xref: /sqlite-3.40.0/src/select.c (revision 40503750)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* 0: Not distinct. 1: DISTICT  2: DISTINCT and ORDER BY */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   assert( db!=0 );
80   while( p ){
81     Select *pPrior = p->pPrior;
82     sqlite3ExprListDelete(db, p->pEList);
83     sqlite3SrcListDelete(db, p->pSrc);
84     sqlite3ExprDelete(db, p->pWhere);
85     sqlite3ExprListDelete(db, p->pGroupBy);
86     sqlite3ExprDelete(db, p->pHaving);
87     sqlite3ExprListDelete(db, p->pOrderBy);
88     sqlite3ExprDelete(db, p->pLimit);
89     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
90 #ifndef SQLITE_OMIT_WINDOWFUNC
91     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
92       sqlite3WindowListDelete(db, p->pWinDefn);
93     }
94     while( p->pWin ){
95       assert( p->pWin->ppThis==&p->pWin );
96       sqlite3WindowUnlinkFromSelect(p->pWin);
97     }
98 #endif
99     if( bFree ) sqlite3DbNNFreeNN(db, p);
100     p = pPrior;
101     bFree = 1;
102   }
103 }
104 
105 /*
106 ** Initialize a SelectDest structure.
107 */
108 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
109   pDest->eDest = (u8)eDest;
110   pDest->iSDParm = iParm;
111   pDest->iSDParm2 = 0;
112   pDest->zAffSdst = 0;
113   pDest->iSdst = 0;
114   pDest->nSdst = 0;
115 }
116 
117 
118 /*
119 ** Allocate a new Select structure and return a pointer to that
120 ** structure.
121 */
122 Select *sqlite3SelectNew(
123   Parse *pParse,        /* Parsing context */
124   ExprList *pEList,     /* which columns to include in the result */
125   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
126   Expr *pWhere,         /* the WHERE clause */
127   ExprList *pGroupBy,   /* the GROUP BY clause */
128   Expr *pHaving,        /* the HAVING clause */
129   ExprList *pOrderBy,   /* the ORDER BY clause */
130   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
131   Expr *pLimit          /* LIMIT value.  NULL means not used */
132 ){
133   Select *pNew, *pAllocated;
134   Select standin;
135   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
136   if( pNew==0 ){
137     assert( pParse->db->mallocFailed );
138     pNew = &standin;
139   }
140   if( pEList==0 ){
141     pEList = sqlite3ExprListAppend(pParse, 0,
142                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
143   }
144   pNew->pEList = pEList;
145   pNew->op = TK_SELECT;
146   pNew->selFlags = selFlags;
147   pNew->iLimit = 0;
148   pNew->iOffset = 0;
149   pNew->selId = ++pParse->nSelect;
150   pNew->addrOpenEphm[0] = -1;
151   pNew->addrOpenEphm[1] = -1;
152   pNew->nSelectRow = 0;
153   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
154   pNew->pSrc = pSrc;
155   pNew->pWhere = pWhere;
156   pNew->pGroupBy = pGroupBy;
157   pNew->pHaving = pHaving;
158   pNew->pOrderBy = pOrderBy;
159   pNew->pPrior = 0;
160   pNew->pNext = 0;
161   pNew->pLimit = pLimit;
162   pNew->pWith = 0;
163 #ifndef SQLITE_OMIT_WINDOWFUNC
164   pNew->pWin = 0;
165   pNew->pWinDefn = 0;
166 #endif
167   if( pParse->db->mallocFailed ) {
168     clearSelect(pParse->db, pNew, pNew!=&standin);
169     pAllocated = 0;
170   }else{
171     assert( pNew->pSrc!=0 || pParse->nErr>0 );
172   }
173   return pAllocated;
174 }
175 
176 
177 /*
178 ** Delete the given Select structure and all of its substructures.
179 */
180 void sqlite3SelectDelete(sqlite3 *db, Select *p){
181   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
182 }
183 
184 /*
185 ** Return a pointer to the right-most SELECT statement in a compound.
186 */
187 static Select *findRightmost(Select *p){
188   while( p->pNext ) p = p->pNext;
189   return p;
190 }
191 
192 /*
193 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
194 ** type of join.  Return an integer constant that expresses that type
195 ** in terms of the following bit values:
196 **
197 **     JT_INNER
198 **     JT_CROSS
199 **     JT_OUTER
200 **     JT_NATURAL
201 **     JT_LEFT
202 **     JT_RIGHT
203 **
204 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
205 **
206 ** If an illegal or unsupported join type is seen, then still return
207 ** a join type, but put an error in the pParse structure.
208 **
209 ** These are the valid join types:
210 **
211 **
212 **      pA       pB       pC               Return Value
213 **     -------  -----    -----             ------------
214 **     CROSS      -        -                 JT_CROSS
215 **     INNER      -        -                 JT_INNER
216 **     LEFT       -        -                 JT_LEFT|JT_OUTER
217 **     LEFT     OUTER      -                 JT_LEFT|JT_OUTER
218 **     RIGHT      -        -                 JT_RIGHT|JT_OUTER
219 **     RIGHT    OUTER      -                 JT_RIGHT|JT_OUTER
220 **     FULL       -        -                 JT_LEFT|JT_RIGHT|JT_OUTER
221 **     FULL     OUTER      -                 JT_LEFT|JT_RIGHT|JT_OUTER
222 **     NATURAL  INNER      -                 JT_NATURAL|JT_INNER
223 **     NATURAL  LEFT       -                 JT_NATURAL|JT_LEFT|JT_OUTER
224 **     NATURAL  LEFT     OUTER               JT_NATURAL|JT_LEFT|JT_OUTER
225 **     NATURAL  RIGHT      -                 JT_NATURAL|JT_RIGHT|JT_OUTER
226 **     NATURAL  RIGHT    OUTER               JT_NATURAL|JT_RIGHT|JT_OUTER
227 **     NATURAL  FULL       -                 JT_NATURAL|JT_LEFT|JT_RIGHT
228 **     NATURAL  FULL     OUTER               JT_NATRUAL|JT_LEFT|JT_RIGHT
229 **
230 ** To preserve historical compatibly, SQLite also accepts a variety
231 ** of other non-standard and in many cases non-sensical join types.
232 ** This routine makes as much sense at it can from the nonsense join
233 ** type and returns a result.  Examples of accepted nonsense join types
234 ** include but are not limited to:
235 **
236 **          INNER CROSS JOIN        ->   same as JOIN
237 **          NATURAL CROSS JOIN      ->   same as NATURAL JOIN
238 **          OUTER LEFT JOIN         ->   same as LEFT JOIN
239 **          LEFT NATURAL JOIN       ->   same as NATURAL LEFT JOIN
240 **          LEFT RIGHT JOIN         ->   same as FULL JOIN
241 **          RIGHT OUTER FULL JOIN   ->   same as FULL JOIN
242 **          CROSS CROSS CROSS JOIN  ->   same as JOIN
243 **
244 ** The only restrictions on the join type name are:
245 **
246 **    *   "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
247 **        or "FULL".
248 **
249 **    *   "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
250 **        or "FULL".
251 **
252 **    *   If "OUTER" is present then there must also be one of
253 **        "LEFT", "RIGHT", or "FULL"
254 */
255 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
256   int jointype = 0;
257   Token *apAll[3];
258   Token *p;
259                              /*   0123456789 123456789 123456789 123 */
260   static const char zKeyText[] = "naturaleftouterightfullinnercross";
261   static const struct {
262     u8 i;        /* Beginning of keyword text in zKeyText[] */
263     u8 nChar;    /* Length of the keyword in characters */
264     u8 code;     /* Join type mask */
265   } aKeyword[] = {
266     /* (0) natural */ { 0,  7, JT_NATURAL                },
267     /* (1) left    */ { 6,  4, JT_LEFT|JT_OUTER          },
268     /* (2) outer   */ { 10, 5, JT_OUTER                  },
269     /* (3) right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
270     /* (4) full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
271     /* (5) inner   */ { 23, 5, JT_INNER                  },
272     /* (6) cross   */ { 28, 5, JT_INNER|JT_CROSS         },
273   };
274   int i, j;
275   apAll[0] = pA;
276   apAll[1] = pB;
277   apAll[2] = pC;
278   for(i=0; i<3 && apAll[i]; i++){
279     p = apAll[i];
280     for(j=0; j<ArraySize(aKeyword); j++){
281       if( p->n==aKeyword[j].nChar
282           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
283         jointype |= aKeyword[j].code;
284         break;
285       }
286     }
287     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
288     if( j>=ArraySize(aKeyword) ){
289       jointype |= JT_ERROR;
290       break;
291     }
292   }
293   if(
294      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
295      (jointype & JT_ERROR)!=0 ||
296      (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
297   ){
298     const char *zSp1 = " ";
299     const char *zSp2 = " ";
300     if( pB==0 ){ zSp1++; }
301     if( pC==0 ){ zSp2++; }
302     sqlite3ErrorMsg(pParse, "unknown join type: "
303        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
304     jointype = JT_INNER;
305   }
306   return jointype;
307 }
308 
309 /*
310 ** Return the index of a column in a table.  Return -1 if the column
311 ** is not contained in the table.
312 */
313 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
314   int i;
315   u8 h = sqlite3StrIHash(zCol);
316   Column *pCol;
317   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
318     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
319   }
320   return -1;
321 }
322 
323 /*
324 ** Mark a subquery result column as having been used.
325 */
326 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
327   assert( pItem!=0 );
328   assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
329   if( pItem->fg.isNestedFrom ){
330     ExprList *pResults;
331     assert( pItem->pSelect!=0 );
332     pResults = pItem->pSelect->pEList;
333     assert( pResults!=0 );
334     assert( iCol>=0 && iCol<pResults->nExpr );
335     pResults->a[iCol].fg.bUsed = 1;
336   }
337 }
338 
339 /*
340 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
341 ** table that has a column named zCol.  The search is left-to-right.
342 ** The first match found is returned.
343 **
344 ** When found, set *piTab and *piCol to the table index and column index
345 ** of the matching column and return TRUE.
346 **
347 ** If not found, return FALSE.
348 */
349 static int tableAndColumnIndex(
350   SrcList *pSrc,       /* Array of tables to search */
351   int iStart,          /* First member of pSrc->a[] to check */
352   int iEnd,            /* Last member of pSrc->a[] to check */
353   const char *zCol,    /* Name of the column we are looking for */
354   int *piTab,          /* Write index of pSrc->a[] here */
355   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
356   int bIgnoreHidden    /* Ignore hidden columns */
357 ){
358   int i;               /* For looping over tables in pSrc */
359   int iCol;            /* Index of column matching zCol */
360 
361   assert( iEnd<pSrc->nSrc );
362   assert( iStart>=0 );
363   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
364 
365   for(i=iStart; i<=iEnd; i++){
366     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
367     if( iCol>=0
368      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
369     ){
370       if( piTab ){
371         sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
372         *piTab = i;
373         *piCol = iCol;
374       }
375       return 1;
376     }
377   }
378   return 0;
379 }
380 
381 /*
382 ** Set the EP_OuterON property on all terms of the given expression.
383 ** And set the Expr.w.iJoin to iTable for every term in the
384 ** expression.
385 **
386 ** The EP_OuterON property is used on terms of an expression to tell
387 ** the OUTER JOIN processing logic that this term is part of the
388 ** join restriction specified in the ON or USING clause and not a part
389 ** of the more general WHERE clause.  These terms are moved over to the
390 ** WHERE clause during join processing but we need to remember that they
391 ** originated in the ON or USING clause.
392 **
393 ** The Expr.w.iJoin tells the WHERE clause processing that the
394 ** expression depends on table w.iJoin even if that table is not
395 ** explicitly mentioned in the expression.  That information is needed
396 ** for cases like this:
397 **
398 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
399 **
400 ** The where clause needs to defer the handling of the t1.x=5
401 ** term until after the t2 loop of the join.  In that way, a
402 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
403 ** defer the handling of t1.x=5, it will be processed immediately
404 ** after the t1 loop and rows with t1.x!=5 will never appear in
405 ** the output, which is incorrect.
406 */
407 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
408   assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
409   while( p ){
410     ExprSetProperty(p, joinFlag);
411     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
412     ExprSetVVAProperty(p, EP_NoReduce);
413     p->w.iJoin = iTable;
414     if( p->op==TK_FUNCTION ){
415       assert( ExprUseXList(p) );
416       if( p->x.pList ){
417         int i;
418         for(i=0; i<p->x.pList->nExpr; i++){
419           sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
420         }
421       }
422     }
423     sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
424     p = p->pRight;
425   }
426 }
427 
428 /* Undo the work of sqlite3SetJoinExpr().  This is used when a LEFT JOIN
429 ** is simplified into an ordinary JOIN, and when an ON expression is
430 ** "pushed down" into the WHERE clause of a subquery.
431 **
432 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
433 ** an ordinary term that omits the EP_OuterON mark.  Or if iTable<0, then
434 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
435 **
436 ** If nullable is true, that means that Expr p might evaluate to NULL even
437 ** if it is a reference to a NOT NULL column.  This can happen, for example,
438 ** if the table that p references is on the left side of a RIGHT JOIN.
439 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
440 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
441 */
442 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
443   while( p ){
444     if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
445       ExprClearProperty(p, EP_OuterON|EP_InnerON);
446       if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
447     }
448     if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
449       ExprClearProperty(p, EP_CanBeNull);
450     }
451     if( p->op==TK_FUNCTION ){
452       assert( ExprUseXList(p) );
453       if( p->x.pList ){
454         int i;
455         for(i=0; i<p->x.pList->nExpr; i++){
456           unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
457         }
458       }
459     }
460     unsetJoinExpr(p->pLeft, iTable, nullable);
461     p = p->pRight;
462   }
463 }
464 
465 /*
466 ** This routine processes the join information for a SELECT statement.
467 **
468 **   *  A NATURAL join is converted into a USING join.  After that, we
469 **      do not need to be concerned with NATURAL joins and we only have
470 **      think about USING joins.
471 **
472 **   *  ON and USING clauses result in extra terms being added to the
473 **      WHERE clause to enforce the specified constraints.  The extra
474 **      WHERE clause terms will be tagged with EP_OuterON or
475 **      EP_InnerON so that we know that they originated in ON/USING.
476 **
477 ** The terms of a FROM clause are contained in the Select.pSrc structure.
478 ** The left most table is the first entry in Select.pSrc.  The right-most
479 ** table is the last entry.  The join operator is held in the entry to
480 ** the right.  Thus entry 1 contains the join operator for the join between
481 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
482 ** also attached to the right entry.
483 **
484 ** This routine returns the number of errors encountered.
485 */
486 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
487   SrcList *pSrc;                  /* All tables in the FROM clause */
488   int i, j;                       /* Loop counters */
489   SrcItem *pLeft;                 /* Left table being joined */
490   SrcItem *pRight;                /* Right table being joined */
491 
492   pSrc = p->pSrc;
493   pLeft = &pSrc->a[0];
494   pRight = &pLeft[1];
495   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
496     Table *pRightTab = pRight->pTab;
497     u32 joinType;
498 
499     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
500     joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
501 
502     /* If this is a NATURAL join, synthesize an approprate USING clause
503     ** to specify which columns should be joined.
504     */
505     if( pRight->fg.jointype & JT_NATURAL ){
506       IdList *pUsing = 0;
507       if( pRight->fg.isUsing || pRight->u3.pOn ){
508         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
509            "an ON or USING clause", 0);
510         return 1;
511       }
512       for(j=0; j<pRightTab->nCol; j++){
513         char *zName;   /* Name of column in the right table */
514 
515         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
516         zName = pRightTab->aCol[j].zCnName;
517         if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
518           pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
519           if( pUsing ){
520             assert( pUsing->nId>0 );
521             assert( pUsing->a[pUsing->nId-1].zName==0 );
522             pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
523           }
524         }
525       }
526       if( pUsing ){
527         pRight->fg.isUsing = 1;
528         pRight->fg.isSynthUsing = 1;
529         pRight->u3.pUsing = pUsing;
530       }
531       if( pParse->nErr ) return 1;
532     }
533 
534     /* Create extra terms on the WHERE clause for each column named
535     ** in the USING clause.  Example: If the two tables to be joined are
536     ** A and B and the USING clause names X, Y, and Z, then add this
537     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
538     ** Report an error if any column mentioned in the USING clause is
539     ** not contained in both tables to be joined.
540     */
541     if( pRight->fg.isUsing ){
542       IdList *pList = pRight->u3.pUsing;
543       sqlite3 *db = pParse->db;
544       assert( pList!=0 );
545       for(j=0; j<pList->nId; j++){
546         char *zName;     /* Name of the term in the USING clause */
547         int iLeft;       /* Table on the left with matching column name */
548         int iLeftCol;    /* Column number of matching column on the left */
549         int iRightCol;   /* Column number of matching column on the right */
550         Expr *pE1;       /* Reference to the column on the LEFT of the join */
551         Expr *pE2;       /* Reference to the column on the RIGHT of the join */
552         Expr *pEq;       /* Equality constraint.  pE1 == pE2 */
553 
554         zName = pList->a[j].zName;
555         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
556         if( iRightCol<0
557          || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
558                                 pRight->fg.isSynthUsing)==0
559         ){
560           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
561             "not present in both tables", zName);
562           return 1;
563         }
564         pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
565         sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
566         if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
567           /* This branch runs if the query contains one or more RIGHT or FULL
568           ** JOINs.  If only a single table on the left side of this join
569           ** contains the zName column, then this branch is a no-op.
570           ** But if there are two or more tables on the left side
571           ** of the join, construct a coalesce() function that gathers all
572           ** such tables.  Raise an error if more than one of those references
573           ** to zName is not also within a prior USING clause.
574           **
575           ** We really ought to raise an error if there are two or more
576           ** non-USING references to zName on the left of an INNER or LEFT
577           ** JOIN.  But older versions of SQLite do not do that, so we avoid
578           ** adding a new error so as to not break legacy applications.
579           */
580           ExprList *pFuncArgs = 0;   /* Arguments to the coalesce() */
581           static const Token tkCoalesce = { "coalesce", 8 };
582           while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
583                                      pRight->fg.isSynthUsing)!=0 ){
584             if( pSrc->a[iLeft].fg.isUsing==0
585              || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
586             ){
587               sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
588                               zName);
589               break;
590             }
591             pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
592             pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
593             sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
594           }
595           if( pFuncArgs ){
596             pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
597             pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
598           }
599         }
600         pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
601         sqlite3SrcItemColumnUsed(pRight, iRightCol);
602         pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
603         assert( pE2!=0 || pEq==0 );
604         if( pEq ){
605           ExprSetProperty(pEq, joinType);
606           assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
607           ExprSetVVAProperty(pEq, EP_NoReduce);
608           pEq->w.iJoin = pE2->iTable;
609         }
610         p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
611       }
612     }
613 
614     /* Add the ON clause to the end of the WHERE clause, connected by
615     ** an AND operator.
616     */
617     else if( pRight->u3.pOn ){
618       sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
619       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
620       pRight->u3.pOn = 0;
621       pRight->fg.isOn = 1;
622     }
623   }
624   return 0;
625 }
626 
627 /*
628 ** An instance of this object holds information (beyond pParse and pSelect)
629 ** needed to load the next result row that is to be added to the sorter.
630 */
631 typedef struct RowLoadInfo RowLoadInfo;
632 struct RowLoadInfo {
633   int regResult;               /* Store results in array of registers here */
634   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
635 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
636   ExprList *pExtra;            /* Extra columns needed by sorter refs */
637   int regExtraResult;          /* Where to load the extra columns */
638 #endif
639 };
640 
641 /*
642 ** This routine does the work of loading query data into an array of
643 ** registers so that it can be added to the sorter.
644 */
645 static void innerLoopLoadRow(
646   Parse *pParse,             /* Statement under construction */
647   Select *pSelect,           /* The query being coded */
648   RowLoadInfo *pInfo         /* Info needed to complete the row load */
649 ){
650   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
651                           0, pInfo->ecelFlags);
652 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
653   if( pInfo->pExtra ){
654     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
655     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
656   }
657 #endif
658 }
659 
660 /*
661 ** Code the OP_MakeRecord instruction that generates the entry to be
662 ** added into the sorter.
663 **
664 ** Return the register in which the result is stored.
665 */
666 static int makeSorterRecord(
667   Parse *pParse,
668   SortCtx *pSort,
669   Select *pSelect,
670   int regBase,
671   int nBase
672 ){
673   int nOBSat = pSort->nOBSat;
674   Vdbe *v = pParse->pVdbe;
675   int regOut = ++pParse->nMem;
676   if( pSort->pDeferredRowLoad ){
677     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
678   }
679   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
680   return regOut;
681 }
682 
683 /*
684 ** Generate code that will push the record in registers regData
685 ** through regData+nData-1 onto the sorter.
686 */
687 static void pushOntoSorter(
688   Parse *pParse,         /* Parser context */
689   SortCtx *pSort,        /* Information about the ORDER BY clause */
690   Select *pSelect,       /* The whole SELECT statement */
691   int regData,           /* First register holding data to be sorted */
692   int regOrigData,       /* First register holding data before packing */
693   int nData,             /* Number of elements in the regData data array */
694   int nPrefixReg         /* No. of reg prior to regData available for use */
695 ){
696   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
697   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
698   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
699   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
700   int regBase;                                     /* Regs for sorter record */
701   int regRecord = 0;                               /* Assembled sorter record */
702   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
703   int op;                            /* Opcode to add sorter record to sorter */
704   int iLimit;                        /* LIMIT counter */
705   int iSkip = 0;                     /* End of the sorter insert loop */
706 
707   assert( bSeq==0 || bSeq==1 );
708 
709   /* Three cases:
710   **   (1) The data to be sorted has already been packed into a Record
711   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
712   **       will be completely unrelated to regOrigData.
713   **   (2) All output columns are included in the sort record.  In that
714   **       case regData==regOrigData.
715   **   (3) Some output columns are omitted from the sort record due to
716   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
717   **       SQLITE_ECEL_OMITREF optimization, or due to the
718   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
719   **       regOrigData is 0 to prevent this routine from trying to copy
720   **       values that might not yet exist.
721   */
722   assert( nData==1 || regData==regOrigData || regOrigData==0 );
723 
724   if( nPrefixReg ){
725     assert( nPrefixReg==nExpr+bSeq );
726     regBase = regData - nPrefixReg;
727   }else{
728     regBase = pParse->nMem + 1;
729     pParse->nMem += nBase;
730   }
731   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
732   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
733   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
734   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
735                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
736   if( bSeq ){
737     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
738   }
739   if( nPrefixReg==0 && nData>0 ){
740     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
741   }
742   if( nOBSat>0 ){
743     int regPrevKey;   /* The first nOBSat columns of the previous row */
744     int addrFirst;    /* Address of the OP_IfNot opcode */
745     int addrJmp;      /* Address of the OP_Jump opcode */
746     VdbeOp *pOp;      /* Opcode that opens the sorter */
747     int nKey;         /* Number of sorting key columns, including OP_Sequence */
748     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
749 
750     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
751     regPrevKey = pParse->nMem+1;
752     pParse->nMem += pSort->nOBSat;
753     nKey = nExpr - pSort->nOBSat + bSeq;
754     if( bSeq ){
755       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
756     }else{
757       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
758     }
759     VdbeCoverage(v);
760     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
761     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
762     if( pParse->db->mallocFailed ) return;
763     pOp->p2 = nKey + nData;
764     pKI = pOp->p4.pKeyInfo;
765     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
766     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
767     testcase( pKI->nAllField > pKI->nKeyField+2 );
768     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
769                                            pKI->nAllField-pKI->nKeyField-1);
770     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
771     addrJmp = sqlite3VdbeCurrentAddr(v);
772     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
773     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
774     pSort->regReturn = ++pParse->nMem;
775     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
776     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
777     if( iLimit ){
778       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
779       VdbeCoverage(v);
780     }
781     sqlite3VdbeJumpHere(v, addrFirst);
782     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
783     sqlite3VdbeJumpHere(v, addrJmp);
784   }
785   if( iLimit ){
786     /* At this point the values for the new sorter entry are stored
787     ** in an array of registers. They need to be composed into a record
788     ** and inserted into the sorter if either (a) there are currently
789     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
790     ** the largest record currently in the sorter. If (b) is true and there
791     ** are already LIMIT+OFFSET items in the sorter, delete the largest
792     ** entry before inserting the new one. This way there are never more
793     ** than LIMIT+OFFSET items in the sorter.
794     **
795     ** If the new record does not need to be inserted into the sorter,
796     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
797     ** value is not zero, then it is a label of where to jump.  Otherwise,
798     ** just bypass the row insert logic.  See the header comment on the
799     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
800     */
801     int iCsr = pSort->iECursor;
802     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
803     VdbeCoverage(v);
804     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
805     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
806                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
807     VdbeCoverage(v);
808     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
809   }
810   if( regRecord==0 ){
811     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
812   }
813   if( pSort->sortFlags & SORTFLAG_UseSorter ){
814     op = OP_SorterInsert;
815   }else{
816     op = OP_IdxInsert;
817   }
818   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
819                        regBase+nOBSat, nBase-nOBSat);
820   if( iSkip ){
821     sqlite3VdbeChangeP2(v, iSkip,
822          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
823   }
824 }
825 
826 /*
827 ** Add code to implement the OFFSET
828 */
829 static void codeOffset(
830   Vdbe *v,          /* Generate code into this VM */
831   int iOffset,      /* Register holding the offset counter */
832   int iContinue     /* Jump here to skip the current record */
833 ){
834   if( iOffset>0 ){
835     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
836     VdbeComment((v, "OFFSET"));
837   }
838 }
839 
840 /*
841 ** Add code that will check to make sure the array of registers starting at
842 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
843 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
844 ** are available. Which is used depends on the value of parameter eTnctType,
845 ** as follows:
846 **
847 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
848 **     Build an ephemeral table that contains all entries seen before and
849 **     skip entries which have been seen before.
850 **
851 **     Parameter iTab is the cursor number of an ephemeral table that must
852 **     be opened before the VM code generated by this routine is executed.
853 **     The ephemeral cursor table is queried for a record identical to the
854 **     record formed by the current array of registers. If one is found,
855 **     jump to VM address addrRepeat. Otherwise, insert a new record into
856 **     the ephemeral cursor and proceed.
857 **
858 **     The returned value in this case is a copy of parameter iTab.
859 **
860 **   WHERE_DISTINCT_ORDERED:
861 **     In this case rows are being delivered sorted order. The ephermal
862 **     table is not required. Instead, the current set of values
863 **     is compared against previous row. If they match, the new row
864 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
865 **     the VM program proceeds with processing the new row.
866 **
867 **     The returned value in this case is the register number of the first
868 **     in an array of registers used to store the previous result row so that
869 **     it can be compared to the next. The caller must ensure that this
870 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
871 **     will take care of this initialization.)
872 **
873 **   WHERE_DISTINCT_UNIQUE:
874 **     In this case it has already been determined that the rows are distinct.
875 **     No special action is required. The return value is zero.
876 **
877 ** Parameter pEList is the list of expressions used to generated the
878 ** contents of each row. It is used by this routine to determine (a)
879 ** how many elements there are in the array of registers and (b) the
880 ** collation sequences that should be used for the comparisons if
881 ** eTnctType is WHERE_DISTINCT_ORDERED.
882 */
883 static int codeDistinct(
884   Parse *pParse,     /* Parsing and code generating context */
885   int eTnctType,     /* WHERE_DISTINCT_* value */
886   int iTab,          /* A sorting index used to test for distinctness */
887   int addrRepeat,    /* Jump to here if not distinct */
888   ExprList *pEList,  /* Expression for each element */
889   int regElem        /* First element */
890 ){
891   int iRet = 0;
892   int nResultCol = pEList->nExpr;
893   Vdbe *v = pParse->pVdbe;
894 
895   switch( eTnctType ){
896     case WHERE_DISTINCT_ORDERED: {
897       int i;
898       int iJump;              /* Jump destination */
899       int regPrev;            /* Previous row content */
900 
901       /* Allocate space for the previous row */
902       iRet = regPrev = pParse->nMem+1;
903       pParse->nMem += nResultCol;
904 
905       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
906       for(i=0; i<nResultCol; i++){
907         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
908         if( i<nResultCol-1 ){
909           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
910           VdbeCoverage(v);
911         }else{
912           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
913           VdbeCoverage(v);
914          }
915         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
916         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
917       }
918       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
919       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
920       break;
921     }
922 
923     case WHERE_DISTINCT_UNIQUE: {
924       /* nothing to do */
925       break;
926     }
927 
928     default: {
929       int r1 = sqlite3GetTempReg(pParse);
930       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
931       VdbeCoverage(v);
932       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
933       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
934       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
935       sqlite3ReleaseTempReg(pParse, r1);
936       iRet = iTab;
937       break;
938     }
939   }
940 
941   return iRet;
942 }
943 
944 /*
945 ** This routine runs after codeDistinct().  It makes necessary
946 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
947 ** routine made use of.  This processing must be done separately since
948 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
949 ** laid down.
950 **
951 ** WHERE_DISTINCT_NOOP:
952 ** WHERE_DISTINCT_UNORDERED:
953 **
954 **     No adjustments necessary.  This function is a no-op.
955 **
956 ** WHERE_DISTINCT_UNIQUE:
957 **
958 **     The ephemeral table is not needed.  So change the
959 **     OP_OpenEphemeral opcode into an OP_Noop.
960 **
961 ** WHERE_DISTINCT_ORDERED:
962 **
963 **     The ephemeral table is not needed.  But we do need register
964 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
965 **     into an OP_Null on the iVal register.
966 */
967 static void fixDistinctOpenEph(
968   Parse *pParse,     /* Parsing and code generating context */
969   int eTnctType,     /* WHERE_DISTINCT_* value */
970   int iVal,          /* Value returned by codeDistinct() */
971   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
972 ){
973   if( pParse->nErr==0
974    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
975   ){
976     Vdbe *v = pParse->pVdbe;
977     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
978     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
979       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
980     }
981     if( eTnctType==WHERE_DISTINCT_ORDERED ){
982       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
983       ** bit on the first register of the previous value.  This will cause the
984       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
985       ** the loop even if the first row is all NULLs.  */
986       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
987       pOp->opcode = OP_Null;
988       pOp->p1 = 1;
989       pOp->p2 = iVal;
990     }
991   }
992 }
993 
994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
995 /*
996 ** This function is called as part of inner-loop generation for a SELECT
997 ** statement with an ORDER BY that is not optimized by an index. It
998 ** determines the expressions, if any, that the sorter-reference
999 ** optimization should be used for. The sorter-reference optimization
1000 ** is used for SELECT queries like:
1001 **
1002 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1003 **
1004 ** If the optimization is used for expression "bigblob", then instead of
1005 ** storing values read from that column in the sorter records, the PK of
1006 ** the row from table t1 is stored instead. Then, as records are extracted from
1007 ** the sorter to return to the user, the required value of bigblob is
1008 ** retrieved directly from table t1. If the values are very large, this
1009 ** can be more efficient than storing them directly in the sorter records.
1010 **
1011 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1012 ** for which the sorter-reference optimization should be enabled.
1013 ** Additionally, the pSort->aDefer[] array is populated with entries
1014 ** for all cursors required to evaluate all selected expressions. Finally.
1015 ** output variable (*ppExtra) is set to an expression list containing
1016 ** expressions for all extra PK values that should be stored in the
1017 ** sorter records.
