1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.323 2006/12/16 16:25:15 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 37 /* 38 ** Allocate a new Select structure and return a pointer to that 39 ** structure. 40 */ 41 Select *sqlite3SelectNew( 42 ExprList *pEList, /* which columns to include in the result */ 43 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 44 Expr *pWhere, /* the WHERE clause */ 45 ExprList *pGroupBy, /* the GROUP BY clause */ 46 Expr *pHaving, /* the HAVING clause */ 47 ExprList *pOrderBy, /* the ORDER BY clause */ 48 int isDistinct, /* true if the DISTINCT keyword is present */ 49 Expr *pLimit, /* LIMIT value. NULL means not used */ 50 Expr *pOffset /* OFFSET value. NULL means no offset */ 51 ){ 52 Select *pNew; 53 Select standin; 54 pNew = sqliteMalloc( sizeof(*pNew) ); 55 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 56 if( pNew==0 ){ 57 pNew = &standin; 58 memset(pNew, 0, sizeof(*pNew)); 59 } 60 if( pEList==0 ){ 61 pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); 62 } 63 pNew->pEList = pEList; 64 pNew->pSrc = pSrc; 65 pNew->pWhere = pWhere; 66 pNew->pGroupBy = pGroupBy; 67 pNew->pHaving = pHaving; 68 pNew->pOrderBy = pOrderBy; 69 pNew->isDistinct = isDistinct; 70 pNew->op = TK_SELECT; 71 pNew->pLimit = pLimit; 72 pNew->pOffset = pOffset; 73 pNew->iLimit = -1; 74 pNew->iOffset = -1; 75 pNew->addrOpenEphm[0] = -1; 76 pNew->addrOpenEphm[1] = -1; 77 pNew->addrOpenEphm[2] = -1; 78 if( pNew==&standin) { 79 clearSelect(pNew); 80 pNew = 0; 81 } 82 return pNew; 83 } 84 85 /* 86 ** Delete the given Select structure and all of its substructures. 87 */ 88 void sqlite3SelectDelete(Select *p){ 89 if( p ){ 90 clearSelect(p); 91 sqliteFree(p); 92 } 93 } 94 95 /* 96 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 97 ** type of join. Return an integer constant that expresses that type 98 ** in terms of the following bit values: 99 ** 100 ** JT_INNER 101 ** JT_CROSS 102 ** JT_OUTER 103 ** JT_NATURAL 104 ** JT_LEFT 105 ** JT_RIGHT 106 ** 107 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 108 ** 109 ** If an illegal or unsupported join type is seen, then still return 110 ** a join type, but put an error in the pParse structure. 111 */ 112 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 113 int jointype = 0; 114 Token *apAll[3]; 115 Token *p; 116 static const struct { 117 const char zKeyword[8]; 118 u8 nChar; 119 u8 code; 120 } keywords[] = { 121 { "natural", 7, JT_NATURAL }, 122 { "left", 4, JT_LEFT|JT_OUTER }, 123 { "right", 5, JT_RIGHT|JT_OUTER }, 124 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 125 { "outer", 5, JT_OUTER }, 126 { "inner", 5, JT_INNER }, 127 { "cross", 5, JT_INNER|JT_CROSS }, 128 }; 129 int i, j; 130 apAll[0] = pA; 131 apAll[1] = pB; 132 apAll[2] = pC; 133 for(i=0; i<3 && apAll[i]; i++){ 134 p = apAll[i]; 135 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 136 if( p->n==keywords[j].nChar 137 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 138 jointype |= keywords[j].code; 139 break; 140 } 141 } 142 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 143 jointype |= JT_ERROR; 144 break; 145 } 146 } 147 if( 148 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 149 (jointype & JT_ERROR)!=0 150 ){ 151 const char *zSp1 = " "; 152 const char *zSp2 = " "; 153 if( pB==0 ){ zSp1++; } 154 if( pC==0 ){ zSp2++; } 155 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 156 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 157 jointype = JT_INNER; 158 }else if( jointype & JT_RIGHT ){ 159 sqlite3ErrorMsg(pParse, 160 "RIGHT and FULL OUTER JOINs are not currently supported"); 161 jointype = JT_INNER; 162 } 163 return jointype; 164 } 165 166 /* 167 ** Return the index of a column in a table. Return -1 if the column 168 ** is not contained in the table. 169 */ 170 static int columnIndex(Table *pTab, const char *zCol){ 171 int i; 172 for(i=0; i<pTab->nCol; i++){ 173 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 174 } 175 return -1; 176 } 177 178 /* 179 ** Set the value of a token to a '\000'-terminated string. 180 */ 181 static void setToken(Token *p, const char *z){ 182 p->z = (u8*)z; 183 p->n = z ? strlen(z) : 0; 184 p->dyn = 0; 185 } 186 187 /* 188 ** Create an expression node for an identifier with the name of zName 189 */ 190 Expr *sqlite3CreateIdExpr(const char *zName){ 191 Token dummy; 192 setToken(&dummy, zName); 193 return sqlite3Expr(TK_ID, 0, 0, &dummy); 194 } 195 196 197 /* 198 ** Add a term to the WHERE expression in *ppExpr that requires the 199 ** zCol column to be equal in the two tables pTab1 and pTab2. 200 */ 201 static void addWhereTerm( 202 const char *zCol, /* Name of the column */ 203 const Table *pTab1, /* First table */ 204 const char *zAlias1, /* Alias for first table. May be NULL */ 205 const Table *pTab2, /* Second table */ 206 const char *zAlias2, /* Alias for second table. May be NULL */ 207 int iRightJoinTable, /* VDBE cursor for the right table */ 208 Expr **ppExpr /* Add the equality term to this expression */ 209 ){ 210 Expr *pE1a, *pE1b, *pE1c; 211 Expr *pE2a, *pE2b, *pE2c; 212 Expr *pE; 213 214 pE1a = sqlite3CreateIdExpr(zCol); 215 pE2a = sqlite3CreateIdExpr(zCol); 216 if( zAlias1==0 ){ 217 zAlias1 = pTab1->zName; 218 } 219 pE1b = sqlite3CreateIdExpr(zAlias1); 220 if( zAlias2==0 ){ 221 zAlias2 = pTab2->zName; 222 } 223 pE2b = sqlite3CreateIdExpr(zAlias2); 224 pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0); 225 pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0); 226 pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0); 227 if( pE ){ 228 ExprSetProperty(pE, EP_FromJoin); 229 pE->iRightJoinTable = iRightJoinTable; 230 } 231 pE = sqlite3ExprAnd(*ppExpr, pE); 232 if( pE ){ 233 *ppExpr = pE; 234 } 235 } 236 237 /* 238 ** Set the EP_FromJoin property on all terms of the given expression. 239 ** And set the Expr.iRightJoinTable to iTable for every term in the 240 ** expression. 241 ** 242 ** The EP_FromJoin property is used on terms of an expression to tell 243 ** the LEFT OUTER JOIN processing logic that this term is part of the 244 ** join restriction specified in the ON or USING clause and not a part 245 ** of the more general WHERE clause. These terms are moved over to the 246 ** WHERE clause during join processing but we need to remember that they 247 ** originated in the ON or USING clause. 248 ** 249 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 250 ** expression depends on table iRightJoinTable even if that table is not 251 ** explicitly mentioned in the expression. That information is needed 252 ** for cases like this: 253 ** 254 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 255 ** 256 ** The where clause needs to defer the handling of the t1.x=5 257 ** term until after the t2 loop of the join. In that way, a 258 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 259 ** defer the handling of t1.x=5, it will be processed immediately 260 ** after the t1 loop and rows with t1.x!=5 will never appear in 261 ** the output, which is incorrect. 262 */ 263 static void setJoinExpr(Expr *p, int iTable){ 264 while( p ){ 265 ExprSetProperty(p, EP_FromJoin); 266 p->iRightJoinTable = iTable; 267 setJoinExpr(p->pLeft, iTable); 268 p = p->pRight; 269 } 270 } 271 272 /* 273 ** This routine processes the join information for a SELECT statement. 274 ** ON and USING clauses are converted into extra terms of the WHERE clause. 275 ** NATURAL joins also create extra WHERE clause terms. 276 ** 277 ** The terms of a FROM clause are contained in the Select.pSrc structure. 278 ** The left most table is the first entry in Select.pSrc. The right-most 279 ** table is the last entry. The join operator is held in the entry to 280 ** the left. Thus entry 0 contains the join operator for the join between 281 ** entries 0 and 1. Any ON or USING clauses associated with the join are 282 ** also attached to the left entry. 283 ** 284 ** This routine returns the number of errors encountered. 285 */ 286 static int sqliteProcessJoin(Parse *pParse, Select *p){ 287 SrcList *pSrc; /* All tables in the FROM clause */ 288 int i, j; /* Loop counters */ 289 struct SrcList_item *pLeft; /* Left table being joined */ 290 struct SrcList_item *pRight; /* Right table being joined */ 291 292 pSrc = p->pSrc; 293 pLeft = &pSrc->a[0]; 294 pRight = &pLeft[1]; 295 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 296 Table *pLeftTab = pLeft->pTab; 297 Table *pRightTab = pRight->pTab; 298 299 if( pLeftTab==0 || pRightTab==0 ) continue; 300 301 /* When the NATURAL keyword is present, add WHERE clause terms for 302 ** every column that the two tables have in common. 303 */ 304 if( pRight->jointype & JT_NATURAL ){ 305 if( pRight->pOn || pRight->pUsing ){ 306 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 307 "an ON or USING clause", 0); 308 return 1; 309 } 310 for(j=0; j<pLeftTab->nCol; j++){ 311 char *zName = pLeftTab->aCol[j].zName; 312 if( columnIndex(pRightTab, zName)>=0 ){ 313 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 314 pRightTab, pRight->zAlias, 315 pRight->iCursor, &p->pWhere); 316 317 } 318 } 319 } 320 321 /* Disallow both ON and USING clauses in the same join 322 */ 323 if( pRight->pOn && pRight->pUsing ){ 324 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 325 "clauses in the same join"); 326 return 1; 327 } 328 329 /* Add the ON clause to the end of the WHERE clause, connected by 330 ** an AND operator. 331 */ 332 if( pRight->pOn ){ 333 setJoinExpr(pRight->pOn, pRight->iCursor); 334 p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn); 335 pRight->pOn = 0; 336 } 337 338 /* Create extra terms on the WHERE clause for each column named 339 ** in the USING clause. Example: If the two tables to be joined are 340 ** A and B and the USING clause names X, Y, and Z, then add this 341 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 342 ** Report an error if any column mentioned in the USING clause is 343 ** not contained in both tables to be joined. 344 */ 345 if( pRight->pUsing ){ 346 IdList *pList = pRight->pUsing; 347 for(j=0; j<pList->nId; j++){ 348 char *zName = pList->a[j].zName; 349 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 350 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 351 "not present in both tables", zName); 352 return 1; 353 } 354 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 355 pRightTab, pRight->zAlias, 356 pRight->iCursor, &p->pWhere); 357 } 358 } 359 } 360 return 0; 361 } 362 363 /* 364 ** Insert code into "v" that will push the record on the top of the 365 ** stack into the sorter. 366 */ 367 static void pushOntoSorter( 368 Parse *pParse, /* Parser context */ 369 ExprList *pOrderBy, /* The ORDER BY clause */ 370 Select *pSelect /* The whole SELECT statement */ 371 ){ 372 Vdbe *v = pParse->pVdbe; 373 sqlite3ExprCodeExprList(pParse, pOrderBy); 374 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); 375 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); 376 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); 377 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); 378 if( pSelect->iLimit>=0 ){ 379 int addr1, addr2; 380 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); 381 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); 382 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 383 sqlite3VdbeJumpHere(v, addr1); 384 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); 385 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); 386 sqlite3VdbeJumpHere(v, addr2); 387 pSelect->iLimit = -1; 388 } 389 } 390 391 /* 392 ** Add code to implement the OFFSET 393 */ 394 static void codeOffset( 395 Vdbe *v, /* Generate code into this VM */ 396 Select *p, /* The SELECT statement being coded */ 397 int iContinue, /* Jump here to skip the current record */ 398 int nPop /* Number of times to pop stack when jumping */ 399 ){ 400 if( p->iOffset>=0 && iContinue!=0 ){ 401 int addr; 402 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); 403 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); 404 if( nPop>0 ){ 405 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); 406 } 407 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); 408 VdbeComment((v, "# skip OFFSET records")); 409 sqlite3VdbeJumpHere(v, addr); 410 } 411 } 412 413 /* 414 ** Add code that will check to make sure the top N elements of the 415 ** stack are distinct. iTab is a sorting index that holds previously 416 ** seen combinations of the N values. A new entry is made in iTab 417 ** if the current N values are new. 418 ** 419 ** A jump to addrRepeat is made and the N+1 values are popped from the 420 ** stack if the top N elements are not distinct. 421 */ 422 static void codeDistinct( 423 Vdbe *v, /* Generate code into this VM */ 424 int iTab, /* A sorting index used to test for distinctness */ 425 int addrRepeat, /* Jump to here if not distinct */ 426 int N /* The top N elements of the stack must be distinct */ 427 ){ 428 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); 429 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); 430 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); 431 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); 432 VdbeComment((v, "# skip indistinct records")); 433 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); 434 } 435 436 437 /* 438 ** This routine generates the code for the inside of the inner loop 439 ** of a SELECT. 440 ** 441 ** If srcTab and nColumn are both zero, then the pEList expressions 442 ** are evaluated in order to get the data for this row. If nColumn>0 443 ** then data is pulled from srcTab and pEList is used only to get the 444 ** datatypes for each column. 