the requested columns. 565 */ 566 if( nColumn>0 ){ 567 nResultCol = nColumn; 568 }else{ 569 nResultCol = pEList->nExpr; 570 } 571 if( pDest->iMem==0 ){ 572 pDest->iMem = pParse->nMem+1; 573 pDest->nMem = nResultCol; 574 pParse->nMem += nResultCol; 575 }else{ 576 assert( pDest->nMem==nResultCol ); 577 } 578 regResult = pDest->iMem; 579 if( nColumn>0 ){ 580 for(i=0; i<nColumn; i++){ 581 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 582 } 583 }else if( eDest!=SRT_Exists ){ 584 /* If the destination is an EXISTS(...) expression, the actual 585 ** values returned by the SELECT are not required. 586 */ 587 sqlite3ExprCacheClear(pParse); 588 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 589 } 590 nColumn = nResultCol; 591 592 /* If the DISTINCT keyword was present on the SELECT statement 593 ** and this row has been seen before, then do not make this row 594 ** part of the result. 595 */ 596 if( hasDistinct ){ 597 assert( pEList!=0 ); 598 assert( pEList->nExpr==nColumn ); 599 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 600 if( pOrderBy==0 ){ 601 codeOffset(v, p, iContinue); 602 } 603 } 604 605 switch( eDest ){ 606 /* In this mode, write each query result to the key of the temporary 607 ** table iParm. 608 */ 609 #ifndef SQLITE_OMIT_COMPOUND_SELECT 610 case SRT_Union: { 611 int r1; 612 r1 = sqlite3GetTempReg(pParse); 613 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 614 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 615 sqlite3ReleaseTempReg(pParse, r1); 616 break; 617 } 618 619 /* Construct a record from the query result, but instead of 620 ** saving that record, use it as a key to delete elements from 621 ** the temporary table iParm. 622 */ 623 case SRT_Except: { 624 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 625 break; 626 } 627 #endif 628 629 /* Store the result as data using a unique key. 630 */ 631 case SRT_Table: 632 case SRT_EphemTab: { 633 int r1 = sqlite3GetTempReg(pParse); 634 testcase( eDest==SRT_Table ); 635 testcase( eDest==SRT_EphemTab ); 636 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 637 if( pOrderBy ){ 638 pushOntoSorter(pParse, pOrderBy, p, r1); 639 }else{ 640 int r2 = sqlite3GetTempReg(pParse); 641 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 642 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 643 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 644 sqlite3ReleaseTempReg(pParse, r2); 645 } 646 sqlite3ReleaseTempReg(pParse, r1); 647 break; 648 } 649 650 #ifndef SQLITE_OMIT_SUBQUERY 651 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 652 ** then there should be a single item on the stack. Write this 653 ** item into the set table with bogus data. 654 */ 655 case SRT_Set: { 656 assert( nColumn==1 ); 657 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 658 if( pOrderBy ){ 659 /* At first glance you would think we could optimize out the 660 ** ORDER BY in this case since the order of entries in the set 661 ** does not matter. But there might be a LIMIT clause, in which 662 ** case the order does matter */ 663 pushOntoSorter(pParse, pOrderBy, p, regResult); 664 }else{ 665 int r1 = sqlite3GetTempReg(pParse); 666 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 667 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 668 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 669 sqlite3ReleaseTempReg(pParse, r1); 670 } 671 break; 672 } 673 674 /* If any row exist in the result set, record that fact and abort. 675 */ 676 case SRT_Exists: { 677 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 678 /* The LIMIT clause will terminate the loop for us */ 679 break; 680 } 681 682 /* If this is a scalar select that is part of an expression, then 683 ** store the results in the appropriate memory cell and break out 684 ** of the scan loop. 685 */ 686 case SRT_Mem: { 687 assert( nColumn==1 ); 688 if( pOrderBy ){ 689 pushOntoSorter(pParse, pOrderBy, p, regResult); 690 }else{ 691 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 692 /* The LIMIT clause will jump out of the loop for us */ 693 } 694 break; 695 } 696 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 697 698 /* Send the data to the callback function or to a subroutine. In the 699 ** case of a subroutine, the subroutine itself is responsible for 700 ** popping the data from the stack. 701 */ 702 case SRT_Coroutine: 703 case SRT_Output: { 704 testcase( eDest==SRT_Coroutine ); 705 testcase( eDest==SRT_Output ); 706 if( pOrderBy ){ 707 int r1 = sqlite3GetTempReg(pParse); 708 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 709 pushOntoSorter(pParse, pOrderBy, p, r1); 710 sqlite3ReleaseTempReg(pParse, r1); 711 }else if( eDest==SRT_Coroutine ){ 712 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 713 }else{ 714 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 715 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 716 } 717 break; 718 } 719 720 #if !defined(SQLITE_OMIT_TRIGGER) 721 /* Discard the results. This is used for SELECT statements inside 722 ** the body of a TRIGGER. The purpose of such selects is to call 723 ** user-defined functions that have side effects. We do not care 724 ** about the actual results of the select. 725 */ 726 default: { 727 assert( eDest==SRT_Discard ); 728 break; 729 } 730 #endif 731 } 732 733 /* Jump to the end of the loop if the LIMIT is reached. Except, if 734 ** there is a sorter, in which case the sorter has already limited 735 ** the output for us. 736 */ 737 if( pOrderBy==0 && p->iLimit ){ 738 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 739 } 740 } 741 742 /* 743 ** Given an expression list, generate a KeyInfo structure that records 744 ** the collating sequence for each expression in that expression list. 745 ** 746 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 747 ** KeyInfo structure is appropriate for initializing a virtual index to 748 ** implement that clause. If the ExprList is the result set of a SELECT 749 ** then the KeyInfo structure is appropriate for initializing a virtual 750 ** index to implement a DISTINCT test. 751 ** 752 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 753 ** function is responsible for seeing that this structure is eventually 754 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 755 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 756 */ 757 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 758 sqlite3 *db = pParse->db; 759 int nExpr; 760 KeyInfo *pInfo; 761 struct ExprList_item *pItem; 762 int i; 763 764 nExpr = pList->nExpr; 765 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 766 if( pInfo ){ 767 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 768 pInfo->nField = (u16)nExpr; 769 pInfo->enc = ENC(db); 770 pInfo->db = db; 771 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 772 CollSeq *pColl; 773 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 774 if( !pColl ){ 775 pColl = db->pDfltColl; 776 } 777 pInfo->aColl[i] = pColl; 778 pInfo->aSortOrder[i] = pItem->sortOrder; 779 } 780 } 781 return pInfo; 782 } 783 784 #ifndef SQLITE_OMIT_COMPOUND_SELECT 785 /* 786 ** Name of the connection operator, used for error messages. 787 */ 788 static const char *selectOpName(int id){ 789 char *z; 790 switch( id ){ 791 case TK_ALL: z = "UNION ALL"; break; 792 case TK_INTERSECT: z = "INTERSECT"; break; 793 case TK_EXCEPT: z = "EXCEPT"; break; 794 default: z = "UNION"; break; 795 } 796 return z; 797 } 798 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 799 800 #ifndef SQLITE_OMIT_EXPLAIN 801 /* 802 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 803 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 804 ** where the caption is of the form: 805 ** 806 ** "USE TEMP B-TREE FOR xxx" 807 ** 808 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 809 ** is determined by the zUsage argument. 810 */ 811 static void explainTempTable(Parse *pParse, const char *zUsage){ 812 if( pParse->explain==2 ){ 813 Vdbe *v = pParse->pVdbe; 814 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 815 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 816 } 817 } 818 819 /* 820 ** Assign expression b to lvalue a. A second, no-op, version of this macro 821 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 822 ** in sqlite3Select() to assign values to structure member variables that 823 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 824 ** code with #ifndef directives. 825 */ 826 # define explainSetInteger(a, b) a = b 827 828 #else 829 /* No-op versions of the explainXXX() functions and macros. */ 830 # define explainTempTable(y,z) 831 # define explainSetInteger(y,z) 832 #endif 833 834 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 835 /* 836 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 837 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 838 ** where the caption is of one of the two forms: 839 ** 840 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 841 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 842 ** 843 ** where iSub1 and iSub2 are the integers passed as the corresponding 844 ** function parameters, and op is the text representation of the parameter 845 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 846 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 847 ** false, or the second form if it is true. 848 */ 849 static void explainComposite( 850 Parse *pParse, /* Parse context */ 851 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 852 int iSub1, /* Subquery id 1 */ 853 int iSub2, /* Subquery id 2 */ 854 int bUseTmp /* True if a temp table was used */ 855 ){ 856 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 857 if( pParse->explain==2 ){ 858 Vdbe *v = pParse->pVdbe; 859 char *zMsg = sqlite3MPrintf( 860 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 861 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 862 ); 863 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 864 } 865 } 866 #else 867 /* No-op versions of the explainXXX() functions and macros. */ 868 # define explainComposite(v,w,x,y,z) 869 #endif 870 871 /* 872 ** If the inner loop was generated using a non-null pOrderBy argument, 873 ** then the results were placed in a sorter. After the loop is terminated 874 ** we need to run the sorter and output the results. The following 875 ** routine generates the code needed to do that. 876 */ 877 static void generateSortTail( 878 Parse *pParse, /* Parsing context */ 879 Select *p, /* The SELECT statement */ 880 Vdbe *v, /* Generate code into this VDBE */ 881 int nColumn, /* Number of columns of data */ 882 SelectDest *pDest /* Write the sorted results here */ 883 ){ 884 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 885 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 886 int addr; 887 int iTab; 888 int pseudoTab = 0; 889 ExprList *pOrderBy = p->pOrderBy; 890 891 int eDest = pDest->eDest; 892 int iParm = pDest->iParm; 893 894 int regRow; 895 int regRowid; 896 897 iTab = pOrderBy->iECursor; 898 regRow = sqlite3GetTempReg(pParse); 899 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 900 pseudoTab = pParse->nTab++; 901 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 902 regRowid = 0; 903 }else{ 904 regRowid = sqlite3GetTempReg(pParse); 905 } 906 if( p->selFlags & SF_UseSorter ){ 907 int regSortOut = ++pParse->nMem; 908 int ptab2 = pParse->nTab++; 909 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); 910 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 911 codeOffset(v, p, addrContinue); 912 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 913 sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); 914 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 915 }else{ 916 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 917 codeOffset(v, p, addrContinue); 918 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); 919 } 920 switch( eDest ){ 921 case SRT_Table: 922 case SRT_EphemTab: { 923 testcase( eDest==SRT_Table ); 924 testcase( eDest==SRT_EphemTab ); 925 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 926 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 927 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 928 break; 929 } 930 #ifndef SQLITE_OMIT_SUBQUERY 931 case SRT_Set: { 932 assert( nColumn==1 ); 933 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 934 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 935 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 936 break; 937 } 938 case SRT_Mem: { 939 assert( nColumn==1 ); 940 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 941 /* The LIMIT clause will terminate the loop for us */ 942 break; 943 } 944 #endif 945 default: { 946 int i; 947 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 948 testcase( eDest==SRT_Output ); 949 testcase( eDest==SRT_Coroutine ); 950 for(i=0; i<nColumn; i++){ 951 assert( regRow!=pDest->iMem+i ); 952 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 953 if( i==0 ){ 954 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 955 } 956 } 957 if( eDest==SRT_Output ){ 958 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 959 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 960 }else{ 961 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 962 } 963 break; 964 } 965 } 966 sqlite3ReleaseTempReg(pParse, regRow); 967 sqlite3ReleaseTempReg(pParse, regRowid); 968 969 /* The bottom of the loop 970 */ 971 sqlite3VdbeResolveLabel(v, addrContinue); 972 if( p->selFlags & SF_UseSorter ){ 973 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); 974 }else{ 975 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 976 } 977 sqlite3VdbeResolveLabel(v, addrBreak); 978 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 979 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 980 } 981 } 982 983 /* 984 ** Return a pointer to a string containing the 'declaration type' of the 985 ** expression pExpr. The string may be treated as static by the caller. 986 ** 987 ** The declaration type is the exact datatype definition extracted from the 988 ** original CREATE TABLE statement if the expression is a column. The 989 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 990 ** is considered a column can be complex in the presence of subqueries. The 991 ** result-set expression in all of the following SELECT statements is 992 ** considered a column by this function. 993 ** 994 ** SELECT col FROM tbl; 995 ** SELECT (SELECT col FROM tbl; 996 ** SELECT (SELECT col FROM tbl); 997 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 998 ** 999 ** The declaration type for any expression other than a column is NULL. 1000 */ 1001 static const char *columnType( 1002 NameContext *pNC, 1003 Expr *pExpr, 1004 const char **pzOriginDb, 1005 const char **pzOriginTab, 1006 const char **pzOriginCol 1007 ){ 1008 char const *zType = 0; 1009 char const *zOriginDb = 0; 1010 char const *zOriginTab = 0; 1011 char const *zOriginCol = 0; 1012 int j; 1013 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1014 1015 switch( pExpr->op ){ 1016 case TK_AGG_COLUMN: 1017 case TK_COLUMN: { 1018 /* The expression is a column. Locate the table the column is being 1019 ** extracted from in NameContext.pSrcList. This table may be real 1020 ** database table or a subquery. 1021 */ 1022 Table *pTab = 0; /* Table structure column is extracted from */ 1023 Select *pS = 0; /* Select the column is extracted from */ 1024 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1025 testcase( pExpr->op==TK_AGG_COLUMN ); 1026 testcase( pExpr->op==TK_COLUMN ); 1027 while( pNC && !pTab ){ 1028 SrcList *pTabList = pNC->pSrcList; 1029 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1030 if( j<pTabList->nSrc ){ 1031 pTab = pTabList->a[j].pTab; 1032 pS = pTabList->a[j].pSelect; 1033 }else{ 1034 pNC = pNC->pNext; 1035 } 1036 } 1037 1038 if( pTab==0 ){ 1039 /* At one time, code such as "SELECT new.x" within a trigger would 1040 ** cause this condition to run. Since then, we have restructured how 1041 ** trigger code is generated and so this condition is no longer 1042 ** possible. However, it can still be true for statements like 1043 ** the following: 1044 ** 1045 ** CREATE TABLE t1(col INTEGER); 1046 ** SELECT (SELECT t1.col) FROM FROM t1; 1047 ** 1048 ** when columnType() is called on the expression "t1.col" in the 1049 ** sub-select. In this case, set the column type to NULL, even 1050 ** though it should really be "INTEGER". 1051 ** 1052 ** This is not a problem, as the column type of "t1.col" is never 1053 ** used. When columnType() is called on the expression 1054 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1055 ** branch below. */ 1056 break; 1057 } 1058 1059 assert( pTab && pExpr->pTab==pTab ); 1060 if( pS ){ 1061 /* The "table" is actually a sub-select or a view in the FROM clause 1062 ** of the SELECT statement. Return the declaration type and origin 1063 ** data for the result-set column of the sub-select. 1064 */ 1065 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1066 /* If iCol is less than zero, then the expression requests the 1067 ** rowid of the sub-select or view. This expression is legal (see 1068 ** test case misc2.2.2) - it always evaluates to NULL. 1069 */ 1070 NameContext sNC; 1071 Expr *p = pS->pEList->a[iCol].pExpr; 1072 sNC.pSrcList = pS->pSrc; 1073 sNC.pNext = pNC; 1074 sNC.pParse = pNC->pParse; 1075 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1076 } 1077 }else if( ALWAYS(pTab->pSchema) ){ 1078 /* A real table */ 1079 assert( !pS ); 1080 if( iCol<0 ) iCol = pTab->iPKey; 1081 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1082 if( iCol<0 ){ 1083 zType = "INTEGER"; 1084 zOriginCol = "rowid"; 1085 }else{ 1086 zType = pTab->aCol[iCol].zType; 1087 zOriginCol = pTab->aCol[iCol].zName; 1088 } 1089 zOriginTab = pTab->zName; 1090 if( pNC->pParse ){ 1091 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1092 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 1093 } 1094 } 1095 break; 1096 } 1097 #ifndef SQLITE_OMIT_SUBQUERY 1098 case TK_SELECT: { 1099 /* The expression is a sub-select. Return the declaration type and 1100 ** origin info for the single column in the result set of the SELECT 1101 ** statement. 