xref: /sqlite-3.40.0/src/select.c (revision 42829635)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iParm = iParm;
40   pDest->affinity = 0;
41   pDest->iMem = 0;
42   pDest->nMem = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   int isDistinct,       /* true if the DISTINCT keyword is present */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     assert( db->mallocFailed );
69     pNew = &standin;
70     memset(pNew, 0, sizeof(*pNew));
71   }
72   if( pEList==0 ){
73     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
74   }
75   pNew->pEList = pEList;
76   pNew->pSrc = pSrc;
77   pNew->pWhere = pWhere;
78   pNew->pGroupBy = pGroupBy;
79   pNew->pHaving = pHaving;
80   pNew->pOrderBy = pOrderBy;
81   pNew->selFlags = isDistinct ? SF_Distinct : 0;
82   pNew->op = TK_SELECT;
83   pNew->pLimit = pLimit;
84   pNew->pOffset = pOffset;
85   assert( pOffset==0 || pLimit!=0 );
86   pNew->addrOpenEphm[0] = -1;
87   pNew->addrOpenEphm[1] = -1;
88   pNew->addrOpenEphm[2] = -1;
89   if( db->mallocFailed ) {
90     clearSelect(db, pNew);
91     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
92     pNew = 0;
93   }else{
94     assert( pNew->pSrc!=0 || pParse->nErr>0 );
95   }
96   assert( pNew!=&standin );
97   return pNew;
98 }
99 
100 /*
101 ** Delete the given Select structure and all of its substructures.
102 */
103 void sqlite3SelectDelete(sqlite3 *db, Select *p){
104   if( p ){
105     clearSelect(db, p);
106     sqlite3DbFree(db, p);
107   }
108 }
109 
110 /*
111 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
112 ** type of join.  Return an integer constant that expresses that type
113 ** in terms of the following bit values:
114 **
115 **     JT_INNER
116 **     JT_CROSS
117 **     JT_OUTER
118 **     JT_NATURAL
119 **     JT_LEFT
120 **     JT_RIGHT
121 **
122 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
123 **
124 ** If an illegal or unsupported join type is seen, then still return
125 ** a join type, but put an error in the pParse structure.
126 */
127 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
128   int jointype = 0;
129   Token *apAll[3];
130   Token *p;
131                              /*   0123456789 123456789 123456789 123 */
132   static const char zKeyText[] = "naturaleftouterightfullinnercross";
133   static const struct {
134     u8 i;        /* Beginning of keyword text in zKeyText[] */
135     u8 nChar;    /* Length of the keyword in characters */
136     u8 code;     /* Join type mask */
137   } aKeyword[] = {
138     /* natural */ { 0,  7, JT_NATURAL                },
139     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
140     /* outer   */ { 10, 5, JT_OUTER                  },
141     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
142     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
143     /* inner   */ { 23, 5, JT_INNER                  },
144     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
145   };
146   int i, j;
147   apAll[0] = pA;
148   apAll[1] = pB;
149   apAll[2] = pC;
150   for(i=0; i<3 && apAll[i]; i++){
151     p = apAll[i];
152     for(j=0; j<ArraySize(aKeyword); j++){
153       if( p->n==aKeyword[j].nChar
154           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
155         jointype |= aKeyword[j].code;
156         break;
157       }
158     }
159     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
160     if( j>=ArraySize(aKeyword) ){
161       jointype |= JT_ERROR;
162       break;
163     }
164   }
165   if(
166      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
167      (jointype & JT_ERROR)!=0
168   ){
169     const char *zSp = " ";
170     assert( pB!=0 );
171     if( pC==0 ){ zSp++; }
172     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
173        "%T %T%s%T", pA, pB, zSp, pC);
174     jointype = JT_INNER;
175   }else if( (jointype & JT_OUTER)!=0
176          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
177     sqlite3ErrorMsg(pParse,
178       "RIGHT and FULL OUTER JOINs are not currently supported");
179     jointype = JT_INNER;
180   }
181   return jointype;
182 }
183 
184 /*
185 ** Return the index of a column in a table.  Return -1 if the column
186 ** is not contained in the table.
187 */
188 static int columnIndex(Table *pTab, const char *zCol){
189   int i;
190   for(i=0; i<pTab->nCol; i++){
191     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
192   }
193   return -1;
194 }
195 
196 /*
197 ** Search the first N tables in pSrc, from left to right, looking for a
198 ** table that has a column named zCol.
199 **
200 ** When found, set *piTab and *piCol to the table index and column index
201 ** of the matching column and return TRUE.
202 **
203 ** If not found, return FALSE.
204 */
205 static int tableAndColumnIndex(
206   SrcList *pSrc,       /* Array of tables to search */
207   int N,               /* Number of tables in pSrc->a[] to search */
208   const char *zCol,    /* Name of the column we are looking for */
209   int *piTab,          /* Write index of pSrc->a[] here */
210   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
211 ){
212   int i;               /* For looping over tables in pSrc */
213   int iCol;            /* Index of column matching zCol */
214 
215   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
216   for(i=0; i<N; i++){
217     iCol = columnIndex(pSrc->a[i].pTab, zCol);
218     if( iCol>=0 ){
219       if( piTab ){
220         *piTab = i;
221         *piCol = iCol;
222       }
223       return 1;
224     }
225   }
226   return 0;
227 }
228 
229 /*
230 ** This function is used to add terms implied by JOIN syntax to the
231 ** WHERE clause expression of a SELECT statement. The new term, which
232 ** is ANDed with the existing WHERE clause, is of the form:
233 **
234 **    (tab1.col1 = tab2.col2)
235 **
236 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
237 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
238 ** column iColRight of tab2.
239 */
240 static void addWhereTerm(
241   Parse *pParse,                  /* Parsing context */
242   SrcList *pSrc,                  /* List of tables in FROM clause */
243   int iLeft,                      /* Index of first table to join in pSrc */
244   int iColLeft,                   /* Index of column in first table */
245   int iRight,                     /* Index of second table in pSrc */
246   int iColRight,                  /* Index of column in second table */
247   int isOuterJoin,                /* True if this is an OUTER join */
248   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
249 ){
250   sqlite3 *db = pParse->db;
251   Expr *pE1;
252   Expr *pE2;
253   Expr *pEq;
254 
255   assert( iLeft<iRight );
256   assert( pSrc->nSrc>iRight );
257   assert( pSrc->a[iLeft].pTab );
258   assert( pSrc->a[iRight].pTab );
259 
260   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
261   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
262 
263   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
264   if( pEq && isOuterJoin ){
265     ExprSetProperty(pEq, EP_FromJoin);
266     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
267     ExprSetIrreducible(pEq);
268     pEq->iRightJoinTable = (i16)pE2->iTable;
269   }
270   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
271 }
272 
273 /*
274 ** Set the EP_FromJoin property on all terms of the given expression.
275 ** And set the Expr.iRightJoinTable to iTable for every term in the
276 ** expression.
277 **
278 ** The EP_FromJoin property is used on terms of an expression to tell
279 ** the LEFT OUTER JOIN processing logic that this term is part of the
280 ** join restriction specified in the ON or USING clause and not a part
281 ** of the more general WHERE clause.  These terms are moved over to the
282 ** WHERE clause during join processing but we need to remember that they
283 ** originated in the ON or USING clause.
284 **
285 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
286 ** expression depends on table iRightJoinTable even if that table is not
287 ** explicitly mentioned in the expression.  That information is needed
288 ** for cases like this:
289 **
290 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
291 **
292 ** The where clause needs to defer the handling of the t1.x=5
293 ** term until after the t2 loop of the join.  In that way, a
294 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
295 ** defer the handling of t1.x=5, it will be processed immediately
296 ** after the t1 loop and rows with t1.x!=5 will never appear in
297 ** the output, which is incorrect.
298 */
299 static void setJoinExpr(Expr *p, int iTable){
300   while( p ){
301     ExprSetProperty(p, EP_FromJoin);
302     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
303     ExprSetIrreducible(p);
304     p->iRightJoinTable = (i16)iTable;
305     setJoinExpr(p->pLeft, iTable);
306     p = p->pRight;
307   }
308 }
309 
310 /*
311 ** This routine processes the join information for a SELECT statement.
312 ** ON and USING clauses are converted into extra terms of the WHERE clause.
313 ** NATURAL joins also create extra WHERE clause terms.
314 **
315 ** The terms of a FROM clause are contained in the Select.pSrc structure.
316 ** The left most table is the first entry in Select.pSrc.  The right-most
317 ** table is the last entry.  The join operator is held in the entry to
318 ** the left.  Thus entry 0 contains the join operator for the join between
319 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
320 ** also attached to the left entry.
321 **
322 ** This routine returns the number of errors encountered.
323 */
324 static int sqliteProcessJoin(Parse *pParse, Select *p){
325   SrcList *pSrc;                  /* All tables in the FROM clause */
326   int i, j;                       /* Loop counters */
327   struct SrcList_item *pLeft;     /* Left table being joined */
328   struct SrcList_item *pRight;    /* Right table being joined */
329 
330   pSrc = p->pSrc;
331   pLeft = &pSrc->a[0];
332   pRight = &pLeft[1];
333   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
334     Table *pLeftTab = pLeft->pTab;
335     Table *pRightTab = pRight->pTab;
336     int isOuter;
337 
338     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
339     isOuter = (pRight->jointype & JT_OUTER)!=0;
340 
341     /* When the NATURAL keyword is present, add WHERE clause terms for
342     ** every column that the two tables have in common.
343     */
344     if( pRight->jointype & JT_NATURAL ){
345       if( pRight->pOn || pRight->pUsing ){
346         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
347            "an ON or USING clause", 0);
348         return 1;
349       }
350       for(j=0; j<pRightTab->nCol; j++){
351         char *zName;   /* Name of column in the right table */
352         int iLeft;     /* Matching left table */
353         int iLeftCol;  /* Matching column in the left table */
354 
355         zName = pRightTab->aCol[j].zName;
356         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
357           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
358                        isOuter, &p->pWhere);
359         }
360       }
361     }
362 
363     /* Disallow both ON and USING clauses in the same join
364     */
365     if( pRight->pOn && pRight->pUsing ){
366       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
367         "clauses in the same join");
368       return 1;
369     }
370 
371     /* Add the ON clause to the end of the WHERE clause, connected by
372     ** an AND operator.
373     */
374     if( pRight->pOn ){
375       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
376       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
377       pRight->pOn = 0;
378     }
379 
380     /* Create extra terms on the WHERE clause for each column named
381     ** in the USING clause.  Example: If the two tables to be joined are
382     ** A and B and the USING clause names X, Y, and Z, then add this
383     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
384     ** Report an error if any column mentioned in the USING clause is
385     ** not contained in both tables to be joined.
386     */
387     if( pRight->pUsing ){
388       IdList *pList = pRight->pUsing;
389       for(j=0; j<pList->nId; j++){
390         char *zName;     /* Name of the term in the USING clause */
391         int iLeft;       /* Table on the left with matching column name */
392         int iLeftCol;    /* Column number of matching column on the left */
393         int iRightCol;   /* Column number of matching column on the right */
394 
395         zName = pList->a[j].zName;
396         iRightCol = columnIndex(pRightTab, zName);
397         if( iRightCol<0
398          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
399         ){
400           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
401             "not present in both tables", zName);
402           return 1;
403         }
404         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
405                      isOuter, &p->pWhere);
406       }
407     }
408   }
409   return 0;
410 }
411 
412 /*
413 ** Insert code into "v" that will push the record on the top of the
414 ** stack into the sorter.
415 */
416 static void pushOntoSorter(
417   Parse *pParse,         /* Parser context */
418   ExprList *pOrderBy,    /* The ORDER BY clause */
419   Select *pSelect,       /* The whole SELECT statement */
420   int regData            /* Register holding data to be sorted */
421 ){
422   Vdbe *v = pParse->pVdbe;
423   int nExpr = pOrderBy->nExpr;
424   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
425   int regRecord = sqlite3GetTempReg(pParse);
426   int op;
427   sqlite3ExprCacheClear(pParse);
428   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
429   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
430   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
431   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
432   if( pSelect->selFlags & SF_UseSorter ){
433     op = OP_SorterInsert;
434   }else{
435     op = OP_IdxInsert;
436   }
437   sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
438   sqlite3ReleaseTempReg(pParse, regRecord);
439   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
440   if( pSelect->iLimit ){
441     int addr1, addr2;
442     int iLimit;
443     if( pSelect->iOffset ){
444       iLimit = pSelect->iOffset+1;
445     }else{
446       iLimit = pSelect->iLimit;
447     }
448     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
449     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
450     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
451     sqlite3VdbeJumpHere(v, addr1);
452     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
453     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
454     sqlite3VdbeJumpHere(v, addr2);
455   }
456 }
457 
458 /*
459 ** Add code to implement the OFFSET
460 */
461 static void codeOffset(
462   Vdbe *v,          /* Generate code into this VM */
463   Select *p,        /* The SELECT statement being coded */
464   int iContinue     /* Jump here to skip the current record */
465 ){
466   if( p->iOffset && iContinue!=0 ){
467     int addr;
468     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
469     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
470     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
471     VdbeComment((v, "skip OFFSET records"));
472     sqlite3VdbeJumpHere(v, addr);
473   }
474 }
475 
476 /*
477 ** Add code that will check to make sure the N registers starting at iMem
478 ** form a distinct entry.  iTab is a sorting index that holds previously
479 ** seen combinations of the N values.  A new entry is made in iTab
480 ** if the current N values are new.
481 **
482 ** A jump to addrRepeat is made and the N+1 values are popped from the
483 ** stack if the top N elements are not distinct.
484 */
485 static void codeDistinct(
486   Parse *pParse,     /* Parsing and code generating context */
487   int iTab,          /* A sorting index used to test for distinctness */
488   int addrRepeat,    /* Jump to here if not distinct */
489   int N,             /* Number of elements */
490   int iMem           /* First element */
491 ){
492   Vdbe *v;
493   int r1;
494 
495   v = pParse->pVdbe;
496   r1 = sqlite3GetTempReg(pParse);
497   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
498   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
499   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
500   sqlite3ReleaseTempReg(pParse, r1);
501 }
502 
503 #ifndef SQLITE_OMIT_SUBQUERY
504 /*
505 ** Generate an error message when a SELECT is used within a subexpression
506 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
507 ** column.  We do this in a subroutine because the error used to occur
508 ** in multiple places.  (The error only occurs in one place now, but we
509 ** retain the subroutine to minimize code disruption.)
510 */
511 static int checkForMultiColumnSelectError(
512   Parse *pParse,       /* Parse context. */
513   SelectDest *pDest,   /* Destination of SELECT results */
514   int nExpr            /* Number of result columns returned by SELECT */
515 ){
516   int eDest = pDest->eDest;
517   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
518     sqlite3ErrorMsg(pParse, "only a single result allowed for "
519        "a SELECT that is part of an expression");
520     return 1;
521   }else{
522     return 0;
523   }
524 }
525 #endif
526 
527 /*
528 ** This routine generates the code for the inside of the inner loop
529 ** of a SELECT.
530 **
531 ** If srcTab and nColumn are both zero, then the pEList expressions
532 ** are evaluated in order to get the data for this row.  If nColumn>0
533 ** then data is pulled from srcTab and pEList is used only to get the
534 ** datatypes for each column.
535 */
536 static void selectInnerLoop(
537   Parse *pParse,          /* The parser context */
538   Select *p,              /* The complete select statement being coded */
539   ExprList *pEList,       /* List of values being extracted */
540   int srcTab,             /* Pull data from this table */
541   int nColumn,            /* Number of columns in the source table */
542   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
543   int distinct,           /* If >=0, make sure results are distinct */
544   SelectDest *pDest,      /* How to dispose of the results */
545   int iContinue,          /* Jump here to continue with next row */
546   int iBreak              /* Jump here to break out of the inner loop */
547 ){
548   Vdbe *v = pParse->pVdbe;
549   int i;
550   int hasDistinct;        /* True if the DISTINCT keyword is present */
551   int regResult;              /* Start of memory holding result set */
552   int eDest = pDest->eDest;   /* How to dispose of results */
553   int iParm = pDest->iParm;   /* First argument to disposal method */
554   int nResultCol;             /* Number of result columns */
555 
556   assert( v );
557   if( NEVER(v==0) ) return;
558   assert( pEList!=0 );
559   hasDistinct = distinct>=0;
560   if( pOrderBy==0 && !hasDistinct ){
561     codeOffset(v, p, iContinue);
562   }
563 
564   /* Pull the requested columns.
565   */
566   if( nColumn>0 ){
567     nResultCol = nColumn;
568   }else{
569     nResultCol = pEList->nExpr;
570   }
571   if( pDest->iMem==0 ){
572     pDest->iMem = pParse->nMem+1;
573     pDest->nMem = nResultCol;
574     pParse->nMem += nResultCol;
575   }else{
576     assert( pDest->nMem==nResultCol );
577   }
578   regResult = pDest->iMem;
579   if( nColumn>0 ){
580     for(i=0; i<nColumn; i++){
581       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
582     }
583   }else if( eDest!=SRT_Exists ){
584     /* If the destination is an EXISTS(...) expression, the actual
585     ** values returned by the SELECT are not required.
586     */
587     sqlite3ExprCacheClear(pParse);
588     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
589   }
590   nColumn = nResultCol;
591 
592   /* If the DISTINCT keyword was present on the SELECT statement
593   ** and this row has been seen before, then do not make this row
594   ** part of the result.
595   */
596   if( hasDistinct ){
597     assert( pEList!=0 );
598     assert( pEList->nExpr==nColumn );
599     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
600     if( pOrderBy==0 ){
601       codeOffset(v, p, iContinue);
602     }
603   }
604 
605   switch( eDest ){
606     /* In this mode, write each query result to the key of the temporary
607     ** table iParm.
608     */
609 #ifndef SQLITE_OMIT_COMPOUND_SELECT
610     case SRT_Union: {
611       int r1;
612       r1 = sqlite3GetTempReg(pParse);
613       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
614       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
615       sqlite3ReleaseTempReg(pParse, r1);
616       break;
617     }
618 
619     /* Construct a record from the query result, but instead of
620     ** saving that record, use it as a key to delete elements from
621     ** the temporary table iParm.
622     */
623     case SRT_Except: {
624       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
625       break;
626     }
627 #endif
628 
629     /* Store the result as data using a unique key.
