xref: /sqlite-3.40.0/src/select.c (revision 4249b3f5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.458 2008/07/22 05:00:56 shane Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 /*
37 ** Initialize a SelectDest structure.
38 */
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
40   pDest->eDest = eDest;
41   pDest->iParm = iParm;
42   pDest->affinity = 0;
43   pDest->iMem = 0;
44   pDest->nMem = 0;
45 }
46 
47 
48 /*
49 ** Allocate a new Select structure and return a pointer to that
50 ** structure.
51 */
52 Select *sqlite3SelectNew(
53   Parse *pParse,        /* Parsing context */
54   ExprList *pEList,     /* which columns to include in the result */
55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
56   Expr *pWhere,         /* the WHERE clause */
57   ExprList *pGroupBy,   /* the GROUP BY clause */
58   Expr *pHaving,        /* the HAVING clause */
59   ExprList *pOrderBy,   /* the ORDER BY clause */
60   int isDistinct,       /* true if the DISTINCT keyword is present */
61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
63 ){
64   Select *pNew;
65   Select standin;
66   sqlite3 *db = pParse->db;
67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
68   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
69   if( pNew==0 ){
70     pNew = &standin;
71     memset(pNew, 0, sizeof(*pNew));
72   }
73   if( pEList==0 ){
74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
75   }
76   pNew->pEList = pEList;
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->isDistinct = isDistinct;
83   pNew->op = TK_SELECT;
84   assert( pOffset==0 || pLimit!=0 );
85   pNew->pLimit = pLimit;
86   pNew->pOffset = pOffset;
87   pNew->addrOpenEphm[0] = -1;
88   pNew->addrOpenEphm[1] = -1;
89   pNew->addrOpenEphm[2] = -1;
90   if( pNew==&standin) {
91     clearSelect(pNew);
92     pNew = 0;
93   }
94   return pNew;
95 }
96 
97 /*
98 ** Delete the given Select structure and all of its substructures.
99 */
100 void sqlite3SelectDelete(Select *p){
101   if( p ){
102     clearSelect(p);
103     sqlite3_free(p);
104   }
105 }
106 
107 /*
108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
109 ** type of join.  Return an integer constant that expresses that type
110 ** in terms of the following bit values:
111 **
112 **     JT_INNER
113 **     JT_CROSS
114 **     JT_OUTER
115 **     JT_NATURAL
116 **     JT_LEFT
117 **     JT_RIGHT
118 **
119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
120 **
121 ** If an illegal or unsupported join type is seen, then still return
122 ** a join type, but put an error in the pParse structure.
123 */
124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
125   int jointype = 0;
126   Token *apAll[3];
127   Token *p;
128   static const struct {
129     const char zKeyword[8];
130     u8 nChar;
131     u8 code;
132   } keywords[] = {
133     { "natural", 7, JT_NATURAL },
134     { "left",    4, JT_LEFT|JT_OUTER },
135     { "right",   5, JT_RIGHT|JT_OUTER },
136     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
137     { "outer",   5, JT_OUTER },
138     { "inner",   5, JT_INNER },
139     { "cross",   5, JT_INNER|JT_CROSS },
140   };
141   int i, j;
142   apAll[0] = pA;
143   apAll[1] = pB;
144   apAll[2] = pC;
145   for(i=0; i<3 && apAll[i]; i++){
146     p = apAll[i];
147     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
148       if( p->n==keywords[j].nChar
149           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
150         jointype |= keywords[j].code;
151         break;
152       }
153     }
154     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
155       jointype |= JT_ERROR;
156       break;
157     }
158   }
159   if(
160      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
161      (jointype & JT_ERROR)!=0
162   ){
163     const char *zSp = " ";
164     assert( pB!=0 );
165     if( pC==0 ){ zSp++; }
166     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
167        "%T %T%s%T", pA, pB, zSp, pC);
168     jointype = JT_INNER;
169   }else if( jointype & JT_RIGHT ){
170     sqlite3ErrorMsg(pParse,
171       "RIGHT and FULL OUTER JOINs are not currently supported");
172     jointype = JT_INNER;
173   }
174   return jointype;
175 }
176 
177 /*
178 ** Return the index of a column in a table.  Return -1 if the column
179 ** is not contained in the table.
180 */
181 static int columnIndex(Table *pTab, const char *zCol){
182   int i;
183   for(i=0; i<pTab->nCol; i++){
184     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
185   }
186   return -1;
187 }
188 
189 /*
190 ** Set the value of a token to a '\000'-terminated string.
191 */
192 static void setToken(Token *p, const char *z){
193   p->z = (u8*)z;
194   p->n = z ? strlen(z) : 0;
195   p->dyn = 0;
196 }
197 
198 /*
199 ** Set the token to the double-quoted and escaped version of the string pointed
200 ** to by z. For example;
201 **
202 **    {a"bc}  ->  {"a""bc"}
203 */
204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
205 
206   /* Check if the string contains any " characters. If it does, then
207   ** this function will malloc space to create a quoted version of
208   ** the string in. Otherwise, save a call to sqlite3MPrintf() by
209   ** just copying the pointer to the string.
210   */
211   const char *z2 = z;
212   while( *z2 ){
213     if( *z2=='"' ) break;
214     z2++;
215   }
216 
217   if( *z2 ){
218     /* String contains " characters - copy and quote the string. */
219     p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
220     if( p->z ){
221       p->n = strlen((char *)p->z);
222       p->dyn = 1;
223     }
224   }else{
225     /* String contains no " characters - copy the pointer. */
226     p->z = (u8*)z;
227     p->n = (z2 - z);
228     p->dyn = 0;
229   }
230 }
231 
232 /*
233 ** Create an expression node for an identifier with the name of zName
234 */
235 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
236   Token dummy;
237   setToken(&dummy, zName);
238   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
239 }
240 
241 /*
242 ** Add a term to the WHERE expression in *ppExpr that requires the
243 ** zCol column to be equal in the two tables pTab1 and pTab2.
244 */
245 static void addWhereTerm(
246   Parse *pParse,           /* Parsing context */
247   const char *zCol,        /* Name of the column */
248   const Table *pTab1,      /* First table */
249   const char *zAlias1,     /* Alias for first table.  May be NULL */
250   const Table *pTab2,      /* Second table */
251   const char *zAlias2,     /* Alias for second table.  May be NULL */
252   int iRightJoinTable,     /* VDBE cursor for the right table */
253   Expr **ppExpr,           /* Add the equality term to this expression */
254   int isOuterJoin          /* True if dealing with an OUTER join */
255 ){
256   Expr *pE1a, *pE1b, *pE1c;
257   Expr *pE2a, *pE2b, *pE2c;
258   Expr *pE;
259 
260   pE1a = sqlite3CreateIdExpr(pParse, zCol);
261   pE2a = sqlite3CreateIdExpr(pParse, zCol);
262   if( zAlias1==0 ){
263     zAlias1 = pTab1->zName;
264   }
265   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
266   if( zAlias2==0 ){
267     zAlias2 = pTab2->zName;
268   }
269   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
270   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
271   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
272   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
273   if( pE && isOuterJoin ){
274     ExprSetProperty(pE, EP_FromJoin);
275     pE->iRightJoinTable = iRightJoinTable;
276   }
277   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
278 }
279 
280 /*
281 ** Set the EP_FromJoin property on all terms of the given expression.
282 ** And set the Expr.iRightJoinTable to iTable for every term in the
283 ** expression.
284 **
285 ** The EP_FromJoin property is used on terms of an expression to tell
286 ** the LEFT OUTER JOIN processing logic that this term is part of the
287 ** join restriction specified in the ON or USING clause and not a part
288 ** of the more general WHERE clause.  These terms are moved over to the
289 ** WHERE clause during join processing but we need to remember that they
290 ** originated in the ON or USING clause.
291 **
292 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
293 ** expression depends on table iRightJoinTable even if that table is not
294 ** explicitly mentioned in the expression.  That information is needed
295 ** for cases like this:
296 **
297 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
298 **
299 ** The where clause needs to defer the handling of the t1.x=5
300 ** term until after the t2 loop of the join.  In that way, a
301 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
302 ** defer the handling of t1.x=5, it will be processed immediately
303 ** after the t1 loop and rows with t1.x!=5 will never appear in
304 ** the output, which is incorrect.
305 */
306 static void setJoinExpr(Expr *p, int iTable){
307   while( p ){
308     ExprSetProperty(p, EP_FromJoin);
309     p->iRightJoinTable = iTable;
310     setJoinExpr(p->pLeft, iTable);
311     p = p->pRight;
312   }
313 }
314 
315 /*
316 ** This routine processes the join information for a SELECT statement.
317 ** ON and USING clauses are converted into extra terms of the WHERE clause.
318 ** NATURAL joins also create extra WHERE clause terms.
319 **
320 ** The terms of a FROM clause are contained in the Select.pSrc structure.
321 ** The left most table is the first entry in Select.pSrc.  The right-most
322 ** table is the last entry.  The join operator is held in the entry to
323 ** the left.  Thus entry 0 contains the join operator for the join between
324 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
325 ** also attached to the left entry.
326 **
327 ** This routine returns the number of errors encountered.
328 */
329 static int sqliteProcessJoin(Parse *pParse, Select *p){
330   SrcList *pSrc;                  /* All tables in the FROM clause */
331   int i, j;                       /* Loop counters */
332   struct SrcList_item *pLeft;     /* Left table being joined */
333   struct SrcList_item *pRight;    /* Right table being joined */
334 
335   pSrc = p->pSrc;
336   pLeft = &pSrc->a[0];
337   pRight = &pLeft[1];
338   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
339     Table *pLeftTab = pLeft->pTab;
340     Table *pRightTab = pRight->pTab;
341     int isOuter;
342 
343     if( pLeftTab==0 || pRightTab==0 ) continue;
344     isOuter = (pRight->jointype & JT_OUTER)!=0;
345 
346     /* When the NATURAL keyword is present, add WHERE clause terms for
347     ** every column that the two tables have in common.
348     */
349     if( pRight->jointype & JT_NATURAL ){
350       if( pRight->pOn || pRight->pUsing ){
351         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
352            "an ON or USING clause", 0);
353         return 1;
354       }
355       for(j=0; j<pLeftTab->nCol; j++){
356         char *zName = pLeftTab->aCol[j].zName;
357         if( columnIndex(pRightTab, zName)>=0 ){
358           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
359                               pRightTab, pRight->zAlias,
360                               pRight->iCursor, &p->pWhere, isOuter);
361 
362         }
363       }
364     }
365 
366     /* Disallow both ON and USING clauses in the same join
367     */
368     if( pRight->pOn && pRight->pUsing ){
369       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
370         "clauses in the same join");
371       return 1;
372     }
373 
374     /* Add the ON clause to the end of the WHERE clause, connected by
375     ** an AND operator.
376     */
377     if( pRight->pOn ){
378       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
379       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
380       pRight->pOn = 0;
381     }
382 
383     /* Create extra terms on the WHERE clause for each column named
384     ** in the USING clause.  Example: If the two tables to be joined are
385     ** A and B and the USING clause names X, Y, and Z, then add this
386     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
387     ** Report an error if any column mentioned in the USING clause is
388     ** not contained in both tables to be joined.
389     */
390     if( pRight->pUsing ){
391       IdList *pList = pRight->pUsing;
392       for(j=0; j<pList->nId; j++){
393         char *zName = pList->a[j].zName;
394         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
395           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
396             "not present in both tables", zName);
397           return 1;
398         }
399         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
400                             pRightTab, pRight->zAlias,
401                             pRight->iCursor, &p->pWhere, isOuter);
402       }
403     }
404   }
405   return 0;
406 }
407 
408 /*
409 ** Insert code into "v" that will push the record on the top of the
410 ** stack into the sorter.
411 */
412 static void pushOntoSorter(
413   Parse *pParse,         /* Parser context */
414   ExprList *pOrderBy,    /* The ORDER BY clause */
415   Select *pSelect,       /* The whole SELECT statement */
416   int regData            /* Register holding data to be sorted */
417 ){
418   Vdbe *v = pParse->pVdbe;
419   int nExpr = pOrderBy->nExpr;
420   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
421   int regRecord = sqlite3GetTempReg(pParse);
422   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
423   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
424   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
425   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
426   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
427   sqlite3ReleaseTempReg(pParse, regRecord);
428   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
429   if( pSelect->iLimit ){
430     int addr1, addr2;
431     int iLimit;
432     if( pSelect->iOffset ){
433       iLimit = pSelect->iOffset+1;
434     }else{
435       iLimit = pSelect->iLimit;
436     }
437     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
438     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
439     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
440     sqlite3VdbeJumpHere(v, addr1);
441     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
442     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
443     sqlite3VdbeJumpHere(v, addr2);
444     pSelect->iLimit = 0;
445   }
446 }
447 
448 /*
449 ** Add code to implement the OFFSET
450 */
451 static void codeOffset(
452   Vdbe *v,          /* Generate code into this VM */
453   Select *p,        /* The SELECT statement being coded */
454   int iContinue     /* Jump here to skip the current record */
455 ){
456   if( p->iOffset && iContinue!=0 ){
457     int addr;
458     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
459     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
460     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
461     VdbeComment((v, "skip OFFSET records"));
462     sqlite3VdbeJumpHere(v, addr);
463   }
464 }
465 
466 /*
467 ** Add code that will check to make sure the N registers starting at iMem
468 ** form a distinct entry.  iTab is a sorting index that holds previously
469 ** seen combinations of the N values.  A new entry is made in iTab
470 ** if the current N values are new.
471 **
472 ** A jump to addrRepeat is made and the N+1 values are popped from the
473 ** stack if the top N elements are not distinct.
474 */
475 static void codeDistinct(
476   Parse *pParse,     /* Parsing and code generating context */
477   int iTab,          /* A sorting index used to test for distinctness */
478   int addrRepeat,    /* Jump to here if not distinct */
479   int N,             /* Number of elements */
480   int iMem           /* First element */
481 ){
482   Vdbe *v;
483   int r1;
484 
485   v = pParse->pVdbe;
486   r1 = sqlite3GetTempReg(pParse);
487   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
488   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
489   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
490   sqlite3ReleaseTempReg(pParse, r1);
491 }
492 
493 /*
494 ** Generate an error message when a SELECT is used within a subexpression
495 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
496 ** column.  We do this in a subroutine because the error occurs in multiple
497 ** places.
498 */
499 static int checkForMultiColumnSelectError(
500   Parse *pParse,       /* Parse context. */
501   SelectDest *pDest,   /* Destination of SELECT results */
502   int nExpr            /* Number of result columns returned by SELECT */
503 ){
504   int eDest = pDest->eDest;
505   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
506     sqlite3ErrorMsg(pParse, "only a single result allowed for "
507        "a SELECT that is part of an expression");
508     return 1;
509   }else{
510     return 0;
511   }
512 }
513 
514 /*
515 ** This routine generates the code for the inside of the inner loop
516 ** of a SELECT.
517 **
518 ** If srcTab and nColumn are both zero, then the pEList expressions
519 ** are evaluated in order to get the data for this row.  If nColumn>0
520 ** then data is pulled from srcTab and pEList is used only to get the
521 ** datatypes for each column.
522 */
523 static void selectInnerLoop(
524   Parse *pParse,          /* The parser context */
525   Select *p,              /* The complete select statement being coded */
526   ExprList *pEList,       /* List of values being extracted */
527   int srcTab,             /* Pull data from this table */
528   int nColumn,            /* Number of columns in the source table */
529   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
530   int distinct,           /* If >=0, make sure results are distinct */
531   SelectDest *pDest,      /* How to dispose of the results */
532   int iContinue,          /* Jump here to continue with next row */
533   int iBreak              /* Jump here to break out of the inner loop */
534 ){
535   Vdbe *v = pParse->pVdbe;
536   int i;
537   int hasDistinct;        /* True if the DISTINCT keyword is present */
538   int regResult;              /* Start of memory holding result set */
539   int eDest = pDest->eDest;   /* How to dispose of results */
540   int iParm = pDest->iParm;   /* First argument to disposal method */
541   int nResultCol;             /* Number of result columns */
542 
543   if( v==0 ) return;
544   assert( pEList!=0 );
545   hasDistinct = distinct>=0;
546   if( pOrderBy==0 && !hasDistinct ){
547     codeOffset(v, p, iContinue);
548   }
549 
550   /* Pull the requested columns.
551   */
552   if( nColumn>0 ){
553     nResultCol = nColumn;
554   }else{
555     nResultCol = pEList->nExpr;
556   }
557   if( pDest->iMem==0 ){
558     pDest->iMem = pParse->nMem+1;
559     pDest->nMem = nResultCol;
560     pParse->nMem += nResultCol;
561   }else if( pDest->nMem!=nResultCol ){
562     /* This happens when two SELECTs of a compound SELECT have differing
563     ** numbers of result columns.  The error message will be generated by
564     ** a higher-level routine. */
565     return;
566   }
567   regResult = pDest->iMem;
568   if( nColumn>0 ){
569     for(i=0; i<nColumn; i++){
570       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
571     }
572   }else if( eDest!=SRT_Exists ){
573     /* If the destination is an EXISTS(...) expression, the actual
574     ** values returned by the SELECT are not required.
575     */
576     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback);
577   }
578   nColumn = nResultCol;
579 
580   /* If the DISTINCT keyword was present on the SELECT statement
581   ** and this row has been seen before, then do not make this row
582   ** part of the result.
