xref: /sqlite-3.40.0/src/select.c (revision 3f09beda)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
58 };
59 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
60 
61 /*
62 ** Delete all the content of a Select structure.  Deallocate the structure
63 ** itself only if bFree is true.
64 */
65 static void clearSelect(sqlite3 *db, Select *p, int bFree){
66   while( p ){
67     Select *pPrior = p->pPrior;
68     sqlite3ExprListDelete(db, p->pEList);
69     sqlite3SrcListDelete(db, p->pSrc);
70     sqlite3ExprDelete(db, p->pWhere);
71     sqlite3ExprListDelete(db, p->pGroupBy);
72     sqlite3ExprDelete(db, p->pHaving);
73     sqlite3ExprListDelete(db, p->pOrderBy);
74     sqlite3ExprDelete(db, p->pLimit);
75     sqlite3ExprDelete(db, p->pOffset);
76     sqlite3WithDelete(db, p->pWith);
77     if( bFree ) sqlite3DbFree(db, p);
78     p = pPrior;
79     bFree = 1;
80   }
81 }
82 
83 /*
84 ** Initialize a SelectDest structure.
85 */
86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
87   pDest->eDest = (u8)eDest;
88   pDest->iSDParm = iParm;
89   pDest->affSdst = 0;
90   pDest->iSdst = 0;
91   pDest->nSdst = 0;
92 }
93 
94 
95 /*
96 ** Allocate a new Select structure and return a pointer to that
97 ** structure.
98 */
99 Select *sqlite3SelectNew(
100   Parse *pParse,        /* Parsing context */
101   ExprList *pEList,     /* which columns to include in the result */
102   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
103   Expr *pWhere,         /* the WHERE clause */
104   ExprList *pGroupBy,   /* the GROUP BY clause */
105   Expr *pHaving,        /* the HAVING clause */
106   ExprList *pOrderBy,   /* the ORDER BY clause */
107   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
108   Expr *pLimit,         /* LIMIT value.  NULL means not used */
109   Expr *pOffset         /* OFFSET value.  NULL means no offset */
110 ){
111   Select *pNew;
112   Select standin;
113   sqlite3 *db = pParse->db;
114   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     if( p->op==TK_FUNCTION && p->x.pList ){
370       int i;
371       for(i=0; i<p->x.pList->nExpr; i++){
372         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
373       }
374     }
375     setJoinExpr(p->pLeft, iTable);
376     p = p->pRight;
377   }
378 }
379 
380 /*
381 ** This routine processes the join information for a SELECT statement.
382 ** ON and USING clauses are converted into extra terms of the WHERE clause.
383 ** NATURAL joins also create extra WHERE clause terms.
384 **
385 ** The terms of a FROM clause are contained in the Select.pSrc structure.
386 ** The left most table is the first entry in Select.pSrc.  The right-most
387 ** table is the last entry.  The join operator is held in the entry to
388 ** the left.  Thus entry 0 contains the join operator for the join between
389 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
390 ** also attached to the left entry.
391 **
392 ** This routine returns the number of errors encountered.
393 */
394 static int sqliteProcessJoin(Parse *pParse, Select *p){
395   SrcList *pSrc;                  /* All tables in the FROM clause */
396   int i, j;                       /* Loop counters */
397   struct SrcList_item *pLeft;     /* Left table being joined */
398   struct SrcList_item *pRight;    /* Right table being joined */
399 
400   pSrc = p->pSrc;
401   pLeft = &pSrc->a[0];
402   pRight = &pLeft[1];
403   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
404     Table *pLeftTab = pLeft->pTab;
405     Table *pRightTab = pRight->pTab;
406     int isOuter;
407 
408     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
409     isOuter = (pRight->jointype & JT_OUTER)!=0;
410 
411     /* When the NATURAL keyword is present, add WHERE clause terms for
412     ** every column that the two tables have in common.
413     */
414     if( pRight->jointype & JT_NATURAL ){
415       if( pRight->pOn || pRight->pUsing ){
416         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
417            "an ON or USING clause", 0);
418         return 1;
419       }
420       for(j=0; j<pRightTab->nCol; j++){
421         char *zName;   /* Name of column in the right table */
422         int iLeft;     /* Matching left table */
423         int iLeftCol;  /* Matching column in the left table */
424 
425         zName = pRightTab->aCol[j].zName;
426         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
427           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
428                        isOuter, &p->pWhere);
429         }
430       }
431     }
432 
433     /* Disallow both ON and USING clauses in the same join
434     */
435     if( pRight->pOn && pRight->pUsing ){
436       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
437         "clauses in the same join");
438       return 1;
439     }
440 
441     /* Add the ON clause to the end of the WHERE clause, connected by
442     ** an AND operator.
443     */
444     if( pRight->pOn ){
445       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
446       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
447       pRight->pOn = 0;
448     }
449 
450     /* Create extra terms on the WHERE clause for each column named
451     ** in the USING clause.  Example: If the two tables to be joined are
452     ** A and B and the USING clause names X, Y, and Z, then add this
453     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
454     ** Report an error if any column mentioned in the USING clause is
455     ** not contained in both tables to be joined.
456     */
457     if( pRight->pUsing ){
458       IdList *pList = pRight->pUsing;
459       for(j=0; j<pList->nId; j++){
460         char *zName;     /* Name of the term in the USING clause */
461         int iLeft;       /* Table on the left with matching column name */
462         int iLeftCol;    /* Column number of matching column on the left */
463         int iRightCol;   /* Column number of matching column on the right */
464 
465         zName = pList->a[j].zName;
466         iRightCol = columnIndex(pRightTab, zName);
467         if( iRightCol<0
468          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
469         ){
470           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
471             "not present in both tables", zName);
472           return 1;
473         }
474         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
475                      isOuter, &p->pWhere);
476       }
477     }
478   }
479   return 0;
480 }
481 
482 /* Forward reference */
483 static KeyInfo *keyInfoFromExprList(
484   Parse *pParse,       /* Parsing context */
485   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
486   int iStart,          /* Begin with this column of pList */
487   int nExtra           /* Add this many extra columns to the end */
488 );
489 
490 /*
491 ** Generate code that will push the record in registers regData
492 ** through regData+nData-1 onto the sorter.
493 */
494 static void pushOntoSorter(
495   Parse *pParse,         /* Parser context */
496   SortCtx *pSort,        /* Information about the ORDER BY clause */
497   Select *pSelect,       /* The whole SELECT statement */
498   int regData,           /* First register holding data to be sorted */
499   int nData,             /* Number of elements in the data array */
500   int nPrefixReg         /* No. of reg prior to regData available for use */
501 ){
502   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
503   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
504   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
505   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
506   int regBase;                                     /* Regs for sorter record */
507   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
508   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
509   int op;                            /* Opcode to add sorter record to sorter */
510 
511   assert( bSeq==0 || bSeq==1 );
512   if( nPrefixReg ){
513     assert( nPrefixReg==nExpr+bSeq );
514     regBase = regData - nExpr - bSeq;
515   }else{
516     regBase = pParse->nMem + 1;
517     pParse->nMem += nBase;
518   }
519   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
520   if( bSeq ){
521     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
522   }
523   if( nPrefixReg==0 ){
524     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
525   }
526 
527   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
528   if( nOBSat>0 ){
529     int regPrevKey;   /* The first nOBSat columns of the previous row */
530     int addrFirst;    /* Address of the OP_IfNot opcode */
531     int addrJmp;      /* Address of the OP_Jump opcode */
532     VdbeOp *pOp;      /* Opcode that opens the sorter */
533     int nKey;         /* Number of sorting key columns, including OP_Sequence */
534     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
535 
536     regPrevKey = pParse->nMem+1;
537     pParse->nMem += pSort->nOBSat;
538     nKey = nExpr - pSort->nOBSat + bSeq;
539     if( bSeq ){
540       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
541     }else{
542       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
543     }
544     VdbeCoverage(v);
545     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
546     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
547     if( pParse->db->mallocFailed ) return;
548     pOp->p2 = nKey + nData;
549     pKI = pOp->p4.pKeyInfo;
550     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
551     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
552     testcase( pKI->nXField>2 );
553     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
554                                            pKI->nXField-1);
555     addrJmp = sqlite3VdbeCurrentAddr(v);
556     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
557     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
558     pSort->regReturn = ++pParse->nMem;
559     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
560     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
561     sqlite3VdbeJumpHere(v, addrFirst);
562     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
563     sqlite3VdbeJumpHere(v, addrJmp);
564   }
565   if( pSort->sortFlags & SORTFLAG_UseSorter ){
566     op = OP_SorterInsert;
567   }else{
568     op = OP_IdxInsert;
569   }
570   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
571   if( pSelect->iLimit ){
572     int addr;
573     int iLimit;
574     if( pSelect->iOffset ){
575       iLimit = pSelect->iOffset+1;
576     }else{
577       iLimit = pSelect->iLimit;
578     }
579     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v);
580     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
581     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
582     sqlite3VdbeJumpHere(v, addr);
583   }
584 }
585 
586 /*
587 ** Add code to implement the OFFSET
588 */
589 static void codeOffset(
590   Vdbe *v,          /* Generate code into this VM */
591   int iOffset,      /* Register holding the offset counter */
592   int iContinue     /* Jump here to skip the current record */
593 ){
594   if( iOffset>0 ){
595     int addr;
596     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
597     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
598     VdbeComment((v, "skip OFFSET records"));
599     sqlite3VdbeJumpHere(v, addr);
600   }
601 }
602 
603 /*
604 ** Add code that will check to make sure the N registers starting at iMem
605 ** form a distinct entry.  iTab is a sorting index that holds previously
606 ** seen combinations of the N values.  A new entry is made in iTab
607 ** if the current N values are new.
608 **
609 ** A jump to addrRepeat is made and the N+1 values are popped from the
610 ** stack if the top N elements are not distinct.
611 */
612 static void codeDistinct(
613   Parse *pParse,     /* Parsing and code generating context */
614   int iTab,          /* A sorting index used to test for distinctness */
615   int addrRepeat,    /* Jump to here if not distinct */
616   int N,             /* Number of elements */
617   int iMem           /* First element */
618 ){
619   Vdbe *v;
620   int r1;
621 
622   v = pParse->pVdbe;
623   r1 = sqlite3GetTempReg(pParse);
624   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
625   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
626   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
627   sqlite3ReleaseTempReg(pParse, r1);
628 }
629 
630 #ifndef SQLITE_OMIT_SUBQUERY
631 /*
632 ** Generate an error message when a SELECT is used within a subexpression
633 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
634 ** column.  We do this in a subroutine because the error used to occur
635 ** in multiple places.  (The error only occurs in one place now, but we
636 ** retain the subroutine to minimize code disruption.)
637 */
638 static int checkForMultiColumnSelectError(
639   Parse *pParse,       /* Parse context. */
640   SelectDest *pDest,   /* Destination of SELECT results */
641   int nExpr            /* Number of result columns returned by SELECT */
642 ){
643   int eDest = pDest->eDest;
644   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
645     sqlite3ErrorMsg(pParse, "only a single result allowed for "
646        "a SELECT that is part of an expression");
647     return 1;
648   }else{
649     return 0;
650   }
651 }
652 #endif
653 
654 /*
655 ** This routine generates the code for the inside of the inner loop
656 ** of a SELECT.
657 **
658 ** If srcTab is negative, then the pEList expressions
659 ** are evaluated in order to get the data for this row.  If srcTab is
660 ** zero or more, then data is pulled from srcTab and pEList is used only
661 ** to get number columns and the datatype for each column.
662 */
663 static void selectInnerLoop(
664   Parse *pParse,          /* The parser context */
665   Select *p,              /* The complete select statement being coded */
666   ExprList *pEList,       /* List of values being extracted */
667   int srcTab,             /* Pull data from this table */
668   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
669   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
670   SelectDest *pDest,      /* How to dispose of the results */
671   int iContinue,          /* Jump here to continue with next row */
672   int iBreak              /* Jump here to break out of the inner loop */
673 ){
674   Vdbe *v = pParse->pVdbe;
675   int i;
676   int hasDistinct;        /* True if the DISTINCT keyword is present */
677   int regResult;              /* Start of memory holding result set */
678   int eDest = pDest->eDest;   /* How to dispose of results */
679   int iParm = pDest->iSDParm; /* First argument to disposal method */
680   int nResultCol;             /* Number of result columns */
681   int nPrefixReg = 0;         /* Number of extra registers before regResult */
682 
683   assert( v );
684   assert( pEList!=0 );
685   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
686   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
687   if( pSort==0 && !hasDistinct ){
688     assert( iContinue!=0 );
689     codeOffset(v, p->iOffset, iContinue);
690   }
691 
692   /* Pull the requested columns.
693   */
694   nResultCol = pEList->nExpr;
695 
696   if( pDest->iSdst==0 ){
697     if( pSort ){
698       nPrefixReg = pSort->pOrderBy->nExpr;
699       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
700       pParse->nMem += nPrefixReg;
701     }
702     pDest->iSdst = pParse->nMem+1;
703     pParse->nMem += nResultCol;
704   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
705     /* This is an error condition that can result, for example, when a SELECT
706     ** on the right-hand side of an INSERT contains more result columns than
707     ** there are columns in the table on the left.  The error will be caught
708     ** and reported later.  But we need to make sure enough memory is allocated
709     ** to avoid other spurious errors in the meantime. */
710     pParse->nMem += nResultCol;
711   }
712   pDest->nSdst = nResultCol;
713   regResult = pDest->iSdst;
714   if( srcTab>=0 ){
715     for(i=0; i<nResultCol; i++){
716       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
717       VdbeComment((v, "%s", pEList->a[i].zName));
718     }
719   }else if( eDest!=SRT_Exists ){
720     /* If the destination is an EXISTS(...) expression, the actual
721     ** values returned by the SELECT are not required.
722     */
723     u8 ecelFlags;
724     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
725       ecelFlags = SQLITE_ECEL_DUP;
726     }else{
727       ecelFlags = 0;
728     }
729     sqlite3ExprCodeExprList(pParse, pEList, regResult, ecelFlags);
730   }
731 
732   /* If the DISTINCT keyword was present on the SELECT statement
733   ** and this row has been seen before, then do not make this row
734   ** part of the result.
735   */
736   if( hasDistinct ){
737     switch( pDistinct->eTnctType ){
738       case WHERE_DISTINCT_ORDERED: {
739         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
740         int iJump;              /* Jump destination */
741         int regPrev;            /* Previous row content */
742 
743         /* Allocate space for the previous row */
744         regPrev = pParse->nMem+1;
745         pParse->nMem += nResultCol;
746 
747         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
748         ** sets the MEM_Cleared bit on the first register of the
749         ** previous value.  This will cause the OP_Ne below to always
750         ** fail on the first iteration of the loop even if the first
751         ** row is all NULLs.
752         */
753         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
754         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
755         pOp->opcode = OP_Null;
756         pOp->p1 = 1;
757         pOp->p2 = regPrev;
758 
759         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
760         for(i=0; i<nResultCol; i++){
761           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
762           if( i<nResultCol-1 ){
763             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
764             VdbeCoverage(v);
765           }else{
766             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
767             VdbeCoverage(v);
768            }
769           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
770           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
771         }
772         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
773         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
774         break;
775       }
776 
777       case WHERE_DISTINCT_UNIQUE: {
778         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
779         break;
780       }
781 
782       default: {
783         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
784         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
785                      regResult);
786         break;
787       }
788     }
789     if( pSort==0 ){
790       codeOffset(v, p->iOffset, iContinue);
791     }
792   }
793 
794   switch( eDest ){
795     /* In this mode, write each query result to the key of the temporary
796     ** table iParm.
797     */
798 #ifndef SQLITE_OMIT_COMPOUND_SELECT
799     case SRT_Union: {
800       int r1;
801       r1 = sqlite3GetTempReg(pParse);
802       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
803       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
804       sqlite3ReleaseTempReg(pParse, r1);
805       break;
806     }
807 
808     /* Construct a record from the query result, but instead of
809     ** saving that record, use it as a key to delete elements from
810     ** the temporary table iParm.
811     */
812     case SRT_Except: {
813       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
814       break;
815     }
816 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
817 
818     /* Store the result as data using a unique key.
819     */
820     case SRT_Fifo:
821     case SRT_DistFifo:
822     case SRT_Table:
823     case SRT_EphemTab: {
824       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
825       testcase( eDest==SRT_Table );
826       testcase( eDest==SRT_EphemTab );
827       testcase( eDest==SRT_Fifo );
828       testcase( eDest==SRT_DistFifo );
829       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
830 #ifndef SQLITE_OMIT_CTE
831       if( eDest==SRT_DistFifo ){
832         /* If the destination is DistFifo, then cursor (iParm+1) is open
833         ** on an ephemeral index. If the current row is already present
834         ** in the index, do not write it to the output. If not, add the
835         ** current row to the index and proceed with writing it to the
836         ** output table as well.  */
837         int addr = sqlite3VdbeCurrentAddr(v) + 4;
838         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
839         VdbeCoverage(v);
840         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
841         assert( pSort==0 );
842       }
843 #endif
844       if( pSort ){
845         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
846       }else{
847         int r2 = sqlite3GetTempReg(pParse);
848         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
849         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
850         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
851         sqlite3ReleaseTempReg(pParse, r2);
852       }
853       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
854       break;
855     }
856 
857 #ifndef SQLITE_OMIT_SUBQUERY
858     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
859     ** then there should be a single item on the stack.  Write this
860     ** item into the set table with bogus data.
861     */
862     case SRT_Set: {
863       assert( nResultCol==1 );
864       pDest->affSdst =
865                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
866       if( pSort ){
867         /* At first glance you would think we could optimize out the
868         ** ORDER BY in this case since the order of entries in the set
869         ** does not matter.  But there might be a LIMIT clause, in which
870         ** case the order does matter */
871         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
872       }else{
873         int r1 = sqlite3GetTempReg(pParse);
874         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
875         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
876         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
877         sqlite3ReleaseTempReg(pParse, r1);
878       }
879       break;
880     }
881 
882     /* If any row exist in the result set, record that fact and abort.
883     */
884     case SRT_Exists: {
885       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
886       /* The LIMIT clause will terminate the loop for us */
887       break;
888     }
889 
890     /* If this is a scalar select that is part of an expression, then
891     ** store the results in the appropriate memory cell and break out
892     ** of the scan loop.
893     */
894     case SRT_Mem: {
895       assert( nResultCol==1 );
896       if( pSort ){
897         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
898       }else{
899         assert( regResult==iParm );
900         /* The LIMIT clause will jump out of the loop for us */
901       }
902       break;
903     }
904 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
905 
906     case SRT_Coroutine:       /* Send data to a co-routine */
907     case SRT_Output: {        /* Return the results */
908       testcase( eDest==SRT_Coroutine );
909       testcase( eDest==SRT_Output );
910       if( pSort ){
911         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
912       }else if( eDest==SRT_Coroutine ){
913         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
914       }else{
915         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
916         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
917       }
918       break;
919     }
920 
921 #ifndef SQLITE_OMIT_CTE
922     /* Write the results into a priority queue that is order according to
923     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
924     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
925     ** pSO->nExpr columns, then make sure all keys are unique by adding a
926     ** final OP_Sequence column.  The last column is the record as a blob.
927     */
928     case SRT_DistQueue:
929     case SRT_Queue: {
930       int nKey;
931       int r1, r2, r3;
932       int addrTest = 0;
933       ExprList *pSO;
934       pSO = pDest->pOrderBy;
935       assert( pSO );
936       nKey = pSO->nExpr;
937       r1 = sqlite3GetTempReg(pParse);
938       r2 = sqlite3GetTempRange(pParse, nKey+2);
939       r3 = r2+nKey+1;
940       if( eDest==SRT_DistQueue ){
941         /* If the destination is DistQueue, then cursor (iParm+1) is open
942         ** on a second ephemeral index that holds all values every previously
943         ** added to the queue. */
944         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
945                                         regResult, nResultCol);
946         VdbeCoverage(v);
947       }
948       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
949       if( eDest==SRT_DistQueue ){
950         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
951         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
952       }
953       for(i=0; i<nKey; i++){
954         sqlite3VdbeAddOp2(v, OP_SCopy,
955                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
956                           r2+i);
957       }
958       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
959       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
960       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
961       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
962       sqlite3ReleaseTempReg(pParse, r1);
963       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
964       break;
965     }
966 #endif /* SQLITE_OMIT_CTE */
967 
968 
969 
970 #if !defined(SQLITE_OMIT_TRIGGER)
971     /* Discard the results.  This is used for SELECT statements inside
972     ** the body of a TRIGGER.  The purpose of such selects is to call
973     ** user-defined functions that have side effects.  We do not care
974     ** about the actual results of the select.
975     */
976     default: {
977       assert( eDest==SRT_Discard );
978       break;
979     }
980 #endif
981   }
982 
983   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
984   ** there is a sorter, in which case the sorter has already limited
985   ** the output for us.
986   */
987   if( pSort==0 && p->iLimit ){
988     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
989   }
990 }
991 
992 /*
993 ** Allocate a KeyInfo object sufficient for an index of N key columns and
994 ** X extra columns.
