xref: /sqlite-3.40.0/src/select.c (revision 3dbd2397)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
58 };
59 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
60 
61 /*
62 ** Delete all the content of a Select structure.  Deallocate the structure
63 ** itself only if bFree is true.
64 */
65 static void clearSelect(sqlite3 *db, Select *p, int bFree){
66   while( p ){
67     Select *pPrior = p->pPrior;
68     sqlite3ExprListDelete(db, p->pEList);
69     sqlite3SrcListDelete(db, p->pSrc);
70     sqlite3ExprDelete(db, p->pWhere);
71     sqlite3ExprListDelete(db, p->pGroupBy);
72     sqlite3ExprDelete(db, p->pHaving);
73     sqlite3ExprListDelete(db, p->pOrderBy);
74     sqlite3ExprDelete(db, p->pLimit);
75     sqlite3ExprDelete(db, p->pOffset);
76     sqlite3WithDelete(db, p->pWith);
77     if( bFree ) sqlite3DbFree(db, p);
78     p = pPrior;
79     bFree = 1;
80   }
81 }
82 
83 /*
84 ** Initialize a SelectDest structure.
85 */
86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
87   pDest->eDest = (u8)eDest;
88   pDest->iSDParm = iParm;
89   pDest->affSdst = 0;
90   pDest->iSdst = 0;
91   pDest->nSdst = 0;
92 }
93 
94 
95 /*
96 ** Allocate a new Select structure and return a pointer to that
97 ** structure.
98 */
99 Select *sqlite3SelectNew(
100   Parse *pParse,        /* Parsing context */
101   ExprList *pEList,     /* which columns to include in the result */
102   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
103   Expr *pWhere,         /* the WHERE clause */
104   ExprList *pGroupBy,   /* the GROUP BY clause */
105   Expr *pHaving,        /* the HAVING clause */
106   ExprList *pOrderBy,   /* the ORDER BY clause */
107   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
108   Expr *pLimit,         /* LIMIT value.  NULL means not used */
109   Expr *pOffset         /* OFFSET value.  NULL means no offset */
110 ){
111   Select *pNew;
112   Select standin;
113   sqlite3 *db = pParse->db;
114   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     if( p->op==TK_FUNCTION && p->x.pList ){
370       int i;
371       for(i=0; i<p->x.pList->nExpr; i++){
372         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
373       }
374     }
375     setJoinExpr(p->pLeft, iTable);
376     p = p->pRight;
377   }
378 }
379 
380 /*
381 ** This routine processes the join information for a SELECT statement.
382 ** ON and USING clauses are converted into extra terms of the WHERE clause.
383 ** NATURAL joins also create extra WHERE clause terms.
384 **
385 ** The terms of a FROM clause are contained in the Select.pSrc structure.
386 ** The left most table is the first entry in Select.pSrc.  The right-most
387 ** table is the last entry.  The join operator is held in the entry to
388 ** the left.  Thus entry 0 contains the join operator for the join between
389 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
390 ** also attached to the left entry.
391 **
392 ** This routine returns the number of errors encountered.
393 */
394 static int sqliteProcessJoin(Parse *pParse, Select *p){
395   SrcList *pSrc;                  /* All tables in the FROM clause */
396   int i, j;                       /* Loop counters */
397   struct SrcList_item *pLeft;     /* Left table being joined */
398   struct SrcList_item *pRight;    /* Right table being joined */
399 
400   pSrc = p->pSrc;
401   pLeft = &pSrc->a[0];
402   pRight = &pLeft[1];
403   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
404     Table *pLeftTab = pLeft->pTab;
405     Table *pRightTab = pRight->pTab;
406     int isOuter;
407 
408     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
409     isOuter = (pRight->jointype & JT_OUTER)!=0;
410 
411     /* When the NATURAL keyword is present, add WHERE clause terms for
412     ** every column that the two tables have in common.
413     */
414     if( pRight->jointype & JT_NATURAL ){
415       if( pRight->pOn || pRight->pUsing ){
416         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
417            "an ON or USING clause", 0);
418         return 1;
419       }
420       for(j=0; j<pRightTab->nCol; j++){
421         char *zName;   /* Name of column in the right table */
422         int iLeft;     /* Matching left table */
423         int iLeftCol;  /* Matching column in the left table */
424 
425         zName = pRightTab->aCol[j].zName;
426         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
427           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
428                        isOuter, &p->pWhere);
429         }
430       }
431     }
432 
433     /* Disallow both ON and USING clauses in the same join
434     */
435     if( pRight->pOn && pRight->pUsing ){
436       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
437         "clauses in the same join");
438       return 1;
439     }
440 
441     /* Add the ON clause to the end of the WHERE clause, connected by
442     ** an AND operator.
443     */
444     if( pRight->pOn ){
445       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
446       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
447       pRight->pOn = 0;
448     }
449 
450     /* Create extra terms on the WHERE clause for each column named
451     ** in the USING clause.  Example: If the two tables to be joined are
452     ** A and B and the USING clause names X, Y, and Z, then add this
453     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
454     ** Report an error if any column mentioned in the USING clause is
455     ** not contained in both tables to be joined.
456     */
457     if( pRight->pUsing ){
458       IdList *pList = pRight->pUsing;
459       for(j=0; j<pList->nId; j++){
460         char *zName;     /* Name of the term in the USING clause */
461         int iLeft;       /* Table on the left with matching column name */
462         int iLeftCol;    /* Column number of matching column on the left */
463         int iRightCol;   /* Column number of matching column on the right */
464 
465         zName = pList->a[j].zName;
466         iRightCol = columnIndex(pRightTab, zName);
467         if( iRightCol<0
468          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
469         ){
470           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
471             "not present in both tables", zName);
472           return 1;
473         }
474         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
475                      isOuter, &p->pWhere);
476       }
477     }
478   }
479   return 0;
480 }
481 
482 /* Forward reference */
483 static KeyInfo *keyInfoFromExprList(
484   Parse *pParse,       /* Parsing context */
485   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
486   int iStart,          /* Begin with this column of pList */
487   int nExtra           /* Add this many extra columns to the end */
488 );
489 
490 /*
491 ** Generate code that will push the record in registers regData
492 ** through regData+nData-1 onto the sorter.
493 */
494 static void pushOntoSorter(
495   Parse *pParse,         /* Parser context */
496   SortCtx *pSort,        /* Information about the ORDER BY clause */
497   Select *pSelect,       /* The whole SELECT statement */
498   int regData,           /* First register holding data to be sorted */
499   int nData,             /* Number of elements in the data array */
500   int nPrefixReg         /* No. of reg prior to regData available for use */
501 ){
502   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
503   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
504   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
505   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
506   int regBase;                                     /* Regs for sorter record */
507   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
508   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
509   int op;                            /* Opcode to add sorter record to sorter */
510 
511   assert( bSeq==0 || bSeq==1 );
512   if( nPrefixReg ){
513     assert( nPrefixReg==nExpr+bSeq );
514     regBase = regData - nExpr - bSeq;
515   }else{
516     regBase = pParse->nMem + 1;
517     pParse->nMem += nBase;
518   }
519   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
520   if( bSeq ){
521     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
522   }
523   if( nPrefixReg==0 ){
524     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
525   }
526 
527   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
528   if( nOBSat>0 ){
529     int regPrevKey;   /* The first nOBSat columns of the previous row */
530     int addrFirst;    /* Address of the OP_IfNot opcode */
531     int addrJmp;      /* Address of the OP_Jump opcode */
532     VdbeOp *pOp;      /* Opcode that opens the sorter */
533     int nKey;         /* Number of sorting key columns, including OP_Sequence */
534     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
535 
536     regPrevKey = pParse->nMem+1;
537     pParse->nMem += pSort->nOBSat;
538     nKey = nExpr - pSort->nOBSat + bSeq;
539     if( bSeq ){
540       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
541     }else{
542       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
543     }
544     VdbeCoverage(v);
545     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
546     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
547     if( pParse->db->mallocFailed ) return;
548     pOp->p2 = nKey + nData;
549     pKI = pOp->p4.pKeyInfo;
550     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
551     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
552     testcase( pKI->nXField>2 );
553     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
554                                            pKI->nXField-1);
555     addrJmp = sqlite3VdbeCurrentAddr(v);
556     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
557     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
558     pSort->regReturn = ++pParse->nMem;
559     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
560     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
561     sqlite3VdbeJumpHere(v, addrFirst);
562     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
563     sqlite3VdbeJumpHere(v, addrJmp);
564   }
565   if( pSort->sortFlags & SORTFLAG_UseSorter ){
566     op = OP_SorterInsert;
567   }else{
568     op = OP_IdxInsert;
569   }
570   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
571   if( pSelect->iLimit ){
572     int addr;
573     int iLimit;
574     if( pSelect->iOffset ){
575       iLimit = pSelect->iOffset+1;
576     }else{
577       iLimit = pSelect->iLimit;
578     }
579     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v);
580     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
581     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
582     sqlite3VdbeJumpHere(v, addr);
583   }
584 }
585 
586 /*
587 ** Add code to implement the OFFSET
588 */
589 static void codeOffset(
590   Vdbe *v,          /* Generate code into this VM */
591   int iOffset,      /* Register holding the offset counter */
592   int iContinue     /* Jump here to skip the current record */
593 ){
594   if( iOffset>0 ){
595     int addr;
596     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
597     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
598     VdbeComment((v, "skip OFFSET records"));
599     sqlite3VdbeJumpHere(v, addr);
600   }
601 }
602 
603 /*
604 ** Add code that will check to make sure the N registers starting at iMem
605 ** form a distinct entry.  iTab is a sorting index that holds previously
606 ** seen combinations of the N values.  A new entry is made in iTab
607 ** if the current N values are new.
608 **
609 ** A jump to addrRepeat is made and the N+1 values are popped from the
610 ** stack if the top N elements are not distinct.
611 */
612 static void codeDistinct(
613   Parse *pParse,     /* Parsing and code generating context */
614   int iTab,          /* A sorting index used to test for distinctness */
615   int addrRepeat,    /* Jump to here if not distinct */
616   int N,             /* Number of elements */
617   int iMem           /* First element */
618 ){
619   Vdbe *v;
620   int r1;
621 
622   v = pParse->pVdbe;
623   r1 = sqlite3GetTempReg(pParse);
624   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
625   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
626   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
627   sqlite3ReleaseTempReg(pParse, r1);
628 }
629 
630 #ifndef SQLITE_OMIT_SUBQUERY
631 /*
632 ** Generate an error message when a SELECT is used within a subexpression
633 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
634 ** column.  We do this in a subroutine because the error used to occur
635 ** in multiple places.  (The error only occurs in one place now, but we
636 ** retain the subroutine to minimize code disruption.)
637 */
638 static int checkForMultiColumnSelectError(
639   Parse *pParse,       /* Parse context. */
640   SelectDest *pDest,   /* Destination of SELECT results */
641   int nExpr            /* Number of result columns returned by SELECT */
642 ){
643   int eDest = pDest->eDest;
644   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
645     sqlite3ErrorMsg(pParse, "only a single result allowed for "
646        "a SELECT that is part of an expression");
647     return 1;
648   }else{
649     return 0;
650   }
651 }
652 #endif
653 
654 /*
655 ** This routine generates the code for the inside of the inner loop
656 ** of a SELECT.
657 **
658 ** If srcTab is negative, then the pEList expressions
659 ** are evaluated in order to get the data for this row.  If srcTab is
660 ** zero or more, then data is pulled from srcTab and pEList is used only
661 ** to get number columns and the datatype for each column.
662 */
663 static void selectInnerLoop(
664   Parse *pParse,          /* The parser context */
665   Select *p,              /* The complete select statement being coded */
666   ExprList *pEList,       /* List of values being extracted */
667   int srcTab,             /* Pull data from this table */
668   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
669   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
670   SelectDest *pDest,      /* How to dispose of the results */
671   int iContinue,          /* Jump here to continue with next row */
672   int iBreak              /* Jump here to break out of the inner loop */
673 ){
674   Vdbe *v = pParse->pVdbe;
675   int i;
676   int hasDistinct;        /* True if the DISTINCT keyword is present */
677   int regResult;              /* Start of memory holding result set */
678   int eDest = pDest->eDest;   /* How to dispose of results */
679   int iParm = pDest->iSDParm; /* First argument to disposal method */
680   int nResultCol;             /* Number of result columns */
681   int nPrefixReg = 0;         /* Number of extra registers before regResult */
682 
683   assert( v );
684   assert( pEList!=0 );
685   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
686   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
687   if( pSort==0 && !hasDistinct ){
688     assert( iContinue!=0 );
689     codeOffset(v, p->iOffset, iContinue);
690   }
691 
692   /* Pull the requested columns.
693   */
694   nResultCol = pEList->nExpr;
695 
696   if( pDest->iSdst==0 ){
697     if( pSort ){
698       nPrefixReg = pSort->pOrderBy->nExpr;
699       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
700       pParse->nMem += nPrefixReg;
701     }
702     pDest->iSdst = pParse->nMem+1;
703     pParse->nMem += nResultCol;
704   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
705     /* This is an error condition that can result, for example, when a SELECT
706     ** on the right-hand side of an INSERT contains more result columns than
707     ** there are columns in the table on the left.  The error will be caught
708     ** and reported later.  But we need to make sure enough memory is allocated
709     ** to avoid other spurious errors in the meantime. */
710     pParse->nMem += nResultCol;
711   }
712   pDest->nSdst = nResultCol;
713   regResult = pDest->iSdst;
714   if( srcTab>=0 ){
715     for(i=0; i<nResultCol; i++){
716       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
717       VdbeComment((v, "%s", pEList->a[i].zName));
718     }
719   }else if( eDest!=SRT_Exists ){
720     /* If the destination is an EXISTS(...) expression, the actual
721     ** values returned by the SELECT are not required.
722     */
723     u8 ecelFlags;
724     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
725       ecelFlags = SQLITE_ECEL_DUP;
726     }else{
727       ecelFlags = 0;
728     }
729     sqlite3ExprCodeExprList(pParse, pEList, regResult, ecelFlags);
730   }
731 
732   /* If the DISTINCT keyword was present on the SELECT statement
733   ** and this row has been seen before, then do not make this row
734   ** part of the result.
735   */
736   if( hasDistinct ){
737     switch( pDistinct->eTnctType ){
738       case WHERE_DISTINCT_ORDERED: {
739         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
740         int iJump;              /* Jump destination */
741         int regPrev;            /* Previous row content */
742 
743         /* Allocate space for the previous row */
744         regPrev = pParse->nMem+1;
745         pParse->nMem += nResultCol;
746 
747         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
748         ** sets the MEM_Cleared bit on the first register of the
749         ** previous value.  This will cause the OP_Ne below to always
750         ** fail on the first iteration of the loop even if the first
751         ** row is all NULLs.
752         */
753         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
754         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
755         pOp->opcode = OP_Null;
756         pOp->p1 = 1;
757         pOp->p2 = regPrev;
758 
759         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
760         for(i=0; i<nResultCol; i++){
761           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
762           if( i<nResultCol-1 ){
763             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
764             VdbeCoverage(v);
765           }else{
766             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
767             VdbeCoverage(v);
768            }
769           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
770           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
771         }
772         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
773         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
774         break;
775       }
776 
777       case WHERE_DISTINCT_UNIQUE: {
778         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
779         break;
780       }
781 
782       default: {
783         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
784         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
785                      regResult);
786         break;
787       }
788     }
789     if( pSort==0 ){
790       codeOffset(v, p->iOffset, iContinue);
791     }
792   }
793 
794   switch( eDest ){
795     /* In this mode, write each query result to the key of the temporary
796     ** table iParm.
797     */
798 #ifndef SQLITE_OMIT_COMPOUND_SELECT
799     case SRT_Union: {
800       int r1;
801       r1 = sqlite3GetTempReg(pParse);
802       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
803       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
804       sqlite3ReleaseTempReg(pParse, r1);
805       break;
806     }
807 
808     /* Construct a record from the query result, but instead of
809     ** saving that record, use it as a key to delete elements from
810     ** the temporary table iParm.
811     */
812     case SRT_Except: {
813       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
814       break;
815     }
816 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
817 
818     /* Store the result as data using a unique key.
819     */
820     case SRT_Fifo:
821     case SRT_DistFifo:
822     case SRT_Table:
823     case SRT_EphemTab: {
824       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
825       testcase( eDest==SRT_Table );
826       testcase( eDest==SRT_EphemTab );
827       testcase( eDest==SRT_Fifo );
828       testcase( eDest==SRT_DistFifo );
829       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
830 #ifndef SQLITE_OMIT_CTE
831       if( eDest==SRT_DistFifo ){
832         /* If the destination is DistFifo, then cursor (iParm+1) is open
833         ** on an ephemeral index. If the current row is already present
834         ** in the index, do not write it to the output. If not, add the
835         ** current row to the index and proceed with writing it to the
836         ** output table as well.  */
837         int addr = sqlite3VdbeCurrentAddr(v) + 4;
838         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
839         VdbeCoverage(v);
840         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
841         assert( pSort==0 );
842       }
843 #endif
844       if( pSort ){
845         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
846       }else{
847         int r2 = sqlite3GetTempReg(pParse);
848         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
849         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
850         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
851         sqlite3ReleaseTempReg(pParse, r2);
852       }
853       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
854       break;
855     }
856 
857 #ifndef SQLITE_OMIT_SUBQUERY
858     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
859     ** then there should be a single item on the stack.  Write this
860     ** item into the set table with bogus data.
861     */
862     case SRT_Set: {
863       assert( nResultCol==1 );
864       pDest->affSdst =
865                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
866       if( pSort ){
867         /* At first glance you would think we could optimize out the
868         ** ORDER BY in this case since the order of entries in the set
869         ** does not matter.  But there might be a LIMIT clause, in which
870         ** case the order does matter */
871         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
872       }else{
873         int r1 = sqlite3GetTempReg(pParse);
874         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
875         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
876         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
877         sqlite3ReleaseTempReg(pParse, r1);
878       }
879       break;
880     }
881 
882     /* If any row exist in the result set, record that fact and abort.
883     */
884     case SRT_Exists: {
885       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
886       /* The LIMIT clause will terminate the loop for us */
887       break;
888     }
889 
890     /* If this is a scalar select that is part of an expression, then
891     ** store the results in the appropriate memory cell and break out
892     ** of the scan loop.
893     */
894     case SRT_Mem: {
895       assert( nResultCol==1 );
896       if( pSort ){
897         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
898       }else{
899         assert( regResult==iParm );
900         /* The LIMIT clause will jump out of the loop for us */
901       }
902       break;
903     }
904 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
905 
906     case SRT_Coroutine:       /* Send data to a co-routine */
907     case SRT_Output: {        /* Return the results */
908       testcase( eDest==SRT_Coroutine );
909       testcase( eDest==SRT_Output );
910       if( pSort ){
911         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
912       }else if( eDest==SRT_Coroutine ){
913         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
914       }else{
915         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
916         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
917       }
918       break;
919     }
920 
921 #ifndef SQLITE_OMIT_CTE
922     /* Write the results into a priority queue that is order according to
923     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
924     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
925     ** pSO->nExpr columns, then make sure all keys are unique by adding a
926     ** final OP_Sequence column.  The last column is the record as a blob.
927     */
928     case SRT_DistQueue:
929     case SRT_Queue: {
930       int nKey;
931       int r1, r2, r3;
932       int addrTest = 0;
933       ExprList *pSO;
934       pSO = pDest->pOrderBy;
935       assert( pSO );
936       nKey = pSO->nExpr;
937       r1 = sqlite3GetTempReg(pParse);
938       r2 = sqlite3GetTempRange(pParse, nKey+2);
939       r3 = r2+nKey+1;
940       if( eDest==SRT_DistQueue ){
941         /* If the destination is DistQueue, then cursor (iParm+1) is open
942         ** on a second ephemeral index that holds all values every previously
943         ** added to the queue. */
944         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
945                                         regResult, nResultCol);
946         VdbeCoverage(v);
947       }
948       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
949       if( eDest==SRT_DistQueue ){
950         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
951         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
952       }
953       for(i=0; i<nKey; i++){
954         sqlite3VdbeAddOp2(v, OP_SCopy,
955                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
956                           r2+i);
957       }
958       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
959       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
960       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
961       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
962       sqlite3ReleaseTempReg(pParse, r1);
963       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
964       break;
965     }
966 #endif /* SQLITE_OMIT_CTE */
967 
968 
969 
970 #if !defined(SQLITE_OMIT_TRIGGER)
971     /* Discard the results.  This is used for SELECT statements inside
972     ** the body of a TRIGGER.  The purpose of such selects is to call
973     ** user-defined functions that have side effects.  We do not care
974     ** about the actual results of the select.
975     */
976     default: {
977       assert( eDest==SRT_Discard );
978       break;
979     }
980 #endif
981   }
982 
983   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
984   ** there is a sorter, in which case the sorter has already limited
985   ** the output for us.
986   */
987   if( pSort==0 && p->iLimit ){
988     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
989   }
990 }
991 
992 /*
993 ** Allocate a KeyInfo object sufficient for an index of N key columns and
994 ** X extra columns.
