xref: /sqlite-3.40.0/src/select.c (revision 36f6b891)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iParm = iParm;
40   pDest->affinity = 0;
41   pDest->iMem = 0;
42   pDest->nMem = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   int isDistinct,       /* true if the DISTINCT keyword is present */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     assert( db->mallocFailed );
69     pNew = &standin;
70     memset(pNew, 0, sizeof(*pNew));
71   }
72   if( pEList==0 ){
73     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
74   }
75   pNew->pEList = pEList;
76   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   assert( pOffset==0 || pLimit!=0 );
87   pNew->addrOpenEphm[0] = -1;
88   pNew->addrOpenEphm[1] = -1;
89   pNew->addrOpenEphm[2] = -1;
90   if( db->mallocFailed ) {
91     clearSelect(db, pNew);
92     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
93     pNew = 0;
94   }else{
95     assert( pNew->pSrc!=0 || pParse->nErr>0 );
96   }
97   assert( pNew!=&standin );
98   return pNew;
99 }
100 
101 /*
102 ** Delete the given Select structure and all of its substructures.
103 */
104 void sqlite3SelectDelete(sqlite3 *db, Select *p){
105   if( p ){
106     clearSelect(db, p);
107     sqlite3DbFree(db, p);
108   }
109 }
110 
111 /*
112 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
113 ** type of join.  Return an integer constant that expresses that type
114 ** in terms of the following bit values:
115 **
116 **     JT_INNER
117 **     JT_CROSS
118 **     JT_OUTER
119 **     JT_NATURAL
120 **     JT_LEFT
121 **     JT_RIGHT
122 **
123 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
124 **
125 ** If an illegal or unsupported join type is seen, then still return
126 ** a join type, but put an error in the pParse structure.
127 */
128 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
129   int jointype = 0;
130   Token *apAll[3];
131   Token *p;
132                              /*   0123456789 123456789 123456789 123 */
133   static const char zKeyText[] = "naturaleftouterightfullinnercross";
134   static const struct {
135     u8 i;        /* Beginning of keyword text in zKeyText[] */
136     u8 nChar;    /* Length of the keyword in characters */
137     u8 code;     /* Join type mask */
138   } aKeyword[] = {
139     /* natural */ { 0,  7, JT_NATURAL                },
140     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
141     /* outer   */ { 10, 5, JT_OUTER                  },
142     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
143     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
144     /* inner   */ { 23, 5, JT_INNER                  },
145     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
146   };
147   int i, j;
148   apAll[0] = pA;
149   apAll[1] = pB;
150   apAll[2] = pC;
151   for(i=0; i<3 && apAll[i]; i++){
152     p = apAll[i];
153     for(j=0; j<ArraySize(aKeyword); j++){
154       if( p->n==aKeyword[j].nChar
155           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
156         jointype |= aKeyword[j].code;
157         break;
158       }
159     }
160     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
161     if( j>=ArraySize(aKeyword) ){
162       jointype |= JT_ERROR;
163       break;
164     }
165   }
166   if(
167      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
168      (jointype & JT_ERROR)!=0
169   ){
170     const char *zSp = " ";
171     assert( pB!=0 );
172     if( pC==0 ){ zSp++; }
173     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
174        "%T %T%s%T", pA, pB, zSp, pC);
175     jointype = JT_INNER;
176   }else if( (jointype & JT_OUTER)!=0
177          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
178     sqlite3ErrorMsg(pParse,
179       "RIGHT and FULL OUTER JOINs are not currently supported");
180     jointype = JT_INNER;
181   }
182   return jointype;
183 }
184 
185 /*
186 ** Return the index of a column in a table.  Return -1 if the column
187 ** is not contained in the table.
188 */
189 static int columnIndex(Table *pTab, const char *zCol){
190   int i;
191   for(i=0; i<pTab->nCol; i++){
192     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
193   }
194   return -1;
195 }
196 
197 /*
198 ** Search the first N tables in pSrc, from left to right, looking for a
199 ** table that has a column named zCol.
200 **
201 ** When found, set *piTab and *piCol to the table index and column index
202 ** of the matching column and return TRUE.
203 **
204 ** If not found, return FALSE.
205 */
206 static int tableAndColumnIndex(
207   SrcList *pSrc,       /* Array of tables to search */
208   int N,               /* Number of tables in pSrc->a[] to search */
209   const char *zCol,    /* Name of the column we are looking for */
210   int *piTab,          /* Write index of pSrc->a[] here */
211   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
212 ){
213   int i;               /* For looping over tables in pSrc */
214   int iCol;            /* Index of column matching zCol */
215 
216   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
217   for(i=0; i<N; i++){
218     iCol = columnIndex(pSrc->a[i].pTab, zCol);
219     if( iCol>=0 ){
220       if( piTab ){
221         *piTab = i;
222         *piCol = iCol;
223       }
224       return 1;
225     }
226   }
227   return 0;
228 }
229 
230 /*
231 ** This function is used to add terms implied by JOIN syntax to the
232 ** WHERE clause expression of a SELECT statement. The new term, which
233 ** is ANDed with the existing WHERE clause, is of the form:
234 **
235 **    (tab1.col1 = tab2.col2)
236 **
237 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
238 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
239 ** column iColRight of tab2.
240 */
241 static void addWhereTerm(
242   Parse *pParse,                  /* Parsing context */
243   SrcList *pSrc,                  /* List of tables in FROM clause */
244   int iLeft,                      /* Index of first table to join in pSrc */
245   int iColLeft,                   /* Index of column in first table */
246   int iRight,                     /* Index of second table in pSrc */
247   int iColRight,                  /* Index of column in second table */
248   int isOuterJoin,                /* True if this is an OUTER join */
249   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
250 ){
251   sqlite3 *db = pParse->db;
252   Expr *pE1;
253   Expr *pE2;
254   Expr *pEq;
255 
256   assert( iLeft<iRight );
257   assert( pSrc->nSrc>iRight );
258   assert( pSrc->a[iLeft].pTab );
259   assert( pSrc->a[iRight].pTab );
260 
261   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
262   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
263 
264   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
265   if( pEq && isOuterJoin ){
266     ExprSetProperty(pEq, EP_FromJoin);
267     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
268     ExprSetIrreducible(pEq);
269     pEq->iRightJoinTable = (i16)pE2->iTable;
270   }
271   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
272 }
273 
274 /*
275 ** Set the EP_FromJoin property on all terms of the given expression.
276 ** And set the Expr.iRightJoinTable to iTable for every term in the
277 ** expression.
278 **
279 ** The EP_FromJoin property is used on terms of an expression to tell
280 ** the LEFT OUTER JOIN processing logic that this term is part of the
281 ** join restriction specified in the ON or USING clause and not a part
282 ** of the more general WHERE clause.  These terms are moved over to the
283 ** WHERE clause during join processing but we need to remember that they
284 ** originated in the ON or USING clause.
285 **
286 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
287 ** expression depends on table iRightJoinTable even if that table is not
288 ** explicitly mentioned in the expression.  That information is needed
289 ** for cases like this:
290 **
291 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
292 **
293 ** The where clause needs to defer the handling of the t1.x=5
294 ** term until after the t2 loop of the join.  In that way, a
295 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
296 ** defer the handling of t1.x=5, it will be processed immediately
297 ** after the t1 loop and rows with t1.x!=5 will never appear in
298 ** the output, which is incorrect.
299 */
300 static void setJoinExpr(Expr *p, int iTable){
301   while( p ){
302     ExprSetProperty(p, EP_FromJoin);
303     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
304     ExprSetIrreducible(p);
305     p->iRightJoinTable = (i16)iTable;
306     setJoinExpr(p->pLeft, iTable);
307     p = p->pRight;
308   }
309 }
310 
311 /*
312 ** This routine processes the join information for a SELECT statement.
313 ** ON and USING clauses are converted into extra terms of the WHERE clause.
314 ** NATURAL joins also create extra WHERE clause terms.
315 **
316 ** The terms of a FROM clause are contained in the Select.pSrc structure.
317 ** The left most table is the first entry in Select.pSrc.  The right-most
318 ** table is the last entry.  The join operator is held in the entry to
319 ** the left.  Thus entry 0 contains the join operator for the join between
320 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
321 ** also attached to the left entry.
322 **
323 ** This routine returns the number of errors encountered.
324 */
325 static int sqliteProcessJoin(Parse *pParse, Select *p){
326   SrcList *pSrc;                  /* All tables in the FROM clause */
327   int i, j;                       /* Loop counters */
328   struct SrcList_item *pLeft;     /* Left table being joined */
329   struct SrcList_item *pRight;    /* Right table being joined */
330 
331   pSrc = p->pSrc;
332   pLeft = &pSrc->a[0];
333   pRight = &pLeft[1];
334   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
335     Table *pLeftTab = pLeft->pTab;
336     Table *pRightTab = pRight->pTab;
337     int isOuter;
338 
339     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
340     isOuter = (pRight->jointype & JT_OUTER)!=0;
341 
342     /* When the NATURAL keyword is present, add WHERE clause terms for
343     ** every column that the two tables have in common.
344     */
345     if( pRight->jointype & JT_NATURAL ){
346       if( pRight->pOn || pRight->pUsing ){
347         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
348            "an ON or USING clause", 0);
349         return 1;
350       }
351       for(j=0; j<pRightTab->nCol; j++){
352         char *zName;   /* Name of column in the right table */
353         int iLeft;     /* Matching left table */
354         int iLeftCol;  /* Matching column in the left table */
355 
356         zName = pRightTab->aCol[j].zName;
357         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
358           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
359                        isOuter, &p->pWhere);
360         }
361       }
362     }
363 
364     /* Disallow both ON and USING clauses in the same join
365     */
366     if( pRight->pOn && pRight->pUsing ){
367       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
368         "clauses in the same join");
369       return 1;
370     }
371 
372     /* Add the ON clause to the end of the WHERE clause, connected by
373     ** an AND operator.
374     */
375     if( pRight->pOn ){
376       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
377       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
378       pRight->pOn = 0;
379     }
380 
381     /* Create extra terms on the WHERE clause for each column named
382     ** in the USING clause.  Example: If the two tables to be joined are
383     ** A and B and the USING clause names X, Y, and Z, then add this
384     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
385     ** Report an error if any column mentioned in the USING clause is
386     ** not contained in both tables to be joined.
387     */
388     if( pRight->pUsing ){
389       IdList *pList = pRight->pUsing;
390       for(j=0; j<pList->nId; j++){
391         char *zName;     /* Name of the term in the USING clause */
392         int iLeft;       /* Table on the left with matching column name */
393         int iLeftCol;    /* Column number of matching column on the left */
394         int iRightCol;   /* Column number of matching column on the right */
395 
396         zName = pList->a[j].zName;
397         iRightCol = columnIndex(pRightTab, zName);
398         if( iRightCol<0
399          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
400         ){
401           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
402             "not present in both tables", zName);
403           return 1;
404         }
405         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
406                      isOuter, &p->pWhere);
407       }
408     }
409   }
410   return 0;
411 }
412 
413 /*
414 ** Insert code into "v" that will push the record on the top of the
415 ** stack into the sorter.
416 */
417 static void pushOntoSorter(
418   Parse *pParse,         /* Parser context */
419   ExprList *pOrderBy,    /* The ORDER BY clause */
420   Select *pSelect,       /* The whole SELECT statement */
421   int regData            /* Register holding data to be sorted */
422 ){
423   Vdbe *v = pParse->pVdbe;
424   int nExpr = pOrderBy->nExpr;
425   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
426   int regRecord = sqlite3GetTempReg(pParse);
427   int op;
428   sqlite3ExprCacheClear(pParse);
429   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
430   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
431   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
432   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
433   if( pSelect->selFlags & SF_UseSorter ){
434     op = OP_SorterInsert;
435   }else{
436     op = OP_IdxInsert;
437   }
438   sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
439   sqlite3ReleaseTempReg(pParse, regRecord);
440   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
441   if( pSelect->iLimit ){
442     int addr1, addr2;
443     int iLimit;
444     if( pSelect->iOffset ){
445       iLimit = pSelect->iOffset+1;
446     }else{
447       iLimit = pSelect->iLimit;
448     }
449     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
450     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
451     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
452     sqlite3VdbeJumpHere(v, addr1);
453     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
454     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
455     sqlite3VdbeJumpHere(v, addr2);
456   }
457 }
458 
459 /*
460 ** Add code to implement the OFFSET
461 */
462 static void codeOffset(
463   Vdbe *v,          /* Generate code into this VM */
464   Select *p,        /* The SELECT statement being coded */
465   int iContinue     /* Jump here to skip the current record */
466 ){
467   if( p->iOffset && iContinue!=0 ){
468     int addr;
469     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
470     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
471     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
472     VdbeComment((v, "skip OFFSET records"));
473     sqlite3VdbeJumpHere(v, addr);
474   }
475 }
476 
477 /*
478 ** Add code that will check to make sure the N registers starting at iMem
479 ** form a distinct entry.  iTab is a sorting index that holds previously
480 ** seen combinations of the N values.  A new entry is made in iTab
481 ** if the current N values are new.
482 **
483 ** A jump to addrRepeat is made and the N+1 values are popped from the
484 ** stack if the top N elements are not distinct.
485 */
486 static void codeDistinct(
487   Parse *pParse,     /* Parsing and code generating context */
488   int iTab,          /* A sorting index used to test for distinctness */
489   int addrRepeat,    /* Jump to here if not distinct */
490   int N,             /* Number of elements */
491   int iMem           /* First element */
492 ){
493   Vdbe *v;
494   int r1;
495 
496   v = pParse->pVdbe;
497   r1 = sqlite3GetTempReg(pParse);
498   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
499   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
500   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
501   sqlite3ReleaseTempReg(pParse, r1);
502 }
503 
504 #ifndef SQLITE_OMIT_SUBQUERY
505 /*
506 ** Generate an error message when a SELECT is used within a subexpression
507 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
508 ** column.  We do this in a subroutine because the error used to occur
509 ** in multiple places.  (The error only occurs in one place now, but we
510 ** retain the subroutine to minimize code disruption.)
511 */
512 static int checkForMultiColumnSelectError(
513   Parse *pParse,       /* Parse context. */
514   SelectDest *pDest,   /* Destination of SELECT results */
515   int nExpr            /* Number of result columns returned by SELECT */
516 ){
517   int eDest = pDest->eDest;
518   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
519     sqlite3ErrorMsg(pParse, "only a single result allowed for "
520        "a SELECT that is part of an expression");
521     return 1;
522   }else{
523     return 0;
524   }
525 }
526 #endif
527 
528 /*
529 ** This routine generates the code for the inside of the inner loop
530 ** of a SELECT.
531 **
532 ** If srcTab and nColumn are both zero, then the pEList expressions
533 ** are evaluated in order to get the data for this row.  If nColumn>0
534 ** then data is pulled from srcTab and pEList is used only to get the
535 ** datatypes for each column.
536 */
537 static void selectInnerLoop(
538   Parse *pParse,          /* The parser context */
539   Select *p,              /* The complete select statement being coded */
540   ExprList *pEList,       /* List of values being extracted */
541   int srcTab,             /* Pull data from this table */
542   int nColumn,            /* Number of columns in the source table */
543   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
544   int distinct,           /* If >=0, make sure results are distinct */
545   SelectDest *pDest,      /* How to dispose of the results */
546   int iContinue,          /* Jump here to continue with next row */
547   int iBreak              /* Jump here to break out of the inner loop */
548 ){
549   Vdbe *v = pParse->pVdbe;
550   int i;
551   int hasDistinct;        /* True if the DISTINCT keyword is present */
552   int regResult;              /* Start of memory holding result set */
553   int eDest = pDest->eDest;   /* How to dispose of results */
554   int iParm = pDest->iParm;   /* First argument to disposal method */
555   int nResultCol;             /* Number of result columns */
556 
557   assert( v );
558   if( NEVER(v==0) ) return;
559   assert( pEList!=0 );
560   hasDistinct = distinct>=0;
561   if( pOrderBy==0 && !hasDistinct ){
562     codeOffset(v, p, iContinue);
563   }
564 
565   /* Pull the requested columns.
