xref: /sqlite-3.40.0/src/select.c (revision 40c9becc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* 0: Not distinct. 1: DISTICT  2: DISTINCT and ORDER BY */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   assert( db!=0 );
80   while( p ){
81     Select *pPrior = p->pPrior;
82     sqlite3ExprListDelete(db, p->pEList);
83     sqlite3SrcListDelete(db, p->pSrc);
84     sqlite3ExprDelete(db, p->pWhere);
85     sqlite3ExprListDelete(db, p->pGroupBy);
86     sqlite3ExprDelete(db, p->pHaving);
87     sqlite3ExprListDelete(db, p->pOrderBy);
88     sqlite3ExprDelete(db, p->pLimit);
89     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
90 #ifndef SQLITE_OMIT_WINDOWFUNC
91     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
92       sqlite3WindowListDelete(db, p->pWinDefn);
93     }
94     while( p->pWin ){
95       assert( p->pWin->ppThis==&p->pWin );
96       sqlite3WindowUnlinkFromSelect(p->pWin);
97     }
98 #endif
99     if( bFree ) sqlite3DbNNFreeNN(db, p);
100     p = pPrior;
101     bFree = 1;
102   }
103 }
104 
105 /*
106 ** Initialize a SelectDest structure.
107 */
108 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
109   pDest->eDest = (u8)eDest;
110   pDest->iSDParm = iParm;
111   pDest->iSDParm2 = 0;
112   pDest->zAffSdst = 0;
113   pDest->iSdst = 0;
114   pDest->nSdst = 0;
115 }
116 
117 
118 /*
119 ** Allocate a new Select structure and return a pointer to that
120 ** structure.
121 */
122 Select *sqlite3SelectNew(
123   Parse *pParse,        /* Parsing context */
124   ExprList *pEList,     /* which columns to include in the result */
125   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
126   Expr *pWhere,         /* the WHERE clause */
127   ExprList *pGroupBy,   /* the GROUP BY clause */
128   Expr *pHaving,        /* the HAVING clause */
129   ExprList *pOrderBy,   /* the ORDER BY clause */
130   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
131   Expr *pLimit          /* LIMIT value.  NULL means not used */
132 ){
133   Select *pNew, *pAllocated;
134   Select standin;
135   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
136   if( pNew==0 ){
137     assert( pParse->db->mallocFailed );
138     pNew = &standin;
139   }
140   if( pEList==0 ){
141     pEList = sqlite3ExprListAppend(pParse, 0,
142                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
143   }
144   pNew->pEList = pEList;
145   pNew->op = TK_SELECT;
146   pNew->selFlags = selFlags;
147   pNew->iLimit = 0;
148   pNew->iOffset = 0;
149   pNew->selId = ++pParse->nSelect;
150   pNew->addrOpenEphm[0] = -1;
151   pNew->addrOpenEphm[1] = -1;
152   pNew->nSelectRow = 0;
153   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
154   pNew->pSrc = pSrc;
155   pNew->pWhere = pWhere;
156   pNew->pGroupBy = pGroupBy;
157   pNew->pHaving = pHaving;
158   pNew->pOrderBy = pOrderBy;
159   pNew->pPrior = 0;
160   pNew->pNext = 0;
161   pNew->pLimit = pLimit;
162   pNew->pWith = 0;
163 #ifndef SQLITE_OMIT_WINDOWFUNC
164   pNew->pWin = 0;
165   pNew->pWinDefn = 0;
166 #endif
167   if( pParse->db->mallocFailed ) {
168     clearSelect(pParse->db, pNew, pNew!=&standin);
169     pAllocated = 0;
170   }else{
171     assert( pNew->pSrc!=0 || pParse->nErr>0 );
172   }
173   return pAllocated;
174 }
175 
176 
177 /*
178 ** Delete the given Select structure and all of its substructures.
179 */
180 void sqlite3SelectDelete(sqlite3 *db, Select *p){
181   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
182 }
183 
184 /*
185 ** Return a pointer to the right-most SELECT statement in a compound.
186 */
187 static Select *findRightmost(Select *p){
188   while( p->pNext ) p = p->pNext;
189   return p;
190 }
191 
192 /*
193 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
194 ** type of join.  Return an integer constant that expresses that type
195 ** in terms of the following bit values:
196 **
197 **     JT_INNER
198 **     JT_CROSS
199 **     JT_OUTER
200 **     JT_NATURAL
201 **     JT_LEFT
202 **     JT_RIGHT
203 **
204 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
205 **
206 ** If an illegal or unsupported join type is seen, then still return
207 ** a join type, but put an error in the pParse structure.
208 **
209 ** These are the valid join types:
210 **
211 **
212 **      pA       pB       pC               Return Value
213 **     -------  -----    -----             ------------
214 **     CROSS      -        -                 JT_CROSS
215 **     INNER      -        -                 JT_INNER
216 **     LEFT       -        -                 JT_LEFT|JT_OUTER
217 **     LEFT     OUTER      -                 JT_LEFT|JT_OUTER
218 **     RIGHT      -        -                 JT_RIGHT|JT_OUTER
219 **     RIGHT    OUTER      -                 JT_RIGHT|JT_OUTER
220 **     FULL       -        -                 JT_LEFT|JT_RIGHT|JT_OUTER
221 **     FULL     OUTER      -                 JT_LEFT|JT_RIGHT|JT_OUTER
222 **     NATURAL  INNER      -                 JT_NATURAL|JT_INNER
223 **     NATURAL  LEFT       -                 JT_NATURAL|JT_LEFT|JT_OUTER
224 **     NATURAL  LEFT     OUTER               JT_NATURAL|JT_LEFT|JT_OUTER
225 **     NATURAL  RIGHT      -                 JT_NATURAL|JT_RIGHT|JT_OUTER
226 **     NATURAL  RIGHT    OUTER               JT_NATURAL|JT_RIGHT|JT_OUTER
227 **     NATURAL  FULL       -                 JT_NATURAL|JT_LEFT|JT_RIGHT
228 **     NATURAL  FULL     OUTER               JT_NATRUAL|JT_LEFT|JT_RIGHT
229 **
230 ** To preserve historical compatibly, SQLite also accepts a variety
231 ** of other non-standard and in many cases non-sensical join types.
232 ** This routine makes as much sense at it can from the nonsense join
233 ** type and returns a result.  Examples of accepted nonsense join types
234 ** include but are not limited to:
235 **
236 **          INNER CROSS JOIN        ->   same as JOIN
237 **          NATURAL CROSS JOIN      ->   same as NATURAL JOIN
238 **          OUTER LEFT JOIN         ->   same as LEFT JOIN
239 **          LEFT NATURAL JOIN       ->   same as NATURAL LEFT JOIN
240 **          LEFT RIGHT JOIN         ->   same as FULL JOIN
241 **          RIGHT OUTER FULL JOIN   ->   same as FULL JOIN
242 **          CROSS CROSS CROSS JOIN  ->   same as JOIN
243 **
244 ** The only restrictions on the join type name are:
245 **
246 **    *   "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
247 **        or "FULL".
248 **
249 **    *   "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
250 **        or "FULL".
251 **
252 **    *   If "OUTER" is present then there must also be one of
253 **        "LEFT", "RIGHT", or "FULL"
254 */
255 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
256   int jointype = 0;
257   Token *apAll[3];
258   Token *p;
259                              /*   0123456789 123456789 123456789 123 */
260   static const char zKeyText[] = "naturaleftouterightfullinnercross";
261   static const struct {
262     u8 i;        /* Beginning of keyword text in zKeyText[] */
263     u8 nChar;    /* Length of the keyword in characters */
264     u8 code;     /* Join type mask */
265   } aKeyword[] = {
266     /* (0) natural */ { 0,  7, JT_NATURAL                },
267     /* (1) left    */ { 6,  4, JT_LEFT|JT_OUTER          },
268     /* (2) outer   */ { 10, 5, JT_OUTER                  },
269     /* (3) right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
270     /* (4) full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
271     /* (5) inner   */ { 23, 5, JT_INNER                  },
272     /* (6) cross   */ { 28, 5, JT_INNER|JT_CROSS         },
273   };
274   int i, j;
275   apAll[0] = pA;
276   apAll[1] = pB;
277   apAll[2] = pC;
278   for(i=0; i<3 && apAll[i]; i++){
279     p = apAll[i];
280     for(j=0; j<ArraySize(aKeyword); j++){
281       if( p->n==aKeyword[j].nChar
282           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
283         jointype |= aKeyword[j].code;
284         break;
285       }
286     }
287     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
288     if( j>=ArraySize(aKeyword) ){
289       jointype |= JT_ERROR;
290       break;
291     }
292   }
293   if(
294      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
295      (jointype & JT_ERROR)!=0 ||
296      (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
297   ){
298     const char *zSp1 = " ";
299     const char *zSp2 = " ";
300     if( pB==0 ){ zSp1++; }
301     if( pC==0 ){ zSp2++; }
302     sqlite3ErrorMsg(pParse, "unknown join type: "
303        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
304     jointype = JT_INNER;
305   }
306   return jointype;
307 }
308 
309 /*
310 ** Return the index of a column in a table.  Return -1 if the column
311 ** is not contained in the table.
312 */
313 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
314   int i;
315   u8 h = sqlite3StrIHash(zCol);
316   Column *pCol;
317   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
318     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
319   }
320   return -1;
321 }
322 
323 /*
324 ** Mark a subquery result column as having been used.
325 */
326 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
327   assert( pItem!=0 );
328   assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
329   if( pItem->fg.isNestedFrom ){
330     ExprList *pResults;
331     assert( pItem->pSelect!=0 );
332     pResults = pItem->pSelect->pEList;
333     assert( pResults!=0 );
334     assert( iCol>=0 && iCol<pResults->nExpr );
335     pResults->a[iCol].fg.bUsed = 1;
336   }
337 }
338 
339 /*
340 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
341 ** table that has a column named zCol.  The search is left-to-right.
342 ** The first match found is returned.
343 **
344 ** When found, set *piTab and *piCol to the table index and column index
345 ** of the matching column and return TRUE.
346 **
347 ** If not found, return FALSE.
348 */
349 static int tableAndColumnIndex(
350   SrcList *pSrc,       /* Array of tables to search */
351   int iStart,          /* First member of pSrc->a[] to check */
352   int iEnd,            /* Last member of pSrc->a[] to check */
353   const char *zCol,    /* Name of the column we are looking for */
354   int *piTab,          /* Write index of pSrc->a[] here */
355   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
356   int bIgnoreHidden    /* Ignore hidden columns */
357 ){
358   int i;               /* For looping over tables in pSrc */
359   int iCol;            /* Index of column matching zCol */
360 
361   assert( iEnd<pSrc->nSrc );
362   assert( iStart>=0 );
363   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
364 
365   for(i=iStart; i<=iEnd; i++){
366     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
367     if( iCol>=0
368      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
369     ){
370       if( piTab ){
371         sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
372         *piTab = i;
373         *piCol = iCol;
374       }
375       return 1;
376     }
377   }
378   return 0;
379 }
380 
381 /*
382 ** Set the EP_OuterON property on all terms of the given expression.
383 ** And set the Expr.w.iJoin to iTable for every term in the
384 ** expression.
385 **
386 ** The EP_OuterON property is used on terms of an expression to tell
387 ** the OUTER JOIN processing logic that this term is part of the
388 ** join restriction specified in the ON or USING clause and not a part
389 ** of the more general WHERE clause.  These terms are moved over to the
390 ** WHERE clause during join processing but we need to remember that they
391 ** originated in the ON or USING clause.
392 **
393 ** The Expr.w.iJoin tells the WHERE clause processing that the
394 ** expression depends on table w.iJoin even if that table is not
395 ** explicitly mentioned in the expression.  That information is needed
396 ** for cases like this:
397 **
398 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
399 **
400 ** The where clause needs to defer the handling of the t1.x=5
401 ** term until after the t2 loop of the join.  In that way, a
402 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
403 ** defer the handling of t1.x=5, it will be processed immediately
404 ** after the t1 loop and rows with t1.x!=5 will never appear in
405 ** the output, which is incorrect.
406 */
407 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
408   assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
409   while( p ){
410     ExprSetProperty(p, joinFlag);
411     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
412     ExprSetVVAProperty(p, EP_NoReduce);
413     p->w.iJoin = iTable;
414     if( p->op==TK_FUNCTION ){
415       assert( ExprUseXList(p) );
416       if( p->x.pList ){
417         int i;
418         for(i=0; i<p->x.pList->nExpr; i++){
419           sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
420         }
421       }
422     }
423     sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
424     p = p->pRight;
425   }
426 }
427 
428 /* Undo the work of sqlite3SetJoinExpr().  This is used when a LEFT JOIN
429 ** is simplified into an ordinary JOIN, and when an ON expression is
430 ** "pushed down" into the WHERE clause of a subquery.
431 **
432 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
433 ** an ordinary term that omits the EP_OuterON mark.  Or if iTable<0, then
434 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
435 **
436 ** If nullable is true, that means that Expr p might evaluate to NULL even
437 ** if it is a reference to a NOT NULL column.  This can happen, for example,
438 ** if the table that p references is on the left side of a RIGHT JOIN.
439 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
440 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
441 */
442 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
443   while( p ){
444     if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
445       ExprClearProperty(p, EP_OuterON|EP_InnerON);
446       if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
447     }
448     if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
449       ExprClearProperty(p, EP_CanBeNull);
450     }
451     if( p->op==TK_FUNCTION ){
452       assert( ExprUseXList(p) );
453       if( p->x.pList ){
454         int i;
455         for(i=0; i<p->x.pList->nExpr; i++){
456           unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
457         }
458       }
459     }
460     unsetJoinExpr(p->pLeft, iTable, nullable);
461     p = p->pRight;
462   }
463 }
464 
465 /*
466 ** This routine processes the join information for a SELECT statement.
467 **
468 **   *  A NATURAL join is converted into a USING join.  After that, we
469 **      do not need to be concerned with NATURAL joins and we only have
470 **      think about USING joins.
471 **
472 **   *  ON and USING clauses result in extra terms being added to the
473 **      WHERE clause to enforce the specified constraints.  The extra
474 **      WHERE clause terms will be tagged with EP_OuterON or
475 **      EP_InnerON so that we know that they originated in ON/USING.
476 **
477 ** The terms of a FROM clause are contained in the Select.pSrc structure.
478 ** The left most table is the first entry in Select.pSrc.  The right-most
479 ** table is the last entry.  The join operator is held in the entry to
480 ** the right.  Thus entry 1 contains the join operator for the join between
481 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
482 ** also attached to the right entry.
483 **
484 ** This routine returns the number of errors encountered.
485 */
486 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
487   SrcList *pSrc;                  /* All tables in the FROM clause */
488   int i, j;                       /* Loop counters */
489   SrcItem *pLeft;                 /* Left table being joined */
490   SrcItem *pRight;                /* Right table being joined */
491 
492   pSrc = p->pSrc;
493   pLeft = &pSrc->a[0];
494   pRight = &pLeft[1];
495   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
496     Table *pRightTab = pRight->pTab;
497     u32 joinType;
498 
499     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
500     joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
501 
502     /* If this is a NATURAL join, synthesize an approprate USING clause
503     ** to specify which columns should be joined.
504     */
505     if( pRight->fg.jointype & JT_NATURAL ){
506       IdList *pUsing = 0;
507       if( pRight->fg.isUsing || pRight->u3.pOn ){
508         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
509            "an ON or USING clause", 0);
510         return 1;
511       }
512       for(j=0; j<pRightTab->nCol; j++){
513         char *zName;   /* Name of column in the right table */
514 
515         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
516         zName = pRightTab->aCol[j].zCnName;
517         if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
518           pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
519           if( pUsing ){
520             assert( pUsing->nId>0 );
521             assert( pUsing->a[pUsing->nId-1].zName==0 );
522             pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
523           }
524         }
525       }
526       if( pUsing ){
527         pRight->fg.isUsing = 1;
528         pRight->fg.isSynthUsing = 1;
529         pRight->u3.pUsing = pUsing;
530       }
531       if( pParse->nErr ) return 1;
532     }
533 
534     /* Create extra terms on the WHERE clause for each column named
535     ** in the USING clause.  Example: If the two tables to be joined are
536     ** A and B and the USING clause names X, Y, and Z, then add this
537     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
538     ** Report an error if any column mentioned in the USING clause is
539     ** not contained in both tables to be joined.
540     */
541     if( pRight->fg.isUsing ){
542       IdList *pList = pRight->u3.pUsing;
543       sqlite3 *db = pParse->db;
544       assert( pList!=0 );
545       for(j=0; j<pList->nId; j++){
546         char *zName;     /* Name of the term in the USING clause */
547         int iLeft;       /* Table on the left with matching column name */
548         int iLeftCol;    /* Column number of matching column on the left */
549         int iRightCol;   /* Column number of matching column on the right */
550         Expr *pE1;       /* Reference to the column on the LEFT of the join */
551         Expr *pE2;       /* Reference to the column on the RIGHT of the join */
552         Expr *pEq;       /* Equality constraint.  pE1 == pE2 */
553 
554         zName = pList->a[j].zName;
555         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
556         if( iRightCol<0
557          || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
558                                 pRight->fg.isSynthUsing)==0
559         ){
560           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
561             "not present in both tables", zName);
562           return 1;
563         }
564         pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
565         sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
566         if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
567           /* This branch runs if the query contains one or more RIGHT or FULL
568           ** JOINs.  If only a single table on the left side of this join
569           ** contains the zName column, then this branch is a no-op.
570           ** But if there are two or more tables on the left side
571           ** of the join, construct a coalesce() function that gathers all
572           ** such tables.  Raise an error if more than one of those references
573           ** to zName is not also within a prior USING clause.
574           **
575           ** We really ought to raise an error if there are two or more
576           ** non-USING references to zName on the left of an INNER or LEFT
577           ** JOIN.  But older versions of SQLite do not do that, so we avoid
578           ** adding a new error so as to not break legacy applications.
579           */
580           ExprList *pFuncArgs = 0;   /* Arguments to the coalesce() */
581           static const Token tkCoalesce = { "coalesce", 8 };
582           while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
583                                      pRight->fg.isSynthUsing)!=0 ){
584             if( pSrc->a[iLeft].fg.isUsing==0
585              || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
586             ){
587               sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
588                               zName);
589               break;
590             }
591             pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
592             pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
593             sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
594           }
595           if( pFuncArgs ){
596             pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
597             pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
598           }
599         }
600         pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
601         sqlite3SrcItemColumnUsed(pRight, iRightCol);
602         pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
603         assert( pE2!=0 || pEq==0 );
604         if( pEq ){
605           ExprSetProperty(pEq, joinType);
606           assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
607           ExprSetVVAProperty(pEq, EP_NoReduce);
608           pEq->w.iJoin = pE2->iTable;
609         }
610         p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
611       }
612     }
613 
614     /* Add the ON clause to the end of the WHERE clause, connected by
615     ** an AND operator.
616     */
617     else if( pRight->u3.pOn ){
618       sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
619       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
620       pRight->u3.pOn = 0;
621       pRight->fg.isOn = 1;
622     }
623   }
624   return 0;
625 }
626 
627 /*
628 ** An instance of this object holds information (beyond pParse and pSelect)
629 ** needed to load the next result row that is to be added to the sorter.
630 */
631 typedef struct RowLoadInfo RowLoadInfo;
632 struct RowLoadInfo {
633   int regResult;               /* Store results in array of registers here */
634   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
635 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
636   ExprList *pExtra;            /* Extra columns needed by sorter refs */
637   int regExtraResult;          /* Where to load the extra columns */
638 #endif
639 };
640 
641 /*
642 ** This routine does the work of loading query data into an array of
643 ** registers so that it can be added to the sorter.
644 */
645 static void innerLoopLoadRow(
646   Parse *pParse,             /* Statement under construction */
647   Select *pSelect,           /* The query being coded */
648   RowLoadInfo *pInfo         /* Info needed to complete the row load */
649 ){
650   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
651                           0, pInfo->ecelFlags);
652 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
653   if( pInfo->pExtra ){
654     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
655     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
656   }
657 #endif
658 }
659 
660 /*
661 ** Code the OP_MakeRecord instruction that generates the entry to be
662 ** added into the sorter.
663 **
664 ** Return the register in which the result is stored.
665 */
666 static int makeSorterRecord(
667   Parse *pParse,
668   SortCtx *pSort,
669   Select *pSelect,
670   int regBase,
671   int nBase
672 ){
673   int nOBSat = pSort->nOBSat;
674   Vdbe *v = pParse->pVdbe;
675   int regOut = ++pParse->nMem;
676   if( pSort->pDeferredRowLoad ){
677     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
678   }
679   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
680   return regOut;
681 }
682 
683 /*
684 ** Generate code that will push the record in registers regData
685 ** through regData+nData-1 onto the sorter.
686 */
687 static void pushOntoSorter(
688   Parse *pParse,         /* Parser context */
689   SortCtx *pSort,        /* Information about the ORDER BY clause */
690   Select *pSelect,       /* The whole SELECT statement */
691   int regData,           /* First register holding data to be sorted */
692   int regOrigData,       /* First register holding data before packing */
693   int nData,             /* Number of elements in the regData data array */
694   int nPrefixReg         /* No. of reg prior to regData available for use */
695 ){
696   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
697   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
698   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
699   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
700   int regBase;                                     /* Regs for sorter record */
701   int regRecord = 0;                               /* Assembled sorter record */
702   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
703   int op;                            /* Opcode to add sorter record to sorter */
704   int iLimit;                        /* LIMIT counter */
705   int iSkip = 0;                     /* End of the sorter insert loop */
706 
707   assert( bSeq==0 || bSeq==1 );
708 
709   /* Three cases:
710   **   (1) The data to be sorted has already been packed into a Record
711   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
712   **       will be completely unrelated to regOrigData.
713   **   (2) All output columns are included in the sort record.  In that
714   **       case regData==regOrigData.
715   **   (3) Some output columns are omitted from the sort record due to
716   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
717   **       SQLITE_ECEL_OMITREF optimization, or due to the
718   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
719   **       regOrigData is 0 to prevent this routine from trying to copy
720   **       values that might not yet exist.
721   */
722   assert( nData==1 || regData==regOrigData || regOrigData==0 );
723 
724   if( nPrefixReg ){
725     assert( nPrefixReg==nExpr+bSeq );
726     regBase = regData - nPrefixReg;
727   }else{
728     regBase = pParse->nMem + 1;
729     pParse->nMem += nBase;
730   }
731   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
732   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
733   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
734   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
735                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
736   if( bSeq ){
737     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
738   }
739   if( nPrefixReg==0 && nData>0 ){
740     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
741   }
742   if( nOBSat>0 ){
743     int regPrevKey;   /* The first nOBSat columns of the previous row */
744     int addrFirst;    /* Address of the OP_IfNot opcode */
745     int addrJmp;      /* Address of the OP_Jump opcode */
746     VdbeOp *pOp;      /* Opcode that opens the sorter */
747     int nKey;         /* Number of sorting key columns, including OP_Sequence */
748     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
749 
750     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
751     regPrevKey = pParse->nMem+1;
752     pParse->nMem += pSort->nOBSat;
753     nKey = nExpr - pSort->nOBSat + bSeq;
754     if( bSeq ){
755       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
756     }else{
757       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
758     }
759     VdbeCoverage(v);
760     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
761     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
762     if( pParse->db->mallocFailed ) return;
763     pOp->p2 = nKey + nData;
764     pKI = pOp->p4.pKeyInfo;
765     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
766     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
767     testcase( pKI->nAllField > pKI->nKeyField+2 );
768     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
769                                            pKI->nAllField-pKI->nKeyField-1);
770     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
771     addrJmp = sqlite3VdbeCurrentAddr(v);
772     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
773     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
774     pSort->regReturn = ++pParse->nMem;
775     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
776     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
777     if( iLimit ){
778       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
779       VdbeCoverage(v);
780     }
781     sqlite3VdbeJumpHere(v, addrFirst);
782     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
783     sqlite3VdbeJumpHere(v, addrJmp);
784   }
785   if( iLimit ){
786     /* At this point the values for the new sorter entry are stored
787     ** in an array of registers. They need to be composed into a record
788     ** and inserted into the sorter if either (a) there are currently
789     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
790     ** the largest record currently in the sorter. If (b) is true and there
791     ** are already LIMIT+OFFSET items in the sorter, delete the largest
792     ** entry before inserting the new one. This way there are never more
793     ** than LIMIT+OFFSET items in the sorter.
794     **
795     ** If the new record does not need to be inserted into the sorter,
796     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
797     ** value is not zero, then it is a label of where to jump.  Otherwise,
798     ** just bypass the row insert logic.  See the header comment on the
799     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
800     */
801     int iCsr = pSort->iECursor;
802     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
803     VdbeCoverage(v);
804     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
805     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
806                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
807     VdbeCoverage(v);
808     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
809   }
810   if( regRecord==0 ){
811     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
812   }
813   if( pSort->sortFlags & SORTFLAG_UseSorter ){
814     op = OP_SorterInsert;
815   }else{
816     op = OP_IdxInsert;
817   }
818   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
819                        regBase+nOBSat, nBase-nOBSat);
820   if( iSkip ){
821     sqlite3VdbeChangeP2(v, iSkip,
822          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
823   }
824 }
825 
826 /*
827 ** Add code to implement the OFFSET
828 */
829 static void codeOffset(
830   Vdbe *v,          /* Generate code into this VM */
831   int iOffset,      /* Register holding the offset counter */
832   int iContinue     /* Jump here to skip the current record */
833 ){
834   if( iOffset>0 ){
835     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
836     VdbeComment((v, "OFFSET"));
837   }
838 }
839 
840 /*
841 ** Add code that will check to make sure the array of registers starting at
842 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
843 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
844 ** are available. Which is used depends on the value of parameter eTnctType,
845 ** as follows:
846 **
847 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
848 **     Build an ephemeral table that contains all entries seen before and
849 **     skip entries which have been seen before.
850 **
851 **     Parameter iTab is the cursor number of an ephemeral table that must
852 **     be opened before the VM code generated by this routine is executed.
853 **     The ephemeral cursor table is queried for a record identical to the
854 **     record formed by the current array of registers. If one is found,
855 **     jump to VM address addrRepeat. Otherwise, insert a new record into
856 **     the ephemeral cursor and proceed.
857 **
858 **     The returned value in this case is a copy of parameter iTab.
859 **
860 **   WHERE_DISTINCT_ORDERED:
861 **     In this case rows are being delivered sorted order. The ephermal
862 **     table is not required. Instead, the current set of values
863 **     is compared against previous row. If they match, the new row
864 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
865 **     the VM program proceeds with processing the new row.
866 **
867 **     The returned value in this case is the register number of the first
868 **     in an array of registers used to store the previous result row so that
869 **     it can be compared to the next. The caller must ensure that this
870 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
871 **     will take care of this initialization.)
872 **
873 **   WHERE_DISTINCT_UNIQUE:
874 **     In this case it has already been determined that the rows are distinct.
875 **     No special action is required. The return value is zero.
876 **
877 ** Parameter pEList is the list of expressions used to generated the
878 ** contents of each row. It is used by this routine to determine (a)
879 ** how many elements there are in the array of registers and (b) the
880 ** collation sequences that should be used for the comparisons if
881 ** eTnctType is WHERE_DISTINCT_ORDERED.
882 */
883 static int codeDistinct(
884   Parse *pParse,     /* Parsing and code generating context */
885   int eTnctType,     /* WHERE_DISTINCT_* value */
886   int iTab,          /* A sorting index used to test for distinctness */
887   int addrRepeat,    /* Jump to here if not distinct */
888   ExprList *pEList,  /* Expression for each element */
889   int regElem        /* First element */
890 ){
891   int iRet = 0;
892   int nResultCol = pEList->nExpr;
893   Vdbe *v = pParse->pVdbe;
894 
895   switch( eTnctType ){
896     case WHERE_DISTINCT_ORDERED: {
897       int i;
898       int iJump;              /* Jump destination */
899       int regPrev;            /* Previous row content */
900 
901       /* Allocate space for the previous row */
902       iRet = regPrev = pParse->nMem+1;
903       pParse->nMem += nResultCol;
904 
905       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
906       for(i=0; i<nResultCol; i++){
907         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
908         if( i<nResultCol-1 ){
909           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
910           VdbeCoverage(v);
911         }else{
912           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
913           VdbeCoverage(v);
914          }
915         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
916         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
917       }
918       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
919       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
920       break;
921     }
922 
923     case WHERE_DISTINCT_UNIQUE: {
924       /* nothing to do */
925       break;
926     }
927 
928     default: {
929       int r1 = sqlite3GetTempReg(pParse);
930       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
931       VdbeCoverage(v);
932       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
933       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
934       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
935       sqlite3ReleaseTempReg(pParse, r1);
936       iRet = iTab;
937       break;
938     }
939   }
940 
941   return iRet;
942 }
943 
944 /*
945 ** This routine runs after codeDistinct().  It makes necessary
946 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
947 ** routine made use of.  This processing must be done separately since
948 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
949 ** laid down.
950 **
951 ** WHERE_DISTINCT_NOOP:
952 ** WHERE_DISTINCT_UNORDERED:
953 **
954 **     No adjustments necessary.  This function is a no-op.
955 **
956 ** WHERE_DISTINCT_UNIQUE:
957 **
958 **     The ephemeral table is not needed.  So change the
959 **     OP_OpenEphemeral opcode into an OP_Noop.
960 **
961 ** WHERE_DISTINCT_ORDERED:
962 **
963 **     The ephemeral table is not needed.  But we do need register
964 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
965 **     into an OP_Null on the iVal register.
966 */
967 static void fixDistinctOpenEph(
968   Parse *pParse,     /* Parsing and code generating context */
969   int eTnctType,     /* WHERE_DISTINCT_* value */
970   int iVal,          /* Value returned by codeDistinct() */
971   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
972 ){
973   if( pParse->nErr==0
974    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
975   ){
976     Vdbe *v = pParse->pVdbe;
977     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
978     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
979       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
980     }
981     if( eTnctType==WHERE_DISTINCT_ORDERED ){
982       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
983       ** bit on the first register of the previous value.  This will cause the
984       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
985       ** the loop even if the first row is all NULLs.  */
986       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
987       pOp->opcode = OP_Null;
988       pOp->p1 = 1;
989       pOp->p2 = iVal;
990     }
991   }
992 }
993 
994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
995 /*
996 ** This function is called as part of inner-loop generation for a SELECT
997 ** statement with an ORDER BY that is not optimized by an index. It
998 ** determines the expressions, if any, that the sorter-reference
999 ** optimization should be used for. The sorter-reference optimization
1000 ** is used for SELECT queries like:
1001 **
1002 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1003 **
1004 ** If the optimization is used for expression "bigblob", then instead of
1005 ** storing values read from that column in the sorter records, the PK of
1006 ** the row from table t1 is stored instead. Then, as records are extracted from
1007 ** the sorter to return to the user, the required value of bigblob is
1008 ** retrieved directly from table t1. If the values are very large, this
1009 ** can be more efficient than storing them directly in the sorter records.
1010 **
1011 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1012 ** for which the sorter-reference optimization should be enabled.
1013 ** Additionally, the pSort->aDefer[] array is populated with entries
1014 ** for all cursors required to evaluate all selected expressions. Finally.
1015 ** output variable (*ppExtra) is set to an expression list containing
1016 ** expressions for all extra PK values that should be stored in the
1017 ** sorter records.
