1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.458 2008/07/22 05:00:56 shane Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->isDistinct = isDistinct; 83 pNew->op = TK_SELECT; 84 assert( pOffset==0 || pLimit!=0 ); 85 pNew->pLimit = pLimit; 86 pNew->pOffset = pOffset; 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( pNew==&standin) { 91 clearSelect(pNew); 92 pNew = 0; 93 } 94 return pNew; 95 } 96 97 /* 98 ** Delete the given Select structure and all of its substructures. 99 */ 100 void sqlite3SelectDelete(Select *p){ 101 if( p ){ 102 clearSelect(p); 103 sqlite3_free(p); 104 } 105 } 106 107 /* 108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 109 ** type of join. Return an integer constant that expresses that type 110 ** in terms of the following bit values: 111 ** 112 ** JT_INNER 113 ** JT_CROSS 114 ** JT_OUTER 115 ** JT_NATURAL 116 ** JT_LEFT 117 ** JT_RIGHT 118 ** 119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 120 ** 121 ** If an illegal or unsupported join type is seen, then still return 122 ** a join type, but put an error in the pParse structure. 123 */ 124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 125 int jointype = 0; 126 Token *apAll[3]; 127 Token *p; 128 static const struct { 129 const char zKeyword[8]; 130 u8 nChar; 131 u8 code; 132 } keywords[] = { 133 { "natural", 7, JT_NATURAL }, 134 { "left", 4, JT_LEFT|JT_OUTER }, 135 { "right", 5, JT_RIGHT|JT_OUTER }, 136 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 137 { "outer", 5, JT_OUTER }, 138 { "inner", 5, JT_INNER }, 139 { "cross", 5, JT_INNER|JT_CROSS }, 140 }; 141 int i, j; 142 apAll[0] = pA; 143 apAll[1] = pB; 144 apAll[2] = pC; 145 for(i=0; i<3 && apAll[i]; i++){ 146 p = apAll[i]; 147 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 148 if( p->n==keywords[j].nChar 149 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 150 jointype |= keywords[j].code; 151 break; 152 } 153 } 154 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 155 jointype |= JT_ERROR; 156 break; 157 } 158 } 159 if( 160 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 161 (jointype & JT_ERROR)!=0 162 ){ 163 const char *zSp = " "; 164 assert( pB!=0 ); 165 if( pC==0 ){ zSp++; } 166 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 167 "%T %T%s%T", pA, pB, zSp, pC); 168 jointype = JT_INNER; 169 }else if( jointype & JT_RIGHT ){ 170 sqlite3ErrorMsg(pParse, 171 "RIGHT and FULL OUTER JOINs are not currently supported"); 172 jointype = JT_INNER; 173 } 174 return jointype; 175 } 176 177 /* 178 ** Return the index of a column in a table. Return -1 if the column 179 ** is not contained in the table. 180 */ 181 static int columnIndex(Table *pTab, const char *zCol){ 182 int i; 183 for(i=0; i<pTab->nCol; i++){ 184 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 185 } 186 return -1; 187 } 188 189 /* 190 ** Set the value of a token to a '\000'-terminated string. 191 */ 192 static void setToken(Token *p, const char *z){ 193 p->z = (u8*)z; 194 p->n = z ? strlen(z) : 0; 195 p->dyn = 0; 196 } 197 198 /* 199 ** Set the token to the double-quoted and escaped version of the string pointed 200 ** to by z. For example; 201 ** 202 ** {a"bc} -> {"a""bc"} 203 */ 204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ 205 206 /* Check if the string contains any " characters. If it does, then 207 ** this function will malloc space to create a quoted version of 208 ** the string in. Otherwise, save a call to sqlite3MPrintf() by 209 ** just copying the pointer to the string. 210 */ 211 const char *z2 = z; 212 while( *z2 ){ 213 if( *z2=='"' ) break; 214 z2++; 215 } 216 217 if( *z2 ){ 218 /* String contains " characters - copy and quote the string. */ 219 p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); 220 if( p->z ){ 221 p->n = strlen((char *)p->z); 222 p->dyn = 1; 223 } 224 }else{ 225 /* String contains no " characters - copy the pointer. */ 226 p->z = (u8*)z; 227 p->n = (z2 - z); 228 p->dyn = 0; 229 } 230 } 231 232 /* 233 ** Create an expression node for an identifier with the name of zName 234 */ 235 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 236 Token dummy; 237 setToken(&dummy, zName); 238 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 239 } 240 241 /* 242 ** Add a term to the WHERE expression in *ppExpr that requires the 243 ** zCol column to be equal in the two tables pTab1 and pTab2. 244 */ 245 static void addWhereTerm( 246 Parse *pParse, /* Parsing context */ 247 const char *zCol, /* Name of the column */ 248 const Table *pTab1, /* First table */ 249 const char *zAlias1, /* Alias for first table. May be NULL */ 250 const Table *pTab2, /* Second table */ 251 const char *zAlias2, /* Alias for second table. May be NULL */ 252 int iRightJoinTable, /* VDBE cursor for the right table */ 253 Expr **ppExpr, /* Add the equality term to this expression */ 254 int isOuterJoin /* True if dealing with an OUTER join */ 255 ){ 256 Expr *pE1a, *pE1b, *pE1c; 257 Expr *pE2a, *pE2b, *pE2c; 258 Expr *pE; 259 260 pE1a = sqlite3CreateIdExpr(pParse, zCol); 261 pE2a = sqlite3CreateIdExpr(pParse, zCol); 262 if( zAlias1==0 ){ 263 zAlias1 = pTab1->zName; 264 } 265 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 266 if( zAlias2==0 ){ 267 zAlias2 = pTab2->zName; 268 } 269 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 270 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 271 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 272 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 273 if( pE && isOuterJoin ){ 274 ExprSetProperty(pE, EP_FromJoin); 275 pE->iRightJoinTable = iRightJoinTable; 276 } 277 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 278 } 279 280 /* 281 ** Set the EP_FromJoin property on all terms of the given expression. 282 ** And set the Expr.iRightJoinTable to iTable for every term in the 283 ** expression. 284 ** 285 ** The EP_FromJoin property is used on terms of an expression to tell 286 ** the LEFT OUTER JOIN processing logic that this term is part of the 287 ** join restriction specified in the ON or USING clause and not a part 288 ** of the more general WHERE clause. These terms are moved over to the 289 ** WHERE clause during join processing but we need to remember that they 290 ** originated in the ON or USING clause. 291 ** 292 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 293 ** expression depends on table iRightJoinTable even if that table is not 294 ** explicitly mentioned in the expression. That information is needed 295 ** for cases like this: 296 ** 297 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 298 ** 299 ** The where clause needs to defer the handling of the t1.x=5 300 ** term until after the t2 loop of the join. In that way, a 301 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 302 ** defer the handling of t1.x=5, it will be processed immediately 303 ** after the t1 loop and rows with t1.x!=5 will never appear in 304 ** the output, which is incorrect. 305 */ 306 static void setJoinExpr(Expr *p, int iTable){ 307 while( p ){ 308 ExprSetProperty(p, EP_FromJoin); 309 p->iRightJoinTable = iTable; 310 setJoinExpr(p->pLeft, iTable); 311 p = p->pRight; 312 } 313 } 314 315 /* 316 ** This routine processes the join information for a SELECT statement. 317 ** ON and USING clauses are converted into extra terms of the WHERE clause. 318 ** NATURAL joins also create extra WHERE clause terms. 319 ** 320 ** The terms of a FROM clause are contained in the Select.pSrc structure. 321 ** The left most table is the first entry in Select.pSrc. The right-most 322 ** table is the last entry. The join operator is held in the entry to 323 ** the left. Thus entry 0 contains the join operator for the join between 324 ** entries 0 and 1. Any ON or USING clauses associated with the join are 325 ** also attached to the left entry. 326 ** 327 ** This routine returns the number of errors encountered. 328 */ 329 static int sqliteProcessJoin(Parse *pParse, Select *p){ 330 SrcList *pSrc; /* All tables in the FROM clause */ 331 int i, j; /* Loop counters */ 332 struct SrcList_item *pLeft; /* Left table being joined */ 333 struct SrcList_item *pRight; /* Right table being joined */ 334 335 pSrc = p->pSrc; 336 pLeft = &pSrc->a[0]; 337 pRight = &pLeft[1]; 338 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 339 Table *pLeftTab = pLeft->pTab; 340 Table *pRightTab = pRight->pTab; 341 int isOuter; 342 343 if( pLeftTab==0 || pRightTab==0 ) continue; 344 isOuter = (pRight->jointype & JT_OUTER)!=0; 345 346 /* When the NATURAL keyword is present, add WHERE clause terms for 347 ** every column that the two tables have in common. 348 */ 349 if( pRight->jointype & JT_NATURAL ){ 350 if( pRight->pOn || pRight->pUsing ){ 351 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 352 "an ON or USING clause", 0); 353 return 1; 354 } 355 for(j=0; j<pLeftTab->nCol; j++){ 356 char *zName = pLeftTab->aCol[j].zName; 357 if( columnIndex(pRightTab, zName)>=0 ){ 358 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 359 pRightTab, pRight->zAlias, 360 pRight->iCursor, &p->pWhere, isOuter); 361 362 } 363 } 364 } 365 366 /* Disallow both ON and USING clauses in the same join 367 */ 368 if( pRight->pOn && pRight->pUsing ){ 369 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 370 "clauses in the same join"); 371 return 1; 372 } 373 374 /* Add the ON clause to the end of the WHERE clause, connected by 375 ** an AND operator. 376 */ 377 if( pRight->pOn ){ 378 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 379 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 380 pRight->pOn = 0; 381 } 382 383 /* Create extra terms on the WHERE clause for each column named 384 ** in the USING clause. Example: If the two tables to be joined are 385 ** A and B and the USING clause names X, Y, and Z, then add this 386 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 387 ** Report an error if any column mentioned in the USING clause is 388 ** not contained in both tables to be joined. 389 */ 390 if( pRight->pUsing ){ 391 IdList *pList = pRight->pUsing; 392 for(j=0; j<pList->nId; j++){ 393 char *zName = pList->a[j].zName; 394 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 395 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 396 "not present in both tables", zName); 397 return 1; 398 } 399 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 400 pRightTab, pRight->zAlias, 401 pRight->iCursor, &p->pWhere, isOuter); 402 } 403 } 404 } 405 return 0; 406 } 407 408 /* 409 ** Insert code into "v" that will push the record on the top of the 410 ** stack into the sorter. 411 */ 412 static void pushOntoSorter( 413 Parse *pParse, /* Parser context */ 414 ExprList *pOrderBy, /* The ORDER BY clause */ 415 Select *pSelect, /* The whole SELECT statement */ 416 int regData /* Register holding data to be sorted */ 417 ){ 418 Vdbe *v = pParse->pVdbe; 419 int nExpr = pOrderBy->nExpr; 420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 421 int regRecord = sqlite3GetTempReg(pParse); 422 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 423 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 424 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 425 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 426 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 427 sqlite3ReleaseTempReg(pParse, regRecord); 428 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 429 if( pSelect->iLimit ){ 430 int addr1, addr2; 431 int iLimit; 432 if( pSelect->iOffset ){ 433 iLimit = pSelect->iOffset+1; 434 }else{ 435 iLimit = pSelect->iLimit; 436 } 437 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 438 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 439 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 440 sqlite3VdbeJumpHere(v, addr1); 441 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 442 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 443 sqlite3VdbeJumpHere(v, addr2); 444 pSelect->iLimit = 0; 445 } 446 } 447 448 /* 449 ** Add code to implement the OFFSET 450 */ 451 static void codeOffset( 452 Vdbe *v, /* Generate code into this VM */ 453 Select *p, /* The SELECT statement being coded */ 454 int iContinue /* Jump here to skip the current record */ 455 ){ 456 if( p->iOffset && iContinue!=0 ){ 457 int addr; 458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 461 VdbeComment((v, "skip OFFSET records")); 462 sqlite3VdbeJumpHere(v, addr); 463 } 464 } 465 466 /* 467 ** Add code that will check to make sure the N registers starting at iMem 468 ** form a distinct entry. iTab is a sorting index that holds previously 469 ** seen combinations of the N values. A new entry is made in iTab 470 ** if the current N values are new. 471 ** 472 ** A jump to addrRepeat is made and the N+1 values are popped from the 473 ** stack if the top N elements are not distinct. 474 */ 475 static void codeDistinct( 476 Parse *pParse, /* Parsing and code generating context */ 477 int iTab, /* A sorting index used to test for distinctness */ 478 int addrRepeat, /* Jump to here if not distinct */ 479 int N, /* Number of elements */ 480 int iMem /* First element */ 481 ){ 482 Vdbe *v; 483 int r1; 484 485 v = pParse->pVdbe; 486 r1 = sqlite3GetTempReg(pParse); 487 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 488 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 490 sqlite3ReleaseTempReg(pParse, r1); 491 } 492 493 /* 494 ** Generate an error message when a SELECT is used within a subexpression 495 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 496 ** column. We do this in a subroutine because the error occurs in multiple 497 ** places. 498 */ 499 static int checkForMultiColumnSelectError( 500 Parse *pParse, /* Parse context. */ 501 SelectDest *pDest, /* Destination of SELECT results */ 502 int nExpr /* Number of result columns returned by SELECT */ 503 ){ 504 int eDest = pDest->eDest; 505 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 506 sqlite3ErrorMsg(pParse, "only a single result allowed for " 507 "a SELECT that is part of an expression"); 508 return 1; 509 }else{ 510 return 0; 511 } 512 } 513 514 /* 515 ** This routine generates the code for the inside of the inner loop 516 ** of a SELECT. 517 ** 518 ** If srcTab and nColumn are both zero, then the pEList expressions 519 ** are evaluated in order to get the data for this row. If nColumn>0 520 ** then data is pulled from srcTab and pEList is used only to get the 521 ** datatypes for each column. 522 */ 523 static void selectInnerLoop( 524 Parse *pParse, /* The parser context */ 525 Select *p, /* The complete select statement being coded */ 526 ExprList *pEList, /* List of values being extracted */ 527 int srcTab, /* Pull data from this table */ 528 int nColumn, /* Number of columns in the source table */ 529 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 530 int distinct, /* If >=0, make sure results are distinct */ 531 SelectDest *pDest, /* How to dispose of the results */ 532 int iContinue, /* Jump here to continue with next row */ 533 int iBreak /* Jump here to break out of the inner loop */ 534 ){ 535 Vdbe *v = pParse->pVdbe; 536 int i; 537 int hasDistinct; /* True if the DISTINCT keyword is present */ 538 int regResult; /* Start of memory holding result set */ 539 int eDest = pDest->eDest; /* How to dispose of results */ 540 int iParm = pDest->iParm; /* First argument to disposal method */ 541 int nResultCol; /* Number of result columns */ 542 543 if( v==0 ) return; 544 assert( pEList!=0 ); 545 hasDistinct = distinct>=0; 546 if( pOrderBy==0 && !hasDistinct ){ 547 codeOffset(v, p, iContinue); 548 } 549 550 /* Pull the requested columns. 551 */ 552 if( nColumn>0 ){ 553 nResultCol = nColumn; 554 }else{ 555 nResultCol = pEList->nExpr; 556 } 557 if( pDest->iMem==0 ){ 558 pDest->iMem = pParse->nMem+1; 559 pDest->nMem = nResultCol; 560 pParse->nMem += nResultCol; 561 }else if( pDest->nMem!=nResultCol ){ 562 /* This happens when two SELECTs of a compound SELECT have differing 563 ** numbers of result columns. The error message will be generated by 564 ** a higher-level routine. */ 565 return; 566 } 567 regResult = pDest->iMem; 568 if( nColumn>0 ){ 569 for(i=0; i<nColumn; i++){ 570 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 571 } 572 }else if( eDest!=SRT_Exists ){ 573 /* If the destination is an EXISTS(...) expression, the actual 574 ** values returned by the SELECT are not required. 575 */ 576 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback); 577 } 578 nColumn = nResultCol; 579 580 /* If the DISTINCT keyword was present on the SELECT statement 581 ** and this row has been seen before, then do not make this row 582 ** part of the result. 583 */ 584 if( hasDistinct ){ 585 assert( pEList!=0 ); 586 assert( pEList->nExpr==nColumn ); 587 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 588 if( pOrderBy==0 ){ 589 codeOffset(v, p, iContinue); 590 } 591 } 592 593 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 594 return; 595 } 596 597 switch( eDest ){ 598 /* In this mode, write each query result to the key of the temporary 599 ** table iParm. 600 */ 601 #ifndef SQLITE_OMIT_COMPOUND_SELECT 602 case SRT_Union: { 603 int r1; 604 r1 = sqlite3GetTempReg(pParse); 605 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 606 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 607 sqlite3ReleaseTempReg(pParse, r1); 608 break; 609 } 610 611 /* Construct a record from the query result, but instead of 612 ** saving that record, use it as a key to delete elements from 613 ** the temporary table iParm. 