566   */
567   if( nColumn>0 ){
568     nResultCol = nColumn;
569   }else{
570     nResultCol = pEList->nExpr;
571   }
572   if( pDest->iMem==0 ){
573     pDest->iMem = pParse->nMem+1;
574     pDest->nMem = nResultCol;
575     pParse->nMem += nResultCol;
576   }else{
577     assert( pDest->nMem==nResultCol );
578   }
579   regResult = pDest->iMem;
580   if( nColumn>0 ){
581     for(i=0; i<nColumn; i++){
582       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
583     }
584   }else if( eDest!=SRT_Exists ){
585     /* If the destination is an EXISTS(...) expression, the actual
586     ** values returned by the SELECT are not required.
587     */
588     sqlite3ExprCacheClear(pParse);
589     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
590   }
591   nColumn = nResultCol;
592 
593   /* If the DISTINCT keyword was present on the SELECT statement
594   ** and this row has been seen before, then do not make this row
595   ** part of the result.
596   */
597   if( hasDistinct ){
598     assert( pEList!=0 );
599     assert( pEList->nExpr==nColumn );
600     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
601     if( pOrderBy==0 ){
602       codeOffset(v, p, iContinue);
603     }
604   }
605 
606   switch( eDest ){
607     /* In this mode, write each query result to the key of the temporary
608     ** table iParm.
609     */
610 #ifndef SQLITE_OMIT_COMPOUND_SELECT
611     case SRT_Union: {
612       int r1;
613       r1 = sqlite3GetTempReg(pParse);
614       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
615       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
616       sqlite3ReleaseTempReg(pParse, r1);
617       break;
618     }
619 
620     /* Construct a record from the query result, but instead of
621     ** saving that record, use it as a key to delete elements from
622     ** the temporary table iParm.
623     */
624     case SRT_Except: {
625       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
626       break;
627     }
628 #endif
629 
630     /* Store the result as data using a unique key.
631     */
632     case SRT_Table:
633     case SRT_EphemTab: {
634       int r1 = sqlite3GetTempReg(pParse);
635       testcase( eDest==SRT_Table );
636       testcase( eDest==SRT_EphemTab );
637       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
638       if( pOrderBy ){
639         pushOntoSorter(pParse, pOrderBy, p, r1);
640       }else{
641         int r2 = sqlite3GetTempReg(pParse);
642         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
643         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
644         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
645         sqlite3ReleaseTempReg(pParse, r2);
646       }
647       sqlite3ReleaseTempReg(pParse, r1);
648       break;
649     }
650 
651 #ifndef SQLITE_OMIT_SUBQUERY
652     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
653     ** then there should be a single item on the stack.  Write this
654     ** item into the set table with bogus data.
655     */
656     case SRT_Set: {
657       assert( nColumn==1 );
658       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
659       if( pOrderBy ){
660         /* At first glance you would think we could optimize out the
661         ** ORDER BY in this case since the order of entries in the set
662         ** does not matter.  But there might be a LIMIT clause, in which
663         ** case the order does matter */
664         pushOntoSorter(pParse, pOrderBy, p, regResult);
665       }else{
666         int r1 = sqlite3GetTempReg(pParse);
667         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
668         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
669         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
670         sqlite3ReleaseTempReg(pParse, r1);
671       }
672       break;
673     }
674 
675     /* If any row exist in the result set, record that fact and abort.
676     */
677     case SRT_Exists: {
678       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
679       /* The LIMIT clause will terminate the loop for us */
680       break;
681     }
682 
683     /* If this is a scalar select that is part of an expression, then
684     ** store the results in the appropriate memory cell and break out
685     ** of the scan loop.
686     */
687     case SRT_Mem: {
688       assert( nColumn==1 );
689       if( pOrderBy ){
690         pushOntoSorter(pParse, pOrderBy, p, regResult);
691       }else{
692         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
693         /* The LIMIT clause will jump out of the loop for us */
694       }
695       break;
696     }
697 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
698 
699     /* Send the data to the callback function or to a subroutine.  In the
700     ** case of a subroutine, the subroutine itself is responsible for
701     ** popping the data from the stack.
702     */
703     case SRT_Coroutine:
704     case SRT_Output: {
705       testcase( eDest==SRT_Coroutine );
706       testcase( eDest==SRT_Output );
707       if( pOrderBy ){
708         int r1 = sqlite3GetTempReg(pParse);
709         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
710         pushOntoSorter(pParse, pOrderBy, p, r1);
711         sqlite3ReleaseTempReg(pParse, r1);
712       }else if( eDest==SRT_Coroutine ){
713         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
714       }else{
715         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
716         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
717       }
718       break;
719     }
720 
721 #if !defined(SQLITE_OMIT_TRIGGER)
722     /* Discard the results.  This is used for SELECT statements inside
723     ** the body of a TRIGGER.  The purpose of such selects is to call
724     ** user-defined functions that have side effects.  We do not care
725     ** about the actual results of the select.
726     */
727     default: {
728       assert( eDest==SRT_Discard );
729       break;
730     }
731 #endif
732   }
733 
734   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
735   ** there is a sorter, in which case the sorter has already limited
736   ** the output for us.
737   */
738   if( pOrderBy==0 && p->iLimit ){
739     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
740   }
741 }
742 
743 /*
744 ** Given an expression list, generate a KeyInfo structure that records
745 ** the collating sequence for each expression in that expression list.
746 **
747 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
748 ** KeyInfo structure is appropriate for initializing a virtual index to
749 ** implement that clause.  If the ExprList is the result set of a SELECT
750 ** then the KeyInfo structure is appropriate for initializing a virtual
751 ** index to implement a DISTINCT test.
752 **
753 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
754 ** function is responsible for seeing that this structure is eventually
755 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
756 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
757 */
758 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
759   sqlite3 *db = pParse->db;
760   int nExpr;
761   KeyInfo *pInfo;
762   struct ExprList_item *pItem;
763   int i;
764 
765   nExpr = pList->nExpr;
766   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
767   if( pInfo ){
768     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
769     pInfo->nField = (u16)nExpr;
770     pInfo->enc = ENC(db);
771     pInfo->db = db;
772     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
773       CollSeq *pColl;
774       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
775       if( !pColl ){
776         pColl = db->pDfltColl;
777       }
778       pInfo->aColl[i] = pColl;
779       pInfo->aSortOrder[i] = pItem->sortOrder;
780     }
781   }
782   return pInfo;
783 }
784 
785 #ifndef SQLITE_OMIT_COMPOUND_SELECT
786 /*
787 ** Name of the connection operator, used for error messages.
788 */
789 static const char *selectOpName(int id){
790   char *z;
791   switch( id ){
792     case TK_ALL:       z = "UNION ALL";   break;
793     case TK_INTERSECT: z = "INTERSECT";   break;
794     case TK_EXCEPT:    z = "EXCEPT";      break;
795     default:           z = "UNION";       break;
796   }
797   return z;
798 }
799 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
800 
801 #ifndef SQLITE_OMIT_EXPLAIN
802 /*
803 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
804 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
805 ** where the caption is of the form:
806 **
807 **   "USE TEMP B-TREE FOR xxx"
808 **
809 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
810 ** is determined by the zUsage argument.
811 */
812 static void explainTempTable(Parse *pParse, const char *zUsage){
813   if( pParse->explain==2 ){
814     Vdbe *v = pParse->pVdbe;
815     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
816     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
817   }
818 }
819 
820 /*
821 ** Assign expression b to lvalue a. A second, no-op, version of this macro
822 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
823 ** in sqlite3Select() to assign values to structure member variables that
824 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
825 ** code with #ifndef directives.
826 */
827 # define explainSetInteger(a, b) a = b
828 
829 #else
830 /* No-op versions of the explainXXX() functions and macros. */
831 # define explainTempTable(y,z)
832 # define explainSetInteger(y,z)
833 #endif
834 
835 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
836 /*
837 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
838 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
839 ** where the caption is of one of the two forms:
840 **
841 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
842 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
843 **
844 ** where iSub1 and iSub2 are the integers passed as the corresponding
845 ** function parameters, and op is the text representation of the parameter
846 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
847 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
848 ** false, or the second form if it is true.
849 */
850 static void explainComposite(
851   Parse *pParse,                  /* Parse context */
852   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
853   int iSub1,                      /* Subquery id 1 */
854   int iSub2,                      /* Subquery id 2 */
855   int bUseTmp                     /* True if a temp table was used */
856 ){
857   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
858   if( pParse->explain==2 ){
859     Vdbe *v = pParse->pVdbe;
860     char *zMsg = sqlite3MPrintf(
861         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
862         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
863     );
864     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
865   }
866 }
867 #else
868 /* No-op versions of the explainXXX() functions and macros. */
869 # define explainComposite(v,w,x,y,z)
870 #endif
871 
872 /*
873 ** If the inner loop was generated using a non-null pOrderBy argument,
874 ** then the results were placed in a sorter.  After the loop is terminated
875 ** we need to run the sorter and output the results.  The following
876 ** routine generates the code needed to do that.
877 */
878 static void generateSortTail(
879   Parse *pParse,    /* Parsing context */
880   Select *p,        /* The SELECT statement */
881   Vdbe *v,          /* Generate code into this VDBE */
882   int nColumn,      /* Number of columns of data */
883   SelectDest *pDest /* Write the sorted results here */
884 ){
885   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
886   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
887   int addr;
888   int iTab;
889   int pseudoTab = 0;
890   ExprList *pOrderBy = p->pOrderBy;
891 
892   int eDest = pDest->eDest;
893   int iParm = pDest->iParm;
894 
895   int regRow;
896   int regRowid;
897 
898   iTab = pOrderBy->iECursor;
899   regRow = sqlite3GetTempReg(pParse);
900   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
901     pseudoTab = pParse->nTab++;
902     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
903     regRowid = 0;
904   }else{
905     regRowid = sqlite3GetTempReg(pParse);
906   }
907   if( p->selFlags & SF_UseSorter ){
908     int regSortOut = ++pParse->nMem;
909     int ptab2 = pParse->nTab++;
910     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
911     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
912     codeOffset(v, p, addrContinue);
913     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
914     sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
915     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
916   }else{
917     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
918     codeOffset(v, p, addrContinue);
919     sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
920   }
921   switch( eDest ){
922     case SRT_Table:
923     case SRT_EphemTab: {
924       testcase( eDest==SRT_Table );
925       testcase( eDest==SRT_EphemTab );
926       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
927       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
928       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
929       break;
930     }
931 #ifndef SQLITE_OMIT_SUBQUERY
932     case SRT_Set: {
933       assert( nColumn==1 );
934       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
935       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
936       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
937       break;
938     }
939     case SRT_Mem: {
940       assert( nColumn==1 );
941       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
942       /* The LIMIT clause will terminate the loop for us */
943       break;
944     }
945 #endif
946     default: {
947       int i;
948       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
949       testcase( eDest==SRT_Output );
950       testcase( eDest==SRT_Coroutine );
951       for(i=0; i<nColumn; i++){
952         assert( regRow!=pDest->iMem+i );
953         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
954         if( i==0 ){
955           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
956         }
957       }
958       if( eDest==SRT_Output ){
959         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
960         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
961       }else{
962         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
963       }
964       break;
965     }
966   }
967   sqlite3ReleaseTempReg(pParse, regRow);
968   sqlite3ReleaseTempReg(pParse, regRowid);
969 
970   /* The bottom of the loop
971   */
972   sqlite3VdbeResolveLabel(v, addrContinue);
973   if( p->selFlags & SF_UseSorter ){
974     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
975   }else{
976     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
977   }
978   sqlite3VdbeResolveLabel(v, addrBreak);
979   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
980     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
981   }
982 }
983 
984 /*
985 ** Return a pointer to a string containing the 'declaration type' of the
986 ** expression pExpr. The string may be treated as static by the caller.
987 **
988 ** The declaration type is the exact datatype definition extracted from the
989 ** original CREATE TABLE statement if the expression is a column. The
990 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
991 ** is considered a column can be complex in the presence of subqueries. The
992 ** result-set expression in all of the following SELECT statements is
993 ** considered a column by this function.
994 **
995 **   SELECT col FROM tbl;
996 **   SELECT (SELECT col FROM tbl;
997 **   SELECT (SELECT col FROM tbl);
998 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
999 **
1000 ** The declaration type for any expression other than a column is NULL.
1001 */
1002 static const char *columnType(
1003   NameContext *pNC,
1004   Expr *pExpr,
1005   const char **pzOriginDb,
1006   const char **pzOriginTab,
1007   const char **pzOriginCol
1008 ){
1009   char const *zType = 0;
1010   char const *zOriginDb = 0;
1011   char const *zOriginTab = 0;
1012   char const *zOriginCol = 0;
1013   int j;
1014   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1015 
1016   switch( pExpr->op ){
1017     case TK_AGG_COLUMN:
1018     case TK_COLUMN: {
1019       /* The expression is a column. Locate the table the column is being
1020       ** extracted from in NameContext.pSrcList. This table may be real
1021       ** database table or a subquery.
1022       */
1023       Table *pTab = 0;            /* Table structure column is extracted from */
1024       Select *pS = 0;             /* Select the column is extracted from */
1025       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1026       testcase( pExpr->op==TK_AGG_COLUMN );
1027       testcase( pExpr->op==TK_COLUMN );
1028       while( pNC && !pTab ){
1029         SrcList *pTabList = pNC->pSrcList;
1030         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1031         if( j<pTabList->nSrc ){
1032           pTab = pTabList->a[j].pTab;
1033           pS = pTabList->a[j].pSelect;
1034         }else{
1035           pNC = pNC->pNext;
1036         }
1037       }
1038 
1039       if( pTab==0 ){
1040         /* At one time, code such as "SELECT new.x" within a trigger would
1041         ** cause this condition to run.  Since then, we have restructured how
1042         ** trigger code is generated and so this condition is no longer
1043         ** possible. However, it can still be true for statements like
1044         ** the following:
1045         **
1046         **   CREATE TABLE t1(col INTEGER);
1047         **   SELECT (SELECT t1.col) FROM FROM t1;
1048         **
1049         ** when columnType() is called on the expression "t1.col" in the
1050         ** sub-select. In this case, set the column type to NULL, even
1051         ** though it should really be "INTEGER".
1052         **
1053         ** This is not a problem, as the column type of "t1.col" is never
1054         ** used. When columnType() is called on the expression
1055         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1056         ** branch below.  */
1057         break;
1058       }
1059 
1060       assert( pTab && pExpr->pTab==pTab );
1061       if( pS ){
1062         /* The "table" is actually a sub-select or a view in the FROM clause
1063         ** of the SELECT statement. Return the declaration type and origin
1064         ** data for the result-set column of the sub-select.
1065         */
1066         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1067           /* If iCol is less than zero, then the expression requests the
1068           ** rowid of the sub-select or view. This expression is legal (see
1069           ** test case misc2.2.2) - it always evaluates to NULL.
1070           */
1071           NameContext sNC;
1072           Expr *p = pS->pEList->a[iCol].pExpr;
1073           sNC.pSrcList = pS->pSrc;
1074           sNC.pNext = pNC;
1075           sNC.pParse = pNC->pParse;
1076           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1077         }
1078       }else if( ALWAYS(pTab->pSchema) ){
1079         /* A real table */
1080         assert( !pS );
1081         if( iCol<0 ) iCol = pTab->iPKey;
1082         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1083         if( iCol<0 ){
1084           zType = "INTEGER";
1085           zOriginCol = "rowid";
1086         }else{
1087           zType = pTab->aCol[iCol].zType;
1088           zOriginCol = pTab->aCol[iCol].zName;
1089         }
1090         zOriginTab = pTab->zName;
1091         if( pNC->pParse ){
1092           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1093           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
1094         }
1095       }
1096       break;
1097     }
1098 #ifndef SQLITE_OMIT_SUBQUERY
1099     case TK_SELECT: {
1100       /* The expression is a sub-select. Return the declaration type and
1101       ** origin info for the single column in the result set of the SELECT
1102       ** statement.