995 */
996 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
997   KeyInfo *p = sqlite3DbMallocZero(0,
998                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
999   if( p ){
1000     p->aSortOrder = (u8*)&p->aColl[N+X];
1001     p->nField = (u16)N;
1002     p->nXField = (u16)X;
1003     p->enc = ENC(db);
1004     p->db = db;
1005     p->nRef = 1;
1006   }else{
1007     db->mallocFailed = 1;
1008   }
1009   return p;
1010 }
1011 
1012 /*
1013 ** Deallocate a KeyInfo object
1014 */
1015 void sqlite3KeyInfoUnref(KeyInfo *p){
1016   if( p ){
1017     assert( p->nRef>0 );
1018     p->nRef--;
1019     if( p->nRef==0 ) sqlite3DbFree(0, p);
1020   }
1021 }
1022 
1023 /*
1024 ** Make a new pointer to a KeyInfo object
1025 */
1026 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1027   if( p ){
1028     assert( p->nRef>0 );
1029     p->nRef++;
1030   }
1031   return p;
1032 }
1033 
1034 #ifdef SQLITE_DEBUG
1035 /*
1036 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1037 ** can only be changed if this is just a single reference to the object.
1038 **
1039 ** This routine is used only inside of assert() statements.
1040 */
1041 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1042 #endif /* SQLITE_DEBUG */
1043 
1044 /*
1045 ** Given an expression list, generate a KeyInfo structure that records
1046 ** the collating sequence for each expression in that expression list.
1047 **
1048 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1049 ** KeyInfo structure is appropriate for initializing a virtual index to
1050 ** implement that clause.  If the ExprList is the result set of a SELECT
1051 ** then the KeyInfo structure is appropriate for initializing a virtual
1052 ** index to implement a DISTINCT test.
1053 **
1054 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1055 ** function is responsible for seeing that this structure is eventually
1056 ** freed.
1057 */
1058 static KeyInfo *keyInfoFromExprList(
1059   Parse *pParse,       /* Parsing context */
1060   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1061   int iStart,          /* Begin with this column of pList */
1062   int nExtra           /* Add this many extra columns to the end */
1063 ){
1064   int nExpr;
1065   KeyInfo *pInfo;
1066   struct ExprList_item *pItem;
1067   sqlite3 *db = pParse->db;
1068   int i;
1069 
1070   nExpr = pList->nExpr;
1071   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1072   if( pInfo ){
1073     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1074     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1075       CollSeq *pColl;
1076       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1077       if( !pColl ) pColl = db->pDfltColl;
1078       pInfo->aColl[i-iStart] = pColl;
1079       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1080     }
1081   }
1082   return pInfo;
1083 }
1084 
1085 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1086 /*
1087 ** Name of the connection operator, used for error messages.
1088 */
1089 static const char *selectOpName(int id){
1090   char *z;
1091   switch( id ){
1092     case TK_ALL:       z = "UNION ALL";   break;
1093     case TK_INTERSECT: z = "INTERSECT";   break;
1094     case TK_EXCEPT:    z = "EXCEPT";      break;
1095     default:           z = "UNION";       break;
1096   }
1097   return z;
1098 }
1099 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1100 
1101 #ifndef SQLITE_OMIT_EXPLAIN
1102 /*
1103 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1104 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1105 ** where the caption is of the form:
1106 **
1107 **   "USE TEMP B-TREE FOR xxx"
1108 **
1109 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1110 ** is determined by the zUsage argument.
1111 */
1112 static void explainTempTable(Parse *pParse, const char *zUsage){
1113   if( pParse->explain==2 ){
1114     Vdbe *v = pParse->pVdbe;
1115     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1116     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1117   }
1118 }
1119 
1120 /*
1121 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1122 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1123 ** in sqlite3Select() to assign values to structure member variables that
1124 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1125 ** code with #ifndef directives.
1126 */
1127 # define explainSetInteger(a, b) a = b
1128 
1129 #else
1130 /* No-op versions of the explainXXX() functions and macros. */
1131 # define explainTempTable(y,z)
1132 # define explainSetInteger(y,z)
1133 #endif
1134 
1135 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1136 /*
1137 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1138 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1139 ** where the caption is of one of the two forms:
1140 **
1141 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1142 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1143 **
1144 ** where iSub1 and iSub2 are the integers passed as the corresponding
1145 ** function parameters, and op is the text representation of the parameter
1146 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1147 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1148 ** false, or the second form if it is true.
1149 */
1150 static void explainComposite(
1151   Parse *pParse,                  /* Parse context */
1152   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1153   int iSub1,                      /* Subquery id 1 */
1154   int iSub2,                      /* Subquery id 2 */
1155   int bUseTmp                     /* True if a temp table was used */
1156 ){
1157   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1158   if( pParse->explain==2 ){
1159     Vdbe *v = pParse->pVdbe;
1160     char *zMsg = sqlite3MPrintf(
1161         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1162         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1163     );
1164     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1165   }
1166 }
1167 #else
1168 /* No-op versions of the explainXXX() functions and macros. */
1169 # define explainComposite(v,w,x,y,z)
1170 #endif
1171 
1172 /*
1173 ** If the inner loop was generated using a non-null pOrderBy argument,
1174 ** then the results were placed in a sorter.  After the loop is terminated
1175 ** we need to run the sorter and output the results.  The following
1176 ** routine generates the code needed to do that.
1177 */
1178 static void generateSortTail(
1179   Parse *pParse,    /* Parsing context */
1180   Select *p,        /* The SELECT statement */
1181   SortCtx *pSort,   /* Information on the ORDER BY clause */
1182   int nColumn,      /* Number of columns of data */
1183   SelectDest *pDest /* Write the sorted results here */
1184 ){
1185   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1186   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1187   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1188   int addr;
1189   int addrOnce = 0;
1190   int iTab;
1191   ExprList *pOrderBy = pSort->pOrderBy;
1192   int eDest = pDest->eDest;
1193   int iParm = pDest->iSDParm;
1194   int regRow;
1195   int regRowid;
1196   int nKey;
1197   int iSortTab;                   /* Sorter cursor to read from */
1198   int nSortData;                  /* Trailing values to read from sorter */
1199   int i;
1200   int bSeq;                       /* True if sorter record includes seq. no. */
1201 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1202   struct ExprList_item *aOutEx = p->pEList->a;
1203 #endif
1204 
1205   if( pSort->labelBkOut ){
1206     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1207     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1208     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1209   }
1210   iTab = pSort->iECursor;
1211   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1212     regRowid = 0;
1213     regRow = pDest->iSdst;
1214     nSortData = nColumn;
1215   }else{
1216     regRowid = sqlite3GetTempReg(pParse);
1217     regRow = sqlite3GetTempReg(pParse);
1218     nSortData = 1;
1219   }
1220   nKey = pOrderBy->nExpr - pSort->nOBSat;
1221   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1222     int regSortOut = ++pParse->nMem;
1223     iSortTab = pParse->nTab++;
1224     if( pSort->labelBkOut ){
1225       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1226     }
1227     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1228     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1229     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1230     VdbeCoverage(v);
1231     codeOffset(v, p->iOffset, addrContinue);
1232     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1233     bSeq = 0;
1234   }else{
1235     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1236     codeOffset(v, p->iOffset, addrContinue);
1237     iSortTab = iTab;
1238     bSeq = 1;
1239   }
1240   for(i=0; i<nSortData; i++){
1241     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1242     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1243   }
1244   switch( eDest ){
1245     case SRT_EphemTab: {
1246       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1247       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1248       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1249       break;
1250     }
1251 #ifndef SQLITE_OMIT_SUBQUERY
1252     case SRT_Set: {
1253       assert( nColumn==1 );
1254       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1255                         &pDest->affSdst, 1);
1256       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1257       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1258       break;
1259     }
1260     case SRT_Mem: {
1261       assert( nColumn==1 );
1262       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1263       /* The LIMIT clause will terminate the loop for us */
1264       break;
1265     }
1266 #endif
1267     default: {
1268       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1269       testcase( eDest==SRT_Output );
1270       testcase( eDest==SRT_Coroutine );
1271       if( eDest==SRT_Output ){
1272         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1273         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1274       }else{
1275         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1276       }
1277       break;
1278     }
1279   }
1280   if( regRowid ){
1281     sqlite3ReleaseTempReg(pParse, regRow);
1282     sqlite3ReleaseTempReg(pParse, regRowid);
1283   }
1284   /* The bottom of the loop
1285   */
1286   sqlite3VdbeResolveLabel(v, addrContinue);
1287   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1288     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1289   }else{
1290     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1291   }
1292   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1293   sqlite3VdbeResolveLabel(v, addrBreak);
1294 }
1295 
1296 /*
1297 ** Return a pointer to a string containing the 'declaration type' of the
1298 ** expression pExpr. The string may be treated as static by the caller.
1299 **
1300 ** Also try to estimate the size of the returned value and return that
1301 ** result in *pEstWidth.
1302 **
1303 ** The declaration type is the exact datatype definition extracted from the
1304 ** original CREATE TABLE statement if the expression is a column. The
1305 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1306 ** is considered a column can be complex in the presence of subqueries. The
1307 ** result-set expression in all of the following SELECT statements is
1308 ** considered a column by this function.
1309 **
1310 **   SELECT col FROM tbl;
1311 **   SELECT (SELECT col FROM tbl;
1312 **   SELECT (SELECT col FROM tbl);
1313 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1314 **
1315 ** The declaration type for any expression other than a column is NULL.
1316 **
1317 ** This routine has either 3 or 6 parameters depending on whether or not
1318 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1319 */
1320 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1321 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1322 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1323 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1324 #endif
1325 static const char *columnTypeImpl(
1326   NameContext *pNC,
1327   Expr *pExpr,
1328 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1329   const char **pzOrigDb,
1330   const char **pzOrigTab,
1331   const char **pzOrigCol,
1332 #endif
1333   u8 *pEstWidth
1334 ){
1335   char const *zType = 0;
1336   int j;
1337   u8 estWidth = 1;
1338 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1339   char const *zOrigDb = 0;
1340   char const *zOrigTab = 0;
1341   char const *zOrigCol = 0;
1342 #endif
1343 
1344   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1345   switch( pExpr->op ){
1346     case TK_AGG_COLUMN:
1347     case TK_COLUMN: {
1348       /* The expression is a column. Locate the table the column is being
1349       ** extracted from in NameContext.pSrcList. This table may be real
1350       ** database table or a subquery.
1351       */
1352       Table *pTab = 0;            /* Table structure column is extracted from */
1353       Select *pS = 0;             /* Select the column is extracted from */
1354       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1355       testcase( pExpr->op==TK_AGG_COLUMN );
1356       testcase( pExpr->op==TK_COLUMN );
1357       while( pNC && !pTab ){
1358         SrcList *pTabList = pNC->pSrcList;
1359         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1360         if( j<pTabList->nSrc ){
1361           pTab = pTabList->a[j].pTab;
1362           pS = pTabList->a[j].pSelect;
1363         }else{
1364           pNC = pNC->pNext;
1365         }
1366       }
1367 
1368       if( pTab==0 ){
1369         /* At one time, code such as "SELECT new.x" within a trigger would
1370         ** cause this condition to run.  Since then, we have restructured how
1371         ** trigger code is generated and so this condition is no longer
1372         ** possible. However, it can still be true for statements like
1373         ** the following:
1374         **
1375         **   CREATE TABLE t1(col INTEGER);
1376         **   SELECT (SELECT t1.col) FROM FROM t1;
1377         **
1378         ** when columnType() is called on the expression "t1.col" in the
1379         ** sub-select. In this case, set the column type to NULL, even
1380         ** though it should really be "INTEGER".
1381         **
1382         ** This is not a problem, as the column type of "t1.col" is never
1383         ** used. When columnType() is called on the expression
1384         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1385         ** branch below.  */
1386         break;
1387       }
1388 
1389       assert( pTab && pExpr->pTab==pTab );
1390       if( pS ){
1391         /* The "table" is actually a sub-select or a view in the FROM clause
1392         ** of the SELECT statement. Return the declaration type and origin
1393         ** data for the result-set column of the sub-select.
1394         */
1395         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1396           /* If iCol is less than zero, then the expression requests the
1397           ** rowid of the sub-select or view. This expression is legal (see
1398           ** test case misc2.2.2) - it always evaluates to NULL.
1399           **
1400           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1401           ** caught already by name resolution.
1402           */
1403           NameContext sNC;
1404           Expr *p = pS->pEList->a[iCol].pExpr;
1405           sNC.pSrcList = pS->pSrc;
1406           sNC.pNext = pNC;
1407           sNC.pParse = pNC->pParse;
1408           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1409         }
1410       }else if( pTab->pSchema ){
1411         /* A real table */
1412         assert( !pS );
1413         if( iCol<0 ) iCol = pTab->iPKey;
1414         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1415 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1416         if( iCol<0 ){
1417           zType = "INTEGER";
1418           zOrigCol = "rowid";
1419         }else{
1420           zType = pTab->aCol[iCol].zType;
1421           zOrigCol = pTab->aCol[iCol].zName;
1422           estWidth = pTab->aCol[iCol].szEst;
1423         }
1424         zOrigTab = pTab->zName;
1425         if( pNC->pParse ){
1426           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1427           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1428         }
1429 #else
1430         if( iCol<0 ){
1431           zType = "INTEGER";
1432         }else{
1433           zType = pTab->aCol[iCol].zType;
1434           estWidth = pTab->aCol[iCol].szEst;
1435         }
1436 #endif
1437       }
1438       break;
1439     }
1440 #ifndef SQLITE_OMIT_SUBQUERY
1441     case TK_SELECT: {
1442       /* The expression is a sub-select. Return the declaration type and
1443       ** origin info for the single column in the result set of the SELECT
1444       ** statement.
1445       */
1446       NameContext sNC;
1447       Select *pS = pExpr->x.pSelect;
1448       Expr *p = pS->pEList->a[0].pExpr;
1449       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1450       sNC.pSrcList = pS->pSrc;
1451       sNC.pNext = pNC;
1452       sNC.pParse = pNC->pParse;
1453       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1454       break;
1455     }
1456 #endif
1457   }
1458 
1459 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1460   if( pzOrigDb ){
1461     assert( pzOrigTab && pzOrigCol );
1462     *pzOrigDb = zOrigDb;
1463     *pzOrigTab = zOrigTab;
1464     *pzOrigCol = zOrigCol;
1465   }
1466 #endif
1467   if( pEstWidth ) *pEstWidth = estWidth;
1468   return zType;
1469 }
1470 
1471 /*
1472 ** Generate code that will tell the VDBE the declaration types of columns
1473 ** in the result set.
1474 */
1475 static void generateColumnTypes(
1476   Parse *pParse,      /* Parser context */
1477   SrcList *pTabList,  /* List of tables */
1478   ExprList *pEList    /* Expressions defining the result set */
1479 ){
1480 #ifndef SQLITE_OMIT_DECLTYPE
1481   Vdbe *v = pParse->pVdbe;
1482   int i;
1483   NameContext sNC;
1484   sNC.pSrcList = pTabList;
1485   sNC.pParse = pParse;
1486   for(i=0; i<pEList->nExpr; i++){
1487     Expr *p = pEList->a[i].pExpr;
1488     const char *zType;
1489 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1490     const char *zOrigDb = 0;
1491     const char *zOrigTab = 0;
1492     const char *zOrigCol = 0;
1493     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1494 
1495     /* The vdbe must make its own copy of the column-type and other
1496     ** column specific strings, in case the schema is reset before this
1497     ** virtual machine is deleted.
1498     */
1499     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1500     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1501     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1502 #else
1503     zType = columnType(&sNC, p, 0, 0, 0, 0);
1504 #endif
1505     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1506   }
1507 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1508 }
1509 
1510 /*
1511 ** Generate code that will tell the VDBE the names of columns
1512 ** in the result set.  This information is used to provide the
1513 ** azCol[] values in the callback.
1514 */
1515 static void generateColumnNames(
1516   Parse *pParse,      /* Parser context */
1517   SrcList *pTabList,  /* List of tables */
1518   ExprList *pEList    /* Expressions defining the result set */
1519 ){
1520   Vdbe *v = pParse->pVdbe;
1521   int i, j;
1522   sqlite3 *db = pParse->db;
1523   int fullNames, shortNames;
1524 
1525 #ifndef SQLITE_OMIT_EXPLAIN
1526   /* If this is an EXPLAIN, skip this step */
1527   if( pParse->explain ){
1528     return;
1529   }
1530 #endif
1531 
1532   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1533   pParse->colNamesSet = 1;
1534   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1535   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1536   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1537   for(i=0; i<pEList->nExpr; i++){
1538     Expr *p;
1539     p = pEList->a[i].pExpr;
1540     if( NEVER(p==0) ) continue;
1541     if( pEList->a[i].zName ){
1542       char *zName = pEList->a[i].zName;
1543       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1544     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1545       Table *pTab;
1546       char *zCol;
1547       int iCol = p->iColumn;
1548       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1549         if( pTabList->a[j].iCursor==p->iTable ) break;
1550       }
1551       assert( j<pTabList->nSrc );
1552       pTab = pTabList->a[j].pTab;
1553       if( iCol<0 ) iCol = pTab->iPKey;
1554       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1555       if( iCol<0 ){
1556         zCol = "rowid";
1557       }else{
1558         zCol = pTab->aCol[iCol].zName;
1559       }
1560       if( !shortNames && !fullNames ){
1561         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1562             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1563       }else if( fullNames ){
1564         char *zName = 0;
1565         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1566         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1567       }else{
1568         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1569       }
1570     }else{
1571       const char *z = pEList->a[i].zSpan;
1572       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1573       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1574     }
1575   }
1576   generateColumnTypes(pParse, pTabList, pEList);
1577 }
1578 
1579 /*
1580 ** Given an expression list (which is really the list of expressions
1581 ** that form the result set of a SELECT statement) compute appropriate
1582 ** column names for a table that would hold the expression list.
1583 **
1584 ** All column names will be unique.
1585 **
1586 ** Only the column names are computed.  Column.zType, Column.zColl,
1587 ** and other fields of Column are zeroed.
1588 **
1589 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1590 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1591 */
1592 static int selectColumnsFromExprList(
1593   Parse *pParse,          /* Parsing context */
1594   ExprList *pEList,       /* Expr list from which to derive column names */
1595   i16 *pnCol,             /* Write the number of columns here */
1596   Column **paCol          /* Write the new column list here */
1597 ){
1598   sqlite3 *db = pParse->db;   /* Database connection */
1599   int i, j;                   /* Loop counters */
1600   int cnt;                    /* Index added to make the name unique */
1601   Column *aCol, *pCol;        /* For looping over result columns */
1602   int nCol;                   /* Number of columns in the result set */
1603   Expr *p;                    /* Expression for a single result column */
1604   char *zName;                /* Column name */
1605   int nName;                  /* Size of name in zName[] */
1606 
1607   if( pEList ){
1608     nCol = pEList->nExpr;
1609     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1610     testcase( aCol==0 );
1611   }else{
1612     nCol = 0;
1613     aCol = 0;
1614   }
1615   *pnCol = nCol;
1616   *paCol = aCol;
1617 
1618   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1619     /* Get an appropriate name for the column
1620     */
1621     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1622     if( (zName = pEList->a[i].zName)!=0 ){
1623       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1624       zName = sqlite3DbStrDup(db, zName);
1625     }else{
1626       Expr *pColExpr = p;  /* The expression that is the result column name */
1627       Table *pTab;         /* Table associated with this expression */
1628       while( pColExpr->op==TK_DOT ){
1629         pColExpr = pColExpr->pRight;
1630         assert( pColExpr!=0 );
1631       }
1632       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1633         /* For columns use the column name name */
1634         int iCol = pColExpr->iColumn;
1635         pTab = pColExpr->pTab;
1636         if( iCol<0 ) iCol = pTab->iPKey;
1637         zName = sqlite3MPrintf(db, "%s",
1638                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1639       }else if( pColExpr->op==TK_ID ){
1640         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1641         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1642       }else{
1643         /* Use the original text of the column expression as its name */
1644         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1645       }
1646     }
1647     if( db->mallocFailed ){
1648       sqlite3DbFree(db, zName);
1649       break;
1650     }
1651 
1652     /* Make sure the column name is unique.  If the name is not unique,
1653     ** append an integer to the name so that it becomes unique.
1654     */
1655     nName = sqlite3Strlen30(zName);
1656     for(j=cnt=0; j<i; j++){
1657       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1658         char *zNewName;
1659         int k;
1660         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1661         if( k>=0 && zName[k]==':' ) nName = k;
1662         zName[nName] = 0;
1663         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1664         sqlite3DbFree(db, zName);
1665         zName = zNewName;
1666         j = -1;
1667         if( zName==0 ) break;
1668       }
1669     }
1670     pCol->zName = zName;
1671   }
1672   if( db->mallocFailed ){
1673     for(j=0; j<i; j++){
1674       sqlite3DbFree(db, aCol[j].zName);
1675     }
1676     sqlite3DbFree(db, aCol);
1677     *paCol = 0;
1678     *pnCol = 0;
1679     return SQLITE_NOMEM;
1680   }
1681   return SQLITE_OK;
1682 }
1683 
1684 /*
1685 ** Add type and collation information to a column list based on
1686 ** a SELECT statement.
1687 **
1688 ** The column list presumably came from selectColumnNamesFromExprList().