614 */ 615 case SRT_Except: { 616 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 617 break; 618 } 619 #endif 620 621 /* Store the result as data using a unique key. 622 */ 623 case SRT_Table: 624 case SRT_EphemTab: { 625 int r1 = sqlite3GetTempReg(pParse); 626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 627 if( pOrderBy ){ 628 pushOntoSorter(pParse, pOrderBy, p, r1); 629 }else{ 630 int r2 = sqlite3GetTempReg(pParse); 631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 634 sqlite3ReleaseTempReg(pParse, r2); 635 } 636 sqlite3ReleaseTempReg(pParse, r1); 637 break; 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 642 ** then there should be a single item on the stack. Write this 643 ** item into the set table with bogus data. 644 */ 645 case SRT_Set: { 646 assert( nColumn==1 ); 647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 648 if( pOrderBy ){ 649 /* At first glance you would think we could optimize out the 650 ** ORDER BY in this case since the order of entries in the set 651 ** does not matter. But there might be a LIMIT clause, in which 652 ** case the order does matter */ 653 pushOntoSorter(pParse, pOrderBy, p, regResult); 654 }else{ 655 int r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 659 sqlite3ReleaseTempReg(pParse, r1); 660 } 661 break; 662 } 663 664 /* If any row exist in the result set, record that fact and abort. 665 */ 666 case SRT_Exists: { 667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 668 /* The LIMIT clause will terminate the loop for us */ 669 break; 670 } 671 672 /* If this is a scalar select that is part of an expression, then 673 ** store the results in the appropriate memory cell and break out 674 ** of the scan loop. 675 */ 676 case SRT_Mem: { 677 assert( nColumn==1 ); 678 if( pOrderBy ){ 679 pushOntoSorter(pParse, pOrderBy, p, regResult); 680 }else{ 681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 682 /* The LIMIT clause will jump out of the loop for us */ 683 } 684 break; 685 } 686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 687 688 /* Send the data to the callback function or to a subroutine. In the 689 ** case of a subroutine, the subroutine itself is responsible for 690 ** popping the data from the stack. 691 */ 692 case SRT_Coroutine: 693 case SRT_Callback: { 694 if( pOrderBy ){ 695 int r1 = sqlite3GetTempReg(pParse); 696 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 697 pushOntoSorter(pParse, pOrderBy, p, r1); 698 sqlite3ReleaseTempReg(pParse, r1); 699 }else if( eDest==SRT_Coroutine ){ 700 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 701 }else{ 702 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 703 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 704 } 705 break; 706 } 707 708 #if !defined(SQLITE_OMIT_TRIGGER) 709 /* Discard the results. This is used for SELECT statements inside 710 ** the body of a TRIGGER. The purpose of such selects is to call 711 ** user-defined functions that have side effects. We do not care 712 ** about the actual results of the select. 713 */ 714 default: { 715 assert( eDest==SRT_Discard ); 716 break; 717 } 718 #endif 719 } 720 721 /* Jump to the end of the loop if the LIMIT is reached. 722 */ 723 if( p->iLimit ){ 724 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 725 ** pushOntoSorter() would have cleared p->iLimit */ 726 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 727 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 728 } 729 } 730 731 /* 732 ** Given an expression list, generate a KeyInfo structure that records 733 ** the collating sequence for each expression in that expression list. 734 ** 735 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 736 ** KeyInfo structure is appropriate for initializing a virtual index to 737 ** implement that clause. If the ExprList is the result set of a SELECT 738 ** then the KeyInfo structure is appropriate for initializing a virtual 739 ** index to implement a DISTINCT test. 740 ** 741 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 742 ** function is responsible for seeing that this structure is eventually 743 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 744 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 745 */ 746 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 747 sqlite3 *db = pParse->db; 748 int nExpr; 749 KeyInfo *pInfo; 750 struct ExprList_item *pItem; 751 int i; 752 753 nExpr = pList->nExpr; 754 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 755 if( pInfo ){ 756 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 757 pInfo->nField = nExpr; 758 pInfo->enc = ENC(db); 759 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 760 CollSeq *pColl; 761 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 762 if( !pColl ){ 763 pColl = db->pDfltColl; 764 } 765 pInfo->aColl[i] = pColl; 766 pInfo->aSortOrder[i] = pItem->sortOrder; 767 } 768 } 769 return pInfo; 770 } 771 772 773 /* 774 ** If the inner loop was generated using a non-null pOrderBy argument, 775 ** then the results were placed in a sorter. After the loop is terminated 776 ** we need to run the sorter and output the results. The following 777 ** routine generates the code needed to do that. 778 */ 779 static void generateSortTail( 780 Parse *pParse, /* Parsing context */ 781 Select *p, /* The SELECT statement */ 782 Vdbe *v, /* Generate code into this VDBE */ 783 int nColumn, /* Number of columns of data */ 784 SelectDest *pDest /* Write the sorted results here */ 785 ){ 786 int brk = sqlite3VdbeMakeLabel(v); 787 int cont = sqlite3VdbeMakeLabel(v); 788 int addr; 789 int iTab; 790 int pseudoTab = 0; 791 ExprList *pOrderBy = p->pOrderBy; 792 793 int eDest = pDest->eDest; 794 int iParm = pDest->iParm; 795 796 int regRow; 797 int regRowid; 798 799 iTab = pOrderBy->iECursor; 800 if( eDest==SRT_Callback || eDest==SRT_Coroutine ){ 801 pseudoTab = pParse->nTab++; 802 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn); 803 sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback); 804 } 805 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk); 806 codeOffset(v, p, cont); 807 regRow = sqlite3GetTempReg(pParse); 808 regRowid = sqlite3GetTempReg(pParse); 809 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 810 switch( eDest ){ 811 case SRT_Table: 812 case SRT_EphemTab: { 813 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 814 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 815 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 816 break; 817 } 818 #ifndef SQLITE_OMIT_SUBQUERY 819 case SRT_Set: { 820 assert( nColumn==1 ); 821 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 822 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 823 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 824 break; 825 } 826 case SRT_Mem: { 827 assert( nColumn==1 ); 828 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 829 /* The LIMIT clause will terminate the loop for us */ 830 break; 831 } 832 #endif 833 case SRT_Callback: 834 case SRT_Coroutine: { 835 int i; 836 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); 837 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); 838 for(i=0; i<nColumn; i++){ 839 assert( regRow!=pDest->iMem+i ); 840 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 841 } 842 if( eDest==SRT_Callback ){ 843 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 844 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 845 }else{ 846 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 847 } 848 break; 849 } 850 default: { 851 /* Do nothing */ 852 break; 853 } 854 } 855 sqlite3ReleaseTempReg(pParse, regRow); 856 sqlite3ReleaseTempReg(pParse, regRowid); 857 858 /* LIMIT has been implemented by the pushOntoSorter() routine. 859 */ 860 assert( p->iLimit==0 ); 861 862 /* The bottom of the loop 863 */ 864 sqlite3VdbeResolveLabel(v, cont); 865 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 866 sqlite3VdbeResolveLabel(v, brk); 867 if( eDest==SRT_Callback || eDest==SRT_Coroutine ){ 868 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 869 } 870 871 } 872 873 /* 874 ** Return a pointer to a string containing the 'declaration type' of the 875 ** expression pExpr. The string may be treated as static by the caller. 876 ** 877 ** The declaration type is the exact datatype definition extracted from the 878 ** original CREATE TABLE statement if the expression is a column. The 879 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 880 ** is considered a column can be complex in the presence of subqueries. The 881 ** result-set expression in all of the following SELECT statements is 882 ** considered a column by this function. 883 ** 884 ** SELECT col FROM tbl; 885 ** SELECT (SELECT col FROM tbl; 886 ** SELECT (SELECT col FROM tbl); 887 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 888 ** 889 ** The declaration type for any expression other than a column is NULL. 890 */ 891 static const char *columnType( 892 NameContext *pNC, 893 Expr *pExpr, 894 const char **pzOriginDb, 895 const char **pzOriginTab, 896 const char **pzOriginCol 897 ){ 898 char const *zType = 0; 899 char const *zOriginDb = 0; 900 char const *zOriginTab = 0; 901 char const *zOriginCol = 0; 902 int j; 903 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 904 905 switch( pExpr->op ){ 906 case TK_AGG_COLUMN: 907 case TK_COLUMN: { 908 /* The expression is a column. Locate the table the column is being 909 ** extracted from in NameContext.pSrcList. This table may be real 910 ** database table or a subquery. 911 */ 912 Table *pTab = 0; /* Table structure column is extracted from */ 913 Select *pS = 0; /* Select the column is extracted from */ 914 int iCol = pExpr->iColumn; /* Index of column in pTab */ 915 while( pNC && !pTab ){ 916 SrcList *pTabList = pNC->pSrcList; 917 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 918 if( j<pTabList->nSrc ){ 919 pTab = pTabList->a[j].pTab; 920 pS = pTabList->a[j].pSelect; 921 }else{ 922 pNC = pNC->pNext; 923 } 924 } 925 926 if( pTab==0 ){ 927 /* FIX ME: 928 ** This can occurs if you have something like "SELECT new.x;" inside 929 ** a trigger. In other words, if you reference the special "new" 930 ** table in the result set of a select. We do not have a good way 931 ** to find the actual table type, so call it "TEXT". This is really 932 ** something of a bug, but I do not know how to fix it. 933 ** 934 ** This code does not produce the correct answer - it just prevents 935 ** a segfault. See ticket #1229. 936 */ 937 zType = "TEXT"; 938 break; 939 } 940 941 assert( pTab ); 942 if( pS ){ 943 /* The "table" is actually a sub-select or a view in the FROM clause 944 ** of the SELECT statement. Return the declaration type and origin 945 ** data for the result-set column of the sub-select. 946 */ 947 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 948 /* If iCol is less than zero, then the expression requests the 949 ** rowid of the sub-select or view. This expression is legal (see 950 ** test case misc2.2.2) - it always evaluates to NULL. 951 */ 952 NameContext sNC; 953 Expr *p = pS->pEList->a[iCol].pExpr; 954 sNC.pSrcList = pS->pSrc; 955 sNC.pNext = 0; 956 sNC.pParse = pNC->pParse; 957 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 958 } 959 }else if( pTab->pSchema ){ 960 /* A real table */ 961 assert( !pS ); 962 if( iCol<0 ) iCol = pTab->iPKey; 963 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 964 if( iCol<0 ){ 965 zType = "INTEGER"; 966 zOriginCol = "rowid"; 967 }else{ 968 zType = pTab->aCol[iCol].zType; 969 zOriginCol = pTab->aCol[iCol].zName; 970 } 971 zOriginTab = pTab->zName; 972 if( pNC->pParse ){ 973 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 974 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 975 } 976 } 977 break; 978 } 979 #ifndef SQLITE_OMIT_SUBQUERY 980 case TK_SELECT: { 981 /* The expression is a sub-select. Return the declaration type and 982 ** origin info for the single column in the result set of the SELECT 983 ** statement. 984 */ 985 NameContext sNC; 986 Select *pS = pExpr->pSelect; 987 Expr *p = pS->pEList->a[0].pExpr; 988 sNC.pSrcList = pS->pSrc; 989 sNC.pNext = pNC; 990 sNC.pParse = pNC->pParse; 991 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 992 break; 993 } 994 #endif 995 } 996 997 if( pzOriginDb ){ 998 assert( pzOriginTab && pzOriginCol ); 999 *pzOriginDb = zOriginDb; 1000 *pzOriginTab = zOriginTab; 1001 *pzOriginCol = zOriginCol; 1002 } 1003 return zType; 1004 } 1005 1006 /* 1007 ** Generate code that will tell the VDBE the declaration types of columns 1008 ** in the result set. 1009 */ 1010 static void generateColumnTypes( 1011 Parse *pParse, /* Parser context */ 1012 SrcList *pTabList, /* List of tables */ 1013 ExprList *pEList /* Expressions defining the result set */ 1014 ){ 1015 #ifndef SQLITE_OMIT_DECLTYPE 1016 Vdbe *v = pParse->pVdbe; 1017 int i; 1018 NameContext sNC; 1019 sNC.pSrcList = pTabList; 1020 sNC.pParse = pParse; 1021 for(i=0; i<pEList->nExpr; i++){ 1022 Expr *p = pEList->a[i].pExpr; 1023 const char *zType; 1024 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1025 const char *zOrigDb = 0; 1026 const char *zOrigTab = 0; 1027 const char *zOrigCol = 0; 1028 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1029 1030 /* The vdbe must make its own copy of the column-type and other 1031 ** column specific strings, in case the schema is reset before this 1032 ** virtual machine is deleted. 1033 */ 1034 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT); 1035 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT); 1036 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT); 1037 #else 1038 zType = columnType(&sNC, p, 0, 0, 0); 1039 #endif 1040 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT); 1041 } 1042 #endif /* SQLITE_OMIT_DECLTYPE */ 1043 } 1044 1045 /* 1046 ** Generate code that will tell the VDBE the names of columns 1047 ** in the result set. This information is used to provide the 1048 ** azCol[] values in the callback. 1049 */ 1050 static void generateColumnNames( 1051 Parse *pParse, /* Parser context */ 1052 SrcList *pTabList, /* List of tables */ 1053 ExprList *pEList /* Expressions defining the result set */ 1054 ){ 1055 Vdbe *v = pParse->pVdbe; 1056 int i, j; 1057 sqlite3 *db = pParse->db; 1058 int fullNames, shortNames; 1059 1060 #ifndef SQLITE_OMIT_EXPLAIN 1061 /* If this is an EXPLAIN, skip this step */ 1062 if( pParse->explain ){ 1063 return; 1064 } 1065 #endif 1066 1067 assert( v!=0 ); 1068 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; 1069 pParse->colNamesSet = 1; 1070 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1071 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1072 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1073 for(i=0; i<pEList->nExpr; i++){ 1074 Expr *p; 1075 p = pEList->a[i].pExpr; 1076 if( p==0 ) continue; 1077 if( pEList->a[i].zName ){ 1078 char *zName = pEList->a[i].zName; 1079 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 1080 }else if( p->op==TK_COLUMN && pTabList ){ 1081 Table *pTab; 1082 char *zCol; 1083 int iCol = p->iColumn; 1084 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1085 assert( j<pTabList->nSrc ); 1086 pTab = pTabList->a[j].pTab; 1087 if( iCol<0 ) iCol = pTab->iPKey; 1088 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1089 if( iCol<0 ){ 1090 zCol = "rowid"; 1091 }else{ 1092 zCol = pTab->aCol[iCol].zName; 1093 } 1094 if( !shortNames && !fullNames ){ 1095 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1096 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1097 char *zName = 0; 1098 char *zTab; 1099 1100 zTab = pTabList->a[j].zAlias; 1101 if( fullNames || zTab==0 ) zTab = pTab->zName; 1102 zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol); 1103 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC); 1104 }else{ 1105 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1106 } 1107 }else{ 1108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1109 } 1110 } 1111 generateColumnTypes(pParse, pTabList, pEList); 1112 } 1113 1114 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1115 /* 1116 ** Name of the connection operator, used for error messages. 1117 */ 1118 static const char *selectOpName(int id){ 1119 char *z; 1120 switch( id ){ 1121 case TK_ALL: z = "UNION ALL"; break; 1122 case TK_INTERSECT: z = "INTERSECT"; break; 1123 case TK_EXCEPT: z = "EXCEPT"; break; 1124 default: z = "UNION"; break; 1125 } 1126 return z; 1127 } 1128 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1129 1130 /* 1131 ** Forward declaration 1132 */ 1133 static int prepSelectStmt(Parse*, Select*); 1134 1135 /* 1136 ** Given a SELECT statement, generate a Table structure that describes 1137 ** the result set of that SELECT. 1138 */ 1139 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1140 Table *pTab; 1141 int i, j, rc; 1142 ExprList *pEList; 1143 Column *aCol, *pCol; 1144 sqlite3 *db = pParse->db; 1145 int savedFlags; 1146 1147 savedFlags = db->flags; 1148 db->flags &= ~SQLITE_FullColNames; 1149 db->flags |= SQLITE_ShortColNames; 1150 rc = sqlite3SelectResolve(pParse, pSelect, 0); 1151 if( rc==SQLITE_OK ){ 1152 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1153 rc = prepSelectStmt(pParse, pSelect); 1154 if( rc==SQLITE_OK ){ 1155 rc = sqlite3SelectResolve(pParse, pSelect, 0); 1156 } 1157 } 1158 db->flags = savedFlags; 1159 if( rc ){ 1160 return 0; 1161 } 1162 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1163 if( pTab==0 ){ 1164 return 0; 1165 } 1166 pTab->nRef = 1; 1167 pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0; 1168 pEList = pSelect->pEList; 1169 pTab->nCol = pEList->nExpr; 1170 assert( pTab->nCol>0 ); 1171 pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol); 1172 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1173 Expr *p; 1174 char *zType; 1175 char *zName; 1176 int nName; 1177 CollSeq *pColl; 1178 int cnt; 1179 NameContext sNC; 1180 1181 /* Get an appropriate name for the column 1182 */ 1183 p = pEList->a[i].pExpr; 1184 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1185 if( (zName = pEList->a[i].zName)!=0 ){ 1186 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1187 zName = sqlite3DbStrDup(db, zName); 1188 }else if( p->op==TK_COLUMN && p->pTab ){ 1189 /* For columns use the column name name */ 1190 int iCol = p->iColumn; 1191 if( iCol<0 ) iCol = p->pTab->iPKey; 1192 zName = sqlite3MPrintf(db, "%s", p->pTab->aCol[iCol].zName); 1193 }else{ 1194 /* Use the original text of the column expression as its name */ 1195 zName = sqlite3MPrintf(db, "%T", &p->span); 1196 } 1197 if( !zName || db->mallocFailed ){ 1198 db->mallocFailed = 1; 1199 sqlite3_free(zName); 1200 sqlite3DeleteTable(pTab); 1201 return 0; 1202 } 1203 sqlite3Dequote(zName); 1204 1205 /* Make sure the column name is unique. If the name is not unique, 1206 ** append a integer to the name so that it becomes unique. 