1103       */
1104       NameContext sNC;
1105       Select *pS = pExpr->x.pSelect;
1106       Expr *p = pS->pEList->a[0].pExpr;
1107       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1108       sNC.pSrcList = pS->pSrc;
1109       sNC.pNext = pNC;
1110       sNC.pParse = pNC->pParse;
1111       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1112       break;
1113     }
1114 #endif
1115   }
1116 
1117   if( pzOriginDb ){
1118     assert( pzOriginTab && pzOriginCol );
1119     *pzOriginDb = zOriginDb;
1120     *pzOriginTab = zOriginTab;
1121     *pzOriginCol = zOriginCol;
1122   }
1123   return zType;
1124 }
1125 
1126 /*
1127 ** Generate code that will tell the VDBE the declaration types of columns
1128 ** in the result set.
1129 */
1130 static void generateColumnTypes(
1131   Parse *pParse,      /* Parser context */
1132   SrcList *pTabList,  /* List of tables */
1133   ExprList *pEList    /* Expressions defining the result set */
1134 ){
1135 #ifndef SQLITE_OMIT_DECLTYPE
1136   Vdbe *v = pParse->pVdbe;
1137   int i;
1138   NameContext sNC;
1139   sNC.pSrcList = pTabList;
1140   sNC.pParse = pParse;
1141   for(i=0; i<pEList->nExpr; i++){
1142     Expr *p = pEList->a[i].pExpr;
1143     const char *zType;
1144 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1145     const char *zOrigDb = 0;
1146     const char *zOrigTab = 0;
1147     const char *zOrigCol = 0;
1148     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1149 
1150     /* The vdbe must make its own copy of the column-type and other
1151     ** column specific strings, in case the schema is reset before this
1152     ** virtual machine is deleted.
1153     */
1154     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1155     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1156     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1157 #else
1158     zType = columnType(&sNC, p, 0, 0, 0);
1159 #endif
1160     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1161   }
1162 #endif /* SQLITE_OMIT_DECLTYPE */
1163 }
1164 
1165 /*
1166 ** Generate code that will tell the VDBE the names of columns
1167 ** in the result set.  This information is used to provide the
1168 ** azCol[] values in the callback.
1169 */
1170 static void generateColumnNames(
1171   Parse *pParse,      /* Parser context */
1172   SrcList *pTabList,  /* List of tables */
1173   ExprList *pEList    /* Expressions defining the result set */
1174 ){
1175   Vdbe *v = pParse->pVdbe;
1176   int i, j;
1177   sqlite3 *db = pParse->db;
1178   int fullNames, shortNames;
1179 
1180 #ifndef SQLITE_OMIT_EXPLAIN
1181   /* If this is an EXPLAIN, skip this step */
1182   if( pParse->explain ){
1183     return;
1184   }
1185 #endif
1186 
1187   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1188   pParse->colNamesSet = 1;
1189   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1190   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1191   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1192   for(i=0; i<pEList->nExpr; i++){
1193     Expr *p;
1194     p = pEList->a[i].pExpr;
1195     if( NEVER(p==0) ) continue;
1196     if( pEList->a[i].zName ){
1197       char *zName = pEList->a[i].zName;
1198       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1199     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1200       Table *pTab;
1201       char *zCol;
1202       int iCol = p->iColumn;
1203       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1204         if( pTabList->a[j].iCursor==p->iTable ) break;
1205       }
1206       assert( j<pTabList->nSrc );
1207       pTab = pTabList->a[j].pTab;
1208       if( iCol<0 ) iCol = pTab->iPKey;
1209       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1210       if( iCol<0 ){
1211         zCol = "rowid";
1212       }else{
1213         zCol = pTab->aCol[iCol].zName;
1214       }
1215       if( !shortNames && !fullNames ){
1216         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1217             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1218       }else if( fullNames ){
1219         char *zName = 0;
1220         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1221         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1222       }else{
1223         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1224       }
1225     }else{
1226       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1227           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1228     }
1229   }
1230   generateColumnTypes(pParse, pTabList, pEList);
1231 }
1232 
1233 /*
1234 ** Given a an expression list (which is really the list of expressions
1235 ** that form the result set of a SELECT statement) compute appropriate
1236 ** column names for a table that would hold the expression list.
1237 **
1238 ** All column names will be unique.
1239 **
1240 ** Only the column names are computed.  Column.zType, Column.zColl,
1241 ** and other fields of Column are zeroed.
1242 **
1243 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1244 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1245 */
1246 static int selectColumnsFromExprList(
1247   Parse *pParse,          /* Parsing context */
1248   ExprList *pEList,       /* Expr list from which to derive column names */
1249   int *pnCol,             /* Write the number of columns here */
1250   Column **paCol          /* Write the new column list here */
1251 ){
1252   sqlite3 *db = pParse->db;   /* Database connection */
1253   int i, j;                   /* Loop counters */
1254   int cnt;                    /* Index added to make the name unique */
1255   Column *aCol, *pCol;        /* For looping over result columns */
1256   int nCol;                   /* Number of columns in the result set */
1257   Expr *p;                    /* Expression for a single result column */
1258   char *zName;                /* Column name */
1259   int nName;                  /* Size of name in zName[] */
1260 
1261   *pnCol = nCol = pEList ? pEList->nExpr : 0;
1262   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1263   if( aCol==0 ) return SQLITE_NOMEM;
1264   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1265     /* Get an appropriate name for the column
1266     */
1267     p = pEList->a[i].pExpr;
1268     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1269                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1270     if( (zName = pEList->a[i].zName)!=0 ){
1271       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1272       zName = sqlite3DbStrDup(db, zName);
1273     }else{
1274       Expr *pColExpr = p;  /* The expression that is the result column name */
1275       Table *pTab;         /* Table associated with this expression */
1276       while( pColExpr->op==TK_DOT ){
1277         pColExpr = pColExpr->pRight;
1278         assert( pColExpr!=0 );
1279       }
1280       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1281         /* For columns use the column name name */
1282         int iCol = pColExpr->iColumn;
1283         pTab = pColExpr->pTab;
1284         if( iCol<0 ) iCol = pTab->iPKey;
1285         zName = sqlite3MPrintf(db, "%s",
1286                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1287       }else if( pColExpr->op==TK_ID ){
1288         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1289         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1290       }else{
1291         /* Use the original text of the column expression as its name */
1292         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1293       }
1294     }
1295     if( db->mallocFailed ){
1296       sqlite3DbFree(db, zName);
1297       break;
1298     }
1299 
1300     /* Make sure the column name is unique.  If the name is not unique,
1301     ** append a integer to the name so that it becomes unique.
1302     */
1303     nName = sqlite3Strlen30(zName);
1304     for(j=cnt=0; j<i; j++){
1305       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1306         char *zNewName;
1307         zName[nName] = 0;
1308         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1309         sqlite3DbFree(db, zName);
1310         zName = zNewName;
1311         j = -1;
1312         if( zName==0 ) break;
1313       }
1314     }
1315     pCol->zName = zName;
1316   }
1317   if( db->mallocFailed ){
1318     for(j=0; j<i; j++){
1319       sqlite3DbFree(db, aCol[j].zName);
1320     }
1321     sqlite3DbFree(db, aCol);
1322     *paCol = 0;
1323     *pnCol = 0;
1324     return SQLITE_NOMEM;
1325   }
1326   return SQLITE_OK;
1327 }
1328 
1329 /*
1330 ** Add type and collation information to a column list based on
1331 ** a SELECT statement.
1332 **
1333 ** The column list presumably came from selectColumnNamesFromExprList().
1334 ** The column list has only names, not types or collations.  This
1335 ** routine goes through and adds the types and collations.
1336 **
1337 ** This routine requires that all identifiers in the SELECT
1338 ** statement be resolved.
1339 */
1340 static void selectAddColumnTypeAndCollation(
1341   Parse *pParse,        /* Parsing contexts */
1342   int nCol,             /* Number of columns */
1343   Column *aCol,         /* List of columns */
1344   Select *pSelect       /* SELECT used to determine types and collations */
1345 ){
1346   sqlite3 *db = pParse->db;
1347   NameContext sNC;
1348   Column *pCol;
1349   CollSeq *pColl;
1350   int i;
1351   Expr *p;
1352   struct ExprList_item *a;
1353 
1354   assert( pSelect!=0 );
1355   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1356   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1357   if( db->mallocFailed ) return;
1358   memset(&sNC, 0, sizeof(sNC));
1359   sNC.pSrcList = pSelect->pSrc;
1360   a = pSelect->pEList->a;
1361   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1362     p = a[i].pExpr;
1363     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1364     pCol->affinity = sqlite3ExprAffinity(p);
1365     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1366     pColl = sqlite3ExprCollSeq(pParse, p);
1367     if( pColl ){
1368       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1369     }
1370   }
1371 }
1372 
1373 /*
1374 ** Given a SELECT statement, generate a Table structure that describes
1375 ** the result set of that SELECT.
1376 */
1377 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1378   Table *pTab;
1379   sqlite3 *db = pParse->db;
1380   int savedFlags;
1381 
1382   savedFlags = db->flags;
1383   db->flags &= ~SQLITE_FullColNames;
1384   db->flags |= SQLITE_ShortColNames;
1385   sqlite3SelectPrep(pParse, pSelect, 0);
1386   if( pParse->nErr ) return 0;
1387   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1388   db->flags = savedFlags;
1389   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1390   if( pTab==0 ){
1391     return 0;
1392   }
1393   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1394   ** is disabled */
1395   assert( db->lookaside.bEnabled==0 );
1396   pTab->nRef = 1;
1397   pTab->zName = 0;
1398   pTab->nRowEst = 1000000;
1399   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1400   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1401   pTab->iPKey = -1;
1402   if( db->mallocFailed ){
1403     sqlite3DeleteTable(db, pTab);
1404     return 0;
1405   }
1406   return pTab;
1407 }
1408 
1409 /*
1410 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1411 ** If an error occurs, return NULL and leave a message in pParse.
1412 */
1413 Vdbe *sqlite3GetVdbe(Parse *pParse){
1414   Vdbe *v = pParse->pVdbe;
1415   if( v==0 ){
1416     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1417 #ifndef SQLITE_OMIT_TRACE
1418     if( v ){
1419       sqlite3VdbeAddOp0(v, OP_Trace);
1420     }
1421 #endif
1422   }
1423   return v;
1424 }
1425 
1426 
1427 /*
1428 ** Compute the iLimit and iOffset fields of the SELECT based on the
1429 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1430 ** that appear in the original SQL statement after the LIMIT and OFFSET
1431 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1432 ** are the integer memory register numbers for counters used to compute
1433 ** the limit and offset.  If there is no limit and/or offset, then
1434 ** iLimit and iOffset are negative.
1435 **
1436 ** This routine changes the values of iLimit and iOffset only if
1437 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1438 ** iOffset should have been preset to appropriate default values
1439 ** (usually but not always -1) prior to calling this routine.
1440 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1441 ** redefined.  The UNION ALL operator uses this property to force
1442 ** the reuse of the same limit and offset registers across multiple
1443 ** SELECT statements.
1444 */
1445 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1446   Vdbe *v = 0;
1447   int iLimit = 0;
1448   int iOffset;
1449   int addr1, n;
1450   if( p->iLimit ) return;
1451 
1452   /*
1453   ** "LIMIT -1" always shows all rows.  There is some
1454   ** contraversy about what the correct behavior should be.
1455   ** The current implementation interprets "LIMIT 0" to mean
1456   ** no rows.
1457   */
1458   sqlite3ExprCacheClear(pParse);
1459   assert( p->pOffset==0 || p->pLimit!=0 );
1460   if( p->pLimit ){
1461     p->iLimit = iLimit = ++pParse->nMem;
1462     v = sqlite3GetVdbe(pParse);
1463     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1464     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1465       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1466       VdbeComment((v, "LIMIT counter"));
1467       if( n==0 ){
1468         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1469       }else{
1470         if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
1471       }
1472     }else{
1473       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1474       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1475       VdbeComment((v, "LIMIT counter"));
1476       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1477     }
1478     if( p->pOffset ){
1479       p->iOffset = iOffset = ++pParse->nMem;
1480       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1481       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1482       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1483       VdbeComment((v, "OFFSET counter"));
1484       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1485       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1486       sqlite3VdbeJumpHere(v, addr1);
1487       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1488       VdbeComment((v, "LIMIT+OFFSET"));
1489       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1490       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1491       sqlite3VdbeJumpHere(v, addr1);
1492     }
1493   }
1494 }
1495 
1496 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1497 /*
1498 ** Return the appropriate collating sequence for the iCol-th column of
1499 ** the result set for the compound-select statement "p".  Return NULL if
1500 ** the column has no default collating sequence.
1501 **
1502 ** The collating sequence for the compound select is taken from the
1503 ** left-most term of the select that has a collating sequence.
1504 */
1505 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1506   CollSeq *pRet;
1507   if( p->pPrior ){
1508     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1509   }else{
1510     pRet = 0;
1511   }
1512   assert( iCol>=0 );
1513   if( pRet==0 && iCol<p->pEList->nExpr ){
1514     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1515   }
1516   return pRet;
1517 }
1518 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1519 
1520 /* Forward reference */
1521 static int multiSelectOrderBy(
1522   Parse *pParse,        /* Parsing context */
1523   Select *p,            /* The right-most of SELECTs to be coded */
1524   SelectDest *pDest     /* What to do with query results */
1525 );
1526 
1527 
1528 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1529 /*
1530 ** This routine is called to process a compound query form from
1531 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1532 ** INTERSECT
1533 **
1534 ** "p" points to the right-most of the two queries.  the query on the
1535 ** left is p->pPrior.  The left query could also be a compound query
1536 ** in which case this routine will be called recursively.
1537 **
1538 ** The results of the total query are to be written into a destination
1539 ** of type eDest with parameter iParm.
1540 **
1541 ** Example 1:  Consider a three-way compound SQL statement.
1542 **
1543 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1544 **
1545 ** This statement is parsed up as follows:
1546 **
1547 **     SELECT c FROM t3
1548 **      |
1549 **      `----->  SELECT b FROM t2
1550 **                |
1551 **                `------>  SELECT a FROM t1
1552 **
1553 ** The arrows in the diagram above represent the Select.pPrior pointer.
1554 ** So if this routine is called with p equal to the t3 query, then
1555 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1556 **
1557 ** Notice that because of the way SQLite parses compound SELECTs, the
1558 ** individual selects always group from left to right.
1559 */
1560 static int multiSelect(
1561   Parse *pParse,        /* Parsing context */
1562   Select *p,            /* The right-most of SELECTs to be coded */
1563   SelectDest *pDest     /* What to do with query results */
1564 ){
1565   int rc = SQLITE_OK;   /* Success code from a subroutine */
1566   Select *pPrior;       /* Another SELECT immediately to our left */
1567   Vdbe *v;              /* Generate code to this VDBE */
1568   SelectDest dest;      /* Alternative data destination */
1569   Select *pDelete = 0;  /* Chain of simple selects to delete */
1570   sqlite3 *db;          /* Database connection */
1571 #ifndef SQLITE_OMIT_EXPLAIN
1572   int iSub1;            /* EQP id of left-hand query */
1573   int iSub2;            /* EQP id of right-hand query */
1574 #endif
1575 
1576   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1577   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1578   */
1579   assert( p && p->pPrior );  /* Calling function guarantees this much */
1580   db = pParse->db;
1581   pPrior = p->pPrior;
1582   assert( pPrior->pRightmost!=pPrior );
1583   assert( pPrior->pRightmost==p->pRightmost );
1584   dest = *pDest;
1585   if( pPrior->pOrderBy ){
1586     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1587       selectOpName(p->op));
1588     rc = 1;
1589     goto multi_select_end;
1590   }
1591   if( pPrior->pLimit ){
1592     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1593       selectOpName(p->op));
1594     rc = 1;
1595     goto multi_select_end;
1596   }
1597 
1598   v = sqlite3GetVdbe(pParse);
1599   assert( v!=0 );  /* The VDBE already created by calling function */
1600 
1601   /* Create the destination temporary table if necessary
1602   */
1603   if( dest.eDest==SRT_EphemTab ){
1604     assert( p->pEList );
1605     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1606     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1607     dest.eDest = SRT_Table;
1608   }
1609 
1610   /* Make sure all SELECTs in the statement have the same number of elements
1611   ** in their result sets.
