1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 58 }; 59 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 60 61 /* 62 ** Delete all the content of a Select structure. Deallocate the structure 63 ** itself only if bFree is true. 64 */ 65 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 66 while( p ){ 67 Select *pPrior = p->pPrior; 68 sqlite3ExprListDelete(db, p->pEList); 69 sqlite3SrcListDelete(db, p->pSrc); 70 sqlite3ExprDelete(db, p->pWhere); 71 sqlite3ExprListDelete(db, p->pGroupBy); 72 sqlite3ExprDelete(db, p->pHaving); 73 sqlite3ExprListDelete(db, p->pOrderBy); 74 sqlite3ExprDelete(db, p->pLimit); 75 sqlite3ExprDelete(db, p->pOffset); 76 sqlite3WithDelete(db, p->pWith); 77 if( bFree ) sqlite3DbFree(db, p); 78 p = pPrior; 79 bFree = 1; 80 } 81 } 82 83 /* 84 ** Initialize a SelectDest structure. 85 */ 86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 87 pDest->eDest = (u8)eDest; 88 pDest->iSDParm = iParm; 89 pDest->affSdst = 0; 90 pDest->iSdst = 0; 91 pDest->nSdst = 0; 92 } 93 94 95 /* 96 ** Allocate a new Select structure and return a pointer to that 97 ** structure. 98 */ 99 Select *sqlite3SelectNew( 100 Parse *pParse, /* Parsing context */ 101 ExprList *pEList, /* which columns to include in the result */ 102 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 103 Expr *pWhere, /* the WHERE clause */ 104 ExprList *pGroupBy, /* the GROUP BY clause */ 105 Expr *pHaving, /* the HAVING clause */ 106 ExprList *pOrderBy, /* the ORDER BY clause */ 107 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 108 Expr *pLimit, /* LIMIT value. NULL means not used */ 109 Expr *pOffset /* OFFSET value. NULL means no offset */ 110 ){ 111 Select *pNew; 112 Select standin; 113 sqlite3 *db = pParse->db; 114 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 if( p->op==TK_FUNCTION && p->x.pList ){ 370 int i; 371 for(i=0; i<p->x.pList->nExpr; i++){ 372 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 373 } 374 } 375 setJoinExpr(p->pLeft, iTable); 376 p = p->pRight; 377 } 378 } 379 380 /* 381 ** This routine processes the join information for a SELECT statement. 382 ** ON and USING clauses are converted into extra terms of the WHERE clause. 383 ** NATURAL joins also create extra WHERE clause terms. 384 ** 385 ** The terms of a FROM clause are contained in the Select.pSrc structure. 386 ** The left most table is the first entry in Select.pSrc. The right-most 387 ** table is the last entry. The join operator is held in the entry to 388 ** the left. Thus entry 0 contains the join operator for the join between 389 ** entries 0 and 1. Any ON or USING clauses associated with the join are 390 ** also attached to the left entry. 391 ** 392 ** This routine returns the number of errors encountered. 393 */ 394 static int sqliteProcessJoin(Parse *pParse, Select *p){ 395 SrcList *pSrc; /* All tables in the FROM clause */ 396 int i, j; /* Loop counters */ 397 struct SrcList_item *pLeft; /* Left table being joined */ 398 struct SrcList_item *pRight; /* Right table being joined */ 399 400 pSrc = p->pSrc; 401 pLeft = &pSrc->a[0]; 402 pRight = &pLeft[1]; 403 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 404 Table *pLeftTab = pLeft->pTab; 405 Table *pRightTab = pRight->pTab; 406 int isOuter; 407 408 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 409 isOuter = (pRight->jointype & JT_OUTER)!=0; 410 411 /* When the NATURAL keyword is present, add WHERE clause terms for 412 ** every column that the two tables have in common. 413 */ 414 if( pRight->jointype & JT_NATURAL ){ 415 if( pRight->pOn || pRight->pUsing ){ 416 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 417 "an ON or USING clause", 0); 418 return 1; 419 } 420 for(j=0; j<pRightTab->nCol; j++){ 421 char *zName; /* Name of column in the right table */ 422 int iLeft; /* Matching left table */ 423 int iLeftCol; /* Matching column in the left table */ 424 425 zName = pRightTab->aCol[j].zName; 426 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 427 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 428 isOuter, &p->pWhere); 429 } 430 } 431 } 432 433 /* Disallow both ON and USING clauses in the same join 434 */ 435 if( pRight->pOn && pRight->pUsing ){ 436 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 437 "clauses in the same join"); 438 return 1; 439 } 440 441 /* Add the ON clause to the end of the WHERE clause, connected by 442 ** an AND operator. 443 */ 444 if( pRight->pOn ){ 445 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 446 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 447 pRight->pOn = 0; 448 } 449 450 /* Create extra terms on the WHERE clause for each column named 451 ** in the USING clause. Example: If the two tables to be joined are 452 ** A and B and the USING clause names X, Y, and Z, then add this 453 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 454 ** Report an error if any column mentioned in the USING clause is 455 ** not contained in both tables to be joined. 456 */ 457 if( pRight->pUsing ){ 458 IdList *pList = pRight->pUsing; 459 for(j=0; j<pList->nId; j++){ 460 char *zName; /* Name of the term in the USING clause */ 461 int iLeft; /* Table on the left with matching column name */ 462 int iLeftCol; /* Column number of matching column on the left */ 463 int iRightCol; /* Column number of matching column on the right */ 464 465 zName = pList->a[j].zName; 466 iRightCol = columnIndex(pRightTab, zName); 467 if( iRightCol<0 468 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 469 ){ 470 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 471 "not present in both tables", zName); 472 return 1; 473 } 474 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 475 isOuter, &p->pWhere); 476 } 477 } 478 } 479 return 0; 480 } 481 482 /* Forward reference */ 483 static KeyInfo *keyInfoFromExprList( 484 Parse *pParse, /* Parsing context */ 485 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 486 int iStart, /* Begin with this column of pList */ 487 int nExtra /* Add this many extra columns to the end */ 488 ); 489 490 /* 491 ** Generate code that will push the record in registers regData 492 ** through regData+nData-1 onto the sorter. 493 */ 494 static void pushOntoSorter( 495 Parse *pParse, /* Parser context */ 496 SortCtx *pSort, /* Information about the ORDER BY clause */ 497 Select *pSelect, /* The whole SELECT statement */ 498 int regData, /* First register holding data to be sorted */ 499 int nData, /* Number of elements in the data array */ 500 int nPrefixReg /* No. of reg prior to regData available for use */ 501 ){ 502 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 503 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 504 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 505 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 506 int regBase; /* Regs for sorter record */ 507 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 508 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 509 int op; /* Opcode to add sorter record to sorter */ 510 511 assert( bSeq==0 || bSeq==1 ); 512 if( nPrefixReg ){ 513 assert( nPrefixReg==nExpr+bSeq ); 514 regBase = regData - nExpr - bSeq; 515 }else{ 516 regBase = pParse->nMem + 1; 517 pParse->nMem += nBase; 518 } 519 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 520 if( bSeq ){ 521 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 522 } 523 if( nPrefixReg==0 ){ 524 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 525 } 526 527 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 528 if( nOBSat>0 ){ 529 int regPrevKey; /* The first nOBSat columns of the previous row */ 530 int addrFirst; /* Address of the OP_IfNot opcode */ 531 int addrJmp; /* Address of the OP_Jump opcode */ 532 VdbeOp *pOp; /* Opcode that opens the sorter */ 533 int nKey; /* Number of sorting key columns, including OP_Sequence */ 534 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 535 536 regPrevKey = pParse->nMem+1; 537 pParse->nMem += pSort->nOBSat; 538 nKey = nExpr - pSort->nOBSat + bSeq; 539 if( bSeq ){ 540 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 541 }else{ 542 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 543 } 544 VdbeCoverage(v); 545 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 546 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 547 if( pParse->db->mallocFailed ) return; 548 pOp->p2 = nKey + nData; 549 pKI = pOp->p4.pKeyInfo; 550 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 551 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 552 testcase( pKI->nXField>2 ); 553 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 554 pKI->nXField-1); 555 addrJmp = sqlite3VdbeCurrentAddr(v); 556 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 557 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 558 pSort->regReturn = ++pParse->nMem; 559 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 560 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 561 sqlite3VdbeJumpHere(v, addrFirst); 562 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 563 sqlite3VdbeJumpHere(v, addrJmp); 564 } 565 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 566 op = OP_SorterInsert; 567 }else{ 568 op = OP_IdxInsert; 569 } 570 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 571 if( pSelect->iLimit ){ 572 int addr; 573 int iLimit; 574 if( pSelect->iOffset ){ 575 iLimit = pSelect->iOffset+1; 576 }else{ 577 iLimit = pSelect->iLimit; 578 } 579 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v); 580 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 581 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 582 sqlite3VdbeJumpHere(v, addr); 583 } 584 } 585 586 /* 587 ** Add code to implement the OFFSET 588 */ 589 static void codeOffset( 590 Vdbe *v, /* Generate code into this VM */ 591 int iOffset, /* Register holding the offset counter */ 592 int iContinue /* Jump here to skip the current record */ 593 ){ 594 if( iOffset>0 ){ 595 int addr; 596 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 597 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 598 VdbeComment((v, "skip OFFSET records")); 599 sqlite3VdbeJumpHere(v, addr); 600 } 601 } 602 603 /* 604 ** Add code that will check to make sure the N registers starting at iMem 605 ** form a distinct entry. iTab is a sorting index that holds previously 606 ** seen combinations of the N values. A new entry is made in iTab 607 ** if the current N values are new. 608 ** 609 ** A jump to addrRepeat is made and the N+1 values are popped from the 610 ** stack if the top N elements are not distinct. 611 */ 612 static void codeDistinct( 613 Parse *pParse, /* Parsing and code generating context */ 614 int iTab, /* A sorting index used to test for distinctness */ 615 int addrRepeat, /* Jump to here if not distinct */ 616 int N, /* Number of elements */ 617 int iMem /* First element */ 618 ){ 619 Vdbe *v; 620 int r1; 621 622 v = pParse->pVdbe; 623 r1 = sqlite3GetTempReg(pParse); 624 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 625 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 626 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 627 sqlite3ReleaseTempReg(pParse, r1); 628 } 629 630 #ifndef SQLITE_OMIT_SUBQUERY 631 /* 632 ** Generate an error message when a SELECT is used within a subexpression 633 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 634 ** column. We do this in a subroutine because the error used to occur 635 ** in multiple places. (The error only occurs in one place now, but we 636 ** retain the subroutine to minimize code disruption.) 637 */ 638 static int checkForMultiColumnSelectError( 639 Parse *pParse, /* Parse context. */ 640 SelectDest *pDest, /* Destination of SELECT results */ 641 int nExpr /* Number of result columns returned by SELECT */ 642 ){ 643 int eDest = pDest->eDest; 644 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 645 sqlite3ErrorMsg(pParse, "only a single result allowed for " 646 "a SELECT that is part of an expression"); 647 return 1; 648 }else{ 649 return 0; 650 } 651 } 652 #endif 653 654 /* 655 ** This routine generates the code for the inside of the inner loop 656 ** of a SELECT. 657 ** 658 ** If srcTab is negative, then the pEList expressions 659 ** are evaluated in order to get the data for this row. If srcTab is 660 ** zero or more, then data is pulled from srcTab and pEList is used only 661 ** to get number columns and the datatype for each column. 662 */ 663 static void selectInnerLoop( 664 Parse *pParse, /* The parser context */ 665 Select *p, /* The complete select statement being coded */ 666 ExprList *pEList, /* List of values being extracted */ 667 int srcTab, /* Pull data from this table */ 668 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 669 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 670 SelectDest *pDest, /* How to dispose of the results */ 671 int iContinue, /* Jump here to continue with next row */ 672 int iBreak /* Jump here to break out of the inner loop */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 int i; 676 int hasDistinct; /* True if the DISTINCT keyword is present */ 677 int regResult; /* Start of memory holding result set */ 678 int eDest = pDest->eDest; /* How to dispose of results */ 679 int iParm = pDest->iSDParm; /* First argument to disposal method */ 680 int nResultCol; /* Number of result columns */ 681 int nPrefixReg = 0; /* Number of extra registers before regResult */ 682 683 assert( v ); 684 assert( pEList!=0 ); 685 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 686 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 687 if( pSort==0 && !hasDistinct ){ 688 assert( iContinue!=0 ); 689 codeOffset(v, p->iOffset, iContinue); 690 } 691 692 /* Pull the requested columns. 693 */ 694 nResultCol = pEList->nExpr; 695 696 if( pDest->iSdst==0 ){ 697 if( pSort ){ 698 nPrefixReg = pSort->pOrderBy->nExpr; 699 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 700 pParse->nMem += nPrefixReg; 701 } 702 pDest->iSdst = pParse->nMem+1; 703 pParse->nMem += nResultCol; 704 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 705 /* This is an error condition that can result, for example, when a SELECT 706 ** on the right-hand side of an INSERT contains more result columns than 707 ** there are columns in the table on the left. The error will be caught 708 ** and reported later. But we need to make sure enough memory is allocated 709 ** to avoid other spurious errors in the meantime. */ 710 pParse->nMem += nResultCol; 711 } 712 pDest->nSdst = nResultCol; 713 regResult = pDest->iSdst; 714 if( srcTab>=0 ){ 715 for(i=0; i<nResultCol; i++){ 716 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 717 VdbeComment((v, "%s", pEList->a[i].zName)); 718 } 719 }else if( eDest!=SRT_Exists ){ 720 /* If the destination is an EXISTS(...) expression, the actual 721 ** values returned by the SELECT are not required. 722 */ 723 u8 ecelFlags; 724 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 725 ecelFlags = SQLITE_ECEL_DUP; 726 }else{ 727 ecelFlags = 0; 728 } 729 sqlite3ExprCodeExprList(pParse, pEList, regResult, ecelFlags); 730 } 731 732 /* If the DISTINCT keyword was present on the SELECT statement 733 ** and this row has been seen before, then do not make this row 734 ** part of the result. 735 */ 736 if( hasDistinct ){ 737 switch( pDistinct->eTnctType ){ 738 case WHERE_DISTINCT_ORDERED: { 739 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 740 int iJump; /* Jump destination */ 741 int regPrev; /* Previous row content */ 742 743 /* Allocate space for the previous row */ 744 regPrev = pParse->nMem+1; 745 pParse->nMem += nResultCol; 746 747 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 748 ** sets the MEM_Cleared bit on the first register of the 749 ** previous value. This will cause the OP_Ne below to always 750 ** fail on the first iteration of the loop even if the first 751 ** row is all NULLs. 752 */ 753 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 754 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 755 pOp->opcode = OP_Null; 756 pOp->p1 = 1; 757 pOp->p2 = regPrev; 758 759 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 760 for(i=0; i<nResultCol; i++){ 761 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 762 if( i<nResultCol-1 ){ 763 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 764 VdbeCoverage(v); 765 }else{ 766 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 767 VdbeCoverage(v); 768 } 769 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 770 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 771 } 772 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 773 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 774 break; 775 } 776 777 case WHERE_DISTINCT_UNIQUE: { 778 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 779 break; 780 } 781 782 default: { 783 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 784 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 785 regResult); 786 break; 787 } 788 } 789 if( pSort==0 ){ 790 codeOffset(v, p->iOffset, iContinue); 791 } 792 } 793 794 switch( eDest ){ 795 /* In this mode, write each query result to the key of the temporary 796 ** table iParm. 797 */ 798 #ifndef SQLITE_OMIT_COMPOUND_SELECT 799 case SRT_Union: { 800 int r1; 801 r1 = sqlite3GetTempReg(pParse); 802 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 803 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 804 sqlite3ReleaseTempReg(pParse, r1); 805 break; 806 } 807 808 /* Construct a record from the query result, but instead of 809 ** saving that record, use it as a key to delete elements from 810 ** the temporary table iParm. 811 */ 812 case SRT_Except: { 813 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 814 break; 815 } 816 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 817 818 /* Store the result as data using a unique key. 819 */ 820 case SRT_Fifo: 821 case SRT_DistFifo: 822 case SRT_Table: 823 case SRT_EphemTab: { 824 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 825 testcase( eDest==SRT_Table ); 826 testcase( eDest==SRT_EphemTab ); 827 testcase( eDest==SRT_Fifo ); 828 testcase( eDest==SRT_DistFifo ); 829 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 830 #ifndef SQLITE_OMIT_CTE 831 if( eDest==SRT_DistFifo ){ 832 /* If the destination is DistFifo, then cursor (iParm+1) is open 833 ** on an ephemeral index. If the current row is already present 834 ** in the index, do not write it to the output. If not, add the 835 ** current row to the index and proceed with writing it to the 836 ** output table as well. */ 837 int addr = sqlite3VdbeCurrentAddr(v) + 4; 838 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 839 VdbeCoverage(v); 840 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 841 assert( pSort==0 ); 842 } 843 #endif 844 if( pSort ){ 845 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 846 }else{ 847 int r2 = sqlite3GetTempReg(pParse); 848 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 849 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 850 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 851 sqlite3ReleaseTempReg(pParse, r2); 852 } 853 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 854 break; 855 } 856 857 #ifndef SQLITE_OMIT_SUBQUERY 858 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 859 ** then there should be a single item on the stack. Write this 860 ** item into the set table with bogus data. 861 */ 862 case SRT_Set: { 863 assert( nResultCol==1 ); 864 pDest->affSdst = 865 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 866 if( pSort ){ 867 /* At first glance you would think we could optimize out the 868 ** ORDER BY in this case since the order of entries in the set 869 ** does not matter. But there might be a LIMIT clause, in which 870 ** case the order does matter */ 871 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 872 }else{ 873 int r1 = sqlite3GetTempReg(pParse); 874 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 875 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 876 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 877 sqlite3ReleaseTempReg(pParse, r1); 878 } 879 break; 880 } 881 882 /* If any row exist in the result set, record that fact and abort. 883 */ 884 case SRT_Exists: { 885 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 886 /* The LIMIT clause will terminate the loop for us */ 887 break; 888 } 889 890 /* If this is a scalar select that is part of an expression, then 891 ** store the results in the appropriate memory cell and break out 892 ** of the scan loop. 893 */ 894 case SRT_Mem: { 895 assert( nResultCol==1 ); 896 if( pSort ){ 897 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 898 }else{ 899 assert( regResult==iParm ); 900 /* The LIMIT clause will jump out of the loop for us */ 901 } 902 break; 903 } 904 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 905 906 case SRT_Coroutine: /* Send data to a co-routine */ 907 case SRT_Output: { /* Return the results */ 908 testcase( eDest==SRT_Coroutine ); 909 testcase( eDest==SRT_Output ); 910 if( pSort ){ 911 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 912 }else if( eDest==SRT_Coroutine ){ 913 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 914 }else{ 915 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 916 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 917 } 918 break; 919 } 920 921 #ifndef SQLITE_OMIT_CTE 922 /* Write the results into a priority queue that is order according to 923 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 924 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 925 ** pSO->nExpr columns, then make sure all keys are unique by adding a 926 ** final OP_Sequence column. The last column is the record as a blob. 927 */ 928 case SRT_DistQueue: 929 case SRT_Queue: { 930 int nKey; 931 int r1, r2, r3; 932 int addrTest = 0; 933 ExprList *pSO; 934 pSO = pDest->pOrderBy; 935 assert( pSO ); 936 nKey = pSO->nExpr; 937 r1 = sqlite3GetTempReg(pParse); 938 r2 = sqlite3GetTempRange(pParse, nKey+2); 939 r3 = r2+nKey+1; 940 if( eDest==SRT_DistQueue ){ 941 /* If the destination is DistQueue, then cursor (iParm+1) is open 942 ** on a second ephemeral index that holds all values every previously 943 ** added to the queue. */ 944 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 945 regResult, nResultCol); 946 VdbeCoverage(v); 947 } 948 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 949 if( eDest==SRT_DistQueue ){ 950 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 951 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 952 } 953 for(i=0; i<nKey; i++){ 954 sqlite3VdbeAddOp2(v, OP_SCopy, 955 regResult + pSO->a[i].u.x.iOrderByCol - 1, 956 r2+i); 957 } 958 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 959 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 960 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 961 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 962 sqlite3ReleaseTempReg(pParse, r1); 963 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 964 break; 965 } 966 #endif /* SQLITE_OMIT_CTE */ 967 968 969 970 #if !defined(SQLITE_OMIT_TRIGGER) 971 /* Discard the results. This is used for SELECT statements inside 972 ** the body of a TRIGGER. The purpose of such selects is to call 973 ** user-defined functions that have side effects. We do not care 974 ** about the actual results of the select. 975 */ 976 default: { 977 assert( eDest==SRT_Discard ); 978 break; 979 } 980 #endif 981 } 982 983 /* Jump to the end of the loop if the LIMIT is reached. Except, if 984 ** there is a sorter, in which case the sorter has already limited 985 ** the output for us. 986 */ 987 if( pSort==0 && p->iLimit ){ 988 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 989 } 990 } 991 992 /* 993 ** Allocate a KeyInfo object sufficient for an index of N key columns and 994 ** X extra columns. 