1018 */
1019 static void selectExprDefer(
1020   Parse *pParse,                  /* Leave any error here */
1021   SortCtx *pSort,                 /* Sorter context */
1022   ExprList *pEList,               /* Expressions destined for sorter */
1023   ExprList **ppExtra              /* Expressions to append to sorter record */
1024 ){
1025   int i;
1026   int nDefer = 0;
1027   ExprList *pExtra = 0;
1028   for(i=0; i<pEList->nExpr; i++){
1029     struct ExprList_item *pItem = &pEList->a[i];
1030     if( pItem->u.x.iOrderByCol==0 ){
1031       Expr *pExpr = pItem->pExpr;
1032       Table *pTab;
1033       if( pExpr->op==TK_COLUMN
1034        && pExpr->iColumn>=0
1035        && ALWAYS( ExprUseYTab(pExpr) )
1036        && (pTab = pExpr->y.pTab)!=0
1037        && IsOrdinaryTable(pTab)
1038        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1039       ){
1040         int j;
1041         for(j=0; j<nDefer; j++){
1042           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1043         }
1044         if( j==nDefer ){
1045           if( nDefer==ArraySize(pSort->aDefer) ){
1046             continue;
1047           }else{
1048             int nKey = 1;
1049             int k;
1050             Index *pPk = 0;
1051             if( !HasRowid(pTab) ){
1052               pPk = sqlite3PrimaryKeyIndex(pTab);
1053               nKey = pPk->nKeyCol;
1054             }
1055             for(k=0; k<nKey; k++){
1056               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1057               if( pNew ){
1058                 pNew->iTable = pExpr->iTable;
1059                 assert( ExprUseYTab(pNew) );
1060                 pNew->y.pTab = pExpr->y.pTab;
1061                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1062                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1063               }
1064             }
1065             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1066             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1067             pSort->aDefer[nDefer].nKey = nKey;
1068             nDefer++;
1069           }
1070         }
1071         pItem->fg.bSorterRef = 1;
1072       }
1073     }
1074   }
1075   pSort->nDefer = (u8)nDefer;
1076   *ppExtra = pExtra;
1077 }
1078 #endif
1079 
1080 /*
1081 ** This routine generates the code for the inside of the inner loop
1082 ** of a SELECT.
1083 **
1084 ** If srcTab is negative, then the p->pEList expressions
1085 ** are evaluated in order to get the data for this row.  If srcTab is
1086 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1087 ** to get the number of columns and the collation sequence for each column.
1088 */
1089 static void selectInnerLoop(
1090   Parse *pParse,          /* The parser context */
1091   Select *p,              /* The complete select statement being coded */
1092   int srcTab,             /* Pull data from this table if non-negative */
1093   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
1094   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1095   SelectDest *pDest,      /* How to dispose of the results */
1096   int iContinue,          /* Jump here to continue with next row */
1097   int iBreak              /* Jump here to break out of the inner loop */
1098 ){
1099   Vdbe *v = pParse->pVdbe;
1100   int i;
1101   int hasDistinct;            /* True if the DISTINCT keyword is present */
1102   int eDest = pDest->eDest;   /* How to dispose of results */
1103   int iParm = pDest->iSDParm; /* First argument to disposal method */
1104   int nResultCol;             /* Number of result columns */
1105   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1106   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1107 
1108   /* Usually, regResult is the first cell in an array of memory cells
1109   ** containing the current result row. In this case regOrig is set to the
1110   ** same value. However, if the results are being sent to the sorter, the
1111   ** values for any expressions that are also part of the sort-key are omitted
1112   ** from this array. In this case regOrig is set to zero.  */
1113   int regResult;              /* Start of memory holding current results */
1114   int regOrig;                /* Start of memory holding full result (or 0) */
1115 
1116   assert( v );
1117   assert( p->pEList!=0 );
1118   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1119   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1120   if( pSort==0 && !hasDistinct ){
1121     assert( iContinue!=0 );
1122     codeOffset(v, p->iOffset, iContinue);
1123   }
1124 
1125   /* Pull the requested columns.
1126   */
1127   nResultCol = p->pEList->nExpr;
1128 
1129   if( pDest->iSdst==0 ){
1130     if( pSort ){
1131       nPrefixReg = pSort->pOrderBy->nExpr;
1132       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1133       pParse->nMem += nPrefixReg;
1134     }
1135     pDest->iSdst = pParse->nMem+1;
1136     pParse->nMem += nResultCol;
1137   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1138     /* This is an error condition that can result, for example, when a SELECT
1139     ** on the right-hand side of an INSERT contains more result columns than
1140     ** there are columns in the table on the left.  The error will be caught
1141     ** and reported later.  But we need to make sure enough memory is allocated
1142     ** to avoid other spurious errors in the meantime. */
1143     pParse->nMem += nResultCol;
1144   }
1145   pDest->nSdst = nResultCol;
1146   regOrig = regResult = pDest->iSdst;
1147   if( srcTab>=0 ){
1148     for(i=0; i<nResultCol; i++){
1149       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1150       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1151     }
1152   }else if( eDest!=SRT_Exists ){
1153 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1154     ExprList *pExtra = 0;
1155 #endif
1156     /* If the destination is an EXISTS(...) expression, the actual
1157     ** values returned by the SELECT are not required.
1158     */
1159     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1160     ExprList *pEList;
1161     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1162       ecelFlags = SQLITE_ECEL_DUP;
1163     }else{
1164       ecelFlags = 0;
1165     }
1166     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1167       /* For each expression in p->pEList that is a copy of an expression in
1168       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1169       ** iOrderByCol value to one more than the index of the ORDER BY
1170       ** expression within the sort-key that pushOntoSorter() will generate.
1171       ** This allows the p->pEList field to be omitted from the sorted record,
1172       ** saving space and CPU cycles.  */
1173       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1174 
1175       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1176         int j;
1177         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1178           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1179         }
1180       }
1181 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1182       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1183       if( pExtra && pParse->db->mallocFailed==0 ){
1184         /* If there are any extra PK columns to add to the sorter records,
1185         ** allocate extra memory cells and adjust the OpenEphemeral
1186         ** instruction to account for the larger records. This is only
1187         ** required if there are one or more WITHOUT ROWID tables with
1188         ** composite primary keys in the SortCtx.aDefer[] array.  */
1189         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1190         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1191         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1192         pParse->nMem += pExtra->nExpr;
1193       }
1194 #endif
1195 
1196       /* Adjust nResultCol to account for columns that are omitted
1197       ** from the sorter by the optimizations in this branch */
1198       pEList = p->pEList;
1199       for(i=0; i<pEList->nExpr; i++){
1200         if( pEList->a[i].u.x.iOrderByCol>0
1201 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1202          || pEList->a[i].fg.bSorterRef
1203 #endif
1204         ){
1205           nResultCol--;
1206           regOrig = 0;
1207         }
1208       }
1209 
1210       testcase( regOrig );
1211       testcase( eDest==SRT_Set );
1212       testcase( eDest==SRT_Mem );
1213       testcase( eDest==SRT_Coroutine );
1214       testcase( eDest==SRT_Output );
1215       assert( eDest==SRT_Set || eDest==SRT_Mem
1216            || eDest==SRT_Coroutine || eDest==SRT_Output
1217            || eDest==SRT_Upfrom );
1218     }
1219     sRowLoadInfo.regResult = regResult;
1220     sRowLoadInfo.ecelFlags = ecelFlags;
1221 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1222     sRowLoadInfo.pExtra = pExtra;
1223     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1224     if( pExtra ) nResultCol += pExtra->nExpr;
1225 #endif
1226     if( p->iLimit
1227      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1228      && nPrefixReg>0
1229     ){
1230       assert( pSort!=0 );
1231       assert( hasDistinct==0 );
1232       pSort->pDeferredRowLoad = &sRowLoadInfo;
1233       regOrig = 0;
1234     }else{
1235       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1236     }
1237   }
1238 
1239   /* If the DISTINCT keyword was present on the SELECT statement
1240   ** and this row has been seen before, then do not make this row
1241   ** part of the result.
1242   */
1243   if( hasDistinct ){
1244     int eType = pDistinct->eTnctType;
1245     int iTab = pDistinct->tabTnct;
1246     assert( nResultCol==p->pEList->nExpr );
1247     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1248     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1249     if( pSort==0 ){
1250       codeOffset(v, p->iOffset, iContinue);
1251     }
1252   }
1253 
1254   switch( eDest ){
1255     /* In this mode, write each query result to the key of the temporary
1256     ** table iParm.
1257     */
1258 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1259     case SRT_Union: {
1260       int r1;
1261       r1 = sqlite3GetTempReg(pParse);
1262       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1263       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1264       sqlite3ReleaseTempReg(pParse, r1);
1265       break;
1266     }
1267 
1268     /* Construct a record from the query result, but instead of
1269     ** saving that record, use it as a key to delete elements from
1270     ** the temporary table iParm.
1271     */
1272     case SRT_Except: {
1273       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1274       break;
1275     }
1276 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1277 
1278     /* Store the result as data using a unique key.
1279     */
1280     case SRT_Fifo:
1281     case SRT_DistFifo:
1282     case SRT_Table:
1283     case SRT_EphemTab: {
1284       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1285       testcase( eDest==SRT_Table );
1286       testcase( eDest==SRT_EphemTab );
1287       testcase( eDest==SRT_Fifo );
1288       testcase( eDest==SRT_DistFifo );
1289       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1290 #ifndef SQLITE_OMIT_CTE
1291       if( eDest==SRT_DistFifo ){
1292         /* If the destination is DistFifo, then cursor (iParm+1) is open
1293         ** on an ephemeral index. If the current row is already present
1294         ** in the index, do not write it to the output. If not, add the
1295         ** current row to the index and proceed with writing it to the
1296         ** output table as well.  */
1297         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1298         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1299         VdbeCoverage(v);
1300         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1301         assert( pSort==0 );
1302       }
1303 #endif
1304       if( pSort ){
1305         assert( regResult==regOrig );
1306         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1307       }else{
1308         int r2 = sqlite3GetTempReg(pParse);
1309         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1310         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1311         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1312         sqlite3ReleaseTempReg(pParse, r2);
1313       }
1314       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1315       break;
1316     }
1317 
1318     case SRT_Upfrom: {
1319       if( pSort ){
1320         pushOntoSorter(
1321             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1322       }else{
1323         int i2 = pDest->iSDParm2;
1324         int r1 = sqlite3GetTempReg(pParse);
1325 
1326         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1327         ** might still be trying to return one row, because that is what
1328         ** aggregates do.  Don't record that empty row in the output table. */
1329         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1330 
1331         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1332                           regResult+(i2<0), nResultCol-(i2<0), r1);
1333         if( i2<0 ){
1334           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1335         }else{
1336           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1337         }
1338       }
1339       break;
1340     }
1341 
1342 #ifndef SQLITE_OMIT_SUBQUERY
1343     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1344     ** then there should be a single item on the stack.  Write this
1345     ** item into the set table with bogus data.
1346     */
1347     case SRT_Set: {
1348       if( pSort ){
1349         /* At first glance you would think we could optimize out the
1350         ** ORDER BY in this case since the order of entries in the set
1351         ** does not matter.  But there might be a LIMIT clause, in which
1352         ** case the order does matter */
1353         pushOntoSorter(
1354             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1355       }else{
1356         int r1 = sqlite3GetTempReg(pParse);
1357         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1358         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1359             r1, pDest->zAffSdst, nResultCol);
1360         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1361         sqlite3ReleaseTempReg(pParse, r1);
1362       }
1363       break;
1364     }
1365 
1366 
1367     /* If any row exist in the result set, record that fact and abort.
1368     */
1369     case SRT_Exists: {
1370       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1371       /* The LIMIT clause will terminate the loop for us */
1372       break;
1373     }
1374 
1375     /* If this is a scalar select that is part of an expression, then
1376     ** store the results in the appropriate memory cell or array of
1377     ** memory cells and break out of the scan loop.
1378     */
1379     case SRT_Mem: {
1380       if( pSort ){
1381         assert( nResultCol<=pDest->nSdst );
1382         pushOntoSorter(
1383             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1384       }else{
1385         assert( nResultCol==pDest->nSdst );
1386         assert( regResult==iParm );
1387         /* The LIMIT clause will jump out of the loop for us */
1388       }
1389       break;
1390     }
1391 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1392 
1393     case SRT_Coroutine:       /* Send data to a co-routine */
1394     case SRT_Output: {        /* Return the results */
1395       testcase( eDest==SRT_Coroutine );
1396       testcase( eDest==SRT_Output );
1397       if( pSort ){
1398         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1399                        nPrefixReg);
1400       }else if( eDest==SRT_Coroutine ){
1401         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1402       }else{
1403         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1404       }
1405       break;
1406     }
1407 
1408 #ifndef SQLITE_OMIT_CTE
1409     /* Write the results into a priority queue that is order according to
1410     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1411     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1412     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1413     ** final OP_Sequence column.  The last column is the record as a blob.
1414     */
1415     case SRT_DistQueue:
1416     case SRT_Queue: {
1417       int nKey;
1418       int r1, r2, r3;
1419       int addrTest = 0;
1420       ExprList *pSO;
1421       pSO = pDest->pOrderBy;
1422       assert( pSO );
1423       nKey = pSO->nExpr;
1424       r1 = sqlite3GetTempReg(pParse);
1425       r2 = sqlite3GetTempRange(pParse, nKey+2);
1426       r3 = r2+nKey+1;
1427       if( eDest==SRT_DistQueue ){
1428         /* If the destination is DistQueue, then cursor (iParm+1) is open
1429         ** on a second ephemeral index that holds all values every previously
1430         ** added to the queue. */
1431         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1432                                         regResult, nResultCol);
1433         VdbeCoverage(v);
1434       }
1435       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1436       if( eDest==SRT_DistQueue ){
1437         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1438         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1439       }
1440       for(i=0; i<nKey; i++){
1441         sqlite3VdbeAddOp2(v, OP_SCopy,
1442                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1443                           r2+i);
1444       }
1445       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1446       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1447       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1448       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1449       sqlite3ReleaseTempReg(pParse, r1);
1450       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1451       break;
1452     }
1453 #endif /* SQLITE_OMIT_CTE */
1454 
1455 
1456 
1457 #if !defined(SQLITE_OMIT_TRIGGER)
1458     /* Discard the results.  This is used for SELECT statements inside
1459     ** the body of a TRIGGER.  The purpose of such selects is to call
1460     ** user-defined functions that have side effects.  We do not care
1461     ** about the actual results of the select.
1462     */
1463     default: {
1464       assert( eDest==SRT_Discard );
1465       break;
1466     }
1467 #endif
1468   }
1469 
1470   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1471   ** there is a sorter, in which case the sorter has already limited
1472   ** the output for us.
1473   */
1474   if( pSort==0 && p->iLimit ){
1475     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1476   }
1477 }
1478 
1479 /*
1480 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1481 ** X extra columns.
1482 */
1483 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1484   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1485   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1486   if( p ){
1487     p->aSortFlags = (u8*)&p->aColl[N+X];
1488     p->nKeyField = (u16)N;
1489     p->nAllField = (u16)(N+X);
1490     p->enc = ENC(db);
1491     p->db = db;
1492     p->nRef = 1;
1493     memset(&p[1], 0, nExtra);
1494   }else{
1495     return (KeyInfo*)sqlite3OomFault(db);
1496   }
1497   return p;
1498 }
1499 
1500 /*
1501 ** Deallocate a KeyInfo object
1502 */
1503 void sqlite3KeyInfoUnref(KeyInfo *p){
1504   if( p ){
1505     assert( p->db!=0 );
1506     assert( p->nRef>0 );
1507     p->nRef--;
1508     if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
1509   }
1510 }
1511 
1512 /*
1513 ** Make a new pointer to a KeyInfo object
1514 */
1515 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1516   if( p ){
1517     assert( p->nRef>0 );
1518     p->nRef++;
1519   }
1520   return p;
1521 }
1522 
1523 #ifdef SQLITE_DEBUG
1524 /*
1525 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1526 ** can only be changed if this is just a single reference to the object.
1527 **
1528 ** This routine is used only inside of assert() statements.
1529 */
1530 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1531 #endif /* SQLITE_DEBUG */
1532 
1533 /*
1534 ** Given an expression list, generate a KeyInfo structure that records
1535 ** the collating sequence for each expression in that expression list.
1536 **
1537 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1538 ** KeyInfo structure is appropriate for initializing a virtual index to
1539 ** implement that clause.  If the ExprList is the result set of a SELECT
1540 ** then the KeyInfo structure is appropriate for initializing a virtual
1541 ** index to implement a DISTINCT test.
1542 **
1543 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1544 ** function is responsible for seeing that this structure is eventually
1545 ** freed.
1546 */
1547 KeyInfo *sqlite3KeyInfoFromExprList(
1548   Parse *pParse,       /* Parsing context */
1549   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1550   int iStart,          /* Begin with this column of pList */
1551   int nExtra           /* Add this many extra columns to the end */
1552 ){
1553   int nExpr;
1554   KeyInfo *pInfo;
1555   struct ExprList_item *pItem;
1556   sqlite3 *db = pParse->db;
1557   int i;
1558 
1559   nExpr = pList->nExpr;
1560   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1561   if( pInfo ){
1562     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1563     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1564       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1565       pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1566     }
1567   }
1568   return pInfo;
1569 }
1570 
1571 /*
1572 ** Name of the connection operator, used for error messages.
1573 */
1574 const char *sqlite3SelectOpName(int id){
1575   char *z;
1576   switch( id ){
1577     case TK_ALL:       z = "UNION ALL";   break;
1578     case TK_INTERSECT: z = "INTERSECT";   break;
1579     case TK_EXCEPT:    z = "EXCEPT";      break;
1580     default:           z = "UNION";       break;
1581   }
1582   return z;
1583 }
1584 
1585 #ifndef SQLITE_OMIT_EXPLAIN
1586 /*
1587 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1588 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1589 ** where the caption is of the form:
1590 **
1591 **   "USE TEMP B-TREE FOR xxx"
1592 **
1593 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1594 ** is determined by the zUsage argument.
1595 */
1596 static void explainTempTable(Parse *pParse, const char *zUsage){
1597   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1598 }
1599 
1600 /*
1601 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1602 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1603 ** in sqlite3Select() to assign values to structure member variables that
1604 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1605 ** code with #ifndef directives.
1606 */
1607 # define explainSetInteger(a, b) a = b
1608 
1609 #else
1610 /* No-op versions of the explainXXX() functions and macros. */
1611 # define explainTempTable(y,z)
1612 # define explainSetInteger(y,z)
1613 #endif
1614 
1615 
1616 /*
1617 ** If the inner loop was generated using a non-null pOrderBy argument,
1618 ** then the results were placed in a sorter.  After the loop is terminated
1619 ** we need to run the sorter and output the results.  The following
1620 ** routine generates the code needed to do that.
1621 */
1622 static void generateSortTail(
1623   Parse *pParse,    /* Parsing context */
1624   Select *p,        /* The SELECT statement */
1625   SortCtx *pSort,   /* Information on the ORDER BY clause */
1626   int nColumn,      /* Number of columns of data */
1627   SelectDest *pDest /* Write the sorted results here */
1628 ){
1629   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1630   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1631   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1632   int addr;                       /* Top of output loop. Jump for Next. */
1633   int addrOnce = 0;
1634   int iTab;
1635   ExprList *pOrderBy = pSort->pOrderBy;
1636   int eDest = pDest->eDest;
1637   int iParm = pDest->iSDParm;
1638   int regRow;
1639   int regRowid;
1640   int iCol;
1641   int nKey;                       /* Number of key columns in sorter record */
1642   int iSortTab;                   /* Sorter cursor to read from */
1643   int i;
1644   int bSeq;                       /* True if sorter record includes seq. no. */
1645   int nRefKey = 0;
1646   struct ExprList_item *aOutEx = p->pEList->a;
1647 
1648   assert( addrBreak<0 );
1649   if( pSort->labelBkOut ){
1650     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1651     sqlite3VdbeGoto(v, addrBreak);
1652     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1653   }
1654 
1655 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1656   /* Open any cursors needed for sorter-reference expressions */
1657   for(i=0; i<pSort->nDefer; i++){
1658     Table *pTab = pSort->aDefer[i].pTab;
1659     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1660     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1661     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1662   }
1663 #endif
1664 
1665   iTab = pSort->iECursor;
1666   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1667     if( eDest==SRT_Mem && p->iOffset ){
1668       sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1669     }
1670     regRowid = 0;
1671     regRow = pDest->iSdst;
1672   }else{
1673     regRowid = sqlite3GetTempReg(pParse);
1674     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1675       regRow = sqlite3GetTempReg(pParse);
1676       nColumn = 0;
1677     }else{
1678       regRow = sqlite3GetTempRange(pParse, nColumn);
1679     }
1680   }
1681   nKey = pOrderBy->nExpr - pSort->nOBSat;
1682   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1683     int regSortOut = ++pParse->nMem;
1684     iSortTab = pParse->nTab++;
1685     if( pSort->labelBkOut ){
1686       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1687     }
1688     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1689         nKey+1+nColumn+nRefKey);
1690     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1691     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1692     VdbeCoverage(v);
1693     assert( p->iLimit==0 && p->iOffset==0 );
1694     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1695     bSeq = 0;
1696   }else{
1697     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1698     codeOffset(v, p->iOffset, addrContinue);
1699     iSortTab = iTab;
1700     bSeq = 1;
1701     if( p->iOffset>0 ){
1702       sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1703     }
1704   }
1705   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1706 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1707     if( aOutEx[i].fg.bSorterRef ) continue;
1708 #endif
1709     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1710   }
1711 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1712   if( pSort->nDefer ){
1713     int iKey = iCol+1;
1714     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1715 
1716     for(i=0; i<pSort->nDefer; i++){
1717       int iCsr = pSort->aDefer[i].iCsr;
1718       Table *pTab = pSort->aDefer[i].pTab;
1719       int nKey = pSort->aDefer[i].nKey;
1720 
1721       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1722       if( HasRowid(pTab) ){
1723         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1724         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1725             sqlite3VdbeCurrentAddr(v)+1, regKey);
1726       }else{
1727         int k;
1728         int iJmp;
1729         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1730         for(k=0; k<nKey; k++){
1731           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1732         }
1733         iJmp = sqlite3VdbeCurrentAddr(v);
1734         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1735         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1736         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1737       }
1738     }
1739     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1740   }
1741 #endif
1742   for(i=nColumn-1; i>=0; i--){
1743 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1744     if( aOutEx[i].fg.bSorterRef ){
1745       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1746     }else
1747 #endif
1748     {
1749       int iRead;
1750       if( aOutEx[i].u.x.iOrderByCol ){
1751         iRead = aOutEx[i].u.x.iOrderByCol-1;
1752       }else{
1753         iRead = iCol--;
1754       }
1755       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1756       VdbeComment((v, "%s", aOutEx[i].zEName));
1757     }
1758   }
1759   switch( eDest ){
1760     case SRT_Table:
1761     case SRT_EphemTab: {
1762       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1763       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1764       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1765       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1766       break;
1767     }
1768 #ifndef SQLITE_OMIT_SUBQUERY
1769     case SRT_Set: {
1770       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1771       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1772                         pDest->zAffSdst, nColumn);
1773       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1774       break;
1775     }
1776     case SRT_Mem: {
1777       /* The LIMIT clause will terminate the loop for us */
1778       break;
1779     }
1780 #endif
1781     case SRT_Upfrom: {
1782       int i2 = pDest->iSDParm2;
1783       int r1 = sqlite3GetTempReg(pParse);
1784       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1785       if( i2<0 ){
1786         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1787       }else{
1788         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1789       }
1790       break;
1791     }
1792     default: {
1793       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1794       testcase( eDest==SRT_Output );
1795       testcase( eDest==SRT_Coroutine );
1796       if( eDest==SRT_Output ){
1797         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1798       }else{
1799         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1800       }
1801       break;
1802     }
1803   }
1804   if( regRowid ){
1805     if( eDest==SRT_Set ){
1806       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1807     }else{
1808       sqlite3ReleaseTempReg(pParse, regRow);
1809     }
1810     sqlite3ReleaseTempReg(pParse, regRowid);
1811   }
1812   /* The bottom of the loop
1813   */
1814   sqlite3VdbeResolveLabel(v, addrContinue);
1815   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1816     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1817   }else{
1818     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1819   }
1820   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1821   sqlite3VdbeResolveLabel(v, addrBreak);
1822 }
1823 
1824 /*
1825 ** Return a pointer to a string containing the 'declaration type' of the
1826 ** expression pExpr. The string may be treated as static by the caller.
1827 **
1828 ** The declaration type is the exact datatype definition extracted from the
1829 ** original CREATE TABLE statement if the expression is a column. The
1830 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1831 ** is considered a column can be complex in the presence of subqueries. The
1832 ** result-set expression in all of the following SELECT statements is
1833 ** considered a column by this function.
1834 **
1835 **   SELECT col FROM tbl;
1836 **   SELECT (SELECT col FROM tbl;
1837 **   SELECT (SELECT col FROM tbl);
1838 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1839 **
1840 ** The declaration type for any expression other than a column is NULL.
1841 **
1842 ** This routine has either 3 or 6 parameters depending on whether or not
1843 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1844 */
1845 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1846 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1847 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1848 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1849 #endif
1850 static const char *columnTypeImpl(
1851   NameContext *pNC,
1852 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1853   Expr *pExpr
1854 #else
1855   Expr *pExpr,
1856   const char **pzOrigDb,
1857   const char **pzOrigTab,
1858   const char **pzOrigCol
1859 #endif
1860 ){
1861   char const *zType = 0;
1862   int j;
1863 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1864   char const *zOrigDb = 0;
1865   char const *zOrigTab = 0;
1866   char const *zOrigCol = 0;
1867 #endif
1868 
1869   assert( pExpr!=0 );
1870   assert( pNC->pSrcList!=0 );
1871   switch( pExpr->op ){
1872     case TK_COLUMN: {
1873       /* The expression is a column. Locate the table the column is being
1874       ** extracted from in NameContext.pSrcList. This table may be real
1875       ** database table or a subquery.
1876       */
1877       Table *pTab = 0;            /* Table structure column is extracted from */
1878       Select *pS = 0;             /* Select the column is extracted from */
1879       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1880       while( pNC && !pTab ){
1881         SrcList *pTabList = pNC->pSrcList;
1882         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1883         if( j<pTabList->nSrc ){
1884           pTab = pTabList->a[j].pTab;
1885           pS = pTabList->a[j].pSelect;
1886         }else{
1887           pNC = pNC->pNext;
1888         }
1889       }
1890 
1891       if( pTab==0 ){
1892         /* At one time, code such as "SELECT new.x" within a trigger would
1893         ** cause this condition to run.  Since then, we have restructured how
1894         ** trigger code is generated and so this condition is no longer
1895         ** possible. However, it can still be true for statements like
1896         ** the following:
1897         **
1898         **   CREATE TABLE t1(col INTEGER);
1899         **   SELECT (SELECT t1.col) FROM FROM t1;
1900         **
1901         ** when columnType() is called on the expression "t1.col" in the
1902         ** sub-select. In this case, set the column type to NULL, even
1903         ** though it should really be "INTEGER".
1904         **
1905         ** This is not a problem, as the column type of "t1.col" is never
1906         ** used. When columnType() is called on the expression
1907         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1908         ** branch below.  */
1909         break;
1910       }
1911 
1912       assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1913       if( pS ){
1914         /* The "table" is actually a sub-select or a view in the FROM clause
1915         ** of the SELECT statement. Return the declaration type and origin
1916         ** data for the result-set column of the sub-select.
1917         */
1918         if( iCol<pS->pEList->nExpr
1919 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1920          && iCol>=0
1921 #else
1922          && ALWAYS(iCol>=0)
1923 #endif
1924         ){
1925           /* If iCol is less than zero, then the expression requests the
1926           ** rowid of the sub-select or view. This expression is legal (see
1927           ** test case misc2.2.2) - it always evaluates to NULL.
1928           */
1929           NameContext sNC;
1930           Expr *p = pS->pEList->a[iCol].pExpr;
1931           sNC.pSrcList = pS->pSrc;
1932           sNC.pNext = pNC;
1933           sNC.pParse = pNC->pParse;
1934           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1935         }
1936       }else{
1937         /* A real table or a CTE table */
1938         assert( !pS );
1939 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1940         if( iCol<0 ) iCol = pTab->iPKey;
1941         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1942         if( iCol<0 ){
1943           zType = "INTEGER";
1944           zOrigCol = "rowid";
1945         }else{
1946           zOrigCol = pTab->aCol[iCol].zCnName;
1947           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1948         }
1949         zOrigTab = pTab->zName;
1950         if( pNC->pParse && pTab->pSchema ){
1951           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1952           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1953         }
1954 #else
1955         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1956         if( iCol<0 ){
1957           zType = "INTEGER";
1958         }else{
1959           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1960         }
1961 #endif
1962       }
1963       break;
1964     }
1965 #ifndef SQLITE_OMIT_SUBQUERY
1966     case TK_SELECT: {
1967       /* The expression is a sub-select. Return the declaration type and
1968       ** origin info for the single column in the result set of the SELECT
1969       ** statement.
1970       */
1971       NameContext sNC;
1972       Select *pS;
1973       Expr *p;
1974       assert( ExprUseXSelect(pExpr) );
1975       pS = pExpr->x.pSelect;
1976       p = pS->pEList->a[0].pExpr;
1977       sNC.pSrcList = pS->pSrc;
1978       sNC.pNext = pNC;
1979       sNC.pParse = pNC->pParse;
1980       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1981       break;
1982     }
1983 #endif
1984   }
1985 
1986 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1987   if( pzOrigDb ){
1988     assert( pzOrigTab && pzOrigCol );
1989     *pzOrigDb = zOrigDb;
1990     *pzOrigTab = zOrigTab;
1991     *pzOrigCol = zOrigCol;
1992   }
1993 #endif
1994   return zType;
1995 }
1996 
1997 /*
1998 ** Generate code that will tell the VDBE the declaration types of columns
1999 ** in the result set.
2000 */
2001 static void generateColumnTypes(
2002   Parse *pParse,      /* Parser context */
2003   SrcList *pTabList,  /* List of tables */
2004   ExprList *pEList    /* Expressions defining the result set */
2005 ){
2006 #ifndef SQLITE_OMIT_DECLTYPE
2007   Vdbe *v = pParse->pVdbe;
2008   int i;
2009   NameContext sNC;
2010   sNC.pSrcList = pTabList;
2011   sNC.pParse = pParse;
2012   sNC.pNext = 0;
2013   for(i=0; i<pEList->nExpr; i++){
2014     Expr *p = pEList->a[i].pExpr;
2015     const char *zType;
2016 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2017     const char *zOrigDb = 0;
2018     const char *zOrigTab = 0;
2019     const char *zOrigCol = 0;
2020     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2021 
2022     /* The vdbe must make its own copy of the column-type and other
2023     ** column specific strings, in case the schema is reset before this
2024     ** virtual machine is deleted.
2025     */
2026     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2027     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2028     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2029 #else
2030     zType = columnType(&sNC, p, 0, 0, 0);
2031 #endif
2032     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2033   }
2034 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2035 }
2036 
2037 
2038 /*
2039 ** Compute the column names for a SELECT statement.
2040 **
2041 ** The only guarantee that SQLite makes about column names is that if the
2042 ** column has an AS clause assigning it a name, that will be the name used.
2043 ** That is the only documented guarantee.  However, countless applications
2044 ** developed over the years have made baseless assumptions about column names
2045 ** and will break if those assumptions changes.  Hence, use extreme caution
2046 ** when modifying this routine to avoid breaking legacy.
2047 **
2048 ** See Also: sqlite3ColumnsFromExprList()
2049 **
2050 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2051 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
2052 ** applications should operate this way.  Nevertheless, we need to support the
2053 ** other modes for legacy:
2054 **
2055 **    short=OFF, full=OFF:      Column name is the text of the expression has it
2056 **                              originally appears in the SELECT statement.  In
2057 **                              other words, the zSpan of the result expression.
2058 **
2059 **    short=ON, full=OFF:       (This is the default setting).  If the result
2060 **                              refers directly to a table column, then the
2061 **                              result column name is just the table column
2062 **                              name: COLUMN.  Otherwise use zSpan.