445 */ 446 static int selectInnerLoop( 447 Parse *pParse, /* The parser context */ 448 Select *p, /* The complete select statement being coded */ 449 ExprList *pEList, /* List of values being extracted */ 450 int srcTab, /* Pull data from this table */ 451 int nColumn, /* Number of columns in the source table */ 452 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 453 int distinct, /* If >=0, make sure results are distinct */ 454 int eDest, /* How to dispose of the results */ 455 int iParm, /* An argument to the disposal method */ 456 int iContinue, /* Jump here to continue with next row */ 457 int iBreak, /* Jump here to break out of the inner loop */ 458 char *aff /* affinity string if eDest is SRT_Union */ 459 ){ 460 Vdbe *v = pParse->pVdbe; 461 int i; 462 int hasDistinct; /* True if the DISTINCT keyword is present */ 463 464 if( v==0 ) return 0; 465 assert( pEList!=0 ); 466 467 /* If there was a LIMIT clause on the SELECT statement, then do the check 468 ** to see if this row should be output. 469 */ 470 hasDistinct = distinct>=0 && pEList->nExpr>0; 471 if( pOrderBy==0 && !hasDistinct ){ 472 codeOffset(v, p, iContinue, 0); 473 } 474 475 /* Pull the requested columns. 476 */ 477 if( nColumn>0 ){ 478 for(i=0; i<nColumn; i++){ 479 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); 480 } 481 }else{ 482 nColumn = pEList->nExpr; 483 sqlite3ExprCodeExprList(pParse, pEList); 484 } 485 486 /* If the DISTINCT keyword was present on the SELECT statement 487 ** and this row has been seen before, then do not make this row 488 ** part of the result. 489 */ 490 if( hasDistinct ){ 491 assert( pEList!=0 ); 492 assert( pEList->nExpr==nColumn ); 493 codeDistinct(v, distinct, iContinue, nColumn); 494 if( pOrderBy==0 ){ 495 codeOffset(v, p, iContinue, nColumn); 496 } 497 } 498 499 switch( eDest ){ 500 /* In this mode, write each query result to the key of the temporary 501 ** table iParm. 502 */ 503 #ifndef SQLITE_OMIT_COMPOUND_SELECT 504 case SRT_Union: { 505 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 506 if( aff ){ 507 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 508 } 509 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); 510 break; 511 } 512 513 /* Construct a record from the query result, but instead of 514 ** saving that record, use it as a key to delete elements from 515 ** the temporary table iParm. 516 */ 517 case SRT_Except: { 518 int addr; 519 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 520 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 521 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); 522 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); 523 break; 524 } 525 #endif 526 527 /* Store the result as data using a unique key. 528 */ 529 case SRT_Table: 530 case SRT_EphemTab: { 531 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 532 if( pOrderBy ){ 533 pushOntoSorter(pParse, pOrderBy, p); 534 }else{ 535 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 536 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 537 sqlite3VdbeAddOp(v, OP_Insert, iParm, 0); 538 } 539 break; 540 } 541 542 #ifndef SQLITE_OMIT_SUBQUERY 543 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 544 ** then there should be a single item on the stack. Write this 545 ** item into the set table with bogus data. 546 */ 547 case SRT_Set: { 548 int addr1 = sqlite3VdbeCurrentAddr(v); 549 int addr2; 550 551 assert( nColumn==1 ); 552 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); 553 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 554 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 555 if( pOrderBy ){ 556 /* At first glance you would think we could optimize out the 557 ** ORDER BY in this case since the order of entries in the set 558 ** does not matter. But there might be a LIMIT clause, in which 559 ** case the order does matter */ 560 pushOntoSorter(pParse, pOrderBy, p); 561 }else{ 562 char affinity = (iParm>>16)&0xFF; 563 affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, affinity); 564 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 565 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 566 } 567 sqlite3VdbeJumpHere(v, addr2); 568 break; 569 } 570 571 /* If any row exist in the result set, record that fact and abort. 572 */ 573 case SRT_Exists: { 574 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); 575 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 576 /* The LIMIT clause will terminate the loop for us */ 577 break; 578 } 579 580 /* If this is a scalar select that is part of an expression, then 581 ** store the results in the appropriate memory cell and break out 582 ** of the scan loop. 583 */ 584 case SRT_Mem: { 585 assert( nColumn==1 ); 586 if( pOrderBy ){ 587 pushOntoSorter(pParse, pOrderBy, p); 588 }else{ 589 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 590 /* The LIMIT clause will jump out of the loop for us */ 591 } 592 break; 593 } 594 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 595 596 /* Send the data to the callback function or to a subroutine. In the 597 ** case of a subroutine, the subroutine itself is responsible for 598 ** popping the data from the stack. 599 */ 600 case SRT_Subroutine: 601 case SRT_Callback: { 602 if( pOrderBy ){ 603 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 604 pushOntoSorter(pParse, pOrderBy, p); 605 }else if( eDest==SRT_Subroutine ){ 606 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 607 }else{ 608 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 609 } 610 break; 611 } 612 613 #if !defined(SQLITE_OMIT_TRIGGER) 614 /* Discard the results. This is used for SELECT statements inside 615 ** the body of a TRIGGER. The purpose of such selects is to call 616 ** user-defined functions that have side effects. We do not care 617 ** about the actual results of the select. 618 */ 619 default: { 620 assert( eDest==SRT_Discard ); 621 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 622 break; 623 } 624 #endif 625 } 626 627 /* Jump to the end of the loop if the LIMIT is reached. 628 */ 629 if( p->iLimit>=0 && pOrderBy==0 ){ 630 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 631 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); 632 } 633 return 0; 634 } 635 636 /* 637 ** Given an expression list, generate a KeyInfo structure that records 638 ** the collating sequence for each expression in that expression list. 639 ** 640 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 641 ** KeyInfo structure is appropriate for initializing a virtual index to 642 ** implement that clause. If the ExprList is the result set of a SELECT 643 ** then the KeyInfo structure is appropriate for initializing a virtual 644 ** index to implement a DISTINCT test. 645 ** 646 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 647 ** function is responsible for seeing that this structure is eventually 648 ** freed. Add the KeyInfo structure to the P3 field of an opcode using 649 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. 650 */ 651 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 652 sqlite3 *db = pParse->db; 653 int nExpr; 654 KeyInfo *pInfo; 655 struct ExprList_item *pItem; 656 int i; 657 658 nExpr = pList->nExpr; 659 pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 660 if( pInfo ){ 661 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 662 pInfo->nField = nExpr; 663 pInfo->enc = ENC(db); 664 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 665 CollSeq *pColl; 666 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 667 if( !pColl ){ 668 pColl = db->pDfltColl; 669 } 670 pInfo->aColl[i] = pColl; 671 pInfo->aSortOrder[i] = pItem->sortOrder; 672 } 673 } 674 return pInfo; 675 } 676 677 678 /* 679 ** If the inner loop was generated using a non-null pOrderBy argument, 680 ** then the results were placed in a sorter. After the loop is terminated 681 ** we need to run the sorter and output the results. The following 682 ** routine generates the code needed to do that. 683 */ 684 static void generateSortTail( 685 Parse *pParse, /* Parsing context */ 686 Select *p, /* The SELECT statement */ 687 Vdbe *v, /* Generate code into this VDBE */ 688 int nColumn, /* Number of columns of data */ 689 int eDest, /* Write the sorted results here */ 690 int iParm /* Optional parameter associated with eDest */ 691 ){ 692 int brk = sqlite3VdbeMakeLabel(v); 693 int cont = sqlite3VdbeMakeLabel(v); 694 int addr; 695 int iTab; 696 int pseudoTab; 697 ExprList *pOrderBy = p->pOrderBy; 698 699 iTab = pOrderBy->iECursor; 700 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 701 pseudoTab = pParse->nTab++; 702 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); 703 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); 704 } 705 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); 706 codeOffset(v, p, cont, 0); 707 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 708 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 709 } 710 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); 711 switch( eDest ){ 712 case SRT_Table: 713 case SRT_EphemTab: { 714 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 715 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 716 sqlite3VdbeAddOp(v, OP_Insert, iParm, 0); 717 break; 718 } 719 #ifndef SQLITE_OMIT_SUBQUERY 720 case SRT_Set: { 721 assert( nColumn==1 ); 722 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 723 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 724 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 725 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "c", P3_STATIC); 726 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 727 break; 728 } 729 case SRT_Mem: { 730 assert( nColumn==1 ); 731 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 732 /* The LIMIT clause will terminate the loop for us */ 733 break; 734 } 735 #endif 736 case SRT_Callback: 737 case SRT_Subroutine: { 738 int i; 739 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); 740 for(i=0; i<nColumn; i++){ 741 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); 742 } 743 if( eDest==SRT_Callback ){ 744 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 745 }else{ 746 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 747 } 748 break; 749 } 750 default: { 751 /* Do nothing */ 752 break; 753 } 754 } 755 756 /* Jump to the end of the loop when the LIMIT is reached 757 */ 758 if( p->iLimit>=0 ){ 759 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 760 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); 761 } 762 763 /* The bottom of the loop 764 */ 765 sqlite3VdbeResolveLabel(v, cont); 766 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); 767 sqlite3VdbeResolveLabel(v, brk); 768 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 769 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); 770 } 771 772 } 773 774 /* 775 ** Return a pointer to a string containing the 'declaration type' of the 776 ** expression pExpr. The string may be treated as static by the caller. 777 ** 778 ** The declaration type is the exact datatype definition extracted from the 779 ** original CREATE TABLE statement if the expression is a column. The 780 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 781 ** is considered a column can be complex in the presence of subqueries. The 782 ** result-set expression in all of the following SELECT statements is 783 ** considered a column by this function. 784 ** 785 ** SELECT col FROM tbl; 786 ** SELECT (SELECT col FROM tbl; 787 ** SELECT (SELECT col FROM tbl); 788 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 789 ** 790 ** The declaration type for any expression other than a column is NULL. 791 */ 792 static const char *columnType( 793 NameContext *pNC, 794 Expr *pExpr, 795 const char **pzOriginDb, 796 const char **pzOriginTab, 797 const char **pzOriginCol 798 ){ 799 char const *zType = 0; 800 char const *zOriginDb = 0; 801 char const *zOriginTab = 0; 802 char const *zOriginCol = 0; 803 int j; 804 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 805 806 /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING, 807 ** and LIMIT clauses. But pExpr originates in the result set of a 808 ** SELECT. So pExpr can never contain an AS operator. 809 */ 810 assert( pExpr->op!=TK_AS ); 811 812 switch( pExpr->op ){ 813 case TK_AGG_COLUMN: 814 case TK_COLUMN: { 815 /* The expression is a column. Locate the table the column is being 816 ** extracted from in NameContext.pSrcList. This table may be real 817 ** database table or a subquery. 818 */ 819 Table *pTab = 0; /* Table structure column is extracted from */ 820 Select *pS = 0; /* Select the column is extracted from */ 821 int iCol = pExpr->iColumn; /* Index of column in pTab */ 822 while( pNC && !pTab ){ 823 SrcList *pTabList = pNC->pSrcList; 824 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 825 if( j<pTabList->nSrc ){ 826 pTab = pTabList->a[j].pTab; 827 pS = pTabList->a[j].pSelect; 828 }else{ 829 pNC = pNC->pNext; 830 } 831 } 832 833 if( pTab==0 ){ 834 /* FIX ME: 835 ** This can occurs if you have something like "SELECT new.x;" inside 836 ** a trigger. In other words, if you reference the special "new" 837 ** table in the result set of a select. We do not have a good way 838 ** to find the actual table type, so call it "TEXT". This is really 839 ** something of a bug, but I do not know how to fix it. 840 ** 841 ** This code does not produce the correct answer - it just prevents 842 ** a segfault. See ticket #1229. 843 */ 844 zType = "TEXT"; 845 break; 846 } 847 848 assert( pTab ); 849 if( pS ){ 850 /* The "table" is actually a sub-select or a view in the FROM clause 851 ** of the SELECT statement. Return the declaration type and origin 852 ** data for the result-set column of the sub-select. 