630     */
631     case SRT_Table:
632     case SRT_EphemTab: {
633       int r1 = sqlite3GetTempReg(pParse);
634       testcase( eDest==SRT_Table );
635       testcase( eDest==SRT_EphemTab );
636       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
637       if( pOrderBy ){
638         pushOntoSorter(pParse, pOrderBy, p, r1);
639       }else{
640         int r2 = sqlite3GetTempReg(pParse);
641         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
642         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
643         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
644         sqlite3ReleaseTempReg(pParse, r2);
645       }
646       sqlite3ReleaseTempReg(pParse, r1);
647       break;
648     }
649 
650 #ifndef SQLITE_OMIT_SUBQUERY
651     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
652     ** then there should be a single item on the stack.  Write this
653     ** item into the set table with bogus data.
654     */
655     case SRT_Set: {
656       assert( nColumn==1 );
657       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
658       if( pOrderBy ){
659         /* At first glance you would think we could optimize out the
660         ** ORDER BY in this case since the order of entries in the set
661         ** does not matter.  But there might be a LIMIT clause, in which
662         ** case the order does matter */
663         pushOntoSorter(pParse, pOrderBy, p, regResult);
664       }else{
665         int r1 = sqlite3GetTempReg(pParse);
666         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
667         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
668         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
669         sqlite3ReleaseTempReg(pParse, r1);
670       }
671       break;
672     }
673 
674     /* If any row exist in the result set, record that fact and abort.
675     */
676     case SRT_Exists: {
677       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
678       /* The LIMIT clause will terminate the loop for us */
679       break;
680     }
681 
682     /* If this is a scalar select that is part of an expression, then
683     ** store the results in the appropriate memory cell and break out
684     ** of the scan loop.
685     */
686     case SRT_Mem: {
687       assert( nColumn==1 );
688       if( pOrderBy ){
689         pushOntoSorter(pParse, pOrderBy, p, regResult);
690       }else{
691         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
692         /* The LIMIT clause will jump out of the loop for us */
693       }
694       break;
695     }
696 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
697 
698     /* Send the data to the callback function or to a subroutine.  In the
699     ** case of a subroutine, the subroutine itself is responsible for
700     ** popping the data from the stack.
701     */
702     case SRT_Coroutine:
703     case SRT_Output: {
704       testcase( eDest==SRT_Coroutine );
705       testcase( eDest==SRT_Output );
706       if( pOrderBy ){
707         int r1 = sqlite3GetTempReg(pParse);
708         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
709         pushOntoSorter(pParse, pOrderBy, p, r1);
710         sqlite3ReleaseTempReg(pParse, r1);
711       }else if( eDest==SRT_Coroutine ){
712         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
713       }else{
714         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
715         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
716       }
717       break;
718     }
719 
720 #if !defined(SQLITE_OMIT_TRIGGER)
721     /* Discard the results.  This is used for SELECT statements inside
722     ** the body of a TRIGGER.  The purpose of such selects is to call
723     ** user-defined functions that have side effects.  We do not care
724     ** about the actual results of the select.
725     */
726     default: {
727       assert( eDest==SRT_Discard );
728       break;
729     }
730 #endif
731   }
732 
733   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
734   ** there is a sorter, in which case the sorter has already limited
735   ** the output for us.
736   */
737   if( pOrderBy==0 && p->iLimit ){
738     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
739   }
740 }
741 
742 /*
743 ** Given an expression list, generate a KeyInfo structure that records
744 ** the collating sequence for each expression in that expression list.
745 **
746 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
747 ** KeyInfo structure is appropriate for initializing a virtual index to
748 ** implement that clause.  If the ExprList is the result set of a SELECT
749 ** then the KeyInfo structure is appropriate for initializing a virtual
750 ** index to implement a DISTINCT test.
751 **
752 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
753 ** function is responsible for seeing that this structure is eventually
754 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
755 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
756 */
757 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
758   sqlite3 *db = pParse->db;
759   int nExpr;
760   KeyInfo *pInfo;
761   struct ExprList_item *pItem;
762   int i;
763 
764   nExpr = pList->nExpr;
765   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
766   if( pInfo ){
767     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
768     pInfo->nField = (u16)nExpr;
769     pInfo->enc = ENC(db);
770     pInfo->db = db;
771     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
772       CollSeq *pColl;
773       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
774       if( !pColl ){
775         pColl = db->pDfltColl;
776       }
777       pInfo->aColl[i] = pColl;
778       pInfo->aSortOrder[i] = pItem->sortOrder;
779     }
780   }
781   return pInfo;
782 }
783 
784 #ifndef SQLITE_OMIT_COMPOUND_SELECT
785 /*
786 ** Name of the connection operator, used for error messages.
787 */
788 static const char *selectOpName(int id){
789   char *z;
790   switch( id ){
791     case TK_ALL:       z = "UNION ALL";   break;
792     case TK_INTERSECT: z = "INTERSECT";   break;
793     case TK_EXCEPT:    z = "EXCEPT";      break;
794     default:           z = "UNION";       break;
795   }
796   return z;
797 }
798 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
799 
800 #ifndef SQLITE_OMIT_EXPLAIN
801 /*
802 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
803 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
804 ** where the caption is of the form:
805 **
806 **   "USE TEMP B-TREE FOR xxx"
807 **
808 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
809 ** is determined by the zUsage argument.
810 */
811 static void explainTempTable(Parse *pParse, const char *zUsage){
812   if( pParse->explain==2 ){
813     Vdbe *v = pParse->pVdbe;
814     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
815     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
816   }
817 }
818 
819 /*
820 ** Assign expression b to lvalue a. A second, no-op, version of this macro
821 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
822 ** in sqlite3Select() to assign values to structure member variables that
823 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
824 ** code with #ifndef directives.
825 */
826 # define explainSetInteger(a, b) a = b
827 
828 #else
829 /* No-op versions of the explainXXX() functions and macros. */
830 # define explainTempTable(y,z)
831 # define explainSetInteger(y,z)
832 #endif
833 
834 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
835 /*
836 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
837 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
838 ** where the caption is of one of the two forms:
839 **
840 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
841 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
842 **
843 ** where iSub1 and iSub2 are the integers passed as the corresponding
844 ** function parameters, and op is the text representation of the parameter
845 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
846 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
847 ** false, or the second form if it is true.
848 */
849 static void explainComposite(
850   Parse *pParse,                  /* Parse context */
851   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
852   int iSub1,                      /* Subquery id 1 */
853   int iSub2,                      /* Subquery id 2 */
854   int bUseTmp                     /* True if a temp table was used */
855 ){
856   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
857   if( pParse->explain==2 ){
858     Vdbe *v = pParse->pVdbe;
859     char *zMsg = sqlite3MPrintf(
860         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
861         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
862     );
863     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
864   }
865 }
866 #else
867 /* No-op versions of the explainXXX() functions and macros. */
868 # define explainComposite(v,w,x,y,z)
869 #endif
870 
871 /*
872 ** If the inner loop was generated using a non-null pOrderBy argument,
873 ** then the results were placed in a sorter.  After the loop is terminated
874 ** we need to run the sorter and output the results.  The following
875 ** routine generates the code needed to do that.
876 */
877 static void generateSortTail(
878   Parse *pParse,    /* Parsing context */
879   Select *p,        /* The SELECT statement */
880   Vdbe *v,          /* Generate code into this VDBE */
881   int nColumn,      /* Number of columns of data */
882   SelectDest *pDest /* Write the sorted results here */
883 ){
884   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
885   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
886   int addr;
887   int iTab;
888   int pseudoTab = 0;
889   ExprList *pOrderBy = p->pOrderBy;
890 
891   int eDest = pDest->eDest;
892   int iParm = pDest->iParm;
893 
894   int regRow;
895   int regRowid;
896 
897   iTab = pOrderBy->iECursor;
898   regRow = sqlite3GetTempReg(pParse);
899   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
900     pseudoTab = pParse->nTab++;
901     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
902     regRowid = 0;
903   }else{
904     regRowid = sqlite3GetTempReg(pParse);
905   }
906   if( p->selFlags & SF_UseSorter ){
907     int regSortOut = ++pParse->nMem;
908     int ptab2 = pParse->nTab++;
909     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
910     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
911     codeOffset(v, p, addrContinue);
912     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
913     sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
914     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
915   }else{
916     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
917     codeOffset(v, p, addrContinue);
918     sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
919   }
920   switch( eDest ){
921     case SRT_Table:
922     case SRT_EphemTab: {
923       testcase( eDest==SRT_Table );
924       testcase( eDest==SRT_EphemTab );
925       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
926       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
927       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
928       break;
929     }
930 #ifndef SQLITE_OMIT_SUBQUERY
931     case SRT_Set: {
932       assert( nColumn==1 );
933       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
934       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
935       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
936       break;
937     }
938     case SRT_Mem: {
939       assert( nColumn==1 );
940       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
941       /* The LIMIT clause will terminate the loop for us */
942       break;
943     }
944 #endif
945     default: {
946       int i;
947       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
948       testcase( eDest==SRT_Output );
949       testcase( eDest==SRT_Coroutine );
950       for(i=0; i<nColumn; i++){
951         assert( regRow!=pDest->iMem+i );
952         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
953         if( i==0 ){
954           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
955         }
956       }
957       if( eDest==SRT_Output ){
958         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
959         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
960       }else{
961         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
962       }
963       break;
964     }
965   }
966   sqlite3ReleaseTempReg(pParse, regRow);
967   sqlite3ReleaseTempReg(pParse, regRowid);
968 
969   /* The bottom of the loop
970   */
971   sqlite3VdbeResolveLabel(v, addrContinue);
972   if( p->selFlags & SF_UseSorter ){
973     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
974   }else{
975     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
976   }
977   sqlite3VdbeResolveLabel(v, addrBreak);
978   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
979     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
980   }
981 }
982 
983 /*
984 ** Return a pointer to a string containing the 'declaration type' of the
985 ** expression pExpr. The string may be treated as static by the caller.
986 **
987 ** The declaration type is the exact datatype definition extracted from the
988 ** original CREATE TABLE statement if the expression is a column. The
989 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
990 ** is considered a column can be complex in the presence of subqueries. The
991 ** result-set expression in all of the following SELECT statements is
992 ** considered a column by this function.
993 **
994 **   SELECT col FROM tbl;
995 **   SELECT (SELECT col FROM tbl;
996 **   SELECT (SELECT col FROM tbl);
997 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
998 **
999 ** The declaration type for any expression other than a column is NULL.
1000 */
1001 static const char *columnType(
1002   NameContext *pNC,
1003   Expr *pExpr,
1004   const char **pzOriginDb,
1005   const char **pzOriginTab,
1006   const char **pzOriginCol
1007 ){
1008   char const *zType = 0;
1009   char const *zOriginDb = 0;
1010   char const *zOriginTab = 0;
1011   char const *zOriginCol = 0;
1012   int j;
1013   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1014 
1015   switch( pExpr->op ){
1016     case TK_AGG_COLUMN:
1017     case TK_COLUMN: {
1018       /* The expression is a column. Locate the table the column is being
1019       ** extracted from in NameContext.pSrcList. This table may be real
1020       ** database table or a subquery.
1021       */
1022       Table *pTab = 0;            /* Table structure column is extracted from */
1023       Select *pS = 0;             /* Select the column is extracted from */
1024       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1025       testcase( pExpr->op==TK_AGG_COLUMN );
1026       testcase( pExpr->op==TK_COLUMN );
1027       while( pNC && !pTab ){
1028         SrcList *pTabList = pNC->pSrcList;
1029         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1030         if( j<pTabList->nSrc ){
1031           pTab = pTabList->a[j].pTab;
1032           pS = pTabList->a[j].pSelect;
1033         }else{
1034           pNC = pNC->pNext;
1035         }
1036       }
1037 
1038       if( pTab==0 ){
1039         /* At one time, code such as "SELECT new.x" within a trigger would
1040         ** cause this condition to run.  Since then, we have restructured how
1041         ** trigger code is generated and so this condition is no longer
1042         ** possible. However, it can still be true for statements like
1043         ** the following:
1044         **
1045         **   CREATE TABLE t1(col INTEGER);
1046         **   SELECT (SELECT t1.col) FROM FROM t1;
1047         **
1048         ** when columnType() is called on the expression "t1.col" in the
1049         ** sub-select. In this case, set the column type to NULL, even
1050         ** though it should really be "INTEGER".
1051         **
1052         ** This is not a problem, as the column type of "t1.col" is never
1053         ** used. When columnType() is called on the expression
1054         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1055         ** branch below.  */
1056         break;
1057       }
1058 
1059       assert( pTab && pExpr->pTab==pTab );
1060       if( pS ){
1061         /* The "table" is actually a sub-select or a view in the FROM clause
1062         ** of the SELECT statement. Return the declaration type and origin
1063         ** data for the result-set column of the sub-select.
1064         */
1065         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1066           /* If iCol is less than zero, then the expression requests the
1067           ** rowid of the sub-select or view. This expression is legal (see
1068           ** test case misc2.2.2) - it always evaluates to NULL.
1069           */
1070           NameContext sNC;
1071           Expr *p = pS->pEList->a[iCol].pExpr;
1072           sNC.pSrcList = pS->pSrc;
1073           sNC.pNext = pNC;
1074           sNC.pParse = pNC->pParse;
1075           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1076         }
1077       }else if( ALWAYS(pTab->pSchema) ){
1078         /* A real table */
1079         assert( !pS );
1080         if( iCol<0 ) iCol = pTab->iPKey;
1081         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1082         if( iCol<0 ){
1083           zType = "INTEGER";
1084           zOriginCol = "rowid";
1085         }else{
1086           zType = pTab->aCol[iCol].zType;
1087           zOriginCol = pTab->aCol[iCol].zName;
1088         }
1089         zOriginTab = pTab->zName;
1090         if( pNC->pParse ){
1091           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1092           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
1093         }
1094       }
1095       break;
1096     }
1097 #ifndef SQLITE_OMIT_SUBQUERY
1098     case TK_SELECT: {
1099       /* The expression is a sub-select. Return the declaration type and
1100       ** origin info for the single column in the result set of the SELECT
1101       ** statement.
1102       */
1103       NameContext sNC;
1104       Select *pS = pExpr->x.pSelect;
1105       Expr *p = pS->pEList->a[0].pExpr;
1106       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1107       sNC.pSrcList = pS->pSrc;
1108       sNC.pNext = pNC;
1109       sNC.pParse = pNC->pParse;
1110       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1111       break;
1112     }
1113 #endif
1114   }
1115 
1116   if( pzOriginDb ){
1117     assert( pzOriginTab && pzOriginCol );
1118     *pzOriginDb = zOriginDb;
1119     *pzOriginTab = zOriginTab;
1120     *pzOriginCol = zOriginCol;
1121   }
1122   return zType;
1123 }
1124 
1125 /*
1126 ** Generate code that will tell the VDBE the declaration types of columns
1127 ** in the result set.
1128 */
1129 static void generateColumnTypes(
1130   Parse *pParse,      /* Parser context */
1131   SrcList *pTabList,  /* List of tables */
1132   ExprList *pEList    /* Expressions defining the result set */
1133 ){
1134 #ifndef SQLITE_OMIT_DECLTYPE
1135   Vdbe *v = pParse->pVdbe;
1136   int i;
1137   NameContext sNC;
1138   sNC.pSrcList = pTabList;
1139   sNC.pParse = pParse;
1140   for(i=0; i<pEList->nExpr; i++){
1141     Expr *p = pEList->a[i].pExpr;
1142     const char *zType;
1143 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1144     const char *zOrigDb = 0;
1145     const char *zOrigTab = 0;
1146     const char *zOrigCol = 0;
1147     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1148 
1149     /* The vdbe must make its own copy of the column-type and other
1150     ** column specific strings, in case the schema is reset before this
1151     ** virtual machine is deleted.
1152     */
1153     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1154     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1155     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1156 #else
1157     zType = columnType(&sNC, p, 0, 0, 0);
1158 #endif
1159     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1160   }
1161 #endif /* SQLITE_OMIT_DECLTYPE */
1162 }
1163 
1164 /*
1165 ** Generate code that will tell the VDBE the names of columns
1166 ** in the result set.  This information is used to provide the
1167 ** azCol[] values in the callback.
1168 */
1169 static void generateColumnNames(
1170   Parse *pParse,      /* Parser context */
1171   SrcList *pTabList,  /* List of tables */
1172   ExprList *pEList    /* Expressions defining the result set */
1173 ){
1174   Vdbe *v = pParse->pVdbe;
1175   int i, j;
1176   sqlite3 *db = pParse->db;
1177   int fullNames, shortNames;
1178 
1179 #ifndef SQLITE_OMIT_EXPLAIN
1180   /* If this is an EXPLAIN, skip this step */
1181   if( pParse->explain ){
1182     return;
1183   }
1184 #endif
1185 
1186   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1187   pParse->colNamesSet = 1;
1188   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1189   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1190   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1191   for(i=0; i<pEList->nExpr; i++){
1192     Expr *p;
1193     p = pEList->a[i].pExpr;
1194     if( NEVER(p==0) ) continue;
1195     if( pEList->a[i].zName ){
1196       char *zName = pEList->a[i].zName;
1197       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1198     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1199       Table *pTab;
1200       char *zCol;
1201       int iCol = p->iColumn;
1202       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1203         if( pTabList->a[j].iCursor==p->iTable ) break;
1204       }
1205       assert( j<pTabList->nSrc );
1206       pTab = pTabList->a[j].pTab;
1207       if( iCol<0 ) iCol = pTab->iPKey;
1208       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1209       if( iCol<0 ){
1210         zCol = "rowid";
1211       }else{
1212         zCol = pTab->aCol[iCol].zName;
1213       }
1214       if( !shortNames && !fullNames ){
1215         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1216             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1217       }else if( fullNames ){
1218         char *zName = 0;
1219         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1220         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1221       }else{
1222         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1223       }
1224     }else{
1225       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1226           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1227     }
1228   }
1229   generateColumnTypes(pParse, pTabList, pEList);
1230 }
1231 
1232 /*
1233 ** Given a an expression list (which is really the list of expressions
1234 ** that form the result set of a SELECT statement) compute appropriate
1235 ** column names for a table that would hold the expression list.
1236 **
1237 ** All column names will be unique.
1238 **
1239 ** Only the column names are computed.  Column.zType, Column.zColl,
1240 ** and other fields of Column are zeroed.