1689 ** The column list has only names, not types or collations.  This
1690 ** routine goes through and adds the types and collations.
1691 **
1692 ** This routine requires that all identifiers in the SELECT
1693 ** statement be resolved.
1694 */
1695 static void selectAddColumnTypeAndCollation(
1696   Parse *pParse,        /* Parsing contexts */
1697   Table *pTab,          /* Add column type information to this table */
1698   Select *pSelect       /* SELECT used to determine types and collations */
1699 ){
1700   sqlite3 *db = pParse->db;
1701   NameContext sNC;
1702   Column *pCol;
1703   CollSeq *pColl;
1704   int i;
1705   Expr *p;
1706   struct ExprList_item *a;
1707   u64 szAll = 0;
1708 
1709   assert( pSelect!=0 );
1710   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1711   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1712   if( db->mallocFailed ) return;
1713   memset(&sNC, 0, sizeof(sNC));
1714   sNC.pSrcList = pSelect->pSrc;
1715   a = pSelect->pEList->a;
1716   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1717     p = a[i].pExpr;
1718     if( pCol->zType==0 ){
1719       pCol->zType = sqlite3DbStrDup(db,
1720                         columnType(&sNC, p,0,0,0, &pCol->szEst));
1721     }
1722     szAll += pCol->szEst;
1723     pCol->affinity = sqlite3ExprAffinity(p);
1724     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1725     pColl = sqlite3ExprCollSeq(pParse, p);
1726     if( pColl && pCol->zColl==0 ){
1727       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1728     }
1729   }
1730   pTab->szTabRow = sqlite3LogEst(szAll*4);
1731 }
1732 
1733 /*
1734 ** Given a SELECT statement, generate a Table structure that describes
1735 ** the result set of that SELECT.
1736 */
1737 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1738   Table *pTab;
1739   sqlite3 *db = pParse->db;
1740   int savedFlags;
1741 
1742   savedFlags = db->flags;
1743   db->flags &= ~SQLITE_FullColNames;
1744   db->flags |= SQLITE_ShortColNames;
1745   sqlite3SelectPrep(pParse, pSelect, 0);
1746   if( pParse->nErr ) return 0;
1747   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1748   db->flags = savedFlags;
1749   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1750   if( pTab==0 ){
1751     return 0;
1752   }
1753   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1754   ** is disabled */
1755   assert( db->lookaside.bEnabled==0 );
1756   pTab->nRef = 1;
1757   pTab->zName = 0;
1758   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1759   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1760   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1761   pTab->iPKey = -1;
1762   if( db->mallocFailed ){
1763     sqlite3DeleteTable(db, pTab);
1764     return 0;
1765   }
1766   return pTab;
1767 }
1768 
1769 /*
1770 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1771 ** If an error occurs, return NULL and leave a message in pParse.
1772 */
1773 Vdbe *sqlite3GetVdbe(Parse *pParse){
1774   Vdbe *v = pParse->pVdbe;
1775   if( v==0 ){
1776     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1777     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1778     if( pParse->pToplevel==0
1779      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1780     ){
1781       pParse->okConstFactor = 1;
1782     }
1783 
1784   }
1785   return v;
1786 }
1787 
1788 
1789 /*
1790 ** Compute the iLimit and iOffset fields of the SELECT based on the
1791 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1792 ** that appear in the original SQL statement after the LIMIT and OFFSET
1793 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1794 ** are the integer memory register numbers for counters used to compute
1795 ** the limit and offset.  If there is no limit and/or offset, then
1796 ** iLimit and iOffset are negative.
1797 **
1798 ** This routine changes the values of iLimit and iOffset only if
1799 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1800 ** iOffset should have been preset to appropriate default values (zero)
1801 ** prior to calling this routine.
1802 **
1803 ** The iOffset register (if it exists) is initialized to the value
1804 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1805 ** iOffset+1 is initialized to LIMIT+OFFSET.
1806 **
1807 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1808 ** redefined.  The UNION ALL operator uses this property to force
1809 ** the reuse of the same limit and offset registers across multiple
1810 ** SELECT statements.
1811 */
1812 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1813   Vdbe *v = 0;
1814   int iLimit = 0;
1815   int iOffset;
1816   int addr1, n;
1817   if( p->iLimit ) return;
1818 
1819   /*
1820   ** "LIMIT -1" always shows all rows.  There is some
1821   ** controversy about what the correct behavior should be.
1822   ** The current implementation interprets "LIMIT 0" to mean
1823   ** no rows.
1824   */
1825   sqlite3ExprCacheClear(pParse);
1826   assert( p->pOffset==0 || p->pLimit!=0 );
1827   if( p->pLimit ){
1828     p->iLimit = iLimit = ++pParse->nMem;
1829     v = sqlite3GetVdbe(pParse);
1830     assert( v!=0 );
1831     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1832       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1833       VdbeComment((v, "LIMIT counter"));
1834       if( n==0 ){
1835         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1836       }else if( n>=0 && p->nSelectRow>(u64)n ){
1837         p->nSelectRow = n;
1838       }
1839     }else{
1840       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1841       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1842       VdbeComment((v, "LIMIT counter"));
1843       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1844     }
1845     if( p->pOffset ){
1846       p->iOffset = iOffset = ++pParse->nMem;
1847       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1848       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1849       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1850       VdbeComment((v, "OFFSET counter"));
1851       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1852       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1853       sqlite3VdbeJumpHere(v, addr1);
1854       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1855       VdbeComment((v, "LIMIT+OFFSET"));
1856       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1857       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1858       sqlite3VdbeJumpHere(v, addr1);
1859     }
1860   }
1861 }
1862 
1863 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1864 /*
1865 ** Return the appropriate collating sequence for the iCol-th column of
1866 ** the result set for the compound-select statement "p".  Return NULL if
1867 ** the column has no default collating sequence.
1868 **
1869 ** The collating sequence for the compound select is taken from the
1870 ** left-most term of the select that has a collating sequence.
1871 */
1872 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1873   CollSeq *pRet;
1874   if( p->pPrior ){
1875     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1876   }else{
1877     pRet = 0;
1878   }
1879   assert( iCol>=0 );
1880   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1881   ** have been thrown during name resolution and we would not have gotten
1882   ** this far */
1883   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1884     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1885   }
1886   return pRet;
1887 }
1888 
1889 /*
1890 ** The select statement passed as the second parameter is a compound SELECT
1891 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1892 ** structure suitable for implementing the ORDER BY.
1893 **
1894 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1895 ** function is responsible for ensuring that this structure is eventually
1896 ** freed.
1897 */
1898 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1899   ExprList *pOrderBy = p->pOrderBy;
1900   int nOrderBy = p->pOrderBy->nExpr;
1901   sqlite3 *db = pParse->db;
1902   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1903   if( pRet ){
1904     int i;
1905     for(i=0; i<nOrderBy; i++){
1906       struct ExprList_item *pItem = &pOrderBy->a[i];
1907       Expr *pTerm = pItem->pExpr;
1908       CollSeq *pColl;
1909 
1910       if( pTerm->flags & EP_Collate ){
1911         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1912       }else{
1913         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1914         if( pColl==0 ) pColl = db->pDfltColl;
1915         pOrderBy->a[i].pExpr =
1916           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1917       }
1918       assert( sqlite3KeyInfoIsWriteable(pRet) );
1919       pRet->aColl[i] = pColl;
1920       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1921     }
1922   }
1923 
1924   return pRet;
1925 }
1926 
1927 #ifndef SQLITE_OMIT_CTE
1928 /*
1929 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1930 ** query of the form:
1931 **
1932 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1933 **                         \___________/             \_______________/
1934 **                           p->pPrior                      p
1935 **
1936 **
1937 ** There is exactly one reference to the recursive-table in the FROM clause
1938 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1939 **
1940 ** The setup-query runs once to generate an initial set of rows that go
1941 ** into a Queue table.  Rows are extracted from the Queue table one by
1942 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1943 ** extracted row (now in the iCurrent table) becomes the content of the
1944 ** recursive-table for a recursive-query run.  The output of the recursive-query
1945 ** is added back into the Queue table.  Then another row is extracted from Queue
1946 ** and the iteration continues until the Queue table is empty.
1947 **
1948 ** If the compound query operator is UNION then no duplicate rows are ever
1949 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1950 ** that have ever been inserted into Queue and causes duplicates to be
1951 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1952 **
1953 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1954 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1955 ** an ORDER BY, the Queue table is just a FIFO.
1956 **
1957 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1958 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1959 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1960 ** with a positive value, then the first OFFSET outputs are discarded rather
1961 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1962 ** rows have been skipped.
1963 */
1964 static void generateWithRecursiveQuery(
1965   Parse *pParse,        /* Parsing context */
1966   Select *p,            /* The recursive SELECT to be coded */
1967   SelectDest *pDest     /* What to do with query results */
1968 ){
1969   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1970   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1971   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1972   Select *pSetup = p->pPrior;   /* The setup query */
1973   int addrTop;                  /* Top of the loop */
1974   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1975   int iCurrent = 0;             /* The Current table */
1976   int regCurrent;               /* Register holding Current table */
1977   int iQueue;                   /* The Queue table */
1978   int iDistinct = 0;            /* To ensure unique results if UNION */
1979   int eDest = SRT_Fifo;         /* How to write to Queue */
1980   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1981   int i;                        /* Loop counter */
1982   int rc;                       /* Result code */
1983   ExprList *pOrderBy;           /* The ORDER BY clause */
1984   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1985   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1986 
1987   /* Obtain authorization to do a recursive query */
1988   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1989 
1990   /* Process the LIMIT and OFFSET clauses, if they exist */
1991   addrBreak = sqlite3VdbeMakeLabel(v);
1992   computeLimitRegisters(pParse, p, addrBreak);
1993   pLimit = p->pLimit;
1994   pOffset = p->pOffset;
1995   regLimit = p->iLimit;
1996   regOffset = p->iOffset;
1997   p->pLimit = p->pOffset = 0;
1998   p->iLimit = p->iOffset = 0;
1999   pOrderBy = p->pOrderBy;
2000 
2001   /* Locate the cursor number of the Current table */
2002   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2003     if( pSrc->a[i].isRecursive ){
2004       iCurrent = pSrc->a[i].iCursor;
2005       break;
2006     }
2007   }
2008 
2009   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2010   ** the Distinct table must be exactly one greater than Queue in order
2011   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2012   iQueue = pParse->nTab++;
2013   if( p->op==TK_UNION ){
2014     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2015     iDistinct = pParse->nTab++;
2016   }else{
2017     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2018   }
2019   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2020 
2021   /* Allocate cursors for Current, Queue, and Distinct. */
2022   regCurrent = ++pParse->nMem;
2023   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2024   if( pOrderBy ){
2025     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2026     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2027                       (char*)pKeyInfo, P4_KEYINFO);
2028     destQueue.pOrderBy = pOrderBy;
2029   }else{
2030     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2031   }
2032   VdbeComment((v, "Queue table"));
2033   if( iDistinct ){
2034     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2035     p->selFlags |= SF_UsesEphemeral;
2036   }
2037 
2038   /* Detach the ORDER BY clause from the compound SELECT */
2039   p->pOrderBy = 0;
2040 
2041   /* Store the results of the setup-query in Queue. */
2042   pSetup->pNext = 0;
2043   rc = sqlite3Select(pParse, pSetup, &destQueue);
2044   pSetup->pNext = p;
2045   if( rc ) goto end_of_recursive_query;
2046 
2047   /* Find the next row in the Queue and output that row */
2048   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2049 
2050   /* Transfer the next row in Queue over to Current */
2051   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2052   if( pOrderBy ){
2053     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2054   }else{
2055     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2056   }
2057   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2058 
2059   /* Output the single row in Current */
2060   addrCont = sqlite3VdbeMakeLabel(v);
2061   codeOffset(v, regOffset, addrCont);
2062   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2063       0, 0, pDest, addrCont, addrBreak);
2064   if( regLimit ){
2065     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2066     VdbeCoverage(v);
2067   }
2068   sqlite3VdbeResolveLabel(v, addrCont);
2069 
2070   /* Execute the recursive SELECT taking the single row in Current as
2071   ** the value for the recursive-table. Store the results in the Queue.
2072   */
2073   if( p->selFlags & SF_Aggregate ){
2074     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2075   }else{
2076     p->pPrior = 0;
2077     sqlite3Select(pParse, p, &destQueue);
2078     assert( p->pPrior==0 );
2079     p->pPrior = pSetup;
2080   }
2081 
2082   /* Keep running the loop until the Queue is empty */
2083   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2084   sqlite3VdbeResolveLabel(v, addrBreak);
2085 
2086 end_of_recursive_query:
2087   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2088   p->pOrderBy = pOrderBy;
2089   p->pLimit = pLimit;
2090   p->pOffset = pOffset;
2091   return;
2092 }
2093 #endif /* SQLITE_OMIT_CTE */
2094 
2095 /* Forward references */
2096 static int multiSelectOrderBy(
2097   Parse *pParse,        /* Parsing context */
2098   Select *p,            /* The right-most of SELECTs to be coded */
2099   SelectDest *pDest     /* What to do with query results */
2100 );
2101 
2102 /*
2103 ** Error message for when two or more terms of a compound select have different
2104 ** size result sets.
2105 */
2106 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2107   if( p->selFlags & SF_Values ){
2108     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2109   }else{
2110     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2111       " do not have the same number of result columns", selectOpName(p->op));
2112   }
2113 }
2114 
2115 /*
2116 ** Handle the special case of a compound-select that originates from a
2117 ** VALUES clause.  By handling this as a special case, we avoid deep
2118 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2119 ** on a VALUES clause.
2120 **
2121 ** Because the Select object originates from a VALUES clause:
2122 **   (1) It has no LIMIT or OFFSET
2123 **   (2) All terms are UNION ALL
2124 **   (3) There is no ORDER BY clause
2125 */
2126 static int multiSelectValues(
2127   Parse *pParse,        /* Parsing context */
2128   Select *p,            /* The right-most of SELECTs to be coded */
2129   SelectDest *pDest     /* What to do with query results */
2130 ){
2131   Select *pPrior;
2132   int nRow = 1;
2133   int rc = 0;
2134   assert( p->selFlags & SF_MultiValue );
2135   do{
2136     assert( p->selFlags & SF_Values );
2137     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2138     assert( p->pLimit==0 );
2139     assert( p->pOffset==0 );
2140     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2141     if( p->pPrior==0 ) break;
2142     assert( p->pPrior->pNext==p );
2143     p = p->pPrior;
2144     nRow++;
2145   }while(1);
2146   while( p ){
2147     pPrior = p->pPrior;
2148     p->pPrior = 0;
2149     rc = sqlite3Select(pParse, p, pDest);
2150     p->pPrior = pPrior;
2151     if( rc ) break;
2152     p->nSelectRow = nRow;
2153     p = p->pNext;
2154   }
2155   return rc;
2156 }
2157 
2158 /*
2159 ** This routine is called to process a compound query form from
2160 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2161 ** INTERSECT
2162 **
2163 ** "p" points to the right-most of the two queries.  the query on the
2164 ** left is p->pPrior.  The left query could also be a compound query
2165 ** in which case this routine will be called recursively.
2166 **
2167 ** The results of the total query are to be written into a destination
2168 ** of type eDest with parameter iParm.
2169 **
2170 ** Example 1:  Consider a three-way compound SQL statement.
2171 **
2172 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2173 **
2174 ** This statement is parsed up as follows:
2175 **
2176 **     SELECT c FROM t3
2177 **      |
2178 **      `----->  SELECT b FROM t2
2179 **                |
2180 **                `------>  SELECT a FROM t1
2181 **
2182 ** The arrows in the diagram above represent the Select.pPrior pointer.
2183 ** So if this routine is called with p equal to the t3 query, then
2184 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2185 **
2186 ** Notice that because of the way SQLite parses compound SELECTs, the
2187 ** individual selects always group from left to right.
2188 */
2189 static int multiSelect(
2190   Parse *pParse,        /* Parsing context */
2191   Select *p,            /* The right-most of SELECTs to be coded */
2192   SelectDest *pDest     /* What to do with query results */
2193 ){
2194   int rc = SQLITE_OK;   /* Success code from a subroutine */
2195   Select *pPrior;       /* Another SELECT immediately to our left */
2196   Vdbe *v;              /* Generate code to this VDBE */
2197   SelectDest dest;      /* Alternative data destination */
2198   Select *pDelete = 0;  /* Chain of simple selects to delete */
2199   sqlite3 *db;          /* Database connection */
2200 #ifndef SQLITE_OMIT_EXPLAIN
2201   int iSub1 = 0;        /* EQP id of left-hand query */
2202   int iSub2 = 0;        /* EQP id of right-hand query */
2203 #endif
2204 
2205   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2206   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2207   */
2208   assert( p && p->pPrior );  /* Calling function guarantees this much */
2209   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2210   db = pParse->db;
2211   pPrior = p->pPrior;
2212   dest = *pDest;
2213   if( pPrior->pOrderBy ){
2214     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2215       selectOpName(p->op));
2216     rc = 1;
2217     goto multi_select_end;
2218   }
2219   if( pPrior->pLimit ){
2220     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2221       selectOpName(p->op));
2222     rc = 1;
2223     goto multi_select_end;
2224   }
2225 
2226   v = sqlite3GetVdbe(pParse);
2227   assert( v!=0 );  /* The VDBE already created by calling function */
2228 
2229   /* Create the destination temporary table if necessary
2230   */
2231   if( dest.eDest==SRT_EphemTab ){
2232     assert( p->pEList );
2233     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2234     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2235     dest.eDest = SRT_Table;
2236   }
2237 
2238   /* Special handling for a compound-select that originates as a VALUES clause.
2239   */
2240   if( p->selFlags & SF_MultiValue ){
2241     rc = multiSelectValues(pParse, p, &dest);
2242     goto multi_select_end;
2243   }
2244 
2245   /* Make sure all SELECTs in the statement have the same number of elements
2246   ** in their result sets.
2247   */
2248   assert( p->pEList && pPrior->pEList );
2249   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2250 
2251 #ifndef SQLITE_OMIT_CTE
2252   if( p->selFlags & SF_Recursive ){
2253     generateWithRecursiveQuery(pParse, p, &dest);
2254   }else
2255 #endif
2256 
2257   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2258   */
2259   if( p->pOrderBy ){
2260     return multiSelectOrderBy(pParse, p, pDest);
2261   }else
2262 
2263   /* Generate code for the left and right SELECT statements.
2264   */
2265   switch( p->op ){
2266     case TK_ALL: {
2267       int addr = 0;
2268       int nLimit;
2269       assert( !pPrior->pLimit );
2270       pPrior->iLimit = p->iLimit;
2271       pPrior->iOffset = p->iOffset;
2272       pPrior->pLimit = p->pLimit;
2273       pPrior->pOffset = p->pOffset;
2274       explainSetInteger(iSub1, pParse->iNextSelectId);
2275       rc = sqlite3Select(pParse, pPrior, &dest);
2276       p->pLimit = 0;
2277       p->pOffset = 0;
2278       if( rc ){
2279         goto multi_select_end;
2280       }
2281       p->pPrior = 0;
2282       p->iLimit = pPrior->iLimit;
2283       p->iOffset = pPrior->iOffset;
2284       if( p->iLimit ){
2285         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2286         VdbeComment((v, "Jump ahead if LIMIT reached"));
2287       }
2288       explainSetInteger(iSub2, pParse->iNextSelectId);
2289       rc = sqlite3Select(pParse, p, &dest);
2290       testcase( rc!=SQLITE_OK );
2291       pDelete = p->pPrior;
2292       p->pPrior = pPrior;
2293       p->nSelectRow += pPrior->nSelectRow;
2294       if( pPrior->pLimit
2295        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2296        && nLimit>0 && p->nSelectRow > (u64)nLimit
2297       ){
2298         p->nSelectRow = nLimit;
2299       }
2300       if( addr ){
2301         sqlite3VdbeJumpHere(v, addr);
2302       }
2303       break;
2304     }
2305     case TK_EXCEPT:
2306     case TK_UNION: {
2307       int unionTab;    /* Cursor number of the temporary table holding result */
2308       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2309       int priorOp;     /* The SRT_ operation to apply to prior selects */
2310       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2311       int addr;
2312       SelectDest uniondest;
2313 
2314       testcase( p->op==TK_EXCEPT );
2315       testcase( p->op==TK_UNION );
2316       priorOp = SRT_Union;
2317       if( dest.eDest==priorOp ){
2318         /* We can reuse a temporary table generated by a SELECT to our
2319         ** right.
2320         */
2321         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2322         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2323         unionTab = dest.iSDParm;
2324       }else{
2325         /* We will need to create our own temporary table to hold the
2326         ** intermediate results.