1018 */
1019 static void selectExprDefer(
1020   Parse *pParse,                  /* Leave any error here */
1021   SortCtx *pSort,                 /* Sorter context */
1022   ExprList *pEList,               /* Expressions destined for sorter */
1023   ExprList **ppExtra              /* Expressions to append to sorter record */
1024 ){
1025   int i;
1026   int nDefer = 0;
1027   ExprList *pExtra = 0;
1028   for(i=0; i<pEList->nExpr; i++){
1029     struct ExprList_item *pItem = &pEList->a[i];
1030     if( pItem->u.x.iOrderByCol==0 ){
1031       Expr *pExpr = pItem->pExpr;
1032       Table *pTab;
1033       if( pExpr->op==TK_COLUMN
1034        && pExpr->iColumn>=0
1035        && ALWAYS( ExprUseYTab(pExpr) )
1036        && (pTab = pExpr->y.pTab)!=0
1037        && IsOrdinaryTable(pTab)
1038        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1039       ){
1040         int j;
1041         for(j=0; j<nDefer; j++){
1042           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1043         }
1044         if( j==nDefer ){
1045           if( nDefer==ArraySize(pSort->aDefer) ){
1046             continue;
1047           }else{
1048             int nKey = 1;
1049             int k;
1050             Index *pPk = 0;
1051             if( !HasRowid(pTab) ){
1052               pPk = sqlite3PrimaryKeyIndex(pTab);
1053               nKey = pPk->nKeyCol;
1054             }
1055             for(k=0; k<nKey; k++){
1056               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1057               if( pNew ){
1058                 pNew->iTable = pExpr->iTable;
1059                 assert( ExprUseYTab(pNew) );
1060                 pNew->y.pTab = pExpr->y.pTab;
1061                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1062                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1063               }
1064             }
1065             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1066             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1067             pSort->aDefer[nDefer].nKey = nKey;
1068             nDefer++;
1069           }
1070         }
1071         pItem->fg.bSorterRef = 1;
1072       }
1073     }
1074   }
1075   pSort->nDefer = (u8)nDefer;
1076   *ppExtra = pExtra;
1077 }
1078 #endif
1079 
1080 /*
1081 ** This routine generates the code for the inside of the inner loop
1082 ** of a SELECT.
1083 **
1084 ** If srcTab is negative, then the p->pEList expressions
1085 ** are evaluated in order to get the data for this row.  If srcTab is
1086 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1087 ** to get the number of columns and the collation sequence for each column.
1088 */
1089 static void selectInnerLoop(
1090   Parse *pParse,          /* The parser context */
1091   Select *p,              /* The complete select statement being coded */
1092   int srcTab,             /* Pull data from this table if non-negative */
1093   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
1094   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1095   SelectDest *pDest,      /* How to dispose of the results */
1096   int iContinue,          /* Jump here to continue with next row */
1097   int iBreak              /* Jump here to break out of the inner loop */
1098 ){
1099   Vdbe *v = pParse->pVdbe;
1100   int i;
1101   int hasDistinct;            /* True if the DISTINCT keyword is present */
1102   int eDest = pDest->eDest;   /* How to dispose of results */
1103   int iParm = pDest->iSDParm; /* First argument to disposal method */
1104   int nResultCol;             /* Number of result columns */
1105   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1106   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1107 
1108   /* Usually, regResult is the first cell in an array of memory cells
1109   ** containing the current result row. In this case regOrig is set to the
1110   ** same value. However, if the results are being sent to the sorter, the
1111   ** values for any expressions that are also part of the sort-key are omitted
1112   ** from this array. In this case regOrig is set to zero.  */
1113   int regResult;              /* Start of memory holding current results */
1114   int regOrig;                /* Start of memory holding full result (or 0) */
1115 
1116   assert( v );
1117   assert( p->pEList!=0 );
1118   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1119   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1120   if( pSort==0 && !hasDistinct ){
1121     assert( iContinue!=0 );
1122     codeOffset(v, p->iOffset, iContinue);
1123   }
1124 
1125   /* Pull the requested columns.
1126   */
1127   nResultCol = p->pEList->nExpr;
1128 
1129   if( pDest->iSdst==0 ){
1130     if( pSort ){
1131       nPrefixReg = pSort->pOrderBy->nExpr;
1132       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1133       pParse->nMem += nPrefixReg;
1134     }
1135     pDest->iSdst = pParse->nMem+1;
1136     pParse->nMem += nResultCol;
1137   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1138     /* This is an error condition that can result, for example, when a SELECT
1139     ** on the right-hand side of an INSERT contains more result columns than
1140     ** there are columns in the table on the left.  The error will be caught
1141     ** and reported later.  But we need to make sure enough memory is allocated
1142     ** to avoid other spurious errors in the meantime. */
1143     pParse->nMem += nResultCol;
1144   }
1145   pDest->nSdst = nResultCol;
1146   regOrig = regResult = pDest->iSdst;
1147   if( srcTab>=0 ){
1148     for(i=0; i<nResultCol; i++){
1149       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1150       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1151     }
1152   }else if( eDest!=SRT_Exists ){
1153 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1154     ExprList *pExtra = 0;
1155 #endif
1156     /* If the destination is an EXISTS(...) expression, the actual
1157     ** values returned by the SELECT are not required.
1158     */
1159     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1160     ExprList *pEList;
1161     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1162       ecelFlags = SQLITE_ECEL_DUP;
1163     }else{
1164       ecelFlags = 0;
1165     }
1166     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1167       /* For each expression in p->pEList that is a copy of an expression in
1168       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1169       ** iOrderByCol value to one more than the index of the ORDER BY
1170       ** expression within the sort-key that pushOntoSorter() will generate.
1171       ** This allows the p->pEList field to be omitted from the sorted record,
1172       ** saving space and CPU cycles.  */
1173       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1174 
1175       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1176         int j;
1177         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1178           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1179         }
1180       }
1181 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1182       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1183       if( pExtra && pParse->db->mallocFailed==0 ){
1184         /* If there are any extra PK columns to add to the sorter records,
1185         ** allocate extra memory cells and adjust the OpenEphemeral
1186         ** instruction to account for the larger records. This is only
1187         ** required if there are one or more WITHOUT ROWID tables with
1188         ** composite primary keys in the SortCtx.aDefer[] array.  */
1189         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1190         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1191         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1192         pParse->nMem += pExtra->nExpr;
1193       }
1194 #endif
1195 
1196       /* Adjust nResultCol to account for columns that are omitted
1197       ** from the sorter by the optimizations in this branch */
1198       pEList = p->pEList;
1199       for(i=0; i<pEList->nExpr; i++){
1200         if( pEList->a[i].u.x.iOrderByCol>0
1201 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1202          || pEList->a[i].fg.bSorterRef
1203 #endif
1204         ){
1205           nResultCol--;
1206           regOrig = 0;
1207         }
1208       }
1209 
1210       testcase( regOrig );
1211       testcase( eDest==SRT_Set );
1212       testcase( eDest==SRT_Mem );
1213       testcase( eDest==SRT_Coroutine );
1214       testcase( eDest==SRT_Output );
1215       assert( eDest==SRT_Set || eDest==SRT_Mem
1216            || eDest==SRT_Coroutine || eDest==SRT_Output
1217            || eDest==SRT_Upfrom );
1218     }
1219     sRowLoadInfo.regResult = regResult;
1220     sRowLoadInfo.ecelFlags = ecelFlags;
1221 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1222     sRowLoadInfo.pExtra = pExtra;
1223     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1224     if( pExtra ) nResultCol += pExtra->nExpr;
1225 #endif
1226     if( p->iLimit
1227      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1228      && nPrefixReg>0
1229     ){
1230       assert( pSort!=0 );
1231       assert( hasDistinct==0 );
1232       pSort->pDeferredRowLoad = &sRowLoadInfo;
1233       regOrig = 0;
1234     }else{
1235       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1236     }
1237   }
1238 
1239   /* If the DISTINCT keyword was present on the SELECT statement
1240   ** and this row has been seen before, then do not make this row
1241   ** part of the result.
1242   */
1243   if( hasDistinct ){
1244     int eType = pDistinct->eTnctType;
1245     int iTab = pDistinct->tabTnct;
1246     assert( nResultCol==p->pEList->nExpr );
1247     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1248     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1249     if( pSort==0 ){
1250       codeOffset(v, p->iOffset, iContinue);
1251     }
1252   }
1253 
1254   switch( eDest ){
1255     /* In this mode, write each query result to the key of the temporary
1256     ** table iParm.
1257     */
1258 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1259     case SRT_Union: {
1260       int r1;
1261       r1 = sqlite3GetTempReg(pParse);
1262       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1263       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1264       sqlite3ReleaseTempReg(pParse, r1);
1265       break;
1266     }
1267 
1268     /* Construct a record from the query result, but instead of
1269     ** saving that record, use it as a key to delete elements from
1270     ** the temporary table iParm.
1271     */
1272     case SRT_Except: {
1273       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1274       break;
1275     }
1276 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1277 
1278     /* Store the result as data using a unique key.
1279     */
1280     case SRT_Fifo:
1281     case SRT_DistFifo:
1282     case SRT_Table:
1283     case SRT_EphemTab: {
1284       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1285       testcase( eDest==SRT_Table );
1286       testcase( eDest==SRT_EphemTab );
1287       testcase( eDest==SRT_Fifo );
1288       testcase( eDest==SRT_DistFifo );
1289       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1290       if( pDest->zAffSdst ){
1291         sqlite3VdbeChangeP4(v, -1, pDest->zAffSdst, nResultCol);
1292       }
1293 #ifndef SQLITE_OMIT_CTE
1294       if( eDest==SRT_DistFifo ){
1295         /* If the destination is DistFifo, then cursor (iParm+1) is open
1296         ** on an ephemeral index. If the current row is already present
1297         ** in the index, do not write it to the output. If not, add the
1298         ** current row to the index and proceed with writing it to the
1299         ** output table as well.  */
1300         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1301         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1302         VdbeCoverage(v);
1303         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1304         assert( pSort==0 );
1305       }
1306 #endif
1307       if( pSort ){
1308         assert( regResult==regOrig );
1309         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1310       }else{
1311         int r2 = sqlite3GetTempReg(pParse);
1312         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1313         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1314         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1315         sqlite3ReleaseTempReg(pParse, r2);
1316       }
1317       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1318       break;
1319     }
1320 
1321     case SRT_Upfrom: {
1322       if( pSort ){
1323         pushOntoSorter(
1324             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1325       }else{
1326         int i2 = pDest->iSDParm2;
1327         int r1 = sqlite3GetTempReg(pParse);
1328 
1329         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1330         ** might still be trying to return one row, because that is what
1331         ** aggregates do.  Don't record that empty row in the output table. */
1332         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1333 
1334         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1335                           regResult+(i2<0), nResultCol-(i2<0), r1);
1336         if( i2<0 ){
1337           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1338         }else{
1339           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1340         }
1341       }
1342       break;
1343     }
1344 
1345 #ifndef SQLITE_OMIT_SUBQUERY
1346     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1347     ** then there should be a single item on the stack.  Write this
1348     ** item into the set table with bogus data.
1349     */
1350     case SRT_Set: {
1351       if( pSort ){
1352         /* At first glance you would think we could optimize out the
1353         ** ORDER BY in this case since the order of entries in the set
1354         ** does not matter.  But there might be a LIMIT clause, in which
1355         ** case the order does matter */
1356         pushOntoSorter(
1357             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1358       }else{
1359         int r1 = sqlite3GetTempReg(pParse);
1360         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1361         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1362             r1, pDest->zAffSdst, nResultCol);
1363         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1364         sqlite3ReleaseTempReg(pParse, r1);
1365       }
1366       break;
1367     }
1368 
1369 
1370     /* If any row exist in the result set, record that fact and abort.
1371     */
1372     case SRT_Exists: {
1373       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1374       /* The LIMIT clause will terminate the loop for us */
1375       break;
1376     }
1377 
1378     /* If this is a scalar select that is part of an expression, then
1379     ** store the results in the appropriate memory cell or array of
1380     ** memory cells and break out of the scan loop.
1381     */
1382     case SRT_Mem: {
1383       if( pSort ){
1384         assert( nResultCol<=pDest->nSdst );
1385         pushOntoSorter(
1386             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1387       }else{
1388         assert( nResultCol==pDest->nSdst );
1389         assert( regResult==iParm );
1390         /* The LIMIT clause will jump out of the loop for us */
1391       }
1392       break;
1393     }
1394 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1395 
1396     case SRT_Coroutine:       /* Send data to a co-routine */
1397     case SRT_Output: {        /* Return the results */
1398       testcase( eDest==SRT_Coroutine );
1399       testcase( eDest==SRT_Output );
1400       if( pSort ){
1401         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1402                        nPrefixReg);
1403       }else if( eDest==SRT_Coroutine ){
1404         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1405       }else{
1406         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1407       }
1408       break;
1409     }
1410 
1411 #ifndef SQLITE_OMIT_CTE
1412     /* Write the results into a priority queue that is order according to
1413     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1414     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1415     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1416     ** final OP_Sequence column.  The last column is the record as a blob.
1417     */
1418     case SRT_DistQueue:
1419     case SRT_Queue: {
1420       int nKey;
1421       int r1, r2, r3;
1422       int addrTest = 0;
1423       ExprList *pSO;
1424       pSO = pDest->pOrderBy;
1425       assert( pSO );
1426       nKey = pSO->nExpr;
1427       r1 = sqlite3GetTempReg(pParse);
1428       r2 = sqlite3GetTempRange(pParse, nKey+2);
1429       r3 = r2+nKey+1;
1430       if( eDest==SRT_DistQueue ){
1431         /* If the destination is DistQueue, then cursor (iParm+1) is open
1432         ** on a second ephemeral index that holds all values every previously
1433         ** added to the queue. */
1434         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1435                                         regResult, nResultCol);
1436         VdbeCoverage(v);
1437       }
1438       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1439       if( eDest==SRT_DistQueue ){
1440         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1441         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1442       }
1443       for(i=0; i<nKey; i++){
1444         sqlite3VdbeAddOp2(v, OP_SCopy,
1445                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1446                           r2+i);
1447       }
1448       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1449       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1450       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1451       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1452       sqlite3ReleaseTempReg(pParse, r1);
1453       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1454       break;
1455     }
1456 #endif /* SQLITE_OMIT_CTE */
1457 
1458 
1459 
1460 #if !defined(SQLITE_OMIT_TRIGGER)
1461     /* Discard the results.  This is used for SELECT statements inside
1462     ** the body of a TRIGGER.  The purpose of such selects is to call
1463     ** user-defined functions that have side effects.  We do not care
1464     ** about the actual results of the select.
1465     */
1466     default: {
1467       assert( eDest==SRT_Discard );
1468       break;
1469     }
1470 #endif
1471   }
1472 
1473   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1474   ** there is a sorter, in which case the sorter has already limited
1475   ** the output for us.
1476   */
1477   if( pSort==0 && p->iLimit ){
1478     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1479   }
1480 }
1481 
1482 /*
1483 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1484 ** X extra columns.
1485 */
1486 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1487   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1488   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1489   if( p ){
1490     p->aSortFlags = (u8*)&p->aColl[N+X];
1491     p->nKeyField = (u16)N;
1492     p->nAllField = (u16)(N+X);
1493     p->enc = ENC(db);
1494     p->db = db;
1495     p->nRef = 1;
1496     memset(&p[1], 0, nExtra);
1497   }else{
1498     return (KeyInfo*)sqlite3OomFault(db);
1499   }
1500   return p;
1501 }
1502 
1503 /*
1504 ** Deallocate a KeyInfo object
1505 */
1506 void sqlite3KeyInfoUnref(KeyInfo *p){
1507   if( p ){
1508     assert( p->db!=0 );
1509     assert( p->nRef>0 );
1510     p->nRef--;
1511     if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
1512   }
1513 }
1514 
1515 /*
1516 ** Make a new pointer to a KeyInfo object
1517 */
1518 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1519   if( p ){
1520     assert( p->nRef>0 );
1521     p->nRef++;
1522   }
1523   return p;
1524 }
1525 
1526 #ifdef SQLITE_DEBUG
1527 /*
1528 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1529 ** can only be changed if this is just a single reference to the object.
1530 **
1531 ** This routine is used only inside of assert() statements.
1532 */
1533 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1534 #endif /* SQLITE_DEBUG */
1535 
1536 /*
1537 ** Given an expression list, generate a KeyInfo structure that records
1538 ** the collating sequence for each expression in that expression list.
1539 **
1540 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1541 ** KeyInfo structure is appropriate for initializing a virtual index to
1542 ** implement that clause.  If the ExprList is the result set of a SELECT
1543 ** then the KeyInfo structure is appropriate for initializing a virtual
1544 ** index to implement a DISTINCT test.
1545 **
1546 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1547 ** function is responsible for seeing that this structure is eventually
1548 ** freed.
1549 */
1550 KeyInfo *sqlite3KeyInfoFromExprList(
1551   Parse *pParse,       /* Parsing context */
1552   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1553   int iStart,          /* Begin with this column of pList */
1554   int nExtra           /* Add this many extra columns to the end */
1555 ){
1556   int nExpr;
1557   KeyInfo *pInfo;
1558   struct ExprList_item *pItem;
1559   sqlite3 *db = pParse->db;
1560   int i;
1561 
1562   nExpr = pList->nExpr;
1563   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1564   if( pInfo ){
1565     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1566     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1567       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1568       pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1569     }
1570   }
1571   return pInfo;
1572 }
1573 
1574 /*
1575 ** Name of the connection operator, used for error messages.
1576 */
1577 const char *sqlite3SelectOpName(int id){
1578   char *z;
1579   switch( id ){
1580     case TK_ALL:       z = "UNION ALL";   break;
1581     case TK_INTERSECT: z = "INTERSECT";   break;
1582     case TK_EXCEPT:    z = "EXCEPT";      break;
1583     default:           z = "UNION";       break;
1584   }
1585   return z;
1586 }
1587 
1588 #ifndef SQLITE_OMIT_EXPLAIN
1589 /*
1590 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1591 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1592 ** where the caption is of the form:
1593 **
1594 **   "USE TEMP B-TREE FOR xxx"
1595 **
1596 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1597 ** is determined by the zUsage argument.
1598 */
1599 static void explainTempTable(Parse *pParse, const char *zUsage){
1600   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1601 }
1602 
1603 /*
1604 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1605 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1606 ** in sqlite3Select() to assign values to structure member variables that
1607 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1608 ** code with #ifndef directives.
1609 */
1610 # define explainSetInteger(a, b) a = b
1611 
1612 #else
1613 /* No-op versions of the explainXXX() functions and macros. */
1614 # define explainTempTable(y,z)
1615 # define explainSetInteger(y,z)
1616 #endif
1617 
1618 
1619 /*
1620 ** If the inner loop was generated using a non-null pOrderBy argument,
1621 ** then the results were placed in a sorter.  After the loop is terminated
1622 ** we need to run the sorter and output the results.  The following
1623 ** routine generates the code needed to do that.
1624 */
1625 static void generateSortTail(
1626   Parse *pParse,    /* Parsing context */
1627   Select *p,        /* The SELECT statement */
1628   SortCtx *pSort,   /* Information on the ORDER BY clause */
1629   int nColumn,      /* Number of columns of data */
1630   SelectDest *pDest /* Write the sorted results here */
1631 ){
1632   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1633   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1634   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1635   int addr;                       /* Top of output loop. Jump for Next. */
1636   int addrOnce = 0;
1637   int iTab;
1638   ExprList *pOrderBy = pSort->pOrderBy;
1639   int eDest = pDest->eDest;
1640   int iParm = pDest->iSDParm;
1641   int regRow;
1642   int regRowid;
1643   int iCol;
1644   int nKey;                       /* Number of key columns in sorter record */
1645   int iSortTab;                   /* Sorter cursor to read from */
1646   int i;
1647   int bSeq;                       /* True if sorter record includes seq. no. */
1648   int nRefKey = 0;
1649   struct ExprList_item *aOutEx = p->pEList->a;
1650 
1651   assert( addrBreak<0 );
1652   if( pSort->labelBkOut ){
1653     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1654     sqlite3VdbeGoto(v, addrBreak);
1655     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1656   }
1657 
1658 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1659   /* Open any cursors needed for sorter-reference expressions */
1660   for(i=0; i<pSort->nDefer; i++){
1661     Table *pTab = pSort->aDefer[i].pTab;
1662     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1663     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1664     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1665   }
1666 #endif
1667 
1668   iTab = pSort->iECursor;
1669   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1670     if( eDest==SRT_Mem && p->iOffset ){
1671       sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1672     }
1673     regRowid = 0;
1674     regRow = pDest->iSdst;
1675   }else{
1676     regRowid = sqlite3GetTempReg(pParse);
1677     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1678       regRow = sqlite3GetTempReg(pParse);
1679       nColumn = 0;
1680     }else{
1681       regRow = sqlite3GetTempRange(pParse, nColumn);
1682     }
1683   }
1684   nKey = pOrderBy->nExpr - pSort->nOBSat;
1685   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1686     int regSortOut = ++pParse->nMem;
1687     iSortTab = pParse->nTab++;
1688     if( pSort->labelBkOut ){
1689       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1690     }
1691     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1692         nKey+1+nColumn+nRefKey);
1693     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1694     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1695     VdbeCoverage(v);
1696     assert( p->iLimit==0 && p->iOffset==0 );
1697     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1698     bSeq = 0;
1699   }else{
1700     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1701     codeOffset(v, p->iOffset, addrContinue);
1702     iSortTab = iTab;
1703     bSeq = 1;
1704     if( p->iOffset>0 ){
1705       sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1706     }
1707   }
1708   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1709 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1710     if( aOutEx[i].fg.bSorterRef ) continue;
1711 #endif
1712     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1713   }
1714 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1715   if( pSort->nDefer ){
1716     int iKey = iCol+1;
1717     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1718 
1719     for(i=0; i<pSort->nDefer; i++){
1720       int iCsr = pSort->aDefer[i].iCsr;
1721       Table *pTab = pSort->aDefer[i].pTab;
1722       int nKey = pSort->aDefer[i].nKey;
1723 
1724       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1725       if( HasRowid(pTab) ){
1726         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1727         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1728             sqlite3VdbeCurrentAddr(v)+1, regKey);
1729       }else{
1730         int k;
1731         int iJmp;
1732         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1733         for(k=0; k<nKey; k++){
1734           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1735         }
1736         iJmp = sqlite3VdbeCurrentAddr(v);
1737         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1738         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1739         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1740       }
1741     }
1742     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1743   }
1744 #endif
1745   for(i=nColumn-1; i>=0; i--){
1746 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1747     if( aOutEx[i].fg.bSorterRef ){
1748       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1749     }else
1750 #endif
1751     {
1752       int iRead;
1753       if( aOutEx[i].u.x.iOrderByCol ){
1754         iRead = aOutEx[i].u.x.iOrderByCol-1;
1755       }else{
1756         iRead = iCol--;
1757       }
1758       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1759       VdbeComment((v, "%s", aOutEx[i].zEName));
1760     }
1761   }
1762   switch( eDest ){
1763     case SRT_Table:
1764     case SRT_EphemTab: {
1765       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1766       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1767       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1768       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1769       break;
1770     }
1771 #ifndef SQLITE_OMIT_SUBQUERY
1772     case SRT_Set: {
1773       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1774       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1775                         pDest->zAffSdst, nColumn);
1776       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1777       break;
1778     }
1779     case SRT_Mem: {
1780       /* The LIMIT clause will terminate the loop for us */
1781       break;
1782     }
1783 #endif
1784     case SRT_Upfrom: {
1785       int i2 = pDest->iSDParm2;
1786       int r1 = sqlite3GetTempReg(pParse);
1787       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1788       if( i2<0 ){
1789         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1790       }else{
1791         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1792       }
1793       break;
1794     }
1795     default: {
1796       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1797       testcase( eDest==SRT_Output );
1798       testcase( eDest==SRT_Coroutine );
1799       if( eDest==SRT_Output ){
1800         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1801       }else{
1802         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1803       }
1804       break;
1805     }
1806   }
1807   if( regRowid ){
1808     if( eDest==SRT_Set ){
1809       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1810     }else{
1811       sqlite3ReleaseTempReg(pParse, regRow);
1812     }
1813     sqlite3ReleaseTempReg(pParse, regRowid);
1814   }
1815   /* The bottom of the loop
1816   */
1817   sqlite3VdbeResolveLabel(v, addrContinue);
1818   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1819     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1820   }else{
1821     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1822   }
1823   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1824   sqlite3VdbeResolveLabel(v, addrBreak);
1825 }
1826 
1827 /*
1828 ** Return a pointer to a string containing the 'declaration type' of the
1829 ** expression pExpr. The string may be treated as static by the caller.
1830 **
1831 ** The declaration type is the exact datatype definition extracted from the
1832 ** original CREATE TABLE statement if the expression is a column. The
1833 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1834 ** is considered a column can be complex in the presence of subqueries. The
1835 ** result-set expression in all of the following SELECT statements is
1836 ** considered a column by this function.
1837 **
1838 **   SELECT col FROM tbl;
1839 **   SELECT (SELECT col FROM tbl;
1840 **   SELECT (SELECT col FROM tbl);
1841 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1842 **
1843 ** The declaration type for any expression other than a column is NULL.
1844 **
1845 ** This routine has either 3 or 6 parameters depending on whether or not
1846 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1847 */
1848 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1849 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1850 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1851 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1852 #endif
1853 static const char *columnTypeImpl(
1854   NameContext *pNC,
1855 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1856   Expr *pExpr
1857 #else
1858   Expr *pExpr,
1859   const char **pzOrigDb,
1860   const char **pzOrigTab,
1861   const char **pzOrigCol
1862 #endif
1863 ){
1864   char const *zType = 0;
1865   int j;
1866 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1867   char const *zOrigDb = 0;
1868   char const *zOrigTab = 0;
1869   char const *zOrigCol = 0;
1870 #endif
1871 
1872   assert( pExpr!=0 );
1873   assert( pNC->pSrcList!=0 );
1874   switch( pExpr->op ){
1875     case TK_COLUMN: {
1876       /* The expression is a column. Locate the table the column is being
1877       ** extracted from in NameContext.pSrcList. This table may be real
1878       ** database table or a subquery.
1879       */
1880       Table *pTab = 0;            /* Table structure column is extracted from */
1881       Select *pS = 0;             /* Select the column is extracted from */
1882       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1883       while( pNC && !pTab ){
1884         SrcList *pTabList = pNC->pSrcList;
1885         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1886         if( j<pTabList->nSrc ){
1887           pTab = pTabList->a[j].pTab;
1888           pS = pTabList->a[j].pSelect;
1889         }else{
1890           pNC = pNC->pNext;
1891         }
1892       }
1893 
1894       if( pTab==0 ){
1895         /* At one time, code such as "SELECT new.x" within a trigger would
1896         ** cause this condition to run.  Since then, we have restructured how
1897         ** trigger code is generated and so this condition is no longer
1898         ** possible. However, it can still be true for statements like
1899         ** the following:
1900         **
1901         **   CREATE TABLE t1(col INTEGER);
1902         **   SELECT (SELECT t1.col) FROM FROM t1;
1903         **
1904         ** when columnType() is called on the expression "t1.col" in the
1905         ** sub-select. In this case, set the column type to NULL, even
1906         ** though it should really be "INTEGER".
1907         **
1908         ** This is not a problem, as the column type of "t1.col" is never
1909         ** used. When columnType() is called on the expression
1910         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1911         ** branch below.  */
1912         break;
1913       }
1914 
1915       assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1916       if( pS ){
1917         /* The "table" is actually a sub-select or a view in the FROM clause
1918         ** of the SELECT statement. Return the declaration type and origin
1919         ** data for the result-set column of the sub-select.
1920         */
1921         if( iCol<pS->pEList->nExpr
1922 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1923          && iCol>=0
1924 #else
1925          && ALWAYS(iCol>=0)
1926 #endif
1927         ){
1928           /* If iCol is less than zero, then the expression requests the
1929           ** rowid of the sub-select or view. This expression is legal (see
1930           ** test case misc2.2.2) - it always evaluates to NULL.
1931           */
1932           NameContext sNC;
1933           Expr *p = pS->pEList->a[iCol].pExpr;
1934           sNC.pSrcList = pS->pSrc;
1935           sNC.pNext = pNC;
1936           sNC.pParse = pNC->pParse;
1937           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1938         }
1939       }else{
1940         /* A real table or a CTE table */
1941         assert( !pS );
1942 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1943         if( iCol<0 ) iCol = pTab->iPKey;
1944         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1945         if( iCol<0 ){
1946           zType = "INTEGER";
1947           zOrigCol = "rowid";
1948         }else{
1949           zOrigCol = pTab->aCol[iCol].zCnName;
1950           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1951         }
1952         zOrigTab = pTab->zName;
1953         if( pNC->pParse && pTab->pSchema ){
1954           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1955           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1956         }
1957 #else
1958         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1959         if( iCol<0 ){
1960           zType = "INTEGER";
1961         }else{
1962           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1963         }
1964 #endif
1965       }
1966       break;
1967     }
1968 #ifndef SQLITE_OMIT_SUBQUERY
1969     case TK_SELECT: {
1970       /* The expression is a sub-select. Return the declaration type and
1971       ** origin info for the single column in the result set of the SELECT
1972       ** statement.
1973       */
1974       NameContext sNC;
1975       Select *pS;
1976       Expr *p;
1977       assert( ExprUseXSelect(pExpr) );
1978       pS = pExpr->x.pSelect;
1979       p = pS->pEList->a[0].pExpr;
1980       sNC.pSrcList = pS->pSrc;
1981       sNC.pNext = pNC;
1982       sNC.pParse = pNC->pParse;
1983       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1984       break;
1985     }
1986 #endif
1987   }
1988 
1989 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1990   if( pzOrigDb ){
1991     assert( pzOrigTab && pzOrigCol );
1992     *pzOrigDb = zOrigDb;
1993     *pzOrigTab = zOrigTab;
1994     *pzOrigCol = zOrigCol;
1995   }
1996 #endif
1997   return zType;
1998 }
1999 
2000 /*
2001 ** Generate code that will tell the VDBE the declaration types of columns
2002 ** in the result set.
2003 */
2004 static void generateColumnTypes(
2005   Parse *pParse,      /* Parser context */
2006   SrcList *pTabList,  /* List of tables */
2007   ExprList *pEList    /* Expressions defining the result set */
2008 ){
2009 #ifndef SQLITE_OMIT_DECLTYPE
2010   Vdbe *v = pParse->pVdbe;
2011   int i;
2012   NameContext sNC;
2013   sNC.pSrcList = pTabList;
2014   sNC.pParse = pParse;
2015   sNC.pNext = 0;
2016   for(i=0; i<pEList->nExpr; i++){
2017     Expr *p = pEList->a[i].pExpr;
2018     const char *zType;
2019 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2020     const char *zOrigDb = 0;
2021     const char *zOrigTab = 0;
2022     const char *zOrigCol = 0;
2023     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2024 
2025     /* The vdbe must make its own copy of the column-type and other
2026     ** column specific strings, in case the schema is reset before this
2027     ** virtual machine is deleted.
2028     */
2029     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2030     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2031     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2032 #else
2033     zType = columnType(&sNC, p, 0, 0, 0);
2034 #endif
2035     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2036   }
2037 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2038 }
2039 
2040 
2041 /*
2042 ** Compute the column names for a SELECT statement.
2043 **
2044 ** The only guarantee that SQLite makes about column names is that if the
2045 ** column has an AS clause assigning it a name, that will be the name used.
2046 ** That is the only documented guarantee.  However, countless applications
2047 ** developed over the years have made baseless assumptions about column names
2048 ** and will break if those assumptions changes.  Hence, use extreme caution
2049 ** when modifying this routine to avoid breaking legacy.
2050 **
2051 ** See Also: sqlite3ColumnsFromExprList()
2052 **
2053 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2054 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
2055 ** applications should operate this way.  Nevertheless, we need to support the
2056 ** other modes for legacy:
2057 **
2058 **    short=OFF, full=OFF:      Column name is the text of the expression has it
2059 **                              originally appears in the SELECT statement.  In
2060 **                              other words, the zSpan of the result expression.
2061 **
2062 **    short=ON, full=OFF:       (This is the default setting).  If the result
2063 **                              refers directly to a table column, then the
2064 **                              result column name is just the table column
2065 **                              name: COLUMN.  Otherwise use zSpan.