853 */ 854 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 855 /* If iCol is less than zero, then the expression requests the 856 ** rowid of the sub-select or view. This expression is legal (see 857 ** test case misc2.2.2) - it always evaluates to NULL. 858 */ 859 NameContext sNC; 860 Expr *p = pS->pEList->a[iCol].pExpr; 861 sNC.pSrcList = pS->pSrc; 862 sNC.pNext = 0; 863 sNC.pParse = pNC->pParse; 864 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 865 } 866 }else if( pTab->pSchema ){ 867 /* A real table */ 868 assert( !pS ); 869 if( iCol<0 ) iCol = pTab->iPKey; 870 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 871 if( iCol<0 ){ 872 zType = "INTEGER"; 873 zOriginCol = "rowid"; 874 }else{ 875 zType = pTab->aCol[iCol].zType; 876 zOriginCol = pTab->aCol[iCol].zName; 877 } 878 zOriginTab = pTab->zName; 879 if( pNC->pParse ){ 880 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 881 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 882 } 883 } 884 break; 885 } 886 #ifndef SQLITE_OMIT_SUBQUERY 887 case TK_SELECT: { 888 /* The expression is a sub-select. Return the declaration type and 889 ** origin info for the single column in the result set of the SELECT 890 ** statement. 891 */ 892 NameContext sNC; 893 Select *pS = pExpr->pSelect; 894 Expr *p = pS->pEList->a[0].pExpr; 895 sNC.pSrcList = pS->pSrc; 896 sNC.pNext = pNC; 897 sNC.pParse = pNC->pParse; 898 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 899 break; 900 } 901 #endif 902 } 903 904 if( pzOriginDb ){ 905 assert( pzOriginTab && pzOriginCol ); 906 *pzOriginDb = zOriginDb; 907 *pzOriginTab = zOriginTab; 908 *pzOriginCol = zOriginCol; 909 } 910 return zType; 911 } 912 913 /* 914 ** Generate code that will tell the VDBE the declaration types of columns 915 ** in the result set. 916 */ 917 static void generateColumnTypes( 918 Parse *pParse, /* Parser context */ 919 SrcList *pTabList, /* List of tables */ 920 ExprList *pEList /* Expressions defining the result set */ 921 ){ 922 Vdbe *v = pParse->pVdbe; 923 int i; 924 NameContext sNC; 925 sNC.pSrcList = pTabList; 926 sNC.pParse = pParse; 927 for(i=0; i<pEList->nExpr; i++){ 928 Expr *p = pEList->a[i].pExpr; 929 const char *zOrigDb = 0; 930 const char *zOrigTab = 0; 931 const char *zOrigCol = 0; 932 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 933 934 /* The vdbe must make it's own copy of the column-type and other 935 ** column specific strings, in case the schema is reset before this 936 ** virtual machine is deleted. 937 */ 938 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); 939 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); 940 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); 941 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); 942 } 943 } 944 945 /* 946 ** Generate code that will tell the VDBE the names of columns 947 ** in the result set. This information is used to provide the 948 ** azCol[] values in the callback. 949 */ 950 static void generateColumnNames( 951 Parse *pParse, /* Parser context */ 952 SrcList *pTabList, /* List of tables */ 953 ExprList *pEList /* Expressions defining the result set */ 954 ){ 955 Vdbe *v = pParse->pVdbe; 956 int i, j; 957 sqlite3 *db = pParse->db; 958 int fullNames, shortNames; 959 960 #ifndef SQLITE_OMIT_EXPLAIN 961 /* If this is an EXPLAIN, skip this step */ 962 if( pParse->explain ){ 963 return; 964 } 965 #endif 966 967 assert( v!=0 ); 968 if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return; 969 pParse->colNamesSet = 1; 970 fullNames = (db->flags & SQLITE_FullColNames)!=0; 971 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 972 sqlite3VdbeSetNumCols(v, pEList->nExpr); 973 for(i=0; i<pEList->nExpr; i++){ 974 Expr *p; 975 p = pEList->a[i].pExpr; 976 if( p==0 ) continue; 977 if( pEList->a[i].zName ){ 978 char *zName = pEList->a[i].zName; 979 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 980 continue; 981 } 982 if( p->op==TK_COLUMN && pTabList ){ 983 Table *pTab; 984 char *zCol; 985 int iCol = p->iColumn; 986 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 987 assert( j<pTabList->nSrc ); 988 pTab = pTabList->a[j].pTab; 989 if( iCol<0 ) iCol = pTab->iPKey; 990 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 991 if( iCol<0 ){ 992 zCol = "rowid"; 993 }else{ 994 zCol = pTab->aCol[iCol].zName; 995 } 996 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ 997 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 998 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 999 char *zName = 0; 1000 char *zTab; 1001 1002 zTab = pTabList->a[j].zAlias; 1003 if( fullNames || zTab==0 ) zTab = pTab->zName; 1004 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); 1005 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); 1006 }else{ 1007 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1008 } 1009 }else if( p->span.z && p->span.z[0] ){ 1010 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1011 /* sqlite3VdbeCompressSpace(v, addr); */ 1012 }else{ 1013 char zName[30]; 1014 assert( p->op!=TK_COLUMN || pTabList==0 ); 1015 sprintf(zName, "column%d", i+1); 1016 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); 1017 } 1018 } 1019 generateColumnTypes(pParse, pTabList, pEList); 1020 } 1021 1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1023 /* 1024 ** Name of the connection operator, used for error messages. 1025 */ 1026 static const char *selectOpName(int id){ 1027 char *z; 1028 switch( id ){ 1029 case TK_ALL: z = "UNION ALL"; break; 1030 case TK_INTERSECT: z = "INTERSECT"; break; 1031 case TK_EXCEPT: z = "EXCEPT"; break; 1032 default: z = "UNION"; break; 1033 } 1034 return z; 1035 } 1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1037 1038 /* 1039 ** Forward declaration 1040 */ 1041 static int prepSelectStmt(Parse*, Select*); 1042 1043 /* 1044 ** Given a SELECT statement, generate a Table structure that describes 1045 ** the result set of that SELECT. 1046 */ 1047 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1048 Table *pTab; 1049 int i, j; 1050 ExprList *pEList; 1051 Column *aCol, *pCol; 1052 1053 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1054 if( prepSelectStmt(pParse, pSelect) ){ 1055 return 0; 1056 } 1057 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ 1058 return 0; 1059 } 1060 pTab = sqliteMalloc( sizeof(Table) ); 1061 if( pTab==0 ){ 1062 return 0; 1063 } 1064 pTab->nRef = 1; 1065 pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; 1066 pEList = pSelect->pEList; 1067 pTab->nCol = pEList->nExpr; 1068 assert( pTab->nCol>0 ); 1069 pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); 1070 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1071 Expr *p, *pR; 1072 char *zType; 1073 char *zName; 1074 int nName; 1075 CollSeq *pColl; 1076 int cnt; 1077 NameContext sNC; 1078 1079 /* Get an appropriate name for the column 1080 */ 1081 p = pEList->a[i].pExpr; 1082 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1083 if( (zName = pEList->a[i].zName)!=0 ){ 1084 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1085 zName = sqliteStrDup(zName); 1086 }else if( p->op==TK_DOT 1087 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ 1088 /* For columns of the from A.B use B as the name */ 1089 zName = sqlite3MPrintf("%T", &pR->token); 1090 }else if( p->span.z && p->span.z[0] ){ 1091 /* Use the original text of the column expression as its name */ 1092 zName = sqlite3MPrintf("%T", &p->span); 1093 }else{ 1094 /* If all else fails, make up a name */ 1095 zName = sqlite3MPrintf("column%d", i+1); 1096 } 1097 sqlite3Dequote(zName); 1098 if( sqlite3MallocFailed() ){ 1099 sqliteFree(zName); 1100 sqlite3DeleteTable(0, pTab); 1101 return 0; 1102 } 1103 1104 /* Make sure the column name is unique. If the name is not unique, 1105 ** append a integer to the name so that it becomes unique. 1106 */ 1107 nName = strlen(zName); 1108 for(j=cnt=0; j<i; j++){ 1109 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1110 zName[nName] = 0; 1111 zName = sqlite3MPrintf("%z:%d", zName, ++cnt); 1112 j = -1; 1113 if( zName==0 ) break; 1114 } 1115 } 1116 pCol->zName = zName; 1117 1118 /* Get the typename, type affinity, and collating sequence for the 1119 ** column. 1120 */ 1121 memset(&sNC, 0, sizeof(sNC)); 1122 sNC.pSrcList = pSelect->pSrc; 1123 zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0)); 1124 pCol->zType = zType; 1125 pCol->affinity = sqlite3ExprAffinity(p); 1126 pColl = sqlite3ExprCollSeq(pParse, p); 1127 if( pColl ){ 1128 pCol->zColl = sqliteStrDup(pColl->zName); 1129 } 1130 } 1131 pTab->iPKey = -1; 1132 return pTab; 1133 } 1134 1135 /* 1136 ** Prepare a SELECT statement for processing by doing the following 1137 ** things: 1138 ** 1139 ** (1) Make sure VDBE cursor numbers have been assigned to every 1140 ** element of the FROM clause. 1141 ** 1142 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1143 ** defines FROM clause. When views appear in the FROM clause, 1144 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1145 ** that implements the view. A copy is made of the view's SELECT 1146 ** statement so that we can freely modify or delete that statement 1147 ** without worrying about messing up the presistent representation 1148 ** of the view. 1149 ** 1150 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1151 ** on joins and the ON and USING clause of joins. 1152 ** 1153 ** (4) Scan the list of columns in the result set (pEList) looking 1154 ** for instances of the "*" operator or the TABLE.* operator. 1155 ** If found, expand each "*" to be every column in every table 1156 ** and TABLE.* to be every column in TABLE. 1157 ** 1158 ** Return 0 on success. If there are problems, leave an error message 1159 ** in pParse and return non-zero. 1160 */ 1161 static int prepSelectStmt(Parse *pParse, Select *p){ 1162 int i, j, k, rc; 1163 SrcList *pTabList; 1164 ExprList *pEList; 1165 struct SrcList_item *pFrom; 1166 1167 if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){ 1168 return 1; 1169 } 1170 pTabList = p->pSrc; 1171 pEList = p->pEList; 1172 1173 /* Make sure cursor numbers have been assigned to all entries in 1174 ** the FROM clause of the SELECT statement. 1175 */ 1176 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1177 1178 /* Look up every table named in the FROM clause of the select. If 1179 ** an entry of the FROM clause is a subquery instead of a table or view, 1180 ** then create a transient table structure to describe the subquery. 1181 */ 1182 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1183 Table *pTab; 1184 if( pFrom->pTab!=0 ){ 1185 /* This statement has already been prepared. There is no need 1186 ** to go further. */ 1187 assert( i==0 ); 1188 return 0; 1189 } 1190 if( pFrom->zName==0 ){ 1191 #ifndef SQLITE_OMIT_SUBQUERY 1192 /* A sub-query in the FROM clause of a SELECT */ 1193 assert( pFrom->pSelect!=0 ); 1194 if( pFrom->zAlias==0 ){ 1195 pFrom->zAlias = 1196 sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); 1197 } 1198 assert( pFrom->pTab==0 ); 1199 pFrom->pTab = pTab = 1200 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1201 if( pTab==0 ){ 1202 return 1; 1203 } 1204 /* The isEphem flag indicates that the Table structure has been 1205 ** dynamically allocated and may be freed at any time. In other words, 1206 ** pTab is not pointing to a persistent table structure that defines 1207 ** part of the schema. */ 1208 pTab->isEphem = 1; 1209 #endif 1210 }else{ 1211 /* An ordinary table or view name in the FROM clause */ 1212 assert( pFrom->pTab==0 ); 1213 pFrom->pTab = pTab = 1214 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); 1215 if( pTab==0 ){ 1216 return 1; 1217 } 1218 pTab->nRef++; 1219 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1220 if( pTab->pSelect || IsVirtual(pTab) ){ 1221 /* We reach here if the named table is a really a view */ 1222 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1223 return 1; 1224 } 1225 /* If pFrom->pSelect!=0 it means we are dealing with a 1226 ** view within a view. The SELECT structure has already been 1227 ** copied by the outer view so we can skip the copy step here 1228 ** in the inner view. 1229 */ 1230 if( pFrom->pSelect==0 ){ 1231 pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); 1232 } 1233 } 1234 #endif 1235 } 1236 } 1237 1238 /* Process NATURAL keywords, and ON and USING clauses of joins. 1239 */ 1240 if( sqliteProcessJoin(pParse, p) ) return 1; 1241 1242 /* For every "*" that occurs in the column list, insert the names of 1243 ** all columns in all tables. And for every TABLE.* insert the names 1244 ** of all columns in TABLE. The parser inserted a special expression 1245 ** with the TK_ALL operator for each "*" that it found in the column list. 1246 ** The following code just has to locate the TK_ALL expressions and expand 1247 ** each one to the list of all columns in all tables. 1248 ** 1249 ** The first loop just checks to see if there are any "*" operators 1250 ** that need expanding. 1251 */ 1252 for(k=0; k<pEList->nExpr; k++){ 1253 Expr *pE = pEList->a[k].pExpr; 1254 if( pE->op==TK_ALL ) break; 1255 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1256 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1257 } 1258 rc = 0; 1259 if( k<pEList->nExpr ){ 1260 /* 1261 ** If we get here it means the result set contains one or more "*" 1262 ** operators that need to be expanded. Loop through each expression 1263 ** in the result set and expand them one by one. 1264 */ 1265 struct ExprList_item *a = pEList->a; 1266 ExprList *pNew = 0; 1267 int flags = pParse->db->flags; 1268 int longNames = (flags & SQLITE_FullColNames)!=0 && 1269 (flags & SQLITE_ShortColNames)==0; 1270 1271 for(k=0; k<pEList->nExpr; k++){ 1272 Expr *pE = a[k].pExpr; 1273 if( pE->op!=TK_ALL && 1274 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1275 /* This particular expression does not need to be expanded. 1276 */ 1277 pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); 1278 if( pNew ){ 1279 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1280 }else{ 1281 rc = 1; 1282 } 1283 a[k].pExpr = 0; 1284 a[k].zName = 0; 1285 }else{ 1286 /* This expression is a "*" or a "TABLE.*" and needs to be 1287 ** expanded. */ 1288 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1289 char *zTName; /* text of name of TABLE */ 1290 if( pE->op==TK_DOT && pE->pLeft ){ 1291 zTName = sqlite3NameFromToken(&pE->pLeft->token); 1292 }else{ 1293 zTName = 0; 1294 } 1295 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1296 Table *pTab = pFrom->pTab; 1297 char *zTabName = pFrom->zAlias; 1298 if( zTabName==0 || zTabName[0]==0 ){ 1299 zTabName = pTab->zName; 1300 } 1301 if( zTName && (zTabName==0 || zTabName[0]==0 || 1302 sqlite3StrICmp(zTName, zTabName)!