1612   */
1613   assert( p->pEList && pPrior->pEList );
1614   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1615     if( p->selFlags & SF_Values ){
1616       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
1617     }else{
1618       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1619         " do not have the same number of result columns", selectOpName(p->op));
1620     }
1621     rc = 1;
1622     goto multi_select_end;
1623   }
1624 
1625   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1626   */
1627   if( p->pOrderBy ){
1628     return multiSelectOrderBy(pParse, p, pDest);
1629   }
1630 
1631   /* Generate code for the left and right SELECT statements.
1632   */
1633   switch( p->op ){
1634     case TK_ALL: {
1635       int addr = 0;
1636       int nLimit;
1637       assert( !pPrior->pLimit );
1638       pPrior->pLimit = p->pLimit;
1639       pPrior->pOffset = p->pOffset;
1640       explainSetInteger(iSub1, pParse->iNextSelectId);
1641       rc = sqlite3Select(pParse, pPrior, &dest);
1642       p->pLimit = 0;
1643       p->pOffset = 0;
1644       if( rc ){
1645         goto multi_select_end;
1646       }
1647       p->pPrior = 0;
1648       p->iLimit = pPrior->iLimit;
1649       p->iOffset = pPrior->iOffset;
1650       if( p->iLimit ){
1651         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1652         VdbeComment((v, "Jump ahead if LIMIT reached"));
1653       }
1654       explainSetInteger(iSub2, pParse->iNextSelectId);
1655       rc = sqlite3Select(pParse, p, &dest);
1656       testcase( rc!=SQLITE_OK );
1657       pDelete = p->pPrior;
1658       p->pPrior = pPrior;
1659       p->nSelectRow += pPrior->nSelectRow;
1660       if( pPrior->pLimit
1661        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1662        && p->nSelectRow > (double)nLimit
1663       ){
1664         p->nSelectRow = (double)nLimit;
1665       }
1666       if( addr ){
1667         sqlite3VdbeJumpHere(v, addr);
1668       }
1669       break;
1670     }
1671     case TK_EXCEPT:
1672     case TK_UNION: {
1673       int unionTab;    /* Cursor number of the temporary table holding result */
1674       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1675       int priorOp;     /* The SRT_ operation to apply to prior selects */
1676       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1677       int addr;
1678       SelectDest uniondest;
1679 
1680       testcase( p->op==TK_EXCEPT );
1681       testcase( p->op==TK_UNION );
1682       priorOp = SRT_Union;
1683       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1684         /* We can reuse a temporary table generated by a SELECT to our
1685         ** right.
1686         */
1687         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1688                                      ** of a 3-way or more compound */
1689         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1690         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1691         unionTab = dest.iParm;
1692       }else{
1693         /* We will need to create our own temporary table to hold the
1694         ** intermediate results.
1695         */
1696         unionTab = pParse->nTab++;
1697         assert( p->pOrderBy==0 );
1698         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1699         assert( p->addrOpenEphm[0] == -1 );
1700         p->addrOpenEphm[0] = addr;
1701         p->pRightmost->selFlags |= SF_UsesEphemeral;
1702         assert( p->pEList );
1703       }
1704 
1705       /* Code the SELECT statements to our left
1706       */
1707       assert( !pPrior->pOrderBy );
1708       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1709       explainSetInteger(iSub1, pParse->iNextSelectId);
1710       rc = sqlite3Select(pParse, pPrior, &uniondest);
1711       if( rc ){
1712         goto multi_select_end;
1713       }
1714 
1715       /* Code the current SELECT statement
1716       */
1717       if( p->op==TK_EXCEPT ){
1718         op = SRT_Except;
1719       }else{
1720         assert( p->op==TK_UNION );
1721         op = SRT_Union;
1722       }
1723       p->pPrior = 0;
1724       pLimit = p->pLimit;
1725       p->pLimit = 0;
1726       pOffset = p->pOffset;
1727       p->pOffset = 0;
1728       uniondest.eDest = op;
1729       explainSetInteger(iSub2, pParse->iNextSelectId);
1730       rc = sqlite3Select(pParse, p, &uniondest);
1731       testcase( rc!=SQLITE_OK );
1732       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1733       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1734       sqlite3ExprListDelete(db, p->pOrderBy);
1735       pDelete = p->pPrior;
1736       p->pPrior = pPrior;
1737       p->pOrderBy = 0;
1738       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1739       sqlite3ExprDelete(db, p->pLimit);
1740       p->pLimit = pLimit;
1741       p->pOffset = pOffset;
1742       p->iLimit = 0;
1743       p->iOffset = 0;
1744 
1745       /* Convert the data in the temporary table into whatever form
1746       ** it is that we currently need.
1747       */
1748       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1749       if( dest.eDest!=priorOp ){
1750         int iCont, iBreak, iStart;
1751         assert( p->pEList );
1752         if( dest.eDest==SRT_Output ){
1753           Select *pFirst = p;
1754           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1755           generateColumnNames(pParse, 0, pFirst->pEList);
1756         }
1757         iBreak = sqlite3VdbeMakeLabel(v);
1758         iCont = sqlite3VdbeMakeLabel(v);
1759         computeLimitRegisters(pParse, p, iBreak);
1760         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1761         iStart = sqlite3VdbeCurrentAddr(v);
1762         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1763                         0, -1, &dest, iCont, iBreak);
1764         sqlite3VdbeResolveLabel(v, iCont);
1765         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1766         sqlite3VdbeResolveLabel(v, iBreak);
1767         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1768       }
1769       break;
1770     }
1771     default: assert( p->op==TK_INTERSECT ); {
1772       int tab1, tab2;
1773       int iCont, iBreak, iStart;
1774       Expr *pLimit, *pOffset;
1775       int addr;
1776       SelectDest intersectdest;
1777       int r1;
1778 
1779       /* INTERSECT is different from the others since it requires
1780       ** two temporary tables.  Hence it has its own case.  Begin
1781       ** by allocating the tables we will need.
1782       */
1783       tab1 = pParse->nTab++;
1784       tab2 = pParse->nTab++;
1785       assert( p->pOrderBy==0 );
1786 
1787       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1788       assert( p->addrOpenEphm[0] == -1 );
1789       p->addrOpenEphm[0] = addr;
1790       p->pRightmost->selFlags |= SF_UsesEphemeral;
1791       assert( p->pEList );
1792 
1793       /* Code the SELECTs to our left into temporary table "tab1".
1794       */
1795       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1796       explainSetInteger(iSub1, pParse->iNextSelectId);
1797       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1798       if( rc ){
1799         goto multi_select_end;
1800       }
1801 
1802       /* Code the current SELECT into temporary table "tab2"
1803       */
1804       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1805       assert( p->addrOpenEphm[1] == -1 );
1806       p->addrOpenEphm[1] = addr;
1807       p->pPrior = 0;
1808       pLimit = p->pLimit;
1809       p->pLimit = 0;
1810       pOffset = p->pOffset;
1811       p->pOffset = 0;
1812       intersectdest.iParm = tab2;
1813       explainSetInteger(iSub2, pParse->iNextSelectId);
1814       rc = sqlite3Select(pParse, p, &intersectdest);
1815       testcase( rc!=SQLITE_OK );
1816       pDelete = p->pPrior;
1817       p->pPrior = pPrior;
1818       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1819       sqlite3ExprDelete(db, p->pLimit);
1820       p->pLimit = pLimit;
1821       p->pOffset = pOffset;
1822 
1823       /* Generate code to take the intersection of the two temporary
1824       ** tables.
1825       */
1826       assert( p->pEList );
1827       if( dest.eDest==SRT_Output ){
1828         Select *pFirst = p;
1829         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1830         generateColumnNames(pParse, 0, pFirst->pEList);
1831       }
1832       iBreak = sqlite3VdbeMakeLabel(v);
1833       iCont = sqlite3VdbeMakeLabel(v);
1834       computeLimitRegisters(pParse, p, iBreak);
1835       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1836       r1 = sqlite3GetTempReg(pParse);
1837       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1838       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1839       sqlite3ReleaseTempReg(pParse, r1);
1840       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1841                       0, -1, &dest, iCont, iBreak);
1842       sqlite3VdbeResolveLabel(v, iCont);
1843       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1844       sqlite3VdbeResolveLabel(v, iBreak);
1845       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1846       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1847       break;
1848     }
1849   }
1850 
1851   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1852 
1853   /* Compute collating sequences used by
1854   ** temporary tables needed to implement the compound select.
1855   ** Attach the KeyInfo structure to all temporary tables.
1856   **
1857   ** This section is run by the right-most SELECT statement only.
1858   ** SELECT statements to the left always skip this part.  The right-most
1859   ** SELECT might also skip this part if it has no ORDER BY clause and
1860   ** no temp tables are required.
1861   */
1862   if( p->selFlags & SF_UsesEphemeral ){
1863     int i;                        /* Loop counter */
1864     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1865     Select *pLoop;                /* For looping through SELECT statements */
1866     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1867     int nCol;                     /* Number of columns in result set */
1868 
1869     assert( p->pRightmost==p );
1870     nCol = p->pEList->nExpr;
1871     pKeyInfo = sqlite3DbMallocZero(db,
1872                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1873     if( !pKeyInfo ){
1874       rc = SQLITE_NOMEM;
1875       goto multi_select_end;
1876     }
1877 
1878     pKeyInfo->enc = ENC(db);
1879     pKeyInfo->nField = (u16)nCol;
1880 
1881     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1882       *apColl = multiSelectCollSeq(pParse, p, i);
1883       if( 0==*apColl ){
1884         *apColl = db->pDfltColl;
1885       }
1886     }
1887 
1888     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1889       for(i=0; i<2; i++){
1890         int addr = pLoop->addrOpenEphm[i];
1891         if( addr<0 ){
1892           /* If [0] is unused then [1] is also unused.  So we can
1893           ** always safely abort as soon as the first unused slot is found */
1894           assert( pLoop->addrOpenEphm[1]<0 );
1895           break;
1896         }
1897         sqlite3VdbeChangeP2(v, addr, nCol);
1898         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1899         pLoop->addrOpenEphm[i] = -1;
1900       }
1901     }
1902     sqlite3DbFree(db, pKeyInfo);
1903   }
1904 
1905 multi_select_end:
1906   pDest->iMem = dest.iMem;
1907   pDest->nMem = dest.nMem;
1908   sqlite3SelectDelete(db, pDelete);
1909   return rc;
1910 }
1911 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1912 
1913 /*
1914 ** Code an output subroutine for a coroutine implementation of a
1915 ** SELECT statment.
1916 **
1917 ** The data to be output is contained in pIn->iMem.  There are
1918 ** pIn->nMem columns to be output.  pDest is where the output should
1919 ** be sent.
1920 **
1921 ** regReturn is the number of the register holding the subroutine
1922 ** return address.
1923 **
1924 ** If regPrev>0 then it is the first register in a vector that
1925 ** records the previous output.  mem[regPrev] is a flag that is false
1926 ** if there has been no previous output.  If regPrev>0 then code is
1927 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1928 ** keys.
1929 **
1930 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1931 ** iBreak.
1932 */
1933 static int generateOutputSubroutine(
1934   Parse *pParse,          /* Parsing context */
1935   Select *p,              /* The SELECT statement */
1936   SelectDest *pIn,        /* Coroutine supplying data */
1937   SelectDest *pDest,      /* Where to send the data */
1938   int regReturn,          /* The return address register */
1939   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1940   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1941   int p4type,             /* The p4 type for pKeyInfo */
1942   int iBreak              /* Jump here if we hit the LIMIT */
1943 ){
1944   Vdbe *v = pParse->pVdbe;
1945   int iContinue;
1946   int addr;
1947 
1948   addr = sqlite3VdbeCurrentAddr(v);
1949   iContinue = sqlite3VdbeMakeLabel(v);
1950 
1951   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1952   */
1953   if( regPrev ){
1954     int j1, j2;
1955     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1956     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1957                               (char*)pKeyInfo, p4type);
1958     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1959     sqlite3VdbeJumpHere(v, j1);
1960     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1961     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1962   }
1963   if( pParse->db->mallocFailed ) return 0;
1964 
1965   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1966   */
1967   codeOffset(v, p, iContinue);
1968 
1969   switch( pDest->eDest ){
1970     /* Store the result as data using a unique key.
1971     */
1972     case SRT_Table:
1973     case SRT_EphemTab: {
1974       int r1 = sqlite3GetTempReg(pParse);
1975       int r2 = sqlite3GetTempReg(pParse);
1976       testcase( pDest->eDest==SRT_Table );
1977       testcase( pDest->eDest==SRT_EphemTab );
1978       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1979       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1980       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1981       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1982       sqlite3ReleaseTempReg(pParse, r2);
1983       sqlite3ReleaseTempReg(pParse, r1);
1984       break;
1985     }
1986 
1987 #ifndef SQLITE_OMIT_SUBQUERY
1988     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1989     ** then there should be a single item on the stack.  Write this
1990     ** item into the set table with bogus data.
1991     */
1992     case SRT_Set: {
1993       int r1;
1994       assert( pIn->nMem==1 );
1995       p->affinity =
1996          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1997       r1 = sqlite3GetTempReg(pParse);
1998       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1999       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
2000       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
2001       sqlite3ReleaseTempReg(pParse, r1);
2002       break;
2003     }
2004 
2005 #if 0  /* Never occurs on an ORDER BY query */
2006     /* If any row exist in the result set, record that fact and abort.
2007     */
2008     case SRT_Exists: {
2009       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
2010       /* The LIMIT clause will terminate the loop for us */
2011       break;
2012     }
2013 #endif
2014 
2015     /* If this is a scalar select that is part of an expression, then
2016     ** store the results in the appropriate memory cell and break out
2017     ** of the scan loop.
2018     */
2019     case SRT_Mem: {
2020       assert( pIn->nMem==1 );
2021       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
2022       /* The LIMIT clause will jump out of the loop for us */
2023       break;
2024     }
2025 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2026 
2027     /* The results are stored in a sequence of registers
2028     ** starting at pDest->iMem.  Then the co-routine yields.
2029     */
2030     case SRT_Coroutine: {
2031       if( pDest->iMem==0 ){
2032         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
2033         pDest->nMem = pIn->nMem;
2034       }
2035       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
2036       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
2037       break;
2038     }
2039 
2040     /* If none of the above, then the result destination must be
2041     ** SRT_Output.  This routine is never called with any other
2042     ** destination other than the ones handled above or SRT_Output.
2043     **
2044     ** For SRT_Output, results are stored in a sequence of registers.
2045     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2046     ** return the next row of result.
2047     */
2048     default: {
2049       assert( pDest->eDest==SRT_Output );
2050       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
2051       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
2052       break;
2053     }
2054   }
2055 
2056   /* Jump to the end of the loop if the LIMIT is reached.
2057   */
2058   if( p->iLimit ){
2059     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2060   }
2061 
2062   /* Generate the subroutine return
2063   */
2064   sqlite3VdbeResolveLabel(v, iContinue);
2065   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2066 
2067   return addr;
2068 }
2069 
2070 /*
2071 ** Alternative compound select code generator for cases when there
2072 ** is an ORDER BY clause.
2073 **
2074 ** We assume a query of the following form:
2075 **
2076 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2077 **
2078 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2079 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2080 ** co-routines.  Then run the co-routines in parallel and merge the results
2081 ** into the output.  In addition to the two coroutines (called selectA and
2082 ** selectB) there are 7 subroutines:
2083 **
2084 **    outA:    Move the output of the selectA coroutine into the output
2085 **             of the compound query.