2066 **
2067 **    full=ON, short=ANY:       If the result refers directly to a table column,
2068 **                              then the result column name with the table name
2069 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
2070 */
2071 void sqlite3GenerateColumnNames(
2072   Parse *pParse,      /* Parser context */
2073   Select *pSelect     /* Generate column names for this SELECT statement */
2074 ){
2075   Vdbe *v = pParse->pVdbe;
2076   int i;
2077   Table *pTab;
2078   SrcList *pTabList;
2079   ExprList *pEList;
2080   sqlite3 *db = pParse->db;
2081   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
2082   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2083 
2084 #ifndef SQLITE_OMIT_EXPLAIN
2085   /* If this is an EXPLAIN, skip this step */
2086   if( pParse->explain ){
2087     return;
2088   }
2089 #endif
2090 
2091   if( pParse->colNamesSet ) return;
2092   /* Column names are determined by the left-most term of a compound select */
2093   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2094   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2095   pTabList = pSelect->pSrc;
2096   pEList = pSelect->pEList;
2097   assert( v!=0 );
2098   assert( pTabList!=0 );
2099   pParse->colNamesSet = 1;
2100   fullName = (db->flags & SQLITE_FullColNames)!=0;
2101   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2102   sqlite3VdbeSetNumCols(v, pEList->nExpr);
2103   for(i=0; i<pEList->nExpr; i++){
2104     Expr *p = pEList->a[i].pExpr;
2105 
2106     assert( p!=0 );
2107     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2108     assert( p->op!=TK_COLUMN
2109         || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2110     if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2111       /* An AS clause always takes first priority */
2112       char *zName = pEList->a[i].zEName;
2113       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2114     }else if( srcName && p->op==TK_COLUMN ){
2115       char *zCol;
2116       int iCol = p->iColumn;
2117       pTab = p->y.pTab;
2118       assert( pTab!=0 );
2119       if( iCol<0 ) iCol = pTab->iPKey;
2120       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2121       if( iCol<0 ){
2122         zCol = "rowid";
2123       }else{
2124         zCol = pTab->aCol[iCol].zCnName;
2125       }
2126       if( fullName ){
2127         char *zName = 0;
2128         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2129         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2130       }else{
2131         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2132       }
2133     }else{
2134       const char *z = pEList->a[i].zEName;
2135       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2136       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2137     }
2138   }
2139   generateColumnTypes(pParse, pTabList, pEList);
2140 }
2141 
2142 /*
2143 ** Given an expression list (which is really the list of expressions
2144 ** that form the result set of a SELECT statement) compute appropriate
2145 ** column names for a table that would hold the expression list.
2146 **
2147 ** All column names will be unique.
2148 **
2149 ** Only the column names are computed.  Column.zType, Column.zColl,
2150 ** and other fields of Column are zeroed.
2151 **
2152 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2153 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2154 **
2155 ** The only guarantee that SQLite makes about column names is that if the
2156 ** column has an AS clause assigning it a name, that will be the name used.
2157 ** That is the only documented guarantee.  However, countless applications
2158 ** developed over the years have made baseless assumptions about column names
2159 ** and will break if those assumptions changes.  Hence, use extreme caution
2160 ** when modifying this routine to avoid breaking legacy.
2161 **
2162 ** See Also: sqlite3GenerateColumnNames()
2163 */
2164 int sqlite3ColumnsFromExprList(
2165   Parse *pParse,          /* Parsing context */
2166   ExprList *pEList,       /* Expr list from which to derive column names */
2167   i16 *pnCol,             /* Write the number of columns here */
2168   Column **paCol          /* Write the new column list here */
2169 ){
2170   sqlite3 *db = pParse->db;   /* Database connection */
2171   int i, j;                   /* Loop counters */
2172   u32 cnt;                    /* Index added to make the name unique */
2173   Column *aCol, *pCol;        /* For looping over result columns */
2174   int nCol;                   /* Number of columns in the result set */
2175   char *zName;                /* Column name */
2176   int nName;                  /* Size of name in zName[] */
2177   Hash ht;                    /* Hash table of column names */
2178   Table *pTab;
2179 
2180   sqlite3HashInit(&ht);
2181   if( pEList ){
2182     nCol = pEList->nExpr;
2183     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2184     testcase( aCol==0 );
2185     if( NEVER(nCol>32767) ) nCol = 32767;
2186   }else{
2187     nCol = 0;
2188     aCol = 0;
2189   }
2190   assert( nCol==(i16)nCol );
2191   *pnCol = nCol;
2192   *paCol = aCol;
2193 
2194   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2195     struct ExprList_item *pX = &pEList->a[i];
2196     struct ExprList_item *pCollide;
2197     /* Get an appropriate name for the column
2198     */
2199     if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2200       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2201     }else{
2202       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2203       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2204         pColExpr = pColExpr->pRight;
2205         assert( pColExpr!=0 );
2206       }
2207       if( pColExpr->op==TK_COLUMN
2208        && ALWAYS( ExprUseYTab(pColExpr) )
2209        && ALWAYS( pColExpr->y.pTab!=0 )
2210       ){
2211         /* For columns use the column name name */
2212         int iCol = pColExpr->iColumn;
2213         pTab = pColExpr->y.pTab;
2214         if( iCol<0 ) iCol = pTab->iPKey;
2215         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2216       }else if( pColExpr->op==TK_ID ){
2217         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2218         zName = pColExpr->u.zToken;
2219       }else{
2220         /* Use the original text of the column expression as its name */
2221         assert( zName==pX->zEName );  /* pointer comparison intended */
2222       }
2223     }
2224     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2225       zName = sqlite3DbStrDup(db, zName);
2226     }else{
2227       zName = sqlite3MPrintf(db,"column%d",i+1);
2228     }
2229 
2230     /* Make sure the column name is unique.  If the name is not unique,
2231     ** append an integer to the name so that it becomes unique.
2232     */
2233     cnt = 0;
2234     while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2235       if( pCollide->fg.bUsingTerm ){
2236         pCol->colFlags |= COLFLAG_NOEXPAND;
2237       }
2238       nName = sqlite3Strlen30(zName);
2239       if( nName>0 ){
2240         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2241         if( zName[j]==':' ) nName = j;
2242       }
2243       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2244       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2245     }
2246     pCol->zCnName = zName;
2247     pCol->hName = sqlite3StrIHash(zName);
2248     if( pX->fg.bNoExpand ){
2249       pCol->colFlags |= COLFLAG_NOEXPAND;
2250     }
2251     sqlite3ColumnPropertiesFromName(0, pCol);
2252     if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2253       sqlite3OomFault(db);
2254     }
2255   }
2256   sqlite3HashClear(&ht);
2257   if( db->mallocFailed ){
2258     for(j=0; j<i; j++){
2259       sqlite3DbFree(db, aCol[j].zCnName);
2260     }
2261     sqlite3DbFree(db, aCol);
2262     *paCol = 0;
2263     *pnCol = 0;
2264     return SQLITE_NOMEM_BKPT;
2265   }
2266   return SQLITE_OK;
2267 }
2268 
2269 /*
2270 ** Add type and collation information to a column list based on
2271 ** a SELECT statement.
2272 **
2273 ** The column list presumably came from selectColumnNamesFromExprList().
2274 ** The column list has only names, not types or collations.  This
2275 ** routine goes through and adds the types and collations.
2276 **
2277 ** This routine requires that all identifiers in the SELECT
2278 ** statement be resolved.
2279 */
2280 void sqlite3SelectAddColumnTypeAndCollation(
2281   Parse *pParse,        /* Parsing contexts */
2282   Table *pTab,          /* Add column type information to this table */
2283   Select *pSelect,      /* SELECT used to determine types and collations */
2284   char aff              /* Default affinity for columns */
2285 ){
2286   sqlite3 *db = pParse->db;
2287   NameContext sNC;
2288   Column *pCol;
2289   CollSeq *pColl;
2290   int i;
2291   Expr *p;
2292   struct ExprList_item *a;
2293 
2294   assert( pSelect!=0 );
2295   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2296   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2297   if( db->mallocFailed ) return;
2298   memset(&sNC, 0, sizeof(sNC));
2299   sNC.pSrcList = pSelect->pSrc;
2300   a = pSelect->pEList->a;
2301   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2302     const char *zType;
2303     i64 n, m;
2304     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2305     p = a[i].pExpr;
2306     zType = columnType(&sNC, p, 0, 0, 0);
2307     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2308     pCol->affinity = sqlite3ExprAffinity(p);
2309     if( zType ){
2310       m = sqlite3Strlen30(zType);
2311       n = sqlite3Strlen30(pCol->zCnName);
2312       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2313       if( pCol->zCnName ){
2314         memcpy(&pCol->zCnName[n+1], zType, m+1);
2315         pCol->colFlags |= COLFLAG_HASTYPE;
2316       }else{
2317         testcase( pCol->colFlags & COLFLAG_HASTYPE );
2318         pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2319       }
2320     }
2321     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2322     pColl = sqlite3ExprCollSeq(pParse, p);
2323     if( pColl ){
2324       assert( pTab->pIndex==0 );
2325       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2326     }
2327   }
2328   pTab->szTabRow = 1; /* Any non-zero value works */
2329 }
2330 
2331 /*
2332 ** Given a SELECT statement, generate a Table structure that describes
2333 ** the result set of that SELECT.
2334 */
2335 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2336   Table *pTab;
2337   sqlite3 *db = pParse->db;
2338   u64 savedFlags;
2339 
2340   savedFlags = db->flags;
2341   db->flags &= ~(u64)SQLITE_FullColNames;
2342   db->flags |= SQLITE_ShortColNames;
2343   sqlite3SelectPrep(pParse, pSelect, 0);
2344   db->flags = savedFlags;
2345   if( pParse->nErr ) return 0;
2346   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2347   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2348   if( pTab==0 ){
2349     return 0;
2350   }
2351   pTab->nTabRef = 1;
2352   pTab->zName = 0;
2353   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2354   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2355   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2356   pTab->iPKey = -1;
2357   if( db->mallocFailed ){
2358     sqlite3DeleteTable(db, pTab);
2359     return 0;
2360   }
2361   return pTab;
2362 }
2363 
2364 /*
2365 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2366 ** If an error occurs, return NULL and leave a message in pParse.
2367 */
2368 Vdbe *sqlite3GetVdbe(Parse *pParse){
2369   if( pParse->pVdbe ){
2370     return pParse->pVdbe;
2371   }
2372   if( pParse->pToplevel==0
2373    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2374   ){
2375     pParse->okConstFactor = 1;
2376   }
2377   return sqlite3VdbeCreate(pParse);
2378 }
2379 
2380 
2381 /*
2382 ** Compute the iLimit and iOffset fields of the SELECT based on the
2383 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2384 ** that appear in the original SQL statement after the LIMIT and OFFSET
2385 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2386 ** are the integer memory register numbers for counters used to compute
2387 ** the limit and offset.  If there is no limit and/or offset, then
2388 ** iLimit and iOffset are negative.
2389 **
2390 ** This routine changes the values of iLimit and iOffset only if
2391 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2392 ** and iOffset should have been preset to appropriate default values (zero)
2393 ** prior to calling this routine.
2394 **
2395 ** The iOffset register (if it exists) is initialized to the value
2396 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2397 ** iOffset+1 is initialized to LIMIT+OFFSET.
2398 **
2399 ** Only if pLimit->pLeft!=0 do the limit registers get
2400 ** redefined.  The UNION ALL operator uses this property to force
2401 ** the reuse of the same limit and offset registers across multiple
2402 ** SELECT statements.
2403 */
2404 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2405   Vdbe *v = 0;
2406   int iLimit = 0;
2407   int iOffset;
2408   int n;
2409   Expr *pLimit = p->pLimit;
2410 
2411   if( p->iLimit ) return;
2412 
2413   /*
2414   ** "LIMIT -1" always shows all rows.  There is some
2415   ** controversy about what the correct behavior should be.
2416   ** The current implementation interprets "LIMIT 0" to mean
2417   ** no rows.
2418   */
2419   if( pLimit ){
2420     assert( pLimit->op==TK_LIMIT );
2421     assert( pLimit->pLeft!=0 );
2422     p->iLimit = iLimit = ++pParse->nMem;
2423     v = sqlite3GetVdbe(pParse);
2424     assert( v!=0 );
2425     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2426       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2427       VdbeComment((v, "LIMIT counter"));
2428       if( n==0 ){
2429         sqlite3VdbeGoto(v, iBreak);
2430       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2431         p->nSelectRow = sqlite3LogEst((u64)n);
2432         p->selFlags |= SF_FixedLimit;
2433       }
2434     }else{
2435       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2436       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2437       VdbeComment((v, "LIMIT counter"));
2438       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2439     }
2440     if( pLimit->pRight ){
2441       p->iOffset = iOffset = ++pParse->nMem;
2442       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2443       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2444       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2445       VdbeComment((v, "OFFSET counter"));
2446       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2447       VdbeComment((v, "LIMIT+OFFSET"));
2448     }
2449   }
2450 }
2451 
2452 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2453 /*
2454 ** Return the appropriate collating sequence for the iCol-th column of
2455 ** the result set for the compound-select statement "p".  Return NULL if
2456 ** the column has no default collating sequence.
2457 **
2458 ** The collating sequence for the compound select is taken from the
2459 ** left-most term of the select that has a collating sequence.
2460 */
2461 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2462   CollSeq *pRet;
2463   if( p->pPrior ){
2464     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2465   }else{
2466     pRet = 0;
2467   }
2468   assert( iCol>=0 );
2469   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2470   ** have been thrown during name resolution and we would not have gotten
2471   ** this far */
2472   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2473     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2474   }
2475   return pRet;
2476 }
2477 
2478 /*
2479 ** The select statement passed as the second parameter is a compound SELECT
2480 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2481 ** structure suitable for implementing the ORDER BY.
2482 **
2483 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2484 ** function is responsible for ensuring that this structure is eventually
2485 ** freed.
2486 */
2487 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2488   ExprList *pOrderBy = p->pOrderBy;
2489   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2490   sqlite3 *db = pParse->db;
2491   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2492   if( pRet ){
2493     int i;
2494     for(i=0; i<nOrderBy; i++){
2495       struct ExprList_item *pItem = &pOrderBy->a[i];
2496       Expr *pTerm = pItem->pExpr;
2497       CollSeq *pColl;
2498 
2499       if( pTerm->flags & EP_Collate ){
2500         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2501       }else{
2502         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2503         if( pColl==0 ) pColl = db->pDfltColl;
2504         pOrderBy->a[i].pExpr =
2505           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2506       }
2507       assert( sqlite3KeyInfoIsWriteable(pRet) );
2508       pRet->aColl[i] = pColl;
2509       pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2510     }
2511   }
2512 
2513   return pRet;
2514 }
2515 
2516 #ifndef SQLITE_OMIT_CTE
2517 /*
2518 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2519 ** query of the form:
2520 **
2521 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2522 **                         \___________/             \_______________/
2523 **                           p->pPrior                      p
2524 **
2525 **
2526 ** There is exactly one reference to the recursive-table in the FROM clause
2527 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2528 **
2529 ** The setup-query runs once to generate an initial set of rows that go
2530 ** into a Queue table.  Rows are extracted from the Queue table one by
2531 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2532 ** extracted row (now in the iCurrent table) becomes the content of the
2533 ** recursive-table for a recursive-query run.  The output of the recursive-query
2534 ** is added back into the Queue table.  Then another row is extracted from Queue
2535 ** and the iteration continues until the Queue table is empty.
2536 **
2537 ** If the compound query operator is UNION then no duplicate rows are ever
2538 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2539 ** that have ever been inserted into Queue and causes duplicates to be
2540 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2541 **
2542 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2543 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2544 ** an ORDER BY, the Queue table is just a FIFO.
2545 **
2546 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2547 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2548 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2549 ** with a positive value, then the first OFFSET outputs are discarded rather
2550 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2551 ** rows have been skipped.
2552 */
2553 static void generateWithRecursiveQuery(
2554   Parse *pParse,        /* Parsing context */
2555   Select *p,            /* The recursive SELECT to be coded */
2556   SelectDest *pDest     /* What to do with query results */
2557 ){
2558   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2559   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2560   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2561   Select *pSetup;               /* The setup query */
2562   Select *pFirstRec;            /* Left-most recursive term */
2563   int addrTop;                  /* Top of the loop */
2564   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2565   int iCurrent = 0;             /* The Current table */
2566   int regCurrent;               /* Register holding Current table */
2567   int iQueue;                   /* The Queue table */
2568   int iDistinct = 0;            /* To ensure unique results if UNION */
2569   int eDest = SRT_Fifo;         /* How to write to Queue */
2570   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2571   int i;                        /* Loop counter */
2572   int rc;                       /* Result code */
2573   ExprList *pOrderBy;           /* The ORDER BY clause */
2574   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2575   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2576 
2577 #ifndef SQLITE_OMIT_WINDOWFUNC
2578   if( p->pWin ){
2579     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2580     return;
2581   }
2582 #endif
2583 
2584   /* Obtain authorization to do a recursive query */
2585   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2586 
2587   /* Process the LIMIT and OFFSET clauses, if they exist */
2588   addrBreak = sqlite3VdbeMakeLabel(pParse);
2589   p->nSelectRow = 320;  /* 4 billion rows */
2590   computeLimitRegisters(pParse, p, addrBreak);
2591   pLimit = p->pLimit;
2592   regLimit = p->iLimit;
2593   regOffset = p->iOffset;
2594   p->pLimit = 0;
2595   p->iLimit = p->iOffset = 0;
2596   pOrderBy = p->pOrderBy;
2597 
2598   /* Locate the cursor number of the Current table */
2599   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2600     if( pSrc->a[i].fg.isRecursive ){
2601       iCurrent = pSrc->a[i].iCursor;
2602       break;
2603     }
2604   }
2605 
2606   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2607   ** the Distinct table must be exactly one greater than Queue in order
2608   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2609   iQueue = pParse->nTab++;
2610   if( p->op==TK_UNION ){
2611     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2612     iDistinct = pParse->nTab++;
2613   }else{
2614     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2615   }
2616   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2617 
2618   /* Allocate cursors for Current, Queue, and Distinct. */
2619   regCurrent = ++pParse->nMem;
2620   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2621   if( pOrderBy ){
2622     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2623     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2624                       (char*)pKeyInfo, P4_KEYINFO);
2625     destQueue.pOrderBy = pOrderBy;
2626   }else{
2627     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2628   }
2629   VdbeComment((v, "Queue table"));
2630   if( iDistinct ){
2631     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2632     p->selFlags |= SF_UsesEphemeral;
2633   }
2634 
2635   /* Detach the ORDER BY clause from the compound SELECT */
2636   p->pOrderBy = 0;
2637 
2638   /* Figure out how many elements of the compound SELECT are part of the
2639   ** recursive query.  Make sure no recursive elements use aggregate
2640   ** functions.  Mark the recursive elements as UNION ALL even if they
2641   ** are really UNION because the distinctness will be enforced by the
2642   ** iDistinct table.  pFirstRec is left pointing to the left-most
2643   ** recursive term of the CTE.
2644   */
2645   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2646     if( pFirstRec->selFlags & SF_Aggregate ){
2647       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2648       goto end_of_recursive_query;
2649     }
2650     pFirstRec->op = TK_ALL;
2651     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2652   }
2653 
2654   /* Store the results of the setup-query in Queue. */
2655   pSetup = pFirstRec->pPrior;
2656   pSetup->pNext = 0;
2657   ExplainQueryPlan((pParse, 1, "SETUP"));
2658   rc = sqlite3Select(pParse, pSetup, &destQueue);
2659   pSetup->pNext = p;
2660   if( rc ) goto end_of_recursive_query;
2661 
2662   /* Find the next row in the Queue and output that row */
2663   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2664 
2665   /* Transfer the next row in Queue over to Current */
2666   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2667   if( pOrderBy ){
2668     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2669   }else{
2670     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2671   }
2672   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2673 
2674   /* Output the single row in Current */
2675   addrCont = sqlite3VdbeMakeLabel(pParse);
2676   codeOffset(v, regOffset, addrCont);
2677   selectInnerLoop(pParse, p, iCurrent,
2678       0, 0, pDest, addrCont, addrBreak);
2679   if( regLimit ){
2680     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2681     VdbeCoverage(v);
2682   }
2683   sqlite3VdbeResolveLabel(v, addrCont);
2684 
2685   /* Execute the recursive SELECT taking the single row in Current as
2686   ** the value for the recursive-table. Store the results in the Queue.
2687   */
2688   pFirstRec->pPrior = 0;
2689   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2690   sqlite3Select(pParse, p, &destQueue);
2691   assert( pFirstRec->pPrior==0 );
2692   pFirstRec->pPrior = pSetup;
2693 
2694   /* Keep running the loop until the Queue is empty */
2695   sqlite3VdbeGoto(v, addrTop);
2696   sqlite3VdbeResolveLabel(v, addrBreak);
2697 
2698 end_of_recursive_query:
2699   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2700   p->pOrderBy = pOrderBy;
2701   p->pLimit = pLimit;
2702   return;
2703 }
2704 #endif /* SQLITE_OMIT_CTE */
2705 
2706 /* Forward references */
2707 static int multiSelectOrderBy(
2708   Parse *pParse,        /* Parsing context */
2709   Select *p,            /* The right-most of SELECTs to be coded */
2710   SelectDest *pDest     /* What to do with query results */
2711 );
2712 
2713 /*
2714 ** Handle the special case of a compound-select that originates from a
2715 ** VALUES clause.  By handling this as a special case, we avoid deep
2716 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2717 ** on a VALUES clause.
2718 **
2719 ** Because the Select object originates from a VALUES clause:
2720 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2721 **   (2) All terms are UNION ALL
2722 **   (3) There is no ORDER BY clause
2723 **
2724 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2725 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2726 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2727 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2728 */
2729 static int multiSelectValues(
2730   Parse *pParse,        /* Parsing context */
2731   Select *p,            /* The right-most of SELECTs to be coded */
2732   SelectDest *pDest     /* What to do with query results */
2733 ){
2734   int nRow = 1;
2735   int rc = 0;
2736   int bShowAll = p->pLimit==0;
2737   assert( p->selFlags & SF_MultiValue );
2738   do{
2739     assert( p->selFlags & SF_Values );
2740     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2741     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2742 #ifndef SQLITE_OMIT_WINDOWFUNC
2743     if( p->pWin ) return -1;
2744 #endif
2745     if( p->pPrior==0 ) break;
2746     assert( p->pPrior->pNext==p );
2747     p = p->pPrior;
2748     nRow += bShowAll;
2749   }while(1);
2750   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2751                     nRow==1 ? "" : "S"));
2752   while( p ){
2753     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2754     if( !bShowAll ) break;
2755     p->nSelectRow = nRow;
2756     p = p->pNext;
2757   }
2758   return rc;
2759 }
2760 
2761 /*
2762 ** Return true if the SELECT statement which is known to be the recursive
2763 ** part of a recursive CTE still has its anchor terms attached.  If the
2764 ** anchor terms have already been removed, then return false.
2765 */
2766 static int hasAnchor(Select *p){
2767   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2768   return p!=0;
2769 }
2770 
2771 /*
2772 ** This routine is called to process a compound query form from
2773 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2774 ** INTERSECT
2775 **
2776 ** "p" points to the right-most of the two queries.  the query on the
2777 ** left is p->pPrior.  The left query could also be a compound query
2778 ** in which case this routine will be called recursively.
2779 **
2780 ** The results of the total query are to be written into a destination
2781 ** of type eDest with parameter iParm.
2782 **
2783 ** Example 1:  Consider a three-way compound SQL statement.
2784 **
2785 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2786 **
2787 ** This statement is parsed up as follows:
2788 **
2789 **     SELECT c FROM t3
2790 **      |
2791 **      `----->  SELECT b FROM t2
2792 **                |
2793 **                `------>  SELECT a FROM t1
2794 **
2795 ** The arrows in the diagram above represent the Select.pPrior pointer.
2796 ** So if this routine is called with p equal to the t3 query, then
2797 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2798 **
2799 ** Notice that because of the way SQLite parses compound SELECTs, the
2800 ** individual selects always group from left to right.
2801 */
2802 static int multiSelect(
2803   Parse *pParse,        /* Parsing context */
2804   Select *p,            /* The right-most of SELECTs to be coded */
2805   SelectDest *pDest     /* What to do with query results */
2806 ){
2807   int rc = SQLITE_OK;   /* Success code from a subroutine */
2808   Select *pPrior;       /* Another SELECT immediately to our left */
2809   Vdbe *v;              /* Generate code to this VDBE */
2810   SelectDest dest;      /* Alternative data destination */
2811   Select *pDelete = 0;  /* Chain of simple selects to delete */
2812   sqlite3 *db;          /* Database connection */
2813 
2814   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2815   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2816   */
2817   assert( p && p->pPrior );  /* Calling function guarantees this much */
2818   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2819   assert( p->selFlags & SF_Compound );
2820   db = pParse->db;
2821   pPrior = p->pPrior;
2822   dest = *pDest;
2823   assert( pPrior->pOrderBy==0 );
2824   assert( pPrior->pLimit==0 );
2825 
2826   v = sqlite3GetVdbe(pParse);
2827   assert( v!=0 );  /* The VDBE already created by calling function */
2828 
2829   /* Create the destination temporary table if necessary
2830   */
2831   if( dest.eDest==SRT_EphemTab ){
2832     assert( p->pEList );
2833     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2834     dest.eDest = SRT_Table;
2835   }
2836 
2837   /* Special handling for a compound-select that originates as a VALUES clause.
2838   */
2839   if( p->selFlags & SF_MultiValue ){
2840     rc = multiSelectValues(pParse, p, &dest);
2841     if( rc>=0 ) goto multi_select_end;
2842     rc = SQLITE_OK;
2843   }
2844 
2845   /* Make sure all SELECTs in the statement have the same number of elements
2846   ** in their result sets.
2847   */
2848   assert( p->pEList && pPrior->pEList );
2849   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2850 
2851 #ifndef SQLITE_OMIT_CTE
2852   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2853     generateWithRecursiveQuery(pParse, p, &dest);
2854   }else
2855 #endif
2856 
2857   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2858   */
2859   if( p->pOrderBy ){
2860     return multiSelectOrderBy(pParse, p, pDest);
2861   }else{
2862 
2863 #ifndef SQLITE_OMIT_EXPLAIN
2864     if( pPrior->pPrior==0 ){
2865       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2866       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2867     }
2868 #endif
2869 
2870     /* Generate code for the left and right SELECT statements.
2871     */
2872     switch( p->op ){
2873       case TK_ALL: {
2874         int addr = 0;
2875         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2876         assert( !pPrior->pLimit );
2877         pPrior->iLimit = p->iLimit;
2878         pPrior->iOffset = p->iOffset;
2879         pPrior->pLimit = p->pLimit;
2880         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2881         rc = sqlite3Select(pParse, pPrior, &dest);
2882         pPrior->pLimit = 0;
2883         if( rc ){
2884           goto multi_select_end;
2885         }
2886         p->pPrior = 0;
2887         p->iLimit = pPrior->iLimit;
2888         p->iOffset = pPrior->iOffset;
2889         if( p->iLimit ){
2890           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2891           VdbeComment((v, "Jump ahead if LIMIT reached"));
2892           if( p->iOffset ){
2893             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2894                               p->iLimit, p->iOffset+1, p->iOffset);
2895           }
2896         }
2897         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2898         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2899         rc = sqlite3Select(pParse, p, &dest);
2900         testcase( rc!=SQLITE_OK );
2901         pDelete = p->pPrior;
2902         p->pPrior = pPrior;
2903         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2904         if( p->pLimit
2905          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2906          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2907         ){
2908           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2909         }
2910         if( addr ){
2911           sqlite3VdbeJumpHere(v, addr);
2912         }
2913         break;
2914       }
2915       case TK_EXCEPT:
2916       case TK_UNION: {
2917         int unionTab;    /* Cursor number of the temp table holding result */
2918         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2919         int priorOp;     /* The SRT_ operation to apply to prior selects */
2920         Expr *pLimit;    /* Saved values of p->nLimit  */
2921         int addr;
2922         SelectDest uniondest;
2923 
2924         testcase( p->op==TK_EXCEPT );
2925         testcase( p->op==TK_UNION );
2926         priorOp = SRT_Union;
2927         if( dest.eDest==priorOp ){
2928           /* We can reuse a temporary table generated by a SELECT to our
2929           ** right.
2930           */
2931           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2932           unionTab = dest.iSDParm;
2933         }else{
2934           /* We will need to create our own temporary table to hold the
2935           ** intermediate results.
2936           */
2937           unionTab = pParse->nTab++;
2938           assert( p->pOrderBy==0 );
2939           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2940           assert( p->addrOpenEphm[0] == -1 );
2941           p->addrOpenEphm[0] = addr;
2942           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2943           assert( p->pEList );
2944         }
2945 
2946 
2947         /* Code the SELECT statements to our left
2948         */
2949         assert( !pPrior->pOrderBy );
2950         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2951         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2952         rc = sqlite3Select(pParse, pPrior, &uniondest);
2953         if( rc ){
2954           goto multi_select_end;
2955         }
2956 
2957         /* Code the current SELECT statement
2958         */
2959         if( p->op==TK_EXCEPT ){
2960           op = SRT_Except;
2961         }else{
2962           assert( p->op==TK_UNION );
2963           op = SRT_Union;
2964         }
2965         p->pPrior = 0;
2966         pLimit = p->pLimit;
2967         p->pLimit = 0;
2968         uniondest.eDest = op;
2969         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2970                           sqlite3SelectOpName(p->op)));
2971         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2972         rc = sqlite3Select(pParse, p, &uniondest);
2973         testcase( rc!=SQLITE_OK );
2974         assert( p->pOrderBy==0 );
2975         pDelete = p->pPrior;
2976         p->pPrior = pPrior;
2977         p->pOrderBy = 0;
2978         if( p->op==TK_UNION ){
2979           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2980         }
2981         sqlite3ExprDelete(db, p->pLimit);
2982         p->pLimit = pLimit;
2983         p->iLimit = 0;
2984         p->iOffset = 0;
2985 
2986         /* Convert the data in the temporary table into whatever form
2987         ** it is that we currently need.
2988         */
2989         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2990         assert( p->pEList || db->mallocFailed );
2991         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2992           int iCont, iBreak, iStart;
2993           iBreak = sqlite3VdbeMakeLabel(pParse);
2994           iCont = sqlite3VdbeMakeLabel(pParse);
2995           computeLimitRegisters(pParse, p, iBreak);
2996           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2997           iStart = sqlite3VdbeCurrentAddr(v);
2998           selectInnerLoop(pParse, p, unionTab,
2999                           0, 0, &dest, iCont, iBreak);
3000           sqlite3VdbeResolveLabel(v, iCont);
3001           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
3002           sqlite3VdbeResolveLabel(v, iBreak);
3003           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3004         }
3005         break;
3006       }
3007       default: assert( p->op==TK_INTERSECT ); {
3008         int tab1, tab2;
3009         int iCont, iBreak, iStart;
3010         Expr *pLimit;
3011         int addr;
3012         SelectDest intersectdest;
3013         int r1;
3014 
3015         /* INTERSECT is different from the others since it requires
3016         ** two temporary tables.  Hence it has its own case.  Begin
3017         ** by allocating the tables we will need.
3018         */
3019         tab1 = pParse->nTab++;
3020         tab2 = pParse->nTab++;
3021         assert( p->pOrderBy==0 );
3022 
3023         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3024         assert( p->addrOpenEphm[0] == -1 );
3025         p->addrOpenEphm[0] = addr;
3026         findRightmost(p)->selFlags |= SF_UsesEphemeral;
3027         assert( p->pEList );
3028 
3029         /* Code the SELECTs to our left into temporary table "tab1".
3030         */
3031         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3032         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
3033         rc = sqlite3Select(pParse, pPrior, &intersectdest);
3034         if( rc ){
3035           goto multi_select_end;
3036         }
3037 
3038         /* Code the current SELECT into temporary table "tab2"
3039         */
3040         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3041         assert( p->addrOpenEphm[1] == -1 );
3042         p->addrOpenEphm[1] = addr;
3043         p->pPrior = 0;
3044         pLimit = p->pLimit;
3045         p->pLimit = 0;
3046         intersectdest.iSDParm = tab2;
3047         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3048                           sqlite3SelectOpName(p->op)));
3049         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
3050         rc = sqlite3Select(pParse, p, &intersectdest);
3051         testcase( rc!=SQLITE_OK );
3052         pDelete = p->pPrior;
3053         p->pPrior = pPrior;
3054         if( p->nSelectRow>pPrior->nSelectRow ){
3055           p->nSelectRow = pPrior->nSelectRow;
3056         }
3057         sqlite3ExprDelete(db, p->pLimit);
3058         p->pLimit = pLimit;
3059 
3060         /* Generate code to take the intersection of the two temporary
3061         ** tables.
3062         */
3063         if( rc ) break;
3064         assert( p->pEList );
3065         iBreak = sqlite3VdbeMakeLabel(pParse);
3066         iCont = sqlite3VdbeMakeLabel(pParse);
3067         computeLimitRegisters(pParse, p, iBreak);
3068         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3069         r1 = sqlite3GetTempReg(pParse);
3070         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3071         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3072         VdbeCoverage(v);
3073         sqlite3ReleaseTempReg(pParse, r1);
3074         selectInnerLoop(pParse, p, tab1,
3075                         0, 0, &dest, iCont, iBreak);
3076         sqlite3VdbeResolveLabel(v, iCont);
3077         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3078         sqlite3VdbeResolveLabel(v, iBreak);
3079         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3080         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3081         break;
3082       }
3083     }
3084 
3085   #ifndef SQLITE_OMIT_EXPLAIN
3086     if( p->pNext==0 ){
3087       ExplainQueryPlanPop(pParse);
3088     }
3089   #endif
3090   }
3091   if( pParse->nErr ) goto multi_select_end;
3092 
3093   /* Compute collating sequences used by
3094   ** temporary tables needed to implement the compound select.