1207 */ 1208 nName = strlen(zName); 1209 for(j=cnt=0; j<i; j++){ 1210 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1211 zName[nName] = 0; 1212 zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt); 1213 j = -1; 1214 if( zName==0 ) break; 1215 } 1216 } 1217 pCol->zName = zName; 1218 1219 /* Get the typename, type affinity, and collating sequence for the 1220 ** column. 1221 */ 1222 memset(&sNC, 0, sizeof(sNC)); 1223 sNC.pSrcList = pSelect->pSrc; 1224 zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1225 pCol->zType = zType; 1226 pCol->affinity = sqlite3ExprAffinity(p); 1227 pColl = sqlite3ExprCollSeq(pParse, p); 1228 if( pColl ){ 1229 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1230 } 1231 } 1232 pTab->iPKey = -1; 1233 return pTab; 1234 } 1235 1236 /* 1237 ** Prepare a SELECT statement for processing by doing the following 1238 ** things: 1239 ** 1240 ** (1) Make sure VDBE cursor numbers have been assigned to every 1241 ** element of the FROM clause. 1242 ** 1243 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1244 ** defines FROM clause. When views appear in the FROM clause, 1245 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1246 ** that implements the view. A copy is made of the view's SELECT 1247 ** statement so that we can freely modify or delete that statement 1248 ** without worrying about messing up the presistent representation 1249 ** of the view. 1250 ** 1251 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1252 ** on joins and the ON and USING clause of joins. 1253 ** 1254 ** (4) Scan the list of columns in the result set (pEList) looking 1255 ** for instances of the "*" operator or the TABLE.* operator. 1256 ** If found, expand each "*" to be every column in every table 1257 ** and TABLE.* to be every column in TABLE. 1258 ** 1259 ** Return 0 on success. If there are problems, leave an error message 1260 ** in pParse and return non-zero. 1261 */ 1262 static int prepSelectStmt(Parse *pParse, Select *p){ 1263 int i, j, k, rc; 1264 SrcList *pTabList; 1265 ExprList *pEList; 1266 struct SrcList_item *pFrom; 1267 sqlite3 *db = pParse->db; 1268 1269 if( p==0 || p->pSrc==0 || db->mallocFailed ){ 1270 return 1; 1271 } 1272 pTabList = p->pSrc; 1273 pEList = p->pEList; 1274 1275 /* Make sure cursor numbers have been assigned to all entries in 1276 ** the FROM clause of the SELECT statement. 1277 */ 1278 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1279 1280 /* Look up every table named in the FROM clause of the select. If 1281 ** an entry of the FROM clause is a subquery instead of a table or view, 1282 ** then create a transient table structure to describe the subquery. 1283 */ 1284 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1285 Table *pTab; 1286 if( pFrom->pTab!=0 ){ 1287 /* This statement has already been prepared. There is no need 1288 ** to go further. */ 1289 assert( i==0 ); 1290 return 0; 1291 } 1292 if( pFrom->zName==0 ){ 1293 #ifndef SQLITE_OMIT_SUBQUERY 1294 /* A sub-query in the FROM clause of a SELECT */ 1295 assert( pFrom->pSelect!=0 ); 1296 if( pFrom->zAlias==0 ){ 1297 pFrom->zAlias = 1298 sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect); 1299 } 1300 assert( pFrom->pTab==0 ); 1301 pFrom->pTab = pTab = 1302 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1303 if( pTab==0 ){ 1304 return 1; 1305 } 1306 /* The isEphem flag indicates that the Table structure has been 1307 ** dynamically allocated and may be freed at any time. In other words, 1308 ** pTab is not pointing to a persistent table structure that defines 1309 ** part of the schema. */ 1310 pTab->isEphem = 1; 1311 #endif 1312 }else{ 1313 /* An ordinary table or view name in the FROM clause */ 1314 assert( pFrom->pTab==0 ); 1315 pFrom->pTab = pTab = 1316 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 1317 if( pTab==0 ){ 1318 return 1; 1319 } 1320 pTab->nRef++; 1321 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1322 if( pTab->pSelect || IsVirtual(pTab) ){ 1323 /* We reach here if the named table is a really a view */ 1324 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1325 return 1; 1326 } 1327 /* If pFrom->pSelect!=0 it means we are dealing with a 1328 ** view within a view. The SELECT structure has already been 1329 ** copied by the outer view so we can skip the copy step here 1330 ** in the inner view. 1331 */ 1332 if( pFrom->pSelect==0 ){ 1333 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); 1334 } 1335 } 1336 #endif 1337 } 1338 } 1339 1340 /* Process NATURAL keywords, and ON and USING clauses of joins. 1341 */ 1342 if( sqliteProcessJoin(pParse, p) ) return 1; 1343 1344 /* For every "*" that occurs in the column list, insert the names of 1345 ** all columns in all tables. And for every TABLE.* insert the names 1346 ** of all columns in TABLE. The parser inserted a special expression 1347 ** with the TK_ALL operator for each "*" that it found in the column list. 1348 ** The following code just has to locate the TK_ALL expressions and expand 1349 ** each one to the list of all columns in all tables. 1350 ** 1351 ** The first loop just checks to see if there are any "*" operators 1352 ** that need expanding. 1353 */ 1354 for(k=0; k<pEList->nExpr; k++){ 1355 Expr *pE = pEList->a[k].pExpr; 1356 if( pE->op==TK_ALL ) break; 1357 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1358 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1359 } 1360 rc = 0; 1361 if( k<pEList->nExpr ){ 1362 /* 1363 ** If we get here it means the result set contains one or more "*" 1364 ** operators that need to be expanded. Loop through each expression 1365 ** in the result set and expand them one by one. 1366 */ 1367 struct ExprList_item *a = pEList->a; 1368 ExprList *pNew = 0; 1369 int flags = pParse->db->flags; 1370 int longNames = (flags & SQLITE_FullColNames)!=0 1371 && (flags & SQLITE_ShortColNames)==0; 1372 1373 for(k=0; k<pEList->nExpr; k++){ 1374 Expr *pE = a[k].pExpr; 1375 if( pE->op!=TK_ALL && 1376 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1377 /* This particular expression does not need to be expanded. 1378 */ 1379 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 1380 if( pNew ){ 1381 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1382 }else{ 1383 rc = 1; 1384 } 1385 a[k].pExpr = 0; 1386 a[k].zName = 0; 1387 }else{ 1388 /* This expression is a "*" or a "TABLE.*" and needs to be 1389 ** expanded. */ 1390 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1391 char *zTName; /* text of name of TABLE */ 1392 if( pE->op==TK_DOT && pE->pLeft ){ 1393 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 1394 }else{ 1395 zTName = 0; 1396 } 1397 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1398 Table *pTab = pFrom->pTab; 1399 char *zTabName = pFrom->zAlias; 1400 if( zTabName==0 || zTabName[0]==0 ){ 1401 zTabName = pTab->zName; 1402 } 1403 assert( zTabName ); 1404 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 1405 continue; 1406 } 1407 tableSeen = 1; 1408 for(j=0; j<pTab->nCol; j++){ 1409 Expr *pExpr, *pRight; 1410 char *zName = pTab->aCol[j].zName; 1411 1412 /* If a column is marked as 'hidden' (currently only possible 1413 ** for virtual tables), do not include it in the expanded 1414 ** result-set list. 1415 */ 1416 if( IsHiddenColumn(&pTab->aCol[j]) ){ 1417 assert(IsVirtual(pTab)); 1418 continue; 1419 } 1420 1421 if( i>0 ){ 1422 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1423 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1424 columnIndex(pLeft->pTab, zName)>=0 ){ 1425 /* In a NATURAL join, omit the join columns from the 1426 ** table on the right */ 1427 continue; 1428 } 1429 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1430 /* In a join with a USING clause, omit columns in the 1431 ** using clause from the table on the right. */ 1432 continue; 1433 } 1434 } 1435 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 1436 if( pRight==0 ) break; 1437 setQuotedToken(pParse, &pRight->token, zName); 1438 if( longNames || pTabList->nSrc>1 ){ 1439 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 1440 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 1441 if( pExpr==0 ) break; 1442 setQuotedToken(pParse, &pLeft->token, zTabName); 1443 #if 1 1444 setToken(&pExpr->span, 1445 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 1446 pExpr->span.dyn = 1; 1447 #else 1448 pExpr->span = pRight->token; 1449 pExpr->span.dyn = 0; 1450 #endif 1451 pExpr->token.z = 0; 1452 pExpr->token.n = 0; 1453 pExpr->token.dyn = 0; 1454 }else{ 1455 pExpr = pRight; 1456 pExpr->span = pExpr->token; 1457 pExpr->span.dyn = 0; 1458 } 1459 if( longNames ){ 1460 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 1461 }else{ 1462 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 1463 } 1464 } 1465 } 1466 if( !tableSeen ){ 1467 if( zTName ){ 1468 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1469 }else{ 1470 sqlite3ErrorMsg(pParse, "no tables specified"); 1471 } 1472 rc = 1; 1473 } 1474 sqlite3_free(zTName); 1475 } 1476 } 1477 sqlite3ExprListDelete(pEList); 1478 p->pEList = pNew; 1479 } 1480 #if SQLITE_MAX_COLUMN 1481 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1482 sqlite3ErrorMsg(pParse, "too many columns in result set"); 1483 rc = SQLITE_ERROR; 1484 } 1485 #endif 1486 if( db->mallocFailed ){ 1487 rc = SQLITE_NOMEM; 1488 } 1489 return rc; 1490 } 1491 1492 /* 1493 ** pE is a pointer to an expression which is a single term in 1494 ** ORDER BY or GROUP BY clause. 1495 ** 1496 ** At the point this routine is called, we already know that the 1497 ** ORDER BY term is not an integer index into the result set. That 1498 ** casee is handled by the calling routine. 1499 ** 1500 ** If pE is a well-formed expression and the SELECT statement 1501 ** is not compound, then return 0. This indicates to the 1502 ** caller that it should sort by the value of the ORDER BY 1503 ** expression. 1504 ** 1505 ** If the SELECT is compound, then attempt to match pE against 1506 ** result set columns in the left-most SELECT statement. Return 1507 ** the index i of the matching column, as an indication to the 1508 ** caller that it should sort by the i-th column. If there is 1509 ** no match, return -1 and leave an error message in pParse. 1510 */ 1511 static int matchOrderByTermToExprList( 1512 Parse *pParse, /* Parsing context for error messages */ 1513 Select *pSelect, /* The SELECT statement with the ORDER BY clause */ 1514 Expr *pE, /* The specific ORDER BY term */ 1515 int idx, /* When ORDER BY term is this */ 1516 int isCompound, /* True if this is a compound SELECT */ 1517 u8 *pHasAgg /* True if expression contains aggregate functions */ 1518 ){ 1519 int i; /* Loop counter */ 1520 ExprList *pEList; /* The columns of the result set */ 1521 NameContext nc; /* Name context for resolving pE */ 1522 1523 assert( sqlite3ExprIsInteger(pE, &i)==0 ); 1524 pEList = pSelect->pEList; 1525 1526 /* If the term is a simple identifier that try to match that identifier 1527 ** against a column name in the result set. 1528 */ 1529 if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){ 1530 sqlite3 *db = pParse->db; 1531 char *zCol = sqlite3NameFromToken(db, &pE->token); 1532 if( zCol==0 ){ 1533 return -1; 1534 } 1535 for(i=0; i<pEList->nExpr; i++){ 1536 char *zAs = pEList->a[i].zName; 1537 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1538 sqlite3_free(zCol); 1539 return i+1; 1540 } 1541 } 1542 sqlite3_free(zCol); 1543 } 1544 1545 /* Resolve all names in the ORDER BY term expression 1546 */ 1547 memset(&nc, 0, sizeof(nc)); 1548 nc.pParse = pParse; 1549 nc.pSrcList = pSelect->pSrc; 1550 nc.pEList = pEList; 1551 nc.allowAgg = 1; 1552 nc.nErr = 0; 1553 if( sqlite3ExprResolveNames(&nc, pE) ){ 1554 if( isCompound ){ 1555 sqlite3ErrorClear(pParse); 1556 return 0; 1557 }else{ 1558 return -1; 1559 } 1560 } 1561 if( nc.hasAgg && pHasAgg ){ 1562 *pHasAgg = 1; 1563 } 1564 1565 /* For a compound SELECT, we need to try to match the ORDER BY 1566 ** expression against an expression in the result set 1567 */ 1568 if( isCompound ){ 1569 for(i=0; i<pEList->nExpr; i++){ 1570 if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){ 1571 return i+1; 1572 } 1573 } 1574 } 1575 return 0; 1576 } 1577 1578 1579 /* 1580 ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement. 1581 ** Return the number of errors seen. 1582 ** 1583 ** Every term of the ORDER BY or GROUP BY clause needs to be an 1584 ** expression. If any expression is an integer constant, then 1585 ** that expression is replaced by the corresponding 1586 ** expression from the result set. 1587 */ 1588 static int processOrderGroupBy( 1589 Parse *pParse, /* Parsing context. Leave error messages here */ 1590 Select *pSelect, /* The SELECT statement containing the clause */ 1591 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 1592 int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */ 1593 u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */ 1594 ){ 1595 int i; 1596 sqlite3 *db = pParse->db; 1597 ExprList *pEList; 1598 1599 if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; 1600 #if SQLITE_MAX_COLUMN 1601 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1602 const char *zType = isOrder ? "ORDER" : "GROUP"; 1603 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); 1604 return 1; 1605 } 1606 #endif 1607 pEList = pSelect->pEList; 1608 if( pEList==0 ){ 1609 return 0; 1610 } 1611 for(i=0; i<pOrderBy->nExpr; i++){ 1612 int iCol; 1613 Expr *pE = pOrderBy->a[i].pExpr; 1614 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1615 if( iCol<=0 || iCol>pEList->nExpr ){ 1616 const char *zType = isOrder ? "ORDER" : "GROUP"; 1617 sqlite3ErrorMsg(pParse, 1618 "%r %s BY term out of range - should be " 1619 "between 1 and %d", i+1, zType, pEList->nExpr); 1620 return 1; 1621 } 1622 }else{ 1623 iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg); 1624 if( iCol<0 ){ 1625 return 1; 1626 } 1627 } 1628 if( iCol>0 ){ 1629 CollSeq *pColl = pE->pColl; 1630 int flags = pE->flags & EP_ExpCollate; 1631 sqlite3ExprDelete(pE); 1632 pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr); 1633 pOrderBy->a[i].pExpr = pE; 1634 if( pE && pColl && flags ){ 1635 pE->pColl = pColl; 1636 pE->flags |= flags; 1637 } 1638 } 1639 } 1640 return 0; 1641 } 1642 1643 /* 1644 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 1645 ** the number of errors seen. 1646 ** 1647 ** If iTable>0 then make the N-th term of the ORDER BY clause refer to 1648 ** the N-th column of table iTable. 1649 ** 1650 ** If iTable==0 then transform each term of the ORDER BY clause to refer 1651 ** to a column of the result set by number. 1652 */ 1653 static int processCompoundOrderBy( 1654 Parse *pParse, /* Parsing context. Leave error messages here */ 1655 Select *pSelect /* The SELECT statement containing the ORDER BY */ 1656 ){ 1657 int i; 1658 ExprList *pOrderBy; 1659 ExprList *pEList; 1660 sqlite3 *db; 1661 int moreToDo = 1; 1662 1663 pOrderBy = pSelect->pOrderBy; 1664 if( pOrderBy==0 ) return 0; 1665 db = pParse->db; 1666 #if SQLITE_MAX_COLUMN 1667 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1668 sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); 1669 return 1; 1670 } 1671 #endif 1672 for(i=0; i<pOrderBy->nExpr; i++){ 1673 pOrderBy->a[i].done = 0; 1674 } 1675 while( pSelect->pPrior ){ 1676 pSelect = pSelect->pPrior; 1677 } 1678 while( pSelect && moreToDo ){ 1679 moreToDo = 0; 1680 pEList = pSelect->pEList; 1681 if( pEList==0 ){ 1682 return 1; 1683 } 1684 for(i=0; i<pOrderBy->nExpr; i++){ 1685 int iCol = -1; 1686 Expr *pE, *pDup; 1687 if( pOrderBy->a[i].done ) continue; 1688 pE = pOrderBy->a[i].pExpr; 1689 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1690 if( iCol<0 || iCol>pEList->nExpr ){ 1691 sqlite3ErrorMsg(pParse, 1692 "%r ORDER BY term out of range - should be " 1693 "between 1 and %d", i+1, pEList->nExpr); 1694 return 1; 1695 } 1696 }else{ 1697 pDup = sqlite3ExprDup(db, pE); 1698 if( !db->mallocFailed ){ 1699 assert(pDup); 1700 iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0); 1701 } 1702 sqlite3ExprDelete(pDup); 1703 if( iCol<0 ){ 1704 return 1; 1705 } 1706 } 1707 if( iCol>0 ){ 1708 pE->op = TK_INTEGER; 1709 pE->flags |= EP_IntValue; 1710 pE->iTable = iCol; 1711 pOrderBy->a[i].done = 1; 1712 }else{ 1713 moreToDo = 1; 1714 } 1715 } 1716 pSelect = pSelect->pNext; 1717 } 1718 for(i=0; i<pOrderBy->nExpr; i++){ 1719 if( pOrderBy->a[i].done==0 ){ 1720 sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " 1721 "column in the result set", i+1); 1722 return 1; 1723 } 1724 } 1725 return 0; 1726 } 1727 1728 /* 1729 ** Get a VDBE for the given parser context. Create a new one if necessary. 1730 ** If an error occurs, return NULL and leave a message in pParse. 1731 */ 1732 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1733 Vdbe *v = pParse->pVdbe; 1734 if( v==0 ){ 1735 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1736 #ifndef SQLITE_OMIT_TRACE 1737 if( v ){ 1738 sqlite3VdbeAddOp0(v, OP_Trace); 1739 } 1740 #endif 1741 } 1742 return v; 1743 } 1744 1745 1746 /* 1747 ** Compute the iLimit and iOffset fields of the SELECT based on the 1748 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1749 ** that appear in the original SQL statement after the LIMIT and OFFSET 1750 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1751 ** are the integer memory register numbers for counters used to compute 1752 ** the limit and offset. If there is no limit and/or offset, then 1753 ** iLimit and iOffset are negative. 1754 ** 1755 ** This routine changes the values of iLimit and iOffset only if 1756 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1757 ** iOffset should have been preset to appropriate default values 1758 ** (usually but not always -1) prior to calling this routine. 1759 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1760 ** redefined. The UNION ALL operator uses this property to force 1761 ** the reuse of the same limit and offset registers across multiple 1762 ** SELECT statements. 