2063 **
2064 **    full=ON, short=ANY:       If the result refers directly to a table column,
2065 **                              then the result column name with the table name
2066 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
2067 */
2068 void sqlite3GenerateColumnNames(
2069   Parse *pParse,      /* Parser context */
2070   Select *pSelect     /* Generate column names for this SELECT statement */
2071 ){
2072   Vdbe *v = pParse->pVdbe;
2073   int i;
2074   Table *pTab;
2075   SrcList *pTabList;
2076   ExprList *pEList;
2077   sqlite3 *db = pParse->db;
2078   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
2079   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2080 
2081 #ifndef SQLITE_OMIT_EXPLAIN
2082   /* If this is an EXPLAIN, skip this step */
2083   if( pParse->explain ){
2084     return;
2085   }
2086 #endif
2087 
2088   if( pParse->colNamesSet ) return;
2089   /* Column names are determined by the left-most term of a compound select */
2090   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2091   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2092   pTabList = pSelect->pSrc;
2093   pEList = pSelect->pEList;
2094   assert( v!=0 );
2095   assert( pTabList!=0 );
2096   pParse->colNamesSet = 1;
2097   fullName = (db->flags & SQLITE_FullColNames)!=0;
2098   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2099   sqlite3VdbeSetNumCols(v, pEList->nExpr);
2100   for(i=0; i<pEList->nExpr; i++){
2101     Expr *p = pEList->a[i].pExpr;
2102 
2103     assert( p!=0 );
2104     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2105     assert( p->op!=TK_COLUMN
2106         || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2107     if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2108       /* An AS clause always takes first priority */
2109       char *zName = pEList->a[i].zEName;
2110       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2111     }else if( srcName && p->op==TK_COLUMN ){
2112       char *zCol;
2113       int iCol = p->iColumn;
2114       pTab = p->y.pTab;
2115       assert( pTab!=0 );
2116       if( iCol<0 ) iCol = pTab->iPKey;
2117       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2118       if( iCol<0 ){
2119         zCol = "rowid";
2120       }else{
2121         zCol = pTab->aCol[iCol].zCnName;
2122       }
2123       if( fullName ){
2124         char *zName = 0;
2125         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2126         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2127       }else{
2128         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2129       }
2130     }else{
2131       const char *z = pEList->a[i].zEName;
2132       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2133       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2134     }
2135   }
2136   generateColumnTypes(pParse, pTabList, pEList);
2137 }
2138 
2139 /*
2140 ** Given an expression list (which is really the list of expressions
2141 ** that form the result set of a SELECT statement) compute appropriate
2142 ** column names for a table that would hold the expression list.
2143 **
2144 ** All column names will be unique.
2145 **
2146 ** Only the column names are computed.  Column.zType, Column.zColl,
2147 ** and other fields of Column are zeroed.
2148 **
2149 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2150 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2151 **
2152 ** The only guarantee that SQLite makes about column names is that if the
2153 ** column has an AS clause assigning it a name, that will be the name used.
2154 ** That is the only documented guarantee.  However, countless applications
2155 ** developed over the years have made baseless assumptions about column names
2156 ** and will break if those assumptions changes.  Hence, use extreme caution
2157 ** when modifying this routine to avoid breaking legacy.
2158 **
2159 ** See Also: sqlite3GenerateColumnNames()
2160 */
2161 int sqlite3ColumnsFromExprList(
2162   Parse *pParse,          /* Parsing context */
2163   ExprList *pEList,       /* Expr list from which to derive column names */
2164   i16 *pnCol,             /* Write the number of columns here */
2165   Column **paCol          /* Write the new column list here */
2166 ){
2167   sqlite3 *db = pParse->db;   /* Database connection */
2168   int i, j;                   /* Loop counters */
2169   u32 cnt;                    /* Index added to make the name unique */
2170   Column *aCol, *pCol;        /* For looping over result columns */
2171   int nCol;                   /* Number of columns in the result set */
2172   char *zName;                /* Column name */
2173   int nName;                  /* Size of name in zName[] */
2174   Hash ht;                    /* Hash table of column names */
2175   Table *pTab;
2176 
2177   sqlite3HashInit(&ht);
2178   if( pEList ){
2179     nCol = pEList->nExpr;
2180     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2181     testcase( aCol==0 );
2182     if( NEVER(nCol>32767) ) nCol = 32767;
2183   }else{
2184     nCol = 0;
2185     aCol = 0;
2186   }
2187   assert( nCol==(i16)nCol );
2188   *pnCol = nCol;
2189   *paCol = aCol;
2190 
2191   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2192     struct ExprList_item *pX = &pEList->a[i];
2193     struct ExprList_item *pCollide;
2194     /* Get an appropriate name for the column
2195     */
2196     if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2197       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2198     }else{
2199       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2200       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2201         pColExpr = pColExpr->pRight;
2202         assert( pColExpr!=0 );
2203       }
2204       if( pColExpr->op==TK_COLUMN
2205        && ALWAYS( ExprUseYTab(pColExpr) )
2206        && ALWAYS( pColExpr->y.pTab!=0 )
2207       ){
2208         /* For columns use the column name name */
2209         int iCol = pColExpr->iColumn;
2210         pTab = pColExpr->y.pTab;
2211         if( iCol<0 ) iCol = pTab->iPKey;
2212         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2213       }else if( pColExpr->op==TK_ID ){
2214         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2215         zName = pColExpr->u.zToken;
2216       }else{
2217         /* Use the original text of the column expression as its name */
2218         assert( zName==pX->zEName );  /* pointer comparison intended */
2219       }
2220     }
2221     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2222       zName = sqlite3DbStrDup(db, zName);
2223     }else{
2224       zName = sqlite3MPrintf(db,"column%d",i+1);
2225     }
2226 
2227     /* Make sure the column name is unique.  If the name is not unique,
2228     ** append an integer to the name so that it becomes unique.
2229     */
2230     cnt = 0;
2231     while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2232       if( pCollide->fg.bUsingTerm ){
2233         pCol->colFlags |= COLFLAG_NOEXPAND;
2234       }
2235       nName = sqlite3Strlen30(zName);
2236       if( nName>0 ){
2237         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2238         if( zName[j]==':' ) nName = j;
2239       }
2240       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2241       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2242     }
2243     pCol->zCnName = zName;
2244     pCol->hName = sqlite3StrIHash(zName);
2245     if( pX->fg.bNoExpand ){
2246       pCol->colFlags |= COLFLAG_NOEXPAND;
2247     }
2248     sqlite3ColumnPropertiesFromName(0, pCol);
2249     if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2250       sqlite3OomFault(db);
2251     }
2252   }
2253   sqlite3HashClear(&ht);
2254   if( db->mallocFailed ){
2255     for(j=0; j<i; j++){
2256       sqlite3DbFree(db, aCol[j].zCnName);
2257     }
2258     sqlite3DbFree(db, aCol);
2259     *paCol = 0;
2260     *pnCol = 0;
2261     return SQLITE_NOMEM_BKPT;
2262   }
2263   return SQLITE_OK;
2264 }
2265 
2266 /*
2267 ** Add type and collation information to a column list based on
2268 ** a SELECT statement.
2269 **
2270 ** The column list presumably came from selectColumnNamesFromExprList().
2271 ** The column list has only names, not types or collations.  This
2272 ** routine goes through and adds the types and collations.
2273 **
2274 ** This routine requires that all identifiers in the SELECT
2275 ** statement be resolved.
2276 */
2277 void sqlite3SelectAddColumnTypeAndCollation(
2278   Parse *pParse,        /* Parsing contexts */
2279   Table *pTab,          /* Add column type information to this table */
2280   Select *pSelect,      /* SELECT used to determine types and collations */
2281   char aff              /* Default affinity for columns */
2282 ){
2283   sqlite3 *db = pParse->db;
2284   NameContext sNC;
2285   Column *pCol;
2286   CollSeq *pColl;
2287   int i;
2288   Expr *p;
2289   struct ExprList_item *a;
2290 
2291   assert( pSelect!=0 );
2292   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2293   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2294   if( db->mallocFailed ) return;
2295   memset(&sNC, 0, sizeof(sNC));
2296   sNC.pSrcList = pSelect->pSrc;
2297   a = pSelect->pEList->a;
2298   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2299     const char *zType;
2300     i64 n, m;
2301     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2302     p = a[i].pExpr;
2303     zType = columnType(&sNC, p, 0, 0, 0);
2304     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2305     pCol->affinity = sqlite3ExprAffinity(p);
2306     if( zType ){
2307       m = sqlite3Strlen30(zType);
2308       n = sqlite3Strlen30(pCol->zCnName);
2309       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2310       if( pCol->zCnName ){
2311         memcpy(&pCol->zCnName[n+1], zType, m+1);
2312         pCol->colFlags |= COLFLAG_HASTYPE;
2313       }else{
2314         testcase( pCol->colFlags & COLFLAG_HASTYPE );
2315         pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2316       }
2317     }
2318     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2319     pColl = sqlite3ExprCollSeq(pParse, p);
2320     if( pColl ){
2321       assert( pTab->pIndex==0 );
2322       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2323     }
2324   }
2325   pTab->szTabRow = 1; /* Any non-zero value works */
2326 }
2327 
2328 /*
2329 ** Given a SELECT statement, generate a Table structure that describes
2330 ** the result set of that SELECT.
2331 */
2332 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2333   Table *pTab;
2334   sqlite3 *db = pParse->db;
2335   u64 savedFlags;
2336 
2337   savedFlags = db->flags;
2338   db->flags &= ~(u64)SQLITE_FullColNames;
2339   db->flags |= SQLITE_ShortColNames;
2340   sqlite3SelectPrep(pParse, pSelect, 0);
2341   db->flags = savedFlags;
2342   if( pParse->nErr ) return 0;
2343   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2344   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2345   if( pTab==0 ){
2346     return 0;
2347   }
2348   pTab->nTabRef = 1;
2349   pTab->zName = 0;
2350   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2351   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2352   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2353   pTab->iPKey = -1;
2354   if( db->mallocFailed ){
2355     sqlite3DeleteTable(db, pTab);
2356     return 0;
2357   }
2358   return pTab;
2359 }
2360 
2361 /*
2362 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2363 ** If an error occurs, return NULL and leave a message in pParse.
2364 */
2365 Vdbe *sqlite3GetVdbe(Parse *pParse){
2366   if( pParse->pVdbe ){
2367     return pParse->pVdbe;
2368   }
2369   if( pParse->pToplevel==0
2370    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2371   ){
2372     pParse->okConstFactor = 1;
2373   }
2374   return sqlite3VdbeCreate(pParse);
2375 }
2376 
2377 
2378 /*
2379 ** Compute the iLimit and iOffset fields of the SELECT based on the
2380 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2381 ** that appear in the original SQL statement after the LIMIT and OFFSET
2382 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2383 ** are the integer memory register numbers for counters used to compute
2384 ** the limit and offset.  If there is no limit and/or offset, then
2385 ** iLimit and iOffset are negative.
2386 **
2387 ** This routine changes the values of iLimit and iOffset only if
2388 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2389 ** and iOffset should have been preset to appropriate default values (zero)
2390 ** prior to calling this routine.
2391 **
2392 ** The iOffset register (if it exists) is initialized to the value
2393 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2394 ** iOffset+1 is initialized to LIMIT+OFFSET.
2395 **
2396 ** Only if pLimit->pLeft!=0 do the limit registers get
2397 ** redefined.  The UNION ALL operator uses this property to force
2398 ** the reuse of the same limit and offset registers across multiple
2399 ** SELECT statements.
2400 */
2401 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2402   Vdbe *v = 0;
2403   int iLimit = 0;
2404   int iOffset;
2405   int n;
2406   Expr *pLimit = p->pLimit;
2407 
2408   if( p->iLimit ) return;
2409 
2410   /*
2411   ** "LIMIT -1" always shows all rows.  There is some
2412   ** controversy about what the correct behavior should be.
2413   ** The current implementation interprets "LIMIT 0" to mean
2414   ** no rows.
2415   */
2416   if( pLimit ){
2417     assert( pLimit->op==TK_LIMIT );
2418     assert( pLimit->pLeft!=0 );
2419     p->iLimit = iLimit = ++pParse->nMem;
2420     v = sqlite3GetVdbe(pParse);
2421     assert( v!=0 );
2422     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2423       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2424       VdbeComment((v, "LIMIT counter"));
2425       if( n==0 ){
2426         sqlite3VdbeGoto(v, iBreak);
2427       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2428         p->nSelectRow = sqlite3LogEst((u64)n);
2429         p->selFlags |= SF_FixedLimit;
2430       }
2431     }else{
2432       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2433       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2434       VdbeComment((v, "LIMIT counter"));
2435       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2436     }
2437     if( pLimit->pRight ){
2438       p->iOffset = iOffset = ++pParse->nMem;
2439       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2440       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2441       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2442       VdbeComment((v, "OFFSET counter"));
2443       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2444       VdbeComment((v, "LIMIT+OFFSET"));
2445     }
2446   }
2447 }
2448 
2449 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2450 /*
2451 ** Return the appropriate collating sequence for the iCol-th column of
2452 ** the result set for the compound-select statement "p".  Return NULL if
2453 ** the column has no default collating sequence.
2454 **
2455 ** The collating sequence for the compound select is taken from the
2456 ** left-most term of the select that has a collating sequence.
2457 */
2458 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2459   CollSeq *pRet;
2460   if( p->pPrior ){
2461     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2462   }else{
2463     pRet = 0;
2464   }
2465   assert( iCol>=0 );
2466   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2467   ** have been thrown during name resolution and we would not have gotten
2468   ** this far */
2469   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2470     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2471   }
2472   return pRet;
2473 }
2474 
2475 /*
2476 ** The select statement passed as the second parameter is a compound SELECT
2477 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2478 ** structure suitable for implementing the ORDER BY.
2479 **
2480 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2481 ** function is responsible for ensuring that this structure is eventually
2482 ** freed.
2483 */
2484 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2485   ExprList *pOrderBy = p->pOrderBy;
2486   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2487   sqlite3 *db = pParse->db;
2488   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2489   if( pRet ){
2490     int i;
2491     for(i=0; i<nOrderBy; i++){
2492       struct ExprList_item *pItem = &pOrderBy->a[i];
2493       Expr *pTerm = pItem->pExpr;
2494       CollSeq *pColl;
2495 
2496       if( pTerm->flags & EP_Collate ){
2497         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2498       }else{
2499         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2500         if( pColl==0 ) pColl = db->pDfltColl;
2501         pOrderBy->a[i].pExpr =
2502           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2503       }
2504       assert( sqlite3KeyInfoIsWriteable(pRet) );
2505       pRet->aColl[i] = pColl;
2506       pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2507     }
2508   }
2509 
2510   return pRet;
2511 }
2512 
2513 #ifndef SQLITE_OMIT_CTE
2514 /*
2515 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2516 ** query of the form:
2517 **
2518 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2519 **                         \___________/             \_______________/
2520 **                           p->pPrior                      p
2521 **
2522 **
2523 ** There is exactly one reference to the recursive-table in the FROM clause
2524 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2525 **
2526 ** The setup-query runs once to generate an initial set of rows that go
2527 ** into a Queue table.  Rows are extracted from the Queue table one by
2528 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2529 ** extracted row (now in the iCurrent table) becomes the content of the
2530 ** recursive-table for a recursive-query run.  The output of the recursive-query
2531 ** is added back into the Queue table.  Then another row is extracted from Queue
2532 ** and the iteration continues until the Queue table is empty.
2533 **
2534 ** If the compound query operator is UNION then no duplicate rows are ever
2535 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2536 ** that have ever been inserted into Queue and causes duplicates to be
2537 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2538 **
2539 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2540 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2541 ** an ORDER BY, the Queue table is just a FIFO.
2542 **
2543 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2544 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2545 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2546 ** with a positive value, then the first OFFSET outputs are discarded rather
2547 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2548 ** rows have been skipped.
2549 */
2550 static void generateWithRecursiveQuery(
2551   Parse *pParse,        /* Parsing context */
2552   Select *p,            /* The recursive SELECT to be coded */
2553   SelectDest *pDest     /* What to do with query results */
2554 ){
2555   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2556   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2557   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2558   Select *pSetup;               /* The setup query */
2559   Select *pFirstRec;            /* Left-most recursive term */
2560   int addrTop;                  /* Top of the loop */
2561   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2562   int iCurrent = 0;             /* The Current table */
2563   int regCurrent;               /* Register holding Current table */
2564   int iQueue;                   /* The Queue table */
2565   int iDistinct = 0;            /* To ensure unique results if UNION */
2566   int eDest = SRT_Fifo;         /* How to write to Queue */
2567   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2568   int i;                        /* Loop counter */
2569   int rc;                       /* Result code */
2570   ExprList *pOrderBy;           /* The ORDER BY clause */
2571   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2572   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2573 
2574 #ifndef SQLITE_OMIT_WINDOWFUNC
2575   if( p->pWin ){
2576     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2577     return;
2578   }
2579 #endif
2580 
2581   /* Obtain authorization to do a recursive query */
2582   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2583 
2584   /* Process the LIMIT and OFFSET clauses, if they exist */
2585   addrBreak = sqlite3VdbeMakeLabel(pParse);
2586   p->nSelectRow = 320;  /* 4 billion rows */
2587   computeLimitRegisters(pParse, p, addrBreak);
2588   pLimit = p->pLimit;
2589   regLimit = p->iLimit;
2590   regOffset = p->iOffset;
2591   p->pLimit = 0;
2592   p->iLimit = p->iOffset = 0;
2593   pOrderBy = p->pOrderBy;
2594 
2595   /* Locate the cursor number of the Current table */
2596   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2597     if( pSrc->a[i].fg.isRecursive ){
2598       iCurrent = pSrc->a[i].iCursor;
2599       break;
2600     }
2601   }
2602 
2603   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2604   ** the Distinct table must be exactly one greater than Queue in order
2605   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2606   iQueue = pParse->nTab++;
2607   if( p->op==TK_UNION ){
2608     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2609     iDistinct = pParse->nTab++;
2610   }else{
2611     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2612   }
2613   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2614 
2615   /* Allocate cursors for Current, Queue, and Distinct. */
2616   regCurrent = ++pParse->nMem;
2617   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2618   if( pOrderBy ){
2619     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2620     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2621                       (char*)pKeyInfo, P4_KEYINFO);
2622     destQueue.pOrderBy = pOrderBy;
2623   }else{
2624     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2625   }
2626   VdbeComment((v, "Queue table"));
2627   if( iDistinct ){
2628     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2629     p->selFlags |= SF_UsesEphemeral;
2630   }
2631 
2632   /* Detach the ORDER BY clause from the compound SELECT */
2633   p->pOrderBy = 0;
2634 
2635   /* Figure out how many elements of the compound SELECT are part of the
2636   ** recursive query.  Make sure no recursive elements use aggregate
2637   ** functions.  Mark the recursive elements as UNION ALL even if they
2638   ** are really UNION because the distinctness will be enforced by the
2639   ** iDistinct table.  pFirstRec is left pointing to the left-most
2640   ** recursive term of the CTE.
2641   */
2642   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2643     if( pFirstRec->selFlags & SF_Aggregate ){
2644       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2645       goto end_of_recursive_query;
2646     }
2647     pFirstRec->op = TK_ALL;
2648     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2649   }
2650 
2651   /* Store the results of the setup-query in Queue. */
2652   pSetup = pFirstRec->pPrior;
2653   pSetup->pNext = 0;
2654   ExplainQueryPlan((pParse, 1, "SETUP"));
2655   rc = sqlite3Select(pParse, pSetup, &destQueue);
2656   pSetup->pNext = p;
2657   if( rc ) goto end_of_recursive_query;
2658 
2659   /* Find the next row in the Queue and output that row */
2660   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2661 
2662   /* Transfer the next row in Queue over to Current */
2663   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2664   if( pOrderBy ){
2665     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2666   }else{
2667     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2668   }
2669   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2670 
2671   /* Output the single row in Current */
2672   addrCont = sqlite3VdbeMakeLabel(pParse);
2673   codeOffset(v, regOffset, addrCont);
2674   selectInnerLoop(pParse, p, iCurrent,
2675       0, 0, pDest, addrCont, addrBreak);
2676   if( regLimit ){
2677     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2678     VdbeCoverage(v);
2679   }
2680   sqlite3VdbeResolveLabel(v, addrCont);
2681 
2682   /* Execute the recursive SELECT taking the single row in Current as
2683   ** the value for the recursive-table. Store the results in the Queue.
2684   */
2685   pFirstRec->pPrior = 0;
2686   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2687   sqlite3Select(pParse, p, &destQueue);
2688   assert( pFirstRec->pPrior==0 );
2689   pFirstRec->pPrior = pSetup;
2690 
2691   /* Keep running the loop until the Queue is empty */
2692   sqlite3VdbeGoto(v, addrTop);
2693   sqlite3VdbeResolveLabel(v, addrBreak);
2694 
2695 end_of_recursive_query:
2696   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2697   p->pOrderBy = pOrderBy;
2698   p->pLimit = pLimit;
2699   return;
2700 }
2701 #endif /* SQLITE_OMIT_CTE */
2702 
2703 /* Forward references */
2704 static int multiSelectOrderBy(
2705   Parse *pParse,        /* Parsing context */
2706   Select *p,            /* The right-most of SELECTs to be coded */
2707   SelectDest *pDest     /* What to do with query results */
2708 );
2709 
2710 /*
2711 ** Handle the special case of a compound-select that originates from a
2712 ** VALUES clause.  By handling this as a special case, we avoid deep
2713 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2714 ** on a VALUES clause.
2715 **
2716 ** Because the Select object originates from a VALUES clause:
2717 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2718 **   (2) All terms are UNION ALL
2719 **   (3) There is no ORDER BY clause
2720 **
2721 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2722 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2723 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2724 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2725 */
2726 static int multiSelectValues(
2727   Parse *pParse,        /* Parsing context */
2728   Select *p,            /* The right-most of SELECTs to be coded */
2729   SelectDest *pDest     /* What to do with query results */
2730 ){
2731   int nRow = 1;
2732   int rc = 0;
2733   int bShowAll = p->pLimit==0;
2734   assert( p->selFlags & SF_MultiValue );
2735   do{
2736     assert( p->selFlags & SF_Values );
2737     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2738     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2739 #ifndef SQLITE_OMIT_WINDOWFUNC
2740     if( p->pWin ) return -1;
2741 #endif
2742     if( p->pPrior==0 ) break;
2743     assert( p->pPrior->pNext==p );
2744     p = p->pPrior;
2745     nRow += bShowAll;
2746   }while(1);
2747   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2748                     nRow==1 ? "" : "S"));
2749   while( p ){
2750     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2751     if( !bShowAll ) break;
2752     p->nSelectRow = nRow;
2753     p = p->pNext;
2754   }
2755   return rc;
2756 }
2757 
2758 /*
2759 ** Return true if the SELECT statement which is known to be the recursive
2760 ** part of a recursive CTE still has its anchor terms attached.  If the
2761 ** anchor terms have already been removed, then return false.
2762 */
2763 static int hasAnchor(Select *p){
2764   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2765   return p!=0;
2766 }
2767 
2768 /*
2769 ** This routine is called to process a compound query form from
2770 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2771 ** INTERSECT
2772 **
2773 ** "p" points to the right-most of the two queries.  the query on the
2774 ** left is p->pPrior.  The left query could also be a compound query
2775 ** in which case this routine will be called recursively.
2776 **
2777 ** The results of the total query are to be written into a destination
2778 ** of type eDest with parameter iParm.
2779 **
2780 ** Example 1:  Consider a three-way compound SQL statement.
2781 **
2782 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2783 **
2784 ** This statement is parsed up as follows:
2785 **
2786 **     SELECT c FROM t3
2787 **      |
2788 **      `----->  SELECT b FROM t2
2789 **                |
2790 **                `------>  SELECT a FROM t1
2791 **
2792 ** The arrows in the diagram above represent the Select.pPrior pointer.
2793 ** So if this routine is called with p equal to the t3 query, then
2794 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2795 **
2796 ** Notice that because of the way SQLite parses compound SELECTs, the
2797 ** individual selects always group from left to right.
2798 */
2799 static int multiSelect(
2800   Parse *pParse,        /* Parsing context */
2801   Select *p,            /* The right-most of SELECTs to be coded */
2802   SelectDest *pDest     /* What to do with query results */
2803 ){
2804   int rc = SQLITE_OK;   /* Success code from a subroutine */
2805   Select *pPrior;       /* Another SELECT immediately to our left */
2806   Vdbe *v;              /* Generate code to this VDBE */
2807   SelectDest dest;      /* Alternative data destination */
2808   Select *pDelete = 0;  /* Chain of simple selects to delete */
2809   sqlite3 *db;          /* Database connection */
2810 
2811   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2812   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2813   */
2814   assert( p && p->pPrior );  /* Calling function guarantees this much */
2815   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2816   assert( p->selFlags & SF_Compound );
2817   db = pParse->db;
2818   pPrior = p->pPrior;
2819   dest = *pDest;
2820   assert( pPrior->pOrderBy==0 );
2821   assert( pPrior->pLimit==0 );
2822 
2823   v = sqlite3GetVdbe(pParse);
2824   assert( v!=0 );  /* The VDBE already created by calling function */
2825 
2826   /* Create the destination temporary table if necessary
2827   */
2828   if( dest.eDest==SRT_EphemTab ){
2829     assert( p->pEList );
2830     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2831     dest.eDest = SRT_Table;
2832   }
2833 
2834   /* Special handling for a compound-select that originates as a VALUES clause.
2835   */
2836   if( p->selFlags & SF_MultiValue ){
2837     rc = multiSelectValues(pParse, p, &dest);
2838     if( rc>=0 ) goto multi_select_end;
2839     rc = SQLITE_OK;
2840   }
2841 
2842   /* Make sure all SELECTs in the statement have the same number of elements
2843   ** in their result sets.
2844   */
2845   assert( p->pEList && pPrior->pEList );
2846   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2847 
2848 #ifndef SQLITE_OMIT_CTE
2849   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2850     generateWithRecursiveQuery(pParse, p, &dest);
2851   }else
2852 #endif
2853 
2854   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2855   */
2856   if( p->pOrderBy ){
2857     return multiSelectOrderBy(pParse, p, pDest);
2858   }else{
2859 
2860 #ifndef SQLITE_OMIT_EXPLAIN
2861     if( pPrior->pPrior==0 ){
2862       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2863       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2864     }
2865 #endif
2866 
2867     /* Generate code for the left and right SELECT statements.
2868     */
2869     switch( p->op ){
2870       case TK_ALL: {
2871         int addr = 0;
2872         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2873         assert( !pPrior->pLimit );
2874         pPrior->iLimit = p->iLimit;
2875         pPrior->iOffset = p->iOffset;
2876         pPrior->pLimit = p->pLimit;
2877         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2878         rc = sqlite3Select(pParse, pPrior, &dest);
2879         pPrior->pLimit = 0;
2880         if( rc ){
2881           goto multi_select_end;
2882         }
2883         p->pPrior = 0;
2884         p->iLimit = pPrior->iLimit;
2885         p->iOffset = pPrior->iOffset;
2886         if( p->iLimit ){
2887           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2888           VdbeComment((v, "Jump ahead if LIMIT reached"));
2889           if( p->iOffset ){
2890             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2891                               p->iLimit, p->iOffset+1, p->iOffset);
2892           }
2893         }
2894         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2895         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2896         rc = sqlite3Select(pParse, p, &dest);
2897         testcase( rc!=SQLITE_OK );
2898         pDelete = p->pPrior;
2899         p->pPrior = pPrior;
2900         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2901         if( p->pLimit
2902          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2903          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2904         ){
2905           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2906         }
2907         if( addr ){
2908           sqlite3VdbeJumpHere(v, addr);
2909         }
2910         break;
2911       }
2912       case TK_EXCEPT:
2913       case TK_UNION: {
2914         int unionTab;    /* Cursor number of the temp table holding result */
2915         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2916         int priorOp;     /* The SRT_ operation to apply to prior selects */
2917         Expr *pLimit;    /* Saved values of p->nLimit  */
2918         int addr;
2919         SelectDest uniondest;
2920 
2921         testcase( p->op==TK_EXCEPT );
2922         testcase( p->op==TK_UNION );
2923         priorOp = SRT_Union;
2924         if( dest.eDest==priorOp ){
2925           /* We can reuse a temporary table generated by a SELECT to our
2926           ** right.
2927           */
2928           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2929           unionTab = dest.iSDParm;
2930         }else{
2931           /* We will need to create our own temporary table to hold the
2932           ** intermediate results.
2933           */
2934           unionTab = pParse->nTab++;
2935           assert( p->pOrderBy==0 );
2936           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2937           assert( p->addrOpenEphm[0] == -1 );
2938           p->addrOpenEphm[0] = addr;
2939           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2940           assert( p->pEList );
2941         }
2942 
2943 
2944         /* Code the SELECT statements to our left
2945         */
2946         assert( !pPrior->pOrderBy );
2947         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2948         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2949         rc = sqlite3Select(pParse, pPrior, &uniondest);
2950         if( rc ){
2951           goto multi_select_end;
2952         }
2953 
2954         /* Code the current SELECT statement
2955         */
2956         if( p->op==TK_EXCEPT ){
2957           op = SRT_Except;
2958         }else{
2959           assert( p->op==TK_UNION );
2960           op = SRT_Union;
2961         }
2962         p->pPrior = 0;
2963         pLimit = p->pLimit;
2964         p->pLimit = 0;
2965         uniondest.eDest = op;
2966         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2967                           sqlite3SelectOpName(p->op)));
2968         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2969         rc = sqlite3Select(pParse, p, &uniondest);
2970         testcase( rc!=SQLITE_OK );
2971         assert( p->pOrderBy==0 );
2972         pDelete = p->pPrior;
2973         p->pPrior = pPrior;
2974         p->pOrderBy = 0;
2975         if( p->op==TK_UNION ){
2976           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2977         }
2978         sqlite3ExprDelete(db, p->pLimit);
2979         p->pLimit = pLimit;
2980         p->iLimit = 0;
2981         p->iOffset = 0;
2982 
2983         /* Convert the data in the temporary table into whatever form
2984         ** it is that we currently need.
2985         */
2986         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2987         assert( p->pEList || db->mallocFailed );
2988         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2989           int iCont, iBreak, iStart;
2990           iBreak = sqlite3VdbeMakeLabel(pParse);
2991           iCont = sqlite3VdbeMakeLabel(pParse);
2992           computeLimitRegisters(pParse, p, iBreak);
2993           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2994           iStart = sqlite3VdbeCurrentAddr(v);
2995           selectInnerLoop(pParse, p, unionTab,
2996                           0, 0, &dest, iCont, iBreak);
2997           sqlite3VdbeResolveLabel(v, iCont);
2998           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2999           sqlite3VdbeResolveLabel(v, iBreak);
3000           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3001         }
3002         break;
3003       }
3004       default: assert( p->op==TK_INTERSECT ); {
3005         int tab1, tab2;
3006         int iCont, iBreak, iStart;
3007         Expr *pLimit;
3008         int addr;
3009         SelectDest intersectdest;
3010         int r1;
3011 
3012         /* INTERSECT is different from the others since it requires
3013         ** two temporary tables.  Hence it has its own case.  Begin
3014         ** by allocating the tables we will need.
3015         */
3016         tab1 = pParse->nTab++;
3017         tab2 = pParse->nTab++;
3018         assert( p->pOrderBy==0 );
3019 
3020         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3021         assert( p->addrOpenEphm[0] == -1 );
3022         p->addrOpenEphm[0] = addr;
3023         findRightmost(p)->selFlags |= SF_UsesEphemeral;
3024         assert( p->pEList );
3025 
3026         /* Code the SELECTs to our left into temporary table "tab1".
3027         */
3028         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3029         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
3030         rc = sqlite3Select(pParse, pPrior, &intersectdest);
3031         if( rc ){
3032           goto multi_select_end;
3033         }
3034 
3035         /* Code the current SELECT into temporary table "tab2"
3036         */
3037         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3038         assert( p->addrOpenEphm[1] == -1 );
3039         p->addrOpenEphm[1] = addr;
3040         p->pPrior = 0;
3041         pLimit = p->pLimit;
3042         p->pLimit = 0;
3043         intersectdest.iSDParm = tab2;
3044         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3045                           sqlite3SelectOpName(p->op)));
3046         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
3047         rc = sqlite3Select(pParse, p, &intersectdest);
3048         testcase( rc!=SQLITE_OK );
3049         pDelete = p->pPrior;
3050         p->pPrior = pPrior;
3051         if( p->nSelectRow>pPrior->nSelectRow ){
3052           p->nSelectRow = pPrior->nSelectRow;
3053         }
3054         sqlite3ExprDelete(db, p->pLimit);
3055         p->pLimit = pLimit;
3056 
3057         /* Generate code to take the intersection of the two temporary
3058         ** tables.