=0) ){ 1303 continue; 1304 } 1305 tableSeen = 1; 1306 for(j=0; j<pTab->nCol; j++){ 1307 Expr *pExpr, *pRight; 1308 char *zName = pTab->aCol[j].zName; 1309 1310 if( i>0 ){ 1311 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1312 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1313 columnIndex(pLeft->pTab, zName)>=0 ){ 1314 /* In a NATURAL join, omit the join columns from the 1315 ** table on the right */ 1316 continue; 1317 } 1318 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1319 /* In a join with a USING clause, omit columns in the 1320 ** using clause from the table on the right. */ 1321 continue; 1322 } 1323 } 1324 pRight = sqlite3Expr(TK_ID, 0, 0, 0); 1325 if( pRight==0 ) break; 1326 setToken(&pRight->token, zName); 1327 if( zTabName && (longNames || pTabList->nSrc>1) ){ 1328 Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0); 1329 pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); 1330 if( pExpr==0 ) break; 1331 setToken(&pLeft->token, zTabName); 1332 setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); 1333 pExpr->span.dyn = 1; 1334 pExpr->token.z = 0; 1335 pExpr->token.n = 0; 1336 pExpr->token.dyn = 0; 1337 }else{ 1338 pExpr = pRight; 1339 pExpr->span = pExpr->token; 1340 } 1341 if( longNames ){ 1342 pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span); 1343 }else{ 1344 pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token); 1345 } 1346 } 1347 } 1348 if( !tableSeen ){ 1349 if( zTName ){ 1350 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1351 }else{ 1352 sqlite3ErrorMsg(pParse, "no tables specified"); 1353 } 1354 rc = 1; 1355 } 1356 sqliteFree(zTName); 1357 } 1358 } 1359 sqlite3ExprListDelete(pEList); 1360 p->pEList = pNew; 1361 } 1362 return rc; 1363 } 1364 1365 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1366 /* 1367 ** This routine associates entries in an ORDER BY expression list with 1368 ** columns in a result. For each ORDER BY expression, the opcode of 1369 ** the top-level node is changed to TK_COLUMN and the iColumn value of 1370 ** the top-level node is filled in with column number and the iTable 1371 ** value of the top-level node is filled with iTable parameter. 1372 ** 1373 ** If there are prior SELECT clauses, they are processed first. A match 1374 ** in an earlier SELECT takes precedence over a later SELECT. 1375 ** 1376 ** Any entry that does not match is flagged as an error. The number 1377 ** of errors is returned. 1378 */ 1379 static int matchOrderbyToColumn( 1380 Parse *pParse, /* A place to leave error messages */ 1381 Select *pSelect, /* Match to result columns of this SELECT */ 1382 ExprList *pOrderBy, /* The ORDER BY values to match against columns */ 1383 int iTable, /* Insert this value in iTable */ 1384 int mustComplete /* If TRUE all ORDER BYs must match */ 1385 ){ 1386 int nErr = 0; 1387 int i, j; 1388 ExprList *pEList; 1389 1390 if( pSelect==0 || pOrderBy==0 ) return 1; 1391 if( mustComplete ){ 1392 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } 1393 } 1394 if( prepSelectStmt(pParse, pSelect) ){ 1395 return 1; 1396 } 1397 if( pSelect->pPrior ){ 1398 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ 1399 return 1; 1400 } 1401 } 1402 pEList = pSelect->pEList; 1403 for(i=0; i<pOrderBy->nExpr; i++){ 1404 Expr *pE = pOrderBy->a[i].pExpr; 1405 int iCol = -1; 1406 if( pOrderBy->a[i].done ) continue; 1407 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1408 if( iCol<=0 || iCol>pEList->nExpr ){ 1409 sqlite3ErrorMsg(pParse, 1410 "ORDER BY position %d should be between 1 and %d", 1411 iCol, pEList->nExpr); 1412 nErr++; 1413 break; 1414 } 1415 if( !mustComplete ) continue; 1416 iCol--; 1417 } 1418 for(j=0; iCol<0 && j<pEList->nExpr; j++){ 1419 if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){ 1420 char *zName, *zLabel; 1421 zName = pEList->a[j].zName; 1422 zLabel = sqlite3NameFromToken(&pE->token); 1423 assert( zLabel!=0 ); 1424 if( sqlite3StrICmp(zName, zLabel)==0 ){ 1425 iCol = j; 1426 } 1427 sqliteFree(zLabel); 1428 } 1429 if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){ 1430 iCol = j; 1431 } 1432 } 1433 if( iCol>=0 ){ 1434 pE->op = TK_COLUMN; 1435 pE->iColumn = iCol; 1436 pE->iTable = iTable; 1437 pE->iAgg = -1; 1438 pOrderBy->a[i].done = 1; 1439 } 1440 if( iCol<0 && mustComplete ){ 1441 sqlite3ErrorMsg(pParse, 1442 "ORDER BY term number %d does not match any result column", i+1); 1443 nErr++; 1444 break; 1445 } 1446 } 1447 return nErr; 1448 } 1449 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ 1450 1451 /* 1452 ** Get a VDBE for the given parser context. Create a new one if necessary. 1453 ** If an error occurs, return NULL and leave a message in pParse. 1454 */ 1455 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1456 Vdbe *v = pParse->pVdbe; 1457 if( v==0 ){ 1458 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1459 } 1460 return v; 1461 } 1462 1463 1464 /* 1465 ** Compute the iLimit and iOffset fields of the SELECT based on the 1466 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1467 ** that appear in the original SQL statement after the LIMIT and OFFSET 1468 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1469 ** are the integer memory register numbers for counters used to compute 1470 ** the limit and offset. If there is no limit and/or offset, then 1471 ** iLimit and iOffset are negative. 1472 ** 1473 ** This routine changes the values of iLimit and iOffset only if 1474 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1475 ** iOffset should have been preset to appropriate default values 1476 ** (usually but not always -1) prior to calling this routine. 1477 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1478 ** redefined. The UNION ALL operator uses this property to force 1479 ** the reuse of the same limit and offset registers across multiple 1480 ** SELECT statements. 1481 */ 1482 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1483 Vdbe *v = 0; 1484 int iLimit = 0; 1485 int iOffset; 1486 int addr1, addr2; 1487 1488 /* 1489 ** "LIMIT -1" always shows all rows. There is some 1490 ** contraversy about what the correct behavior should be. 1491 ** The current implementation interprets "LIMIT 0" to mean 1492 ** no rows. 1493 */ 1494 if( p->pLimit ){ 1495 p->iLimit = iLimit = pParse->nMem; 1496 pParse->nMem += 2; 1497 v = sqlite3GetVdbe(pParse); 1498 if( v==0 ) return; 1499 sqlite3ExprCode(pParse, p->pLimit); 1500 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1501 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0); 1502 VdbeComment((v, "# LIMIT counter")); 1503 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); 1504 } 1505 if( p->pOffset ){ 1506 p->iOffset = iOffset = pParse->nMem++; 1507 v = sqlite3GetVdbe(pParse); 1508 if( v==0 ) return; 1509 sqlite3ExprCode(pParse, p->pOffset); 1510 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1511 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); 1512 VdbeComment((v, "# OFFSET counter")); 1513 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); 1514 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1515 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1516 sqlite3VdbeJumpHere(v, addr1); 1517 if( p->pLimit ){ 1518 sqlite3VdbeAddOp(v, OP_Add, 0, 0); 1519 } 1520 } 1521 if( p->pLimit ){ 1522 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); 1523 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1524 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); 1525 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1526 sqlite3VdbeJumpHere(v, addr1); 1527 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); 1528 VdbeComment((v, "# LIMIT+OFFSET")); 1529 sqlite3VdbeJumpHere(v, addr2); 1530 } 1531 } 1532 1533 /* 1534 ** Allocate a virtual index to use for sorting. 1535 */ 1536 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ 1537 if( pOrderBy ){ 1538 int addr; 1539 assert( pOrderBy->iECursor==0 ); 1540 pOrderBy->iECursor = pParse->nTab++; 1541 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, 1542 pOrderBy->iECursor, pOrderBy->nExpr+1); 1543 assert( p->addrOpenEphm[2] == -1 ); 1544 p->addrOpenEphm[2] = addr; 1545 } 1546 } 1547 1548 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1549 /* 1550 ** Return the appropriate collating sequence for the iCol-th column of 1551 ** the result set for the compound-select statement "p". Return NULL if 1552 ** the column has no default collating sequence. 1553 ** 1554 ** The collating sequence for the compound select is taken from the 1555 ** left-most term of the select that has a collating sequence. 1556 */ 1557 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1558 CollSeq *pRet; 1559 if( p->pPrior ){ 1560 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1561 }else{ 1562 pRet = 0; 1563 } 1564 if( pRet==0 ){ 1565 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1566 } 1567 return pRet; 1568 } 1569 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1570 1571 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1572 /* 1573 ** This routine is called to process a query that is really the union 1574 ** or intersection of two or more separate queries. 1575 ** 1576 ** "p" points to the right-most of the two queries. the query on the 1577 ** left is p->pPrior. The left query could also be a compound query 1578 ** in which case this routine will be called recursively. 1579 ** 1580 ** The results of the total query are to be written into a destination 1581 ** of type eDest with parameter iParm. 1582 ** 1583 ** Example 1: Consider a three-way compound SQL statement. 1584 ** 1585 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1586 ** 1587 ** This statement is parsed up as follows: 1588 ** 1589 ** SELECT c FROM t3 1590 ** | 1591 ** `-----> SELECT b FROM t2 1592 ** | 1593 ** `------> SELECT a FROM t1 1594 ** 1595 ** The arrows in the diagram above represent the Select.pPrior pointer. 1596 ** So if this routine is called with p equal to the t3 query, then 1597 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1598 ** 1599 ** Notice that because of the way SQLite parses compound SELECTs, the 1600 ** individual selects always group from left to right. 1601 */ 1602 static int multiSelect( 1603 Parse *pParse, /* Parsing context */ 1604 Select *p, /* The right-most of SELECTs to be coded */ 1605 int eDest, /* \___ Store query results as specified */ 1606 int iParm, /* / by these two parameters. */ 1607 char *aff /* If eDest is SRT_Union, the affinity string */ 1608 ){ 1609 int rc = SQLITE_OK; /* Success code from a subroutine */ 1610 Select *pPrior; /* Another SELECT immediately to our left */ 1611 Vdbe *v; /* Generate code to this VDBE */ 1612 int nCol; /* Number of columns in the result set */ 1613 ExprList *pOrderBy; /* The ORDER BY clause on p */ 1614 int aSetP2[2]; /* Set P2 value of these op to number of columns */ 1615 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ 1616 1617 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1618 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1619 */ 1620 if( p==0 || p->pPrior==0 ){ 1621 rc = 1; 1622 goto multi_select_end; 1623 } 1624 pPrior = p->pPrior; 1625 assert( pPrior->pRightmost!=pPrior ); 1626 assert( pPrior->pRightmost==p->pRightmost ); 1627 if( pPrior->pOrderBy ){ 1628 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1629 selectOpName(p->op)); 1630 rc = 1; 1631 goto multi_select_end; 1632 } 1633 if( pPrior->pLimit ){ 1634 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1635 selectOpName(p->op)); 1636 rc = 1; 1637 goto multi_select_end; 1638 } 1639 1640 /* Make sure we have a valid query engine. If not, create a new one. 1641 */ 1642 v = sqlite3GetVdbe(pParse); 1643 if( v==0 ){ 1644 rc = 1; 1645 goto multi_select_end; 1646 } 1647 1648 /* Create the destination temporary table if necessary 1649 */ 1650 if( eDest==SRT_EphemTab ){ 1651 assert( p->pEList ); 1652 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1653 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); 1654 eDest = SRT_Table; 1655 } 1656 1657 /* Generate code for the left and right SELECT statements. 1658 */ 1659 pOrderBy = p->pOrderBy; 1660 switch( p->op ){ 1661 case TK_ALL: { 1662 if( pOrderBy==0 ){ 1663 int addr = 0; 1664 assert( !pPrior->pLimit ); 1665 pPrior->pLimit = p->pLimit; 1666 pPrior->pOffset = p->pOffset; 1667 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); 1668 p->pLimit = 0; 1669 p->pOffset = 0; 1670 if( rc ){ 1671 goto multi_select_end; 1672 } 1673 p->pPrior = 0; 1674 p->iLimit = pPrior->iLimit; 1675 p->iOffset = pPrior->iOffset; 1676 if( p->iLimit>=0 ){ 1677 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); 1678 VdbeComment((v, "# Jump ahead if LIMIT reached")); 1679 } 1680 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); 1681 p->pPrior = pPrior; 1682 if( rc ){ 1683 goto multi_select_end; 1684 } 1685 if( addr ){ 1686 sqlite3VdbeJumpHere(v, addr); 1687 } 1688 break; 1689 } 1690 /* For UNION ALL ... ORDER BY fall through to the next case */ 1691 } 1692 case TK_EXCEPT: 1693 case TK_UNION: { 1694 int unionTab; /* Cursor number of the temporary table holding result */ 1695 int op = 0; /* One of the SRT_ operations to apply to self */ 1696 int priorOp; /* The SRT_ operation to apply to prior selects */ 1697 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1698 int addr; 1699 1700 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; 1701 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ 1702 /* We can reuse a temporary table generated by a SELECT to our 1703 ** right. 1704 */ 1705 unionTab = iParm; 1706 }else{ 1707 /* We will need to create our own temporary table to hold the 1708 ** intermediate results. 