2086 **
2087 **    outB:    Move the output of the selectB coroutine into the output
2088 **             of the compound query.  (Only generated for UNION and
2089 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2090 **             appears only in B.)
2091 **
2092 **    AltB:    Called when there is data from both coroutines and A<B.
2093 **
2094 **    AeqB:    Called when there is data from both coroutines and A==B.
2095 **
2096 **    AgtB:    Called when there is data from both coroutines and A>B.
2097 **
2098 **    EofA:    Called when data is exhausted from selectA.
2099 **
2100 **    EofB:    Called when data is exhausted from selectB.
2101 **
2102 ** The implementation of the latter five subroutines depend on which
2103 ** <operator> is used:
2104 **
2105 **
2106 **             UNION ALL         UNION            EXCEPT          INTERSECT
2107 **          -------------  -----------------  --------------  -----------------
2108 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2109 **
2110 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2111 **
2112 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2113 **
2114 **   EofA:   outB, nextB      outB, nextB          halt             halt
2115 **
2116 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2117 **
2118 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2119 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2120 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2121 ** following nextX causes a jump to the end of the select processing.
2122 **
2123 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2124 ** within the output subroutine.  The regPrev register set holds the previously
2125 ** output value.  A comparison is made against this value and the output
2126 ** is skipped if the next results would be the same as the previous.
2127 **
2128 ** The implementation plan is to implement the two coroutines and seven
2129 ** subroutines first, then put the control logic at the bottom.  Like this:
2130 **
2131 **          goto Init
2132 **     coA: coroutine for left query (A)
2133 **     coB: coroutine for right query (B)
2134 **    outA: output one row of A
2135 **    outB: output one row of B (UNION and UNION ALL only)
2136 **    EofA: ...
2137 **    EofB: ...
2138 **    AltB: ...
2139 **    AeqB: ...
2140 **    AgtB: ...
2141 **    Init: initialize coroutine registers
2142 **          yield coA
2143 **          if eof(A) goto EofA
2144 **          yield coB
2145 **          if eof(B) goto EofB
2146 **    Cmpr: Compare A, B
2147 **          Jump AltB, AeqB, AgtB
2148 **     End: ...
2149 **
2150 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2151 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2152 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2153 ** and AgtB jump to either L2 or to one of EofA or EofB.
2154 */
2155 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2156 static int multiSelectOrderBy(
2157   Parse *pParse,        /* Parsing context */
2158   Select *p,            /* The right-most of SELECTs to be coded */
2159   SelectDest *pDest     /* What to do with query results */
2160 ){
2161   int i, j;             /* Loop counters */
2162   Select *pPrior;       /* Another SELECT immediately to our left */
2163   Vdbe *v;              /* Generate code to this VDBE */
2164   SelectDest destA;     /* Destination for coroutine A */
2165   SelectDest destB;     /* Destination for coroutine B */
2166   int regAddrA;         /* Address register for select-A coroutine */
2167   int regEofA;          /* Flag to indicate when select-A is complete */
2168   int regAddrB;         /* Address register for select-B coroutine */
2169   int regEofB;          /* Flag to indicate when select-B is complete */
2170   int addrSelectA;      /* Address of the select-A coroutine */
2171   int addrSelectB;      /* Address of the select-B coroutine */
2172   int regOutA;          /* Address register for the output-A subroutine */
2173   int regOutB;          /* Address register for the output-B subroutine */
2174   int addrOutA;         /* Address of the output-A subroutine */
2175   int addrOutB = 0;     /* Address of the output-B subroutine */
2176   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2177   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2178   int addrAltB;         /* Address of the A<B subroutine */
2179   int addrAeqB;         /* Address of the A==B subroutine */
2180   int addrAgtB;         /* Address of the A>B subroutine */
2181   int regLimitA;        /* Limit register for select-A */
2182   int regLimitB;        /* Limit register for select-A */
2183   int regPrev;          /* A range of registers to hold previous output */
2184   int savedLimit;       /* Saved value of p->iLimit */
2185   int savedOffset;      /* Saved value of p->iOffset */
2186   int labelCmpr;        /* Label for the start of the merge algorithm */
2187   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2188   int j1;               /* Jump instructions that get retargetted */
2189   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2190   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2191   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2192   sqlite3 *db;          /* Database connection */
2193   ExprList *pOrderBy;   /* The ORDER BY clause */
2194   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2195   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2196 #ifndef SQLITE_OMIT_EXPLAIN
2197   int iSub1;            /* EQP id of left-hand query */
2198   int iSub2;            /* EQP id of right-hand query */
2199 #endif
2200 
2201   assert( p->pOrderBy!=0 );
2202   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2203   db = pParse->db;
2204   v = pParse->pVdbe;
2205   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2206   labelEnd = sqlite3VdbeMakeLabel(v);
2207   labelCmpr = sqlite3VdbeMakeLabel(v);
2208 
2209 
2210   /* Patch up the ORDER BY clause
2211   */
2212   op = p->op;
2213   pPrior = p->pPrior;
2214   assert( pPrior->pOrderBy==0 );
2215   pOrderBy = p->pOrderBy;
2216   assert( pOrderBy );
2217   nOrderBy = pOrderBy->nExpr;
2218 
2219   /* For operators other than UNION ALL we have to make sure that
2220   ** the ORDER BY clause covers every term of the result set.  Add
2221   ** terms to the ORDER BY clause as necessary.
2222   */
2223   if( op!=TK_ALL ){
2224     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2225       struct ExprList_item *pItem;
2226       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2227         assert( pItem->iOrderByCol>0 );
2228         if( pItem->iOrderByCol==i ) break;
2229       }
2230       if( j==nOrderBy ){
2231         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2232         if( pNew==0 ) return SQLITE_NOMEM;
2233         pNew->flags |= EP_IntValue;
2234         pNew->u.iValue = i;
2235         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2236         if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i;
2237       }
2238     }
2239   }
2240 
2241   /* Compute the comparison permutation and keyinfo that is used with
2242   ** the permutation used to determine if the next
2243   ** row of results comes from selectA or selectB.  Also add explicit
2244   ** collations to the ORDER BY clause terms so that when the subqueries
2245   ** to the right and the left are evaluated, they use the correct
2246   ** collation.
2247   */
2248   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2249   if( aPermute ){
2250     struct ExprList_item *pItem;
2251     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2252       assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
2253       aPermute[i] = pItem->iOrderByCol - 1;
2254     }
2255     pKeyMerge =
2256       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2257     if( pKeyMerge ){
2258       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2259       pKeyMerge->nField = (u16)nOrderBy;
2260       pKeyMerge->enc = ENC(db);
2261       for(i=0; i<nOrderBy; i++){
2262         CollSeq *pColl;
2263         Expr *pTerm = pOrderBy->a[i].pExpr;
2264         if( pTerm->flags & EP_ExpCollate ){
2265           pColl = pTerm->pColl;
2266         }else{
2267           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2268           pTerm->flags |= EP_ExpCollate;
2269           pTerm->pColl = pColl;
2270         }
2271         pKeyMerge->aColl[i] = pColl;
2272         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2273       }
2274     }
2275   }else{
2276     pKeyMerge = 0;
2277   }
2278 
2279   /* Reattach the ORDER BY clause to the query.
2280   */
2281   p->pOrderBy = pOrderBy;
2282   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2283 
2284   /* Allocate a range of temporary registers and the KeyInfo needed
2285   ** for the logic that removes duplicate result rows when the
2286   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2287   */
2288   if( op==TK_ALL ){
2289     regPrev = 0;
2290   }else{
2291     int nExpr = p->pEList->nExpr;
2292     assert( nOrderBy>=nExpr || db->mallocFailed );
2293     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2294     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2295     pKeyDup = sqlite3DbMallocZero(db,
2296                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2297     if( pKeyDup ){
2298       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2299       pKeyDup->nField = (u16)nExpr;
2300       pKeyDup->enc = ENC(db);
2301       for(i=0; i<nExpr; i++){
2302         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2303         pKeyDup->aSortOrder[i] = 0;
2304       }
2305     }
2306   }
2307 
2308   /* Separate the left and the right query from one another
2309   */
2310   p->pPrior = 0;
2311   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2312   if( pPrior->pPrior==0 ){
2313     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2314   }
2315 
2316   /* Compute the limit registers */
2317   computeLimitRegisters(pParse, p, labelEnd);
2318   if( p->iLimit && op==TK_ALL ){
2319     regLimitA = ++pParse->nMem;
2320     regLimitB = ++pParse->nMem;
2321     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2322                                   regLimitA);
2323     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2324   }else{
2325     regLimitA = regLimitB = 0;
2326   }
2327   sqlite3ExprDelete(db, p->pLimit);
2328   p->pLimit = 0;
2329   sqlite3ExprDelete(db, p->pOffset);
2330   p->pOffset = 0;
2331 
2332   regAddrA = ++pParse->nMem;
2333   regEofA = ++pParse->nMem;
2334   regAddrB = ++pParse->nMem;
2335   regEofB = ++pParse->nMem;
2336   regOutA = ++pParse->nMem;
2337   regOutB = ++pParse->nMem;
2338   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2339   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2340 
2341   /* Jump past the various subroutines and coroutines to the main
2342   ** merge loop
2343   */
2344   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2345   addrSelectA = sqlite3VdbeCurrentAddr(v);
2346 
2347 
2348   /* Generate a coroutine to evaluate the SELECT statement to the
2349   ** left of the compound operator - the "A" select.
2350   */
2351   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2352   pPrior->iLimit = regLimitA;
2353   explainSetInteger(iSub1, pParse->iNextSelectId);
2354   sqlite3Select(pParse, pPrior, &destA);
2355   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2356   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2357   VdbeNoopComment((v, "End coroutine for left SELECT"));
2358 
2359   /* Generate a coroutine to evaluate the SELECT statement on
2360   ** the right - the "B" select
2361   */
2362   addrSelectB = sqlite3VdbeCurrentAddr(v);
2363   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2364   savedLimit = p->iLimit;
2365   savedOffset = p->iOffset;
2366   p->iLimit = regLimitB;
2367   p->iOffset = 0;
2368   explainSetInteger(iSub2, pParse->iNextSelectId);
2369   sqlite3Select(pParse, p, &destB);
2370   p->iLimit = savedLimit;
2371   p->iOffset = savedOffset;
2372   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2373   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2374   VdbeNoopComment((v, "End coroutine for right SELECT"));
2375 
2376   /* Generate a subroutine that outputs the current row of the A
2377   ** select as the next output row of the compound select.
2378   */
2379   VdbeNoopComment((v, "Output routine for A"));
2380   addrOutA = generateOutputSubroutine(pParse,
2381                  p, &destA, pDest, regOutA,
2382                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2383 
2384   /* Generate a subroutine that outputs the current row of the B
2385   ** select as the next output row of the compound select.
2386   */
2387   if( op==TK_ALL || op==TK_UNION ){
2388     VdbeNoopComment((v, "Output routine for B"));
2389     addrOutB = generateOutputSubroutine(pParse,
2390                  p, &destB, pDest, regOutB,
2391                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2392   }
2393 
2394   /* Generate a subroutine to run when the results from select A
2395   ** are exhausted and only data in select B remains.
2396   */
2397   VdbeNoopComment((v, "eof-A subroutine"));
2398   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2399     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2400   }else{
2401     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2402     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2403     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2404     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2405     p->nSelectRow += pPrior->nSelectRow;
2406   }
2407 
2408   /* Generate a subroutine to run when the results from select B
2409   ** are exhausted and only data in select A remains.
2410   */
2411   if( op==TK_INTERSECT ){
2412     addrEofB = addrEofA;
2413     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2414   }else{
2415     VdbeNoopComment((v, "eof-B subroutine"));
2416     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2417     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2418     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2419     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2420   }
2421 
2422   /* Generate code to handle the case of A<B
2423   */
2424   VdbeNoopComment((v, "A-lt-B subroutine"));
2425   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2426   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2427   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2428   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2429 
2430   /* Generate code to handle the case of A==B
2431   */
2432   if( op==TK_ALL ){
2433     addrAeqB = addrAltB;
2434   }else if( op==TK_INTERSECT ){
2435     addrAeqB = addrAltB;
2436     addrAltB++;
2437   }else{
2438     VdbeNoopComment((v, "A-eq-B subroutine"));
2439     addrAeqB =
2440     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2441     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2442     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2443   }
2444 
2445   /* Generate code to handle the case of A>B
2446   */
2447   VdbeNoopComment((v, "A-gt-B subroutine"));
2448   addrAgtB = sqlite3VdbeCurrentAddr(v);
2449   if( op==TK_ALL || op==TK_UNION ){
2450     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2451   }
2452   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2453   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2454   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2455 
2456   /* This code runs once to initialize everything.
2457   */
2458   sqlite3VdbeJumpHere(v, j1);
2459   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2460   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2461   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2462   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2463   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2464   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2465 
2466   /* Implement the main merge loop
2467   */
2468   sqlite3VdbeResolveLabel(v, labelCmpr);
2469   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2470   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2471                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2472   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2473 
2474   /* Release temporary registers
2475   */
2476   if( regPrev ){
2477     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2478   }
2479 
2480   /* Jump to the this point in order to terminate the query.
2481   */
2482   sqlite3VdbeResolveLabel(v, labelEnd);
2483 
2484   /* Set the number of output columns
2485   */
2486   if( pDest->eDest==SRT_Output ){
2487     Select *pFirst = pPrior;
2488     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2489     generateColumnNames(pParse, 0, pFirst->pEList);
2490   }
2491 
2492   /* Reassembly the compound query so that it will be freed correctly
2493   ** by the calling function */
2494   if( p->pPrior ){
2495     sqlite3SelectDelete(db, p->pPrior);
2496   }
2497   p->pPrior = pPrior;
2498 
2499   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2500   **** subqueries ****/
2501   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2502   return SQLITE_OK;
2503 }
2504 #endif
2505 
2506 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2507 /* Forward Declarations */
2508 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2509 static void substSelect(sqlite3*, Select *, int, ExprList *);
2510 
2511 /*
2512 ** Scan through the expression pExpr.  Replace every reference to
2513 ** a column in table number iTable with a copy of the iColumn-th
2514 ** entry in pEList.  (But leave references to the ROWID column
2515 ** unchanged.)
2516 **
2517 ** This routine is part of the flattening procedure.  A subquery
2518 ** whose result set is defined by pEList appears as entry in the
2519 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2520 ** FORM clause entry is iTable.  This routine make the necessary
2521 ** changes to pExpr so that it refers directly to the source table
2522 ** of the subquery rather the result set of the subquery.
2523 */
2524 static Expr *substExpr(
2525   sqlite3 *db,        /* Report malloc errors to this connection */
2526   Expr *pExpr,        /* Expr in which substitution occurs */
2527   int iTable,         /* Table to be substituted */
2528   ExprList *pEList    /* Substitute expressions */
2529 ){
2530   if( pExpr==0 ) return 0;
2531   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2532     if( pExpr->iColumn<0 ){
2533       pExpr->op = TK_NULL;
2534     }else{
2535       Expr *pNew;
2536       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2537       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2538       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2539       if( pNew && pExpr->pColl ){
2540         pNew->pColl = pExpr->pColl;
2541       }
2542       sqlite3ExprDelete(db, pExpr);
2543       pExpr = pNew;
2544     }
2545   }else{
2546     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2547     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2548     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2549       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2550     }else{
2551       substExprList(db, pExpr->x.pList, iTable, pEList);
2552     }
2553   }
2554   return pExpr;
2555 }
2556 static void substExprList(
2557   sqlite3 *db,         /* Report malloc errors here */
2558   ExprList *pList,     /* List to scan and in which to make substitutes */
2559   int iTable,          /* Table to be substituted */
2560   ExprList *pEList     /* Substitute values */
2561 ){
2562   int i;
2563   if( pList==0 ) return;
2564   for(i=0; i<pList->nExpr; i++){
2565     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2566   }
2567 }
2568 static void substSelect(
2569   sqlite3 *db,         /* Report malloc errors here */
2570   Select *p,           /* SELECT statement in which to make substitutions */
2571   int iTable,          /* Table to be replaced */
2572   ExprList *pEList     /* Substitute values */
2573 ){
2574   SrcList *pSrc;
2575   struct SrcList_item *pItem;
2576   int i;
2577   if( !p ) return;
2578   substExprList(db, p->pEList, iTable, pEList);
2579   substExprList(db, p->pGroupBy, iTable, pEList);
2580   substExprList(db, p->pOrderBy, iTable, pEList);
2581   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2582   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2583   substSelect(db, p->pPrior, iTable, pEList);
2584   pSrc = p->pSrc;
2585   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2586   if( ALWAYS(pSrc) ){
2587     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2588       substSelect(db, pItem->pSelect, iTable, pEList);
2589     }
2590   }
2591 }
2592 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2593 
2594 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2595 /*
2596 ** This routine attempts to flatten subqueries as a performance optimization.