995 */
996 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
997   KeyInfo *p = sqlite3DbMallocZero(0,
998                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
999   if( p ){
1000     p->aSortOrder = (u8*)&p->aColl[N+X];
1001     p->nField = (u16)N;
1002     p->nXField = (u16)X;
1003     p->enc = ENC(db);
1004     p->db = db;
1005     p->nRef = 1;
1006   }else{
1007     db->mallocFailed = 1;
1008   }
1009   return p;
1010 }
1011 
1012 /*
1013 ** Deallocate a KeyInfo object
1014 */
1015 void sqlite3KeyInfoUnref(KeyInfo *p){
1016   if( p ){
1017     assert( p->nRef>0 );
1018     p->nRef--;
1019     if( p->nRef==0 ) sqlite3DbFree(0, p);
1020   }
1021 }
1022 
1023 /*
1024 ** Make a new pointer to a KeyInfo object
1025 */
1026 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1027   if( p ){
1028     assert( p->nRef>0 );
1029     p->nRef++;
1030   }
1031   return p;
1032 }
1033 
1034 #ifdef SQLITE_DEBUG
1035 /*
1036 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1037 ** can only be changed if this is just a single reference to the object.
1038 **
1039 ** This routine is used only inside of assert() statements.
1040 */
1041 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1042 #endif /* SQLITE_DEBUG */
1043 
1044 /*
1045 ** Given an expression list, generate a KeyInfo structure that records
1046 ** the collating sequence for each expression in that expression list.
1047 **
1048 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1049 ** KeyInfo structure is appropriate for initializing a virtual index to
1050 ** implement that clause.  If the ExprList is the result set of a SELECT
1051 ** then the KeyInfo structure is appropriate for initializing a virtual
1052 ** index to implement a DISTINCT test.
1053 **
1054 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1055 ** function is responsible for seeing that this structure is eventually
1056 ** freed.
1057 */
1058 static KeyInfo *keyInfoFromExprList(
1059   Parse *pParse,       /* Parsing context */
1060   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1061   int iStart,          /* Begin with this column of pList */
1062   int nExtra           /* Add this many extra columns to the end */
1063 ){
1064   int nExpr;
1065   KeyInfo *pInfo;
1066   struct ExprList_item *pItem;
1067   sqlite3 *db = pParse->db;
1068   int i;
1069 
1070   nExpr = pList->nExpr;
1071   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1072   if( pInfo ){
1073     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1074     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1075       CollSeq *pColl;
1076       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1077       if( !pColl ) pColl = db->pDfltColl;
1078       pInfo->aColl[i-iStart] = pColl;
1079       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1080     }
1081   }
1082   return pInfo;
1083 }
1084 
1085 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1086 /*
1087 ** Name of the connection operator, used for error messages.
1088 */
1089 static const char *selectOpName(int id){
1090   char *z;
1091   switch( id ){
1092     case TK_ALL:       z = "UNION ALL";   break;
1093     case TK_INTERSECT: z = "INTERSECT";   break;
1094     case TK_EXCEPT:    z = "EXCEPT";      break;
1095     default:           z = "UNION";       break;
1096   }
1097   return z;
1098 }
1099 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1100 
1101 #ifndef SQLITE_OMIT_EXPLAIN
1102 /*
1103 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1104 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1105 ** where the caption is of the form:
1106 **
1107 **   "USE TEMP B-TREE FOR xxx"
1108 **
1109 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1110 ** is determined by the zUsage argument.
1111 */
1112 static void explainTempTable(Parse *pParse, const char *zUsage){
1113   if( pParse->explain==2 ){
1114     Vdbe *v = pParse->pVdbe;
1115     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1116     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1117   }
1118 }
1119 
1120 /*
1121 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1122 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1123 ** in sqlite3Select() to assign values to structure member variables that
1124 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1125 ** code with #ifndef directives.
1126 */
1127 # define explainSetInteger(a, b) a = b
1128 
1129 #else
1130 /* No-op versions of the explainXXX() functions and macros. */
1131 # define explainTempTable(y,z)
1132 # define explainSetInteger(y,z)
1133 #endif
1134 
1135 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1136 /*
1137 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1138 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1139 ** where the caption is of one of the two forms:
1140 **
1141 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1142 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1143 **
1144 ** where iSub1 and iSub2 are the integers passed as the corresponding
1145 ** function parameters, and op is the text representation of the parameter
1146 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1147 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1148 ** false, or the second form if it is true.
1149 */
1150 static void explainComposite(
1151   Parse *pParse,                  /* Parse context */
1152   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1153   int iSub1,                      /* Subquery id 1 */
1154   int iSub2,                      /* Subquery id 2 */
1155   int bUseTmp                     /* True if a temp table was used */
1156 ){
1157   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1158   if( pParse->explain==2 ){
1159     Vdbe *v = pParse->pVdbe;
1160     char *zMsg = sqlite3MPrintf(
1161         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1162         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1163     );
1164     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1165   }
1166 }
1167 #else
1168 /* No-op versions of the explainXXX() functions and macros. */
1169 # define explainComposite(v,w,x,y,z)
1170 #endif
1171 
1172 /*
1173 ** If the inner loop was generated using a non-null pOrderBy argument,
1174 ** then the results were placed in a sorter.  After the loop is terminated
1175 ** we need to run the sorter and output the results.  The following
1176 ** routine generates the code needed to do that.
1177 */
1178 static void generateSortTail(
1179   Parse *pParse,    /* Parsing context */
1180   Select *p,        /* The SELECT statement */
1181   SortCtx *pSort,   /* Information on the ORDER BY clause */
1182   int nColumn,      /* Number of columns of data */
1183   SelectDest *pDest /* Write the sorted results here */
1184 ){
1185   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1186   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1187   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1188   int addr;
1189   int addrOnce = 0;
1190   int iTab;
1191   ExprList *pOrderBy = pSort->pOrderBy;
1192   int eDest = pDest->eDest;
1193   int iParm = pDest->iSDParm;
1194   int regRow;
1195   int regRowid;
1196   int nKey;
1197   int iSortTab;                   /* Sorter cursor to read from */
1198   int nSortData;                  /* Trailing values to read from sorter */
1199   int i;
1200   int bSeq;                       /* True if sorter record includes seq. no. */
1201 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1202   struct ExprList_item *aOutEx = p->pEList->a;
1203 #endif
1204 
1205   if( pSort->labelBkOut ){
1206     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1207     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1208     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1209   }
1210   iTab = pSort->iECursor;
1211   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1212     regRowid = 0;
1213     regRow = pDest->iSdst;
1214     nSortData = nColumn;
1215   }else{
1216     regRowid = sqlite3GetTempReg(pParse);
1217     regRow = sqlite3GetTempReg(pParse);
1218     nSortData = 1;
1219   }
1220   nKey = pOrderBy->nExpr - pSort->nOBSat;
1221   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1222     int regSortOut = ++pParse->nMem;
1223     iSortTab = pParse->nTab++;
1224     if( pSort->labelBkOut ){
1225       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1226     }
1227     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1228     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1229     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1230     VdbeCoverage(v);
1231     codeOffset(v, p->iOffset, addrContinue);
1232     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1233     bSeq = 0;
1234   }else{
1235     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1236     codeOffset(v, p->iOffset, addrContinue);
1237     iSortTab = iTab;
1238     bSeq = 1;
1239   }
1240   for(i=0; i<nSortData; i++){
1241     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1242     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1243   }
1244   switch( eDest ){
1245     case SRT_EphemTab: {
1246       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1247       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1248       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1249       break;
1250     }
1251 #ifndef SQLITE_OMIT_SUBQUERY
1252     case SRT_Set: {
1253       assert( nColumn==1 );
1254       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1255                         &pDest->affSdst, 1);
1256       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1257       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1258       break;
1259     }
1260     case SRT_Mem: {
1261       assert( nColumn==1 );
1262       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1263       /* The LIMIT clause will terminate the loop for us */
1264       break;
1265     }
1266 #endif
1267     default: {
1268       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1269       testcase( eDest==SRT_Output );
1270       testcase( eDest==SRT_Coroutine );
1271       if( eDest==SRT_Output ){
1272         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1273         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1274       }else{
1275         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1276       }
1277       break;
1278     }
1279   }
1280   if( regRowid ){
1281     sqlite3ReleaseTempReg(pParse, regRow);
1282     sqlite3ReleaseTempReg(pParse, regRowid);
1283   }
1284   /* The bottom of the loop
1285   */
1286   sqlite3VdbeResolveLabel(v, addrContinue);
1287   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1288     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1289   }else{
1290     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1291   }
1292   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1293   sqlite3VdbeResolveLabel(v, addrBreak);
1294 }
1295 
1296 /*
1297 ** Return a pointer to a string containing the 'declaration type' of the
1298 ** expression pExpr. The string may be treated as static by the caller.
1299 **
1300 ** Also try to estimate the size of the returned value and return that
1301 ** result in *pEstWidth.
1302 **
1303 ** The declaration type is the exact datatype definition extracted from the
1304 ** original CREATE TABLE statement if the expression is a column. The
1305 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1306 ** is considered a column can be complex in the presence of subqueries. The
1307 ** result-set expression in all of the following SELECT statements is
1308 ** considered a column by this function.
1309 **
1310 **   SELECT col FROM tbl;
1311 **   SELECT (SELECT col FROM tbl;
1312 **   SELECT (SELECT col FROM tbl);
1313 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1314 **
1315 ** The declaration type for any expression other than a column is NULL.
1316 **
1317 ** This routine has either 3 or 6 parameters depending on whether or not
1318 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1319 */
1320 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1321 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1322 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1323 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1324 #endif
1325 static const char *columnTypeImpl(
1326   NameContext *pNC,
1327   Expr *pExpr,
1328 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1329   const char **pzOrigDb,
1330   const char **pzOrigTab,
1331   const char **pzOrigCol,
1332 #endif
1333   u8 *pEstWidth
1334 ){
1335   char const *zType = 0;
1336   int j;
1337   u8 estWidth = 1;
1338 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1339   char const *zOrigDb = 0;
1340   char const *zOrigTab = 0;
1341   char const *zOrigCol = 0;
1342 #endif
1343 
1344   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1345   switch( pExpr->op ){
1346     case TK_AGG_COLUMN:
1347     case TK_COLUMN: {
1348       /* The expression is a column. Locate the table the column is being
1349       ** extracted from in NameContext.pSrcList. This table may be real
1350       ** database table or a subquery.
1351       */
1352       Table *pTab = 0;            /* Table structure column is extracted from */
1353       Select *pS = 0;             /* Select the column is extracted from */
1354       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1355       testcase( pExpr->op==TK_AGG_COLUMN );
1356       testcase( pExpr->op==TK_COLUMN );
1357       while( pNC && !pTab ){
1358         SrcList *pTabList = pNC->pSrcList;
1359         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1360         if( j<pTabList->nSrc ){
1361           pTab = pTabList->a[j].pTab;
1362           pS = pTabList->a[j].pSelect;
1363         }else{
1364           pNC = pNC->pNext;
1365         }
1366       }
1367 
1368       if( pTab==0 ){
1369         /* At one time, code such as "SELECT new.x" within a trigger would
1370         ** cause this condition to run.  Since then, we have restructured how
1371         ** trigger code is generated and so this condition is no longer
1372         ** possible. However, it can still be true for statements like
1373         ** the following:
1374         **
1375         **   CREATE TABLE t1(col INTEGER);
1376         **   SELECT (SELECT t1.col) FROM FROM t1;
1377         **
1378         ** when columnType() is called on the expression "t1.col" in the
1379         ** sub-select. In this case, set the column type to NULL, even
1380         ** though it should really be "INTEGER".
1381         **
1382         ** This is not a problem, as the column type of "t1.col" is never
1383         ** used. When columnType() is called on the expression
1384         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1385         ** branch below.  */
1386         break;
1387       }
1388 
1389       assert( pTab && pExpr->pTab==pTab );
1390       if( pS ){
1391         /* The "table" is actually a sub-select or a view in the FROM clause
1392         ** of the SELECT statement. Return the declaration type and origin
1393         ** data for the result-set column of the sub-select.
1394         */
1395         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1396           /* If iCol is less than zero, then the expression requests the
1397           ** rowid of the sub-select or view. This expression is legal (see
1398           ** test case misc2.2.2) - it always evaluates to NULL.
1399           **
1400           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1401           ** caught already by name resolution.
1402           */
1403           NameContext sNC;
1404           Expr *p = pS->pEList->a[iCol].pExpr;
1405           sNC.pSrcList = pS->pSrc;
1406           sNC.pNext = pNC;
1407           sNC.pParse = pNC->pParse;
1408           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1409         }
1410       }else if( pTab->pSchema ){
1411         /* A real table */
1412         assert( !pS );
1413         if( iCol<0 ) iCol = pTab->iPKey;
1414         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1415 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1416         if( iCol<0 ){
1417           zType = "INTEGER";
1418           zOrigCol = "rowid";
1419         }else{
1420           zType = pTab->aCol[iCol].zType;
1421           zOrigCol = pTab->aCol[iCol].zName;
1422           estWidth = pTab->aCol[iCol].szEst;
1423         }
1424         zOrigTab = pTab->zName;
1425         if( pNC->pParse ){
1426           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1427           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1428         }
1429 #else
1430         if( iCol<0 ){
1431           zType = "INTEGER";
1432         }else{
1433           zType = pTab->aCol[iCol].zType;
1434           estWidth = pTab->aCol[iCol].szEst;
1435         }
1436 #endif
1437       }
1438       break;
1439     }
1440 #ifndef SQLITE_OMIT_SUBQUERY
1441     case TK_SELECT: {
1442       /* The expression is a sub-select. Return the declaration type and
1443       ** origin info for the single column in the result set of the SELECT
1444       ** statement.
1445       */
1446       NameContext sNC;
1447       Select *pS = pExpr->x.pSelect;
1448       Expr *p = pS->pEList->a[0].pExpr;
1449       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1450       sNC.pSrcList = pS->pSrc;
1451       sNC.pNext = pNC;
1452       sNC.pParse = pNC->pParse;
1453       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1454       break;
1455     }
1456 #endif
1457   }
1458 
1459 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1460   if( pzOrigDb ){
1461     assert( pzOrigTab && pzOrigCol );
1462     *pzOrigDb = zOrigDb;
1463     *pzOrigTab = zOrigTab;
1464     *pzOrigCol = zOrigCol;
1465   }
1466 #endif
1467   if( pEstWidth ) *pEstWidth = estWidth;
1468   return zType;
1469 }
1470 
1471 /*
1472 ** Generate code that will tell the VDBE the declaration types of columns
1473 ** in the result set.
1474 */
1475 static void generateColumnTypes(
1476   Parse *pParse,      /* Parser context */
1477   SrcList *pTabList,  /* List of tables */
1478   ExprList *pEList    /* Expressions defining the result set */
1479 ){
1480 #ifndef SQLITE_OMIT_DECLTYPE
1481   Vdbe *v = pParse->pVdbe;
1482   int i;
1483   NameContext sNC;
1484   sNC.pSrcList = pTabList;
1485   sNC.pParse = pParse;
1486   for(i=0; i<pEList->nExpr; i++){
1487     Expr *p = pEList->a[i].pExpr;
1488     const char *zType;
1489 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1490     const char *zOrigDb = 0;
1491     const char *zOrigTab = 0;
1492     const char *zOrigCol = 0;
1493     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1494 
1495     /* The vdbe must make its own copy of the column-type and other
1496     ** column specific strings, in case the schema is reset before this
1497     ** virtual machine is deleted.
1498     */
1499     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1500     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1501     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1502 #else
1503     zType = columnType(&sNC, p, 0, 0, 0, 0);
1504 #endif
1505     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1506   }
1507 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1508 }
1509 
1510 /*
1511 ** Generate code that will tell the VDBE the names of columns
1512 ** in the result set.  This information is used to provide the
1513 ** azCol[] values in the callback.
1514 */
1515 static void generateColumnNames(
1516   Parse *pParse,      /* Parser context */
1517   SrcList *pTabList,  /* List of tables */
1518   ExprList *pEList    /* Expressions defining the result set */
1519 ){
1520   Vdbe *v = pParse->pVdbe;
1521   int i, j;
1522   sqlite3 *db = pParse->db;
1523   int fullNames, shortNames;
1524 
1525 #ifndef SQLITE_OMIT_EXPLAIN
1526   /* If this is an EXPLAIN, skip this step */
1527   if( pParse->explain ){
1528     return;
1529   }
1530 #endif
1531 
1532   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1533   pParse->colNamesSet = 1;
1534   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1535   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1536   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1537   for(i=0; i<pEList->nExpr; i++){
1538     Expr *p;
1539     p = pEList->a[i].pExpr;
1540     if( NEVER(p==0) ) continue;
1541     if( pEList->a[i].zName ){
1542       char *zName = pEList->a[i].zName;
1543       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1544     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1545       Table *pTab;
1546       char *zCol;
1547       int iCol = p->iColumn;
1548       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1549         if( pTabList->a[j].iCursor==p->iTable ) break;
1550       }
1551       assert( j<pTabList->nSrc );
1552       pTab = pTabList->a[j].pTab;
1553       if( iCol<0 ) iCol = pTab->iPKey;
1554       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1555       if( iCol<0 ){
1556         zCol = "rowid";
1557       }else{
1558         zCol = pTab->aCol[iCol].zName;
1559       }
1560       if( !shortNames && !fullNames ){
1561         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1562             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1563       }else if( fullNames ){
1564         char *zName = 0;
1565         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1566         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1567       }else{
1568         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1569       }
1570     }else{
1571       const char *z = pEList->a[i].zSpan;
1572       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1573       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1574     }
1575   }
1576   generateColumnTypes(pParse, pTabList, pEList);
1577 }
1578 
1579 /*
1580 ** Given an expression list (which is really the list of expressions
1581 ** that form the result set of a SELECT statement) compute appropriate
1582 ** column names for a table that would hold the expression list.
1583 **
1584 ** All column names will be unique.
1585 **
1586 ** Only the column names are computed.  Column.zType, Column.zColl,
1587 ** and other fields of Column are zeroed.
1588 **
1589 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1590 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1591 */
1592 static int selectColumnsFromExprList(
1593   Parse *pParse,          /* Parsing context */
1594   ExprList *pEList,       /* Expr list from which to derive column names */
1595   i16 *pnCol,             /* Write the number of columns here */
1596   Column **paCol          /* Write the new column list here */
1597 ){
1598   sqlite3 *db = pParse->db;   /* Database connection */
1599   int i, j;                   /* Loop counters */
1600   int cnt;                    /* Index added to make the name unique */
1601   Column *aCol, *pCol;        /* For looping over result columns */
1602   int nCol;                   /* Number of columns in the result set */
1603   Expr *p;                    /* Expression for a single result column */
1604   char *zName;                /* Column name */
1605   int nName;                  /* Size of name in zName[] */
1606 
1607   if( pEList ){
1608     nCol = pEList->nExpr;
1609     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1610     testcase( aCol==0 );
1611   }else{
1612     nCol = 0;
1613     aCol = 0;
1614   }
1615   *pnCol = nCol;
1616   *paCol = aCol;
1617 
1618   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1619     /* Get an appropriate name for the column
1620     */
1621     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1622     if( (zName = pEList->a[i].zName)!=0 ){
1623       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1624       zName = sqlite3DbStrDup(db, zName);
1625     }else{
1626       Expr *pColExpr = p;  /* The expression that is the result column name */
1627       Table *pTab;         /* Table associated with this expression */
1628       while( pColExpr->op==TK_DOT ){
1629         pColExpr = pColExpr->pRight;
1630         assert( pColExpr!=0 );
1631       }
1632       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1633         /* For columns use the column name name */
1634         int iCol = pColExpr->iColumn;
1635         pTab = pColExpr->pTab;
1636         if( iCol<0 ) iCol = pTab->iPKey;
1637         zName = sqlite3MPrintf(db, "%s",
1638                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1639       }else if( pColExpr->op==TK_ID ){
1640         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1641         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1642       }else{
1643         /* Use the original text of the column expression as its name */
1644         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1645       }
1646     }
1647     if( db->mallocFailed ){
1648       sqlite3DbFree(db, zName);
1649       break;
1650     }
1651 
1652     /* Make sure the column name is unique.  If the name is not unique,
1653     ** append an integer to the name so that it becomes unique.
1654     */
1655     nName = sqlite3Strlen30(zName);
1656     for(j=cnt=0; j<i; j++){
1657       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1658         char *zNewName;
1659         int k;
1660         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1661         if( k>=0 && zName[k]==':' ) nName = k;
1662         zName[nName] = 0;
1663         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1664         sqlite3DbFree(db, zName);
1665         zName = zNewName;
1666         j = -1;
1667         if( zName==0 ) break;
1668       }
1669     }
1670     pCol->zName = zName;
1671   }
1672   if( db->mallocFailed ){
1673     for(j=0; j<i; j++){
1674       sqlite3DbFree(db, aCol[j].zName);
1675     }
1676     sqlite3DbFree(db, aCol);
1677     *paCol = 0;
1678     *pnCol = 0;
1679     return SQLITE_NOMEM;
1680   }
1681   return SQLITE_OK;
1682 }
1683 
1684 /*
1685 ** Add type and collation information to a column list based on
1686 ** a SELECT statement.