995 */ 996 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 997 KeyInfo *p = sqlite3DbMallocZero(0, 998 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 999 if( p ){ 1000 p->aSortOrder = (u8*)&p->aColl[N+X]; 1001 p->nField = (u16)N; 1002 p->nXField = (u16)X; 1003 p->enc = ENC(db); 1004 p->db = db; 1005 p->nRef = 1; 1006 }else{ 1007 db->mallocFailed = 1; 1008 } 1009 return p; 1010 } 1011 1012 /* 1013 ** Deallocate a KeyInfo object 1014 */ 1015 void sqlite3KeyInfoUnref(KeyInfo *p){ 1016 if( p ){ 1017 assert( p->nRef>0 ); 1018 p->nRef--; 1019 if( p->nRef==0 ) sqlite3DbFree(0, p); 1020 } 1021 } 1022 1023 /* 1024 ** Make a new pointer to a KeyInfo object 1025 */ 1026 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1027 if( p ){ 1028 assert( p->nRef>0 ); 1029 p->nRef++; 1030 } 1031 return p; 1032 } 1033 1034 #ifdef SQLITE_DEBUG 1035 /* 1036 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1037 ** can only be changed if this is just a single reference to the object. 1038 ** 1039 ** This routine is used only inside of assert() statements. 1040 */ 1041 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1042 #endif /* SQLITE_DEBUG */ 1043 1044 /* 1045 ** Given an expression list, generate a KeyInfo structure that records 1046 ** the collating sequence for each expression in that expression list. 1047 ** 1048 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1049 ** KeyInfo structure is appropriate for initializing a virtual index to 1050 ** implement that clause. If the ExprList is the result set of a SELECT 1051 ** then the KeyInfo structure is appropriate for initializing a virtual 1052 ** index to implement a DISTINCT test. 1053 ** 1054 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1055 ** function is responsible for seeing that this structure is eventually 1056 ** freed. 1057 */ 1058 static KeyInfo *keyInfoFromExprList( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1061 int iStart, /* Begin with this column of pList */ 1062 int nExtra /* Add this many extra columns to the end */ 1063 ){ 1064 int nExpr; 1065 KeyInfo *pInfo; 1066 struct ExprList_item *pItem; 1067 sqlite3 *db = pParse->db; 1068 int i; 1069 1070 nExpr = pList->nExpr; 1071 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1072 if( pInfo ){ 1073 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1074 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1075 CollSeq *pColl; 1076 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1077 if( !pColl ) pColl = db->pDfltColl; 1078 pInfo->aColl[i-iStart] = pColl; 1079 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1080 } 1081 } 1082 return pInfo; 1083 } 1084 1085 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1086 /* 1087 ** Name of the connection operator, used for error messages. 1088 */ 1089 static const char *selectOpName(int id){ 1090 char *z; 1091 switch( id ){ 1092 case TK_ALL: z = "UNION ALL"; break; 1093 case TK_INTERSECT: z = "INTERSECT"; break; 1094 case TK_EXCEPT: z = "EXCEPT"; break; 1095 default: z = "UNION"; break; 1096 } 1097 return z; 1098 } 1099 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1100 1101 #ifndef SQLITE_OMIT_EXPLAIN 1102 /* 1103 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1104 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1105 ** where the caption is of the form: 1106 ** 1107 ** "USE TEMP B-TREE FOR xxx" 1108 ** 1109 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1110 ** is determined by the zUsage argument. 1111 */ 1112 static void explainTempTable(Parse *pParse, const char *zUsage){ 1113 if( pParse->explain==2 ){ 1114 Vdbe *v = pParse->pVdbe; 1115 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1116 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1117 } 1118 } 1119 1120 /* 1121 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1122 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1123 ** in sqlite3Select() to assign values to structure member variables that 1124 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1125 ** code with #ifndef directives. 1126 */ 1127 # define explainSetInteger(a, b) a = b 1128 1129 #else 1130 /* No-op versions of the explainXXX() functions and macros. */ 1131 # define explainTempTable(y,z) 1132 # define explainSetInteger(y,z) 1133 #endif 1134 1135 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1136 /* 1137 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1138 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1139 ** where the caption is of one of the two forms: 1140 ** 1141 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1142 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1143 ** 1144 ** where iSub1 and iSub2 are the integers passed as the corresponding 1145 ** function parameters, and op is the text representation of the parameter 1146 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1147 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1148 ** false, or the second form if it is true. 1149 */ 1150 static void explainComposite( 1151 Parse *pParse, /* Parse context */ 1152 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1153 int iSub1, /* Subquery id 1 */ 1154 int iSub2, /* Subquery id 2 */ 1155 int bUseTmp /* True if a temp table was used */ 1156 ){ 1157 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1158 if( pParse->explain==2 ){ 1159 Vdbe *v = pParse->pVdbe; 1160 char *zMsg = sqlite3MPrintf( 1161 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1162 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1163 ); 1164 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1165 } 1166 } 1167 #else 1168 /* No-op versions of the explainXXX() functions and macros. */ 1169 # define explainComposite(v,w,x,y,z) 1170 #endif 1171 1172 /* 1173 ** If the inner loop was generated using a non-null pOrderBy argument, 1174 ** then the results were placed in a sorter. After the loop is terminated 1175 ** we need to run the sorter and output the results. The following 1176 ** routine generates the code needed to do that. 1177 */ 1178 static void generateSortTail( 1179 Parse *pParse, /* Parsing context */ 1180 Select *p, /* The SELECT statement */ 1181 SortCtx *pSort, /* Information on the ORDER BY clause */ 1182 int nColumn, /* Number of columns of data */ 1183 SelectDest *pDest /* Write the sorted results here */ 1184 ){ 1185 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1186 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1187 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1188 int addr; 1189 int addrOnce = 0; 1190 int iTab; 1191 ExprList *pOrderBy = pSort->pOrderBy; 1192 int eDest = pDest->eDest; 1193 int iParm = pDest->iSDParm; 1194 int regRow; 1195 int regRowid; 1196 int nKey; 1197 int iSortTab; /* Sorter cursor to read from */ 1198 int nSortData; /* Trailing values to read from sorter */ 1199 int i; 1200 int bSeq; /* True if sorter record includes seq. no. */ 1201 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1202 struct ExprList_item *aOutEx = p->pEList->a; 1203 #endif 1204 1205 if( pSort->labelBkOut ){ 1206 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1207 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1208 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1209 } 1210 iTab = pSort->iECursor; 1211 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1212 regRowid = 0; 1213 regRow = pDest->iSdst; 1214 nSortData = nColumn; 1215 }else{ 1216 regRowid = sqlite3GetTempReg(pParse); 1217 regRow = sqlite3GetTempReg(pParse); 1218 nSortData = 1; 1219 } 1220 nKey = pOrderBy->nExpr - pSort->nOBSat; 1221 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1222 int regSortOut = ++pParse->nMem; 1223 iSortTab = pParse->nTab++; 1224 if( pSort->labelBkOut ){ 1225 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1226 } 1227 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1228 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1229 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1230 VdbeCoverage(v); 1231 codeOffset(v, p->iOffset, addrContinue); 1232 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1233 bSeq = 0; 1234 }else{ 1235 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1236 codeOffset(v, p->iOffset, addrContinue); 1237 iSortTab = iTab; 1238 bSeq = 1; 1239 } 1240 for(i=0; i<nSortData; i++){ 1241 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1242 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1243 } 1244 switch( eDest ){ 1245 case SRT_EphemTab: { 1246 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1247 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1248 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1249 break; 1250 } 1251 #ifndef SQLITE_OMIT_SUBQUERY 1252 case SRT_Set: { 1253 assert( nColumn==1 ); 1254 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1255 &pDest->affSdst, 1); 1256 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1257 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1258 break; 1259 } 1260 case SRT_Mem: { 1261 assert( nColumn==1 ); 1262 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1263 /* The LIMIT clause will terminate the loop for us */ 1264 break; 1265 } 1266 #endif 1267 default: { 1268 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1269 testcase( eDest==SRT_Output ); 1270 testcase( eDest==SRT_Coroutine ); 1271 if( eDest==SRT_Output ){ 1272 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1273 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1274 }else{ 1275 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1276 } 1277 break; 1278 } 1279 } 1280 if( regRowid ){ 1281 sqlite3ReleaseTempReg(pParse, regRow); 1282 sqlite3ReleaseTempReg(pParse, regRowid); 1283 } 1284 /* The bottom of the loop 1285 */ 1286 sqlite3VdbeResolveLabel(v, addrContinue); 1287 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1288 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1289 }else{ 1290 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1291 } 1292 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1293 sqlite3VdbeResolveLabel(v, addrBreak); 1294 } 1295 1296 /* 1297 ** Return a pointer to a string containing the 'declaration type' of the 1298 ** expression pExpr. The string may be treated as static by the caller. 1299 ** 1300 ** Also try to estimate the size of the returned value and return that 1301 ** result in *pEstWidth. 1302 ** 1303 ** The declaration type is the exact datatype definition extracted from the 1304 ** original CREATE TABLE statement if the expression is a column. The 1305 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1306 ** is considered a column can be complex in the presence of subqueries. The 1307 ** result-set expression in all of the following SELECT statements is 1308 ** considered a column by this function. 1309 ** 1310 ** SELECT col FROM tbl; 1311 ** SELECT (SELECT col FROM tbl; 1312 ** SELECT (SELECT col FROM tbl); 1313 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1314 ** 1315 ** The declaration type for any expression other than a column is NULL. 1316 ** 1317 ** This routine has either 3 or 6 parameters depending on whether or not 1318 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1319 */ 1320 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1321 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1322 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1323 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1324 #endif 1325 static const char *columnTypeImpl( 1326 NameContext *pNC, 1327 Expr *pExpr, 1328 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1329 const char **pzOrigDb, 1330 const char **pzOrigTab, 1331 const char **pzOrigCol, 1332 #endif 1333 u8 *pEstWidth 1334 ){ 1335 char const *zType = 0; 1336 int j; 1337 u8 estWidth = 1; 1338 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1339 char const *zOrigDb = 0; 1340 char const *zOrigTab = 0; 1341 char const *zOrigCol = 0; 1342 #endif 1343 1344 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1345 switch( pExpr->op ){ 1346 case TK_AGG_COLUMN: 1347 case TK_COLUMN: { 1348 /* The expression is a column. Locate the table the column is being 1349 ** extracted from in NameContext.pSrcList. This table may be real 1350 ** database table or a subquery. 1351 */ 1352 Table *pTab = 0; /* Table structure column is extracted from */ 1353 Select *pS = 0; /* Select the column is extracted from */ 1354 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1355 testcase( pExpr->op==TK_AGG_COLUMN ); 1356 testcase( pExpr->op==TK_COLUMN ); 1357 while( pNC && !pTab ){ 1358 SrcList *pTabList = pNC->pSrcList; 1359 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1360 if( j<pTabList->nSrc ){ 1361 pTab = pTabList->a[j].pTab; 1362 pS = pTabList->a[j].pSelect; 1363 }else{ 1364 pNC = pNC->pNext; 1365 } 1366 } 1367 1368 if( pTab==0 ){ 1369 /* At one time, code such as "SELECT new.x" within a trigger would 1370 ** cause this condition to run. Since then, we have restructured how 1371 ** trigger code is generated and so this condition is no longer 1372 ** possible. However, it can still be true for statements like 1373 ** the following: 1374 ** 1375 ** CREATE TABLE t1(col INTEGER); 1376 ** SELECT (SELECT t1.col) FROM FROM t1; 1377 ** 1378 ** when columnType() is called on the expression "t1.col" in the 1379 ** sub-select. In this case, set the column type to NULL, even 1380 ** though it should really be "INTEGER". 1381 ** 1382 ** This is not a problem, as the column type of "t1.col" is never 1383 ** used. When columnType() is called on the expression 1384 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1385 ** branch below. */ 1386 break; 1387 } 1388 1389 assert( pTab && pExpr->pTab==pTab ); 1390 if( pS ){ 1391 /* The "table" is actually a sub-select or a view in the FROM clause 1392 ** of the SELECT statement. Return the declaration type and origin 1393 ** data for the result-set column of the sub-select. 1394 */ 1395 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1396 /* If iCol is less than zero, then the expression requests the 1397 ** rowid of the sub-select or view. This expression is legal (see 1398 ** test case misc2.2.2) - it always evaluates to NULL. 1399 ** 1400 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1401 ** caught already by name resolution. 1402 */ 1403 NameContext sNC; 1404 Expr *p = pS->pEList->a[iCol].pExpr; 1405 sNC.pSrcList = pS->pSrc; 1406 sNC.pNext = pNC; 1407 sNC.pParse = pNC->pParse; 1408 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1409 } 1410 }else if( pTab->pSchema ){ 1411 /* A real table */ 1412 assert( !pS ); 1413 if( iCol<0 ) iCol = pTab->iPKey; 1414 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1415 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1416 if( iCol<0 ){ 1417 zType = "INTEGER"; 1418 zOrigCol = "rowid"; 1419 }else{ 1420 zType = pTab->aCol[iCol].zType; 1421 zOrigCol = pTab->aCol[iCol].zName; 1422 estWidth = pTab->aCol[iCol].szEst; 1423 } 1424 zOrigTab = pTab->zName; 1425 if( pNC->pParse ){ 1426 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1427 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1428 } 1429 #else 1430 if( iCol<0 ){ 1431 zType = "INTEGER"; 1432 }else{ 1433 zType = pTab->aCol[iCol].zType; 1434 estWidth = pTab->aCol[iCol].szEst; 1435 } 1436 #endif 1437 } 1438 break; 1439 } 1440 #ifndef SQLITE_OMIT_SUBQUERY 1441 case TK_SELECT: { 1442 /* The expression is a sub-select. Return the declaration type and 1443 ** origin info for the single column in the result set of the SELECT 1444 ** statement. 1445 */ 1446 NameContext sNC; 1447 Select *pS = pExpr->x.pSelect; 1448 Expr *p = pS->pEList->a[0].pExpr; 1449 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1450 sNC.pSrcList = pS->pSrc; 1451 sNC.pNext = pNC; 1452 sNC.pParse = pNC->pParse; 1453 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1454 break; 1455 } 1456 #endif 1457 } 1458 1459 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1460 if( pzOrigDb ){ 1461 assert( pzOrigTab && pzOrigCol ); 1462 *pzOrigDb = zOrigDb; 1463 *pzOrigTab = zOrigTab; 1464 *pzOrigCol = zOrigCol; 1465 } 1466 #endif 1467 if( pEstWidth ) *pEstWidth = estWidth; 1468 return zType; 1469 } 1470 1471 /* 1472 ** Generate code that will tell the VDBE the declaration types of columns 1473 ** in the result set. 1474 */ 1475 static void generateColumnTypes( 1476 Parse *pParse, /* Parser context */ 1477 SrcList *pTabList, /* List of tables */ 1478 ExprList *pEList /* Expressions defining the result set */ 1479 ){ 1480 #ifndef SQLITE_OMIT_DECLTYPE 1481 Vdbe *v = pParse->pVdbe; 1482 int i; 1483 NameContext sNC; 1484 sNC.pSrcList = pTabList; 1485 sNC.pParse = pParse; 1486 for(i=0; i<pEList->nExpr; i++){ 1487 Expr *p = pEList->a[i].pExpr; 1488 const char *zType; 1489 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1490 const char *zOrigDb = 0; 1491 const char *zOrigTab = 0; 1492 const char *zOrigCol = 0; 1493 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1494 1495 /* The vdbe must make its own copy of the column-type and other 1496 ** column specific strings, in case the schema is reset before this 1497 ** virtual machine is deleted. 1498 */ 1499 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1500 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1501 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1502 #else 1503 zType = columnType(&sNC, p, 0, 0, 0, 0); 1504 #endif 1505 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1506 } 1507 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1508 } 1509 1510 /* 1511 ** Generate code that will tell the VDBE the names of columns 1512 ** in the result set. This information is used to provide the 1513 ** azCol[] values in the callback. 1514 */ 1515 static void generateColumnNames( 1516 Parse *pParse, /* Parser context */ 1517 SrcList *pTabList, /* List of tables */ 1518 ExprList *pEList /* Expressions defining the result set */ 1519 ){ 1520 Vdbe *v = pParse->pVdbe; 1521 int i, j; 1522 sqlite3 *db = pParse->db; 1523 int fullNames, shortNames; 1524 1525 #ifndef SQLITE_OMIT_EXPLAIN 1526 /* If this is an EXPLAIN, skip this step */ 1527 if( pParse->explain ){ 1528 return; 1529 } 1530 #endif 1531 1532 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1533 pParse->colNamesSet = 1; 1534 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1535 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1536 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1537 for(i=0; i<pEList->nExpr; i++){ 1538 Expr *p; 1539 p = pEList->a[i].pExpr; 1540 if( NEVER(p==0) ) continue; 1541 if( pEList->a[i].zName ){ 1542 char *zName = pEList->a[i].zName; 1543 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1544 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1545 Table *pTab; 1546 char *zCol; 1547 int iCol = p->iColumn; 1548 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1549 if( pTabList->a[j].iCursor==p->iTable ) break; 1550 } 1551 assert( j<pTabList->nSrc ); 1552 pTab = pTabList->a[j].pTab; 1553 if( iCol<0 ) iCol = pTab->iPKey; 1554 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1555 if( iCol<0 ){ 1556 zCol = "rowid"; 1557 }else{ 1558 zCol = pTab->aCol[iCol].zName; 1559 } 1560 if( !shortNames && !fullNames ){ 1561 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1562 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1563 }else if( fullNames ){ 1564 char *zName = 0; 1565 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1566 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1567 }else{ 1568 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1569 } 1570 }else{ 1571 const char *z = pEList->a[i].zSpan; 1572 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1573 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1574 } 1575 } 1576 generateColumnTypes(pParse, pTabList, pEList); 1577 } 1578 1579 /* 1580 ** Given an expression list (which is really the list of expressions 1581 ** that form the result set of a SELECT statement) compute appropriate 1582 ** column names for a table that would hold the expression list. 1583 ** 1584 ** All column names will be unique. 1585 ** 1586 ** Only the column names are computed. Column.zType, Column.zColl, 1587 ** and other fields of Column are zeroed. 1588 ** 1589 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1590 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1591 */ 1592 static int selectColumnsFromExprList( 1593 Parse *pParse, /* Parsing context */ 1594 ExprList *pEList, /* Expr list from which to derive column names */ 1595 i16 *pnCol, /* Write the number of columns here */ 1596 Column **paCol /* Write the new column list here */ 1597 ){ 1598 sqlite3 *db = pParse->db; /* Database connection */ 1599 int i, j; /* Loop counters */ 1600 int cnt; /* Index added to make the name unique */ 1601 Column *aCol, *pCol; /* For looping over result columns */ 1602 int nCol; /* Number of columns in the result set */ 1603 Expr *p; /* Expression for a single result column */ 1604 char *zName; /* Column name */ 1605 int nName; /* Size of name in zName[] */ 1606 1607 if( pEList ){ 1608 nCol = pEList->nExpr; 1609 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1610 testcase( aCol==0 ); 1611 }else{ 1612 nCol = 0; 1613 aCol = 0; 1614 } 1615 *pnCol = nCol; 1616 *paCol = aCol; 1617 1618 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1619 /* Get an appropriate name for the column 1620 */ 1621 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1622 if( (zName = pEList->a[i].zName)!=0 ){ 1623 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1624 zName = sqlite3DbStrDup(db, zName); 1625 }else{ 1626 Expr *pColExpr = p; /* The expression that is the result column name */ 1627 Table *pTab; /* Table associated with this expression */ 1628 while( pColExpr->op==TK_DOT ){ 1629 pColExpr = pColExpr->pRight; 1630 assert( pColExpr!=0 ); 1631 } 1632 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1633 /* For columns use the column name name */ 1634 int iCol = pColExpr->iColumn; 1635 pTab = pColExpr->pTab; 1636 if( iCol<0 ) iCol = pTab->iPKey; 1637 zName = sqlite3MPrintf(db, "%s", 1638 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1639 }else if( pColExpr->op==TK_ID ){ 1640 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1641 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1642 }else{ 1643 /* Use the original text of the column expression as its name */ 1644 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1645 } 1646 } 1647 if( db->mallocFailed ){ 1648 sqlite3DbFree(db, zName); 1649 break; 1650 } 1651 1652 /* Make sure the column name is unique. If the name is not unique, 1653 ** append an integer to the name so that it becomes unique. 1654 */ 1655 nName = sqlite3Strlen30(zName); 1656 for(j=cnt=0; j<i; j++){ 1657 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1658 char *zNewName; 1659 int k; 1660 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1661 if( k>=0 && zName[k]==':' ) nName = k; 1662 zName[nName] = 0; 1663 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1664 sqlite3DbFree(db, zName); 1665 zName = zNewName; 1666 j = -1; 1667 if( zName==0 ) break; 1668 } 1669 } 1670 pCol->zName = zName; 1671 } 1672 if( db->mallocFailed ){ 1673 for(j=0; j<i; j++){ 1674 sqlite3DbFree(db, aCol[j].zName); 1675 } 1676 sqlite3DbFree(db, aCol); 1677 *paCol = 0; 1678 *pnCol = 0; 1679 return SQLITE_NOMEM; 1680 } 1681 return SQLITE_OK; 1682 } 1683 1684 /* 1685 ** Add type and collation information to a column list based on 1686 ** a SELECT statement. 1687 ** 1688 ** The column list presumably came from selectColumnNamesFromExprList(). 