3095   ** Attach the KeyInfo structure to all temporary tables.
3096   **
3097   ** This section is run by the right-most SELECT statement only.
3098   ** SELECT statements to the left always skip this part.  The right-most
3099   ** SELECT might also skip this part if it has no ORDER BY clause and
3100   ** no temp tables are required.
3101   */
3102   if( p->selFlags & SF_UsesEphemeral ){
3103     int i;                        /* Loop counter */
3104     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
3105     Select *pLoop;                /* For looping through SELECT statements */
3106     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
3107     int nCol;                     /* Number of columns in result set */
3108 
3109     assert( p->pNext==0 );
3110     assert( p->pEList!=0 );
3111     nCol = p->pEList->nExpr;
3112     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3113     if( !pKeyInfo ){
3114       rc = SQLITE_NOMEM_BKPT;
3115       goto multi_select_end;
3116     }
3117     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3118       *apColl = multiSelectCollSeq(pParse, p, i);
3119       if( 0==*apColl ){
3120         *apColl = db->pDfltColl;
3121       }
3122     }
3123 
3124     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3125       for(i=0; i<2; i++){
3126         int addr = pLoop->addrOpenEphm[i];
3127         if( addr<0 ){
3128           /* If [0] is unused then [1] is also unused.  So we can
3129           ** always safely abort as soon as the first unused slot is found */
3130           assert( pLoop->addrOpenEphm[1]<0 );
3131           break;
3132         }
3133         sqlite3VdbeChangeP2(v, addr, nCol);
3134         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3135                             P4_KEYINFO);
3136         pLoop->addrOpenEphm[i] = -1;
3137       }
3138     }
3139     sqlite3KeyInfoUnref(pKeyInfo);
3140   }
3141 
3142 multi_select_end:
3143   pDest->iSdst = dest.iSdst;
3144   pDest->nSdst = dest.nSdst;
3145   if( pDelete ){
3146     sqlite3ParserAddCleanup(pParse,
3147         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3148         pDelete);
3149   }
3150   return rc;
3151 }
3152 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3153 
3154 /*
3155 ** Error message for when two or more terms of a compound select have different
3156 ** size result sets.
3157 */
3158 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3159   if( p->selFlags & SF_Values ){
3160     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3161   }else{
3162     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3163       " do not have the same number of result columns",
3164       sqlite3SelectOpName(p->op));
3165   }
3166 }
3167 
3168 /*
3169 ** Code an output subroutine for a coroutine implementation of a
3170 ** SELECT statment.
3171 **
3172 ** The data to be output is contained in pIn->iSdst.  There are
3173 ** pIn->nSdst columns to be output.  pDest is where the output should
3174 ** be sent.
3175 **
3176 ** regReturn is the number of the register holding the subroutine
3177 ** return address.
3178 **
3179 ** If regPrev>0 then it is the first register in a vector that
3180 ** records the previous output.  mem[regPrev] is a flag that is false
3181 ** if there has been no previous output.  If regPrev>0 then code is
3182 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3183 ** keys.
3184 **
3185 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3186 ** iBreak.
3187 */
3188 static int generateOutputSubroutine(
3189   Parse *pParse,          /* Parsing context */
3190   Select *p,              /* The SELECT statement */
3191   SelectDest *pIn,        /* Coroutine supplying data */
3192   SelectDest *pDest,      /* Where to send the data */
3193   int regReturn,          /* The return address register */
3194   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3195   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3196   int iBreak              /* Jump here if we hit the LIMIT */
3197 ){
3198   Vdbe *v = pParse->pVdbe;
3199   int iContinue;
3200   int addr;
3201 
3202   addr = sqlite3VdbeCurrentAddr(v);
3203   iContinue = sqlite3VdbeMakeLabel(pParse);
3204 
3205   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3206   */
3207   if( regPrev ){
3208     int addr1, addr2;
3209     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3210     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3211                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3212     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3213     sqlite3VdbeJumpHere(v, addr1);
3214     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3215     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3216   }
3217   if( pParse->db->mallocFailed ) return 0;
3218 
3219   /* Suppress the first OFFSET entries if there is an OFFSET clause
3220   */
3221   codeOffset(v, p->iOffset, iContinue);
3222 
3223   assert( pDest->eDest!=SRT_Exists );
3224   assert( pDest->eDest!=SRT_Table );
3225   switch( pDest->eDest ){
3226     /* Store the result as data using a unique key.
3227     */
3228     case SRT_EphemTab: {
3229       int r1 = sqlite3GetTempReg(pParse);
3230       int r2 = sqlite3GetTempReg(pParse);
3231       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3232       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3233       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3234       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3235       sqlite3ReleaseTempReg(pParse, r2);
3236       sqlite3ReleaseTempReg(pParse, r1);
3237       break;
3238     }
3239 
3240 #ifndef SQLITE_OMIT_SUBQUERY
3241     /* If we are creating a set for an "expr IN (SELECT ...)".
3242     */
3243     case SRT_Set: {
3244       int r1;
3245       testcase( pIn->nSdst>1 );
3246       r1 = sqlite3GetTempReg(pParse);
3247       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3248           r1, pDest->zAffSdst, pIn->nSdst);
3249       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3250                            pIn->iSdst, pIn->nSdst);
3251       sqlite3ReleaseTempReg(pParse, r1);
3252       break;
3253     }
3254 
3255     /* If this is a scalar select that is part of an expression, then
3256     ** store the results in the appropriate memory cell and break out
3257     ** of the scan loop.  Note that the select might return multiple columns
3258     ** if it is the RHS of a row-value IN operator.
3259     */
3260     case SRT_Mem: {
3261       testcase( pIn->nSdst>1 );
3262       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3263       /* The LIMIT clause will jump out of the loop for us */
3264       break;
3265     }
3266 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3267 
3268     /* The results are stored in a sequence of registers
3269     ** starting at pDest->iSdst.  Then the co-routine yields.
3270     */
3271     case SRT_Coroutine: {
3272       if( pDest->iSdst==0 ){
3273         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3274         pDest->nSdst = pIn->nSdst;
3275       }
3276       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3277       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3278       break;
3279     }
3280 
3281     /* If none of the above, then the result destination must be
3282     ** SRT_Output.  This routine is never called with any other
3283     ** destination other than the ones handled above or SRT_Output.
3284     **
3285     ** For SRT_Output, results are stored in a sequence of registers.
3286     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3287     ** return the next row of result.
3288     */
3289     default: {
3290       assert( pDest->eDest==SRT_Output );
3291       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3292       break;
3293     }
3294   }
3295 
3296   /* Jump to the end of the loop if the LIMIT is reached.
3297   */
3298   if( p->iLimit ){
3299     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3300   }
3301 
3302   /* Generate the subroutine return
3303   */
3304   sqlite3VdbeResolveLabel(v, iContinue);
3305   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3306 
3307   return addr;
3308 }
3309 
3310 /*
3311 ** Alternative compound select code generator for cases when there
3312 ** is an ORDER BY clause.
3313 **
3314 ** We assume a query of the following form:
3315 **
3316 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3317 **
3318 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3319 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3320 ** co-routines.  Then run the co-routines in parallel and merge the results
3321 ** into the output.  In addition to the two coroutines (called selectA and
3322 ** selectB) there are 7 subroutines:
3323 **
3324 **    outA:    Move the output of the selectA coroutine into the output
3325 **             of the compound query.
3326 **
3327 **    outB:    Move the output of the selectB coroutine into the output
3328 **             of the compound query.  (Only generated for UNION and
3329 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3330 **             appears only in B.)
3331 **
3332 **    AltB:    Called when there is data from both coroutines and A<B.
3333 **
3334 **    AeqB:    Called when there is data from both coroutines and A==B.
3335 **
3336 **    AgtB:    Called when there is data from both coroutines and A>B.
3337 **
3338 **    EofA:    Called when data is exhausted from selectA.
3339 **
3340 **    EofB:    Called when data is exhausted from selectB.
3341 **
3342 ** The implementation of the latter five subroutines depend on which
3343 ** <operator> is used:
3344 **
3345 **
3346 **             UNION ALL         UNION            EXCEPT          INTERSECT
3347 **          -------------  -----------------  --------------  -----------------
3348 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3349 **
3350 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3351 **
3352 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3353 **
3354 **   EofA:   outB, nextB      outB, nextB          halt             halt
3355 **
3356 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3357 **
3358 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3359 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3360 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3361 ** following nextX causes a jump to the end of the select processing.
3362 **
3363 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3364 ** within the output subroutine.  The regPrev register set holds the previously
3365 ** output value.  A comparison is made against this value and the output
3366 ** is skipped if the next results would be the same as the previous.
3367 **
3368 ** The implementation plan is to implement the two coroutines and seven
3369 ** subroutines first, then put the control logic at the bottom.  Like this:
3370 **
3371 **          goto Init
3372 **     coA: coroutine for left query (A)
3373 **     coB: coroutine for right query (B)
3374 **    outA: output one row of A
3375 **    outB: output one row of B (UNION and UNION ALL only)
3376 **    EofA: ...
3377 **    EofB: ...
3378 **    AltB: ...
3379 **    AeqB: ...
3380 **    AgtB: ...
3381 **    Init: initialize coroutine registers
3382 **          yield coA
3383 **          if eof(A) goto EofA
3384 **          yield coB
3385 **          if eof(B) goto EofB
3386 **    Cmpr: Compare A, B
3387 **          Jump AltB, AeqB, AgtB
3388 **     End: ...
3389 **
3390 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3391 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3392 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3393 ** and AgtB jump to either L2 or to one of EofA or EofB.
3394 */
3395 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3396 static int multiSelectOrderBy(
3397   Parse *pParse,        /* Parsing context */
3398   Select *p,            /* The right-most of SELECTs to be coded */
3399   SelectDest *pDest     /* What to do with query results */
3400 ){
3401   int i, j;             /* Loop counters */
3402   Select *pPrior;       /* Another SELECT immediately to our left */
3403   Select *pSplit;       /* Left-most SELECT in the right-hand group */
3404   int nSelect;          /* Number of SELECT statements in the compound */
3405   Vdbe *v;              /* Generate code to this VDBE */
3406   SelectDest destA;     /* Destination for coroutine A */
3407   SelectDest destB;     /* Destination for coroutine B */
3408   int regAddrA;         /* Address register for select-A coroutine */
3409   int regAddrB;         /* Address register for select-B coroutine */
3410   int addrSelectA;      /* Address of the select-A coroutine */
3411   int addrSelectB;      /* Address of the select-B coroutine */
3412   int regOutA;          /* Address register for the output-A subroutine */
3413   int regOutB;          /* Address register for the output-B subroutine */
3414   int addrOutA;         /* Address of the output-A subroutine */
3415   int addrOutB = 0;     /* Address of the output-B subroutine */
3416   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3417   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3418   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3419   int addrAltB;         /* Address of the A<B subroutine */
3420   int addrAeqB;         /* Address of the A==B subroutine */
3421   int addrAgtB;         /* Address of the A>B subroutine */
3422   int regLimitA;        /* Limit register for select-A */
3423   int regLimitB;        /* Limit register for select-A */
3424   int regPrev;          /* A range of registers to hold previous output */
3425   int savedLimit;       /* Saved value of p->iLimit */
3426   int savedOffset;      /* Saved value of p->iOffset */
3427   int labelCmpr;        /* Label for the start of the merge algorithm */
3428   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3429   int addr1;            /* Jump instructions that get retargetted */
3430   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3431   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3432   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3433   sqlite3 *db;          /* Database connection */
3434   ExprList *pOrderBy;   /* The ORDER BY clause */
3435   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3436   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3437 
3438   assert( p->pOrderBy!=0 );
3439   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3440   db = pParse->db;
3441   v = pParse->pVdbe;
3442   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3443   labelEnd = sqlite3VdbeMakeLabel(pParse);
3444   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3445 
3446 
3447   /* Patch up the ORDER BY clause
3448   */
3449   op = p->op;
3450   assert( p->pPrior->pOrderBy==0 );
3451   pOrderBy = p->pOrderBy;
3452   assert( pOrderBy );
3453   nOrderBy = pOrderBy->nExpr;
3454 
3455   /* For operators other than UNION ALL we have to make sure that
3456   ** the ORDER BY clause covers every term of the result set.  Add
3457   ** terms to the ORDER BY clause as necessary.
3458   */
3459   if( op!=TK_ALL ){
3460     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3461       struct ExprList_item *pItem;
3462       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3463         assert( pItem!=0 );
3464         assert( pItem->u.x.iOrderByCol>0 );
3465         if( pItem->u.x.iOrderByCol==i ) break;
3466       }
3467       if( j==nOrderBy ){
3468         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3469         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3470         pNew->flags |= EP_IntValue;
3471         pNew->u.iValue = i;
3472         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3473         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3474       }
3475     }
3476   }
3477 
3478   /* Compute the comparison permutation and keyinfo that is used with
3479   ** the permutation used to determine if the next
3480   ** row of results comes from selectA or selectB.  Also add explicit
3481   ** collations to the ORDER BY clause terms so that when the subqueries
3482   ** to the right and the left are evaluated, they use the correct
3483   ** collation.
3484   */
3485   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3486   if( aPermute ){
3487     struct ExprList_item *pItem;
3488     aPermute[0] = nOrderBy;
3489     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3490       assert( pItem!=0 );
3491       assert( pItem->u.x.iOrderByCol>0 );
3492       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3493       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3494     }
3495     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3496   }else{
3497     pKeyMerge = 0;
3498   }
3499 
3500   /* Allocate a range of temporary registers and the KeyInfo needed
3501   ** for the logic that removes duplicate result rows when the
3502   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3503   */
3504   if( op==TK_ALL ){
3505     regPrev = 0;
3506   }else{
3507     int nExpr = p->pEList->nExpr;
3508     assert( nOrderBy>=nExpr || db->mallocFailed );
3509     regPrev = pParse->nMem+1;
3510     pParse->nMem += nExpr+1;
3511     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3512     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3513     if( pKeyDup ){
3514       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3515       for(i=0; i<nExpr; i++){
3516         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3517         pKeyDup->aSortFlags[i] = 0;
3518       }
3519     }
3520   }
3521 
3522   /* Separate the left and the right query from one another
3523   */
3524   nSelect = 1;
3525   if( (op==TK_ALL || op==TK_UNION)
3526    && OptimizationEnabled(db, SQLITE_BalancedMerge)
3527   ){
3528     for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3529       nSelect++;
3530       assert( pSplit->pPrior->pNext==pSplit );
3531     }
3532   }
3533   if( nSelect<=3 ){
3534     pSplit = p;
3535   }else{
3536     pSplit = p;
3537     for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3538   }
3539   pPrior = pSplit->pPrior;
3540   assert( pPrior!=0 );
3541   pSplit->pPrior = 0;
3542   pPrior->pNext = 0;
3543   assert( p->pOrderBy == pOrderBy );
3544   assert( pOrderBy!=0 || db->mallocFailed );
3545   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3546   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3547   sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3548 
3549   /* Compute the limit registers */
3550   computeLimitRegisters(pParse, p, labelEnd);
3551   if( p->iLimit && op==TK_ALL ){
3552     regLimitA = ++pParse->nMem;
3553     regLimitB = ++pParse->nMem;
3554     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3555                                   regLimitA);
3556     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3557   }else{
3558     regLimitA = regLimitB = 0;
3559   }
3560   sqlite3ExprDelete(db, p->pLimit);
3561   p->pLimit = 0;
3562 
3563   regAddrA = ++pParse->nMem;
3564   regAddrB = ++pParse->nMem;
3565   regOutA = ++pParse->nMem;
3566   regOutB = ++pParse->nMem;
3567   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3568   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3569 
3570   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3571 
3572   /* Generate a coroutine to evaluate the SELECT statement to the
3573   ** left of the compound operator - the "A" select.
3574   */
3575   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3576   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3577   VdbeComment((v, "left SELECT"));
3578   pPrior->iLimit = regLimitA;
3579   ExplainQueryPlan((pParse, 1, "LEFT"));
3580   sqlite3Select(pParse, pPrior, &destA);
3581   sqlite3VdbeEndCoroutine(v, regAddrA);
3582   sqlite3VdbeJumpHere(v, addr1);
3583 
3584   /* Generate a coroutine to evaluate the SELECT statement on
3585   ** the right - the "B" select
3586   */
3587   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3588   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3589   VdbeComment((v, "right SELECT"));
3590   savedLimit = p->iLimit;
3591   savedOffset = p->iOffset;
3592   p->iLimit = regLimitB;
3593   p->iOffset = 0;
3594   ExplainQueryPlan((pParse, 1, "RIGHT"));
3595   sqlite3Select(pParse, p, &destB);
3596   p->iLimit = savedLimit;
3597   p->iOffset = savedOffset;
3598   sqlite3VdbeEndCoroutine(v, regAddrB);
3599 
3600   /* Generate a subroutine that outputs the current row of the A
3601   ** select as the next output row of the compound select.
3602   */
3603   VdbeNoopComment((v, "Output routine for A"));
3604   addrOutA = generateOutputSubroutine(pParse,
3605                  p, &destA, pDest, regOutA,
3606                  regPrev, pKeyDup, labelEnd);
3607 
3608   /* Generate a subroutine that outputs the current row of the B
3609   ** select as the next output row of the compound select.
3610   */
3611   if( op==TK_ALL || op==TK_UNION ){
3612     VdbeNoopComment((v, "Output routine for B"));
3613     addrOutB = generateOutputSubroutine(pParse,
3614                  p, &destB, pDest, regOutB,
3615                  regPrev, pKeyDup, labelEnd);
3616   }
3617   sqlite3KeyInfoUnref(pKeyDup);
3618 
3619   /* Generate a subroutine to run when the results from select A
3620   ** are exhausted and only data in select B remains.
3621   */
3622   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3623     addrEofA_noB = addrEofA = labelEnd;
3624   }else{
3625     VdbeNoopComment((v, "eof-A subroutine"));
3626     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3627     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3628                                      VdbeCoverage(v);
3629     sqlite3VdbeGoto(v, addrEofA);
3630     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3631   }
3632 
3633   /* Generate a subroutine to run when the results from select B
3634   ** are exhausted and only data in select A remains.
3635   */
3636   if( op==TK_INTERSECT ){
3637     addrEofB = addrEofA;
3638     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3639   }else{
3640     VdbeNoopComment((v, "eof-B subroutine"));
3641     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3642     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3643     sqlite3VdbeGoto(v, addrEofB);
3644   }
3645 
3646   /* Generate code to handle the case of A<B
3647   */
3648   VdbeNoopComment((v, "A-lt-B subroutine"));
3649   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3650   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3651   sqlite3VdbeGoto(v, labelCmpr);
3652 
3653   /* Generate code to handle the case of A==B
3654   */
3655   if( op==TK_ALL ){
3656     addrAeqB = addrAltB;
3657   }else if( op==TK_INTERSECT ){
3658     addrAeqB = addrAltB;
3659     addrAltB++;
3660   }else{
3661     VdbeNoopComment((v, "A-eq-B subroutine"));
3662     addrAeqB =
3663     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3664     sqlite3VdbeGoto(v, labelCmpr);
3665   }
3666 
3667   /* Generate code to handle the case of A>B
3668   */
3669   VdbeNoopComment((v, "A-gt-B subroutine"));
3670   addrAgtB = sqlite3VdbeCurrentAddr(v);
3671   if( op==TK_ALL || op==TK_UNION ){
3672     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3673   }
3674   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3675   sqlite3VdbeGoto(v, labelCmpr);
3676 
3677   /* This code runs once to initialize everything.
3678   */
3679   sqlite3VdbeJumpHere(v, addr1);
3680   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3681   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3682 
3683   /* Implement the main merge loop
3684   */
3685   sqlite3VdbeResolveLabel(v, labelCmpr);
3686   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3687   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3688                          (char*)pKeyMerge, P4_KEYINFO);
3689   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3690   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3691 
3692   /* Jump to the this point in order to terminate the query.
3693   */
3694   sqlite3VdbeResolveLabel(v, labelEnd);
3695 
3696   /* Make arrangements to free the 2nd and subsequent arms of the compound
3697   ** after the parse has finished */
3698   if( pSplit->pPrior ){
3699     sqlite3ParserAddCleanup(pParse,
3700        (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior);
3701   }
3702   pSplit->pPrior = pPrior;
3703   pPrior->pNext = pSplit;
3704   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3705   pPrior->pOrderBy = 0;
3706 
3707   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3708   **** subqueries ****/
3709   ExplainQueryPlanPop(pParse);
3710   return pParse->nErr!=0;
3711 }
3712 #endif
3713 
3714 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3715 
3716 /* An instance of the SubstContext object describes an substitution edit
3717 ** to be performed on a parse tree.
3718 **
3719 ** All references to columns in table iTable are to be replaced by corresponding
3720 ** expressions in pEList.
3721 **
3722 ** ## About "isOuterJoin":
3723 **
3724 ** The isOuterJoin column indicates that the replacement will occur into a
3725 ** position in the parent that NULL-able due to an OUTER JOIN.  Either the
3726 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3727 ** the left operands of a RIGHT JOIN.  In either case, we need to potentially
3728 ** bypass the substituted expression with OP_IfNullRow.
3729 **
3730 ** Suppose the original expression is an integer constant. Even though the table
3731 ** has the nullRow flag set, because the expression is an integer constant,
3732 ** it will not be NULLed out.  So instead, we insert an OP_IfNullRow opcode
3733 ** that checks to see if the nullRow flag is set on the table.  If the nullRow
3734 ** flag is set, then the value in the register is set to NULL and the original
3735 ** expression is bypassed.  If the nullRow flag is not set, then the original
3736 ** expression runs to populate the register.
3737 **
3738 ** Example where this is needed:
3739 **
3740 **      CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3741 **      CREATE TABLE t2(x INT UNIQUE);
3742 **
3743 **      SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3744 **
3745 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3746 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3747 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3748 ** when processing a non-matched row of the left.
3749 */
3750 typedef struct SubstContext {
3751   Parse *pParse;            /* The parsing context */
3752   int iTable;               /* Replace references to this table */
3753   int iNewTable;            /* New table number */
3754   int isOuterJoin;          /* Add TK_IF_NULL_ROW opcodes on each replacement */
3755   ExprList *pEList;         /* Replacement expressions */
3756   ExprList *pCList;         /* Collation sequences for replacement expr */
3757 } SubstContext;
3758 
3759 /* Forward Declarations */
3760 static void substExprList(SubstContext*, ExprList*);
3761 static void substSelect(SubstContext*, Select*, int);
3762 
3763 /*
3764 ** Scan through the expression pExpr.  Replace every reference to
3765 ** a column in table number iTable with a copy of the iColumn-th
3766 ** entry in pEList.  (But leave references to the ROWID column
3767 ** unchanged.)
3768 **
3769 ** This routine is part of the flattening procedure.  A subquery
3770 ** whose result set is defined by pEList appears as entry in the
3771 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3772 ** FORM clause entry is iTable.  This routine makes the necessary
3773 ** changes to pExpr so that it refers directly to the source table
3774 ** of the subquery rather the result set of the subquery.
3775 */
3776 static Expr *substExpr(
3777   SubstContext *pSubst,  /* Description of the substitution */
3778   Expr *pExpr            /* Expr in which substitution occurs */
3779 ){
3780   if( pExpr==0 ) return 0;
3781   if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3782    && pExpr->w.iJoin==pSubst->iTable
3783   ){
3784     testcase( ExprHasProperty(pExpr, EP_InnerON) );
3785     pExpr->w.iJoin = pSubst->iNewTable;
3786   }
3787   if( pExpr->op==TK_COLUMN
3788    && pExpr->iTable==pSubst->iTable
3789    && !ExprHasProperty(pExpr, EP_FixedCol)
3790   ){
3791 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3792     if( pExpr->iColumn<0 ){
3793       pExpr->op = TK_NULL;
3794     }else
3795 #endif
3796     {
3797       Expr *pNew;
3798       int iColumn = pExpr->iColumn;
3799       Expr *pCopy = pSubst->pEList->a[iColumn].pExpr;
3800       Expr ifNullRow;
3801       assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr );
3802       assert( pExpr->pRight==0 );
3803       if( sqlite3ExprIsVector(pCopy) ){
3804         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3805       }else{
3806         sqlite3 *db = pSubst->pParse->db;
3807         if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){
3808           memset(&ifNullRow, 0, sizeof(ifNullRow));
3809           ifNullRow.op = TK_IF_NULL_ROW;
3810           ifNullRow.pLeft = pCopy;
3811           ifNullRow.iTable = pSubst->iNewTable;
3812           ifNullRow.iColumn = -99;
3813           ifNullRow.flags = EP_IfNullRow;
3814           pCopy = &ifNullRow;
3815         }
3816         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3817         pNew = sqlite3ExprDup(db, pCopy, 0);
3818         if( db->mallocFailed ){
3819           sqlite3ExprDelete(db, pNew);
3820           return pExpr;
3821         }
3822         if( pSubst->isOuterJoin ){
3823           ExprSetProperty(pNew, EP_CanBeNull);
3824         }
3825         if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3826           sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3827                              pExpr->flags & (EP_OuterON|EP_InnerON));
3828         }
3829         sqlite3ExprDelete(db, pExpr);
3830         pExpr = pNew;
3831         if( pExpr->op==TK_TRUEFALSE ){
3832           pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3833           pExpr->op = TK_INTEGER;
3834           ExprSetProperty(pExpr, EP_IntValue);
3835         }
3836 
3837         /* Ensure that the expression now has an implicit collation sequence,
3838         ** just as it did when it was a column of a view or sub-query. */
3839         {
3840           CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3841           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse,
3842                 pSubst->pCList->a[iColumn].pExpr
3843           );
3844           if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){
3845             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3846                 (pColl ? pColl->zName : "BINARY")
3847             );
3848           }
3849         }
3850         ExprClearProperty(pExpr, EP_Collate);
3851       }
3852     }
3853   }else{
3854     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3855       pExpr->iTable = pSubst->iNewTable;
3856     }
3857     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3858     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3859     if( ExprUseXSelect(pExpr) ){
3860       substSelect(pSubst, pExpr->x.pSelect, 1);
3861     }else{
3862       substExprList(pSubst, pExpr->x.pList);
3863     }
3864 #ifndef SQLITE_OMIT_WINDOWFUNC
3865     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3866       Window *pWin = pExpr->y.pWin;
3867       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3868       substExprList(pSubst, pWin->pPartition);
3869       substExprList(pSubst, pWin->pOrderBy);
3870     }
3871 #endif
3872   }
3873   return pExpr;
3874 }
3875 static void substExprList(
3876   SubstContext *pSubst, /* Description of the substitution */
3877   ExprList *pList       /* List to scan and in which to make substitutes */
3878 ){
3879   int i;
3880   if( pList==0 ) return;
3881   for(i=0; i<pList->nExpr; i++){
3882     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3883   }
3884 }
3885 static void substSelect(
3886   SubstContext *pSubst, /* Description of the substitution */
3887   Select *p,            /* SELECT statement in which to make substitutions */
3888   int doPrior           /* Do substitutes on p->pPrior too */
3889 ){
3890   SrcList *pSrc;
3891   SrcItem *pItem;
3892   int i;
3893   if( !p ) return;
3894   do{
3895     substExprList(pSubst, p->pEList);
3896     substExprList(pSubst, p->pGroupBy);
3897     substExprList(pSubst, p->pOrderBy);
3898     p->pHaving = substExpr(pSubst, p->pHaving);
3899     p->pWhere = substExpr(pSubst, p->pWhere);
3900     pSrc = p->pSrc;
3901     assert( pSrc!=0 );
3902     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3903       substSelect(pSubst, pItem->pSelect, 1);
3904       if( pItem->fg.isTabFunc ){
3905         substExprList(pSubst, pItem->u1.pFuncArg);
3906       }
3907     }
3908   }while( doPrior && (p = p->pPrior)!=0 );
3909 }
3910 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3911 
3912 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3913 /*
3914 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3915 ** clause of that SELECT.
3916 **
3917 ** This routine scans the entire SELECT statement and recomputes the
3918 ** pSrcItem->colUsed mask.
3919 */
3920 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3921   SrcItem *pItem;
3922   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3923   pItem = pWalker->u.pSrcItem;
3924   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3925   if( pExpr->iColumn<0 ) return WRC_Continue;
3926   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3927   return WRC_Continue;
3928 }
3929 static void recomputeColumnsUsed(
3930   Select *pSelect,                 /* The complete SELECT statement */
3931   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3932 ){
3933   Walker w;
3934   if( NEVER(pSrcItem->pTab==0) ) return;
3935   memset(&w, 0, sizeof(w));
3936   w.xExprCallback = recomputeColumnsUsedExpr;
3937   w.xSelectCallback = sqlite3SelectWalkNoop;
3938   w.u.pSrcItem = pSrcItem;
3939   pSrcItem->colUsed = 0;
3940   sqlite3WalkSelect(&w, pSelect);
3941 }
3942 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3943 
3944 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3945 /*
3946 ** Assign new cursor numbers to each of the items in pSrc. For each
3947 ** new cursor number assigned, set an entry in the aCsrMap[] array
3948 ** to map the old cursor number to the new:
3949 **
3950 **     aCsrMap[iOld+1] = iNew;
3951 **
3952 ** The array is guaranteed by the caller to be large enough for all
3953 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3954 **
3955 ** If pSrc contains any sub-selects, call this routine recursively
3956 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3957 */
3958 static void srclistRenumberCursors(
3959   Parse *pParse,                  /* Parse context */
3960   int *aCsrMap,                   /* Array to store cursor mappings in */
3961   SrcList *pSrc,                  /* FROM clause to renumber */
3962   int iExcept                     /* FROM clause item to skip */
3963 ){
3964   int i;
3965   SrcItem *pItem;
3966   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3967     if( i!=iExcept ){
3968       Select *p;
3969       assert( pItem->iCursor < aCsrMap[0] );
3970       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3971         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3972       }
3973       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3974       for(p=pItem->pSelect; p; p=p->pPrior){
3975         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3976       }
3977     }
3978   }
3979 }
3980 
3981 /*
3982 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3983 */
3984 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3985   int *aCsrMap = pWalker->u.aiCol;
3986   int iCsr = *piCursor;
3987   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3988     *piCursor = aCsrMap[iCsr+1];
3989   }
3990 }
3991 
3992 /*
3993 ** Expression walker callback used by renumberCursors() to update
3994 ** Expr objects to match newly assigned cursor numbers.
3995 */
3996 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3997   int op = pExpr->op;
3998   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3999     renumberCursorDoMapping(pWalker, &pExpr->iTable);
4000   }
4001   if( ExprHasProperty(pExpr, EP_OuterON) ){
4002     renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
4003   }
4004   return WRC_Continue;
4005 }
4006 
4007 /*
4008 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4009 ** of the SELECT statement passed as the second argument, and to each
4010 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4011 ** Except, do not assign a new cursor number to the iExcept'th element in
4012 ** the FROM clause of (*p). Update all expressions and other references
4013 ** to refer to the new cursor numbers.
4014 **
4015 ** Argument aCsrMap is an array that may be used for temporary working
4016 ** space. Two guarantees are made by the caller:
4017 **
4018 **   * the array is larger than the largest cursor number used within the
4019 **     select statement passed as an argument, and
4020 **
4021 **   * the array entries for all cursor numbers that do *not* appear in
4022 **     FROM clauses of the select statement as described above are
4023 **     initialized to zero.
4024 */
4025 static void renumberCursors(
4026   Parse *pParse,                  /* Parse context */
4027   Select *p,                      /* Select to renumber cursors within */
4028   int iExcept,                    /* FROM clause item to skip */
4029   int *aCsrMap                    /* Working space */
4030 ){
4031   Walker w;
4032   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4033   memset(&w, 0, sizeof(w));
4034   w.u.aiCol = aCsrMap;
4035   w.xExprCallback = renumberCursorsCb;
4036   w.xSelectCallback = sqlite3SelectWalkNoop;
4037   sqlite3WalkSelect(&w, p);
4038 }
4039 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4040 
4041 /*
4042 ** If pSel is not part of a compound SELECT, return a pointer to its
4043 ** expression list. Otherwise, return a pointer to the expression list
4044 ** of the leftmost SELECT in the compound.