1102 */ 1103 NameContext sNC; 1104 Select *pS = pExpr->x.pSelect; 1105 Expr *p = pS->pEList->a[0].pExpr; 1106 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1107 sNC.pSrcList = pS->pSrc; 1108 sNC.pNext = pNC; 1109 sNC.pParse = pNC->pParse; 1110 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1111 break; 1112 } 1113 #endif 1114 } 1115 1116 if( pzOriginDb ){ 1117 assert( pzOriginTab && pzOriginCol ); 1118 *pzOriginDb = zOriginDb; 1119 *pzOriginTab = zOriginTab; 1120 *pzOriginCol = zOriginCol; 1121 } 1122 return zType; 1123 } 1124 1125 /* 1126 ** Generate code that will tell the VDBE the declaration types of columns 1127 ** in the result set. 1128 */ 1129 static void generateColumnTypes( 1130 Parse *pParse, /* Parser context */ 1131 SrcList *pTabList, /* List of tables */ 1132 ExprList *pEList /* Expressions defining the result set */ 1133 ){ 1134 #ifndef SQLITE_OMIT_DECLTYPE 1135 Vdbe *v = pParse->pVdbe; 1136 int i; 1137 NameContext sNC; 1138 sNC.pSrcList = pTabList; 1139 sNC.pParse = pParse; 1140 for(i=0; i<pEList->nExpr; i++){ 1141 Expr *p = pEList->a[i].pExpr; 1142 const char *zType; 1143 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1144 const char *zOrigDb = 0; 1145 const char *zOrigTab = 0; 1146 const char *zOrigCol = 0; 1147 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1148 1149 /* The vdbe must make its own copy of the column-type and other 1150 ** column specific strings, in case the schema is reset before this 1151 ** virtual machine is deleted. 1152 */ 1153 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1154 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1155 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1156 #else 1157 zType = columnType(&sNC, p, 0, 0, 0); 1158 #endif 1159 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1160 } 1161 #endif /* SQLITE_OMIT_DECLTYPE */ 1162 } 1163 1164 /* 1165 ** Generate code that will tell the VDBE the names of columns 1166 ** in the result set. This information is used to provide the 1167 ** azCol[] values in the callback. 1168 */ 1169 static void generateColumnNames( 1170 Parse *pParse, /* Parser context */ 1171 SrcList *pTabList, /* List of tables */ 1172 ExprList *pEList /* Expressions defining the result set */ 1173 ){ 1174 Vdbe *v = pParse->pVdbe; 1175 int i, j; 1176 sqlite3 *db = pParse->db; 1177 int fullNames, shortNames; 1178 1179 #ifndef SQLITE_OMIT_EXPLAIN 1180 /* If this is an EXPLAIN, skip this step */ 1181 if( pParse->explain ){ 1182 return; 1183 } 1184 #endif 1185 1186 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1187 pParse->colNamesSet = 1; 1188 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1189 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1190 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1191 for(i=0; i<pEList->nExpr; i++){ 1192 Expr *p; 1193 p = pEList->a[i].pExpr; 1194 if( NEVER(p==0) ) continue; 1195 if( pEList->a[i].zName ){ 1196 char *zName = pEList->a[i].zName; 1197 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1198 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1199 Table *pTab; 1200 char *zCol; 1201 int iCol = p->iColumn; 1202 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1203 if( pTabList->a[j].iCursor==p->iTable ) break; 1204 } 1205 assert( j<pTabList->nSrc ); 1206 pTab = pTabList->a[j].pTab; 1207 if( iCol<0 ) iCol = pTab->iPKey; 1208 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1209 if( iCol<0 ){ 1210 zCol = "rowid"; 1211 }else{ 1212 zCol = pTab->aCol[iCol].zName; 1213 } 1214 if( !shortNames && !fullNames ){ 1215 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1216 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1217 }else if( fullNames ){ 1218 char *zName = 0; 1219 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1220 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1221 }else{ 1222 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1223 } 1224 }else{ 1225 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1226 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1227 } 1228 } 1229 generateColumnTypes(pParse, pTabList, pEList); 1230 } 1231 1232 /* 1233 ** Given a an expression list (which is really the list of expressions 1234 ** that form the result set of a SELECT statement) compute appropriate 1235 ** column names for a table that would hold the expression list. 1236 ** 1237 ** All column names will be unique. 1238 ** 1239 ** Only the column names are computed. Column.zType, Column.zColl, 1240 ** and other fields of Column are zeroed. 1241 ** 1242 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1243 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1244 */ 1245 static int selectColumnsFromExprList( 1246 Parse *pParse, /* Parsing context */ 1247 ExprList *pEList, /* Expr list from which to derive column names */ 1248 int *pnCol, /* Write the number of columns here */ 1249 Column **paCol /* Write the new column list here */ 1250 ){ 1251 sqlite3 *db = pParse->db; /* Database connection */ 1252 int i, j; /* Loop counters */ 1253 int cnt; /* Index added to make the name unique */ 1254 Column *aCol, *pCol; /* For looping over result columns */ 1255 int nCol; /* Number of columns in the result set */ 1256 Expr *p; /* Expression for a single result column */ 1257 char *zName; /* Column name */ 1258 int nName; /* Size of name in zName[] */ 1259 1260 *pnCol = nCol = pEList->nExpr; 1261 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1262 if( aCol==0 ) return SQLITE_NOMEM; 1263 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1264 /* Get an appropriate name for the column 1265 */ 1266 p = pEList->a[i].pExpr; 1267 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1268 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1269 if( (zName = pEList->a[i].zName)!=0 ){ 1270 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1271 zName = sqlite3DbStrDup(db, zName); 1272 }else{ 1273 Expr *pColExpr = p; /* The expression that is the result column name */ 1274 Table *pTab; /* Table associated with this expression */ 1275 while( pColExpr->op==TK_DOT ){ 1276 pColExpr = pColExpr->pRight; 1277 assert( pColExpr!=0 ); 1278 } 1279 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1280 /* For columns use the column name name */ 1281 int iCol = pColExpr->iColumn; 1282 pTab = pColExpr->pTab; 1283 if( iCol<0 ) iCol = pTab->iPKey; 1284 zName = sqlite3MPrintf(db, "%s", 1285 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1286 }else if( pColExpr->op==TK_ID ){ 1287 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1288 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1289 }else{ 1290 /* Use the original text of the column expression as its name */ 1291 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1292 } 1293 } 1294 if( db->mallocFailed ){ 1295 sqlite3DbFree(db, zName); 1296 break; 1297 } 1298 1299 /* Make sure the column name is unique. If the name is not unique, 1300 ** append a integer to the name so that it becomes unique. 1301 */ 1302 nName = sqlite3Strlen30(zName); 1303 for(j=cnt=0; j<i; j++){ 1304 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1305 char *zNewName; 1306 zName[nName] = 0; 1307 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1308 sqlite3DbFree(db, zName); 1309 zName = zNewName; 1310 j = -1; 1311 if( zName==0 ) break; 1312 } 1313 } 1314 pCol->zName = zName; 1315 } 1316 if( db->mallocFailed ){ 1317 for(j=0; j<i; j++){ 1318 sqlite3DbFree(db, aCol[j].zName); 1319 } 1320 sqlite3DbFree(db, aCol); 1321 *paCol = 0; 1322 *pnCol = 0; 1323 return SQLITE_NOMEM; 1324 } 1325 return SQLITE_OK; 1326 } 1327 1328 /* 1329 ** Add type and collation information to a column list based on 1330 ** a SELECT statement. 1331 ** 1332 ** The column list presumably came from selectColumnNamesFromExprList(). 1333 ** The column list has only names, not types or collations. This 1334 ** routine goes through and adds the types and collations. 1335 ** 1336 ** This routine requires that all identifiers in the SELECT 1337 ** statement be resolved. 1338 */ 1339 static void selectAddColumnTypeAndCollation( 1340 Parse *pParse, /* Parsing contexts */ 1341 int nCol, /* Number of columns */ 1342 Column *aCol, /* List of columns */ 1343 Select *pSelect /* SELECT used to determine types and collations */ 1344 ){ 1345 sqlite3 *db = pParse->db; 1346 NameContext sNC; 1347 Column *pCol; 1348 CollSeq *pColl; 1349 int i; 1350 Expr *p; 1351 struct ExprList_item *a; 1352 1353 assert( pSelect!=0 ); 1354 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1355 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1356 if( db->mallocFailed ) return; 1357 memset(&sNC, 0, sizeof(sNC)); 1358 sNC.pSrcList = pSelect->pSrc; 1359 a = pSelect->pEList->a; 1360 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1361 p = a[i].pExpr; 1362 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1363 pCol->affinity = sqlite3ExprAffinity(p); 1364 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1365 pColl = sqlite3ExprCollSeq(pParse, p); 1366 if( pColl ){ 1367 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1368 } 1369 } 1370 } 1371 1372 /* 1373 ** Given a SELECT statement, generate a Table structure that describes 1374 ** the result set of that SELECT. 1375 */ 1376 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1377 Table *pTab; 1378 sqlite3 *db = pParse->db; 1379 int savedFlags; 1380 1381 savedFlags = db->flags; 1382 db->flags &= ~SQLITE_FullColNames; 1383 db->flags |= SQLITE_ShortColNames; 1384 sqlite3SelectPrep(pParse, pSelect, 0); 1385 if( pParse->nErr ) return 0; 1386 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1387 db->flags = savedFlags; 1388 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1389 if( pTab==0 ){ 1390 return 0; 1391 } 1392 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1393 ** is disabled */ 1394 assert( db->lookaside.bEnabled==0 ); 1395 pTab->nRef = 1; 1396 pTab->zName = 0; 1397 pTab->nRowEst = 1000000; 1398 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1399 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1400 pTab->iPKey = -1; 1401 if( db->mallocFailed ){ 1402 sqlite3DeleteTable(db, pTab); 1403 return 0; 1404 } 1405 return pTab; 1406 } 1407 1408 /* 1409 ** Get a VDBE for the given parser context. Create a new one if necessary. 1410 ** If an error occurs, return NULL and leave a message in pParse. 1411 */ 1412 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1413 Vdbe *v = pParse->pVdbe; 1414 if( v==0 ){ 1415 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1416 #ifndef SQLITE_OMIT_TRACE 1417 if( v ){ 1418 sqlite3VdbeAddOp0(v, OP_Trace); 1419 } 1420 #endif 1421 } 1422 return v; 1423 } 1424 1425 1426 /* 1427 ** Compute the iLimit and iOffset fields of the SELECT based on the 1428 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1429 ** that appear in the original SQL statement after the LIMIT and OFFSET 1430 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1431 ** are the integer memory register numbers for counters used to compute 1432 ** the limit and offset. If there is no limit and/or offset, then 1433 ** iLimit and iOffset are negative. 1434 ** 1435 ** This routine changes the values of iLimit and iOffset only if 1436 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1437 ** iOffset should have been preset to appropriate default values 1438 ** (usually but not always -1) prior to calling this routine. 1439 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1440 ** redefined. The UNION ALL operator uses this property to force 1441 ** the reuse of the same limit and offset registers across multiple 1442 ** SELECT statements. 1443 */ 1444 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1445 Vdbe *v = 0; 1446 int iLimit = 0; 1447 int iOffset; 1448 int addr1, n; 1449 if( p->iLimit ) return; 1450 1451 /* 1452 ** "LIMIT -1" always shows all rows. There is some 1453 ** contraversy about what the correct behavior should be. 1454 ** The current implementation interprets "LIMIT 0" to mean 1455 ** no rows. 1456 */ 1457 sqlite3ExprCacheClear(pParse); 1458 assert( p->pOffset==0 || p->pLimit!=0 ); 1459 if( p->pLimit ){ 1460 p->iLimit = iLimit = ++pParse->nMem; 1461 v = sqlite3GetVdbe(pParse); 1462 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1463 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1464 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1465 VdbeComment((v, "LIMIT counter")); 1466 if( n==0 ){ 1467 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1468 }else{ 1469 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; 1470 } 1471 }else{ 1472 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1473 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1474 VdbeComment((v, "LIMIT counter")); 1475 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1476 } 1477 if( p->pOffset ){ 1478 p->iOffset = iOffset = ++pParse->nMem; 1479 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1480 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1481 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1482 VdbeComment((v, "OFFSET counter")); 1483 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1484 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1485 sqlite3VdbeJumpHere(v, addr1); 1486 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1487 VdbeComment((v, "LIMIT+OFFSET")); 1488 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1489 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1490 sqlite3VdbeJumpHere(v, addr1); 1491 } 1492 } 1493 } 1494 1495 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1496 /* 1497 ** Return the appropriate collating sequence for the iCol-th column of 1498 ** the result set for the compound-select statement "p". Return NULL if 1499 ** the column has no default collating sequence. 1500 ** 1501 ** The collating sequence for the compound select is taken from the 1502 ** left-most term of the select that has a collating sequence. 1503 */ 1504 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1505 CollSeq *pRet; 1506 if( p->pPrior ){ 1507 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1508 }else{ 1509 pRet = 0; 1510 } 1511 assert( iCol>=0 ); 1512 if( pRet==0 && iCol<p->pEList->nExpr ){ 1513 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1514 } 1515 return pRet; 1516 } 1517 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1518 1519 /* Forward reference */ 1520 static int multiSelectOrderBy( 1521 Parse *pParse, /* Parsing context */ 1522 Select *p, /* The right-most of SELECTs to be coded */ 1523 SelectDest *pDest /* What to do with query results */ 1524 ); 1525 1526 1527 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1528 /* 1529 ** This routine is called to process a compound query form from 1530 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1531 ** INTERSECT 1532 ** 1533 ** "p" points to the right-most of the two queries. the query on the 1534 ** left is p->pPrior. The left query could also be a compound query 1535 ** in which case this routine will be called recursively. 1536 ** 1537 ** The results of the total query are to be written into a destination 1538 ** of type eDest with parameter iParm. 1539 ** 1540 ** Example 1: Consider a three-way compound SQL statement. 1541 ** 1542 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1543 ** 1544 ** This statement is parsed up as follows: 1545 ** 1546 ** SELECT c FROM t3 1547 ** | 1548 ** `-----> SELECT b FROM t2 1549 ** | 1550 ** `------> SELECT a FROM t1 1551 ** 1552 ** The arrows in the diagram above represent the Select.pPrior pointer. 1553 ** So if this routine is called with p equal to the t3 query, then 1554 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1555 ** 1556 ** Notice that because of the way SQLite parses compound SELECTs, the 1557 ** individual selects always group from left to right. 1558 */ 1559 static int multiSelect( 1560 Parse *pParse, /* Parsing context */ 1561 Select *p, /* The right-most of SELECTs to be coded */ 1562 SelectDest *pDest /* What to do with query results */ 1563 ){ 1564 int rc = SQLITE_OK; /* Success code from a subroutine */ 1565 Select *pPrior; /* Another SELECT immediately to our left */ 1566 Vdbe *v; /* Generate code to this VDBE */ 1567 SelectDest dest; /* Alternative data destination */ 1568 Select *pDelete = 0; /* Chain of simple selects to delete */ 1569 sqlite3 *db; /* Database connection */ 1570 #ifndef SQLITE_OMIT_EXPLAIN 1571 int iSub1; /* EQP id of left-hand query */ 1572 int iSub2; /* EQP id of right-hand query */ 1573 #endif 1574 1575 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1576 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1577 */ 1578 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1579 db = pParse->db; 1580 pPrior = p->pPrior; 1581 assert( pPrior->pRightmost!=pPrior ); 1582 assert( pPrior->pRightmost==p->pRightmost ); 1583 dest = *pDest; 1584 if( pPrior->pOrderBy ){ 1585 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1586 selectOpName(p->op)); 1587 rc = 1; 1588 goto multi_select_end; 1589 } 1590 if( pPrior->pLimit ){ 1591 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1592 selectOpName(p->op)); 1593 rc = 1; 1594 goto multi_select_end; 1595 } 1596 1597 v = sqlite3GetVdbe(pParse); 1598 assert( v!=0 ); /* The VDBE already created by calling function */ 1599 1600 /* Create the destination temporary table if necessary 1601 */ 1602 if( dest.eDest==SRT_EphemTab ){ 1603 assert( p->pEList ); 1604 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1605 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1606 dest.eDest = SRT_Table; 1607 } 1608 1609 /* Make sure all SELECTs in the statement have the same number of elements 1610 ** in their result sets. 1611 */ 1612 assert( p->pEList && pPrior->pEList ); 1613 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1614 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1615 " do not have the same number of result columns", selectOpName(p->op)); 1616 rc = 1; 1617 goto multi_select_end; 1618 } 1619 1620 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1621 */ 1622 if( p->pOrderBy ){ 1623 return multiSelectOrderBy(pParse, p, pDest); 1624 } 1625 1626 /* Generate code for the left and right SELECT statements. 