1689 ** The column list has only names, not types or collations. This 1690 ** routine goes through and adds the types and collations. 1691 ** 1692 ** This routine requires that all identifiers in the SELECT 1693 ** statement be resolved. 1694 */ 1695 static void selectAddColumnTypeAndCollation( 1696 Parse *pParse, /* Parsing contexts */ 1697 Table *pTab, /* Add column type information to this table */ 1698 Select *pSelect /* SELECT used to determine types and collations */ 1699 ){ 1700 sqlite3 *db = pParse->db; 1701 NameContext sNC; 1702 Column *pCol; 1703 CollSeq *pColl; 1704 int i; 1705 Expr *p; 1706 struct ExprList_item *a; 1707 u64 szAll = 0; 1708 1709 assert( pSelect!=0 ); 1710 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1711 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1712 if( db->mallocFailed ) return; 1713 memset(&sNC, 0, sizeof(sNC)); 1714 sNC.pSrcList = pSelect->pSrc; 1715 a = pSelect->pEList->a; 1716 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1717 p = a[i].pExpr; 1718 if( pCol->zType==0 ){ 1719 pCol->zType = sqlite3DbStrDup(db, 1720 columnType(&sNC, p,0,0,0, &pCol->szEst)); 1721 } 1722 szAll += pCol->szEst; 1723 pCol->affinity = sqlite3ExprAffinity(p); 1724 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1725 pColl = sqlite3ExprCollSeq(pParse, p); 1726 if( pColl && pCol->zColl==0 ){ 1727 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1728 } 1729 } 1730 pTab->szTabRow = sqlite3LogEst(szAll*4); 1731 } 1732 1733 /* 1734 ** Given a SELECT statement, generate a Table structure that describes 1735 ** the result set of that SELECT. 1736 */ 1737 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1738 Table *pTab; 1739 sqlite3 *db = pParse->db; 1740 int savedFlags; 1741 1742 savedFlags = db->flags; 1743 db->flags &= ~SQLITE_FullColNames; 1744 db->flags |= SQLITE_ShortColNames; 1745 sqlite3SelectPrep(pParse, pSelect, 0); 1746 if( pParse->nErr ) return 0; 1747 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1748 db->flags = savedFlags; 1749 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1750 if( pTab==0 ){ 1751 return 0; 1752 } 1753 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1754 ** is disabled */ 1755 assert( db->lookaside.bEnabled==0 ); 1756 pTab->nRef = 1; 1757 pTab->zName = 0; 1758 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1759 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1760 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1761 pTab->iPKey = -1; 1762 if( db->mallocFailed ){ 1763 sqlite3DeleteTable(db, pTab); 1764 return 0; 1765 } 1766 return pTab; 1767 } 1768 1769 /* 1770 ** Get a VDBE for the given parser context. Create a new one if necessary. 1771 ** If an error occurs, return NULL and leave a message in pParse. 1772 */ 1773 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1774 Vdbe *v = pParse->pVdbe; 1775 if( v==0 ){ 1776 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1777 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1778 if( pParse->pToplevel==0 1779 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1780 ){ 1781 pParse->okConstFactor = 1; 1782 } 1783 1784 } 1785 return v; 1786 } 1787 1788 1789 /* 1790 ** Compute the iLimit and iOffset fields of the SELECT based on the 1791 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1792 ** that appear in the original SQL statement after the LIMIT and OFFSET 1793 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1794 ** are the integer memory register numbers for counters used to compute 1795 ** the limit and offset. If there is no limit and/or offset, then 1796 ** iLimit and iOffset are negative. 1797 ** 1798 ** This routine changes the values of iLimit and iOffset only if 1799 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1800 ** iOffset should have been preset to appropriate default values (zero) 1801 ** prior to calling this routine. 1802 ** 1803 ** The iOffset register (if it exists) is initialized to the value 1804 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1805 ** iOffset+1 is initialized to LIMIT+OFFSET. 1806 ** 1807 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1808 ** redefined. The UNION ALL operator uses this property to force 1809 ** the reuse of the same limit and offset registers across multiple 1810 ** SELECT statements. 1811 */ 1812 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1813 Vdbe *v = 0; 1814 int iLimit = 0; 1815 int iOffset; 1816 int addr1, n; 1817 if( p->iLimit ) return; 1818 1819 /* 1820 ** "LIMIT -1" always shows all rows. There is some 1821 ** controversy about what the correct behavior should be. 1822 ** The current implementation interprets "LIMIT 0" to mean 1823 ** no rows. 1824 */ 1825 sqlite3ExprCacheClear(pParse); 1826 assert( p->pOffset==0 || p->pLimit!=0 ); 1827 if( p->pLimit ){ 1828 p->iLimit = iLimit = ++pParse->nMem; 1829 v = sqlite3GetVdbe(pParse); 1830 assert( v!=0 ); 1831 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1832 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1833 VdbeComment((v, "LIMIT counter")); 1834 if( n==0 ){ 1835 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1836 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1837 p->nSelectRow = n; 1838 } 1839 }else{ 1840 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1841 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1842 VdbeComment((v, "LIMIT counter")); 1843 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1844 } 1845 if( p->pOffset ){ 1846 p->iOffset = iOffset = ++pParse->nMem; 1847 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1848 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1849 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1850 VdbeComment((v, "OFFSET counter")); 1851 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1852 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1853 sqlite3VdbeJumpHere(v, addr1); 1854 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1855 VdbeComment((v, "LIMIT+OFFSET")); 1856 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1857 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1858 sqlite3VdbeJumpHere(v, addr1); 1859 } 1860 } 1861 } 1862 1863 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1864 /* 1865 ** Return the appropriate collating sequence for the iCol-th column of 1866 ** the result set for the compound-select statement "p". Return NULL if 1867 ** the column has no default collating sequence. 1868 ** 1869 ** The collating sequence for the compound select is taken from the 1870 ** left-most term of the select that has a collating sequence. 1871 */ 1872 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1873 CollSeq *pRet; 1874 if( p->pPrior ){ 1875 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1876 }else{ 1877 pRet = 0; 1878 } 1879 assert( iCol>=0 ); 1880 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1881 ** have been thrown during name resolution and we would not have gotten 1882 ** this far */ 1883 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1884 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1885 } 1886 return pRet; 1887 } 1888 1889 /* 1890 ** The select statement passed as the second parameter is a compound SELECT 1891 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1892 ** structure suitable for implementing the ORDER BY. 1893 ** 1894 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1895 ** function is responsible for ensuring that this structure is eventually 1896 ** freed. 1897 */ 1898 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1899 ExprList *pOrderBy = p->pOrderBy; 1900 int nOrderBy = p->pOrderBy->nExpr; 1901 sqlite3 *db = pParse->db; 1902 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1903 if( pRet ){ 1904 int i; 1905 for(i=0; i<nOrderBy; i++){ 1906 struct ExprList_item *pItem = &pOrderBy->a[i]; 1907 Expr *pTerm = pItem->pExpr; 1908 CollSeq *pColl; 1909 1910 if( pTerm->flags & EP_Collate ){ 1911 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1912 }else{ 1913 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1914 if( pColl==0 ) pColl = db->pDfltColl; 1915 pOrderBy->a[i].pExpr = 1916 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1917 } 1918 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1919 pRet->aColl[i] = pColl; 1920 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1921 } 1922 } 1923 1924 return pRet; 1925 } 1926 1927 #ifndef SQLITE_OMIT_CTE 1928 /* 1929 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1930 ** query of the form: 1931 ** 1932 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1933 ** \___________/ \_______________/ 1934 ** p->pPrior p 1935 ** 1936 ** 1937 ** There is exactly one reference to the recursive-table in the FROM clause 1938 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1939 ** 1940 ** The setup-query runs once to generate an initial set of rows that go 1941 ** into a Queue table. Rows are extracted from the Queue table one by 1942 ** one. Each row extracted from Queue is output to pDest. Then the single 1943 ** extracted row (now in the iCurrent table) becomes the content of the 1944 ** recursive-table for a recursive-query run. The output of the recursive-query 1945 ** is added back into the Queue table. Then another row is extracted from Queue 1946 ** and the iteration continues until the Queue table is empty. 1947 ** 1948 ** If the compound query operator is UNION then no duplicate rows are ever 1949 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1950 ** that have ever been inserted into Queue and causes duplicates to be 1951 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1952 ** 1953 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1954 ** ORDER BY order and the first entry is extracted for each cycle. Without 1955 ** an ORDER BY, the Queue table is just a FIFO. 1956 ** 1957 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1958 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1959 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1960 ** with a positive value, then the first OFFSET outputs are discarded rather 1961 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1962 ** rows have been skipped. 1963 */ 1964 static void generateWithRecursiveQuery( 1965 Parse *pParse, /* Parsing context */ 1966 Select *p, /* The recursive SELECT to be coded */ 1967 SelectDest *pDest /* What to do with query results */ 1968 ){ 1969 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1970 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1971 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1972 Select *pSetup = p->pPrior; /* The setup query */ 1973 int addrTop; /* Top of the loop */ 1974 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1975 int iCurrent = 0; /* The Current table */ 1976 int regCurrent; /* Register holding Current table */ 1977 int iQueue; /* The Queue table */ 1978 int iDistinct = 0; /* To ensure unique results if UNION */ 1979 int eDest = SRT_Fifo; /* How to write to Queue */ 1980 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1981 int i; /* Loop counter */ 1982 int rc; /* Result code */ 1983 ExprList *pOrderBy; /* The ORDER BY clause */ 1984 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1985 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1986 1987 /* Obtain authorization to do a recursive query */ 1988 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1989 1990 /* Process the LIMIT and OFFSET clauses, if they exist */ 1991 addrBreak = sqlite3VdbeMakeLabel(v); 1992 computeLimitRegisters(pParse, p, addrBreak); 1993 pLimit = p->pLimit; 1994 pOffset = p->pOffset; 1995 regLimit = p->iLimit; 1996 regOffset = p->iOffset; 1997 p->pLimit = p->pOffset = 0; 1998 p->iLimit = p->iOffset = 0; 1999 pOrderBy = p->pOrderBy; 2000 2001 /* Locate the cursor number of the Current table */ 2002 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2003 if( pSrc->a[i].isRecursive ){ 2004 iCurrent = pSrc->a[i].iCursor; 2005 break; 2006 } 2007 } 2008 2009 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2010 ** the Distinct table must be exactly one greater than Queue in order 2011 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2012 iQueue = pParse->nTab++; 2013 if( p->op==TK_UNION ){ 2014 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2015 iDistinct = pParse->nTab++; 2016 }else{ 2017 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2018 } 2019 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2020 2021 /* Allocate cursors for Current, Queue, and Distinct. */ 2022 regCurrent = ++pParse->nMem; 2023 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2024 if( pOrderBy ){ 2025 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2026 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2027 (char*)pKeyInfo, P4_KEYINFO); 2028 destQueue.pOrderBy = pOrderBy; 2029 }else{ 2030 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2031 } 2032 VdbeComment((v, "Queue table")); 2033 if( iDistinct ){ 2034 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2035 p->selFlags |= SF_UsesEphemeral; 2036 } 2037 2038 /* Detach the ORDER BY clause from the compound SELECT */ 2039 p->pOrderBy = 0; 2040 2041 /* Store the results of the setup-query in Queue. */ 2042 pSetup->pNext = 0; 2043 rc = sqlite3Select(pParse, pSetup, &destQueue); 2044 pSetup->pNext = p; 2045 if( rc ) goto end_of_recursive_query; 2046 2047 /* Find the next row in the Queue and output that row */ 2048 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2049 2050 /* Transfer the next row in Queue over to Current */ 2051 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2052 if( pOrderBy ){ 2053 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2054 }else{ 2055 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2056 } 2057 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2058 2059 /* Output the single row in Current */ 2060 addrCont = sqlite3VdbeMakeLabel(v); 2061 codeOffset(v, regOffset, addrCont); 2062 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2063 0, 0, pDest, addrCont, addrBreak); 2064 if( regLimit ){ 2065 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2066 VdbeCoverage(v); 2067 } 2068 sqlite3VdbeResolveLabel(v, addrCont); 2069 2070 /* Execute the recursive SELECT taking the single row in Current as 2071 ** the value for the recursive-table. Store the results in the Queue. 2072 */ 2073 p->pPrior = 0; 2074 sqlite3Select(pParse, p, &destQueue); 2075 assert( p->pPrior==0 ); 2076 p->pPrior = pSetup; 2077 2078 /* Keep running the loop until the Queue is empty */ 2079 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2080 sqlite3VdbeResolveLabel(v, addrBreak); 2081 2082 end_of_recursive_query: 2083 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2084 p->pOrderBy = pOrderBy; 2085 p->pLimit = pLimit; 2086 p->pOffset = pOffset; 2087 return; 2088 } 2089 #endif /* SQLITE_OMIT_CTE */ 2090 2091 /* Forward references */ 2092 static int multiSelectOrderBy( 2093 Parse *pParse, /* Parsing context */ 2094 Select *p, /* The right-most of SELECTs to be coded */ 2095 SelectDest *pDest /* What to do with query results */ 2096 ); 2097 2098 /* 2099 ** Error message for when two or more terms of a compound select have different 2100 ** size result sets. 2101 */ 2102 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2103 if( p->selFlags & SF_Values ){ 2104 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2105 }else{ 2106 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2107 " do not have the same number of result columns", selectOpName(p->op)); 2108 } 2109 } 2110 2111 /* 2112 ** Handle the special case of a compound-select that originates from a 2113 ** VALUES clause. By handling this as a special case, we avoid deep 2114 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2115 ** on a VALUES clause. 2116 ** 2117 ** Because the Select object originates from a VALUES clause: 2118 ** (1) It has no LIMIT or OFFSET 2119 ** (2) All terms are UNION ALL 2120 ** (3) There is no ORDER BY clause 2121 */ 2122 static int multiSelectValues( 2123 Parse *pParse, /* Parsing context */ 2124 Select *p, /* The right-most of SELECTs to be coded */ 2125 SelectDest *pDest /* What to do with query results */ 2126 ){ 2127 Select *pPrior; 2128 int nRow = 1; 2129 int rc = 0; 2130 assert( p->selFlags & SF_MultiValue ); 2131 do{ 2132 assert( p->selFlags & SF_Values ); 2133 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2134 assert( p->pLimit==0 ); 2135 assert( p->pOffset==0 ); 2136 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2137 if( p->pPrior==0 ) break; 2138 assert( p->pPrior->pNext==p ); 2139 p = p->pPrior; 2140 nRow++; 2141 }while(1); 2142 while( p ){ 2143 pPrior = p->pPrior; 2144 p->pPrior = 0; 2145 rc = sqlite3Select(pParse, p, pDest); 2146 p->pPrior = pPrior; 2147 if( rc ) break; 2148 p->nSelectRow = nRow; 2149 p = p->pNext; 2150 } 2151 return rc; 2152 } 2153 2154 /* 2155 ** This routine is called to process a compound query form from 2156 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2157 ** INTERSECT 2158 ** 2159 ** "p" points to the right-most of the two queries. the query on the 2160 ** left is p->pPrior. The left query could also be a compound query 2161 ** in which case this routine will be called recursively. 2162 ** 2163 ** The results of the total query are to be written into a destination 2164 ** of type eDest with parameter iParm. 2165 ** 2166 ** Example 1: Consider a three-way compound SQL statement. 2167 ** 2168 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2169 ** 2170 ** This statement is parsed up as follows: 2171 ** 2172 ** SELECT c FROM t3 2173 ** | 2174 ** `-----> SELECT b FROM t2 2175 ** | 2176 ** `------> SELECT a FROM t1 2177 ** 2178 ** The arrows in the diagram above represent the Select.pPrior pointer. 2179 ** So if this routine is called with p equal to the t3 query, then 2180 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2181 ** 2182 ** Notice that because of the way SQLite parses compound SELECTs, the 2183 ** individual selects always group from left to right. 2184 */ 2185 static int multiSelect( 2186 Parse *pParse, /* Parsing context */ 2187 Select *p, /* The right-most of SELECTs to be coded */ 2188 SelectDest *pDest /* What to do with query results */ 2189 ){ 2190 int rc = SQLITE_OK; /* Success code from a subroutine */ 2191 Select *pPrior; /* Another SELECT immediately to our left */ 2192 Vdbe *v; /* Generate code to this VDBE */ 2193 SelectDest dest; /* Alternative data destination */ 2194 Select *pDelete = 0; /* Chain of simple selects to delete */ 2195 sqlite3 *db; /* Database connection */ 2196 #ifndef SQLITE_OMIT_EXPLAIN 2197 int iSub1 = 0; /* EQP id of left-hand query */ 2198 int iSub2 = 0; /* EQP id of right-hand query */ 2199 #endif 2200 2201 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2202 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2203 */ 2204 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2205 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2206 db = pParse->db; 2207 pPrior = p->pPrior; 2208 dest = *pDest; 2209 if( pPrior->pOrderBy ){ 2210 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2211 selectOpName(p->op)); 2212 rc = 1; 2213 goto multi_select_end; 2214 } 2215 if( pPrior->pLimit ){ 2216 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2217 selectOpName(p->op)); 2218 rc = 1; 2219 goto multi_select_end; 2220 } 2221 2222 v = sqlite3GetVdbe(pParse); 2223 assert( v!=0 ); /* The VDBE already created by calling function */ 2224 2225 /* Create the destination temporary table if necessary 2226 */ 2227 if( dest.eDest==SRT_EphemTab ){ 2228 assert( p->pEList ); 2229 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2230 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2231 dest.eDest = SRT_Table; 2232 } 2233 2234 /* Special handling for a compound-select that originates as a VALUES clause. 2235 */ 2236 if( p->selFlags & SF_MultiValue ){ 2237 rc = multiSelectValues(pParse, p, &dest); 2238 goto multi_select_end; 2239 } 2240 2241 /* Make sure all SELECTs in the statement have the same number of elements 2242 ** in their result sets. 2243 */ 2244 assert( p->pEList && pPrior->pEList ); 2245 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2246 2247 #ifndef SQLITE_OMIT_CTE 2248 if( p->selFlags & SF_Recursive ){ 2249 generateWithRecursiveQuery(pParse, p, &dest); 2250 }else 2251 #endif 2252 2253 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2254 */ 2255 if( p->pOrderBy ){ 2256 return multiSelectOrderBy(pParse, p, pDest); 2257 }else 2258 2259 /* Generate code for the left and right SELECT statements. 2260 */ 2261 switch( p->op ){ 2262 case TK_ALL: { 2263 int addr = 0; 2264 int nLimit; 2265 assert( !pPrior->pLimit ); 2266 pPrior->iLimit = p->iLimit; 2267 pPrior->iOffset = p->iOffset; 2268 pPrior->pLimit = p->pLimit; 2269 pPrior->pOffset = p->pOffset; 2270 explainSetInteger(iSub1, pParse->iNextSelectId); 2271 rc = sqlite3Select(pParse, pPrior, &dest); 2272 p->pLimit = 0; 2273 p->pOffset = 0; 2274 if( rc ){ 2275 goto multi_select_end; 2276 } 2277 p->pPrior = 0; 2278 p->iLimit = pPrior->iLimit; 2279 p->iOffset = pPrior->iOffset; 2280 if( p->iLimit ){ 2281 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2282 VdbeComment((v, "Jump ahead if LIMIT reached")); 2283 } 2284 explainSetInteger(iSub2, pParse->iNextSelectId); 2285 rc = sqlite3Select(pParse, p, &dest); 2286 testcase( rc!=SQLITE_OK ); 2287 pDelete = p->pPrior; 2288 p->pPrior = pPrior; 2289 p->nSelectRow += pPrior->nSelectRow; 2290 if( pPrior->pLimit 2291 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2292 && nLimit>0 && p->nSelectRow > (u64)nLimit 2293 ){ 2294 p->nSelectRow = nLimit; 2295 } 2296 if( addr ){ 2297 sqlite3VdbeJumpHere(v, addr); 2298 } 2299 break; 2300 } 2301 case TK_EXCEPT: 2302 case TK_UNION: { 2303 int unionTab; /* Cursor number of the temporary table holding result */ 2304 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2305 int priorOp; /* The SRT_ operation to apply to prior selects */ 2306 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2307 int addr; 2308 SelectDest uniondest; 2309 2310 testcase( p->op==TK_EXCEPT ); 2311 testcase( p->op==TK_UNION ); 2312 priorOp = SRT_Union; 2313 if( dest.eDest==priorOp ){ 2314 /* We can reuse a temporary table generated by a SELECT to our 2315 ** right. 2316 */ 2317 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2318 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2319 unionTab = dest.iSDParm; 2320 }else{ 2321 /* We will need to create our own temporary table to hold the 2322 ** intermediate results. 2323 */ 2324 unionTab = pParse->nTab++; 2325 assert( p->pOrderBy==0 ); 2326 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2327 assert( p->addrOpenEphm[0] == -1 ); 2328 p->addrOpenEphm[0] = addr; 2329 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2330 assert( p->pEList ); 2331 } 2332 2333 /* Code the SELECT statements to our left 2334 */ 2335 assert( !pPrior->pOrderBy ); 2336 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2337 explainSetInteger(iSub1, pParse->iNextSelectId); 2338 rc = sqlite3Select(pParse, pPrior, &uniondest); 2339 if( rc ){ 2340 goto multi_select_end; 2341 } 2342 2343 /* Code the current SELECT statement 2344 */ 2345 if( p->op==TK_EXCEPT ){ 2346 op = SRT_Except; 2347 }else{ 2348 assert( p->op==TK_UNION ); 2349 op = SRT_Union; 2350 } 2351 p->pPrior = 0; 2352 pLimit = p->pLimit; 2353 p->pLimit = 0; 2354 pOffset = p->pOffset; 2355 p->pOffset = 0; 2356 uniondest.eDest = op; 2357 explainSetInteger(iSub2, pParse->iNextSelectId); 2358 rc = sqlite3Select(pParse, p, &uniondest); 2359 testcase( rc!