2597 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
2598 **
2599 ** To understand the concept of flattening, consider the following
2600 ** query:
2601 **
2602 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2603 **
2604 ** The default way of implementing this query is to execute the
2605 ** subquery first and store the results in a temporary table, then
2606 ** run the outer query on that temporary table.  This requires two
2607 ** passes over the data.  Furthermore, because the temporary table
2608 ** has no indices, the WHERE clause on the outer query cannot be
2609 ** optimized.
2610 **
2611 ** This routine attempts to rewrite queries such as the above into
2612 ** a single flat select, like this:
2613 **
2614 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2615 **
2616 ** The code generated for this simpification gives the same result
2617 ** but only has to scan the data once.  And because indices might
2618 ** exist on the table t1, a complete scan of the data might be
2619 ** avoided.
2620 **
2621 ** Flattening is only attempted if all of the following are true:
2622 **
2623 **   (1)  The subquery and the outer query do not both use aggregates.
2624 **
2625 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2626 **
2627 **   (3)  The subquery is not the right operand of a left outer join
2628 **        (Originally ticket #306.  Strengthened by ticket #3300)
2629 **
2630 **   (4)  The subquery is not DISTINCT.
2631 **
2632 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
2633 **        sub-queries that were excluded from this optimization. Restriction
2634 **        (4) has since been expanded to exclude all DISTINCT subqueries.
2635 **
2636 **   (6)  The subquery does not use aggregates or the outer query is not
2637 **        DISTINCT.
2638 **
2639 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
2640 **        A FROM clause, consider adding a FROM close with the special
2641 **        table sqlite_once that consists of a single row containing a
2642 **        single NULL.
2643 **
2644 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2645 **
2646 **   (9)  The subquery does not use LIMIT or the outer query does not use
2647 **        aggregates.
2648 **
2649 **  (10)  The subquery does not use aggregates or the outer query does not
2650 **        use LIMIT.
2651 **
2652 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2653 **
2654 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
2655 **        a separate restriction deriving from ticket #350.
2656 **
2657 **  (13)  The subquery and outer query do not both use LIMIT.
2658 **
2659 **  (14)  The subquery does not use OFFSET.
2660 **
2661 **  (15)  The outer query is not part of a compound select or the
2662 **        subquery does not have a LIMIT clause.
2663 **        (See ticket #2339 and ticket [02a8e81d44]).
2664 **
2665 **  (16)  The outer query is not an aggregate or the subquery does
2666 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2667 **        until we introduced the group_concat() function.
2668 **
2669 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2670 **        compound clause made up entirely of non-aggregate queries, and
2671 **        the parent query:
2672 **
2673 **          * is not itself part of a compound select,
2674 **          * is not an aggregate or DISTINCT query, and
2675 **          * is not a join
2676 **
2677 **        The parent and sub-query may contain WHERE clauses. Subject to
2678 **        rules (11), (13) and (14), they may also contain ORDER BY,
2679 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
2680 **        operator other than UNION ALL because all the other compound
2681 **        operators have an implied DISTINCT which is disallowed by
2682 **        restriction (4).
2683 **
2684 **  (18)  If the sub-query is a compound select, then all terms of the
2685 **        ORDER by clause of the parent must be simple references to
2686 **        columns of the sub-query.
2687 **
2688 **  (19)  The subquery does not use LIMIT or the outer query does not
2689 **        have a WHERE clause.
2690 **
2691 **  (20)  If the sub-query is a compound select, then it must not use
2692 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2693 **        somewhat by saying that the terms of the ORDER BY clause must
2694 **        appear as unmodified result columns in the outer query.  But we
2695 **        have other optimizations in mind to deal with that case.
2696 **
2697 **  (21)  The subquery does not use LIMIT or the outer query is not
2698 **        DISTINCT.  (See ticket [752e1646fc]).
2699 **
2700 ** In this routine, the "p" parameter is a pointer to the outer query.
2701 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2702 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2703 **
2704 ** If flattening is not attempted, this routine is a no-op and returns 0.
2705 ** If flattening is attempted this routine returns 1.
2706 **
2707 ** All of the expression analysis must occur on both the outer query and
2708 ** the subquery before this routine runs.
2709 */
2710 static int flattenSubquery(
2711   Parse *pParse,       /* Parsing context */
2712   Select *p,           /* The parent or outer SELECT statement */
2713   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2714   int isAgg,           /* True if outer SELECT uses aggregate functions */
2715   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2716 ){
2717   const char *zSavedAuthContext = pParse->zAuthContext;
2718   Select *pParent;
2719   Select *pSub;       /* The inner query or "subquery" */
2720   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2721   SrcList *pSrc;      /* The FROM clause of the outer query */
2722   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2723   ExprList *pList;    /* The result set of the outer query */
2724   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2725   int i;              /* Loop counter */
2726   Expr *pWhere;                    /* The WHERE clause */
2727   struct SrcList_item *pSubitem;   /* The subquery */
2728   sqlite3 *db = pParse->db;
2729 
2730   /* Check to see if flattening is permitted.  Return 0 if not.
2731   */
2732   assert( p!=0 );
2733   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2734   if( db->flags & SQLITE_QueryFlattener ) return 0;
2735   pSrc = p->pSrc;
2736   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2737   pSubitem = &pSrc->a[iFrom];
2738   iParent = pSubitem->iCursor;
2739   pSub = pSubitem->pSelect;
2740   assert( pSub!=0 );
2741   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2742   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2743   pSubSrc = pSub->pSrc;
2744   assert( pSubSrc );
2745   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2746   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2747   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2748   ** became arbitrary expressions, we were forced to add restrictions (13)
2749   ** and (14). */
2750   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2751   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2752   if( p->pRightmost && pSub->pLimit ){
2753     return 0;                                            /* Restriction (15) */
2754   }
2755   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2756   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
2757   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2758      return 0;         /* Restrictions (8)(9) */
2759   }
2760   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2761      return 0;         /* Restriction (6)  */
2762   }
2763   if( p->pOrderBy && pSub->pOrderBy ){
2764      return 0;                                           /* Restriction (11) */
2765   }
2766   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2767   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2768   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2769      return 0;         /* Restriction (21) */
2770   }
2771 
2772   /* OBSOLETE COMMENT 1:
2773   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2774   ** not used as the right operand of an outer join.  Examples of why this
2775   ** is not allowed:
2776   **
2777   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2778   **
2779   ** If we flatten the above, we would get
2780   **
2781   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2782   **
2783   ** which is not at all the same thing.
2784   **
2785   ** OBSOLETE COMMENT 2:
2786   ** Restriction 12:  If the subquery is the right operand of a left outer
2787   ** join, make sure the subquery has no WHERE clause.
2788   ** An examples of why this is not allowed:
2789   **
2790   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2791   **
2792   ** If we flatten the above, we would get
2793   **
2794   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2795   **
2796   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2797   ** effectively converts the OUTER JOIN into an INNER JOIN.
2798   **
2799   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2800   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2801   ** is fraught with danger.  Best to avoid the whole thing.  If the
2802   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2803   */
2804   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2805     return 0;
2806   }
2807 
2808   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2809   ** use only the UNION ALL operator. And none of the simple select queries
2810   ** that make up the compound SELECT are allowed to be aggregate or distinct
2811   ** queries.
2812   */
2813   if( pSub->pPrior ){
2814     if( pSub->pOrderBy ){
2815       return 0;  /* Restriction 20 */
2816     }
2817     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2818       return 0;
2819     }
2820     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2821       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2822       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2823       assert( pSub->pSrc!=0 );
2824       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2825        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2826        || pSub1->pSrc->nSrc<1
2827       ){
2828         return 0;
2829       }
2830       testcase( pSub1->pSrc->nSrc>1 );
2831     }
2832 
2833     /* Restriction 18. */
2834     if( p->pOrderBy ){
2835       int ii;
2836       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2837         if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0;
2838       }
2839     }
2840   }
2841 
2842   /***** If we reach this point, flattening is permitted. *****/
2843 
2844   /* Authorize the subquery */
2845   pParse->zAuthContext = pSubitem->zName;
2846   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2847   pParse->zAuthContext = zSavedAuthContext;
2848 
2849   /* If the sub-query is a compound SELECT statement, then (by restrictions
2850   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2851   ** be of the form:
2852   **
2853   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2854   **
2855   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2856   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2857   ** OFFSET clauses and joins them to the left-hand-side of the original
2858   ** using UNION ALL operators. In this case N is the number of simple
2859   ** select statements in the compound sub-query.
2860   **
2861   ** Example:
2862   **
2863   **     SELECT a+1 FROM (
2864   **        SELECT x FROM tab
2865   **        UNION ALL
2866   **        SELECT y FROM tab
2867   **        UNION ALL
2868   **        SELECT abs(z*2) FROM tab2
2869   **     ) WHERE a!=5 ORDER BY 1
2870   **
2871   ** Transformed into:
2872   **
2873   **     SELECT x+1 FROM tab WHERE x+1!=5
2874   **     UNION ALL
2875   **     SELECT y+1 FROM tab WHERE y+1!=5
2876   **     UNION ALL
2877   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2878   **     ORDER BY 1
2879   **
2880   ** We call this the "compound-subquery flattening".
2881   */
2882   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2883     Select *pNew;
2884     ExprList *pOrderBy = p->pOrderBy;
2885     Expr *pLimit = p->pLimit;
2886     Select *pPrior = p->pPrior;
2887     p->pOrderBy = 0;
2888     p->pSrc = 0;
2889     p->pPrior = 0;
2890     p->pLimit = 0;
2891     pNew = sqlite3SelectDup(db, p, 0);
2892     p->pLimit = pLimit;
2893     p->pOrderBy = pOrderBy;
2894     p->pSrc = pSrc;
2895     p->op = TK_ALL;
2896     p->pRightmost = 0;
2897     if( pNew==0 ){
2898       pNew = pPrior;
2899     }else{
2900       pNew->pPrior = pPrior;
2901       pNew->pRightmost = 0;
2902     }
2903     p->pPrior = pNew;
2904     if( db->mallocFailed ) return 1;
2905   }
2906 
2907   /* Begin flattening the iFrom-th entry of the FROM clause
2908   ** in the outer query.
2909   */
2910   pSub = pSub1 = pSubitem->pSelect;
2911 
2912   /* Delete the transient table structure associated with the
2913   ** subquery
2914   */
2915   sqlite3DbFree(db, pSubitem->zDatabase);
2916   sqlite3DbFree(db, pSubitem->zName);
2917   sqlite3DbFree(db, pSubitem->zAlias);
2918   pSubitem->zDatabase = 0;
2919   pSubitem->zName = 0;
2920   pSubitem->zAlias = 0;
2921   pSubitem->pSelect = 0;
2922 
2923   /* Defer deleting the Table object associated with the
2924   ** subquery until code generation is
2925   ** complete, since there may still exist Expr.pTab entries that
2926   ** refer to the subquery even after flattening.  Ticket #3346.
2927   **
2928   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2929   */
2930   if( ALWAYS(pSubitem->pTab!=0) ){
2931     Table *pTabToDel = pSubitem->pTab;
2932     if( pTabToDel->nRef==1 ){
2933       Parse *pToplevel = sqlite3ParseToplevel(pParse);
2934       pTabToDel->pNextZombie = pToplevel->pZombieTab;
2935       pToplevel->pZombieTab = pTabToDel;
2936     }else{
2937       pTabToDel->nRef--;
2938     }
2939     pSubitem->pTab = 0;
2940   }
2941 
2942   /* The following loop runs once for each term in a compound-subquery
2943   ** flattening (as described above).  If we are doing a different kind
2944   ** of flattening - a flattening other than a compound-subquery flattening -
2945   ** then this loop only runs once.
2946   **
2947   ** This loop moves all of the FROM elements of the subquery into the
2948   ** the FROM clause of the outer query.  Before doing this, remember
2949   ** the cursor number for the original outer query FROM element in
2950   ** iParent.  The iParent cursor will never be used.  Subsequent code
2951   ** will scan expressions looking for iParent references and replace
2952   ** those references with expressions that resolve to the subquery FROM
2953   ** elements we are now copying in.
2954   */
2955   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2956     int nSubSrc;
2957     u8 jointype = 0;
2958     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2959     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2960     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2961 
2962     if( pSrc ){
2963       assert( pParent==p );  /* First time through the loop */
2964       jointype = pSubitem->jointype;
2965     }else{
2966       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2967       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2968       if( pSrc==0 ){
2969         assert( db->mallocFailed );
2970         break;
2971       }
2972     }
2973 
2974     /* The subquery uses a single slot of the FROM clause of the outer
2975     ** query.  If the subquery has more than one element in its FROM clause,
2976     ** then expand the outer query to make space for it to hold all elements
2977     ** of the subquery.
2978     **
2979     ** Example:
2980     **
2981     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2982     **
2983     ** The outer query has 3 slots in its FROM clause.  One slot of the
2984     ** outer query (the middle slot) is used by the subquery.  The next
2985     ** block of code will expand the out query to 4 slots.  The middle
2986     ** slot is expanded to two slots in order to make space for the
2987     ** two elements in the FROM clause of the subquery.
2988     */
2989     if( nSubSrc>1 ){
2990       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2991       if( db->mallocFailed ){
2992         break;
2993       }
2994     }
2995 
2996     /* Transfer the FROM clause terms from the subquery into the
2997     ** outer query.
2998     */
2999     for(i=0; i<nSubSrc; i++){
3000       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3001       pSrc->a[i+iFrom] = pSubSrc->a[i];
3002       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3003     }
3004     pSrc->a[iFrom].jointype = jointype;
3005 
3006     /* Now begin substituting subquery result set expressions for
3007     ** references to the iParent in the outer query.
3008     **
3009     ** Example:
3010     **
3011     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3012     **   \                     \_____________ subquery __________/          /
3013     **    \_____________________ outer query ______________________________/
3014     **
3015     ** We look at every expression in the outer query and every place we see
3016     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3017     */
3018     pList = pParent->pEList;
3019     for(i=0; i<pList->nExpr; i++){
3020       if( pList->a[i].zName==0 ){
3021         const char *zSpan = pList->a[i].zSpan;
3022         if( ALWAYS(zSpan) ){
3023           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
3024         }
3025       }
3026     }
3027     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3028     if( isAgg ){
3029       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3030       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3031     }
3032     if( pSub->pOrderBy ){
3033       assert( pParent->pOrderBy==0 );
3034       pParent->pOrderBy = pSub->pOrderBy;
3035       pSub->pOrderBy = 0;
3036     }else if( pParent->pOrderBy ){
3037       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3038     }
3039     if( pSub->pWhere ){
3040       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3041     }else{
3042       pWhere = 0;
3043     }
3044     if( subqueryIsAgg ){
3045       assert( pParent->pHaving==0 );
3046       pParent->pHaving = pParent->pWhere;
3047       pParent->pWhere = pWhere;
3048       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3049       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3050                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3051       assert( pParent->pGroupBy==0 );
3052       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3053     }else{
3054       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3055       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3056     }
3057 
3058     /* The flattened query is distinct if either the inner or the
3059     ** outer query is distinct.
3060     */
3061     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3062 
3063     /*
3064     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3065     **
3066     ** One is tempted to try to add a and b to combine the limits.  But this
3067     ** does not work if either limit is negative.