1709 */ 1710 unionTab = pParse->nTab++; 1711 if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ 1712 rc = 1; 1713 goto multi_select_end; 1714 } 1715 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); 1716 if( priorOp==SRT_Table ){ 1717 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1718 aSetP2[nSetP2++] = addr; 1719 }else{ 1720 assert( p->addrOpenEphm[0] == -1 ); 1721 p->addrOpenEphm[0] = addr; 1722 p->pRightmost->usesEphm = 1; 1723 } 1724 createSortingIndex(pParse, p, pOrderBy); 1725 assert( p->pEList ); 1726 } 1727 1728 /* Code the SELECT statements to our left 1729 */ 1730 assert( !pPrior->pOrderBy ); 1731 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); 1732 if( rc ){ 1733 goto multi_select_end; 1734 } 1735 1736 /* Code the current SELECT statement 1737 */ 1738 switch( p->op ){ 1739 case TK_EXCEPT: op = SRT_Except; break; 1740 case TK_UNION: op = SRT_Union; break; 1741 case TK_ALL: op = SRT_Table; break; 1742 } 1743 p->pPrior = 0; 1744 p->pOrderBy = 0; 1745 p->disallowOrderBy = pOrderBy!=0; 1746 pLimit = p->pLimit; 1747 p->pLimit = 0; 1748 pOffset = p->pOffset; 1749 p->pOffset = 0; 1750 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); 1751 p->pPrior = pPrior; 1752 p->pOrderBy = pOrderBy; 1753 sqlite3ExprDelete(p->pLimit); 1754 p->pLimit = pLimit; 1755 p->pOffset = pOffset; 1756 p->iLimit = -1; 1757 p->iOffset = -1; 1758 if( rc ){ 1759 goto multi_select_end; 1760 } 1761 1762 1763 /* Convert the data in the temporary table into whatever form 1764 ** it is that we currently need. 1765 */ 1766 if( eDest!=priorOp || unionTab!=iParm ){ 1767 int iCont, iBreak, iStart; 1768 assert( p->pEList ); 1769 if( eDest==SRT_Callback ){ 1770 Select *pFirst = p; 1771 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1772 generateColumnNames(pParse, 0, pFirst->pEList); 1773 } 1774 iBreak = sqlite3VdbeMakeLabel(v); 1775 iCont = sqlite3VdbeMakeLabel(v); 1776 computeLimitRegisters(pParse, p, iBreak); 1777 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); 1778 iStart = sqlite3VdbeCurrentAddr(v); 1779 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1780 pOrderBy, -1, eDest, iParm, 1781 iCont, iBreak, 0); 1782 if( rc ){ 1783 rc = 1; 1784 goto multi_select_end; 1785 } 1786 sqlite3VdbeResolveLabel(v, iCont); 1787 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); 1788 sqlite3VdbeResolveLabel(v, iBreak); 1789 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); 1790 } 1791 break; 1792 } 1793 case TK_INTERSECT: { 1794 int tab1, tab2; 1795 int iCont, iBreak, iStart; 1796 Expr *pLimit, *pOffset; 1797 int addr; 1798 1799 /* INTERSECT is different from the others since it requires 1800 ** two temporary tables. Hence it has its own case. Begin 1801 ** by allocating the tables we will need. 1802 */ 1803 tab1 = pParse->nTab++; 1804 tab2 = pParse->nTab++; 1805 if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ 1806 rc = 1; 1807 goto multi_select_end; 1808 } 1809 createSortingIndex(pParse, p, pOrderBy); 1810 1811 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); 1812 assert( p->addrOpenEphm[0] == -1 ); 1813 p->addrOpenEphm[0] = addr; 1814 p->pRightmost->usesEphm = 1; 1815 assert( p->pEList ); 1816 1817 /* Code the SELECTs to our left into temporary table "tab1". 1818 */ 1819 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); 1820 if( rc ){ 1821 goto multi_select_end; 1822 } 1823 1824 /* Code the current SELECT into temporary table "tab2" 1825 */ 1826 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); 1827 assert( p->addrOpenEphm[1] == -1 ); 1828 p->addrOpenEphm[1] = addr; 1829 p->pPrior = 0; 1830 pLimit = p->pLimit; 1831 p->pLimit = 0; 1832 pOffset = p->pOffset; 1833 p->pOffset = 0; 1834 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); 1835 p->pPrior = pPrior; 1836 sqlite3ExprDelete(p->pLimit); 1837 p->pLimit = pLimit; 1838 p->pOffset = pOffset; 1839 if( rc ){ 1840 goto multi_select_end; 1841 } 1842 1843 /* Generate code to take the intersection of the two temporary 1844 ** tables. 1845 */ 1846 assert( p->pEList ); 1847 if( eDest==SRT_Callback ){ 1848 Select *pFirst = p; 1849 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1850 generateColumnNames(pParse, 0, pFirst->pEList); 1851 } 1852 iBreak = sqlite3VdbeMakeLabel(v); 1853 iCont = sqlite3VdbeMakeLabel(v); 1854 computeLimitRegisters(pParse, p, iBreak); 1855 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); 1856 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); 1857 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); 1858 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1859 pOrderBy, -1, eDest, iParm, 1860 iCont, iBreak, 0); 1861 if( rc ){ 1862 rc = 1; 1863 goto multi_select_end; 1864 } 1865 sqlite3VdbeResolveLabel(v, iCont); 1866 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); 1867 sqlite3VdbeResolveLabel(v, iBreak); 1868 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); 1869 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); 1870 break; 1871 } 1872 } 1873 1874 /* Make sure all SELECTs in the statement have the same number of elements 1875 ** in their result sets. 1876 */ 1877 assert( p->pEList && pPrior->pEList ); 1878 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1879 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1880 " do not have the same number of result columns", selectOpName(p->op)); 1881 rc = 1; 1882 goto multi_select_end; 1883 } 1884 1885 /* Set the number of columns in temporary tables 1886 */ 1887 nCol = p->pEList->nExpr; 1888 while( nSetP2 ){ 1889 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); 1890 } 1891 1892 /* Compute collating sequences used by either the ORDER BY clause or 1893 ** by any temporary tables needed to implement the compound select. 1894 ** Attach the KeyInfo structure to all temporary tables. Invoke the 1895 ** ORDER BY processing if there is an ORDER BY clause. 1896 ** 1897 ** This section is run by the right-most SELECT statement only. 1898 ** SELECT statements to the left always skip this part. The right-most 1899 ** SELECT might also skip this part if it has no ORDER BY clause and 1900 ** no temp tables are required. 1901 */ 1902 if( pOrderBy || p->usesEphm ){ 1903 int i; /* Loop counter */ 1904 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1905 Select *pLoop; /* For looping through SELECT statements */ 1906 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ 1907 CollSeq **apColl; 1908 CollSeq **aCopy; 1909 1910 assert( p->pRightmost==p ); 1911 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); 1912 pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); 1913 if( !pKeyInfo ){ 1914 rc = SQLITE_NOMEM; 1915 goto multi_select_end; 1916 } 1917 1918 pKeyInfo->enc = ENC(pParse->db); 1919 pKeyInfo->nField = nCol; 1920 1921 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1922 *apColl = multiSelectCollSeq(pParse, p, i); 1923 if( 0==*apColl ){ 1924 *apColl = pParse->db->pDfltColl; 1925 } 1926 } 1927 1928 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1929 for(i=0; i<2; i++){ 1930 int addr = pLoop->addrOpenEphm[i]; 1931 if( addr<0 ){ 1932 /* If [0] is unused then [1] is also unused. So we can 1933 ** always safely abort as soon as the first unused slot is found */ 1934 assert( pLoop->addrOpenEphm[1]<0 ); 1935 break; 1936 } 1937 sqlite3VdbeChangeP2(v, addr, nCol); 1938 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); 1939 } 1940 } 1941 1942 if( pOrderBy ){ 1943 struct ExprList_item *pOTerm = pOrderBy->a; 1944 int nOrderByExpr = pOrderBy->nExpr; 1945 int addr; 1946 u8 *pSortOrder; 1947 1948 aCopy = &pKeyInfo->aColl[nOrderByExpr]; 1949 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; 1950 memcpy(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); 1951 apColl = pKeyInfo->aColl; 1952 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ 1953 Expr *pExpr = pOTerm->pExpr; 1954 char *zName = pOTerm->zName; 1955 assert( pExpr->op==TK_COLUMN && pExpr->iColumn<nCol ); 1956 if( zName ){ 1957 *apColl = sqlite3LocateCollSeq(pParse, zName, -1); 1958 }else{ 1959 *apColl = aCopy[pExpr->iColumn]; 1960 } 1961 *pSortOrder = pOTerm->sortOrder; 1962 } 1963 assert( p->pRightmost==p ); 1964 assert( p->addrOpenEphm[2]>=0 ); 1965 addr = p->addrOpenEphm[2]; 1966 sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2); 1967 pKeyInfo->nField = nOrderByExpr; 1968 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 1969 pKeyInfo = 0; 1970 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); 1971 } 1972 1973 sqliteFree(pKeyInfo); 1974 } 1975 1976 multi_select_end: 1977 return rc; 1978 } 1979 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1980 1981 #ifndef SQLITE_OMIT_VIEW 1982 /* 1983 ** Scan through the expression pExpr. Replace every reference to 1984 ** a column in table number iTable with a copy of the iColumn-th 1985 ** entry in pEList. (But leave references to the ROWID column 1986 ** unchanged.) 1987 ** 1988 ** This routine is part of the flattening procedure. A subquery 1989 ** whose result set is defined by pEList appears as entry in the 1990 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 1991 ** FORM clause entry is iTable. This routine make the necessary 1992 ** changes to pExpr so that it refers directly to the source table 1993 ** of the subquery rather the result set of the subquery. 1994 */ 1995 static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ 1996 static void substSelect(Select *, int, ExprList *); /* Forward Decl */ 1997 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ 1998 if( pExpr==0 ) return; 1999 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2000 if( pExpr->iColumn<0 ){ 2001 pExpr->op = TK_NULL; 2002 }else{ 2003 Expr *pNew; 2004 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2005 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2006 pNew = pEList->a[pExpr->iColumn].pExpr; 2007 assert( pNew!=0 ); 2008 pExpr->op = pNew->op; 2009 assert( pExpr->pLeft==0 ); 2010 pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); 2011 assert( pExpr->pRight==0 ); 2012 pExpr->pRight = sqlite3ExprDup(pNew->pRight); 2013 assert( pExpr->pList==0 ); 2014 pExpr->pList = sqlite3ExprListDup(pNew->pList); 2015 pExpr->iTable = pNew->iTable; 2016 pExpr->pTab = pNew->pTab; 2017 pExpr->iColumn = pNew->iColumn; 2018 pExpr->iAgg = pNew->iAgg; 2019 sqlite3TokenCopy(&pExpr->token, &pNew->token); 2020 sqlite3TokenCopy(&pExpr->span, &pNew->span); 2021 pExpr->pSelect = sqlite3SelectDup(pNew->pSelect); 2022 pExpr->flags = pNew->flags; 2023 } 2024 }else{ 2025 substExpr(pExpr->pLeft, iTable, pEList); 2026 substExpr(pExpr->pRight, iTable, pEList); 2027 substSelect(pExpr->pSelect, iTable, pEList); 2028 substExprList(pExpr->pList, iTable, pEList); 2029 } 2030 } 2031 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ 2032 int i; 2033 if( pList==0 ) return; 2034 for(i=0; i<pList->nExpr; i++){ 2035 substExpr(pList->a[i].pExpr, iTable, pEList); 2036 } 2037 } 2038 static void substSelect(Select *p, int iTable, ExprList *pEList){ 2039 if( !p ) return; 2040 substExprList(p->pEList, iTable, pEList); 2041 substExprList(p->pGroupBy, iTable, pEList); 2042 substExprList(p->pOrderBy, iTable, pEList); 2043 substExpr(p->pHaving, iTable, pEList); 2044 substExpr(p->pWhere, iTable, pEList); 2045 } 2046 #endif /* !defined(SQLITE_OMIT_VIEW) */ 2047 2048 #ifndef SQLITE_OMIT_VIEW 2049 /* 2050 ** This routine attempts to flatten subqueries in order to speed 2051 ** execution. It returns 1 if it makes changes and 0 if no flattening 2052 ** occurs. 2053 ** 2054 ** To understand the concept of flattening, consider the following 2055 ** query: 2056 ** 2057 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2058 ** 2059 ** The default way of implementing this query is to execute the 2060 ** subquery first and store the results in a temporary table, then 2061 ** run the outer query on that temporary table. This requires two 2062 ** passes over the data. Furthermore, because the temporary table 2063 ** has no indices, the WHERE clause on the outer query cannot be 2064 ** optimized. 2065 ** 2066 ** This routine attempts to rewrite queries such as the above into 2067 ** a single flat select, like this: 2068 ** 2069 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2070 ** 2071 ** The code generated for this simpification gives the same result 2072 ** but only has to scan the data once. And because indices might 2073 ** exist on the table t1, a complete scan of the data might be 2074 ** avoided. 2075 ** 2076 ** Flattening is only attempted if all of the following are true: 2077 ** 2078 ** (1) The subquery and the outer query do not both use aggregates. 2079 ** 2080 ** (2) The subquery is not an aggregate or the outer query is not a join. 2081 ** 2082 ** (3) The subquery is not the right operand of a left outer join, or 2083 ** the subquery is not itself a join. (Ticket #306) 2084 ** 2085 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2086 ** 2087 ** (5) The subquery is not DISTINCT or the outer query does not use 2088 ** aggregates. 2089 ** 2090 ** (6) The subquery does not use aggregates or the outer query is not 2091 ** DISTINCT. 2092 ** 2093 ** (7) The subquery has a FROM clause. 2094 ** 2095 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2096 ** 2097 ** (9) The subquery does not use LIMIT or the outer query does not use 2098 ** aggregates. 2099 ** 2100 ** (10) The subquery does not use aggregates or the outer query does not 2101 ** use LIMIT. 2102 ** 2103 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2104 ** 2105 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2106 ** subquery has no WHERE clause. (added by ticket #350) 2107 ** 2108 ** (13) The subquery and outer query do not both use LIMIT 2109 ** 2110 ** (14) The subquery does not use OFFSET 2111 ** 2112 ** In this routine, the "p" parameter is a pointer to the outer query. 2113 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2114 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2115 ** 2116 ** If flattening is not attempted, this routine is a no-op and returns 0. 2117 ** If flattening is attempted this routine returns 1. 