=SQLITE_OK ); 2360 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2361 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2362 sqlite3ExprListDelete(db, p->pOrderBy); 2363 pDelete = p->pPrior; 2364 p->pPrior = pPrior; 2365 p->pOrderBy = 0; 2366 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2367 sqlite3ExprDelete(db, p->pLimit); 2368 p->pLimit = pLimit; 2369 p->pOffset = pOffset; 2370 p->iLimit = 0; 2371 p->iOffset = 0; 2372 2373 /* Convert the data in the temporary table into whatever form 2374 ** it is that we currently need. 2375 */ 2376 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2377 if( dest.eDest!=priorOp ){ 2378 int iCont, iBreak, iStart; 2379 assert( p->pEList ); 2380 if( dest.eDest==SRT_Output ){ 2381 Select *pFirst = p; 2382 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2383 generateColumnNames(pParse, 0, pFirst->pEList); 2384 } 2385 iBreak = sqlite3VdbeMakeLabel(v); 2386 iCont = sqlite3VdbeMakeLabel(v); 2387 computeLimitRegisters(pParse, p, iBreak); 2388 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2389 iStart = sqlite3VdbeCurrentAddr(v); 2390 selectInnerLoop(pParse, p, p->pEList, unionTab, 2391 0, 0, &dest, iCont, iBreak); 2392 sqlite3VdbeResolveLabel(v, iCont); 2393 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2394 sqlite3VdbeResolveLabel(v, iBreak); 2395 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2396 } 2397 break; 2398 } 2399 default: assert( p->op==TK_INTERSECT ); { 2400 int tab1, tab2; 2401 int iCont, iBreak, iStart; 2402 Expr *pLimit, *pOffset; 2403 int addr; 2404 SelectDest intersectdest; 2405 int r1; 2406 2407 /* INTERSECT is different from the others since it requires 2408 ** two temporary tables. Hence it has its own case. Begin 2409 ** by allocating the tables we will need. 2410 */ 2411 tab1 = pParse->nTab++; 2412 tab2 = pParse->nTab++; 2413 assert( p->pOrderBy==0 ); 2414 2415 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2416 assert( p->addrOpenEphm[0] == -1 ); 2417 p->addrOpenEphm[0] = addr; 2418 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2419 assert( p->pEList ); 2420 2421 /* Code the SELECTs to our left into temporary table "tab1". 2422 */ 2423 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2424 explainSetInteger(iSub1, pParse->iNextSelectId); 2425 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2426 if( rc ){ 2427 goto multi_select_end; 2428 } 2429 2430 /* Code the current SELECT into temporary table "tab2" 2431 */ 2432 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2433 assert( p->addrOpenEphm[1] == -1 ); 2434 p->addrOpenEphm[1] = addr; 2435 p->pPrior = 0; 2436 pLimit = p->pLimit; 2437 p->pLimit = 0; 2438 pOffset = p->pOffset; 2439 p->pOffset = 0; 2440 intersectdest.iSDParm = tab2; 2441 explainSetInteger(iSub2, pParse->iNextSelectId); 2442 rc = sqlite3Select(pParse, p, &intersectdest); 2443 testcase( rc!=SQLITE_OK ); 2444 pDelete = p->pPrior; 2445 p->pPrior = pPrior; 2446 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2447 sqlite3ExprDelete(db, p->pLimit); 2448 p->pLimit = pLimit; 2449 p->pOffset = pOffset; 2450 2451 /* Generate code to take the intersection of the two temporary 2452 ** tables. 2453 */ 2454 assert( p->pEList ); 2455 if( dest.eDest==SRT_Output ){ 2456 Select *pFirst = p; 2457 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2458 generateColumnNames(pParse, 0, pFirst->pEList); 2459 } 2460 iBreak = sqlite3VdbeMakeLabel(v); 2461 iCont = sqlite3VdbeMakeLabel(v); 2462 computeLimitRegisters(pParse, p, iBreak); 2463 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2464 r1 = sqlite3GetTempReg(pParse); 2465 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2466 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2467 sqlite3ReleaseTempReg(pParse, r1); 2468 selectInnerLoop(pParse, p, p->pEList, tab1, 2469 0, 0, &dest, iCont, iBreak); 2470 sqlite3VdbeResolveLabel(v, iCont); 2471 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2472 sqlite3VdbeResolveLabel(v, iBreak); 2473 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2474 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2475 break; 2476 } 2477 } 2478 2479 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2480 2481 /* Compute collating sequences used by 2482 ** temporary tables needed to implement the compound select. 2483 ** Attach the KeyInfo structure to all temporary tables. 2484 ** 2485 ** This section is run by the right-most SELECT statement only. 2486 ** SELECT statements to the left always skip this part. The right-most 2487 ** SELECT might also skip this part if it has no ORDER BY clause and 2488 ** no temp tables are required. 2489 */ 2490 if( p->selFlags & SF_UsesEphemeral ){ 2491 int i; /* Loop counter */ 2492 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2493 Select *pLoop; /* For looping through SELECT statements */ 2494 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2495 int nCol; /* Number of columns in result set */ 2496 2497 assert( p->pNext==0 ); 2498 nCol = p->pEList->nExpr; 2499 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2500 if( !pKeyInfo ){ 2501 rc = SQLITE_NOMEM; 2502 goto multi_select_end; 2503 } 2504 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2505 *apColl = multiSelectCollSeq(pParse, p, i); 2506 if( 0==*apColl ){ 2507 *apColl = db->pDfltColl; 2508 } 2509 } 2510 2511 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2512 for(i=0; i<2; i++){ 2513 int addr = pLoop->addrOpenEphm[i]; 2514 if( addr<0 ){ 2515 /* If [0] is unused then [1] is also unused. So we can 2516 ** always safely abort as soon as the first unused slot is found */ 2517 assert( pLoop->addrOpenEphm[1]<0 ); 2518 break; 2519 } 2520 sqlite3VdbeChangeP2(v, addr, nCol); 2521 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2522 P4_KEYINFO); 2523 pLoop->addrOpenEphm[i] = -1; 2524 } 2525 } 2526 sqlite3KeyInfoUnref(pKeyInfo); 2527 } 2528 2529 multi_select_end: 2530 pDest->iSdst = dest.iSdst; 2531 pDest->nSdst = dest.nSdst; 2532 sqlite3SelectDelete(db, pDelete); 2533 return rc; 2534 } 2535 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2536 2537 /* 2538 ** Code an output subroutine for a coroutine implementation of a 2539 ** SELECT statment. 2540 ** 2541 ** The data to be output is contained in pIn->iSdst. There are 2542 ** pIn->nSdst columns to be output. pDest is where the output should 2543 ** be sent. 2544 ** 2545 ** regReturn is the number of the register holding the subroutine 2546 ** return address. 2547 ** 2548 ** If regPrev>0 then it is the first register in a vector that 2549 ** records the previous output. mem[regPrev] is a flag that is false 2550 ** if there has been no previous output. If regPrev>0 then code is 2551 ** generated to suppress duplicates. pKeyInfo is used for comparing 2552 ** keys. 2553 ** 2554 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2555 ** iBreak. 2556 */ 2557 static int generateOutputSubroutine( 2558 Parse *pParse, /* Parsing context */ 2559 Select *p, /* The SELECT statement */ 2560 SelectDest *pIn, /* Coroutine supplying data */ 2561 SelectDest *pDest, /* Where to send the data */ 2562 int regReturn, /* The return address register */ 2563 int regPrev, /* Previous result register. No uniqueness if 0 */ 2564 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2565 int iBreak /* Jump here if we hit the LIMIT */ 2566 ){ 2567 Vdbe *v = pParse->pVdbe; 2568 int iContinue; 2569 int addr; 2570 2571 addr = sqlite3VdbeCurrentAddr(v); 2572 iContinue = sqlite3VdbeMakeLabel(v); 2573 2574 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2575 */ 2576 if( regPrev ){ 2577 int j1, j2; 2578 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2579 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2580 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2581 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2582 sqlite3VdbeJumpHere(v, j1); 2583 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2584 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2585 } 2586 if( pParse->db->mallocFailed ) return 0; 2587 2588 /* Suppress the first OFFSET entries if there is an OFFSET clause 2589 */ 2590 codeOffset(v, p->iOffset, iContinue); 2591 2592 assert( pDest->eDest!=SRT_Exists ); 2593 assert( pDest->eDest!=SRT_Table ); 2594 switch( pDest->eDest ){ 2595 /* Store the result as data using a unique key. 2596 */ 2597 case SRT_EphemTab: { 2598 int r1 = sqlite3GetTempReg(pParse); 2599 int r2 = sqlite3GetTempReg(pParse); 2600 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2601 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2602 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2603 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2604 sqlite3ReleaseTempReg(pParse, r2); 2605 sqlite3ReleaseTempReg(pParse, r1); 2606 break; 2607 } 2608 2609 #ifndef SQLITE_OMIT_SUBQUERY 2610 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2611 ** then there should be a single item on the stack. Write this 2612 ** item into the set table with bogus data. 2613 */ 2614 case SRT_Set: { 2615 int r1; 2616 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2617 pDest->affSdst = 2618 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2619 r1 = sqlite3GetTempReg(pParse); 2620 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2621 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2622 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2623 sqlite3ReleaseTempReg(pParse, r1); 2624 break; 2625 } 2626 2627 /* If this is a scalar select that is part of an expression, then 2628 ** store the results in the appropriate memory cell and break out 2629 ** of the scan loop. 2630 */ 2631 case SRT_Mem: { 2632 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2633 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2634 /* The LIMIT clause will jump out of the loop for us */ 2635 break; 2636 } 2637 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2638 2639 /* The results are stored in a sequence of registers 2640 ** starting at pDest->iSdst. Then the co-routine yields. 2641 */ 2642 case SRT_Coroutine: { 2643 if( pDest->iSdst==0 ){ 2644 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2645 pDest->nSdst = pIn->nSdst; 2646 } 2647 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2648 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2649 break; 2650 } 2651 2652 /* If none of the above, then the result destination must be 2653 ** SRT_Output. This routine is never called with any other 2654 ** destination other than the ones handled above or SRT_Output. 2655 ** 2656 ** For SRT_Output, results are stored in a sequence of registers. 2657 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2658 ** return the next row of result. 2659 */ 2660 default: { 2661 assert( pDest->eDest==SRT_Output ); 2662 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2663 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2664 break; 2665 } 2666 } 2667 2668 /* Jump to the end of the loop if the LIMIT is reached. 2669 */ 2670 if( p->iLimit ){ 2671 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2672 } 2673 2674 /* Generate the subroutine return 2675 */ 2676 sqlite3VdbeResolveLabel(v, iContinue); 2677 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2678 2679 return addr; 2680 } 2681 2682 /* 2683 ** Alternative compound select code generator for cases when there 2684 ** is an ORDER BY clause. 2685 ** 2686 ** We assume a query of the following form: 2687 ** 2688 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2689 ** 2690 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2691 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2692 ** co-routines. Then run the co-routines in parallel and merge the results 2693 ** into the output. In addition to the two coroutines (called selectA and 2694 ** selectB) there are 7 subroutines: 2695 ** 2696 ** outA: Move the output of the selectA coroutine into the output 2697 ** of the compound query. 2698 ** 2699 ** outB: Move the output of the selectB coroutine into the output 2700 ** of the compound query. (Only generated for UNION and 2701 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2702 ** appears only in B.) 2703 ** 2704 ** AltB: Called when there is data from both coroutines and A<B. 2705 ** 2706 ** AeqB: Called when there is data from both coroutines and A==B. 2707 ** 2708 ** AgtB: Called when there is data from both coroutines and A>B. 2709 ** 2710 ** EofA: Called when data is exhausted from selectA. 2711 ** 2712 ** EofB: Called when data is exhausted from selectB. 2713 ** 2714 ** The implementation of the latter five subroutines depend on which 2715 ** <operator> is used: 2716 ** 2717 ** 2718 ** UNION ALL UNION EXCEPT INTERSECT 2719 ** ------------- ----------------- -------------- ----------------- 2720 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2721 ** 2722 ** AeqB: outA, nextA nextA nextA outA, nextA 2723 ** 2724 ** AgtB: outB, nextB outB, nextB nextB nextB 2725 ** 2726 ** EofA: outB, nextB outB, nextB halt halt 2727 ** 2728 ** EofB: outA, nextA outA, nextA outA, nextA halt 2729 ** 2730 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2731 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2732 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2733 ** following nextX causes a jump to the end of the select processing. 2734 ** 2735 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2736 ** within the output subroutine. The regPrev register set holds the previously 2737 ** output value. A comparison is made against this value and the output 2738 ** is skipped if the next results would be the same as the previous. 2739 ** 2740 ** The implementation plan is to implement the two coroutines and seven 2741 ** subroutines first, then put the control logic at the bottom. Like this: 2742 ** 2743 ** goto Init 2744 ** coA: coroutine for left query (A) 2745 ** coB: coroutine for right query (B) 2746 ** outA: output one row of A 2747 ** outB: output one row of B (UNION and UNION ALL only) 2748 ** EofA: ... 2749 ** EofB: ... 2750 ** AltB: ... 2751 ** AeqB: ... 2752 ** AgtB: ... 2753 ** Init: initialize coroutine registers 2754 ** yield coA 2755 ** if eof(A) goto EofA 2756 ** yield coB 2757 ** if eof(B) goto EofB 2758 ** Cmpr: Compare A, B 2759 ** Jump AltB, AeqB, AgtB 2760 ** End: ... 2761 ** 2762 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2763 ** actually called using Gosub and they do not Return. EofA and EofB loop 2764 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2765 ** and AgtB jump to either L2 or to one of EofA or EofB. 2766 */ 2767 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2768 static int multiSelectOrderBy( 2769 Parse *pParse, /* Parsing context */ 2770 Select *p, /* The right-most of SELECTs to be coded */ 2771 SelectDest *pDest /* What to do with query results */ 2772 ){ 2773 int i, j; /* Loop counters */ 2774 Select *pPrior; /* Another SELECT immediately to our left */ 2775 Vdbe *v; /* Generate code to this VDBE */ 2776 SelectDest destA; /* Destination for coroutine A */ 2777 SelectDest destB; /* Destination for coroutine B */ 2778 int regAddrA; /* Address register for select-A coroutine */ 2779 int regAddrB; /* Address register for select-B coroutine */ 2780 int addrSelectA; /* Address of the select-A coroutine */ 2781 int addrSelectB; /* Address of the select-B coroutine */ 2782 int regOutA; /* Address register for the output-A subroutine */ 2783 int regOutB; /* Address register for the output-B subroutine */ 2784 int addrOutA; /* Address of the output-A subroutine */ 2785 int addrOutB = 0; /* Address of the output-B subroutine */ 2786 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2787 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2788 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2789 int addrAltB; /* Address of the A<B subroutine */ 2790 int addrAeqB; /* Address of the A==B subroutine */ 2791 int addrAgtB; /* Address of the A>B subroutine */ 2792 int regLimitA; /* Limit register for select-A */ 2793 int regLimitB; /* Limit register for select-A */ 2794 int regPrev; /* A range of registers to hold previous output */ 2795 int savedLimit; /* Saved value of p->iLimit */ 2796 int savedOffset; /* Saved value of p->iOffset */ 2797 int labelCmpr; /* Label for the start of the merge algorithm */ 2798 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2799 int j1; /* Jump instructions that get retargetted */ 2800 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2801 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2802 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2803 sqlite3 *db; /* Database connection */ 2804 ExprList *pOrderBy; /* The ORDER BY clause */ 2805 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2806 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2807 #ifndef SQLITE_OMIT_EXPLAIN 2808 int iSub1; /* EQP id of left-hand query */ 2809 int iSub2; /* EQP id of right-hand query */ 2810 #endif 2811 2812 assert( p->pOrderBy!=0 ); 2813 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2814 db = pParse->db; 2815 v = pParse->pVdbe; 2816 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2817 labelEnd = sqlite3VdbeMakeLabel(v); 2818 labelCmpr = sqlite3VdbeMakeLabel(v); 2819 2820 2821 /* Patch up the ORDER BY clause 2822 */ 2823 op = p->op; 2824 pPrior = p->pPrior; 2825 assert( pPrior->pOrderBy==0 ); 2826 pOrderBy = p->pOrderBy; 2827 assert( pOrderBy ); 2828 nOrderBy = pOrderBy->nExpr; 2829 2830 /* For operators other than UNION ALL we have to make sure that 2831 ** the ORDER BY clause covers every term of the result set. Add 2832 ** terms to the ORDER BY clause as necessary. 2833 */ 2834 if( op!=TK_ALL ){ 2835 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2836 struct ExprList_item *pItem; 2837 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2838 assert( pItem->u.x.iOrderByCol>0 ); 2839 if( pItem->u.x.iOrderByCol==i ) break; 2840 } 2841 if( j==nOrderBy ){ 2842 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2843 if( pNew==0 ) return SQLITE_NOMEM; 2844 pNew->flags |= EP_IntValue; 2845 pNew->u.iValue = i; 2846 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2847 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2848 } 2849 } 2850 } 2851 2852 /* Compute the comparison permutation and keyinfo that is used with 2853 ** the permutation used to determine if the next 2854 ** row of results comes from selectA or selectB. Also add explicit 2855 ** collations to the ORDER BY clause terms so that when the subqueries 2856 ** to the right and the left are evaluated, they use the correct 2857 ** collation. 2858 */ 2859 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2860 if( aPermute ){ 2861 struct ExprList_item *pItem; 2862 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2863 assert( pItem->u.x.iOrderByCol>0 ); 2864 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2865 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2866 } 2867 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2868 }else{ 2869 pKeyMerge = 0; 2870 } 2871 2872 /* Reattach the ORDER BY clause to the query. 2873 */ 2874 p->pOrderBy = pOrderBy; 2875 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2876 2877 /* Allocate a range of temporary registers and the KeyInfo needed 2878 ** for the logic that removes duplicate result rows when the 2879 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2880 */ 2881 if( op==TK_ALL ){ 2882 regPrev = 0; 2883 }else{ 2884 int nExpr = p->pEList->nExpr; 2885 assert( nOrderBy>=nExpr || db->mallocFailed ); 2886 regPrev = pParse->nMem+1; 2887 pParse->nMem += nExpr+1; 2888 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2889 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2890 if( pKeyDup ){ 2891 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2892 for(i=0; i<nExpr; i++){ 2893 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2894 pKeyDup->aSortOrder[i] = 0; 2895 } 2896 } 2897 } 2898 2899 /* Separate the left and the right query from one another 2900 */ 2901 p->pPrior = 0; 2902 pPrior->pNext = 0; 2903 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2904 if( pPrior->pPrior==0 ){ 2905 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2906 } 2907 2908 /* Compute the limit registers */ 2909 computeLimitRegisters(pParse, p, labelEnd); 2910 if( p->iLimit && op==TK_ALL ){ 2911 regLimitA = ++pParse->nMem; 2912 regLimitB = ++pParse->nMem; 2913 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2914 regLimitA); 2915 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2916 }else{ 2917 regLimitA = regLimitB = 0; 2918 } 2919 sqlite3ExprDelete(db, p->pLimit); 2920 p->pLimit = 0; 2921 sqlite3ExprDelete(db, p->pOffset); 2922 p->pOffset = 0; 2923 2924 regAddrA = ++pParse->nMem; 2925 regAddrB = ++pParse->nMem; 2926 regOutA = ++pParse->nMem; 2927 regOutB = ++pParse->nMem; 2928 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2929 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2930 2931 /* Generate a coroutine to evaluate the SELECT statement to the 2932 ** left of the compound operator - the "A" select. 2933 */ 2934 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2935 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2936 VdbeComment((v, "left SELECT")); 2937 pPrior->iLimit = regLimitA; 2938 explainSetInteger(iSub1, pParse->iNextSelectId); 2939 sqlite3Select(pParse, pPrior, &destA); 2940 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2941 sqlite3VdbeJumpHere(v, j1); 2942 2943 /* Generate a coroutine to evaluate the SELECT statement on 2944 ** the right - the "B" select 2945 */ 2946 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2947 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2948 VdbeComment((v, "right SELECT")); 2949 savedLimit = p->iLimit; 2950 savedOffset = p->iOffset; 2951 p->iLimit = regLimitB; 2952 p->iOffset = 0; 2953 explainSetInteger(iSub2, pParse->iNextSelectId); 2954 sqlite3Select(pParse, p, &destB); 2955 p->iLimit = savedLimit; 2956 p->iOffset = savedOffset; 2957 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2958 2959 /* Generate a subroutine that outputs the current row of the A 2960 ** select as the next output row of the compound select. 2961 */ 2962 VdbeNoopComment((v, "Output routine for A")); 2963 addrOutA = generateOutputSubroutine(pParse, 2964 p, &destA, pDest, regOutA, 2965 regPrev, pKeyDup, labelEnd); 2966 2967 /* Generate a subroutine that outputs the current row of the B 2968 ** select as the next output row of the compound select. 2969 */ 2970 if( op==TK_ALL || op==TK_UNION ){ 2971 VdbeNoopComment((v, "Output routine for B")); 2972 addrOutB = generateOutputSubroutine(pParse, 2973 p, &destB, pDest, regOutB, 2974 regPrev, pKeyDup, labelEnd); 2975 } 2976 sqlite3KeyInfoUnref(pKeyDup); 2977 2978 /* Generate a subroutine to run when the results from select A 2979 ** are exhausted and only data in select B remains. 2980 */ 2981 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2982 addrEofA_noB = addrEofA = labelEnd; 2983 }else{ 2984 VdbeNoopComment((v, "eof-A subroutine")); 2985 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2986 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2987 VdbeCoverage(v); 2988 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2989 p->nSelectRow += pPrior->nSelectRow; 2990 } 2991 2992 /* Generate a subroutine to run when the results from select B 2993 ** are exhausted and only data in select A remains. 