3068     */
3069     if( pSub->pLimit ){
3070       pParent->pLimit = pSub->pLimit;
3071       pSub->pLimit = 0;
3072     }
3073   }
3074 
3075   /* Finially, delete what is left of the subquery and return
3076   ** success.
3077   */
3078   sqlite3SelectDelete(db, pSub1);
3079 
3080   return 1;
3081 }
3082 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3083 
3084 /*
3085 ** Analyze the SELECT statement passed as an argument to see if it
3086 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
3087 ** it is, or 0 otherwise. At present, a query is considered to be
3088 ** a min()/max() query if:
3089 **
3090 **   1. There is a single object in the FROM clause.
3091 **
3092 **   2. There is a single expression in the result set, and it is
3093 **      either min(x) or max(x), where x is a column reference.
3094 */
3095 static u8 minMaxQuery(Select *p){
3096   Expr *pExpr;
3097   ExprList *pEList = p->pEList;
3098 
3099   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
3100   pExpr = pEList->a[0].pExpr;
3101   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3102   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
3103   pEList = pExpr->x.pList;
3104   if( pEList==0 || pEList->nExpr!=1 ) return 0;
3105   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
3106   assert( !ExprHasProperty(pExpr, EP_IntValue) );
3107   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
3108     return WHERE_ORDERBY_MIN;
3109   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
3110     return WHERE_ORDERBY_MAX;
3111   }
3112   return WHERE_ORDERBY_NORMAL;
3113 }
3114 
3115 /*
3116 ** The select statement passed as the first argument is an aggregate query.
3117 ** The second argment is the associated aggregate-info object. This
3118 ** function tests if the SELECT is of the form:
3119 **
3120 **   SELECT count(*) FROM <tbl>
3121 **
3122 ** where table is a database table, not a sub-select or view. If the query
3123 ** does match this pattern, then a pointer to the Table object representing
3124 ** <tbl> is returned. Otherwise, 0 is returned.
3125 */
3126 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3127   Table *pTab;
3128   Expr *pExpr;
3129 
3130   assert( !p->pGroupBy );
3131 
3132   if( p->pWhere || p->pEList->nExpr!=1
3133    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3134   ){
3135     return 0;
3136   }
3137   pTab = p->pSrc->a[0].pTab;
3138   pExpr = p->pEList->a[0].pExpr;
3139   assert( pTab && !pTab->pSelect && pExpr );
3140 
3141   if( IsVirtual(pTab) ) return 0;
3142   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3143   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3144   if( pExpr->flags&EP_Distinct ) return 0;
3145 
3146   return pTab;
3147 }
3148 
3149 /*
3150 ** If the source-list item passed as an argument was augmented with an
3151 ** INDEXED BY clause, then try to locate the specified index. If there
3152 ** was such a clause and the named index cannot be found, return
3153 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3154 ** pFrom->pIndex and return SQLITE_OK.
3155 */
3156 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3157   if( pFrom->pTab && pFrom->zIndex ){
3158     Table *pTab = pFrom->pTab;
3159     char *zIndex = pFrom->zIndex;
3160     Index *pIdx;
3161     for(pIdx=pTab->pIndex;
3162         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3163         pIdx=pIdx->pNext
3164     );
3165     if( !pIdx ){
3166       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3167       pParse->checkSchema = 1;
3168       return SQLITE_ERROR;
3169     }
3170     pFrom->pIndex = pIdx;
3171   }
3172   return SQLITE_OK;
3173 }
3174 
3175 /*
3176 ** This routine is a Walker callback for "expanding" a SELECT statement.
3177 ** "Expanding" means to do the following:
3178 **
3179 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3180 **         element of the FROM clause.
3181 **
3182 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3183 **         defines FROM clause.  When views appear in the FROM clause,
3184 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3185 **         that implements the view.  A copy is made of the view's SELECT
3186 **         statement so that we can freely modify or delete that statement
3187 **         without worrying about messing up the presistent representation
3188 **         of the view.
3189 **
3190 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3191 **         on joins and the ON and USING clause of joins.
3192 **
3193 **    (4)  Scan the list of columns in the result set (pEList) looking
3194 **         for instances of the "*" operator or the TABLE.* operator.
3195 **         If found, expand each "*" to be every column in every table
3196 **         and TABLE.* to be every column in TABLE.
3197 **
3198 */
3199 static int selectExpander(Walker *pWalker, Select *p){
3200   Parse *pParse = pWalker->pParse;
3201   int i, j, k;
3202   SrcList *pTabList;
3203   ExprList *pEList;
3204   struct SrcList_item *pFrom;
3205   sqlite3 *db = pParse->db;
3206 
3207   if( db->mallocFailed  ){
3208     return WRC_Abort;
3209   }
3210   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3211     return WRC_Prune;
3212   }
3213   p->selFlags |= SF_Expanded;
3214   pTabList = p->pSrc;
3215   pEList = p->pEList;
3216 
3217   /* Make sure cursor numbers have been assigned to all entries in
3218   ** the FROM clause of the SELECT statement.
3219   */
3220   sqlite3SrcListAssignCursors(pParse, pTabList);
3221 
3222   /* Look up every table named in the FROM clause of the select.  If
3223   ** an entry of the FROM clause is a subquery instead of a table or view,
3224   ** then create a transient table structure to describe the subquery.
3225   */
3226   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3227     Table *pTab;
3228     if( pFrom->pTab!=0 ){
3229       /* This statement has already been prepared.  There is no need
3230       ** to go further. */
3231       assert( i==0 );
3232       return WRC_Prune;
3233     }
3234     if( pFrom->zName==0 ){
3235 #ifndef SQLITE_OMIT_SUBQUERY
3236       Select *pSel = pFrom->pSelect;
3237       /* A sub-query in the FROM clause of a SELECT */
3238       assert( pSel!=0 );
3239       assert( pFrom->pTab==0 );
3240       sqlite3WalkSelect(pWalker, pSel);
3241       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3242       if( pTab==0 ) return WRC_Abort;
3243       pTab->nRef = 1;
3244       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3245       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3246       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3247       pTab->iPKey = -1;
3248       pTab->nRowEst = 1000000;
3249       pTab->tabFlags |= TF_Ephemeral;
3250 #endif
3251     }else{
3252       /* An ordinary table or view name in the FROM clause */
3253       assert( pFrom->pTab==0 );
3254       pFrom->pTab = pTab =
3255         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3256       if( pTab==0 ) return WRC_Abort;
3257       pTab->nRef++;
3258 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3259       if( pTab->pSelect || IsVirtual(pTab) ){
3260         /* We reach here if the named table is a really a view */
3261         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3262         assert( pFrom->pSelect==0 );
3263         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3264         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3265       }
3266 #endif
3267     }
3268 
3269     /* Locate the index named by the INDEXED BY clause, if any. */
3270     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3271       return WRC_Abort;
3272     }
3273   }
3274 
3275   /* Process NATURAL keywords, and ON and USING clauses of joins.
3276   */
3277   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3278     return WRC_Abort;
3279   }
3280 
3281   /* For every "*" that occurs in the column list, insert the names of
3282   ** all columns in all tables.  And for every TABLE.* insert the names
3283   ** of all columns in TABLE.  The parser inserted a special expression
3284   ** with the TK_ALL operator for each "*" that it found in the column list.
3285   ** The following code just has to locate the TK_ALL expressions and expand
3286   ** each one to the list of all columns in all tables.
3287   **
3288   ** The first loop just checks to see if there are any "*" operators
3289   ** that need expanding.
3290   */
3291   for(k=0; k<pEList->nExpr; k++){
3292     Expr *pE = pEList->a[k].pExpr;
3293     if( pE->op==TK_ALL ) break;
3294     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3295     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3296     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3297   }
3298   if( k<pEList->nExpr ){
3299     /*
3300     ** If we get here it means the result set contains one or more "*"
3301     ** operators that need to be expanded.  Loop through each expression
3302     ** in the result set and expand them one by one.
3303     */
3304     struct ExprList_item *a = pEList->a;
3305     ExprList *pNew = 0;
3306     int flags = pParse->db->flags;
3307     int longNames = (flags & SQLITE_FullColNames)!=0
3308                       && (flags & SQLITE_ShortColNames)==0;
3309 
3310     for(k=0; k<pEList->nExpr; k++){
3311       Expr *pE = a[k].pExpr;
3312       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3313       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3314         /* This particular expression does not need to be expanded.
3315         */
3316         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3317         if( pNew ){
3318           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3319           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3320           a[k].zName = 0;
3321           a[k].zSpan = 0;
3322         }
3323         a[k].pExpr = 0;
3324       }else{
3325         /* This expression is a "*" or a "TABLE.*" and needs to be
3326         ** expanded. */
3327         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3328         char *zTName;            /* text of name of TABLE */
3329         if( pE->op==TK_DOT ){
3330           assert( pE->pLeft!=0 );
3331           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3332           zTName = pE->pLeft->u.zToken;
3333         }else{
3334           zTName = 0;
3335         }
3336         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3337           Table *pTab = pFrom->pTab;
3338           char *zTabName = pFrom->zAlias;
3339           if( zTabName==0 ){
3340             zTabName = pTab->zName;
3341           }
3342           if( db->mallocFailed ) break;
3343           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3344             continue;
3345           }
3346           tableSeen = 1;
3347           for(j=0; j<pTab->nCol; j++){
3348             Expr *pExpr, *pRight;
3349             char *zName = pTab->aCol[j].zName;
3350             char *zColname;  /* The computed column name */
3351             char *zToFree;   /* Malloced string that needs to be freed */
3352             Token sColname;  /* Computed column name as a token */
3353 
3354             /* If a column is marked as 'hidden' (currently only possible
3355             ** for virtual tables), do not include it in the expanded
3356             ** result-set list.
3357             */
3358             if( IsHiddenColumn(&pTab->aCol[j]) ){
3359               assert(IsVirtual(pTab));
3360               continue;
3361             }
3362 
3363             if( i>0 && zTName==0 ){
3364               if( (pFrom->jointype & JT_NATURAL)!=0
3365                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3366               ){
3367                 /* In a NATURAL join, omit the join columns from the
3368                 ** table to the right of the join */
3369                 continue;
3370               }
3371               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3372                 /* In a join with a USING clause, omit columns in the
3373                 ** using clause from the table on the right. */
3374                 continue;
3375               }
3376             }
3377             pRight = sqlite3Expr(db, TK_ID, zName);
3378             zColname = zName;
3379             zToFree = 0;
3380             if( longNames || pTabList->nSrc>1 ){
3381               Expr *pLeft;
3382               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3383               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3384               if( longNames ){
3385                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3386                 zToFree = zColname;
3387               }
3388             }else{
3389               pExpr = pRight;
3390             }
3391             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3392             sColname.z = zColname;
3393             sColname.n = sqlite3Strlen30(zColname);
3394             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3395             sqlite3DbFree(db, zToFree);
3396           }
3397         }
3398         if( !tableSeen ){
3399           if( zTName ){
3400             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3401           }else{
3402             sqlite3ErrorMsg(pParse, "no tables specified");
3403           }
3404         }
3405       }
3406     }
3407     sqlite3ExprListDelete(db, pEList);
3408     p->pEList = pNew;
3409   }
3410 #if SQLITE_MAX_COLUMN
3411   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3412     sqlite3ErrorMsg(pParse, "too many columns in result set");
3413   }
3414 #endif
3415   return WRC_Continue;
3416 }
3417 
3418 /*
3419 ** No-op routine for the parse-tree walker.
3420 **
3421 ** When this routine is the Walker.xExprCallback then expression trees
3422 ** are walked without any actions being taken at each node.  Presumably,
3423 ** when this routine is used for Walker.xExprCallback then
3424 ** Walker.xSelectCallback is set to do something useful for every
3425 ** subquery in the parser tree.
3426 */
3427 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3428   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3429   return WRC_Continue;
3430 }
3431 
3432 /*
3433 ** This routine "expands" a SELECT statement and all of its subqueries.
3434 ** For additional information on what it means to "expand" a SELECT
3435 ** statement, see the comment on the selectExpand worker callback above.
3436 **
3437 ** Expanding a SELECT statement is the first step in processing a
3438 ** SELECT statement.  The SELECT statement must be expanded before
3439 ** name resolution is performed.
3440 **
3441 ** If anything goes wrong, an error message is written into pParse.
3442 ** The calling function can detect the problem by looking at pParse->nErr
3443 ** and/or pParse->db->mallocFailed.
3444 */
3445 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3446   Walker w;
3447   w.xSelectCallback = selectExpander;
3448   w.xExprCallback = exprWalkNoop;
3449   w.pParse = pParse;
3450   sqlite3WalkSelect(&w, pSelect);
3451 }
3452 
3453 
3454 #ifndef SQLITE_OMIT_SUBQUERY
3455 /*
3456 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3457 ** interface.
3458 **
3459 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3460 ** information to the Table structure that represents the result set
3461 ** of that subquery.
3462 **
3463 ** The Table structure that represents the result set was constructed
3464 ** by selectExpander() but the type and collation information was omitted
3465 ** at that point because identifiers had not yet been resolved.  This
3466 ** routine is called after identifier resolution.
3467 */
3468 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3469   Parse *pParse;
3470   int i;
3471   SrcList *pTabList;
3472   struct SrcList_item *pFrom;
3473 
3474   assert( p->selFlags & SF_Resolved );
3475   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3476     p->selFlags |= SF_HasTypeInfo;
3477     pParse = pWalker->pParse;
3478     pTabList = p->pSrc;
3479     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3480       Table *pTab = pFrom->pTab;
3481       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3482         /* A sub-query in the FROM clause of a SELECT */
3483         Select *pSel = pFrom->pSelect;
3484         assert( pSel );
3485         while( pSel->pPrior ) pSel = pSel->pPrior;
3486         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3487       }
3488     }
3489   }
3490   return WRC_Continue;
3491 }
3492 #endif
3493 
3494 
3495 /*
3496 ** This routine adds datatype and collating sequence information to
3497 ** the Table structures of all FROM-clause subqueries in a
3498 ** SELECT statement.
3499 **
3500 ** Use this routine after name resolution.
3501 */
3502 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3503 #ifndef SQLITE_OMIT_SUBQUERY
3504   Walker w;
3505   w.xSelectCallback = selectAddSubqueryTypeInfo;
3506   w.xExprCallback = exprWalkNoop;
3507   w.pParse = pParse;
3508   sqlite3WalkSelect(&w, pSelect);
3509 #endif
3510 }
3511 
3512 
3513 /*
3514 ** This routine sets of a SELECT statement for processing.  The
3515 ** following is accomplished:
3516 **
3517 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3518 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3519 **     *  ON and USING clauses are shifted into WHERE statements
3520 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3521 **     *  Identifiers in expression are matched to tables.
3522 **
3523 ** This routine acts recursively on all subqueries within the SELECT.
3524 */
3525 void sqlite3SelectPrep(
3526   Parse *pParse,         /* The parser context */
3527   Select *p,             /* The SELECT statement being coded. */
3528   NameContext *pOuterNC  /* Name context for container */
3529 ){
3530   sqlite3 *db;
3531   if( NEVER(p==0) ) return;
3532   db = pParse->db;
3533   if( p->selFlags & SF_HasTypeInfo ) return;
3534   sqlite3SelectExpand(pParse, p);
3535   if( pParse->nErr || db->mallocFailed ) return;
3536   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3537   if( pParse->nErr || db->mallocFailed ) return;
3538   sqlite3SelectAddTypeInfo(pParse, p);
3539 }
3540 
3541 /*
3542 ** Reset the aggregate accumulator.
3543 **
3544 ** The aggregate accumulator is a set of memory cells that hold
3545 ** intermediate results while calculating an aggregate.  This
3546 ** routine simply stores NULLs in all of those memory cells.