1687 **
1688 ** The column list presumably came from selectColumnNamesFromExprList().
1689 ** The column list has only names, not types or collations.  This
1690 ** routine goes through and adds the types and collations.
1691 **
1692 ** This routine requires that all identifiers in the SELECT
1693 ** statement be resolved.
1694 */
1695 static void selectAddColumnTypeAndCollation(
1696   Parse *pParse,        /* Parsing contexts */
1697   Table *pTab,          /* Add column type information to this table */
1698   Select *pSelect       /* SELECT used to determine types and collations */
1699 ){
1700   sqlite3 *db = pParse->db;
1701   NameContext sNC;
1702   Column *pCol;
1703   CollSeq *pColl;
1704   int i;
1705   Expr *p;
1706   struct ExprList_item *a;
1707   u64 szAll = 0;
1708 
1709   assert( pSelect!=0 );
1710   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1711   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1712   if( db->mallocFailed ) return;
1713   memset(&sNC, 0, sizeof(sNC));
1714   sNC.pSrcList = pSelect->pSrc;
1715   a = pSelect->pEList->a;
1716   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1717     p = a[i].pExpr;
1718     if( pCol->zType==0 ){
1719       pCol->zType = sqlite3DbStrDup(db,
1720                         columnType(&sNC, p,0,0,0, &pCol->szEst));
1721     }
1722     szAll += pCol->szEst;
1723     pCol->affinity = sqlite3ExprAffinity(p);
1724     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1725     pColl = sqlite3ExprCollSeq(pParse, p);
1726     if( pColl && pCol->zColl==0 ){
1727       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1728     }
1729   }
1730   pTab->szTabRow = sqlite3LogEst(szAll*4);
1731 }
1732 
1733 /*
1734 ** Given a SELECT statement, generate a Table structure that describes
1735 ** the result set of that SELECT.
1736 */
1737 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1738   Table *pTab;
1739   sqlite3 *db = pParse->db;
1740   int savedFlags;
1741 
1742   savedFlags = db->flags;
1743   db->flags &= ~SQLITE_FullColNames;
1744   db->flags |= SQLITE_ShortColNames;
1745   sqlite3SelectPrep(pParse, pSelect, 0);
1746   if( pParse->nErr ) return 0;
1747   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1748   db->flags = savedFlags;
1749   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1750   if( pTab==0 ){
1751     return 0;
1752   }
1753   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1754   ** is disabled */
1755   assert( db->lookaside.bEnabled==0 );
1756   pTab->nRef = 1;
1757   pTab->zName = 0;
1758   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1759   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1760   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1761   pTab->iPKey = -1;
1762   if( db->mallocFailed ){
1763     sqlite3DeleteTable(db, pTab);
1764     return 0;
1765   }
1766   return pTab;
1767 }
1768 
1769 /*
1770 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1771 ** If an error occurs, return NULL and leave a message in pParse.
1772 */
1773 Vdbe *sqlite3GetVdbe(Parse *pParse){
1774   Vdbe *v = pParse->pVdbe;
1775   if( v==0 ){
1776     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1777     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1778     if( pParse->pToplevel==0
1779      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1780     ){
1781       pParse->okConstFactor = 1;
1782     }
1783 
1784   }
1785   return v;
1786 }
1787 
1788 
1789 /*
1790 ** Compute the iLimit and iOffset fields of the SELECT based on the
1791 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1792 ** that appear in the original SQL statement after the LIMIT and OFFSET
1793 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1794 ** are the integer memory register numbers for counters used to compute
1795 ** the limit and offset.  If there is no limit and/or offset, then
1796 ** iLimit and iOffset are negative.
1797 **
1798 ** This routine changes the values of iLimit and iOffset only if
1799 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1800 ** iOffset should have been preset to appropriate default values (zero)
1801 ** prior to calling this routine.
1802 **
1803 ** The iOffset register (if it exists) is initialized to the value
1804 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1805 ** iOffset+1 is initialized to LIMIT+OFFSET.
1806 **
1807 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1808 ** redefined.  The UNION ALL operator uses this property to force
1809 ** the reuse of the same limit and offset registers across multiple
1810 ** SELECT statements.
1811 */
1812 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1813   Vdbe *v = 0;
1814   int iLimit = 0;
1815   int iOffset;
1816   int addr1, n;
1817   if( p->iLimit ) return;
1818 
1819   /*
1820   ** "LIMIT -1" always shows all rows.  There is some
1821   ** controversy about what the correct behavior should be.
1822   ** The current implementation interprets "LIMIT 0" to mean
1823   ** no rows.
1824   */
1825   sqlite3ExprCacheClear(pParse);
1826   assert( p->pOffset==0 || p->pLimit!=0 );
1827   if( p->pLimit ){
1828     p->iLimit = iLimit = ++pParse->nMem;
1829     v = sqlite3GetVdbe(pParse);
1830     assert( v!=0 );
1831     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1832       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1833       VdbeComment((v, "LIMIT counter"));
1834       if( n==0 ){
1835         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1836       }else if( n>=0 && p->nSelectRow>(u64)n ){
1837         p->nSelectRow = n;
1838       }
1839     }else{
1840       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1841       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1842       VdbeComment((v, "LIMIT counter"));
1843       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1844     }
1845     if( p->pOffset ){
1846       p->iOffset = iOffset = ++pParse->nMem;
1847       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1848       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1849       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1850       VdbeComment((v, "OFFSET counter"));
1851       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1852       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1853       sqlite3VdbeJumpHere(v, addr1);
1854       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1855       VdbeComment((v, "LIMIT+OFFSET"));
1856       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1857       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1858       sqlite3VdbeJumpHere(v, addr1);
1859     }
1860   }
1861 }
1862 
1863 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1864 /*
1865 ** Return the appropriate collating sequence for the iCol-th column of
1866 ** the result set for the compound-select statement "p".  Return NULL if
1867 ** the column has no default collating sequence.
1868 **
1869 ** The collating sequence for the compound select is taken from the
1870 ** left-most term of the select that has a collating sequence.
1871 */
1872 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1873   CollSeq *pRet;
1874   if( p->pPrior ){
1875     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1876   }else{
1877     pRet = 0;
1878   }
1879   assert( iCol>=0 );
1880   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1881   ** have been thrown during name resolution and we would not have gotten
1882   ** this far */
1883   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1884     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1885   }
1886   return pRet;
1887 }
1888 
1889 /*
1890 ** The select statement passed as the second parameter is a compound SELECT
1891 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1892 ** structure suitable for implementing the ORDER BY.
1893 **
1894 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1895 ** function is responsible for ensuring that this structure is eventually
1896 ** freed.
1897 */
1898 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1899   ExprList *pOrderBy = p->pOrderBy;
1900   int nOrderBy = p->pOrderBy->nExpr;
1901   sqlite3 *db = pParse->db;
1902   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1903   if( pRet ){
1904     int i;
1905     for(i=0; i<nOrderBy; i++){
1906       struct ExprList_item *pItem = &pOrderBy->a[i];
1907       Expr *pTerm = pItem->pExpr;
1908       CollSeq *pColl;
1909 
1910       if( pTerm->flags & EP_Collate ){
1911         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1912       }else{
1913         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1914         if( pColl==0 ) pColl = db->pDfltColl;
1915         pOrderBy->a[i].pExpr =
1916           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1917       }
1918       assert( sqlite3KeyInfoIsWriteable(pRet) );
1919       pRet->aColl[i] = pColl;
1920       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1921     }
1922   }
1923 
1924   return pRet;
1925 }
1926 
1927 #ifndef SQLITE_OMIT_CTE
1928 /*
1929 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1930 ** query of the form:
1931 **
1932 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1933 **                         \___________/             \_______________/
1934 **                           p->pPrior                      p
1935 **
1936 **
1937 ** There is exactly one reference to the recursive-table in the FROM clause
1938 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1939 **
1940 ** The setup-query runs once to generate an initial set of rows that go
1941 ** into a Queue table.  Rows are extracted from the Queue table one by
1942 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1943 ** extracted row (now in the iCurrent table) becomes the content of the
1944 ** recursive-table for a recursive-query run.  The output of the recursive-query
1945 ** is added back into the Queue table.  Then another row is extracted from Queue
1946 ** and the iteration continues until the Queue table is empty.
1947 **
1948 ** If the compound query operator is UNION then no duplicate rows are ever
1949 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1950 ** that have ever been inserted into Queue and causes duplicates to be
1951 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1952 **
1953 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1954 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1955 ** an ORDER BY, the Queue table is just a FIFO.
1956 **
1957 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1958 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1959 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1960 ** with a positive value, then the first OFFSET outputs are discarded rather
1961 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1962 ** rows have been skipped.
1963 */
1964 static void generateWithRecursiveQuery(
1965   Parse *pParse,        /* Parsing context */
1966   Select *p,            /* The recursive SELECT to be coded */
1967   SelectDest *pDest     /* What to do with query results */
1968 ){
1969   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1970   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1971   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1972   Select *pSetup = p->pPrior;   /* The setup query */
1973   int addrTop;                  /* Top of the loop */
1974   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1975   int iCurrent = 0;             /* The Current table */
1976   int regCurrent;               /* Register holding Current table */
1977   int iQueue;                   /* The Queue table */
1978   int iDistinct = 0;            /* To ensure unique results if UNION */
1979   int eDest = SRT_Fifo;         /* How to write to Queue */
1980   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1981   int i;                        /* Loop counter */
1982   int rc;                       /* Result code */
1983   ExprList *pOrderBy;           /* The ORDER BY clause */
1984   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1985   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1986 
1987   /* Obtain authorization to do a recursive query */
1988   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1989 
1990   /* Process the LIMIT and OFFSET clauses, if they exist */
1991   addrBreak = sqlite3VdbeMakeLabel(v);
1992   computeLimitRegisters(pParse, p, addrBreak);
1993   pLimit = p->pLimit;
1994   pOffset = p->pOffset;
1995   regLimit = p->iLimit;
1996   regOffset = p->iOffset;
1997   p->pLimit = p->pOffset = 0;
1998   p->iLimit = p->iOffset = 0;
1999   pOrderBy = p->pOrderBy;
2000 
2001   /* Locate the cursor number of the Current table */
2002   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2003     if( pSrc->a[i].isRecursive ){
2004       iCurrent = pSrc->a[i].iCursor;
2005       break;
2006     }
2007   }
2008 
2009   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2010   ** the Distinct table must be exactly one greater than Queue in order
2011   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2012   iQueue = pParse->nTab++;
2013   if( p->op==TK_UNION ){
2014     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2015     iDistinct = pParse->nTab++;
2016   }else{
2017     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2018   }
2019   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2020 
2021   /* Allocate cursors for Current, Queue, and Distinct. */
2022   regCurrent = ++pParse->nMem;
2023   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2024   if( pOrderBy ){
2025     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2026     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2027                       (char*)pKeyInfo, P4_KEYINFO);
2028     destQueue.pOrderBy = pOrderBy;
2029   }else{
2030     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2031   }
2032   VdbeComment((v, "Queue table"));
2033   if( iDistinct ){
2034     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2035     p->selFlags |= SF_UsesEphemeral;
2036   }
2037 
2038   /* Detach the ORDER BY clause from the compound SELECT */
2039   p->pOrderBy = 0;
2040 
2041   /* Store the results of the setup-query in Queue. */
2042   pSetup->pNext = 0;
2043   rc = sqlite3Select(pParse, pSetup, &destQueue);
2044   pSetup->pNext = p;
2045   if( rc ) goto end_of_recursive_query;
2046 
2047   /* Find the next row in the Queue and output that row */
2048   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2049 
2050   /* Transfer the next row in Queue over to Current */
2051   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2052   if( pOrderBy ){
2053     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2054   }else{
2055     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2056   }
2057   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2058 
2059   /* Output the single row in Current */
2060   addrCont = sqlite3VdbeMakeLabel(v);
2061   codeOffset(v, regOffset, addrCont);
2062   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2063       0, 0, pDest, addrCont, addrBreak);
2064   if( regLimit ){
2065     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2066     VdbeCoverage(v);
2067   }
2068   sqlite3VdbeResolveLabel(v, addrCont);
2069 
2070   /* Execute the recursive SELECT taking the single row in Current as
2071   ** the value for the recursive-table. Store the results in the Queue.
2072   */
2073   p->pPrior = 0;
2074   sqlite3Select(pParse, p, &destQueue);
2075   assert( p->pPrior==0 );
2076   p->pPrior = pSetup;
2077 
2078   /* Keep running the loop until the Queue is empty */
2079   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2080   sqlite3VdbeResolveLabel(v, addrBreak);
2081 
2082 end_of_recursive_query:
2083   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2084   p->pOrderBy = pOrderBy;
2085   p->pLimit = pLimit;
2086   p->pOffset = pOffset;
2087   return;
2088 }
2089 #endif /* SQLITE_OMIT_CTE */
2090 
2091 /* Forward references */
2092 static int multiSelectOrderBy(
2093   Parse *pParse,        /* Parsing context */
2094   Select *p,            /* The right-most of SELECTs to be coded */
2095   SelectDest *pDest     /* What to do with query results */
2096 );
2097 
2098 /*
2099 ** Error message for when two or more terms of a compound select have different
2100 ** size result sets.
2101 */
2102 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2103   if( p->selFlags & SF_Values ){
2104     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2105   }else{
2106     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2107       " do not have the same number of result columns", selectOpName(p->op));
2108   }
2109 }
2110 
2111 /*
2112 ** Handle the special case of a compound-select that originates from a
2113 ** VALUES clause.  By handling this as a special case, we avoid deep
2114 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2115 ** on a VALUES clause.
2116 **
2117 ** Because the Select object originates from a VALUES clause:
2118 **   (1) It has no LIMIT or OFFSET
2119 **   (2) All terms are UNION ALL
2120 **   (3) There is no ORDER BY clause
2121 */
2122 static int multiSelectValues(
2123   Parse *pParse,        /* Parsing context */
2124   Select *p,            /* The right-most of SELECTs to be coded */
2125   SelectDest *pDest     /* What to do with query results */
2126 ){
2127   Select *pPrior;
2128   int nRow = 1;
2129   int rc = 0;
2130   assert( p->selFlags & SF_MultiValue );
2131   do{
2132     assert( p->selFlags & SF_Values );
2133     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2134     assert( p->pLimit==0 );
2135     assert( p->pOffset==0 );
2136     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2137     if( p->pPrior==0 ) break;
2138     assert( p->pPrior->pNext==p );
2139     p = p->pPrior;
2140     nRow++;
2141   }while(1);
2142   while( p ){
2143     pPrior = p->pPrior;
2144     p->pPrior = 0;
2145     rc = sqlite3Select(pParse, p, pDest);
2146     p->pPrior = pPrior;
2147     if( rc ) break;
2148     p->nSelectRow = nRow;
2149     p = p->pNext;
2150   }
2151   return rc;
2152 }
2153 
2154 /*
2155 ** This routine is called to process a compound query form from
2156 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2157 ** INTERSECT
2158 **
2159 ** "p" points to the right-most of the two queries.  the query on the
2160 ** left is p->pPrior.  The left query could also be a compound query
2161 ** in which case this routine will be called recursively.
2162 **
2163 ** The results of the total query are to be written into a destination
2164 ** of type eDest with parameter iParm.
2165 **
2166 ** Example 1:  Consider a three-way compound SQL statement.
2167 **
2168 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2169 **
2170 ** This statement is parsed up as follows:
2171 **
2172 **     SELECT c FROM t3
2173 **      |
2174 **      `----->  SELECT b FROM t2
2175 **                |
2176 **                `------>  SELECT a FROM t1
2177 **
2178 ** The arrows in the diagram above represent the Select.pPrior pointer.
2179 ** So if this routine is called with p equal to the t3 query, then
2180 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2181 **
2182 ** Notice that because of the way SQLite parses compound SELECTs, the
2183 ** individual selects always group from left to right.
2184 */
2185 static int multiSelect(
2186   Parse *pParse,        /* Parsing context */
2187   Select *p,            /* The right-most of SELECTs to be coded */
2188   SelectDest *pDest     /* What to do with query results */
2189 ){
2190   int rc = SQLITE_OK;   /* Success code from a subroutine */
2191   Select *pPrior;       /* Another SELECT immediately to our left */
2192   Vdbe *v;              /* Generate code to this VDBE */
2193   SelectDest dest;      /* Alternative data destination */
2194   Select *pDelete = 0;  /* Chain of simple selects to delete */
2195   sqlite3 *db;          /* Database connection */
2196 #ifndef SQLITE_OMIT_EXPLAIN
2197   int iSub1 = 0;        /* EQP id of left-hand query */
2198   int iSub2 = 0;        /* EQP id of right-hand query */
2199 #endif
2200 
2201   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2202   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2203   */
2204   assert( p && p->pPrior );  /* Calling function guarantees this much */
2205   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2206   db = pParse->db;
2207   pPrior = p->pPrior;
2208   dest = *pDest;
2209   if( pPrior->pOrderBy ){
2210     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2211       selectOpName(p->op));
2212     rc = 1;
2213     goto multi_select_end;
2214   }
2215   if( pPrior->pLimit ){
2216     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2217       selectOpName(p->op));
2218     rc = 1;
2219     goto multi_select_end;
2220   }
2221 
2222   v = sqlite3GetVdbe(pParse);
2223   assert( v!=0 );  /* The VDBE already created by calling function */
2224 
2225   /* Create the destination temporary table if necessary
2226   */
2227   if( dest.eDest==SRT_EphemTab ){
2228     assert( p->pEList );
2229     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2230     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2231     dest.eDest = SRT_Table;
2232   }
2233 
2234   /* Special handling for a compound-select that originates as a VALUES clause.
2235   */
2236   if( p->selFlags & SF_MultiValue ){
2237     rc = multiSelectValues(pParse, p, &dest);
2238     goto multi_select_end;
2239   }
2240 
2241   /* Make sure all SELECTs in the statement have the same number of elements
2242   ** in their result sets.
2243   */
2244   assert( p->pEList && pPrior->pEList );
2245   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2246 
2247 #ifndef SQLITE_OMIT_CTE
2248   if( p->selFlags & SF_Recursive ){
2249     generateWithRecursiveQuery(pParse, p, &dest);
2250   }else
2251 #endif
2252 
2253   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2254   */
2255   if( p->pOrderBy ){
2256     return multiSelectOrderBy(pParse, p, pDest);
2257   }else
2258 
2259   /* Generate code for the left and right SELECT statements.
2260   */
2261   switch( p->op ){
2262     case TK_ALL: {
2263       int addr = 0;
2264       int nLimit;
2265       assert( !pPrior->pLimit );
2266       pPrior->iLimit = p->iLimit;
2267       pPrior->iOffset = p->iOffset;
2268       pPrior->pLimit = p->pLimit;
2269       pPrior->pOffset = p->pOffset;
2270       explainSetInteger(iSub1, pParse->iNextSelectId);
2271       rc = sqlite3Select(pParse, pPrior, &dest);
2272       p->pLimit = 0;
2273       p->pOffset = 0;
2274       if( rc ){
2275         goto multi_select_end;
2276       }
2277       p->pPrior = 0;
2278       p->iLimit = pPrior->iLimit;
2279       p->iOffset = pPrior->iOffset;
2280       if( p->iLimit ){
2281         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2282         VdbeComment((v, "Jump ahead if LIMIT reached"));
2283       }
2284       explainSetInteger(iSub2, pParse->iNextSelectId);
2285       rc = sqlite3Select(pParse, p, &dest);
2286       testcase( rc!=SQLITE_OK );
2287       pDelete = p->pPrior;
2288       p->pPrior = pPrior;
2289       p->nSelectRow += pPrior->nSelectRow;
2290       if( pPrior->pLimit
2291        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2292        && nLimit>0 && p->nSelectRow > (u64)nLimit
2293       ){
2294         p->nSelectRow = nLimit;
2295       }
2296       if( addr ){
2297         sqlite3VdbeJumpHere(v, addr);
2298       }
2299       break;
2300     }
2301     case TK_EXCEPT:
2302     case TK_UNION: {
2303       int unionTab;    /* Cursor number of the temporary table holding result */
2304       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2305       int priorOp;     /* The SRT_ operation to apply to prior selects */
2306       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2307       int addr;
2308       SelectDest uniondest;
2309 
2310       testcase( p->op==TK_EXCEPT );
2311       testcase( p->op==TK_UNION );
2312       priorOp = SRT_Union;
2313       if( dest.eDest==priorOp ){
2314         /* We can reuse a temporary table generated by a SELECT to our
2315         ** right.
2316         */
2317         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2318         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2319         unionTab = dest.iSDParm;
2320       }else{
2321         /* We will need to create our own temporary table to hold the
2322         ** intermediate results.