1241 **
1242 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1243 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1244 */
1245 static int selectColumnsFromExprList(
1246   Parse *pParse,          /* Parsing context */
1247   ExprList *pEList,       /* Expr list from which to derive column names */
1248   int *pnCol,             /* Write the number of columns here */
1249   Column **paCol          /* Write the new column list here */
1250 ){
1251   sqlite3 *db = pParse->db;   /* Database connection */
1252   int i, j;                   /* Loop counters */
1253   int cnt;                    /* Index added to make the name unique */
1254   Column *aCol, *pCol;        /* For looping over result columns */
1255   int nCol;                   /* Number of columns in the result set */
1256   Expr *p;                    /* Expression for a single result column */
1257   char *zName;                /* Column name */
1258   int nName;                  /* Size of name in zName[] */
1259 
1260   *pnCol = nCol = pEList->nExpr;
1261   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1262   if( aCol==0 ) return SQLITE_NOMEM;
1263   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1264     /* Get an appropriate name for the column
1265     */
1266     p = pEList->a[i].pExpr;
1267     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1268                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1269     if( (zName = pEList->a[i].zName)!=0 ){
1270       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1271       zName = sqlite3DbStrDup(db, zName);
1272     }else{
1273       Expr *pColExpr = p;  /* The expression that is the result column name */
1274       Table *pTab;         /* Table associated with this expression */
1275       while( pColExpr->op==TK_DOT ){
1276         pColExpr = pColExpr->pRight;
1277         assert( pColExpr!=0 );
1278       }
1279       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1280         /* For columns use the column name name */
1281         int iCol = pColExpr->iColumn;
1282         pTab = pColExpr->pTab;
1283         if( iCol<0 ) iCol = pTab->iPKey;
1284         zName = sqlite3MPrintf(db, "%s",
1285                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1286       }else if( pColExpr->op==TK_ID ){
1287         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1288         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1289       }else{
1290         /* Use the original text of the column expression as its name */
1291         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1292       }
1293     }
1294     if( db->mallocFailed ){
1295       sqlite3DbFree(db, zName);
1296       break;
1297     }
1298 
1299     /* Make sure the column name is unique.  If the name is not unique,
1300     ** append a integer to the name so that it becomes unique.
1301     */
1302     nName = sqlite3Strlen30(zName);
1303     for(j=cnt=0; j<i; j++){
1304       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1305         char *zNewName;
1306         zName[nName] = 0;
1307         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1308         sqlite3DbFree(db, zName);
1309         zName = zNewName;
1310         j = -1;
1311         if( zName==0 ) break;
1312       }
1313     }
1314     pCol->zName = zName;
1315   }
1316   if( db->mallocFailed ){
1317     for(j=0; j<i; j++){
1318       sqlite3DbFree(db, aCol[j].zName);
1319     }
1320     sqlite3DbFree(db, aCol);
1321     *paCol = 0;
1322     *pnCol = 0;
1323     return SQLITE_NOMEM;
1324   }
1325   return SQLITE_OK;
1326 }
1327 
1328 /*
1329 ** Add type and collation information to a column list based on
1330 ** a SELECT statement.
1331 **
1332 ** The column list presumably came from selectColumnNamesFromExprList().
1333 ** The column list has only names, not types or collations.  This
1334 ** routine goes through and adds the types and collations.
1335 **
1336 ** This routine requires that all identifiers in the SELECT
1337 ** statement be resolved.
1338 */
1339 static void selectAddColumnTypeAndCollation(
1340   Parse *pParse,        /* Parsing contexts */
1341   int nCol,             /* Number of columns */
1342   Column *aCol,         /* List of columns */
1343   Select *pSelect       /* SELECT used to determine types and collations */
1344 ){
1345   sqlite3 *db = pParse->db;
1346   NameContext sNC;
1347   Column *pCol;
1348   CollSeq *pColl;
1349   int i;
1350   Expr *p;
1351   struct ExprList_item *a;
1352 
1353   assert( pSelect!=0 );
1354   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1355   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1356   if( db->mallocFailed ) return;
1357   memset(&sNC, 0, sizeof(sNC));
1358   sNC.pSrcList = pSelect->pSrc;
1359   a = pSelect->pEList->a;
1360   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1361     p = a[i].pExpr;
1362     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1363     pCol->affinity = sqlite3ExprAffinity(p);
1364     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1365     pColl = sqlite3ExprCollSeq(pParse, p);
1366     if( pColl ){
1367       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1368     }
1369   }
1370 }
1371 
1372 /*
1373 ** Given a SELECT statement, generate a Table structure that describes
1374 ** the result set of that SELECT.
1375 */
1376 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1377   Table *pTab;
1378   sqlite3 *db = pParse->db;
1379   int savedFlags;
1380 
1381   savedFlags = db->flags;
1382   db->flags &= ~SQLITE_FullColNames;
1383   db->flags |= SQLITE_ShortColNames;
1384   sqlite3SelectPrep(pParse, pSelect, 0);
1385   if( pParse->nErr ) return 0;
1386   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1387   db->flags = savedFlags;
1388   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1389   if( pTab==0 ){
1390     return 0;
1391   }
1392   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1393   ** is disabled */
1394   assert( db->lookaside.bEnabled==0 );
1395   pTab->nRef = 1;
1396   pTab->zName = 0;
1397   pTab->nRowEst = 1000000;
1398   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1399   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1400   pTab->iPKey = -1;
1401   if( db->mallocFailed ){
1402     sqlite3DeleteTable(db, pTab);
1403     return 0;
1404   }
1405   return pTab;
1406 }
1407 
1408 /*
1409 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1410 ** If an error occurs, return NULL and leave a message in pParse.
1411 */
1412 Vdbe *sqlite3GetVdbe(Parse *pParse){
1413   Vdbe *v = pParse->pVdbe;
1414   if( v==0 ){
1415     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1416 #ifndef SQLITE_OMIT_TRACE
1417     if( v ){
1418       sqlite3VdbeAddOp0(v, OP_Trace);
1419     }
1420 #endif
1421   }
1422   return v;
1423 }
1424 
1425 
1426 /*
1427 ** Compute the iLimit and iOffset fields of the SELECT based on the
1428 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1429 ** that appear in the original SQL statement after the LIMIT and OFFSET
1430 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1431 ** are the integer memory register numbers for counters used to compute
1432 ** the limit and offset.  If there is no limit and/or offset, then
1433 ** iLimit and iOffset are negative.
1434 **
1435 ** This routine changes the values of iLimit and iOffset only if
1436 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1437 ** iOffset should have been preset to appropriate default values
1438 ** (usually but not always -1) prior to calling this routine.
1439 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1440 ** redefined.  The UNION ALL operator uses this property to force
1441 ** the reuse of the same limit and offset registers across multiple
1442 ** SELECT statements.
1443 */
1444 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1445   Vdbe *v = 0;
1446   int iLimit = 0;
1447   int iOffset;
1448   int addr1, n;
1449   if( p->iLimit ) return;
1450 
1451   /*
1452   ** "LIMIT -1" always shows all rows.  There is some
1453   ** contraversy about what the correct behavior should be.
1454   ** The current implementation interprets "LIMIT 0" to mean
1455   ** no rows.
1456   */
1457   sqlite3ExprCacheClear(pParse);
1458   assert( p->pOffset==0 || p->pLimit!=0 );
1459   if( p->pLimit ){
1460     p->iLimit = iLimit = ++pParse->nMem;
1461     v = sqlite3GetVdbe(pParse);
1462     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1463     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1464       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1465       VdbeComment((v, "LIMIT counter"));
1466       if( n==0 ){
1467         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1468       }else{
1469         if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
1470       }
1471     }else{
1472       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1473       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1474       VdbeComment((v, "LIMIT counter"));
1475       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1476     }
1477     if( p->pOffset ){
1478       p->iOffset = iOffset = ++pParse->nMem;
1479       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1480       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1481       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1482       VdbeComment((v, "OFFSET counter"));
1483       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1484       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1485       sqlite3VdbeJumpHere(v, addr1);
1486       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1487       VdbeComment((v, "LIMIT+OFFSET"));
1488       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1489       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1490       sqlite3VdbeJumpHere(v, addr1);
1491     }
1492   }
1493 }
1494 
1495 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1496 /*
1497 ** Return the appropriate collating sequence for the iCol-th column of
1498 ** the result set for the compound-select statement "p".  Return NULL if
1499 ** the column has no default collating sequence.
1500 **
1501 ** The collating sequence for the compound select is taken from the
1502 ** left-most term of the select that has a collating sequence.
1503 */
1504 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1505   CollSeq *pRet;
1506   if( p->pPrior ){
1507     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1508   }else{
1509     pRet = 0;
1510   }
1511   assert( iCol>=0 );
1512   if( pRet==0 && iCol<p->pEList->nExpr ){
1513     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1514   }
1515   return pRet;
1516 }
1517 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1518 
1519 /* Forward reference */
1520 static int multiSelectOrderBy(
1521   Parse *pParse,        /* Parsing context */
1522   Select *p,            /* The right-most of SELECTs to be coded */
1523   SelectDest *pDest     /* What to do with query results */
1524 );
1525 
1526 
1527 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1528 /*
1529 ** This routine is called to process a compound query form from
1530 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1531 ** INTERSECT
1532 **
1533 ** "p" points to the right-most of the two queries.  the query on the
1534 ** left is p->pPrior.  The left query could also be a compound query
1535 ** in which case this routine will be called recursively.
1536 **
1537 ** The results of the total query are to be written into a destination
1538 ** of type eDest with parameter iParm.
1539 **
1540 ** Example 1:  Consider a three-way compound SQL statement.
1541 **
1542 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1543 **
1544 ** This statement is parsed up as follows:
1545 **
1546 **     SELECT c FROM t3
1547 **      |
1548 **      `----->  SELECT b FROM t2
1549 **                |
1550 **                `------>  SELECT a FROM t1
1551 **
1552 ** The arrows in the diagram above represent the Select.pPrior pointer.
1553 ** So if this routine is called with p equal to the t3 query, then
1554 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1555 **
1556 ** Notice that because of the way SQLite parses compound SELECTs, the
1557 ** individual selects always group from left to right.
1558 */
1559 static int multiSelect(
1560   Parse *pParse,        /* Parsing context */
1561   Select *p,            /* The right-most of SELECTs to be coded */
1562   SelectDest *pDest     /* What to do with query results */
1563 ){
1564   int rc = SQLITE_OK;   /* Success code from a subroutine */
1565   Select *pPrior;       /* Another SELECT immediately to our left */
1566   Vdbe *v;              /* Generate code to this VDBE */
1567   SelectDest dest;      /* Alternative data destination */
1568   Select *pDelete = 0;  /* Chain of simple selects to delete */
1569   sqlite3 *db;          /* Database connection */
1570 #ifndef SQLITE_OMIT_EXPLAIN
1571   int iSub1;            /* EQP id of left-hand query */
1572   int iSub2;            /* EQP id of right-hand query */
1573 #endif
1574 
1575   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1576   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1577   */
1578   assert( p && p->pPrior );  /* Calling function guarantees this much */
1579   db = pParse->db;
1580   pPrior = p->pPrior;
1581   assert( pPrior->pRightmost!=pPrior );
1582   assert( pPrior->pRightmost==p->pRightmost );
1583   dest = *pDest;
1584   if( pPrior->pOrderBy ){
1585     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1586       selectOpName(p->op));
1587     rc = 1;
1588     goto multi_select_end;
1589   }
1590   if( pPrior->pLimit ){
1591     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1592       selectOpName(p->op));
1593     rc = 1;
1594     goto multi_select_end;
1595   }
1596 
1597   v = sqlite3GetVdbe(pParse);
1598   assert( v!=0 );  /* The VDBE already created by calling function */
1599 
1600   /* Create the destination temporary table if necessary
1601   */
1602   if( dest.eDest==SRT_EphemTab ){
1603     assert( p->pEList );
1604     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1605     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1606     dest.eDest = SRT_Table;
1607   }
1608 
1609   /* Make sure all SELECTs in the statement have the same number of elements
1610   ** in their result sets.
1611   */
1612   assert( p->pEList && pPrior->pEList );
1613   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1614     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1615       " do not have the same number of result columns", selectOpName(p->op));
1616     rc = 1;
1617     goto multi_select_end;
1618   }
1619 
1620   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1621   */
1622   if( p->pOrderBy ){
1623     return multiSelectOrderBy(pParse, p, pDest);
1624   }
1625 
1626   /* Generate code for the left and right SELECT statements.
1627   */
1628   switch( p->op ){
1629     case TK_ALL: {
1630       int addr = 0;
1631       int nLimit;
1632       assert( !pPrior->pLimit );
1633       pPrior->pLimit = p->pLimit;
1634       pPrior->pOffset = p->pOffset;
1635       explainSetInteger(iSub1, pParse->iNextSelectId);
1636       rc = sqlite3Select(pParse, pPrior, &dest);
1637       p->pLimit = 0;
1638       p->pOffset = 0;
1639       if( rc ){
1640         goto multi_select_end;
1641       }
1642       p->pPrior = 0;
1643       p->iLimit = pPrior->iLimit;
1644       p->iOffset = pPrior->iOffset;
1645       if( p->iLimit ){
1646         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1647         VdbeComment((v, "Jump ahead if LIMIT reached"));
1648       }
1649       explainSetInteger(iSub2, pParse->iNextSelectId);
1650       rc = sqlite3Select(pParse, p, &dest);
1651       testcase( rc!=SQLITE_OK );
1652       pDelete = p->pPrior;
1653       p->pPrior = pPrior;
1654       p->nSelectRow += pPrior->nSelectRow;
1655       if( pPrior->pLimit
1656        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1657        && p->nSelectRow > (double)nLimit
1658       ){
1659         p->nSelectRow = (double)nLimit;
1660       }
1661       if( addr ){
1662         sqlite3VdbeJumpHere(v, addr);
1663       }
1664       break;
1665     }
1666     case TK_EXCEPT:
1667     case TK_UNION: {
1668       int unionTab;    /* Cursor number of the temporary table holding result */
1669       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1670       int priorOp;     /* The SRT_ operation to apply to prior selects */
1671       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1672       int addr;
1673       SelectDest uniondest;
1674 
1675       testcase( p->op==TK_EXCEPT );
1676       testcase( p->op==TK_UNION );
1677       priorOp = SRT_Union;
1678       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1679         /* We can reuse a temporary table generated by a SELECT to our
1680         ** right.
1681         */
1682         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1683                                      ** of a 3-way or more compound */
1684         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1685         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1686         unionTab = dest.iParm;
1687       }else{
1688         /* We will need to create our own temporary table to hold the
1689         ** intermediate results.
1690         */
1691         unionTab = pParse->nTab++;
1692         assert( p->pOrderBy==0 );
1693         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1694         assert( p->addrOpenEphm[0] == -1 );
1695         p->addrOpenEphm[0] = addr;
1696         p->pRightmost->selFlags |= SF_UsesEphemeral;
1697         assert( p->pEList );
1698       }
1699 
1700       /* Code the SELECT statements to our left
1701       */
1702       assert( !pPrior->pOrderBy );
1703       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1704       explainSetInteger(iSub1, pParse->iNextSelectId);
1705       rc = sqlite3Select(pParse, pPrior, &uniondest);
1706       if( rc ){
1707         goto multi_select_end;
1708       }
1709 
1710       /* Code the current SELECT statement
1711       */
1712       if( p->op==TK_EXCEPT ){
1713         op = SRT_Except;
1714       }else{
1715         assert( p->op==TK_UNION );
1716         op = SRT_Union;
1717       }
1718       p->pPrior = 0;
1719       pLimit = p->pLimit;
1720       p->pLimit = 0;
1721       pOffset = p->pOffset;
1722       p->pOffset = 0;
1723       uniondest.eDest = op;
1724       explainSetInteger(iSub2, pParse->iNextSelectId);
1725       rc = sqlite3Select(pParse, p, &uniondest);
1726       testcase( rc!=SQLITE_OK );
1727       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1728       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1729       sqlite3ExprListDelete(db, p->pOrderBy);
1730       pDelete = p->pPrior;
1731       p->pPrior = pPrior;
1732       p->pOrderBy = 0;
1733       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1734       sqlite3ExprDelete(db, p->pLimit);
1735       p->pLimit = pLimit;
1736       p->pOffset = pOffset;
1737       p->iLimit = 0;
1738       p->iOffset = 0;
1739 
1740       /* Convert the data in the temporary table into whatever form
1741       ** it is that we currently need.
1742       */
1743       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1744       if( dest.eDest!=priorOp ){
1745         int iCont, iBreak, iStart;
1746         assert( p->pEList );
1747         if( dest.eDest==SRT_Output ){
1748           Select *pFirst = p;
1749           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1750           generateColumnNames(pParse, 0, pFirst->pEList);
1751         }
1752         iBreak = sqlite3VdbeMakeLabel(v);
1753         iCont = sqlite3VdbeMakeLabel(v);
1754         computeLimitRegisters(pParse, p, iBreak);
1755         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1756         iStart = sqlite3VdbeCurrentAddr(v);
1757         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1758                         0, -1, &dest, iCont, iBreak);
1759         sqlite3VdbeResolveLabel(v, iCont);
1760         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1761         sqlite3VdbeResolveLabel(v, iBreak);
1762         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1763       }
1764       break;
1765     }
1766     default: assert( p->op==TK_INTERSECT ); {
1767       int tab1, tab2;
1768       int iCont, iBreak, iStart;
1769       Expr *pLimit, *pOffset;
1770       int addr;
1771       SelectDest intersectdest;
1772       int r1;
1773 
1774       /* INTERSECT is different from the others since it requires
1775       ** two temporary tables.  Hence it has its own case.  Begin
1776       ** by allocating the tables we will need.
1777       */
1778       tab1 = pParse->nTab++;
1779       tab2 = pParse->nTab++;
1780       assert( p->pOrderBy==0 );
1781 
1782       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1783       assert( p->addrOpenEphm[0] == -1 );
1784       p->addrOpenEphm[0] = addr;
1785       p->pRightmost->selFlags |= SF_UsesEphemeral;
1786       assert( p->pEList );
1787 
1788       /* Code the SELECTs to our left into temporary table "tab1".