583   */
584   if( hasDistinct ){
585     assert( pEList!=0 );
586     assert( pEList->nExpr==nColumn );
587     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
588     if( pOrderBy==0 ){
589       codeOffset(v, p, iContinue);
590     }
591   }
592 
593   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
594     return;
595   }
596 
597   switch( eDest ){
598     /* In this mode, write each query result to the key of the temporary
599     ** table iParm.
600     */
601 #ifndef SQLITE_OMIT_COMPOUND_SELECT
602     case SRT_Union: {
603       int r1;
604       r1 = sqlite3GetTempReg(pParse);
605       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
606       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
607       sqlite3ReleaseTempReg(pParse, r1);
608       break;
609     }
610 
611     /* Construct a record from the query result, but instead of
612     ** saving that record, use it as a key to delete elements from
613     ** the temporary table iParm.
614     */
615     case SRT_Except: {
616       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
617       break;
618     }
619 #endif
620 
621     /* Store the result as data using a unique key.
622     */
623     case SRT_Table:
624     case SRT_EphemTab: {
625       int r1 = sqlite3GetTempReg(pParse);
626       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
627       if( pOrderBy ){
628         pushOntoSorter(pParse, pOrderBy, p, r1);
629       }else{
630         int r2 = sqlite3GetTempReg(pParse);
631         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
632         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
633         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
634         sqlite3ReleaseTempReg(pParse, r2);
635       }
636       sqlite3ReleaseTempReg(pParse, r1);
637       break;
638     }
639 
640 #ifndef SQLITE_OMIT_SUBQUERY
641     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
642     ** then there should be a single item on the stack.  Write this
643     ** item into the set table with bogus data.
644     */
645     case SRT_Set: {
646       assert( nColumn==1 );
647       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
648       if( pOrderBy ){
649         /* At first glance you would think we could optimize out the
650         ** ORDER BY in this case since the order of entries in the set
651         ** does not matter.  But there might be a LIMIT clause, in which
652         ** case the order does matter */
653         pushOntoSorter(pParse, pOrderBy, p, regResult);
654       }else{
655         int r1 = sqlite3GetTempReg(pParse);
656         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
657         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
658         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
659         sqlite3ReleaseTempReg(pParse, r1);
660       }
661       break;
662     }
663 
664     /* If any row exist in the result set, record that fact and abort.
665     */
666     case SRT_Exists: {
667       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
668       /* The LIMIT clause will terminate the loop for us */
669       break;
670     }
671 
672     /* If this is a scalar select that is part of an expression, then
673     ** store the results in the appropriate memory cell and break out
674     ** of the scan loop.
675     */
676     case SRT_Mem: {
677       assert( nColumn==1 );
678       if( pOrderBy ){
679         pushOntoSorter(pParse, pOrderBy, p, regResult);
680       }else{
681         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
682         /* The LIMIT clause will jump out of the loop for us */
683       }
684       break;
685     }
686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
687 
688     /* Send the data to the callback function or to a subroutine.  In the
689     ** case of a subroutine, the subroutine itself is responsible for
690     ** popping the data from the stack.
691     */
692     case SRT_Coroutine:
693     case SRT_Callback: {
694       if( pOrderBy ){
695         int r1 = sqlite3GetTempReg(pParse);
696         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
697         pushOntoSorter(pParse, pOrderBy, p, r1);
698         sqlite3ReleaseTempReg(pParse, r1);
699       }else if( eDest==SRT_Coroutine ){
700         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
701       }else{
702         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
703         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
704       }
705       break;
706     }
707 
708 #if !defined(SQLITE_OMIT_TRIGGER)
709     /* Discard the results.  This is used for SELECT statements inside
710     ** the body of a TRIGGER.  The purpose of such selects is to call
711     ** user-defined functions that have side effects.  We do not care
712     ** about the actual results of the select.
713     */
714     default: {
715       assert( eDest==SRT_Discard );
716       break;
717     }
718 #endif
719   }
720 
721   /* Jump to the end of the loop if the LIMIT is reached.
722   */
723   if( p->iLimit ){
724     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
725                             ** pushOntoSorter() would have cleared p->iLimit */
726     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
727     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
728   }
729 }
730 
731 /*
732 ** Given an expression list, generate a KeyInfo structure that records
733 ** the collating sequence for each expression in that expression list.
734 **
735 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
736 ** KeyInfo structure is appropriate for initializing a virtual index to
737 ** implement that clause.  If the ExprList is the result set of a SELECT
738 ** then the KeyInfo structure is appropriate for initializing a virtual
739 ** index to implement a DISTINCT test.
740 **
741 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
742 ** function is responsible for seeing that this structure is eventually
743 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
744 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
745 */
746 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
747   sqlite3 *db = pParse->db;
748   int nExpr;
749   KeyInfo *pInfo;
750   struct ExprList_item *pItem;
751   int i;
752 
753   nExpr = pList->nExpr;
754   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
755   if( pInfo ){
756     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
757     pInfo->nField = nExpr;
758     pInfo->enc = ENC(db);
759     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
760       CollSeq *pColl;
761       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
762       if( !pColl ){
763         pColl = db->pDfltColl;
764       }
765       pInfo->aColl[i] = pColl;
766       pInfo->aSortOrder[i] = pItem->sortOrder;
767     }
768   }
769   return pInfo;
770 }
771 
772 
773 /*
774 ** If the inner loop was generated using a non-null pOrderBy argument,
775 ** then the results were placed in a sorter.  After the loop is terminated
776 ** we need to run the sorter and output the results.  The following
777 ** routine generates the code needed to do that.
778 */
779 static void generateSortTail(
780   Parse *pParse,    /* Parsing context */
781   Select *p,        /* The SELECT statement */
782   Vdbe *v,          /* Generate code into this VDBE */
783   int nColumn,      /* Number of columns of data */
784   SelectDest *pDest /* Write the sorted results here */
785 ){
786   int brk = sqlite3VdbeMakeLabel(v);
787   int cont = sqlite3VdbeMakeLabel(v);
788   int addr;
789   int iTab;
790   int pseudoTab = 0;
791   ExprList *pOrderBy = p->pOrderBy;
792 
793   int eDest = pDest->eDest;
794   int iParm = pDest->iParm;
795 
796   int regRow;
797   int regRowid;
798 
799   iTab = pOrderBy->iECursor;
800   if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
801     pseudoTab = pParse->nTab++;
802     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
803     sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback);
804   }
805   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
806   codeOffset(v, p, cont);
807   regRow = sqlite3GetTempReg(pParse);
808   regRowid = sqlite3GetTempReg(pParse);
809   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
810   switch( eDest ){
811     case SRT_Table:
812     case SRT_EphemTab: {
813       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
814       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
815       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
816       break;
817     }
818 #ifndef SQLITE_OMIT_SUBQUERY
819     case SRT_Set: {
820       assert( nColumn==1 );
821       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
822       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
823       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
824       break;
825     }
826     case SRT_Mem: {
827       assert( nColumn==1 );
828       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
829       /* The LIMIT clause will terminate the loop for us */
830       break;
831     }
832 #endif
833     case SRT_Callback:
834     case SRT_Coroutine: {
835       int i;
836       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
837       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
838       for(i=0; i<nColumn; i++){
839         assert( regRow!=pDest->iMem+i );
840         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
841       }
842       if( eDest==SRT_Callback ){
843         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
844         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
845       }else{
846         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
847       }
848       break;
849     }
850     default: {
851       /* Do nothing */
852       break;
853     }
854   }
855   sqlite3ReleaseTempReg(pParse, regRow);
856   sqlite3ReleaseTempReg(pParse, regRowid);
857 
858   /* LIMIT has been implemented by the pushOntoSorter() routine.
859   */
860   assert( p->iLimit==0 );
861 
862   /* The bottom of the loop
863   */
864   sqlite3VdbeResolveLabel(v, cont);
865   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
866   sqlite3VdbeResolveLabel(v, brk);
867   if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
868     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
869   }
870 
871 }
872 
873 /*
874 ** Return a pointer to a string containing the 'declaration type' of the
875 ** expression pExpr. The string may be treated as static by the caller.
876 **
877 ** The declaration type is the exact datatype definition extracted from the
878 ** original CREATE TABLE statement if the expression is a column. The
879 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
880 ** is considered a column can be complex in the presence of subqueries. The
881 ** result-set expression in all of the following SELECT statements is
882 ** considered a column by this function.
883 **
884 **   SELECT col FROM tbl;
885 **   SELECT (SELECT col FROM tbl;
886 **   SELECT (SELECT col FROM tbl);
887 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
888 **
889 ** The declaration type for any expression other than a column is NULL.
890 */
891 static const char *columnType(
892   NameContext *pNC,
893   Expr *pExpr,
894   const char **pzOriginDb,
895   const char **pzOriginTab,
896   const char **pzOriginCol
897 ){
898   char const *zType = 0;
899   char const *zOriginDb = 0;
900   char const *zOriginTab = 0;
901   char const *zOriginCol = 0;
902   int j;
903   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
904 
905   switch( pExpr->op ){
906     case TK_AGG_COLUMN:
907     case TK_COLUMN: {
908       /* The expression is a column. Locate the table the column is being
909       ** extracted from in NameContext.pSrcList. This table may be real
910       ** database table or a subquery.
911       */
912       Table *pTab = 0;            /* Table structure column is extracted from */
913       Select *pS = 0;             /* Select the column is extracted from */
914       int iCol = pExpr->iColumn;  /* Index of column in pTab */
915       while( pNC && !pTab ){
916         SrcList *pTabList = pNC->pSrcList;
917         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
918         if( j<pTabList->nSrc ){
919           pTab = pTabList->a[j].pTab;
920           pS = pTabList->a[j].pSelect;
921         }else{
922           pNC = pNC->pNext;
923         }
924       }
925 
926       if( pTab==0 ){
927         /* FIX ME:
928         ** This can occurs if you have something like "SELECT new.x;" inside
929         ** a trigger.  In other words, if you reference the special "new"
930         ** table in the result set of a select.  We do not have a good way
931         ** to find the actual table type, so call it "TEXT".  This is really
932         ** something of a bug, but I do not know how to fix it.
933         **
934         ** This code does not produce the correct answer - it just prevents
935         ** a segfault.  See ticket #1229.
936         */
937         zType = "TEXT";
938         break;
939       }
940 
941       assert( pTab );
942       if( pS ){
943         /* The "table" is actually a sub-select or a view in the FROM clause
944         ** of the SELECT statement. Return the declaration type and origin
945         ** data for the result-set column of the sub-select.
946         */
947         if( iCol>=0 && iCol<pS->pEList->nExpr ){
948           /* If iCol is less than zero, then the expression requests the
949           ** rowid of the sub-select or view. This expression is legal (see
950           ** test case misc2.2.2) - it always evaluates to NULL.
951           */
952           NameContext sNC;
953           Expr *p = pS->pEList->a[iCol].pExpr;
954           sNC.pSrcList = pS->pSrc;
955           sNC.pNext = 0;
956           sNC.pParse = pNC->pParse;
957           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
958         }
959       }else if( pTab->pSchema ){
960         /* A real table */
961         assert( !pS );
962         if( iCol<0 ) iCol = pTab->iPKey;
963         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
964         if( iCol<0 ){
965           zType = "INTEGER";
966           zOriginCol = "rowid";
967         }else{
968           zType = pTab->aCol[iCol].zType;
969           zOriginCol = pTab->aCol[iCol].zName;
970         }
971         zOriginTab = pTab->zName;
972         if( pNC->pParse ){
973           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
974           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
975         }
976       }
977       break;
978     }
979 #ifndef SQLITE_OMIT_SUBQUERY
980     case TK_SELECT: {
981       /* The expression is a sub-select. Return the declaration type and
982       ** origin info for the single column in the result set of the SELECT
983       ** statement.
984       */
985       NameContext sNC;
986       Select *pS = pExpr->pSelect;
987       Expr *p = pS->pEList->a[0].pExpr;
988       sNC.pSrcList = pS->pSrc;
989       sNC.pNext = pNC;
990       sNC.pParse = pNC->pParse;
991       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
992       break;
993     }
994 #endif
995   }
996 
997   if( pzOriginDb ){
998     assert( pzOriginTab && pzOriginCol );
999     *pzOriginDb = zOriginDb;
1000     *pzOriginTab = zOriginTab;
1001     *pzOriginCol = zOriginCol;
1002   }
1003   return zType;
1004 }
1005 
1006 /*
1007 ** Generate code that will tell the VDBE the declaration types of columns
1008 ** in the result set.
1009 */
1010 static void generateColumnTypes(
1011   Parse *pParse,      /* Parser context */
1012   SrcList *pTabList,  /* List of tables */
1013   ExprList *pEList    /* Expressions defining the result set */
1014 ){
1015 #ifndef SQLITE_OMIT_DECLTYPE
1016   Vdbe *v = pParse->pVdbe;
1017   int i;
1018   NameContext sNC;
1019   sNC.pSrcList = pTabList;
1020   sNC.pParse = pParse;
1021   for(i=0; i<pEList->nExpr; i++){
1022     Expr *p = pEList->a[i].pExpr;
1023     const char *zType;
1024 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1025     const char *zOrigDb = 0;
1026     const char *zOrigTab = 0;
1027     const char *zOrigCol = 0;
1028     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1029 
1030     /* The vdbe must make its own copy of the column-type and other
1031     ** column specific strings, in case the schema is reset before this
1032     ** virtual machine is deleted.
1033     */
1034     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
1035     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
1036     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
1037 #else
1038     zType = columnType(&sNC, p, 0, 0, 0);
1039 #endif
1040     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
1041   }
1042 #endif /* SQLITE_OMIT_DECLTYPE */
1043 }
1044 
1045 /*
1046 ** Generate code that will tell the VDBE the names of columns
1047 ** in the result set.  This information is used to provide the
1048 ** azCol[] values in the callback.
1049 */
1050 static void generateColumnNames(
1051   Parse *pParse,      /* Parser context */
1052   SrcList *pTabList,  /* List of tables */
1053   ExprList *pEList    /* Expressions defining the result set */
1054 ){
1055   Vdbe *v = pParse->pVdbe;
1056   int i, j;
1057   sqlite3 *db = pParse->db;
1058   int fullNames, shortNames;
1059 
1060 #ifndef SQLITE_OMIT_EXPLAIN
1061   /* If this is an EXPLAIN, skip this step */
1062   if( pParse->explain ){
1063     return;
1064   }
1065 #endif
1066 
1067   assert( v!=0 );
1068   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
1069   pParse->colNamesSet = 1;
1070   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1071   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1072   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1073   for(i=0; i<pEList->nExpr; i++){
1074     Expr *p;
1075     p = pEList->a[i].pExpr;
1076     if( p==0 ) continue;
1077     if( pEList->a[i].zName ){
1078       char *zName = pEList->a[i].zName;
1079       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
1080     }else if( p->op==TK_COLUMN && pTabList ){
1081       Table *pTab;
1082       char *zCol;
1083       int iCol = p->iColumn;
1084       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1085       assert( j<pTabList->nSrc );
1086       pTab = pTabList->a[j].pTab;
1087       if( iCol<0 ) iCol = pTab->iPKey;
1088       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1089       if( iCol<0 ){
1090         zCol = "rowid";
1091       }else{
1092         zCol = pTab->aCol[iCol].zName;
1093       }
1094       if( !shortNames && !fullNames ){
1095         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1096       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1097         char *zName = 0;
1098         char *zTab;
1099 
1100         zTab = pTabList->a[j].zAlias;
1101         if( fullNames || zTab==0 ) zTab = pTab->zName;
1102         zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
1103         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
1104       }else{
1105         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1106       }
1107     }else{
1108       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1109     }
1110   }
1111   generateColumnTypes(pParse, pTabList, pEList);
1112 }
1113 
1114 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1115 /*
1116 ** Name of the connection operator, used for error messages.
1117 */
1118 static const char *selectOpName(int id){
1119   char *z;
1120   switch( id ){
1121     case TK_ALL:       z = "UNION ALL";   break;
1122     case TK_INTERSECT: z = "INTERSECT";   break;
1123     case TK_EXCEPT:    z = "EXCEPT";      break;
1124     default:           z = "UNION";       break;
1125   }
1126   return z;
1127 }
1128 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1129 
1130 /*
1131 ** Forward declaration
1132 */
1133 static int prepSelectStmt(Parse*, Select*);
1134 
1135 /*
1136 ** Given a SELECT statement, generate a Table structure that describes
1137 ** the result set of that SELECT.