2994 */ 2995 if( op==TK_INTERSECT ){ 2996 addrEofB = addrEofA; 2997 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2998 }else{ 2999 VdbeNoopComment((v, "eof-B subroutine")); 3000 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3001 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3002 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 3003 } 3004 3005 /* Generate code to handle the case of A<B 3006 */ 3007 VdbeNoopComment((v, "A-lt-B subroutine")); 3008 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3009 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3010 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3011 3012 /* Generate code to handle the case of A==B 3013 */ 3014 if( op==TK_ALL ){ 3015 addrAeqB = addrAltB; 3016 }else if( op==TK_INTERSECT ){ 3017 addrAeqB = addrAltB; 3018 addrAltB++; 3019 }else{ 3020 VdbeNoopComment((v, "A-eq-B subroutine")); 3021 addrAeqB = 3022 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3023 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3024 } 3025 3026 /* Generate code to handle the case of A>B 3027 */ 3028 VdbeNoopComment((v, "A-gt-B subroutine")); 3029 addrAgtB = sqlite3VdbeCurrentAddr(v); 3030 if( op==TK_ALL || op==TK_UNION ){ 3031 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3032 } 3033 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3034 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3035 3036 /* This code runs once to initialize everything. 3037 */ 3038 sqlite3VdbeJumpHere(v, j1); 3039 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3040 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3041 3042 /* Implement the main merge loop 3043 */ 3044 sqlite3VdbeResolveLabel(v, labelCmpr); 3045 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3046 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3047 (char*)pKeyMerge, P4_KEYINFO); 3048 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3049 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3050 3051 /* Jump to the this point in order to terminate the query. 3052 */ 3053 sqlite3VdbeResolveLabel(v, labelEnd); 3054 3055 /* Set the number of output columns 3056 */ 3057 if( pDest->eDest==SRT_Output ){ 3058 Select *pFirst = pPrior; 3059 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3060 generateColumnNames(pParse, 0, pFirst->pEList); 3061 } 3062 3063 /* Reassembly the compound query so that it will be freed correctly 3064 ** by the calling function */ 3065 if( p->pPrior ){ 3066 sqlite3SelectDelete(db, p->pPrior); 3067 } 3068 p->pPrior = pPrior; 3069 pPrior->pNext = p; 3070 3071 /*** TBD: Insert subroutine calls to close cursors on incomplete 3072 **** subqueries ****/ 3073 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3074 return pParse->nErr!=0; 3075 } 3076 #endif 3077 3078 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3079 /* Forward Declarations */ 3080 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3081 static void substSelect(sqlite3*, Select *, int, ExprList *); 3082 3083 /* 3084 ** Scan through the expression pExpr. Replace every reference to 3085 ** a column in table number iTable with a copy of the iColumn-th 3086 ** entry in pEList. (But leave references to the ROWID column 3087 ** unchanged.) 3088 ** 3089 ** This routine is part of the flattening procedure. A subquery 3090 ** whose result set is defined by pEList appears as entry in the 3091 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3092 ** FORM clause entry is iTable. This routine make the necessary 3093 ** changes to pExpr so that it refers directly to the source table 3094 ** of the subquery rather the result set of the subquery. 3095 */ 3096 static Expr *substExpr( 3097 sqlite3 *db, /* Report malloc errors to this connection */ 3098 Expr *pExpr, /* Expr in which substitution occurs */ 3099 int iTable, /* Table to be substituted */ 3100 ExprList *pEList /* Substitute expressions */ 3101 ){ 3102 if( pExpr==0 ) return 0; 3103 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3104 if( pExpr->iColumn<0 ){ 3105 pExpr->op = TK_NULL; 3106 }else{ 3107 Expr *pNew; 3108 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3109 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3110 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3111 sqlite3ExprDelete(db, pExpr); 3112 pExpr = pNew; 3113 } 3114 }else{ 3115 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3116 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3117 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3118 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3119 }else{ 3120 substExprList(db, pExpr->x.pList, iTable, pEList); 3121 } 3122 } 3123 return pExpr; 3124 } 3125 static void substExprList( 3126 sqlite3 *db, /* Report malloc errors here */ 3127 ExprList *pList, /* List to scan and in which to make substitutes */ 3128 int iTable, /* Table to be substituted */ 3129 ExprList *pEList /* Substitute values */ 3130 ){ 3131 int i; 3132 if( pList==0 ) return; 3133 for(i=0; i<pList->nExpr; i++){ 3134 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3135 } 3136 } 3137 static void substSelect( 3138 sqlite3 *db, /* Report malloc errors here */ 3139 Select *p, /* SELECT statement in which to make substitutions */ 3140 int iTable, /* Table to be replaced */ 3141 ExprList *pEList /* Substitute values */ 3142 ){ 3143 SrcList *pSrc; 3144 struct SrcList_item *pItem; 3145 int i; 3146 if( !p ) return; 3147 substExprList(db, p->pEList, iTable, pEList); 3148 substExprList(db, p->pGroupBy, iTable, pEList); 3149 substExprList(db, p->pOrderBy, iTable, pEList); 3150 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3151 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3152 substSelect(db, p->pPrior, iTable, pEList); 3153 pSrc = p->pSrc; 3154 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3155 if( ALWAYS(pSrc) ){ 3156 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3157 substSelect(db, pItem->pSelect, iTable, pEList); 3158 } 3159 } 3160 } 3161 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3162 3163 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3164 /* 3165 ** This routine attempts to flatten subqueries as a performance optimization. 3166 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3167 ** 3168 ** To understand the concept of flattening, consider the following 3169 ** query: 3170 ** 3171 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3172 ** 3173 ** The default way of implementing this query is to execute the 3174 ** subquery first and store the results in a temporary table, then 3175 ** run the outer query on that temporary table. This requires two 3176 ** passes over the data. Furthermore, because the temporary table 3177 ** has no indices, the WHERE clause on the outer query cannot be 3178 ** optimized. 3179 ** 3180 ** This routine attempts to rewrite queries such as the above into 3181 ** a single flat select, like this: 3182 ** 3183 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3184 ** 3185 ** The code generated for this simplification gives the same result 3186 ** but only has to scan the data once. And because indices might 3187 ** exist on the table t1, a complete scan of the data might be 3188 ** avoided. 3189 ** 3190 ** Flattening is only attempted if all of the following are true: 3191 ** 3192 ** (1) The subquery and the outer query do not both use aggregates. 3193 ** 3194 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3195 ** and (2b) the outer query does not use subqueries other than the one 3196 ** FROM-clause subquery that is a candidate for flattening. (2b is 3197 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3198 ** 3199 ** (3) The subquery is not the right operand of a left outer join 3200 ** (Originally ticket #306. Strengthened by ticket #3300) 3201 ** 3202 ** (4) The subquery is not DISTINCT. 3203 ** 3204 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3205 ** sub-queries that were excluded from this optimization. Restriction 3206 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3207 ** 3208 ** (6) The subquery does not use aggregates or the outer query is not 3209 ** DISTINCT. 3210 ** 3211 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3212 ** A FROM clause, consider adding a FROM close with the special 3213 ** table sqlite_once that consists of a single row containing a 3214 ** single NULL. 3215 ** 3216 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3217 ** 3218 ** (9) The subquery does not use LIMIT or the outer query does not use 3219 ** aggregates. 3220 ** 3221 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3222 ** accidently carried the comment forward until 2014-09-15. Original 3223 ** text: "The subquery does not use aggregates or the outer query 3224 ** does not use LIMIT." 3225 ** 3226 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3227 ** 3228 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3229 ** a separate restriction deriving from ticket #350. 3230 ** 3231 ** (13) The subquery and outer query do not both use LIMIT. 3232 ** 3233 ** (14) The subquery does not use OFFSET. 3234 ** 3235 ** (15) The outer query is not part of a compound select or the 3236 ** subquery does not have a LIMIT clause. 3237 ** (See ticket #2339 and ticket [02a8e81d44]). 3238 ** 3239 ** (16) The outer query is not an aggregate or the subquery does 3240 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3241 ** until we introduced the group_concat() function. 3242 ** 3243 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3244 ** compound clause made up entirely of non-aggregate queries, and 3245 ** the parent query: 3246 ** 3247 ** * is not itself part of a compound select, 3248 ** * is not an aggregate or DISTINCT query, and 3249 ** * is not a join 3250 ** 3251 ** The parent and sub-query may contain WHERE clauses. Subject to 3252 ** rules (11), (13) and (14), they may also contain ORDER BY, 3253 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3254 ** operator other than UNION ALL because all the other compound 3255 ** operators have an implied DISTINCT which is disallowed by 3256 ** restriction (4). 3257 ** 3258 ** Also, each component of the sub-query must return the same number 3259 ** of result columns. This is actually a requirement for any compound 3260 ** SELECT statement, but all the code here does is make sure that no 3261 ** such (illegal) sub-query is flattened. The caller will detect the 3262 ** syntax error and return a detailed message. 3263 ** 3264 ** (18) If the sub-query is a compound select, then all terms of the 3265 ** ORDER by clause of the parent must be simple references to 3266 ** columns of the sub-query. 3267 ** 3268 ** (19) The subquery does not use LIMIT or the outer query does not 3269 ** have a WHERE clause. 3270 ** 3271 ** (20) If the sub-query is a compound select, then it must not use 3272 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3273 ** somewhat by saying that the terms of the ORDER BY clause must 3274 ** appear as unmodified result columns in the outer query. But we 3275 ** have other optimizations in mind to deal with that case. 3276 ** 3277 ** (21) The subquery does not use LIMIT or the outer query is not 3278 ** DISTINCT. (See ticket [752e1646fc]). 3279 ** 3280 ** (22) The subquery is not a recursive CTE. 3281 ** 3282 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3283 ** compound query. This restriction is because transforming the 3284 ** parent to a compound query confuses the code that handles 3285 ** recursive queries in multiSelect(). 3286 ** 3287 ** (24) The subquery is not an aggregate that uses the built-in min() or 3288 ** or max() functions. (Without this restriction, a query like: 3289 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3290 ** return the value X for which Y was maximal.) 3291 ** 3292 ** 3293 ** In this routine, the "p" parameter is a pointer to the outer query. 3294 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3295 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3296 ** 3297 ** If flattening is not attempted, this routine is a no-op and returns 0. 3298 ** If flattening is attempted this routine returns 1. 3299 ** 3300 ** All of the expression analysis must occur on both the outer query and 3301 ** the subquery before this routine runs. 3302 */ 3303 static int flattenSubquery( 3304 Parse *pParse, /* Parsing context */ 3305 Select *p, /* The parent or outer SELECT statement */ 3306 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3307 int isAgg, /* True if outer SELECT uses aggregate functions */ 3308 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3309 ){ 3310 const char *zSavedAuthContext = pParse->zAuthContext; 3311 Select *pParent; 3312 Select *pSub; /* The inner query or "subquery" */ 3313 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3314 SrcList *pSrc; /* The FROM clause of the outer query */ 3315 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3316 ExprList *pList; /* The result set of the outer query */ 3317 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3318 int i; /* Loop counter */ 3319 Expr *pWhere; /* The WHERE clause */ 3320 struct SrcList_item *pSubitem; /* The subquery */ 3321 sqlite3 *db = pParse->db; 3322 3323 /* Check to see if flattening is permitted. Return 0 if not. 3324 */ 3325 assert( p!=0 ); 3326 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3327 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3328 pSrc = p->pSrc; 3329 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3330 pSubitem = &pSrc->a[iFrom]; 3331 iParent = pSubitem->iCursor; 3332 pSub = pSubitem->pSelect; 3333 assert( pSub!=0 ); 3334 if( subqueryIsAgg ){ 3335 if( isAgg ) return 0; /* Restriction (1) */ 3336 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3337 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3338 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3339 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3340 ){ 3341 return 0; /* Restriction (2b) */ 3342 } 3343 } 3344 3345 pSubSrc = pSub->pSrc; 3346 assert( pSubSrc ); 3347 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3348 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3349 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3350 ** became arbitrary expressions, we were forced to add restrictions (13) 3351 ** and (14). */ 3352 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3353 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3354 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3355 return 0; /* Restriction (15) */ 3356 } 3357 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3358 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3359 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3360 return 0; /* Restrictions (8)(9) */ 3361 } 3362 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3363 return 0; /* Restriction (6) */ 3364 } 3365 if( p->pOrderBy && pSub->pOrderBy ){ 3366 return 0; /* Restriction (11) */ 3367 } 3368 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3369 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3370 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3371 return 0; /* Restriction (21) */ 3372 } 3373 testcase( pSub->selFlags & SF_Recursive ); 3374 testcase( pSub->selFlags & SF_MinMaxAgg ); 3375 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3376 return 0; /* Restrictions (22) and (24) */ 3377 } 3378 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3379 return 0; /* Restriction (23) */ 3380 } 3381 3382 /* OBSOLETE COMMENT 1: 3383 ** Restriction 3: If the subquery is a join, make sure the subquery is 3384 ** not used as the right operand of an outer join. Examples of why this 3385 ** is not allowed: 3386 ** 3387 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3388 ** 3389 ** If we flatten the above, we would get 3390 ** 3391 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3392 ** 3393 ** which is not at all the same thing. 3394 ** 3395 ** OBSOLETE COMMENT 2: 3396 ** Restriction 12: If the subquery is the right operand of a left outer 3397 ** join, make sure the subquery has no WHERE clause. 3398 ** An examples of why this is not allowed: 3399 ** 3400 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3401 ** 3402 ** If we flatten the above, we would get 3403 ** 3404 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3405 ** 3406 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3407 ** effectively converts the OUTER JOIN into an INNER JOIN. 3408 ** 3409 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3410 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3411 ** is fraught with danger. Best to avoid the whole thing. If the 3412 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3413 */ 3414 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3415 return 0; 3416 } 3417 3418 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3419 ** use only the UNION ALL operator. And none of the simple select queries 3420 ** that make up the compound SELECT are allowed to be aggregate or distinct 3421 ** queries. 3422 */ 3423 if( pSub->pPrior ){ 3424 if( pSub->pOrderBy ){ 3425 return 0; /* Restriction 20 */ 3426 } 3427 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3428 return 0; 3429 } 3430 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3431 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3432 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3433 assert( pSub->pSrc!=0 ); 3434 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3435 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3436 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3437 || pSub1->pSrc->nSrc<1 3438 ){ 3439 return 0; 3440 } 3441 testcase( pSub1->pSrc->nSrc>1 ); 3442 } 3443 3444 /* Restriction 18. */ 3445 if( p->pOrderBy ){ 3446 int ii; 3447 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3448 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3449 } 3450 } 3451 } 3452 3453 /***** If we reach this point, flattening is permitted. *****/ 3454 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3455 pSub->zSelName, pSub, iFrom)); 3456 3457 /* Authorize the subquery */ 3458 pParse->zAuthContext = pSubitem->zName; 3459 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3460 testcase( i==SQLITE_DENY ); 3461 pParse->zAuthContext = zSavedAuthContext; 3462 3463 /* If the sub-query is a compound SELECT statement, then (by restrictions 3464 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3465 ** be of the form: 3466 ** 3467 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3468 ** 3469 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3470 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3471 ** OFFSET clauses and joins them to the left-hand-side of the original 3472 ** using UNION ALL operators. In this case N is the number of simple 3473 ** select statements in the compound sub-query. 3474 ** 3475 ** Example: 3476 ** 3477 ** SELECT a+1 FROM ( 3478 ** SELECT x FROM tab 3479 ** UNION ALL 3480 ** SELECT y FROM tab 3481 ** UNION ALL 3482 ** SELECT abs(z*2) FROM tab2 3483 ** ) WHERE a!=5 ORDER BY 1 3484 ** 3485 ** Transformed into: 3486 ** 3487 ** SELECT x+1 FROM tab WHERE x+1!=5 3488 ** UNION ALL 3489 ** SELECT y+1 FROM tab WHERE y+1!=5 3490 ** UNION ALL 3491 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3492 ** ORDER BY 1 3493 ** 3494 ** We call this the "compound-subquery flattening". 3495 */ 3496 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3497 Select *pNew; 3498 ExprList *pOrderBy = p->pOrderBy; 3499 Expr *pLimit = p->pLimit; 3500 Expr *pOffset = p->pOffset; 3501 Select *pPrior = p->pPrior; 3502 p->pOrderBy = 0; 3503 p->pSrc = 0; 3504 p->pPrior = 0; 3505 p->pLimit = 0; 3506 p->pOffset = 0; 3507 pNew = sqlite3SelectDup(db, p, 0); 3508 sqlite3SelectSetName(pNew, pSub->zSelName); 3509 p->pOffset = pOffset; 3510 p->pLimit = pLimit; 3511 p->pOrderBy = pOrderBy; 3512 p->pSrc = pSrc; 3513 p->op = TK_ALL; 3514 if( pNew==0 ){ 3515 p->pPrior = pPrior; 3516 }else{ 3517 pNew->pPrior = pPrior; 3518 if( pPrior ) pPrior->pNext = pNew; 3519 pNew->pNext = p; 3520 p->pPrior = pNew; 3521 SELECTTRACE(2,pParse,p, 3522 ("compound-subquery flattener creates %s.%p as peer\n", 3523 pNew->zSelName, pNew)); 3524 } 3525 if( db->mallocFailed ) return 1; 3526 } 3527 3528 /* Begin flattening the iFrom-th entry of the FROM clause 3529 ** in the outer query. 3530 */ 3531 pSub = pSub1 = pSubitem->pSelect; 3532 3533 /* Delete the transient table structure associated with the 3534 ** subquery 3535 */ 3536 sqlite3DbFree(db, pSubitem->zDatabase); 3537 sqlite3DbFree(db, pSubitem->zName); 3538 sqlite3DbFree(db, pSubitem->zAlias); 3539 pSubitem->zDatabase = 0; 3540 pSubitem->zName = 0; 3541 pSubitem->zAlias = 0; 3542 pSubitem->pSelect = 0; 3543 3544 /* Defer deleting the Table object associated with the 3545 ** subquery until code generation is 3546 ** complete, since there may still exist Expr.pTab entries that 3547 ** refer to the subquery even after flattening. Ticket #3346. 3548 ** 3549 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3550 */ 3551 if( ALWAYS(pSubitem->pTab!=0) ){ 3552 Table *pTabToDel = pSubitem->pTab; 3553 if( pTabToDel->nRef==1 ){ 3554 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3555 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3556 pToplevel->pZombieTab = pTabToDel; 3557 }else{ 3558 pTabToDel->nRef--; 3559 } 3560 pSubitem->pTab = 0; 3561 } 3562 3563 /* The following loop runs once for each term in a compound-subquery 3564 ** flattening (as described above). If we are doing a different kind 3565 ** of flattening - a flattening other than a compound-subquery flattening - 3566 ** then this loop only runs once. 3567 ** 3568 ** This loop moves all of the FROM elements of the subquery into the 3569 ** the FROM clause of the outer query. Before doing this, remember 3570 ** the cursor number for the original outer query FROM element in 3571 ** iParent. The iParent cursor will never be used. Subsequent code 3572 ** will scan expressions looking for iParent references and replace 3573 ** those references with expressions that resolve to the subquery FROM 3574 ** elements we are now copying in. 3575 */ 3576 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3577 int nSubSrc; 3578 u8 jointype = 0; 3579 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3580 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3581 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3582 3583 if( pSrc ){ 3584 assert( pParent==p ); /* First time through the loop */ 3585 jointype = pSubitem->jointype; 3586 }else{ 3587 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3588 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3589 if( pSrc==0 ){ 3590 assert( db->mallocFailed ); 3591 break; 3592 } 3593 } 3594 3595 /* The subquery uses a single slot of the FROM clause of the outer 3596 ** query. If the subquery has more than one element in its FROM clause, 3597 ** then expand the outer query to make space for it to hold all elements 3598 ** of the subquery. 3599 ** 3600 ** Example: 3601 ** 3602 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3603 ** 3604 ** The outer query has 3 slots in its FROM clause. One slot of the 3605 ** outer query (the middle slot) is used by the subquery. The next 3606 ** block of code will expand the out query to 4 slots. The middle 3607 ** slot is expanded to two slots in order to make space for the 3608 ** two elements in the FROM clause of the subquery. 3609 */ 3610 if( nSubSrc>1 ){ 3611 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3612 if( db->mallocFailed ){ 3613 break; 3614 } 3615 } 3616 3617 /* Transfer the FROM clause terms from the subquery into the 3618 ** outer query. 3619 */ 3620 for(i=0; i<nSubSrc; i++){ 3621 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3622 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3623 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3624 } 3625 pSrc->a[iFrom].jointype = jointype; 3626 3627 /* Now begin substituting subquery result set expressions for 3628 ** references to the iParent in the outer query. 