1627 */ 1628 switch( p->op ){ 1629 case TK_ALL: { 1630 int addr = 0; 1631 int nLimit; 1632 assert( !pPrior->pLimit ); 1633 pPrior->pLimit = p->pLimit; 1634 pPrior->pOffset = p->pOffset; 1635 explainSetInteger(iSub1, pParse->iNextSelectId); 1636 rc = sqlite3Select(pParse, pPrior, &dest); 1637 p->pLimit = 0; 1638 p->pOffset = 0; 1639 if( rc ){ 1640 goto multi_select_end; 1641 } 1642 p->pPrior = 0; 1643 p->iLimit = pPrior->iLimit; 1644 p->iOffset = pPrior->iOffset; 1645 if( p->iLimit ){ 1646 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1647 VdbeComment((v, "Jump ahead if LIMIT reached")); 1648 } 1649 explainSetInteger(iSub2, pParse->iNextSelectId); 1650 rc = sqlite3Select(pParse, p, &dest); 1651 testcase( rc!=SQLITE_OK ); 1652 pDelete = p->pPrior; 1653 p->pPrior = pPrior; 1654 p->nSelectRow += pPrior->nSelectRow; 1655 if( pPrior->pLimit 1656 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 1657 && p->nSelectRow > (double)nLimit 1658 ){ 1659 p->nSelectRow = (double)nLimit; 1660 } 1661 if( addr ){ 1662 sqlite3VdbeJumpHere(v, addr); 1663 } 1664 break; 1665 } 1666 case TK_EXCEPT: 1667 case TK_UNION: { 1668 int unionTab; /* Cursor number of the temporary table holding result */ 1669 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1670 int priorOp; /* The SRT_ operation to apply to prior selects */ 1671 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1672 int addr; 1673 SelectDest uniondest; 1674 1675 testcase( p->op==TK_EXCEPT ); 1676 testcase( p->op==TK_UNION ); 1677 priorOp = SRT_Union; 1678 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1679 /* We can reuse a temporary table generated by a SELECT to our 1680 ** right. 1681 */ 1682 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1683 ** of a 3-way or more compound */ 1684 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1685 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1686 unionTab = dest.iParm; 1687 }else{ 1688 /* We will need to create our own temporary table to hold the 1689 ** intermediate results. 1690 */ 1691 unionTab = pParse->nTab++; 1692 assert( p->pOrderBy==0 ); 1693 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1694 assert( p->addrOpenEphm[0] == -1 ); 1695 p->addrOpenEphm[0] = addr; 1696 p->pRightmost->selFlags |= SF_UsesEphemeral; 1697 assert( p->pEList ); 1698 } 1699 1700 /* Code the SELECT statements to our left 1701 */ 1702 assert( !pPrior->pOrderBy ); 1703 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1704 explainSetInteger(iSub1, pParse->iNextSelectId); 1705 rc = sqlite3Select(pParse, pPrior, &uniondest); 1706 if( rc ){ 1707 goto multi_select_end; 1708 } 1709 1710 /* Code the current SELECT statement 1711 */ 1712 if( p->op==TK_EXCEPT ){ 1713 op = SRT_Except; 1714 }else{ 1715 assert( p->op==TK_UNION ); 1716 op = SRT_Union; 1717 } 1718 p->pPrior = 0; 1719 pLimit = p->pLimit; 1720 p->pLimit = 0; 1721 pOffset = p->pOffset; 1722 p->pOffset = 0; 1723 uniondest.eDest = op; 1724 explainSetInteger(iSub2, pParse->iNextSelectId); 1725 rc = sqlite3Select(pParse, p, &uniondest); 1726 testcase( rc!=SQLITE_OK ); 1727 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1728 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1729 sqlite3ExprListDelete(db, p->pOrderBy); 1730 pDelete = p->pPrior; 1731 p->pPrior = pPrior; 1732 p->pOrderBy = 0; 1733 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 1734 sqlite3ExprDelete(db, p->pLimit); 1735 p->pLimit = pLimit; 1736 p->pOffset = pOffset; 1737 p->iLimit = 0; 1738 p->iOffset = 0; 1739 1740 /* Convert the data in the temporary table into whatever form 1741 ** it is that we currently need. 1742 */ 1743 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1744 if( dest.eDest!=priorOp ){ 1745 int iCont, iBreak, iStart; 1746 assert( p->pEList ); 1747 if( dest.eDest==SRT_Output ){ 1748 Select *pFirst = p; 1749 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1750 generateColumnNames(pParse, 0, pFirst->pEList); 1751 } 1752 iBreak = sqlite3VdbeMakeLabel(v); 1753 iCont = sqlite3VdbeMakeLabel(v); 1754 computeLimitRegisters(pParse, p, iBreak); 1755 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1756 iStart = sqlite3VdbeCurrentAddr(v); 1757 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1758 0, -1, &dest, iCont, iBreak); 1759 sqlite3VdbeResolveLabel(v, iCont); 1760 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1761 sqlite3VdbeResolveLabel(v, iBreak); 1762 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1763 } 1764 break; 1765 } 1766 default: assert( p->op==TK_INTERSECT ); { 1767 int tab1, tab2; 1768 int iCont, iBreak, iStart; 1769 Expr *pLimit, *pOffset; 1770 int addr; 1771 SelectDest intersectdest; 1772 int r1; 1773 1774 /* INTERSECT is different from the others since it requires 1775 ** two temporary tables. Hence it has its own case. Begin 1776 ** by allocating the tables we will need. 1777 */ 1778 tab1 = pParse->nTab++; 1779 tab2 = pParse->nTab++; 1780 assert( p->pOrderBy==0 ); 1781 1782 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1783 assert( p->addrOpenEphm[0] == -1 ); 1784 p->addrOpenEphm[0] = addr; 1785 p->pRightmost->selFlags |= SF_UsesEphemeral; 1786 assert( p->pEList ); 1787 1788 /* Code the SELECTs to our left into temporary table "tab1". 1789 */ 1790 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1791 explainSetInteger(iSub1, pParse->iNextSelectId); 1792 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1793 if( rc ){ 1794 goto multi_select_end; 1795 } 1796 1797 /* Code the current SELECT into temporary table "tab2" 1798 */ 1799 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1800 assert( p->addrOpenEphm[1] == -1 ); 1801 p->addrOpenEphm[1] = addr; 1802 p->pPrior = 0; 1803 pLimit = p->pLimit; 1804 p->pLimit = 0; 1805 pOffset = p->pOffset; 1806 p->pOffset = 0; 1807 intersectdest.iParm = tab2; 1808 explainSetInteger(iSub2, pParse->iNextSelectId); 1809 rc = sqlite3Select(pParse, p, &intersectdest); 1810 testcase( rc!=SQLITE_OK ); 1811 pDelete = p->pPrior; 1812 p->pPrior = pPrior; 1813 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 1814 sqlite3ExprDelete(db, p->pLimit); 1815 p->pLimit = pLimit; 1816 p->pOffset = pOffset; 1817 1818 /* Generate code to take the intersection of the two temporary 1819 ** tables. 1820 */ 1821 assert( p->pEList ); 1822 if( dest.eDest==SRT_Output ){ 1823 Select *pFirst = p; 1824 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1825 generateColumnNames(pParse, 0, pFirst->pEList); 1826 } 1827 iBreak = sqlite3VdbeMakeLabel(v); 1828 iCont = sqlite3VdbeMakeLabel(v); 1829 computeLimitRegisters(pParse, p, iBreak); 1830 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1831 r1 = sqlite3GetTempReg(pParse); 1832 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1833 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1834 sqlite3ReleaseTempReg(pParse, r1); 1835 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1836 0, -1, &dest, iCont, iBreak); 1837 sqlite3VdbeResolveLabel(v, iCont); 1838 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1839 sqlite3VdbeResolveLabel(v, iBreak); 1840 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1841 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1842 break; 1843 } 1844 } 1845 1846 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 1847 1848 /* Compute collating sequences used by 1849 ** temporary tables needed to implement the compound select. 1850 ** Attach the KeyInfo structure to all temporary tables. 1851 ** 1852 ** This section is run by the right-most SELECT statement only. 1853 ** SELECT statements to the left always skip this part. The right-most 1854 ** SELECT might also skip this part if it has no ORDER BY clause and 1855 ** no temp tables are required. 1856 */ 1857 if( p->selFlags & SF_UsesEphemeral ){ 1858 int i; /* Loop counter */ 1859 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1860 Select *pLoop; /* For looping through SELECT statements */ 1861 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1862 int nCol; /* Number of columns in result set */ 1863 1864 assert( p->pRightmost==p ); 1865 nCol = p->pEList->nExpr; 1866 pKeyInfo = sqlite3DbMallocZero(db, 1867 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1868 if( !pKeyInfo ){ 1869 rc = SQLITE_NOMEM; 1870 goto multi_select_end; 1871 } 1872 1873 pKeyInfo->enc = ENC(db); 1874 pKeyInfo->nField = (u16)nCol; 1875 1876 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1877 *apColl = multiSelectCollSeq(pParse, p, i); 1878 if( 0==*apColl ){ 1879 *apColl = db->pDfltColl; 1880 } 1881 } 1882 1883 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1884 for(i=0; i<2; i++){ 1885 int addr = pLoop->addrOpenEphm[i]; 1886 if( addr<0 ){ 1887 /* If [0] is unused then [1] is also unused. So we can 1888 ** always safely abort as soon as the first unused slot is found */ 1889 assert( pLoop->addrOpenEphm[1]<0 ); 1890 break; 1891 } 1892 sqlite3VdbeChangeP2(v, addr, nCol); 1893 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1894 pLoop->addrOpenEphm[i] = -1; 1895 } 1896 } 1897 sqlite3DbFree(db, pKeyInfo); 1898 } 1899 1900 multi_select_end: 1901 pDest->iMem = dest.iMem; 1902 pDest->nMem = dest.nMem; 1903 sqlite3SelectDelete(db, pDelete); 1904 return rc; 1905 } 1906 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1907 1908 /* 1909 ** Code an output subroutine for a coroutine implementation of a 1910 ** SELECT statment. 1911 ** 1912 ** The data to be output is contained in pIn->iMem. There are 1913 ** pIn->nMem columns to be output. pDest is where the output should 1914 ** be sent. 1915 ** 1916 ** regReturn is the number of the register holding the subroutine 1917 ** return address. 1918 ** 1919 ** If regPrev>0 then it is the first register in a vector that 1920 ** records the previous output. mem[regPrev] is a flag that is false 1921 ** if there has been no previous output. If regPrev>0 then code is 1922 ** generated to suppress duplicates. pKeyInfo is used for comparing 1923 ** keys. 1924 ** 1925 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1926 ** iBreak. 1927 */ 1928 static int generateOutputSubroutine( 1929 Parse *pParse, /* Parsing context */ 1930 Select *p, /* The SELECT statement */ 1931 SelectDest *pIn, /* Coroutine supplying data */ 1932 SelectDest *pDest, /* Where to send the data */ 1933 int regReturn, /* The return address register */ 1934 int regPrev, /* Previous result register. No uniqueness if 0 */ 1935 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1936 int p4type, /* The p4 type for pKeyInfo */ 1937 int iBreak /* Jump here if we hit the LIMIT */ 1938 ){ 1939 Vdbe *v = pParse->pVdbe; 1940 int iContinue; 1941 int addr; 1942 1943 addr = sqlite3VdbeCurrentAddr(v); 1944 iContinue = sqlite3VdbeMakeLabel(v); 1945 1946 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1947 */ 1948 if( regPrev ){ 1949 int j1, j2; 1950 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1951 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1952 (char*)pKeyInfo, p4type); 1953 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1954 sqlite3VdbeJumpHere(v, j1); 1955 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1956 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1957 } 1958 if( pParse->db->mallocFailed ) return 0; 1959 1960 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1961 */ 1962 codeOffset(v, p, iContinue); 1963 1964 switch( pDest->eDest ){ 1965 /* Store the result as data using a unique key. 1966 */ 1967 case SRT_Table: 1968 case SRT_EphemTab: { 1969 int r1 = sqlite3GetTempReg(pParse); 1970 int r2 = sqlite3GetTempReg(pParse); 1971 testcase( pDest->eDest==SRT_Table ); 1972 testcase( pDest->eDest==SRT_EphemTab ); 1973 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1974 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1975 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1976 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1977 sqlite3ReleaseTempReg(pParse, r2); 1978 sqlite3ReleaseTempReg(pParse, r1); 1979 break; 1980 } 1981 1982 #ifndef SQLITE_OMIT_SUBQUERY 1983 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1984 ** then there should be a single item on the stack. Write this 1985 ** item into the set table with bogus data. 1986 */ 1987 case SRT_Set: { 1988 int r1; 1989 assert( pIn->nMem==1 ); 1990 p->affinity = 1991 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1992 r1 = sqlite3GetTempReg(pParse); 1993 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1994 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1995 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1996 sqlite3ReleaseTempReg(pParse, r1); 1997 break; 1998 } 1999 2000 #if 0 /* Never occurs on an ORDER BY query */ 2001 /* If any row exist in the result set, record that fact and abort. 2002 */ 2003 case SRT_Exists: { 2004 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 2005 /* The LIMIT clause will terminate the loop for us */ 2006 break; 2007 } 2008 #endif 2009 2010 /* If this is a scalar select that is part of an expression, then 2011 ** store the results in the appropriate memory cell and break out 2012 ** of the scan loop. 2013 */ 2014 case SRT_Mem: { 2015 assert( pIn->nMem==1 ); 2016 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 2017 /* The LIMIT clause will jump out of the loop for us */ 2018 break; 2019 } 2020 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2021 2022 /* The results are stored in a sequence of registers 2023 ** starting at pDest->iMem. Then the co-routine yields. 2024 */ 2025 case SRT_Coroutine: { 2026 if( pDest->iMem==0 ){ 2027 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 2028 pDest->nMem = pIn->nMem; 2029 } 2030 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 2031 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 2032 break; 2033 } 2034 2035 /* If none of the above, then the result destination must be 2036 ** SRT_Output. This routine is never called with any other 2037 ** destination other than the ones handled above or SRT_Output. 2038 ** 2039 ** For SRT_Output, results are stored in a sequence of registers. 2040 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2041 ** return the next row of result. 2042 */ 2043 default: { 2044 assert( pDest->eDest==SRT_Output ); 2045 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 2046 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 2047 break; 2048 } 2049 } 2050 2051 /* Jump to the end of the loop if the LIMIT is reached. 2052 */ 2053 if( p->iLimit ){ 2054 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2055 } 2056 2057 /* Generate the subroutine return 2058 */ 2059 sqlite3VdbeResolveLabel(v, iContinue); 2060 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2061 2062 return addr; 2063 } 2064 2065 /* 2066 ** Alternative compound select code generator for cases when there 2067 ** is an ORDER BY clause. 2068 ** 2069 ** We assume a query of the following form: 2070 ** 2071 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2072 ** 2073 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2074 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2075 ** co-routines. Then run the co-routines in parallel and merge the results 2076 ** into the output. In addition to the two coroutines (called selectA and 2077 ** selectB) there are 7 subroutines: 2078 ** 2079 ** outA: Move the output of the selectA coroutine into the output 2080 ** of the compound query. 2081 ** 2082 ** outB: Move the output of the selectB coroutine into the output 2083 ** of the compound query. (Only generated for UNION and 2084 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2085 ** appears only in B.) 2086 ** 2087 ** AltB: Called when there is data from both coroutines and A<B. 2088 ** 2089 ** AeqB: Called when there is data from both coroutines and A==B. 2090 ** 2091 ** AgtB: Called when there is data from both coroutines and A>B. 2092 ** 2093 ** EofA: Called when data is exhausted from selectA. 2094 ** 2095 ** EofB: Called when data is exhausted from selectB. 2096 ** 2097 ** The implementation of the latter five subroutines depend on which 2098 ** <operator> is used: 2099 ** 2100 ** 2101 ** UNION ALL UNION EXCEPT INTERSECT 2102 ** ------------- ----------------- -------------- ----------------- 2103 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2104 ** 2105 ** AeqB: outA, nextA nextA nextA outA, nextA 2106 ** 2107 ** AgtB: outB, nextB outB, nextB nextB nextB 2108 ** 2109 ** EofA: outB, nextB outB, nextB halt halt 2110 ** 2111 ** EofB: outA, nextA outA, nextA outA, nextA halt 2112 ** 2113 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2114 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2115 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2116 ** following nextX causes a jump to the end of the select processing. 2117 ** 2118 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2119 ** within the output subroutine. The regPrev register set holds the previously 2120 ** output value. A comparison is made against this value and the output 2121 ** is skipped if the next results would be the same as the previous. 2122 ** 2123 ** The implementation plan is to implement the two coroutines and seven 2124 ** subroutines first, then put the control logic at the bottom. Like this: 2125 ** 2126 ** goto Init 2127 ** coA: coroutine for left query (A) 2128 ** coB: coroutine for right query (B) 2129 ** outA: output one row of A 2130 ** outB: output one row of B (UNION and UNION ALL only) 2131 ** EofA: ... 2132 ** EofB: ... 2133 ** AltB: ... 2134 ** AeqB: ... 2135 ** AgtB: ... 2136 ** Init: initialize coroutine registers 2137 ** yield coA 2138 ** if eof(A) goto EofA 2139 ** yield coB 2140 ** if eof(B) goto EofB 2141 ** Cmpr: Compare A, B 2142 ** Jump AltB, AeqB, AgtB 2143 ** End: ... 