4045 */
4046 static ExprList *findLeftmostExprlist(Select *pSel){
4047   while( pSel->pPrior ){
4048     pSel = pSel->pPrior;
4049   }
4050   return pSel->pEList;
4051 }
4052 
4053 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4054 /*
4055 ** This routine attempts to flatten subqueries as a performance optimization.
4056 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4057 **
4058 ** To understand the concept of flattening, consider the following
4059 ** query:
4060 **
4061 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4062 **
4063 ** The default way of implementing this query is to execute the
4064 ** subquery first and store the results in a temporary table, then
4065 ** run the outer query on that temporary table.  This requires two
4066 ** passes over the data.  Furthermore, because the temporary table
4067 ** has no indices, the WHERE clause on the outer query cannot be
4068 ** optimized.
4069 **
4070 ** This routine attempts to rewrite queries such as the above into
4071 ** a single flat select, like this:
4072 **
4073 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4074 **
4075 ** The code generated for this simplification gives the same result
4076 ** but only has to scan the data once.  And because indices might
4077 ** exist on the table t1, a complete scan of the data might be
4078 ** avoided.
4079 **
4080 ** Flattening is subject to the following constraints:
4081 **
4082 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
4083 **        The subquery and the outer query cannot both be aggregates.
4084 **
4085 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
4086 **        (2) If the subquery is an aggregate then
4087 **        (2a) the outer query must not be a join and
4088 **        (2b) the outer query must not use subqueries
4089 **             other than the one FROM-clause subquery that is a candidate
4090 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
4091 **             from 2015-02-09.)
4092 **
4093 **   (3)  If the subquery is the right operand of a LEFT JOIN then
4094 **        (3a) the subquery may not be a join and
4095 **        (3b) the FROM clause of the subquery may not contain a virtual
4096 **             table and
4097 **        (**) Was: "The outer query may not have a GROUP BY." This case
4098 **             is now managed correctly
4099 **        (3d) the outer query may not be DISTINCT.
4100 **        See also (26) for restrictions on RIGHT JOIN.
4101 **
4102 **   (4)  The subquery can not be DISTINCT.
4103 **
4104 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
4105 **        sub-queries that were excluded from this optimization. Restriction
4106 **        (4) has since been expanded to exclude all DISTINCT subqueries.
4107 **
4108 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4109 **        If the subquery is aggregate, the outer query may not be DISTINCT.
4110 **
4111 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
4112 **        A FROM clause, consider adding a FROM clause with the special
4113 **        table sqlite_once that consists of a single row containing a
4114 **        single NULL.
4115 **
4116 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
4117 **
4118 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
4119 **
4120 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
4121 **        accidently carried the comment forward until 2014-09-15.  Original
4122 **        constraint: "If the subquery is aggregate then the outer query
4123 **        may not use LIMIT."
4124 **
4125 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
4126 **
4127 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
4128 **        a separate restriction deriving from ticket #350.
4129 **
4130 **  (13)  The subquery and outer query may not both use LIMIT.
4131 **
4132 **  (14)  The subquery may not use OFFSET.
4133 **
4134 **  (15)  If the outer query is part of a compound select, then the
4135 **        subquery may not use LIMIT.
4136 **        (See ticket #2339 and ticket [02a8e81d44]).
4137 **
4138 **  (16)  If the outer query is aggregate, then the subquery may not
4139 **        use ORDER BY.  (Ticket #2942)  This used to not matter
4140 **        until we introduced the group_concat() function.
4141 **
4142 **  (17)  If the subquery is a compound select, then
4143 **        (17a) all compound operators must be a UNION ALL, and
4144 **        (17b) no terms within the subquery compound may be aggregate
4145 **              or DISTINCT, and
4146 **        (17c) every term within the subquery compound must have a FROM clause
4147 **        (17d) the outer query may not be
4148 **              (17d1) aggregate, or
4149 **              (17d2) DISTINCT
4150 **        (17e) the subquery may not contain window functions, and
4151 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
4152 **        (17g) either the subquery is the first element of the outer
4153 **              query or there are no RIGHT or FULL JOINs in any arm
4154 **              of the subquery.  (This is a duplicate of condition (27b).)
4155 **        (17h) The corresponding result set expressions in all arms of the
4156 **              compound must have the same affinity.
4157 **
4158 **        The parent and sub-query may contain WHERE clauses. Subject to
4159 **        rules (11), (13) and (14), they may also contain ORDER BY,
4160 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
4161 **        operator other than UNION ALL because all the other compound
4162 **        operators have an implied DISTINCT which is disallowed by
4163 **        restriction (4).
4164 **
4165 **        Also, each component of the sub-query must return the same number
4166 **        of result columns. This is actually a requirement for any compound
4167 **        SELECT statement, but all the code here does is make sure that no
4168 **        such (illegal) sub-query is flattened. The caller will detect the
4169 **        syntax error and return a detailed message.
4170 **
4171 **  (18)  If the sub-query is a compound select, then all terms of the
4172 **        ORDER BY clause of the parent must be copies of a term returned
4173 **        by the parent query.
4174 **
4175 **  (19)  If the subquery uses LIMIT then the outer query may not
4176 **        have a WHERE clause.
4177 **
4178 **  (20)  If the sub-query is a compound select, then it must not use
4179 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
4180 **        somewhat by saying that the terms of the ORDER BY clause must
4181 **        appear as unmodified result columns in the outer query.  But we
4182 **        have other optimizations in mind to deal with that case.
4183 **
4184 **  (21)  If the subquery uses LIMIT then the outer query may not be
4185 **        DISTINCT.  (See ticket [752e1646fc]).
4186 **
4187 **  (22)  The subquery may not be a recursive CTE.
4188 **
4189 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
4190 **        a compound query.  This restriction is because transforming the
4191 **        parent to a compound query confuses the code that handles
4192 **        recursive queries in multiSelect().
4193 **
4194 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4195 **        The subquery may not be an aggregate that uses the built-in min() or
4196 **        or max() functions.  (Without this restriction, a query like:
4197 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4198 **        return the value X for which Y was maximal.)
4199 **
4200 **  (25)  If either the subquery or the parent query contains a window
4201 **        function in the select list or ORDER BY clause, flattening
4202 **        is not attempted.
4203 **
4204 **  (26)  The subquery may not be the right operand of a RIGHT JOIN.
4205 **        See also (3) for restrictions on LEFT JOIN.
4206 **
4207 **  (27)  The subquery may not contain a FULL or RIGHT JOIN unless it
4208 **        is the first element of the parent query.  Two subcases:
4209 **        (27a) the subquery is not a compound query.
4210 **        (27b) the subquery is a compound query and the RIGHT JOIN occurs
4211 **              in any arm of the compound query.  (See also (17g).)
4212 **
4213 **  (28)  The subquery is not a MATERIALIZED CTE.
4214 **
4215 **
4216 ** In this routine, the "p" parameter is a pointer to the outer query.
4217 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4218 ** uses aggregates.
4219 **
4220 ** If flattening is not attempted, this routine is a no-op and returns 0.
4221 ** If flattening is attempted this routine returns 1.
4222 **
4223 ** All of the expression analysis must occur on both the outer query and
4224 ** the subquery before this routine runs.
4225 */
4226 static int flattenSubquery(
4227   Parse *pParse,       /* Parsing context */
4228   Select *p,           /* The parent or outer SELECT statement */
4229   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4230   int isAgg            /* True if outer SELECT uses aggregate functions */
4231 ){
4232   const char *zSavedAuthContext = pParse->zAuthContext;
4233   Select *pParent;    /* Current UNION ALL term of the other query */
4234   Select *pSub;       /* The inner query or "subquery" */
4235   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4236   SrcList *pSrc;      /* The FROM clause of the outer query */
4237   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4238   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4239   int iNewParent = -1;/* Replacement table for iParent */
4240   int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4241   int i;              /* Loop counter */
4242   Expr *pWhere;                    /* The WHERE clause */
4243   SrcItem *pSubitem;               /* The subquery */
4244   sqlite3 *db = pParse->db;
4245   Walker w;                        /* Walker to persist agginfo data */
4246   int *aCsrMap = 0;
4247 
4248   /* Check to see if flattening is permitted.  Return 0 if not.
4249   */
4250   assert( p!=0 );
4251   assert( p->pPrior==0 );
4252   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4253   pSrc = p->pSrc;
4254   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4255   pSubitem = &pSrc->a[iFrom];
4256   iParent = pSubitem->iCursor;
4257   pSub = pSubitem->pSelect;
4258   assert( pSub!=0 );
4259 
4260 #ifndef SQLITE_OMIT_WINDOWFUNC
4261   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4262 #endif
4263 
4264   pSubSrc = pSub->pSrc;
4265   assert( pSubSrc );
4266   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4267   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4268   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4269   ** became arbitrary expressions, we were forced to add restrictions (13)
4270   ** and (14). */
4271   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4272   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4273   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4274     return 0;                                            /* Restriction (15) */
4275   }
4276   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4277   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4278   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4279      return 0;         /* Restrictions (8)(9) */
4280   }
4281   if( p->pOrderBy && pSub->pOrderBy ){
4282      return 0;                                           /* Restriction (11) */
4283   }
4284   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4285   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4286   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4287      return 0;         /* Restriction (21) */
4288   }
4289   if( pSub->selFlags & (SF_Recursive) ){
4290     return 0; /* Restrictions (22) */
4291   }
4292 
4293   /*
4294   ** If the subquery is the right operand of a LEFT JOIN, then the
4295   ** subquery may not be a join itself (3a). Example of why this is not
4296   ** allowed:
4297   **
4298   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4299   **
4300   ** If we flatten the above, we would get
4301   **
4302   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4303   **
4304   ** which is not at all the same thing.
4305   **
4306   ** See also tickets #306, #350, and #3300.
4307   */
4308   if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4309     if( pSubSrc->nSrc>1                        /* (3a) */
4310      || IsVirtual(pSubSrc->a[0].pTab)          /* (3b) */
4311      || (p->selFlags & SF_Distinct)!=0         /* (3d) */
4312      || (pSubitem->fg.jointype & JT_RIGHT)!=0  /* (26) */
4313     ){
4314       return 0;
4315     }
4316     isOuterJoin = 1;
4317   }
4318 
4319   assert( pSubSrc->nSrc>0 );  /* True by restriction (7) */
4320   if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4321     return 0;   /* Restriction (27a) */
4322   }
4323   if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
4324     return 0;       /* (28) */
4325   }
4326 
4327   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4328   ** use only the UNION ALL operator. And none of the simple select queries
4329   ** that make up the compound SELECT are allowed to be aggregate or distinct
4330   ** queries.
4331   */
4332   if( pSub->pPrior ){
4333     int ii;
4334     if( pSub->pOrderBy ){
4335       return 0;  /* Restriction (20) */
4336     }
4337     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4338       return 0; /* (17d1), (17d2), or (17f) */
4339     }
4340     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4341       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4342       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4343       assert( pSub->pSrc!=0 );
4344       assert( (pSub->selFlags & SF_Recursive)==0 );
4345       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4346       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4347        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4348        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4349 #ifndef SQLITE_OMIT_WINDOWFUNC
4350        || pSub1->pWin                                          /* (17e) */
4351 #endif
4352       ){
4353         return 0;
4354       }
4355       if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4356         /* Without this restriction, the JT_LTORJ flag would end up being
4357         ** omitted on left-hand tables of the right join that is being
4358         ** flattened. */
4359         return 0;   /* Restrictions (17g), (27b) */
4360       }
4361       testcase( pSub1->pSrc->nSrc>1 );
4362     }
4363 
4364     /* Restriction (18). */
4365     if( p->pOrderBy ){
4366       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4367         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4368       }
4369     }
4370 
4371     /* Restriction (23) */
4372     if( (p->selFlags & SF_Recursive) ) return 0;
4373 
4374     /* Restriction (17h) */
4375     for(ii=0; ii<pSub->pEList->nExpr; ii++){
4376       char aff;
4377       assert( pSub->pEList->a[ii].pExpr!=0 );
4378       aff = sqlite3ExprAffinity(pSub->pEList->a[ii].pExpr);
4379       for(pSub1=pSub->pPrior; pSub1; pSub1=pSub1->pPrior){
4380         assert( pSub1->pEList!=0 );
4381         assert( pSub1->pEList->nExpr>ii );
4382         assert( pSub1->pEList->a[ii].pExpr!=0 );
4383         if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){
4384           return 0;
4385         }
4386       }
4387     }
4388 
4389     if( pSrc->nSrc>1 ){
4390       if( pParse->nSelect>500 ) return 0;
4391       if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4392       aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4393       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4394     }
4395   }
4396 
4397   /***** If we reach this point, flattening is permitted. *****/
4398   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4399                    pSub->selId, pSub, iFrom));
4400 
4401   /* Authorize the subquery */
4402   pParse->zAuthContext = pSubitem->zName;
4403   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4404   testcase( i==SQLITE_DENY );
4405   pParse->zAuthContext = zSavedAuthContext;
4406 
4407   /* Delete the transient structures associated with thesubquery */
4408   pSub1 = pSubitem->pSelect;
4409   sqlite3DbFree(db, pSubitem->zDatabase);
4410   sqlite3DbFree(db, pSubitem->zName);
4411   sqlite3DbFree(db, pSubitem->zAlias);
4412   pSubitem->zDatabase = 0;
4413   pSubitem->zName = 0;
4414   pSubitem->zAlias = 0;
4415   pSubitem->pSelect = 0;
4416   assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4417 
4418   /* If the sub-query is a compound SELECT statement, then (by restrictions
4419   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4420   ** be of the form:
4421   **
4422   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4423   **
4424   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4425   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4426   ** OFFSET clauses and joins them to the left-hand-side of the original
4427   ** using UNION ALL operators. In this case N is the number of simple
4428   ** select statements in the compound sub-query.
4429   **
4430   ** Example:
4431   **
4432   **     SELECT a+1 FROM (
4433   **        SELECT x FROM tab
4434   **        UNION ALL
4435   **        SELECT y FROM tab
4436   **        UNION ALL
4437   **        SELECT abs(z*2) FROM tab2
4438   **     ) WHERE a!=5 ORDER BY 1
4439   **
4440   ** Transformed into:
4441   **
4442   **     SELECT x+1 FROM tab WHERE x+1!=5
4443   **     UNION ALL
4444   **     SELECT y+1 FROM tab WHERE y+1!=5
4445   **     UNION ALL
4446   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4447   **     ORDER BY 1
4448   **
4449   ** We call this the "compound-subquery flattening".
4450   */
4451   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4452     Select *pNew;
4453     ExprList *pOrderBy = p->pOrderBy;
4454     Expr *pLimit = p->pLimit;
4455     Select *pPrior = p->pPrior;
4456     Table *pItemTab = pSubitem->pTab;
4457     pSubitem->pTab = 0;
4458     p->pOrderBy = 0;
4459     p->pPrior = 0;
4460     p->pLimit = 0;
4461     pNew = sqlite3SelectDup(db, p, 0);
4462     p->pLimit = pLimit;
4463     p->pOrderBy = pOrderBy;
4464     p->op = TK_ALL;
4465     pSubitem->pTab = pItemTab;
4466     if( pNew==0 ){
4467       p->pPrior = pPrior;
4468     }else{
4469       pNew->selId = ++pParse->nSelect;
4470       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4471         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4472       }
4473       pNew->pPrior = pPrior;
4474       if( pPrior ) pPrior->pNext = pNew;
4475       pNew->pNext = p;
4476       p->pPrior = pNew;
4477       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4478                               " creates %u as peer\n",pNew->selId));
4479     }
4480     assert( pSubitem->pSelect==0 );
4481   }
4482   sqlite3DbFree(db, aCsrMap);
4483   if( db->mallocFailed ){
4484     pSubitem->pSelect = pSub1;
4485     return 1;
4486   }
4487 
4488   /* Defer deleting the Table object associated with the
4489   ** subquery until code generation is
4490   ** complete, since there may still exist Expr.pTab entries that
4491   ** refer to the subquery even after flattening.  Ticket #3346.
4492   **
4493   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4494   */
4495   if( ALWAYS(pSubitem->pTab!=0) ){
4496     Table *pTabToDel = pSubitem->pTab;
4497     if( pTabToDel->nTabRef==1 ){
4498       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4499       sqlite3ParserAddCleanup(pToplevel,
4500          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4501          pTabToDel);
4502       testcase( pToplevel->earlyCleanup );
4503     }else{
4504       pTabToDel->nTabRef--;
4505     }
4506     pSubitem->pTab = 0;
4507   }
4508 
4509   /* The following loop runs once for each term in a compound-subquery
4510   ** flattening (as described above).  If we are doing a different kind
4511   ** of flattening - a flattening other than a compound-subquery flattening -
4512   ** then this loop only runs once.
4513   **
4514   ** This loop moves all of the FROM elements of the subquery into the
4515   ** the FROM clause of the outer query.  Before doing this, remember
4516   ** the cursor number for the original outer query FROM element in
4517   ** iParent.  The iParent cursor will never be used.  Subsequent code
4518   ** will scan expressions looking for iParent references and replace
4519   ** those references with expressions that resolve to the subquery FROM
4520   ** elements we are now copying in.
4521   */
4522   pSub = pSub1;
4523   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4524     int nSubSrc;
4525     u8 jointype = 0;
4526     u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4527     assert( pSub!=0 );
4528     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4529     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4530     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4531 
4532     if( pParent==p ){
4533       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4534     }
4535 
4536     /* The subquery uses a single slot of the FROM clause of the outer
4537     ** query.  If the subquery has more than one element in its FROM clause,
4538     ** then expand the outer query to make space for it to hold all elements
4539     ** of the subquery.
4540     **
4541     ** Example:
4542     **
4543     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4544     **
4545     ** The outer query has 3 slots in its FROM clause.  One slot of the
4546     ** outer query (the middle slot) is used by the subquery.  The next
4547     ** block of code will expand the outer query FROM clause to 4 slots.
4548     ** The middle slot is expanded to two slots in order to make space
4549     ** for the two elements in the FROM clause of the subquery.
4550     */
4551     if( nSubSrc>1 ){
4552       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4553       if( pSrc==0 ) break;
4554       pParent->pSrc = pSrc;
4555     }
4556 
4557     /* Transfer the FROM clause terms from the subquery into the
4558     ** outer query.
4559     */
4560     for(i=0; i<nSubSrc; i++){
4561       SrcItem *pItem = &pSrc->a[i+iFrom];
4562       if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4563       assert( pItem->fg.isTabFunc==0 );
4564       *pItem = pSubSrc->a[i];
4565       pItem->fg.jointype |= ltorj;
4566       iNewParent = pSubSrc->a[i].iCursor;
4567       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4568     }
4569     pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4570     pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4571 
4572     /* Now begin substituting subquery result set expressions for
4573     ** references to the iParent in the outer query.
4574     **
4575     ** Example:
4576     **
4577     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4578     **   \                     \_____________ subquery __________/          /
4579     **    \_____________________ outer query ______________________________/
4580     **
4581     ** We look at every expression in the outer query and every place we see
4582     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4583     */
4584     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4585       /* At this point, any non-zero iOrderByCol values indicate that the
4586       ** ORDER BY column expression is identical to the iOrderByCol'th
4587       ** expression returned by SELECT statement pSub. Since these values
4588       ** do not necessarily correspond to columns in SELECT statement pParent,
4589       ** zero them before transfering the ORDER BY clause.
4590       **
4591       ** Not doing this may cause an error if a subsequent call to this
4592       ** function attempts to flatten a compound sub-query into pParent
4593       ** (the only way this can happen is if the compound sub-query is
4594       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4595       ExprList *pOrderBy = pSub->pOrderBy;
4596       for(i=0; i<pOrderBy->nExpr; i++){
4597         pOrderBy->a[i].u.x.iOrderByCol = 0;
4598       }
4599       assert( pParent->pOrderBy==0 );
4600       pParent->pOrderBy = pOrderBy;
4601       pSub->pOrderBy = 0;
4602     }
4603     pWhere = pSub->pWhere;
4604     pSub->pWhere = 0;
4605     if( isOuterJoin>0 ){
4606       sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4607     }
4608     if( pWhere ){
4609       if( pParent->pWhere ){
4610         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4611       }else{
4612         pParent->pWhere = pWhere;
4613       }
4614     }
4615     if( db->mallocFailed==0 ){
4616       SubstContext x;
4617       x.pParse = pParse;
4618       x.iTable = iParent;
4619       x.iNewTable = iNewParent;
4620       x.isOuterJoin = isOuterJoin;
4621       x.pEList = pSub->pEList;
4622       x.pCList = findLeftmostExprlist(pSub);
4623       substSelect(&x, pParent, 0);
4624     }
4625 
4626     /* The flattened query is a compound if either the inner or the
4627     ** outer query is a compound. */
4628     pParent->selFlags |= pSub->selFlags & SF_Compound;
4629     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4630 
4631     /*
4632     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4633     **
4634     ** One is tempted to try to add a and b to combine the limits.  But this
4635     ** does not work if either limit is negative.
4636     */
4637     if( pSub->pLimit ){
4638       pParent->pLimit = pSub->pLimit;
4639       pSub->pLimit = 0;
4640     }
4641 
4642     /* Recompute the SrcItem.colUsed masks for the flattened
4643     ** tables. */
4644     for(i=0; i<nSubSrc; i++){
4645       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4646     }
4647   }
4648 
4649   /* Finially, delete what is left of the subquery and return
4650   ** success.
4651   */
4652   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4653   sqlite3WalkSelect(&w,pSub1);
4654   sqlite3SelectDelete(db, pSub1);
4655 
4656 #if TREETRACE_ENABLED
4657   if( sqlite3TreeTrace & 0x100 ){
4658     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4659     sqlite3TreeViewSelect(0, p, 0);
4660   }
4661 #endif
4662 
4663   return 1;
4664 }
4665 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4666 
4667 /*
4668 ** A structure to keep track of all of the column values that are fixed to
4669 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4670 */
4671 typedef struct WhereConst WhereConst;
4672 struct WhereConst {
4673   Parse *pParse;   /* Parsing context */
4674   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4675   int nConst;      /* Number for COLUMN=CONSTANT terms */
4676   int nChng;       /* Number of times a constant is propagated */
4677   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4678   u32 mExcludeOn;  /* Which ON expressions to exclude from considertion.
4679                    ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4680   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4681 };
4682 
4683 /*
4684 ** Add a new entry to the pConst object.  Except, do not add duplicate
4685 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4686 **
4687 ** The caller guarantees the pColumn is a column and pValue is a constant.
4688 ** This routine has to do some additional checks before completing the
4689 ** insert.
4690 */
4691 static void constInsert(
4692   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4693   Expr *pColumn,       /* The COLUMN part of the constraint */
4694   Expr *pValue,        /* The VALUE part of the constraint */
4695   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4696 ){
4697   int i;
4698   assert( pColumn->op==TK_COLUMN );
4699   assert( sqlite3ExprIsConstant(pValue) );
4700 
4701   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4702   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4703   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4704     return;
4705   }
4706 
4707   /* 2018-10-25 ticket [cf5ed20f]
4708   ** Make sure the same pColumn is not inserted more than once */
4709   for(i=0; i<pConst->nConst; i++){
4710     const Expr *pE2 = pConst->apExpr[i*2];
4711     assert( pE2->op==TK_COLUMN );
4712     if( pE2->iTable==pColumn->iTable
4713      && pE2->iColumn==pColumn->iColumn
4714     ){
4715       return;  /* Already present.  Return without doing anything. */
4716     }
4717   }
4718   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4719     pConst->bHasAffBlob = 1;
4720   }
4721 
4722   pConst->nConst++;
4723   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4724                          pConst->nConst*2*sizeof(Expr*));
4725   if( pConst->apExpr==0 ){
4726     pConst->nConst = 0;
4727   }else{
4728     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4729     pConst->apExpr[pConst->nConst*2-1] = pValue;
4730   }
4731 }
4732 
4733 /*
4734 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4735 ** is a constant expression and where the term must be true because it
4736 ** is part of the AND-connected terms of the expression.  For each term
4737 ** found, add it to the pConst structure.
4738 */
4739 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4740   Expr *pRight, *pLeft;
4741   if( NEVER(pExpr==0) ) return;
4742   if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4743     testcase( ExprHasProperty(pExpr, EP_OuterON) );
4744     testcase( ExprHasProperty(pExpr, EP_InnerON) );
4745     return;
4746   }
4747   if( pExpr->op==TK_AND ){
4748     findConstInWhere(pConst, pExpr->pRight);
4749     findConstInWhere(pConst, pExpr->pLeft);
4750     return;
4751   }
4752   if( pExpr->op!=TK_EQ ) return;
4753   pRight = pExpr->pRight;
4754   pLeft = pExpr->pLeft;
4755   assert( pRight!=0 );
4756   assert( pLeft!=0 );
4757   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4758     constInsert(pConst,pRight,pLeft,pExpr);
4759   }
4760   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4761     constInsert(pConst,pLeft,pRight,pExpr);
4762   }
4763 }
4764 
4765 /*
4766 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4767 **
4768 ** Argument pExpr is a candidate expression to be replaced by a value. If
4769 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4770 ** then overwrite it with the corresponding value. Except, do not do so
4771 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4772 ** is SQLITE_AFF_BLOB.
4773 */
4774 static int propagateConstantExprRewriteOne(
4775   WhereConst *pConst,
4776   Expr *pExpr,
4777   int bIgnoreAffBlob
4778 ){
4779   int i;
4780   if( pConst->pOomFault[0] ) return WRC_Prune;
4781   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4782   if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4783     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4784     testcase( ExprHasProperty(pExpr, EP_OuterON) );
4785     testcase( ExprHasProperty(pExpr, EP_InnerON) );
4786     return WRC_Continue;
4787   }
4788   for(i=0; i<pConst->nConst; i++){
4789     Expr *pColumn = pConst->apExpr[i*2];
4790     if( pColumn==pExpr ) continue;
4791     if( pColumn->iTable!=pExpr->iTable ) continue;
4792     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4793     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4794       break;
4795     }
4796     /* A match is found.  Add the EP_FixedCol property */
4797     pConst->nChng++;
4798     ExprClearProperty(pExpr, EP_Leaf);
4799     ExprSetProperty(pExpr, EP_FixedCol);
4800     assert( pExpr->pLeft==0 );
4801     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4802     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4803     break;
4804   }
4805   return WRC_Prune;
4806 }
4807 
4808 /*
4809 ** This is a Walker expression callback. pExpr is a node from the WHERE
4810 ** clause of a SELECT statement. This function examines pExpr to see if
4811 ** any substitutions based on the contents of pWalker->u.pConst should
4812 ** be made to pExpr or its immediate children.
4813 **
4814 ** A substitution is made if:
4815 **
4816 **   + pExpr is a column with an affinity other than BLOB that matches
4817 **     one of the columns in pWalker->u.pConst, or
4818 **
4819 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4820 **     uses an affinity other than TEXT and one of its immediate
4821 **     children is a column that matches one of the columns in
4822 **     pWalker->u.pConst.
4823 */
4824 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4825   WhereConst *pConst = pWalker->u.pConst;
4826   assert( TK_GT==TK_EQ+1 );
4827   assert( TK_LE==TK_EQ+2 );
4828   assert( TK_LT==TK_EQ+3 );
4829   assert( TK_GE==TK_EQ+4 );
4830   if( pConst->bHasAffBlob ){
4831     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4832      || pExpr->op==TK_IS
4833     ){
4834       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4835       if( pConst->pOomFault[0] ) return WRC_Prune;
4836       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4837         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4838       }
4839     }
4840   }
4841   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4842 }
4843 
4844 /*
4845 ** The WHERE-clause constant propagation optimization.
4846 **
4847 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4848 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4849 ** part of a ON clause from a LEFT JOIN, then throughout the query
4850 ** replace all other occurrences of COLUMN with CONSTANT.
4851 **
4852 ** For example, the query:
4853 **
4854 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4855 **
4856 ** Is transformed into
4857 **
4858 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4859 **
4860 ** Return true if any transformations where made and false if not.
4861 **
4862 ** Implementation note:  Constant propagation is tricky due to affinity
4863 ** and collating sequence interactions.  Consider this example:
4864 **
4865 **    CREATE TABLE t1(a INT,b TEXT);
4866 **    INSERT INTO t1 VALUES(123,'0123');
4867 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4868 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4869 **
4870 ** The two SELECT statements above should return different answers.  b=a
4871 ** is alway true because the comparison uses numeric affinity, but b=123
4872 ** is false because it uses text affinity and '0123' is not the same as '123'.
4873 ** To work around this, the expression tree is not actually changed from
4874 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4875 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4876 ** routines know to generate the constant "123" instead of looking up the
4877 ** column value.  Also, to avoid collation problems, this optimization is
4878 ** only attempted if the "a=123" term uses the default BINARY collation.
4879 **
4880 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4881 **
4882 **    CREATE TABLE t1(x);
4883 **    INSERT INTO t1 VALUES(10.0);
4884 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4885 **
4886 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4887 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4888 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4889 ** resulting in a false positive.  To avoid this, constant propagation for
4890 ** columns with BLOB affinity is only allowed if the constant is used with
4891 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4892 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4893 ** for details.
4894 */
4895 static int propagateConstants(
4896   Parse *pParse,   /* The parsing context */
4897   Select *p        /* The query in which to propagate constants */
4898 ){
4899   WhereConst x;
4900   Walker w;
4901   int nChng = 0;
4902   x.pParse = pParse;
4903   x.pOomFault = &pParse->db->mallocFailed;
4904   do{
4905     x.nConst = 0;
4906     x.nChng = 0;
4907     x.apExpr = 0;
4908     x.bHasAffBlob = 0;
4909     if( ALWAYS(p->pSrc!=0)
4910      && p->pSrc->nSrc>0
4911      && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
4912     ){
4913       /* Do not propagate constants on any ON clause if there is a
4914       ** RIGHT JOIN anywhere in the query */
4915       x.mExcludeOn = EP_InnerON | EP_OuterON;
4916     }else{
4917       /* Do not propagate constants through the ON clause of a LEFT JOIN */
4918       x.mExcludeOn = EP_OuterON;
4919     }
4920     findConstInWhere(&x, p->pWhere);
4921     if( x.nConst ){
4922       memset(&w, 0, sizeof(w));
4923       w.pParse = pParse;
4924       w.xExprCallback = propagateConstantExprRewrite;
4925       w.xSelectCallback = sqlite3SelectWalkNoop;
4926       w.xSelectCallback2 = 0;
4927       w.walkerDepth = 0;
4928       w.u.pConst = &x;
4929       sqlite3WalkExpr(&w, p->pWhere);
4930       sqlite3DbFree(x.pParse->db, x.apExpr);
4931       nChng += x.nChng;
4932     }
4933   }while( x.nChng );
4934   return nChng;
4935 }
4936 
4937 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4938 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4939 /*
4940 ** This function is called to determine whether or not it is safe to
4941 ** push WHERE clause expression pExpr down to FROM clause sub-query
4942 ** pSubq, which contains at least one window function. Return 1
4943 ** if it is safe and the expression should be pushed down, or 0
4944 ** otherwise.
4945 **
4946 ** It is only safe to push the expression down if it consists only
4947 ** of constants and copies of expressions that appear in the PARTITION
4948 ** BY clause of all window function used by the sub-query. It is safe
4949 ** to filter out entire partitions, but not rows within partitions, as
4950 ** this may change the results of the window functions.
4951 **
4952 ** At the time this function is called it is guaranteed that
4953 **
4954 **   * the sub-query uses only one distinct window frame, and
4955 **   * that the window frame has a PARTITION BY clase.
4956 */
4957 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4958   assert( pSubq->pWin->pPartition );
4959   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4960   assert( pSubq->pPrior==0 );
4961   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4962 }
4963 # endif /* SQLITE_OMIT_WINDOWFUNC */
4964 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4965 
4966 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4967 /*
4968 ** Make copies of relevant WHERE clause terms of the outer query into
4969 ** the WHERE clause of subquery.  Example:
4970 **
4971 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4972 **
4973 ** Transformed into:
4974 **
4975 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4976 **     WHERE x=5 AND y=10;
4977 **
4978 ** The hope is that the terms added to the inner query will make it more
4979 ** efficient.
4980 **
4981 ** Do not attempt this optimization if:
4982 **
4983 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4984 **           disallow this optimization for aggregate subqueries, but now
4985 **           it is allowed by putting the extra terms on the HAVING clause.