1763 */ 1764 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1765 Vdbe *v = 0; 1766 int iLimit = 0; 1767 int iOffset; 1768 int addr1; 1769 if( p->iLimit ) return; 1770 1771 /* 1772 ** "LIMIT -1" always shows all rows. There is some 1773 ** contraversy about what the correct behavior should be. 1774 ** The current implementation interprets "LIMIT 0" to mean 1775 ** no rows. 1776 */ 1777 if( p->pLimit ){ 1778 p->iLimit = iLimit = ++pParse->nMem; 1779 v = sqlite3GetVdbe(pParse); 1780 if( v==0 ) return; 1781 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1782 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1783 VdbeComment((v, "LIMIT counter")); 1784 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1785 } 1786 if( p->pOffset ){ 1787 p->iOffset = iOffset = ++pParse->nMem; 1788 if( p->pLimit ){ 1789 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1790 } 1791 v = sqlite3GetVdbe(pParse); 1792 if( v==0 ) return; 1793 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1794 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1795 VdbeComment((v, "OFFSET counter")); 1796 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1797 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1798 sqlite3VdbeJumpHere(v, addr1); 1799 if( p->pLimit ){ 1800 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1801 VdbeComment((v, "LIMIT+OFFSET")); 1802 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1803 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1804 sqlite3VdbeJumpHere(v, addr1); 1805 } 1806 } 1807 } 1808 1809 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1810 /* 1811 ** Return the appropriate collating sequence for the iCol-th column of 1812 ** the result set for the compound-select statement "p". Return NULL if 1813 ** the column has no default collating sequence. 1814 ** 1815 ** The collating sequence for the compound select is taken from the 1816 ** left-most term of the select that has a collating sequence. 1817 */ 1818 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1819 CollSeq *pRet; 1820 if( p->pPrior ){ 1821 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1822 }else{ 1823 pRet = 0; 1824 } 1825 if( pRet==0 ){ 1826 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1827 } 1828 return pRet; 1829 } 1830 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1831 1832 /* Forward reference */ 1833 static int multiSelectOrderBy( 1834 Parse *pParse, /* Parsing context */ 1835 Select *p, /* The right-most of SELECTs to be coded */ 1836 SelectDest *pDest /* What to do with query results */ 1837 ); 1838 1839 1840 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1841 /* 1842 ** This routine is called to process a compound query form from 1843 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1844 ** INTERSECT 1845 ** 1846 ** "p" points to the right-most of the two queries. the query on the 1847 ** left is p->pPrior. The left query could also be a compound query 1848 ** in which case this routine will be called recursively. 1849 ** 1850 ** The results of the total query are to be written into a destination 1851 ** of type eDest with parameter iParm. 1852 ** 1853 ** Example 1: Consider a three-way compound SQL statement. 1854 ** 1855 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1856 ** 1857 ** This statement is parsed up as follows: 1858 ** 1859 ** SELECT c FROM t3 1860 ** | 1861 ** `-----> SELECT b FROM t2 1862 ** | 1863 ** `------> SELECT a FROM t1 1864 ** 1865 ** The arrows in the diagram above represent the Select.pPrior pointer. 1866 ** So if this routine is called with p equal to the t3 query, then 1867 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1868 ** 1869 ** Notice that because of the way SQLite parses compound SELECTs, the 1870 ** individual selects always group from left to right. 1871 */ 1872 static int multiSelect( 1873 Parse *pParse, /* Parsing context */ 1874 Select *p, /* The right-most of SELECTs to be coded */ 1875 SelectDest *pDest /* What to do with query results */ 1876 ){ 1877 int rc = SQLITE_OK; /* Success code from a subroutine */ 1878 Select *pPrior; /* Another SELECT immediately to our left */ 1879 Vdbe *v; /* Generate code to this VDBE */ 1880 SelectDest dest; /* Alternative data destination */ 1881 Select *pDelete = 0; /* Chain of simple selects to delete */ 1882 1883 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1884 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1885 */ 1886 if( p==0 || p->pPrior==0 ){ 1887 rc = 1; 1888 goto multi_select_end; 1889 } 1890 pPrior = p->pPrior; 1891 assert( pPrior->pRightmost!=pPrior ); 1892 assert( pPrior->pRightmost==p->pRightmost ); 1893 if( pPrior->pOrderBy ){ 1894 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1895 selectOpName(p->op)); 1896 rc = 1; 1897 goto multi_select_end; 1898 } 1899 if( pPrior->pLimit ){ 1900 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1901 selectOpName(p->op)); 1902 rc = 1; 1903 goto multi_select_end; 1904 } 1905 1906 /* Make sure we have a valid query engine. If not, create a new one. 1907 */ 1908 v = sqlite3GetVdbe(pParse); 1909 if( v==0 ){ 1910 rc = 1; 1911 goto multi_select_end; 1912 } 1913 1914 /* Create the destination temporary table if necessary 1915 */ 1916 dest = *pDest; 1917 if( dest.eDest==SRT_EphemTab ){ 1918 assert( p->pEList ); 1919 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1920 dest.eDest = SRT_Table; 1921 } 1922 1923 /* Make sure all SELECTs in the statement have the same number of elements 1924 ** in their result sets. 1925 */ 1926 assert( p->pEList && pPrior->pEList ); 1927 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1928 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1929 " do not have the same number of result columns", selectOpName(p->op)); 1930 rc = 1; 1931 goto multi_select_end; 1932 } 1933 1934 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1935 */ 1936 if( p->pOrderBy ){ 1937 return multiSelectOrderBy(pParse, p, pDest); 1938 } 1939 1940 /* Generate code for the left and right SELECT statements. 1941 */ 1942 switch( p->op ){ 1943 case TK_ALL: { 1944 int addr = 0; 1945 assert( !pPrior->pLimit ); 1946 pPrior->pLimit = p->pLimit; 1947 pPrior->pOffset = p->pOffset; 1948 rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0); 1949 p->pLimit = 0; 1950 p->pOffset = 0; 1951 if( rc ){ 1952 goto multi_select_end; 1953 } 1954 p->pPrior = 0; 1955 p->iLimit = pPrior->iLimit; 1956 p->iOffset = pPrior->iOffset; 1957 if( p->iLimit ){ 1958 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1959 VdbeComment((v, "Jump ahead if LIMIT reached")); 1960 } 1961 rc = sqlite3Select(pParse, p, &dest, 0, 0, 0); 1962 pDelete = p->pPrior; 1963 p->pPrior = pPrior; 1964 if( rc ){ 1965 goto multi_select_end; 1966 } 1967 if( addr ){ 1968 sqlite3VdbeJumpHere(v, addr); 1969 } 1970 break; 1971 } 1972 case TK_EXCEPT: 1973 case TK_UNION: { 1974 int unionTab; /* Cursor number of the temporary table holding result */ 1975 int op = 0; /* One of the SRT_ operations to apply to self */ 1976 int priorOp; /* The SRT_ operation to apply to prior selects */ 1977 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1978 int addr; 1979 SelectDest uniondest; 1980 1981 priorOp = SRT_Union; 1982 if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){ 1983 /* We can reuse a temporary table generated by a SELECT to our 1984 ** right. 1985 */ 1986 unionTab = dest.iParm; 1987 }else{ 1988 /* We will need to create our own temporary table to hold the 1989 ** intermediate results. 1990 */ 1991 unionTab = pParse->nTab++; 1992 assert( p->pOrderBy==0 ); 1993 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1994 assert( p->addrOpenEphm[0] == -1 ); 1995 p->addrOpenEphm[0] = addr; 1996 p->pRightmost->usesEphm = 1; 1997 assert( p->pEList ); 1998 } 1999 2000 /* Code the SELECT statements to our left 2001 */ 2002 assert( !pPrior->pOrderBy ); 2003 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2004 rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0); 2005 if( rc ){ 2006 goto multi_select_end; 2007 } 2008 2009 /* Code the current SELECT statement 2010 */ 2011 switch( p->op ){ 2012 case TK_EXCEPT: op = SRT_Except; break; 2013 case TK_UNION: op = SRT_Union; break; 2014 case TK_ALL: op = SRT_Table; break; 2015 } 2016 p->pPrior = 0; 2017 p->disallowOrderBy = 0; 2018 pLimit = p->pLimit; 2019 p->pLimit = 0; 2020 pOffset = p->pOffset; 2021 p->pOffset = 0; 2022 uniondest.eDest = op; 2023 rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0); 2024 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2025 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2026 sqlite3ExprListDelete(p->pOrderBy); 2027 pDelete = p->pPrior; 2028 p->pPrior = pPrior; 2029 p->pOrderBy = 0; 2030 sqlite3ExprDelete(p->pLimit); 2031 p->pLimit = pLimit; 2032 p->pOffset = pOffset; 2033 p->iLimit = 0; 2034 p->iOffset = 0; 2035 if( rc ){ 2036 goto multi_select_end; 2037 } 2038 2039 2040 /* Convert the data in the temporary table into whatever form 2041 ** it is that we currently need. 2042 */ 2043 if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ 2044 int iCont, iBreak, iStart; 2045 assert( p->pEList ); 2046 if( dest.eDest==SRT_Callback ){ 2047 Select *pFirst = p; 2048 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2049 generateColumnNames(pParse, 0, pFirst->pEList); 2050 } 2051 iBreak = sqlite3VdbeMakeLabel(v); 2052 iCont = sqlite3VdbeMakeLabel(v); 2053 computeLimitRegisters(pParse, p, iBreak); 2054 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 2055 iStart = sqlite3VdbeCurrentAddr(v); 2056 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 2057 0, -1, &dest, iCont, iBreak); 2058 sqlite3VdbeResolveLabel(v, iCont); 2059 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 2060 sqlite3VdbeResolveLabel(v, iBreak); 2061 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2062 } 2063 break; 2064 } 2065 case TK_INTERSECT: { 2066 int tab1, tab2; 2067 int iCont, iBreak, iStart; 2068 Expr *pLimit, *pOffset; 2069 int addr; 2070 SelectDest intersectdest; 2071 int r1; 2072 2073 /* INTERSECT is different from the others since it requires 2074 ** two temporary tables. Hence it has its own case. Begin 2075 ** by allocating the tables we will need. 2076 */ 2077 tab1 = pParse->nTab++; 2078 tab2 = pParse->nTab++; 2079 assert( p->pOrderBy==0 ); 2080 2081 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2082 assert( p->addrOpenEphm[0] == -1 ); 2083 p->addrOpenEphm[0] = addr; 2084 p->pRightmost->usesEphm = 1; 2085 assert( p->pEList ); 2086 2087 /* Code the SELECTs to our left into temporary table "tab1". 2088 */ 2089 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2090 rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0); 2091 if( rc ){ 2092 goto multi_select_end; 2093 } 2094 2095 /* Code the current SELECT into temporary table "tab2" 2096 */ 2097 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2098 assert( p->addrOpenEphm[1] == -1 ); 2099 p->addrOpenEphm[1] = addr; 2100 p->pPrior = 0; 2101 pLimit = p->pLimit; 2102 p->pLimit = 0; 2103 pOffset = p->pOffset; 2104 p->pOffset = 0; 2105 intersectdest.iParm = tab2; 2106 rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0); 2107 pDelete = p->pPrior; 2108 p->pPrior = pPrior; 2109 sqlite3ExprDelete(p->pLimit); 2110 p->pLimit = pLimit; 2111 p->pOffset = pOffset; 2112 if( rc ){ 2113 goto multi_select_end; 2114 } 2115 2116 /* Generate code to take the intersection of the two temporary 2117 ** tables. 2118 */ 2119 assert( p->pEList ); 2120 if( dest.eDest==SRT_Callback ){ 2121 Select *pFirst = p; 2122 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2123 generateColumnNames(pParse, 0, pFirst->pEList); 2124 } 2125 iBreak = sqlite3VdbeMakeLabel(v); 2126 iCont = sqlite3VdbeMakeLabel(v); 2127 computeLimitRegisters(pParse, p, iBreak); 2128 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 2129 r1 = sqlite3GetTempReg(pParse); 2130 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2131 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 2132 sqlite3ReleaseTempReg(pParse, r1); 2133 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 2134 0, -1, &dest, iCont, iBreak); 2135 sqlite3VdbeResolveLabel(v, iCont); 2136 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 2137 sqlite3VdbeResolveLabel(v, iBreak); 2138 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2139 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2140 break; 2141 } 2142 } 2143 2144 /* Compute collating sequences used by 2145 ** temporary tables needed to implement the compound select. 2146 ** Attach the KeyInfo structure to all temporary tables. 2147 ** 2148 ** This section is run by the right-most SELECT statement only. 2149 ** SELECT statements to the left always skip this part. The right-most 2150 ** SELECT might also skip this part if it has no ORDER BY clause and 2151 ** no temp tables are required. 2152 */ 2153 if( p->usesEphm ){ 2154 int i; /* Loop counter */ 2155 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2156 Select *pLoop; /* For looping through SELECT statements */ 2157 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2158 int nCol; /* Number of columns in result set */ 2159 2160 assert( p->pRightmost==p ); 2161 nCol = p->pEList->nExpr; 2162 pKeyInfo = sqlite3DbMallocZero(pParse->db, 2163 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 2164 if( !pKeyInfo ){ 2165 rc = SQLITE_NOMEM; 2166 goto multi_select_end; 2167 } 2168 2169 pKeyInfo->enc = ENC(pParse->db); 2170 pKeyInfo->nField = nCol; 2171 2172 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2173 *apColl = multiSelectCollSeq(pParse, p, i); 2174 if( 0==*apColl ){ 2175 *apColl = pParse->db->pDfltColl; 2176 } 2177 } 2178 2179 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2180 for(i=0; i<2; i++){ 2181 int addr = pLoop->addrOpenEphm[i]; 2182 if( addr<0 ){ 2183 /* If [0] is unused then [1] is also unused. So we can 2184 ** always safely abort as soon as the first unused slot is found */ 2185 assert( pLoop->addrOpenEphm[1]<0 ); 2186 break; 2187 } 2188 sqlite3VdbeChangeP2(v, addr, nCol); 2189 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 2190 pLoop->addrOpenEphm[i] = -1; 2191 } 2192 } 2193 sqlite3_free(pKeyInfo); 2194 } 2195 2196 multi_select_end: 2197 pDest->iMem = dest.iMem; 2198 pDest->nMem = dest.nMem; 2199 sqlite3SelectDelete(pDelete); 2200 return rc; 2201 } 2202 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2203 2204 /* 2205 ** Code an output subroutine for a coroutine implementation of a 2206 ** SELECT statment. 2207 ** 2208 ** The data to be output is contained in pIn->iMem. There are 2209 ** pIn->nMem columns to be output. pDest is where the output should 2210 ** be sent. 2211 ** 2212 ** regReturn is the number of the register holding the subroutine 2213 ** return address. 2214 ** 2215 ** If regPrev>0 then it is a the first register in a vector that 2216 ** records the previous output. mem[regPrev] is a flag that is false 2217 ** if there has been no previous output. If regPrev>0 then code is 2218 ** generated to suppress duplicates. pKeyInfo is used for comparing 2219 ** keys. 2220 ** 2221 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2222 ** iBreak. 2223 */ 2224 static int generateOutputSubroutine( 2225 Parse *pParse, /* Parsing context */ 2226 Select *p, /* The SELECT statement */ 2227 SelectDest *pIn, /* Coroutine supplying data */ 2228 SelectDest *pDest, /* Where to send the data */ 2229 int regReturn, /* The return address register */ 2230 int regPrev, /* Previous result register. No uniqueness if 0 */ 2231 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2232 int p4type, /* The p4 type for pKeyInfo */ 2233 int iBreak /* Jump here if we hit the LIMIT */ 2234 ){ 2235 Vdbe *v = pParse->pVdbe; 2236 int iContinue; 2237 int addr; 2238 2239 addr = sqlite3VdbeCurrentAddr(v); 2240 iContinue = sqlite3VdbeMakeLabel(v); 2241 2242 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2243 */ 2244 if( regPrev ){ 2245 int j1, j2; 2246 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 2247 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 2248 (char*)pKeyInfo, p4type); 2249 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 2250 sqlite3VdbeJumpHere(v, j1); 2251 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 2252 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2253 } 2254 if( pParse->db->mallocFailed ) return 0; 2255 2256 /* Suppress the the first OFFSET entries if there is an OFFSET clause 2257 */ 2258 codeOffset(v, p, iContinue); 2259 2260 switch( pDest->eDest ){ 2261 /* Store the result as data using a unique key. 2262 */ 2263 case SRT_Table: 2264 case SRT_EphemTab: { 2265 int r1 = sqlite3GetTempReg(pParse); 2266 int r2 = sqlite3GetTempReg(pParse); 2267 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 2268 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 2269 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 2270 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2271 sqlite3ReleaseTempReg(pParse, r2); 2272 sqlite3ReleaseTempReg(pParse, r1); 2273 break; 2274 } 2275 2276 #ifndef SQLITE_OMIT_SUBQUERY 2277 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2278 ** then there should be a single item on the stack. Write this 2279 ** item into the set table with bogus data. 2280 */ 2281 case SRT_Set: { 2282 int r1; 2283 assert( pIn->nMem==1 ); 2284 p->affinity = 2285 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 2286 r1 = sqlite3GetTempReg(pParse); 2287 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 2288 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 2289 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 2290 sqlite3ReleaseTempReg(pParse, r1); 2291 break; 2292 } 2293 2294 #if 0 /* Never occurs on an ORDER BY query */ 2295 /* If any row exist in the result set, record that fact and abort. 