2323         */
2324         unionTab = pParse->nTab++;
2325         assert( p->pOrderBy==0 );
2326         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2327         assert( p->addrOpenEphm[0] == -1 );
2328         p->addrOpenEphm[0] = addr;
2329         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2330         assert( p->pEList );
2331       }
2332 
2333       /* Code the SELECT statements to our left
2334       */
2335       assert( !pPrior->pOrderBy );
2336       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2337       explainSetInteger(iSub1, pParse->iNextSelectId);
2338       rc = sqlite3Select(pParse, pPrior, &uniondest);
2339       if( rc ){
2340         goto multi_select_end;
2341       }
2342 
2343       /* Code the current SELECT statement
2344       */
2345       if( p->op==TK_EXCEPT ){
2346         op = SRT_Except;
2347       }else{
2348         assert( p->op==TK_UNION );
2349         op = SRT_Union;
2350       }
2351       p->pPrior = 0;
2352       pLimit = p->pLimit;
2353       p->pLimit = 0;
2354       pOffset = p->pOffset;
2355       p->pOffset = 0;
2356       uniondest.eDest = op;
2357       explainSetInteger(iSub2, pParse->iNextSelectId);
2358       rc = sqlite3Select(pParse, p, &uniondest);
2359       testcase( rc!=SQLITE_OK );
2360       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2361       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2362       sqlite3ExprListDelete(db, p->pOrderBy);
2363       pDelete = p->pPrior;
2364       p->pPrior = pPrior;
2365       p->pOrderBy = 0;
2366       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2367       sqlite3ExprDelete(db, p->pLimit);
2368       p->pLimit = pLimit;
2369       p->pOffset = pOffset;
2370       p->iLimit = 0;
2371       p->iOffset = 0;
2372 
2373       /* Convert the data in the temporary table into whatever form
2374       ** it is that we currently need.
2375       */
2376       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2377       if( dest.eDest!=priorOp ){
2378         int iCont, iBreak, iStart;
2379         assert( p->pEList );
2380         if( dest.eDest==SRT_Output ){
2381           Select *pFirst = p;
2382           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2383           generateColumnNames(pParse, 0, pFirst->pEList);
2384         }
2385         iBreak = sqlite3VdbeMakeLabel(v);
2386         iCont = sqlite3VdbeMakeLabel(v);
2387         computeLimitRegisters(pParse, p, iBreak);
2388         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2389         iStart = sqlite3VdbeCurrentAddr(v);
2390         selectInnerLoop(pParse, p, p->pEList, unionTab,
2391                         0, 0, &dest, iCont, iBreak);
2392         sqlite3VdbeResolveLabel(v, iCont);
2393         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2394         sqlite3VdbeResolveLabel(v, iBreak);
2395         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2396       }
2397       break;
2398     }
2399     default: assert( p->op==TK_INTERSECT ); {
2400       int tab1, tab2;
2401       int iCont, iBreak, iStart;
2402       Expr *pLimit, *pOffset;
2403       int addr;
2404       SelectDest intersectdest;
2405       int r1;
2406 
2407       /* INTERSECT is different from the others since it requires
2408       ** two temporary tables.  Hence it has its own case.  Begin
2409       ** by allocating the tables we will need.
2410       */
2411       tab1 = pParse->nTab++;
2412       tab2 = pParse->nTab++;
2413       assert( p->pOrderBy==0 );
2414 
2415       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2416       assert( p->addrOpenEphm[0] == -1 );
2417       p->addrOpenEphm[0] = addr;
2418       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2419       assert( p->pEList );
2420 
2421       /* Code the SELECTs to our left into temporary table "tab1".
2422       */
2423       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2424       explainSetInteger(iSub1, pParse->iNextSelectId);
2425       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2426       if( rc ){
2427         goto multi_select_end;
2428       }
2429 
2430       /* Code the current SELECT into temporary table "tab2"
2431       */
2432       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2433       assert( p->addrOpenEphm[1] == -1 );
2434       p->addrOpenEphm[1] = addr;
2435       p->pPrior = 0;
2436       pLimit = p->pLimit;
2437       p->pLimit = 0;
2438       pOffset = p->pOffset;
2439       p->pOffset = 0;
2440       intersectdest.iSDParm = tab2;
2441       explainSetInteger(iSub2, pParse->iNextSelectId);
2442       rc = sqlite3Select(pParse, p, &intersectdest);
2443       testcase( rc!=SQLITE_OK );
2444       pDelete = p->pPrior;
2445       p->pPrior = pPrior;
2446       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2447       sqlite3ExprDelete(db, p->pLimit);
2448       p->pLimit = pLimit;
2449       p->pOffset = pOffset;
2450 
2451       /* Generate code to take the intersection of the two temporary
2452       ** tables.
2453       */
2454       assert( p->pEList );
2455       if( dest.eDest==SRT_Output ){
2456         Select *pFirst = p;
2457         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2458         generateColumnNames(pParse, 0, pFirst->pEList);
2459       }
2460       iBreak = sqlite3VdbeMakeLabel(v);
2461       iCont = sqlite3VdbeMakeLabel(v);
2462       computeLimitRegisters(pParse, p, iBreak);
2463       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2464       r1 = sqlite3GetTempReg(pParse);
2465       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2466       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2467       sqlite3ReleaseTempReg(pParse, r1);
2468       selectInnerLoop(pParse, p, p->pEList, tab1,
2469                       0, 0, &dest, iCont, iBreak);
2470       sqlite3VdbeResolveLabel(v, iCont);
2471       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2472       sqlite3VdbeResolveLabel(v, iBreak);
2473       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2474       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2475       break;
2476     }
2477   }
2478 
2479   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2480 
2481   /* Compute collating sequences used by
2482   ** temporary tables needed to implement the compound select.
2483   ** Attach the KeyInfo structure to all temporary tables.
2484   **
2485   ** This section is run by the right-most SELECT statement only.
2486   ** SELECT statements to the left always skip this part.  The right-most
2487   ** SELECT might also skip this part if it has no ORDER BY clause and
2488   ** no temp tables are required.
2489   */
2490   if( p->selFlags & SF_UsesEphemeral ){
2491     int i;                        /* Loop counter */
2492     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2493     Select *pLoop;                /* For looping through SELECT statements */
2494     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2495     int nCol;                     /* Number of columns in result set */
2496 
2497     assert( p->pNext==0 );
2498     nCol = p->pEList->nExpr;
2499     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2500     if( !pKeyInfo ){
2501       rc = SQLITE_NOMEM;
2502       goto multi_select_end;
2503     }
2504     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2505       *apColl = multiSelectCollSeq(pParse, p, i);
2506       if( 0==*apColl ){
2507         *apColl = db->pDfltColl;
2508       }
2509     }
2510 
2511     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2512       for(i=0; i<2; i++){
2513         int addr = pLoop->addrOpenEphm[i];
2514         if( addr<0 ){
2515           /* If [0] is unused then [1] is also unused.  So we can
2516           ** always safely abort as soon as the first unused slot is found */
2517           assert( pLoop->addrOpenEphm[1]<0 );
2518           break;
2519         }
2520         sqlite3VdbeChangeP2(v, addr, nCol);
2521         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2522                             P4_KEYINFO);
2523         pLoop->addrOpenEphm[i] = -1;
2524       }
2525     }
2526     sqlite3KeyInfoUnref(pKeyInfo);
2527   }
2528 
2529 multi_select_end:
2530   pDest->iSdst = dest.iSdst;
2531   pDest->nSdst = dest.nSdst;
2532   sqlite3SelectDelete(db, pDelete);
2533   return rc;
2534 }
2535 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2536 
2537 /*
2538 ** Code an output subroutine for a coroutine implementation of a
2539 ** SELECT statment.
2540 **
2541 ** The data to be output is contained in pIn->iSdst.  There are
2542 ** pIn->nSdst columns to be output.  pDest is where the output should
2543 ** be sent.
2544 **
2545 ** regReturn is the number of the register holding the subroutine
2546 ** return address.
2547 **
2548 ** If regPrev>0 then it is the first register in a vector that
2549 ** records the previous output.  mem[regPrev] is a flag that is false
2550 ** if there has been no previous output.  If regPrev>0 then code is
2551 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2552 ** keys.
2553 **
2554 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2555 ** iBreak.
2556 */
2557 static int generateOutputSubroutine(
2558   Parse *pParse,          /* Parsing context */
2559   Select *p,              /* The SELECT statement */
2560   SelectDest *pIn,        /* Coroutine supplying data */
2561   SelectDest *pDest,      /* Where to send the data */
2562   int regReturn,          /* The return address register */
2563   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2564   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2565   int iBreak              /* Jump here if we hit the LIMIT */
2566 ){
2567   Vdbe *v = pParse->pVdbe;
2568   int iContinue;
2569   int addr;
2570 
2571   addr = sqlite3VdbeCurrentAddr(v);
2572   iContinue = sqlite3VdbeMakeLabel(v);
2573 
2574   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2575   */
2576   if( regPrev ){
2577     int j1, j2;
2578     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2579     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2580                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2581     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2582     sqlite3VdbeJumpHere(v, j1);
2583     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2584     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2585   }
2586   if( pParse->db->mallocFailed ) return 0;
2587 
2588   /* Suppress the first OFFSET entries if there is an OFFSET clause
2589   */
2590   codeOffset(v, p->iOffset, iContinue);
2591 
2592   assert( pDest->eDest!=SRT_Exists );
2593   assert( pDest->eDest!=SRT_Table );
2594   switch( pDest->eDest ){
2595     /* Store the result as data using a unique key.
2596     */
2597     case SRT_EphemTab: {
2598       int r1 = sqlite3GetTempReg(pParse);
2599       int r2 = sqlite3GetTempReg(pParse);
2600       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2601       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2602       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2603       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2604       sqlite3ReleaseTempReg(pParse, r2);
2605       sqlite3ReleaseTempReg(pParse, r1);
2606       break;
2607     }
2608 
2609 #ifndef SQLITE_OMIT_SUBQUERY
2610     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2611     ** then there should be a single item on the stack.  Write this
2612     ** item into the set table with bogus data.
2613     */
2614     case SRT_Set: {
2615       int r1;
2616       assert( pIn->nSdst==1 || pParse->nErr>0 );
2617       pDest->affSdst =
2618          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2619       r1 = sqlite3GetTempReg(pParse);
2620       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2621       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2622       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2623       sqlite3ReleaseTempReg(pParse, r1);
2624       break;
2625     }
2626 
2627     /* If this is a scalar select that is part of an expression, then
2628     ** store the results in the appropriate memory cell and break out
2629     ** of the scan loop.
2630     */
2631     case SRT_Mem: {
2632       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2633       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2634       /* The LIMIT clause will jump out of the loop for us */
2635       break;
2636     }
2637 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2638 
2639     /* The results are stored in a sequence of registers
2640     ** starting at pDest->iSdst.  Then the co-routine yields.
2641     */
2642     case SRT_Coroutine: {
2643       if( pDest->iSdst==0 ){
2644         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2645         pDest->nSdst = pIn->nSdst;
2646       }
2647       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2648       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2649       break;
2650     }
2651 
2652     /* If none of the above, then the result destination must be
2653     ** SRT_Output.  This routine is never called with any other
2654     ** destination other than the ones handled above or SRT_Output.
2655     **
2656     ** For SRT_Output, results are stored in a sequence of registers.
2657     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2658     ** return the next row of result.
2659     */
2660     default: {
2661       assert( pDest->eDest==SRT_Output );
2662       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2663       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2664       break;
2665     }
2666   }
2667 
2668   /* Jump to the end of the loop if the LIMIT is reached.
2669   */
2670   if( p->iLimit ){
2671     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2672   }
2673 
2674   /* Generate the subroutine return
2675   */
2676   sqlite3VdbeResolveLabel(v, iContinue);
2677   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2678 
2679   return addr;
2680 }
2681 
2682 /*
2683 ** Alternative compound select code generator for cases when there
2684 ** is an ORDER BY clause.
2685 **
2686 ** We assume a query of the following form:
2687 **
2688 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2689 **
2690 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2691 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2692 ** co-routines.  Then run the co-routines in parallel and merge the results
2693 ** into the output.  In addition to the two coroutines (called selectA and
2694 ** selectB) there are 7 subroutines:
2695 **
2696 **    outA:    Move the output of the selectA coroutine into the output
2697 **             of the compound query.
2698 **
2699 **    outB:    Move the output of the selectB coroutine into the output
2700 **             of the compound query.  (Only generated for UNION and
2701 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2702 **             appears only in B.)
2703 **
2704 **    AltB:    Called when there is data from both coroutines and A<B.
2705 **
2706 **    AeqB:    Called when there is data from both coroutines and A==B.
2707 **
2708 **    AgtB:    Called when there is data from both coroutines and A>B.
2709 **
2710 **    EofA:    Called when data is exhausted from selectA.
2711 **
2712 **    EofB:    Called when data is exhausted from selectB.
2713 **
2714 ** The implementation of the latter five subroutines depend on which
2715 ** <operator> is used:
2716 **
2717 **
2718 **             UNION ALL         UNION            EXCEPT          INTERSECT
2719 **          -------------  -----------------  --------------  -----------------
2720 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2721 **
2722 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2723 **
2724 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2725 **
2726 **   EofA:   outB, nextB      outB, nextB          halt             halt
2727 **
2728 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2729 **
2730 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2731 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2732 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2733 ** following nextX causes a jump to the end of the select processing.
2734 **
2735 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2736 ** within the output subroutine.  The regPrev register set holds the previously
2737 ** output value.  A comparison is made against this value and the output
2738 ** is skipped if the next results would be the same as the previous.
2739 **
2740 ** The implementation plan is to implement the two coroutines and seven
2741 ** subroutines first, then put the control logic at the bottom.  Like this:
2742 **
2743 **          goto Init
2744 **     coA: coroutine for left query (A)
2745 **     coB: coroutine for right query (B)
2746 **    outA: output one row of A
2747 **    outB: output one row of B (UNION and UNION ALL only)
2748 **    EofA: ...
2749 **    EofB: ...
2750 **    AltB: ...
2751 **    AeqB: ...
2752 **    AgtB: ...
2753 **    Init: initialize coroutine registers
2754 **          yield coA
2755 **          if eof(A) goto EofA
2756 **          yield coB
2757 **          if eof(B) goto EofB
2758 **    Cmpr: Compare A, B
2759 **          Jump AltB, AeqB, AgtB
2760 **     End: ...
2761 **
2762 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2763 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2764 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2765 ** and AgtB jump to either L2 or to one of EofA or EofB.
2766 */
2767 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2768 static int multiSelectOrderBy(
2769   Parse *pParse,        /* Parsing context */
2770   Select *p,            /* The right-most of SELECTs to be coded */
2771   SelectDest *pDest     /* What to do with query results */
2772 ){
2773   int i, j;             /* Loop counters */
2774   Select *pPrior;       /* Another SELECT immediately to our left */
2775   Vdbe *v;              /* Generate code to this VDBE */
2776   SelectDest destA;     /* Destination for coroutine A */
2777   SelectDest destB;     /* Destination for coroutine B */
2778   int regAddrA;         /* Address register for select-A coroutine */
2779   int regAddrB;         /* Address register for select-B coroutine */
2780   int addrSelectA;      /* Address of the select-A coroutine */
2781   int addrSelectB;      /* Address of the select-B coroutine */
2782   int regOutA;          /* Address register for the output-A subroutine */
2783   int regOutB;          /* Address register for the output-B subroutine */
2784   int addrOutA;         /* Address of the output-A subroutine */
2785   int addrOutB = 0;     /* Address of the output-B subroutine */
2786   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2787   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2788   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2789   int addrAltB;         /* Address of the A<B subroutine */
2790   int addrAeqB;         /* Address of the A==B subroutine */
2791   int addrAgtB;         /* Address of the A>B subroutine */
2792   int regLimitA;        /* Limit register for select-A */
2793   int regLimitB;        /* Limit register for select-A */
2794   int regPrev;          /* A range of registers to hold previous output */
2795   int savedLimit;       /* Saved value of p->iLimit */
2796   int savedOffset;      /* Saved value of p->iOffset */
2797   int labelCmpr;        /* Label for the start of the merge algorithm */
2798   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2799   int j1;               /* Jump instructions that get retargetted */
2800   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2801   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2802   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2803   sqlite3 *db;          /* Database connection */
2804   ExprList *pOrderBy;   /* The ORDER BY clause */
2805   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2806   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2807 #ifndef SQLITE_OMIT_EXPLAIN
2808   int iSub1;            /* EQP id of left-hand query */
2809   int iSub2;            /* EQP id of right-hand query */
2810 #endif
2811 
2812   assert( p->pOrderBy!=0 );
2813   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2814   db = pParse->db;
2815   v = pParse->pVdbe;
2816   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2817   labelEnd = sqlite3VdbeMakeLabel(v);
2818   labelCmpr = sqlite3VdbeMakeLabel(v);
2819 
2820 
2821   /* Patch up the ORDER BY clause
2822   */
2823   op = p->op;
2824   pPrior = p->pPrior;
2825   assert( pPrior->pOrderBy==0 );
2826   pOrderBy = p->pOrderBy;
2827   assert( pOrderBy );
2828   nOrderBy = pOrderBy->nExpr;
2829 
2830   /* For operators other than UNION ALL we have to make sure that
2831   ** the ORDER BY clause covers every term of the result set.  Add
2832   ** terms to the ORDER BY clause as necessary.
2833   */
2834   if( op!=TK_ALL ){
2835     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2836       struct ExprList_item *pItem;
2837       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2838         assert( pItem->u.x.iOrderByCol>0 );
2839         if( pItem->u.x.iOrderByCol==i ) break;
2840       }
2841       if( j==nOrderBy ){
2842         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2843         if( pNew==0 ) return SQLITE_NOMEM;
2844         pNew->flags |= EP_IntValue;
2845         pNew->u.iValue = i;
2846         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2847         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2848       }
2849     }
2850   }
2851 
2852   /* Compute the comparison permutation and keyinfo that is used with
2853   ** the permutation used to determine if the next
2854   ** row of results comes from selectA or selectB.  Also add explicit
2855   ** collations to the ORDER BY clause terms so that when the subqueries
2856   ** to the right and the left are evaluated, they use the correct
2857   ** collation.
2858   */
2859   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2860   if( aPermute ){
2861     struct ExprList_item *pItem;
2862     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2863       assert( pItem->u.x.iOrderByCol>0 );
2864       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2865       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2866     }
2867     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2868   }else{
2869     pKeyMerge = 0;
2870   }
2871 
2872   /* Reattach the ORDER BY clause to the query.
2873   */
2874   p->pOrderBy = pOrderBy;
2875   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2876 
2877   /* Allocate a range of temporary registers and the KeyInfo needed
2878   ** for the logic that removes duplicate result rows when the
2879   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2880   */
2881   if( op==TK_ALL ){
2882     regPrev = 0;
2883   }else{
2884     int nExpr = p->pEList->nExpr;
2885     assert( nOrderBy>=nExpr || db->mallocFailed );
2886     regPrev = pParse->nMem+1;
2887     pParse->nMem += nExpr+1;
2888     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2889     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2890     if( pKeyDup ){
2891       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2892       for(i=0; i<nExpr; i++){
2893         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2894         pKeyDup->aSortOrder[i] = 0;
2895       }
2896     }
2897   }
2898 
2899   /* Separate the left and the right query from one another
2900   */
2901   p->pPrior = 0;
2902   pPrior->pNext = 0;
2903   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2904   if( pPrior->pPrior==0 ){
2905     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2906   }
2907 
2908   /* Compute the limit registers */
2909   computeLimitRegisters(pParse, p, labelEnd);
2910   if( p->iLimit && op==TK_ALL ){
2911     regLimitA = ++pParse->nMem;
2912     regLimitB = ++pParse->nMem;
2913     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2914                                   regLimitA);
2915     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2916   }else{
2917     regLimitA = regLimitB = 0;
2918   }
2919   sqlite3ExprDelete(db, p->pLimit);
2920   p->pLimit = 0;
2921   sqlite3ExprDelete(db, p->pOffset);
2922   p->pOffset = 0;
2923 
2924   regAddrA = ++pParse->nMem;
2925   regAddrB = ++pParse->nMem;
2926   regOutA = ++pParse->nMem;
2927   regOutB = ++pParse->nMem;
2928   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2929   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2930 
2931   /* Generate a coroutine to evaluate the SELECT statement to the
2932   ** left of the compound operator - the "A" select.
2933   */
2934   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2935   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2936   VdbeComment((v, "left SELECT"));
2937   pPrior->iLimit = regLimitA;
2938   explainSetInteger(iSub1, pParse->iNextSelectId);
2939   sqlite3Select(pParse, pPrior, &destA);
2940   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2941   sqlite3VdbeJumpHere(v, j1);
2942 
2943   /* Generate a coroutine to evaluate the SELECT statement on
2944   ** the right - the "B" select
2945   */
2946   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2947   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2948   VdbeComment((v, "right SELECT"));
2949   savedLimit = p->iLimit;
2950   savedOffset = p->iOffset;
2951   p->iLimit = regLimitB;
2952   p->iOffset = 0;
2953   explainSetInteger(iSub2, pParse->iNextSelectId);
2954   sqlite3Select(pParse, p, &destB);
2955   p->iLimit = savedLimit;
2956   p->iOffset = savedOffset;
2957   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2958 
2959   /* Generate a subroutine that outputs the current row of the A
2960   ** select as the next output row of the compound select.
2961   */
2962   VdbeNoopComment((v, "Output routine for A"));
2963   addrOutA = generateOutputSubroutine(pParse,
2964                  p, &destA, pDest, regOutA,
2965                  regPrev, pKeyDup, labelEnd);
2966 
2967   /* Generate a subroutine that outputs the current row of the B
2968   ** select as the next output row of the compound select.