4986 **           The added HAVING clause is pointless if the subquery lacks
4987 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4988 **           so there does not appear to be any reason to add extra logic
4989 **           to suppress it. **)
4990 **
4991 **   (2) The inner query is the recursive part of a common table expression.
4992 **
4993 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4994 **       clause would change the meaning of the LIMIT).
4995 **
4996 **   (4) The inner query is the right operand of a LEFT JOIN and the
4997 **       expression to be pushed down does not come from the ON clause
4998 **       on that LEFT JOIN.
4999 **
5000 **   (5) The WHERE clause expression originates in the ON or USING clause
5001 **       of a LEFT JOIN where iCursor is not the right-hand table of that
5002 **       left join.  An example:
5003 **
5004 **           SELECT *
5005 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5006 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5007 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5008 **
5009 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
5010 **       But if the (b2=2) term were to be pushed down into the bb subquery,
5011 **       then the (1,1,NULL) row would be suppressed.
5012 **
5013 **   (6) Window functions make things tricky as changes to the WHERE clause
5014 **       of the inner query could change the window over which window
5015 **       functions are calculated. Therefore, do not attempt the optimization
5016 **       if:
5017 **
5018 **     (6a) The inner query uses multiple incompatible window partitions.
5019 **
5020 **     (6b) The inner query is a compound and uses window-functions.
5021 **
5022 **     (6c) The WHERE clause does not consist entirely of constants and
5023 **          copies of expressions found in the PARTITION BY clause of
5024 **          all window-functions used by the sub-query. It is safe to
5025 **          filter out entire partitions, as this does not change the
5026 **          window over which any window-function is calculated.
5027 **
5028 **   (7) The inner query is a Common Table Expression (CTE) that should
5029 **       be materialized.  (This restriction is implemented in the calling
5030 **       routine.)
5031 **
5032 **   (8) The subquery may not be a compound that uses UNION, INTERSECT,
5033 **       or EXCEPT.  (We could, perhaps, relax this restriction to allow
5034 **       this case if none of the comparisons operators between left and
5035 **       right arms of the compound use a collation other than BINARY.
5036 **       But it is a lot of work to check that case for an obscure and
5037 **       minor optimization, so we omit it for now.)
5038 **
5039 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5040 ** terms are duplicated into the subquery.
5041 */
5042 static int pushDownWhereTerms(
5043   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
5044   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
5045   Expr *pWhere,         /* The WHERE clause of the outer query */
5046   SrcItem *pSrc         /* The subquery term of the outer FROM clause */
5047 ){
5048   Expr *pNew;
5049   int nChng = 0;
5050   if( pWhere==0 ) return 0;
5051   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
5052   if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0;
5053 
5054 #ifndef SQLITE_OMIT_WINDOWFUNC
5055   if( pSubq->pPrior ){
5056     Select *pSel;
5057     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5058       u8 op = pSel->op;
5059       assert( op==TK_ALL || op==TK_SELECT
5060            || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT );
5061       if( op!=TK_ALL && op!=TK_SELECT ) return 0;  /* restriction (8) */
5062       if( pSel->pWin ) return 0;    /* restriction (6b) */
5063     }
5064   }else{
5065     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5066   }
5067 #endif
5068 
5069 #ifdef SQLITE_DEBUG
5070   /* Only the first term of a compound can have a WITH clause.  But make
5071   ** sure no other terms are marked SF_Recursive in case something changes
5072   ** in the future.
5073   */
5074   {
5075     Select *pX;
5076     for(pX=pSubq; pX; pX=pX->pPrior){
5077       assert( (pX->selFlags & (SF_Recursive))==0 );
5078     }
5079   }
5080 #endif
5081 
5082   if( pSubq->pLimit!=0 ){
5083     return 0; /* restriction (3) */
5084   }
5085   while( pWhere->op==TK_AND ){
5086     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc);
5087     pWhere = pWhere->pLeft;
5088   }
5089 
5090 #if 0  /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
5091   if( isLeftJoin
5092    && (ExprHasProperty(pWhere,EP_OuterON)==0
5093          || pWhere->w.iJoin!=iCursor)
5094   ){
5095     return 0; /* restriction (4) */
5096   }
5097   if( ExprHasProperty(pWhere,EP_OuterON)
5098    && pWhere->w.iJoin!=iCursor
5099   ){
5100     return 0; /* restriction (5) */
5101   }
5102 #endif
5103 
5104   if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){
5105     nChng++;
5106     pSubq->selFlags |= SF_PushDown;
5107     while( pSubq ){
5108       SubstContext x;
5109       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5110       unsetJoinExpr(pNew, -1, 1);
5111       x.pParse = pParse;
5112       x.iTable = pSrc->iCursor;
5113       x.iNewTable = pSrc->iCursor;
5114       x.isOuterJoin = 0;
5115       x.pEList = pSubq->pEList;
5116       x.pCList = findLeftmostExprlist(pSubq);
5117       pNew = substExpr(&x, pNew);
5118 #ifndef SQLITE_OMIT_WINDOWFUNC
5119       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5120         /* Restriction 6c has prevented push-down in this case */
5121         sqlite3ExprDelete(pParse->db, pNew);
5122         nChng--;
5123         break;
5124       }
5125 #endif
5126       if( pSubq->selFlags & SF_Aggregate ){
5127         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5128       }else{
5129         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5130       }
5131       pSubq = pSubq->pPrior;
5132     }
5133   }
5134   return nChng;
5135 }
5136 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5137 
5138 /*
5139 ** The pFunc is the only aggregate function in the query.  Check to see
5140 ** if the query is a candidate for the min/max optimization.
5141 **
5142 ** If the query is a candidate for the min/max optimization, then set
5143 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5144 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5145 ** whether pFunc is a min() or max() function.
5146 **
5147 ** If the query is not a candidate for the min/max optimization, return
5148 ** WHERE_ORDERBY_NORMAL (which must be zero).
5149 **
5150 ** This routine must be called after aggregate functions have been
5151 ** located but before their arguments have been subjected to aggregate
5152 ** analysis.
5153 */
5154 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5155   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
5156   ExprList *pEList;                     /* Arguments to agg function */
5157   const char *zFunc;                    /* Name of aggregate function pFunc */
5158   ExprList *pOrderBy;
5159   u8 sortFlags = 0;
5160 
5161   assert( *ppMinMax==0 );
5162   assert( pFunc->op==TK_AGG_FUNCTION );
5163   assert( !IsWindowFunc(pFunc) );
5164   assert( ExprUseXList(pFunc) );
5165   pEList = pFunc->x.pList;
5166   if( pEList==0
5167    || pEList->nExpr!=1
5168    || ExprHasProperty(pFunc, EP_WinFunc)
5169    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5170   ){
5171     return eRet;
5172   }
5173   assert( !ExprHasProperty(pFunc, EP_IntValue) );
5174   zFunc = pFunc->u.zToken;
5175   if( sqlite3StrICmp(zFunc, "min")==0 ){
5176     eRet = WHERE_ORDERBY_MIN;
5177     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5178       sortFlags = KEYINFO_ORDER_BIGNULL;
5179     }
5180   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5181     eRet = WHERE_ORDERBY_MAX;
5182     sortFlags = KEYINFO_ORDER_DESC;
5183   }else{
5184     return eRet;
5185   }
5186   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5187   assert( pOrderBy!=0 || db->mallocFailed );
5188   if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5189   return eRet;
5190 }
5191 
5192 /*
5193 ** The select statement passed as the first argument is an aggregate query.
5194 ** The second argument is the associated aggregate-info object. This
5195 ** function tests if the SELECT is of the form:
5196 **
5197 **   SELECT count(*) FROM <tbl>
5198 **
5199 ** where table is a database table, not a sub-select or view. If the query
5200 ** does match this pattern, then a pointer to the Table object representing
5201 ** <tbl> is returned. Otherwise, NULL is returned.
5202 **
5203 ** This routine checks to see if it is safe to use the count optimization.
5204 ** A correct answer is still obtained (though perhaps more slowly) if
5205 ** this routine returns NULL when it could have returned a table pointer.
5206 ** But returning the pointer when NULL should have been returned can
5207 ** result in incorrect answers and/or crashes.  So, when in doubt, return NULL.
5208 */
5209 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5210   Table *pTab;
5211   Expr *pExpr;
5212 
5213   assert( !p->pGroupBy );
5214 
5215   if( p->pWhere
5216    || p->pEList->nExpr!=1
5217    || p->pSrc->nSrc!=1
5218    || p->pSrc->a[0].pSelect
5219    || pAggInfo->nFunc!=1
5220    || p->pHaving
5221   ){
5222     return 0;
5223   }
5224   pTab = p->pSrc->a[0].pTab;
5225   assert( pTab!=0 );
5226   assert( !IsView(pTab) );
5227   if( !IsOrdinaryTable(pTab) ) return 0;
5228   pExpr = p->pEList->a[0].pExpr;
5229   assert( pExpr!=0 );
5230   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5231   if( pExpr->pAggInfo!=pAggInfo ) return 0;
5232   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5233   assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5234   testcase( ExprHasProperty(pExpr, EP_Distinct) );
5235   testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5236   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5237 
5238   return pTab;
5239 }
5240 
5241 /*
5242 ** If the source-list item passed as an argument was augmented with an
5243 ** INDEXED BY clause, then try to locate the specified index. If there
5244 ** was such a clause and the named index cannot be found, return
5245 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5246 ** pFrom->pIndex and return SQLITE_OK.
5247 */
5248 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5249   Table *pTab = pFrom->pTab;
5250   char *zIndexedBy = pFrom->u1.zIndexedBy;
5251   Index *pIdx;
5252   assert( pTab!=0 );
5253   assert( pFrom->fg.isIndexedBy!=0 );
5254 
5255   for(pIdx=pTab->pIndex;
5256       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5257       pIdx=pIdx->pNext
5258   );
5259   if( !pIdx ){
5260     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5261     pParse->checkSchema = 1;
5262     return SQLITE_ERROR;
5263   }
5264   assert( pFrom->fg.isCte==0 );
5265   pFrom->u2.pIBIndex = pIdx;
5266   return SQLITE_OK;
5267 }
5268 
5269 /*
5270 ** Detect compound SELECT statements that use an ORDER BY clause with
5271 ** an alternative collating sequence.
5272 **
5273 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5274 **
5275 ** These are rewritten as a subquery:
5276 **
5277 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5278 **     ORDER BY ... COLLATE ...
5279 **
5280 ** This transformation is necessary because the multiSelectOrderBy() routine
5281 ** above that generates the code for a compound SELECT with an ORDER BY clause
5282 ** uses a merge algorithm that requires the same collating sequence on the
5283 ** result columns as on the ORDER BY clause.  See ticket
5284 ** http://www.sqlite.org/src/info/6709574d2a
5285 **
5286 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5287 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5288 ** there are COLLATE terms in the ORDER BY.
5289 */
5290 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5291   int i;
5292   Select *pNew;
5293   Select *pX;
5294   sqlite3 *db;
5295   struct ExprList_item *a;
5296   SrcList *pNewSrc;
5297   Parse *pParse;
5298   Token dummy;
5299 
5300   if( p->pPrior==0 ) return WRC_Continue;
5301   if( p->pOrderBy==0 ) return WRC_Continue;
5302   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5303   if( pX==0 ) return WRC_Continue;
5304   a = p->pOrderBy->a;
5305 #ifndef SQLITE_OMIT_WINDOWFUNC
5306   /* If iOrderByCol is already non-zero, then it has already been matched
5307   ** to a result column of the SELECT statement. This occurs when the
5308   ** SELECT is rewritten for window-functions processing and then passed
5309   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5310   ** by this function is not required in this case. */
5311   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5312 #endif
5313   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5314     if( a[i].pExpr->flags & EP_Collate ) break;
5315   }
5316   if( i<0 ) return WRC_Continue;
5317 
5318   /* If we reach this point, that means the transformation is required. */
5319 
5320   pParse = pWalker->pParse;
5321   db = pParse->db;
5322   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5323   if( pNew==0 ) return WRC_Abort;
5324   memset(&dummy, 0, sizeof(dummy));
5325   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5326   if( pNewSrc==0 ) return WRC_Abort;
5327   *pNew = *p;
5328   p->pSrc = pNewSrc;
5329   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5330   p->op = TK_SELECT;
5331   p->pWhere = 0;
5332   pNew->pGroupBy = 0;
5333   pNew->pHaving = 0;
5334   pNew->pOrderBy = 0;
5335   p->pPrior = 0;
5336   p->pNext = 0;
5337   p->pWith = 0;
5338 #ifndef SQLITE_OMIT_WINDOWFUNC
5339   p->pWinDefn = 0;
5340 #endif
5341   p->selFlags &= ~SF_Compound;
5342   assert( (p->selFlags & SF_Converted)==0 );
5343   p->selFlags |= SF_Converted;
5344   assert( pNew->pPrior!=0 );
5345   pNew->pPrior->pNext = pNew;
5346   pNew->pLimit = 0;
5347   return WRC_Continue;
5348 }
5349 
5350 /*
5351 ** Check to see if the FROM clause term pFrom has table-valued function
5352 ** arguments.  If it does, leave an error message in pParse and return
5353 ** non-zero, since pFrom is not allowed to be a table-valued function.
5354 */
5355 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5356   if( pFrom->fg.isTabFunc ){
5357     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5358     return 1;
5359   }
5360   return 0;
5361 }
5362 
5363 #ifndef SQLITE_OMIT_CTE
5364 /*
5365 ** Argument pWith (which may be NULL) points to a linked list of nested
5366 ** WITH contexts, from inner to outermost. If the table identified by
5367 ** FROM clause element pItem is really a common-table-expression (CTE)
5368 ** then return a pointer to the CTE definition for that table. Otherwise
5369 ** return NULL.
5370 **
5371 ** If a non-NULL value is returned, set *ppContext to point to the With
5372 ** object that the returned CTE belongs to.
5373 */
5374 static struct Cte *searchWith(
5375   With *pWith,                    /* Current innermost WITH clause */
5376   SrcItem *pItem,                 /* FROM clause element to resolve */
5377   With **ppContext                /* OUT: WITH clause return value belongs to */
5378 ){
5379   const char *zName = pItem->zName;
5380   With *p;
5381   assert( pItem->zDatabase==0 );
5382   assert( zName!=0 );
5383   for(p=pWith; p; p=p->pOuter){
5384     int i;
5385     for(i=0; i<p->nCte; i++){
5386       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5387         *ppContext = p;
5388         return &p->a[i];
5389       }
5390     }
5391     if( p->bView ) break;
5392   }
5393   return 0;
5394 }
5395 
5396 /* The code generator maintains a stack of active WITH clauses
5397 ** with the inner-most WITH clause being at the top of the stack.
5398 **
5399 ** This routine pushes the WITH clause passed as the second argument
5400 ** onto the top of the stack. If argument bFree is true, then this
5401 ** WITH clause will never be popped from the stack but should instead
5402 ** be freed along with the Parse object. In other cases, when
5403 ** bFree==0, the With object will be freed along with the SELECT
5404 ** statement with which it is associated.
5405 **
5406 ** This routine returns a copy of pWith.  Or, if bFree is true and
5407 ** the pWith object is destroyed immediately due to an OOM condition,
5408 ** then this routine return NULL.
5409 **
5410 ** If bFree is true, do not continue to use the pWith pointer after
5411 ** calling this routine,  Instead, use only the return value.
5412 */
5413 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5414   if( pWith ){
5415     if( bFree ){
5416       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5417                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5418                       pWith);
5419       if( pWith==0 ) return 0;
5420     }
5421     if( pParse->nErr==0 ){
5422       assert( pParse->pWith!=pWith );
5423       pWith->pOuter = pParse->pWith;
5424       pParse->pWith = pWith;
5425     }
5426   }
5427   return pWith;
5428 }
5429 
5430 /*
5431 ** This function checks if argument pFrom refers to a CTE declared by
5432 ** a WITH clause on the stack currently maintained by the parser (on the
5433 ** pParse->pWith linked list).  And if currently processing a CTE
5434 ** CTE expression, through routine checks to see if the reference is
5435 ** a recursive reference to the CTE.
5436 **
5437 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5438 ** and other fields are populated accordingly.
5439 **
5440 ** Return 0 if no match is found.
5441 ** Return 1 if a match is found.
5442 ** Return 2 if an error condition is detected.
5443 */
5444 static int resolveFromTermToCte(
5445   Parse *pParse,                  /* The parsing context */
5446   Walker *pWalker,                /* Current tree walker */
5447   SrcItem *pFrom                  /* The FROM clause term to check */
5448 ){
5449   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5450   With *pWith;             /* The matching WITH */
5451 
5452   assert( pFrom->pTab==0 );
5453   if( pParse->pWith==0 ){
5454     /* There are no WITH clauses in the stack.  No match is possible */
5455     return 0;
5456   }
5457   if( pParse->nErr ){
5458     /* Prior errors might have left pParse->pWith in a goofy state, so
5459     ** go no further. */
5460     return 0;
5461   }
5462   if( pFrom->zDatabase!=0 ){
5463     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5464     ** it cannot possibly be a CTE reference. */
5465     return 0;
5466   }
5467   if( pFrom->fg.notCte ){
5468     /* The FROM term is specifically excluded from matching a CTE.
5469     **   (1)  It is part of a trigger that used to have zDatabase but had
5470     **        zDatabase removed by sqlite3FixTriggerStep().
5471     **   (2)  This is the first term in the FROM clause of an UPDATE.
5472     */
5473     return 0;
5474   }
5475   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5476   if( pCte ){
5477     sqlite3 *db = pParse->db;
5478     Table *pTab;
5479     ExprList *pEList;
5480     Select *pSel;
5481     Select *pLeft;                /* Left-most SELECT statement */
5482     Select *pRecTerm;             /* Left-most recursive term */
5483     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5484     With *pSavedWith;             /* Initial value of pParse->pWith */
5485     int iRecTab = -1;             /* Cursor for recursive table */
5486     CteUse *pCteUse;
5487 
5488     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5489     ** recursive reference to CTE pCte. Leave an error in pParse and return
5490     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5491     ** In this case, proceed.  */
5492     if( pCte->zCteErr ){
5493       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5494       return 2;
5495     }
5496     if( cannotBeFunction(pParse, pFrom) ) return 2;
5497 
5498     assert( pFrom->pTab==0 );
5499     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5500     if( pTab==0 ) return 2;
5501     pCteUse = pCte->pUse;
5502     if( pCteUse==0 ){
5503       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5504       if( pCteUse==0
5505        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5506       ){
5507         sqlite3DbFree(db, pTab);
5508         return 2;
5509       }
5510       pCteUse->eM10d = pCte->eM10d;
5511     }
5512     pFrom->pTab = pTab;
5513     pTab->nTabRef = 1;
5514     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5515     pTab->iPKey = -1;
5516     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5517     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5518     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5519     if( db->mallocFailed ) return 2;
5520     pFrom->pSelect->selFlags |= SF_CopyCte;
5521     assert( pFrom->pSelect );
5522     if( pFrom->fg.isIndexedBy ){
5523       sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5524       return 2;
5525     }
5526     pFrom->fg.isCte = 1;
5527     pFrom->u2.pCteUse = pCteUse;
5528     pCteUse->nUse++;
5529     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5530       pCteUse->eM10d = M10d_Yes;
5531     }
5532 
5533     /* Check if this is a recursive CTE. */
5534     pRecTerm = pSel = pFrom->pSelect;
5535     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5536     while( bMayRecursive && pRecTerm->op==pSel->op ){
5537       int i;
5538       SrcList *pSrc = pRecTerm->pSrc;
5539       assert( pRecTerm->pPrior!=0 );
5540       for(i=0; i<pSrc->nSrc; i++){
5541         SrcItem *pItem = &pSrc->a[i];
5542         if( pItem->zDatabase==0
5543          && pItem->zName!=0
5544          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5545         ){
5546           pItem->pTab = pTab;
5547           pTab->nTabRef++;
5548           pItem->fg.isRecursive = 1;
5549           if( pRecTerm->selFlags & SF_Recursive ){
5550             sqlite3ErrorMsg(pParse,
5551                "multiple references to recursive table: %s", pCte->zName
5552             );
5553             return 2;
5554           }
5555           pRecTerm->selFlags |= SF_Recursive;
5556           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5557           pItem->iCursor = iRecTab;
5558         }
5559       }
5560       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5561       pRecTerm = pRecTerm->pPrior;
5562     }
5563 
5564     pCte->zCteErr = "circular reference: %s";
5565     pSavedWith = pParse->pWith;
5566     pParse->pWith = pWith;
5567     if( pSel->selFlags & SF_Recursive ){
5568       int rc;
5569       assert( pRecTerm!=0 );
5570       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5571       assert( pRecTerm->pNext!=0 );
5572       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5573       assert( pRecTerm->pWith==0 );
5574       pRecTerm->pWith = pSel->pWith;
5575       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5576       pRecTerm->pWith = 0;
5577       if( rc ){
5578         pParse->pWith = pSavedWith;
5579         return 2;
5580       }
5581     }else{
5582       if( sqlite3WalkSelect(pWalker, pSel) ){
5583         pParse->pWith = pSavedWith;
5584         return 2;
5585       }
5586     }
5587     pParse->pWith = pWith;
5588 
5589     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5590     pEList = pLeft->pEList;
5591     if( pCte->pCols ){
5592       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5593         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5594             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5595         );
5596         pParse->pWith = pSavedWith;
5597         return 2;
5598       }
5599       pEList = pCte->pCols;
5600     }
5601 
5602     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5603     if( bMayRecursive ){
5604       if( pSel->selFlags & SF_Recursive ){
5605         pCte->zCteErr = "multiple recursive references: %s";
5606       }else{
5607         pCte->zCteErr = "recursive reference in a subquery: %s";
5608       }
5609       sqlite3WalkSelect(pWalker, pSel);
5610     }
5611     pCte->zCteErr = 0;
5612     pParse->pWith = pSavedWith;
5613     return 1;  /* Success */
5614   }
5615   return 0;  /* No match */
5616 }
5617 #endif
5618 
5619 #ifndef SQLITE_OMIT_CTE
5620 /*
5621 ** If the SELECT passed as the second argument has an associated WITH
5622 ** clause, pop it from the stack stored as part of the Parse object.
5623 **
5624 ** This function is used as the xSelectCallback2() callback by
5625 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5626 ** names and other FROM clause elements.
5627 */
5628 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5629   Parse *pParse = pWalker->pParse;
5630   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5631     With *pWith = findRightmost(p)->pWith;
5632     if( pWith!=0 ){
5633       assert( pParse->pWith==pWith || pParse->nErr );
5634       pParse->pWith = pWith->pOuter;
5635     }
5636   }
5637 }
5638 #endif
5639 
5640 /*
5641 ** The SrcItem structure passed as the second argument represents a
5642 ** sub-query in the FROM clause of a SELECT statement. This function
5643 ** allocates and populates the SrcItem.pTab object. If successful,
5644 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5645 ** SQLITE_NOMEM.
5646 */
5647 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5648   Select *pSel = pFrom->pSelect;
5649   Table *pTab;
5650 
5651   assert( pSel );
5652   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5653   if( pTab==0 ) return SQLITE_NOMEM;
5654   pTab->nTabRef = 1;
5655   if( pFrom->zAlias ){
5656     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5657   }else{
5658     pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5659   }
5660   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5661   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5662   pTab->iPKey = -1;
5663   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5664 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5665   /* The usual case - do not allow ROWID on a subquery */
5666   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5667 #else
5668   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5669 #endif
5670   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5671 }
5672 
5673 
5674 /*
5675 ** Check the N SrcItem objects to the right of pBase.  (N might be zero!)
5676 ** If any of those SrcItem objects have a USING clause containing zName
5677 ** then return true.
5678 **
5679 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5680 ** contains a USING clause, or if none of the USING clauses contain zName,
5681 ** then return false.
5682 */
5683 static int inAnyUsingClause(
5684   const char *zName, /* Name we are looking for */
5685   SrcItem *pBase,    /* The base SrcItem.  Looking at pBase[1] and following */
5686   int N              /* How many SrcItems to check */
5687 ){
5688   while( N>0 ){
5689     N--;
5690     pBase++;
5691     if( pBase->fg.isUsing==0 ) continue;
5692     if( NEVER(pBase->u3.pUsing==0) ) continue;
5693     if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5694   }
5695   return 0;
5696 }
5697 
5698 
5699 /*
5700 ** This routine is a Walker callback for "expanding" a SELECT statement.
5701 ** "Expanding" means to do the following:
5702 **
5703 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5704 **         element of the FROM clause.
5705 **
5706 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5707 **         defines FROM clause.  When views appear in the FROM clause,
5708 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5709 **         that implements the view.  A copy is made of the view's SELECT
5710 **         statement so that we can freely modify or delete that statement
5711 **         without worrying about messing up the persistent representation
5712 **         of the view.
5713 **
5714 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5715 **         on joins and the ON and USING clause of joins.
5716 **
5717 **    (4)  Scan the list of columns in the result set (pEList) looking
5718 **         for instances of the "*" operator or the TABLE.* operator.
5719 **         If found, expand each "*" to be every column in every table
5720 **         and TABLE.* to be every column in TABLE.
5721 **
5722 */
5723 static int selectExpander(Walker *pWalker, Select *p){
5724   Parse *pParse = pWalker->pParse;
5725   int i, j, k, rc;
5726   SrcList *pTabList;
5727   ExprList *pEList;
5728   SrcItem *pFrom;
5729   sqlite3 *db = pParse->db;
5730   Expr *pE, *pRight, *pExpr;
5731   u16 selFlags = p->selFlags;
5732   u32 elistFlags = 0;
5733 
5734   p->selFlags |= SF_Expanded;
5735   if( db->mallocFailed  ){
5736     return WRC_Abort;
5737   }
5738   assert( p->pSrc!=0 );
5739   if( (selFlags & SF_Expanded)!=0 ){
5740     return WRC_Prune;
5741   }
5742   if( pWalker->eCode ){
5743     /* Renumber selId because it has been copied from a view */
5744     p->selId = ++pParse->nSelect;
5745   }
5746   pTabList = p->pSrc;
5747   pEList = p->pEList;
5748   if( pParse->pWith && (p->selFlags & SF_View) ){
5749     if( p->pWith==0 ){
5750       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5751       if( p->pWith==0 ){
5752         return WRC_Abort;
5753       }
5754     }
5755     p->pWith->bView = 1;
5756   }
5757   sqlite3WithPush(pParse, p->pWith, 0);
5758 
5759   /* Make sure cursor numbers have been assigned to all entries in
5760   ** the FROM clause of the SELECT statement.
5761   */
5762   sqlite3SrcListAssignCursors(pParse, pTabList);
5763 
5764   /* Look up every table named in the FROM clause of the select.  If
5765   ** an entry of the FROM clause is a subquery instead of a table or view,
5766   ** then create a transient table structure to describe the subquery.
5767   */
5768   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5769     Table *pTab;
5770     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5771     if( pFrom->pTab ) continue;
5772     assert( pFrom->fg.isRecursive==0 );
5773     if( pFrom->zName==0 ){
5774 #ifndef SQLITE_OMIT_SUBQUERY
5775       Select *pSel = pFrom->pSelect;
5776       /* A sub-query in the FROM clause of a SELECT */
5777       assert( pSel!=0 );
5778       assert( pFrom->pTab==0 );
5779       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5780       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5781 #endif
5782 #ifndef SQLITE_OMIT_CTE
5783     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5784       if( rc>1 ) return WRC_Abort;
5785       pTab = pFrom->pTab;
5786       assert( pTab!=0 );
5787 #endif
5788     }else{
5789       /* An ordinary table or view name in the FROM clause */
5790       assert( pFrom->pTab==0 );
5791       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5792       if( pTab==0 ) return WRC_Abort;
5793       if( pTab->nTabRef>=0xffff ){
5794         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5795            pTab->zName);
5796         pFrom->pTab = 0;
5797         return WRC_Abort;
5798       }
5799       pTab->nTabRef++;
5800       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5801         return WRC_Abort;
5802       }
5803 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5804       if( !IsOrdinaryTable(pTab) ){
5805         i16 nCol;
5806         u8 eCodeOrig = pWalker->eCode;
5807         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5808         assert( pFrom->pSelect==0 );
5809         if( IsView(pTab) ){
5810           if( (db->flags & SQLITE_EnableView)==0
5811            && pTab->pSchema!=db->aDb[1].pSchema
5812           ){
5813             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5814               pTab->zName);
5815           }
5816           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5817         }
5818 #ifndef SQLITE_OMIT_VIRTUALTABLE
5819         else if( ALWAYS(IsVirtual(pTab))
5820          && pFrom->fg.fromDDL
5821          && ALWAYS(pTab->u.vtab.p!=0)
5822          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5823         ){
5824           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5825                                   pTab->zName);
5826         }
5827         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5828 #endif
5829         nCol = pTab->nCol;
5830         pTab->nCol = -1;
5831         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5832         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5833         pWalker->eCode = eCodeOrig;
5834         pTab->nCol = nCol;
5835       }
5836 #endif
5837     }
5838 
5839     /* Locate the index named by the INDEXED BY clause, if any. */
5840     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5841       return WRC_Abort;
5842     }
5843   }
5844 
5845   /* Process NATURAL keywords, and ON and USING clauses of joins.
5846   */
5847   assert( db->mallocFailed==0 || pParse->nErr!=0 );
5848   if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
5849     return WRC_Abort;
5850   }
5851 
5852   /* For every "*" that occurs in the column list, insert the names of
5853   ** all columns in all tables.  And for every TABLE.* insert the names
5854   ** of all columns in TABLE.  The parser inserted a special expression
5855   ** with the TK_ASTERISK operator for each "*" that it found in the column
5856   ** list.  The following code just has to locate the TK_ASTERISK
5857   ** expressions and expand each one to the list of all columns in
5858   ** all tables.
5859   **
5860   ** The first loop just checks to see if there are any "*" operators
5861   ** that need expanding.
5862   */
5863   for(k=0; k<pEList->nExpr; k++){
5864     pE = pEList->a[k].pExpr;
5865     if( pE->op==TK_ASTERISK ) break;
5866     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5867     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5868     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5869     elistFlags |= pE->flags;
5870   }
5871   if( k<pEList->nExpr ){
5872     /*
5873     ** If we get here it means the result set contains one or more "*"
5874     ** operators that need to be expanded.  Loop through each expression
5875     ** in the result set and expand them one by one.
5876     */
5877     struct ExprList_item *a = pEList->a;
5878     ExprList *pNew = 0;
5879     int flags = pParse->db->flags;
5880     int longNames = (flags & SQLITE_FullColNames)!=0
5881                       && (flags & SQLITE_ShortColNames)==0;
5882 
5883     for(k=0; k<pEList->nExpr; k++){
5884       pE = a[k].pExpr;
5885       elistFlags |= pE->flags;
5886       pRight = pE->pRight;
5887       assert( pE->op!=TK_DOT || pRight!=0 );
5888       if( pE->op!=TK_ASTERISK
5889        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5890       ){
5891         /* This particular expression does not need to be expanded.
5892         */
5893         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5894         if( pNew ){
5895           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5896           pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
5897           a[k].zEName = 0;
5898         }
5899         a[k].pExpr = 0;
5900       }else{
5901         /* This expression is a "*" or a "TABLE.*" and needs to be
5902         ** expanded. */
5903         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5904         char *zTName = 0;       /* text of name of TABLE */
5905         if( pE->op==TK_DOT ){
5906           assert( pE->pLeft!=0 );
5907           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5908           zTName = pE->pLeft->u.zToken;
5909         }
5910         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5911           Table *pTab = pFrom->pTab;   /* Table for this data source */
5912           ExprList *pNestedFrom;       /* Result-set of a nested FROM clause */
5913           char *zTabName;              /* AS name for this data source */
5914           const char *zSchemaName = 0; /* Schema name for this data source */
5915           int iDb;                     /* Schema index for this data src */
5916           IdList *pUsing;              /* USING clause for pFrom[1] */
5917 
5918           if( (zTabName = pFrom->zAlias)==0 ){
5919             zTabName = pTab->zName;
5920           }
5921           if( db->mallocFailed ) break;
5922           assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
5923           if( pFrom->fg.isNestedFrom ){
5924             assert( pFrom->pSelect!=0 );
5925             pNestedFrom = pFrom->pSelect->pEList;
5926             assert( pNestedFrom!=0 );
5927             assert( pNestedFrom->nExpr==pTab->nCol );
5928           }else{
5929             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5930               continue;
5931             }
5932             pNestedFrom = 0;
5933             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5934             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5935           }
5936           if( i+1<pTabList->nSrc
5937            && pFrom[1].fg.isUsing
5938            && (selFlags & SF_NestedFrom)!=0
5939           ){
5940             int ii;
5941             pUsing = pFrom[1].u3.pUsing;
5942             for(ii=0; ii<pUsing->nId; ii++){
5943               const char *zUName = pUsing->a[ii].zName;
5944               pRight = sqlite3Expr(db, TK_ID, zUName);
5945               pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
5946               if( pNew ){
5947                 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5948                 assert( pX->zEName==0 );
5949                 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
5950                 pX->fg.eEName = ENAME_TAB;
5951                 pX->fg.bUsingTerm = 1;
5952               }
5953             }
5954           }else{
5955             pUsing = 0;
5956           }
5957           for(j=0; j<pTab->nCol; j++){
5958             char *zName = pTab->aCol[j].zCnName;
5959             struct ExprList_item *pX; /* Newly added ExprList term */
5960 
5961             assert( zName );
5962             if( zTName
5963              && pNestedFrom
5964              && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0
5965             ){
5966               continue;
5967             }
5968 
5969             /* If a column is marked as 'hidden', omit it from the expanded
5970             ** result-set list unless the SELECT has the SF_IncludeHidden
5971             ** bit set.