2144 ** 2145 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2146 ** actually called using Gosub and they do not Return. EofA and EofB loop 2147 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2148 ** and AgtB jump to either L2 or to one of EofA or EofB. 2149 */ 2150 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2151 static int multiSelectOrderBy( 2152 Parse *pParse, /* Parsing context */ 2153 Select *p, /* The right-most of SELECTs to be coded */ 2154 SelectDest *pDest /* What to do with query results */ 2155 ){ 2156 int i, j; /* Loop counters */ 2157 Select *pPrior; /* Another SELECT immediately to our left */ 2158 Vdbe *v; /* Generate code to this VDBE */ 2159 SelectDest destA; /* Destination for coroutine A */ 2160 SelectDest destB; /* Destination for coroutine B */ 2161 int regAddrA; /* Address register for select-A coroutine */ 2162 int regEofA; /* Flag to indicate when select-A is complete */ 2163 int regAddrB; /* Address register for select-B coroutine */ 2164 int regEofB; /* Flag to indicate when select-B is complete */ 2165 int addrSelectA; /* Address of the select-A coroutine */ 2166 int addrSelectB; /* Address of the select-B coroutine */ 2167 int regOutA; /* Address register for the output-A subroutine */ 2168 int regOutB; /* Address register for the output-B subroutine */ 2169 int addrOutA; /* Address of the output-A subroutine */ 2170 int addrOutB = 0; /* Address of the output-B subroutine */ 2171 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2172 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2173 int addrAltB; /* Address of the A<B subroutine */ 2174 int addrAeqB; /* Address of the A==B subroutine */ 2175 int addrAgtB; /* Address of the A>B subroutine */ 2176 int regLimitA; /* Limit register for select-A */ 2177 int regLimitB; /* Limit register for select-A */ 2178 int regPrev; /* A range of registers to hold previous output */ 2179 int savedLimit; /* Saved value of p->iLimit */ 2180 int savedOffset; /* Saved value of p->iOffset */ 2181 int labelCmpr; /* Label for the start of the merge algorithm */ 2182 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2183 int j1; /* Jump instructions that get retargetted */ 2184 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2185 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2186 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2187 sqlite3 *db; /* Database connection */ 2188 ExprList *pOrderBy; /* The ORDER BY clause */ 2189 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2190 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2191 #ifndef SQLITE_OMIT_EXPLAIN 2192 int iSub1; /* EQP id of left-hand query */ 2193 int iSub2; /* EQP id of right-hand query */ 2194 #endif 2195 2196 assert( p->pOrderBy!=0 ); 2197 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2198 db = pParse->db; 2199 v = pParse->pVdbe; 2200 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2201 labelEnd = sqlite3VdbeMakeLabel(v); 2202 labelCmpr = sqlite3VdbeMakeLabel(v); 2203 2204 2205 /* Patch up the ORDER BY clause 2206 */ 2207 op = p->op; 2208 pPrior = p->pPrior; 2209 assert( pPrior->pOrderBy==0 ); 2210 pOrderBy = p->pOrderBy; 2211 assert( pOrderBy ); 2212 nOrderBy = pOrderBy->nExpr; 2213 2214 /* For operators other than UNION ALL we have to make sure that 2215 ** the ORDER BY clause covers every term of the result set. Add 2216 ** terms to the ORDER BY clause as necessary. 2217 */ 2218 if( op!=TK_ALL ){ 2219 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2220 struct ExprList_item *pItem; 2221 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2222 assert( pItem->iOrderByCol>0 ); 2223 if( pItem->iOrderByCol==i ) break; 2224 } 2225 if( j==nOrderBy ){ 2226 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2227 if( pNew==0 ) return SQLITE_NOMEM; 2228 pNew->flags |= EP_IntValue; 2229 pNew->u.iValue = i; 2230 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2231 pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i; 2232 } 2233 } 2234 } 2235 2236 /* Compute the comparison permutation and keyinfo that is used with 2237 ** the permutation used to determine if the next 2238 ** row of results comes from selectA or selectB. Also add explicit 2239 ** collations to the ORDER BY clause terms so that when the subqueries 2240 ** to the right and the left are evaluated, they use the correct 2241 ** collation. 2242 */ 2243 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2244 if( aPermute ){ 2245 struct ExprList_item *pItem; 2246 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2247 assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr ); 2248 aPermute[i] = pItem->iOrderByCol - 1; 2249 } 2250 pKeyMerge = 2251 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2252 if( pKeyMerge ){ 2253 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2254 pKeyMerge->nField = (u16)nOrderBy; 2255 pKeyMerge->enc = ENC(db); 2256 for(i=0; i<nOrderBy; i++){ 2257 CollSeq *pColl; 2258 Expr *pTerm = pOrderBy->a[i].pExpr; 2259 if( pTerm->flags & EP_ExpCollate ){ 2260 pColl = pTerm->pColl; 2261 }else{ 2262 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2263 pTerm->flags |= EP_ExpCollate; 2264 pTerm->pColl = pColl; 2265 } 2266 pKeyMerge->aColl[i] = pColl; 2267 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2268 } 2269 } 2270 }else{ 2271 pKeyMerge = 0; 2272 } 2273 2274 /* Reattach the ORDER BY clause to the query. 2275 */ 2276 p->pOrderBy = pOrderBy; 2277 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2278 2279 /* Allocate a range of temporary registers and the KeyInfo needed 2280 ** for the logic that removes duplicate result rows when the 2281 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2282 */ 2283 if( op==TK_ALL ){ 2284 regPrev = 0; 2285 }else{ 2286 int nExpr = p->pEList->nExpr; 2287 assert( nOrderBy>=nExpr || db->mallocFailed ); 2288 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2289 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2290 pKeyDup = sqlite3DbMallocZero(db, 2291 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2292 if( pKeyDup ){ 2293 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2294 pKeyDup->nField = (u16)nExpr; 2295 pKeyDup->enc = ENC(db); 2296 for(i=0; i<nExpr; i++){ 2297 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2298 pKeyDup->aSortOrder[i] = 0; 2299 } 2300 } 2301 } 2302 2303 /* Separate the left and the right query from one another 2304 */ 2305 p->pPrior = 0; 2306 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2307 if( pPrior->pPrior==0 ){ 2308 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2309 } 2310 2311 /* Compute the limit registers */ 2312 computeLimitRegisters(pParse, p, labelEnd); 2313 if( p->iLimit && op==TK_ALL ){ 2314 regLimitA = ++pParse->nMem; 2315 regLimitB = ++pParse->nMem; 2316 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2317 regLimitA); 2318 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2319 }else{ 2320 regLimitA = regLimitB = 0; 2321 } 2322 sqlite3ExprDelete(db, p->pLimit); 2323 p->pLimit = 0; 2324 sqlite3ExprDelete(db, p->pOffset); 2325 p->pOffset = 0; 2326 2327 regAddrA = ++pParse->nMem; 2328 regEofA = ++pParse->nMem; 2329 regAddrB = ++pParse->nMem; 2330 regEofB = ++pParse->nMem; 2331 regOutA = ++pParse->nMem; 2332 regOutB = ++pParse->nMem; 2333 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2334 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2335 2336 /* Jump past the various subroutines and coroutines to the main 2337 ** merge loop 2338 */ 2339 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2340 addrSelectA = sqlite3VdbeCurrentAddr(v); 2341 2342 2343 /* Generate a coroutine to evaluate the SELECT statement to the 2344 ** left of the compound operator - the "A" select. 2345 */ 2346 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2347 pPrior->iLimit = regLimitA; 2348 explainSetInteger(iSub1, pParse->iNextSelectId); 2349 sqlite3Select(pParse, pPrior, &destA); 2350 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2351 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2352 VdbeNoopComment((v, "End coroutine for left SELECT")); 2353 2354 /* Generate a coroutine to evaluate the SELECT statement on 2355 ** the right - the "B" select 2356 */ 2357 addrSelectB = sqlite3VdbeCurrentAddr(v); 2358 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2359 savedLimit = p->iLimit; 2360 savedOffset = p->iOffset; 2361 p->iLimit = regLimitB; 2362 p->iOffset = 0; 2363 explainSetInteger(iSub2, pParse->iNextSelectId); 2364 sqlite3Select(pParse, p, &destB); 2365 p->iLimit = savedLimit; 2366 p->iOffset = savedOffset; 2367 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2368 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2369 VdbeNoopComment((v, "End coroutine for right SELECT")); 2370 2371 /* Generate a subroutine that outputs the current row of the A 2372 ** select as the next output row of the compound select. 2373 */ 2374 VdbeNoopComment((v, "Output routine for A")); 2375 addrOutA = generateOutputSubroutine(pParse, 2376 p, &destA, pDest, regOutA, 2377 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2378 2379 /* Generate a subroutine that outputs the current row of the B 2380 ** select as the next output row of the compound select. 2381 */ 2382 if( op==TK_ALL || op==TK_UNION ){ 2383 VdbeNoopComment((v, "Output routine for B")); 2384 addrOutB = generateOutputSubroutine(pParse, 2385 p, &destB, pDest, regOutB, 2386 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2387 } 2388 2389 /* Generate a subroutine to run when the results from select A 2390 ** are exhausted and only data in select B remains. 2391 */ 2392 VdbeNoopComment((v, "eof-A subroutine")); 2393 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2394 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2395 }else{ 2396 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2397 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2398 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2399 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2400 p->nSelectRow += pPrior->nSelectRow; 2401 } 2402 2403 /* Generate a subroutine to run when the results from select B 2404 ** are exhausted and only data in select A remains. 2405 */ 2406 if( op==TK_INTERSECT ){ 2407 addrEofB = addrEofA; 2408 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2409 }else{ 2410 VdbeNoopComment((v, "eof-B subroutine")); 2411 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2412 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2413 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2414 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2415 } 2416 2417 /* Generate code to handle the case of A<B 2418 */ 2419 VdbeNoopComment((v, "A-lt-B subroutine")); 2420 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2421 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2422 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2423 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2424 2425 /* Generate code to handle the case of A==B 2426 */ 2427 if( op==TK_ALL ){ 2428 addrAeqB = addrAltB; 2429 }else if( op==TK_INTERSECT ){ 2430 addrAeqB = addrAltB; 2431 addrAltB++; 2432 }else{ 2433 VdbeNoopComment((v, "A-eq-B subroutine")); 2434 addrAeqB = 2435 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2436 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2437 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2438 } 2439 2440 /* Generate code to handle the case of A>B 2441 */ 2442 VdbeNoopComment((v, "A-gt-B subroutine")); 2443 addrAgtB = sqlite3VdbeCurrentAddr(v); 2444 if( op==TK_ALL || op==TK_UNION ){ 2445 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2446 } 2447 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2448 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2449 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2450 2451 /* This code runs once to initialize everything. 2452 */ 2453 sqlite3VdbeJumpHere(v, j1); 2454 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2455 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2456 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2457 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2458 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2459 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2460 2461 /* Implement the main merge loop 2462 */ 2463 sqlite3VdbeResolveLabel(v, labelCmpr); 2464 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2465 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2466 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2467 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2468 2469 /* Release temporary registers 2470 */ 2471 if( regPrev ){ 2472 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2473 } 2474 2475 /* Jump to the this point in order to terminate the query. 2476 */ 2477 sqlite3VdbeResolveLabel(v, labelEnd); 2478 2479 /* Set the number of output columns 2480 */ 2481 if( pDest->eDest==SRT_Output ){ 2482 Select *pFirst = pPrior; 2483 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2484 generateColumnNames(pParse, 0, pFirst->pEList); 2485 } 2486 2487 /* Reassembly the compound query so that it will be freed correctly 2488 ** by the calling function */ 2489 if( p->pPrior ){ 2490 sqlite3SelectDelete(db, p->pPrior); 2491 } 2492 p->pPrior = pPrior; 2493 2494 /*** TBD: Insert subroutine calls to close cursors on incomplete 2495 **** subqueries ****/ 2496 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2497 return SQLITE_OK; 2498 } 2499 #endif 2500 2501 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2502 /* Forward Declarations */ 2503 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2504 static void substSelect(sqlite3*, Select *, int, ExprList *); 2505 2506 /* 2507 ** Scan through the expression pExpr. Replace every reference to 2508 ** a column in table number iTable with a copy of the iColumn-th 2509 ** entry in pEList. (But leave references to the ROWID column 2510 ** unchanged.) 2511 ** 2512 ** This routine is part of the flattening procedure. A subquery 2513 ** whose result set is defined by pEList appears as entry in the 2514 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2515 ** FORM clause entry is iTable. This routine make the necessary 2516 ** changes to pExpr so that it refers directly to the source table 2517 ** of the subquery rather the result set of the subquery. 2518 */ 2519 static Expr *substExpr( 2520 sqlite3 *db, /* Report malloc errors to this connection */ 2521 Expr *pExpr, /* Expr in which substitution occurs */ 2522 int iTable, /* Table to be substituted */ 2523 ExprList *pEList /* Substitute expressions */ 2524 ){ 2525 if( pExpr==0 ) return 0; 2526 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2527 if( pExpr->iColumn<0 ){ 2528 pExpr->op = TK_NULL; 2529 }else{ 2530 Expr *pNew; 2531 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2532 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2533 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2534 if( pNew && pExpr->pColl ){ 2535 pNew->pColl = pExpr->pColl; 2536 } 2537 sqlite3ExprDelete(db, pExpr); 2538 pExpr = pNew; 2539 } 2540 }else{ 2541 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2542 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2543 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2544 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2545 }else{ 2546 substExprList(db, pExpr->x.pList, iTable, pEList); 2547 } 2548 } 2549 return pExpr; 2550 } 2551 static void substExprList( 2552 sqlite3 *db, /* Report malloc errors here */ 2553 ExprList *pList, /* List to scan and in which to make substitutes */ 2554 int iTable, /* Table to be substituted */ 2555 ExprList *pEList /* Substitute values */ 2556 ){ 2557 int i; 2558 if( pList==0 ) return; 2559 for(i=0; i<pList->nExpr; i++){ 2560 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2561 } 2562 } 2563 static void substSelect( 2564 sqlite3 *db, /* Report malloc errors here */ 2565 Select *p, /* SELECT statement in which to make substitutions */ 2566 int iTable, /* Table to be replaced */ 2567 ExprList *pEList /* Substitute values */ 2568 ){ 2569 SrcList *pSrc; 2570 struct SrcList_item *pItem; 2571 int i; 2572 if( !p ) return; 2573 substExprList(db, p->pEList, iTable, pEList); 2574 substExprList(db, p->pGroupBy, iTable, pEList); 2575 substExprList(db, p->pOrderBy, iTable, pEList); 2576 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2577 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2578 substSelect(db, p->pPrior, iTable, pEList); 2579 pSrc = p->pSrc; 2580 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2581 if( ALWAYS(pSrc) ){ 2582 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2583 substSelect(db, pItem->pSelect, iTable, pEList); 2584 } 2585 } 2586 } 2587 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2588 2589 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2590 /* 2591 ** This routine attempts to flatten subqueries as a performance optimization. 2592 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 2593 ** 2594 ** To understand the concept of flattening, consider the following 2595 ** query: 2596 ** 2597 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2598 ** 2599 ** The default way of implementing this query is to execute the 2600 ** subquery first and store the results in a temporary table, then 2601 ** run the outer query on that temporary table. This requires two 2602 ** passes over the data. Furthermore, because the temporary table 2603 ** has no indices, the WHERE clause on the outer query cannot be 2604 ** optimized. 2605 ** 2606 ** This routine attempts to rewrite queries such as the above into 2607 ** a single flat select, like this: 2608 ** 2609 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2610 ** 2611 ** The code generated for this simpification gives the same result 2612 ** but only has to scan the data once. And because indices might 2613 ** exist on the table t1, a complete scan of the data might be 2614 ** avoided. 2615 ** 2616 ** Flattening is only attempted if all of the following are true: 2617 ** 2618 ** (1) The subquery and the outer query do not both use aggregates. 