3629 ** 3630 ** Example: 3631 ** 3632 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3633 ** \ \_____________ subquery __________/ / 3634 ** \_____________________ outer query ______________________________/ 3635 ** 3636 ** We look at every expression in the outer query and every place we see 3637 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3638 */ 3639 pList = pParent->pEList; 3640 for(i=0; i<pList->nExpr; i++){ 3641 if( pList->a[i].zName==0 ){ 3642 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3643 sqlite3Dequote(zName); 3644 pList->a[i].zName = zName; 3645 } 3646 } 3647 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3648 if( isAgg ){ 3649 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3650 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3651 } 3652 if( pSub->pOrderBy ){ 3653 /* At this point, any non-zero iOrderByCol values indicate that the 3654 ** ORDER BY column expression is identical to the iOrderByCol'th 3655 ** expression returned by SELECT statement pSub. Since these values 3656 ** do not necessarily correspond to columns in SELECT statement pParent, 3657 ** zero them before transfering the ORDER BY clause. 3658 ** 3659 ** Not doing this may cause an error if a subsequent call to this 3660 ** function attempts to flatten a compound sub-query into pParent 3661 ** (the only way this can happen is if the compound sub-query is 3662 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3663 ExprList *pOrderBy = pSub->pOrderBy; 3664 for(i=0; i<pOrderBy->nExpr; i++){ 3665 pOrderBy->a[i].u.x.iOrderByCol = 0; 3666 } 3667 assert( pParent->pOrderBy==0 ); 3668 assert( pSub->pPrior==0 ); 3669 pParent->pOrderBy = pOrderBy; 3670 pSub->pOrderBy = 0; 3671 }else if( pParent->pOrderBy ){ 3672 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3673 } 3674 if( pSub->pWhere ){ 3675 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3676 }else{ 3677 pWhere = 0; 3678 } 3679 if( subqueryIsAgg ){ 3680 assert( pParent->pHaving==0 ); 3681 pParent->pHaving = pParent->pWhere; 3682 pParent->pWhere = pWhere; 3683 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3684 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3685 sqlite3ExprDup(db, pSub->pHaving, 0)); 3686 assert( pParent->pGroupBy==0 ); 3687 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3688 }else{ 3689 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3690 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3691 } 3692 3693 /* The flattened query is distinct if either the inner or the 3694 ** outer query is distinct. 3695 */ 3696 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3697 3698 /* 3699 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3700 ** 3701 ** One is tempted to try to add a and b to combine the limits. But this 3702 ** does not work if either limit is negative. 3703 */ 3704 if( pSub->pLimit ){ 3705 pParent->pLimit = pSub->pLimit; 3706 pSub->pLimit = 0; 3707 } 3708 } 3709 3710 /* Finially, delete what is left of the subquery and return 3711 ** success. 3712 */ 3713 sqlite3SelectDelete(db, pSub1); 3714 3715 #if SELECTTRACE_ENABLED 3716 if( sqlite3SelectTrace & 0x100 ){ 3717 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3718 sqlite3TreeViewSelect(0, p, 0); 3719 } 3720 #endif 3721 3722 return 1; 3723 } 3724 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3725 3726 3727 3728 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3729 /* 3730 ** Make copies of relevant WHERE clause terms of the outer query into 3731 ** the WHERE clause of subquery. Example: 3732 ** 3733 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3734 ** 3735 ** Transformed into: 3736 ** 3737 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3738 ** WHERE x=5 AND y=10; 3739 ** 3740 ** The hope is that the terms added to the inner query will make it more 3741 ** efficient. 3742 ** 3743 ** Do not attempt this optimization if: 3744 ** 3745 ** (1) The inner query is an aggregate. (In that case, we'd really want 3746 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3747 ** inner query. But they probably won't help there so do not bother.) 3748 ** 3749 ** (2) The inner query is the recursive part of a common table expression. 3750 ** 3751 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3752 ** close would change the meaning of the LIMIT). 3753 ** 3754 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3755 ** enforces this restriction since this routine does not have enough 3756 ** information to know.) 3757 ** 3758 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3759 ** terms are duplicated into the subquery. 3760 */ 3761 static int pushDownWhereTerms( 3762 sqlite3 *db, /* The database connection (for malloc()) */ 3763 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3764 Expr *pWhere, /* The WHERE clause of the outer query */ 3765 int iCursor /* Cursor number of the subquery */ 3766 ){ 3767 Expr *pNew; 3768 int nChng = 0; 3769 if( pWhere==0 ) return 0; 3770 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3771 return 0; /* restrictions (1) and (2) */ 3772 } 3773 if( pSubq->pLimit!=0 ){ 3774 return 0; /* restriction (3) */ 3775 } 3776 while( pWhere->op==TK_AND ){ 3777 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3778 pWhere = pWhere->pLeft; 3779 } 3780 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3781 nChng++; 3782 while( pSubq ){ 3783 pNew = sqlite3ExprDup(db, pWhere, 0); 3784 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3785 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3786 pSubq = pSubq->pPrior; 3787 } 3788 } 3789 return nChng; 3790 } 3791 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3792 3793 /* 3794 ** Based on the contents of the AggInfo structure indicated by the first 3795 ** argument, this function checks if the following are true: 3796 ** 3797 ** * the query contains just a single aggregate function, 3798 ** * the aggregate function is either min() or max(), and 3799 ** * the argument to the aggregate function is a column value. 3800 ** 3801 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3802 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3803 ** list of arguments passed to the aggregate before returning. 3804 ** 3805 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3806 ** WHERE_ORDERBY_NORMAL is returned. 3807 */ 3808 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3809 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3810 3811 *ppMinMax = 0; 3812 if( pAggInfo->nFunc==1 ){ 3813 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3814 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3815 3816 assert( pExpr->op==TK_AGG_FUNCTION ); 3817 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3818 const char *zFunc = pExpr->u.zToken; 3819 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3820 eRet = WHERE_ORDERBY_MIN; 3821 *ppMinMax = pEList; 3822 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3823 eRet = WHERE_ORDERBY_MAX; 3824 *ppMinMax = pEList; 3825 } 3826 } 3827 } 3828 3829 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3830 return eRet; 3831 } 3832 3833 /* 3834 ** The select statement passed as the first argument is an aggregate query. 3835 ** The second argument is the associated aggregate-info object. This 3836 ** function tests if the SELECT is of the form: 3837 ** 3838 ** SELECT count(*) FROM <tbl> 3839 ** 3840 ** where table is a database table, not a sub-select or view. If the query 3841 ** does match this pattern, then a pointer to the Table object representing 3842 ** <tbl> is returned. Otherwise, 0 is returned. 3843 */ 3844 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3845 Table *pTab; 3846 Expr *pExpr; 3847 3848 assert( !p->pGroupBy ); 3849 3850 if( p->pWhere || p->pEList->nExpr!=1 3851 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3852 ){ 3853 return 0; 3854 } 3855 pTab = p->pSrc->a[0].pTab; 3856 pExpr = p->pEList->a[0].pExpr; 3857 assert( pTab && !pTab->pSelect && pExpr ); 3858 3859 if( IsVirtual(pTab) ) return 0; 3860 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3861 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3862 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3863 if( pExpr->flags&EP_Distinct ) return 0; 3864 3865 return pTab; 3866 } 3867 3868 /* 3869 ** If the source-list item passed as an argument was augmented with an 3870 ** INDEXED BY clause, then try to locate the specified index. If there 3871 ** was such a clause and the named index cannot be found, return 3872 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3873 ** pFrom->pIndex and return SQLITE_OK. 3874 */ 3875 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3876 if( pFrom->pTab && pFrom->zIndexedBy ){ 3877 Table *pTab = pFrom->pTab; 3878 char *zIndexedBy = pFrom->zIndexedBy; 3879 Index *pIdx; 3880 for(pIdx=pTab->pIndex; 3881 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3882 pIdx=pIdx->pNext 3883 ); 3884 if( !pIdx ){ 3885 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3886 pParse->checkSchema = 1; 3887 return SQLITE_ERROR; 3888 } 3889 pFrom->pIndex = pIdx; 3890 } 3891 return SQLITE_OK; 3892 } 3893 /* 3894 ** Detect compound SELECT statements that use an ORDER BY clause with 3895 ** an alternative collating sequence. 3896 ** 3897 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3898 ** 3899 ** These are rewritten as a subquery: 3900 ** 3901 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3902 ** ORDER BY ... COLLATE ... 3903 ** 3904 ** This transformation is necessary because the multiSelectOrderBy() routine 3905 ** above that generates the code for a compound SELECT with an ORDER BY clause 3906 ** uses a merge algorithm that requires the same collating sequence on the 3907 ** result columns as on the ORDER BY clause. See ticket 3908 ** http://www.sqlite.org/src/info/6709574d2a 3909 ** 3910 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3911 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3912 ** there are COLLATE terms in the ORDER BY. 3913 */ 3914 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3915 int i; 3916 Select *pNew; 3917 Select *pX; 3918 sqlite3 *db; 3919 struct ExprList_item *a; 3920 SrcList *pNewSrc; 3921 Parse *pParse; 3922 Token dummy; 3923 3924 if( p->pPrior==0 ) return WRC_Continue; 3925 if( p->pOrderBy==0 ) return WRC_Continue; 3926 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3927 if( pX==0 ) return WRC_Continue; 3928 a = p->pOrderBy->a; 3929 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3930 if( a[i].pExpr->flags & EP_Collate ) break; 3931 } 3932 if( i<0 ) return WRC_Continue; 3933 3934 /* If we reach this point, that means the transformation is required. */ 3935 3936 pParse = pWalker->pParse; 3937 db = pParse->db; 3938 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3939 if( pNew==0 ) return WRC_Abort; 3940 memset(&dummy, 0, sizeof(dummy)); 3941 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3942 if( pNewSrc==0 ) return WRC_Abort; 3943 *pNew = *p; 3944 p->pSrc = pNewSrc; 3945 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3946 p->op = TK_SELECT; 3947 p->pWhere = 0; 3948 pNew->pGroupBy = 0; 3949 pNew->pHaving = 0; 3950 pNew->pOrderBy = 0; 3951 p->pPrior = 0; 3952 p->pNext = 0; 3953 p->pWith = 0; 3954 p->selFlags &= ~SF_Compound; 3955 assert( (p->selFlags & SF_Converted)==0 ); 3956 p->selFlags |= SF_Converted; 3957 assert( pNew->pPrior!=0 ); 3958 pNew->pPrior->pNext = pNew; 3959 pNew->pLimit = 0; 3960 pNew->pOffset = 0; 3961 return WRC_Continue; 3962 } 3963 3964 #ifndef SQLITE_OMIT_CTE 3965 /* 3966 ** Argument pWith (which may be NULL) points to a linked list of nested 3967 ** WITH contexts, from inner to outermost. If the table identified by 3968 ** FROM clause element pItem is really a common-table-expression (CTE) 3969 ** then return a pointer to the CTE definition for that table. Otherwise 3970 ** return NULL. 3971 ** 3972 ** If a non-NULL value is returned, set *ppContext to point to the With 3973 ** object that the returned CTE belongs to. 3974 */ 3975 static struct Cte *searchWith( 3976 With *pWith, /* Current outermost WITH clause */ 3977 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3978 With **ppContext /* OUT: WITH clause return value belongs to */ 3979 ){ 3980 const char *zName; 3981 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3982 With *p; 3983 for(p=pWith; p; p=p->pOuter){ 3984 int i; 3985 for(i=0; i<p->nCte; i++){ 3986 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3987 *ppContext = p; 3988 return &p->a[i]; 3989 } 3990 } 3991 } 3992 } 3993 return 0; 3994 } 3995 3996 /* The code generator maintains a stack of active WITH clauses 3997 ** with the inner-most WITH clause being at the top of the stack. 3998 ** 3999 ** This routine pushes the WITH clause passed as the second argument 4000 ** onto the top of the stack. If argument bFree is true, then this 4001 ** WITH clause will never be popped from the stack. In this case it 4002 ** should be freed along with the Parse object. In other cases, when 4003 ** bFree==0, the With object will be freed along with the SELECT 4004 ** statement with which it is associated. 4005 */ 4006 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4007 assert( bFree==0 || pParse->pWith==0 ); 4008 if( pWith ){ 4009 pWith->pOuter = pParse->pWith; 4010 pParse->pWith = pWith; 4011 pParse->bFreeWith = bFree; 4012 } 4013 } 4014 4015 /* 4016 ** This function checks if argument pFrom refers to a CTE declared by 4017 ** a WITH clause on the stack currently maintained by the parser. And, 4018 ** if currently processing a CTE expression, if it is a recursive 4019 ** reference to the current CTE. 4020 ** 4021 ** If pFrom falls into either of the two categories above, pFrom->pTab 4022 ** and other fields are populated accordingly. The caller should check 4023 ** (pFrom->pTab!=0) to determine whether or not a successful match 4024 ** was found. 4025 ** 4026 ** Whether or not a match is found, SQLITE_OK is returned if no error 4027 ** occurs. If an error does occur, an error message is stored in the 4028 ** parser and some error code other than SQLITE_OK returned. 4029 */ 4030 static int withExpand( 4031 Walker *pWalker, 4032 struct SrcList_item *pFrom 4033 ){ 4034 Parse *pParse = pWalker->pParse; 4035 sqlite3 *db = pParse->db; 4036 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4037 With *pWith; /* WITH clause that pCte belongs to */ 4038 4039 assert( pFrom->pTab==0 ); 4040 4041 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4042 if( pCte ){ 4043 Table *pTab; 4044 ExprList *pEList; 4045 Select *pSel; 4046 Select *pLeft; /* Left-most SELECT statement */ 4047 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4048 With *pSavedWith; /* Initial value of pParse->pWith */ 4049 4050 /* If pCte->zErr is non-NULL at this point, then this is an illegal 4051 ** recursive reference to CTE pCte. Leave an error in pParse and return 4052 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 4053 ** In this case, proceed. */ 4054 if( pCte->zErr ){ 4055 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 4056 return SQLITE_ERROR; 4057 } 4058 4059 assert( pFrom->pTab==0 ); 4060 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4061 if( pTab==0 ) return WRC_Abort; 4062 pTab->nRef = 1; 4063 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4064 pTab->iPKey = -1; 4065 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4066 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4067 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4068 if( db->mallocFailed ) return SQLITE_NOMEM; 4069 assert( pFrom->pSelect ); 4070 4071 /* Check if this is a recursive CTE. */ 4072 pSel = pFrom->pSelect; 4073 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4074 if( bMayRecursive ){ 4075 int i; 4076 SrcList *pSrc = pFrom->pSelect->pSrc; 4077 for(i=0; i<pSrc->nSrc; i++){ 4078 struct SrcList_item *pItem = &pSrc->a[i]; 4079 if( pItem->zDatabase==0 4080 && pItem->zName!=0 4081 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4082 ){ 4083 pItem->pTab = pTab; 4084 pItem->isRecursive = 1; 4085 pTab->nRef++; 4086 pSel->selFlags |= SF_Recursive; 4087 } 4088 } 4089 } 4090 4091 /* Only one recursive reference is permitted. */ 4092 if( pTab->nRef>2 ){ 4093 sqlite3ErrorMsg( 4094 pParse, "multiple references to recursive table: %s", pCte->zName 4095 ); 4096 return SQLITE_ERROR; 4097 } 4098 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4099 4100 pCte->zErr = "circular reference: %s"; 4101 pSavedWith = pParse->pWith; 4102 pParse->pWith = pWith; 4103 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4104 4105 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4106 pEList = pLeft->pEList; 4107 if( pCte->pCols ){ 4108 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4109 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4110 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4111 ); 4112 pParse->pWith = pSavedWith; 4113 return SQLITE_ERROR; 4114 } 4115 pEList = pCte->pCols; 4116 } 4117 4118 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4119 if( bMayRecursive ){ 4120 if( pSel->selFlags & SF_Recursive ){ 4121 pCte->zErr = "multiple recursive references: %s"; 4122 }else{ 4123 pCte->zErr = "recursive reference in a subquery: %s"; 4124 } 4125 sqlite3WalkSelect(pWalker, pSel); 4126 } 4127 pCte->zErr = 0; 4128 pParse->pWith = pSavedWith; 4129 } 4130 4131 return SQLITE_OK; 4132 } 4133 #endif 4134 4135 #ifndef SQLITE_OMIT_CTE 4136 /* 4137 ** If the SELECT passed as the second argument has an associated WITH 4138 ** clause, pop it from the stack stored as part of the Parse object. 4139 ** 4140 ** This function is used as the xSelectCallback2() callback by 4141 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4142 ** names and other FROM clause elements. 4143 */ 4144 static void selectPopWith(Walker *pWalker, Select *p){ 4145 Parse *pParse = pWalker->pParse; 4146 With *pWith = findRightmost(p)->pWith; 4147 if( pWith!=0 ){ 4148 assert( pParse->pWith==pWith ); 4149 pParse->pWith = pWith->pOuter; 4150 } 4151 } 4152 #else 4153 #define selectPopWith 0 4154 #endif 4155 4156 /* 4157 ** This routine is a Walker callback for "expanding" a SELECT statement. 4158 ** "Expanding" means to do the following: 4159 ** 4160 ** (1) Make sure VDBE cursor numbers have been assigned to every 4161 ** element of the FROM clause. 4162 ** 4163 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4164 ** defines FROM clause. When views appear in the FROM clause, 4165 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4166 ** that implements the view. A copy is made of the view's SELECT 4167 ** statement so that we can freely modify or delete that statement 4168 ** without worrying about messing up the persistent representation 4169 ** of the view. 4170 ** 4171 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4172 ** on joins and the ON and USING clause of joins. 4173 ** 4174 ** (4) Scan the list of columns in the result set (pEList) looking 4175 ** for instances of the "*" operator or the TABLE.* operator. 4176 ** If found, expand each "*" to be every column in every table 4177 ** and TABLE.* to be every column in TABLE. 4178 ** 4179 */ 4180 static int selectExpander(Walker *pWalker, Select *p){ 4181 Parse *pParse = pWalker->pParse; 4182 int i, j, k; 4183 SrcList *pTabList; 4184 ExprList *pEList; 4185 struct SrcList_item *pFrom; 4186 sqlite3 *db = pParse->db; 4187 Expr *pE, *pRight, *pExpr; 4188 u16 selFlags = p->selFlags; 4189 4190 p->selFlags |= SF_Expanded; 4191 if( db->mallocFailed ){ 4192 return WRC_Abort; 4193 } 4194 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4195 return WRC_Prune; 4196 } 4197 pTabList = p->pSrc; 4198 pEList = p->pEList; 4199 if( pWalker->xSelectCallback2==selectPopWith ){ 4200 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4201 } 4202 4203 /* Make sure cursor numbers have been assigned to all entries in 4204 ** the FROM clause of the SELECT statement. 4205 */ 4206 sqlite3SrcListAssignCursors(pParse, pTabList); 4207 4208 /* Look up every table named in the FROM clause of the select. If 4209 ** an entry of the FROM clause is a subquery instead of a table or view, 4210 ** then create a transient table structure to describe the subquery. 4211 */ 4212 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4213 Table *pTab; 4214 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4215 if( pFrom->isRecursive ) continue; 4216 if( pFrom->pTab!=0 ){ 4217 /* This statement has already been prepared. There is no need 4218 ** to go further. */ 4219 assert( i==0 ); 4220 #ifndef SQLITE_OMIT_CTE 4221 selectPopWith(pWalker, p); 4222 #endif 4223 return WRC_Prune; 4224 } 4225 #ifndef SQLITE_OMIT_CTE 4226 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4227 if( pFrom->pTab ) {} else 4228 #endif 4229 if( pFrom->zName==0 ){ 4230 #ifndef SQLITE_OMIT_SUBQUERY 4231 Select *pSel = pFrom->pSelect; 4232 /* A sub-query in the FROM clause of a SELECT */ 4233 assert( pSel!=0 ); 4234 assert( pFrom->pTab==0 ); 4235 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4236 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4237 if( pTab==0 ) return WRC_Abort; 4238 pTab->nRef = 1; 4239 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4240 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4241 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4242 pTab->iPKey = -1; 4243 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4244 pTab->tabFlags |= TF_Ephemeral; 4245 #endif 4246 }else{ 4247 /* An ordinary table or view name in the FROM clause */ 4248 assert( pFrom->pTab==0 ); 4249 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4250 if( pTab==0 ) return WRC_Abort; 4251 if( pTab->nRef==0xffff ){ 4252 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4253 pTab->zName); 4254 pFrom->pTab = 0; 4255 return WRC_Abort; 4256 } 4257 pTab->nRef++; 4258 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4259 if( pTab->pSelect || IsVirtual(pTab) ){ 4260 /* We reach here if the named table is a really a view */ 4261 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4262 assert( pFrom->pSelect==0 ); 4263 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4264 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4265 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4266 } 4267 #endif 4268 } 4269 4270 /* Locate the index named by the INDEXED BY clause, if any. */ 4271 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4272 return WRC_Abort; 4273 } 4274 } 4275 4276 /* Process NATURAL keywords, and ON and USING clauses of joins. 4277 */ 4278 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4279 return WRC_Abort; 4280 } 4281 4282 /* For every "*" that occurs in the column list, insert the names of 4283 ** all columns in all tables. And for every TABLE.* insert the names 4284 ** of all columns in TABLE. The parser inserted a special expression 4285 ** with the TK_ALL operator for each "*" that it found in the column list. 4286 ** The following code just has to locate the TK_ALL expressions and expand 4287 ** each one to the list of all columns in all tables. 4288 ** 4289 ** The first loop just checks to see if there are any "*" operators 4290 ** that need expanding. 4291 */ 4292 for(k=0; k<pEList->nExpr; k++){ 4293 pE = pEList->a[k].pExpr; 4294 if( pE->op==TK_ALL ) break; 4295 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4296 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4297 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4298 } 4299 if( k<pEList->nExpr ){ 4300 /* 4301 ** If we get here it means the result set contains one or more "*" 4302 ** operators that need to be expanded. Loop through each expression 4303 ** in the result set and expand them one by one. 4304 */ 4305 struct ExprList_item *a = pEList->a; 4306 ExprList *pNew = 0; 4307 int flags = pParse->db->flags; 4308 int longNames = (flags & SQLITE_FullColNames)!