1789       */
1790       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1791       explainSetInteger(iSub1, pParse->iNextSelectId);
1792       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1793       if( rc ){
1794         goto multi_select_end;
1795       }
1796 
1797       /* Code the current SELECT into temporary table "tab2"
1798       */
1799       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1800       assert( p->addrOpenEphm[1] == -1 );
1801       p->addrOpenEphm[1] = addr;
1802       p->pPrior = 0;
1803       pLimit = p->pLimit;
1804       p->pLimit = 0;
1805       pOffset = p->pOffset;
1806       p->pOffset = 0;
1807       intersectdest.iParm = tab2;
1808       explainSetInteger(iSub2, pParse->iNextSelectId);
1809       rc = sqlite3Select(pParse, p, &intersectdest);
1810       testcase( rc!=SQLITE_OK );
1811       pDelete = p->pPrior;
1812       p->pPrior = pPrior;
1813       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1814       sqlite3ExprDelete(db, p->pLimit);
1815       p->pLimit = pLimit;
1816       p->pOffset = pOffset;
1817 
1818       /* Generate code to take the intersection of the two temporary
1819       ** tables.
1820       */
1821       assert( p->pEList );
1822       if( dest.eDest==SRT_Output ){
1823         Select *pFirst = p;
1824         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1825         generateColumnNames(pParse, 0, pFirst->pEList);
1826       }
1827       iBreak = sqlite3VdbeMakeLabel(v);
1828       iCont = sqlite3VdbeMakeLabel(v);
1829       computeLimitRegisters(pParse, p, iBreak);
1830       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1831       r1 = sqlite3GetTempReg(pParse);
1832       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1833       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1834       sqlite3ReleaseTempReg(pParse, r1);
1835       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1836                       0, -1, &dest, iCont, iBreak);
1837       sqlite3VdbeResolveLabel(v, iCont);
1838       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1839       sqlite3VdbeResolveLabel(v, iBreak);
1840       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1841       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1842       break;
1843     }
1844   }
1845 
1846   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1847 
1848   /* Compute collating sequences used by
1849   ** temporary tables needed to implement the compound select.
1850   ** Attach the KeyInfo structure to all temporary tables.
1851   **
1852   ** This section is run by the right-most SELECT statement only.
1853   ** SELECT statements to the left always skip this part.  The right-most
1854   ** SELECT might also skip this part if it has no ORDER BY clause and
1855   ** no temp tables are required.
1856   */
1857   if( p->selFlags & SF_UsesEphemeral ){
1858     int i;                        /* Loop counter */
1859     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1860     Select *pLoop;                /* For looping through SELECT statements */
1861     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1862     int nCol;                     /* Number of columns in result set */
1863 
1864     assert( p->pRightmost==p );
1865     nCol = p->pEList->nExpr;
1866     pKeyInfo = sqlite3DbMallocZero(db,
1867                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1868     if( !pKeyInfo ){
1869       rc = SQLITE_NOMEM;
1870       goto multi_select_end;
1871     }
1872 
1873     pKeyInfo->enc = ENC(db);
1874     pKeyInfo->nField = (u16)nCol;
1875 
1876     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1877       *apColl = multiSelectCollSeq(pParse, p, i);
1878       if( 0==*apColl ){
1879         *apColl = db->pDfltColl;
1880       }
1881     }
1882 
1883     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1884       for(i=0; i<2; i++){
1885         int addr = pLoop->addrOpenEphm[i];
1886         if( addr<0 ){
1887           /* If [0] is unused then [1] is also unused.  So we can
1888           ** always safely abort as soon as the first unused slot is found */
1889           assert( pLoop->addrOpenEphm[1]<0 );
1890           break;
1891         }
1892         sqlite3VdbeChangeP2(v, addr, nCol);
1893         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1894         pLoop->addrOpenEphm[i] = -1;
1895       }
1896     }
1897     sqlite3DbFree(db, pKeyInfo);
1898   }
1899 
1900 multi_select_end:
1901   pDest->iMem = dest.iMem;
1902   pDest->nMem = dest.nMem;
1903   sqlite3SelectDelete(db, pDelete);
1904   return rc;
1905 }
1906 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1907 
1908 /*
1909 ** Code an output subroutine for a coroutine implementation of a
1910 ** SELECT statment.
1911 **
1912 ** The data to be output is contained in pIn->iMem.  There are
1913 ** pIn->nMem columns to be output.  pDest is where the output should
1914 ** be sent.
1915 **
1916 ** regReturn is the number of the register holding the subroutine
1917 ** return address.
1918 **
1919 ** If regPrev>0 then it is the first register in a vector that
1920 ** records the previous output.  mem[regPrev] is a flag that is false
1921 ** if there has been no previous output.  If regPrev>0 then code is
1922 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1923 ** keys.
1924 **
1925 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1926 ** iBreak.
1927 */
1928 static int generateOutputSubroutine(
1929   Parse *pParse,          /* Parsing context */
1930   Select *p,              /* The SELECT statement */
1931   SelectDest *pIn,        /* Coroutine supplying data */
1932   SelectDest *pDest,      /* Where to send the data */
1933   int regReturn,          /* The return address register */
1934   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1935   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1936   int p4type,             /* The p4 type for pKeyInfo */
1937   int iBreak              /* Jump here if we hit the LIMIT */
1938 ){
1939   Vdbe *v = pParse->pVdbe;
1940   int iContinue;
1941   int addr;
1942 
1943   addr = sqlite3VdbeCurrentAddr(v);
1944   iContinue = sqlite3VdbeMakeLabel(v);
1945 
1946   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1947   */
1948   if( regPrev ){
1949     int j1, j2;
1950     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1951     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1952                               (char*)pKeyInfo, p4type);
1953     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1954     sqlite3VdbeJumpHere(v, j1);
1955     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1956     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1957   }
1958   if( pParse->db->mallocFailed ) return 0;
1959 
1960   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1961   */
1962   codeOffset(v, p, iContinue);
1963 
1964   switch( pDest->eDest ){
1965     /* Store the result as data using a unique key.
1966     */
1967     case SRT_Table:
1968     case SRT_EphemTab: {
1969       int r1 = sqlite3GetTempReg(pParse);
1970       int r2 = sqlite3GetTempReg(pParse);
1971       testcase( pDest->eDest==SRT_Table );
1972       testcase( pDest->eDest==SRT_EphemTab );
1973       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1974       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1975       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1976       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1977       sqlite3ReleaseTempReg(pParse, r2);
1978       sqlite3ReleaseTempReg(pParse, r1);
1979       break;
1980     }
1981 
1982 #ifndef SQLITE_OMIT_SUBQUERY
1983     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1984     ** then there should be a single item on the stack.  Write this
1985     ** item into the set table with bogus data.
1986     */
1987     case SRT_Set: {
1988       int r1;
1989       assert( pIn->nMem==1 );
1990       p->affinity =
1991          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1992       r1 = sqlite3GetTempReg(pParse);
1993       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1994       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1995       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1996       sqlite3ReleaseTempReg(pParse, r1);
1997       break;
1998     }
1999 
2000 #if 0  /* Never occurs on an ORDER BY query */
2001     /* If any row exist in the result set, record that fact and abort.
2002     */
2003     case SRT_Exists: {
2004       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
2005       /* The LIMIT clause will terminate the loop for us */
2006       break;
2007     }
2008 #endif
2009 
2010     /* If this is a scalar select that is part of an expression, then
2011     ** store the results in the appropriate memory cell and break out
2012     ** of the scan loop.
2013     */
2014     case SRT_Mem: {
2015       assert( pIn->nMem==1 );
2016       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
2017       /* The LIMIT clause will jump out of the loop for us */
2018       break;
2019     }
2020 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2021 
2022     /* The results are stored in a sequence of registers
2023     ** starting at pDest->iMem.  Then the co-routine yields.
2024     */
2025     case SRT_Coroutine: {
2026       if( pDest->iMem==0 ){
2027         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
2028         pDest->nMem = pIn->nMem;
2029       }
2030       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
2031       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
2032       break;
2033     }
2034 
2035     /* If none of the above, then the result destination must be
2036     ** SRT_Output.  This routine is never called with any other
2037     ** destination other than the ones handled above or SRT_Output.
2038     **
2039     ** For SRT_Output, results are stored in a sequence of registers.
2040     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2041     ** return the next row of result.
2042     */
2043     default: {
2044       assert( pDest->eDest==SRT_Output );
2045       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
2046       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
2047       break;
2048     }
2049   }
2050 
2051   /* Jump to the end of the loop if the LIMIT is reached.
2052   */
2053   if( p->iLimit ){
2054     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2055   }
2056 
2057   /* Generate the subroutine return
2058   */
2059   sqlite3VdbeResolveLabel(v, iContinue);
2060   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2061 
2062   return addr;
2063 }
2064 
2065 /*
2066 ** Alternative compound select code generator for cases when there
2067 ** is an ORDER BY clause.
2068 **
2069 ** We assume a query of the following form:
2070 **
2071 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2072 **
2073 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2074 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2075 ** co-routines.  Then run the co-routines in parallel and merge the results
2076 ** into the output.  In addition to the two coroutines (called selectA and
2077 ** selectB) there are 7 subroutines:
2078 **
2079 **    outA:    Move the output of the selectA coroutine into the output
2080 **             of the compound query.
2081 **
2082 **    outB:    Move the output of the selectB coroutine into the output
2083 **             of the compound query.  (Only generated for UNION and
2084 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2085 **             appears only in B.)
2086 **
2087 **    AltB:    Called when there is data from both coroutines and A<B.
2088 **
2089 **    AeqB:    Called when there is data from both coroutines and A==B.
2090 **
2091 **    AgtB:    Called when there is data from both coroutines and A>B.
2092 **
2093 **    EofA:    Called when data is exhausted from selectA.
2094 **
2095 **    EofB:    Called when data is exhausted from selectB.
2096 **
2097 ** The implementation of the latter five subroutines depend on which
2098 ** <operator> is used:
2099 **
2100 **
2101 **             UNION ALL         UNION            EXCEPT          INTERSECT
2102 **          -------------  -----------------  --------------  -----------------
2103 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2104 **
2105 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2106 **
2107 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2108 **
2109 **   EofA:   outB, nextB      outB, nextB          halt             halt
2110 **
2111 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2112 **
2113 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2114 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2115 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2116 ** following nextX causes a jump to the end of the select processing.
2117 **
2118 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2119 ** within the output subroutine.  The regPrev register set holds the previously
2120 ** output value.  A comparison is made against this value and the output
2121 ** is skipped if the next results would be the same as the previous.
2122 **
2123 ** The implementation plan is to implement the two coroutines and seven
2124 ** subroutines first, then put the control logic at the bottom.  Like this:
2125 **
2126 **          goto Init
2127 **     coA: coroutine for left query (A)
2128 **     coB: coroutine for right query (B)
2129 **    outA: output one row of A
2130 **    outB: output one row of B (UNION and UNION ALL only)
2131 **    EofA: ...
2132 **    EofB: ...
2133 **    AltB: ...
2134 **    AeqB: ...
2135 **    AgtB: ...
2136 **    Init: initialize coroutine registers
2137 **          yield coA
2138 **          if eof(A) goto EofA
2139 **          yield coB
2140 **          if eof(B) goto EofB
2141 **    Cmpr: Compare A, B
2142 **          Jump AltB, AeqB, AgtB
2143 **     End: ...
2144 **
2145 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2146 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2147 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2148 ** and AgtB jump to either L2 or to one of EofA or EofB.
2149 */
2150 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2151 static int multiSelectOrderBy(
2152   Parse *pParse,        /* Parsing context */
2153   Select *p,            /* The right-most of SELECTs to be coded */
2154   SelectDest *pDest     /* What to do with query results */
2155 ){
2156   int i, j;             /* Loop counters */
2157   Select *pPrior;       /* Another SELECT immediately to our left */
2158   Vdbe *v;              /* Generate code to this VDBE */
2159   SelectDest destA;     /* Destination for coroutine A */
2160   SelectDest destB;     /* Destination for coroutine B */
2161   int regAddrA;         /* Address register for select-A coroutine */
2162   int regEofA;          /* Flag to indicate when select-A is complete */
2163   int regAddrB;         /* Address register for select-B coroutine */
2164   int regEofB;          /* Flag to indicate when select-B is complete */
2165   int addrSelectA;      /* Address of the select-A coroutine */
2166   int addrSelectB;      /* Address of the select-B coroutine */
2167   int regOutA;          /* Address register for the output-A subroutine */
2168   int regOutB;          /* Address register for the output-B subroutine */
2169   int addrOutA;         /* Address of the output-A subroutine */
2170   int addrOutB = 0;     /* Address of the output-B subroutine */
2171   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2172   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2173   int addrAltB;         /* Address of the A<B subroutine */
2174   int addrAeqB;         /* Address of the A==B subroutine */
2175   int addrAgtB;         /* Address of the A>B subroutine */
2176   int regLimitA;        /* Limit register for select-A */
2177   int regLimitB;        /* Limit register for select-A */
2178   int regPrev;          /* A range of registers to hold previous output */
2179   int savedLimit;       /* Saved value of p->iLimit */
2180   int savedOffset;      /* Saved value of p->iOffset */
2181   int labelCmpr;        /* Label for the start of the merge algorithm */
2182   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2183   int j1;               /* Jump instructions that get retargetted */
2184   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2185   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2186   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2187   sqlite3 *db;          /* Database connection */
2188   ExprList *pOrderBy;   /* The ORDER BY clause */
2189   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2190   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2191 #ifndef SQLITE_OMIT_EXPLAIN
2192   int iSub1;            /* EQP id of left-hand query */
2193   int iSub2;            /* EQP id of right-hand query */
2194 #endif
2195 
2196   assert( p->pOrderBy!=0 );
2197   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2198   db = pParse->db;
2199   v = pParse->pVdbe;
2200   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2201   labelEnd = sqlite3VdbeMakeLabel(v);
2202   labelCmpr = sqlite3VdbeMakeLabel(v);
2203 
2204 
2205   /* Patch up the ORDER BY clause
2206   */
2207   op = p->op;
2208   pPrior = p->pPrior;
2209   assert( pPrior->pOrderBy==0 );
2210   pOrderBy = p->pOrderBy;
2211   assert( pOrderBy );
2212   nOrderBy = pOrderBy->nExpr;
2213 
2214   /* For operators other than UNION ALL we have to make sure that
2215   ** the ORDER BY clause covers every term of the result set.  Add
2216   ** terms to the ORDER BY clause as necessary.
2217   */
2218   if( op!=TK_ALL ){
2219     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2220       struct ExprList_item *pItem;
2221       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2222         assert( pItem->iOrderByCol>0 );
2223         if( pItem->iOrderByCol==i ) break;
2224       }
2225       if( j==nOrderBy ){
2226         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2227         if( pNew==0 ) return SQLITE_NOMEM;
2228         pNew->flags |= EP_IntValue;
2229         pNew->u.iValue = i;
2230         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2231         pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i;
2232       }
2233     }
2234   }
2235 
2236   /* Compute the comparison permutation and keyinfo that is used with
2237   ** the permutation used to determine if the next
2238   ** row of results comes from selectA or selectB.  Also add explicit
2239   ** collations to the ORDER BY clause terms so that when the subqueries
2240   ** to the right and the left are evaluated, they use the correct
2241   ** collation.
2242   */
2243   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2244   if( aPermute ){
2245     struct ExprList_item *pItem;
2246     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2247       assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
2248       aPermute[i] = pItem->iOrderByCol - 1;
2249     }
2250     pKeyMerge =
2251       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2252     if( pKeyMerge ){
2253       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2254       pKeyMerge->nField = (u16)nOrderBy;
2255       pKeyMerge->enc = ENC(db);
2256       for(i=0; i<nOrderBy; i++){
2257         CollSeq *pColl;
2258         Expr *pTerm = pOrderBy->a[i].pExpr;
2259         if( pTerm->flags & EP_ExpCollate ){
2260           pColl = pTerm->pColl;
2261         }else{
2262           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2263           pTerm->flags |= EP_ExpCollate;
2264           pTerm->pColl = pColl;
2265         }
2266         pKeyMerge->aColl[i] = pColl;
2267         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2268       }
2269     }
2270   }else{
2271     pKeyMerge = 0;
2272   }
2273 
2274   /* Reattach the ORDER BY clause to the query.
2275   */
2276   p->pOrderBy = pOrderBy;
2277   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2278 
2279   /* Allocate a range of temporary registers and the KeyInfo needed
2280   ** for the logic that removes duplicate result rows when the
2281   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2282   */
2283   if( op==TK_ALL ){
2284     regPrev = 0;
2285   }else{
2286     int nExpr = p->pEList->nExpr;
2287     assert( nOrderBy>=nExpr || db->mallocFailed );
2288     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2289     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2290     pKeyDup = sqlite3DbMallocZero(db,
2291                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2292     if( pKeyDup ){
2293       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2294       pKeyDup->nField = (u16)nExpr;
2295       pKeyDup->enc = ENC(db);
2296       for(i=0; i<nExpr; i++){
2297         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2298         pKeyDup->aSortOrder[i] = 0;
2299       }
2300     }
2301   }
2302 
2303   /* Separate the left and the right query from one another
2304   */
2305   p->pPrior = 0;
2306   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2307   if( pPrior->pPrior==0 ){
2308     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2309   }
2310 
2311   /* Compute the limit registers */
2312   computeLimitRegisters(pParse, p, labelEnd);
2313   if( p->iLimit && op==TK_ALL ){
2314     regLimitA = ++pParse->nMem;
2315     regLimitB = ++pParse->nMem;
2316     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2317                                   regLimitA);
2318     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2319   }else{
2320     regLimitA = regLimitB = 0;
2321   }
2322   sqlite3ExprDelete(db, p->pLimit);
2323   p->pLimit = 0;
2324   sqlite3ExprDelete(db, p->pOffset);
2325   p->pOffset = 0;
2326 
2327   regAddrA = ++pParse->nMem;
2328   regEofA = ++pParse->nMem;
2329   regAddrB = ++pParse->nMem;
2330   regEofB = ++pParse->nMem;
2331   regOutA = ++pParse->nMem;
2332   regOutB = ++pParse->nMem;
2333   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2334   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2335 
2336   /* Jump past the various subroutines and coroutines to the main
2337   ** merge loop
2338   */
2339   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2340   addrSelectA = sqlite3VdbeCurrentAddr(v);
2341 
2342 
2343   /* Generate a coroutine to evaluate the SELECT statement to the
2344   ** left of the compound operator - the "A" select.