2619 ** 2620 ** (2) The subquery is not an aggregate or the outer query is not a join. 2621 ** 2622 ** (3) The subquery is not the right operand of a left outer join 2623 ** (Originally ticket #306. Strengthened by ticket #3300) 2624 ** 2625 ** (4) The subquery is not DISTINCT. 2626 ** 2627 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 2628 ** sub-queries that were excluded from this optimization. Restriction 2629 ** (4) has since been expanded to exclude all DISTINCT subqueries. 2630 ** 2631 ** (6) The subquery does not use aggregates or the outer query is not 2632 ** DISTINCT. 2633 ** 2634 ** (7) The subquery has a FROM clause. TODO: For subqueries without 2635 ** A FROM clause, consider adding a FROM close with the special 2636 ** table sqlite_once that consists of a single row containing a 2637 ** single NULL. 2638 ** 2639 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2640 ** 2641 ** (9) The subquery does not use LIMIT or the outer query does not use 2642 ** aggregates. 2643 ** 2644 ** (10) The subquery does not use aggregates or the outer query does not 2645 ** use LIMIT. 2646 ** 2647 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2648 ** 2649 ** (**) Not implemented. Subsumed into restriction (3). Was previously 2650 ** a separate restriction deriving from ticket #350. 2651 ** 2652 ** (13) The subquery and outer query do not both use LIMIT. 2653 ** 2654 ** (14) The subquery does not use OFFSET. 2655 ** 2656 ** (15) The outer query is not part of a compound select or the 2657 ** subquery does not have a LIMIT clause. 2658 ** (See ticket #2339 and ticket [02a8e81d44]). 2659 ** 2660 ** (16) The outer query is not an aggregate or the subquery does 2661 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2662 ** until we introduced the group_concat() function. 2663 ** 2664 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2665 ** compound clause made up entirely of non-aggregate queries, and 2666 ** the parent query: 2667 ** 2668 ** * is not itself part of a compound select, 2669 ** * is not an aggregate or DISTINCT query, and 2670 ** * is not a join 2671 ** 2672 ** The parent and sub-query may contain WHERE clauses. Subject to 2673 ** rules (11), (13) and (14), they may also contain ORDER BY, 2674 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 2675 ** operator other than UNION ALL because all the other compound 2676 ** operators have an implied DISTINCT which is disallowed by 2677 ** restriction (4). 2678 ** 2679 ** (18) If the sub-query is a compound select, then all terms of the 2680 ** ORDER by clause of the parent must be simple references to 2681 ** columns of the sub-query. 2682 ** 2683 ** (19) The subquery does not use LIMIT or the outer query does not 2684 ** have a WHERE clause. 2685 ** 2686 ** (20) If the sub-query is a compound select, then it must not use 2687 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2688 ** somewhat by saying that the terms of the ORDER BY clause must 2689 ** appear as unmodified result columns in the outer query. But we 2690 ** have other optimizations in mind to deal with that case. 2691 ** 2692 ** (21) The subquery does not use LIMIT or the outer query is not 2693 ** DISTINCT. (See ticket [752e1646fc]). 2694 ** 2695 ** In this routine, the "p" parameter is a pointer to the outer query. 2696 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2697 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2698 ** 2699 ** If flattening is not attempted, this routine is a no-op and returns 0. 2700 ** If flattening is attempted this routine returns 1. 2701 ** 2702 ** All of the expression analysis must occur on both the outer query and 2703 ** the subquery before this routine runs. 2704 */ 2705 static int flattenSubquery( 2706 Parse *pParse, /* Parsing context */ 2707 Select *p, /* The parent or outer SELECT statement */ 2708 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2709 int isAgg, /* True if outer SELECT uses aggregate functions */ 2710 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2711 ){ 2712 const char *zSavedAuthContext = pParse->zAuthContext; 2713 Select *pParent; 2714 Select *pSub; /* The inner query or "subquery" */ 2715 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2716 SrcList *pSrc; /* The FROM clause of the outer query */ 2717 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2718 ExprList *pList; /* The result set of the outer query */ 2719 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2720 int i; /* Loop counter */ 2721 Expr *pWhere; /* The WHERE clause */ 2722 struct SrcList_item *pSubitem; /* The subquery */ 2723 sqlite3 *db = pParse->db; 2724 2725 /* Check to see if flattening is permitted. Return 0 if not. 2726 */ 2727 assert( p!=0 ); 2728 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2729 if( db->flags & SQLITE_QueryFlattener ) return 0; 2730 pSrc = p->pSrc; 2731 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2732 pSubitem = &pSrc->a[iFrom]; 2733 iParent = pSubitem->iCursor; 2734 pSub = pSubitem->pSelect; 2735 assert( pSub!=0 ); 2736 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2737 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2738 pSubSrc = pSub->pSrc; 2739 assert( pSubSrc ); 2740 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2741 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2742 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2743 ** became arbitrary expressions, we were forced to add restrictions (13) 2744 ** and (14). */ 2745 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2746 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2747 if( p->pRightmost && pSub->pLimit ){ 2748 return 0; /* Restriction (15) */ 2749 } 2750 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2751 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 2752 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 2753 return 0; /* Restrictions (8)(9) */ 2754 } 2755 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2756 return 0; /* Restriction (6) */ 2757 } 2758 if( p->pOrderBy && pSub->pOrderBy ){ 2759 return 0; /* Restriction (11) */ 2760 } 2761 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2762 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2763 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 2764 return 0; /* Restriction (21) */ 2765 } 2766 2767 /* OBSOLETE COMMENT 1: 2768 ** Restriction 3: If the subquery is a join, make sure the subquery is 2769 ** not used as the right operand of an outer join. Examples of why this 2770 ** is not allowed: 2771 ** 2772 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2773 ** 2774 ** If we flatten the above, we would get 2775 ** 2776 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2777 ** 2778 ** which is not at all the same thing. 2779 ** 2780 ** OBSOLETE COMMENT 2: 2781 ** Restriction 12: If the subquery is the right operand of a left outer 2782 ** join, make sure the subquery has no WHERE clause. 2783 ** An examples of why this is not allowed: 2784 ** 2785 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2786 ** 2787 ** If we flatten the above, we would get 2788 ** 2789 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2790 ** 2791 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2792 ** effectively converts the OUTER JOIN into an INNER JOIN. 2793 ** 2794 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2795 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2796 ** is fraught with danger. Best to avoid the whole thing. If the 2797 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2798 */ 2799 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2800 return 0; 2801 } 2802 2803 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2804 ** use only the UNION ALL operator. And none of the simple select queries 2805 ** that make up the compound SELECT are allowed to be aggregate or distinct 2806 ** queries. 2807 */ 2808 if( pSub->pPrior ){ 2809 if( pSub->pOrderBy ){ 2810 return 0; /* Restriction 20 */ 2811 } 2812 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2813 return 0; 2814 } 2815 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2816 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2817 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2818 assert( pSub->pSrc!=0 ); 2819 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2820 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2821 || pSub1->pSrc->nSrc<1 2822 ){ 2823 return 0; 2824 } 2825 testcase( pSub1->pSrc->nSrc>1 ); 2826 } 2827 2828 /* Restriction 18. */ 2829 if( p->pOrderBy ){ 2830 int ii; 2831 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2832 if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0; 2833 } 2834 } 2835 } 2836 2837 /***** If we reach this point, flattening is permitted. *****/ 2838 2839 /* Authorize the subquery */ 2840 pParse->zAuthContext = pSubitem->zName; 2841 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2842 pParse->zAuthContext = zSavedAuthContext; 2843 2844 /* If the sub-query is a compound SELECT statement, then (by restrictions 2845 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2846 ** be of the form: 2847 ** 2848 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2849 ** 2850 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2851 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2852 ** OFFSET clauses and joins them to the left-hand-side of the original 2853 ** using UNION ALL operators. In this case N is the number of simple 2854 ** select statements in the compound sub-query. 2855 ** 2856 ** Example: 2857 ** 2858 ** SELECT a+1 FROM ( 2859 ** SELECT x FROM tab 2860 ** UNION ALL 2861 ** SELECT y FROM tab 2862 ** UNION ALL 2863 ** SELECT abs(z*2) FROM tab2 2864 ** ) WHERE a!=5 ORDER BY 1 2865 ** 2866 ** Transformed into: 2867 ** 2868 ** SELECT x+1 FROM tab WHERE x+1!=5 2869 ** UNION ALL 2870 ** SELECT y+1 FROM tab WHERE y+1!=5 2871 ** UNION ALL 2872 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2873 ** ORDER BY 1 2874 ** 2875 ** We call this the "compound-subquery flattening". 2876 */ 2877 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2878 Select *pNew; 2879 ExprList *pOrderBy = p->pOrderBy; 2880 Expr *pLimit = p->pLimit; 2881 Select *pPrior = p->pPrior; 2882 p->pOrderBy = 0; 2883 p->pSrc = 0; 2884 p->pPrior = 0; 2885 p->pLimit = 0; 2886 pNew = sqlite3SelectDup(db, p, 0); 2887 p->pLimit = pLimit; 2888 p->pOrderBy = pOrderBy; 2889 p->pSrc = pSrc; 2890 p->op = TK_ALL; 2891 p->pRightmost = 0; 2892 if( pNew==0 ){ 2893 pNew = pPrior; 2894 }else{ 2895 pNew->pPrior = pPrior; 2896 pNew->pRightmost = 0; 2897 } 2898 p->pPrior = pNew; 2899 if( db->mallocFailed ) return 1; 2900 } 2901 2902 /* Begin flattening the iFrom-th entry of the FROM clause 2903 ** in the outer query. 2904 */ 2905 pSub = pSub1 = pSubitem->pSelect; 2906 2907 /* Delete the transient table structure associated with the 2908 ** subquery 2909 */ 2910 sqlite3DbFree(db, pSubitem->zDatabase); 2911 sqlite3DbFree(db, pSubitem->zName); 2912 sqlite3DbFree(db, pSubitem->zAlias); 2913 pSubitem->zDatabase = 0; 2914 pSubitem->zName = 0; 2915 pSubitem->zAlias = 0; 2916 pSubitem->pSelect = 0; 2917 2918 /* Defer deleting the Table object associated with the 2919 ** subquery until code generation is 2920 ** complete, since there may still exist Expr.pTab entries that 2921 ** refer to the subquery even after flattening. Ticket #3346. 2922 ** 2923 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2924 */ 2925 if( ALWAYS(pSubitem->pTab!=0) ){ 2926 Table *pTabToDel = pSubitem->pTab; 2927 if( pTabToDel->nRef==1 ){ 2928 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2929 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2930 pToplevel->pZombieTab = pTabToDel; 2931 }else{ 2932 pTabToDel->nRef--; 2933 } 2934 pSubitem->pTab = 0; 2935 } 2936 2937 /* The following loop runs once for each term in a compound-subquery 2938 ** flattening (as described above). If we are doing a different kind 2939 ** of flattening - a flattening other than a compound-subquery flattening - 2940 ** then this loop only runs once. 2941 ** 2942 ** This loop moves all of the FROM elements of the subquery into the 2943 ** the FROM clause of the outer query. Before doing this, remember 2944 ** the cursor number for the original outer query FROM element in 2945 ** iParent. The iParent cursor will never be used. Subsequent code 2946 ** will scan expressions looking for iParent references and replace 2947 ** those references with expressions that resolve to the subquery FROM 2948 ** elements we are now copying in. 2949 */ 2950 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2951 int nSubSrc; 2952 u8 jointype = 0; 2953 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2954 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2955 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2956 2957 if( pSrc ){ 2958 assert( pParent==p ); /* First time through the loop */ 2959 jointype = pSubitem->jointype; 2960 }else{ 2961 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2962 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2963 if( pSrc==0 ){ 2964 assert( db->mallocFailed ); 2965 break; 2966 } 2967 } 2968 2969 /* The subquery uses a single slot of the FROM clause of the outer 2970 ** query. If the subquery has more than one element in its FROM clause, 2971 ** then expand the outer query to make space for it to hold all elements 2972 ** of the subquery. 2973 ** 2974 ** Example: 2975 ** 2976 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2977 ** 2978 ** The outer query has 3 slots in its FROM clause. One slot of the 2979 ** outer query (the middle slot) is used by the subquery. The next 2980 ** block of code will expand the out query to 4 slots. The middle 2981 ** slot is expanded to two slots in order to make space for the 2982 ** two elements in the FROM clause of the subquery. 2983 */ 2984 if( nSubSrc>1 ){ 2985 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2986 if( db->mallocFailed ){ 2987 break; 2988 } 2989 } 2990 2991 /* Transfer the FROM clause terms from the subquery into the 2992 ** outer query. 2993 */ 2994 for(i=0; i<nSubSrc; i++){ 2995 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 2996 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2997 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2998 } 2999 pSrc->a[iFrom].jointype = jointype; 3000 3001 /* Now begin substituting subquery result set expressions for 3002 ** references to the iParent in the outer query. 3003 ** 3004 ** Example: 3005 ** 3006 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3007 ** \ \_____________ subquery __________/ / 3008 ** \_____________________ outer query ______________________________/ 3009 ** 3010 ** We look at every expression in the outer query and every place we see 3011 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3012 */ 3013 pList = pParent->pEList; 3014 for(i=0; i<pList->nExpr; i++){ 3015 if( pList->a[i].zName==0 ){ 3016 const char *zSpan = pList->a[i].zSpan; 3017 if( ALWAYS(zSpan) ){ 3018 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 3019 } 3020 } 3021 } 3022 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3023 if( isAgg ){ 3024 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3025 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3026 } 3027 if( pSub->pOrderBy ){ 3028 assert( pParent->pOrderBy==0 ); 3029 pParent->pOrderBy = pSub->pOrderBy; 3030 pSub->pOrderBy = 0; 3031 }else if( pParent->pOrderBy ){ 3032 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3033 } 3034 if( pSub->pWhere ){ 3035 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3036 }else{ 3037 pWhere = 0; 3038 } 3039 if( subqueryIsAgg ){ 3040 assert( pParent->pHaving==0 ); 3041 pParent->pHaving = pParent->pWhere; 3042 pParent->pWhere = pWhere; 3043 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3044 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3045 sqlite3ExprDup(db, pSub->pHaving, 0)); 3046 assert( pParent->pGroupBy==0 ); 3047 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3048 }else{ 3049 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3050 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3051 } 3052 3053 /* The flattened query is distinct if either the inner or the 3054 ** outer query is distinct. 3055 */ 3056 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3057 3058 /* 3059 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3060 ** 3061 ** One is tempted to try to add a and b to combine the limits. But this 3062 ** does not work if either limit is negative. 3063 */ 3064 if( pSub->pLimit ){ 3065 pParent->pLimit = pSub->pLimit; 3066 pSub->pLimit = 0; 3067 } 3068 } 3069 3070 /* Finially, delete what is left of the subquery and return 3071 ** success. 3072 */ 3073 sqlite3SelectDelete(db, pSub1); 3074 3075 return 1; 3076 } 3077 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3078 3079 /* 3080 ** Analyze the SELECT statement passed as an argument to see if it 3081 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 3082 ** it is, or 0 otherwise. At present, a query is considered to be 3083 ** a min()/max() query if: 3084 ** 3085 ** 1. There is a single object in the FROM clause. 3086 ** 3087 ** 2. There is a single expression in the result set, and it is 3088 ** either min(x) or max(x), where x is a column reference. 3089 */ 3090 static u8 minMaxQuery(Select *p){ 3091 Expr *pExpr; 3092 ExprList *pEList = p->pEList; 3093 3094 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 3095 pExpr = pEList->a[0].pExpr; 3096 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3097 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 3098 pEList = pExpr->x.pList; 3099 if( pEList==0 || pEList->nExpr!=1 ) return 0; 3100 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 3101 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3102 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 3103 return WHERE_ORDERBY_MIN; 3104 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 3105 return WHERE_ORDERBY_MAX; 3106 } 3107 return WHERE_ORDERBY_NORMAL; 3108 } 3109 3110 /* 3111 ** The select statement passed as the first argument is an aggregate query. 