2969   */
2970   if( op==TK_ALL || op==TK_UNION ){
2971     VdbeNoopComment((v, "Output routine for B"));
2972     addrOutB = generateOutputSubroutine(pParse,
2973                  p, &destB, pDest, regOutB,
2974                  regPrev, pKeyDup, labelEnd);
2975   }
2976   sqlite3KeyInfoUnref(pKeyDup);
2977 
2978   /* Generate a subroutine to run when the results from select A
2979   ** are exhausted and only data in select B remains.
2980   */
2981   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2982     addrEofA_noB = addrEofA = labelEnd;
2983   }else{
2984     VdbeNoopComment((v, "eof-A subroutine"));
2985     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2986     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2987                                      VdbeCoverage(v);
2988     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2989     p->nSelectRow += pPrior->nSelectRow;
2990   }
2991 
2992   /* Generate a subroutine to run when the results from select B
2993   ** are exhausted and only data in select A remains.
2994   */
2995   if( op==TK_INTERSECT ){
2996     addrEofB = addrEofA;
2997     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2998   }else{
2999     VdbeNoopComment((v, "eof-B subroutine"));
3000     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3001     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3002     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
3003   }
3004 
3005   /* Generate code to handle the case of A<B
3006   */
3007   VdbeNoopComment((v, "A-lt-B subroutine"));
3008   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3009   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3010   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3011 
3012   /* Generate code to handle the case of A==B
3013   */
3014   if( op==TK_ALL ){
3015     addrAeqB = addrAltB;
3016   }else if( op==TK_INTERSECT ){
3017     addrAeqB = addrAltB;
3018     addrAltB++;
3019   }else{
3020     VdbeNoopComment((v, "A-eq-B subroutine"));
3021     addrAeqB =
3022     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3023     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3024   }
3025 
3026   /* Generate code to handle the case of A>B
3027   */
3028   VdbeNoopComment((v, "A-gt-B subroutine"));
3029   addrAgtB = sqlite3VdbeCurrentAddr(v);
3030   if( op==TK_ALL || op==TK_UNION ){
3031     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3032   }
3033   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3034   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3035 
3036   /* This code runs once to initialize everything.
3037   */
3038   sqlite3VdbeJumpHere(v, j1);
3039   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3040   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3041 
3042   /* Implement the main merge loop
3043   */
3044   sqlite3VdbeResolveLabel(v, labelCmpr);
3045   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3046   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3047                          (char*)pKeyMerge, P4_KEYINFO);
3048   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3049   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3050 
3051   /* Jump to the this point in order to terminate the query.
3052   */
3053   sqlite3VdbeResolveLabel(v, labelEnd);
3054 
3055   /* Set the number of output columns
3056   */
3057   if( pDest->eDest==SRT_Output ){
3058     Select *pFirst = pPrior;
3059     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3060     generateColumnNames(pParse, 0, pFirst->pEList);
3061   }
3062 
3063   /* Reassembly the compound query so that it will be freed correctly
3064   ** by the calling function */
3065   if( p->pPrior ){
3066     sqlite3SelectDelete(db, p->pPrior);
3067   }
3068   p->pPrior = pPrior;
3069   pPrior->pNext = p;
3070 
3071   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3072   **** subqueries ****/
3073   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3074   return pParse->nErr!=0;
3075 }
3076 #endif
3077 
3078 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3079 /* Forward Declarations */
3080 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3081 static void substSelect(sqlite3*, Select *, int, ExprList *);
3082 
3083 /*
3084 ** Scan through the expression pExpr.  Replace every reference to
3085 ** a column in table number iTable with a copy of the iColumn-th
3086 ** entry in pEList.  (But leave references to the ROWID column
3087 ** unchanged.)
3088 **
3089 ** This routine is part of the flattening procedure.  A subquery
3090 ** whose result set is defined by pEList appears as entry in the
3091 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3092 ** FORM clause entry is iTable.  This routine make the necessary
3093 ** changes to pExpr so that it refers directly to the source table
3094 ** of the subquery rather the result set of the subquery.
3095 */
3096 static Expr *substExpr(
3097   sqlite3 *db,        /* Report malloc errors to this connection */
3098   Expr *pExpr,        /* Expr in which substitution occurs */
3099   int iTable,         /* Table to be substituted */
3100   ExprList *pEList    /* Substitute expressions */
3101 ){
3102   if( pExpr==0 ) return 0;
3103   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3104     if( pExpr->iColumn<0 ){
3105       pExpr->op = TK_NULL;
3106     }else{
3107       Expr *pNew;
3108       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3109       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3110       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3111       sqlite3ExprDelete(db, pExpr);
3112       pExpr = pNew;
3113     }
3114   }else{
3115     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3116     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3117     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3118       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3119     }else{
3120       substExprList(db, pExpr->x.pList, iTable, pEList);
3121     }
3122   }
3123   return pExpr;
3124 }
3125 static void substExprList(
3126   sqlite3 *db,         /* Report malloc errors here */
3127   ExprList *pList,     /* List to scan and in which to make substitutes */
3128   int iTable,          /* Table to be substituted */
3129   ExprList *pEList     /* Substitute values */
3130 ){
3131   int i;
3132   if( pList==0 ) return;
3133   for(i=0; i<pList->nExpr; i++){
3134     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3135   }
3136 }
3137 static void substSelect(
3138   sqlite3 *db,         /* Report malloc errors here */
3139   Select *p,           /* SELECT statement in which to make substitutions */
3140   int iTable,          /* Table to be replaced */
3141   ExprList *pEList     /* Substitute values */
3142 ){
3143   SrcList *pSrc;
3144   struct SrcList_item *pItem;
3145   int i;
3146   if( !p ) return;
3147   substExprList(db, p->pEList, iTable, pEList);
3148   substExprList(db, p->pGroupBy, iTable, pEList);
3149   substExprList(db, p->pOrderBy, iTable, pEList);
3150   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3151   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3152   substSelect(db, p->pPrior, iTable, pEList);
3153   pSrc = p->pSrc;
3154   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3155   if( ALWAYS(pSrc) ){
3156     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3157       substSelect(db, pItem->pSelect, iTable, pEList);
3158     }
3159   }
3160 }
3161 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3162 
3163 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3164 /*
3165 ** This routine attempts to flatten subqueries as a performance optimization.
3166 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3167 **
3168 ** To understand the concept of flattening, consider the following
3169 ** query:
3170 **
3171 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3172 **
3173 ** The default way of implementing this query is to execute the
3174 ** subquery first and store the results in a temporary table, then
3175 ** run the outer query on that temporary table.  This requires two
3176 ** passes over the data.  Furthermore, because the temporary table
3177 ** has no indices, the WHERE clause on the outer query cannot be
3178 ** optimized.
3179 **
3180 ** This routine attempts to rewrite queries such as the above into
3181 ** a single flat select, like this:
3182 **
3183 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3184 **
3185 ** The code generated for this simplification gives the same result
3186 ** but only has to scan the data once.  And because indices might
3187 ** exist on the table t1, a complete scan of the data might be
3188 ** avoided.
3189 **
3190 ** Flattening is only attempted if all of the following are true:
3191 **
3192 **   (1)  The subquery and the outer query do not both use aggregates.
3193 **
3194 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3195 **        and (2b) the outer query does not use subqueries other than the one
3196 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3197 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3198 **
3199 **   (3)  The subquery is not the right operand of a left outer join
3200 **        (Originally ticket #306.  Strengthened by ticket #3300)
3201 **
3202 **   (4)  The subquery is not DISTINCT.
3203 **
3204 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3205 **        sub-queries that were excluded from this optimization. Restriction
3206 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3207 **
3208 **   (6)  The subquery does not use aggregates or the outer query is not
3209 **        DISTINCT.
3210 **
3211 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3212 **        A FROM clause, consider adding a FROM close with the special
3213 **        table sqlite_once that consists of a single row containing a
3214 **        single NULL.
3215 **
3216 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3217 **
3218 **   (9)  The subquery does not use LIMIT or the outer query does not use
3219 **        aggregates.
3220 **
3221 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3222 **        accidently carried the comment forward until 2014-09-15.  Original
3223 **        text: "The subquery does not use aggregates or the outer query
3224 **        does not use LIMIT."
3225 **
3226 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3227 **
3228 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3229 **        a separate restriction deriving from ticket #350.
3230 **
3231 **  (13)  The subquery and outer query do not both use LIMIT.
3232 **
3233 **  (14)  The subquery does not use OFFSET.
3234 **
3235 **  (15)  The outer query is not part of a compound select or the
3236 **        subquery does not have a LIMIT clause.
3237 **        (See ticket #2339 and ticket [02a8e81d44]).
3238 **
3239 **  (16)  The outer query is not an aggregate or the subquery does
3240 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3241 **        until we introduced the group_concat() function.
3242 **
3243 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3244 **        compound clause made up entirely of non-aggregate queries, and
3245 **        the parent query:
3246 **
3247 **          * is not itself part of a compound select,
3248 **          * is not an aggregate or DISTINCT query, and
3249 **          * is not a join
3250 **
3251 **        The parent and sub-query may contain WHERE clauses. Subject to
3252 **        rules (11), (13) and (14), they may also contain ORDER BY,
3253 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3254 **        operator other than UNION ALL because all the other compound
3255 **        operators have an implied DISTINCT which is disallowed by
3256 **        restriction (4).
3257 **
3258 **        Also, each component of the sub-query must return the same number
3259 **        of result columns. This is actually a requirement for any compound
3260 **        SELECT statement, but all the code here does is make sure that no
3261 **        such (illegal) sub-query is flattened. The caller will detect the
3262 **        syntax error and return a detailed message.
3263 **
3264 **  (18)  If the sub-query is a compound select, then all terms of the
3265 **        ORDER by clause of the parent must be simple references to
3266 **        columns of the sub-query.
3267 **
3268 **  (19)  The subquery does not use LIMIT or the outer query does not
3269 **        have a WHERE clause.
3270 **
3271 **  (20)  If the sub-query is a compound select, then it must not use
3272 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3273 **        somewhat by saying that the terms of the ORDER BY clause must
3274 **        appear as unmodified result columns in the outer query.  But we
3275 **        have other optimizations in mind to deal with that case.
3276 **
3277 **  (21)  The subquery does not use LIMIT or the outer query is not
3278 **        DISTINCT.  (See ticket [752e1646fc]).
3279 **
3280 **  (22)  The subquery is not a recursive CTE.
3281 **
3282 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3283 **        compound query. This restriction is because transforming the
3284 **        parent to a compound query confuses the code that handles
3285 **        recursive queries in multiSelect().
3286 **
3287 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3288 **        or max() functions.  (Without this restriction, a query like:
3289 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3290 **        return the value X for which Y was maximal.)
3291 **
3292 **
3293 ** In this routine, the "p" parameter is a pointer to the outer query.
3294 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3295 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3296 **
3297 ** If flattening is not attempted, this routine is a no-op and returns 0.
3298 ** If flattening is attempted this routine returns 1.
3299 **
3300 ** All of the expression analysis must occur on both the outer query and
3301 ** the subquery before this routine runs.
3302 */
3303 static int flattenSubquery(
3304   Parse *pParse,       /* Parsing context */
3305   Select *p,           /* The parent or outer SELECT statement */
3306   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3307   int isAgg,           /* True if outer SELECT uses aggregate functions */
3308   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3309 ){
3310   const char *zSavedAuthContext = pParse->zAuthContext;
3311   Select *pParent;
3312   Select *pSub;       /* The inner query or "subquery" */
3313   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3314   SrcList *pSrc;      /* The FROM clause of the outer query */
3315   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3316   ExprList *pList;    /* The result set of the outer query */
3317   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3318   int i;              /* Loop counter */
3319   Expr *pWhere;                    /* The WHERE clause */
3320   struct SrcList_item *pSubitem;   /* The subquery */
3321   sqlite3 *db = pParse->db;
3322 
3323   /* Check to see if flattening is permitted.  Return 0 if not.
3324   */
3325   assert( p!=0 );
3326   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3327   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3328   pSrc = p->pSrc;
3329   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3330   pSubitem = &pSrc->a[iFrom];
3331   iParent = pSubitem->iCursor;
3332   pSub = pSubitem->pSelect;
3333   assert( pSub!=0 );
3334   if( subqueryIsAgg ){
3335     if( isAgg ) return 0;                                /* Restriction (1)   */
3336     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3337     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3338      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3339      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3340     ){
3341       return 0;                                          /* Restriction (2b)  */
3342     }
3343   }
3344 
3345   pSubSrc = pSub->pSrc;
3346   assert( pSubSrc );
3347   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3348   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3349   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3350   ** became arbitrary expressions, we were forced to add restrictions (13)
3351   ** and (14). */
3352   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3353   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3354   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3355     return 0;                                            /* Restriction (15) */
3356   }
3357   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3358   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3359   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3360      return 0;         /* Restrictions (8)(9) */
3361   }
3362   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3363      return 0;         /* Restriction (6)  */
3364   }
3365   if( p->pOrderBy && pSub->pOrderBy ){
3366      return 0;                                           /* Restriction (11) */
3367   }
3368   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3369   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3370   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3371      return 0;         /* Restriction (21) */
3372   }
3373   testcase( pSub->selFlags & SF_Recursive );
3374   testcase( pSub->selFlags & SF_MinMaxAgg );
3375   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3376     return 0; /* Restrictions (22) and (24) */
3377   }
3378   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3379     return 0; /* Restriction (23) */
3380   }
3381 
3382   /* OBSOLETE COMMENT 1:
3383   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3384   ** not used as the right operand of an outer join.  Examples of why this
3385   ** is not allowed:
3386   **
3387   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3388   **
3389   ** If we flatten the above, we would get
3390   **
3391   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3392   **
3393   ** which is not at all the same thing.
3394   **
3395   ** OBSOLETE COMMENT 2:
3396   ** Restriction 12:  If the subquery is the right operand of a left outer
3397   ** join, make sure the subquery has no WHERE clause.
3398   ** An examples of why this is not allowed:
3399   **
3400   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3401   **
3402   ** If we flatten the above, we would get
3403   **
3404   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3405   **
3406   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3407   ** effectively converts the OUTER JOIN into an INNER JOIN.
3408   **
3409   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3410   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3411   ** is fraught with danger.  Best to avoid the whole thing.  If the
3412   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3413   */
3414   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3415     return 0;
3416   }
3417 
3418   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3419   ** use only the UNION ALL operator. And none of the simple select queries
3420   ** that make up the compound SELECT are allowed to be aggregate or distinct
3421   ** queries.
3422   */
3423   if( pSub->pPrior ){
3424     if( pSub->pOrderBy ){
3425       return 0;  /* Restriction 20 */
3426     }
3427     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3428       return 0;
3429     }
3430     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3431       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3432       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3433       assert( pSub->pSrc!=0 );
3434       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3435       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3436        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3437        || pSub1->pSrc->nSrc<1
3438       ){
3439         return 0;
3440       }
3441       testcase( pSub1->pSrc->nSrc>1 );
3442     }
3443 
3444     /* Restriction 18. */
3445     if( p->pOrderBy ){
3446       int ii;
3447       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3448         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3449       }
3450     }
3451   }
3452 
3453   /***** If we reach this point, flattening is permitted. *****/
3454   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3455                    pSub->zSelName, pSub, iFrom));
3456 
3457   /* Authorize the subquery */
3458   pParse->zAuthContext = pSubitem->zName;
3459   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3460   testcase( i==SQLITE_DENY );
3461   pParse->zAuthContext = zSavedAuthContext;
3462 
3463   /* If the sub-query is a compound SELECT statement, then (by restrictions
3464   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3465   ** be of the form:
3466   **
3467   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3468   **
3469   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3470   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3471   ** OFFSET clauses and joins them to the left-hand-side of the original
3472   ** using UNION ALL operators. In this case N is the number of simple
3473   ** select statements in the compound sub-query.
3474   **
3475   ** Example:
3476   **
3477   **     SELECT a+1 FROM (
3478   **        SELECT x FROM tab
3479   **        UNION ALL
3480   **        SELECT y FROM tab
3481   **        UNION ALL
3482   **        SELECT abs(z*2) FROM tab2
3483   **     ) WHERE a!=5 ORDER BY 1
3484   **
3485   ** Transformed into:
3486   **
3487   **     SELECT x+1 FROM tab WHERE x+1!=5
3488   **     UNION ALL
3489   **     SELECT y+1 FROM tab WHERE y+1!=5
3490   **     UNION ALL
3491   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3492   **     ORDER BY 1
3493   **
3494   ** We call this the "compound-subquery flattening".
3495   */
3496   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3497     Select *pNew;
3498     ExprList *pOrderBy = p->pOrderBy;
3499     Expr *pLimit = p->pLimit;
3500     Expr *pOffset = p->pOffset;
3501     Select *pPrior = p->pPrior;
3502     p->pOrderBy = 0;
3503     p->pSrc = 0;
3504     p->pPrior = 0;
3505     p->pLimit = 0;
3506     p->pOffset = 0;
3507     pNew = sqlite3SelectDup(db, p, 0);
3508     sqlite3SelectSetName(pNew, pSub->zSelName);
3509     p->pOffset = pOffset;
3510     p->pLimit = pLimit;
3511     p->pOrderBy = pOrderBy;
3512     p->pSrc = pSrc;
3513     p->op = TK_ALL;
3514     if( pNew==0 ){
3515       p->pPrior = pPrior;
3516     }else{
3517       pNew->pPrior = pPrior;
3518       if( pPrior ) pPrior->pNext = pNew;
3519       pNew->pNext = p;
3520       p->pPrior = pNew;
3521       SELECTTRACE(2,pParse,p,
3522          ("compound-subquery flattener creates %s.%p as peer\n",
3523          pNew->zSelName, pNew));
3524     }
3525     if( db->mallocFailed ) return 1;
3526   }
3527 
3528   /* Begin flattening the iFrom-th entry of the FROM clause
3529   ** in the outer query.
3530   */
3531   pSub = pSub1 = pSubitem->pSelect;
3532 
3533   /* Delete the transient table structure associated with the
3534   ** subquery
3535   */
3536   sqlite3DbFree(db, pSubitem->zDatabase);
3537   sqlite3DbFree(db, pSubitem->zName);
3538   sqlite3DbFree(db, pSubitem->zAlias);
3539   pSubitem->zDatabase = 0;
3540   pSubitem->zName = 0;
3541   pSubitem->zAlias = 0;
3542   pSubitem->pSelect = 0;
3543 
3544   /* Defer deleting the Table object associated with the
3545   ** subquery until code generation is
3546   ** complete, since there may still exist Expr.pTab entries that
3547   ** refer to the subquery even after flattening.  Ticket #3346.
3548   **
3549   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3550   */
3551   if( ALWAYS(pSubitem->pTab!=0) ){
3552     Table *pTabToDel = pSubitem->pTab;
3553     if( pTabToDel->nRef==1 ){
3554       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3555       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3556       pToplevel->pZombieTab = pTabToDel;
3557     }else{
3558       pTabToDel->nRef--;
3559     }
3560     pSubitem->pTab = 0;
3561   }
3562 
3563   /* The following loop runs once for each term in a compound-subquery
3564   ** flattening (as described above).  If we are doing a different kind
3565   ** of flattening - a flattening other than a compound-subquery flattening -
3566   ** then this loop only runs once.
3567   **
3568   ** This loop moves all of the FROM elements of the subquery into the
3569   ** the FROM clause of the outer query.  Before doing this, remember
3570   ** the cursor number for the original outer query FROM element in
3571   ** iParent.  The iParent cursor will never be used.  Subsequent code
3572   ** will scan expressions looking for iParent references and replace
3573   ** those references with expressions that resolve to the subquery FROM
3574   ** elements we are now copying in.
3575   */
3576   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3577     int nSubSrc;
3578     u8 jointype = 0;
3579     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3580     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3581     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3582 
3583     if( pSrc ){
3584       assert( pParent==p );  /* First time through the loop */
3585       jointype = pSubitem->jointype;
3586     }else{
3587       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3588       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3589       if( pSrc==0 ){
3590         assert( db->mallocFailed );
3591         break;
3592       }
3593     }
3594 
3595     /* The subquery uses a single slot of the FROM clause of the outer
3596     ** query.  If the subquery has more than one element in its FROM clause,
3597     ** then expand the outer query to make space for it to hold all elements
3598     ** of the subquery.
3599     **
3600     ** Example:
3601     **
3602     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3603     **
3604     ** The outer query has 3 slots in its FROM clause.  One slot of the
3605     ** outer query (the middle slot) is used by the subquery.  The next
3606     ** block of code will expand the out query to 4 slots.  The middle
3607     ** slot is expanded to two slots in order to make space for the
3608     ** two elements in the FROM clause of the subquery.
3609     */
3610     if( nSubSrc>1 ){
3611       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3612       if( db->mallocFailed ){
3613         break;
3614       }
3615     }
3616 
3617     /* Transfer the FROM clause terms from the subquery into the
3618     ** outer query.
3619     */
3620     for(i=0; i<nSubSrc; i++){
3621       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3622       pSrc->a[i+iFrom] = pSubSrc->a[i];
3623       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3624     }
3625     pSrc->a[iFrom].jointype = jointype;
3626 
3627     /* Now begin substituting subquery result set expressions for
3628     ** references to the iParent in the outer query.