1138 */
1139 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1140   Table *pTab;
1141   int i, j, rc;
1142   ExprList *pEList;
1143   Column *aCol, *pCol;
1144   sqlite3 *db = pParse->db;
1145   int savedFlags;
1146 
1147   savedFlags = db->flags;
1148   db->flags &= ~SQLITE_FullColNames;
1149   db->flags |= SQLITE_ShortColNames;
1150   rc = sqlite3SelectResolve(pParse, pSelect, 0);
1151   if( rc==SQLITE_OK ){
1152     while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1153     rc = prepSelectStmt(pParse, pSelect);
1154     if( rc==SQLITE_OK ){
1155       rc = sqlite3SelectResolve(pParse, pSelect, 0);
1156     }
1157   }
1158   db->flags = savedFlags;
1159   if( rc ){
1160     return 0;
1161   }
1162   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1163   if( pTab==0 ){
1164     return 0;
1165   }
1166   pTab->nRef = 1;
1167   pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
1168   pEList = pSelect->pEList;
1169   pTab->nCol = pEList->nExpr;
1170   assert( pTab->nCol>0 );
1171   pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
1172   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1173     Expr *p;
1174     char *zType;
1175     char *zName;
1176     int nName;
1177     CollSeq *pColl;
1178     int cnt;
1179     NameContext sNC;
1180 
1181     /* Get an appropriate name for the column
1182     */
1183     p = pEList->a[i].pExpr;
1184     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1185     if( (zName = pEList->a[i].zName)!=0 ){
1186       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1187       zName = sqlite3DbStrDup(db, zName);
1188     }else if( p->op==TK_COLUMN && p->pTab ){
1189       /* For columns use the column name name */
1190       int iCol = p->iColumn;
1191       if( iCol<0 ) iCol = p->pTab->iPKey;
1192       zName = sqlite3MPrintf(db, "%s", p->pTab->aCol[iCol].zName);
1193     }else{
1194       /* Use the original text of the column expression as its name */
1195       zName = sqlite3MPrintf(db, "%T", &p->span);
1196     }
1197     if( !zName || db->mallocFailed ){
1198       db->mallocFailed = 1;
1199       sqlite3_free(zName);
1200       sqlite3DeleteTable(pTab);
1201       return 0;
1202     }
1203     sqlite3Dequote(zName);
1204 
1205     /* Make sure the column name is unique.  If the name is not unique,
1206     ** append a integer to the name so that it becomes unique.
1207     */
1208     nName = strlen(zName);
1209     for(j=cnt=0; j<i; j++){
1210       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1211         zName[nName] = 0;
1212         zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
1213         j = -1;
1214         if( zName==0 ) break;
1215       }
1216     }
1217     pCol->zName = zName;
1218 
1219     /* Get the typename, type affinity, and collating sequence for the
1220     ** column.
1221     */
1222     memset(&sNC, 0, sizeof(sNC));
1223     sNC.pSrcList = pSelect->pSrc;
1224     zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1225     pCol->zType = zType;
1226     pCol->affinity = sqlite3ExprAffinity(p);
1227     pColl = sqlite3ExprCollSeq(pParse, p);
1228     if( pColl ){
1229       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1230     }
1231   }
1232   pTab->iPKey = -1;
1233   return pTab;
1234 }
1235 
1236 /*
1237 ** Prepare a SELECT statement for processing by doing the following
1238 ** things:
1239 **
1240 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1241 **         element of the FROM clause.
1242 **
1243 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1244 **         defines FROM clause.  When views appear in the FROM clause,
1245 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1246 **         that implements the view.  A copy is made of the view's SELECT
1247 **         statement so that we can freely modify or delete that statement
1248 **         without worrying about messing up the presistent representation
1249 **         of the view.
1250 **
1251 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1252 **         on joins and the ON and USING clause of joins.
1253 **
1254 **    (4)  Scan the list of columns in the result set (pEList) looking
1255 **         for instances of the "*" operator or the TABLE.* operator.
1256 **         If found, expand each "*" to be every column in every table
1257 **         and TABLE.* to be every column in TABLE.
1258 **
1259 ** Return 0 on success.  If there are problems, leave an error message
1260 ** in pParse and return non-zero.
1261 */
1262 static int prepSelectStmt(Parse *pParse, Select *p){
1263   int i, j, k, rc;
1264   SrcList *pTabList;
1265   ExprList *pEList;
1266   struct SrcList_item *pFrom;
1267   sqlite3 *db = pParse->db;
1268 
1269   if( p==0 || p->pSrc==0 || db->mallocFailed ){
1270     return 1;
1271   }
1272   pTabList = p->pSrc;
1273   pEList = p->pEList;
1274 
1275   /* Make sure cursor numbers have been assigned to all entries in
1276   ** the FROM clause of the SELECT statement.
1277   */
1278   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1279 
1280   /* Look up every table named in the FROM clause of the select.  If
1281   ** an entry of the FROM clause is a subquery instead of a table or view,
1282   ** then create a transient table structure to describe the subquery.
1283   */
1284   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1285     Table *pTab;
1286     if( pFrom->pTab!=0 ){
1287       /* This statement has already been prepared.  There is no need
1288       ** to go further. */
1289       assert( i==0 );
1290       return 0;
1291     }
1292     if( pFrom->zName==0 ){
1293 #ifndef SQLITE_OMIT_SUBQUERY
1294       /* A sub-query in the FROM clause of a SELECT */
1295       assert( pFrom->pSelect!=0 );
1296       if( pFrom->zAlias==0 ){
1297         pFrom->zAlias =
1298           sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
1299       }
1300       assert( pFrom->pTab==0 );
1301       pFrom->pTab = pTab =
1302         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1303       if( pTab==0 ){
1304         return 1;
1305       }
1306       /* The isEphem flag indicates that the Table structure has been
1307       ** dynamically allocated and may be freed at any time.  In other words,
1308       ** pTab is not pointing to a persistent table structure that defines
1309       ** part of the schema. */
1310       pTab->isEphem = 1;
1311 #endif
1312     }else{
1313       /* An ordinary table or view name in the FROM clause */
1314       assert( pFrom->pTab==0 );
1315       pFrom->pTab = pTab =
1316         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
1317       if( pTab==0 ){
1318         return 1;
1319       }
1320       pTab->nRef++;
1321 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1322       if( pTab->pSelect || IsVirtual(pTab) ){
1323         /* We reach here if the named table is a really a view */
1324         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1325           return 1;
1326         }
1327         /* If pFrom->pSelect!=0 it means we are dealing with a
1328         ** view within a view.  The SELECT structure has already been
1329         ** copied by the outer view so we can skip the copy step here
1330         ** in the inner view.
1331         */
1332         if( pFrom->pSelect==0 ){
1333           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
1334         }
1335       }
1336 #endif
1337     }
1338   }
1339 
1340   /* Process NATURAL keywords, and ON and USING clauses of joins.
1341   */
1342   if( sqliteProcessJoin(pParse, p) ) return 1;
1343 
1344   /* For every "*" that occurs in the column list, insert the names of
1345   ** all columns in all tables.  And for every TABLE.* insert the names
1346   ** of all columns in TABLE.  The parser inserted a special expression
1347   ** with the TK_ALL operator for each "*" that it found in the column list.
1348   ** The following code just has to locate the TK_ALL expressions and expand
1349   ** each one to the list of all columns in all tables.
1350   **
1351   ** The first loop just checks to see if there are any "*" operators
1352   ** that need expanding.
1353   */
1354   for(k=0; k<pEList->nExpr; k++){
1355     Expr *pE = pEList->a[k].pExpr;
1356     if( pE->op==TK_ALL ) break;
1357     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1358          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1359   }
1360   rc = 0;
1361   if( k<pEList->nExpr ){
1362     /*
1363     ** If we get here it means the result set contains one or more "*"
1364     ** operators that need to be expanded.  Loop through each expression
1365     ** in the result set and expand them one by one.
1366     */
1367     struct ExprList_item *a = pEList->a;
1368     ExprList *pNew = 0;
1369     int flags = pParse->db->flags;
1370     int longNames = (flags & SQLITE_FullColNames)!=0
1371                       && (flags & SQLITE_ShortColNames)==0;
1372 
1373     for(k=0; k<pEList->nExpr; k++){
1374       Expr *pE = a[k].pExpr;
1375       if( pE->op!=TK_ALL &&
1376            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1377         /* This particular expression does not need to be expanded.
1378         */
1379         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
1380         if( pNew ){
1381           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1382         }else{
1383           rc = 1;
1384         }
1385         a[k].pExpr = 0;
1386         a[k].zName = 0;
1387       }else{
1388         /* This expression is a "*" or a "TABLE.*" and needs to be
1389         ** expanded. */
1390         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1391         char *zTName;            /* text of name of TABLE */
1392         if( pE->op==TK_DOT && pE->pLeft ){
1393           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
1394         }else{
1395           zTName = 0;
1396         }
1397         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1398           Table *pTab = pFrom->pTab;
1399           char *zTabName = pFrom->zAlias;
1400           if( zTabName==0 || zTabName[0]==0 ){
1401             zTabName = pTab->zName;
1402           }
1403           assert( zTabName );
1404           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
1405             continue;
1406           }
1407           tableSeen = 1;
1408           for(j=0; j<pTab->nCol; j++){
1409             Expr *pExpr, *pRight;
1410             char *zName = pTab->aCol[j].zName;
1411 
1412             /* If a column is marked as 'hidden' (currently only possible
1413             ** for virtual tables), do not include it in the expanded
1414             ** result-set list.
1415             */
1416             if( IsHiddenColumn(&pTab->aCol[j]) ){
1417               assert(IsVirtual(pTab));
1418               continue;
1419             }
1420 
1421             if( i>0 ){
1422               struct SrcList_item *pLeft = &pTabList->a[i-1];
1423               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1424                         columnIndex(pLeft->pTab, zName)>=0 ){
1425                 /* In a NATURAL join, omit the join columns from the
1426                 ** table on the right */
1427                 continue;
1428               }
1429               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1430                 /* In a join with a USING clause, omit columns in the
1431                 ** using clause from the table on the right. */
1432                 continue;
1433               }
1434             }
1435             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
1436             if( pRight==0 ) break;
1437             setQuotedToken(pParse, &pRight->token, zName);
1438             if( longNames || pTabList->nSrc>1 ){
1439               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
1440               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
1441               if( pExpr==0 ) break;
1442               setQuotedToken(pParse, &pLeft->token, zTabName);
1443 #if 1
1444               setToken(&pExpr->span,
1445                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
1446               pExpr->span.dyn = 1;
1447 #else
1448               pExpr->span = pRight->token;
1449               pExpr->span.dyn = 0;
1450 #endif
1451               pExpr->token.z = 0;
1452               pExpr->token.n = 0;
1453               pExpr->token.dyn = 0;
1454             }else{
1455               pExpr = pRight;
1456               pExpr->span = pExpr->token;
1457               pExpr->span.dyn = 0;
1458             }
1459             if( longNames ){
1460               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
1461             }else{
1462               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
1463             }
1464           }
1465         }
1466         if( !tableSeen ){
1467           if( zTName ){
1468             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1469           }else{
1470             sqlite3ErrorMsg(pParse, "no tables specified");
1471           }
1472           rc = 1;
1473         }
1474         sqlite3_free(zTName);
1475       }
1476     }
1477     sqlite3ExprListDelete(pEList);
1478     p->pEList = pNew;
1479   }
1480 #if SQLITE_MAX_COLUMN
1481   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1482     sqlite3ErrorMsg(pParse, "too many columns in result set");
1483     rc = SQLITE_ERROR;
1484   }
1485 #endif
1486   if( db->mallocFailed ){
1487     rc = SQLITE_NOMEM;
1488   }
1489   return rc;
1490 }
1491 
1492 /*
1493 ** pE is a pointer to an expression which is a single term in
1494 ** ORDER BY or GROUP BY clause.
1495 **
1496 ** At the point this routine is called, we already know that the
1497 ** ORDER BY term is not an integer index into the result set.  That
1498 ** casee is handled by the calling routine.
1499 **
1500 ** If pE is a well-formed expression and the SELECT statement
1501 ** is not compound, then return 0.  This indicates to the
1502 ** caller that it should sort by the value of the ORDER BY
1503 ** expression.
1504 **
1505 ** If the SELECT is compound, then attempt to match pE against
1506 ** result set columns in the left-most SELECT statement.  Return
1507 ** the index i of the matching column, as an indication to the
1508 ** caller that it should sort by the i-th column.  If there is
1509 ** no match, return -1 and leave an error message in pParse.
1510 */
1511 static int matchOrderByTermToExprList(
1512   Parse *pParse,     /* Parsing context for error messages */
1513   Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
1514   Expr *pE,          /* The specific ORDER BY term */
1515   int idx,           /* When ORDER BY term is this */
1516   int isCompound,    /* True if this is a compound SELECT */
1517   u8 *pHasAgg        /* True if expression contains aggregate functions */
1518 ){
1519   int i;             /* Loop counter */
1520   ExprList *pEList;  /* The columns of the result set */
1521   NameContext nc;    /* Name context for resolving pE */
1522 
1523   assert( sqlite3ExprIsInteger(pE, &i)==0 );
1524   pEList = pSelect->pEList;
1525 
1526   /* If the term is a simple identifier that try to match that identifier
1527   ** against a column name in the result set.
1528   */
1529   if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
1530     sqlite3 *db = pParse->db;
1531     char *zCol = sqlite3NameFromToken(db, &pE->token);
1532     if( zCol==0 ){
1533       return -1;
1534     }
1535     for(i=0; i<pEList->nExpr; i++){
1536       char *zAs = pEList->a[i].zName;
1537       if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1538         sqlite3_free(zCol);
1539         return i+1;
1540       }
1541     }
1542     sqlite3_free(zCol);
1543   }
1544 
1545   /* Resolve all names in the ORDER BY term expression
1546   */
1547   memset(&nc, 0, sizeof(nc));
1548   nc.pParse = pParse;
1549   nc.pSrcList = pSelect->pSrc;
1550   nc.pEList = pEList;
1551   nc.allowAgg = 1;
1552   nc.nErr = 0;
1553   if( sqlite3ExprResolveNames(&nc, pE) ){
1554     if( isCompound ){
1555       sqlite3ErrorClear(pParse);
1556       return 0;
1557     }else{
1558       return -1;
1559     }
1560   }
1561   if( nc.hasAgg && pHasAgg ){
1562     *pHasAgg = 1;
1563   }
1564 
1565   /* For a compound SELECT, we need to try to match the ORDER BY
1566   ** expression against an expression in the result set
1567   */
1568   if( isCompound ){
1569     for(i=0; i<pEList->nExpr; i++){
1570       if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
1571         return i+1;
1572       }
1573     }
1574   }
1575   return 0;
1576 }
1577 
1578 
1579 /*
1580 ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
1581 ** Return the number of errors seen.
1582 **
1583 ** Every term of the ORDER BY or GROUP BY clause needs to be an
1584 ** expression.  If any expression is an integer constant, then
1585 ** that expression is replaced by the corresponding
1586 ** expression from the result set.
1587 */
1588 static int processOrderGroupBy(
1589   Parse *pParse,        /* Parsing context.  Leave error messages here */
1590   Select *pSelect,      /* The SELECT statement containing the clause */
1591   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
1592   int isOrder,          /* 1 for ORDER BY.  0 for GROUP BY */
1593   u8 *pHasAgg           /* Set to TRUE if any term contains an aggregate */
1594 ){
1595   int i;
1596   sqlite3 *db = pParse->db;
1597   ExprList *pEList;
1598 
1599   if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
1600 #if SQLITE_MAX_COLUMN
1601   if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1602     const char *zType = isOrder ? "ORDER" : "GROUP";
1603     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
1604     return 1;
1605   }
1606 #endif
1607   pEList = pSelect->pEList;
1608   if( pEList==0 ){
1609     return 0;
1610   }
1611   for(i=0; i<pOrderBy->nExpr; i++){
1612     int iCol;
1613     Expr *pE = pOrderBy->a[i].pExpr;
1614     if( sqlite3ExprIsInteger(pE, &iCol) ){
1615       if( iCol<=0 || iCol>pEList->nExpr ){
1616         const char *zType = isOrder ? "ORDER" : "GROUP";
1617         sqlite3ErrorMsg(pParse,
1618            "%r %s BY term out of range - should be "
1619            "between 1 and %d", i+1, zType, pEList->nExpr);
1620         return 1;
1621       }
1622     }else{
1623       iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
1624       if( iCol<0 ){
1625         return 1;
1626       }
1627     }
1628     if( iCol>0 ){
1629       CollSeq *pColl = pE->pColl;
1630       int flags = pE->flags & EP_ExpCollate;
1631       sqlite3ExprDelete(pE);
1632       pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
1633       pOrderBy->a[i].pExpr = pE;
1634       if( pE && pColl && flags ){
1635         pE->pColl = pColl;
1636         pE->flags |= flags;
1637       }
1638     }
1639   }
1640   return 0;
1641 }
1642 
1643 /*
1644 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
1645 ** the number of errors seen.
1646 **
1647 ** If iTable>0 then make the N-th term of the ORDER BY clause refer to
1648 ** the N-th column of table iTable.
1649 **
1650 ** If iTable==0 then transform each term of the ORDER BY clause to refer
1651 ** to a column of the result set by number.