2345   */
2346   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2347   pPrior->iLimit = regLimitA;
2348   explainSetInteger(iSub1, pParse->iNextSelectId);
2349   sqlite3Select(pParse, pPrior, &destA);
2350   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2351   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2352   VdbeNoopComment((v, "End coroutine for left SELECT"));
2353 
2354   /* Generate a coroutine to evaluate the SELECT statement on
2355   ** the right - the "B" select
2356   */
2357   addrSelectB = sqlite3VdbeCurrentAddr(v);
2358   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2359   savedLimit = p->iLimit;
2360   savedOffset = p->iOffset;
2361   p->iLimit = regLimitB;
2362   p->iOffset = 0;
2363   explainSetInteger(iSub2, pParse->iNextSelectId);
2364   sqlite3Select(pParse, p, &destB);
2365   p->iLimit = savedLimit;
2366   p->iOffset = savedOffset;
2367   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2368   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2369   VdbeNoopComment((v, "End coroutine for right SELECT"));
2370 
2371   /* Generate a subroutine that outputs the current row of the A
2372   ** select as the next output row of the compound select.
2373   */
2374   VdbeNoopComment((v, "Output routine for A"));
2375   addrOutA = generateOutputSubroutine(pParse,
2376                  p, &destA, pDest, regOutA,
2377                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2378 
2379   /* Generate a subroutine that outputs the current row of the B
2380   ** select as the next output row of the compound select.
2381   */
2382   if( op==TK_ALL || op==TK_UNION ){
2383     VdbeNoopComment((v, "Output routine for B"));
2384     addrOutB = generateOutputSubroutine(pParse,
2385                  p, &destB, pDest, regOutB,
2386                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2387   }
2388 
2389   /* Generate a subroutine to run when the results from select A
2390   ** are exhausted and only data in select B remains.
2391   */
2392   VdbeNoopComment((v, "eof-A subroutine"));
2393   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2394     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2395   }else{
2396     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2397     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2398     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2399     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2400     p->nSelectRow += pPrior->nSelectRow;
2401   }
2402 
2403   /* Generate a subroutine to run when the results from select B
2404   ** are exhausted and only data in select A remains.
2405   */
2406   if( op==TK_INTERSECT ){
2407     addrEofB = addrEofA;
2408     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2409   }else{
2410     VdbeNoopComment((v, "eof-B subroutine"));
2411     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2412     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2413     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2414     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2415   }
2416 
2417   /* Generate code to handle the case of A<B
2418   */
2419   VdbeNoopComment((v, "A-lt-B subroutine"));
2420   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2421   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2422   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2423   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2424 
2425   /* Generate code to handle the case of A==B
2426   */
2427   if( op==TK_ALL ){
2428     addrAeqB = addrAltB;
2429   }else if( op==TK_INTERSECT ){
2430     addrAeqB = addrAltB;
2431     addrAltB++;
2432   }else{
2433     VdbeNoopComment((v, "A-eq-B subroutine"));
2434     addrAeqB =
2435     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2436     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2437     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2438   }
2439 
2440   /* Generate code to handle the case of A>B
2441   */
2442   VdbeNoopComment((v, "A-gt-B subroutine"));
2443   addrAgtB = sqlite3VdbeCurrentAddr(v);
2444   if( op==TK_ALL || op==TK_UNION ){
2445     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2446   }
2447   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2448   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2449   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2450 
2451   /* This code runs once to initialize everything.
2452   */
2453   sqlite3VdbeJumpHere(v, j1);
2454   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2455   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2456   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2457   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2458   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2459   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2460 
2461   /* Implement the main merge loop
2462   */
2463   sqlite3VdbeResolveLabel(v, labelCmpr);
2464   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2465   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2466                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2467   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2468 
2469   /* Release temporary registers
2470   */
2471   if( regPrev ){
2472     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2473   }
2474 
2475   /* Jump to the this point in order to terminate the query.
2476   */
2477   sqlite3VdbeResolveLabel(v, labelEnd);
2478 
2479   /* Set the number of output columns
2480   */
2481   if( pDest->eDest==SRT_Output ){
2482     Select *pFirst = pPrior;
2483     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2484     generateColumnNames(pParse, 0, pFirst->pEList);
2485   }
2486 
2487   /* Reassembly the compound query so that it will be freed correctly
2488   ** by the calling function */
2489   if( p->pPrior ){
2490     sqlite3SelectDelete(db, p->pPrior);
2491   }
2492   p->pPrior = pPrior;
2493 
2494   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2495   **** subqueries ****/
2496   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2497   return SQLITE_OK;
2498 }
2499 #endif
2500 
2501 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2502 /* Forward Declarations */
2503 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2504 static void substSelect(sqlite3*, Select *, int, ExprList *);
2505 
2506 /*
2507 ** Scan through the expression pExpr.  Replace every reference to
2508 ** a column in table number iTable with a copy of the iColumn-th
2509 ** entry in pEList.  (But leave references to the ROWID column
2510 ** unchanged.)
2511 **
2512 ** This routine is part of the flattening procedure.  A subquery
2513 ** whose result set is defined by pEList appears as entry in the
2514 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2515 ** FORM clause entry is iTable.  This routine make the necessary
2516 ** changes to pExpr so that it refers directly to the source table
2517 ** of the subquery rather the result set of the subquery.
2518 */
2519 static Expr *substExpr(
2520   sqlite3 *db,        /* Report malloc errors to this connection */
2521   Expr *pExpr,        /* Expr in which substitution occurs */
2522   int iTable,         /* Table to be substituted */
2523   ExprList *pEList    /* Substitute expressions */
2524 ){
2525   if( pExpr==0 ) return 0;
2526   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2527     if( pExpr->iColumn<0 ){
2528       pExpr->op = TK_NULL;
2529     }else{
2530       Expr *pNew;
2531       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2532       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2533       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2534       if( pNew && pExpr->pColl ){
2535         pNew->pColl = pExpr->pColl;
2536       }
2537       sqlite3ExprDelete(db, pExpr);
2538       pExpr = pNew;
2539     }
2540   }else{
2541     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2542     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2543     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2544       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2545     }else{
2546       substExprList(db, pExpr->x.pList, iTable, pEList);
2547     }
2548   }
2549   return pExpr;
2550 }
2551 static void substExprList(
2552   sqlite3 *db,         /* Report malloc errors here */
2553   ExprList *pList,     /* List to scan and in which to make substitutes */
2554   int iTable,          /* Table to be substituted */
2555   ExprList *pEList     /* Substitute values */
2556 ){
2557   int i;
2558   if( pList==0 ) return;
2559   for(i=0; i<pList->nExpr; i++){
2560     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2561   }
2562 }
2563 static void substSelect(
2564   sqlite3 *db,         /* Report malloc errors here */
2565   Select *p,           /* SELECT statement in which to make substitutions */
2566   int iTable,          /* Table to be replaced */
2567   ExprList *pEList     /* Substitute values */
2568 ){
2569   SrcList *pSrc;
2570   struct SrcList_item *pItem;
2571   int i;
2572   if( !p ) return;
2573   substExprList(db, p->pEList, iTable, pEList);
2574   substExprList(db, p->pGroupBy, iTable, pEList);
2575   substExprList(db, p->pOrderBy, iTable, pEList);
2576   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2577   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2578   substSelect(db, p->pPrior, iTable, pEList);
2579   pSrc = p->pSrc;
2580   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2581   if( ALWAYS(pSrc) ){
2582     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2583       substSelect(db, pItem->pSelect, iTable, pEList);
2584     }
2585   }
2586 }
2587 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2588 
2589 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2590 /*
2591 ** This routine attempts to flatten subqueries as a performance optimization.
2592 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
2593 **
2594 ** To understand the concept of flattening, consider the following
2595 ** query:
2596 **
2597 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2598 **
2599 ** The default way of implementing this query is to execute the
2600 ** subquery first and store the results in a temporary table, then
2601 ** run the outer query on that temporary table.  This requires two
2602 ** passes over the data.  Furthermore, because the temporary table
2603 ** has no indices, the WHERE clause on the outer query cannot be
2604 ** optimized.
2605 **
2606 ** This routine attempts to rewrite queries such as the above into
2607 ** a single flat select, like this:
2608 **
2609 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2610 **
2611 ** The code generated for this simpification gives the same result
2612 ** but only has to scan the data once.  And because indices might
2613 ** exist on the table t1, a complete scan of the data might be
2614 ** avoided.
2615 **
2616 ** Flattening is only attempted if all of the following are true:
2617 **
2618 **   (1)  The subquery and the outer query do not both use aggregates.
2619 **
2620 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2621 **
2622 **   (3)  The subquery is not the right operand of a left outer join
2623 **        (Originally ticket #306.  Strengthened by ticket #3300)
2624 **
2625 **   (4)  The subquery is not DISTINCT.
2626 **
2627 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
2628 **        sub-queries that were excluded from this optimization. Restriction
2629 **        (4) has since been expanded to exclude all DISTINCT subqueries.
2630 **
2631 **   (6)  The subquery does not use aggregates or the outer query is not
2632 **        DISTINCT.
2633 **
2634 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
2635 **        A FROM clause, consider adding a FROM close with the special
2636 **        table sqlite_once that consists of a single row containing a
2637 **        single NULL.
2638 **
2639 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2640 **
2641 **   (9)  The subquery does not use LIMIT or the outer query does not use
2642 **        aggregates.
2643 **
2644 **  (10)  The subquery does not use aggregates or the outer query does not
2645 **        use LIMIT.
2646 **
2647 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2648 **
2649 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
2650 **        a separate restriction deriving from ticket #350.
2651 **
2652 **  (13)  The subquery and outer query do not both use LIMIT.
2653 **
2654 **  (14)  The subquery does not use OFFSET.
2655 **
2656 **  (15)  The outer query is not part of a compound select or the
2657 **        subquery does not have a LIMIT clause.
2658 **        (See ticket #2339 and ticket [02a8e81d44]).
2659 **
2660 **  (16)  The outer query is not an aggregate or the subquery does
2661 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2662 **        until we introduced the group_concat() function.
2663 **
2664 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2665 **        compound clause made up entirely of non-aggregate queries, and
2666 **        the parent query:
2667 **
2668 **          * is not itself part of a compound select,
2669 **          * is not an aggregate or DISTINCT query, and
2670 **          * is not a join
2671 **
2672 **        The parent and sub-query may contain WHERE clauses. Subject to
2673 **        rules (11), (13) and (14), they may also contain ORDER BY,
2674 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
2675 **        operator other than UNION ALL because all the other compound
2676 **        operators have an implied DISTINCT which is disallowed by
2677 **        restriction (4).
2678 **
2679 **  (18)  If the sub-query is a compound select, then all terms of the
2680 **        ORDER by clause of the parent must be simple references to
2681 **        columns of the sub-query.
2682 **
2683 **  (19)  The subquery does not use LIMIT or the outer query does not
2684 **        have a WHERE clause.
2685 **
2686 **  (20)  If the sub-query is a compound select, then it must not use
2687 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2688 **        somewhat by saying that the terms of the ORDER BY clause must
2689 **        appear as unmodified result columns in the outer query.  But we
2690 **        have other optimizations in mind to deal with that case.
2691 **
2692 **  (21)  The subquery does not use LIMIT or the outer query is not
2693 **        DISTINCT.  (See ticket [752e1646fc]).
2694 **
2695 ** In this routine, the "p" parameter is a pointer to the outer query.
2696 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2697 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2698 **
2699 ** If flattening is not attempted, this routine is a no-op and returns 0.
2700 ** If flattening is attempted this routine returns 1.
2701 **
2702 ** All of the expression analysis must occur on both the outer query and
2703 ** the subquery before this routine runs.
2704 */
2705 static int flattenSubquery(
2706   Parse *pParse,       /* Parsing context */
2707   Select *p,           /* The parent or outer SELECT statement */
2708   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2709   int isAgg,           /* True if outer SELECT uses aggregate functions */
2710   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2711 ){
2712   const char *zSavedAuthContext = pParse->zAuthContext;
2713   Select *pParent;
2714   Select *pSub;       /* The inner query or "subquery" */
2715   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2716   SrcList *pSrc;      /* The FROM clause of the outer query */
2717   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2718   ExprList *pList;    /* The result set of the outer query */
2719   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2720   int i;              /* Loop counter */
2721   Expr *pWhere;                    /* The WHERE clause */
2722   struct SrcList_item *pSubitem;   /* The subquery */
2723   sqlite3 *db = pParse->db;
2724 
2725   /* Check to see if flattening is permitted.  Return 0 if not.
2726   */
2727   assert( p!=0 );
2728   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2729   if( db->flags & SQLITE_QueryFlattener ) return 0;
2730   pSrc = p->pSrc;
2731   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2732   pSubitem = &pSrc->a[iFrom];
2733   iParent = pSubitem->iCursor;
2734   pSub = pSubitem->pSelect;
2735   assert( pSub!=0 );
2736   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2737   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2738   pSubSrc = pSub->pSrc;
2739   assert( pSubSrc );
2740   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2741   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2742   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2743   ** became arbitrary expressions, we were forced to add restrictions (13)
2744   ** and (14). */
2745   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2746   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2747   if( p->pRightmost && pSub->pLimit ){
2748     return 0;                                            /* Restriction (15) */
2749   }
2750   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2751   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
2752   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2753      return 0;         /* Restrictions (8)(9) */
2754   }
2755   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2756      return 0;         /* Restriction (6)  */
2757   }
2758   if( p->pOrderBy && pSub->pOrderBy ){
2759      return 0;                                           /* Restriction (11) */
2760   }
2761   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2762   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2763   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2764      return 0;         /* Restriction (21) */
2765   }
2766 
2767   /* OBSOLETE COMMENT 1:
2768   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2769   ** not used as the right operand of an outer join.  Examples of why this
2770   ** is not allowed:
2771   **
2772   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2773   **
2774   ** If we flatten the above, we would get
2775   **
2776   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2777   **
2778   ** which is not at all the same thing.
2779   **
2780   ** OBSOLETE COMMENT 2:
2781   ** Restriction 12:  If the subquery is the right operand of a left outer
2782   ** join, make sure the subquery has no WHERE clause.
2783   ** An examples of why this is not allowed:
2784   **
2785   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2786   **
2787   ** If we flatten the above, we would get
2788   **
2789   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2790   **
2791   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2792   ** effectively converts the OUTER JOIN into an INNER JOIN.
2793   **
2794   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2795   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2796   ** is fraught with danger.  Best to avoid the whole thing.  If the
2797   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2798   */
2799   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2800     return 0;
2801   }
2802 
2803   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2804   ** use only the UNION ALL operator. And none of the simple select queries
2805   ** that make up the compound SELECT are allowed to be aggregate or distinct
2806   ** queries.
2807   */
2808   if( pSub->pPrior ){
2809     if( pSub->pOrderBy ){
2810       return 0;  /* Restriction 20 */
2811     }
2812     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2813       return 0;
2814     }
2815     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2816       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2817       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2818       assert( pSub->pSrc!=0 );
2819       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2820        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2821        || pSub1->pSrc->nSrc<1
2822       ){
2823         return 0;
2824       }
2825       testcase( pSub1->pSrc->nSrc>1 );
2826     }
2827 
2828     /* Restriction 18. */
2829     if( p->pOrderBy ){
2830       int ii;
2831       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2832         if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0;
2833       }
2834     }
2835   }
2836 
2837   /***** If we reach this point, flattening is permitted. *****/
2838 
2839   /* Authorize the subquery */
2840   pParse->zAuthContext = pSubitem->zName;
2841   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2842   pParse->zAuthContext = zSavedAuthContext;
2843 
2844   /* If the sub-query is a compound SELECT statement, then (by restrictions
2845   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2846   ** be of the form:
2847   **
2848   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2849   **
2850   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2851   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2852   ** OFFSET clauses and joins them to the left-hand-side of the original
2853   ** using UNION ALL operators. In this case N is the number of simple
2854   ** select statements in the compound sub-query.
2855   **
2856   ** Example:
2857   **
2858   **     SELECT a+1 FROM (
2859   **        SELECT x FROM tab
2860   **        UNION ALL
2861   **        SELECT y FROM tab
2862   **        UNION ALL
2863   **        SELECT abs(z*2) FROM tab2
2864   **     ) WHERE a!=5 ORDER BY 1
2865   **
2866   ** Transformed into:
2867   **
2868   **     SELECT x+1 FROM tab WHERE x+1!=5
2869   **     UNION ALL
2870   **     SELECT y+1 FROM tab WHERE y+1!=5
2871   **     UNION ALL
2872   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2873   **     ORDER BY 1
2874   **
2875   ** We call this the "compound-subquery flattening".
2876   */
2877   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2878     Select *pNew;
2879     ExprList *pOrderBy = p->pOrderBy;
2880     Expr *pLimit = p->pLimit;
2881     Select *pPrior = p->pPrior;
2882     p->pOrderBy = 0;
2883     p->pSrc = 0;
2884     p->pPrior = 0;
2885     p->pLimit = 0;
2886     pNew = sqlite3SelectDup(db, p, 0);
2887     p->pLimit = pLimit;
2888     p->pOrderBy = pOrderBy;
2889     p->pSrc = pSrc;
2890     p->op = TK_ALL;
2891     p->pRightmost = 0;
2892     if( pNew==0 ){
2893       pNew = pPrior;
2894     }else{
2895       pNew->pPrior = pPrior;
2896       pNew->pRightmost = 0;
2897     }
2898     p->pPrior = pNew;
2899     if( db->mallocFailed ) return 1;
2900   }
2901 
2902   /* Begin flattening the iFrom-th entry of the FROM clause
2903   ** in the outer query.
2904   */
2905   pSub = pSub1 = pSubitem->pSelect;
2906 
2907   /* Delete the transient table structure associated with the
2908   ** subquery
2909   */
2910   sqlite3DbFree(db, pSubitem->zDatabase);
2911   sqlite3DbFree(db, pSubitem->zName);
2912   sqlite3DbFree(db, pSubitem->zAlias);
2913   pSubitem->zDatabase = 0;
2914   pSubitem->zName = 0;
2915   pSubitem->zAlias = 0;
2916   pSubitem->pSelect = 0;
2917 
2918   /* Defer deleting the Table object associated with the
2919   ** subquery until code generation is
2920   ** complete, since there may still exist Expr.pTab entries that
2921   ** refer to the subquery even after flattening.  Ticket #3346.