2118 ** 2119 ** All of the expression analysis must occur on both the outer query and 2120 ** the subquery before this routine runs. 2121 */ 2122 static int flattenSubquery( 2123 Select *p, /* The parent or outer SELECT statement */ 2124 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2125 int isAgg, /* True if outer SELECT uses aggregate functions */ 2126 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2127 ){ 2128 Select *pSub; /* The inner query or "subquery" */ 2129 SrcList *pSrc; /* The FROM clause of the outer query */ 2130 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2131 ExprList *pList; /* The result set of the outer query */ 2132 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2133 int i; /* Loop counter */ 2134 Expr *pWhere; /* The WHERE clause */ 2135 struct SrcList_item *pSubitem; /* The subquery */ 2136 2137 /* Check to see if flattening is permitted. Return 0 if not. 2138 */ 2139 if( p==0 ) return 0; 2140 pSrc = p->pSrc; 2141 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2142 pSubitem = &pSrc->a[iFrom]; 2143 pSub = pSubitem->pSelect; 2144 assert( pSub!=0 ); 2145 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2146 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2147 pSubSrc = pSub->pSrc; 2148 assert( pSubSrc ); 2149 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2150 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2151 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2152 ** became arbitrary expressions, we were forced to add restrictions (13) 2153 ** and (14). */ 2154 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2155 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2156 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2157 if( (pSub->isDistinct || pSub->pLimit) 2158 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2159 return 0; 2160 } 2161 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 2162 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 2163 return 0; /* Restriction (11) */ 2164 } 2165 2166 /* Restriction 3: If the subquery is a join, make sure the subquery is 2167 ** not used as the right operand of an outer join. Examples of why this 2168 ** is not allowed: 2169 ** 2170 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2171 ** 2172 ** If we flatten the above, we would get 2173 ** 2174 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2175 ** 2176 ** which is not at all the same thing. 2177 */ 2178 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 2179 return 0; 2180 } 2181 2182 /* Restriction 12: If the subquery is the right operand of a left outer 2183 ** join, make sure the subquery has no WHERE clause. 2184 ** An examples of why this is not allowed: 2185 ** 2186 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2187 ** 2188 ** If we flatten the above, we would get 2189 ** 2190 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2191 ** 2192 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2193 ** effectively converts the OUTER JOIN into an INNER JOIN. 2194 */ 2195 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 2196 return 0; 2197 } 2198 2199 /* If we reach this point, it means flattening is permitted for the 2200 ** iFrom-th entry of the FROM clause in the outer query. 2201 */ 2202 2203 /* Move all of the FROM elements of the subquery into the 2204 ** the FROM clause of the outer query. Before doing this, remember 2205 ** the cursor number for the original outer query FROM element in 2206 ** iParent. The iParent cursor will never be used. Subsequent code 2207 ** will scan expressions looking for iParent references and replace 2208 ** those references with expressions that resolve to the subquery FROM 2209 ** elements we are now copying in. 2210 */ 2211 iParent = pSubitem->iCursor; 2212 { 2213 int nSubSrc = pSubSrc->nSrc; 2214 int jointype = pSubitem->jointype; 2215 2216 sqlite3DeleteTable(0, pSubitem->pTab); 2217 sqliteFree(pSubitem->zDatabase); 2218 sqliteFree(pSubitem->zName); 2219 sqliteFree(pSubitem->zAlias); 2220 if( nSubSrc>1 ){ 2221 int extra = nSubSrc - 1; 2222 for(i=1; i<nSubSrc; i++){ 2223 pSrc = sqlite3SrcListAppend(pSrc, 0, 0); 2224 } 2225 p->pSrc = pSrc; 2226 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2227 pSrc->a[i] = pSrc->a[i-extra]; 2228 } 2229 } 2230 for(i=0; i<nSubSrc; i++){ 2231 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2232 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2233 } 2234 pSrc->a[iFrom].jointype = jointype; 2235 } 2236 2237 /* Now begin substituting subquery result set expressions for 2238 ** references to the iParent in the outer query. 2239 ** 2240 ** Example: 2241 ** 2242 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2243 ** \ \_____________ subquery __________/ / 2244 ** \_____________________ outer query ______________________________/ 2245 ** 2246 ** We look at every expression in the outer query and every place we see 2247 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2248 */ 2249 pList = p->pEList; 2250 for(i=0; i<pList->nExpr; i++){ 2251 Expr *pExpr; 2252 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2253 pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n); 2254 } 2255 } 2256 substExprList(p->pEList, iParent, pSub->pEList); 2257 if( isAgg ){ 2258 substExprList(p->pGroupBy, iParent, pSub->pEList); 2259 substExpr(p->pHaving, iParent, pSub->pEList); 2260 } 2261 if( pSub->pOrderBy ){ 2262 assert( p->pOrderBy==0 ); 2263 p->pOrderBy = pSub->pOrderBy; 2264 pSub->pOrderBy = 0; 2265 }else if( p->pOrderBy ){ 2266 substExprList(p->pOrderBy, iParent, pSub->pEList); 2267 } 2268 if( pSub->pWhere ){ 2269 pWhere = sqlite3ExprDup(pSub->pWhere); 2270 }else{ 2271 pWhere = 0; 2272 } 2273 if( subqueryIsAgg ){ 2274 assert( p->pHaving==0 ); 2275 p->pHaving = p->pWhere; 2276 p->pWhere = pWhere; 2277 substExpr(p->pHaving, iParent, pSub->pEList); 2278 p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); 2279 assert( p->pGroupBy==0 ); 2280 p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); 2281 }else{ 2282 substExpr(p->pWhere, iParent, pSub->pEList); 2283 p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); 2284 } 2285 2286 /* The flattened query is distinct if either the inner or the 2287 ** outer query is distinct. 2288 */ 2289 p->isDistinct = p->isDistinct || pSub->isDistinct; 2290 2291 /* 2292 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2293 ** 2294 ** One is tempted to try to add a and b to combine the limits. But this 2295 ** does not work if either limit is negative. 2296 */ 2297 if( pSub->pLimit ){ 2298 p->pLimit = pSub->pLimit; 2299 pSub->pLimit = 0; 2300 } 2301 2302 /* Finially, delete what is left of the subquery and return 2303 ** success. 2304 */ 2305 sqlite3SelectDelete(pSub); 2306 return 1; 2307 } 2308 #endif /* SQLITE_OMIT_VIEW */ 2309 2310 /* 2311 ** Analyze the SELECT statement passed in as an argument to see if it 2312 ** is a simple min() or max() query. If it is and this query can be 2313 ** satisfied using a single seek to the beginning or end of an index, 2314 ** then generate the code for this SELECT and return 1. If this is not a 2315 ** simple min() or max() query, then return 0; 2316 ** 2317 ** A simply min() or max() query looks like this: 2318 ** 2319 ** SELECT min(a) FROM table; 2320 ** SELECT max(a) FROM table; 2321 ** 2322 ** The query may have only a single table in its FROM argument. There 2323 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must 2324 ** be the min() or max() of a single column of the table. The column 2325 ** in the min() or max() function must be indexed. 2326 ** 2327 ** The parameters to this routine are the same as for sqlite3Select(). 2328 ** See the header comment on that routine for additional information. 2329 */ 2330 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ 2331 Expr *pExpr; 2332 int iCol; 2333 Table *pTab; 2334 Index *pIdx; 2335 int base; 2336 Vdbe *v; 2337 int seekOp; 2338 ExprList *pEList, *pList, eList; 2339 struct ExprList_item eListItem; 2340 SrcList *pSrc; 2341 int brk; 2342 int iDb; 2343 2344 /* Check to see if this query is a simple min() or max() query. Return 2345 ** zero if it is not. 2346 */ 2347 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; 2348 pSrc = p->pSrc; 2349 if( pSrc->nSrc!=1 ) return 0; 2350 pEList = p->pEList; 2351 if( pEList->nExpr!=1 ) return 0; 2352 pExpr = pEList->a[0].pExpr; 2353 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2354 pList = pExpr->pList; 2355 if( pList==0 || pList->nExpr!=1 ) return 0; 2356 if( pExpr->token.n!=3 ) return 0; 2357 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2358 seekOp = OP_Rewind; 2359 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2360 seekOp = OP_Last; 2361 }else{ 2362 return 0; 2363 } 2364 pExpr = pList->a[0].pExpr; 2365 if( pExpr->op!=TK_COLUMN ) return 0; 2366 iCol = pExpr->iColumn; 2367 pTab = pSrc->a[0].pTab; 2368 2369 2370 /* If we get to here, it means the query is of the correct form. 2371 ** Check to make sure we have an index and make pIdx point to the 2372 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY 2373 ** key column, no index is necessary so set pIdx to NULL. If no 2374 ** usable index is found, return 0. 2375 */ 2376 if( iCol<0 ){ 2377 pIdx = 0; 2378 }else{ 2379 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2380 if( pColl==0 ) return 0; 2381 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2382 assert( pIdx->nColumn>=1 ); 2383 if( pIdx->aiColumn[0]==iCol && 2384 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ 2385 break; 2386 } 2387 } 2388 if( pIdx==0 ) return 0; 2389 } 2390 2391 /* Identify column types if we will be using the callback. This 2392 ** step is skipped if the output is going to a table or a memory cell. 2393 ** The column names have already been generated in the calling function. 2394 */ 2395 v = sqlite3GetVdbe(pParse); 2396 if( v==0 ) return 0; 2397 2398 /* If the output is destined for a temporary table, open that table. 2399 */ 2400 if( eDest==SRT_EphemTab ){ 2401 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); 2402 } 2403 2404 /* Generating code to find the min or the max. Basically all we have 2405 ** to do is find the first or the last entry in the chosen index. If 2406 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first 2407 ** or last entry in the main table. 2408 */ 2409 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2410 assert( iDb>=0 || pTab->isEphem ); 2411 sqlite3CodeVerifySchema(pParse, iDb); 2412 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2413 base = pSrc->a[0].iCursor; 2414 brk = sqlite3VdbeMakeLabel(v); 2415 computeLimitRegisters(pParse, p, brk); 2416 if( pSrc->a[0].pSelect==0 ){ 2417 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); 2418 } 2419 if( pIdx==0 ){ 2420 sqlite3VdbeAddOp(v, seekOp, base, 0); 2421 }else{ 2422 /* Even though the cursor used to open the index here is closed 2423 ** as soon as a single value has been read from it, allocate it 2424 ** using (pParse->nTab++) to prevent the cursor id from being 2425 ** reused. This is important for statements of the form 2426 ** "INSERT INTO x SELECT max() FROM x". 2427 */ 2428 int iIdx; 2429 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 2430 iIdx = pParse->nTab++; 2431 assert( pIdx->pSchema==pTab->pSchema ); 2432 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2433 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 2434 (char*)pKey, P3_KEYINFO_HANDOFF); 2435 if( seekOp==OP_Rewind ){ 2436 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2437 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); 2438 seekOp = OP_MoveGt; 2439 } 2440 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); 2441 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); 2442 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2443 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 2444 } 2445 eList.nExpr = 1; 2446 memset(&eListItem, 0, sizeof(eListItem)); 2447 eList.a = &eListItem; 2448 eList.a[0].pExpr = pExpr; 2449 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); 2450 sqlite3VdbeResolveLabel(v, brk); 2451 sqlite3VdbeAddOp(v, OP_Close, base, 0); 2452 2453 return 1; 2454 } 2455 2456 /* 2457 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 2458 ** the number of errors seen. 2459 ** 2460 ** An ORDER BY or GROUP BY is a list of expressions. If any expression 2461 ** is an integer constant, then that expression is replaced by the 2462 ** corresponding entry in the result set. 2463 */ 2464 static int processOrderGroupBy( 2465 NameContext *pNC, /* Name context of the SELECT statement. */ 2466 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 2467 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ 2468 ){ 2469 int i; 2470 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ 2471 Parse *pParse = pNC->pParse; /* The result set of the SELECT */ 2472 assert( pEList ); 2473 2474 if( pOrderBy==0 ) return 0; 2475 for(i=0; i<pOrderBy->nExpr; i++){ 2476 int iCol; 2477 Expr *pE = pOrderBy->a[i].pExpr; 2478 if( sqlite3ExprIsInteger(pE, &iCol) ){ 2479 if( iCol>0 && iCol<=pEList->nExpr ){ 2480 sqlite3ExprDelete(pE); 2481 pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); 2482 }else{ 2483 sqlite3ErrorMsg(pParse, 2484 "%s BY column number %d out of range - should be " 2485 "between 1 and %d", zType, iCol, pEList->nExpr); 2486 return 1; 2487 } 2488 } 2489 if( sqlite3ExprResolveNames(pNC, pE) ){ 2490 return 1; 2491 } 2492 } 2493 return 0; 2494 } 2495 2496 /* 2497 ** This routine resolves any names used in the result set of the 2498 ** supplied SELECT statement. If the SELECT statement being resolved 2499 ** is a sub-select, then pOuterNC is a pointer to the NameContext 2500 ** of the parent SELECT. 