1652 */
1653 static int processCompoundOrderBy(
1654   Parse *pParse,        /* Parsing context.  Leave error messages here */
1655   Select *pSelect       /* The SELECT statement containing the ORDER BY */
1656 ){
1657   int i;
1658   ExprList *pOrderBy;
1659   ExprList *pEList;
1660   sqlite3 *db;
1661   int moreToDo = 1;
1662 
1663   pOrderBy = pSelect->pOrderBy;
1664   if( pOrderBy==0 ) return 0;
1665   db = pParse->db;
1666 #if SQLITE_MAX_COLUMN
1667   if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1668     sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
1669     return 1;
1670   }
1671 #endif
1672   for(i=0; i<pOrderBy->nExpr; i++){
1673     pOrderBy->a[i].done = 0;
1674   }
1675   while( pSelect->pPrior ){
1676     pSelect = pSelect->pPrior;
1677   }
1678   while( pSelect && moreToDo ){
1679     moreToDo = 0;
1680     pEList = pSelect->pEList;
1681     if( pEList==0 ){
1682       return 1;
1683     }
1684     for(i=0; i<pOrderBy->nExpr; i++){
1685       int iCol = -1;
1686       Expr *pE, *pDup;
1687       if( pOrderBy->a[i].done ) continue;
1688       pE = pOrderBy->a[i].pExpr;
1689       if( sqlite3ExprIsInteger(pE, &iCol) ){
1690         if( iCol<0 || iCol>pEList->nExpr ){
1691           sqlite3ErrorMsg(pParse,
1692              "%r ORDER BY term out of range - should be "
1693              "between 1 and %d", i+1, pEList->nExpr);
1694           return 1;
1695         }
1696       }else{
1697         pDup = sqlite3ExprDup(db, pE);
1698         if( !db->mallocFailed ){
1699           assert(pDup);
1700           iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
1701         }
1702         sqlite3ExprDelete(pDup);
1703         if( iCol<0 ){
1704           return 1;
1705         }
1706       }
1707       if( iCol>0 ){
1708         pE->op = TK_INTEGER;
1709         pE->flags |= EP_IntValue;
1710         pE->iTable = iCol;
1711         pOrderBy->a[i].done = 1;
1712       }else{
1713         moreToDo = 1;
1714       }
1715     }
1716     pSelect = pSelect->pNext;
1717   }
1718   for(i=0; i<pOrderBy->nExpr; i++){
1719     if( pOrderBy->a[i].done==0 ){
1720       sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
1721             "column in the result set", i+1);
1722       return 1;
1723     }
1724   }
1725   return 0;
1726 }
1727 
1728 /*
1729 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1730 ** If an error occurs, return NULL and leave a message in pParse.
1731 */
1732 Vdbe *sqlite3GetVdbe(Parse *pParse){
1733   Vdbe *v = pParse->pVdbe;
1734   if( v==0 ){
1735     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1736 #ifndef SQLITE_OMIT_TRACE
1737     if( v ){
1738       sqlite3VdbeAddOp0(v, OP_Trace);
1739     }
1740 #endif
1741   }
1742   return v;
1743 }
1744 
1745 
1746 /*
1747 ** Compute the iLimit and iOffset fields of the SELECT based on the
1748 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1749 ** that appear in the original SQL statement after the LIMIT and OFFSET
1750 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1751 ** are the integer memory register numbers for counters used to compute
1752 ** the limit and offset.  If there is no limit and/or offset, then
1753 ** iLimit and iOffset are negative.
1754 **
1755 ** This routine changes the values of iLimit and iOffset only if
1756 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1757 ** iOffset should have been preset to appropriate default values
1758 ** (usually but not always -1) prior to calling this routine.
1759 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1760 ** redefined.  The UNION ALL operator uses this property to force
1761 ** the reuse of the same limit and offset registers across multiple
1762 ** SELECT statements.
1763 */
1764 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1765   Vdbe *v = 0;
1766   int iLimit = 0;
1767   int iOffset;
1768   int addr1;
1769   if( p->iLimit ) return;
1770 
1771   /*
1772   ** "LIMIT -1" always shows all rows.  There is some
1773   ** contraversy about what the correct behavior should be.
1774   ** The current implementation interprets "LIMIT 0" to mean
1775   ** no rows.
1776   */
1777   if( p->pLimit ){
1778     p->iLimit = iLimit = ++pParse->nMem;
1779     v = sqlite3GetVdbe(pParse);
1780     if( v==0 ) return;
1781     sqlite3ExprCode(pParse, p->pLimit, iLimit);
1782     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1783     VdbeComment((v, "LIMIT counter"));
1784     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1785   }
1786   if( p->pOffset ){
1787     p->iOffset = iOffset = ++pParse->nMem;
1788     if( p->pLimit ){
1789       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1790     }
1791     v = sqlite3GetVdbe(pParse);
1792     if( v==0 ) return;
1793     sqlite3ExprCode(pParse, p->pOffset, iOffset);
1794     sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1795     VdbeComment((v, "OFFSET counter"));
1796     addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1797     sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1798     sqlite3VdbeJumpHere(v, addr1);
1799     if( p->pLimit ){
1800       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1801       VdbeComment((v, "LIMIT+OFFSET"));
1802       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1803       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1804       sqlite3VdbeJumpHere(v, addr1);
1805     }
1806   }
1807 }
1808 
1809 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1810 /*
1811 ** Return the appropriate collating sequence for the iCol-th column of
1812 ** the result set for the compound-select statement "p".  Return NULL if
1813 ** the column has no default collating sequence.
1814 **
1815 ** The collating sequence for the compound select is taken from the
1816 ** left-most term of the select that has a collating sequence.
1817 */
1818 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1819   CollSeq *pRet;
1820   if( p->pPrior ){
1821     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1822   }else{
1823     pRet = 0;
1824   }
1825   if( pRet==0 ){
1826     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1827   }
1828   return pRet;
1829 }
1830 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1831 
1832 /* Forward reference */
1833 static int multiSelectOrderBy(
1834   Parse *pParse,        /* Parsing context */
1835   Select *p,            /* The right-most of SELECTs to be coded */
1836   SelectDest *pDest     /* What to do with query results */
1837 );
1838 
1839 
1840 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1841 /*
1842 ** This routine is called to process a compound query form from
1843 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1844 ** INTERSECT
1845 **
1846 ** "p" points to the right-most of the two queries.  the query on the
1847 ** left is p->pPrior.  The left query could also be a compound query
1848 ** in which case this routine will be called recursively.
1849 **
1850 ** The results of the total query are to be written into a destination
1851 ** of type eDest with parameter iParm.
1852 **
1853 ** Example 1:  Consider a three-way compound SQL statement.
1854 **
1855 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1856 **
1857 ** This statement is parsed up as follows:
1858 **
1859 **     SELECT c FROM t3
1860 **      |
1861 **      `----->  SELECT b FROM t2
1862 **                |
1863 **                `------>  SELECT a FROM t1
1864 **
1865 ** The arrows in the diagram above represent the Select.pPrior pointer.
1866 ** So if this routine is called with p equal to the t3 query, then
1867 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1868 **
1869 ** Notice that because of the way SQLite parses compound SELECTs, the
1870 ** individual selects always group from left to right.
1871 */
1872 static int multiSelect(
1873   Parse *pParse,        /* Parsing context */
1874   Select *p,            /* The right-most of SELECTs to be coded */
1875   SelectDest *pDest     /* What to do with query results */
1876 ){
1877   int rc = SQLITE_OK;   /* Success code from a subroutine */
1878   Select *pPrior;       /* Another SELECT immediately to our left */
1879   Vdbe *v;              /* Generate code to this VDBE */
1880   SelectDest dest;      /* Alternative data destination */
1881   Select *pDelete = 0;  /* Chain of simple selects to delete */
1882 
1883   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1884   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1885   */
1886   if( p==0 || p->pPrior==0 ){
1887     rc = 1;
1888     goto multi_select_end;
1889   }
1890   pPrior = p->pPrior;
1891   assert( pPrior->pRightmost!=pPrior );
1892   assert( pPrior->pRightmost==p->pRightmost );
1893   if( pPrior->pOrderBy ){
1894     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1895       selectOpName(p->op));
1896     rc = 1;
1897     goto multi_select_end;
1898   }
1899   if( pPrior->pLimit ){
1900     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1901       selectOpName(p->op));
1902     rc = 1;
1903     goto multi_select_end;
1904   }
1905 
1906   /* Make sure we have a valid query engine.  If not, create a new one.
1907   */
1908   v = sqlite3GetVdbe(pParse);
1909   if( v==0 ){
1910     rc = 1;
1911     goto multi_select_end;
1912   }
1913 
1914   /* Create the destination temporary table if necessary
1915   */
1916   dest = *pDest;
1917   if( dest.eDest==SRT_EphemTab ){
1918     assert( p->pEList );
1919     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1920     dest.eDest = SRT_Table;
1921   }
1922 
1923   /* Make sure all SELECTs in the statement have the same number of elements
1924   ** in their result sets.
1925   */
1926   assert( p->pEList && pPrior->pEList );
1927   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1928     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1929       " do not have the same number of result columns", selectOpName(p->op));
1930     rc = 1;
1931     goto multi_select_end;
1932   }
1933 
1934   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1935   */
1936   if( p->pOrderBy ){
1937     return multiSelectOrderBy(pParse, p, pDest);
1938   }
1939 
1940   /* Generate code for the left and right SELECT statements.
1941   */
1942   switch( p->op ){
1943     case TK_ALL: {
1944       int addr = 0;
1945       assert( !pPrior->pLimit );
1946       pPrior->pLimit = p->pLimit;
1947       pPrior->pOffset = p->pOffset;
1948       rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0);
1949       p->pLimit = 0;
1950       p->pOffset = 0;
1951       if( rc ){
1952         goto multi_select_end;
1953       }
1954       p->pPrior = 0;
1955       p->iLimit = pPrior->iLimit;
1956       p->iOffset = pPrior->iOffset;
1957       if( p->iLimit ){
1958         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1959         VdbeComment((v, "Jump ahead if LIMIT reached"));
1960       }
1961       rc = sqlite3Select(pParse, p, &dest, 0, 0, 0);
1962       pDelete = p->pPrior;
1963       p->pPrior = pPrior;
1964       if( rc ){
1965         goto multi_select_end;
1966       }
1967       if( addr ){
1968         sqlite3VdbeJumpHere(v, addr);
1969       }
1970       break;
1971     }
1972     case TK_EXCEPT:
1973     case TK_UNION: {
1974       int unionTab;    /* Cursor number of the temporary table holding result */
1975       int op = 0;      /* One of the SRT_ operations to apply to self */
1976       int priorOp;     /* The SRT_ operation to apply to prior selects */
1977       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1978       int addr;
1979       SelectDest uniondest;
1980 
1981       priorOp = SRT_Union;
1982       if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
1983         /* We can reuse a temporary table generated by a SELECT to our
1984         ** right.
1985         */
1986         unionTab = dest.iParm;
1987       }else{
1988         /* We will need to create our own temporary table to hold the
1989         ** intermediate results.
1990         */
1991         unionTab = pParse->nTab++;
1992         assert( p->pOrderBy==0 );
1993         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1994         assert( p->addrOpenEphm[0] == -1 );
1995         p->addrOpenEphm[0] = addr;
1996         p->pRightmost->usesEphm = 1;
1997         assert( p->pEList );
1998       }
1999 
2000       /* Code the SELECT statements to our left
2001       */
2002       assert( !pPrior->pOrderBy );
2003       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2004       rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0);
2005       if( rc ){
2006         goto multi_select_end;
2007       }
2008 
2009       /* Code the current SELECT statement
2010       */
2011       switch( p->op ){
2012          case TK_EXCEPT:  op = SRT_Except;   break;
2013          case TK_UNION:   op = SRT_Union;    break;
2014          case TK_ALL:     op = SRT_Table;    break;
2015       }
2016       p->pPrior = 0;
2017       p->disallowOrderBy = 0;
2018       pLimit = p->pLimit;
2019       p->pLimit = 0;
2020       pOffset = p->pOffset;
2021       p->pOffset = 0;
2022       uniondest.eDest = op;
2023       rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0);
2024       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2025       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2026       sqlite3ExprListDelete(p->pOrderBy);
2027       pDelete = p->pPrior;
2028       p->pPrior = pPrior;
2029       p->pOrderBy = 0;
2030       sqlite3ExprDelete(p->pLimit);
2031       p->pLimit = pLimit;
2032       p->pOffset = pOffset;
2033       p->iLimit = 0;
2034       p->iOffset = 0;
2035       if( rc ){
2036         goto multi_select_end;
2037       }
2038 
2039 
2040       /* Convert the data in the temporary table into whatever form
2041       ** it is that we currently need.
2042       */
2043       if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
2044         int iCont, iBreak, iStart;
2045         assert( p->pEList );
2046         if( dest.eDest==SRT_Callback ){
2047           Select *pFirst = p;
2048           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2049           generateColumnNames(pParse, 0, pFirst->pEList);
2050         }
2051         iBreak = sqlite3VdbeMakeLabel(v);
2052         iCont = sqlite3VdbeMakeLabel(v);
2053         computeLimitRegisters(pParse, p, iBreak);
2054         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
2055         iStart = sqlite3VdbeCurrentAddr(v);
2056         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
2057                         0, -1, &dest, iCont, iBreak);
2058         sqlite3VdbeResolveLabel(v, iCont);
2059         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
2060         sqlite3VdbeResolveLabel(v, iBreak);
2061         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2062       }
2063       break;
2064     }
2065     case TK_INTERSECT: {
2066       int tab1, tab2;
2067       int iCont, iBreak, iStart;
2068       Expr *pLimit, *pOffset;
2069       int addr;
2070       SelectDest intersectdest;
2071       int r1;
2072 
2073       /* INTERSECT is different from the others since it requires
2074       ** two temporary tables.  Hence it has its own case.  Begin
2075       ** by allocating the tables we will need.
2076       */
2077       tab1 = pParse->nTab++;
2078       tab2 = pParse->nTab++;
2079       assert( p->pOrderBy==0 );
2080 
2081       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2082       assert( p->addrOpenEphm[0] == -1 );
2083       p->addrOpenEphm[0] = addr;
2084       p->pRightmost->usesEphm = 1;
2085       assert( p->pEList );
2086 
2087       /* Code the SELECTs to our left into temporary table "tab1".
2088       */
2089       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2090       rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0);
2091       if( rc ){
2092         goto multi_select_end;
2093       }
2094 
2095       /* Code the current SELECT into temporary table "tab2"
2096       */
2097       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2098       assert( p->addrOpenEphm[1] == -1 );
2099       p->addrOpenEphm[1] = addr;
2100       p->pPrior = 0;
2101       pLimit = p->pLimit;
2102       p->pLimit = 0;
2103       pOffset = p->pOffset;
2104       p->pOffset = 0;
2105       intersectdest.iParm = tab2;
2106       rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0);
2107       pDelete = p->pPrior;
2108       p->pPrior = pPrior;
2109       sqlite3ExprDelete(p->pLimit);
2110       p->pLimit = pLimit;
2111       p->pOffset = pOffset;
2112       if( rc ){
2113         goto multi_select_end;
2114       }
2115 
2116       /* Generate code to take the intersection of the two temporary
2117       ** tables.
2118       */
2119       assert( p->pEList );
2120       if( dest.eDest==SRT_Callback ){
2121         Select *pFirst = p;
2122         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2123         generateColumnNames(pParse, 0, pFirst->pEList);
2124       }
2125       iBreak = sqlite3VdbeMakeLabel(v);
2126       iCont = sqlite3VdbeMakeLabel(v);
2127       computeLimitRegisters(pParse, p, iBreak);
2128       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
2129       r1 = sqlite3GetTempReg(pParse);
2130       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2131       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
2132       sqlite3ReleaseTempReg(pParse, r1);
2133       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
2134                       0, -1, &dest, iCont, iBreak);
2135       sqlite3VdbeResolveLabel(v, iCont);
2136       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
2137       sqlite3VdbeResolveLabel(v, iBreak);
2138       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2139       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2140       break;
2141     }
2142   }
2143 
2144   /* Compute collating sequences used by
2145   ** temporary tables needed to implement the compound select.
2146   ** Attach the KeyInfo structure to all temporary tables.
2147   **
2148   ** This section is run by the right-most SELECT statement only.
2149   ** SELECT statements to the left always skip this part.  The right-most
2150   ** SELECT might also skip this part if it has no ORDER BY clause and
2151   ** no temp tables are required.
2152   */
2153   if( p->usesEphm ){
2154     int i;                        /* Loop counter */
2155     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2156     Select *pLoop;                /* For looping through SELECT statements */
2157     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2158     int nCol;                     /* Number of columns in result set */
2159 
2160     assert( p->pRightmost==p );
2161     nCol = p->pEList->nExpr;
2162     pKeyInfo = sqlite3DbMallocZero(pParse->db,
2163                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
2164     if( !pKeyInfo ){
2165       rc = SQLITE_NOMEM;
2166       goto multi_select_end;
2167     }
2168 
2169     pKeyInfo->enc = ENC(pParse->db);
2170     pKeyInfo->nField = nCol;
2171 
2172     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2173       *apColl = multiSelectCollSeq(pParse, p, i);
2174       if( 0==*apColl ){
2175         *apColl = pParse->db->pDfltColl;
2176       }
2177     }
2178 
2179     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2180       for(i=0; i<2; i++){
2181         int addr = pLoop->addrOpenEphm[i];
2182         if( addr<0 ){
2183           /* If [0] is unused then [1] is also unused.  So we can
2184           ** always safely abort as soon as the first unused slot is found */
2185           assert( pLoop->addrOpenEphm[1]<0 );
2186           break;
2187         }
2188         sqlite3VdbeChangeP2(v, addr, nCol);
2189         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
2190         pLoop->addrOpenEphm[i] = -1;
2191       }
2192     }
2193     sqlite3_free(pKeyInfo);
2194   }
2195 
2196 multi_select_end:
2197   pDest->iMem = dest.iMem;
2198   pDest->nMem = dest.nMem;
2199   sqlite3SelectDelete(pDelete);
2200   return rc;
2201 }
2202 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2203 
2204 /*
2205 ** Code an output subroutine for a coroutine implementation of a
2206 ** SELECT statment.
2207 **
2208 ** The data to be output is contained in pIn->iMem.  There are
2209 ** pIn->nMem columns to be output.  pDest is where the output should
2210 ** be sent.
2211 **
2212 ** regReturn is the number of the register holding the subroutine
2213 ** return address.