3059         */
3060         if( rc ) break;
3061         assert( p->pEList );
3062         iBreak = sqlite3VdbeMakeLabel(pParse);
3063         iCont = sqlite3VdbeMakeLabel(pParse);
3064         computeLimitRegisters(pParse, p, iBreak);
3065         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3066         r1 = sqlite3GetTempReg(pParse);
3067         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3068         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3069         VdbeCoverage(v);
3070         sqlite3ReleaseTempReg(pParse, r1);
3071         selectInnerLoop(pParse, p, tab1,
3072                         0, 0, &dest, iCont, iBreak);
3073         sqlite3VdbeResolveLabel(v, iCont);
3074         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3075         sqlite3VdbeResolveLabel(v, iBreak);
3076         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3077         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3078         break;
3079       }
3080     }
3081 
3082   #ifndef SQLITE_OMIT_EXPLAIN
3083     if( p->pNext==0 ){
3084       ExplainQueryPlanPop(pParse);
3085     }
3086   #endif
3087   }
3088   if( pParse->nErr ) goto multi_select_end;
3089 
3090   /* Compute collating sequences used by
3091   ** temporary tables needed to implement the compound select.
3092   ** Attach the KeyInfo structure to all temporary tables.
3093   **
3094   ** This section is run by the right-most SELECT statement only.
3095   ** SELECT statements to the left always skip this part.  The right-most
3096   ** SELECT might also skip this part if it has no ORDER BY clause and
3097   ** no temp tables are required.
3098   */
3099   if( p->selFlags & SF_UsesEphemeral ){
3100     int i;                        /* Loop counter */
3101     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
3102     Select *pLoop;                /* For looping through SELECT statements */
3103     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
3104     int nCol;                     /* Number of columns in result set */
3105 
3106     assert( p->pNext==0 );
3107     assert( p->pEList!=0 );
3108     nCol = p->pEList->nExpr;
3109     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3110     if( !pKeyInfo ){
3111       rc = SQLITE_NOMEM_BKPT;
3112       goto multi_select_end;
3113     }
3114     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3115       *apColl = multiSelectCollSeq(pParse, p, i);
3116       if( 0==*apColl ){
3117         *apColl = db->pDfltColl;
3118       }
3119     }
3120 
3121     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3122       for(i=0; i<2; i++){
3123         int addr = pLoop->addrOpenEphm[i];
3124         if( addr<0 ){
3125           /* If [0] is unused then [1] is also unused.  So we can
3126           ** always safely abort as soon as the first unused slot is found */
3127           assert( pLoop->addrOpenEphm[1]<0 );
3128           break;
3129         }
3130         sqlite3VdbeChangeP2(v, addr, nCol);
3131         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3132                             P4_KEYINFO);
3133         pLoop->addrOpenEphm[i] = -1;
3134       }
3135     }
3136     sqlite3KeyInfoUnref(pKeyInfo);
3137   }
3138 
3139 multi_select_end:
3140   pDest->iSdst = dest.iSdst;
3141   pDest->nSdst = dest.nSdst;
3142   if( pDelete ){
3143     sqlite3ParserAddCleanup(pParse,
3144         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3145         pDelete);
3146   }
3147   return rc;
3148 }
3149 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3150 
3151 /*
3152 ** Error message for when two or more terms of a compound select have different
3153 ** size result sets.
3154 */
3155 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3156   if( p->selFlags & SF_Values ){
3157     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3158   }else{
3159     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3160       " do not have the same number of result columns",
3161       sqlite3SelectOpName(p->op));
3162   }
3163 }
3164 
3165 /*
3166 ** Code an output subroutine for a coroutine implementation of a
3167 ** SELECT statment.
3168 **
3169 ** The data to be output is contained in pIn->iSdst.  There are
3170 ** pIn->nSdst columns to be output.  pDest is where the output should
3171 ** be sent.
3172 **
3173 ** regReturn is the number of the register holding the subroutine
3174 ** return address.
3175 **
3176 ** If regPrev>0 then it is the first register in a vector that
3177 ** records the previous output.  mem[regPrev] is a flag that is false
3178 ** if there has been no previous output.  If regPrev>0 then code is
3179 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3180 ** keys.
3181 **
3182 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3183 ** iBreak.
3184 */
3185 static int generateOutputSubroutine(
3186   Parse *pParse,          /* Parsing context */
3187   Select *p,              /* The SELECT statement */
3188   SelectDest *pIn,        /* Coroutine supplying data */
3189   SelectDest *pDest,      /* Where to send the data */
3190   int regReturn,          /* The return address register */
3191   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3192   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3193   int iBreak              /* Jump here if we hit the LIMIT */
3194 ){
3195   Vdbe *v = pParse->pVdbe;
3196   int iContinue;
3197   int addr;
3198 
3199   addr = sqlite3VdbeCurrentAddr(v);
3200   iContinue = sqlite3VdbeMakeLabel(pParse);
3201 
3202   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3203   */
3204   if( regPrev ){
3205     int addr1, addr2;
3206     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3207     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3208                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3209     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3210     sqlite3VdbeJumpHere(v, addr1);
3211     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3212     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3213   }
3214   if( pParse->db->mallocFailed ) return 0;
3215 
3216   /* Suppress the first OFFSET entries if there is an OFFSET clause
3217   */
3218   codeOffset(v, p->iOffset, iContinue);
3219 
3220   assert( pDest->eDest!=SRT_Exists );
3221   assert( pDest->eDest!=SRT_Table );
3222   switch( pDest->eDest ){
3223     /* Store the result as data using a unique key.
3224     */
3225     case SRT_EphemTab: {
3226       int r1 = sqlite3GetTempReg(pParse);
3227       int r2 = sqlite3GetTempReg(pParse);
3228       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3229       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3230       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3231       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3232       sqlite3ReleaseTempReg(pParse, r2);
3233       sqlite3ReleaseTempReg(pParse, r1);
3234       break;
3235     }
3236 
3237 #ifndef SQLITE_OMIT_SUBQUERY
3238     /* If we are creating a set for an "expr IN (SELECT ...)".
3239     */
3240     case SRT_Set: {
3241       int r1;
3242       testcase( pIn->nSdst>1 );
3243       r1 = sqlite3GetTempReg(pParse);
3244       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3245           r1, pDest->zAffSdst, pIn->nSdst);
3246       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3247                            pIn->iSdst, pIn->nSdst);
3248       sqlite3ReleaseTempReg(pParse, r1);
3249       break;
3250     }
3251 
3252     /* If this is a scalar select that is part of an expression, then
3253     ** store the results in the appropriate memory cell and break out
3254     ** of the scan loop.  Note that the select might return multiple columns
3255     ** if it is the RHS of a row-value IN operator.
3256     */
3257     case SRT_Mem: {
3258       testcase( pIn->nSdst>1 );
3259       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3260       /* The LIMIT clause will jump out of the loop for us */
3261       break;
3262     }
3263 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3264 
3265     /* The results are stored in a sequence of registers
3266     ** starting at pDest->iSdst.  Then the co-routine yields.
3267     */
3268     case SRT_Coroutine: {
3269       if( pDest->iSdst==0 ){
3270         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3271         pDest->nSdst = pIn->nSdst;
3272       }
3273       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3274       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3275       break;
3276     }
3277 
3278     /* If none of the above, then the result destination must be
3279     ** SRT_Output.  This routine is never called with any other
3280     ** destination other than the ones handled above or SRT_Output.
3281     **
3282     ** For SRT_Output, results are stored in a sequence of registers.
3283     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3284     ** return the next row of result.
3285     */
3286     default: {
3287       assert( pDest->eDest==SRT_Output );
3288       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3289       break;
3290     }
3291   }
3292 
3293   /* Jump to the end of the loop if the LIMIT is reached.
3294   */
3295   if( p->iLimit ){
3296     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3297   }
3298 
3299   /* Generate the subroutine return
3300   */
3301   sqlite3VdbeResolveLabel(v, iContinue);
3302   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3303 
3304   return addr;
3305 }
3306 
3307 /*
3308 ** Alternative compound select code generator for cases when there
3309 ** is an ORDER BY clause.
3310 **
3311 ** We assume a query of the following form:
3312 **
3313 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3314 **
3315 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3316 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3317 ** co-routines.  Then run the co-routines in parallel and merge the results
3318 ** into the output.  In addition to the two coroutines (called selectA and
3319 ** selectB) there are 7 subroutines:
3320 **
3321 **    outA:    Move the output of the selectA coroutine into the output
3322 **             of the compound query.
3323 **
3324 **    outB:    Move the output of the selectB coroutine into the output
3325 **             of the compound query.  (Only generated for UNION and
3326 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3327 **             appears only in B.)
3328 **
3329 **    AltB:    Called when there is data from both coroutines and A<B.
3330 **
3331 **    AeqB:    Called when there is data from both coroutines and A==B.
3332 **
3333 **    AgtB:    Called when there is data from both coroutines and A>B.
3334 **
3335 **    EofA:    Called when data is exhausted from selectA.
3336 **
3337 **    EofB:    Called when data is exhausted from selectB.
3338 **
3339 ** The implementation of the latter five subroutines depend on which
3340 ** <operator> is used:
3341 **
3342 **
3343 **             UNION ALL         UNION            EXCEPT          INTERSECT
3344 **          -------------  -----------------  --------------  -----------------
3345 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3346 **
3347 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3348 **
3349 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3350 **
3351 **   EofA:   outB, nextB      outB, nextB          halt             halt
3352 **
3353 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3354 **
3355 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3356 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3357 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3358 ** following nextX causes a jump to the end of the select processing.
3359 **
3360 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3361 ** within the output subroutine.  The regPrev register set holds the previously
3362 ** output value.  A comparison is made against this value and the output
3363 ** is skipped if the next results would be the same as the previous.
3364 **
3365 ** The implementation plan is to implement the two coroutines and seven
3366 ** subroutines first, then put the control logic at the bottom.  Like this:
3367 **
3368 **          goto Init
3369 **     coA: coroutine for left query (A)
3370 **     coB: coroutine for right query (B)
3371 **    outA: output one row of A
3372 **    outB: output one row of B (UNION and UNION ALL only)
3373 **    EofA: ...
3374 **    EofB: ...
3375 **    AltB: ...
3376 **    AeqB: ...
3377 **    AgtB: ...
3378 **    Init: initialize coroutine registers
3379 **          yield coA
3380 **          if eof(A) goto EofA
3381 **          yield coB
3382 **          if eof(B) goto EofB
3383 **    Cmpr: Compare A, B
3384 **          Jump AltB, AeqB, AgtB
3385 **     End: ...
3386 **
3387 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3388 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3389 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3390 ** and AgtB jump to either L2 or to one of EofA or EofB.
3391 */
3392 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3393 static int multiSelectOrderBy(
3394   Parse *pParse,        /* Parsing context */
3395   Select *p,            /* The right-most of SELECTs to be coded */
3396   SelectDest *pDest     /* What to do with query results */
3397 ){
3398   int i, j;             /* Loop counters */
3399   Select *pPrior;       /* Another SELECT immediately to our left */
3400   Select *pSplit;       /* Left-most SELECT in the right-hand group */
3401   int nSelect;          /* Number of SELECT statements in the compound */
3402   Vdbe *v;              /* Generate code to this VDBE */
3403   SelectDest destA;     /* Destination for coroutine A */
3404   SelectDest destB;     /* Destination for coroutine B */
3405   int regAddrA;         /* Address register for select-A coroutine */
3406   int regAddrB;         /* Address register for select-B coroutine */
3407   int addrSelectA;      /* Address of the select-A coroutine */
3408   int addrSelectB;      /* Address of the select-B coroutine */
3409   int regOutA;          /* Address register for the output-A subroutine */
3410   int regOutB;          /* Address register for the output-B subroutine */
3411   int addrOutA;         /* Address of the output-A subroutine */
3412   int addrOutB = 0;     /* Address of the output-B subroutine */
3413   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3414   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3415   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3416   int addrAltB;         /* Address of the A<B subroutine */
3417   int addrAeqB;         /* Address of the A==B subroutine */
3418   int addrAgtB;         /* Address of the A>B subroutine */
3419   int regLimitA;        /* Limit register for select-A */
3420   int regLimitB;        /* Limit register for select-A */
3421   int regPrev;          /* A range of registers to hold previous output */
3422   int savedLimit;       /* Saved value of p->iLimit */
3423   int savedOffset;      /* Saved value of p->iOffset */
3424   int labelCmpr;        /* Label for the start of the merge algorithm */
3425   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3426   int addr1;            /* Jump instructions that get retargetted */
3427   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3428   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3429   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3430   sqlite3 *db;          /* Database connection */
3431   ExprList *pOrderBy;   /* The ORDER BY clause */
3432   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3433   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3434 
3435   assert( p->pOrderBy!=0 );
3436   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3437   db = pParse->db;
3438   v = pParse->pVdbe;
3439   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3440   labelEnd = sqlite3VdbeMakeLabel(pParse);
3441   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3442 
3443 
3444   /* Patch up the ORDER BY clause
3445   */
3446   op = p->op;
3447   assert( p->pPrior->pOrderBy==0 );
3448   pOrderBy = p->pOrderBy;
3449   assert( pOrderBy );
3450   nOrderBy = pOrderBy->nExpr;
3451 
3452   /* For operators other than UNION ALL we have to make sure that
3453   ** the ORDER BY clause covers every term of the result set.  Add
3454   ** terms to the ORDER BY clause as necessary.
3455   */
3456   if( op!=TK_ALL ){
3457     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3458       struct ExprList_item *pItem;
3459       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3460         assert( pItem!=0 );
3461         assert( pItem->u.x.iOrderByCol>0 );
3462         if( pItem->u.x.iOrderByCol==i ) break;
3463       }
3464       if( j==nOrderBy ){
3465         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3466         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3467         pNew->flags |= EP_IntValue;
3468         pNew->u.iValue = i;
3469         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3470         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3471       }
3472     }
3473   }
3474 
3475   /* Compute the comparison permutation and keyinfo that is used with
3476   ** the permutation used to determine if the next
3477   ** row of results comes from selectA or selectB.  Also add explicit
3478   ** collations to the ORDER BY clause terms so that when the subqueries
3479   ** to the right and the left are evaluated, they use the correct
3480   ** collation.
3481   */
3482   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3483   if( aPermute ){
3484     struct ExprList_item *pItem;
3485     aPermute[0] = nOrderBy;
3486     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3487       assert( pItem!=0 );
3488       assert( pItem->u.x.iOrderByCol>0 );
3489       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3490       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3491     }
3492     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3493   }else{
3494     pKeyMerge = 0;
3495   }
3496 
3497   /* Allocate a range of temporary registers and the KeyInfo needed
3498   ** for the logic that removes duplicate result rows when the
3499   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3500   */
3501   if( op==TK_ALL ){
3502     regPrev = 0;
3503   }else{
3504     int nExpr = p->pEList->nExpr;
3505     assert( nOrderBy>=nExpr || db->mallocFailed );
3506     regPrev = pParse->nMem+1;
3507     pParse->nMem += nExpr+1;
3508     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3509     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3510     if( pKeyDup ){
3511       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3512       for(i=0; i<nExpr; i++){
3513         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3514         pKeyDup->aSortFlags[i] = 0;
3515       }
3516     }
3517   }
3518 
3519   /* Separate the left and the right query from one another
3520   */
3521   nSelect = 1;
3522   if( (op==TK_ALL || op==TK_UNION)
3523    && OptimizationEnabled(db, SQLITE_BalancedMerge)
3524   ){
3525     for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3526       nSelect++;
3527       assert( pSplit->pPrior->pNext==pSplit );
3528     }
3529   }
3530   if( nSelect<=3 ){
3531     pSplit = p;
3532   }else{
3533     pSplit = p;
3534     for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3535   }
3536   pPrior = pSplit->pPrior;
3537   assert( pPrior!=0 );
3538   pSplit->pPrior = 0;
3539   pPrior->pNext = 0;
3540   assert( p->pOrderBy == pOrderBy );
3541   assert( pOrderBy!=0 || db->mallocFailed );
3542   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3543   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3544   sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3545 
3546   /* Compute the limit registers */
3547   computeLimitRegisters(pParse, p, labelEnd);
3548   if( p->iLimit && op==TK_ALL ){
3549     regLimitA = ++pParse->nMem;
3550     regLimitB = ++pParse->nMem;
3551     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3552                                   regLimitA);
3553     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3554   }else{
3555     regLimitA = regLimitB = 0;
3556   }
3557   sqlite3ExprDelete(db, p->pLimit);
3558   p->pLimit = 0;
3559 
3560   regAddrA = ++pParse->nMem;
3561   regAddrB = ++pParse->nMem;
3562   regOutA = ++pParse->nMem;
3563   regOutB = ++pParse->nMem;
3564   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3565   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3566 
3567   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3568 
3569   /* Generate a coroutine to evaluate the SELECT statement to the
3570   ** left of the compound operator - the "A" select.
3571   */
3572   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3573   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3574   VdbeComment((v, "left SELECT"));
3575   pPrior->iLimit = regLimitA;
3576   ExplainQueryPlan((pParse, 1, "LEFT"));
3577   sqlite3Select(pParse, pPrior, &destA);
3578   sqlite3VdbeEndCoroutine(v, regAddrA);
3579   sqlite3VdbeJumpHere(v, addr1);
3580 
3581   /* Generate a coroutine to evaluate the SELECT statement on
3582   ** the right - the "B" select
3583   */
3584   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3585   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3586   VdbeComment((v, "right SELECT"));
3587   savedLimit = p->iLimit;
3588   savedOffset = p->iOffset;
3589   p->iLimit = regLimitB;
3590   p->iOffset = 0;
3591   ExplainQueryPlan((pParse, 1, "RIGHT"));
3592   sqlite3Select(pParse, p, &destB);
3593   p->iLimit = savedLimit;
3594   p->iOffset = savedOffset;
3595   sqlite3VdbeEndCoroutine(v, regAddrB);
3596 
3597   /* Generate a subroutine that outputs the current row of the A
3598   ** select as the next output row of the compound select.
3599   */
3600   VdbeNoopComment((v, "Output routine for A"));
3601   addrOutA = generateOutputSubroutine(pParse,
3602                  p, &destA, pDest, regOutA,
3603                  regPrev, pKeyDup, labelEnd);
3604 
3605   /* Generate a subroutine that outputs the current row of the B
3606   ** select as the next output row of the compound select.
3607   */
3608   if( op==TK_ALL || op==TK_UNION ){
3609     VdbeNoopComment((v, "Output routine for B"));
3610     addrOutB = generateOutputSubroutine(pParse,
3611                  p, &destB, pDest, regOutB,
3612                  regPrev, pKeyDup, labelEnd);
3613   }
3614   sqlite3KeyInfoUnref(pKeyDup);
3615 
3616   /* Generate a subroutine to run when the results from select A
3617   ** are exhausted and only data in select B remains.
3618   */
3619   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3620     addrEofA_noB = addrEofA = labelEnd;
3621   }else{
3622     VdbeNoopComment((v, "eof-A subroutine"));
3623     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3624     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3625                                      VdbeCoverage(v);
3626     sqlite3VdbeGoto(v, addrEofA);
3627     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3628   }
3629 
3630   /* Generate a subroutine to run when the results from select B
3631   ** are exhausted and only data in select A remains.
3632   */
3633   if( op==TK_INTERSECT ){
3634     addrEofB = addrEofA;
3635     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3636   }else{
3637     VdbeNoopComment((v, "eof-B subroutine"));
3638     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3639     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3640     sqlite3VdbeGoto(v, addrEofB);
3641   }
3642 
3643   /* Generate code to handle the case of A<B
3644   */
3645   VdbeNoopComment((v, "A-lt-B subroutine"));
3646   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3647   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3648   sqlite3VdbeGoto(v, labelCmpr);
3649 
3650   /* Generate code to handle the case of A==B
3651   */
3652   if( op==TK_ALL ){
3653     addrAeqB = addrAltB;
3654   }else if( op==TK_INTERSECT ){
3655     addrAeqB = addrAltB;
3656     addrAltB++;
3657   }else{
3658     VdbeNoopComment((v, "A-eq-B subroutine"));
3659     addrAeqB =
3660     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3661     sqlite3VdbeGoto(v, labelCmpr);
3662   }
3663 
3664   /* Generate code to handle the case of A>B
3665   */
3666   VdbeNoopComment((v, "A-gt-B subroutine"));
3667   addrAgtB = sqlite3VdbeCurrentAddr(v);
3668   if( op==TK_ALL || op==TK_UNION ){
3669     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3670   }
3671   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3672   sqlite3VdbeGoto(v, labelCmpr);
3673 
3674   /* This code runs once to initialize everything.
3675   */
3676   sqlite3VdbeJumpHere(v, addr1);
3677   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3678   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3679 
3680   /* Implement the main merge loop
3681   */
3682   sqlite3VdbeResolveLabel(v, labelCmpr);
3683   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3684   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3685                          (char*)pKeyMerge, P4_KEYINFO);
3686   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3687   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3688 
3689   /* Jump to the this point in order to terminate the query.
3690   */
3691   sqlite3VdbeResolveLabel(v, labelEnd);
3692 
3693   /* Reassemble the compound query so that it will be freed correctly
3694   ** by the calling function */
3695   if( pSplit->pPrior ){
3696     sqlite3ParserAddCleanup(pParse,
3697        (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior);
3698   }
3699   pSplit->pPrior = pPrior;
3700   pPrior->pNext = pSplit;
3701   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3702   pPrior->pOrderBy = 0;
3703 
3704   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3705   **** subqueries ****/
3706   ExplainQueryPlanPop(pParse);
3707   return pParse->nErr!=0;
3708 }
3709 #endif
3710 
3711 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3712 
3713 /* An instance of the SubstContext object describes an substitution edit
3714 ** to be performed on a parse tree.
3715 **
3716 ** All references to columns in table iTable are to be replaced by corresponding
3717 ** expressions in pEList.
3718 **
3719 ** ## About "isOuterJoin":
3720 **
3721 ** The isOuterJoin column indicates that the replacement will occur into a
3722 ** position in the parent that NULL-able due to an OUTER JOIN.  Either the
3723 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3724 ** the left operands of a RIGHT JOIN.  In either case, we need to potentially
3725 ** bypass the substituted expression with OP_IfNullRow.
3726 **
3727 ** Suppose the original expression is an integer constant. Even though the table
3728 ** has the nullRow flag set, because the expression is an integer constant,
3729 ** it will not be NULLed out.  So instead, we insert an OP_IfNullRow opcode
3730 ** that checks to see if the nullRow flag is set on the table.  If the nullRow
3731 ** flag is set, then the value in the register is set to NULL and the original
3732 ** expression is bypassed.  If the nullRow flag is not set, then the original
3733 ** expression runs to populate the register.
3734 **
3735 ** Example where this is needed:
3736 **
3737 **      CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3738 **      CREATE TABLE t2(x INT UNIQUE);
3739 **
3740 **      SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3741 **
3742 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3743 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3744 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3745 ** when processing a non-matched row of the left.
3746 */
3747 typedef struct SubstContext {
3748   Parse *pParse;            /* The parsing context */
3749   int iTable;               /* Replace references to this table */
3750   int iNewTable;            /* New table number */
3751   int isOuterJoin;          /* Add TK_IF_NULL_ROW opcodes on each replacement */
3752   ExprList *pEList;         /* Replacement expressions */
3753 } SubstContext;
3754 
3755 /* Forward Declarations */
3756 static void substExprList(SubstContext*, ExprList*);
3757 static void substSelect(SubstContext*, Select*, int);
3758 
3759 /*
3760 ** Scan through the expression pExpr.  Replace every reference to
3761 ** a column in table number iTable with a copy of the iColumn-th
3762 ** entry in pEList.  (But leave references to the ROWID column
3763 ** unchanged.)
3764 **
3765 ** This routine is part of the flattening procedure.  A subquery
3766 ** whose result set is defined by pEList appears as entry in the
3767 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3768 ** FORM clause entry is iTable.  This routine makes the necessary
3769 ** changes to pExpr so that it refers directly to the source table
3770 ** of the subquery rather the result set of the subquery.
3771 */
3772 static Expr *substExpr(
3773   SubstContext *pSubst,  /* Description of the substitution */
3774   Expr *pExpr            /* Expr in which substitution occurs */
3775 ){
3776   if( pExpr==0 ) return 0;
3777   if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3778    && pExpr->w.iJoin==pSubst->iTable
3779   ){
3780     testcase( ExprHasProperty(pExpr, EP_InnerON) );
3781     pExpr->w.iJoin = pSubst->iNewTable;
3782   }
3783   if( pExpr->op==TK_COLUMN
3784    && pExpr->iTable==pSubst->iTable
3785    && !ExprHasProperty(pExpr, EP_FixedCol)
3786   ){
3787 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3788     if( pExpr->iColumn<0 ){
3789       pExpr->op = TK_NULL;
3790     }else
3791 #endif
3792     {
3793       Expr *pNew;
3794       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3795       Expr ifNullRow;
3796       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3797       assert( pExpr->pRight==0 );
3798       if( sqlite3ExprIsVector(pCopy) ){
3799         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3800       }else{
3801         sqlite3 *db = pSubst->pParse->db;
3802         if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){
3803           memset(&ifNullRow, 0, sizeof(ifNullRow));
3804           ifNullRow.op = TK_IF_NULL_ROW;
3805           ifNullRow.pLeft = pCopy;
3806           ifNullRow.iTable = pSubst->iNewTable;
3807           ifNullRow.iColumn = -99;
3808           ifNullRow.flags = EP_IfNullRow;
3809           pCopy = &ifNullRow;
3810         }
3811         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3812         pNew = sqlite3ExprDup(db, pCopy, 0);
3813         if( db->mallocFailed ){
3814           sqlite3ExprDelete(db, pNew);
3815           return pExpr;
3816         }
3817         if( pSubst->isOuterJoin ){
3818           ExprSetProperty(pNew, EP_CanBeNull);
3819         }
3820         if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3821           sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3822                              pExpr->flags & (EP_OuterON|EP_InnerON));
3823         }
3824         sqlite3ExprDelete(db, pExpr);
3825         pExpr = pNew;
3826         if( pExpr->op==TK_TRUEFALSE ){
3827           pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3828           pExpr->op = TK_INTEGER;
3829           ExprSetProperty(pExpr, EP_IntValue);
3830         }
3831 
3832         /* Ensure that the expression now has an implicit collation sequence,
3833         ** just as it did when it was a column of a view or sub-query. */
3834         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3835           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3836           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3837               (pColl ? pColl->zName : "BINARY")
3838           );
3839         }
3840         ExprClearProperty(pExpr, EP_Collate);
3841       }
3842     }
3843   }else{
3844     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3845       pExpr->iTable = pSubst->iNewTable;
3846     }
3847     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3848     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3849     if( ExprUseXSelect(pExpr) ){
3850       substSelect(pSubst, pExpr->x.pSelect, 1);
3851     }else{
3852       substExprList(pSubst, pExpr->x.pList);
3853     }
3854 #ifndef SQLITE_OMIT_WINDOWFUNC
3855     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3856       Window *pWin = pExpr->y.pWin;
3857       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3858       substExprList(pSubst, pWin->pPartition);
3859       substExprList(pSubst, pWin->pOrderBy);
3860     }
3861 #endif
3862   }
3863   return pExpr;
3864 }
3865 static void substExprList(
3866   SubstContext *pSubst, /* Description of the substitution */
3867   ExprList *pList       /* List to scan and in which to make substitutes */
3868 ){
3869   int i;
3870   if( pList==0 ) return;
3871   for(i=0; i<pList->nExpr; i++){
3872     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3873   }
3874 }
3875 static void substSelect(
3876   SubstContext *pSubst, /* Description of the substitution */
3877   Select *p,            /* SELECT statement in which to make substitutions */
3878   int doPrior           /* Do substitutes on p->pPrior too */
3879 ){
3880   SrcList *pSrc;
3881   SrcItem *pItem;
3882   int i;
3883   if( !p ) return;
3884   do{
3885     substExprList(pSubst, p->pEList);
3886     substExprList(pSubst, p->pGroupBy);
3887     substExprList(pSubst, p->pOrderBy);
3888     p->pHaving = substExpr(pSubst, p->pHaving);
3889     p->pWhere = substExpr(pSubst, p->pWhere);
3890     pSrc = p->pSrc;
3891     assert( pSrc!=0 );
3892     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3893       substSelect(pSubst, pItem->pSelect, 1);
3894       if( pItem->fg.isTabFunc ){
3895         substExprList(pSubst, pItem->u1.pFuncArg);
3896       }
3897     }
3898   }while( doPrior && (p = p->pPrior)!=0 );
3899 }
3900 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3901 
3902 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3903 /*
3904 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3905 ** clause of that SELECT.
3906 **
3907 ** This routine scans the entire SELECT statement and recomputes the
3908 ** pSrcItem->colUsed mask.
3909 */
3910 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3911   SrcItem *pItem;
3912   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3913   pItem = pWalker->u.pSrcItem;
3914   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3915   if( pExpr->iColumn<0 ) return WRC_Continue;
3916   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3917   return WRC_Continue;
3918 }
3919 static void recomputeColumnsUsed(
3920   Select *pSelect,                 /* The complete SELECT statement */
3921   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3922 ){
3923   Walker w;
3924   if( NEVER(pSrcItem->pTab==0) ) return;
3925   memset(&w, 0, sizeof(w));
3926   w.xExprCallback = recomputeColumnsUsedExpr;
3927   w.xSelectCallback = sqlite3SelectWalkNoop;
3928   w.u.pSrcItem = pSrcItem;
3929   pSrcItem->colUsed = 0;
3930   sqlite3WalkSelect(&w, pSelect);
3931 }
3932 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3933 
3934 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3935 /*
3936 ** Assign new cursor numbers to each of the items in pSrc. For each
3937 ** new cursor number assigned, set an entry in the aCsrMap[] array
3938 ** to map the old cursor number to the new:
3939 **
3940 **     aCsrMap[iOld+1] = iNew;
3941 **
3942 ** The array is guaranteed by the caller to be large enough for all
3943 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3944 **
3945 ** If pSrc contains any sub-selects, call this routine recursively
3946 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3947 */
3948 static void srclistRenumberCursors(
3949   Parse *pParse,                  /* Parse context */
3950   int *aCsrMap,                   /* Array to store cursor mappings in */
3951   SrcList *pSrc,                  /* FROM clause to renumber */
3952   int iExcept                     /* FROM clause item to skip */
3953 ){
3954   int i;
3955   SrcItem *pItem;
3956   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3957     if( i!=iExcept ){
3958       Select *p;
3959       assert( pItem->iCursor < aCsrMap[0] );
3960       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3961         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3962       }
3963       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3964       for(p=pItem->pSelect; p; p=p->pPrior){
3965         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3966       }
3967     }
3968   }
3969 }
3970 
3971 /*
3972 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3973 */
3974 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3975   int *aCsrMap = pWalker->u.aiCol;
3976   int iCsr = *piCursor;
3977   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3978     *piCursor = aCsrMap[iCsr+1];
3979   }
3980 }
3981 
3982 /*
3983 ** Expression walker callback used by renumberCursors() to update
3984 ** Expr objects to match newly assigned cursor numbers.
3985 */
3986 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3987   int op = pExpr->op;
3988   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3989     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3990   }
3991   if( ExprHasProperty(pExpr, EP_OuterON) ){
3992     renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
3993   }
3994   return WRC_Continue;
3995 }
3996 
3997 /*
3998 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3999 ** of the SELECT statement passed as the second argument, and to each
4000 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4001 ** Except, do not assign a new cursor number to the iExcept'th element in
4002 ** the FROM clause of (*p). Update all expressions and other references
4003 ** to refer to the new cursor numbers.
4004 **
4005 ** Argument aCsrMap is an array that may be used for temporary working
4006 ** space. Two guarantees are made by the caller:
4007 **
4008 **   * the array is larger than the largest cursor number used within the
4009 **     select statement passed as an argument, and
4010 **
4011 **   * the array entries for all cursor numbers that do *not* appear in
4012 **     FROM clauses of the select statement as described above are
4013 **     initialized to zero.
4014 */
4015 static void renumberCursors(
4016   Parse *pParse,                  /* Parse context */
4017   Select *p,                      /* Select to renumber cursors within */
4018   int iExcept,                    /* FROM clause item to skip */
4019   int *aCsrMap                    /* Working space */
4020 ){
4021   Walker w;
4022   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4023   memset(&w, 0, sizeof(w));
4024   w.u.aiCol = aCsrMap;
4025   w.xExprCallback = renumberCursorsCb;
4026   w.xSelectCallback = sqlite3SelectWalkNoop;
4027   sqlite3WalkSelect(&w, p);
4028 }
4029 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4030 
4031 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4032 /*
4033 ** This routine attempts to flatten subqueries as a performance optimization.