2501 */ 2502 int sqlite3SelectResolve( 2503 Parse *pParse, /* The parser context */ 2504 Select *p, /* The SELECT statement being coded. */ 2505 NameContext *pOuterNC /* The outer name context. May be NULL. */ 2506 ){ 2507 ExprList *pEList; /* Result set. */ 2508 int i; /* For-loop variable used in multiple places */ 2509 NameContext sNC; /* Local name-context */ 2510 ExprList *pGroupBy; /* The group by clause */ 2511 2512 /* If this routine has run before, return immediately. */ 2513 if( p->isResolved ){ 2514 assert( !pOuterNC ); 2515 return SQLITE_OK; 2516 } 2517 p->isResolved = 1; 2518 2519 /* If there have already been errors, do nothing. */ 2520 if( pParse->nErr>0 ){ 2521 return SQLITE_ERROR; 2522 } 2523 2524 /* Prepare the select statement. This call will allocate all cursors 2525 ** required to handle the tables and subqueries in the FROM clause. 2526 */ 2527 if( prepSelectStmt(pParse, p) ){ 2528 return SQLITE_ERROR; 2529 } 2530 2531 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 2532 ** are not allowed to refer to any names, so pass an empty NameContext. 2533 */ 2534 memset(&sNC, 0, sizeof(sNC)); 2535 sNC.pParse = pParse; 2536 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 2537 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 2538 return SQLITE_ERROR; 2539 } 2540 2541 /* Set up the local name-context to pass to ExprResolveNames() to 2542 ** resolve the expression-list. 2543 */ 2544 sNC.allowAgg = 1; 2545 sNC.pSrcList = p->pSrc; 2546 sNC.pNext = pOuterNC; 2547 2548 /* Resolve names in the result set. */ 2549 pEList = p->pEList; 2550 if( !pEList ) return SQLITE_ERROR; 2551 for(i=0; i<pEList->nExpr; i++){ 2552 Expr *pX = pEList->a[i].pExpr; 2553 if( sqlite3ExprResolveNames(&sNC, pX) ){ 2554 return SQLITE_ERROR; 2555 } 2556 } 2557 2558 /* If there are no aggregate functions in the result-set, and no GROUP BY 2559 ** expression, do not allow aggregates in any of the other expressions. 2560 */ 2561 assert( !p->isAgg ); 2562 pGroupBy = p->pGroupBy; 2563 if( pGroupBy || sNC.hasAgg ){ 2564 p->isAgg = 1; 2565 }else{ 2566 sNC.allowAgg = 0; 2567 } 2568 2569 /* If a HAVING clause is present, then there must be a GROUP BY clause. 2570 */ 2571 if( p->pHaving && !pGroupBy ){ 2572 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 2573 return SQLITE_ERROR; 2574 } 2575 2576 /* Add the expression list to the name-context before parsing the 2577 ** other expressions in the SELECT statement. This is so that 2578 ** expressions in the WHERE clause (etc.) can refer to expressions by 2579 ** aliases in the result set. 2580 ** 2581 ** Minor point: If this is the case, then the expression will be 2582 ** re-evaluated for each reference to it. 2583 */ 2584 sNC.pEList = p->pEList; 2585 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 2586 sqlite3ExprResolveNames(&sNC, p->pHaving) || 2587 processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || 2588 processOrderGroupBy(&sNC, pGroupBy, "GROUP") 2589 ){ 2590 return SQLITE_ERROR; 2591 } 2592 2593 /* Make sure the GROUP BY clause does not contain aggregate functions. 2594 */ 2595 if( pGroupBy ){ 2596 struct ExprList_item *pItem; 2597 2598 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 2599 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 2600 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 2601 "the GROUP BY clause"); 2602 return SQLITE_ERROR; 2603 } 2604 } 2605 } 2606 2607 /* If this is one SELECT of a compound, be sure to resolve names 2608 ** in the other SELECTs. 2609 */ 2610 if( p->pPrior ){ 2611 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 2612 }else{ 2613 return SQLITE_OK; 2614 } 2615 } 2616 2617 /* 2618 ** Reset the aggregate accumulator. 2619 ** 2620 ** The aggregate accumulator is a set of memory cells that hold 2621 ** intermediate results while calculating an aggregate. This 2622 ** routine simply stores NULLs in all of those memory cells. 2623 */ 2624 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2625 Vdbe *v = pParse->pVdbe; 2626 int i; 2627 struct AggInfo_func *pFunc; 2628 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 2629 return; 2630 } 2631 for(i=0; i<pAggInfo->nColumn; i++){ 2632 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); 2633 } 2634 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 2635 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); 2636 if( pFunc->iDistinct>=0 ){ 2637 Expr *pE = pFunc->pExpr; 2638 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 2639 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 2640 "by an expression"); 2641 pFunc->iDistinct = -1; 2642 }else{ 2643 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 2644 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 2645 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2646 } 2647 } 2648 } 2649 } 2650 2651 /* 2652 ** Invoke the OP_AggFinalize opcode for every aggregate function 2653 ** in the AggInfo structure. 2654 */ 2655 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 2656 Vdbe *v = pParse->pVdbe; 2657 int i; 2658 struct AggInfo_func *pF; 2659 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2660 ExprList *pList = pF->pExpr->pList; 2661 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 2662 (void*)pF->pFunc, P3_FUNCDEF); 2663 } 2664 } 2665 2666 /* 2667 ** Update the accumulator memory cells for an aggregate based on 2668 ** the current cursor position. 2669 */ 2670 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2671 Vdbe *v = pParse->pVdbe; 2672 int i; 2673 struct AggInfo_func *pF; 2674 struct AggInfo_col *pC; 2675 2676 pAggInfo->directMode = 1; 2677 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2678 int nArg; 2679 int addrNext = 0; 2680 ExprList *pList = pF->pExpr->pList; 2681 if( pList ){ 2682 nArg = pList->nExpr; 2683 sqlite3ExprCodeExprList(pParse, pList); 2684 }else{ 2685 nArg = 0; 2686 } 2687 if( pF->iDistinct>=0 ){ 2688 addrNext = sqlite3VdbeMakeLabel(v); 2689 assert( nArg==1 ); 2690 codeDistinct(v, pF->iDistinct, addrNext, 1); 2691 } 2692 if( pF->pFunc->needCollSeq ){ 2693 CollSeq *pColl = 0; 2694 struct ExprList_item *pItem; 2695 int j; 2696 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 2697 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 2698 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 2699 } 2700 if( !pColl ){ 2701 pColl = pParse->db->pDfltColl; 2702 } 2703 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2704 } 2705 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); 2706 if( addrNext ){ 2707 sqlite3VdbeResolveLabel(v, addrNext); 2708 } 2709 } 2710 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 2711 sqlite3ExprCode(pParse, pC->pExpr); 2712 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); 2713 } 2714 pAggInfo->directMode = 0; 2715 } 2716 2717 2718 /* 2719 ** Generate code for the given SELECT statement. 2720 ** 2721 ** The results are distributed in various ways depending on the 2722 ** value of eDest and iParm. 2723 ** 2724 ** eDest Value Result 2725 ** ------------ ------------------------------------------- 2726 ** SRT_Callback Invoke the callback for each row of the result. 2727 ** 2728 ** SRT_Mem Store first result in memory cell iParm 2729 ** 2730 ** SRT_Set Store results as keys of table iParm. 2731 ** 2732 ** SRT_Union Store results as a key in a temporary table iParm 2733 ** 2734 ** SRT_Except Remove results from the temporary table iParm. 2735 ** 2736 ** SRT_Table Store results in temporary table iParm 2737 ** 2738 ** The table above is incomplete. Additional eDist value have be added 2739 ** since this comment was written. See the selectInnerLoop() function for 2740 ** a complete listing of the allowed values of eDest and their meanings. 2741 ** 2742 ** This routine returns the number of errors. If any errors are 2743 ** encountered, then an appropriate error message is left in 2744 ** pParse->zErrMsg. 2745 ** 2746 ** This routine does NOT free the Select structure passed in. The 2747 ** calling function needs to do that. 2748 ** 2749 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 2750 ** SELECT is a subquery. This routine may try to combine this SELECT 2751 ** with its parent to form a single flat query. In so doing, it might 2752 ** change the parent query from a non-aggregate to an aggregate query. 2753 ** For that reason, the pParentAgg flag is passed as a pointer, so it 2754 ** can be changed. 2755 ** 2756 ** Example 1: The meaning of the pParent parameter. 2757 ** 2758 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 2759 ** \ \_______ subquery _______/ / 2760 ** \ / 2761 ** \____________________ outer query ___________________/ 2762 ** 2763 ** This routine is called for the outer query first. For that call, 2764 ** pParent will be NULL. During the processing of the outer query, this 2765 ** routine is called recursively to handle the subquery. For the recursive 2766 ** call, pParent will point to the outer query. Because the subquery is 2767 ** the second element in a three-way join, the parentTab parameter will 2768 ** be 1 (the 2nd value of a 0-indexed array.) 2769 */ 2770 int sqlite3Select( 2771 Parse *pParse, /* The parser context */ 2772 Select *p, /* The SELECT statement being coded. */ 2773 int eDest, /* How to dispose of the results */ 2774 int iParm, /* A parameter used by the eDest disposal method */ 2775 Select *pParent, /* Another SELECT for which this is a sub-query */ 2776 int parentTab, /* Index in pParent->pSrc of this query */ 2777 int *pParentAgg, /* True if pParent uses aggregate functions */ 2778 char *aff /* If eDest is SRT_Union, the affinity string */ 2779 ){ 2780 int i, j; /* Loop counters */ 2781 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 2782 Vdbe *v; /* The virtual machine under construction */ 2783 int isAgg; /* True for select lists like "count(*)" */ 2784 ExprList *pEList; /* List of columns to extract. */ 2785 SrcList *pTabList; /* List of tables to select from */ 2786 Expr *pWhere; /* The WHERE clause. May be NULL */ 2787 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 2788 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 2789 Expr *pHaving; /* The HAVING clause. May be NULL */ 2790 int isDistinct; /* True if the DISTINCT keyword is present */ 2791 int distinct; /* Table to use for the distinct set */ 2792 int rc = 1; /* Value to return from this function */ 2793 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 2794 AggInfo sAggInfo; /* Information used by aggregate queries */ 2795 int iEnd; /* Address of the end of the query */ 2796 2797 if( p==0 || sqlite3MallocFailed() || pParse->nErr ){ 2798 return 1; 2799 } 2800 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 2801 memset(&sAggInfo, 0, sizeof(sAggInfo)); 2802 2803 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2804 /* If there is are a sequence of queries, do the earlier ones first. 2805 */ 2806 if( p->pPrior ){ 2807 if( p->pRightmost==0 ){ 2808 Select *pLoop; 2809 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2810 pLoop->pRightmost = p; 2811 } 2812 } 2813 return multiSelect(pParse, p, eDest, iParm, aff); 2814 } 2815 #endif 2816 2817 pOrderBy = p->pOrderBy; 2818 if( IgnorableOrderby(eDest) ){ 2819 p->pOrderBy = 0; 2820 } 2821 if( sqlite3SelectResolve(pParse, p, 0) ){ 2822 goto select_end; 2823 } 2824 p->pOrderBy = pOrderBy; 2825 2826 /* Make local copies of the parameters for this query. 2827 */ 2828 pTabList = p->pSrc; 2829 pWhere = p->pWhere; 2830 pGroupBy = p->pGroupBy; 2831 pHaving = p->pHaving; 2832 isAgg = p->isAgg; 2833 isDistinct = p->isDistinct; 2834 pEList = p->pEList; 2835 if( pEList==0 ) goto select_end; 2836 2837 /* 2838 ** Do not even attempt to generate any code if we have already seen 2839 ** errors before this routine starts. 2840 */ 2841 if( pParse->nErr>0 ) goto select_end; 2842 2843 /* If writing to memory or generating a set 2844 ** only a single column may be output. 2845 */ 2846 #ifndef SQLITE_OMIT_SUBQUERY 2847 if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){ 2848 sqlite3ErrorMsg(pParse, "only a single result allowed for " 2849 "a SELECT that is part of an expression"); 2850 goto select_end; 2851 } 2852 #endif 2853 2854 /* ORDER BY is ignored for some destinations. 2855 */ 2856 if( IgnorableOrderby(eDest) ){ 2857 pOrderBy = 0; 2858 } 2859 2860 /* Begin generating code. 2861 */ 2862 v = sqlite3GetVdbe(pParse); 2863 if( v==0 ) goto select_end; 2864 2865 /* Generate code for all sub-queries in the FROM clause 2866 */ 2867 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2868 for(i=0; i<pTabList->nSrc; i++){ 2869 const char *zSavedAuthContext = 0; 2870 int needRestoreContext; 2871 struct SrcList_item *pItem = &pTabList->a[i]; 2872 2873 if( pItem->pSelect==0 || pItem->isPopulated ) continue; 2874 if( pItem->zName!=0 ){ 2875 zSavedAuthContext = pParse->zAuthContext; 2876 pParse->zAuthContext = pItem->zName; 2877 needRestoreContext = 1; 2878 }else{ 2879 needRestoreContext = 0; 2880 } 2881 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 2882 pItem->iCursor, p, i, &isAgg, 0); 2883 if( needRestoreContext ){ 2884 pParse->zAuthContext = zSavedAuthContext; 2885 } 2886 pTabList = p->pSrc; 2887 pWhere = p->pWhere; 2888 if( !IgnorableOrderby(eDest) ){ 2889 pOrderBy = p->pOrderBy; 2890 } 2891 pGroupBy = p->pGroupBy; 2892 pHaving = p->pHaving; 2893 isDistinct = p->isDistinct; 2894 } 2895 #endif 2896 2897 /* Check for the special case of a min() or max() function by itself 2898 ** in the result set. 2899 */ 2900 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ 2901 rc = 0; 2902 goto select_end; 2903 } 2904 2905 /* Check to see if this is a subquery that can be "flattened" into its parent. 2906 ** If flattening is a possiblity, do so and return immediately. 2907 */ 2908 #ifndef SQLITE_OMIT_VIEW 2909 if( pParent && pParentAgg && 2910 flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){ 2911 if( isAgg ) *pParentAgg = 1; 2912 goto select_end; 2913 } 2914 #endif 2915 2916 /* If there is an ORDER BY clause, resolve any collation sequences 2917 ** names that have been explicitly specified and create a sorting index. 2918 ** 2919 ** This sorting index might end up being unused if the data can be 2920 ** extracted in pre-sorted order. If that is the case, then the 2921 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 2922 ** we figure out that the sorting index is not needed. The addrSortIndex 2923 ** variable is used to facilitate that change. 