2214 **
2215 ** If regPrev>0 then it is a the first register in a vector that
2216 ** records the previous output.  mem[regPrev] is a flag that is false
2217 ** if there has been no previous output.  If regPrev>0 then code is
2218 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2219 ** keys.
2220 **
2221 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2222 ** iBreak.
2223 */
2224 static int generateOutputSubroutine(
2225   Parse *pParse,          /* Parsing context */
2226   Select *p,              /* The SELECT statement */
2227   SelectDest *pIn,        /* Coroutine supplying data */
2228   SelectDest *pDest,      /* Where to send the data */
2229   int regReturn,          /* The return address register */
2230   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2231   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2232   int p4type,             /* The p4 type for pKeyInfo */
2233   int iBreak              /* Jump here if we hit the LIMIT */
2234 ){
2235   Vdbe *v = pParse->pVdbe;
2236   int iContinue;
2237   int addr;
2238 
2239   addr = sqlite3VdbeCurrentAddr(v);
2240   iContinue = sqlite3VdbeMakeLabel(v);
2241 
2242   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2243   */
2244   if( regPrev ){
2245     int j1, j2;
2246     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
2247     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
2248                               (char*)pKeyInfo, p4type);
2249     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
2250     sqlite3VdbeJumpHere(v, j1);
2251     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
2252     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2253   }
2254   if( pParse->db->mallocFailed ) return 0;
2255 
2256   /* Suppress the the first OFFSET entries if there is an OFFSET clause
2257   */
2258   codeOffset(v, p, iContinue);
2259 
2260   switch( pDest->eDest ){
2261     /* Store the result as data using a unique key.
2262     */
2263     case SRT_Table:
2264     case SRT_EphemTab: {
2265       int r1 = sqlite3GetTempReg(pParse);
2266       int r2 = sqlite3GetTempReg(pParse);
2267       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
2268       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
2269       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
2270       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2271       sqlite3ReleaseTempReg(pParse, r2);
2272       sqlite3ReleaseTempReg(pParse, r1);
2273       break;
2274     }
2275 
2276 #ifndef SQLITE_OMIT_SUBQUERY
2277     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2278     ** then there should be a single item on the stack.  Write this
2279     ** item into the set table with bogus data.
2280     */
2281     case SRT_Set: {
2282       int r1;
2283       assert( pIn->nMem==1 );
2284       p->affinity =
2285          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
2286       r1 = sqlite3GetTempReg(pParse);
2287       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
2288       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
2289       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
2290       sqlite3ReleaseTempReg(pParse, r1);
2291       break;
2292     }
2293 
2294 #if 0  /* Never occurs on an ORDER BY query */
2295     /* If any row exist in the result set, record that fact and abort.
2296     */
2297     case SRT_Exists: {
2298       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
2299       /* The LIMIT clause will terminate the loop for us */
2300       break;
2301     }
2302 #endif
2303 
2304     /* If this is a scalar select that is part of an expression, then
2305     ** store the results in the appropriate memory cell and break out
2306     ** of the scan loop.
2307     */
2308     case SRT_Mem: {
2309       assert( pIn->nMem==1 );
2310       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
2311       /* The LIMIT clause will jump out of the loop for us */
2312       break;
2313     }
2314 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2315 
2316     /* Send the data to the callback function or to a subroutine.  In the
2317     ** case of a subroutine, the subroutine itself is responsible for
2318     ** popping the data from the stack.
2319     */
2320     case SRT_Coroutine: {
2321       if( pDest->iMem==0 ){
2322         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
2323         pDest->nMem = pIn->nMem;
2324       }
2325       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
2326       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
2327       break;
2328     }
2329 
2330     case SRT_Callback: {
2331       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
2332       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
2333       break;
2334     }
2335 
2336 #if !defined(SQLITE_OMIT_TRIGGER)
2337     /* Discard the results.  This is used for SELECT statements inside
2338     ** the body of a TRIGGER.  The purpose of such selects is to call
2339     ** user-defined functions that have side effects.  We do not care
2340     ** about the actual results of the select.
2341     */
2342     default: {
2343       break;
2344     }
2345 #endif
2346   }
2347 
2348   /* Jump to the end of the loop if the LIMIT is reached.
2349   */
2350   if( p->iLimit ){
2351     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
2352     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
2353   }
2354 
2355   /* Generate the subroutine return
2356   */
2357   sqlite3VdbeResolveLabel(v, iContinue);
2358   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2359 
2360   return addr;
2361 }
2362 
2363 /*
2364 ** Alternative compound select code generator for cases when there
2365 ** is an ORDER BY clause.
2366 **
2367 ** We assume a query of the following form:
2368 **
2369 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2370 **
2371 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2372 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2373 ** co-routines.  Then run the co-routines in parallel and merge the results
2374 ** into the output.  In addition to the two coroutines (called selectA and
2375 ** selectB) there are 7 subroutines:
2376 **
2377 **    outA:    Move the output of the selectA coroutine into the output
2378 **             of the compound query.
2379 **
2380 **    outB:    Move the output of the selectB coroutine into the output
2381 **             of the compound query.  (Only generated for UNION and
2382 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2383 **             appears only in B.)
2384 **
2385 **    AltB:    Called when there is data from both coroutines and A<B.
2386 **
2387 **    AeqB:    Called when there is data from both coroutines and A==B.
2388 **
2389 **    AgtB:    Called when there is data from both coroutines and A>B.
2390 **
2391 **    EofA:    Called when data is exhausted from selectA.
2392 **
2393 **    EofB:    Called when data is exhausted from selectB.
2394 **
2395 ** The implementation of the latter five subroutines depend on which
2396 ** <operator> is used:
2397 **
2398 **
2399 **             UNION ALL         UNION            EXCEPT          INTERSECT
2400 **          -------------  -----------------  --------------  -----------------
2401 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2402 **
2403 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2404 **
2405 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2406 **
2407 **   EofA:   outB, nextB      outB, nextB          halt             halt
2408 **
2409 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2410 **
2411 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2412 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2413 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2414 ** following nextX causes a jump to the end of the select processing.
2415 **
2416 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2417 ** within the output subroutine.  The regPrev register set holds the previously
2418 ** output value.  A comparison is made against this value and the output
2419 ** is skipped if the next results would be the same as the previous.
2420 **
2421 ** The implementation plan is to implement the two coroutines and seven
2422 ** subroutines first, then put the control logic at the bottom.  Like this:
2423 **
2424 **          goto Init
2425 **     coA: coroutine for left query (A)
2426 **     coB: coroutine for right query (B)
2427 **    outA: output one row of A
2428 **    outB: output one row of B (UNION and UNION ALL only)
2429 **    EofA: ...
2430 **    EofB: ...
2431 **    AltB: ...
2432 **    AeqB: ...
2433 **    AgtB: ...
2434 **    Init: initialize coroutine registers
2435 **          yield coA
2436 **          if eof(A) goto EofA
2437 **          yield coB
2438 **          if eof(B) goto EofB
2439 **    Cmpr: Compare A, B
2440 **          Jump AltB, AeqB, AgtB
2441 **     End: ...
2442 **
2443 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2444 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2445 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2446 ** and AgtB jump to either L2 or to one of EofA or EofB.
2447 */
2448 static int multiSelectOrderBy(
2449   Parse *pParse,        /* Parsing context */
2450   Select *p,            /* The right-most of SELECTs to be coded */
2451   SelectDest *pDest     /* What to do with query results */
2452 ){
2453   int i, j;             /* Loop counters */
2454   Select *pPrior;       /* Another SELECT immediately to our left */
2455   Vdbe *v;              /* Generate code to this VDBE */
2456   SelectDest destA;     /* Destination for coroutine A */
2457   SelectDest destB;     /* Destination for coroutine B */
2458   int regAddrA;         /* Address register for select-A coroutine */
2459   int regEofA;          /* Flag to indicate when select-A is complete */
2460   int regAddrB;         /* Address register for select-B coroutine */
2461   int regEofB;          /* Flag to indicate when select-B is complete */
2462   int addrSelectA;      /* Address of the select-A coroutine */
2463   int addrSelectB;      /* Address of the select-B coroutine */
2464   int regOutA;          /* Address register for the output-A subroutine */
2465   int regOutB;          /* Address register for the output-B subroutine */
2466   int addrOutA;         /* Address of the output-A subroutine */
2467   int addrOutB;         /* Address of the output-B subroutine */
2468   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2469   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2470   int addrAltB;         /* Address of the A<B subroutine */
2471   int addrAeqB;         /* Address of the A==B subroutine */
2472   int addrAgtB;         /* Address of the A>B subroutine */
2473   int regLimitA;        /* Limit register for select-A */
2474   int regLimitB;        /* Limit register for select-A */
2475   int regPrev;          /* A range of registers to hold previous output */
2476   int savedLimit;       /* Saved value of p->iLimit */
2477   int savedOffset;      /* Saved value of p->iOffset */
2478   int labelCmpr;        /* Label for the start of the merge algorithm */
2479   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2480   int j1;               /* Jump instructions that get retargetted */
2481   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2482   KeyInfo *pKeyDup;     /* Comparison information for duplicate removal */
2483   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2484   sqlite3 *db;          /* Database connection */
2485   ExprList *pOrderBy;   /* The ORDER BY clause */
2486   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2487   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2488   u8 NotUsed;           /* Dummy variables */
2489 
2490   assert( p->pOrderBy!=0 );
2491   db = pParse->db;
2492   v = pParse->pVdbe;
2493   if( v==0 ) return SQLITE_NOMEM;
2494   labelEnd = sqlite3VdbeMakeLabel(v);
2495   labelCmpr = sqlite3VdbeMakeLabel(v);
2496 
2497 
2498   /* Patch up the ORDER BY clause
2499   */
2500   op = p->op;
2501   pPrior = p->pPrior;
2502   assert( pPrior->pOrderBy==0 );
2503   pOrderBy = p->pOrderBy;
2504   assert( pOrderBy );
2505   if( processCompoundOrderBy(pParse, p) ){
2506     return SQLITE_ERROR;
2507   }
2508   nOrderBy = pOrderBy->nExpr;
2509 
2510   /* For operators other than UNION ALL we have to make sure that
2511   ** the ORDER BY clause covers every term of the result set.  Add
2512   ** terms to the ORDER BY clause as necessary.
2513   */
2514   if( op!=TK_ALL ){
2515     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2516       for(j=0; j<nOrderBy; j++){
2517         Expr *pTerm = pOrderBy->a[j].pExpr;
2518         assert( pTerm->op==TK_INTEGER );
2519         assert( (pTerm->flags & EP_IntValue)!=0 );
2520         if( pTerm->iTable==i ) break;
2521       }
2522       if( j==nOrderBy ){
2523         Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
2524         if( pNew==0 ) return SQLITE_NOMEM;
2525         pNew->flags |= EP_IntValue;
2526         pNew->iTable = i;
2527         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
2528         nOrderBy++;
2529       }
2530     }
2531   }
2532 
2533   /* Compute the comparison permutation and keyinfo that is used with
2534   ** the permutation in order to comparisons to determine if the next
2535   ** row of results comes from selectA or selectB.  Also add explicit
2536   ** collations to the ORDER BY clause terms so that when the subqueries
2537   ** to the right and the left are evaluated, they use the correct
2538   ** collation.
2539   */
2540   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2541   if( aPermute ){
2542     for(i=0; i<nOrderBy; i++){
2543       Expr *pTerm = pOrderBy->a[i].pExpr;
2544       assert( pTerm->op==TK_INTEGER );
2545       assert( (pTerm->flags & EP_IntValue)!=0 );
2546       aPermute[i] = pTerm->iTable-1;
2547       assert( aPermute[i]>=0 && aPermute[i]<p->pEList->nExpr );
2548     }
2549     pKeyMerge =
2550       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2551     if( pKeyMerge ){
2552       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2553       pKeyMerge->nField = nOrderBy;
2554       pKeyMerge->enc = ENC(db);
2555       for(i=0; i<nOrderBy; i++){
2556         CollSeq *pColl;
2557         Expr *pTerm = pOrderBy->a[i].pExpr;
2558         if( pTerm->flags & EP_ExpCollate ){
2559           pColl = pTerm->pColl;
2560         }else{
2561           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2562           pTerm->flags |= EP_ExpCollate;
2563           pTerm->pColl = pColl;
2564         }
2565         pKeyMerge->aColl[i] = pColl;
2566         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2567       }
2568     }
2569   }else{
2570     pKeyMerge = 0;
2571   }
2572 
2573   /* Reattach the ORDER BY clause to the query.
2574   */
2575   p->pOrderBy = pOrderBy;
2576   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
2577 
2578   /* Allocate a range of temporary registers and the KeyInfo needed
2579   ** for the logic that removes duplicate result rows when the
2580   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2581   */
2582   if( op==TK_ALL ){
2583     regPrev = 0;
2584   }else{
2585     int nExpr = p->pEList->nExpr;
2586     assert( nOrderBy>=nExpr );
2587     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2588     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2589     pKeyDup = sqlite3DbMallocZero(db,
2590                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2591     if( pKeyDup ){
2592       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2593       pKeyDup->nField = nExpr;
2594       pKeyDup->enc = ENC(db);
2595       for(i=0; i<nExpr; i++){
2596         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2597         pKeyDup->aSortOrder[i] = 0;
2598       }
2599     }
2600   }
2601 
2602   /* Separate the left and the right query from one another
2603   */
2604   p->pPrior = 0;
2605   pPrior->pRightmost = 0;
2606   processOrderGroupBy(pParse, p, p->pOrderBy, 1, &NotUsed);
2607   if( pPrior->pPrior==0 ){
2608     processOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, 1, &NotUsed);
2609   }
2610 
2611   /* Compute the limit registers */
2612   computeLimitRegisters(pParse, p, labelEnd);
2613   if( p->iLimit && op==TK_ALL ){
2614     regLimitA = ++pParse->nMem;
2615     regLimitB = ++pParse->nMem;
2616     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2617                                   regLimitA);
2618     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2619   }else{
2620     regLimitA = regLimitB = 0;
2621   }
2622   sqlite3ExprDelete(p->pLimit);
2623   p->pLimit = 0;
2624   sqlite3ExprDelete(p->pOffset);
2625   p->pOffset = 0;
2626 
2627   regAddrA = ++pParse->nMem;
2628   regEofA = ++pParse->nMem;
2629   regAddrB = ++pParse->nMem;
2630   regEofB = ++pParse->nMem;
2631   regOutA = ++pParse->nMem;
2632   regOutB = ++pParse->nMem;
2633   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2634   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2635 
2636   /* Jump past the various subroutines and coroutines to the main
2637   ** merge loop
2638   */
2639   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2640   addrSelectA = sqlite3VdbeCurrentAddr(v);
2641 
2642 
2643   /* Generate a coroutine to evaluate the SELECT statement to the
2644   ** left of the compound operator - the "A" select.
2645   */
2646   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2647   pPrior->iLimit = regLimitA;
2648   sqlite3Select(pParse, pPrior, &destA, 0, 0, 0);
2649   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2650   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2651   VdbeNoopComment((v, "End coroutine for left SELECT"));
2652 
2653   /* Generate a coroutine to evaluate the SELECT statement on
2654   ** the right - the "B" select
2655   */
2656   addrSelectB = sqlite3VdbeCurrentAddr(v);
2657   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2658   savedLimit = p->iLimit;
2659   savedOffset = p->iOffset;
2660   p->iLimit = regLimitB;
2661   p->iOffset = 0;
2662   sqlite3Select(pParse, p, &destB, 0, 0, 0);
2663   p->iLimit = savedLimit;
2664   p->iOffset = savedOffset;
2665   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2666   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2667   VdbeNoopComment((v, "End coroutine for right SELECT"));
2668 
2669   /* Generate a subroutine that outputs the current row of the A
2670   ** select as the next output row of the compound select.
2671   */
2672   VdbeNoopComment((v, "Output routine for A"));
2673   addrOutA = generateOutputSubroutine(pParse,
2674                  p, &destA, pDest, regOutA,
2675                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2676 
2677   /* Generate a subroutine that outputs the current row of the B
2678   ** select as the next output row of the compound select.
2679   */
2680   if( op==TK_ALL || op==TK_UNION ){
2681     VdbeNoopComment((v, "Output routine for B"));
2682     addrOutB = generateOutputSubroutine(pParse,
2683                  p, &destB, pDest, regOutB,
2684                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2685   }
2686 
2687   /* Generate a subroutine to run when the results from select A
2688   ** are exhausted and only data in select B remains.
2689   */
2690   VdbeNoopComment((v, "eof-A subroutine"));
2691   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2692     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2693   }else{
2694     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2695     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2696     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2697     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2698   }
2699 
2700   /* Generate a subroutine to run when the results from select B
2701   ** are exhausted and only data in select A remains.
2702   */
2703   if( op==TK_INTERSECT ){
2704     addrEofB = addrEofA;
2705   }else{
2706     VdbeNoopComment((v, "eof-B subroutine"));
2707     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2708     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2709     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2710     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2711   }
2712 
2713   /* Generate code to handle the case of A<B
2714   */
2715   VdbeNoopComment((v, "A-lt-B subroutine"));
2716   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2717   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2718   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2719   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2720 
2721   /* Generate code to handle the case of A==B
2722   */
2723   if( op==TK_ALL ){
2724     addrAeqB = addrAltB;
2725   }else if( op==TK_INTERSECT ){
2726     addrAeqB = addrAltB;
2727     addrAltB++;
2728   }else{
2729     VdbeNoopComment((v, "A-eq-B subroutine"));
2730     addrAeqB =
2731     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2732     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2733     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2734   }
2735 
2736   /* Generate code to handle the case of A>B
2737   */
2738   VdbeNoopComment((v, "A-gt-B subroutine"));
2739   addrAgtB = sqlite3VdbeCurrentAddr(v);
2740   if( op==TK_ALL || op==TK_UNION ){
2741     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2742   }
2743   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2744   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2745   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2746 
2747   /* This code runs once to initialize everything.