2296 */ 2297 case SRT_Exists: { 2298 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 2299 /* The LIMIT clause will terminate the loop for us */ 2300 break; 2301 } 2302 #endif 2303 2304 /* If this is a scalar select that is part of an expression, then 2305 ** store the results in the appropriate memory cell and break out 2306 ** of the scan loop. 2307 */ 2308 case SRT_Mem: { 2309 assert( pIn->nMem==1 ); 2310 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 2311 /* The LIMIT clause will jump out of the loop for us */ 2312 break; 2313 } 2314 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2315 2316 /* Send the data to the callback function or to a subroutine. In the 2317 ** case of a subroutine, the subroutine itself is responsible for 2318 ** popping the data from the stack. 2319 */ 2320 case SRT_Coroutine: { 2321 if( pDest->iMem==0 ){ 2322 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 2323 pDest->nMem = pIn->nMem; 2324 } 2325 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 2326 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 2327 break; 2328 } 2329 2330 case SRT_Callback: { 2331 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 2332 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 2333 break; 2334 } 2335 2336 #if !defined(SQLITE_OMIT_TRIGGER) 2337 /* Discard the results. This is used for SELECT statements inside 2338 ** the body of a TRIGGER. The purpose of such selects is to call 2339 ** user-defined functions that have side effects. We do not care 2340 ** about the actual results of the select. 2341 */ 2342 default: { 2343 break; 2344 } 2345 #endif 2346 } 2347 2348 /* Jump to the end of the loop if the LIMIT is reached. 2349 */ 2350 if( p->iLimit ){ 2351 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 2352 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 2353 } 2354 2355 /* Generate the subroutine return 2356 */ 2357 sqlite3VdbeResolveLabel(v, iContinue); 2358 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2359 2360 return addr; 2361 } 2362 2363 /* 2364 ** Alternative compound select code generator for cases when there 2365 ** is an ORDER BY clause. 2366 ** 2367 ** We assume a query of the following form: 2368 ** 2369 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2370 ** 2371 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2372 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2373 ** co-routines. Then run the co-routines in parallel and merge the results 2374 ** into the output. In addition to the two coroutines (called selectA and 2375 ** selectB) there are 7 subroutines: 2376 ** 2377 ** outA: Move the output of the selectA coroutine into the output 2378 ** of the compound query. 2379 ** 2380 ** outB: Move the output of the selectB coroutine into the output 2381 ** of the compound query. (Only generated for UNION and 2382 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2383 ** appears only in B.) 2384 ** 2385 ** AltB: Called when there is data from both coroutines and A<B. 2386 ** 2387 ** AeqB: Called when there is data from both coroutines and A==B. 2388 ** 2389 ** AgtB: Called when there is data from both coroutines and A>B. 2390 ** 2391 ** EofA: Called when data is exhausted from selectA. 2392 ** 2393 ** EofB: Called when data is exhausted from selectB. 2394 ** 2395 ** The implementation of the latter five subroutines depend on which 2396 ** <operator> is used: 2397 ** 2398 ** 2399 ** UNION ALL UNION EXCEPT INTERSECT 2400 ** ------------- ----------------- -------------- ----------------- 2401 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2402 ** 2403 ** AeqB: outA, nextA nextA nextA outA, nextA 2404 ** 2405 ** AgtB: outB, nextB outB, nextB nextB nextB 2406 ** 2407 ** EofA: outB, nextB outB, nextB halt halt 2408 ** 2409 ** EofB: outA, nextA outA, nextA outA, nextA halt 2410 ** 2411 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2412 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2413 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2414 ** following nextX causes a jump to the end of the select processing. 2415 ** 2416 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2417 ** within the output subroutine. The regPrev register set holds the previously 2418 ** output value. A comparison is made against this value and the output 2419 ** is skipped if the next results would be the same as the previous. 2420 ** 2421 ** The implementation plan is to implement the two coroutines and seven 2422 ** subroutines first, then put the control logic at the bottom. Like this: 2423 ** 2424 ** goto Init 2425 ** coA: coroutine for left query (A) 2426 ** coB: coroutine for right query (B) 2427 ** outA: output one row of A 2428 ** outB: output one row of B (UNION and UNION ALL only) 2429 ** EofA: ... 2430 ** EofB: ... 2431 ** AltB: ... 2432 ** AeqB: ... 2433 ** AgtB: ... 2434 ** Init: initialize coroutine registers 2435 ** yield coA 2436 ** if eof(A) goto EofA 2437 ** yield coB 2438 ** if eof(B) goto EofB 2439 ** Cmpr: Compare A, B 2440 ** Jump AltB, AeqB, AgtB 2441 ** End: ... 2442 ** 2443 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2444 ** actually called using Gosub and they do not Return. EofA and EofB loop 2445 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2446 ** and AgtB jump to either L2 or to one of EofA or EofB. 2447 */ 2448 static int multiSelectOrderBy( 2449 Parse *pParse, /* Parsing context */ 2450 Select *p, /* The right-most of SELECTs to be coded */ 2451 SelectDest *pDest /* What to do with query results */ 2452 ){ 2453 int i, j; /* Loop counters */ 2454 Select *pPrior; /* Another SELECT immediately to our left */ 2455 Vdbe *v; /* Generate code to this VDBE */ 2456 SelectDest destA; /* Destination for coroutine A */ 2457 SelectDest destB; /* Destination for coroutine B */ 2458 int regAddrA; /* Address register for select-A coroutine */ 2459 int regEofA; /* Flag to indicate when select-A is complete */ 2460 int regAddrB; /* Address register for select-B coroutine */ 2461 int regEofB; /* Flag to indicate when select-B is complete */ 2462 int addrSelectA; /* Address of the select-A coroutine */ 2463 int addrSelectB; /* Address of the select-B coroutine */ 2464 int regOutA; /* Address register for the output-A subroutine */ 2465 int regOutB; /* Address register for the output-B subroutine */ 2466 int addrOutA; /* Address of the output-A subroutine */ 2467 int addrOutB; /* Address of the output-B subroutine */ 2468 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2469 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2470 int addrAltB; /* Address of the A<B subroutine */ 2471 int addrAeqB; /* Address of the A==B subroutine */ 2472 int addrAgtB; /* Address of the A>B subroutine */ 2473 int regLimitA; /* Limit register for select-A */ 2474 int regLimitB; /* Limit register for select-A */ 2475 int regPrev; /* A range of registers to hold previous output */ 2476 int savedLimit; /* Saved value of p->iLimit */ 2477 int savedOffset; /* Saved value of p->iOffset */ 2478 int labelCmpr; /* Label for the start of the merge algorithm */ 2479 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2480 int j1; /* Jump instructions that get retargetted */ 2481 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2482 KeyInfo *pKeyDup; /* Comparison information for duplicate removal */ 2483 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2484 sqlite3 *db; /* Database connection */ 2485 ExprList *pOrderBy; /* The ORDER BY clause */ 2486 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2487 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2488 u8 NotUsed; /* Dummy variables */ 2489 2490 assert( p->pOrderBy!=0 ); 2491 db = pParse->db; 2492 v = pParse->pVdbe; 2493 if( v==0 ) return SQLITE_NOMEM; 2494 labelEnd = sqlite3VdbeMakeLabel(v); 2495 labelCmpr = sqlite3VdbeMakeLabel(v); 2496 2497 2498 /* Patch up the ORDER BY clause 2499 */ 2500 op = p->op; 2501 pPrior = p->pPrior; 2502 assert( pPrior->pOrderBy==0 ); 2503 pOrderBy = p->pOrderBy; 2504 assert( pOrderBy ); 2505 if( processCompoundOrderBy(pParse, p) ){ 2506 return SQLITE_ERROR; 2507 } 2508 nOrderBy = pOrderBy->nExpr; 2509 2510 /* For operators other than UNION ALL we have to make sure that 2511 ** the ORDER BY clause covers every term of the result set. Add 2512 ** terms to the ORDER BY clause as necessary. 2513 */ 2514 if( op!=TK_ALL ){ 2515 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2516 for(j=0; j<nOrderBy; j++){ 2517 Expr *pTerm = pOrderBy->a[j].pExpr; 2518 assert( pTerm->op==TK_INTEGER ); 2519 assert( (pTerm->flags & EP_IntValue)!=0 ); 2520 if( pTerm->iTable==i ) break; 2521 } 2522 if( j==nOrderBy ){ 2523 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); 2524 if( pNew==0 ) return SQLITE_NOMEM; 2525 pNew->flags |= EP_IntValue; 2526 pNew->iTable = i; 2527 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); 2528 nOrderBy++; 2529 } 2530 } 2531 } 2532 2533 /* Compute the comparison permutation and keyinfo that is used with 2534 ** the permutation in order to comparisons to determine if the next 2535 ** row of results comes from selectA or selectB. Also add explicit 2536 ** collations to the ORDER BY clause terms so that when the subqueries 2537 ** to the right and the left are evaluated, they use the correct 2538 ** collation. 2539 */ 2540 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2541 if( aPermute ){ 2542 for(i=0; i<nOrderBy; i++){ 2543 Expr *pTerm = pOrderBy->a[i].pExpr; 2544 assert( pTerm->op==TK_INTEGER ); 2545 assert( (pTerm->flags & EP_IntValue)!=0 ); 2546 aPermute[i] = pTerm->iTable-1; 2547 assert( aPermute[i]>=0 && aPermute[i]<p->pEList->nExpr ); 2548 } 2549 pKeyMerge = 2550 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2551 if( pKeyMerge ){ 2552 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2553 pKeyMerge->nField = nOrderBy; 2554 pKeyMerge->enc = ENC(db); 2555 for(i=0; i<nOrderBy; i++){ 2556 CollSeq *pColl; 2557 Expr *pTerm = pOrderBy->a[i].pExpr; 2558 if( pTerm->flags & EP_ExpCollate ){ 2559 pColl = pTerm->pColl; 2560 }else{ 2561 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2562 pTerm->flags |= EP_ExpCollate; 2563 pTerm->pColl = pColl; 2564 } 2565 pKeyMerge->aColl[i] = pColl; 2566 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2567 } 2568 } 2569 }else{ 2570 pKeyMerge = 0; 2571 } 2572 2573 /* Reattach the ORDER BY clause to the query. 2574 */ 2575 p->pOrderBy = pOrderBy; 2576 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy); 2577 2578 /* Allocate a range of temporary registers and the KeyInfo needed 2579 ** for the logic that removes duplicate result rows when the 2580 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2581 */ 2582 if( op==TK_ALL ){ 2583 regPrev = 0; 2584 }else{ 2585 int nExpr = p->pEList->nExpr; 2586 assert( nOrderBy>=nExpr ); 2587 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2588 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2589 pKeyDup = sqlite3DbMallocZero(db, 2590 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2591 if( pKeyDup ){ 2592 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2593 pKeyDup->nField = nExpr; 2594 pKeyDup->enc = ENC(db); 2595 for(i=0; i<nExpr; i++){ 2596 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2597 pKeyDup->aSortOrder[i] = 0; 2598 } 2599 } 2600 } 2601 2602 /* Separate the left and the right query from one another 2603 */ 2604 p->pPrior = 0; 2605 pPrior->pRightmost = 0; 2606 processOrderGroupBy(pParse, p, p->pOrderBy, 1, &NotUsed); 2607 if( pPrior->pPrior==0 ){ 2608 processOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, 1, &NotUsed); 2609 } 2610 2611 /* Compute the limit registers */ 2612 computeLimitRegisters(pParse, p, labelEnd); 2613 if( p->iLimit && op==TK_ALL ){ 2614 regLimitA = ++pParse->nMem; 2615 regLimitB = ++pParse->nMem; 2616 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2617 regLimitA); 2618 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2619 }else{ 2620 regLimitA = regLimitB = 0; 2621 } 2622 sqlite3ExprDelete(p->pLimit); 2623 p->pLimit = 0; 2624 sqlite3ExprDelete(p->pOffset); 2625 p->pOffset = 0; 2626 2627 regAddrA = ++pParse->nMem; 2628 regEofA = ++pParse->nMem; 2629 regAddrB = ++pParse->nMem; 2630 regEofB = ++pParse->nMem; 2631 regOutA = ++pParse->nMem; 2632 regOutB = ++pParse->nMem; 2633 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2634 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2635 2636 /* Jump past the various subroutines and coroutines to the main 2637 ** merge loop 2638 */ 2639 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2640 addrSelectA = sqlite3VdbeCurrentAddr(v); 2641 2642 2643 /* Generate a coroutine to evaluate the SELECT statement to the 2644 ** left of the compound operator - the "A" select. 2645 */ 2646 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2647 pPrior->iLimit = regLimitA; 2648 sqlite3Select(pParse, pPrior, &destA, 0, 0, 0); 2649 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2650 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2651 VdbeNoopComment((v, "End coroutine for left SELECT")); 2652 2653 /* Generate a coroutine to evaluate the SELECT statement on 2654 ** the right - the "B" select 2655 */ 2656 addrSelectB = sqlite3VdbeCurrentAddr(v); 2657 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2658 savedLimit = p->iLimit; 2659 savedOffset = p->iOffset; 2660 p->iLimit = regLimitB; 2661 p->iOffset = 0; 2662 sqlite3Select(pParse, p, &destB, 0, 0, 0); 2663 p->iLimit = savedLimit; 2664 p->iOffset = savedOffset; 2665 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2666 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2667 VdbeNoopComment((v, "End coroutine for right SELECT")); 2668 2669 /* Generate a subroutine that outputs the current row of the A 2670 ** select as the next output row of the compound select. 2671 */ 2672 VdbeNoopComment((v, "Output routine for A")); 2673 addrOutA = generateOutputSubroutine(pParse, 2674 p, &destA, pDest, regOutA, 2675 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2676 2677 /* Generate a subroutine that outputs the current row of the B 2678 ** select as the next output row of the compound select. 2679 */ 2680 if( op==TK_ALL || op==TK_UNION ){ 2681 VdbeNoopComment((v, "Output routine for B")); 2682 addrOutB = generateOutputSubroutine(pParse, 2683 p, &destB, pDest, regOutB, 2684 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2685 } 2686 2687 /* Generate a subroutine to run when the results from select A 2688 ** are exhausted and only data in select B remains. 2689 */ 2690 VdbeNoopComment((v, "eof-A subroutine")); 2691 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2692 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2693 }else{ 2694 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2695 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2696 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2697 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2698 } 2699 2700 /* Generate a subroutine to run when the results from select B 2701 ** are exhausted and only data in select A remains. 2702 */ 2703 if( op==TK_INTERSECT ){ 2704 addrEofB = addrEofA; 2705 }else{ 2706 VdbeNoopComment((v, "eof-B subroutine")); 2707 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2708 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2709 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2710 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2711 } 2712 2713 /* Generate code to handle the case of A<B 2714 */ 2715 VdbeNoopComment((v, "A-lt-B subroutine")); 2716 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2717 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2718 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2719 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2720 2721 /* Generate code to handle the case of A==B 2722 */ 2723 if( op==TK_ALL ){ 2724 addrAeqB = addrAltB; 2725 }else if( op==TK_INTERSECT ){ 2726 addrAeqB = addrAltB; 2727 addrAltB++; 2728 }else{ 2729 VdbeNoopComment((v, "A-eq-B subroutine")); 2730 addrAeqB = 2731 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2732 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2733 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2734 } 2735 2736 /* Generate code to handle the case of A>B 2737 */ 2738 VdbeNoopComment((v, "A-gt-B subroutine")); 2739 addrAgtB = sqlite3VdbeCurrentAddr(v); 2740 if( op==TK_ALL || op==TK_UNION ){ 2741 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2742 } 2743 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2744 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2745 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2746 2747 /* This code runs once to initialize everything. 2748 */ 2749 sqlite3VdbeJumpHere(v, j1); 2750 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2751 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2752 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2753 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2754 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2755 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2756 2757 /* Implement the main merge loop 2758 */ 2759 sqlite3VdbeResolveLabel(v, labelCmpr); 2760 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2761 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2762 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2763 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2764 2765 /* Release temporary registers 2766 */ 2767 if( regPrev ){ 2768 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2769 } 2770 2771 /* Jump to the this point in order to terminate the query. 2772 */ 2773 sqlite3VdbeResolveLabel(v, labelEnd); 2774 2775 /* Set the number of output columns 2776 */ 2777 if( pDest->eDest==SRT_Callback ){ 2778 Select *pFirst = pPrior; 2779 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2780 generateColumnNames(pParse, 0, pFirst->pEList); 2781 } 2782 2783 /* Reassembly the compound query so that it will be freed correctly 2784 ** by the calling function */ 2785 if( p->pPrior ){ 2786 sqlite3SelectDelete(p->pPrior); 2787 } 2788 p->pPrior = pPrior; 2789 2790 /*** TBD: Insert subroutine calls to close cursors on incomplete 2791 **** subqueries ****/ 2792 return SQLITE_OK; 2793 } 2794 2795 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2796 /* Forward Declarations */ 2797 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2798 static void substSelect(sqlite3*, Select *, int, ExprList *); 2799 2800 /* 2801 ** Scan through the expression pExpr. Replace every reference to 2802 ** a column in table number iTable with a copy of the iColumn-th 2803 ** entry in pEList. (But leave references to the ROWID column 2804 ** unchanged.) 