4034 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4035 **
4036 ** To understand the concept of flattening, consider the following
4037 ** query:
4038 **
4039 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4040 **
4041 ** The default way of implementing this query is to execute the
4042 ** subquery first and store the results in a temporary table, then
4043 ** run the outer query on that temporary table.  This requires two
4044 ** passes over the data.  Furthermore, because the temporary table
4045 ** has no indices, the WHERE clause on the outer query cannot be
4046 ** optimized.
4047 **
4048 ** This routine attempts to rewrite queries such as the above into
4049 ** a single flat select, like this:
4050 **
4051 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4052 **
4053 ** The code generated for this simplification gives the same result
4054 ** but only has to scan the data once.  And because indices might
4055 ** exist on the table t1, a complete scan of the data might be
4056 ** avoided.
4057 **
4058 ** Flattening is subject to the following constraints:
4059 **
4060 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
4061 **        The subquery and the outer query cannot both be aggregates.
4062 **
4063 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
4064 **        (2) If the subquery is an aggregate then
4065 **        (2a) the outer query must not be a join and
4066 **        (2b) the outer query must not use subqueries
4067 **             other than the one FROM-clause subquery that is a candidate
4068 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
4069 **             from 2015-02-09.)
4070 **
4071 **   (3)  If the subquery is the right operand of a LEFT JOIN then
4072 **        (3a) the subquery may not be a join and
4073 **        (3b) the FROM clause of the subquery may not contain a virtual
4074 **             table and
4075 **        (**) Was: "The outer query may not have a GROUP BY." This case
4076 **             is now managed correctly
4077 **        (3d) the outer query may not be DISTINCT.
4078 **        See also (26) for restrictions on RIGHT JOIN.
4079 **
4080 **   (4)  The subquery can not be DISTINCT.
4081 **
4082 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
4083 **        sub-queries that were excluded from this optimization. Restriction
4084 **        (4) has since been expanded to exclude all DISTINCT subqueries.
4085 **
4086 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4087 **        If the subquery is aggregate, the outer query may not be DISTINCT.
4088 **
4089 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
4090 **        A FROM clause, consider adding a FROM clause with the special
4091 **        table sqlite_once that consists of a single row containing a
4092 **        single NULL.
4093 **
4094 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
4095 **
4096 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
4097 **
4098 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
4099 **        accidently carried the comment forward until 2014-09-15.  Original
4100 **        constraint: "If the subquery is aggregate then the outer query
4101 **        may not use LIMIT."
4102 **
4103 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
4104 **
4105 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
4106 **        a separate restriction deriving from ticket #350.
4107 **
4108 **  (13)  The subquery and outer query may not both use LIMIT.
4109 **
4110 **  (14)  The subquery may not use OFFSET.
4111 **
4112 **  (15)  If the outer query is part of a compound select, then the
4113 **        subquery may not use LIMIT.
4114 **        (See ticket #2339 and ticket [02a8e81d44]).
4115 **
4116 **  (16)  If the outer query is aggregate, then the subquery may not
4117 **        use ORDER BY.  (Ticket #2942)  This used to not matter
4118 **        until we introduced the group_concat() function.
4119 **
4120 **  (17)  If the subquery is a compound select, then
4121 **        (17a) all compound operators must be a UNION ALL, and
4122 **        (17b) no terms within the subquery compound may be aggregate
4123 **              or DISTINCT, and
4124 **        (17c) every term within the subquery compound must have a FROM clause
4125 **        (17d) the outer query may not be
4126 **              (17d1) aggregate, or
4127 **              (17d2) DISTINCT
4128 **        (17e) the subquery may not contain window functions, and
4129 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
4130 **        (17g) either the subquery is the first element of the outer
4131 **              query or there are no RIGHT or FULL JOINs in any arm
4132 **              of the subquery.  (This is a duplicate of condition (27b).)
4133 **
4134 **        The parent and sub-query may contain WHERE clauses. Subject to
4135 **        rules (11), (13) and (14), they may also contain ORDER BY,
4136 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
4137 **        operator other than UNION ALL because all the other compound
4138 **        operators have an implied DISTINCT which is disallowed by
4139 **        restriction (4).
4140 **
4141 **        Also, each component of the sub-query must return the same number
4142 **        of result columns. This is actually a requirement for any compound
4143 **        SELECT statement, but all the code here does is make sure that no
4144 **        such (illegal) sub-query is flattened. The caller will detect the
4145 **        syntax error and return a detailed message.
4146 **
4147 **  (18)  If the sub-query is a compound select, then all terms of the
4148 **        ORDER BY clause of the parent must be copies of a term returned
4149 **        by the parent query.
4150 **
4151 **  (19)  If the subquery uses LIMIT then the outer query may not
4152 **        have a WHERE clause.
4153 **
4154 **  (20)  If the sub-query is a compound select, then it must not use
4155 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
4156 **        somewhat by saying that the terms of the ORDER BY clause must
4157 **        appear as unmodified result columns in the outer query.  But we
4158 **        have other optimizations in mind to deal with that case.
4159 **
4160 **  (21)  If the subquery uses LIMIT then the outer query may not be
4161 **        DISTINCT.  (See ticket [752e1646fc]).
4162 **
4163 **  (22)  The subquery may not be a recursive CTE.
4164 **
4165 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
4166 **        a compound query.  This restriction is because transforming the
4167 **        parent to a compound query confuses the code that handles
4168 **        recursive queries in multiSelect().
4169 **
4170 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4171 **        The subquery may not be an aggregate that uses the built-in min() or
4172 **        or max() functions.  (Without this restriction, a query like:
4173 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4174 **        return the value X for which Y was maximal.)
4175 **
4176 **  (25)  If either the subquery or the parent query contains a window
4177 **        function in the select list or ORDER BY clause, flattening
4178 **        is not attempted.
4179 **
4180 **  (26)  The subquery may not be the right operand of a RIGHT JOIN.
4181 **        See also (3) for restrictions on LEFT JOIN.
4182 **
4183 **  (27)  The subquery may not contain a FULL or RIGHT JOIN unless it
4184 **        is the first element of the parent query.  Two subcases:
4185 **        (27a) the subquery is not a compound query.
4186 **        (27b) the subquery is a compound query and the RIGHT JOIN occurs
4187 **              in any arm of the compound query.  (See also (17g).)
4188 **
4189 **  (28)  The subquery is not a MATERIALIZED CTE.
4190 **
4191 **  (29)  Either the subquery is not the right-hand operand of a join with an
4192 **        ON or USING clause nor the right-hand operand of a NATURAL JOIN, or
4193 **        the right-most table within the FROM clause of the subquery
4194 **        is not part of an outer join.
4195 **
4196 **
4197 ** In this routine, the "p" parameter is a pointer to the outer query.
4198 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4199 ** uses aggregates.
4200 **
4201 ** If flattening is not attempted, this routine is a no-op and returns 0.
4202 ** If flattening is attempted this routine returns 1.
4203 **
4204 ** All of the expression analysis must occur on both the outer query and
4205 ** the subquery before this routine runs.
4206 */
4207 static int flattenSubquery(
4208   Parse *pParse,       /* Parsing context */
4209   Select *p,           /* The parent or outer SELECT statement */
4210   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4211   int isAgg            /* True if outer SELECT uses aggregate functions */
4212 ){
4213   const char *zSavedAuthContext = pParse->zAuthContext;
4214   Select *pParent;    /* Current UNION ALL term of the other query */
4215   Select *pSub;       /* The inner query or "subquery" */
4216   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4217   SrcList *pSrc;      /* The FROM clause of the outer query */
4218   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4219   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4220   int iNewParent = -1;/* Replacement table for iParent */
4221   int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4222   int i;              /* Loop counter */
4223   Expr *pWhere;                    /* The WHERE clause */
4224   SrcItem *pSubitem;               /* The subquery */
4225   sqlite3 *db = pParse->db;
4226   Walker w;                        /* Walker to persist agginfo data */
4227   int *aCsrMap = 0;
4228 
4229   /* Check to see if flattening is permitted.  Return 0 if not.
4230   */
4231   assert( p!=0 );
4232   assert( p->pPrior==0 );
4233   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4234   pSrc = p->pSrc;
4235   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4236   pSubitem = &pSrc->a[iFrom];
4237   iParent = pSubitem->iCursor;
4238   pSub = pSubitem->pSelect;
4239   assert( pSub!=0 );
4240 
4241 #ifndef SQLITE_OMIT_WINDOWFUNC
4242   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4243 #endif
4244 
4245   pSubSrc = pSub->pSrc;
4246   assert( pSubSrc );
4247   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4248   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4249   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4250   ** became arbitrary expressions, we were forced to add restrictions (13)
4251   ** and (14). */
4252   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4253   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4254   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4255     return 0;                                            /* Restriction (15) */
4256   }
4257   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4258   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4259   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4260      return 0;         /* Restrictions (8)(9) */
4261   }
4262   if( p->pOrderBy && pSub->pOrderBy ){
4263      return 0;                                           /* Restriction (11) */
4264   }
4265   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4266   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4267   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4268      return 0;         /* Restriction (21) */
4269   }
4270   if( pSub->selFlags & (SF_Recursive) ){
4271     return 0; /* Restrictions (22) */
4272   }
4273 
4274   /*
4275   ** If the subquery is the right operand of a LEFT JOIN, then the
4276   ** subquery may not be a join itself (3a). Example of why this is not
4277   ** allowed:
4278   **
4279   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4280   **
4281   ** If we flatten the above, we would get
4282   **
4283   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4284   **
4285   ** which is not at all the same thing.
4286   **
4287   ** See also tickets #306, #350, and #3300.
4288   */
4289   if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4290     if( pSubSrc->nSrc>1                        /* (3a) */
4291      || IsVirtual(pSubSrc->a[0].pTab)          /* (3b) */
4292      || (p->selFlags & SF_Distinct)!=0         /* (3d) */
4293      || (pSubitem->fg.jointype & JT_RIGHT)!=0  /* (26) */
4294     ){
4295       return 0;
4296     }
4297     isOuterJoin = 1;
4298   }
4299 
4300   assert( pSubSrc->nSrc>0 );  /* True by restriction (7) */
4301   if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4302     return 0;   /* Restriction (27a) */
4303   }
4304   if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
4305     return 0;       /* (28) */
4306   }
4307 
4308 #if 0  /* NO LONGER REQUIRED */
4309   /* Restriction (29):
4310   **
4311   ** We do not want two constraints on the same FROM-clause term of the
4312   ** flattened query where one constraint has the EP_InnerON flag and the
4313   ** other has the EP_OuterON flag.
4314   **
4315   ** To prevent this, one or the other of the following conditions must be
4316   ** false:
4317   **
4318   **   (29a)  The right-most entry in the FROM clause of the subquery
4319   **          must not be part of an outer join.
4320   **
4321   **   (29b)  The subquery itself must not be the right operand of a
4322   **          NATURAL join or a join that has an ON or USING clause.
4323   */
4324   if( pSubSrc->nSrc>=2
4325    && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0
4326   ){
4327     if( (pSubitem->fg.jointype & JT_NATURAL)!=0
4328      || pSubitem->fg.isUsing
4329      || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */
4330      || pSubitem->fg.isOn
4331     ){
4332       return 0;
4333     }
4334   }
4335 #endif /* NO LONGER REQUIRED */
4336 
4337   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4338   ** use only the UNION ALL operator. And none of the simple select queries
4339   ** that make up the compound SELECT are allowed to be aggregate or distinct
4340   ** queries.
4341   */
4342   if( pSub->pPrior ){
4343     if( pSub->pOrderBy ){
4344       return 0;  /* Restriction (20) */
4345     }
4346     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4347       return 0; /* (17d1), (17d2), or (17f) */
4348     }
4349     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4350       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4351       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4352       assert( pSub->pSrc!=0 );
4353       assert( (pSub->selFlags & SF_Recursive)==0 );
4354       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4355       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4356        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4357        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4358 #ifndef SQLITE_OMIT_WINDOWFUNC
4359        || pSub1->pWin                                          /* (17e) */
4360 #endif
4361       ){
4362         return 0;
4363       }
4364       if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4365         /* Without this restriction, the JT_LTORJ flag would end up being
4366         ** omitted on left-hand tables of the right join that is being
4367         ** flattened. */
4368         return 0;   /* Restrictions (17g), (27b) */
4369       }
4370       testcase( pSub1->pSrc->nSrc>1 );
4371     }
4372 
4373     /* Restriction (18). */
4374     if( p->pOrderBy ){
4375       int ii;
4376       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4377         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4378       }
4379     }
4380 
4381     /* Restriction (23) */
4382     if( (p->selFlags & SF_Recursive) ) return 0;
4383 
4384     if( pSrc->nSrc>1 ){
4385       if( pParse->nSelect>500 ) return 0;
4386       if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4387       aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4388       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4389     }
4390   }
4391 
4392   /***** If we reach this point, flattening is permitted. *****/
4393   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4394                    pSub->selId, pSub, iFrom));
4395 
4396   /* Authorize the subquery */
4397   pParse->zAuthContext = pSubitem->zName;
4398   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4399   testcase( i==SQLITE_DENY );
4400   pParse->zAuthContext = zSavedAuthContext;
4401 
4402   /* Delete the transient structures associated with thesubquery */
4403   pSub1 = pSubitem->pSelect;
4404   sqlite3DbFree(db, pSubitem->zDatabase);
4405   sqlite3DbFree(db, pSubitem->zName);
4406   sqlite3DbFree(db, pSubitem->zAlias);
4407   pSubitem->zDatabase = 0;
4408   pSubitem->zName = 0;
4409   pSubitem->zAlias = 0;
4410   pSubitem->pSelect = 0;
4411   assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4412 
4413   /* If the sub-query is a compound SELECT statement, then (by restrictions
4414   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4415   ** be of the form:
4416   **
4417   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4418   **
4419   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4420   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4421   ** OFFSET clauses and joins them to the left-hand-side of the original
4422   ** using UNION ALL operators. In this case N is the number of simple
4423   ** select statements in the compound sub-query.
4424   **
4425   ** Example:
4426   **
4427   **     SELECT a+1 FROM (
4428   **        SELECT x FROM tab
4429   **        UNION ALL
4430   **        SELECT y FROM tab
4431   **        UNION ALL
4432   **        SELECT abs(z*2) FROM tab2
4433   **     ) WHERE a!=5 ORDER BY 1
4434   **
4435   ** Transformed into:
4436   **
4437   **     SELECT x+1 FROM tab WHERE x+1!=5
4438   **     UNION ALL
4439   **     SELECT y+1 FROM tab WHERE y+1!=5
4440   **     UNION ALL
4441   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4442   **     ORDER BY 1
4443   **
4444   ** We call this the "compound-subquery flattening".
4445   */
4446   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4447     Select *pNew;
4448     ExprList *pOrderBy = p->pOrderBy;
4449     Expr *pLimit = p->pLimit;
4450     Select *pPrior = p->pPrior;
4451     Table *pItemTab = pSubitem->pTab;
4452     pSubitem->pTab = 0;
4453     p->pOrderBy = 0;
4454     p->pPrior = 0;
4455     p->pLimit = 0;
4456     pNew = sqlite3SelectDup(db, p, 0);
4457     p->pLimit = pLimit;
4458     p->pOrderBy = pOrderBy;
4459     p->op = TK_ALL;
4460     pSubitem->pTab = pItemTab;
4461     if( pNew==0 ){
4462       p->pPrior = pPrior;
4463     }else{
4464       pNew->selId = ++pParse->nSelect;
4465       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4466         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4467       }
4468       pNew->pPrior = pPrior;
4469       if( pPrior ) pPrior->pNext = pNew;
4470       pNew->pNext = p;
4471       p->pPrior = pNew;
4472       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4473                               " creates %u as peer\n",pNew->selId));
4474     }
4475     assert( pSubitem->pSelect==0 );
4476   }
4477   sqlite3DbFree(db, aCsrMap);
4478   if( db->mallocFailed ){
4479     pSubitem->pSelect = pSub1;
4480     return 1;
4481   }
4482 
4483   /* Defer deleting the Table object associated with the
4484   ** subquery until code generation is
4485   ** complete, since there may still exist Expr.pTab entries that
4486   ** refer to the subquery even after flattening.  Ticket #3346.
4487   **
4488   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4489   */
4490   if( ALWAYS(pSubitem->pTab!=0) ){
4491     Table *pTabToDel = pSubitem->pTab;
4492     if( pTabToDel->nTabRef==1 ){
4493       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4494       sqlite3ParserAddCleanup(pToplevel,
4495          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4496          pTabToDel);
4497       testcase( pToplevel->earlyCleanup );
4498     }else{
4499       pTabToDel->nTabRef--;
4500     }
4501     pSubitem->pTab = 0;
4502   }
4503 
4504   /* The following loop runs once for each term in a compound-subquery
4505   ** flattening (as described above).  If we are doing a different kind
4506   ** of flattening - a flattening other than a compound-subquery flattening -
4507   ** then this loop only runs once.
4508   **
4509   ** This loop moves all of the FROM elements of the subquery into the
4510   ** the FROM clause of the outer query.  Before doing this, remember
4511   ** the cursor number for the original outer query FROM element in
4512   ** iParent.  The iParent cursor will never be used.  Subsequent code
4513   ** will scan expressions looking for iParent references and replace
4514   ** those references with expressions that resolve to the subquery FROM
4515   ** elements we are now copying in.
4516   */
4517   pSub = pSub1;
4518   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4519     int nSubSrc;
4520     u8 jointype = 0;
4521     u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4522     assert( pSub!=0 );
4523     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4524     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4525     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4526 
4527     if( pParent==p ){
4528       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4529     }
4530 
4531     /* The subquery uses a single slot of the FROM clause of the outer
4532     ** query.  If the subquery has more than one element in its FROM clause,
4533     ** then expand the outer query to make space for it to hold all elements
4534     ** of the subquery.
4535     **
4536     ** Example:
4537     **
4538     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4539     **
4540     ** The outer query has 3 slots in its FROM clause.  One slot of the
4541     ** outer query (the middle slot) is used by the subquery.  The next
4542     ** block of code will expand the outer query FROM clause to 4 slots.
4543     ** The middle slot is expanded to two slots in order to make space
4544     ** for the two elements in the FROM clause of the subquery.
4545     */
4546     if( nSubSrc>1 ){
4547       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4548       if( pSrc==0 ) break;
4549       pParent->pSrc = pSrc;
4550     }
4551 
4552     /* Transfer the FROM clause terms from the subquery into the
4553     ** outer query.
4554     */
4555     for(i=0; i<nSubSrc; i++){
4556       SrcItem *pItem = &pSrc->a[i+iFrom];
4557       if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4558       assert( pItem->fg.isTabFunc==0 );
4559       *pItem = pSubSrc->a[i];
4560       pItem->fg.jointype |= ltorj;
4561       iNewParent = pSubSrc->a[i].iCursor;
4562       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4563     }
4564     pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4565     pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4566 
4567     /* Now begin substituting subquery result set expressions for
4568     ** references to the iParent in the outer query.
4569     **
4570     ** Example:
4571     **
4572     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4573     **   \                     \_____________ subquery __________/          /
4574     **    \_____________________ outer query ______________________________/
4575     **
4576     ** We look at every expression in the outer query and every place we see
4577     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4578     */
4579     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4580       /* At this point, any non-zero iOrderByCol values indicate that the
4581       ** ORDER BY column expression is identical to the iOrderByCol'th
4582       ** expression returned by SELECT statement pSub. Since these values
4583       ** do not necessarily correspond to columns in SELECT statement pParent,
4584       ** zero them before transfering the ORDER BY clause.
4585       **
4586       ** Not doing this may cause an error if a subsequent call to this
4587       ** function attempts to flatten a compound sub-query into pParent
4588       ** (the only way this can happen is if the compound sub-query is
4589       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4590       ExprList *pOrderBy = pSub->pOrderBy;
4591       for(i=0; i<pOrderBy->nExpr; i++){
4592         pOrderBy->a[i].u.x.iOrderByCol = 0;
4593       }
4594       assert( pParent->pOrderBy==0 );
4595       pParent->pOrderBy = pOrderBy;
4596       pSub->pOrderBy = 0;
4597     }
4598     pWhere = pSub->pWhere;
4599     pSub->pWhere = 0;
4600     if( isOuterJoin>0 ){
4601       sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4602     }
4603     if( pWhere ){
4604       if( pParent->pWhere ){
4605         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4606       }else{
4607         pParent->pWhere = pWhere;
4608       }
4609     }
4610     if( db->mallocFailed==0 ){
4611       SubstContext x;
4612       x.pParse = pParse;
4613       x.iTable = iParent;
4614       x.iNewTable = iNewParent;
4615       x.isOuterJoin = isOuterJoin;
4616       x.pEList = pSub->pEList;
4617       substSelect(&x, pParent, 0);
4618     }
4619 
4620     /* The flattened query is a compound if either the inner or the
4621     ** outer query is a compound. */
4622     pParent->selFlags |= pSub->selFlags & SF_Compound;
4623     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4624 
4625     /*
4626     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4627     **
4628     ** One is tempted to try to add a and b to combine the limits.  But this
4629     ** does not work if either limit is negative.
4630     */
4631     if( pSub->pLimit ){
4632       pParent->pLimit = pSub->pLimit;
4633       pSub->pLimit = 0;
4634     }
4635 
4636     /* Recompute the SrcList_item.colUsed masks for the flattened
4637     ** tables. */
4638     for(i=0; i<nSubSrc; i++){
4639       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4640     }
4641   }
4642 
4643   /* Finially, delete what is left of the subquery and return
4644   ** success.
4645   */
4646   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4647   sqlite3WalkSelect(&w,pSub1);
4648   sqlite3SelectDelete(db, pSub1);
4649 
4650 #if TREETRACE_ENABLED
4651   if( sqlite3TreeTrace & 0x100 ){
4652     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4653     sqlite3TreeViewSelect(0, p, 0);
4654   }
4655 #endif
4656 
4657   return 1;
4658 }
4659 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4660 
4661 /*
4662 ** A structure to keep track of all of the column values that are fixed to
4663 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4664 */
4665 typedef struct WhereConst WhereConst;
4666 struct WhereConst {
4667   Parse *pParse;   /* Parsing context */
4668   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4669   int nConst;      /* Number for COLUMN=CONSTANT terms */
4670   int nChng;       /* Number of times a constant is propagated */
4671   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4672   u32 mExcludeOn;  /* Which ON expressions to exclude from considertion.
4673                    ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4674   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4675 };
4676 
4677 /*
4678 ** Add a new entry to the pConst object.  Except, do not add duplicate
4679 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4680 **
4681 ** The caller guarantees the pColumn is a column and pValue is a constant.
4682 ** This routine has to do some additional checks before completing the
4683 ** insert.
4684 */
4685 static void constInsert(
4686   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4687   Expr *pColumn,       /* The COLUMN part of the constraint */
4688   Expr *pValue,        /* The VALUE part of the constraint */
4689   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4690 ){
4691   int i;
4692   assert( pColumn->op==TK_COLUMN );
4693   assert( sqlite3ExprIsConstant(pValue) );
4694 
4695   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4696   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4697   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4698     return;
4699   }
4700 
4701   /* 2018-10-25 ticket [cf5ed20f]
4702   ** Make sure the same pColumn is not inserted more than once */
4703   for(i=0; i<pConst->nConst; i++){
4704     const Expr *pE2 = pConst->apExpr[i*2];
4705     assert( pE2->op==TK_COLUMN );
4706     if( pE2->iTable==pColumn->iTable
4707      && pE2->iColumn==pColumn->iColumn
4708     ){
4709       return;  /* Already present.  Return without doing anything. */
4710     }
4711   }
4712   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4713     pConst->bHasAffBlob = 1;
4714   }
4715 
4716   pConst->nConst++;
4717   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4718                          pConst->nConst*2*sizeof(Expr*));
4719   if( pConst->apExpr==0 ){
4720     pConst->nConst = 0;
4721   }else{
4722     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4723     pConst->apExpr[pConst->nConst*2-1] = pValue;
4724   }
4725 }
4726 
4727 /*
4728 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4729 ** is a constant expression and where the term must be true because it
4730 ** is part of the AND-connected terms of the expression.  For each term
4731 ** found, add it to the pConst structure.
4732 */
4733 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4734   Expr *pRight, *pLeft;
4735   if( NEVER(pExpr==0) ) return;
4736   if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4737     testcase( ExprHasProperty(pExpr, EP_OuterON) );
4738     testcase( ExprHasProperty(pExpr, EP_InnerON) );
4739     return;
4740   }
4741   if( pExpr->op==TK_AND ){
4742     findConstInWhere(pConst, pExpr->pRight);
4743     findConstInWhere(pConst, pExpr->pLeft);
4744     return;
4745   }
4746   if( pExpr->op!=TK_EQ ) return;
4747   pRight = pExpr->pRight;
4748   pLeft = pExpr->pLeft;
4749   assert( pRight!=0 );
4750   assert( pLeft!=0 );
4751   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4752     constInsert(pConst,pRight,pLeft,pExpr);
4753   }
4754   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4755     constInsert(pConst,pLeft,pRight,pExpr);
4756   }
4757 }
4758 
4759 /*
4760 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4761 **
4762 ** Argument pExpr is a candidate expression to be replaced by a value. If
4763 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4764 ** then overwrite it with the corresponding value. Except, do not do so
4765 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4766 ** is SQLITE_AFF_BLOB.
4767 */
4768 static int propagateConstantExprRewriteOne(
4769   WhereConst *pConst,
4770   Expr *pExpr,
4771   int bIgnoreAffBlob
4772 ){
4773   int i;
4774   if( pConst->pOomFault[0] ) return WRC_Prune;
4775   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4776   if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4777     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4778     testcase( ExprHasProperty(pExpr, EP_OuterON) );
4779     testcase( ExprHasProperty(pExpr, EP_InnerON) );
4780     return WRC_Continue;
4781   }
4782   for(i=0; i<pConst->nConst; i++){
4783     Expr *pColumn = pConst->apExpr[i*2];
4784     if( pColumn==pExpr ) continue;
4785     if( pColumn->iTable!=pExpr->iTable ) continue;
4786     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4787     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4788       break;
4789     }
4790     /* A match is found.  Add the EP_FixedCol property */
4791     pConst->nChng++;
4792     ExprClearProperty(pExpr, EP_Leaf);
4793     ExprSetProperty(pExpr, EP_FixedCol);
4794     assert( pExpr->pLeft==0 );
4795     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4796     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4797     break;
4798   }
4799   return WRC_Prune;
4800 }
4801 
4802 /*
4803 ** This is a Walker expression callback. pExpr is a node from the WHERE
4804 ** clause of a SELECT statement. This function examines pExpr to see if
4805 ** any substitutions based on the contents of pWalker->u.pConst should
4806 ** be made to pExpr or its immediate children.
4807 **
4808 ** A substitution is made if:
4809 **
4810 **   + pExpr is a column with an affinity other than BLOB that matches
4811 **     one of the columns in pWalker->u.pConst, or
4812 **
4813 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4814 **     uses an affinity other than TEXT and one of its immediate
4815 **     children is a column that matches one of the columns in
4816 **     pWalker->u.pConst.
4817 */
4818 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4819   WhereConst *pConst = pWalker->u.pConst;
4820   assert( TK_GT==TK_EQ+1 );
4821   assert( TK_LE==TK_EQ+2 );
4822   assert( TK_LT==TK_EQ+3 );
4823   assert( TK_GE==TK_EQ+4 );
4824   if( pConst->bHasAffBlob ){
4825     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4826      || pExpr->op==TK_IS
4827     ){
4828       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4829       if( pConst->pOomFault[0] ) return WRC_Prune;
4830       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4831         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4832       }
4833     }
4834   }
4835   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4836 }
4837 
4838 /*
4839 ** The WHERE-clause constant propagation optimization.
4840 **
4841 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4842 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4843 ** part of a ON clause from a LEFT JOIN, then throughout the query
4844 ** replace all other occurrences of COLUMN with CONSTANT.
4845 **
4846 ** For example, the query:
4847 **
4848 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4849 **
4850 ** Is transformed into
4851 **
4852 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4853 **
4854 ** Return true if any transformations where made and false if not.
4855 **
4856 ** Implementation note:  Constant propagation is tricky due to affinity
4857 ** and collating sequence interactions.  Consider this example:
4858 **
4859 **    CREATE TABLE t1(a INT,b TEXT);
4860 **    INSERT INTO t1 VALUES(123,'0123');
4861 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4862 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4863 **
4864 ** The two SELECT statements above should return different answers.  b=a
4865 ** is alway true because the comparison uses numeric affinity, but b=123
4866 ** is false because it uses text affinity and '0123' is not the same as '123'.
4867 ** To work around this, the expression tree is not actually changed from
4868 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4869 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4870 ** routines know to generate the constant "123" instead of looking up the
4871 ** column value.  Also, to avoid collation problems, this optimization is
4872 ** only attempted if the "a=123" term uses the default BINARY collation.
4873 **
4874 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4875 **
4876 **    CREATE TABLE t1(x);
4877 **    INSERT INTO t1 VALUES(10.0);
4878 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4879 **
4880 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4881 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4882 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4883 ** resulting in a false positive.  To avoid this, constant propagation for
4884 ** columns with BLOB affinity is only allowed if the constant is used with
4885 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4886 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4887 ** for details.
4888 */
4889 static int propagateConstants(
4890   Parse *pParse,   /* The parsing context */
4891   Select *p        /* The query in which to propagate constants */
4892 ){
4893   WhereConst x;
4894   Walker w;
4895   int nChng = 0;
4896   x.pParse = pParse;
4897   x.pOomFault = &pParse->db->mallocFailed;
4898   do{
4899     x.nConst = 0;
4900     x.nChng = 0;
4901     x.apExpr = 0;
4902     x.bHasAffBlob = 0;
4903     if( ALWAYS(p->pSrc!=0)
4904      && p->pSrc->nSrc>0
4905      && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
4906     ){
4907       /* Do not propagate constants on any ON clause if there is a
4908       ** RIGHT JOIN anywhere in the query */
4909       x.mExcludeOn = EP_InnerON | EP_OuterON;
4910     }else{
4911       /* Do not propagate constants through the ON clause of a LEFT JOIN */
4912       x.mExcludeOn = EP_OuterON;
4913     }
4914     findConstInWhere(&x, p->pWhere);
4915     if( x.nConst ){
4916       memset(&w, 0, sizeof(w));
4917       w.pParse = pParse;
4918       w.xExprCallback = propagateConstantExprRewrite;
4919       w.xSelectCallback = sqlite3SelectWalkNoop;
4920       w.xSelectCallback2 = 0;
4921       w.walkerDepth = 0;
4922       w.u.pConst = &x;
4923       sqlite3WalkExpr(&w, p->pWhere);
4924       sqlite3DbFree(x.pParse->db, x.apExpr);
4925       nChng += x.nChng;
4926     }
4927   }while( x.nChng );
4928   return nChng;
4929 }
4930 
4931 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4932 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4933 /*
4934 ** This function is called to determine whether or not it is safe to
4935 ** push WHERE clause expression pExpr down to FROM clause sub-query
4936 ** pSubq, which contains at least one window function. Return 1
4937 ** if it is safe and the expression should be pushed down, or 0
4938 ** otherwise.
4939 **
4940 ** It is only safe to push the expression down if it consists only
4941 ** of constants and copies of expressions that appear in the PARTITION
4942 ** BY clause of all window function used by the sub-query. It is safe
4943 ** to filter out entire partitions, but not rows within partitions, as
4944 ** this may change the results of the window functions.
4945 **
4946 ** At the time this function is called it is guaranteed that
4947 **
4948 **   * the sub-query uses only one distinct window frame, and
4949 **   * that the window frame has a PARTITION BY clase.
4950 */
4951 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4952   assert( pSubq->pWin->pPartition );
4953   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4954   assert( pSubq->pPrior==0 );
4955   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4956 }
4957 # endif /* SQLITE_OMIT_WINDOWFUNC */
4958 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4959 
4960 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4961 /*
4962 ** Make copies of relevant WHERE clause terms of the outer query into
4963 ** the WHERE clause of subquery.  Example:
4964 **
4965 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4966 **
4967 ** Transformed into:
4968 **
4969 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4970 **     WHERE x=5 AND y=10;
4971 **
4972 ** The hope is that the terms added to the inner query will make it more
4973 ** efficient.