2924 */ 2925 if( pOrderBy ){ 2926 struct ExprList_item *pTerm; 2927 KeyInfo *pKeyInfo; 2928 for(i=0, pTerm=pOrderBy->a; i<pOrderBy->nExpr; i++, pTerm++){ 2929 if( pTerm->zName ){ 2930 pTerm->pExpr->pColl = sqlite3LocateCollSeq(pParse, pTerm->zName, -1); 2931 } 2932 } 2933 if( pParse->nErr ){ 2934 goto select_end; 2935 } 2936 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 2937 pOrderBy->iECursor = pParse->nTab++; 2938 p->addrOpenEphm[2] = addrSortIndex = 2939 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2940 }else{ 2941 addrSortIndex = -1; 2942 } 2943 2944 /* If the output is destined for a temporary table, open that table. 2945 */ 2946 if( eDest==SRT_EphemTab ){ 2947 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); 2948 } 2949 2950 /* Set the limiter. 2951 */ 2952 iEnd = sqlite3VdbeMakeLabel(v); 2953 computeLimitRegisters(pParse, p, iEnd); 2954 2955 /* Open a virtual index to use for the distinct set. 2956 */ 2957 if( isDistinct ){ 2958 KeyInfo *pKeyInfo; 2959 distinct = pParse->nTab++; 2960 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 2961 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 2962 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2963 }else{ 2964 distinct = -1; 2965 } 2966 2967 /* Aggregate and non-aggregate queries are handled differently */ 2968 if( !isAgg && pGroupBy==0 ){ 2969 /* This case is for non-aggregate queries 2970 ** Begin the database scan 2971 */ 2972 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); 2973 if( pWInfo==0 ) goto select_end; 2974 2975 /* If sorting index that was created by a prior OP_OpenEphemeral 2976 ** instruction ended up not being needed, then change the OP_OpenEphemeral 2977 ** into an OP_Noop. 2978 */ 2979 if( addrSortIndex>=0 && pOrderBy==0 ){ 2980 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 2981 p->addrOpenEphm[2] = -1; 2982 } 2983 2984 /* Use the standard inner loop 2985 */ 2986 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, 2987 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ 2988 goto select_end; 2989 } 2990 2991 /* End the database scan loop. 2992 */ 2993 sqlite3WhereEnd(pWInfo); 2994 }else{ 2995 /* This is the processing for aggregate queries */ 2996 NameContext sNC; /* Name context for processing aggregate information */ 2997 int iAMem; /* First Mem address for storing current GROUP BY */ 2998 int iBMem; /* First Mem address for previous GROUP BY */ 2999 int iUseFlag; /* Mem address holding flag indicating that at least 3000 ** one row of the input to the aggregator has been 3001 ** processed */ 3002 int iAbortFlag; /* Mem address which causes query abort if positive */ 3003 int groupBySort; /* Rows come from source in GROUP BY order */ 3004 3005 3006 /* The following variables hold addresses or labels for parts of the 3007 ** virtual machine program we are putting together */ 3008 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3009 int addrSetAbort; /* Set the abort flag and return */ 3010 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3011 int addrTopOfLoop; /* Top of the input loop */ 3012 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ 3013 int addrProcessRow; /* Code to process a single input row */ 3014 int addrEnd; /* End of all processing */ 3015 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3016 int addrReset; /* Subroutine for resetting the accumulator */ 3017 3018 addrEnd = sqlite3VdbeMakeLabel(v); 3019 3020 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3021 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3022 ** SELECT statement. 3023 */ 3024 memset(&sNC, 0, sizeof(sNC)); 3025 sNC.pParse = pParse; 3026 sNC.pSrcList = pTabList; 3027 sNC.pAggInfo = &sAggInfo; 3028 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3029 sAggInfo.pGroupBy = pGroupBy; 3030 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ 3031 goto select_end; 3032 } 3033 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ 3034 goto select_end; 3035 } 3036 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ 3037 goto select_end; 3038 } 3039 sAggInfo.nAccumulator = sAggInfo.nColumn; 3040 for(i=0; i<sAggInfo.nFunc; i++){ 3041 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ 3042 goto select_end; 3043 } 3044 } 3045 if( sqlite3MallocFailed() ) goto select_end; 3046 3047 /* Processing for aggregates with GROUP BY is very different and 3048 ** much more complex tha aggregates without a GROUP BY. 3049 */ 3050 if( pGroupBy ){ 3051 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3052 3053 /* Create labels that we will be needing 3054 */ 3055 3056 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3057 addrGroupByChange = sqlite3VdbeMakeLabel(v); 3058 addrProcessRow = sqlite3VdbeMakeLabel(v); 3059 3060 /* If there is a GROUP BY clause we might need a sorting index to 3061 ** implement it. Allocate that sorting index now. If it turns out 3062 ** that we do not need it after all, the OpenEphemeral instruction 3063 ** will be converted into a Noop. 3064 */ 3065 sAggInfo.sortingIdx = pParse->nTab++; 3066 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3067 addrSortingIdx = 3068 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, 3069 sAggInfo.nSortingColumn, 3070 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3071 3072 /* Initialize memory locations used by GROUP BY aggregate processing 3073 */ 3074 iUseFlag = pParse->nMem++; 3075 iAbortFlag = pParse->nMem++; 3076 iAMem = pParse->nMem; 3077 pParse->nMem += pGroupBy->nExpr; 3078 iBMem = pParse->nMem; 3079 pParse->nMem += pGroupBy->nExpr; 3080 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); 3081 VdbeComment((v, "# clear abort flag")); 3082 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); 3083 VdbeComment((v, "# indicate accumulator empty")); 3084 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); 3085 3086 /* Generate a subroutine that outputs a single row of the result 3087 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3088 ** is less than or equal to zero, the subroutine is a no-op. If 3089 ** the processing calls for the query to abort, this subroutine 3090 ** increments the iAbortFlag memory location before returning in 3091 ** order to signal the caller to abort. 3092 */ 3093 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3094 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); 3095 VdbeComment((v, "# set abort flag")); 3096 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3097 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3098 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); 3099 VdbeComment((v, "# Groupby result generator entry point")); 3100 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3101 finalizeAggFunctions(pParse, &sAggInfo); 3102 if( pHaving ){ 3103 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); 3104 } 3105 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3106 distinct, eDest, iParm, 3107 addrOutputRow+1, addrSetAbort, aff); 3108 if( rc ){ 3109 goto select_end; 3110 } 3111 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3112 VdbeComment((v, "# end groupby result generator")); 3113 3114 /* Generate a subroutine that will reset the group-by accumulator 3115 */ 3116 addrReset = sqlite3VdbeCurrentAddr(v); 3117 resetAccumulator(pParse, &sAggInfo); 3118 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3119 3120 /* Begin a loop that will extract all source rows in GROUP BY order. 3121 ** This might involve two separate loops with an OP_Sort in between, or 3122 ** it might be a single loop that uses an index to extract information 3123 ** in the right order to begin with. 3124 */ 3125 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3126 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3127 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); 3128 if( pWInfo==0 ) goto select_end; 3129 if( pGroupBy==0 ){ 3130 /* The optimizer is able to deliver rows in group by order so 3131 ** we do not have to sort. The OP_OpenEphemeral table will be 3132 ** cancelled later because we still need to use the pKeyInfo 3133 */ 3134 pGroupBy = p->pGroupBy; 3135 groupBySort = 0; 3136 }else{ 3137 /* Rows are coming out in undetermined order. We have to push 3138 ** each row into a sorting index, terminate the first loop, 3139 ** then loop over the sorting index in order to get the output 3140 ** in sorted order 3141 */ 3142 groupBySort = 1; 3143 sqlite3ExprCodeExprList(pParse, pGroupBy); 3144 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); 3145 j = pGroupBy->nExpr+1; 3146 for(i=0; i<sAggInfo.nColumn; i++){ 3147 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3148 if( pCol->iSorterColumn<j ) continue; 3149 if( pCol->iColumn<0 ){ 3150 sqlite3VdbeAddOp(v, OP_Rowid, pCol->iTable, 0); 3151 }else{ 3152 sqlite3VdbeAddOp(v, OP_Column, pCol->iTable, pCol->iColumn); 3153 } 3154 j++; 3155 } 3156 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); 3157 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); 3158 sqlite3WhereEnd(pWInfo); 3159 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3160 VdbeComment((v, "# GROUP BY sort")); 3161 sAggInfo.useSortingIdx = 1; 3162 } 3163 3164 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3165 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3166 ** Then compare the current GROUP BY terms against the GROUP BY terms 3167 ** from the previous row currently stored in a0, a1, a2... 3168 */ 3169 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3170 for(j=0; j<pGroupBy->nExpr; j++){ 3171 if( groupBySort ){ 3172 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); 3173 }else{ 3174 sAggInfo.directMode = 1; 3175 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); 3176 } 3177 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); 3178 } 3179 for(j=pGroupBy->nExpr-1; j>=0; j--){ 3180 if( j<pGroupBy->nExpr-1 ){ 3181 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); 3182 } 3183 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); 3184 if( j==0 ){ 3185 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); 3186 }else{ 3187 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); 3188 } 3189 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); 3190 } 3191 3192 /* Generate code that runs whenever the GROUP BY changes. 3193 ** Change in the GROUP BY are detected by the previous code 3194 ** block. If there were no changes, this block is skipped. 3195 ** 3196 ** This code copies current group by terms in b0,b1,b2,... 3197 ** over to a0,a1,a2. It then calls the output subroutine 3198 ** and resets the aggregate accumulator registers in preparation 3199 ** for the next GROUP BY batch. 3200 */ 3201 sqlite3VdbeResolveLabel(v, addrGroupByChange); 3202 for(j=0; j<pGroupBy->nExpr; j++){ 3203 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); 3204 } 3205 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3206 VdbeComment((v, "# output one row")); 3207 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); 3208 VdbeComment((v, "# check abort flag")); 3209 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3210 VdbeComment((v, "# reset accumulator")); 3211 3212 /* Update the aggregate accumulators based on the content of 3213 ** the current row 3214 */ 3215 sqlite3VdbeResolveLabel(v, addrProcessRow); 3216 updateAccumulator(pParse, &sAggInfo); 3217 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); 3218 VdbeComment((v, "# indicate data in accumulator")); 3219 3220 /* End of the loop 3221 */ 3222 if( groupBySort ){ 3223 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3224 }else{ 3225 sqlite3WhereEnd(pWInfo); 3226 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3227 } 3228 3229 /* Output the final row of result 3230 */ 3231 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3232 VdbeComment((v, "# output final row")); 3233 3234 } /* endif pGroupBy */ 3235 else { 3236 /* This case runs if the aggregate has no GROUP BY clause. The 3237 ** processing is much simpler since there is only a single row 3238 ** of output. 3239 */ 3240 resetAccumulator(pParse, &sAggInfo); 3241 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); 3242 if( pWInfo==0 ) goto select_end; 3243 updateAccumulator(pParse, &sAggInfo); 3244 sqlite3WhereEnd(pWInfo); 3245 finalizeAggFunctions(pParse, &sAggInfo); 3246 pOrderBy = 0; 3247 if( pHaving ){ 3248 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); 3249 } 3250 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3251 eDest, iParm, addrEnd, addrEnd, aff); 3252 } 3253 sqlite3VdbeResolveLabel(v, addrEnd); 3254 3255 } /* endif aggregate query */ 3256 3257 /* If there is an ORDER BY clause, then we need to sort the results 3258 ** and send them to the callback one by one. 3259 */ 3260 if( pOrderBy ){ 3261 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); 3262 } 3263 3264 #ifndef SQLITE_OMIT_SUBQUERY 3265 /* If this was a subquery, we have now converted the subquery into a 3266 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 3267 ** this subquery from being evaluated again and to force the use of 3268 ** the temporary table. 3269 */ 3270 if( pParent ){ 3271 assert( pParent->pSrc->nSrc>parentTab ); 3272 assert( pParent->pSrc->a[parentTab].pSelect==p ); 3273 pParent->pSrc->a[parentTab].isPopulated = 1; 3274 } 3275 #endif 3276 3277 /* Jump here to skip this query 3278 */ 3279 sqlite3VdbeResolveLabel(v, iEnd); 3280 3281 /* The SELECT was successfully coded. Set the return code to 0 3282 ** to indicate no errors. 3283 */ 3284 rc = 0; 3285 3286 /* Control jumps to here if an error is encountered above, or upon 3287 ** successful coding of the SELECT. 3288 */ 3289 select_end: 3290 3291 /* Identify column names if we will be using them in a callback. This 3292 ** step is skipped if the output is going to some other destination. 3293 */ 3294 if( rc==SQLITE_OK && eDest==SRT_Callback ){ 3295 generateColumnNames(pParse, pTabList, pEList); 3296 } 3297 3298 sqliteFree(sAggInfo.aCol); 3299 sqliteFree(sAggInfo.aFunc); 3300 return rc; 3301 } 3302