3112 ** The second argment is the associated aggregate-info object. This 3113 ** function tests if the SELECT is of the form: 3114 ** 3115 ** SELECT count(*) FROM <tbl> 3116 ** 3117 ** where table is a database table, not a sub-select or view. If the query 3118 ** does match this pattern, then a pointer to the Table object representing 3119 ** <tbl> is returned. Otherwise, 0 is returned. 3120 */ 3121 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3122 Table *pTab; 3123 Expr *pExpr; 3124 3125 assert( !p->pGroupBy ); 3126 3127 if( p->pWhere || p->pEList->nExpr!=1 3128 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3129 ){ 3130 return 0; 3131 } 3132 pTab = p->pSrc->a[0].pTab; 3133 pExpr = p->pEList->a[0].pExpr; 3134 assert( pTab && !pTab->pSelect && pExpr ); 3135 3136 if( IsVirtual(pTab) ) return 0; 3137 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3138 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 3139 if( pExpr->flags&EP_Distinct ) return 0; 3140 3141 return pTab; 3142 } 3143 3144 /* 3145 ** If the source-list item passed as an argument was augmented with an 3146 ** INDEXED BY clause, then try to locate the specified index. If there 3147 ** was such a clause and the named index cannot be found, return 3148 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3149 ** pFrom->pIndex and return SQLITE_OK. 3150 */ 3151 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3152 if( pFrom->pTab && pFrom->zIndex ){ 3153 Table *pTab = pFrom->pTab; 3154 char *zIndex = pFrom->zIndex; 3155 Index *pIdx; 3156 for(pIdx=pTab->pIndex; 3157 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3158 pIdx=pIdx->pNext 3159 ); 3160 if( !pIdx ){ 3161 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3162 pParse->checkSchema = 1; 3163 return SQLITE_ERROR; 3164 } 3165 pFrom->pIndex = pIdx; 3166 } 3167 return SQLITE_OK; 3168 } 3169 3170 /* 3171 ** This routine is a Walker callback for "expanding" a SELECT statement. 3172 ** "Expanding" means to do the following: 3173 ** 3174 ** (1) Make sure VDBE cursor numbers have been assigned to every 3175 ** element of the FROM clause. 3176 ** 3177 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3178 ** defines FROM clause. When views appear in the FROM clause, 3179 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3180 ** that implements the view. A copy is made of the view's SELECT 3181 ** statement so that we can freely modify or delete that statement 3182 ** without worrying about messing up the presistent representation 3183 ** of the view. 3184 ** 3185 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3186 ** on joins and the ON and USING clause of joins. 3187 ** 3188 ** (4) Scan the list of columns in the result set (pEList) looking 3189 ** for instances of the "*" operator or the TABLE.* operator. 3190 ** If found, expand each "*" to be every column in every table 3191 ** and TABLE.* to be every column in TABLE. 3192 ** 3193 */ 3194 static int selectExpander(Walker *pWalker, Select *p){ 3195 Parse *pParse = pWalker->pParse; 3196 int i, j, k; 3197 SrcList *pTabList; 3198 ExprList *pEList; 3199 struct SrcList_item *pFrom; 3200 sqlite3 *db = pParse->db; 3201 3202 if( db->mallocFailed ){ 3203 return WRC_Abort; 3204 } 3205 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3206 return WRC_Prune; 3207 } 3208 p->selFlags |= SF_Expanded; 3209 pTabList = p->pSrc; 3210 pEList = p->pEList; 3211 3212 /* Make sure cursor numbers have been assigned to all entries in 3213 ** the FROM clause of the SELECT statement. 3214 */ 3215 sqlite3SrcListAssignCursors(pParse, pTabList); 3216 3217 /* Look up every table named in the FROM clause of the select. If 3218 ** an entry of the FROM clause is a subquery instead of a table or view, 3219 ** then create a transient table structure to describe the subquery. 3220 */ 3221 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3222 Table *pTab; 3223 if( pFrom->pTab!=0 ){ 3224 /* This statement has already been prepared. There is no need 3225 ** to go further. */ 3226 assert( i==0 ); 3227 return WRC_Prune; 3228 } 3229 if( pFrom->zName==0 ){ 3230 #ifndef SQLITE_OMIT_SUBQUERY 3231 Select *pSel = pFrom->pSelect; 3232 /* A sub-query in the FROM clause of a SELECT */ 3233 assert( pSel!=0 ); 3234 assert( pFrom->pTab==0 ); 3235 sqlite3WalkSelect(pWalker, pSel); 3236 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3237 if( pTab==0 ) return WRC_Abort; 3238 pTab->nRef = 1; 3239 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3240 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3241 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3242 pTab->iPKey = -1; 3243 pTab->nRowEst = 1000000; 3244 pTab->tabFlags |= TF_Ephemeral; 3245 #endif 3246 }else{ 3247 /* An ordinary table or view name in the FROM clause */ 3248 assert( pFrom->pTab==0 ); 3249 pFrom->pTab = pTab = 3250 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3251 if( pTab==0 ) return WRC_Abort; 3252 pTab->nRef++; 3253 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3254 if( pTab->pSelect || IsVirtual(pTab) ){ 3255 /* We reach here if the named table is a really a view */ 3256 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3257 assert( pFrom->pSelect==0 ); 3258 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3259 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3260 } 3261 #endif 3262 } 3263 3264 /* Locate the index named by the INDEXED BY clause, if any. */ 3265 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3266 return WRC_Abort; 3267 } 3268 } 3269 3270 /* Process NATURAL keywords, and ON and USING clauses of joins. 3271 */ 3272 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3273 return WRC_Abort; 3274 } 3275 3276 /* For every "*" that occurs in the column list, insert the names of 3277 ** all columns in all tables. And for every TABLE.* insert the names 3278 ** of all columns in TABLE. The parser inserted a special expression 3279 ** with the TK_ALL operator for each "*" that it found in the column list. 3280 ** The following code just has to locate the TK_ALL expressions and expand 3281 ** each one to the list of all columns in all tables. 3282 ** 3283 ** The first loop just checks to see if there are any "*" operators 3284 ** that need expanding. 3285 */ 3286 for(k=0; k<pEList->nExpr; k++){ 3287 Expr *pE = pEList->a[k].pExpr; 3288 if( pE->op==TK_ALL ) break; 3289 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3290 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3291 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3292 } 3293 if( k<pEList->nExpr ){ 3294 /* 3295 ** If we get here it means the result set contains one or more "*" 3296 ** operators that need to be expanded. Loop through each expression 3297 ** in the result set and expand them one by one. 3298 */ 3299 struct ExprList_item *a = pEList->a; 3300 ExprList *pNew = 0; 3301 int flags = pParse->db->flags; 3302 int longNames = (flags & SQLITE_FullColNames)!=0 3303 && (flags & SQLITE_ShortColNames)==0; 3304 3305 for(k=0; k<pEList->nExpr; k++){ 3306 Expr *pE = a[k].pExpr; 3307 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3308 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3309 /* This particular expression does not need to be expanded. 3310 */ 3311 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3312 if( pNew ){ 3313 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3314 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3315 a[k].zName = 0; 3316 a[k].zSpan = 0; 3317 } 3318 a[k].pExpr = 0; 3319 }else{ 3320 /* This expression is a "*" or a "TABLE.*" and needs to be 3321 ** expanded. */ 3322 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3323 char *zTName; /* text of name of TABLE */ 3324 if( pE->op==TK_DOT ){ 3325 assert( pE->pLeft!=0 ); 3326 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3327 zTName = pE->pLeft->u.zToken; 3328 }else{ 3329 zTName = 0; 3330 } 3331 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3332 Table *pTab = pFrom->pTab; 3333 char *zTabName = pFrom->zAlias; 3334 if( zTabName==0 ){ 3335 zTabName = pTab->zName; 3336 } 3337 if( db->mallocFailed ) break; 3338 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3339 continue; 3340 } 3341 tableSeen = 1; 3342 for(j=0; j<pTab->nCol; j++){ 3343 Expr *pExpr, *pRight; 3344 char *zName = pTab->aCol[j].zName; 3345 char *zColname; /* The computed column name */ 3346 char *zToFree; /* Malloced string that needs to be freed */ 3347 Token sColname; /* Computed column name as a token */ 3348 3349 /* If a column is marked as 'hidden' (currently only possible 3350 ** for virtual tables), do not include it in the expanded 3351 ** result-set list. 3352 */ 3353 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3354 assert(IsVirtual(pTab)); 3355 continue; 3356 } 3357 3358 if( i>0 && zTName==0 ){ 3359 if( (pFrom->jointype & JT_NATURAL)!=0 3360 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 3361 ){ 3362 /* In a NATURAL join, omit the join columns from the 3363 ** table to the right of the join */ 3364 continue; 3365 } 3366 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 3367 /* In a join with a USING clause, omit columns in the 3368 ** using clause from the table on the right. */ 3369 continue; 3370 } 3371 } 3372 pRight = sqlite3Expr(db, TK_ID, zName); 3373 zColname = zName; 3374 zToFree = 0; 3375 if( longNames || pTabList->nSrc>1 ){ 3376 Expr *pLeft; 3377 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3378 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3379 if( longNames ){ 3380 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3381 zToFree = zColname; 3382 } 3383 }else{ 3384 pExpr = pRight; 3385 } 3386 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3387 sColname.z = zColname; 3388 sColname.n = sqlite3Strlen30(zColname); 3389 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3390 sqlite3DbFree(db, zToFree); 3391 } 3392 } 3393 if( !tableSeen ){ 3394 if( zTName ){ 3395 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3396 }else{ 3397 sqlite3ErrorMsg(pParse, "no tables specified"); 3398 } 3399 } 3400 } 3401 } 3402 sqlite3ExprListDelete(db, pEList); 3403 p->pEList = pNew; 3404 } 3405 #if SQLITE_MAX_COLUMN 3406 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3407 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3408 } 3409 #endif 3410 return WRC_Continue; 3411 } 3412 3413 /* 3414 ** No-op routine for the parse-tree walker. 3415 ** 3416 ** When this routine is the Walker.xExprCallback then expression trees 3417 ** are walked without any actions being taken at each node. Presumably, 3418 ** when this routine is used for Walker.xExprCallback then 3419 ** Walker.xSelectCallback is set to do something useful for every 3420 ** subquery in the parser tree. 3421 */ 3422 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3423 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3424 return WRC_Continue; 3425 } 3426 3427 /* 3428 ** This routine "expands" a SELECT statement and all of its subqueries. 3429 ** For additional information on what it means to "expand" a SELECT 3430 ** statement, see the comment on the selectExpand worker callback above. 3431 ** 3432 ** Expanding a SELECT statement is the first step in processing a 3433 ** SELECT statement. The SELECT statement must be expanded before 3434 ** name resolution is performed. 3435 ** 3436 ** If anything goes wrong, an error message is written into pParse. 3437 ** The calling function can detect the problem by looking at pParse->nErr 3438 ** and/or pParse->db->mallocFailed. 3439 */ 3440 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3441 Walker w; 3442 w.xSelectCallback = selectExpander; 3443 w.xExprCallback = exprWalkNoop; 3444 w.pParse = pParse; 3445 sqlite3WalkSelect(&w, pSelect); 3446 } 3447 3448 3449 #ifndef SQLITE_OMIT_SUBQUERY 3450 /* 3451 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3452 ** interface. 3453 ** 3454 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3455 ** information to the Table structure that represents the result set 3456 ** of that subquery. 3457 ** 3458 ** The Table structure that represents the result set was constructed 3459 ** by selectExpander() but the type and collation information was omitted 3460 ** at that point because identifiers had not yet been resolved. This 3461 ** routine is called after identifier resolution. 3462 */ 3463 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3464 Parse *pParse; 3465 int i; 3466 SrcList *pTabList; 3467 struct SrcList_item *pFrom; 3468 3469 assert( p->selFlags & SF_Resolved ); 3470 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3471 p->selFlags |= SF_HasTypeInfo; 3472 pParse = pWalker->pParse; 3473 pTabList = p->pSrc; 3474 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3475 Table *pTab = pFrom->pTab; 3476 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3477 /* A sub-query in the FROM clause of a SELECT */ 3478 Select *pSel = pFrom->pSelect; 3479 assert( pSel ); 3480 while( pSel->pPrior ) pSel = pSel->pPrior; 3481 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3482 } 3483 } 3484 } 3485 return WRC_Continue; 3486 } 3487 #endif 3488 3489 3490 /* 3491 ** This routine adds datatype and collating sequence information to 3492 ** the Table structures of all FROM-clause subqueries in a 3493 ** SELECT statement. 3494 ** 3495 ** Use this routine after name resolution. 3496 */ 3497 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3498 #ifndef SQLITE_OMIT_SUBQUERY 3499 Walker w; 3500 w.xSelectCallback = selectAddSubqueryTypeInfo; 3501 w.xExprCallback = exprWalkNoop; 3502 w.pParse = pParse; 3503 sqlite3WalkSelect(&w, pSelect); 3504 #endif 3505 } 3506 3507 3508 /* 3509 ** This routine sets of a SELECT statement for processing. The 3510 ** following is accomplished: 3511 ** 3512 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3513 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3514 ** * ON and USING clauses are shifted into WHERE statements 3515 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3516 ** * Identifiers in expression are matched to tables. 3517 ** 3518 ** This routine acts recursively on all subqueries within the SELECT. 3519 */ 3520 void sqlite3SelectPrep( 3521 Parse *pParse, /* The parser context */ 3522 Select *p, /* The SELECT statement being coded. */ 3523 NameContext *pOuterNC /* Name context for container */ 3524 ){ 3525 sqlite3 *db; 3526 if( NEVER(p==0) ) return; 3527 db = pParse->db; 3528 if( p->selFlags & SF_HasTypeInfo ) return; 3529 sqlite3SelectExpand(pParse, p); 3530 if( pParse->nErr || db->mallocFailed ) return; 3531 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3532 if( pParse->nErr || db->mallocFailed ) return; 3533 sqlite3SelectAddTypeInfo(pParse, p); 3534 } 3535 3536 /* 3537 ** Reset the aggregate accumulator. 3538 ** 3539 ** The aggregate accumulator is a set of memory cells that hold 3540 ** intermediate results while calculating an aggregate. This 3541 ** routine simply stores NULLs in all of those memory cells. 3542 */ 3543 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3544 Vdbe *v = pParse->pVdbe; 3545 int i; 3546 struct AggInfo_func *pFunc; 3547 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3548 return; 3549 } 3550 for(i=0; i<pAggInfo->nColumn; i++){ 3551 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3552 } 3553 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3554 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3555 if( pFunc->iDistinct>=0 ){ 3556 Expr *pE = pFunc->pExpr; 3557 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3558 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3559 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3560 "argument"); 3561 pFunc->iDistinct = -1; 3562 }else{ 3563 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3564 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3565 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3566 } 3567 } 3568 } 3569 } 3570 3571 /* 3572 ** Invoke the OP_AggFinalize opcode for every aggregate function 3573 ** in the AggInfo structure. 3574 */ 3575 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3576 Vdbe *v = pParse->pVdbe; 3577 int i; 3578 struct AggInfo_func *pF; 3579 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3580 ExprList *pList = pF->pExpr->x.pList; 3581 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3582 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3583 (void*)pF->pFunc, P4_FUNCDEF); 3584 } 3585 } 3586 3587 /* 3588 ** Update the accumulator memory cells for an aggregate based on 3589 ** the current cursor position. 3590 */ 3591 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3592 Vdbe *v = pParse->pVdbe; 3593 int i; 3594 struct AggInfo_func *pF; 3595 struct AggInfo_col *pC; 3596 3597 pAggInfo->directMode = 1; 3598 sqlite3ExprCacheClear(pParse); 3599 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3600 int nArg; 3601 int addrNext = 0; 3602 int regAgg; 3603 ExprList *pList = pF->pExpr->x.pList; 3604 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3605 if( pList ){ 3606 nArg = pList->nExpr; 3607 regAgg = sqlite3GetTempRange(pParse, nArg); 3608 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); 3609 }else{ 3610 nArg = 0; 3611 regAgg = 0; 3612 } 3613 if( pF->iDistinct>=0 ){ 3614 addrNext = sqlite3VdbeMakeLabel(v); 3615 assert( nArg==1 ); 3616 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3617 } 3618 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3619 CollSeq *pColl = 0; 3620 struct ExprList_item *pItem; 3621 int j; 3622 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3623 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3624 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3625 } 3626 if( !pColl ){ 3627 pColl = pParse->db->pDfltColl; 3628 } 3629 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3630 } 3631 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3632 (void*)pF->pFunc, P4_FUNCDEF); 3633 sqlite3VdbeChangeP5(v, (u8)nArg); 3634 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3635 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3636 if( addrNext ){ 3637 sqlite3VdbeResolveLabel(v, addrNext); 3638 sqlite3ExprCacheClear(pParse); 3639 } 3640 } 3641 3642 /* Before populating the accumulator registers, clear the column cache. 