4974 **
4975 ** Do not attempt this optimization if:
4976 **
4977 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4978 **           disallow this optimization for aggregate subqueries, but now
4979 **           it is allowed by putting the extra terms on the HAVING clause.
4980 **           The added HAVING clause is pointless if the subquery lacks
4981 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4982 **           so there does not appear to be any reason to add extra logic
4983 **           to suppress it. **)
4984 **
4985 **   (2) The inner query is the recursive part of a common table expression.
4986 **
4987 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4988 **       clause would change the meaning of the LIMIT).
4989 **
4990 **   (4) The inner query is the right operand of a LEFT JOIN and the
4991 **       expression to be pushed down does not come from the ON clause
4992 **       on that LEFT JOIN.
4993 **
4994 **   (5) The WHERE clause expression originates in the ON or USING clause
4995 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4996 **       left join.  An example:
4997 **
4998 **           SELECT *
4999 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5000 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5001 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5002 **
5003 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
5004 **       But if the (b2=2) term were to be pushed down into the bb subquery,
5005 **       then the (1,1,NULL) row would be suppressed.
5006 **
5007 **   (6) Window functions make things tricky as changes to the WHERE clause
5008 **       of the inner query could change the window over which window
5009 **       functions are calculated. Therefore, do not attempt the optimization
5010 **       if:
5011 **
5012 **     (6a) The inner query uses multiple incompatible window partitions.
5013 **
5014 **     (6b) The inner query is a compound and uses window-functions.
5015 **
5016 **     (6c) The WHERE clause does not consist entirely of constants and
5017 **          copies of expressions found in the PARTITION BY clause of
5018 **          all window-functions used by the sub-query. It is safe to
5019 **          filter out entire partitions, as this does not change the
5020 **          window over which any window-function is calculated.
5021 **
5022 **   (7) The inner query is a Common Table Expression (CTE) that should
5023 **       be materialized.  (This restriction is implemented in the calling
5024 **       routine.)
5025 **
5026 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5027 ** terms are duplicated into the subquery.
5028 */
5029 static int pushDownWhereTerms(
5030   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
5031   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
5032   Expr *pWhere,         /* The WHERE clause of the outer query */
5033   SrcItem *pSrc         /* The subquery term of the outer FROM clause */
5034 ){
5035   Expr *pNew;
5036   int nChng = 0;
5037   if( pWhere==0 ) return 0;
5038   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
5039   if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0;
5040 
5041 #ifndef SQLITE_OMIT_WINDOWFUNC
5042   if( pSubq->pPrior ){
5043     Select *pSel;
5044     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5045       if( pSel->pWin ) return 0;    /* restriction (6b) */
5046     }
5047   }else{
5048     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5049   }
5050 #endif
5051 
5052 #ifdef SQLITE_DEBUG
5053   /* Only the first term of a compound can have a WITH clause.  But make
5054   ** sure no other terms are marked SF_Recursive in case something changes
5055   ** in the future.
5056   */
5057   {
5058     Select *pX;
5059     for(pX=pSubq; pX; pX=pX->pPrior){
5060       assert( (pX->selFlags & (SF_Recursive))==0 );
5061     }
5062   }
5063 #endif
5064 
5065   if( pSubq->pLimit!=0 ){
5066     return 0; /* restriction (3) */
5067   }
5068   while( pWhere->op==TK_AND ){
5069     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc);
5070     pWhere = pWhere->pLeft;
5071   }
5072 
5073 #if 0  /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
5074   if( isLeftJoin
5075    && (ExprHasProperty(pWhere,EP_OuterON)==0
5076          || pWhere->w.iJoin!=iCursor)
5077   ){
5078     return 0; /* restriction (4) */
5079   }
5080   if( ExprHasProperty(pWhere,EP_OuterON)
5081    && pWhere->w.iJoin!=iCursor
5082   ){
5083     return 0; /* restriction (5) */
5084   }
5085 #endif
5086 
5087   if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){
5088     nChng++;
5089     pSubq->selFlags |= SF_PushDown;
5090     while( pSubq ){
5091       SubstContext x;
5092       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5093       unsetJoinExpr(pNew, -1, 1);
5094       x.pParse = pParse;
5095       x.iTable = pSrc->iCursor;
5096       x.iNewTable = pSrc->iCursor;
5097       x.isOuterJoin = 0;
5098       x.pEList = pSubq->pEList;
5099       pNew = substExpr(&x, pNew);
5100 #ifndef SQLITE_OMIT_WINDOWFUNC
5101       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5102         /* Restriction 6c has prevented push-down in this case */
5103         sqlite3ExprDelete(pParse->db, pNew);
5104         nChng--;
5105         break;
5106       }
5107 #endif
5108       if( pSubq->selFlags & SF_Aggregate ){
5109         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5110       }else{
5111         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5112       }
5113       pSubq = pSubq->pPrior;
5114     }
5115   }
5116   return nChng;
5117 }
5118 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5119 
5120 /*
5121 ** The pFunc is the only aggregate function in the query.  Check to see
5122 ** if the query is a candidate for the min/max optimization.
5123 **
5124 ** If the query is a candidate for the min/max optimization, then set
5125 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5126 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5127 ** whether pFunc is a min() or max() function.
5128 **
5129 ** If the query is not a candidate for the min/max optimization, return
5130 ** WHERE_ORDERBY_NORMAL (which must be zero).
5131 **
5132 ** This routine must be called after aggregate functions have been
5133 ** located but before their arguments have been subjected to aggregate
5134 ** analysis.
5135 */
5136 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5137   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
5138   ExprList *pEList;                     /* Arguments to agg function */
5139   const char *zFunc;                    /* Name of aggregate function pFunc */
5140   ExprList *pOrderBy;
5141   u8 sortFlags = 0;
5142 
5143   assert( *ppMinMax==0 );
5144   assert( pFunc->op==TK_AGG_FUNCTION );
5145   assert( !IsWindowFunc(pFunc) );
5146   assert( ExprUseXList(pFunc) );
5147   pEList = pFunc->x.pList;
5148   if( pEList==0
5149    || pEList->nExpr!=1
5150    || ExprHasProperty(pFunc, EP_WinFunc)
5151    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5152   ){
5153     return eRet;
5154   }
5155   assert( !ExprHasProperty(pFunc, EP_IntValue) );
5156   zFunc = pFunc->u.zToken;
5157   if( sqlite3StrICmp(zFunc, "min")==0 ){
5158     eRet = WHERE_ORDERBY_MIN;
5159     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5160       sortFlags = KEYINFO_ORDER_BIGNULL;
5161     }
5162   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5163     eRet = WHERE_ORDERBY_MAX;
5164     sortFlags = KEYINFO_ORDER_DESC;
5165   }else{
5166     return eRet;
5167   }
5168   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5169   assert( pOrderBy!=0 || db->mallocFailed );
5170   if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5171   return eRet;
5172 }
5173 
5174 /*
5175 ** The select statement passed as the first argument is an aggregate query.
5176 ** The second argument is the associated aggregate-info object. This
5177 ** function tests if the SELECT is of the form:
5178 **
5179 **   SELECT count(*) FROM <tbl>
5180 **
5181 ** where table is a database table, not a sub-select or view. If the query
5182 ** does match this pattern, then a pointer to the Table object representing
5183 ** <tbl> is returned. Otherwise, NULL is returned.
5184 **
5185 ** This routine checks to see if it is safe to use the count optimization.
5186 ** A correct answer is still obtained (though perhaps more slowly) if
5187 ** this routine returns NULL when it could have returned a table pointer.
5188 ** But returning the pointer when NULL should have been returned can
5189 ** result in incorrect answers and/or crashes.  So, when in doubt, return NULL.
5190 */
5191 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5192   Table *pTab;
5193   Expr *pExpr;
5194 
5195   assert( !p->pGroupBy );
5196 
5197   if( p->pWhere
5198    || p->pEList->nExpr!=1
5199    || p->pSrc->nSrc!=1
5200    || p->pSrc->a[0].pSelect
5201    || pAggInfo->nFunc!=1
5202    || p->pHaving
5203   ){
5204     return 0;
5205   }
5206   pTab = p->pSrc->a[0].pTab;
5207   assert( pTab!=0 );
5208   assert( !IsView(pTab) );
5209   if( !IsOrdinaryTable(pTab) ) return 0;
5210   pExpr = p->pEList->a[0].pExpr;
5211   assert( pExpr!=0 );
5212   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5213   if( pExpr->pAggInfo!=pAggInfo ) return 0;
5214   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5215   assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5216   testcase( ExprHasProperty(pExpr, EP_Distinct) );
5217   testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5218   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5219 
5220   return pTab;
5221 }
5222 
5223 /*
5224 ** If the source-list item passed as an argument was augmented with an
5225 ** INDEXED BY clause, then try to locate the specified index. If there
5226 ** was such a clause and the named index cannot be found, return
5227 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5228 ** pFrom->pIndex and return SQLITE_OK.
5229 */
5230 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5231   Table *pTab = pFrom->pTab;
5232   char *zIndexedBy = pFrom->u1.zIndexedBy;
5233   Index *pIdx;
5234   assert( pTab!=0 );
5235   assert( pFrom->fg.isIndexedBy!=0 );
5236 
5237   for(pIdx=pTab->pIndex;
5238       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5239       pIdx=pIdx->pNext
5240   );
5241   if( !pIdx ){
5242     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5243     pParse->checkSchema = 1;
5244     return SQLITE_ERROR;
5245   }
5246   assert( pFrom->fg.isCte==0 );
5247   pFrom->u2.pIBIndex = pIdx;
5248   return SQLITE_OK;
5249 }
5250 
5251 /*
5252 ** Detect compound SELECT statements that use an ORDER BY clause with
5253 ** an alternative collating sequence.
5254 **
5255 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5256 **
5257 ** These are rewritten as a subquery:
5258 **
5259 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5260 **     ORDER BY ... COLLATE ...
5261 **
5262 ** This transformation is necessary because the multiSelectOrderBy() routine
5263 ** above that generates the code for a compound SELECT with an ORDER BY clause
5264 ** uses a merge algorithm that requires the same collating sequence on the
5265 ** result columns as on the ORDER BY clause.  See ticket
5266 ** http://www.sqlite.org/src/info/6709574d2a
5267 **
5268 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5269 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5270 ** there are COLLATE terms in the ORDER BY.
5271 */
5272 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5273   int i;
5274   Select *pNew;
5275   Select *pX;
5276   sqlite3 *db;
5277   struct ExprList_item *a;
5278   SrcList *pNewSrc;
5279   Parse *pParse;
5280   Token dummy;
5281 
5282   if( p->pPrior==0 ) return WRC_Continue;
5283   if( p->pOrderBy==0 ) return WRC_Continue;
5284   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5285   if( pX==0 ) return WRC_Continue;
5286   a = p->pOrderBy->a;
5287 #ifndef SQLITE_OMIT_WINDOWFUNC
5288   /* If iOrderByCol is already non-zero, then it has already been matched
5289   ** to a result column of the SELECT statement. This occurs when the
5290   ** SELECT is rewritten for window-functions processing and then passed
5291   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5292   ** by this function is not required in this case. */
5293   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5294 #endif
5295   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5296     if( a[i].pExpr->flags & EP_Collate ) break;
5297   }
5298   if( i<0 ) return WRC_Continue;
5299 
5300   /* If we reach this point, that means the transformation is required. */
5301 
5302   pParse = pWalker->pParse;
5303   db = pParse->db;
5304   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5305   if( pNew==0 ) return WRC_Abort;
5306   memset(&dummy, 0, sizeof(dummy));
5307   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5308   if( pNewSrc==0 ) return WRC_Abort;
5309   *pNew = *p;
5310   p->pSrc = pNewSrc;
5311   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5312   p->op = TK_SELECT;
5313   p->pWhere = 0;
5314   pNew->pGroupBy = 0;
5315   pNew->pHaving = 0;
5316   pNew->pOrderBy = 0;
5317   p->pPrior = 0;
5318   p->pNext = 0;
5319   p->pWith = 0;
5320 #ifndef SQLITE_OMIT_WINDOWFUNC
5321   p->pWinDefn = 0;
5322 #endif
5323   p->selFlags &= ~SF_Compound;
5324   assert( (p->selFlags & SF_Converted)==0 );
5325   p->selFlags |= SF_Converted;
5326   assert( pNew->pPrior!=0 );
5327   pNew->pPrior->pNext = pNew;
5328   pNew->pLimit = 0;
5329   return WRC_Continue;
5330 }
5331 
5332 /*
5333 ** Check to see if the FROM clause term pFrom has table-valued function
5334 ** arguments.  If it does, leave an error message in pParse and return
5335 ** non-zero, since pFrom is not allowed to be a table-valued function.
5336 */
5337 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5338   if( pFrom->fg.isTabFunc ){
5339     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5340     return 1;
5341   }
5342   return 0;
5343 }
5344 
5345 #ifndef SQLITE_OMIT_CTE
5346 /*
5347 ** Argument pWith (which may be NULL) points to a linked list of nested
5348 ** WITH contexts, from inner to outermost. If the table identified by
5349 ** FROM clause element pItem is really a common-table-expression (CTE)
5350 ** then return a pointer to the CTE definition for that table. Otherwise
5351 ** return NULL.
5352 **
5353 ** If a non-NULL value is returned, set *ppContext to point to the With
5354 ** object that the returned CTE belongs to.
5355 */
5356 static struct Cte *searchWith(
5357   With *pWith,                    /* Current innermost WITH clause */
5358   SrcItem *pItem,                 /* FROM clause element to resolve */
5359   With **ppContext                /* OUT: WITH clause return value belongs to */
5360 ){
5361   const char *zName = pItem->zName;
5362   With *p;
5363   assert( pItem->zDatabase==0 );
5364   assert( zName!=0 );
5365   for(p=pWith; p; p=p->pOuter){
5366     int i;
5367     for(i=0; i<p->nCte; i++){
5368       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5369         *ppContext = p;
5370         return &p->a[i];
5371       }
5372     }
5373     if( p->bView ) break;
5374   }
5375   return 0;
5376 }
5377 
5378 /* The code generator maintains a stack of active WITH clauses
5379 ** with the inner-most WITH clause being at the top of the stack.
5380 **
5381 ** This routine pushes the WITH clause passed as the second argument
5382 ** onto the top of the stack. If argument bFree is true, then this
5383 ** WITH clause will never be popped from the stack but should instead
5384 ** be freed along with the Parse object. In other cases, when
5385 ** bFree==0, the With object will be freed along with the SELECT
5386 ** statement with which it is associated.
5387 **
5388 ** This routine returns a copy of pWith.  Or, if bFree is true and
5389 ** the pWith object is destroyed immediately due to an OOM condition,
5390 ** then this routine return NULL.
5391 **
5392 ** If bFree is true, do not continue to use the pWith pointer after
5393 ** calling this routine,  Instead, use only the return value.
5394 */
5395 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5396   if( pWith ){
5397     if( bFree ){
5398       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5399                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5400                       pWith);
5401       if( pWith==0 ) return 0;
5402     }
5403     if( pParse->nErr==0 ){
5404       assert( pParse->pWith!=pWith );
5405       pWith->pOuter = pParse->pWith;
5406       pParse->pWith = pWith;
5407     }
5408   }
5409   return pWith;
5410 }
5411 
5412 /*
5413 ** This function checks if argument pFrom refers to a CTE declared by
5414 ** a WITH clause on the stack currently maintained by the parser (on the
5415 ** pParse->pWith linked list).  And if currently processing a CTE
5416 ** CTE expression, through routine checks to see if the reference is
5417 ** a recursive reference to the CTE.
5418 **
5419 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5420 ** and other fields are populated accordingly.
5421 **
5422 ** Return 0 if no match is found.
5423 ** Return 1 if a match is found.
5424 ** Return 2 if an error condition is detected.
5425 */
5426 static int resolveFromTermToCte(
5427   Parse *pParse,                  /* The parsing context */
5428   Walker *pWalker,                /* Current tree walker */
5429   SrcItem *pFrom                  /* The FROM clause term to check */
5430 ){
5431   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5432   With *pWith;             /* The matching WITH */
5433 
5434   assert( pFrom->pTab==0 );
5435   if( pParse->pWith==0 ){
5436     /* There are no WITH clauses in the stack.  No match is possible */
5437     return 0;
5438   }
5439   if( pParse->nErr ){
5440     /* Prior errors might have left pParse->pWith in a goofy state, so
5441     ** go no further. */
5442     return 0;
5443   }
5444   if( pFrom->zDatabase!=0 ){
5445     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5446     ** it cannot possibly be a CTE reference. */
5447     return 0;
5448   }
5449   if( pFrom->fg.notCte ){
5450     /* The FROM term is specifically excluded from matching a CTE.
5451     **   (1)  It is part of a trigger that used to have zDatabase but had
5452     **        zDatabase removed by sqlite3FixTriggerStep().
5453     **   (2)  This is the first term in the FROM clause of an UPDATE.
5454     */
5455     return 0;
5456   }
5457   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5458   if( pCte ){
5459     sqlite3 *db = pParse->db;
5460     Table *pTab;
5461     ExprList *pEList;
5462     Select *pSel;
5463     Select *pLeft;                /* Left-most SELECT statement */
5464     Select *pRecTerm;             /* Left-most recursive term */
5465     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5466     With *pSavedWith;             /* Initial value of pParse->pWith */
5467     int iRecTab = -1;             /* Cursor for recursive table */
5468     CteUse *pCteUse;
5469 
5470     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5471     ** recursive reference to CTE pCte. Leave an error in pParse and return
5472     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5473     ** In this case, proceed.  */
5474     if( pCte->zCteErr ){
5475       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5476       return 2;
5477     }
5478     if( cannotBeFunction(pParse, pFrom) ) return 2;
5479 
5480     assert( pFrom->pTab==0 );
5481     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5482     if( pTab==0 ) return 2;
5483     pCteUse = pCte->pUse;
5484     if( pCteUse==0 ){
5485       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5486       if( pCteUse==0
5487        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5488       ){
5489         sqlite3DbFree(db, pTab);
5490         return 2;
5491       }
5492       pCteUse->eM10d = pCte->eM10d;
5493     }
5494     pFrom->pTab = pTab;
5495     pTab->nTabRef = 1;
5496     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5497     pTab->iPKey = -1;
5498     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5499     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5500     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5501     if( db->mallocFailed ) return 2;
5502     pFrom->pSelect->selFlags |= SF_CopyCte;
5503     assert( pFrom->pSelect );
5504     if( pFrom->fg.isIndexedBy ){
5505       sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5506       return 2;
5507     }
5508     pFrom->fg.isCte = 1;
5509     pFrom->u2.pCteUse = pCteUse;
5510     pCteUse->nUse++;
5511     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5512       pCteUse->eM10d = M10d_Yes;
5513     }
5514 
5515     /* Check if this is a recursive CTE. */
5516     pRecTerm = pSel = pFrom->pSelect;
5517     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5518     while( bMayRecursive && pRecTerm->op==pSel->op ){
5519       int i;
5520       SrcList *pSrc = pRecTerm->pSrc;
5521       assert( pRecTerm->pPrior!=0 );
5522       for(i=0; i<pSrc->nSrc; i++){
5523         SrcItem *pItem = &pSrc->a[i];
5524         if( pItem->zDatabase==0
5525          && pItem->zName!=0
5526          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5527         ){
5528           pItem->pTab = pTab;
5529           pTab->nTabRef++;
5530           pItem->fg.isRecursive = 1;
5531           if( pRecTerm->selFlags & SF_Recursive ){
5532             sqlite3ErrorMsg(pParse,
5533                "multiple references to recursive table: %s", pCte->zName
5534             );
5535             return 2;
5536           }
5537           pRecTerm->selFlags |= SF_Recursive;
5538           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5539           pItem->iCursor = iRecTab;
5540         }
5541       }
5542       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5543       pRecTerm = pRecTerm->pPrior;
5544     }
5545 
5546     pCte->zCteErr = "circular reference: %s";
5547     pSavedWith = pParse->pWith;
5548     pParse->pWith = pWith;
5549     if( pSel->selFlags & SF_Recursive ){
5550       int rc;
5551       assert( pRecTerm!=0 );
5552       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5553       assert( pRecTerm->pNext!=0 );
5554       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5555       assert( pRecTerm->pWith==0 );
5556       pRecTerm->pWith = pSel->pWith;
5557       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5558       pRecTerm->pWith = 0;
5559       if( rc ){
5560         pParse->pWith = pSavedWith;
5561         return 2;
5562       }
5563     }else{
5564       if( sqlite3WalkSelect(pWalker, pSel) ){
5565         pParse->pWith = pSavedWith;
5566         return 2;
5567       }
5568     }
5569     pParse->pWith = pWith;
5570 
5571     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5572     pEList = pLeft->pEList;
5573     if( pCte->pCols ){
5574       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5575         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5576             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5577         );
5578         pParse->pWith = pSavedWith;
5579         return 2;
5580       }
5581       pEList = pCte->pCols;
5582     }
5583 
5584     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5585     if( bMayRecursive ){
5586       if( pSel->selFlags & SF_Recursive ){
5587         pCte->zCteErr = "multiple recursive references: %s";
5588       }else{
5589         pCte->zCteErr = "recursive reference in a subquery: %s";
5590       }
5591       sqlite3WalkSelect(pWalker, pSel);
5592     }
5593     pCte->zCteErr = 0;
5594     pParse->pWith = pSavedWith;
5595     return 1;  /* Success */
5596   }
5597   return 0;  /* No match */
5598 }
5599 #endif
5600 
5601 #ifndef SQLITE_OMIT_CTE
5602 /*
5603 ** If the SELECT passed as the second argument has an associated WITH
5604 ** clause, pop it from the stack stored as part of the Parse object.
5605 **
5606 ** This function is used as the xSelectCallback2() callback by
5607 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5608 ** names and other FROM clause elements.
5609 */
5610 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5611   Parse *pParse = pWalker->pParse;
5612   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5613     With *pWith = findRightmost(p)->pWith;
5614     if( pWith!=0 ){
5615       assert( pParse->pWith==pWith || pParse->nErr );
5616       pParse->pWith = pWith->pOuter;
5617     }
5618   }
5619 }
5620 #endif
5621 
5622 /*
5623 ** The SrcList_item structure passed as the second argument represents a
5624 ** sub-query in the FROM clause of a SELECT statement. This function
5625 ** allocates and populates the SrcList_item.pTab object. If successful,
5626 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5627 ** SQLITE_NOMEM.
5628 */
5629 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5630   Select *pSel = pFrom->pSelect;
5631   Table *pTab;
5632 
5633   assert( pSel );
5634   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5635   if( pTab==0 ) return SQLITE_NOMEM;
5636   pTab->nTabRef = 1;
5637   if( pFrom->zAlias ){
5638     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5639   }else{
5640     pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5641   }
5642   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5643   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5644   pTab->iPKey = -1;
5645   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5646 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5647   /* The usual case - do not allow ROWID on a subquery */
5648   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5649 #else
5650   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5651 #endif
5652   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5653 }
5654 
5655 
5656 /*
5657 ** Check the N SrcItem objects to the right of pBase.  (N might be zero!)
5658 ** If any of those SrcItem objects have a USING clause containing zName
5659 ** then return true.
5660 **
5661 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5662 ** contains a USING clause, or if none of the USING clauses contain zName,
5663 ** then return false.
5664 */
5665 static int inAnyUsingClause(
5666   const char *zName, /* Name we are looking for */
5667   SrcItem *pBase,    /* The base SrcItem.  Looking at pBase[1] and following */
5668   int N              /* How many SrcItems to check */
5669 ){
5670   while( N>0 ){
5671     N--;
5672     pBase++;
5673     if( pBase->fg.isUsing==0 ) continue;
5674     if( NEVER(pBase->u3.pUsing==0) ) continue;
5675     if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5676   }
5677   return 0;
5678 }
5679 
5680 
5681 /*
5682 ** This routine is a Walker callback for "expanding" a SELECT statement.
5683 ** "Expanding" means to do the following:
5684 **
5685 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5686 **         element of the FROM clause.
5687 **
5688 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5689 **         defines FROM clause.  When views appear in the FROM clause,
5690 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5691 **         that implements the view.  A copy is made of the view's SELECT
5692 **         statement so that we can freely modify or delete that statement
5693 **         without worrying about messing up the persistent representation
5694 **         of the view.
5695 **
5696 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5697 **         on joins and the ON and USING clause of joins.
5698 **
5699 **    (4)  Scan the list of columns in the result set (pEList) looking
5700 **         for instances of the "*" operator or the TABLE.* operator.
5701 **         If found, expand each "*" to be every column in every table
5702 **         and TABLE.* to be every column in TABLE.
5703 **
5704 */
5705 static int selectExpander(Walker *pWalker, Select *p){
5706   Parse *pParse = pWalker->pParse;
5707   int i, j, k, rc;
5708   SrcList *pTabList;
5709   ExprList *pEList;
5710   SrcItem *pFrom;
5711   sqlite3 *db = pParse->db;
5712   Expr *pE, *pRight, *pExpr;
5713   u16 selFlags = p->selFlags;
5714   u32 elistFlags = 0;
5715 
5716   p->selFlags |= SF_Expanded;
5717   if( db->mallocFailed  ){
5718     return WRC_Abort;
5719   }
5720   assert( p->pSrc!=0 );
5721   if( (selFlags & SF_Expanded)!=0 ){
5722     return WRC_Prune;
5723   }
5724   if( pWalker->eCode ){
5725     /* Renumber selId because it has been copied from a view */
5726     p->selId = ++pParse->nSelect;
5727   }
5728   pTabList = p->pSrc;
5729   pEList = p->pEList;
5730   if( pParse->pWith && (p->selFlags & SF_View) ){
5731     if( p->pWith==0 ){
5732       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5733       if( p->pWith==0 ){
5734         return WRC_Abort;
5735       }
5736     }
5737     p->pWith->bView = 1;
5738   }
5739   sqlite3WithPush(pParse, p->pWith, 0);
5740 
5741   /* Make sure cursor numbers have been assigned to all entries in
5742   ** the FROM clause of the SELECT statement.
5743   */
5744   sqlite3SrcListAssignCursors(pParse, pTabList);
5745 
5746   /* Look up every table named in the FROM clause of the select.  If
5747   ** an entry of the FROM clause is a subquery instead of a table or view,
5748   ** then create a transient table structure to describe the subquery.
5749   */
5750   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5751     Table *pTab;
5752     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5753     if( pFrom->pTab ) continue;
5754     assert( pFrom->fg.isRecursive==0 );
5755     if( pFrom->zName==0 ){
5756 #ifndef SQLITE_OMIT_SUBQUERY
5757       Select *pSel = pFrom->pSelect;
5758       /* A sub-query in the FROM clause of a SELECT */
5759       assert( pSel!=0 );
5760       assert( pFrom->pTab==0 );
5761       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5762       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5763 #endif
5764 #ifndef SQLITE_OMIT_CTE
5765     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5766       if( rc>1 ) return WRC_Abort;
5767       pTab = pFrom->pTab;
5768       assert( pTab!=0 );
5769 #endif
5770     }else{
5771       /* An ordinary table or view name in the FROM clause */
5772       assert( pFrom->pTab==0 );
5773       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5774       if( pTab==0 ) return WRC_Abort;
5775       if( pTab->nTabRef>=0xffff ){
5776         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5777            pTab->zName);
5778         pFrom->pTab = 0;
5779         return WRC_Abort;
5780       }
5781       pTab->nTabRef++;
5782       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5783         return WRC_Abort;
5784       }
5785 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5786       if( !IsOrdinaryTable(pTab) ){
5787         i16 nCol;
5788         u8 eCodeOrig = pWalker->eCode;
5789         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5790         assert( pFrom->pSelect==0 );
5791         if( IsView(pTab) ){
5792           if( (db->flags & SQLITE_EnableView)==0
5793            && pTab->pSchema!=db->aDb[1].pSchema
5794           ){
5795             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5796               pTab->zName);
5797           }
5798           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5799         }
5800 #ifndef SQLITE_OMIT_VIRTUALTABLE
5801         else if( ALWAYS(IsVirtual(pTab))
5802          && pFrom->fg.fromDDL
5803          && ALWAYS(pTab->u.vtab.p!=0)
5804          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5805         ){
5806           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5807                                   pTab->zName);
5808         }
5809         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5810 #endif
5811         nCol = pTab->nCol;
5812         pTab->nCol = -1;
5813         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5814         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5815         pWalker->eCode = eCodeOrig;
5816         pTab->nCol = nCol;
5817       }
5818 #endif
5819     }
5820 
5821     /* Locate the index named by the INDEXED BY clause, if any. */
5822     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5823       return WRC_Abort;
5824     }
5825   }
5826 
5827   /* Process NATURAL keywords, and ON and USING clauses of joins.
5828   */
5829   assert( db->mallocFailed==0 || pParse->nErr!=0 );
5830   if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
5831     return WRC_Abort;
5832   }
5833 
5834   /* For every "*" that occurs in the column list, insert the names of
5835   ** all columns in all tables.  And for every TABLE.* insert the names
5836   ** of all columns in TABLE.  The parser inserted a special expression
5837   ** with the TK_ASTERISK operator for each "*" that it found in the column
5838   ** list.  The following code just has to locate the TK_ASTERISK
5839   ** expressions and expand each one to the list of all columns in
5840   ** all tables.
5841   **
5842   ** The first loop just checks to see if there are any "*" operators
5843   ** that need expanding.
5844   */
5845   for(k=0; k<pEList->nExpr; k++){
5846     pE = pEList->a[k].pExpr;
5847     if( pE->op==TK_ASTERISK ) break;
5848     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5849     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5850     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5851     elistFlags |= pE->flags;
5852   }
5853   if( k<pEList->nExpr ){
5854     /*
5855     ** If we get here it means the result set contains one or more "*"
5856     ** operators that need to be expanded.  Loop through each expression
5857     ** in the result set and expand them one by one.
5858     */
5859     struct ExprList_item *a = pEList->a;
5860     ExprList *pNew = 0;
5861     int flags = pParse->db->flags;
5862     int longNames = (flags & SQLITE_FullColNames)!=0
5863                       && (flags & SQLITE_ShortColNames)==0;
5864 
5865     for(k=0; k<pEList->nExpr; k++){
5866       pE = a[k].pExpr;
5867       elistFlags |= pE->flags;
5868       pRight = pE->pRight;
5869       assert( pE->op!=TK_DOT || pRight!=0 );
5870       if( pE->op!=TK_ASTERISK
5871        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5872       ){
5873         /* This particular expression does not need to be expanded.
5874         */
5875         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5876         if( pNew ){
5877           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5878           pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
5879           a[k].zEName = 0;
5880         }
5881         a[k].pExpr = 0;
5882       }else{
5883         /* This expression is a "*" or a "TABLE.*" and needs to be
5884         ** expanded. */
5885         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5886         char *zTName = 0;       /* text of name of TABLE */
5887         if( pE->op==TK_DOT ){
5888           assert( pE->pLeft!=0 );
5889           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5890           zTName = pE->pLeft->u.zToken;
5891         }
5892         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5893           Table *pTab = pFrom->pTab;   /* Table for this data source */
5894           ExprList *pNestedFrom;       /* Result-set of a nested FROM clause */
5895           char *zTabName;              /* AS name for this data source */
5896           const char *zSchemaName = 0; /* Schema name for this data source */
5897           int iDb;                     /* Schema index for this data src */
5898           IdList *pUsing;              /* USING clause for pFrom[1] */
5899 
5900           if( (zTabName = pFrom->zAlias)==0 ){
5901             zTabName = pTab->zName;
5902           }
5903           if( db->mallocFailed ) break;
5904           assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
5905           if( pFrom->fg.isNestedFrom ){
5906             assert( pFrom->pSelect!=0 );
5907             pNestedFrom = pFrom->pSelect->pEList;
5908             assert( pNestedFrom!=0 );
5909             assert( pNestedFrom->nExpr==pTab->nCol );
5910           }else{
5911             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5912               continue;
5913             }
5914             pNestedFrom = 0;
5915             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5916             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5917           }
5918           if( i+1<pTabList->nSrc
5919            && pFrom[1].fg.isUsing
5920            && (selFlags & SF_NestedFrom)!=0
5921           ){
5922             int ii;
5923             pUsing = pFrom[1].u3.pUsing;
5924             for(ii=0; ii<pUsing->nId; ii++){
5925               const char *zUName = pUsing->a[ii].zName;
5926               pRight = sqlite3Expr(db, TK_ID, zUName);
5927               pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
5928               if( pNew ){
5929                 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5930                 assert( pX->zEName==0 );
5931                 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
5932                 pX->fg.eEName = ENAME_TAB;
5933                 pX->fg.bUsingTerm = 1;
5934               }
5935             }
5936           }else{
5937             pUsing = 0;
5938           }
5939           for(j=0; j<pTab->nCol; j++){
5940             char *zName = pTab->aCol[j].zCnName;
5941             struct ExprList_item *pX; /* Newly added ExprList term */
5942 
5943             assert( zName );
5944             if( zTName
5945              && pNestedFrom
5946              && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0
5947             ){
5948               continue;
5949             }
5950 
5951             /* If a column is marked as 'hidden', omit it from the expanded
5952             ** result-set list unless the SELECT has the SF_IncludeHidden
5953             ** bit set.