2327         */
2328         unionTab = pParse->nTab++;
2329         assert( p->pOrderBy==0 );
2330         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2331         assert( p->addrOpenEphm[0] == -1 );
2332         p->addrOpenEphm[0] = addr;
2333         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2334         assert( p->pEList );
2335       }
2336 
2337       /* Code the SELECT statements to our left
2338       */
2339       assert( !pPrior->pOrderBy );
2340       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2341       explainSetInteger(iSub1, pParse->iNextSelectId);
2342       rc = sqlite3Select(pParse, pPrior, &uniondest);
2343       if( rc ){
2344         goto multi_select_end;
2345       }
2346 
2347       /* Code the current SELECT statement
2348       */
2349       if( p->op==TK_EXCEPT ){
2350         op = SRT_Except;
2351       }else{
2352         assert( p->op==TK_UNION );
2353         op = SRT_Union;
2354       }
2355       p->pPrior = 0;
2356       pLimit = p->pLimit;
2357       p->pLimit = 0;
2358       pOffset = p->pOffset;
2359       p->pOffset = 0;
2360       uniondest.eDest = op;
2361       explainSetInteger(iSub2, pParse->iNextSelectId);
2362       rc = sqlite3Select(pParse, p, &uniondest);
2363       testcase( rc!=SQLITE_OK );
2364       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2365       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2366       sqlite3ExprListDelete(db, p->pOrderBy);
2367       pDelete = p->pPrior;
2368       p->pPrior = pPrior;
2369       p->pOrderBy = 0;
2370       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2371       sqlite3ExprDelete(db, p->pLimit);
2372       p->pLimit = pLimit;
2373       p->pOffset = pOffset;
2374       p->iLimit = 0;
2375       p->iOffset = 0;
2376 
2377       /* Convert the data in the temporary table into whatever form
2378       ** it is that we currently need.
2379       */
2380       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2381       if( dest.eDest!=priorOp ){
2382         int iCont, iBreak, iStart;
2383         assert( p->pEList );
2384         if( dest.eDest==SRT_Output ){
2385           Select *pFirst = p;
2386           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2387           generateColumnNames(pParse, 0, pFirst->pEList);
2388         }
2389         iBreak = sqlite3VdbeMakeLabel(v);
2390         iCont = sqlite3VdbeMakeLabel(v);
2391         computeLimitRegisters(pParse, p, iBreak);
2392         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2393         iStart = sqlite3VdbeCurrentAddr(v);
2394         selectInnerLoop(pParse, p, p->pEList, unionTab,
2395                         0, 0, &dest, iCont, iBreak);
2396         sqlite3VdbeResolveLabel(v, iCont);
2397         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2398         sqlite3VdbeResolveLabel(v, iBreak);
2399         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2400       }
2401       break;
2402     }
2403     default: assert( p->op==TK_INTERSECT ); {
2404       int tab1, tab2;
2405       int iCont, iBreak, iStart;
2406       Expr *pLimit, *pOffset;
2407       int addr;
2408       SelectDest intersectdest;
2409       int r1;
2410 
2411       /* INTERSECT is different from the others since it requires
2412       ** two temporary tables.  Hence it has its own case.  Begin
2413       ** by allocating the tables we will need.
2414       */
2415       tab1 = pParse->nTab++;
2416       tab2 = pParse->nTab++;
2417       assert( p->pOrderBy==0 );
2418 
2419       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2420       assert( p->addrOpenEphm[0] == -1 );
2421       p->addrOpenEphm[0] = addr;
2422       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2423       assert( p->pEList );
2424 
2425       /* Code the SELECTs to our left into temporary table "tab1".
2426       */
2427       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2428       explainSetInteger(iSub1, pParse->iNextSelectId);
2429       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2430       if( rc ){
2431         goto multi_select_end;
2432       }
2433 
2434       /* Code the current SELECT into temporary table "tab2"
2435       */
2436       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2437       assert( p->addrOpenEphm[1] == -1 );
2438       p->addrOpenEphm[1] = addr;
2439       p->pPrior = 0;
2440       pLimit = p->pLimit;
2441       p->pLimit = 0;
2442       pOffset = p->pOffset;
2443       p->pOffset = 0;
2444       intersectdest.iSDParm = tab2;
2445       explainSetInteger(iSub2, pParse->iNextSelectId);
2446       rc = sqlite3Select(pParse, p, &intersectdest);
2447       testcase( rc!=SQLITE_OK );
2448       pDelete = p->pPrior;
2449       p->pPrior = pPrior;
2450       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2451       sqlite3ExprDelete(db, p->pLimit);
2452       p->pLimit = pLimit;
2453       p->pOffset = pOffset;
2454 
2455       /* Generate code to take the intersection of the two temporary
2456       ** tables.
2457       */
2458       assert( p->pEList );
2459       if( dest.eDest==SRT_Output ){
2460         Select *pFirst = p;
2461         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2462         generateColumnNames(pParse, 0, pFirst->pEList);
2463       }
2464       iBreak = sqlite3VdbeMakeLabel(v);
2465       iCont = sqlite3VdbeMakeLabel(v);
2466       computeLimitRegisters(pParse, p, iBreak);
2467       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2468       r1 = sqlite3GetTempReg(pParse);
2469       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2470       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2471       sqlite3ReleaseTempReg(pParse, r1);
2472       selectInnerLoop(pParse, p, p->pEList, tab1,
2473                       0, 0, &dest, iCont, iBreak);
2474       sqlite3VdbeResolveLabel(v, iCont);
2475       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2476       sqlite3VdbeResolveLabel(v, iBreak);
2477       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2478       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2479       break;
2480     }
2481   }
2482 
2483   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2484 
2485   /* Compute collating sequences used by
2486   ** temporary tables needed to implement the compound select.
2487   ** Attach the KeyInfo structure to all temporary tables.
2488   **
2489   ** This section is run by the right-most SELECT statement only.
2490   ** SELECT statements to the left always skip this part.  The right-most
2491   ** SELECT might also skip this part if it has no ORDER BY clause and
2492   ** no temp tables are required.
2493   */
2494   if( p->selFlags & SF_UsesEphemeral ){
2495     int i;                        /* Loop counter */
2496     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2497     Select *pLoop;                /* For looping through SELECT statements */
2498     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2499     int nCol;                     /* Number of columns in result set */
2500 
2501     assert( p->pNext==0 );
2502     nCol = p->pEList->nExpr;
2503     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2504     if( !pKeyInfo ){
2505       rc = SQLITE_NOMEM;
2506       goto multi_select_end;
2507     }
2508     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2509       *apColl = multiSelectCollSeq(pParse, p, i);
2510       if( 0==*apColl ){
2511         *apColl = db->pDfltColl;
2512       }
2513     }
2514 
2515     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2516       for(i=0; i<2; i++){
2517         int addr = pLoop->addrOpenEphm[i];
2518         if( addr<0 ){
2519           /* If [0] is unused then [1] is also unused.  So we can
2520           ** always safely abort as soon as the first unused slot is found */
2521           assert( pLoop->addrOpenEphm[1]<0 );
2522           break;
2523         }
2524         sqlite3VdbeChangeP2(v, addr, nCol);
2525         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2526                             P4_KEYINFO);
2527         pLoop->addrOpenEphm[i] = -1;
2528       }
2529     }
2530     sqlite3KeyInfoUnref(pKeyInfo);
2531   }
2532 
2533 multi_select_end:
2534   pDest->iSdst = dest.iSdst;
2535   pDest->nSdst = dest.nSdst;
2536   sqlite3SelectDelete(db, pDelete);
2537   return rc;
2538 }
2539 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2540 
2541 /*
2542 ** Code an output subroutine for a coroutine implementation of a
2543 ** SELECT statment.
2544 **
2545 ** The data to be output is contained in pIn->iSdst.  There are
2546 ** pIn->nSdst columns to be output.  pDest is where the output should
2547 ** be sent.
2548 **
2549 ** regReturn is the number of the register holding the subroutine
2550 ** return address.
2551 **
2552 ** If regPrev>0 then it is the first register in a vector that
2553 ** records the previous output.  mem[regPrev] is a flag that is false
2554 ** if there has been no previous output.  If regPrev>0 then code is
2555 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2556 ** keys.
2557 **
2558 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2559 ** iBreak.
2560 */
2561 static int generateOutputSubroutine(
2562   Parse *pParse,          /* Parsing context */
2563   Select *p,              /* The SELECT statement */
2564   SelectDest *pIn,        /* Coroutine supplying data */
2565   SelectDest *pDest,      /* Where to send the data */
2566   int regReturn,          /* The return address register */
2567   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2568   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2569   int iBreak              /* Jump here if we hit the LIMIT */
2570 ){
2571   Vdbe *v = pParse->pVdbe;
2572   int iContinue;
2573   int addr;
2574 
2575   addr = sqlite3VdbeCurrentAddr(v);
2576   iContinue = sqlite3VdbeMakeLabel(v);
2577 
2578   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2579   */
2580   if( regPrev ){
2581     int j1, j2;
2582     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2583     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2584                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2585     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2586     sqlite3VdbeJumpHere(v, j1);
2587     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2588     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2589   }
2590   if( pParse->db->mallocFailed ) return 0;
2591 
2592   /* Suppress the first OFFSET entries if there is an OFFSET clause
2593   */
2594   codeOffset(v, p->iOffset, iContinue);
2595 
2596   assert( pDest->eDest!=SRT_Exists );
2597   assert( pDest->eDest!=SRT_Table );
2598   switch( pDest->eDest ){
2599     /* Store the result as data using a unique key.
2600     */
2601     case SRT_EphemTab: {
2602       int r1 = sqlite3GetTempReg(pParse);
2603       int r2 = sqlite3GetTempReg(pParse);
2604       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2605       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2606       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2607       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2608       sqlite3ReleaseTempReg(pParse, r2);
2609       sqlite3ReleaseTempReg(pParse, r1);
2610       break;
2611     }
2612 
2613 #ifndef SQLITE_OMIT_SUBQUERY
2614     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2615     ** then there should be a single item on the stack.  Write this
2616     ** item into the set table with bogus data.
2617     */
2618     case SRT_Set: {
2619       int r1;
2620       assert( pIn->nSdst==1 || pParse->nErr>0 );
2621       pDest->affSdst =
2622          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2623       r1 = sqlite3GetTempReg(pParse);
2624       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2625       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2626       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2627       sqlite3ReleaseTempReg(pParse, r1);
2628       break;
2629     }
2630 
2631     /* If this is a scalar select that is part of an expression, then
2632     ** store the results in the appropriate memory cell and break out
2633     ** of the scan loop.
2634     */
2635     case SRT_Mem: {
2636       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2637       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2638       /* The LIMIT clause will jump out of the loop for us */
2639       break;
2640     }
2641 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2642 
2643     /* The results are stored in a sequence of registers
2644     ** starting at pDest->iSdst.  Then the co-routine yields.
2645     */
2646     case SRT_Coroutine: {
2647       if( pDest->iSdst==0 ){
2648         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2649         pDest->nSdst = pIn->nSdst;
2650       }
2651       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2652       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2653       break;
2654     }
2655 
2656     /* If none of the above, then the result destination must be
2657     ** SRT_Output.  This routine is never called with any other
2658     ** destination other than the ones handled above or SRT_Output.
2659     **
2660     ** For SRT_Output, results are stored in a sequence of registers.
2661     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2662     ** return the next row of result.
2663     */
2664     default: {
2665       assert( pDest->eDest==SRT_Output );
2666       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2667       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2668       break;
2669     }
2670   }
2671 
2672   /* Jump to the end of the loop if the LIMIT is reached.
2673   */
2674   if( p->iLimit ){
2675     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2676   }
2677 
2678   /* Generate the subroutine return
2679   */
2680   sqlite3VdbeResolveLabel(v, iContinue);
2681   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2682 
2683   return addr;
2684 }
2685 
2686 /*
2687 ** Alternative compound select code generator for cases when there
2688 ** is an ORDER BY clause.
2689 **
2690 ** We assume a query of the following form:
2691 **
2692 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2693 **
2694 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2695 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2696 ** co-routines.  Then run the co-routines in parallel and merge the results
2697 ** into the output.  In addition to the two coroutines (called selectA and
2698 ** selectB) there are 7 subroutines:
2699 **
2700 **    outA:    Move the output of the selectA coroutine into the output
2701 **             of the compound query.
2702 **
2703 **    outB:    Move the output of the selectB coroutine into the output
2704 **             of the compound query.  (Only generated for UNION and
2705 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2706 **             appears only in B.)
2707 **
2708 **    AltB:    Called when there is data from both coroutines and A<B.
2709 **
2710 **    AeqB:    Called when there is data from both coroutines and A==B.
2711 **
2712 **    AgtB:    Called when there is data from both coroutines and A>B.
2713 **
2714 **    EofA:    Called when data is exhausted from selectA.
2715 **
2716 **    EofB:    Called when data is exhausted from selectB.
2717 **
2718 ** The implementation of the latter five subroutines depend on which
2719 ** <operator> is used:
2720 **
2721 **
2722 **             UNION ALL         UNION            EXCEPT          INTERSECT
2723 **          -------------  -----------------  --------------  -----------------
2724 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2725 **
2726 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2727 **
2728 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2729 **
2730 **   EofA:   outB, nextB      outB, nextB          halt             halt
2731 **
2732 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2733 **
2734 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2735 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2736 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2737 ** following nextX causes a jump to the end of the select processing.
2738 **
2739 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2740 ** within the output subroutine.  The regPrev register set holds the previously
2741 ** output value.  A comparison is made against this value and the output
2742 ** is skipped if the next results would be the same as the previous.
2743 **
2744 ** The implementation plan is to implement the two coroutines and seven
2745 ** subroutines first, then put the control logic at the bottom.  Like this:
2746 **
2747 **          goto Init
2748 **     coA: coroutine for left query (A)
2749 **     coB: coroutine for right query (B)
2750 **    outA: output one row of A
2751 **    outB: output one row of B (UNION and UNION ALL only)
2752 **    EofA: ...
2753 **    EofB: ...
2754 **    AltB: ...
2755 **    AeqB: ...
2756 **    AgtB: ...
2757 **    Init: initialize coroutine registers
2758 **          yield coA
2759 **          if eof(A) goto EofA
2760 **          yield coB
2761 **          if eof(B) goto EofB
2762 **    Cmpr: Compare A, B
2763 **          Jump AltB, AeqB, AgtB
2764 **     End: ...
2765 **
2766 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2767 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2768 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2769 ** and AgtB jump to either L2 or to one of EofA or EofB.
2770 */
2771 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2772 static int multiSelectOrderBy(
2773   Parse *pParse,        /* Parsing context */
2774   Select *p,            /* The right-most of SELECTs to be coded */
2775   SelectDest *pDest     /* What to do with query results */
2776 ){
2777   int i, j;             /* Loop counters */
2778   Select *pPrior;       /* Another SELECT immediately to our left */
2779   Vdbe *v;              /* Generate code to this VDBE */
2780   SelectDest destA;     /* Destination for coroutine A */
2781   SelectDest destB;     /* Destination for coroutine B */
2782   int regAddrA;         /* Address register for select-A coroutine */
2783   int regAddrB;         /* Address register for select-B coroutine */
2784   int addrSelectA;      /* Address of the select-A coroutine */
2785   int addrSelectB;      /* Address of the select-B coroutine */
2786   int regOutA;          /* Address register for the output-A subroutine */
2787   int regOutB;          /* Address register for the output-B subroutine */
2788   int addrOutA;         /* Address of the output-A subroutine */
2789   int addrOutB = 0;     /* Address of the output-B subroutine */
2790   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2791   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2792   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2793   int addrAltB;         /* Address of the A<B subroutine */
2794   int addrAeqB;         /* Address of the A==B subroutine */
2795   int addrAgtB;         /* Address of the A>B subroutine */
2796   int regLimitA;        /* Limit register for select-A */
2797   int regLimitB;        /* Limit register for select-A */
2798   int regPrev;          /* A range of registers to hold previous output */
2799   int savedLimit;       /* Saved value of p->iLimit */
2800   int savedOffset;      /* Saved value of p->iOffset */
2801   int labelCmpr;        /* Label for the start of the merge algorithm */
2802   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2803   int j1;               /* Jump instructions that get retargetted */
2804   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2805   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2806   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2807   sqlite3 *db;          /* Database connection */
2808   ExprList *pOrderBy;   /* The ORDER BY clause */
2809   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2810   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2811 #ifndef SQLITE_OMIT_EXPLAIN
2812   int iSub1;            /* EQP id of left-hand query */
2813   int iSub2;            /* EQP id of right-hand query */
2814 #endif
2815 
2816   assert( p->pOrderBy!=0 );
2817   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2818   db = pParse->db;
2819   v = pParse->pVdbe;
2820   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2821   labelEnd = sqlite3VdbeMakeLabel(v);
2822   labelCmpr = sqlite3VdbeMakeLabel(v);
2823 
2824 
2825   /* Patch up the ORDER BY clause
2826   */
2827   op = p->op;
2828   pPrior = p->pPrior;
2829   assert( pPrior->pOrderBy==0 );
2830   pOrderBy = p->pOrderBy;
2831   assert( pOrderBy );
2832   nOrderBy = pOrderBy->nExpr;
2833 
2834   /* For operators other than UNION ALL we have to make sure that
2835   ** the ORDER BY clause covers every term of the result set.  Add
2836   ** terms to the ORDER BY clause as necessary.
2837   */
2838   if( op!=TK_ALL ){
2839     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2840       struct ExprList_item *pItem;
2841       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2842         assert( pItem->u.x.iOrderByCol>0 );
2843         if( pItem->u.x.iOrderByCol==i ) break;
2844       }
2845       if( j==nOrderBy ){
2846         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2847         if( pNew==0 ) return SQLITE_NOMEM;
2848         pNew->flags |= EP_IntValue;
2849         pNew->u.iValue = i;
2850         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2851         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2852       }
2853     }
2854   }
2855 
2856   /* Compute the comparison permutation and keyinfo that is used with
2857   ** the permutation used to determine if the next
2858   ** row of results comes from selectA or selectB.  Also add explicit
2859   ** collations to the ORDER BY clause terms so that when the subqueries
2860   ** to the right and the left are evaluated, they use the correct
2861   ** collation.
2862   */
2863   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2864   if( aPermute ){
2865     struct ExprList_item *pItem;
2866     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2867       assert( pItem->u.x.iOrderByCol>0 );
2868       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2869       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2870     }
2871     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2872   }else{
2873     pKeyMerge = 0;
2874   }
2875 
2876   /* Reattach the ORDER BY clause to the query.
2877   */
2878   p->pOrderBy = pOrderBy;
2879   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2880 
2881   /* Allocate a range of temporary registers and the KeyInfo needed
2882   ** for the logic that removes duplicate result rows when the
2883   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2884   */
2885   if( op==TK_ALL ){
2886     regPrev = 0;
2887   }else{
2888     int nExpr = p->pEList->nExpr;
2889     assert( nOrderBy>=nExpr || db->mallocFailed );
2890     regPrev = pParse->nMem+1;
2891     pParse->nMem += nExpr+1;
2892     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2893     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2894     if( pKeyDup ){
2895       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2896       for(i=0; i<nExpr; i++){
2897         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2898         pKeyDup->aSortOrder[i] = 0;
2899       }
2900     }
2901   }
2902 
2903   /* Separate the left and the right query from one another
2904   */
2905   p->pPrior = 0;
2906   pPrior->pNext = 0;
2907   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2908   if( pPrior->pPrior==0 ){
2909     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2910   }
2911 
2912   /* Compute the limit registers */
2913   computeLimitRegisters(pParse, p, labelEnd);
2914   if( p->iLimit && op==TK_ALL ){
2915     regLimitA = ++pParse->nMem;
2916     regLimitB = ++pParse->nMem;
2917     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2918                                   regLimitA);
2919     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2920   }else{
2921     regLimitA = regLimitB = 0;
2922   }
2923   sqlite3ExprDelete(db, p->pLimit);
2924   p->pLimit = 0;
2925   sqlite3ExprDelete(db, p->pOffset);
2926   p->pOffset = 0;
2927 
2928   regAddrA = ++pParse->nMem;
2929   regAddrB = ++pParse->nMem;
2930   regOutA = ++pParse->nMem;
2931   regOutB = ++pParse->nMem;
2932   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2933   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2934 
2935   /* Generate a coroutine to evaluate the SELECT statement to the
2936   ** left of the compound operator - the "A" select.
2937   */
2938   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2939   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2940   VdbeComment((v, "left SELECT"));
2941   pPrior->iLimit = regLimitA;
2942   explainSetInteger(iSub1, pParse->iNextSelectId);
2943   sqlite3Select(pParse, pPrior, &destA);
2944   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2945   sqlite3VdbeJumpHere(v, j1);
2946 
2947   /* Generate a coroutine to evaluate the SELECT statement on
2948   ** the right - the "B" select
2949   */
2950   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2951   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2952   VdbeComment((v, "right SELECT"));
2953   savedLimit = p->iLimit;
2954   savedOffset = p->iOffset;
2955   p->iLimit = regLimitB;
2956   p->iOffset = 0;
2957   explainSetInteger(iSub2, pParse->iNextSelectId);
2958   sqlite3Select(pParse, p, &destB);
2959   p->iLimit = savedLimit;
2960   p->iOffset = savedOffset;
2961   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2962 
2963   /* Generate a subroutine that outputs the current row of the A
2964   ** select as the next output row of the compound select.
2965   */
2966   VdbeNoopComment((v, "Output routine for A"));
2967   addrOutA = generateOutputSubroutine(pParse,
2968                  p, &destA, pDest, regOutA,
2969                  regPrev, pKeyDup, labelEnd);
2970 
2971   /* Generate a subroutine that outputs the current row of the B
2972   ** select as the next output row of the compound select.