2922   **
2923   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2924   */
2925   if( ALWAYS(pSubitem->pTab!=0) ){
2926     Table *pTabToDel = pSubitem->pTab;
2927     if( pTabToDel->nRef==1 ){
2928       Parse *pToplevel = sqlite3ParseToplevel(pParse);
2929       pTabToDel->pNextZombie = pToplevel->pZombieTab;
2930       pToplevel->pZombieTab = pTabToDel;
2931     }else{
2932       pTabToDel->nRef--;
2933     }
2934     pSubitem->pTab = 0;
2935   }
2936 
2937   /* The following loop runs once for each term in a compound-subquery
2938   ** flattening (as described above).  If we are doing a different kind
2939   ** of flattening - a flattening other than a compound-subquery flattening -
2940   ** then this loop only runs once.
2941   **
2942   ** This loop moves all of the FROM elements of the subquery into the
2943   ** the FROM clause of the outer query.  Before doing this, remember
2944   ** the cursor number for the original outer query FROM element in
2945   ** iParent.  The iParent cursor will never be used.  Subsequent code
2946   ** will scan expressions looking for iParent references and replace
2947   ** those references with expressions that resolve to the subquery FROM
2948   ** elements we are now copying in.
2949   */
2950   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2951     int nSubSrc;
2952     u8 jointype = 0;
2953     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2954     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2955     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2956 
2957     if( pSrc ){
2958       assert( pParent==p );  /* First time through the loop */
2959       jointype = pSubitem->jointype;
2960     }else{
2961       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2962       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2963       if( pSrc==0 ){
2964         assert( db->mallocFailed );
2965         break;
2966       }
2967     }
2968 
2969     /* The subquery uses a single slot of the FROM clause of the outer
2970     ** query.  If the subquery has more than one element in its FROM clause,
2971     ** then expand the outer query to make space for it to hold all elements
2972     ** of the subquery.
2973     **
2974     ** Example:
2975     **
2976     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2977     **
2978     ** The outer query has 3 slots in its FROM clause.  One slot of the
2979     ** outer query (the middle slot) is used by the subquery.  The next
2980     ** block of code will expand the out query to 4 slots.  The middle
2981     ** slot is expanded to two slots in order to make space for the
2982     ** two elements in the FROM clause of the subquery.
2983     */
2984     if( nSubSrc>1 ){
2985       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2986       if( db->mallocFailed ){
2987         break;
2988       }
2989     }
2990 
2991     /* Transfer the FROM clause terms from the subquery into the
2992     ** outer query.
2993     */
2994     for(i=0; i<nSubSrc; i++){
2995       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
2996       pSrc->a[i+iFrom] = pSubSrc->a[i];
2997       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2998     }
2999     pSrc->a[iFrom].jointype = jointype;
3000 
3001     /* Now begin substituting subquery result set expressions for
3002     ** references to the iParent in the outer query.
3003     **
3004     ** Example:
3005     **
3006     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3007     **   \                     \_____________ subquery __________/          /
3008     **    \_____________________ outer query ______________________________/
3009     **
3010     ** We look at every expression in the outer query and every place we see
3011     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3012     */
3013     pList = pParent->pEList;
3014     for(i=0; i<pList->nExpr; i++){
3015       if( pList->a[i].zName==0 ){
3016         const char *zSpan = pList->a[i].zSpan;
3017         if( ALWAYS(zSpan) ){
3018           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
3019         }
3020       }
3021     }
3022     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3023     if( isAgg ){
3024       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3025       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3026     }
3027     if( pSub->pOrderBy ){
3028       assert( pParent->pOrderBy==0 );
3029       pParent->pOrderBy = pSub->pOrderBy;
3030       pSub->pOrderBy = 0;
3031     }else if( pParent->pOrderBy ){
3032       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3033     }
3034     if( pSub->pWhere ){
3035       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3036     }else{
3037       pWhere = 0;
3038     }
3039     if( subqueryIsAgg ){
3040       assert( pParent->pHaving==0 );
3041       pParent->pHaving = pParent->pWhere;
3042       pParent->pWhere = pWhere;
3043       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3044       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3045                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3046       assert( pParent->pGroupBy==0 );
3047       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3048     }else{
3049       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3050       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3051     }
3052 
3053     /* The flattened query is distinct if either the inner or the
3054     ** outer query is distinct.
3055     */
3056     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3057 
3058     /*
3059     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3060     **
3061     ** One is tempted to try to add a and b to combine the limits.  But this
3062     ** does not work if either limit is negative.
3063     */
3064     if( pSub->pLimit ){
3065       pParent->pLimit = pSub->pLimit;
3066       pSub->pLimit = 0;
3067     }
3068   }
3069 
3070   /* Finially, delete what is left of the subquery and return
3071   ** success.
3072   */
3073   sqlite3SelectDelete(db, pSub1);
3074 
3075   return 1;
3076 }
3077 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3078 
3079 /*
3080 ** Analyze the SELECT statement passed as an argument to see if it
3081 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
3082 ** it is, or 0 otherwise. At present, a query is considered to be
3083 ** a min()/max() query if:
3084 **
3085 **   1. There is a single object in the FROM clause.
3086 **
3087 **   2. There is a single expression in the result set, and it is
3088 **      either min(x) or max(x), where x is a column reference.
3089 */
3090 static u8 minMaxQuery(Select *p){
3091   Expr *pExpr;
3092   ExprList *pEList = p->pEList;
3093 
3094   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
3095   pExpr = pEList->a[0].pExpr;
3096   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3097   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
3098   pEList = pExpr->x.pList;
3099   if( pEList==0 || pEList->nExpr!=1 ) return 0;
3100   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
3101   assert( !ExprHasProperty(pExpr, EP_IntValue) );
3102   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
3103     return WHERE_ORDERBY_MIN;
3104   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
3105     return WHERE_ORDERBY_MAX;
3106   }
3107   return WHERE_ORDERBY_NORMAL;
3108 }
3109 
3110 /*
3111 ** The select statement passed as the first argument is an aggregate query.
3112 ** The second argment is the associated aggregate-info object. This
3113 ** function tests if the SELECT is of the form:
3114 **
3115 **   SELECT count(*) FROM <tbl>
3116 **
3117 ** where table is a database table, not a sub-select or view. If the query
3118 ** does match this pattern, then a pointer to the Table object representing
3119 ** <tbl> is returned. Otherwise, 0 is returned.
3120 */
3121 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3122   Table *pTab;
3123   Expr *pExpr;
3124 
3125   assert( !p->pGroupBy );
3126 
3127   if( p->pWhere || p->pEList->nExpr!=1
3128    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3129   ){
3130     return 0;
3131   }
3132   pTab = p->pSrc->a[0].pTab;
3133   pExpr = p->pEList->a[0].pExpr;
3134   assert( pTab && !pTab->pSelect && pExpr );
3135 
3136   if( IsVirtual(pTab) ) return 0;
3137   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3138   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3139   if( pExpr->flags&EP_Distinct ) return 0;
3140 
3141   return pTab;
3142 }
3143 
3144 /*
3145 ** If the source-list item passed as an argument was augmented with an
3146 ** INDEXED BY clause, then try to locate the specified index. If there
3147 ** was such a clause and the named index cannot be found, return
3148 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3149 ** pFrom->pIndex and return SQLITE_OK.
3150 */
3151 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3152   if( pFrom->pTab && pFrom->zIndex ){
3153     Table *pTab = pFrom->pTab;
3154     char *zIndex = pFrom->zIndex;
3155     Index *pIdx;
3156     for(pIdx=pTab->pIndex;
3157         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3158         pIdx=pIdx->pNext
3159     );
3160     if( !pIdx ){
3161       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3162       pParse->checkSchema = 1;
3163       return SQLITE_ERROR;
3164     }
3165     pFrom->pIndex = pIdx;
3166   }
3167   return SQLITE_OK;
3168 }
3169 
3170 /*
3171 ** This routine is a Walker callback for "expanding" a SELECT statement.
3172 ** "Expanding" means to do the following:
3173 **
3174 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3175 **         element of the FROM clause.
3176 **
3177 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3178 **         defines FROM clause.  When views appear in the FROM clause,
3179 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3180 **         that implements the view.  A copy is made of the view's SELECT
3181 **         statement so that we can freely modify or delete that statement
3182 **         without worrying about messing up the presistent representation
3183 **         of the view.
3184 **
3185 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3186 **         on joins and the ON and USING clause of joins.
3187 **
3188 **    (4)  Scan the list of columns in the result set (pEList) looking
3189 **         for instances of the "*" operator or the TABLE.* operator.
3190 **         If found, expand each "*" to be every column in every table
3191 **         and TABLE.* to be every column in TABLE.
3192 **
3193 */
3194 static int selectExpander(Walker *pWalker, Select *p){
3195   Parse *pParse = pWalker->pParse;
3196   int i, j, k;
3197   SrcList *pTabList;
3198   ExprList *pEList;
3199   struct SrcList_item *pFrom;
3200   sqlite3 *db = pParse->db;
3201 
3202   if( db->mallocFailed  ){
3203     return WRC_Abort;
3204   }
3205   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3206     return WRC_Prune;
3207   }
3208   p->selFlags |= SF_Expanded;
3209   pTabList = p->pSrc;
3210   pEList = p->pEList;
3211 
3212   /* Make sure cursor numbers have been assigned to all entries in
3213   ** the FROM clause of the SELECT statement.
3214   */
3215   sqlite3SrcListAssignCursors(pParse, pTabList);
3216 
3217   /* Look up every table named in the FROM clause of the select.  If
3218   ** an entry of the FROM clause is a subquery instead of a table or view,
3219   ** then create a transient table structure to describe the subquery.
3220   */
3221   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3222     Table *pTab;
3223     if( pFrom->pTab!=0 ){
3224       /* This statement has already been prepared.  There is no need
3225       ** to go further. */
3226       assert( i==0 );
3227       return WRC_Prune;
3228     }
3229     if( pFrom->zName==0 ){
3230 #ifndef SQLITE_OMIT_SUBQUERY
3231       Select *pSel = pFrom->pSelect;
3232       /* A sub-query in the FROM clause of a SELECT */
3233       assert( pSel!=0 );
3234       assert( pFrom->pTab==0 );
3235       sqlite3WalkSelect(pWalker, pSel);
3236       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3237       if( pTab==0 ) return WRC_Abort;
3238       pTab->nRef = 1;
3239       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3240       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3241       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3242       pTab->iPKey = -1;
3243       pTab->nRowEst = 1000000;
3244       pTab->tabFlags |= TF_Ephemeral;
3245 #endif
3246     }else{
3247       /* An ordinary table or view name in the FROM clause */
3248       assert( pFrom->pTab==0 );
3249       pFrom->pTab = pTab =
3250         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3251       if( pTab==0 ) return WRC_Abort;
3252       pTab->nRef++;
3253 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3254       if( pTab->pSelect || IsVirtual(pTab) ){
3255         /* We reach here if the named table is a really a view */
3256         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3257         assert( pFrom->pSelect==0 );
3258         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3259         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3260       }
3261 #endif
3262     }
3263 
3264     /* Locate the index named by the INDEXED BY clause, if any. */
3265     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3266       return WRC_Abort;
3267     }
3268   }
3269 
3270   /* Process NATURAL keywords, and ON and USING clauses of joins.
3271   */
3272   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3273     return WRC_Abort;
3274   }
3275 
3276   /* For every "*" that occurs in the column list, insert the names of
3277   ** all columns in all tables.  And for every TABLE.* insert the names
3278   ** of all columns in TABLE.  The parser inserted a special expression
3279   ** with the TK_ALL operator for each "*" that it found in the column list.
3280   ** The following code just has to locate the TK_ALL expressions and expand
3281   ** each one to the list of all columns in all tables.
3282   **
3283   ** The first loop just checks to see if there are any "*" operators
3284   ** that need expanding.
3285   */
3286   for(k=0; k<pEList->nExpr; k++){
3287     Expr *pE = pEList->a[k].pExpr;
3288     if( pE->op==TK_ALL ) break;
3289     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3290     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3291     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3292   }
3293   if( k<pEList->nExpr ){
3294     /*
3295     ** If we get here it means the result set contains one or more "*"
3296     ** operators that need to be expanded.  Loop through each expression
3297     ** in the result set and expand them one by one.
3298     */
3299     struct ExprList_item *a = pEList->a;
3300     ExprList *pNew = 0;
3301     int flags = pParse->db->flags;
3302     int longNames = (flags & SQLITE_FullColNames)!=0
3303                       && (flags & SQLITE_ShortColNames)==0;
3304 
3305     for(k=0; k<pEList->nExpr; k++){
3306       Expr *pE = a[k].pExpr;
3307       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3308       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3309         /* This particular expression does not need to be expanded.
3310         */
3311         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3312         if( pNew ){
3313           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3314           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3315           a[k].zName = 0;
3316           a[k].zSpan = 0;
3317         }
3318         a[k].pExpr = 0;
3319       }else{
3320         /* This expression is a "*" or a "TABLE.*" and needs to be
3321         ** expanded. */
3322         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3323         char *zTName;            /* text of name of TABLE */
3324         if( pE->op==TK_DOT ){
3325           assert( pE->pLeft!=0 );
3326           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3327           zTName = pE->pLeft->u.zToken;
3328         }else{
3329           zTName = 0;
3330         }
3331         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3332           Table *pTab = pFrom->pTab;
3333           char *zTabName = pFrom->zAlias;
3334           if( zTabName==0 ){
3335             zTabName = pTab->zName;
3336           }
3337           if( db->mallocFailed ) break;
3338           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3339             continue;
3340           }
3341           tableSeen = 1;
3342           for(j=0; j<pTab->nCol; j++){
3343             Expr *pExpr, *pRight;
3344             char *zName = pTab->aCol[j].zName;
3345             char *zColname;  /* The computed column name */
3346             char *zToFree;   /* Malloced string that needs to be freed */
3347             Token sColname;  /* Computed column name as a token */
3348 
3349             /* If a column is marked as 'hidden' (currently only possible
3350             ** for virtual tables), do not include it in the expanded
3351             ** result-set list.
3352             */
3353             if( IsHiddenColumn(&pTab->aCol[j]) ){
3354               assert(IsVirtual(pTab));
3355               continue;
3356             }
3357 
3358             if( i>0 && zTName==0 ){
3359               if( (pFrom->jointype & JT_NATURAL)!=0
3360                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3361               ){
3362                 /* In a NATURAL join, omit the join columns from the
3363                 ** table to the right of the join */
3364                 continue;
3365               }
3366               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3367                 /* In a join with a USING clause, omit columns in the
3368                 ** using clause from the table on the right. */
3369                 continue;
3370               }
3371             }
3372             pRight = sqlite3Expr(db, TK_ID, zName);
3373             zColname = zName;
3374             zToFree = 0;
3375             if( longNames || pTabList->nSrc>1 ){
3376               Expr *pLeft;
3377               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3378               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3379               if( longNames ){
3380                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3381                 zToFree = zColname;
3382               }
3383             }else{
3384               pExpr = pRight;
3385             }
3386             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3387             sColname.z = zColname;
3388             sColname.n = sqlite3Strlen30(zColname);
3389             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3390             sqlite3DbFree(db, zToFree);
3391           }
3392         }
3393         if( !tableSeen ){
3394           if( zTName ){
3395             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3396           }else{
3397             sqlite3ErrorMsg(pParse, "no tables specified");
3398           }
3399         }
3400       }
3401     }
3402     sqlite3ExprListDelete(db, pEList);
3403     p->pEList = pNew;
3404   }
3405 #if SQLITE_MAX_COLUMN
3406   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3407     sqlite3ErrorMsg(pParse, "too many columns in result set");
3408   }
3409 #endif
3410   return WRC_Continue;
3411 }
3412 
3413 /*
3414 ** No-op routine for the parse-tree walker.
3415 **
3416 ** When this routine is the Walker.xExprCallback then expression trees
3417 ** are walked without any actions being taken at each node.  Presumably,
3418 ** when this routine is used for Walker.xExprCallback then
3419 ** Walker.xSelectCallback is set to do something useful for every
3420 ** subquery in the parser tree.
3421 */
3422 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3423   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3424   return WRC_Continue;
3425 }
3426 
3427 /*
3428 ** This routine "expands" a SELECT statement and all of its subqueries.
3429 ** For additional information on what it means to "expand" a SELECT
3430 ** statement, see the comment on the selectExpand worker callback above.
3431 **
3432 ** Expanding a SELECT statement is the first step in processing a
3433 ** SELECT statement.  The SELECT statement must be expanded before
3434 ** name resolution is performed.
3435 **
3436 ** If anything goes wrong, an error message is written into pParse.
3437 ** The calling function can detect the problem by looking at pParse->nErr
3438 ** and/or pParse->db->mallocFailed.
3439 */
3440 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3441   Walker w;
3442   w.xSelectCallback = selectExpander;
3443   w.xExprCallback = exprWalkNoop;
3444   w.pParse = pParse;
3445   sqlite3WalkSelect(&w, pSelect);
3446 }
3447 
3448 
3449 #ifndef SQLITE_OMIT_SUBQUERY
3450 /*
3451 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3452 ** interface.
3453 **
3454 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3455 ** information to the Table structure that represents the result set
3456 ** of that subquery.
3457 **
3458 ** The Table structure that represents the result set was constructed
3459 ** by selectExpander() but the type and collation information was omitted
3460 ** at that point because identifiers had not yet been resolved.  This
3461 ** routine is called after identifier resolution.
3462 */
3463 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3464   Parse *pParse;
3465   int i;
3466   SrcList *pTabList;
3467   struct SrcList_item *pFrom;
3468 
3469   assert( p->selFlags & SF_Resolved );
3470   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3471     p->selFlags |= SF_HasTypeInfo;
3472     pParse = pWalker->pParse;
3473     pTabList = p->pSrc;
3474     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3475       Table *pTab = pFrom->pTab;
3476       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3477         /* A sub-query in the FROM clause of a SELECT */
3478         Select *pSel = pFrom->pSelect;
3479         assert( pSel );
3480         while( pSel->pPrior ) pSel = pSel->pPrior;
3481         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3482       }
3483     }
3484   }
3485   return WRC_Continue;
3486 }
3487 #endif
3488 
3489 
3490 /*
3491 ** This routine adds datatype and collating sequence information to
3492 ** the Table structures of all FROM-clause subqueries in a
3493 ** SELECT statement.