5972             */
5973             if( (p->selFlags & SF_IncludeHidden)==0
5974              && IsHiddenColumn(&pTab->aCol[j])
5975             ){
5976               continue;
5977             }
5978             if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
5979              && zTName==0
5980              && (selFlags & (SF_NestedFrom))==0
5981             ){
5982               continue;
5983             }
5984             tableSeen = 1;
5985 
5986             if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
5987               if( pFrom->fg.isUsing
5988                && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
5989               ){
5990                 /* In a join with a USING clause, omit columns in the
5991                 ** using clause from the table on the right. */
5992                 continue;
5993               }
5994             }
5995             pRight = sqlite3Expr(db, TK_ID, zName);
5996             if( (pTabList->nSrc>1
5997                  && (  (pFrom->fg.jointype & JT_LTORJ)==0
5998                      || (selFlags & SF_NestedFrom)!=0
5999                      || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
6000                     )
6001                 )
6002              || IN_RENAME_OBJECT
6003             ){
6004               Expr *pLeft;
6005               pLeft = sqlite3Expr(db, TK_ID, zTabName);
6006               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
6007               if( IN_RENAME_OBJECT && pE->pLeft ){
6008                 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
6009               }
6010               if( zSchemaName ){
6011                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
6012                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
6013               }
6014             }else{
6015               pExpr = pRight;
6016             }
6017             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6018             if( pNew==0 ){
6019               break;  /* OOM */
6020             }
6021             pX = &pNew->a[pNew->nExpr-1];
6022             assert( pX->zEName==0 );
6023             if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6024               if( pNestedFrom ){
6025                 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6026                 testcase( pX->zEName==0 );
6027               }else{
6028                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6029                                            zSchemaName, zTabName, zName);
6030                 testcase( pX->zEName==0 );
6031               }
6032               pX->fg.eEName = ENAME_TAB;
6033               if( (pFrom->fg.isUsing
6034                    && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6035                || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6036                || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6037               ){
6038                 pX->fg.bNoExpand = 1;
6039               }
6040             }else if( longNames ){
6041               pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6042               pX->fg.eEName = ENAME_NAME;
6043             }else{
6044               pX->zEName = sqlite3DbStrDup(db, zName);
6045               pX->fg.eEName = ENAME_NAME;
6046             }
6047           }
6048         }
6049         if( !tableSeen ){
6050           if( zTName ){
6051             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6052           }else{
6053             sqlite3ErrorMsg(pParse, "no tables specified");
6054           }
6055         }
6056       }
6057     }
6058     sqlite3ExprListDelete(db, pEList);
6059     p->pEList = pNew;
6060   }
6061   if( p->pEList ){
6062     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6063       sqlite3ErrorMsg(pParse, "too many columns in result set");
6064       return WRC_Abort;
6065     }
6066     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6067       p->selFlags |= SF_ComplexResult;
6068     }
6069   }
6070 #if TREETRACE_ENABLED
6071   if( sqlite3TreeTrace & 0x100 ){
6072     SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n"));
6073     sqlite3TreeViewSelect(0, p, 0);
6074   }
6075 #endif
6076   return WRC_Continue;
6077 }
6078 
6079 #if SQLITE_DEBUG
6080 /*
6081 ** Always assert.  This xSelectCallback2 implementation proves that the
6082 ** xSelectCallback2 is never invoked.
6083 */
6084 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6085   UNUSED_PARAMETER2(NotUsed, NotUsed2);
6086   assert( 0 );
6087 }
6088 #endif
6089 /*
6090 ** This routine "expands" a SELECT statement and all of its subqueries.
6091 ** For additional information on what it means to "expand" a SELECT
6092 ** statement, see the comment on the selectExpand worker callback above.
6093 **
6094 ** Expanding a SELECT statement is the first step in processing a
6095 ** SELECT statement.  The SELECT statement must be expanded before
6096 ** name resolution is performed.
6097 **
6098 ** If anything goes wrong, an error message is written into pParse.
6099 ** The calling function can detect the problem by looking at pParse->nErr
6100 ** and/or pParse->db->mallocFailed.
6101 */
6102 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6103   Walker w;
6104   w.xExprCallback = sqlite3ExprWalkNoop;
6105   w.pParse = pParse;
6106   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6107     w.xSelectCallback = convertCompoundSelectToSubquery;
6108     w.xSelectCallback2 = 0;
6109     sqlite3WalkSelect(&w, pSelect);
6110   }
6111   w.xSelectCallback = selectExpander;
6112   w.xSelectCallback2 = sqlite3SelectPopWith;
6113   w.eCode = 0;
6114   sqlite3WalkSelect(&w, pSelect);
6115 }
6116 
6117 
6118 #ifndef SQLITE_OMIT_SUBQUERY
6119 /*
6120 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6121 ** interface.
6122 **
6123 ** For each FROM-clause subquery, add Column.zType and Column.zColl
6124 ** information to the Table structure that represents the result set
6125 ** of that subquery.
6126 **
6127 ** The Table structure that represents the result set was constructed
6128 ** by selectExpander() but the type and collation information was omitted
6129 ** at that point because identifiers had not yet been resolved.  This
6130 ** routine is called after identifier resolution.
6131 */
6132 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6133   Parse *pParse;
6134   int i;
6135   SrcList *pTabList;
6136   SrcItem *pFrom;
6137 
6138   assert( p->selFlags & SF_Resolved );
6139   if( p->selFlags & SF_HasTypeInfo ) return;
6140   p->selFlags |= SF_HasTypeInfo;
6141   pParse = pWalker->pParse;
6142   pTabList = p->pSrc;
6143   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6144     Table *pTab = pFrom->pTab;
6145     assert( pTab!=0 );
6146     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6147       /* A sub-query in the FROM clause of a SELECT */
6148       Select *pSel = pFrom->pSelect;
6149       if( pSel ){
6150         while( pSel->pPrior ) pSel = pSel->pPrior;
6151         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
6152                                                SQLITE_AFF_NONE);
6153       }
6154     }
6155   }
6156 }
6157 #endif
6158 
6159 
6160 /*
6161 ** This routine adds datatype and collating sequence information to
6162 ** the Table structures of all FROM-clause subqueries in a
6163 ** SELECT statement.
6164 **
6165 ** Use this routine after name resolution.
6166 */
6167 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6168 #ifndef SQLITE_OMIT_SUBQUERY
6169   Walker w;
6170   w.xSelectCallback = sqlite3SelectWalkNoop;
6171   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6172   w.xExprCallback = sqlite3ExprWalkNoop;
6173   w.pParse = pParse;
6174   sqlite3WalkSelect(&w, pSelect);
6175 #endif
6176 }
6177 
6178 
6179 /*
6180 ** This routine sets up a SELECT statement for processing.  The
6181 ** following is accomplished:
6182 **
6183 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
6184 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
6185 **     *  ON and USING clauses are shifted into WHERE statements
6186 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
6187 **     *  Identifiers in expression are matched to tables.
6188 **
6189 ** This routine acts recursively on all subqueries within the SELECT.
6190 */
6191 void sqlite3SelectPrep(
6192   Parse *pParse,         /* The parser context */
6193   Select *p,             /* The SELECT statement being coded. */
6194   NameContext *pOuterNC  /* Name context for container */
6195 ){
6196   assert( p!=0 || pParse->db->mallocFailed );
6197   assert( pParse->db->pParse==pParse );
6198   if( pParse->db->mallocFailed ) return;
6199   if( p->selFlags & SF_HasTypeInfo ) return;
6200   sqlite3SelectExpand(pParse, p);
6201   if( pParse->nErr ) return;
6202   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6203   if( pParse->nErr ) return;
6204   sqlite3SelectAddTypeInfo(pParse, p);
6205 }
6206 
6207 /*
6208 ** Reset the aggregate accumulator.
6209 **
6210 ** The aggregate accumulator is a set of memory cells that hold
6211 ** intermediate results while calculating an aggregate.  This
6212 ** routine generates code that stores NULLs in all of those memory
6213 ** cells.
6214 */
6215 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6216   Vdbe *v = pParse->pVdbe;
6217   int i;
6218   struct AggInfo_func *pFunc;
6219   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6220   assert( pParse->db->pParse==pParse );
6221   assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6222   if( nReg==0 ) return;
6223   if( pParse->nErr ) return;
6224 #ifdef SQLITE_DEBUG
6225   /* Verify that all AggInfo registers are within the range specified by
6226   ** AggInfo.mnReg..AggInfo.mxReg */
6227   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
6228   for(i=0; i<pAggInfo->nColumn; i++){
6229     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
6230          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
6231   }
6232   for(i=0; i<pAggInfo->nFunc; i++){
6233     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
6234          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
6235   }
6236 #endif
6237   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
6238   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6239     if( pFunc->iDistinct>=0 ){
6240       Expr *pE = pFunc->pFExpr;
6241       assert( ExprUseXList(pE) );
6242       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6243         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6244            "argument");
6245         pFunc->iDistinct = -1;
6246       }else{
6247         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6248         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6249             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6250         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6251                           pFunc->pFunc->zName));
6252       }
6253     }
6254   }
6255 }
6256 
6257 /*
6258 ** Invoke the OP_AggFinalize opcode for every aggregate function
6259 ** in the AggInfo structure.
6260 */
6261 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6262   Vdbe *v = pParse->pVdbe;
6263   int i;
6264   struct AggInfo_func *pF;
6265   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6266     ExprList *pList;
6267     assert( ExprUseXList(pF->pFExpr) );
6268     pList = pF->pFExpr->x.pList;
6269     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
6270     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6271   }
6272 }
6273 
6274 
6275 /*
6276 ** Update the accumulator memory cells for an aggregate based on
6277 ** the current cursor position.
6278 **
6279 ** If regAcc is non-zero and there are no min() or max() aggregates
6280 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6281 ** registers if register regAcc contains 0. The caller will take care
6282 ** of setting and clearing regAcc.
6283 */
6284 static void updateAccumulator(
6285   Parse *pParse,
6286   int regAcc,
6287   AggInfo *pAggInfo,
6288   int eDistinctType
6289 ){
6290   Vdbe *v = pParse->pVdbe;
6291   int i;
6292   int regHit = 0;
6293   int addrHitTest = 0;
6294   struct AggInfo_func *pF;
6295   struct AggInfo_col *pC;
6296 
6297   pAggInfo->directMode = 1;
6298   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6299     int nArg;
6300     int addrNext = 0;
6301     int regAgg;
6302     ExprList *pList;
6303     assert( ExprUseXList(pF->pFExpr) );
6304     assert( !IsWindowFunc(pF->pFExpr) );
6305     pList = pF->pFExpr->x.pList;
6306     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6307       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6308       if( pAggInfo->nAccumulator
6309        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6310        && regAcc
6311       ){
6312         /* If regAcc==0, there there exists some min() or max() function
6313         ** without a FILTER clause that will ensure the magnet registers
6314         ** are populated. */
6315         if( regHit==0 ) regHit = ++pParse->nMem;
6316         /* If this is the first row of the group (regAcc contains 0), clear the
6317         ** "magnet" register regHit so that the accumulator registers
6318         ** are populated if the FILTER clause jumps over the the
6319         ** invocation of min() or max() altogether. Or, if this is not
6320         ** the first row (regAcc contains 1), set the magnet register so that
6321         ** the accumulators are not populated unless the min()/max() is invoked
6322         ** and indicates that they should be.  */
6323         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6324       }
6325       addrNext = sqlite3VdbeMakeLabel(pParse);
6326       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6327     }
6328     if( pList ){
6329       nArg = pList->nExpr;
6330       regAgg = sqlite3GetTempRange(pParse, nArg);
6331       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6332     }else{
6333       nArg = 0;
6334       regAgg = 0;
6335     }
6336     if( pF->iDistinct>=0 && pList ){
6337       if( addrNext==0 ){
6338         addrNext = sqlite3VdbeMakeLabel(pParse);
6339       }
6340       pF->iDistinct = codeDistinct(pParse, eDistinctType,
6341           pF->iDistinct, addrNext, pList, regAgg);
6342     }
6343     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6344       CollSeq *pColl = 0;
6345       struct ExprList_item *pItem;
6346       int j;
6347       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
6348       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6349         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6350       }
6351       if( !pColl ){
6352         pColl = pParse->db->pDfltColl;
6353       }
6354       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6355       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6356     }
6357     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6358     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6359     sqlite3VdbeChangeP5(v, (u8)nArg);
6360     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6361     if( addrNext ){
6362       sqlite3VdbeResolveLabel(v, addrNext);
6363     }
6364   }
6365   if( regHit==0 && pAggInfo->nAccumulator ){
6366     regHit = regAcc;
6367   }
6368   if( regHit ){
6369     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6370   }
6371   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6372     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6373   }
6374 
6375   pAggInfo->directMode = 0;
6376   if( addrHitTest ){
6377     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6378   }
6379 }
6380 
6381 /*
6382 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6383 ** count(*) query ("SELECT count(*) FROM pTab").
6384 */
6385 #ifndef SQLITE_OMIT_EXPLAIN
6386 static void explainSimpleCount(
6387   Parse *pParse,                  /* Parse context */
6388   Table *pTab,                    /* Table being queried */
6389   Index *pIdx                     /* Index used to optimize scan, or NULL */
6390 ){
6391   if( pParse->explain==2 ){
6392     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6393     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6394         pTab->zName,
6395         bCover ? " USING COVERING INDEX " : "",
6396         bCover ? pIdx->zName : ""
6397     );
6398   }
6399 }
6400 #else
6401 # define explainSimpleCount(a,b,c)
6402 #endif
6403 
6404 /*
6405 ** sqlite3WalkExpr() callback used by havingToWhere().
6406 **
6407 ** If the node passed to the callback is a TK_AND node, return
6408 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6409 **
6410 ** Otherwise, return WRC_Prune. In this case, also check if the
6411 ** sub-expression matches the criteria for being moved to the WHERE
6412 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6413 ** within the HAVING expression with a constant "1".
6414 */
6415 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6416   if( pExpr->op!=TK_AND ){
6417     Select *pS = pWalker->u.pSelect;
6418     /* This routine is called before the HAVING clause of the current
6419     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6420     ** here, it indicates that the expression is a correlated reference to a
6421     ** column from an outer aggregate query, or an aggregate function that
6422     ** belongs to an outer query. Do not move the expression to the WHERE
6423     ** clause in this obscure case, as doing so may corrupt the outer Select
6424     ** statements AggInfo structure.  */
6425     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6426      && ExprAlwaysFalse(pExpr)==0
6427      && pExpr->pAggInfo==0
6428     ){
6429       sqlite3 *db = pWalker->pParse->db;
6430       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6431       if( pNew ){
6432         Expr *pWhere = pS->pWhere;
6433         SWAP(Expr, *pNew, *pExpr);
6434         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6435         pS->pWhere = pNew;
6436         pWalker->eCode = 1;
6437       }
6438     }
6439     return WRC_Prune;
6440   }
6441   return WRC_Continue;
6442 }
6443 
6444 /*
6445 ** Transfer eligible terms from the HAVING clause of a query, which is
6446 ** processed after grouping, to the WHERE clause, which is processed before
6447 ** grouping. For example, the query:
6448 **
6449 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6450 **
6451 ** can be rewritten as:
6452 **
6453 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6454 **
6455 ** A term of the HAVING expression is eligible for transfer if it consists
6456 ** entirely of constants and expressions that are also GROUP BY terms that
6457 ** use the "BINARY" collation sequence.
6458 */
6459 static void havingToWhere(Parse *pParse, Select *p){
6460   Walker sWalker;
6461   memset(&sWalker, 0, sizeof(sWalker));
6462   sWalker.pParse = pParse;
6463   sWalker.xExprCallback = havingToWhereExprCb;
6464   sWalker.u.pSelect = p;
6465   sqlite3WalkExpr(&sWalker, p->pHaving);
6466 #if TREETRACE_ENABLED
6467   if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
6468     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6469     sqlite3TreeViewSelect(0, p, 0);
6470   }
6471 #endif
6472 }
6473 
6474 /*
6475 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6476 ** If it is, then return the SrcItem for the prior view.  If it is not,
6477 ** then return 0.
6478 */
6479 static SrcItem *isSelfJoinView(
6480   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6481   SrcItem *pThis               /* Search for prior reference to this subquery */
6482 ){
6483   SrcItem *pItem;
6484   assert( pThis->pSelect!=0 );
6485   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6486   for(pItem = pTabList->a; pItem<pThis; pItem++){
6487     Select *pS1;
6488     if( pItem->pSelect==0 ) continue;
6489     if( pItem->fg.viaCoroutine ) continue;
6490     if( pItem->zName==0 ) continue;
6491     assert( pItem->pTab!=0 );
6492     assert( pThis->pTab!=0 );
6493     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6494     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6495     pS1 = pItem->pSelect;
6496     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6497       /* The query flattener left two different CTE tables with identical
6498       ** names in the same FROM clause. */
6499       continue;
6500     }
6501     if( pItem->pSelect->selFlags & SF_PushDown ){
6502       /* The view was modified by some other optimization such as
6503       ** pushDownWhereTerms() */
6504       continue;
6505     }
6506     return pItem;
6507   }
6508   return 0;
6509 }
6510 
6511 /*
6512 ** Deallocate a single AggInfo object
6513 */
6514 static void agginfoFree(sqlite3 *db, AggInfo *p){
6515   sqlite3DbFree(db, p->aCol);
6516   sqlite3DbFree(db, p->aFunc);
6517   sqlite3DbFreeNN(db, p);
6518 }
6519 
6520 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6521 /*
6522 ** Attempt to transform a query of the form
6523 **
6524 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6525 **
6526 ** Into this:
6527 **
6528 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6529 **
6530 ** The transformation only works if all of the following are true:
6531 **
6532 **   *  The subquery is a UNION ALL of two or more terms
6533 **   *  The subquery does not have a LIMIT clause
6534 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6535 **   *  The outer query is a simple count(*) with no WHERE clause or other
6536 **      extraneous syntax.
6537 **
6538 ** Return TRUE if the optimization is undertaken.
6539 */
6540 static int countOfViewOptimization(Parse *pParse, Select *p){
6541   Select *pSub, *pPrior;
6542   Expr *pExpr;
6543   Expr *pCount;
6544   sqlite3 *db;
6545   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6546   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6547   if( p->pWhere ) return 0;
6548   if( p->pGroupBy ) return 0;
6549   pExpr = p->pEList->a[0].pExpr;
6550   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6551   assert( ExprUseUToken(pExpr) );
6552   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6553   assert( ExprUseXList(pExpr) );
6554   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6555   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6556   pSub = p->pSrc->a[0].pSelect;
6557   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6558   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6559   do{
6560     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6561     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6562     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6563     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6564     pSub = pSub->pPrior;                              /* Repeat over compound */
6565   }while( pSub );
6566 
6567   /* If we reach this point then it is OK to perform the transformation */
6568 
6569   db = pParse->db;
6570   pCount = pExpr;
6571   pExpr = 0;
6572   pSub = p->pSrc->a[0].pSelect;
6573   p->pSrc->a[0].pSelect = 0;
6574   sqlite3SrcListDelete(db, p->pSrc);
6575   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6576   while( pSub ){
6577     Expr *pTerm;
6578     pPrior = pSub->pPrior;
6579     pSub->pPrior = 0;
6580     pSub->pNext = 0;
6581     pSub->selFlags |= SF_Aggregate;
6582     pSub->selFlags &= ~SF_Compound;
6583     pSub->nSelectRow = 0;
6584     sqlite3ExprListDelete(db, pSub->pEList);
6585     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6586     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6587     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6588     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6589     if( pExpr==0 ){
6590       pExpr = pTerm;
6591     }else{
6592       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6593     }
6594     pSub = pPrior;
6595   }
6596   p->pEList->a[0].pExpr = pExpr;
6597   p->selFlags &= ~SF_Aggregate;
6598 
6599 #if TREETRACE_ENABLED
6600   if( sqlite3TreeTrace & 0x400 ){
6601     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6602     sqlite3TreeViewSelect(0, p, 0);
6603   }
6604 #endif
6605   return 1;
6606 }
6607 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6608 
6609 /*
6610 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
6611 ** as pSrcItem but has the same alias as p0, then return true.
6612 ** Otherwise return false.
6613 */
6614 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
6615   int i;
6616   for(i=0; i<pSrc->nSrc; i++){
6617     SrcItem *p1 = &pSrc->a[i];
6618     if( p1==p0 ) continue;
6619     if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6620       return 1;
6621     }
6622     if( p1->pSelect
6623      && (p1->pSelect->selFlags & SF_NestedFrom)!=0
6624      && sameSrcAlias(p0, p1->pSelect->pSrc)
6625     ){
6626       return 1;
6627     }
6628   }
6629   return 0;
6630 }
6631 
6632 /*
6633 ** Generate code for the SELECT statement given in the p argument.
6634 **
6635 ** The results are returned according to the SelectDest structure.
6636 ** See comments in sqliteInt.h for further information.
6637 **
6638 ** This routine returns the number of errors.  If any errors are
6639 ** encountered, then an appropriate error message is left in
6640 ** pParse->zErrMsg.
6641 **
6642 ** This routine does NOT free the Select structure passed in.  The
6643 ** calling function needs to do that.
6644 */
6645 int sqlite3Select(
6646   Parse *pParse,         /* The parser context */
6647   Select *p,             /* The SELECT statement being coded. */
6648   SelectDest *pDest      /* What to do with the query results */
6649 ){
6650   int i, j;              /* Loop counters */
6651   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6652   Vdbe *v;               /* The virtual machine under construction */
6653   int isAgg;             /* True for select lists like "count(*)" */
6654   ExprList *pEList = 0;  /* List of columns to extract. */
6655   SrcList *pTabList;     /* List of tables to select from */
6656   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6657   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6658   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6659   AggInfo *pAggInfo = 0; /* Aggregate information */
6660   int rc = 1;            /* Value to return from this function */
6661   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6662   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6663   int iEnd;              /* Address of the end of the query */
6664   sqlite3 *db;           /* The database connection */
6665   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6666   u8 minMaxFlag;                 /* Flag for min/max queries */
6667 
6668   db = pParse->db;
6669   assert( pParse==db->pParse );
6670   v = sqlite3GetVdbe(pParse);
6671   if( p==0 || pParse->nErr ){
6672     return 1;
6673   }
6674   assert( db->mallocFailed==0 );
6675   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6676 #if TREETRACE_ENABLED
6677   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6678   if( sqlite3TreeTrace & 0x10100 ){
6679     if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
6680       sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
6681                            __FILE__, __LINE__);
6682     }
6683     sqlite3ShowSelect(p);
6684   }
6685 #endif
6686 
6687   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6688   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6689   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6690   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6691   if( IgnorableDistinct(pDest) ){
6692     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6693            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6694            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6695     /* All of these destinations are also able to ignore the ORDER BY clause */
6696     if( p->pOrderBy ){
6697 #if TREETRACE_ENABLED
6698       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6699       if( sqlite3TreeTrace & 0x100 ){
6700         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6701       }
6702 #endif
6703       sqlite3ParserAddCleanup(pParse,
6704         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6705         p->pOrderBy);
6706       testcase( pParse->earlyCleanup );
6707       p->pOrderBy = 0;
6708     }
6709     p->selFlags &= ~SF_Distinct;
6710     p->selFlags |= SF_NoopOrderBy;
6711   }
6712   sqlite3SelectPrep(pParse, p, 0);
6713   if( pParse->nErr ){
6714     goto select_end;
6715   }
6716   assert( db->mallocFailed==0 );
6717   assert( p->pEList!=0 );
6718 #if TREETRACE_ENABLED
6719   if( sqlite3TreeTrace & 0x104 ){
6720     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6721     sqlite3TreeViewSelect(0, p, 0);
6722   }
6723 #endif
6724 
6725   /* If the SF_UFSrcCheck flag is set, then this function is being called
6726   ** as part of populating the temp table for an UPDATE...FROM statement.
6727   ** In this case, it is an error if the target object (pSrc->a[0]) name
6728   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6729   **
6730   ** Postgres disallows this case too. The reason is that some other
6731   ** systems handle this case differently, and not all the same way,
6732   ** which is just confusing. To avoid this, we follow PG's lead and
6733   ** disallow it altogether.  */
6734   if( p->selFlags & SF_UFSrcCheck ){
6735     SrcItem *p0 = &p->pSrc->a[0];
6736     if( sameSrcAlias(p0, p->pSrc) ){
6737       sqlite3ErrorMsg(pParse,
6738           "target object/alias may not appear in FROM clause: %s",
6739           p0->zAlias ? p0->zAlias : p0->pTab->zName
6740       );
6741       goto select_end;
6742     }
6743 
6744     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6745     ** and leaving this flag set can cause errors if a compound sub-query
6746     ** in p->pSrc is flattened into this query and this function called
6747     ** again as part of compound SELECT processing.  */
6748     p->selFlags &= ~SF_UFSrcCheck;
6749   }
6750 
6751   if( pDest->eDest==SRT_Output ){
6752     sqlite3GenerateColumnNames(pParse, p);
6753   }
6754 
6755 #ifndef SQLITE_OMIT_WINDOWFUNC
6756   if( sqlite3WindowRewrite(pParse, p) ){
6757     assert( pParse->nErr );
6758     goto select_end;
6759   }
6760 #if TREETRACE_ENABLED
6761   if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
6762     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6763     sqlite3TreeViewSelect(0, p, 0);
6764   }
6765 #endif
6766 #endif /* SQLITE_OMIT_WINDOWFUNC */
6767   pTabList = p->pSrc;
6768   isAgg = (p->selFlags & SF_Aggregate)!=0;
6769   memset(&sSort, 0, sizeof(sSort));
6770   sSort.pOrderBy = p->pOrderBy;
6771 
6772   /* Try to do various optimizations (flattening subqueries, and strength
6773   ** reduction of join operators) in the FROM clause up into the main query
6774   */
6775 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6776   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6777     SrcItem *pItem = &pTabList->a[i];
6778     Select *pSub = pItem->pSelect;
6779     Table *pTab = pItem->pTab;
6780 
6781     /* The expander should have already created transient Table objects
6782     ** even for FROM clause elements such as subqueries that do not correspond
6783     ** to a real table */
6784     assert( pTab!=0 );
6785 
6786     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6787     ** of the LEFT JOIN used in the WHERE clause.
6788     */
6789     if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT
6790      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6791      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6792     ){
6793       SELECTTRACE(0x100,pParse,p,
6794                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6795       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6796       assert( pItem->iCursor>=0 );
6797       unsetJoinExpr(p->pWhere, pItem->iCursor,
6798                     pTabList->a[0].fg.jointype & JT_LTORJ);
6799     }
6800 
6801     /* No futher action if this term of the FROM clause is no a subquery */
6802     if( pSub==0 ) continue;
6803 
6804     /* Catch mismatch in the declared columns of a view and the number of
6805     ** columns in the SELECT on the RHS */
6806     if( pTab->nCol!=pSub->pEList->nExpr ){
6807       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6808                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6809       goto select_end;
6810     }
6811 
6812     /* Do not try to flatten an aggregate subquery.
6813     **
6814     ** Flattening an aggregate subquery is only possible if the outer query
6815     ** is not a join.  But if the outer query is not a join, then the subquery
6816     ** will be implemented as a co-routine and there is no advantage to
6817     ** flattening in that case.
6818     */
6819     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6820     assert( pSub->pGroupBy==0 );
6821 
6822     /* If a FROM-clause subquery has an ORDER BY clause that is not
6823     ** really doing anything, then delete it now so that it does not
6824     ** interfere with query flattening.  See the discussion at
6825     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6826     **
6827     ** Beware of these cases where the ORDER BY clause may not be safely
6828     ** omitted:
6829     **
6830     **    (1)   There is also a LIMIT clause
6831     **    (2)   The subquery was added to help with window-function
6832     **          processing
6833     **    (3)   The subquery is in the FROM clause of an UPDATE
6834     **    (4)   The outer query uses an aggregate function other than
6835     **          the built-in count(), min(), or max().
6836     **    (5)   The ORDER BY isn't going to accomplish anything because
6837     **          one of:
6838     **            (a)  The outer query has a different ORDER BY clause
6839     **            (b)  The subquery is part of a join
6840     **          See forum post 062d576715d277c8
6841     */
6842     if( pSub->pOrderBy!=0
6843      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6844      && pSub->pLimit==0                           /* Condition (1) */
6845      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6846      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6847      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6848     ){
6849       SELECTTRACE(0x100,pParse,p,
6850                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6851       sqlite3ParserAddCleanup(pParse,
6852          (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6853          pSub->pOrderBy);
6854       pSub->pOrderBy = 0;
6855     }
6856 
6857     /* If the outer query contains a "complex" result set (that is,
6858     ** if the result set of the outer query uses functions or subqueries)
6859     ** and if the subquery contains an ORDER BY clause and if
6860     ** it will be implemented as a co-routine, then do not flatten.  This
6861     ** restriction allows SQL constructs like this:
6862     **
6863     **  SELECT expensive_function(x)
6864     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6865     **
6866     ** The expensive_function() is only computed on the 10 rows that
6867     ** are output, rather than every row of the table.
6868     **
6869     ** The requirement that the outer query have a complex result set
6870     ** means that flattening does occur on simpler SQL constraints without
6871     ** the expensive_function() like:
6872     **
6873     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6874     */
6875     if( pSub->pOrderBy!=0
6876      && i==0
6877      && (p->selFlags & SF_ComplexResult)!=0
6878      && (pTabList->nSrc==1
6879          || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
6880     ){
6881       continue;
6882     }
6883 
6884     if( flattenSubquery(pParse, p, i, isAgg) ){
6885       if( pParse->nErr ) goto select_end;
6886       /* This subquery can be absorbed into its parent. */
6887       i = -1;
6888     }
6889     pTabList = p->pSrc;
6890     if( db->mallocFailed ) goto select_end;
6891     if( !IgnorableOrderby(pDest) ){
6892       sSort.pOrderBy = p->pOrderBy;
6893     }
6894   }
6895 #endif
6896 
6897 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6898   /* Handle compound SELECT statements using the separate multiSelect()
6899   ** procedure.
6900   */
6901   if( p->pPrior ){
6902     rc = multiSelect(pParse, p, pDest);
6903 #if TREETRACE_ENABLED
6904     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6905     if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6906       sqlite3TreeViewSelect(0, p, 0);
6907     }
6908 #endif
6909     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6910     return rc;
6911   }
6912 #endif
6913 
6914   /* Do the WHERE-clause constant propagation optimization if this is
6915   ** a join.  No need to speed time on this operation for non-join queries
6916   ** as the equivalent optimization will be handled by query planner in
6917   ** sqlite3WhereBegin().
6918   */
6919   if( p->pWhere!=0
6920    && p->pWhere->op==TK_AND
6921    && OptimizationEnabled(db, SQLITE_PropagateConst)
6922    && propagateConstants(pParse, p)
6923   ){
6924 #if TREETRACE_ENABLED
6925     if( sqlite3TreeTrace & 0x100 ){
6926       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6927       sqlite3TreeViewSelect(0, p, 0);
6928     }
6929 #endif
6930   }else{
6931     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6932   }
6933 
6934 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6935   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6936    && countOfViewOptimization(pParse, p)
6937   ){
6938     if( db->mallocFailed ) goto select_end;
6939     pEList = p->pEList;
6940     pTabList = p->pSrc;
6941   }
6942 #endif
6943 
6944   /* For each term in the FROM clause, do two things:
6945   ** (1) Authorized unreferenced tables
6946   ** (2) Generate code for all sub-queries
6947   */
6948   for(i=0; i<pTabList->nSrc; i++){
6949     SrcItem *pItem = &pTabList->a[i];
6950     SrcItem *pPrior;
6951     SelectDest dest;
6952     Select *pSub;
6953 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6954     const char *zSavedAuthContext;
6955 #endif
6956 
6957     /* Issue SQLITE_READ authorizations with a fake column name for any
6958     ** tables that are referenced but from which no values are extracted.