2973   */
2974   if( op==TK_ALL || op==TK_UNION ){
2975     VdbeNoopComment((v, "Output routine for B"));
2976     addrOutB = generateOutputSubroutine(pParse,
2977                  p, &destB, pDest, regOutB,
2978                  regPrev, pKeyDup, labelEnd);
2979   }
2980   sqlite3KeyInfoUnref(pKeyDup);
2981 
2982   /* Generate a subroutine to run when the results from select A
2983   ** are exhausted and only data in select B remains.
2984   */
2985   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2986     addrEofA_noB = addrEofA = labelEnd;
2987   }else{
2988     VdbeNoopComment((v, "eof-A subroutine"));
2989     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2990     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2991                                      VdbeCoverage(v);
2992     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2993     p->nSelectRow += pPrior->nSelectRow;
2994   }
2995 
2996   /* Generate a subroutine to run when the results from select B
2997   ** are exhausted and only data in select A remains.
2998   */
2999   if( op==TK_INTERSECT ){
3000     addrEofB = addrEofA;
3001     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3002   }else{
3003     VdbeNoopComment((v, "eof-B subroutine"));
3004     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3005     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3006     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
3007   }
3008 
3009   /* Generate code to handle the case of A<B
3010   */
3011   VdbeNoopComment((v, "A-lt-B subroutine"));
3012   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3013   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3014   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3015 
3016   /* Generate code to handle the case of A==B
3017   */
3018   if( op==TK_ALL ){
3019     addrAeqB = addrAltB;
3020   }else if( op==TK_INTERSECT ){
3021     addrAeqB = addrAltB;
3022     addrAltB++;
3023   }else{
3024     VdbeNoopComment((v, "A-eq-B subroutine"));
3025     addrAeqB =
3026     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3027     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3028   }
3029 
3030   /* Generate code to handle the case of A>B
3031   */
3032   VdbeNoopComment((v, "A-gt-B subroutine"));
3033   addrAgtB = sqlite3VdbeCurrentAddr(v);
3034   if( op==TK_ALL || op==TK_UNION ){
3035     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3036   }
3037   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3038   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3039 
3040   /* This code runs once to initialize everything.
3041   */
3042   sqlite3VdbeJumpHere(v, j1);
3043   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3044   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3045 
3046   /* Implement the main merge loop
3047   */
3048   sqlite3VdbeResolveLabel(v, labelCmpr);
3049   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3050   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3051                          (char*)pKeyMerge, P4_KEYINFO);
3052   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3053   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3054 
3055   /* Jump to the this point in order to terminate the query.
3056   */
3057   sqlite3VdbeResolveLabel(v, labelEnd);
3058 
3059   /* Set the number of output columns
3060   */
3061   if( pDest->eDest==SRT_Output ){
3062     Select *pFirst = pPrior;
3063     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3064     generateColumnNames(pParse, 0, pFirst->pEList);
3065   }
3066 
3067   /* Reassembly the compound query so that it will be freed correctly
3068   ** by the calling function */
3069   if( p->pPrior ){
3070     sqlite3SelectDelete(db, p->pPrior);
3071   }
3072   p->pPrior = pPrior;
3073   pPrior->pNext = p;
3074 
3075   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3076   **** subqueries ****/
3077   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3078   return pParse->nErr!=0;
3079 }
3080 #endif
3081 
3082 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3083 /* Forward Declarations */
3084 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3085 static void substSelect(sqlite3*, Select *, int, ExprList *);
3086 
3087 /*
3088 ** Scan through the expression pExpr.  Replace every reference to
3089 ** a column in table number iTable with a copy of the iColumn-th
3090 ** entry in pEList.  (But leave references to the ROWID column
3091 ** unchanged.)
3092 **
3093 ** This routine is part of the flattening procedure.  A subquery
3094 ** whose result set is defined by pEList appears as entry in the
3095 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3096 ** FORM clause entry is iTable.  This routine make the necessary
3097 ** changes to pExpr so that it refers directly to the source table
3098 ** of the subquery rather the result set of the subquery.
3099 */
3100 static Expr *substExpr(
3101   sqlite3 *db,        /* Report malloc errors to this connection */
3102   Expr *pExpr,        /* Expr in which substitution occurs */
3103   int iTable,         /* Table to be substituted */
3104   ExprList *pEList    /* Substitute expressions */
3105 ){
3106   if( pExpr==0 ) return 0;
3107   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3108     if( pExpr->iColumn<0 ){
3109       pExpr->op = TK_NULL;
3110     }else{
3111       Expr *pNew;
3112       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3113       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3114       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3115       sqlite3ExprDelete(db, pExpr);
3116       pExpr = pNew;
3117     }
3118   }else{
3119     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3120     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3121     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3122       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3123     }else{
3124       substExprList(db, pExpr->x.pList, iTable, pEList);
3125     }
3126   }
3127   return pExpr;
3128 }
3129 static void substExprList(
3130   sqlite3 *db,         /* Report malloc errors here */
3131   ExprList *pList,     /* List to scan and in which to make substitutes */
3132   int iTable,          /* Table to be substituted */
3133   ExprList *pEList     /* Substitute values */
3134 ){
3135   int i;
3136   if( pList==0 ) return;
3137   for(i=0; i<pList->nExpr; i++){
3138     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3139   }
3140 }
3141 static void substSelect(
3142   sqlite3 *db,         /* Report malloc errors here */
3143   Select *p,           /* SELECT statement in which to make substitutions */
3144   int iTable,          /* Table to be replaced */
3145   ExprList *pEList     /* Substitute values */
3146 ){
3147   SrcList *pSrc;
3148   struct SrcList_item *pItem;
3149   int i;
3150   if( !p ) return;
3151   substExprList(db, p->pEList, iTable, pEList);
3152   substExprList(db, p->pGroupBy, iTable, pEList);
3153   substExprList(db, p->pOrderBy, iTable, pEList);
3154   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3155   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3156   substSelect(db, p->pPrior, iTable, pEList);
3157   pSrc = p->pSrc;
3158   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3159   if( ALWAYS(pSrc) ){
3160     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3161       substSelect(db, pItem->pSelect, iTable, pEList);
3162     }
3163   }
3164 }
3165 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3166 
3167 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3168 /*
3169 ** This routine attempts to flatten subqueries as a performance optimization.
3170 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3171 **
3172 ** To understand the concept of flattening, consider the following
3173 ** query:
3174 **
3175 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3176 **
3177 ** The default way of implementing this query is to execute the
3178 ** subquery first and store the results in a temporary table, then
3179 ** run the outer query on that temporary table.  This requires two
3180 ** passes over the data.  Furthermore, because the temporary table
3181 ** has no indices, the WHERE clause on the outer query cannot be
3182 ** optimized.
3183 **
3184 ** This routine attempts to rewrite queries such as the above into
3185 ** a single flat select, like this:
3186 **
3187 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3188 **
3189 ** The code generated for this simplification gives the same result
3190 ** but only has to scan the data once.  And because indices might
3191 ** exist on the table t1, a complete scan of the data might be
3192 ** avoided.
3193 **
3194 ** Flattening is only attempted if all of the following are true:
3195 **
3196 **   (1)  The subquery and the outer query do not both use aggregates.
3197 **
3198 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3199 **        and (2b) the outer query does not use subqueries other than the one
3200 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3201 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3202 **
3203 **   (3)  The subquery is not the right operand of a left outer join
3204 **        (Originally ticket #306.  Strengthened by ticket #3300)
3205 **
3206 **   (4)  The subquery is not DISTINCT.
3207 **
3208 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3209 **        sub-queries that were excluded from this optimization. Restriction
3210 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3211 **
3212 **   (6)  The subquery does not use aggregates or the outer query is not
3213 **        DISTINCT.
3214 **
3215 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3216 **        A FROM clause, consider adding a FROM close with the special
3217 **        table sqlite_once that consists of a single row containing a
3218 **        single NULL.
3219 **
3220 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3221 **
3222 **   (9)  The subquery does not use LIMIT or the outer query does not use
3223 **        aggregates.
3224 **
3225 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3226 **        accidently carried the comment forward until 2014-09-15.  Original
3227 **        text: "The subquery does not use aggregates or the outer query
3228 **        does not use LIMIT."
3229 **
3230 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3231 **
3232 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3233 **        a separate restriction deriving from ticket #350.
3234 **
3235 **  (13)  The subquery and outer query do not both use LIMIT.
3236 **
3237 **  (14)  The subquery does not use OFFSET.
3238 **
3239 **  (15)  The outer query is not part of a compound select or the
3240 **        subquery does not have a LIMIT clause.
3241 **        (See ticket #2339 and ticket [02a8e81d44]).
3242 **
3243 **  (16)  The outer query is not an aggregate or the subquery does
3244 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3245 **        until we introduced the group_concat() function.
3246 **
3247 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3248 **        compound clause made up entirely of non-aggregate queries, and
3249 **        the parent query:
3250 **
3251 **          * is not itself part of a compound select,
3252 **          * is not an aggregate or DISTINCT query, and
3253 **          * is not a join
3254 **
3255 **        The parent and sub-query may contain WHERE clauses. Subject to
3256 **        rules (11), (13) and (14), they may also contain ORDER BY,
3257 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3258 **        operator other than UNION ALL because all the other compound
3259 **        operators have an implied DISTINCT which is disallowed by
3260 **        restriction (4).
3261 **
3262 **        Also, each component of the sub-query must return the same number
3263 **        of result columns. This is actually a requirement for any compound
3264 **        SELECT statement, but all the code here does is make sure that no
3265 **        such (illegal) sub-query is flattened. The caller will detect the
3266 **        syntax error and return a detailed message.
3267 **
3268 **  (18)  If the sub-query is a compound select, then all terms of the
3269 **        ORDER by clause of the parent must be simple references to
3270 **        columns of the sub-query.
3271 **
3272 **  (19)  The subquery does not use LIMIT or the outer query does not
3273 **        have a WHERE clause.
3274 **
3275 **  (20)  If the sub-query is a compound select, then it must not use
3276 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3277 **        somewhat by saying that the terms of the ORDER BY clause must
3278 **        appear as unmodified result columns in the outer query.  But we
3279 **        have other optimizations in mind to deal with that case.
3280 **
3281 **  (21)  The subquery does not use LIMIT or the outer query is not
3282 **        DISTINCT.  (See ticket [752e1646fc]).
3283 **
3284 **  (22)  The subquery is not a recursive CTE.
3285 **
3286 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3287 **        compound query. This restriction is because transforming the
3288 **        parent to a compound query confuses the code that handles
3289 **        recursive queries in multiSelect().
3290 **
3291 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3292 **        or max() functions.  (Without this restriction, a query like:
3293 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3294 **        return the value X for which Y was maximal.)
3295 **
3296 **
3297 ** In this routine, the "p" parameter is a pointer to the outer query.
3298 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3299 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3300 **
3301 ** If flattening is not attempted, this routine is a no-op and returns 0.
3302 ** If flattening is attempted this routine returns 1.
3303 **
3304 ** All of the expression analysis must occur on both the outer query and
3305 ** the subquery before this routine runs.
3306 */
3307 static int flattenSubquery(
3308   Parse *pParse,       /* Parsing context */
3309   Select *p,           /* The parent or outer SELECT statement */
3310   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3311   int isAgg,           /* True if outer SELECT uses aggregate functions */
3312   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3313 ){
3314   const char *zSavedAuthContext = pParse->zAuthContext;
3315   Select *pParent;
3316   Select *pSub;       /* The inner query or "subquery" */
3317   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3318   SrcList *pSrc;      /* The FROM clause of the outer query */
3319   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3320   ExprList *pList;    /* The result set of the outer query */
3321   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3322   int i;              /* Loop counter */
3323   Expr *pWhere;                    /* The WHERE clause */
3324   struct SrcList_item *pSubitem;   /* The subquery */
3325   sqlite3 *db = pParse->db;
3326 
3327   /* Check to see if flattening is permitted.  Return 0 if not.
3328   */
3329   assert( p!=0 );
3330   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3331   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3332   pSrc = p->pSrc;
3333   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3334   pSubitem = &pSrc->a[iFrom];
3335   iParent = pSubitem->iCursor;
3336   pSub = pSubitem->pSelect;
3337   assert( pSub!=0 );
3338   if( subqueryIsAgg ){
3339     if( isAgg ) return 0;                                /* Restriction (1)   */
3340     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3341     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3342      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3343      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3344     ){
3345       return 0;                                          /* Restriction (2b)  */
3346     }
3347   }
3348 
3349   pSubSrc = pSub->pSrc;
3350   assert( pSubSrc );
3351   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3352   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3353   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3354   ** became arbitrary expressions, we were forced to add restrictions (13)
3355   ** and (14). */
3356   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3357   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3358   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3359     return 0;                                            /* Restriction (15) */
3360   }
3361   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3362   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3363   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3364      return 0;         /* Restrictions (8)(9) */
3365   }
3366   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3367      return 0;         /* Restriction (6)  */
3368   }
3369   if( p->pOrderBy && pSub->pOrderBy ){
3370      return 0;                                           /* Restriction (11) */
3371   }
3372   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3373   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3374   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3375      return 0;         /* Restriction (21) */
3376   }
3377   testcase( pSub->selFlags & SF_Recursive );
3378   testcase( pSub->selFlags & SF_MinMaxAgg );
3379   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3380     return 0; /* Restrictions (22) and (24) */
3381   }
3382   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3383     return 0; /* Restriction (23) */
3384   }
3385 
3386   /* OBSOLETE COMMENT 1:
3387   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3388   ** not used as the right operand of an outer join.  Examples of why this
3389   ** is not allowed:
3390   **
3391   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3392   **
3393   ** If we flatten the above, we would get
3394   **
3395   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3396   **
3397   ** which is not at all the same thing.
3398   **
3399   ** OBSOLETE COMMENT 2:
3400   ** Restriction 12:  If the subquery is the right operand of a left outer
3401   ** join, make sure the subquery has no WHERE clause.
3402   ** An examples of why this is not allowed:
3403   **
3404   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3405   **
3406   ** If we flatten the above, we would get
3407   **
3408   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3409   **
3410   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3411   ** effectively converts the OUTER JOIN into an INNER JOIN.
3412   **
3413   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3414   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3415   ** is fraught with danger.  Best to avoid the whole thing.  If the
3416   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3417   */
3418   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3419     return 0;
3420   }
3421 
3422   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3423   ** use only the UNION ALL operator. And none of the simple select queries
3424   ** that make up the compound SELECT are allowed to be aggregate or distinct
3425   ** queries.
3426   */
3427   if( pSub->pPrior ){
3428     if( pSub->pOrderBy ){
3429       return 0;  /* Restriction 20 */
3430     }
3431     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3432       return 0;
3433     }
3434     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3435       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3436       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3437       assert( pSub->pSrc!=0 );
3438       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3439       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3440        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3441        || pSub1->pSrc->nSrc<1
3442       ){
3443         return 0;
3444       }
3445       testcase( pSub1->pSrc->nSrc>1 );
3446     }
3447 
3448     /* Restriction 18. */
3449     if( p->pOrderBy ){
3450       int ii;
3451       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3452         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3453       }
3454     }
3455   }
3456 
3457   /***** If we reach this point, flattening is permitted. *****/
3458   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3459                    pSub->zSelName, pSub, iFrom));
3460 
3461   /* Authorize the subquery */
3462   pParse->zAuthContext = pSubitem->zName;
3463   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3464   testcase( i==SQLITE_DENY );
3465   pParse->zAuthContext = zSavedAuthContext;
3466 
3467   /* If the sub-query is a compound SELECT statement, then (by restrictions
3468   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3469   ** be of the form:
3470   **
3471   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3472   **
3473   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3474   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3475   ** OFFSET clauses and joins them to the left-hand-side of the original
3476   ** using UNION ALL operators. In this case N is the number of simple
3477   ** select statements in the compound sub-query.
3478   **
3479   ** Example:
3480   **
3481   **     SELECT a+1 FROM (
3482   **        SELECT x FROM tab
3483   **        UNION ALL
3484   **        SELECT y FROM tab
3485   **        UNION ALL
3486   **        SELECT abs(z*2) FROM tab2
3487   **     ) WHERE a!=5 ORDER BY 1
3488   **
3489   ** Transformed into:
3490   **
3491   **     SELECT x+1 FROM tab WHERE x+1!=5
3492   **     UNION ALL
3493   **     SELECT y+1 FROM tab WHERE y+1!=5
3494   **     UNION ALL
3495   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3496   **     ORDER BY 1
3497   **
3498   ** We call this the "compound-subquery flattening".
3499   */
3500   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3501     Select *pNew;
3502     ExprList *pOrderBy = p->pOrderBy;
3503     Expr *pLimit = p->pLimit;
3504     Expr *pOffset = p->pOffset;
3505     Select *pPrior = p->pPrior;
3506     p->pOrderBy = 0;
3507     p->pSrc = 0;
3508     p->pPrior = 0;
3509     p->pLimit = 0;
3510     p->pOffset = 0;
3511     pNew = sqlite3SelectDup(db, p, 0);
3512     sqlite3SelectSetName(pNew, pSub->zSelName);
3513     p->pOffset = pOffset;
3514     p->pLimit = pLimit;
3515     p->pOrderBy = pOrderBy;
3516     p->pSrc = pSrc;
3517     p->op = TK_ALL;
3518     if( pNew==0 ){
3519       p->pPrior = pPrior;
3520     }else{
3521       pNew->pPrior = pPrior;
3522       if( pPrior ) pPrior->pNext = pNew;
3523       pNew->pNext = p;
3524       p->pPrior = pNew;
3525       SELECTTRACE(2,pParse,p,
3526          ("compound-subquery flattener creates %s.%p as peer\n",
3527          pNew->zSelName, pNew));
3528     }
3529     if( db->mallocFailed ) return 1;
3530   }
3531 
3532   /* Begin flattening the iFrom-th entry of the FROM clause
3533   ** in the outer query.
3534   */
3535   pSub = pSub1 = pSubitem->pSelect;
3536 
3537   /* Delete the transient table structure associated with the
3538   ** subquery
3539   */
3540   sqlite3DbFree(db, pSubitem->zDatabase);
3541   sqlite3DbFree(db, pSubitem->zName);
3542   sqlite3DbFree(db, pSubitem->zAlias);
3543   pSubitem->zDatabase = 0;
3544   pSubitem->zName = 0;
3545   pSubitem->zAlias = 0;
3546   pSubitem->pSelect = 0;
3547 
3548   /* Defer deleting the Table object associated with the
3549   ** subquery until code generation is
3550   ** complete, since there may still exist Expr.pTab entries that
3551   ** refer to the subquery even after flattening.  Ticket #3346.
3552   **
3553   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3554   */
3555   if( ALWAYS(pSubitem->pTab!=0) ){
3556     Table *pTabToDel = pSubitem->pTab;
3557     if( pTabToDel->nRef==1 ){
3558       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3559       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3560       pToplevel->pZombieTab = pTabToDel;
3561     }else{
3562       pTabToDel->nRef--;
3563     }
3564     pSubitem->pTab = 0;
3565   }
3566 
3567   /* The following loop runs once for each term in a compound-subquery
3568   ** flattening (as described above).  If we are doing a different kind
3569   ** of flattening - a flattening other than a compound-subquery flattening -
3570   ** then this loop only runs once.
3571   **
3572   ** This loop moves all of the FROM elements of the subquery into the
3573   ** the FROM clause of the outer query.  Before doing this, remember
3574   ** the cursor number for the original outer query FROM element in
3575   ** iParent.  The iParent cursor will never be used.  Subsequent code
3576   ** will scan expressions looking for iParent references and replace
3577   ** those references with expressions that resolve to the subquery FROM
3578   ** elements we are now copying in.
3579   */
3580   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3581     int nSubSrc;
3582     u8 jointype = 0;
3583     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3584     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3585     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3586 
3587     if( pSrc ){
3588       assert( pParent==p );  /* First time through the loop */
3589       jointype = pSubitem->jointype;
3590     }else{
3591       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3592       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3593       if( pSrc==0 ){
3594         assert( db->mallocFailed );
3595         break;
3596       }
3597     }
3598 
3599     /* The subquery uses a single slot of the FROM clause of the outer
3600     ** query.  If the subquery has more than one element in its FROM clause,
3601     ** then expand the outer query to make space for it to hold all elements
3602     ** of the subquery.
3603     **
3604     ** Example:
3605     **
3606     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3607     **
3608     ** The outer query has 3 slots in its FROM clause.  One slot of the
3609     ** outer query (the middle slot) is used by the subquery.  The next
3610     ** block of code will expand the out query to 4 slots.  The middle
3611     ** slot is expanded to two slots in order to make space for the
3612     ** two elements in the FROM clause of the subquery.
3613     */
3614     if( nSubSrc>1 ){
3615       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3616       if( db->mallocFailed ){
3617         break;
3618       }
3619     }
3620 
3621     /* Transfer the FROM clause terms from the subquery into the
3622     ** outer query.
3623     */
3624     for(i=0; i<nSubSrc; i++){
3625       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3626       pSrc->a[i+iFrom] = pSubSrc->a[i];
3627       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3628     }
3629     pSrc->a[iFrom].jointype = jointype;
3630 
3631     /* Now begin substituting subquery result set expressions for
3632     ** references to the iParent in the outer query.