2805 ** 2806 ** This routine is part of the flattening procedure. A subquery 2807 ** whose result set is defined by pEList appears as entry in the 2808 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2809 ** FORM clause entry is iTable. This routine make the necessary 2810 ** changes to pExpr so that it refers directly to the source table 2811 ** of the subquery rather the result set of the subquery. 2812 */ 2813 static void substExpr( 2814 sqlite3 *db, /* Report malloc errors to this connection */ 2815 Expr *pExpr, /* Expr in which substitution occurs */ 2816 int iTable, /* Table to be substituted */ 2817 ExprList *pEList /* Substitute expressions */ 2818 ){ 2819 if( pExpr==0 ) return; 2820 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2821 if( pExpr->iColumn<0 ){ 2822 pExpr->op = TK_NULL; 2823 }else{ 2824 Expr *pNew; 2825 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2826 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2827 pNew = pEList->a[pExpr->iColumn].pExpr; 2828 assert( pNew!=0 ); 2829 pExpr->op = pNew->op; 2830 assert( pExpr->pLeft==0 ); 2831 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); 2832 assert( pExpr->pRight==0 ); 2833 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); 2834 assert( pExpr->pList==0 ); 2835 pExpr->pList = sqlite3ExprListDup(db, pNew->pList); 2836 pExpr->iTable = pNew->iTable; 2837 pExpr->pTab = pNew->pTab; 2838 pExpr->iColumn = pNew->iColumn; 2839 pExpr->iAgg = pNew->iAgg; 2840 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2841 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2842 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); 2843 pExpr->flags = pNew->flags; 2844 } 2845 }else{ 2846 substExpr(db, pExpr->pLeft, iTable, pEList); 2847 substExpr(db, pExpr->pRight, iTable, pEList); 2848 substSelect(db, pExpr->pSelect, iTable, pEList); 2849 substExprList(db, pExpr->pList, iTable, pEList); 2850 } 2851 } 2852 static void substExprList( 2853 sqlite3 *db, /* Report malloc errors here */ 2854 ExprList *pList, /* List to scan and in which to make substitutes */ 2855 int iTable, /* Table to be substituted */ 2856 ExprList *pEList /* Substitute values */ 2857 ){ 2858 int i; 2859 if( pList==0 ) return; 2860 for(i=0; i<pList->nExpr; i++){ 2861 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2862 } 2863 } 2864 static void substSelect( 2865 sqlite3 *db, /* Report malloc errors here */ 2866 Select *p, /* SELECT statement in which to make substitutions */ 2867 int iTable, /* Table to be replaced */ 2868 ExprList *pEList /* Substitute values */ 2869 ){ 2870 if( !p ) return; 2871 substExprList(db, p->pEList, iTable, pEList); 2872 substExprList(db, p->pGroupBy, iTable, pEList); 2873 substExprList(db, p->pOrderBy, iTable, pEList); 2874 substExpr(db, p->pHaving, iTable, pEList); 2875 substExpr(db, p->pWhere, iTable, pEList); 2876 substSelect(db, p->pPrior, iTable, pEList); 2877 } 2878 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2879 2880 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2881 /* 2882 ** This routine attempts to flatten subqueries in order to speed 2883 ** execution. It returns 1 if it makes changes and 0 if no flattening 2884 ** occurs. 2885 ** 2886 ** To understand the concept of flattening, consider the following 2887 ** query: 2888 ** 2889 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2890 ** 2891 ** The default way of implementing this query is to execute the 2892 ** subquery first and store the results in a temporary table, then 2893 ** run the outer query on that temporary table. This requires two 2894 ** passes over the data. Furthermore, because the temporary table 2895 ** has no indices, the WHERE clause on the outer query cannot be 2896 ** optimized. 2897 ** 2898 ** This routine attempts to rewrite queries such as the above into 2899 ** a single flat select, like this: 2900 ** 2901 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2902 ** 2903 ** The code generated for this simpification gives the same result 2904 ** but only has to scan the data once. And because indices might 2905 ** exist on the table t1, a complete scan of the data might be 2906 ** avoided. 2907 ** 2908 ** Flattening is only attempted if all of the following are true: 2909 ** 2910 ** (1) The subquery and the outer query do not both use aggregates. 2911 ** 2912 ** (2) The subquery is not an aggregate or the outer query is not a join. 2913 ** 2914 ** (3) The subquery is not the right operand of a left outer join, or 2915 ** the subquery is not itself a join. (Ticket #306) 2916 ** 2917 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2918 ** 2919 ** (5) The subquery is not DISTINCT or the outer query does not use 2920 ** aggregates. 2921 ** 2922 ** (6) The subquery does not use aggregates or the outer query is not 2923 ** DISTINCT. 2924 ** 2925 ** (7) The subquery has a FROM clause. 2926 ** 2927 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2928 ** 2929 ** (9) The subquery does not use LIMIT or the outer query does not use 2930 ** aggregates. 2931 ** 2932 ** (10) The subquery does not use aggregates or the outer query does not 2933 ** use LIMIT. 2934 ** 2935 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2936 ** 2937 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2938 ** subquery has no WHERE clause. (added by ticket #350) 2939 ** 2940 ** (13) The subquery and outer query do not both use LIMIT 2941 ** 2942 ** (14) The subquery does not use OFFSET 2943 ** 2944 ** (15) The outer query is not part of a compound select or the 2945 ** subquery does not have both an ORDER BY and a LIMIT clause. 2946 ** (See ticket #2339) 2947 ** 2948 ** (16) The outer query is not an aggregate or the subquery does 2949 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2950 ** until we introduced the group_concat() function. 2951 ** 2952 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2953 ** compound clause made up entirely of non-aggregate queries, and 2954 ** the parent query: 2955 ** 2956 ** * is not itself part of a compound select, 2957 ** * is not an aggregate or DISTINCT query, and 2958 ** * has no other tables or sub-selects in the FROM clause. 2959 ** 2960 ** The parent and sub-query may contain WHERE clauses. Subject to 2961 ** rules (11), (13) and (14), they may also contain ORDER BY, 2962 ** LIMIT and OFFSET clauses. 2963 ** 2964 ** (18) If the sub-query is a compound select, then all terms of the 2965 ** ORDER by clause of the parent must be simple references to 2966 ** columns of the sub-query. 2967 ** 2968 ** In this routine, the "p" parameter is a pointer to the outer query. 2969 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2970 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2971 ** 2972 ** If flattening is not attempted, this routine is a no-op and returns 0. 2973 ** If flattening is attempted this routine returns 1. 2974 ** 2975 ** All of the expression analysis must occur on both the outer query and 2976 ** the subquery before this routine runs. 2977 */ 2978 static int flattenSubquery( 2979 Parse *pParse, /* Parsing context */ 2980 Select *p, /* The parent or outer SELECT statement */ 2981 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2982 int isAgg, /* True if outer SELECT uses aggregate functions */ 2983 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2984 ){ 2985 const char *zSavedAuthContext = pParse->zAuthContext; 2986 Select *pParent; 2987 Select *pSub; /* The inner query or "subquery" */ 2988 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2989 SrcList *pSrc; /* The FROM clause of the outer query */ 2990 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2991 ExprList *pList; /* The result set of the outer query */ 2992 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2993 int i; /* Loop counter */ 2994 Expr *pWhere; /* The WHERE clause */ 2995 struct SrcList_item *pSubitem; /* The subquery */ 2996 sqlite3 *db = pParse->db; 2997 2998 /* Check to see if flattening is permitted. Return 0 if not. 2999 */ 3000 if( p==0 ) return 0; 3001 pSrc = p->pSrc; 3002 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3003 pSubitem = &pSrc->a[iFrom]; 3004 iParent = pSubitem->iCursor; 3005 pSub = pSubitem->pSelect; 3006 assert( pSub!=0 ); 3007 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3008 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3009 pSubSrc = pSub->pSrc; 3010 assert( pSubSrc ); 3011 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3012 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 3013 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3014 ** became arbitrary expressions, we were forced to add restrictions (13) 3015 ** and (14). */ 3016 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3017 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3018 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 3019 return 0; /* Restriction (15) */ 3020 } 3021 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3022 if( (pSub->isDistinct || pSub->pLimit) 3023 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 3024 return 0; 3025 } 3026 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 3027 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 3028 return 0; /* Restriction (11) */ 3029 } 3030 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3031 3032 /* Restriction 3: If the subquery is a join, make sure the subquery is 3033 ** not used as the right operand of an outer join. Examples of why this 3034 ** is not allowed: 3035 ** 3036 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3037 ** 3038 ** If we flatten the above, we would get 3039 ** 3040 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3041 ** 3042 ** which is not at all the same thing. 3043 */ 3044 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 3045 return 0; 3046 } 3047 3048 /* Restriction 12: If the subquery is the right operand of a left outer 3049 ** join, make sure the subquery has no WHERE clause. 3050 ** An examples of why this is not allowed: 3051 ** 3052 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3053 ** 3054 ** If we flatten the above, we would get 3055 ** 3056 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3057 ** 3058 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3059 ** effectively converts the OUTER JOIN into an INNER JOIN. 3060 */ 3061 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 3062 return 0; 3063 } 3064 3065 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3066 ** use only the UNION ALL operator. And none of the simple select queries 3067 ** that make up the compound SELECT are allowed to be aggregate or distinct 3068 ** queries. 3069 */ 3070 if( pSub->pPrior ){ 3071 if( p->pPrior || isAgg || p->isDistinct || pSrc->nSrc!=1 ){ 3072 return 0; 3073 } 3074 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3075 if( pSub1->isAgg || pSub1->isDistinct 3076 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3077 || !pSub1->pSrc || pSub1->pSrc->nSrc!=1 3078 ){ 3079 return 0; 3080 } 3081 } 3082 3083 /* Restriction 18. */ 3084 if( p->pOrderBy ){ 3085 int ii; 3086 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3087 Expr *pExpr = p->pOrderBy->a[ii].pExpr; 3088 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=iParent ){ 3089 return 0; 3090 } 3091 } 3092 } 3093 } 3094 3095 pParse->zAuthContext = pSubitem->zName; 3096 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3097 pParse->zAuthContext = zSavedAuthContext; 3098 3099 /* If the sub-query is a compound SELECT statement, then it must be 3100 ** a UNION ALL and the parent query must be of the form: 3101 ** 3102 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3103 ** 3104 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3105 ** creates N copies of the parent query without any ORDER BY, LIMIT or 3106 ** OFFSET clauses and joins them to the left-hand-side of the original 3107 ** using UNION ALL operators. In this case N is the number of simple 3108 ** select statements in the compound sub-query. 3109 */ 3110 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3111 Select *pNew; 3112 ExprList *pOrderBy = p->pOrderBy; 3113 Expr *pLimit = p->pLimit; 3114 Expr *pOffset = p->pOffset; 3115 Select *pPrior = p->pPrior; 3116 p->pOrderBy = 0; 3117 p->pSrc = 0; 3118 p->pPrior = 0; 3119 p->pLimit = 0; 3120 pNew = sqlite3SelectDup(db, p); 3121 pNew->pPrior = pPrior; 3122 p->pPrior = pNew; 3123 p->pOrderBy = pOrderBy; 3124 p->op = TK_ALL; 3125 p->pSrc = pSrc; 3126 p->pLimit = pLimit; 3127 p->pOffset = pOffset; 3128 p->pRightmost = 0; 3129 pNew->pRightmost = 0; 3130 } 3131 3132 /* If we reach this point, it means flattening is permitted for the 3133 ** iFrom-th entry of the FROM clause in the outer query. 3134 */ 3135 pSub = pSub1 = pSubitem->pSelect; 3136 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3137 int nSubSrc = pSubSrc->nSrc; 3138 int jointype = 0; 3139 pSubSrc = pSub->pSrc; 3140 pSrc = pParent->pSrc; 3141 3142 /* Move all of the FROM elements of the subquery into the 3143 ** the FROM clause of the outer query. Before doing this, remember 3144 ** the cursor number for the original outer query FROM element in 3145 ** iParent. The iParent cursor will never be used. Subsequent code 3146 ** will scan expressions looking for iParent references and replace 3147 ** those references with expressions that resolve to the subquery FROM 3148 ** elements we are now copying in. 3149 */ 3150 if( pSrc ){ 3151 pSubitem = &pSrc->a[iFrom]; 3152 nSubSrc = pSubSrc->nSrc; 3153 jointype = pSubitem->jointype; 3154 sqlite3DeleteTable(pSubitem->pTab); 3155 sqlite3_free(pSubitem->zDatabase); 3156 sqlite3_free(pSubitem->zName); 3157 sqlite3_free(pSubitem->zAlias); 3158 pSubitem->pTab = 0; 3159 pSubitem->zDatabase = 0; 3160 pSubitem->zName = 0; 3161 pSubitem->zAlias = 0; 3162 } 3163 if( nSubSrc!=1 || !pSrc ){ 3164 int extra = nSubSrc - 1; 3165 for(i=(pSrc?1:0); i<nSubSrc; i++){ 3166 pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0); 3167 if( pSrc==0 ){ 3168 pParent->pSrc = 0; 3169 return 1; 3170 } 3171 } 3172 pParent->pSrc = pSrc; 3173 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 3174 pSrc->a[i] = pSrc->a[i-extra]; 3175 } 3176 } 3177 for(i=0; i<nSubSrc; i++){ 3178 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3179 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3180 } 3181 pSrc->a[iFrom].jointype = jointype; 3182 3183 /* Now begin substituting subquery result set expressions for 3184 ** references to the iParent in the outer query. 3185 ** 3186 ** Example: 3187 ** 3188 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3189 ** \ \_____________ subquery __________/ / 3190 ** \_____________________ outer query ______________________________/ 3191 ** 3192 ** We look at every expression in the outer query and every place we see 3193 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3194 */ 3195 pList = pParent->pEList; 3196 for(i=0; i<pList->nExpr; i++){ 3197 Expr *pExpr; 3198 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 3199 pList->a[i].zName = 3200 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 3201 } 3202 } 3203 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3204 if( isAgg ){ 3205 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3206 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3207 } 3208 if( pSub->pOrderBy ){ 3209 assert( pParent->pOrderBy==0 ); 3210 pParent->pOrderBy = pSub->pOrderBy; 3211 pSub->pOrderBy = 0; 3212 }else if( pParent->pOrderBy ){ 3213 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3214 } 3215 if( pSub->pWhere ){ 3216 pWhere = sqlite3ExprDup(db, pSub->pWhere); 3217 }else{ 3218 pWhere = 0; 3219 } 3220 if( subqueryIsAgg ){ 3221 assert( pParent->pHaving==0 ); 3222 pParent->pHaving = pParent->pWhere; 3223 pParent->pWhere = pWhere; 3224 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3225 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3226 sqlite3ExprDup(db, pSub->pHaving)); 3227 assert( pParent->pGroupBy==0 ); 3228 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); 3229 }else{ 3230 substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3231 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3232 } 3233 3234 /* The flattened query is distinct if either the inner or the 3235 ** outer query is distinct. 3236 */ 3237 pParent->isDistinct = pParent->isDistinct || pSub->isDistinct; 3238 3239 /* 3240 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3241 ** 3242 ** One is tempted to try to add a and b to combine the limits. But this 3243 ** does not work if either limit is negative. 3244 */ 3245 if( pSub->pLimit ){ 3246 pParent->pLimit = pSub->pLimit; 3247 pSub->pLimit = 0; 3248 } 3249 } 3250 3251 /* Finially, delete what is left of the subquery and return 3252 ** success. 3253 */ 3254 sqlite3SelectDelete(pSub1); 3255 3256 return 1; 3257 } 3258 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3259 3260 /* 3261 ** Analyze the SELECT statement passed as an argument to see if it 3262 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 3263 ** it is, or 0 otherwise. At present, a query is considered to be 3264 ** a min()/max() query if: 3265 ** 3266 ** 1. There is a single object in the FROM clause. 3267 ** 3268 ** 2. There is a single expression in the result set, and it is 3269 ** either min(x) or max(x), where x is a column reference. 