=0 4309 && (flags & SQLITE_ShortColNames)==0; 4310 4311 for(k=0; k<pEList->nExpr; k++){ 4312 pE = a[k].pExpr; 4313 pRight = pE->pRight; 4314 assert( pE->op!=TK_DOT || pRight!=0 ); 4315 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4316 /* This particular expression does not need to be expanded. 4317 */ 4318 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4319 if( pNew ){ 4320 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4321 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4322 a[k].zName = 0; 4323 a[k].zSpan = 0; 4324 } 4325 a[k].pExpr = 0; 4326 }else{ 4327 /* This expression is a "*" or a "TABLE.*" and needs to be 4328 ** expanded. */ 4329 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4330 char *zTName = 0; /* text of name of TABLE */ 4331 if( pE->op==TK_DOT ){ 4332 assert( pE->pLeft!=0 ); 4333 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4334 zTName = pE->pLeft->u.zToken; 4335 } 4336 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4337 Table *pTab = pFrom->pTab; 4338 Select *pSub = pFrom->pSelect; 4339 char *zTabName = pFrom->zAlias; 4340 const char *zSchemaName = 0; 4341 int iDb; 4342 if( zTabName==0 ){ 4343 zTabName = pTab->zName; 4344 } 4345 if( db->mallocFailed ) break; 4346 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4347 pSub = 0; 4348 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4349 continue; 4350 } 4351 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4352 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4353 } 4354 for(j=0; j<pTab->nCol; j++){ 4355 char *zName = pTab->aCol[j].zName; 4356 char *zColname; /* The computed column name */ 4357 char *zToFree; /* Malloced string that needs to be freed */ 4358 Token sColname; /* Computed column name as a token */ 4359 4360 assert( zName ); 4361 if( zTName && pSub 4362 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4363 ){ 4364 continue; 4365 } 4366 4367 /* If a column is marked as 'hidden' (currently only possible 4368 ** for virtual tables), do not include it in the expanded 4369 ** result-set list. 4370 */ 4371 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4372 assert(IsVirtual(pTab)); 4373 continue; 4374 } 4375 tableSeen = 1; 4376 4377 if( i>0 && zTName==0 ){ 4378 if( (pFrom->jointype & JT_NATURAL)!=0 4379 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4380 ){ 4381 /* In a NATURAL join, omit the join columns from the 4382 ** table to the right of the join */ 4383 continue; 4384 } 4385 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4386 /* In a join with a USING clause, omit columns in the 4387 ** using clause from the table on the right. */ 4388 continue; 4389 } 4390 } 4391 pRight = sqlite3Expr(db, TK_ID, zName); 4392 zColname = zName; 4393 zToFree = 0; 4394 if( longNames || pTabList->nSrc>1 ){ 4395 Expr *pLeft; 4396 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4397 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4398 if( zSchemaName ){ 4399 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4400 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4401 } 4402 if( longNames ){ 4403 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4404 zToFree = zColname; 4405 } 4406 }else{ 4407 pExpr = pRight; 4408 } 4409 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4410 sColname.z = zColname; 4411 sColname.n = sqlite3Strlen30(zColname); 4412 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4413 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4414 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4415 if( pSub ){ 4416 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4417 testcase( pX->zSpan==0 ); 4418 }else{ 4419 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4420 zSchemaName, zTabName, zColname); 4421 testcase( pX->zSpan==0 ); 4422 } 4423 pX->bSpanIsTab = 1; 4424 } 4425 sqlite3DbFree(db, zToFree); 4426 } 4427 } 4428 if( !tableSeen ){ 4429 if( zTName ){ 4430 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4431 }else{ 4432 sqlite3ErrorMsg(pParse, "no tables specified"); 4433 } 4434 } 4435 } 4436 } 4437 sqlite3ExprListDelete(db, pEList); 4438 p->pEList = pNew; 4439 } 4440 #if SQLITE_MAX_COLUMN 4441 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4442 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4443 } 4444 #endif 4445 return WRC_Continue; 4446 } 4447 4448 /* 4449 ** No-op routine for the parse-tree walker. 4450 ** 4451 ** When this routine is the Walker.xExprCallback then expression trees 4452 ** are walked without any actions being taken at each node. Presumably, 4453 ** when this routine is used for Walker.xExprCallback then 4454 ** Walker.xSelectCallback is set to do something useful for every 4455 ** subquery in the parser tree. 4456 */ 4457 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4458 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4459 return WRC_Continue; 4460 } 4461 4462 /* 4463 ** This routine "expands" a SELECT statement and all of its subqueries. 4464 ** For additional information on what it means to "expand" a SELECT 4465 ** statement, see the comment on the selectExpand worker callback above. 4466 ** 4467 ** Expanding a SELECT statement is the first step in processing a 4468 ** SELECT statement. The SELECT statement must be expanded before 4469 ** name resolution is performed. 4470 ** 4471 ** If anything goes wrong, an error message is written into pParse. 4472 ** The calling function can detect the problem by looking at pParse->nErr 4473 ** and/or pParse->db->mallocFailed. 4474 */ 4475 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4476 Walker w; 4477 memset(&w, 0, sizeof(w)); 4478 w.xExprCallback = exprWalkNoop; 4479 w.pParse = pParse; 4480 if( pParse->hasCompound ){ 4481 w.xSelectCallback = convertCompoundSelectToSubquery; 4482 sqlite3WalkSelect(&w, pSelect); 4483 } 4484 w.xSelectCallback = selectExpander; 4485 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4486 w.xSelectCallback2 = selectPopWith; 4487 } 4488 sqlite3WalkSelect(&w, pSelect); 4489 } 4490 4491 4492 #ifndef SQLITE_OMIT_SUBQUERY 4493 /* 4494 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4495 ** interface. 4496 ** 4497 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4498 ** information to the Table structure that represents the result set 4499 ** of that subquery. 4500 ** 4501 ** The Table structure that represents the result set was constructed 4502 ** by selectExpander() but the type and collation information was omitted 4503 ** at that point because identifiers had not yet been resolved. This 4504 ** routine is called after identifier resolution. 4505 */ 4506 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4507 Parse *pParse; 4508 int i; 4509 SrcList *pTabList; 4510 struct SrcList_item *pFrom; 4511 4512 assert( p->selFlags & SF_Resolved ); 4513 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4514 p->selFlags |= SF_HasTypeInfo; 4515 pParse = pWalker->pParse; 4516 pTabList = p->pSrc; 4517 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4518 Table *pTab = pFrom->pTab; 4519 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4520 /* A sub-query in the FROM clause of a SELECT */ 4521 Select *pSel = pFrom->pSelect; 4522 if( pSel ){ 4523 while( pSel->pPrior ) pSel = pSel->pPrior; 4524 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4525 } 4526 } 4527 } 4528 } 4529 } 4530 #endif 4531 4532 4533 /* 4534 ** This routine adds datatype and collating sequence information to 4535 ** the Table structures of all FROM-clause subqueries in a 4536 ** SELECT statement. 4537 ** 4538 ** Use this routine after name resolution. 4539 */ 4540 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4541 #ifndef SQLITE_OMIT_SUBQUERY 4542 Walker w; 4543 memset(&w, 0, sizeof(w)); 4544 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4545 w.xExprCallback = exprWalkNoop; 4546 w.pParse = pParse; 4547 sqlite3WalkSelect(&w, pSelect); 4548 #endif 4549 } 4550 4551 4552 /* 4553 ** This routine sets up a SELECT statement for processing. The 4554 ** following is accomplished: 4555 ** 4556 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4557 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4558 ** * ON and USING clauses are shifted into WHERE statements 4559 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4560 ** * Identifiers in expression are matched to tables. 4561 ** 4562 ** This routine acts recursively on all subqueries within the SELECT. 4563 */ 4564 void sqlite3SelectPrep( 4565 Parse *pParse, /* The parser context */ 4566 Select *p, /* The SELECT statement being coded. */ 4567 NameContext *pOuterNC /* Name context for container */ 4568 ){ 4569 sqlite3 *db; 4570 if( NEVER(p==0) ) return; 4571 db = pParse->db; 4572 if( db->mallocFailed ) return; 4573 if( p->selFlags & SF_HasTypeInfo ) return; 4574 sqlite3SelectExpand(pParse, p); 4575 if( pParse->nErr || db->mallocFailed ) return; 4576 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4577 if( pParse->nErr || db->mallocFailed ) return; 4578 sqlite3SelectAddTypeInfo(pParse, p); 4579 } 4580 4581 /* 4582 ** Reset the aggregate accumulator. 4583 ** 4584 ** The aggregate accumulator is a set of memory cells that hold 4585 ** intermediate results while calculating an aggregate. This 4586 ** routine generates code that stores NULLs in all of those memory 4587 ** cells. 4588 */ 4589 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4590 Vdbe *v = pParse->pVdbe; 4591 int i; 4592 struct AggInfo_func *pFunc; 4593 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4594 if( nReg==0 ) return; 4595 #ifdef SQLITE_DEBUG 4596 /* Verify that all AggInfo registers are within the range specified by 4597 ** AggInfo.mnReg..AggInfo.mxReg */ 4598 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4599 for(i=0; i<pAggInfo->nColumn; i++){ 4600 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4601 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4602 } 4603 for(i=0; i<pAggInfo->nFunc; i++){ 4604 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4605 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4606 } 4607 #endif 4608 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4609 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4610 if( pFunc->iDistinct>=0 ){ 4611 Expr *pE = pFunc->pExpr; 4612 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4613 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4614 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4615 "argument"); 4616 pFunc->iDistinct = -1; 4617 }else{ 4618 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4619 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4620 (char*)pKeyInfo, P4_KEYINFO); 4621 } 4622 } 4623 } 4624 } 4625 4626 /* 4627 ** Invoke the OP_AggFinalize opcode for every aggregate function 4628 ** in the AggInfo structure. 4629 */ 4630 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4631 Vdbe *v = pParse->pVdbe; 4632 int i; 4633 struct AggInfo_func *pF; 4634 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4635 ExprList *pList = pF->pExpr->x.pList; 4636 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4637 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4638 (void*)pF->pFunc, P4_FUNCDEF); 4639 } 4640 } 4641 4642 /* 4643 ** Update the accumulator memory cells for an aggregate based on 4644 ** the current cursor position. 4645 */ 4646 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4647 Vdbe *v = pParse->pVdbe; 4648 int i; 4649 int regHit = 0; 4650 int addrHitTest = 0; 4651 struct AggInfo_func *pF; 4652 struct AggInfo_col *pC; 4653 4654 pAggInfo->directMode = 1; 4655 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4656 int nArg; 4657 int addrNext = 0; 4658 int regAgg; 4659 ExprList *pList = pF->pExpr->x.pList; 4660 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4661 if( pList ){ 4662 nArg = pList->nExpr; 4663 regAgg = sqlite3GetTempRange(pParse, nArg); 4664 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4665 }else{ 4666 nArg = 0; 4667 regAgg = 0; 4668 } 4669 if( pF->iDistinct>=0 ){ 4670 addrNext = sqlite3VdbeMakeLabel(v); 4671 testcase( nArg==0 ); /* Error condition */ 4672 testcase( nArg>1 ); /* Also an error */ 4673 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4674 } 4675 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4676 CollSeq *pColl = 0; 4677 struct ExprList_item *pItem; 4678 int j; 4679 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4680 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4681 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4682 } 4683 if( !pColl ){ 4684 pColl = pParse->db->pDfltColl; 4685 } 4686 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4687 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4688 } 4689 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4690 (void*)pF->pFunc, P4_FUNCDEF); 4691 sqlite3VdbeChangeP5(v, (u8)nArg); 4692 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4693 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4694 if( addrNext ){ 4695 sqlite3VdbeResolveLabel(v, addrNext); 4696 sqlite3ExprCacheClear(pParse); 4697 } 4698 } 4699 4700 /* Before populating the accumulator registers, clear the column cache. 4701 ** Otherwise, if any of the required column values are already present 4702 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4703 ** to pC->iMem. But by the time the value is used, the original register 4704 ** may have been used, invalidating the underlying buffer holding the 4705 ** text or blob value. See ticket [883034dcb5]. 4706 ** 4707 ** Another solution would be to change the OP_SCopy used to copy cached 4708 ** values to an OP_Copy. 4709 */ 4710 if( regHit ){ 4711 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4712 } 4713 sqlite3ExprCacheClear(pParse); 4714 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4715 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4716 } 4717 pAggInfo->directMode = 0; 4718 sqlite3ExprCacheClear(pParse); 4719 if( addrHitTest ){ 4720 sqlite3VdbeJumpHere(v, addrHitTest); 4721 } 4722 } 4723 4724 /* 4725 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4726 ** count(*) query ("SELECT count(*) FROM pTab"). 4727 */ 4728 #ifndef SQLITE_OMIT_EXPLAIN 4729 static void explainSimpleCount( 4730 Parse *pParse, /* Parse context */ 4731 Table *pTab, /* Table being queried */ 4732 Index *pIdx /* Index used to optimize scan, or NULL */ 4733 ){ 4734 if( pParse->explain==2 ){ 4735 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4736 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4737 pTab->zName, 4738 bCover ? " USING COVERING INDEX " : "", 4739 bCover ? pIdx->zName : "" 4740 ); 4741 sqlite3VdbeAddOp4( 4742 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4743 ); 4744 } 4745 } 4746 #else 4747 # define explainSimpleCount(a,b,c) 4748 #endif 4749 4750 /* 4751 ** Generate code for the SELECT statement given in the p argument. 4752 ** 4753 ** The results are returned according to the SelectDest structure. 4754 ** See comments in sqliteInt.h for further information. 4755 ** 4756 ** This routine returns the number of errors. If any errors are 4757 ** encountered, then an appropriate error message is left in 4758 ** pParse->zErrMsg. 4759 ** 4760 ** This routine does NOT free the Select structure passed in. The 4761 ** calling function needs to do that. 4762 */ 4763 int sqlite3Select( 4764 Parse *pParse, /* The parser context */ 4765 Select *p, /* The SELECT statement being coded. */ 4766 SelectDest *pDest /* What to do with the query results */ 4767 ){ 4768 int i, j; /* Loop counters */ 4769 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4770 Vdbe *v; /* The virtual machine under construction */ 4771 int isAgg; /* True for select lists like "count(*)" */ 4772 ExprList *pEList; /* List of columns to extract. */ 4773 SrcList *pTabList; /* List of tables to select from */ 4774 Expr *pWhere; /* The WHERE clause. May be NULL */ 4775 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4776 Expr *pHaving; /* The HAVING clause. May be NULL */ 4777 int rc = 1; /* Value to return from this function */ 4778 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4779 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4780 AggInfo sAggInfo; /* Information used by aggregate queries */ 4781 int iEnd; /* Address of the end of the query */ 4782 sqlite3 *db; /* The database connection */ 4783 4784 #ifndef SQLITE_OMIT_EXPLAIN 4785 int iRestoreSelectId = pParse->iSelectId; 4786 pParse->iSelectId = pParse->iNextSelectId++; 4787 #endif 4788 4789 db = pParse->db; 4790 if( p==0 || db->mallocFailed || pParse->nErr ){ 4791 return 1; 4792 } 4793 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4794 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4795 #if SELECTTRACE_ENABLED 4796 pParse->nSelectIndent++; 4797 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4798 if( sqlite3SelectTrace & 0x100 ){ 4799 sqlite3TreeViewSelect(0, p, 0); 4800 } 4801 #endif 4802 4803 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4804 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4805 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4806 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4807 if( IgnorableOrderby(pDest) ){ 4808 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4809 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4810 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4811 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4812 /* If ORDER BY makes no difference in the output then neither does 4813 ** DISTINCT so it can be removed too. */ 4814 sqlite3ExprListDelete(db, p->pOrderBy); 4815 p->pOrderBy = 0; 4816 p->selFlags &= ~SF_Distinct; 4817 } 4818 sqlite3SelectPrep(pParse, p, 0); 4819 memset(&sSort, 0, sizeof(sSort)); 4820 sSort.pOrderBy = p->pOrderBy; 4821 pTabList = p->pSrc; 4822 if( pParse->nErr || db->mallocFailed ){ 4823 goto select_end; 4824 } 4825 assert( p->pEList!=0 ); 4826 isAgg = (p->selFlags & SF_Aggregate)!=0; 4827 #if SELECTTRACE_ENABLED 4828 if( sqlite3SelectTrace & 0x100 ){ 4829 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4830 sqlite3TreeViewSelect(0, p, 0); 4831 } 4832 #endif 4833 4834 4835 /* If writing to memory or generating a set 4836 ** only a single column may be output. 4837 */ 4838 #ifndef SQLITE_OMIT_SUBQUERY 4839 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4840 goto select_end; 4841 } 4842 #endif 4843 4844 /* Try to flatten subqueries in the FROM clause up into the main query 4845 */ 4846 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4847 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4848 struct SrcList_item *pItem = &pTabList->a[i]; 4849 Select *pSub = pItem->pSelect; 4850 int isAggSub; 4851 if( pSub==0 ) continue; 4852 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4853 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4854 /* This subquery can be absorbed into its parent. */ 4855 if( isAggSub ){ 4856 isAgg = 1; 4857 p->selFlags |= SF_Aggregate; 4858 } 4859 i = -1; 4860 } 4861 pTabList = p->pSrc; 4862 if( db->mallocFailed ) goto select_end; 4863 if( !IgnorableOrderby(pDest) ){ 4864 sSort.pOrderBy = p->pOrderBy; 4865 } 4866 } 4867 #endif 4868 4869 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4870 ** does not already exist */ 4871 v = sqlite3GetVdbe(pParse); 4872 if( v==0 ) goto select_end; 4873 4874 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4875 /* Handle compound SELECT statements using the separate multiSelect() 4876 ** procedure. 4877 */ 4878 if( p->pPrior ){ 4879 rc = multiSelect(pParse, p, pDest); 4880 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4881 #if SELECTTRACE_ENABLED 4882 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4883 pParse->nSelectIndent--; 4884 #endif 4885 return rc; 4886 } 4887 #endif 4888 4889 /* Generate code for all sub-queries in the FROM clause 4890 */ 4891 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4892 for(i=0; i<pTabList->nSrc; i++){ 4893 struct SrcList_item *pItem = &pTabList->a[i]; 4894 SelectDest dest; 4895 Select *pSub = pItem->pSelect; 4896 if( pSub==0 ) continue; 4897 4898 /* Sometimes the code for a subquery will be generated more than 4899 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4900 ** for example. In that case, do not regenerate the code to manifest 4901 ** a view or the co-routine to implement a view. The first instance 4902 ** is sufficient, though the subroutine to manifest the view does need 4903 ** to be invoked again. */ 4904 if( pItem->addrFillSub ){ 4905 if( pItem->viaCoroutine==0 ){ 4906 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4907 } 4908 continue; 4909 } 4910 4911 /* Increment Parse.nHeight by the height of the largest expression 4912 ** tree referred to by this, the parent select. The child select 4913 ** may contain expression trees of at most 4914 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4915 ** more conservative than necessary, but much easier than enforcing 4916 ** an exact limit. 4917 */ 4918 pParse->nHeight += sqlite3SelectExprHeight(p); 4919 4920 /* Make copies of constant WHERE-clause terms in the outer query down 4921 ** inside the subquery. This can help the subquery to run more efficiently. 4922 */ 4923 if( (pItem->jointype & JT_OUTER)==0 4924 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4925 ){ 4926 #if SELECTTRACE_ENABLED 4927 if( sqlite3SelectTrace & 0x100 ){ 4928 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4929 sqlite3TreeViewSelect(0, p, 0); 4930 } 4931 #endif 4932 } 4933 4934 /* Generate code to implement the subquery 4935 */ 4936 if( pTabList->nSrc==1 4937 && (p->selFlags & SF_All)==0 4938 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4939 ){ 4940 /* Implement a co-routine that will return a single row of the result 4941 ** set on each invocation. 4942 */ 4943 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4944 pItem->regReturn = ++pParse->nMem; 4945 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4946 VdbeComment((v, "%s", pItem->pTab->zName)); 4947 pItem->addrFillSub = addrTop; 4948 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4949 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4950 sqlite3Select(pParse, pSub, &dest); 4951 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4952 pItem->viaCoroutine = 1; 4953 pItem->regResult = dest.iSdst; 4954 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4955 sqlite3VdbeJumpHere(v, addrTop-1); 4956 sqlite3ClearTempRegCache(pParse); 4957 }else{ 4958 /* Generate a subroutine that will fill an ephemeral table with 4959 ** the content of this subquery. pItem->addrFillSub will point 4960 ** to the address of the generated subroutine. pItem->regReturn 4961 ** is a register allocated to hold the subroutine return address 4962 */ 4963 int topAddr; 4964 int onceAddr = 0; 4965 int retAddr; 4966 assert( pItem->addrFillSub==0 ); 4967 pItem->regReturn = ++pParse->nMem; 4968 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4969 pItem->addrFillSub = topAddr+1; 4970 if( pItem->isCorrelated==0 ){ 4971 /* If the subquery is not correlated and if we are not inside of 4972 ** a trigger, then we only need to compute the value of the subquery 4973 ** once. */ 4974 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4975 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4976 }else{ 4977 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4978 } 4979 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4980 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4981 sqlite3Select(pParse, pSub, &dest); 4982 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4983 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4984 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4985 VdbeComment((v, "end %s", pItem->pTab->zName)); 4986 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4987 sqlite3ClearTempRegCache(pParse); 4988 } 4989 if( db->mallocFailed ) goto select_end; 4990 pParse->nHeight -= sqlite3SelectExprHeight(p); 4991 } 4992 #endif 4993 4994 /* Various elements of the SELECT copied into local variables for 4995 ** convenience */ 4996 pEList = p->pEList; 4997 pWhere = p->pWhere; 4998 pGroupBy = p->pGroupBy; 4999 pHaving = p->pHaving; 5000 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5001 5002 #if SELECTTRACE_ENABLED 5003 if( sqlite3SelectTrace & 0x400 ){ 5004 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5005 sqlite3TreeViewSelect(0, p, 0); 5006 } 5007 #endif 5008 5009 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5010 ** if the select-list is the same as the ORDER BY list, then this query 5011 ** can be rewritten as a GROUP BY. In other words, this: 5012 ** 5013 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5014 ** 5015 ** is transformed to: 5016 ** 5017 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5018 ** 5019 ** The second form is preferred as a single index (or temp-table) may be 5020 ** used for both the ORDER BY and DISTINCT processing. As originally 5021 ** written the query must use a temp-table for at least one of the ORDER 5022 ** BY and DISTINCT, and an index or separate temp-table for the other. 