3633     **
3634     ** Example:
3635     **
3636     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3637     **   \                     \_____________ subquery __________/          /
3638     **    \_____________________ outer query ______________________________/
3639     **
3640     ** We look at every expression in the outer query and every place we see
3641     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3642     */
3643     pList = pParent->pEList;
3644     for(i=0; i<pList->nExpr; i++){
3645       if( pList->a[i].zName==0 ){
3646         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3647         sqlite3Dequote(zName);
3648         pList->a[i].zName = zName;
3649       }
3650     }
3651     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3652     if( isAgg ){
3653       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3654       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3655     }
3656     if( pSub->pOrderBy ){
3657       /* At this point, any non-zero iOrderByCol values indicate that the
3658       ** ORDER BY column expression is identical to the iOrderByCol'th
3659       ** expression returned by SELECT statement pSub. Since these values
3660       ** do not necessarily correspond to columns in SELECT statement pParent,
3661       ** zero them before transfering the ORDER BY clause.
3662       **
3663       ** Not doing this may cause an error if a subsequent call to this
3664       ** function attempts to flatten a compound sub-query into pParent
3665       ** (the only way this can happen is if the compound sub-query is
3666       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3667       ExprList *pOrderBy = pSub->pOrderBy;
3668       for(i=0; i<pOrderBy->nExpr; i++){
3669         pOrderBy->a[i].u.x.iOrderByCol = 0;
3670       }
3671       assert( pParent->pOrderBy==0 );
3672       assert( pSub->pPrior==0 );
3673       pParent->pOrderBy = pOrderBy;
3674       pSub->pOrderBy = 0;
3675     }else if( pParent->pOrderBy ){
3676       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3677     }
3678     if( pSub->pWhere ){
3679       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3680     }else{
3681       pWhere = 0;
3682     }
3683     if( subqueryIsAgg ){
3684       assert( pParent->pHaving==0 );
3685       pParent->pHaving = pParent->pWhere;
3686       pParent->pWhere = pWhere;
3687       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3688       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3689                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3690       assert( pParent->pGroupBy==0 );
3691       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3692     }else{
3693       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3694       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3695     }
3696 
3697     /* The flattened query is distinct if either the inner or the
3698     ** outer query is distinct.
3699     */
3700     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3701 
3702     /*
3703     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3704     **
3705     ** One is tempted to try to add a and b to combine the limits.  But this
3706     ** does not work if either limit is negative.
3707     */
3708     if( pSub->pLimit ){
3709       pParent->pLimit = pSub->pLimit;
3710       pSub->pLimit = 0;
3711     }
3712   }
3713 
3714   /* Finially, delete what is left of the subquery and return
3715   ** success.
3716   */
3717   sqlite3SelectDelete(db, pSub1);
3718 
3719 #if SELECTTRACE_ENABLED
3720   if( sqlite3SelectTrace & 0x100 ){
3721     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3722     sqlite3TreeViewSelect(0, p, 0);
3723   }
3724 #endif
3725 
3726   return 1;
3727 }
3728 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3729 
3730 
3731 
3732 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3733 /*
3734 ** Make copies of relevant WHERE clause terms of the outer query into
3735 ** the WHERE clause of subquery.  Example:
3736 **
3737 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3738 **
3739 ** Transformed into:
3740 **
3741 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3742 **     WHERE x=5 AND y=10;
3743 **
3744 ** The hope is that the terms added to the inner query will make it more
3745 ** efficient.
3746 **
3747 ** Do not attempt this optimization if:
3748 **
3749 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3750 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3751 **       inner query.  But they probably won't help there so do not bother.)
3752 **
3753 **   (2) The inner query is the recursive part of a common table expression.
3754 **
3755 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3756 **       close would change the meaning of the LIMIT).
3757 **
3758 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3759 **       enforces this restriction since this routine does not have enough
3760 **       information to know.)
3761 **
3762 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3763 ** terms are duplicated into the subquery.
3764 */
3765 static int pushDownWhereTerms(
3766   sqlite3 *db,          /* The database connection (for malloc()) */
3767   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3768   Expr *pWhere,         /* The WHERE clause of the outer query */
3769   int iCursor           /* Cursor number of the subquery */
3770 ){
3771   Expr *pNew;
3772   int nChng = 0;
3773   if( pWhere==0 ) return 0;
3774   if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3775      return 0; /* restrictions (1) and (2) */
3776   }
3777   if( pSubq->pLimit!=0 ){
3778      return 0; /* restriction (3) */
3779   }
3780   while( pWhere->op==TK_AND ){
3781     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3782     pWhere = pWhere->pLeft;
3783   }
3784   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3785     nChng++;
3786     while( pSubq ){
3787       pNew = sqlite3ExprDup(db, pWhere, 0);
3788       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3789       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3790       pSubq = pSubq->pPrior;
3791     }
3792   }
3793   return nChng;
3794 }
3795 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3796 
3797 /*
3798 ** Based on the contents of the AggInfo structure indicated by the first
3799 ** argument, this function checks if the following are true:
3800 **
3801 **    * the query contains just a single aggregate function,
3802 **    * the aggregate function is either min() or max(), and
3803 **    * the argument to the aggregate function is a column value.
3804 **
3805 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3806 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3807 ** list of arguments passed to the aggregate before returning.
3808 **
3809 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3810 ** WHERE_ORDERBY_NORMAL is returned.
3811 */
3812 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3813   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3814 
3815   *ppMinMax = 0;
3816   if( pAggInfo->nFunc==1 ){
3817     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3818     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3819 
3820     assert( pExpr->op==TK_AGG_FUNCTION );
3821     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3822       const char *zFunc = pExpr->u.zToken;
3823       if( sqlite3StrICmp(zFunc, "min")==0 ){
3824         eRet = WHERE_ORDERBY_MIN;
3825         *ppMinMax = pEList;
3826       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3827         eRet = WHERE_ORDERBY_MAX;
3828         *ppMinMax = pEList;
3829       }
3830     }
3831   }
3832 
3833   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3834   return eRet;
3835 }
3836 
3837 /*
3838 ** The select statement passed as the first argument is an aggregate query.
3839 ** The second argument is the associated aggregate-info object. This
3840 ** function tests if the SELECT is of the form:
3841 **
3842 **   SELECT count(*) FROM <tbl>
3843 **
3844 ** where table is a database table, not a sub-select or view. If the query
3845 ** does match this pattern, then a pointer to the Table object representing
3846 ** <tbl> is returned. Otherwise, 0 is returned.
3847 */
3848 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3849   Table *pTab;
3850   Expr *pExpr;
3851 
3852   assert( !p->pGroupBy );
3853 
3854   if( p->pWhere || p->pEList->nExpr!=1
3855    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3856   ){
3857     return 0;
3858   }
3859   pTab = p->pSrc->a[0].pTab;
3860   pExpr = p->pEList->a[0].pExpr;
3861   assert( pTab && !pTab->pSelect && pExpr );
3862 
3863   if( IsVirtual(pTab) ) return 0;
3864   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3865   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3866   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3867   if( pExpr->flags&EP_Distinct ) return 0;
3868 
3869   return pTab;
3870 }
3871 
3872 /*
3873 ** If the source-list item passed as an argument was augmented with an
3874 ** INDEXED BY clause, then try to locate the specified index. If there
3875 ** was such a clause and the named index cannot be found, return
3876 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3877 ** pFrom->pIndex and return SQLITE_OK.
3878 */
3879 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3880   if( pFrom->pTab && pFrom->zIndexedBy ){
3881     Table *pTab = pFrom->pTab;
3882     char *zIndexedBy = pFrom->zIndexedBy;
3883     Index *pIdx;
3884     for(pIdx=pTab->pIndex;
3885         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3886         pIdx=pIdx->pNext
3887     );
3888     if( !pIdx ){
3889       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3890       pParse->checkSchema = 1;
3891       return SQLITE_ERROR;
3892     }
3893     pFrom->pIndex = pIdx;
3894   }
3895   return SQLITE_OK;
3896 }
3897 /*
3898 ** Detect compound SELECT statements that use an ORDER BY clause with
3899 ** an alternative collating sequence.
3900 **
3901 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3902 **
3903 ** These are rewritten as a subquery:
3904 **
3905 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3906 **     ORDER BY ... COLLATE ...
3907 **
3908 ** This transformation is necessary because the multiSelectOrderBy() routine
3909 ** above that generates the code for a compound SELECT with an ORDER BY clause
3910 ** uses a merge algorithm that requires the same collating sequence on the
3911 ** result columns as on the ORDER BY clause.  See ticket
3912 ** http://www.sqlite.org/src/info/6709574d2a
3913 **
3914 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3915 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3916 ** there are COLLATE terms in the ORDER BY.
3917 */
3918 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3919   int i;
3920   Select *pNew;
3921   Select *pX;
3922   sqlite3 *db;
3923   struct ExprList_item *a;
3924   SrcList *pNewSrc;
3925   Parse *pParse;
3926   Token dummy;
3927 
3928   if( p->pPrior==0 ) return WRC_Continue;
3929   if( p->pOrderBy==0 ) return WRC_Continue;
3930   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3931   if( pX==0 ) return WRC_Continue;
3932   a = p->pOrderBy->a;
3933   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3934     if( a[i].pExpr->flags & EP_Collate ) break;
3935   }
3936   if( i<0 ) return WRC_Continue;
3937 
3938   /* If we reach this point, that means the transformation is required. */
3939 
3940   pParse = pWalker->pParse;
3941   db = pParse->db;
3942   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3943   if( pNew==0 ) return WRC_Abort;
3944   memset(&dummy, 0, sizeof(dummy));
3945   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3946   if( pNewSrc==0 ) return WRC_Abort;
3947   *pNew = *p;
3948   p->pSrc = pNewSrc;
3949   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3950   p->op = TK_SELECT;
3951   p->pWhere = 0;
3952   pNew->pGroupBy = 0;
3953   pNew->pHaving = 0;
3954   pNew->pOrderBy = 0;
3955   p->pPrior = 0;
3956   p->pNext = 0;
3957   p->pWith = 0;
3958   p->selFlags &= ~SF_Compound;
3959   assert( (p->selFlags & SF_Converted)==0 );
3960   p->selFlags |= SF_Converted;
3961   assert( pNew->pPrior!=0 );
3962   pNew->pPrior->pNext = pNew;
3963   pNew->pLimit = 0;
3964   pNew->pOffset = 0;
3965   return WRC_Continue;
3966 }
3967 
3968 #ifndef SQLITE_OMIT_CTE
3969 /*
3970 ** Argument pWith (which may be NULL) points to a linked list of nested
3971 ** WITH contexts, from inner to outermost. If the table identified by
3972 ** FROM clause element pItem is really a common-table-expression (CTE)
3973 ** then return a pointer to the CTE definition for that table. Otherwise
3974 ** return NULL.
3975 **
3976 ** If a non-NULL value is returned, set *ppContext to point to the With
3977 ** object that the returned CTE belongs to.
3978 */
3979 static struct Cte *searchWith(
3980   With *pWith,                    /* Current outermost WITH clause */
3981   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3982   With **ppContext                /* OUT: WITH clause return value belongs to */
3983 ){
3984   const char *zName;
3985   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3986     With *p;
3987     for(p=pWith; p; p=p->pOuter){
3988       int i;
3989       for(i=0; i<p->nCte; i++){
3990         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3991           *ppContext = p;
3992           return &p->a[i];
3993         }
3994       }
3995     }
3996   }
3997   return 0;
3998 }
3999 
4000 /* The code generator maintains a stack of active WITH clauses
4001 ** with the inner-most WITH clause being at the top of the stack.
4002 **
4003 ** This routine pushes the WITH clause passed as the second argument
4004 ** onto the top of the stack. If argument bFree is true, then this
4005 ** WITH clause will never be popped from the stack. In this case it
4006 ** should be freed along with the Parse object. In other cases, when
4007 ** bFree==0, the With object will be freed along with the SELECT
4008 ** statement with which it is associated.
4009 */
4010 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4011   assert( bFree==0 || pParse->pWith==0 );
4012   if( pWith ){
4013     pWith->pOuter = pParse->pWith;
4014     pParse->pWith = pWith;
4015     pParse->bFreeWith = bFree;
4016   }
4017 }
4018 
4019 /*
4020 ** This function checks if argument pFrom refers to a CTE declared by
4021 ** a WITH clause on the stack currently maintained by the parser. And,
4022 ** if currently processing a CTE expression, if it is a recursive
4023 ** reference to the current CTE.
4024 **
4025 ** If pFrom falls into either of the two categories above, pFrom->pTab
4026 ** and other fields are populated accordingly. The caller should check
4027 ** (pFrom->pTab!=0) to determine whether or not a successful match
4028 ** was found.
4029 **
4030 ** Whether or not a match is found, SQLITE_OK is returned if no error
4031 ** occurs. If an error does occur, an error message is stored in the
4032 ** parser and some error code other than SQLITE_OK returned.
4033 */
4034 static int withExpand(
4035   Walker *pWalker,
4036   struct SrcList_item *pFrom
4037 ){
4038   Parse *pParse = pWalker->pParse;
4039   sqlite3 *db = pParse->db;
4040   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4041   With *pWith;                    /* WITH clause that pCte belongs to */
4042 
4043   assert( pFrom->pTab==0 );
4044 
4045   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4046   if( pCte ){
4047     Table *pTab;
4048     ExprList *pEList;
4049     Select *pSel;
4050     Select *pLeft;                /* Left-most SELECT statement */
4051     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4052     With *pSavedWith;             /* Initial value of pParse->pWith */
4053 
4054     /* If pCte->zErr is non-NULL at this point, then this is an illegal
4055     ** recursive reference to CTE pCte. Leave an error in pParse and return
4056     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
4057     ** In this case, proceed.  */
4058     if( pCte->zErr ){
4059       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
4060       return SQLITE_ERROR;
4061     }
4062 
4063     assert( pFrom->pTab==0 );
4064     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4065     if( pTab==0 ) return WRC_Abort;
4066     pTab->nRef = 1;
4067     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4068     pTab->iPKey = -1;
4069     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4070     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4071     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4072     if( db->mallocFailed ) return SQLITE_NOMEM;
4073     assert( pFrom->pSelect );
4074 
4075     /* Check if this is a recursive CTE. */
4076     pSel = pFrom->pSelect;
4077     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4078     if( bMayRecursive ){
4079       int i;
4080       SrcList *pSrc = pFrom->pSelect->pSrc;
4081       for(i=0; i<pSrc->nSrc; i++){
4082         struct SrcList_item *pItem = &pSrc->a[i];
4083         if( pItem->zDatabase==0
4084          && pItem->zName!=0
4085          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4086           ){
4087           pItem->pTab = pTab;
4088           pItem->isRecursive = 1;
4089           pTab->nRef++;
4090           pSel->selFlags |= SF_Recursive;
4091         }
4092       }
4093     }
4094 
4095     /* Only one recursive reference is permitted. */
4096     if( pTab->nRef>2 ){
4097       sqlite3ErrorMsg(
4098           pParse, "multiple references to recursive table: %s", pCte->zName
4099       );
4100       return SQLITE_ERROR;
4101     }
4102     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4103 
4104     pCte->zErr = "circular reference: %s";
4105     pSavedWith = pParse->pWith;
4106     pParse->pWith = pWith;
4107     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4108 
4109     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4110     pEList = pLeft->pEList;
4111     if( pCte->pCols ){
4112       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4113         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4114             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4115         );
4116         pParse->pWith = pSavedWith;
4117         return SQLITE_ERROR;
4118       }
4119       pEList = pCte->pCols;
4120     }
4121 
4122     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4123     if( bMayRecursive ){
4124       if( pSel->selFlags & SF_Recursive ){
4125         pCte->zErr = "multiple recursive references: %s";
4126       }else{
4127         pCte->zErr = "recursive reference in a subquery: %s";
4128       }
4129       sqlite3WalkSelect(pWalker, pSel);
4130     }
4131     pCte->zErr = 0;
4132     pParse->pWith = pSavedWith;
4133   }
4134 
4135   return SQLITE_OK;
4136 }
4137 #endif
4138 
4139 #ifndef SQLITE_OMIT_CTE
4140 /*
4141 ** If the SELECT passed as the second argument has an associated WITH
4142 ** clause, pop it from the stack stored as part of the Parse object.
4143 **
4144 ** This function is used as the xSelectCallback2() callback by
4145 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4146 ** names and other FROM clause elements.
4147 */
4148 static void selectPopWith(Walker *pWalker, Select *p){
4149   Parse *pParse = pWalker->pParse;
4150   With *pWith = findRightmost(p)->pWith;
4151   if( pWith!=0 ){
4152     assert( pParse->pWith==pWith );
4153     pParse->pWith = pWith->pOuter;
4154   }
4155 }
4156 #else
4157 #define selectPopWith 0
4158 #endif
4159 
4160 /*
4161 ** This routine is a Walker callback for "expanding" a SELECT statement.
4162 ** "Expanding" means to do the following:
4163 **
4164 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4165 **         element of the FROM clause.
4166 **
4167 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4168 **         defines FROM clause.  When views appear in the FROM clause,
4169 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4170 **         that implements the view.  A copy is made of the view's SELECT
4171 **         statement so that we can freely modify or delete that statement
4172 **         without worrying about messing up the persistent representation
4173 **         of the view.
4174 **
4175 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4176 **         on joins and the ON and USING clause of joins.
4177 **
4178 **    (4)  Scan the list of columns in the result set (pEList) looking
4179 **         for instances of the "*" operator or the TABLE.* operator.
4180 **         If found, expand each "*" to be every column in every table
4181 **         and TABLE.* to be every column in TABLE.
4182 **
4183 */
4184 static int selectExpander(Walker *pWalker, Select *p){
4185   Parse *pParse = pWalker->pParse;
4186   int i, j, k;
4187   SrcList *pTabList;
4188   ExprList *pEList;
4189   struct SrcList_item *pFrom;
4190   sqlite3 *db = pParse->db;
4191   Expr *pE, *pRight, *pExpr;
4192   u16 selFlags = p->selFlags;
4193 
4194   p->selFlags |= SF_Expanded;
4195   if( db->mallocFailed  ){
4196     return WRC_Abort;
4197   }
4198   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4199     return WRC_Prune;
4200   }
4201   pTabList = p->pSrc;
4202   pEList = p->pEList;
4203   if( pWalker->xSelectCallback2==selectPopWith ){
4204     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4205   }
4206 
4207   /* Make sure cursor numbers have been assigned to all entries in
4208   ** the FROM clause of the SELECT statement.
4209   */
4210   sqlite3SrcListAssignCursors(pParse, pTabList);
4211 
4212   /* Look up every table named in the FROM clause of the select.  If
4213   ** an entry of the FROM clause is a subquery instead of a table or view,
4214   ** then create a transient table structure to describe the subquery.
4215   */
4216   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4217     Table *pTab;
4218     assert( pFrom->isRecursive==0 || pFrom->pTab );
4219     if( pFrom->isRecursive ) continue;
4220     if( pFrom->pTab!=0 ){
4221       /* This statement has already been prepared.  There is no need
4222       ** to go further. */
4223       assert( i==0 );
4224 #ifndef SQLITE_OMIT_CTE
4225       selectPopWith(pWalker, p);
4226 #endif
4227       return WRC_Prune;
4228     }
4229 #ifndef SQLITE_OMIT_CTE
4230     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4231     if( pFrom->pTab ) {} else
4232 #endif
4233     if( pFrom->zName==0 ){
4234 #ifndef SQLITE_OMIT_SUBQUERY
4235       Select *pSel = pFrom->pSelect;
4236       /* A sub-query in the FROM clause of a SELECT */
4237       assert( pSel!=0 );
4238       assert( pFrom->pTab==0 );
4239       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4240       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4241       if( pTab==0 ) return WRC_Abort;
4242       pTab->nRef = 1;
4243       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4244       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4245       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4246       pTab->iPKey = -1;
4247       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4248       pTab->tabFlags |= TF_Ephemeral;
4249 #endif
4250     }else{
4251       /* An ordinary table or view name in the FROM clause */
4252       assert( pFrom->pTab==0 );
4253       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4254       if( pTab==0 ) return WRC_Abort;
4255       if( pTab->nRef==0xffff ){
4256         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4257            pTab->zName);
4258         pFrom->pTab = 0;
4259         return WRC_Abort;
4260       }
4261       pTab->nRef++;
4262 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4263       if( pTab->pSelect || IsVirtual(pTab) ){
4264         /* We reach here if the named table is a really a view */
4265         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4266         assert( pFrom->pSelect==0 );
4267         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4268         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4269         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4270       }
4271 #endif
4272     }
4273 
4274     /* Locate the index named by the INDEXED BY clause, if any. */
4275     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4276       return WRC_Abort;
4277     }
4278   }
4279 
4280   /* Process NATURAL keywords, and ON and USING clauses of joins.
4281   */
4282   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4283     return WRC_Abort;
4284   }
4285 
4286   /* For every "*" that occurs in the column list, insert the names of
4287   ** all columns in all tables.  And for every TABLE.* insert the names
4288   ** of all columns in TABLE.  The parser inserted a special expression
4289   ** with the TK_ALL operator for each "*" that it found in the column list.