5954             */
5955             if( (p->selFlags & SF_IncludeHidden)==0
5956              && IsHiddenColumn(&pTab->aCol[j])
5957             ){
5958               continue;
5959             }
5960             if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
5961              && zTName==0
5962              && (selFlags & (SF_NestedFrom))==0
5963             ){
5964               continue;
5965             }
5966             tableSeen = 1;
5967 
5968             if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
5969               if( pFrom->fg.isUsing
5970                && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
5971               ){
5972                 /* In a join with a USING clause, omit columns in the
5973                 ** using clause from the table on the right. */
5974                 continue;
5975               }
5976             }
5977             pRight = sqlite3Expr(db, TK_ID, zName);
5978             if( (pTabList->nSrc>1
5979                  && (  (pFrom->fg.jointype & JT_LTORJ)==0
5980                      || (selFlags & SF_NestedFrom)!=0
5981                      || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
5982                     )
5983                 )
5984              || IN_RENAME_OBJECT
5985             ){
5986               Expr *pLeft;
5987               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5988               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5989               if( IN_RENAME_OBJECT && pE->pLeft ){
5990                 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
5991               }
5992               if( zSchemaName ){
5993                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5994                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5995               }
5996             }else{
5997               pExpr = pRight;
5998             }
5999             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6000             if( pNew==0 ){
6001               break;  /* OOM */
6002             }
6003             pX = &pNew->a[pNew->nExpr-1];
6004             assert( pX->zEName==0 );
6005             if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6006               if( pNestedFrom ){
6007                 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6008                 testcase( pX->zEName==0 );
6009               }else{
6010                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6011                                            zSchemaName, zTabName, zName);
6012                 testcase( pX->zEName==0 );
6013               }
6014               pX->fg.eEName = ENAME_TAB;
6015               if( (pFrom->fg.isUsing
6016                    && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6017                || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6018                || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6019               ){
6020                 pX->fg.bNoExpand = 1;
6021               }
6022             }else if( longNames ){
6023               pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6024               pX->fg.eEName = ENAME_NAME;
6025             }else{
6026               pX->zEName = sqlite3DbStrDup(db, zName);
6027               pX->fg.eEName = ENAME_NAME;
6028             }
6029           }
6030         }
6031         if( !tableSeen ){
6032           if( zTName ){
6033             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6034           }else{
6035             sqlite3ErrorMsg(pParse, "no tables specified");
6036           }
6037         }
6038       }
6039     }
6040     sqlite3ExprListDelete(db, pEList);
6041     p->pEList = pNew;
6042   }
6043   if( p->pEList ){
6044     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6045       sqlite3ErrorMsg(pParse, "too many columns in result set");
6046       return WRC_Abort;
6047     }
6048     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6049       p->selFlags |= SF_ComplexResult;
6050     }
6051   }
6052 #if TREETRACE_ENABLED
6053   if( sqlite3TreeTrace & 0x100 ){
6054     SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n"));
6055     sqlite3TreeViewSelect(0, p, 0);
6056   }
6057 #endif
6058   return WRC_Continue;
6059 }
6060 
6061 #if SQLITE_DEBUG
6062 /*
6063 ** Always assert.  This xSelectCallback2 implementation proves that the
6064 ** xSelectCallback2 is never invoked.
6065 */
6066 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6067   UNUSED_PARAMETER2(NotUsed, NotUsed2);
6068   assert( 0 );
6069 }
6070 #endif
6071 /*
6072 ** This routine "expands" a SELECT statement and all of its subqueries.
6073 ** For additional information on what it means to "expand" a SELECT
6074 ** statement, see the comment on the selectExpand worker callback above.
6075 **
6076 ** Expanding a SELECT statement is the first step in processing a
6077 ** SELECT statement.  The SELECT statement must be expanded before
6078 ** name resolution is performed.
6079 **
6080 ** If anything goes wrong, an error message is written into pParse.
6081 ** The calling function can detect the problem by looking at pParse->nErr
6082 ** and/or pParse->db->mallocFailed.
6083 */
6084 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6085   Walker w;
6086   w.xExprCallback = sqlite3ExprWalkNoop;
6087   w.pParse = pParse;
6088   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6089     w.xSelectCallback = convertCompoundSelectToSubquery;
6090     w.xSelectCallback2 = 0;
6091     sqlite3WalkSelect(&w, pSelect);
6092   }
6093   w.xSelectCallback = selectExpander;
6094   w.xSelectCallback2 = sqlite3SelectPopWith;
6095   w.eCode = 0;
6096   sqlite3WalkSelect(&w, pSelect);
6097 }
6098 
6099 
6100 #ifndef SQLITE_OMIT_SUBQUERY
6101 /*
6102 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6103 ** interface.
6104 **
6105 ** For each FROM-clause subquery, add Column.zType and Column.zColl
6106 ** information to the Table structure that represents the result set
6107 ** of that subquery.
6108 **
6109 ** The Table structure that represents the result set was constructed
6110 ** by selectExpander() but the type and collation information was omitted
6111 ** at that point because identifiers had not yet been resolved.  This
6112 ** routine is called after identifier resolution.
6113 */
6114 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6115   Parse *pParse;
6116   int i;
6117   SrcList *pTabList;
6118   SrcItem *pFrom;
6119 
6120   assert( p->selFlags & SF_Resolved );
6121   if( p->selFlags & SF_HasTypeInfo ) return;
6122   p->selFlags |= SF_HasTypeInfo;
6123   pParse = pWalker->pParse;
6124   pTabList = p->pSrc;
6125   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6126     Table *pTab = pFrom->pTab;
6127     assert( pTab!=0 );
6128     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6129       /* A sub-query in the FROM clause of a SELECT */
6130       Select *pSel = pFrom->pSelect;
6131       if( pSel ){
6132         while( pSel->pPrior ) pSel = pSel->pPrior;
6133         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
6134                                                SQLITE_AFF_NONE);
6135       }
6136     }
6137   }
6138 }
6139 #endif
6140 
6141 
6142 /*
6143 ** This routine adds datatype and collating sequence information to
6144 ** the Table structures of all FROM-clause subqueries in a
6145 ** SELECT statement.
6146 **
6147 ** Use this routine after name resolution.
6148 */
6149 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6150 #ifndef SQLITE_OMIT_SUBQUERY
6151   Walker w;
6152   w.xSelectCallback = sqlite3SelectWalkNoop;
6153   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6154   w.xExprCallback = sqlite3ExprWalkNoop;
6155   w.pParse = pParse;
6156   sqlite3WalkSelect(&w, pSelect);
6157 #endif
6158 }
6159 
6160 
6161 /*
6162 ** This routine sets up a SELECT statement for processing.  The
6163 ** following is accomplished:
6164 **
6165 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
6166 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
6167 **     *  ON and USING clauses are shifted into WHERE statements
6168 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
6169 **     *  Identifiers in expression are matched to tables.
6170 **
6171 ** This routine acts recursively on all subqueries within the SELECT.
6172 */
6173 void sqlite3SelectPrep(
6174   Parse *pParse,         /* The parser context */
6175   Select *p,             /* The SELECT statement being coded. */
6176   NameContext *pOuterNC  /* Name context for container */
6177 ){
6178   assert( p!=0 || pParse->db->mallocFailed );
6179   assert( pParse->db->pParse==pParse );
6180   if( pParse->db->mallocFailed ) return;
6181   if( p->selFlags & SF_HasTypeInfo ) return;
6182   sqlite3SelectExpand(pParse, p);
6183   if( pParse->nErr ) return;
6184   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6185   if( pParse->nErr ) return;
6186   sqlite3SelectAddTypeInfo(pParse, p);
6187 }
6188 
6189 /*
6190 ** Reset the aggregate accumulator.
6191 **
6192 ** The aggregate accumulator is a set of memory cells that hold
6193 ** intermediate results while calculating an aggregate.  This
6194 ** routine generates code that stores NULLs in all of those memory
6195 ** cells.
6196 */
6197 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6198   Vdbe *v = pParse->pVdbe;
6199   int i;
6200   struct AggInfo_func *pFunc;
6201   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6202   assert( pParse->db->pParse==pParse );
6203   assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6204   if( nReg==0 ) return;
6205   if( pParse->nErr ) return;
6206 #ifdef SQLITE_DEBUG
6207   /* Verify that all AggInfo registers are within the range specified by
6208   ** AggInfo.mnReg..AggInfo.mxReg */
6209   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
6210   for(i=0; i<pAggInfo->nColumn; i++){
6211     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
6212          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
6213   }
6214   for(i=0; i<pAggInfo->nFunc; i++){
6215     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
6216          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
6217   }
6218 #endif
6219   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
6220   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6221     if( pFunc->iDistinct>=0 ){
6222       Expr *pE = pFunc->pFExpr;
6223       assert( ExprUseXList(pE) );
6224       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6225         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6226            "argument");
6227         pFunc->iDistinct = -1;
6228       }else{
6229         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6230         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6231             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6232         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6233                           pFunc->pFunc->zName));
6234       }
6235     }
6236   }
6237 }
6238 
6239 /*
6240 ** Invoke the OP_AggFinalize opcode for every aggregate function
6241 ** in the AggInfo structure.
6242 */
6243 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6244   Vdbe *v = pParse->pVdbe;
6245   int i;
6246   struct AggInfo_func *pF;
6247   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6248     ExprList *pList;
6249     assert( ExprUseXList(pF->pFExpr) );
6250     pList = pF->pFExpr->x.pList;
6251     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
6252     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6253   }
6254 }
6255 
6256 
6257 /*
6258 ** Update the accumulator memory cells for an aggregate based on
6259 ** the current cursor position.
6260 **
6261 ** If regAcc is non-zero and there are no min() or max() aggregates
6262 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6263 ** registers if register regAcc contains 0. The caller will take care
6264 ** of setting and clearing regAcc.
6265 */
6266 static void updateAccumulator(
6267   Parse *pParse,
6268   int regAcc,
6269   AggInfo *pAggInfo,
6270   int eDistinctType
6271 ){
6272   Vdbe *v = pParse->pVdbe;
6273   int i;
6274   int regHit = 0;
6275   int addrHitTest = 0;
6276   struct AggInfo_func *pF;
6277   struct AggInfo_col *pC;
6278 
6279   pAggInfo->directMode = 1;
6280   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6281     int nArg;
6282     int addrNext = 0;
6283     int regAgg;
6284     ExprList *pList;
6285     assert( ExprUseXList(pF->pFExpr) );
6286     assert( !IsWindowFunc(pF->pFExpr) );
6287     pList = pF->pFExpr->x.pList;
6288     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6289       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6290       if( pAggInfo->nAccumulator
6291        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6292        && regAcc
6293       ){
6294         /* If regAcc==0, there there exists some min() or max() function
6295         ** without a FILTER clause that will ensure the magnet registers
6296         ** are populated. */
6297         if( regHit==0 ) regHit = ++pParse->nMem;
6298         /* If this is the first row of the group (regAcc contains 0), clear the
6299         ** "magnet" register regHit so that the accumulator registers
6300         ** are populated if the FILTER clause jumps over the the
6301         ** invocation of min() or max() altogether. Or, if this is not
6302         ** the first row (regAcc contains 1), set the magnet register so that
6303         ** the accumulators are not populated unless the min()/max() is invoked
6304         ** and indicates that they should be.  */
6305         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6306       }
6307       addrNext = sqlite3VdbeMakeLabel(pParse);
6308       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6309     }
6310     if( pList ){
6311       nArg = pList->nExpr;
6312       regAgg = sqlite3GetTempRange(pParse, nArg);
6313       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6314     }else{
6315       nArg = 0;
6316       regAgg = 0;
6317     }
6318     if( pF->iDistinct>=0 && pList ){
6319       if( addrNext==0 ){
6320         addrNext = sqlite3VdbeMakeLabel(pParse);
6321       }
6322       pF->iDistinct = codeDistinct(pParse, eDistinctType,
6323           pF->iDistinct, addrNext, pList, regAgg);
6324     }
6325     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6326       CollSeq *pColl = 0;
6327       struct ExprList_item *pItem;
6328       int j;
6329       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
6330       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6331         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6332       }
6333       if( !pColl ){
6334         pColl = pParse->db->pDfltColl;
6335       }
6336       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6337       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6338     }
6339     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6340     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6341     sqlite3VdbeChangeP5(v, (u8)nArg);
6342     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6343     if( addrNext ){
6344       sqlite3VdbeResolveLabel(v, addrNext);
6345     }
6346   }
6347   if( regHit==0 && pAggInfo->nAccumulator ){
6348     regHit = regAcc;
6349   }
6350   if( regHit ){
6351     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6352   }
6353   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6354     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6355   }
6356 
6357   pAggInfo->directMode = 0;
6358   if( addrHitTest ){
6359     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6360   }
6361 }
6362 
6363 /*
6364 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6365 ** count(*) query ("SELECT count(*) FROM pTab").
6366 */
6367 #ifndef SQLITE_OMIT_EXPLAIN
6368 static void explainSimpleCount(
6369   Parse *pParse,                  /* Parse context */
6370   Table *pTab,                    /* Table being queried */
6371   Index *pIdx                     /* Index used to optimize scan, or NULL */
6372 ){
6373   if( pParse->explain==2 ){
6374     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6375     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6376         pTab->zName,
6377         bCover ? " USING COVERING INDEX " : "",
6378         bCover ? pIdx->zName : ""
6379     );
6380   }
6381 }
6382 #else
6383 # define explainSimpleCount(a,b,c)
6384 #endif
6385 
6386 /*
6387 ** sqlite3WalkExpr() callback used by havingToWhere().
6388 **
6389 ** If the node passed to the callback is a TK_AND node, return
6390 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6391 **
6392 ** Otherwise, return WRC_Prune. In this case, also check if the
6393 ** sub-expression matches the criteria for being moved to the WHERE
6394 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6395 ** within the HAVING expression with a constant "1".
6396 */
6397 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6398   if( pExpr->op!=TK_AND ){
6399     Select *pS = pWalker->u.pSelect;
6400     /* This routine is called before the HAVING clause of the current
6401     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6402     ** here, it indicates that the expression is a correlated reference to a
6403     ** column from an outer aggregate query, or an aggregate function that
6404     ** belongs to an outer query. Do not move the expression to the WHERE
6405     ** clause in this obscure case, as doing so may corrupt the outer Select
6406     ** statements AggInfo structure.  */
6407     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6408      && ExprAlwaysFalse(pExpr)==0
6409      && pExpr->pAggInfo==0
6410     ){
6411       sqlite3 *db = pWalker->pParse->db;
6412       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6413       if( pNew ){
6414         Expr *pWhere = pS->pWhere;
6415         SWAP(Expr, *pNew, *pExpr);
6416         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6417         pS->pWhere = pNew;
6418         pWalker->eCode = 1;
6419       }
6420     }
6421     return WRC_Prune;
6422   }
6423   return WRC_Continue;
6424 }
6425 
6426 /*
6427 ** Transfer eligible terms from the HAVING clause of a query, which is
6428 ** processed after grouping, to the WHERE clause, which is processed before
6429 ** grouping. For example, the query:
6430 **
6431 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6432 **
6433 ** can be rewritten as:
6434 **
6435 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6436 **
6437 ** A term of the HAVING expression is eligible for transfer if it consists
6438 ** entirely of constants and expressions that are also GROUP BY terms that
6439 ** use the "BINARY" collation sequence.
6440 */
6441 static void havingToWhere(Parse *pParse, Select *p){
6442   Walker sWalker;
6443   memset(&sWalker, 0, sizeof(sWalker));
6444   sWalker.pParse = pParse;
6445   sWalker.xExprCallback = havingToWhereExprCb;
6446   sWalker.u.pSelect = p;
6447   sqlite3WalkExpr(&sWalker, p->pHaving);
6448 #if TREETRACE_ENABLED
6449   if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
6450     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6451     sqlite3TreeViewSelect(0, p, 0);
6452   }
6453 #endif
6454 }
6455 
6456 /*
6457 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6458 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6459 ** then return 0.
6460 */
6461 static SrcItem *isSelfJoinView(
6462   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6463   SrcItem *pThis               /* Search for prior reference to this subquery */
6464 ){
6465   SrcItem *pItem;
6466   assert( pThis->pSelect!=0 );
6467   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6468   for(pItem = pTabList->a; pItem<pThis; pItem++){
6469     Select *pS1;
6470     if( pItem->pSelect==0 ) continue;
6471     if( pItem->fg.viaCoroutine ) continue;
6472     if( pItem->zName==0 ) continue;
6473     assert( pItem->pTab!=0 );
6474     assert( pThis->pTab!=0 );
6475     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6476     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6477     pS1 = pItem->pSelect;
6478     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6479       /* The query flattener left two different CTE tables with identical
6480       ** names in the same FROM clause. */
6481       continue;
6482     }
6483     if( pItem->pSelect->selFlags & SF_PushDown ){
6484       /* The view was modified by some other optimization such as
6485       ** pushDownWhereTerms() */
6486       continue;
6487     }
6488     return pItem;
6489   }
6490   return 0;
6491 }
6492 
6493 /*
6494 ** Deallocate a single AggInfo object
6495 */
6496 static void agginfoFree(sqlite3 *db, AggInfo *p){
6497   sqlite3DbFree(db, p->aCol);
6498   sqlite3DbFree(db, p->aFunc);
6499   sqlite3DbFreeNN(db, p);
6500 }
6501 
6502 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6503 /*
6504 ** Attempt to transform a query of the form
6505 **
6506 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6507 **
6508 ** Into this:
6509 **
6510 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6511 **
6512 ** The transformation only works if all of the following are true:
6513 **
6514 **   *  The subquery is a UNION ALL of two or more terms
6515 **   *  The subquery does not have a LIMIT clause
6516 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6517 **   *  The outer query is a simple count(*) with no WHERE clause or other
6518 **      extraneous syntax.
6519 **
6520 ** Return TRUE if the optimization is undertaken.
6521 */
6522 static int countOfViewOptimization(Parse *pParse, Select *p){
6523   Select *pSub, *pPrior;
6524   Expr *pExpr;
6525   Expr *pCount;
6526   sqlite3 *db;
6527   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6528   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6529   if( p->pWhere ) return 0;
6530   if( p->pGroupBy ) return 0;
6531   pExpr = p->pEList->a[0].pExpr;
6532   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6533   assert( ExprUseUToken(pExpr) );
6534   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6535   assert( ExprUseXList(pExpr) );
6536   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6537   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6538   pSub = p->pSrc->a[0].pSelect;
6539   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6540   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6541   do{
6542     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6543     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6544     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6545     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6546     pSub = pSub->pPrior;                              /* Repeat over compound */
6547   }while( pSub );
6548 
6549   /* If we reach this point then it is OK to perform the transformation */
6550 
6551   db = pParse->db;
6552   pCount = pExpr;
6553   pExpr = 0;
6554   pSub = p->pSrc->a[0].pSelect;
6555   p->pSrc->a[0].pSelect = 0;
6556   sqlite3SrcListDelete(db, p->pSrc);
6557   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6558   while( pSub ){
6559     Expr *pTerm;
6560     pPrior = pSub->pPrior;
6561     pSub->pPrior = 0;
6562     pSub->pNext = 0;
6563     pSub->selFlags |= SF_Aggregate;
6564     pSub->selFlags &= ~SF_Compound;
6565     pSub->nSelectRow = 0;
6566     sqlite3ExprListDelete(db, pSub->pEList);
6567     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6568     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6569     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6570     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6571     if( pExpr==0 ){
6572       pExpr = pTerm;
6573     }else{
6574       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6575     }
6576     pSub = pPrior;
6577   }
6578   p->pEList->a[0].pExpr = pExpr;
6579   p->selFlags &= ~SF_Aggregate;
6580 
6581 #if TREETRACE_ENABLED
6582   if( sqlite3TreeTrace & 0x400 ){
6583     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6584     sqlite3TreeViewSelect(0, p, 0);
6585   }
6586 #endif
6587   return 1;
6588 }
6589 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6590 
6591 /*
6592 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
6593 ** as pSrcItem but has the same alias as p0, then return true.
6594 ** Otherwise return false.
6595 */
6596 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
6597   int i;
6598   for(i=0; i<pSrc->nSrc; i++){
6599     SrcItem *p1 = &pSrc->a[i];
6600     if( p1==p0 ) continue;
6601     if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6602       return 1;
6603     }
6604     if( p1->pSelect
6605      && (p1->pSelect->selFlags & SF_NestedFrom)!=0
6606      && sameSrcAlias(p0, p1->pSelect->pSrc)
6607     ){
6608       return 1;
6609     }
6610   }
6611   return 0;
6612 }
6613 
6614 /*
6615 ** Generate code for the SELECT statement given in the p argument.
6616 **
6617 ** The results are returned according to the SelectDest structure.
6618 ** See comments in sqliteInt.h for further information.
6619 **
6620 ** This routine returns the number of errors.  If any errors are
6621 ** encountered, then an appropriate error message is left in
6622 ** pParse->zErrMsg.
6623 **
6624 ** This routine does NOT free the Select structure passed in.  The
6625 ** calling function needs to do that.
6626 */
6627 int sqlite3Select(
6628   Parse *pParse,         /* The parser context */
6629   Select *p,             /* The SELECT statement being coded. */
6630   SelectDest *pDest      /* What to do with the query results */
6631 ){
6632   int i, j;              /* Loop counters */
6633   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6634   Vdbe *v;               /* The virtual machine under construction */
6635   int isAgg;             /* True for select lists like "count(*)" */
6636   ExprList *pEList = 0;  /* List of columns to extract. */
6637   SrcList *pTabList;     /* List of tables to select from */
6638   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6639   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6640   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6641   AggInfo *pAggInfo = 0; /* Aggregate information */
6642   int rc = 1;            /* Value to return from this function */
6643   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6644   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6645   int iEnd;              /* Address of the end of the query */
6646   sqlite3 *db;           /* The database connection */
6647   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6648   u8 minMaxFlag;                 /* Flag for min/max queries */
6649 
6650   db = pParse->db;
6651   assert( pParse==db->pParse );
6652   v = sqlite3GetVdbe(pParse);
6653   if( p==0 || pParse->nErr ){
6654     return 1;
6655   }
6656   assert( db->mallocFailed==0 );
6657   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6658 #if TREETRACE_ENABLED
6659   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6660   if( sqlite3TreeTrace & 0x10100 ){
6661     if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
6662       sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
6663                            __FILE__, __LINE__);
6664     }
6665     sqlite3ShowSelect(p);
6666   }
6667 #endif
6668 
6669   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6670   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6671   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6672   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6673   if( IgnorableDistinct(pDest) ){
6674     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6675            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6676            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6677     /* All of these destinations are also able to ignore the ORDER BY clause */
6678     if( p->pOrderBy ){
6679 #if TREETRACE_ENABLED
6680       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6681       if( sqlite3TreeTrace & 0x100 ){
6682         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6683       }
6684 #endif
6685       sqlite3ParserAddCleanup(pParse,
6686         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6687         p->pOrderBy);
6688       testcase( pParse->earlyCleanup );
6689       p->pOrderBy = 0;
6690     }
6691     p->selFlags &= ~SF_Distinct;
6692     p->selFlags |= SF_NoopOrderBy;
6693   }
6694   sqlite3SelectPrep(pParse, p, 0);
6695   if( pParse->nErr ){
6696     goto select_end;
6697   }
6698   assert( db->mallocFailed==0 );
6699   assert( p->pEList!=0 );
6700 #if TREETRACE_ENABLED
6701   if( sqlite3TreeTrace & 0x104 ){
6702     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6703     sqlite3TreeViewSelect(0, p, 0);
6704   }
6705 #endif
6706 
6707   /* If the SF_UFSrcCheck flag is set, then this function is being called
6708   ** as part of populating the temp table for an UPDATE...FROM statement.
6709   ** In this case, it is an error if the target object (pSrc->a[0]) name
6710   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6711   **
6712   ** Postgres disallows this case too. The reason is that some other
6713   ** systems handle this case differently, and not all the same way,
6714   ** which is just confusing. To avoid this, we follow PG's lead and
6715   ** disallow it altogether.  */
6716   if( p->selFlags & SF_UFSrcCheck ){
6717     SrcItem *p0 = &p->pSrc->a[0];
6718     if( sameSrcAlias(p0, p->pSrc) ){
6719       sqlite3ErrorMsg(pParse,
6720           "target object/alias may not appear in FROM clause: %s",
6721           p0->zAlias ? p0->zAlias : p0->pTab->zName
6722       );
6723       goto select_end;
6724     }
6725 
6726     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6727     ** and leaving this flag set can cause errors if a compound sub-query
6728     ** in p->pSrc is flattened into this query and this function called
6729     ** again as part of compound SELECT processing.  */
6730     p->selFlags &= ~SF_UFSrcCheck;
6731   }
6732 
6733   if( pDest->eDest==SRT_Output ){
6734     sqlite3GenerateColumnNames(pParse, p);
6735   }
6736 
6737 #ifndef SQLITE_OMIT_WINDOWFUNC
6738   if( sqlite3WindowRewrite(pParse, p) ){
6739     assert( pParse->nErr );
6740     goto select_end;
6741   }
6742 #if TREETRACE_ENABLED
6743   if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
6744     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6745     sqlite3TreeViewSelect(0, p, 0);
6746   }
6747 #endif
6748 #endif /* SQLITE_OMIT_WINDOWFUNC */
6749   pTabList = p->pSrc;
6750   isAgg = (p->selFlags & SF_Aggregate)!=0;
6751   memset(&sSort, 0, sizeof(sSort));
6752   sSort.pOrderBy = p->pOrderBy;
6753 
6754   /* Try to do various optimizations (flattening subqueries, and strength
6755   ** reduction of join operators) in the FROM clause up into the main query
6756   */
6757 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6758   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6759     SrcItem *pItem = &pTabList->a[i];
6760     Select *pSub = pItem->pSelect;
6761     Table *pTab = pItem->pTab;
6762 
6763     /* The expander should have already created transient Table objects
6764     ** even for FROM clause elements such as subqueries that do not correspond
6765     ** to a real table */
6766     assert( pTab!=0 );
6767 
6768     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6769     ** of the LEFT JOIN used in the WHERE clause.
6770     */
6771     if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT
6772      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6773      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6774     ){
6775       SELECTTRACE(0x100,pParse,p,
6776                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6777       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6778       assert( pItem->iCursor>=0 );
6779       unsetJoinExpr(p->pWhere, pItem->iCursor,
6780                     pTabList->a[0].fg.jointype & JT_LTORJ);
6781     }
6782 
6783     /* No futher action if this term of the FROM clause is no a subquery */
6784     if( pSub==0 ) continue;
6785 
6786     /* Catch mismatch in the declared columns of a view and the number of
6787     ** columns in the SELECT on the RHS */
6788     if( pTab->nCol!=pSub->pEList->nExpr ){
6789       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6790                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6791       goto select_end;
6792     }
6793 
6794     /* Do not try to flatten an aggregate subquery.
6795     **
6796     ** Flattening an aggregate subquery is only possible if the outer query
6797     ** is not a join.  But if the outer query is not a join, then the subquery
6798     ** will be implemented as a co-routine and there is no advantage to
6799     ** flattening in that case.
6800     */
6801     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6802     assert( pSub->pGroupBy==0 );
6803 
6804     /* If a FROM-clause subquery has an ORDER BY clause that is not
6805     ** really doing anything, then delete it now so that it does not
6806     ** interfere with query flattening.  See the discussion at
6807     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6808     **
6809     ** Beware of these cases where the ORDER BY clause may not be safely
6810     ** omitted:
6811     **
6812     **    (1)   There is also a LIMIT clause
6813     **    (2)   The subquery was added to help with window-function
6814     **          processing
6815     **    (3)   The subquery is in the FROM clause of an UPDATE
6816     **    (4)   The outer query uses an aggregate function other than
6817     **          the built-in count(), min(), or max().
6818     **    (5)   The ORDER BY isn't going to accomplish anything because
6819     **          one of:
6820     **            (a)  The outer query has a different ORDER BY clause
6821     **            (b)  The subquery is part of a join
6822     **          See forum post 062d576715d277c8
6823     */
6824     if( pSub->pOrderBy!=0
6825      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6826      && pSub->pLimit==0                           /* Condition (1) */
6827      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6828      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6829      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6830     ){
6831       SELECTTRACE(0x100,pParse,p,
6832                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6833       sqlite3ParserAddCleanup(pParse,
6834          (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6835          pSub->pOrderBy);
6836       pSub->pOrderBy = 0;
6837     }
6838 
6839     /* If the outer query contains a "complex" result set (that is,
6840     ** if the result set of the outer query uses functions or subqueries)
6841     ** and if the subquery contains an ORDER BY clause and if
6842     ** it will be implemented as a co-routine, then do not flatten.  This
6843     ** restriction allows SQL constructs like this:
6844     **
6845     **  SELECT expensive_function(x)
6846     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6847     **
6848     ** The expensive_function() is only computed on the 10 rows that
6849     ** are output, rather than every row of the table.
6850     **
6851     ** The requirement that the outer query have a complex result set
6852     ** means that flattening does occur on simpler SQL constraints without
6853     ** the expensive_function() like:
6854     **
6855     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6856     */
6857     if( pSub->pOrderBy!=0
6858      && i==0
6859      && (p->selFlags & SF_ComplexResult)!=0
6860      && (pTabList->nSrc==1
6861          || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
6862     ){
6863       continue;
6864     }
6865 
6866     if( flattenSubquery(pParse, p, i, isAgg) ){
6867       if( pParse->nErr ) goto select_end;
6868       /* This subquery can be absorbed into its parent. */
6869       i = -1;
6870     }
6871     pTabList = p->pSrc;
6872     if( db->mallocFailed ) goto select_end;
6873     if( !IgnorableOrderby(pDest) ){
6874       sSort.pOrderBy = p->pOrderBy;
6875     }
6876   }
6877 #endif
6878 
6879 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6880   /* Handle compound SELECT statements using the separate multiSelect()
6881   ** procedure.
6882   */
6883   if( p->pPrior ){
6884     rc = multiSelect(pParse, p, pDest);
6885 #if TREETRACE_ENABLED
6886     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6887     if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6888       sqlite3TreeViewSelect(0, p, 0);
6889     }
6890 #endif
6891     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6892     return rc;
6893   }
6894 #endif
6895 
6896   /* Do the WHERE-clause constant propagation optimization if this is
6897   ** a join.  No need to speed time on this operation for non-join queries
6898   ** as the equivalent optimization will be handled by query planner in
6899   ** sqlite3WhereBegin().
6900   */
6901   if( p->pWhere!=0
6902    && p->pWhere->op==TK_AND
6903    && OptimizationEnabled(db, SQLITE_PropagateConst)
6904    && propagateConstants(pParse, p)
6905   ){
6906 #if TREETRACE_ENABLED
6907     if( sqlite3TreeTrace & 0x100 ){
6908       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6909       sqlite3TreeViewSelect(0, p, 0);
6910     }
6911 #endif
6912   }else{
6913     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6914   }
6915 
6916 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6917   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6918    && countOfViewOptimization(pParse, p)
6919   ){
6920     if( db->mallocFailed ) goto select_end;
6921     pEList = p->pEList;
6922     pTabList = p->pSrc;
6923   }
6924 #endif
6925 
6926   /* For each term in the FROM clause, do two things:
6927   ** (1) Authorized unreferenced tables
6928   ** (2) Generate code for all sub-queries
6929   */
6930   for(i=0; i<pTabList->nSrc; i++){
6931     SrcItem *pItem = &pTabList->a[i];
6932     SrcItem *pPrior;
6933     SelectDest dest;
6934     Select *pSub;
6935 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6936     const char *zSavedAuthContext;
6937 #endif
6938 
6939     /* Issue SQLITE_READ authorizations with a fake column name for any
6940     ** tables that are referenced but from which no values are extracted.