3629     **
3630     ** Example:
3631     **
3632     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3633     **   \                     \_____________ subquery __________/          /
3634     **    \_____________________ outer query ______________________________/
3635     **
3636     ** We look at every expression in the outer query and every place we see
3637     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3638     */
3639     pList = pParent->pEList;
3640     for(i=0; i<pList->nExpr; i++){
3641       if( pList->a[i].zName==0 ){
3642         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3643         sqlite3Dequote(zName);
3644         pList->a[i].zName = zName;
3645       }
3646     }
3647     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3648     if( isAgg ){
3649       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3650       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3651     }
3652     if( pSub->pOrderBy ){
3653       /* At this point, any non-zero iOrderByCol values indicate that the
3654       ** ORDER BY column expression is identical to the iOrderByCol'th
3655       ** expression returned by SELECT statement pSub. Since these values
3656       ** do not necessarily correspond to columns in SELECT statement pParent,
3657       ** zero them before transfering the ORDER BY clause.
3658       **
3659       ** Not doing this may cause an error if a subsequent call to this
3660       ** function attempts to flatten a compound sub-query into pParent
3661       ** (the only way this can happen is if the compound sub-query is
3662       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3663       ExprList *pOrderBy = pSub->pOrderBy;
3664       for(i=0; i<pOrderBy->nExpr; i++){
3665         pOrderBy->a[i].u.x.iOrderByCol = 0;
3666       }
3667       assert( pParent->pOrderBy==0 );
3668       assert( pSub->pPrior==0 );
3669       pParent->pOrderBy = pOrderBy;
3670       pSub->pOrderBy = 0;
3671     }else if( pParent->pOrderBy ){
3672       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3673     }
3674     if( pSub->pWhere ){
3675       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3676     }else{
3677       pWhere = 0;
3678     }
3679     if( subqueryIsAgg ){
3680       assert( pParent->pHaving==0 );
3681       pParent->pHaving = pParent->pWhere;
3682       pParent->pWhere = pWhere;
3683       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3684       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3685                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3686       assert( pParent->pGroupBy==0 );
3687       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3688     }else{
3689       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3690       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3691     }
3692 
3693     /* The flattened query is distinct if either the inner or the
3694     ** outer query is distinct.
3695     */
3696     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3697 
3698     /*
3699     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3700     **
3701     ** One is tempted to try to add a and b to combine the limits.  But this
3702     ** does not work if either limit is negative.
3703     */
3704     if( pSub->pLimit ){
3705       pParent->pLimit = pSub->pLimit;
3706       pSub->pLimit = 0;
3707     }
3708   }
3709 
3710   /* Finially, delete what is left of the subquery and return
3711   ** success.
3712   */
3713   sqlite3SelectDelete(db, pSub1);
3714 
3715 #if SELECTTRACE_ENABLED
3716   if( sqlite3SelectTrace & 0x100 ){
3717     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3718     sqlite3TreeViewSelect(0, p, 0);
3719   }
3720 #endif
3721 
3722   return 1;
3723 }
3724 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3725 
3726 
3727 
3728 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3729 /*
3730 ** Make copies of relevant WHERE clause terms of the outer query into
3731 ** the WHERE clause of subquery.  Example:
3732 **
3733 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3734 **
3735 ** Transformed into:
3736 **
3737 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3738 **     WHERE x=5 AND y=10;
3739 **
3740 ** The hope is that the terms added to the inner query will make it more
3741 ** efficient.
3742 **
3743 ** Do not attempt this optimization if:
3744 **
3745 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3746 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3747 **       inner query.  But they probably won't help there so do not bother.)
3748 **
3749 **   (2) The inner query is the recursive part of a common table expression.
3750 **
3751 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3752 **       close would change the meaning of the LIMIT).
3753 **
3754 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3755 **       enforces this restriction since this routine does not have enough
3756 **       information to know.)
3757 **
3758 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3759 ** terms are duplicated into the subquery.
3760 */
3761 static int pushDownWhereTerms(
3762   sqlite3 *db,          /* The database connection (for malloc()) */
3763   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3764   Expr *pWhere,         /* The WHERE clause of the outer query */
3765   int iCursor           /* Cursor number of the subquery */
3766 ){
3767   Expr *pNew;
3768   int nChng = 0;
3769   if( pWhere==0 ) return 0;
3770   if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3771      return 0; /* restrictions (1) and (2) */
3772   }
3773   if( pSubq->pLimit!=0 ){
3774      return 0; /* restriction (3) */
3775   }
3776   while( pWhere->op==TK_AND ){
3777     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3778     pWhere = pWhere->pLeft;
3779   }
3780   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3781     nChng++;
3782     while( pSubq ){
3783       pNew = sqlite3ExprDup(db, pWhere, 0);
3784       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3785       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3786       pSubq = pSubq->pPrior;
3787     }
3788   }
3789   return nChng;
3790 }
3791 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3792 
3793 /*
3794 ** Based on the contents of the AggInfo structure indicated by the first
3795 ** argument, this function checks if the following are true:
3796 **
3797 **    * the query contains just a single aggregate function,
3798 **    * the aggregate function is either min() or max(), and
3799 **    * the argument to the aggregate function is a column value.
3800 **
3801 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3802 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3803 ** list of arguments passed to the aggregate before returning.
3804 **
3805 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3806 ** WHERE_ORDERBY_NORMAL is returned.
3807 */
3808 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3809   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3810 
3811   *ppMinMax = 0;
3812   if( pAggInfo->nFunc==1 ){
3813     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3814     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3815 
3816     assert( pExpr->op==TK_AGG_FUNCTION );
3817     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3818       const char *zFunc = pExpr->u.zToken;
3819       if( sqlite3StrICmp(zFunc, "min")==0 ){
3820         eRet = WHERE_ORDERBY_MIN;
3821         *ppMinMax = pEList;
3822       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3823         eRet = WHERE_ORDERBY_MAX;
3824         *ppMinMax = pEList;
3825       }
3826     }
3827   }
3828 
3829   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3830   return eRet;
3831 }
3832 
3833 /*
3834 ** The select statement passed as the first argument is an aggregate query.
3835 ** The second argument is the associated aggregate-info object. This
3836 ** function tests if the SELECT is of the form:
3837 **
3838 **   SELECT count(*) FROM <tbl>
3839 **
3840 ** where table is a database table, not a sub-select or view. If the query
3841 ** does match this pattern, then a pointer to the Table object representing
3842 ** <tbl> is returned. Otherwise, 0 is returned.
3843 */
3844 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3845   Table *pTab;
3846   Expr *pExpr;
3847 
3848   assert( !p->pGroupBy );
3849 
3850   if( p->pWhere || p->pEList->nExpr!=1
3851    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3852   ){
3853     return 0;
3854   }
3855   pTab = p->pSrc->a[0].pTab;
3856   pExpr = p->pEList->a[0].pExpr;
3857   assert( pTab && !pTab->pSelect && pExpr );
3858 
3859   if( IsVirtual(pTab) ) return 0;
3860   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3861   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3862   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3863   if( pExpr->flags&EP_Distinct ) return 0;
3864 
3865   return pTab;
3866 }
3867 
3868 /*
3869 ** If the source-list item passed as an argument was augmented with an
3870 ** INDEXED BY clause, then try to locate the specified index. If there
3871 ** was such a clause and the named index cannot be found, return
3872 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3873 ** pFrom->pIndex and return SQLITE_OK.
3874 */
3875 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3876   if( pFrom->pTab && pFrom->zIndexedBy ){
3877     Table *pTab = pFrom->pTab;
3878     char *zIndexedBy = pFrom->zIndexedBy;
3879     Index *pIdx;
3880     for(pIdx=pTab->pIndex;
3881         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3882         pIdx=pIdx->pNext
3883     );
3884     if( !pIdx ){
3885       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3886       pParse->checkSchema = 1;
3887       return SQLITE_ERROR;
3888     }
3889     pFrom->pIndex = pIdx;
3890   }
3891   return SQLITE_OK;
3892 }
3893 /*
3894 ** Detect compound SELECT statements that use an ORDER BY clause with
3895 ** an alternative collating sequence.
3896 **
3897 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3898 **
3899 ** These are rewritten as a subquery:
3900 **
3901 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3902 **     ORDER BY ... COLLATE ...
3903 **
3904 ** This transformation is necessary because the multiSelectOrderBy() routine
3905 ** above that generates the code for a compound SELECT with an ORDER BY clause
3906 ** uses a merge algorithm that requires the same collating sequence on the
3907 ** result columns as on the ORDER BY clause.  See ticket
3908 ** http://www.sqlite.org/src/info/6709574d2a
3909 **
3910 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3911 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3912 ** there are COLLATE terms in the ORDER BY.
3913 */
3914 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3915   int i;
3916   Select *pNew;
3917   Select *pX;
3918   sqlite3 *db;
3919   struct ExprList_item *a;
3920   SrcList *pNewSrc;
3921   Parse *pParse;
3922   Token dummy;
3923 
3924   if( p->pPrior==0 ) return WRC_Continue;
3925   if( p->pOrderBy==0 ) return WRC_Continue;
3926   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3927   if( pX==0 ) return WRC_Continue;
3928   a = p->pOrderBy->a;
3929   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3930     if( a[i].pExpr->flags & EP_Collate ) break;
3931   }
3932   if( i<0 ) return WRC_Continue;
3933 
3934   /* If we reach this point, that means the transformation is required. */
3935 
3936   pParse = pWalker->pParse;
3937   db = pParse->db;
3938   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3939   if( pNew==0 ) return WRC_Abort;
3940   memset(&dummy, 0, sizeof(dummy));
3941   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3942   if( pNewSrc==0 ) return WRC_Abort;
3943   *pNew = *p;
3944   p->pSrc = pNewSrc;
3945   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3946   p->op = TK_SELECT;
3947   p->pWhere = 0;
3948   pNew->pGroupBy = 0;
3949   pNew->pHaving = 0;
3950   pNew->pOrderBy = 0;
3951   p->pPrior = 0;
3952   p->pNext = 0;
3953   p->pWith = 0;
3954   p->selFlags &= ~SF_Compound;
3955   assert( (p->selFlags & SF_Converted)==0 );
3956   p->selFlags |= SF_Converted;
3957   assert( pNew->pPrior!=0 );
3958   pNew->pPrior->pNext = pNew;
3959   pNew->pLimit = 0;
3960   pNew->pOffset = 0;
3961   return WRC_Continue;
3962 }
3963 
3964 #ifndef SQLITE_OMIT_CTE
3965 /*
3966 ** Argument pWith (which may be NULL) points to a linked list of nested
3967 ** WITH contexts, from inner to outermost. If the table identified by
3968 ** FROM clause element pItem is really a common-table-expression (CTE)
3969 ** then return a pointer to the CTE definition for that table. Otherwise
3970 ** return NULL.
3971 **
3972 ** If a non-NULL value is returned, set *ppContext to point to the With
3973 ** object that the returned CTE belongs to.
3974 */
3975 static struct Cte *searchWith(
3976   With *pWith,                    /* Current outermost WITH clause */
3977   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3978   With **ppContext                /* OUT: WITH clause return value belongs to */
3979 ){
3980   const char *zName;
3981   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3982     With *p;
3983     for(p=pWith; p; p=p->pOuter){
3984       int i;
3985       for(i=0; i<p->nCte; i++){
3986         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3987           *ppContext = p;
3988           return &p->a[i];
3989         }
3990       }
3991     }
3992   }
3993   return 0;
3994 }
3995 
3996 /* The code generator maintains a stack of active WITH clauses
3997 ** with the inner-most WITH clause being at the top of the stack.
3998 **
3999 ** This routine pushes the WITH clause passed as the second argument
4000 ** onto the top of the stack. If argument bFree is true, then this
4001 ** WITH clause will never be popped from the stack. In this case it
4002 ** should be freed along with the Parse object. In other cases, when
4003 ** bFree==0, the With object will be freed along with the SELECT
4004 ** statement with which it is associated.
4005 */
4006 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4007   assert( bFree==0 || pParse->pWith==0 );
4008   if( pWith ){
4009     pWith->pOuter = pParse->pWith;
4010     pParse->pWith = pWith;
4011     pParse->bFreeWith = bFree;
4012   }
4013 }
4014 
4015 /*
4016 ** This function checks if argument pFrom refers to a CTE declared by
4017 ** a WITH clause on the stack currently maintained by the parser. And,
4018 ** if currently processing a CTE expression, if it is a recursive
4019 ** reference to the current CTE.
4020 **
4021 ** If pFrom falls into either of the two categories above, pFrom->pTab
4022 ** and other fields are populated accordingly. The caller should check
4023 ** (pFrom->pTab!=0) to determine whether or not a successful match
4024 ** was found.
4025 **
4026 ** Whether or not a match is found, SQLITE_OK is returned if no error
4027 ** occurs. If an error does occur, an error message is stored in the
4028 ** parser and some error code other than SQLITE_OK returned.
4029 */
4030 static int withExpand(
4031   Walker *pWalker,
4032   struct SrcList_item *pFrom
4033 ){
4034   Parse *pParse = pWalker->pParse;
4035   sqlite3 *db = pParse->db;
4036   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4037   With *pWith;                    /* WITH clause that pCte belongs to */
4038 
4039   assert( pFrom->pTab==0 );
4040 
4041   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4042   if( pCte ){
4043     Table *pTab;
4044     ExprList *pEList;
4045     Select *pSel;
4046     Select *pLeft;                /* Left-most SELECT statement */
4047     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4048     With *pSavedWith;             /* Initial value of pParse->pWith */
4049 
4050     /* If pCte->zErr is non-NULL at this point, then this is an illegal
4051     ** recursive reference to CTE pCte. Leave an error in pParse and return
4052     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
4053     ** In this case, proceed.  */
4054     if( pCte->zErr ){
4055       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
4056       return SQLITE_ERROR;
4057     }
4058 
4059     assert( pFrom->pTab==0 );
4060     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4061     if( pTab==0 ) return WRC_Abort;
4062     pTab->nRef = 1;
4063     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4064     pTab->iPKey = -1;
4065     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4066     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4067     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4068     if( db->mallocFailed ) return SQLITE_NOMEM;
4069     assert( pFrom->pSelect );
4070 
4071     /* Check if this is a recursive CTE. */
4072     pSel = pFrom->pSelect;
4073     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4074     if( bMayRecursive ){
4075       int i;
4076       SrcList *pSrc = pFrom->pSelect->pSrc;
4077       for(i=0; i<pSrc->nSrc; i++){
4078         struct SrcList_item *pItem = &pSrc->a[i];
4079         if( pItem->zDatabase==0
4080          && pItem->zName!=0
4081          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4082           ){
4083           pItem->pTab = pTab;
4084           pItem->isRecursive = 1;
4085           pTab->nRef++;
4086           pSel->selFlags |= SF_Recursive;
4087         }
4088       }
4089     }
4090 
4091     /* Only one recursive reference is permitted. */
4092     if( pTab->nRef>2 ){
4093       sqlite3ErrorMsg(
4094           pParse, "multiple references to recursive table: %s", pCte->zName
4095       );
4096       return SQLITE_ERROR;
4097     }
4098     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4099 
4100     pCte->zErr = "circular reference: %s";
4101     pSavedWith = pParse->pWith;
4102     pParse->pWith = pWith;
4103     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4104 
4105     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4106     pEList = pLeft->pEList;
4107     if( pCte->pCols ){
4108       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4109         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4110             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4111         );
4112         pParse->pWith = pSavedWith;
4113         return SQLITE_ERROR;
4114       }
4115       pEList = pCte->pCols;
4116     }
4117 
4118     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4119     if( bMayRecursive ){
4120       if( pSel->selFlags & SF_Recursive ){
4121         pCte->zErr = "multiple recursive references: %s";
4122       }else{
4123         pCte->zErr = "recursive reference in a subquery: %s";
4124       }
4125       sqlite3WalkSelect(pWalker, pSel);
4126     }
4127     pCte->zErr = 0;
4128     pParse->pWith = pSavedWith;
4129   }
4130 
4131   return SQLITE_OK;
4132 }
4133 #endif
4134 
4135 #ifndef SQLITE_OMIT_CTE
4136 /*
4137 ** If the SELECT passed as the second argument has an associated WITH
4138 ** clause, pop it from the stack stored as part of the Parse object.
4139 **
4140 ** This function is used as the xSelectCallback2() callback by
4141 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4142 ** names and other FROM clause elements.
4143 */
4144 static void selectPopWith(Walker *pWalker, Select *p){
4145   Parse *pParse = pWalker->pParse;
4146   With *pWith = findRightmost(p)->pWith;
4147   if( pWith!=0 ){
4148     assert( pParse->pWith==pWith );
4149     pParse->pWith = pWith->pOuter;
4150   }
4151 }
4152 #else
4153 #define selectPopWith 0
4154 #endif
4155 
4156 /*
4157 ** This routine is a Walker callback for "expanding" a SELECT statement.
4158 ** "Expanding" means to do the following:
4159 **
4160 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4161 **         element of the FROM clause.
4162 **
4163 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4164 **         defines FROM clause.  When views appear in the FROM clause,
4165 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4166 **         that implements the view.  A copy is made of the view's SELECT
4167 **         statement so that we can freely modify or delete that statement
4168 **         without worrying about messing up the persistent representation
4169 **         of the view.
4170 **
4171 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4172 **         on joins and the ON and USING clause of joins.
4173 **
4174 **    (4)  Scan the list of columns in the result set (pEList) looking
4175 **         for instances of the "*" operator or the TABLE.* operator.
4176 **         If found, expand each "*" to be every column in every table
4177 **         and TABLE.* to be every column in TABLE.
4178 **
4179 */
4180 static int selectExpander(Walker *pWalker, Select *p){
4181   Parse *pParse = pWalker->pParse;
4182   int i, j, k;
4183   SrcList *pTabList;
4184   ExprList *pEList;
4185   struct SrcList_item *pFrom;
4186   sqlite3 *db = pParse->db;
4187   Expr *pE, *pRight, *pExpr;
4188   u16 selFlags = p->selFlags;
4189 
4190   p->selFlags |= SF_Expanded;
4191   if( db->mallocFailed  ){
4192     return WRC_Abort;
4193   }
4194   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4195     return WRC_Prune;
4196   }
4197   pTabList = p->pSrc;
4198   pEList = p->pEList;
4199   if( pWalker->xSelectCallback2==selectPopWith ){
4200     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4201   }
4202 
4203   /* Make sure cursor numbers have been assigned to all entries in
4204   ** the FROM clause of the SELECT statement.
4205   */
4206   sqlite3SrcListAssignCursors(pParse, pTabList);
4207 
4208   /* Look up every table named in the FROM clause of the select.  If
4209   ** an entry of the FROM clause is a subquery instead of a table or view,
4210   ** then create a transient table structure to describe the subquery.
4211   */
4212   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4213     Table *pTab;
4214     assert( pFrom->isRecursive==0 || pFrom->pTab );
4215     if( pFrom->isRecursive ) continue;
4216     if( pFrom->pTab!=0 ){
4217       /* This statement has already been prepared.  There is no need
4218       ** to go further. */
4219       assert( i==0 );
4220 #ifndef SQLITE_OMIT_CTE
4221       selectPopWith(pWalker, p);
4222 #endif
4223       return WRC_Prune;
4224     }
4225 #ifndef SQLITE_OMIT_CTE
4226     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4227     if( pFrom->pTab ) {} else
4228 #endif
4229     if( pFrom->zName==0 ){
4230 #ifndef SQLITE_OMIT_SUBQUERY
4231       Select *pSel = pFrom->pSelect;
4232       /* A sub-query in the FROM clause of a SELECT */
4233       assert( pSel!=0 );
4234       assert( pFrom->pTab==0 );
4235       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4236       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4237       if( pTab==0 ) return WRC_Abort;
4238       pTab->nRef = 1;
4239       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4240       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4241       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4242       pTab->iPKey = -1;
4243       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4244       pTab->tabFlags |= TF_Ephemeral;
4245 #endif
4246     }else{
4247       /* An ordinary table or view name in the FROM clause */
4248       assert( pFrom->pTab==0 );
4249       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4250       if( pTab==0 ) return WRC_Abort;
4251       if( pTab->nRef==0xffff ){
4252         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4253            pTab->zName);
4254         pFrom->pTab = 0;
4255         return WRC_Abort;
4256       }
4257       pTab->nRef++;
4258 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4259       if( pTab->pSelect || IsVirtual(pTab) ){
4260         /* We reach here if the named table is a really a view */
4261         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4262         assert( pFrom->pSelect==0 );
4263         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4264         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4265         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4266       }
4267 #endif
4268     }
4269 
4270     /* Locate the index named by the INDEXED BY clause, if any. */
4271     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4272       return WRC_Abort;
4273     }
4274   }
4275 
4276   /* Process NATURAL keywords, and ON and USING clauses of joins.
4277   */
4278   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4279     return WRC_Abort;
4280   }
4281 
4282   /* For every "*" that occurs in the column list, insert the names of
4283   ** all columns in all tables.  And for every TABLE.* insert the names
4284   ** of all columns in TABLE.  The parser inserted a special expression
4285   ** with the TK_ALL operator for each "*" that it found in the column list.