4290   ** The following code just has to locate the TK_ALL expressions and expand
4291   ** each one to the list of all columns in all tables.
4292   **
4293   ** The first loop just checks to see if there are any "*" operators
4294   ** that need expanding.
4295   */
4296   for(k=0; k<pEList->nExpr; k++){
4297     pE = pEList->a[k].pExpr;
4298     if( pE->op==TK_ALL ) break;
4299     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4300     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4301     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4302   }
4303   if( k<pEList->nExpr ){
4304     /*
4305     ** If we get here it means the result set contains one or more "*"
4306     ** operators that need to be expanded.  Loop through each expression
4307     ** in the result set and expand them one by one.
4308     */
4309     struct ExprList_item *a = pEList->a;
4310     ExprList *pNew = 0;
4311     int flags = pParse->db->flags;
4312     int longNames = (flags & SQLITE_FullColNames)!=0
4313                       && (flags & SQLITE_ShortColNames)==0;
4314 
4315     for(k=0; k<pEList->nExpr; k++){
4316       pE = a[k].pExpr;
4317       pRight = pE->pRight;
4318       assert( pE->op!=TK_DOT || pRight!=0 );
4319       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4320         /* This particular expression does not need to be expanded.
4321         */
4322         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4323         if( pNew ){
4324           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4325           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4326           a[k].zName = 0;
4327           a[k].zSpan = 0;
4328         }
4329         a[k].pExpr = 0;
4330       }else{
4331         /* This expression is a "*" or a "TABLE.*" and needs to be
4332         ** expanded. */
4333         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4334         char *zTName = 0;       /* text of name of TABLE */
4335         if( pE->op==TK_DOT ){
4336           assert( pE->pLeft!=0 );
4337           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4338           zTName = pE->pLeft->u.zToken;
4339         }
4340         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4341           Table *pTab = pFrom->pTab;
4342           Select *pSub = pFrom->pSelect;
4343           char *zTabName = pFrom->zAlias;
4344           const char *zSchemaName = 0;
4345           int iDb;
4346           if( zTabName==0 ){
4347             zTabName = pTab->zName;
4348           }
4349           if( db->mallocFailed ) break;
4350           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4351             pSub = 0;
4352             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4353               continue;
4354             }
4355             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4356             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4357           }
4358           for(j=0; j<pTab->nCol; j++){
4359             char *zName = pTab->aCol[j].zName;
4360             char *zColname;  /* The computed column name */
4361             char *zToFree;   /* Malloced string that needs to be freed */
4362             Token sColname;  /* Computed column name as a token */
4363 
4364             assert( zName );
4365             if( zTName && pSub
4366              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4367             ){
4368               continue;
4369             }
4370 
4371             /* If a column is marked as 'hidden' (currently only possible
4372             ** for virtual tables), do not include it in the expanded
4373             ** result-set list.
4374             */
4375             if( IsHiddenColumn(&pTab->aCol[j]) ){
4376               assert(IsVirtual(pTab));
4377               continue;
4378             }
4379             tableSeen = 1;
4380 
4381             if( i>0 && zTName==0 ){
4382               if( (pFrom->jointype & JT_NATURAL)!=0
4383                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4384               ){
4385                 /* In a NATURAL join, omit the join columns from the
4386                 ** table to the right of the join */
4387                 continue;
4388               }
4389               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4390                 /* In a join with a USING clause, omit columns in the
4391                 ** using clause from the table on the right. */
4392                 continue;
4393               }
4394             }
4395             pRight = sqlite3Expr(db, TK_ID, zName);
4396             zColname = zName;
4397             zToFree = 0;
4398             if( longNames || pTabList->nSrc>1 ){
4399               Expr *pLeft;
4400               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4401               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4402               if( zSchemaName ){
4403                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4404                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4405               }
4406               if( longNames ){
4407                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4408                 zToFree = zColname;
4409               }
4410             }else{
4411               pExpr = pRight;
4412             }
4413             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4414             sColname.z = zColname;
4415             sColname.n = sqlite3Strlen30(zColname);
4416             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4417             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4418               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4419               if( pSub ){
4420                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4421                 testcase( pX->zSpan==0 );
4422               }else{
4423                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4424                                            zSchemaName, zTabName, zColname);
4425                 testcase( pX->zSpan==0 );
4426               }
4427               pX->bSpanIsTab = 1;
4428             }
4429             sqlite3DbFree(db, zToFree);
4430           }
4431         }
4432         if( !tableSeen ){
4433           if( zTName ){
4434             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4435           }else{
4436             sqlite3ErrorMsg(pParse, "no tables specified");
4437           }
4438         }
4439       }
4440     }
4441     sqlite3ExprListDelete(db, pEList);
4442     p->pEList = pNew;
4443   }
4444 #if SQLITE_MAX_COLUMN
4445   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4446     sqlite3ErrorMsg(pParse, "too many columns in result set");
4447   }
4448 #endif
4449   return WRC_Continue;
4450 }
4451 
4452 /*
4453 ** No-op routine for the parse-tree walker.
4454 **
4455 ** When this routine is the Walker.xExprCallback then expression trees
4456 ** are walked without any actions being taken at each node.  Presumably,
4457 ** when this routine is used for Walker.xExprCallback then
4458 ** Walker.xSelectCallback is set to do something useful for every
4459 ** subquery in the parser tree.
4460 */
4461 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4462   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4463   return WRC_Continue;
4464 }
4465 
4466 /*
4467 ** This routine "expands" a SELECT statement and all of its subqueries.
4468 ** For additional information on what it means to "expand" a SELECT
4469 ** statement, see the comment on the selectExpand worker callback above.
4470 **
4471 ** Expanding a SELECT statement is the first step in processing a
4472 ** SELECT statement.  The SELECT statement must be expanded before
4473 ** name resolution is performed.
4474 **
4475 ** If anything goes wrong, an error message is written into pParse.
4476 ** The calling function can detect the problem by looking at pParse->nErr
4477 ** and/or pParse->db->mallocFailed.
4478 */
4479 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4480   Walker w;
4481   memset(&w, 0, sizeof(w));
4482   w.xExprCallback = exprWalkNoop;
4483   w.pParse = pParse;
4484   if( pParse->hasCompound ){
4485     w.xSelectCallback = convertCompoundSelectToSubquery;
4486     sqlite3WalkSelect(&w, pSelect);
4487   }
4488   w.xSelectCallback = selectExpander;
4489   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4490     w.xSelectCallback2 = selectPopWith;
4491   }
4492   sqlite3WalkSelect(&w, pSelect);
4493 }
4494 
4495 
4496 #ifndef SQLITE_OMIT_SUBQUERY
4497 /*
4498 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4499 ** interface.
4500 **
4501 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4502 ** information to the Table structure that represents the result set
4503 ** of that subquery.
4504 **
4505 ** The Table structure that represents the result set was constructed
4506 ** by selectExpander() but the type and collation information was omitted
4507 ** at that point because identifiers had not yet been resolved.  This
4508 ** routine is called after identifier resolution.
4509 */
4510 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4511   Parse *pParse;
4512   int i;
4513   SrcList *pTabList;
4514   struct SrcList_item *pFrom;
4515 
4516   assert( p->selFlags & SF_Resolved );
4517   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4518     p->selFlags |= SF_HasTypeInfo;
4519     pParse = pWalker->pParse;
4520     pTabList = p->pSrc;
4521     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4522       Table *pTab = pFrom->pTab;
4523       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4524         /* A sub-query in the FROM clause of a SELECT */
4525         Select *pSel = pFrom->pSelect;
4526         if( pSel ){
4527           while( pSel->pPrior ) pSel = pSel->pPrior;
4528           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4529         }
4530       }
4531     }
4532   }
4533 }
4534 #endif
4535 
4536 
4537 /*
4538 ** This routine adds datatype and collating sequence information to
4539 ** the Table structures of all FROM-clause subqueries in a
4540 ** SELECT statement.
4541 **
4542 ** Use this routine after name resolution.
4543 */
4544 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4545 #ifndef SQLITE_OMIT_SUBQUERY
4546   Walker w;
4547   memset(&w, 0, sizeof(w));
4548   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4549   w.xExprCallback = exprWalkNoop;
4550   w.pParse = pParse;
4551   sqlite3WalkSelect(&w, pSelect);
4552 #endif
4553 }
4554 
4555 
4556 /*
4557 ** This routine sets up a SELECT statement for processing.  The
4558 ** following is accomplished:
4559 **
4560 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4561 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4562 **     *  ON and USING clauses are shifted into WHERE statements
4563 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4564 **     *  Identifiers in expression are matched to tables.
4565 **
4566 ** This routine acts recursively on all subqueries within the SELECT.
4567 */
4568 void sqlite3SelectPrep(
4569   Parse *pParse,         /* The parser context */
4570   Select *p,             /* The SELECT statement being coded. */
4571   NameContext *pOuterNC  /* Name context for container */
4572 ){
4573   sqlite3 *db;
4574   if( NEVER(p==0) ) return;
4575   db = pParse->db;
4576   if( db->mallocFailed ) return;
4577   if( p->selFlags & SF_HasTypeInfo ) return;
4578   sqlite3SelectExpand(pParse, p);
4579   if( pParse->nErr || db->mallocFailed ) return;
4580   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4581   if( pParse->nErr || db->mallocFailed ) return;
4582   sqlite3SelectAddTypeInfo(pParse, p);
4583 }
4584 
4585 /*
4586 ** Reset the aggregate accumulator.
4587 **
4588 ** The aggregate accumulator is a set of memory cells that hold
4589 ** intermediate results while calculating an aggregate.  This
4590 ** routine generates code that stores NULLs in all of those memory
4591 ** cells.
4592 */
4593 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4594   Vdbe *v = pParse->pVdbe;
4595   int i;
4596   struct AggInfo_func *pFunc;
4597   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4598   if( nReg==0 ) return;
4599 #ifdef SQLITE_DEBUG
4600   /* Verify that all AggInfo registers are within the range specified by
4601   ** AggInfo.mnReg..AggInfo.mxReg */
4602   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4603   for(i=0; i<pAggInfo->nColumn; i++){
4604     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4605          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4606   }
4607   for(i=0; i<pAggInfo->nFunc; i++){
4608     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4609          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4610   }
4611 #endif
4612   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4613   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4614     if( pFunc->iDistinct>=0 ){
4615       Expr *pE = pFunc->pExpr;
4616       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4617       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4618         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4619            "argument");
4620         pFunc->iDistinct = -1;
4621       }else{
4622         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4623         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4624                           (char*)pKeyInfo, P4_KEYINFO);
4625       }
4626     }
4627   }
4628 }
4629 
4630 /*
4631 ** Invoke the OP_AggFinalize opcode for every aggregate function
4632 ** in the AggInfo structure.
4633 */
4634 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4635   Vdbe *v = pParse->pVdbe;
4636   int i;
4637   struct AggInfo_func *pF;
4638   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4639     ExprList *pList = pF->pExpr->x.pList;
4640     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4641     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4642                       (void*)pF->pFunc, P4_FUNCDEF);
4643   }
4644 }
4645 
4646 /*
4647 ** Update the accumulator memory cells for an aggregate based on
4648 ** the current cursor position.
4649 */
4650 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4651   Vdbe *v = pParse->pVdbe;
4652   int i;
4653   int regHit = 0;
4654   int addrHitTest = 0;
4655   struct AggInfo_func *pF;
4656   struct AggInfo_col *pC;
4657 
4658   pAggInfo->directMode = 1;
4659   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4660     int nArg;
4661     int addrNext = 0;
4662     int regAgg;
4663     ExprList *pList = pF->pExpr->x.pList;
4664     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4665     if( pList ){
4666       nArg = pList->nExpr;
4667       regAgg = sqlite3GetTempRange(pParse, nArg);
4668       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4669     }else{
4670       nArg = 0;
4671       regAgg = 0;
4672     }
4673     if( pF->iDistinct>=0 ){
4674       addrNext = sqlite3VdbeMakeLabel(v);
4675       testcase( nArg==0 );  /* Error condition */
4676       testcase( nArg>1 );   /* Also an error */
4677       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4678     }
4679     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4680       CollSeq *pColl = 0;
4681       struct ExprList_item *pItem;
4682       int j;
4683       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4684       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4685         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4686       }
4687       if( !pColl ){
4688         pColl = pParse->db->pDfltColl;
4689       }
4690       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4691       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4692     }
4693     sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4694                       (void*)pF->pFunc, P4_FUNCDEF);
4695     sqlite3VdbeChangeP5(v, (u8)nArg);
4696     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4697     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4698     if( addrNext ){
4699       sqlite3VdbeResolveLabel(v, addrNext);
4700       sqlite3ExprCacheClear(pParse);
4701     }
4702   }
4703 
4704   /* Before populating the accumulator registers, clear the column cache.
4705   ** Otherwise, if any of the required column values are already present
4706   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4707   ** to pC->iMem. But by the time the value is used, the original register
4708   ** may have been used, invalidating the underlying buffer holding the
4709   ** text or blob value. See ticket [883034dcb5].
4710   **
4711   ** Another solution would be to change the OP_SCopy used to copy cached
4712   ** values to an OP_Copy.
4713   */
4714   if( regHit ){
4715     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4716   }
4717   sqlite3ExprCacheClear(pParse);
4718   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4719     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4720   }
4721   pAggInfo->directMode = 0;
4722   sqlite3ExprCacheClear(pParse);
4723   if( addrHitTest ){
4724     sqlite3VdbeJumpHere(v, addrHitTest);
4725   }
4726 }
4727 
4728 /*
4729 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4730 ** count(*) query ("SELECT count(*) FROM pTab").
4731 */
4732 #ifndef SQLITE_OMIT_EXPLAIN
4733 static void explainSimpleCount(
4734   Parse *pParse,                  /* Parse context */
4735   Table *pTab,                    /* Table being queried */
4736   Index *pIdx                     /* Index used to optimize scan, or NULL */
4737 ){
4738   if( pParse->explain==2 ){
4739     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4740     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4741         pTab->zName,
4742         bCover ? " USING COVERING INDEX " : "",
4743         bCover ? pIdx->zName : ""
4744     );
4745     sqlite3VdbeAddOp4(
4746         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4747     );
4748   }
4749 }
4750 #else
4751 # define explainSimpleCount(a,b,c)
4752 #endif
4753 
4754 /*
4755 ** Generate code for the SELECT statement given in the p argument.
4756 **
4757 ** The results are returned according to the SelectDest structure.
4758 ** See comments in sqliteInt.h for further information.
4759 **
4760 ** This routine returns the number of errors.  If any errors are
4761 ** encountered, then an appropriate error message is left in
4762 ** pParse->zErrMsg.
4763 **
4764 ** This routine does NOT free the Select structure passed in.  The
4765 ** calling function needs to do that.
4766 */
4767 int sqlite3Select(
4768   Parse *pParse,         /* The parser context */
4769   Select *p,             /* The SELECT statement being coded. */
4770   SelectDest *pDest      /* What to do with the query results */
4771 ){
4772   int i, j;              /* Loop counters */
4773   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4774   Vdbe *v;               /* The virtual machine under construction */
4775   int isAgg;             /* True for select lists like "count(*)" */
4776   ExprList *pEList = 0;  /* List of columns to extract. */
4777   SrcList *pTabList;     /* List of tables to select from */
4778   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4779   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4780   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4781   int rc = 1;            /* Value to return from this function */
4782   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4783   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4784   AggInfo sAggInfo;      /* Information used by aggregate queries */
4785   int iEnd;              /* Address of the end of the query */
4786   sqlite3 *db;           /* The database connection */
4787 
4788 #ifndef SQLITE_OMIT_EXPLAIN
4789   int iRestoreSelectId = pParse->iSelectId;
4790   pParse->iSelectId = pParse->iNextSelectId++;
4791 #endif
4792 
4793   db = pParse->db;
4794   if( p==0 || db->mallocFailed || pParse->nErr ){
4795     return 1;
4796   }
4797   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4798   memset(&sAggInfo, 0, sizeof(sAggInfo));
4799 #if SELECTTRACE_ENABLED
4800   pParse->nSelectIndent++;
4801   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4802   if( sqlite3SelectTrace & 0x100 ){
4803     sqlite3TreeViewSelect(0, p, 0);
4804   }
4805 #endif
4806 
4807   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4808   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4809   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4810   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4811   if( IgnorableOrderby(pDest) ){
4812     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4813            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4814            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4815            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4816     /* If ORDER BY makes no difference in the output then neither does
4817     ** DISTINCT so it can be removed too. */
4818     sqlite3ExprListDelete(db, p->pOrderBy);
4819     p->pOrderBy = 0;
4820     p->selFlags &= ~SF_Distinct;
4821   }
4822   sqlite3SelectPrep(pParse, p, 0);
4823   memset(&sSort, 0, sizeof(sSort));
4824   sSort.pOrderBy = p->pOrderBy;
4825   pTabList = p->pSrc;
4826   if( pParse->nErr || db->mallocFailed ){
4827     goto select_end;
4828   }
4829   assert( p->pEList!=0 );
4830   isAgg = (p->selFlags & SF_Aggregate)!=0;
4831 #if SELECTTRACE_ENABLED
4832   if( sqlite3SelectTrace & 0x100 ){
4833     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4834     sqlite3TreeViewSelect(0, p, 0);
4835   }
4836 #endif
4837 
4838 
4839   /* If writing to memory or generating a set
4840   ** only a single column may be output.
4841   */
4842 #ifndef SQLITE_OMIT_SUBQUERY
4843   if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4844     goto select_end;
4845   }
4846 #endif
4847 
4848   /* Try to flatten subqueries in the FROM clause up into the main query
4849   */
4850 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4851   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4852     struct SrcList_item *pItem = &pTabList->a[i];
4853     Select *pSub = pItem->pSelect;
4854     int isAggSub;
4855     if( pSub==0 ) continue;
4856     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4857     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4858       /* This subquery can be absorbed into its parent. */
4859       if( isAggSub ){
4860         isAgg = 1;
4861         p->selFlags |= SF_Aggregate;
4862       }
4863       i = -1;
4864     }
4865     pTabList = p->pSrc;
4866     if( db->mallocFailed ) goto select_end;
4867     if( !IgnorableOrderby(pDest) ){
4868       sSort.pOrderBy = p->pOrderBy;
4869     }
4870   }
4871 #endif
4872 
4873   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4874   ** does not already exist */
4875   v = sqlite3GetVdbe(pParse);
4876   if( v==0 ) goto select_end;
4877 
4878 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4879   /* Handle compound SELECT statements using the separate multiSelect()
4880   ** procedure.
4881   */
4882   if( p->pPrior ){
4883     rc = multiSelect(pParse, p, pDest);
4884     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4885 #if SELECTTRACE_ENABLED
4886     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4887     pParse->nSelectIndent--;
4888 #endif
4889     return rc;
4890   }
4891 #endif
4892 
4893   /* Generate code for all sub-queries in the FROM clause
4894   */
4895 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4896   for(i=0; i<pTabList->nSrc; i++){
4897     struct SrcList_item *pItem = &pTabList->a[i];
4898     SelectDest dest;
4899     Select *pSub = pItem->pSelect;
4900     if( pSub==0 ) continue;
4901 
4902     /* Sometimes the code for a subquery will be generated more than
4903     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4904     ** for example.  In that case, do not regenerate the code to manifest
4905     ** a view or the co-routine to implement a view.  The first instance
4906     ** is sufficient, though the subroutine to manifest the view does need
4907     ** to be invoked again. */
4908     if( pItem->addrFillSub ){
4909       if( pItem->viaCoroutine==0 ){
4910         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4911       }
4912       continue;
4913     }
4914 
4915     /* Increment Parse.nHeight by the height of the largest expression
4916     ** tree referred to by this, the parent select. The child select
4917     ** may contain expression trees of at most
4918     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4919     ** more conservative than necessary, but much easier than enforcing
4920     ** an exact limit.
4921     */
4922     pParse->nHeight += sqlite3SelectExprHeight(p);
4923 
4924     /* Make copies of constant WHERE-clause terms in the outer query down
4925     ** inside the subquery.  This can help the subquery to run more efficiently.
4926     */
4927     if( (pItem->jointype & JT_OUTER)==0
4928      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4929     ){
4930 #if SELECTTRACE_ENABLED
4931       if( sqlite3SelectTrace & 0x100 ){
4932         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4933         sqlite3TreeViewSelect(0, p, 0);
4934       }
4935 #endif
4936     }
4937 
4938     /* Generate code to implement the subquery
4939     */
4940     if( pTabList->nSrc==1
4941      && (p->selFlags & SF_All)==0
4942      && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4943     ){
4944       /* Implement a co-routine that will return a single row of the result
4945       ** set on each invocation.