3643 ** Otherwise, if any of the required column values are already present 3644 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 3645 ** to pC->iMem. But by the time the value is used, the original register 3646 ** may have been used, invalidating the underlying buffer holding the 3647 ** text or blob value. See ticket [883034dcb5]. 3648 ** 3649 ** Another solution would be to change the OP_SCopy used to copy cached 3650 ** values to an OP_Copy. 3651 */ 3652 sqlite3ExprCacheClear(pParse); 3653 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3654 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3655 } 3656 pAggInfo->directMode = 0; 3657 sqlite3ExprCacheClear(pParse); 3658 } 3659 3660 /* 3661 ** Add a single OP_Explain instruction to the VDBE to explain a simple 3662 ** count(*) query ("SELECT count(*) FROM pTab"). 3663 */ 3664 #ifndef SQLITE_OMIT_EXPLAIN 3665 static void explainSimpleCount( 3666 Parse *pParse, /* Parse context */ 3667 Table *pTab, /* Table being queried */ 3668 Index *pIdx /* Index used to optimize scan, or NULL */ 3669 ){ 3670 if( pParse->explain==2 ){ 3671 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", 3672 pTab->zName, 3673 pIdx ? "USING COVERING INDEX " : "", 3674 pIdx ? pIdx->zName : "", 3675 pTab->nRowEst 3676 ); 3677 sqlite3VdbeAddOp4( 3678 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 3679 ); 3680 } 3681 } 3682 #else 3683 # define explainSimpleCount(a,b,c) 3684 #endif 3685 3686 /* 3687 ** Generate code for the SELECT statement given in the p argument. 3688 ** 3689 ** The results are distributed in various ways depending on the 3690 ** contents of the SelectDest structure pointed to by argument pDest 3691 ** as follows: 3692 ** 3693 ** pDest->eDest Result 3694 ** ------------ ------------------------------------------- 3695 ** SRT_Output Generate a row of output (using the OP_ResultRow 3696 ** opcode) for each row in the result set. 3697 ** 3698 ** SRT_Mem Only valid if the result is a single column. 3699 ** Store the first column of the first result row 3700 ** in register pDest->iParm then abandon the rest 3701 ** of the query. This destination implies "LIMIT 1". 3702 ** 3703 ** SRT_Set The result must be a single column. Store each 3704 ** row of result as the key in table pDest->iParm. 3705 ** Apply the affinity pDest->affinity before storing 3706 ** results. Used to implement "IN (SELECT ...)". 3707 ** 3708 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3709 ** 3710 ** SRT_Except Remove results from the temporary table pDest->iParm. 3711 ** 3712 ** SRT_Table Store results in temporary table pDest->iParm. 3713 ** This is like SRT_EphemTab except that the table 3714 ** is assumed to already be open. 3715 ** 3716 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3717 ** the result there. The cursor is left open after 3718 ** returning. This is like SRT_Table except that 3719 ** this destination uses OP_OpenEphemeral to create 3720 ** the table first. 3721 ** 3722 ** SRT_Coroutine Generate a co-routine that returns a new row of 3723 ** results each time it is invoked. The entry point 3724 ** of the co-routine is stored in register pDest->iParm. 3725 ** 3726 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3727 ** set is not empty. 3728 ** 3729 ** SRT_Discard Throw the results away. This is used by SELECT 3730 ** statements within triggers whose only purpose is 3731 ** the side-effects of functions. 3732 ** 3733 ** This routine returns the number of errors. If any errors are 3734 ** encountered, then an appropriate error message is left in 3735 ** pParse->zErrMsg. 3736 ** 3737 ** This routine does NOT free the Select structure passed in. The 3738 ** calling function needs to do that. 3739 */ 3740 int sqlite3Select( 3741 Parse *pParse, /* The parser context */ 3742 Select *p, /* The SELECT statement being coded. */ 3743 SelectDest *pDest /* What to do with the query results */ 3744 ){ 3745 int i, j; /* Loop counters */ 3746 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3747 Vdbe *v; /* The virtual machine under construction */ 3748 int isAgg; /* True for select lists like "count(*)" */ 3749 ExprList *pEList; /* List of columns to extract. */ 3750 SrcList *pTabList; /* List of tables to select from */ 3751 Expr *pWhere; /* The WHERE clause. May be NULL */ 3752 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3753 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3754 Expr *pHaving; /* The HAVING clause. May be NULL */ 3755 int isDistinct; /* True if the DISTINCT keyword is present */ 3756 int distinct; /* Table to use for the distinct set */ 3757 int rc = 1; /* Value to return from this function */ 3758 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3759 int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */ 3760 AggInfo sAggInfo; /* Information used by aggregate queries */ 3761 int iEnd; /* Address of the end of the query */ 3762 sqlite3 *db; /* The database connection */ 3763 3764 #ifndef SQLITE_OMIT_EXPLAIN 3765 int iRestoreSelectId = pParse->iSelectId; 3766 pParse->iSelectId = pParse->iNextSelectId++; 3767 #endif 3768 3769 db = pParse->db; 3770 if( p==0 || db->mallocFailed || pParse->nErr ){ 3771 return 1; 3772 } 3773 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3774 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3775 3776 if( IgnorableOrderby(pDest) ){ 3777 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3778 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3779 /* If ORDER BY makes no difference in the output then neither does 3780 ** DISTINCT so it can be removed too. */ 3781 sqlite3ExprListDelete(db, p->pOrderBy); 3782 p->pOrderBy = 0; 3783 p->selFlags &= ~SF_Distinct; 3784 } 3785 sqlite3SelectPrep(pParse, p, 0); 3786 pOrderBy = p->pOrderBy; 3787 pTabList = p->pSrc; 3788 pEList = p->pEList; 3789 if( pParse->nErr || db->mallocFailed ){ 3790 goto select_end; 3791 } 3792 isAgg = (p->selFlags & SF_Aggregate)!=0; 3793 assert( pEList!=0 ); 3794 3795 /* Begin generating code. 3796 */ 3797 v = sqlite3GetVdbe(pParse); 3798 if( v==0 ) goto select_end; 3799 3800 /* If writing to memory or generating a set 3801 ** only a single column may be output. 3802 */ 3803 #ifndef SQLITE_OMIT_SUBQUERY 3804 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3805 goto select_end; 3806 } 3807 #endif 3808 3809 /* Generate code for all sub-queries in the FROM clause 3810 */ 3811 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3812 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3813 struct SrcList_item *pItem = &pTabList->a[i]; 3814 SelectDest dest; 3815 Select *pSub = pItem->pSelect; 3816 int isAggSub; 3817 3818 if( pSub==0 ) continue; 3819 if( pItem->addrFillSub ){ 3820 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 3821 continue; 3822 } 3823 3824 /* Increment Parse.nHeight by the height of the largest expression 3825 ** tree refered to by this, the parent select. The child select 3826 ** may contain expression trees of at most 3827 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3828 ** more conservative than necessary, but much easier than enforcing 3829 ** an exact limit. 3830 */ 3831 pParse->nHeight += sqlite3SelectExprHeight(p); 3832 3833 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3834 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3835 /* This subquery can be absorbed into its parent. */ 3836 if( isAggSub ){ 3837 isAgg = 1; 3838 p->selFlags |= SF_Aggregate; 3839 } 3840 i = -1; 3841 }else{ 3842 /* Generate a subroutine that will fill an ephemeral table with 3843 ** the content of this subquery. pItem->addrFillSub will point 3844 ** to the address of the generated subroutine. pItem->regReturn 3845 ** is a register allocated to hold the subroutine return address 3846 */ 3847 int topAddr; 3848 int onceAddr = 0; 3849 int retAddr; 3850 assert( pItem->addrFillSub==0 ); 3851 pItem->regReturn = ++pParse->nMem; 3852 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 3853 pItem->addrFillSub = topAddr+1; 3854 VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); 3855 if( pItem->isCorrelated==0 ){ 3856 /* If the subquery is no correlated and if we are not inside of 3857 ** a trigger, then we only need to compute the value of the subquery 3858 ** once. */ 3859 onceAddr = sqlite3CodeOnce(pParse); 3860 } 3861 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3862 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 3863 sqlite3Select(pParse, pSub, &dest); 3864 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 3865 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 3866 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 3867 VdbeComment((v, "end %s", pItem->pTab->zName)); 3868 sqlite3VdbeChangeP1(v, topAddr, retAddr); 3869 sqlite3ClearTempRegCache(pParse); 3870 } 3871 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3872 goto select_end; 3873 } 3874 pParse->nHeight -= sqlite3SelectExprHeight(p); 3875 pTabList = p->pSrc; 3876 if( !IgnorableOrderby(pDest) ){ 3877 pOrderBy = p->pOrderBy; 3878 } 3879 } 3880 pEList = p->pEList; 3881 #endif 3882 pWhere = p->pWhere; 3883 pGroupBy = p->pGroupBy; 3884 pHaving = p->pHaving; 3885 isDistinct = (p->selFlags & SF_Distinct)!=0; 3886 3887 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3888 /* If there is are a sequence of queries, do the earlier ones first. 3889 */ 3890 if( p->pPrior ){ 3891 if( p->pRightmost==0 ){ 3892 Select *pLoop, *pRight = 0; 3893 int cnt = 0; 3894 int mxSelect; 3895 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3896 pLoop->pRightmost = p; 3897 pLoop->pNext = pRight; 3898 pRight = pLoop; 3899 } 3900 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3901 if( mxSelect && cnt>mxSelect ){ 3902 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3903 goto select_end; 3904 } 3905 } 3906 rc = multiSelect(pParse, p, pDest); 3907 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 3908 return rc; 3909 } 3910 #endif 3911 3912 /* If there is both a GROUP BY and an ORDER BY clause and they are 3913 ** identical, then disable the ORDER BY clause since the GROUP BY 3914 ** will cause elements to come out in the correct order. This is 3915 ** an optimization - the correct answer should result regardless. 3916 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 3917 ** to disable this optimization for testing purposes. 3918 */ 3919 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 3920 && (db->flags & SQLITE_GroupByOrder)==0 ){ 3921 pOrderBy = 0; 3922 } 3923 3924 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 3925 ** if the select-list is the same as the ORDER BY list, then this query 3926 ** can be rewritten as a GROUP BY. In other words, this: 3927 ** 3928 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 3929 ** 3930 ** is transformed to: 3931 ** 3932 ** SELECT xyz FROM ... GROUP BY xyz 3933 ** 3934 ** The second form is preferred as a single index (or temp-table) may be 3935 ** used for both the ORDER BY and DISTINCT processing. As originally 3936 ** written the query must use a temp-table for at least one of the ORDER 3937 ** BY and DISTINCT, and an index or separate temp-table for the other. 3938 */ 3939 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 3940 && sqlite3ExprListCompare(pOrderBy, p->pEList)==0 3941 ){ 3942 p->selFlags &= ~SF_Distinct; 3943 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3944 pGroupBy = p->pGroupBy; 3945 pOrderBy = 0; 3946 } 3947 3948 /* If there is an ORDER BY clause, then this sorting 3949 ** index might end up being unused if the data can be 3950 ** extracted in pre-sorted order. If that is the case, then the 3951 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3952 ** we figure out that the sorting index is not needed. The addrSortIndex 3953 ** variable is used to facilitate that change. 3954 */ 3955 if( pOrderBy ){ 3956 KeyInfo *pKeyInfo; 3957 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3958 pOrderBy->iECursor = pParse->nTab++; 3959 p->addrOpenEphm[2] = addrSortIndex = 3960 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3961 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3962 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3963 }else{ 3964 addrSortIndex = -1; 3965 } 3966 3967 /* If the output is destined for a temporary table, open that table. 3968 */ 3969 if( pDest->eDest==SRT_EphemTab ){ 3970 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3971 } 3972 3973 /* Set the limiter. 3974 */ 3975 iEnd = sqlite3VdbeMakeLabel(v); 3976 p->nSelectRow = (double)LARGEST_INT64; 3977 computeLimitRegisters(pParse, p, iEnd); 3978 if( p->iLimit==0 && addrSortIndex>=0 ){ 3979 sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; 3980 p->selFlags |= SF_UseSorter; 3981 } 3982 3983 /* Open a virtual index to use for the distinct set. 3984 */ 3985 if( p->selFlags & SF_Distinct ){ 3986 KeyInfo *pKeyInfo; 3987 distinct = pParse->nTab++; 3988 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3989 addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3990 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3991 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 3992 }else{ 3993 distinct = addrDistinctIndex = -1; 3994 } 3995 3996 /* Aggregate and non-aggregate queries are handled differently */ 3997 if( !isAgg && pGroupBy==0 ){ 3998 ExprList *pDist = (isDistinct ? p->pEList : 0); 3999 4000 /* Begin the database scan. */ 4001 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0); 4002 if( pWInfo==0 ) goto select_end; 4003 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; 4004 4005 /* If sorting index that was created by a prior OP_OpenEphemeral 4006 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4007 ** into an OP_Noop. 4008 */ 4009 if( addrSortIndex>=0 && pOrderBy==0 ){ 4010 sqlite3VdbeChangeToNoop(v, addrSortIndex); 4011 p->addrOpenEphm[2] = -1; 4012 } 4013 4014 if( pWInfo->eDistinct ){ 4015 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 4016 4017 assert( addrDistinctIndex>=0 ); 4018 pOp = sqlite3VdbeGetOp(v, addrDistinctIndex); 4019 4020 assert( isDistinct ); 4021 assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 4022 || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE 4023 ); 4024 distinct = -1; 4025 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){ 4026 int iJump; 4027 int iExpr; 4028 int iFlag = ++pParse->nMem; 4029 int iBase = pParse->nMem+1; 4030 int iBase2 = iBase + pEList->nExpr; 4031 pParse->nMem += (pEList->nExpr*2); 4032 4033 /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The 4034 ** OP_Integer initializes the "first row" flag. */ 4035 pOp->opcode = OP_Integer; 4036 pOp->p1 = 1; 4037 pOp->p2 = iFlag; 4038 4039 sqlite3ExprCodeExprList(pParse, pEList, iBase, 1); 4040 iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1; 4041 sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1); 4042 for(iExpr=0; iExpr<pEList->nExpr; iExpr++){ 4043 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr); 4044 sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr); 4045 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 4046 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 4047 } 4048 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue); 4049 4050 sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag); 4051 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 4052 sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr); 4053 }else{ 4054 pOp->opcode = OP_Noop; 4055 } 4056 } 4057 4058 /* Use the standard inner loop. */ 4059 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest, 4060 pWInfo->iContinue, pWInfo->iBreak); 4061 4062 /* End the database scan loop. 4063 */ 4064 sqlite3WhereEnd(pWInfo); 4065 }else{ 4066 /* This is the processing for aggregate queries */ 4067 NameContext sNC; /* Name context for processing aggregate information */ 4068 int iAMem; /* First Mem address for storing current GROUP BY */ 4069 int iBMem; /* First Mem address for previous GROUP BY */ 4070 int iUseFlag; /* Mem address holding flag indicating that at least 4071 ** one row of the input to the aggregator has been 4072 ** processed */ 4073 int iAbortFlag; /* Mem address which causes query abort if positive */ 4074 int groupBySort; /* Rows come from source in GROUP BY order */ 4075 int addrEnd; /* End of processing for this SELECT */ 4076 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4077 int sortOut = 0; /* Output register from the sorter */ 4078 4079 /* Remove any and all aliases between the result set and the 4080 ** GROUP BY clause. 4081 */ 4082 if( pGroupBy ){ 4083 int k; /* Loop counter */ 4084 struct ExprList_item *pItem; /* For looping over expression in a list */ 4085 4086 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4087 pItem->iAlias = 0; 4088 } 4089 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4090 pItem->iAlias = 0; 4091 } 4092 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; 4093 }else{ 4094 p->nSelectRow = (double)1; 4095 } 4096 4097 4098 /* Create a label to jump to when we want to abort the query */ 4099 addrEnd = sqlite3VdbeMakeLabel(v); 4100 4101 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4102 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4103 ** SELECT statement. 