5023 */ 5024 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5025 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5026 ){ 5027 p->selFlags &= ~SF_Distinct; 5028 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5029 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5030 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5031 ** original setting of the SF_Distinct flag, not the current setting */ 5032 assert( sDistinct.isTnct ); 5033 } 5034 5035 /* If there is an ORDER BY clause, then create an ephemeral index to 5036 ** do the sorting. But this sorting ephemeral index might end up 5037 ** being unused if the data can be extracted in pre-sorted order. 5038 ** If that is the case, then the OP_OpenEphemeral instruction will be 5039 ** changed to an OP_Noop once we figure out that the sorting index is 5040 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5041 ** that change. 5042 */ 5043 if( sSort.pOrderBy ){ 5044 KeyInfo *pKeyInfo; 5045 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5046 sSort.iECursor = pParse->nTab++; 5047 sSort.addrSortIndex = 5048 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5049 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5050 (char*)pKeyInfo, P4_KEYINFO 5051 ); 5052 }else{ 5053 sSort.addrSortIndex = -1; 5054 } 5055 5056 /* If the output is destined for a temporary table, open that table. 5057 */ 5058 if( pDest->eDest==SRT_EphemTab ){ 5059 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5060 } 5061 5062 /* Set the limiter. 5063 */ 5064 iEnd = sqlite3VdbeMakeLabel(v); 5065 p->nSelectRow = LARGEST_INT64; 5066 computeLimitRegisters(pParse, p, iEnd); 5067 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5068 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 5069 sSort.sortFlags |= SORTFLAG_UseSorter; 5070 } 5071 5072 /* Open an ephemeral index to use for the distinct set. 5073 */ 5074 if( p->selFlags & SF_Distinct ){ 5075 sDistinct.tabTnct = pParse->nTab++; 5076 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5077 sDistinct.tabTnct, 0, 0, 5078 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5079 P4_KEYINFO); 5080 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5081 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5082 }else{ 5083 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5084 } 5085 5086 if( !isAgg && pGroupBy==0 ){ 5087 /* No aggregate functions and no GROUP BY clause */ 5088 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5089 5090 /* Begin the database scan. */ 5091 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5092 p->pEList, wctrlFlags, 0); 5093 if( pWInfo==0 ) goto select_end; 5094 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5095 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5096 } 5097 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5098 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5099 } 5100 if( sSort.pOrderBy ){ 5101 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5102 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5103 sSort.pOrderBy = 0; 5104 } 5105 } 5106 5107 /* If sorting index that was created by a prior OP_OpenEphemeral 5108 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5109 ** into an OP_Noop. 5110 */ 5111 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5112 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5113 } 5114 5115 /* Use the standard inner loop. */ 5116 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5117 sqlite3WhereContinueLabel(pWInfo), 5118 sqlite3WhereBreakLabel(pWInfo)); 5119 5120 /* End the database scan loop. 5121 */ 5122 sqlite3WhereEnd(pWInfo); 5123 }else{ 5124 /* This case when there exist aggregate functions or a GROUP BY clause 5125 ** or both */ 5126 NameContext sNC; /* Name context for processing aggregate information */ 5127 int iAMem; /* First Mem address for storing current GROUP BY */ 5128 int iBMem; /* First Mem address for previous GROUP BY */ 5129 int iUseFlag; /* Mem address holding flag indicating that at least 5130 ** one row of the input to the aggregator has been 5131 ** processed */ 5132 int iAbortFlag; /* Mem address which causes query abort if positive */ 5133 int groupBySort; /* Rows come from source in GROUP BY order */ 5134 int addrEnd; /* End of processing for this SELECT */ 5135 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5136 int sortOut = 0; /* Output register from the sorter */ 5137 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5138 5139 /* Remove any and all aliases between the result set and the 5140 ** GROUP BY clause. 5141 */ 5142 if( pGroupBy ){ 5143 int k; /* Loop counter */ 5144 struct ExprList_item *pItem; /* For looping over expression in a list */ 5145 5146 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5147 pItem->u.x.iAlias = 0; 5148 } 5149 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5150 pItem->u.x.iAlias = 0; 5151 } 5152 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5153 }else{ 5154 p->nSelectRow = 1; 5155 } 5156 5157 /* If there is both a GROUP BY and an ORDER BY clause and they are 5158 ** identical, then it may be possible to disable the ORDER BY clause 5159 ** on the grounds that the GROUP BY will cause elements to come out 5160 ** in the correct order. It also may not - the GROUP BY might use a 5161 ** database index that causes rows to be grouped together as required 5162 ** but not actually sorted. Either way, record the fact that the 5163 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5164 ** variable. */ 5165 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5166 orderByGrp = 1; 5167 } 5168 5169 /* Create a label to jump to when we want to abort the query */ 5170 addrEnd = sqlite3VdbeMakeLabel(v); 5171 5172 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5173 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5174 ** SELECT statement. 5175 */ 5176 memset(&sNC, 0, sizeof(sNC)); 5177 sNC.pParse = pParse; 5178 sNC.pSrcList = pTabList; 5179 sNC.pAggInfo = &sAggInfo; 5180 sAggInfo.mnReg = pParse->nMem+1; 5181 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5182 sAggInfo.pGroupBy = pGroupBy; 5183 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5184 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5185 if( pHaving ){ 5186 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5187 } 5188 sAggInfo.nAccumulator = sAggInfo.nColumn; 5189 for(i=0; i<sAggInfo.nFunc; i++){ 5190 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5191 sNC.ncFlags |= NC_InAggFunc; 5192 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5193 sNC.ncFlags &= ~NC_InAggFunc; 5194 } 5195 sAggInfo.mxReg = pParse->nMem; 5196 if( db->mallocFailed ) goto select_end; 5197 5198 /* Processing for aggregates with GROUP BY is very different and 5199 ** much more complex than aggregates without a GROUP BY. 5200 */ 5201 if( pGroupBy ){ 5202 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5203 int j1; /* A-vs-B comparision jump */ 5204 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5205 int regOutputRow; /* Return address register for output subroutine */ 5206 int addrSetAbort; /* Set the abort flag and return */ 5207 int addrTopOfLoop; /* Top of the input loop */ 5208 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5209 int addrReset; /* Subroutine for resetting the accumulator */ 5210 int regReset; /* Return address register for reset subroutine */ 5211 5212 /* If there is a GROUP BY clause we might need a sorting index to 5213 ** implement it. Allocate that sorting index now. If it turns out 5214 ** that we do not need it after all, the OP_SorterOpen instruction 5215 ** will be converted into a Noop. 5216 */ 5217 sAggInfo.sortingIdx = pParse->nTab++; 5218 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5219 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5220 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5221 0, (char*)pKeyInfo, P4_KEYINFO); 5222 5223 /* Initialize memory locations used by GROUP BY aggregate processing 5224 */ 5225 iUseFlag = ++pParse->nMem; 5226 iAbortFlag = ++pParse->nMem; 5227 regOutputRow = ++pParse->nMem; 5228 addrOutputRow = sqlite3VdbeMakeLabel(v); 5229 regReset = ++pParse->nMem; 5230 addrReset = sqlite3VdbeMakeLabel(v); 5231 iAMem = pParse->nMem + 1; 5232 pParse->nMem += pGroupBy->nExpr; 5233 iBMem = pParse->nMem + 1; 5234 pParse->nMem += pGroupBy->nExpr; 5235 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5236 VdbeComment((v, "clear abort flag")); 5237 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5238 VdbeComment((v, "indicate accumulator empty")); 5239 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5240 5241 /* Begin a loop that will extract all source rows in GROUP BY order. 5242 ** This might involve two separate loops with an OP_Sort in between, or 5243 ** it might be a single loop that uses an index to extract information 5244 ** in the right order to begin with. 5245 */ 5246 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5247 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5248 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5249 ); 5250 if( pWInfo==0 ) goto select_end; 5251 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5252 /* The optimizer is able to deliver rows in group by order so 5253 ** we do not have to sort. The OP_OpenEphemeral table will be 5254 ** cancelled later because we still need to use the pKeyInfo 5255 */ 5256 groupBySort = 0; 5257 }else{ 5258 /* Rows are coming out in undetermined order. We have to push 5259 ** each row into a sorting index, terminate the first loop, 5260 ** then loop over the sorting index in order to get the output 5261 ** in sorted order 5262 */ 5263 int regBase; 5264 int regRecord; 5265 int nCol; 5266 int nGroupBy; 5267 5268 explainTempTable(pParse, 5269 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5270 "DISTINCT" : "GROUP BY"); 5271 5272 groupBySort = 1; 5273 nGroupBy = pGroupBy->nExpr; 5274 nCol = nGroupBy; 5275 j = nGroupBy; 5276 for(i=0; i<sAggInfo.nColumn; i++){ 5277 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5278 nCol++; 5279 j++; 5280 } 5281 } 5282 regBase = sqlite3GetTempRange(pParse, nCol); 5283 sqlite3ExprCacheClear(pParse); 5284 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5285 j = nGroupBy; 5286 for(i=0; i<sAggInfo.nColumn; i++){ 5287 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5288 if( pCol->iSorterColumn>=j ){ 5289 int r1 = j + regBase; 5290 int r2; 5291 5292 r2 = sqlite3ExprCodeGetColumn(pParse, 5293 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5294 if( r1!=r2 ){ 5295 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5296 } 5297 j++; 5298 } 5299 } 5300 regRecord = sqlite3GetTempReg(pParse); 5301 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5302 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5303 sqlite3ReleaseTempReg(pParse, regRecord); 5304 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5305 sqlite3WhereEnd(pWInfo); 5306 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5307 sortOut = sqlite3GetTempReg(pParse); 5308 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5309 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5310 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5311 sAggInfo.useSortingIdx = 1; 5312 sqlite3ExprCacheClear(pParse); 5313 5314 } 5315 5316 /* If the index or temporary table used by the GROUP BY sort 5317 ** will naturally deliver rows in the order required by the ORDER BY 5318 ** clause, cancel the ephemeral table open coded earlier. 5319 ** 5320 ** This is an optimization - the correct answer should result regardless. 5321 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5322 ** disable this optimization for testing purposes. */ 5323 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5324 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5325 ){ 5326 sSort.pOrderBy = 0; 5327 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5328 } 5329 5330 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5331 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5332 ** Then compare the current GROUP BY terms against the GROUP BY terms 5333 ** from the previous row currently stored in a0, a1, a2... 5334 */ 5335 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5336 sqlite3ExprCacheClear(pParse); 5337 if( groupBySort ){ 5338 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5339 sortOut, sortPTab); 5340 } 5341 for(j=0; j<pGroupBy->nExpr; j++){ 5342 if( groupBySort ){ 5343 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5344 }else{ 5345 sAggInfo.directMode = 1; 5346 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5347 } 5348 } 5349 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5350 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5351 j1 = sqlite3VdbeCurrentAddr(v); 5352 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5353 5354 /* Generate code that runs whenever the GROUP BY changes. 5355 ** Changes in the GROUP BY are detected by the previous code 5356 ** block. If there were no changes, this block is skipped. 5357 ** 5358 ** This code copies current group by terms in b0,b1,b2,... 5359 ** over to a0,a1,a2. It then calls the output subroutine 5360 ** and resets the aggregate accumulator registers in preparation 5361 ** for the next GROUP BY batch. 5362 */ 5363 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5364 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5365 VdbeComment((v, "output one row")); 5366 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5367 VdbeComment((v, "check abort flag")); 5368 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5369 VdbeComment((v, "reset accumulator")); 5370 5371 /* Update the aggregate accumulators based on the content of 5372 ** the current row 5373 */ 5374 sqlite3VdbeJumpHere(v, j1); 5375 updateAccumulator(pParse, &sAggInfo); 5376 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5377 VdbeComment((v, "indicate data in accumulator")); 5378 5379 /* End of the loop 5380 */ 5381 if( groupBySort ){ 5382 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5383 VdbeCoverage(v); 5384 }else{ 5385 sqlite3WhereEnd(pWInfo); 5386 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5387 } 5388 5389 /* Output the final row of result 5390 */ 5391 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5392 VdbeComment((v, "output final row")); 5393 5394 /* Jump over the subroutines 5395 */ 5396 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5397 5398 /* Generate a subroutine that outputs a single row of the result 5399 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5400 ** is less than or equal to zero, the subroutine is a no-op. If 5401 ** the processing calls for the query to abort, this subroutine 5402 ** increments the iAbortFlag memory location before returning in 5403 ** order to signal the caller to abort. 5404 */ 5405 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5406 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5407 VdbeComment((v, "set abort flag")); 5408 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5409 sqlite3VdbeResolveLabel(v, addrOutputRow); 5410 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5411 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5412 VdbeCoverage(v); 5413 VdbeComment((v, "Groupby result generator entry point")); 5414 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5415 finalizeAggFunctions(pParse, &sAggInfo); 5416 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5417 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5418 &sDistinct, pDest, 5419 addrOutputRow+1, addrSetAbort); 5420 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5421 VdbeComment((v, "end groupby result generator")); 5422 5423 /* Generate a subroutine that will reset the group-by accumulator 5424 */ 5425 sqlite3VdbeResolveLabel(v, addrReset); 5426 resetAccumulator(pParse, &sAggInfo); 5427 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5428 5429 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5430 else { 5431 ExprList *pDel = 0; 5432 #ifndef SQLITE_OMIT_BTREECOUNT 5433 Table *pTab; 5434 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5435 /* If isSimpleCount() returns a pointer to a Table structure, then 5436 ** the SQL statement is of the form: 5437 ** 5438 ** SELECT count(*) FROM <tbl> 5439 ** 5440 ** where the Table structure returned represents table <tbl>. 5441 ** 5442 ** This statement is so common that it is optimized specially. The 5443 ** OP_Count instruction is executed either on the intkey table that 5444 ** contains the data for table <tbl> or on one of its indexes. It 5445 ** is better to execute the op on an index, as indexes are almost 5446 ** always spread across less pages than their corresponding tables. 5447 */ 5448 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5449 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5450 Index *pIdx; /* Iterator variable */ 5451 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5452 Index *pBest = 0; /* Best index found so far */ 5453 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5454 5455 sqlite3CodeVerifySchema(pParse, iDb); 5456 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5457 5458 /* Search for the index that has the lowest scan cost. 5459 ** 5460 ** (2011-04-15) Do not do a full scan of an unordered index. 5461 ** 5462 ** (2013-10-03) Do not count the entries in a partial index. 5463 ** 5464 ** In practice the KeyInfo structure will not be used. It is only 5465 ** passed to keep OP_OpenRead happy. 5466 */ 5467 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5468 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5469 if( pIdx->bUnordered==0 5470 && pIdx->szIdxRow<pTab->szTabRow 5471 && pIdx->pPartIdxWhere==0 5472 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5473 ){ 5474 pBest = pIdx; 5475 } 5476 } 5477 if( pBest ){ 5478 iRoot = pBest->tnum; 5479 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5480 } 5481 5482 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5483 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5484 if( pKeyInfo ){ 5485 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5486 } 5487 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5488 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5489 explainSimpleCount(pParse, pTab, pBest); 5490 }else 5491 #endif /* SQLITE_OMIT_BTREECOUNT */ 5492 { 5493 /* Check if the query is of one of the following forms: 5494 ** 5495 ** SELECT min(x) FROM ... 5496 ** SELECT max(x) FROM ... 5497 ** 5498 ** If it is, then ask the code in where.c to attempt to sort results 5499 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5500 ** If where.c is able to produce results sorted in this order, then 5501 ** add vdbe code to break out of the processing loop after the 5502 ** first iteration (since the first iteration of the loop is 5503 ** guaranteed to operate on the row with the minimum or maximum 5504 ** value of x, the only row required). 5505 ** 5506 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5507 ** modify behavior as follows: 5508 ** 5509 ** + If the query is a "SELECT min(x)", then the loop coded by 5510 ** where.c should not iterate over any values with a NULL value 5511 ** for x. 5512 ** 5513 ** + The optimizer code in where.c (the thing that decides which 5514 ** index or indices to use) should place a different priority on 5515 ** satisfying the 'ORDER BY' clause than it does in other cases. 5516 ** Refer to code and comments in where.c for details. 5517 */ 5518 ExprList *pMinMax = 0; 5519 u8 flag = WHERE_ORDERBY_NORMAL; 5520 5521 assert( p->pGroupBy==0 ); 5522 assert( flag==0 ); 5523 if( p->pHaving==0 ){ 5524 flag = minMaxQuery(&sAggInfo, &pMinMax); 5525 } 5526 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5527 5528 if( flag ){ 5529 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5530 pDel = pMinMax; 5531 if( pMinMax && !db->mallocFailed ){ 5532 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5533 pMinMax->a[0].pExpr->op = TK_COLUMN; 5534 } 5535 } 5536 5537 /* This case runs if the aggregate has no GROUP BY clause. The 5538 ** processing is much simpler since there is only a single row 5539 ** of output. 5540 */ 5541 resetAccumulator(pParse, &sAggInfo); 5542 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5543 if( pWInfo==0 ){ 5544 sqlite3ExprListDelete(db, pDel); 5545 goto select_end; 5546 } 5547 updateAccumulator(pParse, &sAggInfo); 5548 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5549 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5550 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5551 VdbeComment((v, "%s() by index", 5552 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5553 } 5554 sqlite3WhereEnd(pWInfo); 5555 finalizeAggFunctions(pParse, &sAggInfo); 5556 } 5557 5558 sSort.pOrderBy = 0; 5559 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5560 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5561 pDest, addrEnd, addrEnd); 5562 sqlite3ExprListDelete(db, pDel); 5563 } 5564 sqlite3VdbeResolveLabel(v, addrEnd); 5565 5566 } /* endif aggregate query */ 5567 5568 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5569 explainTempTable(pParse, "DISTINCT"); 5570 } 5571 5572 /* If there is an ORDER BY clause, then we need to sort the results 5573 ** and send them to the callback one by one. 5574 */ 5575 if( sSort.pOrderBy ){ 5576 explainTempTable(pParse, 5577 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5578 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5579 } 5580 5581 /* Jump here to skip this query 5582 */ 5583 sqlite3VdbeResolveLabel(v, iEnd); 5584 5585 /* The SELECT has been coded. If there is an error in the Parse structure, 5586 ** set the return code to 1. Otherwise 0. */ 5587 rc = (pParse->nErr>0); 5588 5589 /* Control jumps to here if an error is encountered above, or upon 5590 ** successful coding of the SELECT. 5591 */ 5592 select_end: 5593 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5594 5595 /* Identify column names if results of the SELECT are to be output. 5596 */ 5597 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5598 generateColumnNames(pParse, pTabList, pEList); 5599 } 5600 5601 sqlite3DbFree(db, sAggInfo.aCol); 5602 sqlite3DbFree(db, sAggInfo.aFunc); 5603 #if SELECTTRACE_ENABLED 5604 SELECTTRACE(1,pParse,p,("end processing\n")); 5605 pParse->nSelectIndent--; 5606 #endif 5607 return rc; 5608 } 5609