3270 */ 3271 static int minMaxQuery(Parse *pParse, Select *p){ 3272 Expr *pExpr; 3273 ExprList *pEList = p->pEList; 3274 3275 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 3276 pExpr = pEList->a[0].pExpr; 3277 pEList = pExpr->pList; 3278 if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; 3279 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 3280 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; 3281 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 3282 return WHERE_ORDERBY_MIN; 3283 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 3284 return WHERE_ORDERBY_MAX; 3285 } 3286 return WHERE_ORDERBY_NORMAL; 3287 } 3288 3289 /* 3290 ** This routine resolves any names used in the result set of the 3291 ** supplied SELECT statement. If the SELECT statement being resolved 3292 ** is a sub-select, then pOuterNC is a pointer to the NameContext 3293 ** of the parent SELECT. 3294 */ 3295 int sqlite3SelectResolve( 3296 Parse *pParse, /* The parser context */ 3297 Select *p, /* The SELECT statement being coded. */ 3298 NameContext *pOuterNC /* The outer name context. May be NULL. */ 3299 ){ 3300 ExprList *pEList; /* Result set. */ 3301 int i; /* For-loop variable used in multiple places */ 3302 NameContext sNC; /* Local name-context */ 3303 ExprList *pGroupBy; /* The group by clause */ 3304 3305 /* If this routine has run before, return immediately. */ 3306 if( p->isResolved ){ 3307 assert( !pOuterNC ); 3308 return SQLITE_OK; 3309 } 3310 p->isResolved = 1; 3311 3312 /* If there have already been errors, do nothing. */ 3313 if( pParse->nErr>0 ){ 3314 return SQLITE_ERROR; 3315 } 3316 3317 /* Prepare the select statement. This call will allocate all cursors 3318 ** required to handle the tables and subqueries in the FROM clause. 3319 */ 3320 if( prepSelectStmt(pParse, p) ){ 3321 return SQLITE_ERROR; 3322 } 3323 3324 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 3325 ** are not allowed to refer to any names, so pass an empty NameContext. 3326 */ 3327 memset(&sNC, 0, sizeof(sNC)); 3328 sNC.pParse = pParse; 3329 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 3330 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 3331 return SQLITE_ERROR; 3332 } 3333 3334 /* Set up the local name-context to pass to ExprResolveNames() to 3335 ** resolve the expression-list. 3336 */ 3337 sNC.allowAgg = 1; 3338 sNC.pSrcList = p->pSrc; 3339 sNC.pNext = pOuterNC; 3340 3341 /* Resolve names in the result set. */ 3342 pEList = p->pEList; 3343 if( !pEList ) return SQLITE_ERROR; 3344 for(i=0; i<pEList->nExpr; i++){ 3345 Expr *pX = pEList->a[i].pExpr; 3346 if( sqlite3ExprResolveNames(&sNC, pX) ){ 3347 return SQLITE_ERROR; 3348 } 3349 } 3350 3351 /* If there are no aggregate functions in the result-set, and no GROUP BY 3352 ** expression, do not allow aggregates in any of the other expressions. 3353 */ 3354 assert( !p->isAgg ); 3355 pGroupBy = p->pGroupBy; 3356 if( pGroupBy || sNC.hasAgg ){ 3357 p->isAgg = 1; 3358 }else{ 3359 sNC.allowAgg = 0; 3360 } 3361 3362 /* If a HAVING clause is present, then there must be a GROUP BY clause. 3363 */ 3364 if( p->pHaving && !pGroupBy ){ 3365 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 3366 return SQLITE_ERROR; 3367 } 3368 3369 /* Add the expression list to the name-context before parsing the 3370 ** other expressions in the SELECT statement. This is so that 3371 ** expressions in the WHERE clause (etc.) can refer to expressions by 3372 ** aliases in the result set. 3373 ** 3374 ** Minor point: If this is the case, then the expression will be 3375 ** re-evaluated for each reference to it. 3376 */ 3377 sNC.pEList = p->pEList; 3378 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 3379 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ 3380 return SQLITE_ERROR; 3381 } 3382 if( p->pPrior==0 ){ 3383 if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){ 3384 return SQLITE_ERROR; 3385 } 3386 } 3387 if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){ 3388 return SQLITE_ERROR; 3389 } 3390 3391 if( pParse->db->mallocFailed ){ 3392 return SQLITE_NOMEM; 3393 } 3394 3395 /* Make sure the GROUP BY clause does not contain aggregate functions. 3396 */ 3397 if( pGroupBy ){ 3398 struct ExprList_item *pItem; 3399 3400 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 3401 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 3402 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 3403 "the GROUP BY clause"); 3404 return SQLITE_ERROR; 3405 } 3406 } 3407 } 3408 3409 /* If this is one SELECT of a compound, be sure to resolve names 3410 ** in the other SELECTs. 3411 */ 3412 if( p->pPrior ){ 3413 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 3414 }else{ 3415 return SQLITE_OK; 3416 } 3417 } 3418 3419 /* 3420 ** Reset the aggregate accumulator. 3421 ** 3422 ** The aggregate accumulator is a set of memory cells that hold 3423 ** intermediate results while calculating an aggregate. This 3424 ** routine simply stores NULLs in all of those memory cells. 3425 */ 3426 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3427 Vdbe *v = pParse->pVdbe; 3428 int i; 3429 struct AggInfo_func *pFunc; 3430 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3431 return; 3432 } 3433 for(i=0; i<pAggInfo->nColumn; i++){ 3434 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3435 } 3436 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3437 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3438 if( pFunc->iDistinct>=0 ){ 3439 Expr *pE = pFunc->pExpr; 3440 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 3441 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 3442 "by an expression"); 3443 pFunc->iDistinct = -1; 3444 }else{ 3445 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 3446 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3447 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3448 } 3449 } 3450 } 3451 } 3452 3453 /* 3454 ** Invoke the OP_AggFinalize opcode for every aggregate function 3455 ** in the AggInfo structure. 3456 */ 3457 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3458 Vdbe *v = pParse->pVdbe; 3459 int i; 3460 struct AggInfo_func *pF; 3461 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3462 ExprList *pList = pF->pExpr->pList; 3463 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3464 (void*)pF->pFunc, P4_FUNCDEF); 3465 } 3466 } 3467 3468 /* 3469 ** Update the accumulator memory cells for an aggregate based on 3470 ** the current cursor position. 3471 */ 3472 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3473 Vdbe *v = pParse->pVdbe; 3474 int i; 3475 struct AggInfo_func *pF; 3476 struct AggInfo_col *pC; 3477 3478 pAggInfo->directMode = 1; 3479 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3480 int nArg; 3481 int addrNext = 0; 3482 int regAgg; 3483 ExprList *pList = pF->pExpr->pList; 3484 if( pList ){ 3485 nArg = pList->nExpr; 3486 regAgg = sqlite3GetTempRange(pParse, nArg); 3487 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3488 }else{ 3489 nArg = 0; 3490 regAgg = 0; 3491 } 3492 if( pF->iDistinct>=0 ){ 3493 addrNext = sqlite3VdbeMakeLabel(v); 3494 assert( nArg==1 ); 3495 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3496 } 3497 if( pF->pFunc->needCollSeq ){ 3498 CollSeq *pColl = 0; 3499 struct ExprList_item *pItem; 3500 int j; 3501 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 3502 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3503 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3504 } 3505 if( !pColl ){ 3506 pColl = pParse->db->pDfltColl; 3507 } 3508 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3509 } 3510 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3511 (void*)pF->pFunc, P4_FUNCDEF); 3512 sqlite3VdbeChangeP5(v, nArg); 3513 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3514 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3515 if( addrNext ){ 3516 sqlite3VdbeResolveLabel(v, addrNext); 3517 } 3518 } 3519 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3520 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3521 } 3522 pAggInfo->directMode = 0; 3523 } 3524 3525 #if 0 3526 /* 3527 ** This function is used when a SELECT statement is used to create a 3528 ** temporary table for iterating through when running an INSTEAD OF 3529 ** UPDATE or INSTEAD OF DELETE trigger. 3530 ** 3531 ** If possible, the SELECT statement is modified so that NULL values 3532 ** are stored in the temporary table for all columns for which the 3533 ** corresponding bit in argument mask is not set. If mask takes the 3534 ** special value 0xffffffff, then all columns are populated. 3535 */ 3536 void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){ 3537 if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){ 3538 ExprList *pEList; 3539 int i; 3540 sqlite3SelectResolve(pParse, p, 0); 3541 pEList = p->pEList; 3542 for(i=0; pEList && i<pEList->nExpr && i<32; i++){ 3543 if( !(mask&((u32)1<<i)) ){ 3544 sqlite3ExprDelete(pEList->a[i].pExpr); 3545 pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0); 3546 } 3547 } 3548 } 3549 } 3550 #endif 3551 3552 /* 3553 ** Generate code for the given SELECT statement. 3554 ** 3555 ** The results are distributed in various ways depending on the 3556 ** contents of the SelectDest structure pointed to by argument pDest 3557 ** as follows: 3558 ** 3559 ** pDest->eDest Result 3560 ** ------------ ------------------------------------------- 3561 ** SRT_Callback Invoke the callback for each row of the result. 3562 ** 3563 ** SRT_Mem Store first result in memory cell pDest->iParm 3564 ** 3565 ** SRT_Set Store results as keys of table pDest->iParm. 3566 ** Apply the affinity pDest->affinity before storing them. 3567 ** 3568 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3569 ** 3570 ** SRT_Except Remove results from the temporary table pDest->iParm. 3571 ** 3572 ** SRT_Table Store results in temporary table pDest->iParm 3573 ** 3574 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3575 ** the result there. The cursor is left open after 3576 ** returning. 3577 ** 3578 ** SRT_Coroutine Invoke a co-routine to compute a single row of 3579 ** the result 3580 ** 3581 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3582 ** set is not empty. 3583 ** 3584 ** SRT_Discard Throw the results away. 3585 ** 3586 ** See the selectInnerLoop() function for a canonical listing of the 3587 ** allowed values of eDest and their meanings. 3588 ** 3589 ** This routine returns the number of errors. If any errors are 3590 ** encountered, then an appropriate error message is left in 3591 ** pParse->zErrMsg. 3592 ** 3593 ** This routine does NOT free the Select structure passed in. The 3594 ** calling function needs to do that. 3595 ** 3596 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 3597 ** SELECT is a subquery. This routine may try to combine this SELECT 3598 ** with its parent to form a single flat query. In so doing, it might 3599 ** change the parent query from a non-aggregate to an aggregate query. 3600 ** For that reason, the pParentAgg flag is passed as a pointer, so it 3601 ** can be changed. 3602 ** 3603 ** Example 1: The meaning of the pParent parameter. 3604 ** 3605 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 3606 ** \ \_______ subquery _______/ / 3607 ** \ / 3608 ** \____________________ outer query ___________________/ 3609 ** 3610 ** This routine is called for the outer query first. For that call, 3611 ** pParent will be NULL. During the processing of the outer query, this 3612 ** routine is called recursively to handle the subquery. For the recursive 3613 ** call, pParent will point to the outer query. Because the subquery is 3614 ** the second element in a three-way join, the parentTab parameter will 3615 ** be 1 (the 2nd value of a 0-indexed array.) 3616 */ 3617 int sqlite3Select( 3618 Parse *pParse, /* The parser context */ 3619 Select *p, /* The SELECT statement being coded. */ 3620 SelectDest *pDest, /* What to do with the query results */ 3621 Select *pParent, /* Another SELECT for which this is a sub-query */ 3622 int parentTab, /* Index in pParent->pSrc of this query */ 3623 int *pParentAgg /* True if pParent uses aggregate functions */ 3624 ){ 3625 int i, j; /* Loop counters */ 3626 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3627 Vdbe *v; /* The virtual machine under construction */ 3628 int isAgg; /* True for select lists like "count(*)" */ 3629 ExprList *pEList; /* List of columns to extract. */ 3630 SrcList *pTabList; /* List of tables to select from */ 3631 Expr *pWhere; /* The WHERE clause. May be NULL */ 3632 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3633 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3634 Expr *pHaving; /* The HAVING clause. May be NULL */ 3635 int isDistinct; /* True if the DISTINCT keyword is present */ 3636 int distinct; /* Table to use for the distinct set */ 3637 int rc = 1; /* Value to return from this function */ 3638 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3639 AggInfo sAggInfo; /* Information used by aggregate queries */ 3640 int iEnd; /* Address of the end of the query */ 3641 sqlite3 *db; /* The database connection */ 3642 3643 db = pParse->db; 3644 if( p==0 || db->mallocFailed || pParse->nErr ){ 3645 return 1; 3646 } 3647 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3648 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3649 3650 pOrderBy = p->pOrderBy; 3651 if( IgnorableOrderby(pDest) ){ 3652 p->pOrderBy = 0; 3653 3654 /* In these cases the DISTINCT operator makes no difference to the 3655 ** results, so remove it if it were specified. 3656 */ 3657 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3658 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3659 p->isDistinct = 0; 3660 } 3661 if( sqlite3SelectResolve(pParse, p, 0) ){ 3662 goto select_end; 3663 } 3664 p->pOrderBy = pOrderBy; 3665 3666 3667 /* Make local copies of the parameters for this query. 3668 */ 3669 pTabList = p->pSrc; 3670 isAgg = p->isAgg; 3671 pEList = p->pEList; 3672 if( pEList==0 ) goto select_end; 3673 3674 /* 3675 ** Do not even attempt to generate any code if we have already seen 3676 ** errors before this routine starts. 3677 */ 3678 if( pParse->nErr>0 ) goto select_end; 3679 3680 /* ORDER BY is ignored for some destinations. 3681 */ 3682 if( IgnorableOrderby(pDest) ){ 3683 pOrderBy = 0; 3684 } 3685 3686 /* Begin generating code. 3687 */ 3688 v = sqlite3GetVdbe(pParse); 3689 if( v==0 ) goto select_end; 3690 3691 /* Generate code for all sub-queries in the FROM clause 3692 */ 3693 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3694 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3695 struct SrcList_item *pItem = &pTabList->a[i]; 3696 SelectDest dest; 3697 Select *pSub = pItem->pSelect; 3698 int isAggSub; 3699 char *zName = pItem->zName; 3700 3701 if( pSub==0 || pItem->isPopulated ) continue; 3702 if( zName!=0 ){ /* An sql view */ 3703 const char *zSavedAuthContext = pParse->zAuthContext; 3704 pParse->zAuthContext = zName; 3705 rc = sqlite3SelectResolve(pParse, pSub, 0); 3706 pParse->zAuthContext = zSavedAuthContext; 3707 if( rc ){ 3708 goto select_end; 3709 } 3710 } 3711 3712 /* Increment Parse.nHeight by the height of the largest expression 3713 ** tree refered to by this, the parent select. The child select 3714 ** may contain expression trees of at most 3715 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3716 ** more conservative than necessary, but much easier than enforcing 3717 ** an exact limit. 3718 */ 3719 pParse->nHeight += sqlite3SelectExprHeight(p); 3720 3721 /* Check to see if the subquery can be absorbed into the parent. */ 3722 isAggSub = pSub->isAgg; 3723 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3724 if( isAggSub ){ 3725 p->isAgg = isAgg = 1; 3726 } 3727 i = -1; 3728 }else{ 3729 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3730 sqlite3Select(pParse, pSub, &dest, p, i, &isAgg); 3731 } 3732 if( pParse->nErr || db->mallocFailed ){ 3733 goto select_end; 3734 } 3735 pParse->nHeight -= sqlite3SelectExprHeight(p); 3736 pTabList = p->pSrc; 3737 if( !IgnorableOrderby(pDest) ){ 3738 pOrderBy = p->pOrderBy; 3739 } 3740 } 3741 pEList = p->pEList; 3742 #endif 3743 pWhere = p->pWhere; 3744 pGroupBy = p->pGroupBy; 3745 pHaving = p->pHaving; 3746 isDistinct = p->isDistinct; 3747 3748 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3749 /* If there is are a sequence of queries, do the earlier ones first. 3750 */ 3751 if( p->pPrior ){ 3752 if( p->pRightmost==0 ){ 3753 Select *pLoop, *pRight = 0; 3754 int cnt = 0; 3755 int mxSelect; 3756 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3757 pLoop->pRightmost = p; 3758 pLoop->pNext = pRight; 3759 pRight = pLoop; 3760 } 3761 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3762 if( mxSelect && cnt>mxSelect ){ 3763 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3764 return 1; 3765 } 3766 } 3767 return multiSelect(pParse, p, pDest); 3768 } 3769 #endif 3770 3771 /* If writing to memory or generating a set 3772 ** only a single column may be output. 3773 */ 3774 #ifndef SQLITE_OMIT_SUBQUERY 3775 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3776 goto select_end; 3777 } 3778 #endif 3779 3780 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3781 ** GROUP BY may use an index, DISTINCT never does. 3782 */ 3783 if( p->isDistinct && !p->isAgg && !p->pGroupBy ){ 3784 p->pGroupBy = sqlite3ExprListDup(db, p->pEList); 3785 pGroupBy = p->pGroupBy; 3786 p->isDistinct = 0; 3787 isDistinct = 0; 3788 } 3789 3790 /* If there is an ORDER BY clause, then this sorting 3791 ** index might end up being unused if the data can be 3792 ** extracted in pre-sorted order. If that is the case, then the 3793 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3794 ** we figure out that the sorting index is not needed. The addrSortIndex 3795 ** variable is used to facilitate that change. 3796 */ 3797 if( pOrderBy ){ 3798 KeyInfo *pKeyInfo; 3799 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3800 pOrderBy->iECursor = pParse->nTab++; 3801 p->addrOpenEphm[2] = addrSortIndex = 3802 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3803 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3804 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3805 }else{ 3806 addrSortIndex = -1; 3807 } 3808 3809 /* If the output is destined for a temporary table, open that table. 3810 */ 3811 if( pDest->eDest==SRT_EphemTab ){ 3812 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3813 } 3814 3815 /* Set the limiter. 