6941     ** Examples of where these kinds of null SQLITE_READ authorizations
6942     ** would occur:
6943     **
6944     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6945     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6946     **
6947     ** The fake column name is an empty string.  It is possible for a table to
6948     ** have a column named by the empty string, in which case there is no way to
6949     ** distinguish between an unreferenced table and an actual reference to the
6950     ** "" column. The original design was for the fake column name to be a NULL,
6951     ** which would be unambiguous.  But legacy authorization callbacks might
6952     ** assume the column name is non-NULL and segfault.  The use of an empty
6953     ** string for the fake column name seems safer.
6954     */
6955     if( pItem->colUsed==0 && pItem->zName!=0 ){
6956       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6957     }
6958 
6959 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6960     /* Generate code for all sub-queries in the FROM clause
6961     */
6962     pSub = pItem->pSelect;
6963     if( pSub==0 ) continue;
6964 
6965     /* The code for a subquery should only be generated once. */
6966     assert( pItem->addrFillSub==0 );
6967 
6968     /* Increment Parse.nHeight by the height of the largest expression
6969     ** tree referred to by this, the parent select. The child select
6970     ** may contain expression trees of at most
6971     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6972     ** more conservative than necessary, but much easier than enforcing
6973     ** an exact limit.
6974     */
6975     pParse->nHeight += sqlite3SelectExprHeight(p);
6976 
6977     /* Make copies of constant WHERE-clause terms in the outer query down
6978     ** inside the subquery.  This can help the subquery to run more efficiently.
6979     */
6980     if( OptimizationEnabled(db, SQLITE_PushDown)
6981      && (pItem->fg.isCte==0
6982          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6983      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem)
6984     ){
6985 #if TREETRACE_ENABLED
6986       if( sqlite3TreeTrace & 0x100 ){
6987         SELECTTRACE(0x100,pParse,p,
6988             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6989         sqlite3TreeViewSelect(0, p, 0);
6990       }
6991 #endif
6992       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6993     }else{
6994       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6995     }
6996 
6997     zSavedAuthContext = pParse->zAuthContext;
6998     pParse->zAuthContext = pItem->zName;
6999 
7000     /* Generate code to implement the subquery
7001     **
7002     ** The subquery is implemented as a co-routine if all of the following are
7003     ** true:
7004     **
7005     **    (1)  the subquery is guaranteed to be the outer loop (so that
7006     **         it does not need to be computed more than once), and
7007     **    (2)  the subquery is not a CTE that should be materialized
7008     **    (3)  the subquery is not part of a left operand for a RIGHT JOIN
7009     */
7010     if( i==0
7011      && (pTabList->nSrc==1
7012             || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)  /* (1) */
7013      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)   /* (2) */
7014      && (pTabList->a[0].fg.jointype & JT_LTORJ)==0                   /* (3) */
7015     ){
7016       /* Implement a co-routine that will return a single row of the result
7017       ** set on each invocation.
7018       */
7019       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7020 
7021       pItem->regReturn = ++pParse->nMem;
7022       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7023       VdbeComment((v, "%!S", pItem));
7024       pItem->addrFillSub = addrTop;
7025       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7026       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7027       sqlite3Select(pParse, pSub, &dest);
7028       pItem->pTab->nRowLogEst = pSub->nSelectRow;
7029       pItem->fg.viaCoroutine = 1;
7030       pItem->regResult = dest.iSdst;
7031       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7032       sqlite3VdbeJumpHere(v, addrTop-1);
7033       sqlite3ClearTempRegCache(pParse);
7034     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7035       /* This is a CTE for which materialization code has already been
7036       ** generated.  Invoke the subroutine to compute the materialization,
7037       ** the make the pItem->iCursor be a copy of the ephemerial table that
7038       ** holds the result of the materialization. */
7039       CteUse *pCteUse = pItem->u2.pCteUse;
7040       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7041       if( pItem->iCursor!=pCteUse->iCur ){
7042         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7043         VdbeComment((v, "%!S", pItem));
7044       }
7045       pSub->nSelectRow = pCteUse->nRowEst;
7046     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
7047       /* This view has already been materialized by a prior entry in
7048       ** this same FROM clause.  Reuse it. */
7049       if( pPrior->addrFillSub ){
7050         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7051       }
7052       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7053       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7054     }else{
7055       /* Materialize the view.  If the view is not correlated, generate a
7056       ** subroutine to do the materialization so that subsequent uses of
7057       ** the same view can reuse the materialization. */
7058       int topAddr;
7059       int onceAddr = 0;
7060 
7061       pItem->regReturn = ++pParse->nMem;
7062       topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7063       pItem->addrFillSub = topAddr+1;
7064       pItem->fg.isMaterialized = 1;
7065       if( pItem->fg.isCorrelated==0 ){
7066         /* If the subquery is not correlated and if we are not inside of
7067         ** a trigger, then we only need to compute the value of the subquery
7068         ** once. */
7069         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7070         VdbeComment((v, "materialize %!S", pItem));
7071       }else{
7072         VdbeNoopComment((v, "materialize %!S", pItem));
7073       }
7074       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7075       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
7076       sqlite3Select(pParse, pSub, &dest);
7077       pItem->pTab->nRowLogEst = pSub->nSelectRow;
7078       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7079       sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7080       VdbeComment((v, "end %!S", pItem));
7081       sqlite3VdbeJumpHere(v, topAddr);
7082       sqlite3ClearTempRegCache(pParse);
7083       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7084         CteUse *pCteUse = pItem->u2.pCteUse;
7085         pCteUse->addrM9e = pItem->addrFillSub;
7086         pCteUse->regRtn = pItem->regReturn;
7087         pCteUse->iCur = pItem->iCursor;
7088         pCteUse->nRowEst = pSub->nSelectRow;
7089       }
7090     }
7091     if( db->mallocFailed ) goto select_end;
7092     pParse->nHeight -= sqlite3SelectExprHeight(p);
7093     pParse->zAuthContext = zSavedAuthContext;
7094 #endif
7095   }
7096 
7097   /* Various elements of the SELECT copied into local variables for
7098   ** convenience */
7099   pEList = p->pEList;
7100   pWhere = p->pWhere;
7101   pGroupBy = p->pGroupBy;
7102   pHaving = p->pHaving;
7103   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7104 
7105 #if TREETRACE_ENABLED
7106   if( sqlite3TreeTrace & 0x400 ){
7107     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
7108     sqlite3TreeViewSelect(0, p, 0);
7109   }
7110 #endif
7111 
7112   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7113   ** if the select-list is the same as the ORDER BY list, then this query
7114   ** can be rewritten as a GROUP BY. In other words, this:
7115   **
7116   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
7117   **
7118   ** is transformed to:
7119   **
7120   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7121   **
7122   ** The second form is preferred as a single index (or temp-table) may be
7123   ** used for both the ORDER BY and DISTINCT processing. As originally
7124   ** written the query must use a temp-table for at least one of the ORDER
7125   ** BY and DISTINCT, and an index or separate temp-table for the other.
7126   */
7127   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7128    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7129 #ifndef SQLITE_OMIT_WINDOWFUNC
7130    && p->pWin==0
7131 #endif
7132   ){
7133     p->selFlags &= ~SF_Distinct;
7134     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7135     p->selFlags |= SF_Aggregate;
7136     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7137     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
7138     ** original setting of the SF_Distinct flag, not the current setting */
7139     assert( sDistinct.isTnct );
7140     sDistinct.isTnct = 2;
7141 
7142 #if TREETRACE_ENABLED
7143     if( sqlite3TreeTrace & 0x400 ){
7144       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7145       sqlite3TreeViewSelect(0, p, 0);
7146     }
7147 #endif
7148   }
7149 
7150   /* If there is an ORDER BY clause, then create an ephemeral index to
7151   ** do the sorting.  But this sorting ephemeral index might end up
7152   ** being unused if the data can be extracted in pre-sorted order.
7153   ** If that is the case, then the OP_OpenEphemeral instruction will be
7154   ** changed to an OP_Noop once we figure out that the sorting index is
7155   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
7156   ** that change.
7157   */
7158   if( sSort.pOrderBy ){
7159     KeyInfo *pKeyInfo;
7160     pKeyInfo = sqlite3KeyInfoFromExprList(
7161         pParse, sSort.pOrderBy, 0, pEList->nExpr);
7162     sSort.iECursor = pParse->nTab++;
7163     sSort.addrSortIndex =
7164       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7165           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7166           (char*)pKeyInfo, P4_KEYINFO
7167       );
7168   }else{
7169     sSort.addrSortIndex = -1;
7170   }
7171 
7172   /* If the output is destined for a temporary table, open that table.
7173   */
7174   if( pDest->eDest==SRT_EphemTab ){
7175     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7176     if( p->selFlags & SF_NestedFrom ){
7177       /* Delete or NULL-out result columns that will never be used */
7178       int ii;
7179       for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7180         sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7181         sqlite3DbFree(db, pEList->a[ii].zEName);
7182         pEList->nExpr--;
7183       }
7184       for(ii=0; ii<pEList->nExpr; ii++){
7185         if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7186       }
7187     }
7188   }
7189 
7190   /* Set the limiter.
7191   */
7192   iEnd = sqlite3VdbeMakeLabel(pParse);
7193   if( (p->selFlags & SF_FixedLimit)==0 ){
7194     p->nSelectRow = 320;  /* 4 billion rows */
7195   }
7196   if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
7197   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7198     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7199     sSort.sortFlags |= SORTFLAG_UseSorter;
7200   }
7201 
7202   /* Open an ephemeral index to use for the distinct set.
7203   */
7204   if( p->selFlags & SF_Distinct ){
7205     sDistinct.tabTnct = pParse->nTab++;
7206     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7207                        sDistinct.tabTnct, 0, 0,
7208                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7209                        P4_KEYINFO);
7210     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7211     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7212   }else{
7213     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7214   }
7215 
7216   if( !isAgg && pGroupBy==0 ){
7217     /* No aggregate functions and no GROUP BY clause */
7218     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7219                    | (p->selFlags & SF_FixedLimit);
7220 #ifndef SQLITE_OMIT_WINDOWFUNC
7221     Window *pWin = p->pWin;      /* Main window object (or NULL) */
7222     if( pWin ){
7223       sqlite3WindowCodeInit(pParse, p);
7224     }
7225 #endif
7226     assert( WHERE_USE_LIMIT==SF_FixedLimit );
7227 
7228 
7229     /* Begin the database scan. */
7230     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7231     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7232                                p->pEList, p, wctrlFlags, p->nSelectRow);
7233     if( pWInfo==0 ) goto select_end;
7234     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7235       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7236     }
7237     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7238       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7239     }
7240     if( sSort.pOrderBy ){
7241       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7242       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7243       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7244         sSort.pOrderBy = 0;
7245       }
7246     }
7247     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7248 
7249     /* If sorting index that was created by a prior OP_OpenEphemeral
7250     ** instruction ended up not being needed, then change the OP_OpenEphemeral
7251     ** into an OP_Noop.
7252     */
7253     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7254       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7255     }
7256 
7257     assert( p->pEList==pEList );
7258 #ifndef SQLITE_OMIT_WINDOWFUNC
7259     if( pWin ){
7260       int addrGosub = sqlite3VdbeMakeLabel(pParse);
7261       int iCont = sqlite3VdbeMakeLabel(pParse);
7262       int iBreak = sqlite3VdbeMakeLabel(pParse);
7263       int regGosub = ++pParse->nMem;
7264 
7265       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
7266 
7267       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
7268       sqlite3VdbeResolveLabel(v, addrGosub);
7269       VdbeNoopComment((v, "inner-loop subroutine"));
7270       sSort.labelOBLopt = 0;
7271       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
7272       sqlite3VdbeResolveLabel(v, iCont);
7273       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7274       VdbeComment((v, "end inner-loop subroutine"));
7275       sqlite3VdbeResolveLabel(v, iBreak);
7276     }else
7277 #endif /* SQLITE_OMIT_WINDOWFUNC */
7278     {
7279       /* Use the standard inner loop. */
7280       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7281           sqlite3WhereContinueLabel(pWInfo),
7282           sqlite3WhereBreakLabel(pWInfo));
7283 
7284       /* End the database scan loop.
7285       */
7286       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7287       sqlite3WhereEnd(pWInfo);
7288     }
7289   }else{
7290     /* This case when there exist aggregate functions or a GROUP BY clause
7291     ** or both */
7292     NameContext sNC;    /* Name context for processing aggregate information */
7293     int iAMem;          /* First Mem address for storing current GROUP BY */
7294     int iBMem;          /* First Mem address for previous GROUP BY */
7295     int iUseFlag;       /* Mem address holding flag indicating that at least
7296                         ** one row of the input to the aggregator has been
7297                         ** processed */
7298     int iAbortFlag;     /* Mem address which causes query abort if positive */
7299     int groupBySort;    /* Rows come from source in GROUP BY order */
7300     int addrEnd;        /* End of processing for this SELECT */
7301     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
7302     int sortOut = 0;    /* Output register from the sorter */
7303     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
7304 
7305     /* Remove any and all aliases between the result set and the
7306     ** GROUP BY clause.
7307     */
7308     if( pGroupBy ){
7309       int k;                        /* Loop counter */
7310       struct ExprList_item *pItem;  /* For looping over expression in a list */
7311 
7312       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
7313         pItem->u.x.iAlias = 0;
7314       }
7315       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
7316         pItem->u.x.iAlias = 0;
7317       }
7318       assert( 66==sqlite3LogEst(100) );
7319       if( p->nSelectRow>66 ) p->nSelectRow = 66;
7320 
7321       /* If there is both a GROUP BY and an ORDER BY clause and they are
7322       ** identical, then it may be possible to disable the ORDER BY clause
7323       ** on the grounds that the GROUP BY will cause elements to come out
7324       ** in the correct order. It also may not - the GROUP BY might use a
7325       ** database index that causes rows to be grouped together as required
7326       ** but not actually sorted. Either way, record the fact that the
7327       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7328       ** variable.  */
7329       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7330         int ii;
7331         /* The GROUP BY processing doesn't care whether rows are delivered in
7332         ** ASC or DESC order - only that each group is returned contiguously.
7333         ** So set the ASC/DESC flags in the GROUP BY to match those in the
7334         ** ORDER BY to maximize the chances of rows being delivered in an
7335         ** order that makes the ORDER BY redundant.  */
7336         for(ii=0; ii<pGroupBy->nExpr; ii++){
7337           u8 sortFlags;
7338           sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
7339           pGroupBy->a[ii].fg.sortFlags = sortFlags;
7340         }
7341         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7342           orderByGrp = 1;
7343         }
7344       }
7345     }else{
7346       assert( 0==sqlite3LogEst(1) );
7347       p->nSelectRow = 0;
7348     }
7349 
7350     /* Create a label to jump to when we want to abort the query */
7351     addrEnd = sqlite3VdbeMakeLabel(pParse);
7352 
7353     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7354     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7355     ** SELECT statement.
7356     */
7357     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7358     if( pAggInfo ){
7359       sqlite3ParserAddCleanup(pParse,
7360           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7361       testcase( pParse->earlyCleanup );
7362     }
7363     if( db->mallocFailed ){
7364       goto select_end;
7365     }
7366     pAggInfo->selId = p->selId;
7367     memset(&sNC, 0, sizeof(sNC));
7368     sNC.pParse = pParse;
7369     sNC.pSrcList = pTabList;
7370     sNC.uNC.pAggInfo = pAggInfo;
7371     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7372     pAggInfo->mnReg = pParse->nMem+1;
7373     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7374     pAggInfo->pGroupBy = pGroupBy;
7375     sqlite3ExprAnalyzeAggList(&sNC, pEList);
7376     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7377     if( pHaving ){
7378       if( pGroupBy ){
7379         assert( pWhere==p->pWhere );
7380         assert( pHaving==p->pHaving );
7381         assert( pGroupBy==p->pGroupBy );
7382         havingToWhere(pParse, p);
7383         pWhere = p->pWhere;
7384       }
7385       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7386     }
7387     pAggInfo->nAccumulator = pAggInfo->nColumn;
7388     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7389       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7390     }else{
7391       minMaxFlag = WHERE_ORDERBY_NORMAL;
7392     }
7393     for(i=0; i<pAggInfo->nFunc; i++){
7394       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7395       assert( ExprUseXList(pExpr) );
7396       sNC.ncFlags |= NC_InAggFunc;
7397       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7398 #ifndef SQLITE_OMIT_WINDOWFUNC
7399       assert( !IsWindowFunc(pExpr) );
7400       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7401         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7402       }
7403 #endif
7404       sNC.ncFlags &= ~NC_InAggFunc;
7405     }
7406     pAggInfo->mxReg = pParse->nMem;
7407     if( db->mallocFailed ) goto select_end;
7408 #if TREETRACE_ENABLED
7409     if( sqlite3TreeTrace & 0x400 ){
7410       int ii;
7411       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7412       sqlite3TreeViewSelect(0, p, 0);
7413       if( minMaxFlag ){
7414         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7415         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7416       }
7417       for(ii=0; ii<pAggInfo->nColumn; ii++){
7418         struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
7419         sqlite3DebugPrintf(
7420            "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
7421            " iSorterColumn=%d\n",
7422            ii, pCol->pTab ? pCol->pTab->zName : "NULL",
7423            pCol->iTable, pCol->iColumn, pCol->iMem,
7424            pCol->iSorterColumn);
7425         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7426       }
7427       for(ii=0; ii<pAggInfo->nFunc; ii++){
7428         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7429             ii, pAggInfo->aFunc[ii].iMem);
7430         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7431       }
7432     }
7433 #endif
7434 
7435 
7436     /* Processing for aggregates with GROUP BY is very different and
7437     ** much more complex than aggregates without a GROUP BY.
7438     */
7439     if( pGroupBy ){
7440       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7441       int addr1;          /* A-vs-B comparision jump */
7442       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7443       int regOutputRow;   /* Return address register for output subroutine */
7444       int addrSetAbort;   /* Set the abort flag and return */
7445       int addrTopOfLoop;  /* Top of the input loop */
7446       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7447       int addrReset;      /* Subroutine for resetting the accumulator */
7448       int regReset;       /* Return address register for reset subroutine */
7449       ExprList *pDistinct = 0;
7450       u16 distFlag = 0;
7451       int eDist = WHERE_DISTINCT_NOOP;
7452 
7453       if( pAggInfo->nFunc==1
7454        && pAggInfo->aFunc[0].iDistinct>=0
7455        && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7456        && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7457        && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7458       ){
7459         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7460         pExpr = sqlite3ExprDup(db, pExpr, 0);
7461         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7462         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7463         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7464       }
7465 
7466       /* If there is a GROUP BY clause we might need a sorting index to
7467       ** implement it.  Allocate that sorting index now.  If it turns out
7468       ** that we do not need it after all, the OP_SorterOpen instruction
7469       ** will be converted into a Noop.
7470       */
7471       pAggInfo->sortingIdx = pParse->nTab++;
7472       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7473                                             0, pAggInfo->nColumn);
7474       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7475           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7476           0, (char*)pKeyInfo, P4_KEYINFO);
7477 
7478       /* Initialize memory locations used by GROUP BY aggregate processing
7479       */
7480       iUseFlag = ++pParse->nMem;
7481       iAbortFlag = ++pParse->nMem;
7482       regOutputRow = ++pParse->nMem;
7483       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7484       regReset = ++pParse->nMem;
7485       addrReset = sqlite3VdbeMakeLabel(pParse);
7486       iAMem = pParse->nMem + 1;
7487       pParse->nMem += pGroupBy->nExpr;
7488       iBMem = pParse->nMem + 1;
7489       pParse->nMem += pGroupBy->nExpr;
7490       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7491       VdbeComment((v, "clear abort flag"));
7492       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7493 
7494       /* Begin a loop that will extract all source rows in GROUP BY order.
7495       ** This might involve two separate loops with an OP_Sort in between, or
7496       ** it might be a single loop that uses an index to extract information
7497       ** in the right order to begin with.
7498       */
7499       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7500       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7501       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7502           0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
7503           |  (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7504       );
7505       if( pWInfo==0 ){
7506         sqlite3ExprListDelete(db, pDistinct);
7507         goto select_end;
7508       }
7509       eDist = sqlite3WhereIsDistinct(pWInfo);
7510       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7511       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7512         /* The optimizer is able to deliver rows in group by order so
7513         ** we do not have to sort.  The OP_OpenEphemeral table will be
7514         ** cancelled later because we still need to use the pKeyInfo
7515         */
7516         groupBySort = 0;
7517       }else{
7518         /* Rows are coming out in undetermined order.  We have to push
7519         ** each row into a sorting index, terminate the first loop,
7520         ** then loop over the sorting index in order to get the output
7521         ** in sorted order
7522         */
7523         int regBase;
7524         int regRecord;
7525         int nCol;
7526         int nGroupBy;
7527 
7528         explainTempTable(pParse,
7529             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7530                     "DISTINCT" : "GROUP BY");
7531 
7532         groupBySort = 1;
7533         nGroupBy = pGroupBy->nExpr;
7534         nCol = nGroupBy;
7535         j = nGroupBy;
7536         for(i=0; i<pAggInfo->nColumn; i++){
7537           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7538             nCol++;
7539             j++;
7540           }
7541         }
7542         regBase = sqlite3GetTempRange(pParse, nCol);
7543         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7544         j = nGroupBy;
7545         pAggInfo->directMode = 1;
7546         for(i=0; i<pAggInfo->nColumn; i++){
7547           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7548           if( pCol->iSorterColumn>=j ){
7549             sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
7550             j++;
7551           }
7552         }
7553         pAggInfo->directMode = 0;
7554         regRecord = sqlite3GetTempReg(pParse);
7555         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7556         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7557         sqlite3ReleaseTempReg(pParse, regRecord);
7558         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7559         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7560         sqlite3WhereEnd(pWInfo);
7561         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7562         sortOut = sqlite3GetTempReg(pParse);
7563         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7564         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7565         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7566         pAggInfo->useSortingIdx = 1;
7567       }
7568 
7569       /* If the index or temporary table used by the GROUP BY sort
7570       ** will naturally deliver rows in the order required by the ORDER BY
7571       ** clause, cancel the ephemeral table open coded earlier.
7572       **
7573       ** This is an optimization - the correct answer should result regardless.
7574       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7575       ** disable this optimization for testing purposes.  */
7576       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7577        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7578       ){
7579         sSort.pOrderBy = 0;
7580         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7581       }
7582 
7583       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7584       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7585       ** Then compare the current GROUP BY terms against the GROUP BY terms
7586       ** from the previous row currently stored in a0, a1, a2...
7587       */
7588       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7589       if( groupBySort ){
7590         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7591                           sortOut, sortPTab);
7592       }
7593       for(j=0; j<pGroupBy->nExpr; j++){
7594         if( groupBySort ){
7595           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7596         }else{
7597           pAggInfo->directMode = 1;
7598           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7599         }
7600       }
7601       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7602                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7603       addr1 = sqlite3VdbeCurrentAddr(v);
7604       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7605 
7606       /* Generate code that runs whenever the GROUP BY changes.
7607       ** Changes in the GROUP BY are detected by the previous code
7608       ** block.  If there were no changes, this block is skipped.
7609       **
7610       ** This code copies current group by terms in b0,b1,b2,...
7611       ** over to a0,a1,a2.  It then calls the output subroutine
7612       ** and resets the aggregate accumulator registers in preparation
7613       ** for the next GROUP BY batch.
7614       */
7615       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7616       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7617       VdbeComment((v, "output one row"));
7618       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7619       VdbeComment((v, "check abort flag"));
7620       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7621       VdbeComment((v, "reset accumulator"));
7622 
7623       /* Update the aggregate accumulators based on the content of
7624       ** the current row
7625       */
7626       sqlite3VdbeJumpHere(v, addr1);
7627       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7628       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7629       VdbeComment((v, "indicate data in accumulator"));
7630 
7631       /* End of the loop
7632       */
7633       if( groupBySort ){
7634         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7635         VdbeCoverage(v);
7636       }else{
7637         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7638         sqlite3WhereEnd(pWInfo);
7639         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7640       }
7641       sqlite3ExprListDelete(db, pDistinct);
7642 
7643       /* Output the final row of result
7644       */
7645       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7646       VdbeComment((v, "output final row"));
7647 
7648       /* Jump over the subroutines
7649       */
7650       sqlite3VdbeGoto(v, addrEnd);
7651 
7652       /* Generate a subroutine that outputs a single row of the result
7653       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7654       ** is less than or equal to zero, the subroutine is a no-op.  If
7655       ** the processing calls for the query to abort, this subroutine
7656       ** increments the iAbortFlag memory location before returning in
7657       ** order to signal the caller to abort.
7658       */
7659       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7660       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7661       VdbeComment((v, "set abort flag"));
7662       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7663       sqlite3VdbeResolveLabel(v, addrOutputRow);
7664       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7665       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7666       VdbeCoverage(v);
7667       VdbeComment((v, "Groupby result generator entry point"));
7668       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7669       finalizeAggFunctions(pParse, pAggInfo);
7670       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7671       selectInnerLoop(pParse, p, -1, &sSort,
7672                       &sDistinct, pDest,
7673                       addrOutputRow+1, addrSetAbort);
7674       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7675       VdbeComment((v, "end groupby result generator"));
7676 
7677       /* Generate a subroutine that will reset the group-by accumulator
7678       */
7679       sqlite3VdbeResolveLabel(v, addrReset);
7680       resetAccumulator(pParse, pAggInfo);
7681       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7682       VdbeComment((v, "indicate accumulator empty"));
7683       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7684 
7685       if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
7686         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7687         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7688       }
7689     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7690     else {
7691       Table *pTab;
7692       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7693         /* If isSimpleCount() returns a pointer to a Table structure, then
7694         ** the SQL statement is of the form:
7695         **
7696         **   SELECT count(*) FROM <tbl>
7697         **
7698         ** where the Table structure returned represents table <tbl>.
7699         **
7700         ** This statement is so common that it is optimized specially. The
7701         ** OP_Count instruction is executed either on the intkey table that
7702         ** contains the data for table <tbl> or on one of its indexes. It
7703         ** is better to execute the op on an index, as indexes are almost
7704         ** always spread across less pages than their corresponding tables.
7705         */
7706         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7707         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7708         Index *pIdx;                         /* Iterator variable */
7709         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7710         Index *pBest = 0;                    /* Best index found so far */
7711         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7712 
7713         sqlite3CodeVerifySchema(pParse, iDb);
7714         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7715 
7716         /* Search for the index that has the lowest scan cost.
7717         **
7718         ** (2011-04-15) Do not do a full scan of an unordered index.
7719         **
7720         ** (2013-10-03) Do not count the entries in a partial index.
7721         **
7722         ** In practice the KeyInfo structure will not be used. It is only
7723         ** passed to keep OP_OpenRead happy.
7724         */
7725         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7726         if( !p->pSrc->a[0].fg.notIndexed ){
7727           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7728             if( pIdx->bUnordered==0
7729              && pIdx->szIdxRow<pTab->szTabRow
7730              && pIdx->pPartIdxWhere==0
7731              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7732             ){
7733               pBest = pIdx;
7734             }
7735           }
7736         }
7737         if( pBest ){
7738           iRoot = pBest->tnum;
7739           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7740         }
7741 
7742         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7743         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7744         if( pKeyInfo ){
7745           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7746         }
7747         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7748         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7749         explainSimpleCount(pParse, pTab, pBest);
7750       }else{
7751         int regAcc = 0;           /* "populate accumulators" flag */
7752         ExprList *pDistinct = 0;
7753         u16 distFlag = 0;
7754         int eDist;
7755 
7756         /* If there are accumulator registers but no min() or max() functions
7757         ** without FILTER clauses, allocate register regAcc. Register regAcc
7758         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7759         ** The code generated by updateAccumulator() uses this to ensure
7760         ** that the accumulator registers are (a) updated only once if
7761         ** there are no min() or max functions or (b) always updated for the
7762         ** first row visited by the aggregate, so that they are updated at
7763         ** least once even if the FILTER clause means the min() or max()
7764         ** function visits zero rows.  */
7765         if( pAggInfo->nAccumulator ){
7766           for(i=0; i<pAggInfo->nFunc; i++){
7767             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7768               continue;
7769             }
7770             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7771               break;
7772             }
7773           }
7774           if( i==pAggInfo->nFunc ){
7775             regAcc = ++pParse->nMem;
7776             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7777           }
7778         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7779           assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7780           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7781           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7782         }
7783 
7784         /* This case runs if the aggregate has no GROUP BY clause.  The
7785         ** processing is much simpler since there is only a single row
7786         ** of output.
7787         */
7788         assert( p->pGroupBy==0 );
7789         resetAccumulator(pParse, pAggInfo);
7790 
7791         /* If this query is a candidate for the min/max optimization, then
7792         ** minMaxFlag will have been previously set to either
7793         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7794         ** be an appropriate ORDER BY expression for the optimization.
7795         */
7796         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7797         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7798 
7799         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7800         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7801                                    pDistinct, 0, minMaxFlag|distFlag, 0);
7802         if( pWInfo==0 ){
7803           goto select_end;
7804         }
7805         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7806         eDist = sqlite3WhereIsDistinct(pWInfo);
7807         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7808         if( eDist!=WHERE_DISTINCT_NOOP ){
7809           struct AggInfo_func *pF = pAggInfo->aFunc;
7810           if( pF ){
7811             fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7812           }
7813         }
7814 
7815         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7816         if( minMaxFlag ){
7817           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7818         }
7819         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7820         sqlite3WhereEnd(pWInfo);
7821         finalizeAggFunctions(pParse, pAggInfo);
7822       }
7823 
7824       sSort.pOrderBy = 0;
7825       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7826       selectInnerLoop(pParse, p, -1, 0, 0,
7827                       pDest, addrEnd, addrEnd);
7828     }
7829     sqlite3VdbeResolveLabel(v, addrEnd);
7830 
7831   } /* endif aggregate query */
7832 
7833   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7834     explainTempTable(pParse, "DISTINCT");
7835   }
7836 
7837   /* If there is an ORDER BY clause, then we need to sort the results
7838   ** and send them to the callback one by one.
7839   */
7840   if( sSort.pOrderBy ){
7841     explainTempTable(pParse,
7842                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7843     assert( p->pEList==pEList );
7844     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7845   }
7846 
7847   /* Jump here to skip this query
7848   */
7849   sqlite3VdbeResolveLabel(v, iEnd);
7850 
7851   /* The SELECT has been coded. If there is an error in the Parse structure,
7852   ** set the return code to 1. Otherwise 0. */
7853   rc = (pParse->nErr>0);
7854 
7855   /* Control jumps to here if an error is encountered above, or upon
7856   ** successful coding of the SELECT.
7857   */
7858 select_end:
7859   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7860   assert( db->mallocFailed==0 || pParse->nErr!=0 );
7861   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7862 #ifdef SQLITE_DEBUG
7863   if( pAggInfo && !db->mallocFailed ){
7864     for(i=0; i<pAggInfo->nColumn; i++){
7865       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7866       assert( pExpr!=0 );
7867       assert( pExpr->pAggInfo==pAggInfo );
7868       assert( pExpr->iAgg==i );
7869     }
7870     for(i=0; i<pAggInfo->nFunc; i++){
7871       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7872       assert( pExpr!=0 );
7873       assert( pExpr->pAggInfo==pAggInfo );
7874       assert( pExpr->iAgg==i );
7875     }
7876   }
7877 #endif
7878 
7879 #if TREETRACE_ENABLED
7880   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7881   if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7882     sqlite3TreeViewSelect(0, p, 0);
7883   }
7884 #endif
7885   ExplainQueryPlanPop(pParse);
7886   return rc;
7887 }
7888