4286   ** The following code just has to locate the TK_ALL expressions and expand
4287   ** each one to the list of all columns in all tables.
4288   **
4289   ** The first loop just checks to see if there are any "*" operators
4290   ** that need expanding.
4291   */
4292   for(k=0; k<pEList->nExpr; k++){
4293     pE = pEList->a[k].pExpr;
4294     if( pE->op==TK_ALL ) break;
4295     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4296     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4297     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4298   }
4299   if( k<pEList->nExpr ){
4300     /*
4301     ** If we get here it means the result set contains one or more "*"
4302     ** operators that need to be expanded.  Loop through each expression
4303     ** in the result set and expand them one by one.
4304     */
4305     struct ExprList_item *a = pEList->a;
4306     ExprList *pNew = 0;
4307     int flags = pParse->db->flags;
4308     int longNames = (flags & SQLITE_FullColNames)!=0
4309                       && (flags & SQLITE_ShortColNames)==0;
4310 
4311     for(k=0; k<pEList->nExpr; k++){
4312       pE = a[k].pExpr;
4313       pRight = pE->pRight;
4314       assert( pE->op!=TK_DOT || pRight!=0 );
4315       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4316         /* This particular expression does not need to be expanded.
4317         */
4318         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4319         if( pNew ){
4320           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4321           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4322           a[k].zName = 0;
4323           a[k].zSpan = 0;
4324         }
4325         a[k].pExpr = 0;
4326       }else{
4327         /* This expression is a "*" or a "TABLE.*" and needs to be
4328         ** expanded. */
4329         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4330         char *zTName = 0;       /* text of name of TABLE */
4331         if( pE->op==TK_DOT ){
4332           assert( pE->pLeft!=0 );
4333           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4334           zTName = pE->pLeft->u.zToken;
4335         }
4336         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4337           Table *pTab = pFrom->pTab;
4338           Select *pSub = pFrom->pSelect;
4339           char *zTabName = pFrom->zAlias;
4340           const char *zSchemaName = 0;
4341           int iDb;
4342           if( zTabName==0 ){
4343             zTabName = pTab->zName;
4344           }
4345           if( db->mallocFailed ) break;
4346           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4347             pSub = 0;
4348             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4349               continue;
4350             }
4351             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4352             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4353           }
4354           for(j=0; j<pTab->nCol; j++){
4355             char *zName = pTab->aCol[j].zName;
4356             char *zColname;  /* The computed column name */
4357             char *zToFree;   /* Malloced string that needs to be freed */
4358             Token sColname;  /* Computed column name as a token */
4359 
4360             assert( zName );
4361             if( zTName && pSub
4362              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4363             ){
4364               continue;
4365             }
4366 
4367             /* If a column is marked as 'hidden' (currently only possible
4368             ** for virtual tables), do not include it in the expanded
4369             ** result-set list.
4370             */
4371             if( IsHiddenColumn(&pTab->aCol[j]) ){
4372               assert(IsVirtual(pTab));
4373               continue;
4374             }
4375             tableSeen = 1;
4376 
4377             if( i>0 && zTName==0 ){
4378               if( (pFrom->jointype & JT_NATURAL)!=0
4379                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4380               ){
4381                 /* In a NATURAL join, omit the join columns from the
4382                 ** table to the right of the join */
4383                 continue;
4384               }
4385               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4386                 /* In a join with a USING clause, omit columns in the
4387                 ** using clause from the table on the right. */
4388                 continue;
4389               }
4390             }
4391             pRight = sqlite3Expr(db, TK_ID, zName);
4392             zColname = zName;
4393             zToFree = 0;
4394             if( longNames || pTabList->nSrc>1 ){
4395               Expr *pLeft;
4396               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4397               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4398               if( zSchemaName ){
4399                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4400                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4401               }
4402               if( longNames ){
4403                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4404                 zToFree = zColname;
4405               }
4406             }else{
4407               pExpr = pRight;
4408             }
4409             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4410             sColname.z = zColname;
4411             sColname.n = sqlite3Strlen30(zColname);
4412             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4413             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4414               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4415               if( pSub ){
4416                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4417                 testcase( pX->zSpan==0 );
4418               }else{
4419                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4420                                            zSchemaName, zTabName, zColname);
4421                 testcase( pX->zSpan==0 );
4422               }
4423               pX->bSpanIsTab = 1;
4424             }
4425             sqlite3DbFree(db, zToFree);
4426           }
4427         }
4428         if( !tableSeen ){
4429           if( zTName ){
4430             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4431           }else{
4432             sqlite3ErrorMsg(pParse, "no tables specified");
4433           }
4434         }
4435       }
4436     }
4437     sqlite3ExprListDelete(db, pEList);
4438     p->pEList = pNew;
4439   }
4440 #if SQLITE_MAX_COLUMN
4441   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4442     sqlite3ErrorMsg(pParse, "too many columns in result set");
4443   }
4444 #endif
4445   return WRC_Continue;
4446 }
4447 
4448 /*
4449 ** No-op routine for the parse-tree walker.
4450 **
4451 ** When this routine is the Walker.xExprCallback then expression trees
4452 ** are walked without any actions being taken at each node.  Presumably,
4453 ** when this routine is used for Walker.xExprCallback then
4454 ** Walker.xSelectCallback is set to do something useful for every
4455 ** subquery in the parser tree.
4456 */
4457 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4458   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4459   return WRC_Continue;
4460 }
4461 
4462 /*
4463 ** This routine "expands" a SELECT statement and all of its subqueries.
4464 ** For additional information on what it means to "expand" a SELECT
4465 ** statement, see the comment on the selectExpand worker callback above.
4466 **
4467 ** Expanding a SELECT statement is the first step in processing a
4468 ** SELECT statement.  The SELECT statement must be expanded before
4469 ** name resolution is performed.
4470 **
4471 ** If anything goes wrong, an error message is written into pParse.
4472 ** The calling function can detect the problem by looking at pParse->nErr
4473 ** and/or pParse->db->mallocFailed.
4474 */
4475 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4476   Walker w;
4477   memset(&w, 0, sizeof(w));
4478   w.xExprCallback = exprWalkNoop;
4479   w.pParse = pParse;
4480   if( pParse->hasCompound ){
4481     w.xSelectCallback = convertCompoundSelectToSubquery;
4482     sqlite3WalkSelect(&w, pSelect);
4483   }
4484   w.xSelectCallback = selectExpander;
4485   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4486     w.xSelectCallback2 = selectPopWith;
4487   }
4488   sqlite3WalkSelect(&w, pSelect);
4489 }
4490 
4491 
4492 #ifndef SQLITE_OMIT_SUBQUERY
4493 /*
4494 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4495 ** interface.
4496 **
4497 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4498 ** information to the Table structure that represents the result set
4499 ** of that subquery.
4500 **
4501 ** The Table structure that represents the result set was constructed
4502 ** by selectExpander() but the type and collation information was omitted
4503 ** at that point because identifiers had not yet been resolved.  This
4504 ** routine is called after identifier resolution.
4505 */
4506 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4507   Parse *pParse;
4508   int i;
4509   SrcList *pTabList;
4510   struct SrcList_item *pFrom;
4511 
4512   assert( p->selFlags & SF_Resolved );
4513   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4514     p->selFlags |= SF_HasTypeInfo;
4515     pParse = pWalker->pParse;
4516     pTabList = p->pSrc;
4517     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4518       Table *pTab = pFrom->pTab;
4519       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4520         /* A sub-query in the FROM clause of a SELECT */
4521         Select *pSel = pFrom->pSelect;
4522         if( pSel ){
4523           while( pSel->pPrior ) pSel = pSel->pPrior;
4524           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4525         }
4526       }
4527     }
4528   }
4529 }
4530 #endif
4531 
4532 
4533 /*
4534 ** This routine adds datatype and collating sequence information to
4535 ** the Table structures of all FROM-clause subqueries in a
4536 ** SELECT statement.
4537 **
4538 ** Use this routine after name resolution.
4539 */
4540 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4541 #ifndef SQLITE_OMIT_SUBQUERY
4542   Walker w;
4543   memset(&w, 0, sizeof(w));
4544   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4545   w.xExprCallback = exprWalkNoop;
4546   w.pParse = pParse;
4547   sqlite3WalkSelect(&w, pSelect);
4548 #endif
4549 }
4550 
4551 
4552 /*
4553 ** This routine sets up a SELECT statement for processing.  The
4554 ** following is accomplished:
4555 **
4556 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4557 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4558 **     *  ON and USING clauses are shifted into WHERE statements
4559 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4560 **     *  Identifiers in expression are matched to tables.
4561 **
4562 ** This routine acts recursively on all subqueries within the SELECT.
4563 */
4564 void sqlite3SelectPrep(
4565   Parse *pParse,         /* The parser context */
4566   Select *p,             /* The SELECT statement being coded. */
4567   NameContext *pOuterNC  /* Name context for container */
4568 ){
4569   sqlite3 *db;
4570   if( NEVER(p==0) ) return;
4571   db = pParse->db;
4572   if( db->mallocFailed ) return;
4573   if( p->selFlags & SF_HasTypeInfo ) return;
4574   sqlite3SelectExpand(pParse, p);
4575   if( pParse->nErr || db->mallocFailed ) return;
4576   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4577   if( pParse->nErr || db->mallocFailed ) return;
4578   sqlite3SelectAddTypeInfo(pParse, p);
4579 }
4580 
4581 /*
4582 ** Reset the aggregate accumulator.
4583 **
4584 ** The aggregate accumulator is a set of memory cells that hold
4585 ** intermediate results while calculating an aggregate.  This
4586 ** routine generates code that stores NULLs in all of those memory
4587 ** cells.
4588 */
4589 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4590   Vdbe *v = pParse->pVdbe;
4591   int i;
4592   struct AggInfo_func *pFunc;
4593   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4594   if( nReg==0 ) return;
4595 #ifdef SQLITE_DEBUG
4596   /* Verify that all AggInfo registers are within the range specified by
4597   ** AggInfo.mnReg..AggInfo.mxReg */
4598   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4599   for(i=0; i<pAggInfo->nColumn; i++){
4600     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4601          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4602   }
4603   for(i=0; i<pAggInfo->nFunc; i++){
4604     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4605          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4606   }
4607 #endif
4608   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4609   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4610     if( pFunc->iDistinct>=0 ){
4611       Expr *pE = pFunc->pExpr;
4612       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4613       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4614         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4615            "argument");
4616         pFunc->iDistinct = -1;
4617       }else{
4618         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4619         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4620                           (char*)pKeyInfo, P4_KEYINFO);
4621       }
4622     }
4623   }
4624 }
4625 
4626 /*
4627 ** Invoke the OP_AggFinalize opcode for every aggregate function
4628 ** in the AggInfo structure.
4629 */
4630 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4631   Vdbe *v = pParse->pVdbe;
4632   int i;
4633   struct AggInfo_func *pF;
4634   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4635     ExprList *pList = pF->pExpr->x.pList;
4636     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4637     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4638                       (void*)pF->pFunc, P4_FUNCDEF);
4639   }
4640 }
4641 
4642 /*
4643 ** Update the accumulator memory cells for an aggregate based on
4644 ** the current cursor position.
4645 */
4646 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4647   Vdbe *v = pParse->pVdbe;
4648   int i;
4649   int regHit = 0;
4650   int addrHitTest = 0;
4651   struct AggInfo_func *pF;
4652   struct AggInfo_col *pC;
4653 
4654   pAggInfo->directMode = 1;
4655   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4656     int nArg;
4657     int addrNext = 0;
4658     int regAgg;
4659     ExprList *pList = pF->pExpr->x.pList;
4660     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4661     if( pList ){
4662       nArg = pList->nExpr;
4663       regAgg = sqlite3GetTempRange(pParse, nArg);
4664       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4665     }else{
4666       nArg = 0;
4667       regAgg = 0;
4668     }
4669     if( pF->iDistinct>=0 ){
4670       addrNext = sqlite3VdbeMakeLabel(v);
4671       testcase( nArg==0 );  /* Error condition */
4672       testcase( nArg>1 );   /* Also an error */
4673       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4674     }
4675     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4676       CollSeq *pColl = 0;
4677       struct ExprList_item *pItem;
4678       int j;
4679       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4680       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4681         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4682       }
4683       if( !pColl ){
4684         pColl = pParse->db->pDfltColl;
4685       }
4686       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4687       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4688     }
4689     sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4690                       (void*)pF->pFunc, P4_FUNCDEF);
4691     sqlite3VdbeChangeP5(v, (u8)nArg);
4692     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4693     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4694     if( addrNext ){
4695       sqlite3VdbeResolveLabel(v, addrNext);
4696       sqlite3ExprCacheClear(pParse);
4697     }
4698   }
4699 
4700   /* Before populating the accumulator registers, clear the column cache.
4701   ** Otherwise, if any of the required column values are already present
4702   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4703   ** to pC->iMem. But by the time the value is used, the original register
4704   ** may have been used, invalidating the underlying buffer holding the
4705   ** text or blob value. See ticket [883034dcb5].
4706   **
4707   ** Another solution would be to change the OP_SCopy used to copy cached
4708   ** values to an OP_Copy.
4709   */
4710   if( regHit ){
4711     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4712   }
4713   sqlite3ExprCacheClear(pParse);
4714   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4715     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4716   }
4717   pAggInfo->directMode = 0;
4718   sqlite3ExprCacheClear(pParse);
4719   if( addrHitTest ){
4720     sqlite3VdbeJumpHere(v, addrHitTest);
4721   }
4722 }
4723 
4724 /*
4725 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4726 ** count(*) query ("SELECT count(*) FROM pTab").
4727 */
4728 #ifndef SQLITE_OMIT_EXPLAIN
4729 static void explainSimpleCount(
4730   Parse *pParse,                  /* Parse context */
4731   Table *pTab,                    /* Table being queried */
4732   Index *pIdx                     /* Index used to optimize scan, or NULL */
4733 ){
4734   if( pParse->explain==2 ){
4735     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4736     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4737         pTab->zName,
4738         bCover ? " USING COVERING INDEX " : "",
4739         bCover ? pIdx->zName : ""
4740     );
4741     sqlite3VdbeAddOp4(
4742         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4743     );
4744   }
4745 }
4746 #else
4747 # define explainSimpleCount(a,b,c)
4748 #endif
4749 
4750 /*
4751 ** Generate code for the SELECT statement given in the p argument.
4752 **
4753 ** The results are returned according to the SelectDest structure.
4754 ** See comments in sqliteInt.h for further information.
4755 **
4756 ** This routine returns the number of errors.  If any errors are
4757 ** encountered, then an appropriate error message is left in
4758 ** pParse->zErrMsg.
4759 **
4760 ** This routine does NOT free the Select structure passed in.  The
4761 ** calling function needs to do that.
4762 */
4763 int sqlite3Select(
4764   Parse *pParse,         /* The parser context */
4765   Select *p,             /* The SELECT statement being coded. */
4766   SelectDest *pDest      /* What to do with the query results */
4767 ){
4768   int i, j;              /* Loop counters */
4769   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4770   Vdbe *v;               /* The virtual machine under construction */
4771   int isAgg;             /* True for select lists like "count(*)" */
4772   ExprList *pEList;      /* List of columns to extract. */
4773   SrcList *pTabList;     /* List of tables to select from */
4774   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4775   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4776   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4777   int rc = 1;            /* Value to return from this function */
4778   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4779   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4780   AggInfo sAggInfo;      /* Information used by aggregate queries */
4781   int iEnd;              /* Address of the end of the query */
4782   sqlite3 *db;           /* The database connection */
4783 
4784 #ifndef SQLITE_OMIT_EXPLAIN
4785   int iRestoreSelectId = pParse->iSelectId;
4786   pParse->iSelectId = pParse->iNextSelectId++;
4787 #endif
4788 
4789   db = pParse->db;
4790   if( p==0 || db->mallocFailed || pParse->nErr ){
4791     return 1;
4792   }
4793   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4794   memset(&sAggInfo, 0, sizeof(sAggInfo));
4795 #if SELECTTRACE_ENABLED
4796   pParse->nSelectIndent++;
4797   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4798   if( sqlite3SelectTrace & 0x100 ){
4799     sqlite3TreeViewSelect(0, p, 0);
4800   }
4801 #endif
4802 
4803   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4804   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4805   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4806   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4807   if( IgnorableOrderby(pDest) ){
4808     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4809            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4810            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4811            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4812     /* If ORDER BY makes no difference in the output then neither does
4813     ** DISTINCT so it can be removed too. */
4814     sqlite3ExprListDelete(db, p->pOrderBy);
4815     p->pOrderBy = 0;
4816     p->selFlags &= ~SF_Distinct;
4817   }
4818   sqlite3SelectPrep(pParse, p, 0);
4819   memset(&sSort, 0, sizeof(sSort));
4820   sSort.pOrderBy = p->pOrderBy;
4821   pTabList = p->pSrc;
4822   if( pParse->nErr || db->mallocFailed ){
4823     goto select_end;
4824   }
4825   assert( p->pEList!=0 );
4826   isAgg = (p->selFlags & SF_Aggregate)!=0;
4827 #if SELECTTRACE_ENABLED
4828   if( sqlite3SelectTrace & 0x100 ){
4829     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4830     sqlite3TreeViewSelect(0, p, 0);
4831   }
4832 #endif
4833 
4834 
4835   /* If writing to memory or generating a set
4836   ** only a single column may be output.
4837   */
4838 #ifndef SQLITE_OMIT_SUBQUERY
4839   if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4840     goto select_end;
4841   }
4842 #endif
4843 
4844   /* Try to flatten subqueries in the FROM clause up into the main query
4845   */
4846 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4847   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4848     struct SrcList_item *pItem = &pTabList->a[i];
4849     Select *pSub = pItem->pSelect;
4850     int isAggSub;
4851     if( pSub==0 ) continue;
4852     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4853     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4854       /* This subquery can be absorbed into its parent. */
4855       if( isAggSub ){
4856         isAgg = 1;
4857         p->selFlags |= SF_Aggregate;
4858       }
4859       i = -1;
4860     }
4861     pTabList = p->pSrc;
4862     if( db->mallocFailed ) goto select_end;
4863     if( !IgnorableOrderby(pDest) ){
4864       sSort.pOrderBy = p->pOrderBy;
4865     }
4866   }
4867 #endif
4868 
4869   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4870   ** does not already exist */
4871   v = sqlite3GetVdbe(pParse);
4872   if( v==0 ) goto select_end;
4873 
4874 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4875   /* Handle compound SELECT statements using the separate multiSelect()
4876   ** procedure.
4877   */
4878   if( p->pPrior ){
4879     rc = multiSelect(pParse, p, pDest);
4880     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4881 #if SELECTTRACE_ENABLED
4882     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4883     pParse->nSelectIndent--;
4884 #endif
4885     return rc;
4886   }
4887 #endif
4888 
4889   /* Generate code for all sub-queries in the FROM clause
4890   */
4891 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4892   for(i=0; i<pTabList->nSrc; i++){
4893     struct SrcList_item *pItem = &pTabList->a[i];
4894     SelectDest dest;
4895     Select *pSub = pItem->pSelect;
4896     if( pSub==0 ) continue;
4897 
4898     /* Sometimes the code for a subquery will be generated more than
4899     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4900     ** for example.  In that case, do not regenerate the code to manifest
4901     ** a view or the co-routine to implement a view.  The first instance
4902     ** is sufficient, though the subroutine to manifest the view does need
4903     ** to be invoked again. */
4904     if( pItem->addrFillSub ){
4905       if( pItem->viaCoroutine==0 ){
4906         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4907       }
4908       continue;
4909     }
4910 
4911     /* Increment Parse.nHeight by the height of the largest expression
4912     ** tree referred to by this, the parent select. The child select
4913     ** may contain expression trees of at most
4914     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4915     ** more conservative than necessary, but much easier than enforcing
4916     ** an exact limit.
4917     */
4918     pParse->nHeight += sqlite3SelectExprHeight(p);
4919 
4920     /* Make copies of constant WHERE-clause terms in the outer query down
4921     ** inside the subquery.  This can help the subquery to run more efficiently.
4922     */
4923     if( (pItem->jointype & JT_OUTER)==0
4924      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4925     ){
4926 #if SELECTTRACE_ENABLED
4927       if( sqlite3SelectTrace & 0x100 ){
4928         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4929         sqlite3TreeViewSelect(0, p, 0);
4930       }
4931 #endif
4932     }
4933 
4934     /* Generate code to implement the subquery
4935     */
4936     if( pTabList->nSrc==1
4937      && (p->selFlags & SF_All)==0
4938      && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4939     ){
4940       /* Implement a co-routine that will return a single row of the result
4941       ** set on each invocation.