4946       */
4947       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4948       pItem->regReturn = ++pParse->nMem;
4949       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4950       VdbeComment((v, "%s", pItem->pTab->zName));
4951       pItem->addrFillSub = addrTop;
4952       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4953       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4954       sqlite3Select(pParse, pSub, &dest);
4955       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4956       pItem->viaCoroutine = 1;
4957       pItem->regResult = dest.iSdst;
4958       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4959       sqlite3VdbeJumpHere(v, addrTop-1);
4960       sqlite3ClearTempRegCache(pParse);
4961     }else{
4962       /* Generate a subroutine that will fill an ephemeral table with
4963       ** the content of this subquery.  pItem->addrFillSub will point
4964       ** to the address of the generated subroutine.  pItem->regReturn
4965       ** is a register allocated to hold the subroutine return address
4966       */
4967       int topAddr;
4968       int onceAddr = 0;
4969       int retAddr;
4970       assert( pItem->addrFillSub==0 );
4971       pItem->regReturn = ++pParse->nMem;
4972       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4973       pItem->addrFillSub = topAddr+1;
4974       if( pItem->isCorrelated==0 ){
4975         /* If the subquery is not correlated and if we are not inside of
4976         ** a trigger, then we only need to compute the value of the subquery
4977         ** once. */
4978         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4979         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4980       }else{
4981         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4982       }
4983       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4984       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4985       sqlite3Select(pParse, pSub, &dest);
4986       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4987       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4988       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4989       VdbeComment((v, "end %s", pItem->pTab->zName));
4990       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4991       sqlite3ClearTempRegCache(pParse);
4992     }
4993     if( db->mallocFailed ) goto select_end;
4994     pParse->nHeight -= sqlite3SelectExprHeight(p);
4995   }
4996 #endif
4997 
4998   /* Various elements of the SELECT copied into local variables for
4999   ** convenience */
5000   pEList = p->pEList;
5001   pWhere = p->pWhere;
5002   pGroupBy = p->pGroupBy;
5003   pHaving = p->pHaving;
5004   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5005 
5006 #if SELECTTRACE_ENABLED
5007   if( sqlite3SelectTrace & 0x400 ){
5008     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5009     sqlite3TreeViewSelect(0, p, 0);
5010   }
5011 #endif
5012 
5013   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5014   ** if the select-list is the same as the ORDER BY list, then this query
5015   ** can be rewritten as a GROUP BY. In other words, this:
5016   **
5017   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5018   **
5019   ** is transformed to:
5020   **
5021   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5022   **
5023   ** The second form is preferred as a single index (or temp-table) may be
5024   ** used for both the ORDER BY and DISTINCT processing. As originally
5025   ** written the query must use a temp-table for at least one of the ORDER
5026   ** BY and DISTINCT, and an index or separate temp-table for the other.
5027   */
5028   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5029    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5030   ){
5031     p->selFlags &= ~SF_Distinct;
5032     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5033     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5034     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5035     ** original setting of the SF_Distinct flag, not the current setting */
5036     assert( sDistinct.isTnct );
5037   }
5038 
5039   /* If there is an ORDER BY clause, then create an ephemeral index to
5040   ** do the sorting.  But this sorting ephemeral index might end up
5041   ** being unused if the data can be extracted in pre-sorted order.
5042   ** If that is the case, then the OP_OpenEphemeral instruction will be
5043   ** changed to an OP_Noop once we figure out that the sorting index is
5044   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5045   ** that change.
5046   */
5047   if( sSort.pOrderBy ){
5048     KeyInfo *pKeyInfo;
5049     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5050     sSort.iECursor = pParse->nTab++;
5051     sSort.addrSortIndex =
5052       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5053           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5054           (char*)pKeyInfo, P4_KEYINFO
5055       );
5056   }else{
5057     sSort.addrSortIndex = -1;
5058   }
5059 
5060   /* If the output is destined for a temporary table, open that table.
5061   */
5062   if( pDest->eDest==SRT_EphemTab ){
5063     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5064   }
5065 
5066   /* Set the limiter.
5067   */
5068   iEnd = sqlite3VdbeMakeLabel(v);
5069   p->nSelectRow = LARGEST_INT64;
5070   computeLimitRegisters(pParse, p, iEnd);
5071   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5072     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
5073     sSort.sortFlags |= SORTFLAG_UseSorter;
5074   }
5075 
5076   /* Open an ephemeral index to use for the distinct set.
5077   */
5078   if( p->selFlags & SF_Distinct ){
5079     sDistinct.tabTnct = pParse->nTab++;
5080     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5081                              sDistinct.tabTnct, 0, 0,
5082                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5083                              P4_KEYINFO);
5084     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5085     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5086   }else{
5087     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5088   }
5089 
5090   if( !isAgg && pGroupBy==0 ){
5091     /* No aggregate functions and no GROUP BY clause */
5092     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5093 
5094     /* Begin the database scan. */
5095     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5096                                p->pEList, wctrlFlags, 0);
5097     if( pWInfo==0 ) goto select_end;
5098     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5099       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5100     }
5101     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5102       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5103     }
5104     if( sSort.pOrderBy ){
5105       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5106       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5107         sSort.pOrderBy = 0;
5108       }
5109     }
5110 
5111     /* If sorting index that was created by a prior OP_OpenEphemeral
5112     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5113     ** into an OP_Noop.
5114     */
5115     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5116       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5117     }
5118 
5119     /* Use the standard inner loop. */
5120     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5121                     sqlite3WhereContinueLabel(pWInfo),
5122                     sqlite3WhereBreakLabel(pWInfo));
5123 
5124     /* End the database scan loop.
5125     */
5126     sqlite3WhereEnd(pWInfo);
5127   }else{
5128     /* This case when there exist aggregate functions or a GROUP BY clause
5129     ** or both */
5130     NameContext sNC;    /* Name context for processing aggregate information */
5131     int iAMem;          /* First Mem address for storing current GROUP BY */
5132     int iBMem;          /* First Mem address for previous GROUP BY */
5133     int iUseFlag;       /* Mem address holding flag indicating that at least
5134                         ** one row of the input to the aggregator has been
5135                         ** processed */
5136     int iAbortFlag;     /* Mem address which causes query abort if positive */
5137     int groupBySort;    /* Rows come from source in GROUP BY order */
5138     int addrEnd;        /* End of processing for this SELECT */
5139     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5140     int sortOut = 0;    /* Output register from the sorter */
5141     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5142 
5143     /* Remove any and all aliases between the result set and the
5144     ** GROUP BY clause.
5145     */
5146     if( pGroupBy ){
5147       int k;                        /* Loop counter */
5148       struct ExprList_item *pItem;  /* For looping over expression in a list */
5149 
5150       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5151         pItem->u.x.iAlias = 0;
5152       }
5153       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5154         pItem->u.x.iAlias = 0;
5155       }
5156       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5157     }else{
5158       p->nSelectRow = 1;
5159     }
5160 
5161     /* If there is both a GROUP BY and an ORDER BY clause and they are
5162     ** identical, then it may be possible to disable the ORDER BY clause
5163     ** on the grounds that the GROUP BY will cause elements to come out
5164     ** in the correct order. It also may not - the GROUP BY might use a
5165     ** database index that causes rows to be grouped together as required
5166     ** but not actually sorted. Either way, record the fact that the
5167     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5168     ** variable.  */
5169     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5170       orderByGrp = 1;
5171     }
5172 
5173     /* Create a label to jump to when we want to abort the query */
5174     addrEnd = sqlite3VdbeMakeLabel(v);
5175 
5176     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5177     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5178     ** SELECT statement.
5179     */
5180     memset(&sNC, 0, sizeof(sNC));
5181     sNC.pParse = pParse;
5182     sNC.pSrcList = pTabList;
5183     sNC.pAggInfo = &sAggInfo;
5184     sAggInfo.mnReg = pParse->nMem+1;
5185     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5186     sAggInfo.pGroupBy = pGroupBy;
5187     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5188     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5189     if( pHaving ){
5190       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5191     }
5192     sAggInfo.nAccumulator = sAggInfo.nColumn;
5193     for(i=0; i<sAggInfo.nFunc; i++){
5194       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5195       sNC.ncFlags |= NC_InAggFunc;
5196       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5197       sNC.ncFlags &= ~NC_InAggFunc;
5198     }
5199     sAggInfo.mxReg = pParse->nMem;
5200     if( db->mallocFailed ) goto select_end;
5201 
5202     /* Processing for aggregates with GROUP BY is very different and
5203     ** much more complex than aggregates without a GROUP BY.
5204     */
5205     if( pGroupBy ){
5206       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5207       int j1;             /* A-vs-B comparision jump */
5208       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5209       int regOutputRow;   /* Return address register for output subroutine */
5210       int addrSetAbort;   /* Set the abort flag and return */
5211       int addrTopOfLoop;  /* Top of the input loop */
5212       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5213       int addrReset;      /* Subroutine for resetting the accumulator */
5214       int regReset;       /* Return address register for reset subroutine */
5215 
5216       /* If there is a GROUP BY clause we might need a sorting index to
5217       ** implement it.  Allocate that sorting index now.  If it turns out
5218       ** that we do not need it after all, the OP_SorterOpen instruction
5219       ** will be converted into a Noop.
5220       */
5221       sAggInfo.sortingIdx = pParse->nTab++;
5222       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5223       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5224           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5225           0, (char*)pKeyInfo, P4_KEYINFO);
5226 
5227       /* Initialize memory locations used by GROUP BY aggregate processing
5228       */
5229       iUseFlag = ++pParse->nMem;
5230       iAbortFlag = ++pParse->nMem;
5231       regOutputRow = ++pParse->nMem;
5232       addrOutputRow = sqlite3VdbeMakeLabel(v);
5233       regReset = ++pParse->nMem;
5234       addrReset = sqlite3VdbeMakeLabel(v);
5235       iAMem = pParse->nMem + 1;
5236       pParse->nMem += pGroupBy->nExpr;
5237       iBMem = pParse->nMem + 1;
5238       pParse->nMem += pGroupBy->nExpr;
5239       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5240       VdbeComment((v, "clear abort flag"));
5241       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5242       VdbeComment((v, "indicate accumulator empty"));
5243       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5244 
5245       /* Begin a loop that will extract all source rows in GROUP BY order.
5246       ** This might involve two separate loops with an OP_Sort in between, or
5247       ** it might be a single loop that uses an index to extract information
5248       ** in the right order to begin with.
5249       */
5250       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5251       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5252           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5253       );
5254       if( pWInfo==0 ) goto select_end;
5255       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5256         /* The optimizer is able to deliver rows in group by order so
5257         ** we do not have to sort.  The OP_OpenEphemeral table will be
5258         ** cancelled later because we still need to use the pKeyInfo
5259         */
5260         groupBySort = 0;
5261       }else{
5262         /* Rows are coming out in undetermined order.  We have to push
5263         ** each row into a sorting index, terminate the first loop,
5264         ** then loop over the sorting index in order to get the output
5265         ** in sorted order
5266         */
5267         int regBase;
5268         int regRecord;
5269         int nCol;
5270         int nGroupBy;
5271 
5272         explainTempTable(pParse,
5273             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5274                     "DISTINCT" : "GROUP BY");
5275 
5276         groupBySort = 1;
5277         nGroupBy = pGroupBy->nExpr;
5278         nCol = nGroupBy;
5279         j = nGroupBy;
5280         for(i=0; i<sAggInfo.nColumn; i++){
5281           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5282             nCol++;
5283             j++;
5284           }
5285         }
5286         regBase = sqlite3GetTempRange(pParse, nCol);
5287         sqlite3ExprCacheClear(pParse);
5288         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5289         j = nGroupBy;
5290         for(i=0; i<sAggInfo.nColumn; i++){
5291           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5292           if( pCol->iSorterColumn>=j ){
5293             int r1 = j + regBase;
5294             int r2;
5295 
5296             r2 = sqlite3ExprCodeGetColumn(pParse,
5297                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5298             if( r1!=r2 ){
5299               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5300             }
5301             j++;
5302           }
5303         }
5304         regRecord = sqlite3GetTempReg(pParse);
5305         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5306         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5307         sqlite3ReleaseTempReg(pParse, regRecord);
5308         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5309         sqlite3WhereEnd(pWInfo);
5310         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5311         sortOut = sqlite3GetTempReg(pParse);
5312         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5313         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5314         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5315         sAggInfo.useSortingIdx = 1;
5316         sqlite3ExprCacheClear(pParse);
5317 
5318       }
5319 
5320       /* If the index or temporary table used by the GROUP BY sort
5321       ** will naturally deliver rows in the order required by the ORDER BY
5322       ** clause, cancel the ephemeral table open coded earlier.
5323       **
5324       ** This is an optimization - the correct answer should result regardless.
5325       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5326       ** disable this optimization for testing purposes.  */
5327       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5328        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5329       ){
5330         sSort.pOrderBy = 0;
5331         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5332       }
5333 
5334       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5335       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5336       ** Then compare the current GROUP BY terms against the GROUP BY terms
5337       ** from the previous row currently stored in a0, a1, a2...
5338       */
5339       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5340       sqlite3ExprCacheClear(pParse);
5341       if( groupBySort ){
5342         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5343                           sortOut, sortPTab);
5344       }
5345       for(j=0; j<pGroupBy->nExpr; j++){
5346         if( groupBySort ){
5347           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5348         }else{
5349           sAggInfo.directMode = 1;
5350           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5351         }
5352       }
5353       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5354                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5355       j1 = sqlite3VdbeCurrentAddr(v);
5356       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5357 
5358       /* Generate code that runs whenever the GROUP BY changes.
5359       ** Changes in the GROUP BY are detected by the previous code
5360       ** block.  If there were no changes, this block is skipped.
5361       **
5362       ** This code copies current group by terms in b0,b1,b2,...
5363       ** over to a0,a1,a2.  It then calls the output subroutine
5364       ** and resets the aggregate accumulator registers in preparation
5365       ** for the next GROUP BY batch.
5366       */
5367       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5368       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5369       VdbeComment((v, "output one row"));
5370       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5371       VdbeComment((v, "check abort flag"));
5372       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5373       VdbeComment((v, "reset accumulator"));
5374 
5375       /* Update the aggregate accumulators based on the content of
5376       ** the current row
5377       */
5378       sqlite3VdbeJumpHere(v, j1);
5379       updateAccumulator(pParse, &sAggInfo);
5380       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5381       VdbeComment((v, "indicate data in accumulator"));
5382 
5383       /* End of the loop
5384       */
5385       if( groupBySort ){
5386         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5387         VdbeCoverage(v);
5388       }else{
5389         sqlite3WhereEnd(pWInfo);
5390         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5391       }
5392 
5393       /* Output the final row of result
5394       */
5395       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5396       VdbeComment((v, "output final row"));
5397 
5398       /* Jump over the subroutines
5399       */
5400       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5401 
5402       /* Generate a subroutine that outputs a single row of the result
5403       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5404       ** is less than or equal to zero, the subroutine is a no-op.  If
5405       ** the processing calls for the query to abort, this subroutine
5406       ** increments the iAbortFlag memory location before returning in
5407       ** order to signal the caller to abort.
5408       */
5409       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5410       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5411       VdbeComment((v, "set abort flag"));
5412       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5413       sqlite3VdbeResolveLabel(v, addrOutputRow);
5414       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5415       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5416       VdbeCoverage(v);
5417       VdbeComment((v, "Groupby result generator entry point"));
5418       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5419       finalizeAggFunctions(pParse, &sAggInfo);
5420       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5421       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5422                       &sDistinct, pDest,
5423                       addrOutputRow+1, addrSetAbort);
5424       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5425       VdbeComment((v, "end groupby result generator"));
5426 
5427       /* Generate a subroutine that will reset the group-by accumulator
5428       */
5429       sqlite3VdbeResolveLabel(v, addrReset);
5430       resetAccumulator(pParse, &sAggInfo);
5431       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5432 
5433     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5434     else {
5435       ExprList *pDel = 0;
5436 #ifndef SQLITE_OMIT_BTREECOUNT
5437       Table *pTab;
5438       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5439         /* If isSimpleCount() returns a pointer to a Table structure, then
5440         ** the SQL statement is of the form:
5441         **
5442         **   SELECT count(*) FROM <tbl>
5443         **
5444         ** where the Table structure returned represents table <tbl>.
5445         **
5446         ** This statement is so common that it is optimized specially. The
5447         ** OP_Count instruction is executed either on the intkey table that
5448         ** contains the data for table <tbl> or on one of its indexes. It
5449         ** is better to execute the op on an index, as indexes are almost
5450         ** always spread across less pages than their corresponding tables.
5451         */
5452         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5453         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5454         Index *pIdx;                         /* Iterator variable */
5455         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5456         Index *pBest = 0;                    /* Best index found so far */
5457         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5458 
5459         sqlite3CodeVerifySchema(pParse, iDb);
5460         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5461 
5462         /* Search for the index that has the lowest scan cost.
5463         **
5464         ** (2011-04-15) Do not do a full scan of an unordered index.
5465         **
5466         ** (2013-10-03) Do not count the entries in a partial index.
5467         **
5468         ** In practice the KeyInfo structure will not be used. It is only
5469         ** passed to keep OP_OpenRead happy.
5470         */
5471         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5472         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5473           if( pIdx->bUnordered==0
5474            && pIdx->szIdxRow<pTab->szTabRow
5475            && pIdx->pPartIdxWhere==0
5476            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5477           ){
5478             pBest = pIdx;
5479           }
5480         }
5481         if( pBest ){
5482           iRoot = pBest->tnum;
5483           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5484         }
5485 
5486         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5487         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5488         if( pKeyInfo ){
5489           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5490         }
5491         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5492         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5493         explainSimpleCount(pParse, pTab, pBest);
5494       }else
5495 #endif /* SQLITE_OMIT_BTREECOUNT */
5496       {
5497         /* Check if the query is of one of the following forms:
5498         **
5499         **   SELECT min(x) FROM ...
5500         **   SELECT max(x) FROM ...
5501         **
5502         ** If it is, then ask the code in where.c to attempt to sort results
5503         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5504         ** If where.c is able to produce results sorted in this order, then
5505         ** add vdbe code to break out of the processing loop after the
5506         ** first iteration (since the first iteration of the loop is
5507         ** guaranteed to operate on the row with the minimum or maximum
5508         ** value of x, the only row required).
5509         **
5510         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5511         ** modify behavior as follows:
5512         **
5513         **   + If the query is a "SELECT min(x)", then the loop coded by
5514         **     where.c should not iterate over any values with a NULL value
5515         **     for x.
5516         **
5517         **   + The optimizer code in where.c (the thing that decides which
5518         **     index or indices to use) should place a different priority on
5519         **     satisfying the 'ORDER BY' clause than it does in other cases.
5520         **     Refer to code and comments in where.c for details.
5521         */
5522         ExprList *pMinMax = 0;
5523         u8 flag = WHERE_ORDERBY_NORMAL;
5524 
5525         assert( p->pGroupBy==0 );
5526         assert( flag==0 );
5527         if( p->pHaving==0 ){
5528           flag = minMaxQuery(&sAggInfo, &pMinMax);
5529         }
5530         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5531 
5532         if( flag ){
5533           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5534           pDel = pMinMax;
5535           if( pMinMax && !db->mallocFailed ){
5536             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5537             pMinMax->a[0].pExpr->op = TK_COLUMN;
5538           }
5539         }
5540 
5541         /* This case runs if the aggregate has no GROUP BY clause.  The
5542         ** processing is much simpler since there is only a single row
5543         ** of output.
5544         */
5545         resetAccumulator(pParse, &sAggInfo);
5546         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5547         if( pWInfo==0 ){
5548           sqlite3ExprListDelete(db, pDel);
5549           goto select_end;
5550         }
5551         updateAccumulator(pParse, &sAggInfo);
5552         assert( pMinMax==0 || pMinMax->nExpr==1 );
5553         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5554           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5555           VdbeComment((v, "%s() by index",
5556                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5557         }
5558         sqlite3WhereEnd(pWInfo);
5559         finalizeAggFunctions(pParse, &sAggInfo);
5560       }
5561 
5562       sSort.pOrderBy = 0;
5563       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5564       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5565                       pDest, addrEnd, addrEnd);
5566       sqlite3ExprListDelete(db, pDel);
5567     }
5568     sqlite3VdbeResolveLabel(v, addrEnd);
5569 
5570   } /* endif aggregate query */
5571 
5572   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5573     explainTempTable(pParse, "DISTINCT");
5574   }
5575 
5576   /* If there is an ORDER BY clause, then we need to sort the results
5577   ** and send them to the callback one by one.
5578   */
5579   if( sSort.pOrderBy ){
5580     explainTempTable(pParse,
5581                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5582     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5583   }
5584 
5585   /* Jump here to skip this query
5586   */
5587   sqlite3VdbeResolveLabel(v, iEnd);
5588 
5589   /* The SELECT has been coded. If there is an error in the Parse structure,
5590   ** set the return code to 1. Otherwise 0. */
5591   rc = (pParse->nErr>0);
5592 
5593   /* Control jumps to here if an error is encountered above, or upon
5594   ** successful coding of the SELECT.
5595   */
5596 select_end:
5597   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5598 
5599   /* Identify column names if results of the SELECT are to be output.
5600   */
5601   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5602     generateColumnNames(pParse, pTabList, pEList);
5603   }
5604 
5605   sqlite3DbFree(db, sAggInfo.aCol);
5606   sqlite3DbFree(db, sAggInfo.aFunc);
5607 #if SELECTTRACE_ENABLED
5608   SELECTTRACE(1,pParse,p,("end processing\n"));
5609   pParse->nSelectIndent--;
5610 #endif
5611   return rc;
5612 }
5613