3494 **
3495 ** Use this routine after name resolution.
3496 */
3497 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3498 #ifndef SQLITE_OMIT_SUBQUERY
3499   Walker w;
3500   w.xSelectCallback = selectAddSubqueryTypeInfo;
3501   w.xExprCallback = exprWalkNoop;
3502   w.pParse = pParse;
3503   sqlite3WalkSelect(&w, pSelect);
3504 #endif
3505 }
3506 
3507 
3508 /*
3509 ** This routine sets of a SELECT statement for processing.  The
3510 ** following is accomplished:
3511 **
3512 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3513 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3514 **     *  ON and USING clauses are shifted into WHERE statements
3515 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3516 **     *  Identifiers in expression are matched to tables.
3517 **
3518 ** This routine acts recursively on all subqueries within the SELECT.
3519 */
3520 void sqlite3SelectPrep(
3521   Parse *pParse,         /* The parser context */
3522   Select *p,             /* The SELECT statement being coded. */
3523   NameContext *pOuterNC  /* Name context for container */
3524 ){
3525   sqlite3 *db;
3526   if( NEVER(p==0) ) return;
3527   db = pParse->db;
3528   if( p->selFlags & SF_HasTypeInfo ) return;
3529   sqlite3SelectExpand(pParse, p);
3530   if( pParse->nErr || db->mallocFailed ) return;
3531   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3532   if( pParse->nErr || db->mallocFailed ) return;
3533   sqlite3SelectAddTypeInfo(pParse, p);
3534 }
3535 
3536 /*
3537 ** Reset the aggregate accumulator.
3538 **
3539 ** The aggregate accumulator is a set of memory cells that hold
3540 ** intermediate results while calculating an aggregate.  This
3541 ** routine simply stores NULLs in all of those memory cells.
3542 */
3543 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3544   Vdbe *v = pParse->pVdbe;
3545   int i;
3546   struct AggInfo_func *pFunc;
3547   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3548     return;
3549   }
3550   for(i=0; i<pAggInfo->nColumn; i++){
3551     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3552   }
3553   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3554     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3555     if( pFunc->iDistinct>=0 ){
3556       Expr *pE = pFunc->pExpr;
3557       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3558       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3559         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3560            "argument");
3561         pFunc->iDistinct = -1;
3562       }else{
3563         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3564         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3565                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3566       }
3567     }
3568   }
3569 }
3570 
3571 /*
3572 ** Invoke the OP_AggFinalize opcode for every aggregate function
3573 ** in the AggInfo structure.
3574 */
3575 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3576   Vdbe *v = pParse->pVdbe;
3577   int i;
3578   struct AggInfo_func *pF;
3579   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3580     ExprList *pList = pF->pExpr->x.pList;
3581     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3582     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3583                       (void*)pF->pFunc, P4_FUNCDEF);
3584   }
3585 }
3586 
3587 /*
3588 ** Update the accumulator memory cells for an aggregate based on
3589 ** the current cursor position.
3590 */
3591 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3592   Vdbe *v = pParse->pVdbe;
3593   int i;
3594   struct AggInfo_func *pF;
3595   struct AggInfo_col *pC;
3596 
3597   pAggInfo->directMode = 1;
3598   sqlite3ExprCacheClear(pParse);
3599   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3600     int nArg;
3601     int addrNext = 0;
3602     int regAgg;
3603     ExprList *pList = pF->pExpr->x.pList;
3604     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3605     if( pList ){
3606       nArg = pList->nExpr;
3607       regAgg = sqlite3GetTempRange(pParse, nArg);
3608       sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
3609     }else{
3610       nArg = 0;
3611       regAgg = 0;
3612     }
3613     if( pF->iDistinct>=0 ){
3614       addrNext = sqlite3VdbeMakeLabel(v);
3615       assert( nArg==1 );
3616       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3617     }
3618     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3619       CollSeq *pColl = 0;
3620       struct ExprList_item *pItem;
3621       int j;
3622       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3623       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3624         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3625       }
3626       if( !pColl ){
3627         pColl = pParse->db->pDfltColl;
3628       }
3629       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3630     }
3631     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3632                       (void*)pF->pFunc, P4_FUNCDEF);
3633     sqlite3VdbeChangeP5(v, (u8)nArg);
3634     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3635     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3636     if( addrNext ){
3637       sqlite3VdbeResolveLabel(v, addrNext);
3638       sqlite3ExprCacheClear(pParse);
3639     }
3640   }
3641 
3642   /* Before populating the accumulator registers, clear the column cache.
3643   ** Otherwise, if any of the required column values are already present
3644   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3645   ** to pC->iMem. But by the time the value is used, the original register
3646   ** may have been used, invalidating the underlying buffer holding the
3647   ** text or blob value. See ticket [883034dcb5].
3648   **
3649   ** Another solution would be to change the OP_SCopy used to copy cached
3650   ** values to an OP_Copy.
3651   */
3652   sqlite3ExprCacheClear(pParse);
3653   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3654     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3655   }
3656   pAggInfo->directMode = 0;
3657   sqlite3ExprCacheClear(pParse);
3658 }
3659 
3660 /*
3661 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3662 ** count(*) query ("SELECT count(*) FROM pTab").
3663 */
3664 #ifndef SQLITE_OMIT_EXPLAIN
3665 static void explainSimpleCount(
3666   Parse *pParse,                  /* Parse context */
3667   Table *pTab,                    /* Table being queried */
3668   Index *pIdx                     /* Index used to optimize scan, or NULL */
3669 ){
3670   if( pParse->explain==2 ){
3671     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
3672         pTab->zName,
3673         pIdx ? "USING COVERING INDEX " : "",
3674         pIdx ? pIdx->zName : "",
3675         pTab->nRowEst
3676     );
3677     sqlite3VdbeAddOp4(
3678         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3679     );
3680   }
3681 }
3682 #else
3683 # define explainSimpleCount(a,b,c)
3684 #endif
3685 
3686 /*
3687 ** Generate code for the SELECT statement given in the p argument.
3688 **
3689 ** The results are distributed in various ways depending on the
3690 ** contents of the SelectDest structure pointed to by argument pDest
3691 ** as follows:
3692 **
3693 **     pDest->eDest    Result
3694 **     ------------    -------------------------------------------
3695 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3696 **                     opcode) for each row in the result set.
3697 **
3698 **     SRT_Mem         Only valid if the result is a single column.
3699 **                     Store the first column of the first result row
3700 **                     in register pDest->iParm then abandon the rest
3701 **                     of the query.  This destination implies "LIMIT 1".
3702 **
3703 **     SRT_Set         The result must be a single column.  Store each
3704 **                     row of result as the key in table pDest->iParm.
3705 **                     Apply the affinity pDest->affinity before storing
3706 **                     results.  Used to implement "IN (SELECT ...)".
3707 **
3708 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3709 **
3710 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3711 **
3712 **     SRT_Table       Store results in temporary table pDest->iParm.
3713 **                     This is like SRT_EphemTab except that the table
3714 **                     is assumed to already be open.
3715 **
3716 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3717 **                     the result there. The cursor is left open after
3718 **                     returning.  This is like SRT_Table except that
3719 **                     this destination uses OP_OpenEphemeral to create
3720 **                     the table first.
3721 **
3722 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3723 **                     results each time it is invoked.  The entry point
3724 **                     of the co-routine is stored in register pDest->iParm.
3725 **
3726 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3727 **                     set is not empty.
3728 **
3729 **     SRT_Discard     Throw the results away.  This is used by SELECT
3730 **                     statements within triggers whose only purpose is
3731 **                     the side-effects of functions.
3732 **
3733 ** This routine returns the number of errors.  If any errors are
3734 ** encountered, then an appropriate error message is left in
3735 ** pParse->zErrMsg.
3736 **
3737 ** This routine does NOT free the Select structure passed in.  The
3738 ** calling function needs to do that.
3739 */
3740 int sqlite3Select(
3741   Parse *pParse,         /* The parser context */
3742   Select *p,             /* The SELECT statement being coded. */
3743   SelectDest *pDest      /* What to do with the query results */
3744 ){
3745   int i, j;              /* Loop counters */
3746   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3747   Vdbe *v;               /* The virtual machine under construction */
3748   int isAgg;             /* True for select lists like "count(*)" */
3749   ExprList *pEList;      /* List of columns to extract. */
3750   SrcList *pTabList;     /* List of tables to select from */
3751   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3752   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3753   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3754   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3755   int isDistinct;        /* True if the DISTINCT keyword is present */
3756   int distinct;          /* Table to use for the distinct set */
3757   int rc = 1;            /* Value to return from this function */
3758   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3759   int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */
3760   AggInfo sAggInfo;      /* Information used by aggregate queries */
3761   int iEnd;              /* Address of the end of the query */
3762   sqlite3 *db;           /* The database connection */
3763 
3764 #ifndef SQLITE_OMIT_EXPLAIN
3765   int iRestoreSelectId = pParse->iSelectId;
3766   pParse->iSelectId = pParse->iNextSelectId++;
3767 #endif
3768 
3769   db = pParse->db;
3770   if( p==0 || db->mallocFailed || pParse->nErr ){
3771     return 1;
3772   }
3773   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3774   memset(&sAggInfo, 0, sizeof(sAggInfo));
3775 
3776   if( IgnorableOrderby(pDest) ){
3777     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3778            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3779     /* If ORDER BY makes no difference in the output then neither does
3780     ** DISTINCT so it can be removed too. */
3781     sqlite3ExprListDelete(db, p->pOrderBy);
3782     p->pOrderBy = 0;
3783     p->selFlags &= ~SF_Distinct;
3784   }
3785   sqlite3SelectPrep(pParse, p, 0);
3786   pOrderBy = p->pOrderBy;
3787   pTabList = p->pSrc;
3788   pEList = p->pEList;
3789   if( pParse->nErr || db->mallocFailed ){
3790     goto select_end;
3791   }
3792   isAgg = (p->selFlags & SF_Aggregate)!=0;
3793   assert( pEList!=0 );
3794 
3795   /* Begin generating code.
3796   */
3797   v = sqlite3GetVdbe(pParse);
3798   if( v==0 ) goto select_end;
3799 
3800   /* If writing to memory or generating a set
3801   ** only a single column may be output.
3802   */
3803 #ifndef SQLITE_OMIT_SUBQUERY
3804   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3805     goto select_end;
3806   }
3807 #endif
3808 
3809   /* Generate code for all sub-queries in the FROM clause
3810   */
3811 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3812   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3813     struct SrcList_item *pItem = &pTabList->a[i];
3814     SelectDest dest;
3815     Select *pSub = pItem->pSelect;
3816     int isAggSub;
3817 
3818     if( pSub==0 ) continue;
3819     if( pItem->addrFillSub ){
3820       sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
3821       continue;
3822     }
3823 
3824     /* Increment Parse.nHeight by the height of the largest expression
3825     ** tree refered to by this, the parent select. The child select
3826     ** may contain expression trees of at most
3827     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3828     ** more conservative than necessary, but much easier than enforcing
3829     ** an exact limit.
3830     */
3831     pParse->nHeight += sqlite3SelectExprHeight(p);
3832 
3833     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3834     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3835       /* This subquery can be absorbed into its parent. */
3836       if( isAggSub ){
3837         isAgg = 1;
3838         p->selFlags |= SF_Aggregate;
3839       }
3840       i = -1;
3841     }else{
3842       /* Generate a subroutine that will fill an ephemeral table with
3843       ** the content of this subquery.  pItem->addrFillSub will point
3844       ** to the address of the generated subroutine.  pItem->regReturn
3845       ** is a register allocated to hold the subroutine return address
3846       */
3847       int topAddr;
3848       int onceAddr = 0;
3849       int retAddr;
3850       assert( pItem->addrFillSub==0 );
3851       pItem->regReturn = ++pParse->nMem;
3852       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
3853       pItem->addrFillSub = topAddr+1;
3854       VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
3855       if( pItem->isCorrelated==0 ){
3856         /* If the subquery is no correlated and if we are not inside of
3857         ** a trigger, then we only need to compute the value of the subquery
3858         ** once. */
3859         onceAddr = sqlite3CodeOnce(pParse);
3860       }
3861       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3862       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
3863       sqlite3Select(pParse, pSub, &dest);
3864       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
3865       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
3866       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
3867       VdbeComment((v, "end %s", pItem->pTab->zName));
3868       sqlite3VdbeChangeP1(v, topAddr, retAddr);
3869       sqlite3ClearTempRegCache(pParse);
3870     }
3871     if( /*pParse->nErr ||*/ db->mallocFailed ){
3872       goto select_end;
3873     }
3874     pParse->nHeight -= sqlite3SelectExprHeight(p);
3875     pTabList = p->pSrc;
3876     if( !IgnorableOrderby(pDest) ){
3877       pOrderBy = p->pOrderBy;
3878     }
3879   }
3880   pEList = p->pEList;
3881 #endif
3882   pWhere = p->pWhere;
3883   pGroupBy = p->pGroupBy;
3884   pHaving = p->pHaving;
3885   isDistinct = (p->selFlags & SF_Distinct)!=0;
3886 
3887 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3888   /* If there is are a sequence of queries, do the earlier ones first.
3889   */
3890   if( p->pPrior ){
3891     if( p->pRightmost==0 ){
3892       Select *pLoop, *pRight = 0;
3893       int cnt = 0;
3894       int mxSelect;
3895       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3896         pLoop->pRightmost = p;
3897         pLoop->pNext = pRight;
3898         pRight = pLoop;
3899       }
3900       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3901       if( mxSelect && cnt>mxSelect ){
3902         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3903         goto select_end;
3904       }
3905     }
3906     rc = multiSelect(pParse, p, pDest);
3907     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
3908     return rc;
3909   }
3910 #endif
3911 
3912   /* If there is both a GROUP BY and an ORDER BY clause and they are
3913   ** identical, then disable the ORDER BY clause since the GROUP BY
3914   ** will cause elements to come out in the correct order.  This is
3915   ** an optimization - the correct answer should result regardless.
3916   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
3917   ** to disable this optimization for testing purposes.
3918   */
3919   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
3920          && (db->flags & SQLITE_GroupByOrder)==0 ){
3921     pOrderBy = 0;
3922   }
3923 
3924   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
3925   ** if the select-list is the same as the ORDER BY list, then this query
3926   ** can be rewritten as a GROUP BY. In other words, this:
3927   **
3928   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
3929   **
3930   ** is transformed to:
3931   **
3932   **     SELECT xyz FROM ... GROUP BY xyz
3933   **
3934   ** The second form is preferred as a single index (or temp-table) may be
3935   ** used for both the ORDER BY and DISTINCT processing. As originally
3936   ** written the query must use a temp-table for at least one of the ORDER
3937   ** BY and DISTINCT, and an index or separate temp-table for the other.
3938   */
3939   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
3940    && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
3941   ){
3942     p->selFlags &= ~SF_Distinct;
3943     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3944     pGroupBy = p->pGroupBy;
3945     pOrderBy = 0;
3946   }
3947 
3948   /* If there is an ORDER BY clause, then this sorting
3949   ** index might end up being unused if the data can be
3950   ** extracted in pre-sorted order.  If that is the case, then the
3951   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3952   ** we figure out that the sorting index is not needed.  The addrSortIndex
3953   ** variable is used to facilitate that change.
3954   */
3955   if( pOrderBy ){
3956     KeyInfo *pKeyInfo;
3957     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3958     pOrderBy->iECursor = pParse->nTab++;
3959     p->addrOpenEphm[2] = addrSortIndex =
3960       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3961                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3962                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3963   }else{
3964     addrSortIndex = -1;
3965   }
3966 
3967   /* If the output is destined for a temporary table, open that table.
3968   */
3969   if( pDest->eDest==SRT_EphemTab ){
3970     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3971   }
3972 
3973   /* Set the limiter.
3974   */
3975   iEnd = sqlite3VdbeMakeLabel(v);
3976   p->nSelectRow = (double)LARGEST_INT64;
3977   computeLimitRegisters(pParse, p, iEnd);
3978   if( p->iLimit==0 && addrSortIndex>=0 ){
3979     sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
3980     p->selFlags |= SF_UseSorter;
3981   }
3982 
3983   /* Open a virtual index to use for the distinct set.
3984   */
3985   if( p->selFlags & SF_Distinct ){
3986     KeyInfo *pKeyInfo;
3987     distinct = pParse->nTab++;
3988     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3989     addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3990         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3991     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
3992   }else{
3993     distinct = addrDistinctIndex = -1;
3994   }
3995 
3996   /* Aggregate and non-aggregate queries are handled differently */
3997   if( !isAgg && pGroupBy==0 ){
3998     ExprList *pDist = (isDistinct ? p->pEList : 0);
3999 
4000     /* Begin the database scan. */
4001     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0);
4002     if( pWInfo==0 ) goto select_end;
4003     if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
4004 
4005     /* If sorting index that was created by a prior OP_OpenEphemeral
4006     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4007     ** into an OP_Noop.
4008     */
4009     if( addrSortIndex>=0 && pOrderBy==0 ){
4010       sqlite3VdbeChangeToNoop(v, addrSortIndex);
4011       p->addrOpenEphm[2] = -1;
4012     }
4013 
4014     if( pWInfo->eDistinct ){
4015       VdbeOp *pOp;                /* No longer required OpenEphemeral instr. */
4016 
4017       assert( addrDistinctIndex>=0 );
4018       pOp = sqlite3VdbeGetOp(v, addrDistinctIndex);
4019 
4020       assert( isDistinct );
4021       assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
4022            || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE
4023       );
4024       distinct = -1;
4025       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){
4026         int iJump;
4027         int iExpr;
4028         int iFlag = ++pParse->nMem;
4029         int iBase = pParse->nMem+1;
4030         int iBase2 = iBase + pEList->nExpr;
4031         pParse->nMem += (pEList->nExpr*2);
4032 
4033         /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The
4034         ** OP_Integer initializes the "first row" flag.  */
4035         pOp->opcode = OP_Integer;
4036         pOp->p1 = 1;
4037         pOp->p2 = iFlag;
4038 
4039         sqlite3ExprCodeExprList(pParse, pEList, iBase, 1);
4040         iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1;
4041         sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1);
4042         for(iExpr=0; iExpr<pEList->nExpr; iExpr++){
4043           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr);
4044           sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr);
4045           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
4046           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
4047         }
4048         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue);
4049 
4050         sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag);
4051         assert( sqlite3VdbeCurrentAddr(v)==iJump );
4052         sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr);
4053       }else{
4054         pOp->opcode = OP_Noop;
4055       }
4056     }
4057 
4058     /* Use the standard inner loop. */
4059     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest,
4060                     pWInfo->iContinue, pWInfo->iBreak);
4061 
4062     /* End the database scan loop.