2748   */
2749   sqlite3VdbeJumpHere(v, j1);
2750   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2751   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2752   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2753   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2754   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2755   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2756 
2757   /* Implement the main merge loop
2758   */
2759   sqlite3VdbeResolveLabel(v, labelCmpr);
2760   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2761   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2762                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2763   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2764 
2765   /* Release temporary registers
2766   */
2767   if( regPrev ){
2768     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2769   }
2770 
2771   /* Jump to the this point in order to terminate the query.
2772   */
2773   sqlite3VdbeResolveLabel(v, labelEnd);
2774 
2775   /* Set the number of output columns
2776   */
2777   if( pDest->eDest==SRT_Callback ){
2778     Select *pFirst = pPrior;
2779     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2780     generateColumnNames(pParse, 0, pFirst->pEList);
2781   }
2782 
2783   /* Reassembly the compound query so that it will be freed correctly
2784   ** by the calling function */
2785   if( p->pPrior ){
2786     sqlite3SelectDelete(p->pPrior);
2787   }
2788   p->pPrior = pPrior;
2789 
2790   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2791   **** subqueries ****/
2792   return SQLITE_OK;
2793 }
2794 
2795 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2796 /* Forward Declarations */
2797 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2798 static void substSelect(sqlite3*, Select *, int, ExprList *);
2799 
2800 /*
2801 ** Scan through the expression pExpr.  Replace every reference to
2802 ** a column in table number iTable with a copy of the iColumn-th
2803 ** entry in pEList.  (But leave references to the ROWID column
2804 ** unchanged.)
2805 **
2806 ** This routine is part of the flattening procedure.  A subquery
2807 ** whose result set is defined by pEList appears as entry in the
2808 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2809 ** FORM clause entry is iTable.  This routine make the necessary
2810 ** changes to pExpr so that it refers directly to the source table
2811 ** of the subquery rather the result set of the subquery.
2812 */
2813 static void substExpr(
2814   sqlite3 *db,        /* Report malloc errors to this connection */
2815   Expr *pExpr,        /* Expr in which substitution occurs */
2816   int iTable,         /* Table to be substituted */
2817   ExprList *pEList    /* Substitute expressions */
2818 ){
2819   if( pExpr==0 ) return;
2820   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2821     if( pExpr->iColumn<0 ){
2822       pExpr->op = TK_NULL;
2823     }else{
2824       Expr *pNew;
2825       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2826       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2827       pNew = pEList->a[pExpr->iColumn].pExpr;
2828       assert( pNew!=0 );
2829       pExpr->op = pNew->op;
2830       assert( pExpr->pLeft==0 );
2831       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
2832       assert( pExpr->pRight==0 );
2833       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
2834       assert( pExpr->pList==0 );
2835       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
2836       pExpr->iTable = pNew->iTable;
2837       pExpr->pTab = pNew->pTab;
2838       pExpr->iColumn = pNew->iColumn;
2839       pExpr->iAgg = pNew->iAgg;
2840       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2841       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2842       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
2843       pExpr->flags = pNew->flags;
2844     }
2845   }else{
2846     substExpr(db, pExpr->pLeft, iTable, pEList);
2847     substExpr(db, pExpr->pRight, iTable, pEList);
2848     substSelect(db, pExpr->pSelect, iTable, pEList);
2849     substExprList(db, pExpr->pList, iTable, pEList);
2850   }
2851 }
2852 static void substExprList(
2853   sqlite3 *db,         /* Report malloc errors here */
2854   ExprList *pList,     /* List to scan and in which to make substitutes */
2855   int iTable,          /* Table to be substituted */
2856   ExprList *pEList     /* Substitute values */
2857 ){
2858   int i;
2859   if( pList==0 ) return;
2860   for(i=0; i<pList->nExpr; i++){
2861     substExpr(db, pList->a[i].pExpr, iTable, pEList);
2862   }
2863 }
2864 static void substSelect(
2865   sqlite3 *db,         /* Report malloc errors here */
2866   Select *p,           /* SELECT statement in which to make substitutions */
2867   int iTable,          /* Table to be replaced */
2868   ExprList *pEList     /* Substitute values */
2869 ){
2870   if( !p ) return;
2871   substExprList(db, p->pEList, iTable, pEList);
2872   substExprList(db, p->pGroupBy, iTable, pEList);
2873   substExprList(db, p->pOrderBy, iTable, pEList);
2874   substExpr(db, p->pHaving, iTable, pEList);
2875   substExpr(db, p->pWhere, iTable, pEList);
2876   substSelect(db, p->pPrior, iTable, pEList);
2877 }
2878 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2879 
2880 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2881 /*
2882 ** This routine attempts to flatten subqueries in order to speed
2883 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2884 ** occurs.
2885 **
2886 ** To understand the concept of flattening, consider the following
2887 ** query:
2888 **
2889 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2890 **
2891 ** The default way of implementing this query is to execute the
2892 ** subquery first and store the results in a temporary table, then
2893 ** run the outer query on that temporary table.  This requires two
2894 ** passes over the data.  Furthermore, because the temporary table
2895 ** has no indices, the WHERE clause on the outer query cannot be
2896 ** optimized.
2897 **
2898 ** This routine attempts to rewrite queries such as the above into
2899 ** a single flat select, like this:
2900 **
2901 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2902 **
2903 ** The code generated for this simpification gives the same result
2904 ** but only has to scan the data once.  And because indices might
2905 ** exist on the table t1, a complete scan of the data might be
2906 ** avoided.
2907 **
2908 ** Flattening is only attempted if all of the following are true:
2909 **
2910 **   (1)  The subquery and the outer query do not both use aggregates.
2911 **
2912 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2913 **
2914 **   (3)  The subquery is not the right operand of a left outer join, or
2915 **        the subquery is not itself a join.  (Ticket #306)
2916 **
2917 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2918 **
2919 **   (5)  The subquery is not DISTINCT or the outer query does not use
2920 **        aggregates.
2921 **
2922 **   (6)  The subquery does not use aggregates or the outer query is not
2923 **        DISTINCT.
2924 **
2925 **   (7)  The subquery has a FROM clause.
2926 **
2927 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2928 **
2929 **   (9)  The subquery does not use LIMIT or the outer query does not use
2930 **        aggregates.
2931 **
2932 **  (10)  The subquery does not use aggregates or the outer query does not
2933 **        use LIMIT.
2934 **
2935 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2936 **
2937 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2938 **        subquery has no WHERE clause.  (added by ticket #350)
2939 **
2940 **  (13)  The subquery and outer query do not both use LIMIT
2941 **
2942 **  (14)  The subquery does not use OFFSET
2943 **
2944 **  (15)  The outer query is not part of a compound select or the
2945 **        subquery does not have both an ORDER BY and a LIMIT clause.
2946 **        (See ticket #2339)
2947 **
2948 **  (16)  The outer query is not an aggregate or the subquery does
2949 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2950 **        until we introduced the group_concat() function.
2951 **
2952 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2953 **        compound clause made up entirely of non-aggregate queries, and
2954 **        the parent query:
2955 **
2956 **          * is not itself part of a compound select,
2957 **          * is not an aggregate or DISTINCT query, and
2958 **          * has no other tables or sub-selects in the FROM clause.
2959 **
2960 **        The parent and sub-query may contain WHERE clauses. Subject to
2961 **        rules (11), (13) and (14), they may also contain ORDER BY,
2962 **        LIMIT and OFFSET clauses.
2963 **
2964 **  (18)  If the sub-query is a compound select, then all terms of the
2965 **        ORDER by clause of the parent must be simple references to
2966 **        columns of the sub-query.
2967 **
2968 ** In this routine, the "p" parameter is a pointer to the outer query.
2969 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2970 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2971 **
2972 ** If flattening is not attempted, this routine is a no-op and returns 0.
2973 ** If flattening is attempted this routine returns 1.
2974 **
2975 ** All of the expression analysis must occur on both the outer query and
2976 ** the subquery before this routine runs.
2977 */
2978 static int flattenSubquery(
2979   Parse *pParse,       /* Parsing context */
2980   Select *p,           /* The parent or outer SELECT statement */
2981   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2982   int isAgg,           /* True if outer SELECT uses aggregate functions */
2983   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2984 ){
2985   const char *zSavedAuthContext = pParse->zAuthContext;
2986   Select *pParent;
2987   Select *pSub;       /* The inner query or "subquery" */
2988   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2989   SrcList *pSrc;      /* The FROM clause of the outer query */
2990   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2991   ExprList *pList;    /* The result set of the outer query */
2992   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2993   int i;              /* Loop counter */
2994   Expr *pWhere;                    /* The WHERE clause */
2995   struct SrcList_item *pSubitem;   /* The subquery */
2996   sqlite3 *db = pParse->db;
2997 
2998   /* Check to see if flattening is permitted.  Return 0 if not.
2999   */
3000   if( p==0 ) return 0;
3001   pSrc = p->pSrc;
3002   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3003   pSubitem = &pSrc->a[iFrom];
3004   iParent = pSubitem->iCursor;
3005   pSub = pSubitem->pSelect;
3006   assert( pSub!=0 );
3007   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3008   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3009   pSubSrc = pSub->pSrc;
3010   assert( pSubSrc );
3011   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3012   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
3013   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3014   ** became arbitrary expressions, we were forced to add restrictions (13)
3015   ** and (14). */
3016   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3017   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3018   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
3019     return 0;                                            /* Restriction (15) */
3020   }
3021   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3022   if( (pSub->isDistinct || pSub->pLimit)
3023          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
3024      return 0;
3025   }
3026   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
3027   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
3028      return 0;                                           /* Restriction (11) */
3029   }
3030   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3031 
3032   /* Restriction 3:  If the subquery is a join, make sure the subquery is
3033   ** not used as the right operand of an outer join.  Examples of why this
3034   ** is not allowed:
3035   **
3036   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3037   **
3038   ** If we flatten the above, we would get
3039   **
3040   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3041   **
3042   ** which is not at all the same thing.
3043   */
3044   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
3045     return 0;
3046   }
3047 
3048   /* Restriction 12:  If the subquery is the right operand of a left outer
3049   ** join, make sure the subquery has no WHERE clause.
3050   ** An examples of why this is not allowed:
3051   **
3052   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3053   **
3054   ** If we flatten the above, we would get
3055   **
3056   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3057   **
3058   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3059   ** effectively converts the OUTER JOIN into an INNER JOIN.
3060   */
3061   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
3062     return 0;
3063   }
3064 
3065   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3066   ** use only the UNION ALL operator. And none of the simple select queries
3067   ** that make up the compound SELECT are allowed to be aggregate or distinct
3068   ** queries.
3069   */
3070   if( pSub->pPrior ){
3071     if( p->pPrior || isAgg || p->isDistinct || pSrc->nSrc!=1 ){
3072       return 0;
3073     }
3074     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3075       if( pSub1->isAgg || pSub1->isDistinct
3076        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3077        || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
3078       ){
3079         return 0;
3080       }
3081     }
3082 
3083     /* Restriction 18. */
3084     if( p->pOrderBy ){
3085       int ii;
3086       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3087         Expr *pExpr = p->pOrderBy->a[ii].pExpr;
3088         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=iParent ){
3089           return 0;
3090         }
3091       }
3092     }
3093   }
3094 
3095   pParse->zAuthContext = pSubitem->zName;
3096   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3097   pParse->zAuthContext = zSavedAuthContext;
3098 
3099   /* If the sub-query is a compound SELECT statement, then it must be
3100   ** a UNION ALL and the parent query must be of the form:
3101   **
3102   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3103   **
3104   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3105   ** creates N copies of the parent query without any ORDER BY, LIMIT or
3106   ** OFFSET clauses and joins them to the left-hand-side of the original
3107   ** using UNION ALL operators. In this case N is the number of simple
3108   ** select statements in the compound sub-query.
3109   */
3110   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3111     Select *pNew;
3112     ExprList *pOrderBy = p->pOrderBy;
3113     Expr *pLimit = p->pLimit;
3114     Expr *pOffset = p->pOffset;
3115     Select *pPrior = p->pPrior;
3116     p->pOrderBy = 0;
3117     p->pSrc = 0;
3118     p->pPrior = 0;
3119     p->pLimit = 0;
3120     pNew = sqlite3SelectDup(db, p);
3121     pNew->pPrior = pPrior;
3122     p->pPrior = pNew;
3123     p->pOrderBy = pOrderBy;
3124     p->op = TK_ALL;
3125     p->pSrc = pSrc;
3126     p->pLimit = pLimit;
3127     p->pOffset = pOffset;
3128     p->pRightmost = 0;
3129     pNew->pRightmost = 0;
3130   }
3131 
3132   /* If we reach this point, it means flattening is permitted for the
3133   ** iFrom-th entry of the FROM clause in the outer query.
3134   */
3135   pSub = pSub1 = pSubitem->pSelect;
3136   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3137     int nSubSrc = pSubSrc->nSrc;
3138     int jointype = 0;
3139     pSubSrc = pSub->pSrc;
3140     pSrc = pParent->pSrc;
3141 
3142     /* Move all of the FROM elements of the subquery into the
3143     ** the FROM clause of the outer query.  Before doing this, remember
3144     ** the cursor number for the original outer query FROM element in
3145     ** iParent.  The iParent cursor will never be used.  Subsequent code
3146     ** will scan expressions looking for iParent references and replace
3147     ** those references with expressions that resolve to the subquery FROM
3148     ** elements we are now copying in.
3149     */
3150     if( pSrc ){
3151       pSubitem = &pSrc->a[iFrom];
3152       nSubSrc = pSubSrc->nSrc;
3153       jointype = pSubitem->jointype;
3154       sqlite3DeleteTable(pSubitem->pTab);
3155       sqlite3_free(pSubitem->zDatabase);
3156       sqlite3_free(pSubitem->zName);
3157       sqlite3_free(pSubitem->zAlias);
3158       pSubitem->pTab = 0;
3159       pSubitem->zDatabase = 0;
3160       pSubitem->zName = 0;
3161       pSubitem->zAlias = 0;
3162     }
3163     if( nSubSrc!=1 || !pSrc ){
3164       int extra = nSubSrc - 1;
3165       for(i=(pSrc?1:0); i<nSubSrc; i++){
3166         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
3167         if( pSrc==0 ){
3168           pParent->pSrc = 0;
3169           return 1;
3170         }
3171       }
3172       pParent->pSrc = pSrc;
3173       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
3174         pSrc->a[i] = pSrc->a[i-extra];
3175       }
3176     }
3177     for(i=0; i<nSubSrc; i++){
3178       pSrc->a[i+iFrom] = pSubSrc->a[i];
3179       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3180     }
3181     pSrc->a[iFrom].jointype = jointype;
3182 
3183     /* Now begin substituting subquery result set expressions for
3184     ** references to the iParent in the outer query.
3185     **
3186     ** Example:
3187     **
3188     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3189     **   \                     \_____________ subquery __________/          /
3190     **    \_____________________ outer query ______________________________/
3191     **
3192     ** We look at every expression in the outer query and every place we see
3193     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3194     */
3195     pList = pParent->pEList;
3196     for(i=0; i<pList->nExpr; i++){
3197       Expr *pExpr;
3198       if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
3199         pList->a[i].zName =
3200                sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
3201       }
3202     }
3203     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3204     if( isAgg ){
3205       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3206       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3207     }
3208     if( pSub->pOrderBy ){
3209       assert( pParent->pOrderBy==0 );
3210       pParent->pOrderBy = pSub->pOrderBy;
3211       pSub->pOrderBy = 0;
3212     }else if( pParent->pOrderBy ){
3213       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3214     }
3215     if( pSub->pWhere ){
3216       pWhere = sqlite3ExprDup(db, pSub->pWhere);
3217     }else{
3218       pWhere = 0;
3219     }
3220     if( subqueryIsAgg ){
3221       assert( pParent->pHaving==0 );
3222       pParent->pHaving = pParent->pWhere;
3223       pParent->pWhere = pWhere;
3224       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3225       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3226                                   sqlite3ExprDup(db, pSub->pHaving));
3227       assert( pParent->pGroupBy==0 );
3228       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
3229     }else{
3230       substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3231       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3232     }
3233 
3234     /* The flattened query is distinct if either the inner or the
3235     ** outer query is distinct.
3236     */
3237     pParent->isDistinct = pParent->isDistinct || pSub->isDistinct;
3238 
3239     /*
3240     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3241     **
3242     ** One is tempted to try to add a and b to combine the limits.  But this
3243     ** does not work if either limit is negative.
3244     */
3245     if( pSub->pLimit ){
3246       pParent->pLimit = pSub->pLimit;
3247       pSub->pLimit = 0;
3248     }
3249   }
3250 
3251   /* Finially, delete what is left of the subquery and return
3252   ** success.