3816 */ 3817 iEnd = sqlite3VdbeMakeLabel(v); 3818 computeLimitRegisters(pParse, p, iEnd); 3819 3820 /* Open a virtual index to use for the distinct set. 3821 */ 3822 if( isDistinct ){ 3823 KeyInfo *pKeyInfo; 3824 assert( isAgg || pGroupBy ); 3825 distinct = pParse->nTab++; 3826 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3827 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3828 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3829 }else{ 3830 distinct = -1; 3831 } 3832 3833 /* Aggregate and non-aggregate queries are handled differently */ 3834 if( !isAgg && pGroupBy==0 ){ 3835 /* This case is for non-aggregate queries 3836 ** Begin the database scan 3837 */ 3838 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3839 if( pWInfo==0 ) goto select_end; 3840 3841 /* If sorting index that was created by a prior OP_OpenEphemeral 3842 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3843 ** into an OP_Noop. 3844 */ 3845 if( addrSortIndex>=0 && pOrderBy==0 ){ 3846 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3847 p->addrOpenEphm[2] = -1; 3848 } 3849 3850 /* Use the standard inner loop 3851 */ 3852 assert(!isDistinct); 3853 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3854 pWInfo->iContinue, pWInfo->iBreak); 3855 3856 /* End the database scan loop. 3857 */ 3858 sqlite3WhereEnd(pWInfo); 3859 }else{ 3860 /* This is the processing for aggregate queries */ 3861 NameContext sNC; /* Name context for processing aggregate information */ 3862 int iAMem; /* First Mem address for storing current GROUP BY */ 3863 int iBMem; /* First Mem address for previous GROUP BY */ 3864 int iUseFlag; /* Mem address holding flag indicating that at least 3865 ** one row of the input to the aggregator has been 3866 ** processed */ 3867 int iAbortFlag; /* Mem address which causes query abort if positive */ 3868 int groupBySort; /* Rows come from source in GROUP BY order */ 3869 3870 3871 /* The following variables hold addresses or labels for parts of the 3872 ** virtual machine program we are putting together */ 3873 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3874 int regOutputRow; /* Return address register for output subroutine */ 3875 int addrSetAbort; /* Set the abort flag and return */ 3876 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3877 int addrTopOfLoop; /* Top of the input loop */ 3878 int addrEnd; /* End of all processing */ 3879 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3880 int addrReset; /* Subroutine for resetting the accumulator */ 3881 int regReset; /* Return address register for reset subroutine */ 3882 3883 addrEnd = sqlite3VdbeMakeLabel(v); 3884 3885 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3886 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3887 ** SELECT statement. 3888 */ 3889 memset(&sNC, 0, sizeof(sNC)); 3890 sNC.pParse = pParse; 3891 sNC.pSrcList = pTabList; 3892 sNC.pAggInfo = &sAggInfo; 3893 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3894 sAggInfo.pGroupBy = pGroupBy; 3895 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3896 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3897 if( pHaving ){ 3898 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3899 } 3900 sAggInfo.nAccumulator = sAggInfo.nColumn; 3901 for(i=0; i<sAggInfo.nFunc; i++){ 3902 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList); 3903 } 3904 if( db->mallocFailed ) goto select_end; 3905 3906 /* Processing for aggregates with GROUP BY is very different and 3907 ** much more complex than aggregates without a GROUP BY. 3908 */ 3909 if( pGroupBy ){ 3910 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3911 int j1; 3912 3913 /* Create labels that we will be needing 3914 */ 3915 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3916 3917 /* If there is a GROUP BY clause we might need a sorting index to 3918 ** implement it. Allocate that sorting index now. If it turns out 3919 ** that we do not need it after all, the OpenEphemeral instruction 3920 ** will be converted into a Noop. 3921 */ 3922 sAggInfo.sortingIdx = pParse->nTab++; 3923 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3924 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3925 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3926 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3927 3928 /* Initialize memory locations used by GROUP BY aggregate processing 3929 */ 3930 iUseFlag = ++pParse->nMem; 3931 iAbortFlag = ++pParse->nMem; 3932 iAMem = pParse->nMem + 1; 3933 pParse->nMem += pGroupBy->nExpr; 3934 iBMem = pParse->nMem + 1; 3935 pParse->nMem += pGroupBy->nExpr; 3936 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3937 VdbeComment((v, "clear abort flag")); 3938 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3939 VdbeComment((v, "indicate accumulator empty")); 3940 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop); 3941 3942 /* Generate a subroutine that outputs a single row of the result 3943 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3944 ** is less than or equal to zero, the subroutine is a no-op. If 3945 ** the processing calls for the query to abort, this subroutine 3946 ** increments the iAbortFlag memory location before returning in 3947 ** order to signal the caller to abort. 3948 */ 3949 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3950 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 3951 VdbeComment((v, "set abort flag")); 3952 regOutputRow = ++pParse->nMem; 3953 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3954 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3955 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 3956 VdbeComment((v, "Groupby result generator entry point")); 3957 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3958 finalizeAggFunctions(pParse, &sAggInfo); 3959 if( pHaving ){ 3960 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 3961 } 3962 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3963 distinct, pDest, 3964 addrOutputRow+1, addrSetAbort); 3965 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3966 VdbeComment((v, "end groupby result generator")); 3967 3968 /* Generate a subroutine that will reset the group-by accumulator 3969 */ 3970 addrReset = sqlite3VdbeCurrentAddr(v); 3971 regReset = ++pParse->nMem; 3972 resetAccumulator(pParse, &sAggInfo); 3973 sqlite3VdbeAddOp1(v, OP_Return, regReset); 3974 3975 /* Begin a loop that will extract all source rows in GROUP BY order. 3976 ** This might involve two separate loops with an OP_Sort in between, or 3977 ** it might be a single loop that uses an index to extract information 3978 ** in the right order to begin with. 3979 */ 3980 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3981 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3982 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3983 if( pWInfo==0 ) goto select_end; 3984 if( pGroupBy==0 ){ 3985 /* The optimizer is able to deliver rows in group by order so 3986 ** we do not have to sort. The OP_OpenEphemeral table will be 3987 ** cancelled later because we still need to use the pKeyInfo 3988 */ 3989 pGroupBy = p->pGroupBy; 3990 groupBySort = 0; 3991 }else{ 3992 /* Rows are coming out in undetermined order. We have to push 3993 ** each row into a sorting index, terminate the first loop, 3994 ** then loop over the sorting index in order to get the output 3995 ** in sorted order 3996 */ 3997 int regBase; 3998 int regRecord; 3999 int nCol; 4000 int nGroupBy; 4001 4002 groupBySort = 1; 4003 nGroupBy = pGroupBy->nExpr; 4004 nCol = nGroupBy + 1; 4005 j = nGroupBy+1; 4006 for(i=0; i<sAggInfo.nColumn; i++){ 4007 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4008 nCol++; 4009 j++; 4010 } 4011 } 4012 regBase = sqlite3GetTempRange(pParse, nCol); 4013 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4014 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4015 j = nGroupBy+1; 4016 for(i=0; i<sAggInfo.nColumn; i++){ 4017 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4018 if( pCol->iSorterColumn>=j ){ 4019 int r1 = j + regBase; 4020 int r2 = sqlite3ExprCodeGetColumn(pParse, 4021 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 4022 if( r1!=r2 ){ 4023 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4024 } 4025 j++; 4026 } 4027 } 4028 regRecord = sqlite3GetTempReg(pParse); 4029 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4030 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 4031 sqlite3ReleaseTempReg(pParse, regRecord); 4032 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4033 sqlite3WhereEnd(pWInfo); 4034 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 4035 VdbeComment((v, "GROUP BY sort")); 4036 sAggInfo.useSortingIdx = 1; 4037 } 4038 4039 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4040 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4041 ** Then compare the current GROUP BY terms against the GROUP BY terms 4042 ** from the previous row currently stored in a0, a1, a2... 4043 */ 4044 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4045 for(j=0; j<pGroupBy->nExpr; j++){ 4046 if( groupBySort ){ 4047 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 4048 }else{ 4049 sAggInfo.directMode = 1; 4050 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4051 } 4052 } 4053 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4054 (char*)pKeyInfo, P4_KEYINFO); 4055 j1 = sqlite3VdbeCurrentAddr(v); 4056 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4057 4058 /* Generate code that runs whenever the GROUP BY changes. 4059 ** Changes in the GROUP BY are detected by the previous code 4060 ** block. If there were no changes, this block is skipped. 4061 ** 4062 ** This code copies current group by terms in b0,b1,b2,... 4063 ** over to a0,a1,a2. It then calls the output subroutine 4064 ** and resets the aggregate accumulator registers in preparation 4065 ** for the next GROUP BY batch. 4066 */ 4067 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4068 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4069 VdbeComment((v, "output one row")); 4070 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4071 VdbeComment((v, "check abort flag")); 4072 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4073 VdbeComment((v, "reset accumulator")); 4074 4075 /* Update the aggregate accumulators based on the content of 4076 ** the current row 4077 */ 4078 sqlite3VdbeJumpHere(v, j1); 4079 updateAccumulator(pParse, &sAggInfo); 4080 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4081 VdbeComment((v, "indicate data in accumulator")); 4082 4083 /* End of the loop 4084 */ 4085 if( groupBySort ){ 4086 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 4087 }else{ 4088 sqlite3WhereEnd(pWInfo); 4089 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 4090 } 4091 4092 /* Output the final row of result 4093 */ 4094 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4095 VdbeComment((v, "output final row")); 4096 4097 } /* endif pGroupBy */ 4098 else { 4099 ExprList *pMinMax = 0; 4100 ExprList *pDel = 0; 4101 u8 flag; 4102 4103 /* Check if the query is of one of the following forms: 4104 ** 4105 ** SELECT min(x) FROM ... 4106 ** SELECT max(x) FROM ... 4107 ** 4108 ** If it is, then ask the code in where.c to attempt to sort results 4109 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4110 ** If where.c is able to produce results sorted in this order, then 4111 ** add vdbe code to break out of the processing loop after the 4112 ** first iteration (since the first iteration of the loop is 4113 ** guaranteed to operate on the row with the minimum or maximum 4114 ** value of x, the only row required). 4115 ** 4116 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4117 ** modify behaviour as follows: 4118 ** 4119 ** + If the query is a "SELECT min(x)", then the loop coded by 4120 ** where.c should not iterate over any values with a NULL value 4121 ** for x. 4122 ** 4123 ** + The optimizer code in where.c (the thing that decides which 4124 ** index or indices to use) should place a different priority on 4125 ** satisfying the 'ORDER BY' clause than it does in other cases. 4126 ** Refer to code and comments in where.c for details. 4127 */ 4128 flag = minMaxQuery(pParse, p); 4129 if( flag ){ 4130 pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList); 4131 if( pMinMax && !db->mallocFailed ){ 4132 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN; 4133 pMinMax->a[0].pExpr->op = TK_COLUMN; 4134 } 4135 } 4136 4137 /* This case runs if the aggregate has no GROUP BY clause. The 4138 ** processing is much simpler since there is only a single row 4139 ** of output. 4140 */ 4141 resetAccumulator(pParse, &sAggInfo); 4142 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4143 if( pWInfo==0 ){ 4144 sqlite3ExprListDelete(pDel); 4145 goto select_end; 4146 } 4147 updateAccumulator(pParse, &sAggInfo); 4148 if( !pMinMax && flag ){ 4149 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4150 VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max"))); 4151 } 4152 sqlite3WhereEnd(pWInfo); 4153 finalizeAggFunctions(pParse, &sAggInfo); 4154 pOrderBy = 0; 4155 if( pHaving ){ 4156 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4157 } 4158 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4159 pDest, addrEnd, addrEnd); 4160 4161 sqlite3ExprListDelete(pDel); 4162 } 4163 sqlite3VdbeResolveLabel(v, addrEnd); 4164 4165 } /* endif aggregate query */ 4166 4167 /* If there is an ORDER BY clause, then we need to sort the results 4168 ** and send them to the callback one by one. 4169 */ 4170 if( pOrderBy ){ 4171 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4172 } 4173 4174 #ifndef SQLITE_OMIT_SUBQUERY 4175 /* If this was a subquery, we have now converted the subquery into a 4176 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 4177 ** this subquery from being evaluated again and to force the use of 4178 ** the temporary table. 4179 */ 4180 if( pParent ){ 4181 assert( pParent->pSrc->nSrc>parentTab ); 4182 assert( pParent->pSrc->a[parentTab].pSelect==p ); 4183 pParent->pSrc->a[parentTab].isPopulated = 1; 4184 } 4185 #endif 4186 4187 /* Jump here to skip this query 4188 */ 4189 sqlite3VdbeResolveLabel(v, iEnd); 4190 4191 /* The SELECT was successfully coded. Set the return code to 0 4192 ** to indicate no errors. 4193 */ 4194 rc = 0; 4195 4196 /* Control jumps to here if an error is encountered above, or upon 4197 ** successful coding of the SELECT. 4198 */ 4199 select_end: 4200 4201 /* Identify column names if we will be using them in a callback. This 4202 ** step is skipped if the output is going to some other destination. 4203 */ 4204 if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){ 4205 generateColumnNames(pParse, pTabList, pEList); 4206 } 4207 4208 sqlite3_free(sAggInfo.aCol); 4209 sqlite3_free(sAggInfo.aFunc); 4210 return rc; 4211 } 4212 4213 #if defined(SQLITE_DEBUG) 4214 /* 4215 ******************************************************************************* 4216 ** The following code is used for testing and debugging only. The code 4217 ** that follows does not appear in normal builds. 4218 ** 4219 ** These routines are used to print out the content of all or part of a 4220 ** parse structures such as Select or Expr. Such printouts are useful 4221 ** for helping to understand what is happening inside the code generator 4222 ** during the execution of complex SELECT statements. 4223 ** 4224 ** These routine are not called anywhere from within the normal 4225 ** code base. Then are intended to be called from within the debugger 4226 ** or from temporary "printf" statements inserted for debugging. 4227 */ 4228 void sqlite3PrintExpr(Expr *p){ 4229 if( p->token.z && p->token.n>0 ){ 4230 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 4231 }else{ 4232 sqlite3DebugPrintf("(%d", p->op); 4233 } 4234 if( p->pLeft ){ 4235 sqlite3DebugPrintf(" "); 4236 sqlite3PrintExpr(p->pLeft); 4237 } 4238 if( p->pRight ){ 4239 sqlite3DebugPrintf(" "); 4240 sqlite3PrintExpr(p->pRight); 4241 } 4242 sqlite3DebugPrintf(")"); 4243 } 4244 void sqlite3PrintExprList(ExprList *pList){ 4245 int i; 4246 for(i=0; i<pList->nExpr; i++){ 4247 sqlite3PrintExpr(pList->a[i].pExpr); 4248 if( i<pList->nExpr-1 ){ 4249 sqlite3DebugPrintf(", "); 4250 } 4251 } 4252 } 4253 void sqlite3PrintSelect(Select *p, int indent){ 4254 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4255 sqlite3PrintExprList(p->pEList); 4256 sqlite3DebugPrintf("\n"); 4257 if( p->pSrc ){ 4258 char *zPrefix; 4259 int i; 4260 zPrefix = "FROM"; 4261 for(i=0; i<p->pSrc->nSrc; i++){ 4262 struct SrcList_item *pItem = &p->pSrc->a[i]; 4263 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4264 zPrefix = ""; 4265 if( pItem->pSelect ){ 4266 sqlite3DebugPrintf("(\n"); 4267 sqlite3PrintSelect(pItem->pSelect, indent+10); 4268 sqlite3DebugPrintf("%*s)", indent+8, ""); 4269 }else if( pItem->zName ){ 4270 sqlite3DebugPrintf("%s", pItem->zName); 4271 } 4272 if( pItem->pTab ){ 4273 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4274 } 4275 if( pItem->zAlias ){ 4276 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4277 } 4278 if( i<p->pSrc->nSrc-1 ){ 4279 sqlite3DebugPrintf(","); 4280 } 4281 sqlite3DebugPrintf("\n"); 4282 } 4283 } 4284 if( p->pWhere ){ 4285 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4286 sqlite3PrintExpr(p->pWhere); 4287 sqlite3DebugPrintf("\n"); 4288 } 4289 if( p->pGroupBy ){ 4290 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4291 sqlite3PrintExprList(p->pGroupBy); 4292 sqlite3DebugPrintf("\n"); 4293 } 4294 if( p->pHaving ){ 4295 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4296 sqlite3PrintExpr(p->pHaving); 4297 sqlite3DebugPrintf("\n"); 4298 } 4299 if( p->pOrderBy ){ 4300 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4301 sqlite3PrintExprList(p->pOrderBy); 4302 sqlite3DebugPrintf("\n"); 4303 } 4304 } 4305 /* End of the structure debug printing code 4306 *****************************************************************************/ 4307 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4308