6959     ** Examples of where these kinds of null SQLITE_READ authorizations
6960     ** would occur:
6961     **
6962     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6963     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6964     **
6965     ** The fake column name is an empty string.  It is possible for a table to
6966     ** have a column named by the empty string, in which case there is no way to
6967     ** distinguish between an unreferenced table and an actual reference to the
6968     ** "" column. The original design was for the fake column name to be a NULL,
6969     ** which would be unambiguous.  But legacy authorization callbacks might
6970     ** assume the column name is non-NULL and segfault.  The use of an empty
6971     ** string for the fake column name seems safer.
6972     */
6973     if( pItem->colUsed==0 && pItem->zName!=0 ){
6974       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6975     }
6976 
6977 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6978     /* Generate code for all sub-queries in the FROM clause
6979     */
6980     pSub = pItem->pSelect;
6981     if( pSub==0 ) continue;
6982 
6983     /* The code for a subquery should only be generated once. */
6984     assert( pItem->addrFillSub==0 );
6985 
6986     /* Increment Parse.nHeight by the height of the largest expression
6987     ** tree referred to by this, the parent select. The child select
6988     ** may contain expression trees of at most
6989     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6990     ** more conservative than necessary, but much easier than enforcing
6991     ** an exact limit.
6992     */
6993     pParse->nHeight += sqlite3SelectExprHeight(p);
6994 
6995     /* Make copies of constant WHERE-clause terms in the outer query down
6996     ** inside the subquery.  This can help the subquery to run more efficiently.
6997     */
6998     if( OptimizationEnabled(db, SQLITE_PushDown)
6999      && (pItem->fg.isCte==0
7000          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
7001      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem)
7002     ){
7003 #if TREETRACE_ENABLED
7004       if( sqlite3TreeTrace & 0x100 ){
7005         SELECTTRACE(0x100,pParse,p,
7006             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
7007         sqlite3TreeViewSelect(0, p, 0);
7008       }
7009 #endif
7010       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
7011     }else{
7012       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
7013     }
7014 
7015     zSavedAuthContext = pParse->zAuthContext;
7016     pParse->zAuthContext = pItem->zName;
7017 
7018     /* Generate code to implement the subquery
7019     **
7020     ** The subquery is implemented as a co-routine if all of the following are
7021     ** true:
7022     **
7023     **    (1)  the subquery is guaranteed to be the outer loop (so that
7024     **         it does not need to be computed more than once), and
7025     **    (2)  the subquery is not a CTE that should be materialized
7026     **    (3)  the subquery is not part of a left operand for a RIGHT JOIN
7027     */
7028     if( i==0
7029      && (pTabList->nSrc==1
7030             || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)  /* (1) */
7031      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)   /* (2) */
7032      && (pTabList->a[0].fg.jointype & JT_LTORJ)==0                   /* (3) */
7033     ){
7034       /* Implement a co-routine that will return a single row of the result
7035       ** set on each invocation.
7036       */
7037       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7038 
7039       pItem->regReturn = ++pParse->nMem;
7040       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7041       VdbeComment((v, "%!S", pItem));
7042       pItem->addrFillSub = addrTop;
7043       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7044       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7045       sqlite3Select(pParse, pSub, &dest);
7046       pItem->pTab->nRowLogEst = pSub->nSelectRow;
7047       pItem->fg.viaCoroutine = 1;
7048       pItem->regResult = dest.iSdst;
7049       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7050       sqlite3VdbeJumpHere(v, addrTop-1);
7051       sqlite3ClearTempRegCache(pParse);
7052     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7053       /* This is a CTE for which materialization code has already been
7054       ** generated.  Invoke the subroutine to compute the materialization,
7055       ** the make the pItem->iCursor be a copy of the ephemerial table that
7056       ** holds the result of the materialization. */
7057       CteUse *pCteUse = pItem->u2.pCteUse;
7058       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7059       if( pItem->iCursor!=pCteUse->iCur ){
7060         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7061         VdbeComment((v, "%!S", pItem));
7062       }
7063       pSub->nSelectRow = pCteUse->nRowEst;
7064     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
7065       /* This view has already been materialized by a prior entry in
7066       ** this same FROM clause.  Reuse it. */
7067       if( pPrior->addrFillSub ){
7068         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7069       }
7070       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7071       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7072     }else{
7073       /* Materialize the view.  If the view is not correlated, generate a
7074       ** subroutine to do the materialization so that subsequent uses of
7075       ** the same view can reuse the materialization. */
7076       int topAddr;
7077       int onceAddr = 0;
7078 
7079       pItem->regReturn = ++pParse->nMem;
7080       topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7081       pItem->addrFillSub = topAddr+1;
7082       pItem->fg.isMaterialized = 1;
7083       if( pItem->fg.isCorrelated==0 ){
7084         /* If the subquery is not correlated and if we are not inside of
7085         ** a trigger, then we only need to compute the value of the subquery
7086         ** once. */
7087         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7088         VdbeComment((v, "materialize %!S", pItem));
7089       }else{
7090         VdbeNoopComment((v, "materialize %!S", pItem));
7091       }
7092       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7093       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
7094       dest.zAffSdst = sqlite3TableAffinityStr(db, pItem->pTab);
7095       sqlite3Select(pParse, pSub, &dest);
7096       sqlite3DbFree(db, dest.zAffSdst);
7097       dest.zAffSdst = 0;
7098       pItem->pTab->nRowLogEst = pSub->nSelectRow;
7099       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7100       sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7101       VdbeComment((v, "end %!S", pItem));
7102       sqlite3VdbeJumpHere(v, topAddr);
7103       sqlite3ClearTempRegCache(pParse);
7104       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7105         CteUse *pCteUse = pItem->u2.pCteUse;
7106         pCteUse->addrM9e = pItem->addrFillSub;
7107         pCteUse->regRtn = pItem->regReturn;
7108         pCteUse->iCur = pItem->iCursor;
7109         pCteUse->nRowEst = pSub->nSelectRow;
7110       }
7111     }
7112     if( db->mallocFailed ) goto select_end;
7113     pParse->nHeight -= sqlite3SelectExprHeight(p);
7114     pParse->zAuthContext = zSavedAuthContext;
7115 #endif
7116   }
7117 
7118   /* Various elements of the SELECT copied into local variables for
7119   ** convenience */
7120   pEList = p->pEList;
7121   pWhere = p->pWhere;
7122   pGroupBy = p->pGroupBy;
7123   pHaving = p->pHaving;
7124   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7125 
7126 #if TREETRACE_ENABLED
7127   if( sqlite3TreeTrace & 0x400 ){
7128     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
7129     sqlite3TreeViewSelect(0, p, 0);
7130   }
7131 #endif
7132 
7133   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7134   ** if the select-list is the same as the ORDER BY list, then this query
7135   ** can be rewritten as a GROUP BY. In other words, this:
7136   **
7137   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
7138   **
7139   ** is transformed to:
7140   **
7141   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7142   **
7143   ** The second form is preferred as a single index (or temp-table) may be
7144   ** used for both the ORDER BY and DISTINCT processing. As originally
7145   ** written the query must use a temp-table for at least one of the ORDER
7146   ** BY and DISTINCT, and an index or separate temp-table for the other.
7147   */
7148   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7149    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7150 #ifndef SQLITE_OMIT_WINDOWFUNC
7151    && p->pWin==0
7152 #endif
7153   ){
7154     p->selFlags &= ~SF_Distinct;
7155     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7156     p->selFlags |= SF_Aggregate;
7157     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7158     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
7159     ** original setting of the SF_Distinct flag, not the current setting */
7160     assert( sDistinct.isTnct );
7161     sDistinct.isTnct = 2;
7162 
7163 #if TREETRACE_ENABLED
7164     if( sqlite3TreeTrace & 0x400 ){
7165       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7166       sqlite3TreeViewSelect(0, p, 0);
7167     }
7168 #endif
7169   }
7170 
7171   /* If there is an ORDER BY clause, then create an ephemeral index to
7172   ** do the sorting.  But this sorting ephemeral index might end up
7173   ** being unused if the data can be extracted in pre-sorted order.
7174   ** If that is the case, then the OP_OpenEphemeral instruction will be
7175   ** changed to an OP_Noop once we figure out that the sorting index is
7176   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
7177   ** that change.
7178   */
7179   if( sSort.pOrderBy ){
7180     KeyInfo *pKeyInfo;
7181     pKeyInfo = sqlite3KeyInfoFromExprList(
7182         pParse, sSort.pOrderBy, 0, pEList->nExpr);
7183     sSort.iECursor = pParse->nTab++;
7184     sSort.addrSortIndex =
7185       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7186           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7187           (char*)pKeyInfo, P4_KEYINFO
7188       );
7189   }else{
7190     sSort.addrSortIndex = -1;
7191   }
7192 
7193   /* If the output is destined for a temporary table, open that table.
7194   */
7195   if( pDest->eDest==SRT_EphemTab ){
7196     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7197     if( p->selFlags & SF_NestedFrom ){
7198       /* Delete or NULL-out result columns that will never be used */
7199       int ii;
7200       for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7201         sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7202         sqlite3DbFree(db, pEList->a[ii].zEName);
7203         pEList->nExpr--;
7204       }
7205       for(ii=0; ii<pEList->nExpr; ii++){
7206         if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7207       }
7208     }
7209   }
7210 
7211   /* Set the limiter.
7212   */
7213   iEnd = sqlite3VdbeMakeLabel(pParse);
7214   if( (p->selFlags & SF_FixedLimit)==0 ){
7215     p->nSelectRow = 320;  /* 4 billion rows */
7216   }
7217   if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
7218   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7219     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7220     sSort.sortFlags |= SORTFLAG_UseSorter;
7221   }
7222 
7223   /* Open an ephemeral index to use for the distinct set.
7224   */
7225   if( p->selFlags & SF_Distinct ){
7226     sDistinct.tabTnct = pParse->nTab++;
7227     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7228                        sDistinct.tabTnct, 0, 0,
7229                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7230                        P4_KEYINFO);
7231     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7232     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7233   }else{
7234     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7235   }
7236 
7237   if( !isAgg && pGroupBy==0 ){
7238     /* No aggregate functions and no GROUP BY clause */
7239     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7240                    | (p->selFlags & SF_FixedLimit);
7241 #ifndef SQLITE_OMIT_WINDOWFUNC
7242     Window *pWin = p->pWin;      /* Main window object (or NULL) */
7243     if( pWin ){
7244       sqlite3WindowCodeInit(pParse, p);
7245     }
7246 #endif
7247     assert( WHERE_USE_LIMIT==SF_FixedLimit );
7248 
7249 
7250     /* Begin the database scan. */
7251     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7252     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7253                                p->pEList, p, wctrlFlags, p->nSelectRow);
7254     if( pWInfo==0 ) goto select_end;
7255     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7256       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7257     }
7258     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7259       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7260     }
7261     if( sSort.pOrderBy ){
7262       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7263       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7264       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7265         sSort.pOrderBy = 0;
7266       }
7267     }
7268     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7269 
7270     /* If sorting index that was created by a prior OP_OpenEphemeral
7271     ** instruction ended up not being needed, then change the OP_OpenEphemeral
7272     ** into an OP_Noop.
7273     */
7274     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7275       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7276     }
7277 
7278     assert( p->pEList==pEList );
7279 #ifndef SQLITE_OMIT_WINDOWFUNC
7280     if( pWin ){
7281       int addrGosub = sqlite3VdbeMakeLabel(pParse);
7282       int iCont = sqlite3VdbeMakeLabel(pParse);
7283       int iBreak = sqlite3VdbeMakeLabel(pParse);
7284       int regGosub = ++pParse->nMem;
7285 
7286       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
7287 
7288       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
7289       sqlite3VdbeResolveLabel(v, addrGosub);
7290       VdbeNoopComment((v, "inner-loop subroutine"));
7291       sSort.labelOBLopt = 0;
7292       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
7293       sqlite3VdbeResolveLabel(v, iCont);
7294       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7295       VdbeComment((v, "end inner-loop subroutine"));
7296       sqlite3VdbeResolveLabel(v, iBreak);
7297     }else
7298 #endif /* SQLITE_OMIT_WINDOWFUNC */
7299     {
7300       /* Use the standard inner loop. */
7301       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7302           sqlite3WhereContinueLabel(pWInfo),
7303           sqlite3WhereBreakLabel(pWInfo));
7304 
7305       /* End the database scan loop.
7306       */
7307       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7308       sqlite3WhereEnd(pWInfo);
7309     }
7310   }else{
7311     /* This case when there exist aggregate functions or a GROUP BY clause
7312     ** or both */
7313     NameContext sNC;    /* Name context for processing aggregate information */
7314     int iAMem;          /* First Mem address for storing current GROUP BY */
7315     int iBMem;          /* First Mem address for previous GROUP BY */
7316     int iUseFlag;       /* Mem address holding flag indicating that at least
7317                         ** one row of the input to the aggregator has been
7318                         ** processed */
7319     int iAbortFlag;     /* Mem address which causes query abort if positive */
7320     int groupBySort;    /* Rows come from source in GROUP BY order */
7321     int addrEnd;        /* End of processing for this SELECT */
7322     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
7323     int sortOut = 0;    /* Output register from the sorter */
7324     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
7325 
7326     /* Remove any and all aliases between the result set and the
7327     ** GROUP BY clause.
7328     */
7329     if( pGroupBy ){
7330       int k;                        /* Loop counter */
7331       struct ExprList_item *pItem;  /* For looping over expression in a list */
7332 
7333       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
7334         pItem->u.x.iAlias = 0;
7335       }
7336       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
7337         pItem->u.x.iAlias = 0;
7338       }
7339       assert( 66==sqlite3LogEst(100) );
7340       if( p->nSelectRow>66 ) p->nSelectRow = 66;
7341 
7342       /* If there is both a GROUP BY and an ORDER BY clause and they are
7343       ** identical, then it may be possible to disable the ORDER BY clause
7344       ** on the grounds that the GROUP BY will cause elements to come out
7345       ** in the correct order. It also may not - the GROUP BY might use a
7346       ** database index that causes rows to be grouped together as required
7347       ** but not actually sorted. Either way, record the fact that the
7348       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7349       ** variable.  */
7350       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7351         int ii;
7352         /* The GROUP BY processing doesn't care whether rows are delivered in
7353         ** ASC or DESC order - only that each group is returned contiguously.
7354         ** So set the ASC/DESC flags in the GROUP BY to match those in the
7355         ** ORDER BY to maximize the chances of rows being delivered in an
7356         ** order that makes the ORDER BY redundant.  */
7357         for(ii=0; ii<pGroupBy->nExpr; ii++){
7358           u8 sortFlags;
7359           sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
7360           pGroupBy->a[ii].fg.sortFlags = sortFlags;
7361         }
7362         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7363           orderByGrp = 1;
7364         }
7365       }
7366     }else{
7367       assert( 0==sqlite3LogEst(1) );
7368       p->nSelectRow = 0;
7369     }
7370 
7371     /* Create a label to jump to when we want to abort the query */
7372     addrEnd = sqlite3VdbeMakeLabel(pParse);
7373 
7374     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7375     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7376     ** SELECT statement.
7377     */
7378     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7379     if( pAggInfo ){
7380       sqlite3ParserAddCleanup(pParse,
7381           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7382       testcase( pParse->earlyCleanup );
7383     }
7384     if( db->mallocFailed ){
7385       goto select_end;
7386     }
7387     pAggInfo->selId = p->selId;
7388     memset(&sNC, 0, sizeof(sNC));
7389     sNC.pParse = pParse;
7390     sNC.pSrcList = pTabList;
7391     sNC.uNC.pAggInfo = pAggInfo;
7392     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7393     pAggInfo->mnReg = pParse->nMem+1;
7394     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7395     pAggInfo->pGroupBy = pGroupBy;
7396     sqlite3ExprAnalyzeAggList(&sNC, pEList);
7397     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7398     if( pHaving ){
7399       if( pGroupBy ){
7400         assert( pWhere==p->pWhere );
7401         assert( pHaving==p->pHaving );
7402         assert( pGroupBy==p->pGroupBy );
7403         havingToWhere(pParse, p);
7404         pWhere = p->pWhere;
7405       }
7406       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7407     }
7408     pAggInfo->nAccumulator = pAggInfo->nColumn;
7409     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7410       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7411     }else{
7412       minMaxFlag = WHERE_ORDERBY_NORMAL;
7413     }
7414     for(i=0; i<pAggInfo->nFunc; i++){
7415       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7416       assert( ExprUseXList(pExpr) );
7417       sNC.ncFlags |= NC_InAggFunc;
7418       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7419 #ifndef SQLITE_OMIT_WINDOWFUNC
7420       assert( !IsWindowFunc(pExpr) );
7421       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7422         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7423       }
7424 #endif
7425       sNC.ncFlags &= ~NC_InAggFunc;
7426     }
7427     pAggInfo->mxReg = pParse->nMem;
7428     if( db->mallocFailed ) goto select_end;
7429 #if TREETRACE_ENABLED
7430     if( sqlite3TreeTrace & 0x400 ){
7431       int ii;
7432       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7433       sqlite3TreeViewSelect(0, p, 0);
7434       if( minMaxFlag ){
7435         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7436         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7437       }
7438       for(ii=0; ii<pAggInfo->nColumn; ii++){
7439         struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
7440         sqlite3DebugPrintf(
7441            "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
7442            " iSorterColumn=%d\n",
7443            ii, pCol->pTab ? pCol->pTab->zName : "NULL",
7444            pCol->iTable, pCol->iColumn, pCol->iMem,
7445            pCol->iSorterColumn);
7446         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7447       }
7448       for(ii=0; ii<pAggInfo->nFunc; ii++){
7449         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7450             ii, pAggInfo->aFunc[ii].iMem);
7451         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7452       }
7453     }
7454 #endif
7455 
7456 
7457     /* Processing for aggregates with GROUP BY is very different and
7458     ** much more complex than aggregates without a GROUP BY.
7459     */
7460     if( pGroupBy ){
7461       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7462       int addr1;          /* A-vs-B comparision jump */
7463       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7464       int regOutputRow;   /* Return address register for output subroutine */
7465       int addrSetAbort;   /* Set the abort flag and return */
7466       int addrTopOfLoop;  /* Top of the input loop */
7467       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7468       int addrReset;      /* Subroutine for resetting the accumulator */
7469       int regReset;       /* Return address register for reset subroutine */
7470       ExprList *pDistinct = 0;
7471       u16 distFlag = 0;
7472       int eDist = WHERE_DISTINCT_NOOP;
7473 
7474       if( pAggInfo->nFunc==1
7475        && pAggInfo->aFunc[0].iDistinct>=0
7476        && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7477        && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7478        && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7479       ){
7480         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7481         pExpr = sqlite3ExprDup(db, pExpr, 0);
7482         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7483         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7484         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7485       }
7486 
7487       /* If there is a GROUP BY clause we might need a sorting index to
7488       ** implement it.  Allocate that sorting index now.  If it turns out
7489       ** that we do not need it after all, the OP_SorterOpen instruction
7490       ** will be converted into a Noop.
7491       */
7492       pAggInfo->sortingIdx = pParse->nTab++;
7493       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7494                                             0, pAggInfo->nColumn);
7495       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7496           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7497           0, (char*)pKeyInfo, P4_KEYINFO);
7498 
7499       /* Initialize memory locations used by GROUP BY aggregate processing
7500       */
7501       iUseFlag = ++pParse->nMem;
7502       iAbortFlag = ++pParse->nMem;
7503       regOutputRow = ++pParse->nMem;
7504       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7505       regReset = ++pParse->nMem;
7506       addrReset = sqlite3VdbeMakeLabel(pParse);
7507       iAMem = pParse->nMem + 1;
7508       pParse->nMem += pGroupBy->nExpr;
7509       iBMem = pParse->nMem + 1;
7510       pParse->nMem += pGroupBy->nExpr;
7511       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7512       VdbeComment((v, "clear abort flag"));
7513       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7514 
7515       /* Begin a loop that will extract all source rows in GROUP BY order.
7516       ** This might involve two separate loops with an OP_Sort in between, or
7517       ** it might be a single loop that uses an index to extract information
7518       ** in the right order to begin with.
7519       */
7520       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7521       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7522       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7523           p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
7524           |  (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7525       );
7526       if( pWInfo==0 ){
7527         sqlite3ExprListDelete(db, pDistinct);
7528         goto select_end;
7529       }
7530       eDist = sqlite3WhereIsDistinct(pWInfo);
7531       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7532       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7533         /* The optimizer is able to deliver rows in group by order so
7534         ** we do not have to sort.  The OP_OpenEphemeral table will be
7535         ** cancelled later because we still need to use the pKeyInfo
7536         */
7537         groupBySort = 0;
7538       }else{
7539         /* Rows are coming out in undetermined order.  We have to push
7540         ** each row into a sorting index, terminate the first loop,
7541         ** then loop over the sorting index in order to get the output
7542         ** in sorted order
7543         */
7544         int regBase;
7545         int regRecord;
7546         int nCol;
7547         int nGroupBy;
7548 
7549         explainTempTable(pParse,
7550             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7551                     "DISTINCT" : "GROUP BY");
7552 
7553         groupBySort = 1;
7554         nGroupBy = pGroupBy->nExpr;
7555         nCol = nGroupBy;
7556         j = nGroupBy;
7557         for(i=0; i<pAggInfo->nColumn; i++){
7558           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7559             nCol++;
7560             j++;
7561           }
7562         }
7563         regBase = sqlite3GetTempRange(pParse, nCol);
7564         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7565         j = nGroupBy;
7566         pAggInfo->directMode = 1;
7567         for(i=0; i<pAggInfo->nColumn; i++){
7568           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7569           if( pCol->iSorterColumn>=j ){
7570             sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
7571             j++;
7572           }
7573         }
7574         pAggInfo->directMode = 0;
7575         regRecord = sqlite3GetTempReg(pParse);
7576         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7577         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7578         sqlite3ReleaseTempReg(pParse, regRecord);
7579         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7580         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7581         sqlite3WhereEnd(pWInfo);
7582         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7583         sortOut = sqlite3GetTempReg(pParse);
7584         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7585         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7586         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7587         pAggInfo->useSortingIdx = 1;
7588       }
7589 
7590       /* If the index or temporary table used by the GROUP BY sort
7591       ** will naturally deliver rows in the order required by the ORDER BY
7592       ** clause, cancel the ephemeral table open coded earlier.
7593       **
7594       ** This is an optimization - the correct answer should result regardless.
7595       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7596       ** disable this optimization for testing purposes.  */
7597       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7598        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7599       ){
7600         sSort.pOrderBy = 0;
7601         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7602       }
7603 
7604       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7605       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7606       ** Then compare the current GROUP BY terms against the GROUP BY terms
7607       ** from the previous row currently stored in a0, a1, a2...
7608       */
7609       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7610       if( groupBySort ){
7611         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7612                           sortOut, sortPTab);
7613       }
7614       for(j=0; j<pGroupBy->nExpr; j++){
7615         if( groupBySort ){
7616           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7617         }else{
7618           pAggInfo->directMode = 1;
7619           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7620         }
7621       }
7622       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7623                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7624       addr1 = sqlite3VdbeCurrentAddr(v);
7625       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7626 
7627       /* Generate code that runs whenever the GROUP BY changes.
7628       ** Changes in the GROUP BY are detected by the previous code
7629       ** block.  If there were no changes, this block is skipped.
7630       **
7631       ** This code copies current group by terms in b0,b1,b2,...
7632       ** over to a0,a1,a2.  It then calls the output subroutine
7633       ** and resets the aggregate accumulator registers in preparation
7634       ** for the next GROUP BY batch.
7635       */
7636       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7637       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7638       VdbeComment((v, "output one row"));
7639       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7640       VdbeComment((v, "check abort flag"));
7641       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7642       VdbeComment((v, "reset accumulator"));
7643 
7644       /* Update the aggregate accumulators based on the content of
7645       ** the current row
7646       */
7647       sqlite3VdbeJumpHere(v, addr1);
7648       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7649       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7650       VdbeComment((v, "indicate data in accumulator"));
7651 
7652       /* End of the loop
7653       */
7654       if( groupBySort ){
7655         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7656         VdbeCoverage(v);
7657       }else{
7658         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7659         sqlite3WhereEnd(pWInfo);
7660         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7661       }
7662       sqlite3ExprListDelete(db, pDistinct);
7663 
7664       /* Output the final row of result
7665       */
7666       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7667       VdbeComment((v, "output final row"));
7668 
7669       /* Jump over the subroutines
7670       */
7671       sqlite3VdbeGoto(v, addrEnd);
7672 
7673       /* Generate a subroutine that outputs a single row of the result
7674       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7675       ** is less than or equal to zero, the subroutine is a no-op.  If
7676       ** the processing calls for the query to abort, this subroutine
7677       ** increments the iAbortFlag memory location before returning in
7678       ** order to signal the caller to abort.
7679       */
7680       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7681       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7682       VdbeComment((v, "set abort flag"));
7683       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7684       sqlite3VdbeResolveLabel(v, addrOutputRow);
7685       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7686       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7687       VdbeCoverage(v);
7688       VdbeComment((v, "Groupby result generator entry point"));
7689       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7690       finalizeAggFunctions(pParse, pAggInfo);
7691       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7692       selectInnerLoop(pParse, p, -1, &sSort,
7693                       &sDistinct, pDest,
7694                       addrOutputRow+1, addrSetAbort);
7695       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7696       VdbeComment((v, "end groupby result generator"));
7697 
7698       /* Generate a subroutine that will reset the group-by accumulator
7699       */
7700       sqlite3VdbeResolveLabel(v, addrReset);
7701       resetAccumulator(pParse, pAggInfo);
7702       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7703       VdbeComment((v, "indicate accumulator empty"));
7704       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7705 
7706       if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
7707         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7708         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7709       }
7710     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7711     else {
7712       Table *pTab;
7713       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7714         /* If isSimpleCount() returns a pointer to a Table structure, then
7715         ** the SQL statement is of the form:
7716         **
7717         **   SELECT count(*) FROM <tbl>
7718         **
7719         ** where the Table structure returned represents table <tbl>.
7720         **
7721         ** This statement is so common that it is optimized specially. The
7722         ** OP_Count instruction is executed either on the intkey table that
7723         ** contains the data for table <tbl> or on one of its indexes. It
7724         ** is better to execute the op on an index, as indexes are almost
7725         ** always spread across less pages than their corresponding tables.
7726         */
7727         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7728         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7729         Index *pIdx;                         /* Iterator variable */
7730         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7731         Index *pBest = 0;                    /* Best index found so far */
7732         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7733 
7734         sqlite3CodeVerifySchema(pParse, iDb);
7735         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7736 
7737         /* Search for the index that has the lowest scan cost.
7738         **
7739         ** (2011-04-15) Do not do a full scan of an unordered index.
7740         **
7741         ** (2013-10-03) Do not count the entries in a partial index.
7742         **
7743         ** In practice the KeyInfo structure will not be used. It is only
7744         ** passed to keep OP_OpenRead happy.
7745         */
7746         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7747         if( !p->pSrc->a[0].fg.notIndexed ){
7748           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7749             if( pIdx->bUnordered==0
7750              && pIdx->szIdxRow<pTab->szTabRow
7751              && pIdx->pPartIdxWhere==0
7752              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7753             ){
7754               pBest = pIdx;
7755             }
7756           }
7757         }
7758         if( pBest ){
7759           iRoot = pBest->tnum;
7760           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7761         }
7762 
7763         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7764         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7765         if( pKeyInfo ){
7766           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7767         }
7768         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7769         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7770         explainSimpleCount(pParse, pTab, pBest);
7771       }else{
7772         int regAcc = 0;           /* "populate accumulators" flag */
7773         ExprList *pDistinct = 0;
7774         u16 distFlag = 0;
7775         int eDist;
7776 
7777         /* If there are accumulator registers but no min() or max() functions
7778         ** without FILTER clauses, allocate register regAcc. Register regAcc
7779         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7780         ** The code generated by updateAccumulator() uses this to ensure
7781         ** that the accumulator registers are (a) updated only once if
7782         ** there are no min() or max functions or (b) always updated for the
7783         ** first row visited by the aggregate, so that they are updated at
7784         ** least once even if the FILTER clause means the min() or max()
7785         ** function visits zero rows.  */
7786         if( pAggInfo->nAccumulator ){
7787           for(i=0; i<pAggInfo->nFunc; i++){
7788             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7789               continue;
7790             }
7791             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7792               break;
7793             }
7794           }
7795           if( i==pAggInfo->nFunc ){
7796             regAcc = ++pParse->nMem;
7797             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7798           }
7799         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7800           assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7801           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7802           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7803         }
7804 
7805         /* This case runs if the aggregate has no GROUP BY clause.  The
7806         ** processing is much simpler since there is only a single row
7807         ** of output.
7808         */
7809         assert( p->pGroupBy==0 );
7810         resetAccumulator(pParse, pAggInfo);
7811 
7812         /* If this query is a candidate for the min/max optimization, then
7813         ** minMaxFlag will have been previously set to either
7814         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7815         ** be an appropriate ORDER BY expression for the optimization.
7816         */
7817         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7818         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7819 
7820         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7821         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7822                                    pDistinct, p, minMaxFlag|distFlag, 0);
7823         if( pWInfo==0 ){
7824           goto select_end;
7825         }
7826         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7827         eDist = sqlite3WhereIsDistinct(pWInfo);
7828         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7829         if( eDist!=WHERE_DISTINCT_NOOP ){
7830           struct AggInfo_func *pF = pAggInfo->aFunc;
7831           if( pF ){
7832             fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7833           }
7834         }
7835 
7836         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7837         if( minMaxFlag ){
7838           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7839         }
7840         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7841         sqlite3WhereEnd(pWInfo);
7842         finalizeAggFunctions(pParse, pAggInfo);
7843       }
7844 
7845       sSort.pOrderBy = 0;
7846       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7847       selectInnerLoop(pParse, p, -1, 0, 0,
7848                       pDest, addrEnd, addrEnd);
7849     }
7850     sqlite3VdbeResolveLabel(v, addrEnd);
7851 
7852   } /* endif aggregate query */
7853 
7854   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7855     explainTempTable(pParse, "DISTINCT");
7856   }
7857 
7858   /* If there is an ORDER BY clause, then we need to sort the results
7859   ** and send them to the callback one by one.
7860   */
7861   if( sSort.pOrderBy ){
7862     explainTempTable(pParse,
7863                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7864     assert( p->pEList==pEList );
7865     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7866   }
7867 
7868   /* Jump here to skip this query
7869   */
7870   sqlite3VdbeResolveLabel(v, iEnd);
7871 
7872   /* The SELECT has been coded. If there is an error in the Parse structure,
7873   ** set the return code to 1. Otherwise 0. */
7874   rc = (pParse->nErr>0);
7875 
7876   /* Control jumps to here if an error is encountered above, or upon
7877   ** successful coding of the SELECT.
7878   */
7879 select_end:
7880   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7881   assert( db->mallocFailed==0 || pParse->nErr!=0 );
7882   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7883 #ifdef SQLITE_DEBUG
7884   if( pAggInfo && !db->mallocFailed ){
7885     for(i=0; i<pAggInfo->nColumn; i++){
7886       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7887       assert( pExpr!=0 );
7888       assert( pExpr->pAggInfo==pAggInfo );
7889       assert( pExpr->iAgg==i );
7890     }
7891     for(i=0; i<pAggInfo->nFunc; i++){
7892       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7893       assert( pExpr!=0 );
7894       assert( pExpr->pAggInfo==pAggInfo );
7895       assert( pExpr->iAgg==i );
7896     }
7897   }
7898 #endif
7899 
7900 #if TREETRACE_ENABLED
7901   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7902   if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7903     sqlite3TreeViewSelect(0, p, 0);
7904   }
7905 #endif
7906   ExplainQueryPlanPop(pParse);
7907   return rc;
7908 }
7909