3253   */
3254   sqlite3SelectDelete(pSub1);
3255 
3256   return 1;
3257 }
3258 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3259 
3260 /*
3261 ** Analyze the SELECT statement passed as an argument to see if it
3262 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
3263 ** it is, or 0 otherwise. At present, a query is considered to be
3264 ** a min()/max() query if:
3265 **
3266 **   1. There is a single object in the FROM clause.
3267 **
3268 **   2. There is a single expression in the result set, and it is
3269 **      either min(x) or max(x), where x is a column reference.
3270 */
3271 static int minMaxQuery(Parse *pParse, Select *p){
3272   Expr *pExpr;
3273   ExprList *pEList = p->pEList;
3274 
3275   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
3276   pExpr = pEList->a[0].pExpr;
3277   pEList = pExpr->pList;
3278   if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
3279   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
3280   if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
3281   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
3282     return WHERE_ORDERBY_MIN;
3283   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
3284     return WHERE_ORDERBY_MAX;
3285   }
3286   return WHERE_ORDERBY_NORMAL;
3287 }
3288 
3289 /*
3290 ** This routine resolves any names used in the result set of the
3291 ** supplied SELECT statement. If the SELECT statement being resolved
3292 ** is a sub-select, then pOuterNC is a pointer to the NameContext
3293 ** of the parent SELECT.
3294 */
3295 int sqlite3SelectResolve(
3296   Parse *pParse,         /* The parser context */
3297   Select *p,             /* The SELECT statement being coded. */
3298   NameContext *pOuterNC  /* The outer name context. May be NULL. */
3299 ){
3300   ExprList *pEList;          /* Result set. */
3301   int i;                     /* For-loop variable used in multiple places */
3302   NameContext sNC;           /* Local name-context */
3303   ExprList *pGroupBy;        /* The group by clause */
3304 
3305   /* If this routine has run before, return immediately. */
3306   if( p->isResolved ){
3307     assert( !pOuterNC );
3308     return SQLITE_OK;
3309   }
3310   p->isResolved = 1;
3311 
3312   /* If there have already been errors, do nothing. */
3313   if( pParse->nErr>0 ){
3314     return SQLITE_ERROR;
3315   }
3316 
3317   /* Prepare the select statement. This call will allocate all cursors
3318   ** required to handle the tables and subqueries in the FROM clause.
3319   */
3320   if( prepSelectStmt(pParse, p) ){
3321     return SQLITE_ERROR;
3322   }
3323 
3324   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
3325   ** are not allowed to refer to any names, so pass an empty NameContext.
3326   */
3327   memset(&sNC, 0, sizeof(sNC));
3328   sNC.pParse = pParse;
3329   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
3330       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
3331     return SQLITE_ERROR;
3332   }
3333 
3334   /* Set up the local name-context to pass to ExprResolveNames() to
3335   ** resolve the expression-list.
3336   */
3337   sNC.allowAgg = 1;
3338   sNC.pSrcList = p->pSrc;
3339   sNC.pNext = pOuterNC;
3340 
3341   /* Resolve names in the result set. */
3342   pEList = p->pEList;
3343   if( !pEList ) return SQLITE_ERROR;
3344   for(i=0; i<pEList->nExpr; i++){
3345     Expr *pX = pEList->a[i].pExpr;
3346     if( sqlite3ExprResolveNames(&sNC, pX) ){
3347       return SQLITE_ERROR;
3348     }
3349   }
3350 
3351   /* If there are no aggregate functions in the result-set, and no GROUP BY
3352   ** expression, do not allow aggregates in any of the other expressions.
3353   */
3354   assert( !p->isAgg );
3355   pGroupBy = p->pGroupBy;
3356   if( pGroupBy || sNC.hasAgg ){
3357     p->isAgg = 1;
3358   }else{
3359     sNC.allowAgg = 0;
3360   }
3361 
3362   /* If a HAVING clause is present, then there must be a GROUP BY clause.
3363   */
3364   if( p->pHaving && !pGroupBy ){
3365     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
3366     return SQLITE_ERROR;
3367   }
3368 
3369   /* Add the expression list to the name-context before parsing the
3370   ** other expressions in the SELECT statement. This is so that
3371   ** expressions in the WHERE clause (etc.) can refer to expressions by
3372   ** aliases in the result set.
3373   **
3374   ** Minor point: If this is the case, then the expression will be
3375   ** re-evaluated for each reference to it.
3376   */
3377   sNC.pEList = p->pEList;
3378   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
3379      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
3380     return SQLITE_ERROR;
3381   }
3382   if( p->pPrior==0 ){
3383     if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
3384       return SQLITE_ERROR;
3385     }
3386   }
3387   if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
3388     return SQLITE_ERROR;
3389   }
3390 
3391   if( pParse->db->mallocFailed ){
3392     return SQLITE_NOMEM;
3393   }
3394 
3395   /* Make sure the GROUP BY clause does not contain aggregate functions.
3396   */
3397   if( pGroupBy ){
3398     struct ExprList_item *pItem;
3399 
3400     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
3401       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
3402         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
3403             "the GROUP BY clause");
3404         return SQLITE_ERROR;
3405       }
3406     }
3407   }
3408 
3409   /* If this is one SELECT of a compound, be sure to resolve names
3410   ** in the other SELECTs.
3411   */
3412   if( p->pPrior ){
3413     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
3414   }else{
3415     return SQLITE_OK;
3416   }
3417 }
3418 
3419 /*
3420 ** Reset the aggregate accumulator.
3421 **
3422 ** The aggregate accumulator is a set of memory cells that hold
3423 ** intermediate results while calculating an aggregate.  This
3424 ** routine simply stores NULLs in all of those memory cells.
3425 */
3426 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3427   Vdbe *v = pParse->pVdbe;
3428   int i;
3429   struct AggInfo_func *pFunc;
3430   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3431     return;
3432   }
3433   for(i=0; i<pAggInfo->nColumn; i++){
3434     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3435   }
3436   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3437     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3438     if( pFunc->iDistinct>=0 ){
3439       Expr *pE = pFunc->pExpr;
3440       if( pE->pList==0 || pE->pList->nExpr!=1 ){
3441         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
3442            "by an expression");
3443         pFunc->iDistinct = -1;
3444       }else{
3445         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
3446         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3447                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3448       }
3449     }
3450   }
3451 }
3452 
3453 /*
3454 ** Invoke the OP_AggFinalize opcode for every aggregate function
3455 ** in the AggInfo structure.
3456 */
3457 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3458   Vdbe *v = pParse->pVdbe;
3459   int i;
3460   struct AggInfo_func *pF;
3461   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3462     ExprList *pList = pF->pExpr->pList;
3463     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3464                       (void*)pF->pFunc, P4_FUNCDEF);
3465   }
3466 }
3467 
3468 /*
3469 ** Update the accumulator memory cells for an aggregate based on
3470 ** the current cursor position.
3471 */
3472 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3473   Vdbe *v = pParse->pVdbe;
3474   int i;
3475   struct AggInfo_func *pF;
3476   struct AggInfo_col *pC;
3477 
3478   pAggInfo->directMode = 1;
3479   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3480     int nArg;
3481     int addrNext = 0;
3482     int regAgg;
3483     ExprList *pList = pF->pExpr->pList;
3484     if( pList ){
3485       nArg = pList->nExpr;
3486       regAgg = sqlite3GetTempRange(pParse, nArg);
3487       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3488     }else{
3489       nArg = 0;
3490       regAgg = 0;
3491     }
3492     if( pF->iDistinct>=0 ){
3493       addrNext = sqlite3VdbeMakeLabel(v);
3494       assert( nArg==1 );
3495       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3496     }
3497     if( pF->pFunc->needCollSeq ){
3498       CollSeq *pColl = 0;
3499       struct ExprList_item *pItem;
3500       int j;
3501       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
3502       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3503         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3504       }
3505       if( !pColl ){
3506         pColl = pParse->db->pDfltColl;
3507       }
3508       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3509     }
3510     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3511                       (void*)pF->pFunc, P4_FUNCDEF);
3512     sqlite3VdbeChangeP5(v, nArg);
3513     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3514     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3515     if( addrNext ){
3516       sqlite3VdbeResolveLabel(v, addrNext);
3517     }
3518   }
3519   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3520     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3521   }
3522   pAggInfo->directMode = 0;
3523 }
3524 
3525 #if 0
3526 /*
3527 ** This function is used when a SELECT statement is used to create a
3528 ** temporary table for iterating through when running an INSTEAD OF
3529 ** UPDATE or INSTEAD OF DELETE trigger.
3530 **
3531 ** If possible, the SELECT statement is modified so that NULL values
3532 ** are stored in the temporary table for all columns for which the
3533 ** corresponding bit in argument mask is not set. If mask takes the
3534 ** special value 0xffffffff, then all columns are populated.
3535 */
3536 void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){
3537   if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){
3538     ExprList *pEList;
3539     int i;
3540     sqlite3SelectResolve(pParse, p, 0);
3541     pEList = p->pEList;
3542     for(i=0; pEList && i<pEList->nExpr && i<32; i++){
3543       if( !(mask&((u32)1<<i)) ){
3544         sqlite3ExprDelete(pEList->a[i].pExpr);
3545         pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0);
3546       }
3547     }
3548   }
3549 }
3550 #endif
3551 
3552 /*
3553 ** Generate code for the given SELECT statement.
3554 **
3555 ** The results are distributed in various ways depending on the
3556 ** contents of the SelectDest structure pointed to by argument pDest
3557 ** as follows:
3558 **
3559 **     pDest->eDest    Result
3560 **     ------------    -------------------------------------------
3561 **     SRT_Callback    Invoke the callback for each row of the result.
3562 **
3563 **     SRT_Mem         Store first result in memory cell pDest->iParm
3564 **
3565 **     SRT_Set         Store results as keys of table pDest->iParm.
3566 **                     Apply the affinity pDest->affinity before storing them.
3567 **
3568 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3569 **
3570 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3571 **
3572 **     SRT_Table       Store results in temporary table pDest->iParm
3573 **
3574 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3575 **                     the result there. The cursor is left open after
3576 **                     returning.
3577 **
3578 **     SRT_Coroutine   Invoke a co-routine to compute a single row of
3579 **                     the result
3580 **
3581 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3582 **                     set is not empty.
3583 **
3584 **     SRT_Discard     Throw the results away.
3585 **
3586 ** See the selectInnerLoop() function for a canonical listing of the
3587 ** allowed values of eDest and their meanings.
3588 **
3589 ** This routine returns the number of errors.  If any errors are
3590 ** encountered, then an appropriate error message is left in
3591 ** pParse->zErrMsg.
3592 **
3593 ** This routine does NOT free the Select structure passed in.  The
3594 ** calling function needs to do that.
3595 **
3596 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
3597 ** SELECT is a subquery.  This routine may try to combine this SELECT
3598 ** with its parent to form a single flat query.  In so doing, it might
3599 ** change the parent query from a non-aggregate to an aggregate query.
3600 ** For that reason, the pParentAgg flag is passed as a pointer, so it
3601 ** can be changed.
3602 **
3603 ** Example 1:   The meaning of the pParent parameter.
3604 **
3605 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
3606 **    \                      \_______ subquery _______/        /
3607 **     \                                                      /
3608 **      \____________________ outer query ___________________/
3609 **
3610 ** This routine is called for the outer query first.   For that call,
3611 ** pParent will be NULL.  During the processing of the outer query, this
3612 ** routine is called recursively to handle the subquery.  For the recursive
3613 ** call, pParent will point to the outer query.  Because the subquery is
3614 ** the second element in a three-way join, the parentTab parameter will
3615 ** be 1 (the 2nd value of a 0-indexed array.)
3616 */
3617 int sqlite3Select(
3618   Parse *pParse,         /* The parser context */
3619   Select *p,             /* The SELECT statement being coded. */
3620   SelectDest *pDest,     /* What to do with the query results */
3621   Select *pParent,       /* Another SELECT for which this is a sub-query */
3622   int parentTab,         /* Index in pParent->pSrc of this query */
3623   int *pParentAgg        /* True if pParent uses aggregate functions */
3624 ){
3625   int i, j;              /* Loop counters */
3626   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3627   Vdbe *v;               /* The virtual machine under construction */
3628   int isAgg;             /* True for select lists like "count(*)" */
3629   ExprList *pEList;      /* List of columns to extract. */
3630   SrcList *pTabList;     /* List of tables to select from */
3631   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3632   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3633   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3634   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3635   int isDistinct;        /* True if the DISTINCT keyword is present */
3636   int distinct;          /* Table to use for the distinct set */
3637   int rc = 1;            /* Value to return from this function */
3638   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3639   AggInfo sAggInfo;      /* Information used by aggregate queries */
3640   int iEnd;              /* Address of the end of the query */
3641   sqlite3 *db;           /* The database connection */
3642 
3643   db = pParse->db;
3644   if( p==0 || db->mallocFailed || pParse->nErr ){
3645     return 1;
3646   }
3647   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3648   memset(&sAggInfo, 0, sizeof(sAggInfo));
3649 
3650   pOrderBy = p->pOrderBy;
3651   if( IgnorableOrderby(pDest) ){
3652     p->pOrderBy = 0;
3653 
3654     /* In these cases the DISTINCT operator makes no difference to the
3655     ** results, so remove it if it were specified.
3656     */
3657     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3658            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3659     p->isDistinct = 0;
3660   }
3661   if( sqlite3SelectResolve(pParse, p, 0) ){
3662     goto select_end;
3663   }
3664   p->pOrderBy = pOrderBy;
3665 
3666 
3667   /* Make local copies of the parameters for this query.
3668   */
3669   pTabList = p->pSrc;
3670   isAgg = p->isAgg;
3671   pEList = p->pEList;
3672   if( pEList==0 ) goto select_end;
3673 
3674   /*
3675   ** Do not even attempt to generate any code if we have already seen
3676   ** errors before this routine starts.
3677   */
3678   if( pParse->nErr>0 ) goto select_end;
3679 
3680   /* ORDER BY is ignored for some destinations.
3681   */
3682   if( IgnorableOrderby(pDest) ){
3683     pOrderBy = 0;
3684   }
3685 
3686   /* Begin generating code.
3687   */
3688   v = sqlite3GetVdbe(pParse);
3689   if( v==0 ) goto select_end;
3690 
3691   /* Generate code for all sub-queries in the FROM clause
3692   */
3693 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3694   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3695     struct SrcList_item *pItem = &pTabList->a[i];
3696     SelectDest dest;
3697     Select *pSub = pItem->pSelect;
3698     int isAggSub;
3699     char *zName = pItem->zName;
3700 
3701     if( pSub==0 || pItem->isPopulated ) continue;
3702     if( zName!=0 ){   /* An sql view */
3703       const char *zSavedAuthContext = pParse->zAuthContext;
3704       pParse->zAuthContext = zName;
3705       rc = sqlite3SelectResolve(pParse, pSub, 0);
3706       pParse->zAuthContext = zSavedAuthContext;
3707       if( rc ){
3708         goto select_end;
3709       }
3710     }
3711 
3712     /* Increment Parse.nHeight by the height of the largest expression
3713     ** tree refered to by this, the parent select. The child select
3714     ** may contain expression trees of at most
3715     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3716     ** more conservative than necessary, but much easier than enforcing
3717     ** an exact limit.
3718     */
3719     pParse->nHeight += sqlite3SelectExprHeight(p);
3720 
3721     /* Check to see if the subquery can be absorbed into the parent. */
3722     isAggSub = pSub->isAgg;
3723     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3724       if( isAggSub ){
3725         p->isAgg = isAgg = 1;
3726       }
3727       i = -1;
3728     }else{
3729       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3730       sqlite3Select(pParse, pSub, &dest, p, i, &isAgg);
3731     }
3732     if( pParse->nErr || db->mallocFailed ){
3733       goto select_end;
3734     }
3735     pParse->nHeight -= sqlite3SelectExprHeight(p);
3736     pTabList = p->pSrc;
3737     if( !IgnorableOrderby(pDest) ){
3738       pOrderBy = p->pOrderBy;
3739     }
3740   }
3741   pEList = p->pEList;
3742 #endif
3743   pWhere = p->pWhere;
3744   pGroupBy = p->pGroupBy;
3745   pHaving = p->pHaving;
3746   isDistinct = p->isDistinct;
3747 
3748 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3749   /* If there is are a sequence of queries, do the earlier ones first.
3750   */
3751   if( p->pPrior ){
3752     if( p->pRightmost==0 ){
3753       Select *pLoop, *pRight = 0;
3754       int cnt = 0;
3755       int mxSelect;
3756       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3757         pLoop->pRightmost = p;
3758         pLoop->pNext = pRight;
3759         pRight = pLoop;
3760       }
3761       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3762       if( mxSelect && cnt>mxSelect ){
3763         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3764         return 1;
3765       }
3766     }
3767     return multiSelect(pParse, p, pDest);
3768   }
3769 #endif
3770 
3771   /* If writing to memory or generating a set
3772   ** only a single column may be output.
3773   */
3774 #ifndef SQLITE_OMIT_SUBQUERY
3775   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3776     goto select_end;
3777   }
3778 #endif
3779 
3780   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3781   ** GROUP BY may use an index, DISTINCT never does.
3782   */
3783   if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
3784     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
3785     pGroupBy = p->pGroupBy;
3786     p->isDistinct = 0;
3787     isDistinct = 0;
3788   }
3789 
3790   /* If there is an ORDER BY clause, then this sorting
3791   ** index might end up being unused if the data can be
3792   ** extracted in pre-sorted order.  If that is the case, then the
3793   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3794   ** we figure out that the sorting index is not needed.  The addrSortIndex
3795   ** variable is used to facilitate that change.