4104 */ 4105 memset(&sNC, 0, sizeof(sNC)); 4106 sNC.pParse = pParse; 4107 sNC.pSrcList = pTabList; 4108 sNC.pAggInfo = &sAggInfo; 4109 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4110 sAggInfo.pGroupBy = pGroupBy; 4111 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4112 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 4113 if( pHaving ){ 4114 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4115 } 4116 sAggInfo.nAccumulator = sAggInfo.nColumn; 4117 for(i=0; i<sAggInfo.nFunc; i++){ 4118 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4119 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4120 } 4121 if( db->mallocFailed ) goto select_end; 4122 4123 /* Processing for aggregates with GROUP BY is very different and 4124 ** much more complex than aggregates without a GROUP BY. 4125 */ 4126 if( pGroupBy ){ 4127 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4128 int j1; /* A-vs-B comparision jump */ 4129 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4130 int regOutputRow; /* Return address register for output subroutine */ 4131 int addrSetAbort; /* Set the abort flag and return */ 4132 int addrTopOfLoop; /* Top of the input loop */ 4133 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4134 int addrReset; /* Subroutine for resetting the accumulator */ 4135 int regReset; /* Return address register for reset subroutine */ 4136 4137 /* If there is a GROUP BY clause we might need a sorting index to 4138 ** implement it. Allocate that sorting index now. If it turns out 4139 ** that we do not need it after all, the OP_SorterOpen instruction 4140 ** will be converted into a Noop. 4141 */ 4142 sAggInfo.sortingIdx = pParse->nTab++; 4143 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 4144 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4145 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4146 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4147 4148 /* Initialize memory locations used by GROUP BY aggregate processing 4149 */ 4150 iUseFlag = ++pParse->nMem; 4151 iAbortFlag = ++pParse->nMem; 4152 regOutputRow = ++pParse->nMem; 4153 addrOutputRow = sqlite3VdbeMakeLabel(v); 4154 regReset = ++pParse->nMem; 4155 addrReset = sqlite3VdbeMakeLabel(v); 4156 iAMem = pParse->nMem + 1; 4157 pParse->nMem += pGroupBy->nExpr; 4158 iBMem = pParse->nMem + 1; 4159 pParse->nMem += pGroupBy->nExpr; 4160 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4161 VdbeComment((v, "clear abort flag")); 4162 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4163 VdbeComment((v, "indicate accumulator empty")); 4164 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4165 4166 /* Begin a loop that will extract all source rows in GROUP BY order. 4167 ** This might involve two separate loops with an OP_Sort in between, or 4168 ** it might be a single loop that uses an index to extract information 4169 ** in the right order to begin with. 4170 */ 4171 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4172 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0); 4173 if( pWInfo==0 ) goto select_end; 4174 if( pGroupBy==0 ){ 4175 /* The optimizer is able to deliver rows in group by order so 4176 ** we do not have to sort. The OP_OpenEphemeral table will be 4177 ** cancelled later because we still need to use the pKeyInfo 4178 */ 4179 pGroupBy = p->pGroupBy; 4180 groupBySort = 0; 4181 }else{ 4182 /* Rows are coming out in undetermined order. We have to push 4183 ** each row into a sorting index, terminate the first loop, 4184 ** then loop over the sorting index in order to get the output 4185 ** in sorted order 4186 */ 4187 int regBase; 4188 int regRecord; 4189 int nCol; 4190 int nGroupBy; 4191 4192 explainTempTable(pParse, 4193 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY"); 4194 4195 groupBySort = 1; 4196 nGroupBy = pGroupBy->nExpr; 4197 nCol = nGroupBy + 1; 4198 j = nGroupBy+1; 4199 for(i=0; i<sAggInfo.nColumn; i++){ 4200 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4201 nCol++; 4202 j++; 4203 } 4204 } 4205 regBase = sqlite3GetTempRange(pParse, nCol); 4206 sqlite3ExprCacheClear(pParse); 4207 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4208 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4209 j = nGroupBy+1; 4210 for(i=0; i<sAggInfo.nColumn; i++){ 4211 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4212 if( pCol->iSorterColumn>=j ){ 4213 int r1 = j + regBase; 4214 int r2; 4215 4216 r2 = sqlite3ExprCodeGetColumn(pParse, 4217 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 4218 if( r1!=r2 ){ 4219 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4220 } 4221 j++; 4222 } 4223 } 4224 regRecord = sqlite3GetTempReg(pParse); 4225 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4226 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 4227 sqlite3ReleaseTempReg(pParse, regRecord); 4228 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4229 sqlite3WhereEnd(pWInfo); 4230 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 4231 sortOut = sqlite3GetTempReg(pParse); 4232 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 4233 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 4234 VdbeComment((v, "GROUP BY sort")); 4235 sAggInfo.useSortingIdx = 1; 4236 sqlite3ExprCacheClear(pParse); 4237 } 4238 4239 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4240 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4241 ** Then compare the current GROUP BY terms against the GROUP BY terms 4242 ** from the previous row currently stored in a0, a1, a2... 4243 */ 4244 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4245 sqlite3ExprCacheClear(pParse); 4246 if( groupBySort ){ 4247 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 4248 } 4249 for(j=0; j<pGroupBy->nExpr; j++){ 4250 if( groupBySort ){ 4251 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 4252 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 4253 }else{ 4254 sAggInfo.directMode = 1; 4255 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4256 } 4257 } 4258 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4259 (char*)pKeyInfo, P4_KEYINFO); 4260 j1 = sqlite3VdbeCurrentAddr(v); 4261 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4262 4263 /* Generate code that runs whenever the GROUP BY changes. 4264 ** Changes in the GROUP BY are detected by the previous code 4265 ** block. If there were no changes, this block is skipped. 4266 ** 4267 ** This code copies current group by terms in b0,b1,b2,... 4268 ** over to a0,a1,a2. It then calls the output subroutine 4269 ** and resets the aggregate accumulator registers in preparation 4270 ** for the next GROUP BY batch. 4271 */ 4272 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4273 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4274 VdbeComment((v, "output one row")); 4275 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4276 VdbeComment((v, "check abort flag")); 4277 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4278 VdbeComment((v, "reset accumulator")); 4279 4280 /* Update the aggregate accumulators based on the content of 4281 ** the current row 4282 */ 4283 sqlite3VdbeJumpHere(v, j1); 4284 updateAccumulator(pParse, &sAggInfo); 4285 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4286 VdbeComment((v, "indicate data in accumulator")); 4287 4288 /* End of the loop 4289 */ 4290 if( groupBySort ){ 4291 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 4292 }else{ 4293 sqlite3WhereEnd(pWInfo); 4294 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 4295 } 4296 4297 /* Output the final row of result 4298 */ 4299 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4300 VdbeComment((v, "output final row")); 4301 4302 /* Jump over the subroutines 4303 */ 4304 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4305 4306 /* Generate a subroutine that outputs a single row of the result 4307 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4308 ** is less than or equal to zero, the subroutine is a no-op. If 4309 ** the processing calls for the query to abort, this subroutine 4310 ** increments the iAbortFlag memory location before returning in 4311 ** order to signal the caller to abort. 4312 */ 4313 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4314 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4315 VdbeComment((v, "set abort flag")); 4316 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4317 sqlite3VdbeResolveLabel(v, addrOutputRow); 4318 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4319 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4320 VdbeComment((v, "Groupby result generator entry point")); 4321 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4322 finalizeAggFunctions(pParse, &sAggInfo); 4323 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4324 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4325 distinct, pDest, 4326 addrOutputRow+1, addrSetAbort); 4327 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4328 VdbeComment((v, "end groupby result generator")); 4329 4330 /* Generate a subroutine that will reset the group-by accumulator 4331 */ 4332 sqlite3VdbeResolveLabel(v, addrReset); 4333 resetAccumulator(pParse, &sAggInfo); 4334 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4335 4336 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4337 else { 4338 ExprList *pDel = 0; 4339 #ifndef SQLITE_OMIT_BTREECOUNT 4340 Table *pTab; 4341 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4342 /* If isSimpleCount() returns a pointer to a Table structure, then 4343 ** the SQL statement is of the form: 4344 ** 4345 ** SELECT count(*) FROM <tbl> 4346 ** 4347 ** where the Table structure returned represents table <tbl>. 4348 ** 4349 ** This statement is so common that it is optimized specially. The 4350 ** OP_Count instruction is executed either on the intkey table that 4351 ** contains the data for table <tbl> or on one of its indexes. It 4352 ** is better to execute the op on an index, as indexes are almost 4353 ** always spread across less pages than their corresponding tables. 4354 */ 4355 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4356 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4357 Index *pIdx; /* Iterator variable */ 4358 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4359 Index *pBest = 0; /* Best index found so far */ 4360 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4361 4362 sqlite3CodeVerifySchema(pParse, iDb); 4363 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4364 4365 /* Search for the index that has the least amount of columns. If 4366 ** there is such an index, and it has less columns than the table 4367 ** does, then we can assume that it consumes less space on disk and 4368 ** will therefore be cheaper to scan to determine the query result. 4369 ** In this case set iRoot to the root page number of the index b-tree 4370 ** and pKeyInfo to the KeyInfo structure required to navigate the 4371 ** index. 4372 ** 4373 ** (2011-04-15) Do not do a full scan of an unordered index. 4374 ** 4375 ** In practice the KeyInfo structure will not be used. It is only 4376 ** passed to keep OP_OpenRead happy. 4377 */ 4378 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4379 if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){ 4380 pBest = pIdx; 4381 } 4382 } 4383 if( pBest && pBest->nColumn<pTab->nCol ){ 4384 iRoot = pBest->tnum; 4385 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4386 } 4387 4388 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4389 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4390 if( pKeyInfo ){ 4391 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4392 } 4393 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4394 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4395 explainSimpleCount(pParse, pTab, pBest); 4396 }else 4397 #endif /* SQLITE_OMIT_BTREECOUNT */ 4398 { 4399 /* Check if the query is of one of the following forms: 4400 ** 4401 ** SELECT min(x) FROM ... 4402 ** SELECT max(x) FROM ... 4403 ** 4404 ** If it is, then ask the code in where.c to attempt to sort results 4405 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4406 ** If where.c is able to produce results sorted in this order, then 4407 ** add vdbe code to break out of the processing loop after the 4408 ** first iteration (since the first iteration of the loop is 4409 ** guaranteed to operate on the row with the minimum or maximum 4410 ** value of x, the only row required). 4411 ** 4412 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4413 ** modify behaviour as follows: 4414 ** 4415 ** + If the query is a "SELECT min(x)", then the loop coded by 4416 ** where.c should not iterate over any values with a NULL value 4417 ** for x. 4418 ** 4419 ** + The optimizer code in where.c (the thing that decides which 4420 ** index or indices to use) should place a different priority on 4421 ** satisfying the 'ORDER BY' clause than it does in other cases. 4422 ** Refer to code and comments in where.c for details. 4423 */ 4424 ExprList *pMinMax = 0; 4425 u8 flag = minMaxQuery(p); 4426 if( flag ){ 4427 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4428 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4429 pDel = pMinMax; 4430 if( pMinMax && !db->mallocFailed ){ 4431 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4432 pMinMax->a[0].pExpr->op = TK_COLUMN; 4433 } 4434 } 4435 4436 /* This case runs if the aggregate has no GROUP BY clause. The 4437 ** processing is much simpler since there is only a single row 4438 ** of output. 4439 */ 4440 resetAccumulator(pParse, &sAggInfo); 4441 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag); 4442 if( pWInfo==0 ){ 4443 sqlite3ExprListDelete(db, pDel); 4444 goto select_end; 4445 } 4446 updateAccumulator(pParse, &sAggInfo); 4447 if( !pMinMax && flag ){ 4448 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4449 VdbeComment((v, "%s() by index", 4450 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4451 } 4452 sqlite3WhereEnd(pWInfo); 4453 finalizeAggFunctions(pParse, &sAggInfo); 4454 } 4455 4456 pOrderBy = 0; 4457 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4458 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4459 pDest, addrEnd, addrEnd); 4460 sqlite3ExprListDelete(db, pDel); 4461 } 4462 sqlite3VdbeResolveLabel(v, addrEnd); 4463 4464 } /* endif aggregate query */ 4465 4466 if( distinct>=0 ){ 4467 explainTempTable(pParse, "DISTINCT"); 4468 } 4469 4470 /* If there is an ORDER BY clause, then we need to sort the results 4471 ** and send them to the callback one by one. 4472 */ 4473 if( pOrderBy ){ 4474 explainTempTable(pParse, "ORDER BY"); 4475 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4476 } 4477 4478 /* Jump here to skip this query 4479 */ 4480 sqlite3VdbeResolveLabel(v, iEnd); 4481 4482 /* The SELECT was successfully coded. Set the return code to 0 4483 ** to indicate no errors. 4484 */ 4485 rc = 0; 4486 4487 /* Control jumps to here if an error is encountered above, or upon 4488 ** successful coding of the SELECT. 4489 */ 4490 select_end: 4491 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4492 4493 /* Identify column names if results of the SELECT are to be output. 4494 */ 4495 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4496 generateColumnNames(pParse, pTabList, pEList); 4497 } 4498 4499 sqlite3DbFree(db, sAggInfo.aCol); 4500 sqlite3DbFree(db, sAggInfo.aFunc); 4501 return rc; 4502 } 4503 4504 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 4505 /* 4506 ** Generate a human-readable description of a the Select object. 4507 */ 4508 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 4509 sqlite3ExplainPrintf(pVdbe, "SELECT "); 4510 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 4511 if( p->selFlags & SF_Distinct ){ 4512 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 4513 } 4514 if( p->selFlags & SF_Aggregate ){ 4515 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 4516 } 4517 sqlite3ExplainNL(pVdbe); 4518 sqlite3ExplainPrintf(pVdbe, " "); 4519 } 4520 sqlite3ExplainExprList(pVdbe, p->pEList); 4521 sqlite3ExplainNL(pVdbe); 4522 if( p->pSrc && p->pSrc->nSrc ){ 4523 int i; 4524 sqlite3ExplainPrintf(pVdbe, "FROM "); 4525 sqlite3ExplainPush(pVdbe); 4526 for(i=0; i<p->pSrc->nSrc; i++){ 4527 struct SrcList_item *pItem = &p->pSrc->a[i]; 4528 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 4529 if( pItem->pSelect ){ 4530 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 4531 if( pItem->pTab ){ 4532 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 4533 } 4534 }else if( pItem->zName ){ 4535 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 4536 } 4537 if( pItem->zAlias ){ 4538 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 4539 } 4540 if( pItem->jointype & JT_LEFT ){ 4541 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 4542 } 4543 sqlite3ExplainNL(pVdbe); 4544 } 4545 sqlite3ExplainPop(pVdbe); 4546 } 4547 if( p->pWhere ){ 4548 sqlite3ExplainPrintf(pVdbe, "WHERE "); 4549 sqlite3ExplainExpr(pVdbe, p->pWhere); 4550 sqlite3ExplainNL(pVdbe); 4551 } 4552 if( p->pGroupBy ){ 4553 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 4554 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 4555 sqlite3ExplainNL(pVdbe); 4556 } 4557 if( p->pHaving ){ 4558 sqlite3ExplainPrintf(pVdbe, "HAVING "); 4559 sqlite3ExplainExpr(pVdbe, p->pHaving); 4560 sqlite3ExplainNL(pVdbe); 4561 } 4562 if( p->pOrderBy ){ 4563 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 4564 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 4565 sqlite3ExplainNL(pVdbe); 4566 } 4567 if( p->pLimit ){ 4568 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 4569 sqlite3ExplainExpr(pVdbe, p->pLimit); 4570 sqlite3ExplainNL(pVdbe); 4571 } 4572 if( p->pOffset ){ 4573 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 4574 sqlite3ExplainExpr(pVdbe, p->pOffset); 4575 sqlite3ExplainNL(pVdbe); 4576 } 4577 } 4578 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 4579 if( p==0 ){ 4580 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 4581 return; 4582 } 4583 while( p->pPrior ) p = p->pPrior; 4584 sqlite3ExplainPush(pVdbe); 4585 while( p ){ 4586 explainOneSelect(pVdbe, p); 4587 p = p->pNext; 4588 if( p==0 ) break; 4589 sqlite3ExplainNL(pVdbe); 4590 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 4591 } 4592 sqlite3ExplainPrintf(pVdbe, "END"); 4593 sqlite3ExplainPop(pVdbe); 4594 } 4595 4596 /* End of the structure debug printing code 4597 *****************************************************************************/ 4598 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 4599