4063     */
4064     sqlite3WhereEnd(pWInfo);
4065   }else{
4066     /* This is the processing for aggregate queries */
4067     NameContext sNC;    /* Name context for processing aggregate information */
4068     int iAMem;          /* First Mem address for storing current GROUP BY */
4069     int iBMem;          /* First Mem address for previous GROUP BY */
4070     int iUseFlag;       /* Mem address holding flag indicating that at least
4071                         ** one row of the input to the aggregator has been
4072                         ** processed */
4073     int iAbortFlag;     /* Mem address which causes query abort if positive */
4074     int groupBySort;    /* Rows come from source in GROUP BY order */
4075     int addrEnd;        /* End of processing for this SELECT */
4076     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4077     int sortOut = 0;    /* Output register from the sorter */
4078 
4079     /* Remove any and all aliases between the result set and the
4080     ** GROUP BY clause.
4081     */
4082     if( pGroupBy ){
4083       int k;                        /* Loop counter */
4084       struct ExprList_item *pItem;  /* For looping over expression in a list */
4085 
4086       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4087         pItem->iAlias = 0;
4088       }
4089       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4090         pItem->iAlias = 0;
4091       }
4092       if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
4093     }else{
4094       p->nSelectRow = (double)1;
4095     }
4096 
4097 
4098     /* Create a label to jump to when we want to abort the query */
4099     addrEnd = sqlite3VdbeMakeLabel(v);
4100 
4101     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4102     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4103     ** SELECT statement.
4104     */
4105     memset(&sNC, 0, sizeof(sNC));
4106     sNC.pParse = pParse;
4107     sNC.pSrcList = pTabList;
4108     sNC.pAggInfo = &sAggInfo;
4109     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4110     sAggInfo.pGroupBy = pGroupBy;
4111     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4112     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
4113     if( pHaving ){
4114       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4115     }
4116     sAggInfo.nAccumulator = sAggInfo.nColumn;
4117     for(i=0; i<sAggInfo.nFunc; i++){
4118       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4119       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4120     }
4121     if( db->mallocFailed ) goto select_end;
4122 
4123     /* Processing for aggregates with GROUP BY is very different and
4124     ** much more complex than aggregates without a GROUP BY.
4125     */
4126     if( pGroupBy ){
4127       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4128       int j1;             /* A-vs-B comparision jump */
4129       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4130       int regOutputRow;   /* Return address register for output subroutine */
4131       int addrSetAbort;   /* Set the abort flag and return */
4132       int addrTopOfLoop;  /* Top of the input loop */
4133       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4134       int addrReset;      /* Subroutine for resetting the accumulator */
4135       int regReset;       /* Return address register for reset subroutine */
4136 
4137       /* If there is a GROUP BY clause we might need a sorting index to
4138       ** implement it.  Allocate that sorting index now.  If it turns out
4139       ** that we do not need it after all, the OP_SorterOpen instruction
4140       ** will be converted into a Noop.
4141       */
4142       sAggInfo.sortingIdx = pParse->nTab++;
4143       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
4144       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4145           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4146           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4147 
4148       /* Initialize memory locations used by GROUP BY aggregate processing
4149       */
4150       iUseFlag = ++pParse->nMem;
4151       iAbortFlag = ++pParse->nMem;
4152       regOutputRow = ++pParse->nMem;
4153       addrOutputRow = sqlite3VdbeMakeLabel(v);
4154       regReset = ++pParse->nMem;
4155       addrReset = sqlite3VdbeMakeLabel(v);
4156       iAMem = pParse->nMem + 1;
4157       pParse->nMem += pGroupBy->nExpr;
4158       iBMem = pParse->nMem + 1;
4159       pParse->nMem += pGroupBy->nExpr;
4160       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4161       VdbeComment((v, "clear abort flag"));
4162       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4163       VdbeComment((v, "indicate accumulator empty"));
4164       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4165 
4166       /* Begin a loop that will extract all source rows in GROUP BY order.
4167       ** This might involve two separate loops with an OP_Sort in between, or
4168       ** it might be a single loop that uses an index to extract information
4169       ** in the right order to begin with.
4170       */
4171       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4172       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
4173       if( pWInfo==0 ) goto select_end;
4174       if( pGroupBy==0 ){
4175         /* The optimizer is able to deliver rows in group by order so
4176         ** we do not have to sort.  The OP_OpenEphemeral table will be
4177         ** cancelled later because we still need to use the pKeyInfo
4178         */
4179         pGroupBy = p->pGroupBy;
4180         groupBySort = 0;
4181       }else{
4182         /* Rows are coming out in undetermined order.  We have to push
4183         ** each row into a sorting index, terminate the first loop,
4184         ** then loop over the sorting index in order to get the output
4185         ** in sorted order
4186         */
4187         int regBase;
4188         int regRecord;
4189         int nCol;
4190         int nGroupBy;
4191 
4192         explainTempTable(pParse,
4193             isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
4194 
4195         groupBySort = 1;
4196         nGroupBy = pGroupBy->nExpr;
4197         nCol = nGroupBy + 1;
4198         j = nGroupBy+1;
4199         for(i=0; i<sAggInfo.nColumn; i++){
4200           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4201             nCol++;
4202             j++;
4203           }
4204         }
4205         regBase = sqlite3GetTempRange(pParse, nCol);
4206         sqlite3ExprCacheClear(pParse);
4207         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4208         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4209         j = nGroupBy+1;
4210         for(i=0; i<sAggInfo.nColumn; i++){
4211           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4212           if( pCol->iSorterColumn>=j ){
4213             int r1 = j + regBase;
4214             int r2;
4215 
4216             r2 = sqlite3ExprCodeGetColumn(pParse,
4217                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
4218             if( r1!=r2 ){
4219               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4220             }
4221             j++;
4222           }
4223         }
4224         regRecord = sqlite3GetTempReg(pParse);
4225         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4226         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
4227         sqlite3ReleaseTempReg(pParse, regRecord);
4228         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4229         sqlite3WhereEnd(pWInfo);
4230         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
4231         sortOut = sqlite3GetTempReg(pParse);
4232         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
4233         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
4234         VdbeComment((v, "GROUP BY sort"));
4235         sAggInfo.useSortingIdx = 1;
4236         sqlite3ExprCacheClear(pParse);
4237       }
4238 
4239       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4240       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4241       ** Then compare the current GROUP BY terms against the GROUP BY terms
4242       ** from the previous row currently stored in a0, a1, a2...
4243       */
4244       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4245       sqlite3ExprCacheClear(pParse);
4246       if( groupBySort ){
4247         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
4248       }
4249       for(j=0; j<pGroupBy->nExpr; j++){
4250         if( groupBySort ){
4251           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
4252           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
4253         }else{
4254           sAggInfo.directMode = 1;
4255           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4256         }
4257       }
4258       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4259                           (char*)pKeyInfo, P4_KEYINFO);
4260       j1 = sqlite3VdbeCurrentAddr(v);
4261       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4262 
4263       /* Generate code that runs whenever the GROUP BY changes.
4264       ** Changes in the GROUP BY are detected by the previous code
4265       ** block.  If there were no changes, this block is skipped.
4266       **
4267       ** This code copies current group by terms in b0,b1,b2,...
4268       ** over to a0,a1,a2.  It then calls the output subroutine
4269       ** and resets the aggregate accumulator registers in preparation
4270       ** for the next GROUP BY batch.
4271       */
4272       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4273       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4274       VdbeComment((v, "output one row"));
4275       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4276       VdbeComment((v, "check abort flag"));
4277       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4278       VdbeComment((v, "reset accumulator"));
4279 
4280       /* Update the aggregate accumulators based on the content of
4281       ** the current row
4282       */
4283       sqlite3VdbeJumpHere(v, j1);
4284       updateAccumulator(pParse, &sAggInfo);
4285       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4286       VdbeComment((v, "indicate data in accumulator"));
4287 
4288       /* End of the loop
4289       */
4290       if( groupBySort ){
4291         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
4292       }else{
4293         sqlite3WhereEnd(pWInfo);
4294         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
4295       }
4296 
4297       /* Output the final row of result
4298       */
4299       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4300       VdbeComment((v, "output final row"));
4301 
4302       /* Jump over the subroutines
4303       */
4304       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4305 
4306       /* Generate a subroutine that outputs a single row of the result
4307       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4308       ** is less than or equal to zero, the subroutine is a no-op.  If
4309       ** the processing calls for the query to abort, this subroutine
4310       ** increments the iAbortFlag memory location before returning in
4311       ** order to signal the caller to abort.
4312       */
4313       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4314       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4315       VdbeComment((v, "set abort flag"));
4316       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4317       sqlite3VdbeResolveLabel(v, addrOutputRow);
4318       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4319       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4320       VdbeComment((v, "Groupby result generator entry point"));
4321       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4322       finalizeAggFunctions(pParse, &sAggInfo);
4323       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4324       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4325                       distinct, pDest,
4326                       addrOutputRow+1, addrSetAbort);
4327       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4328       VdbeComment((v, "end groupby result generator"));
4329 
4330       /* Generate a subroutine that will reset the group-by accumulator
4331       */
4332       sqlite3VdbeResolveLabel(v, addrReset);
4333       resetAccumulator(pParse, &sAggInfo);
4334       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4335 
4336     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4337     else {
4338       ExprList *pDel = 0;
4339 #ifndef SQLITE_OMIT_BTREECOUNT
4340       Table *pTab;
4341       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4342         /* If isSimpleCount() returns a pointer to a Table structure, then
4343         ** the SQL statement is of the form:
4344         **
4345         **   SELECT count(*) FROM <tbl>
4346         **
4347         ** where the Table structure returned represents table <tbl>.
4348         **
4349         ** This statement is so common that it is optimized specially. The
4350         ** OP_Count instruction is executed either on the intkey table that
4351         ** contains the data for table <tbl> or on one of its indexes. It
4352         ** is better to execute the op on an index, as indexes are almost
4353         ** always spread across less pages than their corresponding tables.
4354         */
4355         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4356         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4357         Index *pIdx;                         /* Iterator variable */
4358         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4359         Index *pBest = 0;                    /* Best index found so far */
4360         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4361 
4362         sqlite3CodeVerifySchema(pParse, iDb);
4363         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4364 
4365         /* Search for the index that has the least amount of columns. If
4366         ** there is such an index, and it has less columns than the table
4367         ** does, then we can assume that it consumes less space on disk and
4368         ** will therefore be cheaper to scan to determine the query result.
4369         ** In this case set iRoot to the root page number of the index b-tree
4370         ** and pKeyInfo to the KeyInfo structure required to navigate the
4371         ** index.
4372         **
4373         ** (2011-04-15) Do not do a full scan of an unordered index.
4374         **
4375         ** In practice the KeyInfo structure will not be used. It is only
4376         ** passed to keep OP_OpenRead happy.
4377         */
4378         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4379           if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){
4380             pBest = pIdx;
4381           }
4382         }
4383         if( pBest && pBest->nColumn<pTab->nCol ){
4384           iRoot = pBest->tnum;
4385           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4386         }
4387 
4388         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4389         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4390         if( pKeyInfo ){
4391           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4392         }
4393         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4394         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4395         explainSimpleCount(pParse, pTab, pBest);
4396       }else
4397 #endif /* SQLITE_OMIT_BTREECOUNT */
4398       {
4399         /* Check if the query is of one of the following forms:
4400         **
4401         **   SELECT min(x) FROM ...
4402         **   SELECT max(x) FROM ...
4403         **
4404         ** If it is, then ask the code in where.c to attempt to sort results
4405         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4406         ** If where.c is able to produce results sorted in this order, then
4407         ** add vdbe code to break out of the processing loop after the
4408         ** first iteration (since the first iteration of the loop is
4409         ** guaranteed to operate on the row with the minimum or maximum
4410         ** value of x, the only row required).
4411         **
4412         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4413         ** modify behaviour as follows:
4414         **
4415         **   + If the query is a "SELECT min(x)", then the loop coded by
4416         **     where.c should not iterate over any values with a NULL value
4417         **     for x.
4418         **
4419         **   + The optimizer code in where.c (the thing that decides which
4420         **     index or indices to use) should place a different priority on
4421         **     satisfying the 'ORDER BY' clause than it does in other cases.
4422         **     Refer to code and comments in where.c for details.
4423         */
4424         ExprList *pMinMax = 0;
4425         u8 flag = minMaxQuery(p);
4426         if( flag ){
4427           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4428           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4429           pDel = pMinMax;
4430           if( pMinMax && !db->mallocFailed ){
4431             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4432             pMinMax->a[0].pExpr->op = TK_COLUMN;
4433           }
4434         }
4435 
4436         /* This case runs if the aggregate has no GROUP BY clause.  The
4437         ** processing is much simpler since there is only a single row
4438         ** of output.
4439         */
4440         resetAccumulator(pParse, &sAggInfo);
4441         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag);
4442         if( pWInfo==0 ){
4443           sqlite3ExprListDelete(db, pDel);
4444           goto select_end;
4445         }
4446         updateAccumulator(pParse, &sAggInfo);
4447         if( !pMinMax && flag ){
4448           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4449           VdbeComment((v, "%s() by index",
4450                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4451         }
4452         sqlite3WhereEnd(pWInfo);
4453         finalizeAggFunctions(pParse, &sAggInfo);
4454       }
4455 
4456       pOrderBy = 0;
4457       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4458       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4459                       pDest, addrEnd, addrEnd);
4460       sqlite3ExprListDelete(db, pDel);
4461     }
4462     sqlite3VdbeResolveLabel(v, addrEnd);
4463 
4464   } /* endif aggregate query */
4465 
4466   if( distinct>=0 ){
4467     explainTempTable(pParse, "DISTINCT");
4468   }
4469 
4470   /* If there is an ORDER BY clause, then we need to sort the results
4471   ** and send them to the callback one by one.
4472   */
4473   if( pOrderBy ){
4474     explainTempTable(pParse, "ORDER BY");
4475     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4476   }
4477 
4478   /* Jump here to skip this query
4479   */
4480   sqlite3VdbeResolveLabel(v, iEnd);
4481 
4482   /* The SELECT was successfully coded.   Set the return code to 0
4483   ** to indicate no errors.
4484   */
4485   rc = 0;
4486 
4487   /* Control jumps to here if an error is encountered above, or upon
4488   ** successful coding of the SELECT.
4489   */
4490 select_end:
4491   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4492 
4493   /* Identify column names if results of the SELECT are to be output.
4494   */
4495   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4496     generateColumnNames(pParse, pTabList, pEList);
4497   }
4498 
4499   sqlite3DbFree(db, sAggInfo.aCol);
4500   sqlite3DbFree(db, sAggInfo.aFunc);
4501   return rc;
4502 }
4503 
4504 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
4505 /*
4506 ** Generate a human-readable description of a the Select object.
4507 */
4508 static void explainOneSelect(Vdbe *pVdbe, Select *p){
4509   sqlite3ExplainPrintf(pVdbe, "SELECT ");
4510   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
4511     if( p->selFlags & SF_Distinct ){
4512       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
4513     }
4514     if( p->selFlags & SF_Aggregate ){
4515       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
4516     }
4517     sqlite3ExplainNL(pVdbe);
4518     sqlite3ExplainPrintf(pVdbe, "   ");
4519   }
4520   sqlite3ExplainExprList(pVdbe, p->pEList);
4521   sqlite3ExplainNL(pVdbe);
4522   if( p->pSrc && p->pSrc->nSrc ){
4523     int i;
4524     sqlite3ExplainPrintf(pVdbe, "FROM ");
4525     sqlite3ExplainPush(pVdbe);
4526     for(i=0; i<p->pSrc->nSrc; i++){
4527       struct SrcList_item *pItem = &p->pSrc->a[i];
4528       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
4529       if( pItem->pSelect ){
4530         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
4531         if( pItem->pTab ){
4532           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
4533         }
4534       }else if( pItem->zName ){
4535         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
4536       }
4537       if( pItem->zAlias ){
4538         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
4539       }
4540       if( pItem->jointype & JT_LEFT ){
4541         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
4542       }
4543       sqlite3ExplainNL(pVdbe);
4544     }
4545     sqlite3ExplainPop(pVdbe);
4546   }
4547   if( p->pWhere ){
4548     sqlite3ExplainPrintf(pVdbe, "WHERE ");
4549     sqlite3ExplainExpr(pVdbe, p->pWhere);
4550     sqlite3ExplainNL(pVdbe);
4551   }
4552   if( p->pGroupBy ){
4553     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
4554     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
4555     sqlite3ExplainNL(pVdbe);
4556   }
4557   if( p->pHaving ){
4558     sqlite3ExplainPrintf(pVdbe, "HAVING ");
4559     sqlite3ExplainExpr(pVdbe, p->pHaving);
4560     sqlite3ExplainNL(pVdbe);
4561   }
4562   if( p->pOrderBy ){
4563     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
4564     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
4565     sqlite3ExplainNL(pVdbe);
4566   }
4567   if( p->pLimit ){
4568     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
4569     sqlite3ExplainExpr(pVdbe, p->pLimit);
4570     sqlite3ExplainNL(pVdbe);
4571   }
4572   if( p->pOffset ){
4573     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
4574     sqlite3ExplainExpr(pVdbe, p->pOffset);
4575     sqlite3ExplainNL(pVdbe);
4576   }
4577 }
4578 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
4579   if( p==0 ){
4580     sqlite3ExplainPrintf(pVdbe, "(null-select)");
4581     return;
4582   }
4583   while( p->pPrior ) p = p->pPrior;
4584   sqlite3ExplainPush(pVdbe);
4585   while( p ){
4586     explainOneSelect(pVdbe, p);
4587     p = p->pNext;
4588     if( p==0 ) break;
4589     sqlite3ExplainNL(pVdbe);
4590     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
4591   }
4592   sqlite3ExplainPrintf(pVdbe, "END");
4593   sqlite3ExplainPop(pVdbe);
4594 }
4595 
4596 /* End of the structure debug printing code
4597 *****************************************************************************/
4598 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
4599