3796   */
3797   if( pOrderBy ){
3798     KeyInfo *pKeyInfo;
3799     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3800     pOrderBy->iECursor = pParse->nTab++;
3801     p->addrOpenEphm[2] = addrSortIndex =
3802       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3803                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3804                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3805   }else{
3806     addrSortIndex = -1;
3807   }
3808 
3809   /* If the output is destined for a temporary table, open that table.
3810   */
3811   if( pDest->eDest==SRT_EphemTab ){
3812     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3813   }
3814 
3815   /* Set the limiter.
3816   */
3817   iEnd = sqlite3VdbeMakeLabel(v);
3818   computeLimitRegisters(pParse, p, iEnd);
3819 
3820   /* Open a virtual index to use for the distinct set.
3821   */
3822   if( isDistinct ){
3823     KeyInfo *pKeyInfo;
3824     assert( isAgg || pGroupBy );
3825     distinct = pParse->nTab++;
3826     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3827     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3828                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3829   }else{
3830     distinct = -1;
3831   }
3832 
3833   /* Aggregate and non-aggregate queries are handled differently */
3834   if( !isAgg && pGroupBy==0 ){
3835     /* This case is for non-aggregate queries
3836     ** Begin the database scan
3837     */
3838     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3839     if( pWInfo==0 ) goto select_end;
3840 
3841     /* If sorting index that was created by a prior OP_OpenEphemeral
3842     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3843     ** into an OP_Noop.
3844     */
3845     if( addrSortIndex>=0 && pOrderBy==0 ){
3846       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3847       p->addrOpenEphm[2] = -1;
3848     }
3849 
3850     /* Use the standard inner loop
3851     */
3852     assert(!isDistinct);
3853     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3854                     pWInfo->iContinue, pWInfo->iBreak);
3855 
3856     /* End the database scan loop.
3857     */
3858     sqlite3WhereEnd(pWInfo);
3859   }else{
3860     /* This is the processing for aggregate queries */
3861     NameContext sNC;    /* Name context for processing aggregate information */
3862     int iAMem;          /* First Mem address for storing current GROUP BY */
3863     int iBMem;          /* First Mem address for previous GROUP BY */
3864     int iUseFlag;       /* Mem address holding flag indicating that at least
3865                         ** one row of the input to the aggregator has been
3866                         ** processed */
3867     int iAbortFlag;     /* Mem address which causes query abort if positive */
3868     int groupBySort;    /* Rows come from source in GROUP BY order */
3869 
3870 
3871     /* The following variables hold addresses or labels for parts of the
3872     ** virtual machine program we are putting together */
3873     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3874     int regOutputRow;       /* Return address register for output subroutine */
3875     int addrSetAbort;       /* Set the abort flag and return */
3876     int addrInitializeLoop; /* Start of code that initializes the input loop */
3877     int addrTopOfLoop;      /* Top of the input loop */
3878     int addrEnd;            /* End of all processing */
3879     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3880     int addrReset;          /* Subroutine for resetting the accumulator */
3881     int regReset;           /* Return address register for reset subroutine */
3882 
3883     addrEnd = sqlite3VdbeMakeLabel(v);
3884 
3885     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3886     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3887     ** SELECT statement.
3888     */
3889     memset(&sNC, 0, sizeof(sNC));
3890     sNC.pParse = pParse;
3891     sNC.pSrcList = pTabList;
3892     sNC.pAggInfo = &sAggInfo;
3893     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3894     sAggInfo.pGroupBy = pGroupBy;
3895     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3896     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3897     if( pHaving ){
3898       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3899     }
3900     sAggInfo.nAccumulator = sAggInfo.nColumn;
3901     for(i=0; i<sAggInfo.nFunc; i++){
3902       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
3903     }
3904     if( db->mallocFailed ) goto select_end;
3905 
3906     /* Processing for aggregates with GROUP BY is very different and
3907     ** much more complex than aggregates without a GROUP BY.
3908     */
3909     if( pGroupBy ){
3910       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3911       int j1;
3912 
3913       /* Create labels that we will be needing
3914       */
3915       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3916 
3917       /* If there is a GROUP BY clause we might need a sorting index to
3918       ** implement it.  Allocate that sorting index now.  If it turns out
3919       ** that we do not need it after all, the OpenEphemeral instruction
3920       ** will be converted into a Noop.
3921       */
3922       sAggInfo.sortingIdx = pParse->nTab++;
3923       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3924       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3925           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3926           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3927 
3928       /* Initialize memory locations used by GROUP BY aggregate processing
3929       */
3930       iUseFlag = ++pParse->nMem;
3931       iAbortFlag = ++pParse->nMem;
3932       iAMem = pParse->nMem + 1;
3933       pParse->nMem += pGroupBy->nExpr;
3934       iBMem = pParse->nMem + 1;
3935       pParse->nMem += pGroupBy->nExpr;
3936       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3937       VdbeComment((v, "clear abort flag"));
3938       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3939       VdbeComment((v, "indicate accumulator empty"));
3940       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);
3941 
3942       /* Generate a subroutine that outputs a single row of the result
3943       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3944       ** is less than or equal to zero, the subroutine is a no-op.  If
3945       ** the processing calls for the query to abort, this subroutine
3946       ** increments the iAbortFlag memory location before returning in
3947       ** order to signal the caller to abort.
3948       */
3949       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3950       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
3951       VdbeComment((v, "set abort flag"));
3952       regOutputRow = ++pParse->nMem;
3953       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3954       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3955       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
3956       VdbeComment((v, "Groupby result generator entry point"));
3957       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3958       finalizeAggFunctions(pParse, &sAggInfo);
3959       if( pHaving ){
3960         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
3961       }
3962       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3963                       distinct, pDest,
3964                       addrOutputRow+1, addrSetAbort);
3965       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3966       VdbeComment((v, "end groupby result generator"));
3967 
3968       /* Generate a subroutine that will reset the group-by accumulator
3969       */
3970       addrReset = sqlite3VdbeCurrentAddr(v);
3971       regReset = ++pParse->nMem;
3972       resetAccumulator(pParse, &sAggInfo);
3973       sqlite3VdbeAddOp1(v, OP_Return, regReset);
3974 
3975       /* Begin a loop that will extract all source rows in GROUP BY order.
3976       ** This might involve two separate loops with an OP_Sort in between, or
3977       ** it might be a single loop that uses an index to extract information
3978       ** in the right order to begin with.
3979       */
3980       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3981       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3982       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3983       if( pWInfo==0 ) goto select_end;
3984       if( pGroupBy==0 ){
3985         /* The optimizer is able to deliver rows in group by order so
3986         ** we do not have to sort.  The OP_OpenEphemeral table will be
3987         ** cancelled later because we still need to use the pKeyInfo
3988         */
3989         pGroupBy = p->pGroupBy;
3990         groupBySort = 0;
3991       }else{
3992         /* Rows are coming out in undetermined order.  We have to push
3993         ** each row into a sorting index, terminate the first loop,
3994         ** then loop over the sorting index in order to get the output
3995         ** in sorted order
3996         */
3997         int regBase;
3998         int regRecord;
3999         int nCol;
4000         int nGroupBy;
4001 
4002         groupBySort = 1;
4003         nGroupBy = pGroupBy->nExpr;
4004         nCol = nGroupBy + 1;
4005         j = nGroupBy+1;
4006         for(i=0; i<sAggInfo.nColumn; i++){
4007           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4008             nCol++;
4009             j++;
4010           }
4011         }
4012         regBase = sqlite3GetTempRange(pParse, nCol);
4013         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4014         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4015         j = nGroupBy+1;
4016         for(i=0; i<sAggInfo.nColumn; i++){
4017           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4018           if( pCol->iSorterColumn>=j ){
4019             int r1 = j + regBase;
4020             int r2 = sqlite3ExprCodeGetColumn(pParse,
4021                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
4022             if( r1!=r2 ){
4023               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4024             }
4025             j++;
4026           }
4027         }
4028         regRecord = sqlite3GetTempReg(pParse);
4029         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4030         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
4031         sqlite3ReleaseTempReg(pParse, regRecord);
4032         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4033         sqlite3WhereEnd(pWInfo);
4034         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
4035         VdbeComment((v, "GROUP BY sort"));
4036         sAggInfo.useSortingIdx = 1;
4037       }
4038 
4039       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4040       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4041       ** Then compare the current GROUP BY terms against the GROUP BY terms
4042       ** from the previous row currently stored in a0, a1, a2...
4043       */
4044       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4045       for(j=0; j<pGroupBy->nExpr; j++){
4046         if( groupBySort ){
4047           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
4048         }else{
4049           sAggInfo.directMode = 1;
4050           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4051         }
4052       }
4053       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4054                           (char*)pKeyInfo, P4_KEYINFO);
4055       j1 = sqlite3VdbeCurrentAddr(v);
4056       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4057 
4058       /* Generate code that runs whenever the GROUP BY changes.
4059       ** Changes in the GROUP BY are detected by the previous code
4060       ** block.  If there were no changes, this block is skipped.
4061       **
4062       ** This code copies current group by terms in b0,b1,b2,...
4063       ** over to a0,a1,a2.  It then calls the output subroutine
4064       ** and resets the aggregate accumulator registers in preparation
4065       ** for the next GROUP BY batch.
4066       */
4067       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4068       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4069       VdbeComment((v, "output one row"));
4070       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4071       VdbeComment((v, "check abort flag"));
4072       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4073       VdbeComment((v, "reset accumulator"));
4074 
4075       /* Update the aggregate accumulators based on the content of
4076       ** the current row
4077       */
4078       sqlite3VdbeJumpHere(v, j1);
4079       updateAccumulator(pParse, &sAggInfo);
4080       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4081       VdbeComment((v, "indicate data in accumulator"));
4082 
4083       /* End of the loop
4084       */
4085       if( groupBySort ){
4086         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
4087       }else{
4088         sqlite3WhereEnd(pWInfo);
4089         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
4090       }
4091 
4092       /* Output the final row of result
4093       */
4094       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4095       VdbeComment((v, "output final row"));
4096 
4097     } /* endif pGroupBy */
4098     else {
4099       ExprList *pMinMax = 0;
4100       ExprList *pDel = 0;
4101       u8 flag;
4102 
4103       /* Check if the query is of one of the following forms:
4104       **
4105       **   SELECT min(x) FROM ...
4106       **   SELECT max(x) FROM ...
4107       **
4108       ** If it is, then ask the code in where.c to attempt to sort results
4109       ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4110       ** If where.c is able to produce results sorted in this order, then
4111       ** add vdbe code to break out of the processing loop after the
4112       ** first iteration (since the first iteration of the loop is
4113       ** guaranteed to operate on the row with the minimum or maximum
4114       ** value of x, the only row required).
4115       **
4116       ** A special flag must be passed to sqlite3WhereBegin() to slightly
4117       ** modify behaviour as follows:
4118       **
4119       **   + If the query is a "SELECT min(x)", then the loop coded by
4120       **     where.c should not iterate over any values with a NULL value
4121       **     for x.
4122       **
4123       **   + The optimizer code in where.c (the thing that decides which
4124       **     index or indices to use) should place a different priority on
4125       **     satisfying the 'ORDER BY' clause than it does in other cases.
4126       **     Refer to code and comments in where.c for details.
4127       */
4128       flag = minMaxQuery(pParse, p);
4129       if( flag ){
4130         pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
4131         if( pMinMax && !db->mallocFailed ){
4132           pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
4133           pMinMax->a[0].pExpr->op = TK_COLUMN;
4134         }
4135       }
4136 
4137       /* This case runs if the aggregate has no GROUP BY clause.  The
4138       ** processing is much simpler since there is only a single row
4139       ** of output.
4140       */
4141       resetAccumulator(pParse, &sAggInfo);
4142       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4143       if( pWInfo==0 ){
4144         sqlite3ExprListDelete(pDel);
4145         goto select_end;
4146       }
4147       updateAccumulator(pParse, &sAggInfo);
4148       if( !pMinMax && flag ){
4149         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4150         VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
4151       }
4152       sqlite3WhereEnd(pWInfo);
4153       finalizeAggFunctions(pParse, &sAggInfo);
4154       pOrderBy = 0;
4155       if( pHaving ){
4156         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4157       }
4158       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4159                       pDest, addrEnd, addrEnd);
4160 
4161       sqlite3ExprListDelete(pDel);
4162     }
4163     sqlite3VdbeResolveLabel(v, addrEnd);
4164 
4165   } /* endif aggregate query */
4166 
4167   /* If there is an ORDER BY clause, then we need to sort the results
4168   ** and send them to the callback one by one.
4169   */
4170   if( pOrderBy ){
4171     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4172   }
4173 
4174 #ifndef SQLITE_OMIT_SUBQUERY
4175   /* If this was a subquery, we have now converted the subquery into a
4176   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
4177   ** this subquery from being evaluated again and to force the use of
4178   ** the temporary table.
4179   */
4180   if( pParent ){
4181     assert( pParent->pSrc->nSrc>parentTab );
4182     assert( pParent->pSrc->a[parentTab].pSelect==p );
4183     pParent->pSrc->a[parentTab].isPopulated = 1;
4184   }
4185 #endif
4186 
4187   /* Jump here to skip this query
4188   */
4189   sqlite3VdbeResolveLabel(v, iEnd);
4190 
4191   /* The SELECT was successfully coded.   Set the return code to 0
4192   ** to indicate no errors.
4193   */
4194   rc = 0;
4195 
4196   /* Control jumps to here if an error is encountered above, or upon
4197   ** successful coding of the SELECT.
4198   */
4199 select_end:
4200 
4201   /* Identify column names if we will be using them in a callback.  This
4202   ** step is skipped if the output is going to some other destination.
4203   */
4204   if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){
4205     generateColumnNames(pParse, pTabList, pEList);
4206   }
4207 
4208   sqlite3_free(sAggInfo.aCol);
4209   sqlite3_free(sAggInfo.aFunc);
4210   return rc;
4211 }
4212 
4213 #if defined(SQLITE_DEBUG)
4214 /*
4215 *******************************************************************************
4216 ** The following code is used for testing and debugging only.  The code
4217 ** that follows does not appear in normal builds.
4218 **
4219 ** These routines are used to print out the content of all or part of a
4220 ** parse structures such as Select or Expr.  Such printouts are useful
4221 ** for helping to understand what is happening inside the code generator
4222 ** during the execution of complex SELECT statements.
4223 **
4224 ** These routine are not called anywhere from within the normal
4225 ** code base.  Then are intended to be called from within the debugger
4226 ** or from temporary "printf" statements inserted for debugging.
4227 */
4228 void sqlite3PrintExpr(Expr *p){
4229   if( p->token.z && p->token.n>0 ){
4230     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
4231   }else{
4232     sqlite3DebugPrintf("(%d", p->op);
4233   }
4234   if( p->pLeft ){
4235     sqlite3DebugPrintf(" ");
4236     sqlite3PrintExpr(p->pLeft);
4237   }
4238   if( p->pRight ){
4239     sqlite3DebugPrintf(" ");
4240     sqlite3PrintExpr(p->pRight);
4241   }
4242   sqlite3DebugPrintf(")");
4243 }
4244 void sqlite3PrintExprList(ExprList *pList){
4245   int i;
4246   for(i=0; i<pList->nExpr; i++){
4247     sqlite3PrintExpr(pList->a[i].pExpr);
4248     if( i<pList->nExpr-1 ){
4249       sqlite3DebugPrintf(", ");
4250     }
4251   }
4252 }
4253 void sqlite3PrintSelect(Select *p, int indent){
4254   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4255   sqlite3PrintExprList(p->pEList);
4256   sqlite3DebugPrintf("\n");
4257   if( p->pSrc ){
4258     char *zPrefix;
4259     int i;
4260     zPrefix = "FROM";
4261     for(i=0; i<p->pSrc->nSrc; i++){
4262       struct SrcList_item *pItem = &p->pSrc->a[i];
4263       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4264       zPrefix = "";
4265       if( pItem->pSelect ){
4266         sqlite3DebugPrintf("(\n");
4267         sqlite3PrintSelect(pItem->pSelect, indent+10);
4268         sqlite3DebugPrintf("%*s)", indent+8, "");
4269       }else if( pItem->zName ){
4270         sqlite3DebugPrintf("%s", pItem->zName);
4271       }
4272       if( pItem->pTab ){
4273         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4274       }
4275       if( pItem->zAlias ){
4276         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4277       }
4278       if( i<p->pSrc->nSrc-1 ){
4279         sqlite3DebugPrintf(",");
4280       }
4281       sqlite3DebugPrintf("\n");
4282     }
4283   }
4284   if( p->pWhere ){
4285     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4286     sqlite3PrintExpr(p->pWhere);
4287     sqlite3DebugPrintf("\n");
4288   }
4289   if( p->pGroupBy ){
4290     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4291     sqlite3PrintExprList(p->pGroupBy);
4292     sqlite3DebugPrintf("\n");
4293   }
4294   if( p->pHaving ){
4295     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4296     sqlite3PrintExpr(p->pHaving);
4297     sqlite3DebugPrintf("\n");
4298   }
4299   if( p->pOrderBy ){
4300     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4301     sqlite3PrintExprList(p->pOrderBy);
4302     sqlite3DebugPrintf("\n");
4303   }
4304 }
4305 /* End of the structure debug printing code
4306 *****************************************************************************/
4307 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4308