4942       */
4943       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4944       pItem->regReturn = ++pParse->nMem;
4945       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4946       VdbeComment((v, "%s", pItem->pTab->zName));
4947       pItem->addrFillSub = addrTop;
4948       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4949       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4950       sqlite3Select(pParse, pSub, &dest);
4951       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4952       pItem->viaCoroutine = 1;
4953       pItem->regResult = dest.iSdst;
4954       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4955       sqlite3VdbeJumpHere(v, addrTop-1);
4956       sqlite3ClearTempRegCache(pParse);
4957     }else{
4958       /* Generate a subroutine that will fill an ephemeral table with
4959       ** the content of this subquery.  pItem->addrFillSub will point
4960       ** to the address of the generated subroutine.  pItem->regReturn
4961       ** is a register allocated to hold the subroutine return address
4962       */
4963       int topAddr;
4964       int onceAddr = 0;
4965       int retAddr;
4966       assert( pItem->addrFillSub==0 );
4967       pItem->regReturn = ++pParse->nMem;
4968       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4969       pItem->addrFillSub = topAddr+1;
4970       if( pItem->isCorrelated==0 ){
4971         /* If the subquery is not correlated and if we are not inside of
4972         ** a trigger, then we only need to compute the value of the subquery
4973         ** once. */
4974         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4975         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4976       }else{
4977         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4978       }
4979       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4980       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4981       sqlite3Select(pParse, pSub, &dest);
4982       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4983       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4984       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4985       VdbeComment((v, "end %s", pItem->pTab->zName));
4986       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4987       sqlite3ClearTempRegCache(pParse);
4988     }
4989     if( db->mallocFailed ) goto select_end;
4990     pParse->nHeight -= sqlite3SelectExprHeight(p);
4991   }
4992 #endif
4993 
4994   /* Various elements of the SELECT copied into local variables for
4995   ** convenience */
4996   pEList = p->pEList;
4997   pWhere = p->pWhere;
4998   pGroupBy = p->pGroupBy;
4999   pHaving = p->pHaving;
5000   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5001 
5002 #if SELECTTRACE_ENABLED
5003   if( sqlite3SelectTrace & 0x400 ){
5004     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5005     sqlite3TreeViewSelect(0, p, 0);
5006   }
5007 #endif
5008 
5009   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5010   ** if the select-list is the same as the ORDER BY list, then this query
5011   ** can be rewritten as a GROUP BY. In other words, this:
5012   **
5013   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5014   **
5015   ** is transformed to:
5016   **
5017   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5018   **
5019   ** The second form is preferred as a single index (or temp-table) may be
5020   ** used for both the ORDER BY and DISTINCT processing. As originally
5021   ** written the query must use a temp-table for at least one of the ORDER
5022   ** BY and DISTINCT, and an index or separate temp-table for the other.
5023   */
5024   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5025    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5026   ){
5027     p->selFlags &= ~SF_Distinct;
5028     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5029     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5030     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5031     ** original setting of the SF_Distinct flag, not the current setting */
5032     assert( sDistinct.isTnct );
5033   }
5034 
5035   /* If there is an ORDER BY clause, then create an ephemeral index to
5036   ** do the sorting.  But this sorting ephemeral index might end up
5037   ** being unused if the data can be extracted in pre-sorted order.
5038   ** If that is the case, then the OP_OpenEphemeral instruction will be
5039   ** changed to an OP_Noop once we figure out that the sorting index is
5040   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5041   ** that change.
5042   */
5043   if( sSort.pOrderBy ){
5044     KeyInfo *pKeyInfo;
5045     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5046     sSort.iECursor = pParse->nTab++;
5047     sSort.addrSortIndex =
5048       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5049           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5050           (char*)pKeyInfo, P4_KEYINFO
5051       );
5052   }else{
5053     sSort.addrSortIndex = -1;
5054   }
5055 
5056   /* If the output is destined for a temporary table, open that table.
5057   */
5058   if( pDest->eDest==SRT_EphemTab ){
5059     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5060   }
5061 
5062   /* Set the limiter.
5063   */
5064   iEnd = sqlite3VdbeMakeLabel(v);
5065   p->nSelectRow = LARGEST_INT64;
5066   computeLimitRegisters(pParse, p, iEnd);
5067   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5068     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
5069     sSort.sortFlags |= SORTFLAG_UseSorter;
5070   }
5071 
5072   /* Open an ephemeral index to use for the distinct set.
5073   */
5074   if( p->selFlags & SF_Distinct ){
5075     sDistinct.tabTnct = pParse->nTab++;
5076     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5077                              sDistinct.tabTnct, 0, 0,
5078                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5079                              P4_KEYINFO);
5080     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5081     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5082   }else{
5083     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5084   }
5085 
5086   if( !isAgg && pGroupBy==0 ){
5087     /* No aggregate functions and no GROUP BY clause */
5088     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5089 
5090     /* Begin the database scan. */
5091     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5092                                p->pEList, wctrlFlags, 0);
5093     if( pWInfo==0 ) goto select_end;
5094     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5095       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5096     }
5097     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5098       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5099     }
5100     if( sSort.pOrderBy ){
5101       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5102       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5103         sSort.pOrderBy = 0;
5104       }
5105     }
5106 
5107     /* If sorting index that was created by a prior OP_OpenEphemeral
5108     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5109     ** into an OP_Noop.
5110     */
5111     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5112       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5113     }
5114 
5115     /* Use the standard inner loop. */
5116     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5117                     sqlite3WhereContinueLabel(pWInfo),
5118                     sqlite3WhereBreakLabel(pWInfo));
5119 
5120     /* End the database scan loop.
5121     */
5122     sqlite3WhereEnd(pWInfo);
5123   }else{
5124     /* This case when there exist aggregate functions or a GROUP BY clause
5125     ** or both */
5126     NameContext sNC;    /* Name context for processing aggregate information */
5127     int iAMem;          /* First Mem address for storing current GROUP BY */
5128     int iBMem;          /* First Mem address for previous GROUP BY */
5129     int iUseFlag;       /* Mem address holding flag indicating that at least
5130                         ** one row of the input to the aggregator has been
5131                         ** processed */
5132     int iAbortFlag;     /* Mem address which causes query abort if positive */
5133     int groupBySort;    /* Rows come from source in GROUP BY order */
5134     int addrEnd;        /* End of processing for this SELECT */
5135     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5136     int sortOut = 0;    /* Output register from the sorter */
5137     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5138 
5139     /* Remove any and all aliases between the result set and the
5140     ** GROUP BY clause.
5141     */
5142     if( pGroupBy ){
5143       int k;                        /* Loop counter */
5144       struct ExprList_item *pItem;  /* For looping over expression in a list */
5145 
5146       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5147         pItem->u.x.iAlias = 0;
5148       }
5149       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5150         pItem->u.x.iAlias = 0;
5151       }
5152       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5153     }else{
5154       p->nSelectRow = 1;
5155     }
5156 
5157     /* If there is both a GROUP BY and an ORDER BY clause and they are
5158     ** identical, then it may be possible to disable the ORDER BY clause
5159     ** on the grounds that the GROUP BY will cause elements to come out
5160     ** in the correct order. It also may not - the GROUP BY might use a
5161     ** database index that causes rows to be grouped together as required
5162     ** but not actually sorted. Either way, record the fact that the
5163     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5164     ** variable.  */
5165     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5166       orderByGrp = 1;
5167     }
5168 
5169     /* Create a label to jump to when we want to abort the query */
5170     addrEnd = sqlite3VdbeMakeLabel(v);
5171 
5172     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5173     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5174     ** SELECT statement.
5175     */
5176     memset(&sNC, 0, sizeof(sNC));
5177     sNC.pParse = pParse;
5178     sNC.pSrcList = pTabList;
5179     sNC.pAggInfo = &sAggInfo;
5180     sAggInfo.mnReg = pParse->nMem+1;
5181     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5182     sAggInfo.pGroupBy = pGroupBy;
5183     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5184     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5185     if( pHaving ){
5186       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5187     }
5188     sAggInfo.nAccumulator = sAggInfo.nColumn;
5189     for(i=0; i<sAggInfo.nFunc; i++){
5190       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5191       sNC.ncFlags |= NC_InAggFunc;
5192       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5193       sNC.ncFlags &= ~NC_InAggFunc;
5194     }
5195     sAggInfo.mxReg = pParse->nMem;
5196     if( db->mallocFailed ) goto select_end;
5197 
5198     /* Processing for aggregates with GROUP BY is very different and
5199     ** much more complex than aggregates without a GROUP BY.
5200     */
5201     if( pGroupBy ){
5202       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5203       int j1;             /* A-vs-B comparision jump */
5204       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5205       int regOutputRow;   /* Return address register for output subroutine */
5206       int addrSetAbort;   /* Set the abort flag and return */
5207       int addrTopOfLoop;  /* Top of the input loop */
5208       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5209       int addrReset;      /* Subroutine for resetting the accumulator */
5210       int regReset;       /* Return address register for reset subroutine */
5211 
5212       /* If there is a GROUP BY clause we might need a sorting index to
5213       ** implement it.  Allocate that sorting index now.  If it turns out
5214       ** that we do not need it after all, the OP_SorterOpen instruction
5215       ** will be converted into a Noop.
5216       */
5217       sAggInfo.sortingIdx = pParse->nTab++;
5218       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5219       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5220           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5221           0, (char*)pKeyInfo, P4_KEYINFO);
5222 
5223       /* Initialize memory locations used by GROUP BY aggregate processing
5224       */
5225       iUseFlag = ++pParse->nMem;
5226       iAbortFlag = ++pParse->nMem;
5227       regOutputRow = ++pParse->nMem;
5228       addrOutputRow = sqlite3VdbeMakeLabel(v);
5229       regReset = ++pParse->nMem;
5230       addrReset = sqlite3VdbeMakeLabel(v);
5231       iAMem = pParse->nMem + 1;
5232       pParse->nMem += pGroupBy->nExpr;
5233       iBMem = pParse->nMem + 1;
5234       pParse->nMem += pGroupBy->nExpr;
5235       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5236       VdbeComment((v, "clear abort flag"));
5237       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5238       VdbeComment((v, "indicate accumulator empty"));
5239       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5240 
5241       /* Begin a loop that will extract all source rows in GROUP BY order.
5242       ** This might involve two separate loops with an OP_Sort in between, or
5243       ** it might be a single loop that uses an index to extract information
5244       ** in the right order to begin with.
5245       */
5246       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5247       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5248           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5249       );
5250       if( pWInfo==0 ) goto select_end;
5251       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5252         /* The optimizer is able to deliver rows in group by order so
5253         ** we do not have to sort.  The OP_OpenEphemeral table will be
5254         ** cancelled later because we still need to use the pKeyInfo
5255         */
5256         groupBySort = 0;
5257       }else{
5258         /* Rows are coming out in undetermined order.  We have to push
5259         ** each row into a sorting index, terminate the first loop,
5260         ** then loop over the sorting index in order to get the output
5261         ** in sorted order
5262         */
5263         int regBase;
5264         int regRecord;
5265         int nCol;
5266         int nGroupBy;
5267 
5268         explainTempTable(pParse,
5269             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5270                     "DISTINCT" : "GROUP BY");
5271 
5272         groupBySort = 1;
5273         nGroupBy = pGroupBy->nExpr;
5274         nCol = nGroupBy;
5275         j = nGroupBy;
5276         for(i=0; i<sAggInfo.nColumn; i++){
5277           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5278             nCol++;
5279             j++;
5280           }
5281         }
5282         regBase = sqlite3GetTempRange(pParse, nCol);
5283         sqlite3ExprCacheClear(pParse);
5284         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5285         j = nGroupBy;
5286         for(i=0; i<sAggInfo.nColumn; i++){
5287           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5288           if( pCol->iSorterColumn>=j ){
5289             int r1 = j + regBase;
5290             int r2;
5291 
5292             r2 = sqlite3ExprCodeGetColumn(pParse,
5293                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5294             if( r1!=r2 ){
5295               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5296             }
5297             j++;
5298           }
5299         }
5300         regRecord = sqlite3GetTempReg(pParse);
5301         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5302         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5303         sqlite3ReleaseTempReg(pParse, regRecord);
5304         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5305         sqlite3WhereEnd(pWInfo);
5306         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5307         sortOut = sqlite3GetTempReg(pParse);
5308         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5309         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5310         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5311         sAggInfo.useSortingIdx = 1;
5312         sqlite3ExprCacheClear(pParse);
5313 
5314       }
5315 
5316       /* If the index or temporary table used by the GROUP BY sort
5317       ** will naturally deliver rows in the order required by the ORDER BY
5318       ** clause, cancel the ephemeral table open coded earlier.
5319       **
5320       ** This is an optimization - the correct answer should result regardless.
5321       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5322       ** disable this optimization for testing purposes.  */
5323       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5324        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5325       ){
5326         sSort.pOrderBy = 0;
5327         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5328       }
5329 
5330       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5331       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5332       ** Then compare the current GROUP BY terms against the GROUP BY terms
5333       ** from the previous row currently stored in a0, a1, a2...
5334       */
5335       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5336       sqlite3ExprCacheClear(pParse);
5337       if( groupBySort ){
5338         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5339                           sortOut, sortPTab);
5340       }
5341       for(j=0; j<pGroupBy->nExpr; j++){
5342         if( groupBySort ){
5343           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5344         }else{
5345           sAggInfo.directMode = 1;
5346           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5347         }
5348       }
5349       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5350                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5351       j1 = sqlite3VdbeCurrentAddr(v);
5352       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5353 
5354       /* Generate code that runs whenever the GROUP BY changes.
5355       ** Changes in the GROUP BY are detected by the previous code
5356       ** block.  If there were no changes, this block is skipped.
5357       **
5358       ** This code copies current group by terms in b0,b1,b2,...
5359       ** over to a0,a1,a2.  It then calls the output subroutine
5360       ** and resets the aggregate accumulator registers in preparation
5361       ** for the next GROUP BY batch.
5362       */
5363       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5364       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5365       VdbeComment((v, "output one row"));
5366       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5367       VdbeComment((v, "check abort flag"));
5368       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5369       VdbeComment((v, "reset accumulator"));
5370 
5371       /* Update the aggregate accumulators based on the content of
5372       ** the current row
5373       */
5374       sqlite3VdbeJumpHere(v, j1);
5375       updateAccumulator(pParse, &sAggInfo);
5376       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5377       VdbeComment((v, "indicate data in accumulator"));
5378 
5379       /* End of the loop
5380       */
5381       if( groupBySort ){
5382         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5383         VdbeCoverage(v);
5384       }else{
5385         sqlite3WhereEnd(pWInfo);
5386         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5387       }
5388 
5389       /* Output the final row of result
5390       */
5391       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5392       VdbeComment((v, "output final row"));
5393 
5394       /* Jump over the subroutines
5395       */
5396       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5397 
5398       /* Generate a subroutine that outputs a single row of the result
5399       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5400       ** is less than or equal to zero, the subroutine is a no-op.  If
5401       ** the processing calls for the query to abort, this subroutine
5402       ** increments the iAbortFlag memory location before returning in
5403       ** order to signal the caller to abort.
5404       */
5405       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5406       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5407       VdbeComment((v, "set abort flag"));
5408       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5409       sqlite3VdbeResolveLabel(v, addrOutputRow);
5410       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5411       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5412       VdbeCoverage(v);
5413       VdbeComment((v, "Groupby result generator entry point"));
5414       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5415       finalizeAggFunctions(pParse, &sAggInfo);
5416       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5417       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5418                       &sDistinct, pDest,
5419                       addrOutputRow+1, addrSetAbort);
5420       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5421       VdbeComment((v, "end groupby result generator"));
5422 
5423       /* Generate a subroutine that will reset the group-by accumulator
5424       */
5425       sqlite3VdbeResolveLabel(v, addrReset);
5426       resetAccumulator(pParse, &sAggInfo);
5427       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5428 
5429     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5430     else {
5431       ExprList *pDel = 0;
5432 #ifndef SQLITE_OMIT_BTREECOUNT
5433       Table *pTab;
5434       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5435         /* If isSimpleCount() returns a pointer to a Table structure, then
5436         ** the SQL statement is of the form:
5437         **
5438         **   SELECT count(*) FROM <tbl>
5439         **
5440         ** where the Table structure returned represents table <tbl>.
5441         **
5442         ** This statement is so common that it is optimized specially. The
5443         ** OP_Count instruction is executed either on the intkey table that
5444         ** contains the data for table <tbl> or on one of its indexes. It
5445         ** is better to execute the op on an index, as indexes are almost
5446         ** always spread across less pages than their corresponding tables.
5447         */
5448         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5449         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5450         Index *pIdx;                         /* Iterator variable */
5451         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5452         Index *pBest = 0;                    /* Best index found so far */
5453         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5454 
5455         sqlite3CodeVerifySchema(pParse, iDb);
5456         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5457 
5458         /* Search for the index that has the lowest scan cost.
5459         **
5460         ** (2011-04-15) Do not do a full scan of an unordered index.
5461         **
5462         ** (2013-10-03) Do not count the entries in a partial index.
5463         **
5464         ** In practice the KeyInfo structure will not be used. It is only
5465         ** passed to keep OP_OpenRead happy.
5466         */
5467         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5468         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5469           if( pIdx->bUnordered==0
5470            && pIdx->szIdxRow<pTab->szTabRow
5471            && pIdx->pPartIdxWhere==0
5472            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5473           ){
5474             pBest = pIdx;
5475           }
5476         }
5477         if( pBest ){
5478           iRoot = pBest->tnum;
5479           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5480         }
5481 
5482         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5483         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5484         if( pKeyInfo ){
5485           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5486         }
5487         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5488         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5489         explainSimpleCount(pParse, pTab, pBest);
5490       }else
5491 #endif /* SQLITE_OMIT_BTREECOUNT */
5492       {
5493         /* Check if the query is of one of the following forms:
5494         **
5495         **   SELECT min(x) FROM ...
5496         **   SELECT max(x) FROM ...
5497         **
5498         ** If it is, then ask the code in where.c to attempt to sort results
5499         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5500         ** If where.c is able to produce results sorted in this order, then
5501         ** add vdbe code to break out of the processing loop after the
5502         ** first iteration (since the first iteration of the loop is
5503         ** guaranteed to operate on the row with the minimum or maximum
5504         ** value of x, the only row required).
5505         **
5506         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5507         ** modify behavior as follows:
5508         **
5509         **   + If the query is a "SELECT min(x)", then the loop coded by
5510         **     where.c should not iterate over any values with a NULL value
5511         **     for x.
5512         **
5513         **   + The optimizer code in where.c (the thing that decides which
5514         **     index or indices to use) should place a different priority on
5515         **     satisfying the 'ORDER BY' clause than it does in other cases.
5516         **     Refer to code and comments in where.c for details.
5517         */
5518         ExprList *pMinMax = 0;
5519         u8 flag = WHERE_ORDERBY_NORMAL;
5520 
5521         assert( p->pGroupBy==0 );
5522         assert( flag==0 );
5523         if( p->pHaving==0 ){
5524           flag = minMaxQuery(&sAggInfo, &pMinMax);
5525         }
5526         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5527 
5528         if( flag ){
5529           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5530           pDel = pMinMax;
5531           if( pMinMax && !db->mallocFailed ){
5532             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5533             pMinMax->a[0].pExpr->op = TK_COLUMN;
5534           }
5535         }
5536 
5537         /* This case runs if the aggregate has no GROUP BY clause.  The
5538         ** processing is much simpler since there is only a single row
5539         ** of output.
5540         */
5541         resetAccumulator(pParse, &sAggInfo);
5542         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5543         if( pWInfo==0 ){
5544           sqlite3ExprListDelete(db, pDel);
5545           goto select_end;
5546         }
5547         updateAccumulator(pParse, &sAggInfo);
5548         assert( pMinMax==0 || pMinMax->nExpr==1 );
5549         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5550           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5551           VdbeComment((v, "%s() by index",
5552                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5553         }
5554         sqlite3WhereEnd(pWInfo);
5555         finalizeAggFunctions(pParse, &sAggInfo);
5556       }
5557 
5558       sSort.pOrderBy = 0;
5559       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5560       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5561                       pDest, addrEnd, addrEnd);
5562       sqlite3ExprListDelete(db, pDel);
5563     }
5564     sqlite3VdbeResolveLabel(v, addrEnd);
5565 
5566   } /* endif aggregate query */
5567 
5568   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5569     explainTempTable(pParse, "DISTINCT");
5570   }
5571 
5572   /* If there is an ORDER BY clause, then we need to sort the results
5573   ** and send them to the callback one by one.
5574   */
5575   if( sSort.pOrderBy ){
5576     explainTempTable(pParse,
5577                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5578     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5579   }
5580 
5581   /* Jump here to skip this query
5582   */
5583   sqlite3VdbeResolveLabel(v, iEnd);
5584 
5585   /* The SELECT has been coded. If there is an error in the Parse structure,
5586   ** set the return code to 1. Otherwise 0. */
5587   rc = (pParse->nErr>0);
5588 
5589   /* Control jumps to here if an error is encountered above, or upon
5590   ** successful coding of the SELECT.
5591   */
5592 select_end:
5593   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5594 
5595   /* Identify column names if results of the SELECT are to be output.
5596   */
5597   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5598     generateColumnNames(pParse, pTabList, pEList);
5599   }
5600 
5601   sqlite3DbFree(db, sAggInfo.aCol);
5602   sqlite3DbFree(db, sAggInfo.aFunc);
5603 #if SELECTTRACE_ENABLED
5604   SELECTTRACE(1,pParse,p,("end processing\n"));
5605   pParse->nSelectIndent--;
5606 #endif
5607   return rc;
5608 }
5609