3547 */
3548 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3549   Vdbe *v = pParse->pVdbe;
3550   int i;
3551   struct AggInfo_func *pFunc;
3552   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3553     return;
3554   }
3555   for(i=0; i<pAggInfo->nColumn; i++){
3556     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3557   }
3558   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3559     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3560     if( pFunc->iDistinct>=0 ){
3561       Expr *pE = pFunc->pExpr;
3562       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3563       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3564         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3565            "argument");
3566         pFunc->iDistinct = -1;
3567       }else{
3568         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3569         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3570                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3571       }
3572     }
3573   }
3574 }
3575 
3576 /*
3577 ** Invoke the OP_AggFinalize opcode for every aggregate function
3578 ** in the AggInfo structure.
3579 */
3580 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3581   Vdbe *v = pParse->pVdbe;
3582   int i;
3583   struct AggInfo_func *pF;
3584   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3585     ExprList *pList = pF->pExpr->x.pList;
3586     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3587     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3588                       (void*)pF->pFunc, P4_FUNCDEF);
3589   }
3590 }
3591 
3592 /*
3593 ** Update the accumulator memory cells for an aggregate based on
3594 ** the current cursor position.
3595 */
3596 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3597   Vdbe *v = pParse->pVdbe;
3598   int i;
3599   int regHit = 0;
3600   int addrHitTest = 0;
3601   struct AggInfo_func *pF;
3602   struct AggInfo_col *pC;
3603 
3604   pAggInfo->directMode = 1;
3605   sqlite3ExprCacheClear(pParse);
3606   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3607     int nArg;
3608     int addrNext = 0;
3609     int regAgg;
3610     ExprList *pList = pF->pExpr->x.pList;
3611     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3612     if( pList ){
3613       nArg = pList->nExpr;
3614       regAgg = sqlite3GetTempRange(pParse, nArg);
3615       sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
3616     }else{
3617       nArg = 0;
3618       regAgg = 0;
3619     }
3620     if( pF->iDistinct>=0 ){
3621       addrNext = sqlite3VdbeMakeLabel(v);
3622       assert( nArg==1 );
3623       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3624     }
3625     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3626       CollSeq *pColl = 0;
3627       struct ExprList_item *pItem;
3628       int j;
3629       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3630       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3631         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3632       }
3633       if( !pColl ){
3634         pColl = pParse->db->pDfltColl;
3635       }
3636       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
3637       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
3638     }
3639     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3640                       (void*)pF->pFunc, P4_FUNCDEF);
3641     sqlite3VdbeChangeP5(v, (u8)nArg);
3642     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3643     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3644     if( addrNext ){
3645       sqlite3VdbeResolveLabel(v, addrNext);
3646       sqlite3ExprCacheClear(pParse);
3647     }
3648   }
3649 
3650   /* Before populating the accumulator registers, clear the column cache.
3651   ** Otherwise, if any of the required column values are already present
3652   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3653   ** to pC->iMem. But by the time the value is used, the original register
3654   ** may have been used, invalidating the underlying buffer holding the
3655   ** text or blob value. See ticket [883034dcb5].
3656   **
3657   ** Another solution would be to change the OP_SCopy used to copy cached
3658   ** values to an OP_Copy.
3659   */
3660   if( regHit ){
3661     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit);
3662   }
3663   sqlite3ExprCacheClear(pParse);
3664   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3665     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3666   }
3667   pAggInfo->directMode = 0;
3668   sqlite3ExprCacheClear(pParse);
3669   if( addrHitTest ){
3670     sqlite3VdbeJumpHere(v, addrHitTest);
3671   }
3672 }
3673 
3674 /*
3675 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3676 ** count(*) query ("SELECT count(*) FROM pTab").
3677 */
3678 #ifndef SQLITE_OMIT_EXPLAIN
3679 static void explainSimpleCount(
3680   Parse *pParse,                  /* Parse context */
3681   Table *pTab,                    /* Table being queried */
3682   Index *pIdx                     /* Index used to optimize scan, or NULL */
3683 ){
3684   if( pParse->explain==2 ){
3685     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
3686         pTab->zName,
3687         pIdx ? "USING COVERING INDEX " : "",
3688         pIdx ? pIdx->zName : "",
3689         pTab->nRowEst
3690     );
3691     sqlite3VdbeAddOp4(
3692         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3693     );
3694   }
3695 }
3696 #else
3697 # define explainSimpleCount(a,b,c)
3698 #endif
3699 
3700 /*
3701 ** Generate code for the SELECT statement given in the p argument.
3702 **
3703 ** The results are distributed in various ways depending on the
3704 ** contents of the SelectDest structure pointed to by argument pDest
3705 ** as follows:
3706 **
3707 **     pDest->eDest    Result
3708 **     ------------    -------------------------------------------
3709 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3710 **                     opcode) for each row in the result set.
3711 **
3712 **     SRT_Mem         Only valid if the result is a single column.
3713 **                     Store the first column of the first result row
3714 **                     in register pDest->iParm then abandon the rest
3715 **                     of the query.  This destination implies "LIMIT 1".
3716 **
3717 **     SRT_Set         The result must be a single column.  Store each
3718 **                     row of result as the key in table pDest->iParm.
3719 **                     Apply the affinity pDest->affinity before storing
3720 **                     results.  Used to implement "IN (SELECT ...)".
3721 **
3722 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3723 **
3724 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3725 **
3726 **     SRT_Table       Store results in temporary table pDest->iParm.
3727 **                     This is like SRT_EphemTab except that the table
3728 **                     is assumed to already be open.
3729 **
3730 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3731 **                     the result there. The cursor is left open after
3732 **                     returning.  This is like SRT_Table except that
3733 **                     this destination uses OP_OpenEphemeral to create
3734 **                     the table first.
3735 **
3736 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3737 **                     results each time it is invoked.  The entry point
3738 **                     of the co-routine is stored in register pDest->iParm.
3739 **
3740 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3741 **                     set is not empty.
3742 **
3743 **     SRT_Discard     Throw the results away.  This is used by SELECT
3744 **                     statements within triggers whose only purpose is
3745 **                     the side-effects of functions.
3746 **
3747 ** This routine returns the number of errors.  If any errors are
3748 ** encountered, then an appropriate error message is left in
3749 ** pParse->zErrMsg.
3750 **
3751 ** This routine does NOT free the Select structure passed in.  The
3752 ** calling function needs to do that.
3753 */
3754 int sqlite3Select(
3755   Parse *pParse,         /* The parser context */
3756   Select *p,             /* The SELECT statement being coded. */
3757   SelectDest *pDest      /* What to do with the query results */
3758 ){
3759   int i, j;              /* Loop counters */
3760   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3761   Vdbe *v;               /* The virtual machine under construction */
3762   int isAgg;             /* True for select lists like "count(*)" */
3763   ExprList *pEList;      /* List of columns to extract. */
3764   SrcList *pTabList;     /* List of tables to select from */
3765   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3766   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3767   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3768   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3769   int isDistinct;        /* True if the DISTINCT keyword is present */
3770   int distinct;          /* Table to use for the distinct set */
3771   int rc = 1;            /* Value to return from this function */
3772   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3773   int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */
3774   AggInfo sAggInfo;      /* Information used by aggregate queries */
3775   int iEnd;              /* Address of the end of the query */
3776   sqlite3 *db;           /* The database connection */
3777 
3778 #ifndef SQLITE_OMIT_EXPLAIN
3779   int iRestoreSelectId = pParse->iSelectId;
3780   pParse->iSelectId = pParse->iNextSelectId++;
3781 #endif
3782 
3783   db = pParse->db;
3784   if( p==0 || db->mallocFailed || pParse->nErr ){
3785     return 1;
3786   }
3787   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3788   memset(&sAggInfo, 0, sizeof(sAggInfo));
3789 
3790   if( IgnorableOrderby(pDest) ){
3791     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3792            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3793     /* If ORDER BY makes no difference in the output then neither does
3794     ** DISTINCT so it can be removed too. */
3795     sqlite3ExprListDelete(db, p->pOrderBy);
3796     p->pOrderBy = 0;
3797     p->selFlags &= ~SF_Distinct;
3798   }
3799   sqlite3SelectPrep(pParse, p, 0);
3800   pOrderBy = p->pOrderBy;
3801   pTabList = p->pSrc;
3802   pEList = p->pEList;
3803   if( pParse->nErr || db->mallocFailed ){
3804     goto select_end;
3805   }
3806   isAgg = (p->selFlags & SF_Aggregate)!=0;
3807   assert( pEList!=0 );
3808 
3809   /* Begin generating code.
3810   */
3811   v = sqlite3GetVdbe(pParse);
3812   if( v==0 ) goto select_end;
3813 
3814   /* If writing to memory or generating a set
3815   ** only a single column may be output.
3816   */
3817 #ifndef SQLITE_OMIT_SUBQUERY
3818   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3819     goto select_end;
3820   }
3821 #endif
3822 
3823   /* Generate code for all sub-queries in the FROM clause
3824   */
3825 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3826   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3827     struct SrcList_item *pItem = &pTabList->a[i];
3828     SelectDest dest;
3829     Select *pSub = pItem->pSelect;
3830     int isAggSub;
3831 
3832     if( pSub==0 ) continue;
3833     if( pItem->addrFillSub ){
3834       sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
3835       continue;
3836     }
3837 
3838     /* Increment Parse.nHeight by the height of the largest expression
3839     ** tree refered to by this, the parent select. The child select
3840     ** may contain expression trees of at most
3841     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3842     ** more conservative than necessary, but much easier than enforcing
3843     ** an exact limit.
3844     */
3845     pParse->nHeight += sqlite3SelectExprHeight(p);
3846 
3847     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3848     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3849       /* This subquery can be absorbed into its parent. */
3850       if( isAggSub ){
3851         isAgg = 1;
3852         p->selFlags |= SF_Aggregate;
3853       }
3854       i = -1;
3855     }else{
3856       /* Generate a subroutine that will fill an ephemeral table with
3857       ** the content of this subquery.  pItem->addrFillSub will point
3858       ** to the address of the generated subroutine.  pItem->regReturn
3859       ** is a register allocated to hold the subroutine return address
3860       */
3861       int topAddr;
3862       int onceAddr = 0;
3863       int retAddr;
3864       assert( pItem->addrFillSub==0 );
3865       pItem->regReturn = ++pParse->nMem;
3866       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
3867       pItem->addrFillSub = topAddr+1;
3868       VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
3869       if( pItem->isCorrelated==0 ){
3870         /* If the subquery is no correlated and if we are not inside of
3871         ** a trigger, then we only need to compute the value of the subquery
3872         ** once. */
3873         onceAddr = sqlite3CodeOnce(pParse);
3874       }
3875       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3876       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
3877       sqlite3Select(pParse, pSub, &dest);
3878       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
3879       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
3880       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
3881       VdbeComment((v, "end %s", pItem->pTab->zName));
3882       sqlite3VdbeChangeP1(v, topAddr, retAddr);
3883       sqlite3ClearTempRegCache(pParse);
3884     }
3885     if( /*pParse->nErr ||*/ db->mallocFailed ){
3886       goto select_end;
3887     }
3888     pParse->nHeight -= sqlite3SelectExprHeight(p);
3889     pTabList = p->pSrc;
3890     if( !IgnorableOrderby(pDest) ){
3891       pOrderBy = p->pOrderBy;
3892     }
3893   }
3894   pEList = p->pEList;
3895 #endif
3896   pWhere = p->pWhere;
3897   pGroupBy = p->pGroupBy;
3898   pHaving = p->pHaving;
3899   isDistinct = (p->selFlags & SF_Distinct)!=0;
3900 
3901 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3902   /* If there is are a sequence of queries, do the earlier ones first.
3903   */
3904   if( p->pPrior ){
3905     if( p->pRightmost==0 ){
3906       Select *pLoop, *pRight = 0;
3907       int cnt = 0;
3908       int mxSelect;
3909       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3910         pLoop->pRightmost = p;
3911         pLoop->pNext = pRight;
3912         pRight = pLoop;
3913       }
3914       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3915       if( mxSelect && cnt>mxSelect ){
3916         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3917         goto select_end;
3918       }
3919     }
3920     rc = multiSelect(pParse, p, pDest);
3921     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
3922     return rc;
3923   }
3924 #endif
3925 
3926   /* If there is both a GROUP BY and an ORDER BY clause and they are
3927   ** identical, then disable the ORDER BY clause since the GROUP BY
3928   ** will cause elements to come out in the correct order.  This is
3929   ** an optimization - the correct answer should result regardless.
3930   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
3931   ** to disable this optimization for testing purposes.
3932   */
3933   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
3934          && (db->flags & SQLITE_GroupByOrder)==0 ){
3935     pOrderBy = 0;
3936   }
3937 
3938   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
3939   ** if the select-list is the same as the ORDER BY list, then this query
3940   ** can be rewritten as a GROUP BY. In other words, this:
3941   **
3942   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
3943   **
3944   ** is transformed to:
3945   **
3946   **     SELECT xyz FROM ... GROUP BY xyz
3947   **
3948   ** The second form is preferred as a single index (or temp-table) may be
3949   ** used for both the ORDER BY and DISTINCT processing. As originally
3950   ** written the query must use a temp-table for at least one of the ORDER
3951   ** BY and DISTINCT, and an index or separate temp-table for the other.
3952   */
3953   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
3954    && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
3955   ){
3956     p->selFlags &= ~SF_Distinct;
3957     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3958     pGroupBy = p->pGroupBy;
3959     pOrderBy = 0;
3960   }
3961 
3962   /* If there is an ORDER BY clause, then this sorting
3963   ** index might end up being unused if the data can be
3964   ** extracted in pre-sorted order.  If that is the case, then the
3965   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3966   ** we figure out that the sorting index is not needed.  The addrSortIndex
3967   ** variable is used to facilitate that change.
3968   */
3969   if( pOrderBy ){
3970     KeyInfo *pKeyInfo;
3971     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3972     pOrderBy->iECursor = pParse->nTab++;
3973     p->addrOpenEphm[2] = addrSortIndex =
3974       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3975                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3976                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3977   }else{
3978     addrSortIndex = -1;
3979   }
3980 
3981   /* If the output is destined for a temporary table, open that table.
3982   */
3983   if( pDest->eDest==SRT_EphemTab ){
3984     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3985   }
3986 
3987   /* Set the limiter.
3988   */
3989   iEnd = sqlite3VdbeMakeLabel(v);
3990   p->nSelectRow = (double)LARGEST_INT64;
3991   computeLimitRegisters(pParse, p, iEnd);
3992   if( p->iLimit==0 && addrSortIndex>=0 ){
3993     sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
3994     p->selFlags |= SF_UseSorter;
3995   }
3996 
3997   /* Open a virtual index to use for the distinct set.
3998   */
3999   if( p->selFlags & SF_Distinct ){
4000     KeyInfo *pKeyInfo;
4001     distinct = pParse->nTab++;
4002     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
4003     addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
4004         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4005     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4006   }else{
4007     distinct = addrDistinctIndex = -1;
4008   }
4009 
4010   /* Aggregate and non-aggregate queries are handled differently */
4011   if( !isAgg && pGroupBy==0 ){
4012     ExprList *pDist = (isDistinct ? p->pEList : 0);
4013 
4014     /* Begin the database scan. */
4015     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0);
4016     if( pWInfo==0 ) goto select_end;
4017     if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
4018 
4019     /* If sorting index that was created by a prior OP_OpenEphemeral
4020     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4021     ** into an OP_Noop.
4022     */
4023     if( addrSortIndex>=0 && pOrderBy==0 ){
4024       sqlite3VdbeChangeToNoop(v, addrSortIndex);
4025       p->addrOpenEphm[2] = -1;
4026     }
4027 
4028     if( pWInfo->eDistinct ){
4029       VdbeOp *pOp;                /* No longer required OpenEphemeral instr. */
4030 
4031       assert( addrDistinctIndex>=0 );
4032       pOp = sqlite3VdbeGetOp(v, addrDistinctIndex);
4033 
4034       assert( isDistinct );
4035       assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
4036            || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE
4037       );
4038       distinct = -1;
4039       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){
4040         int iJump;
4041         int iExpr;
4042         int iFlag = ++pParse->nMem;
4043         int iBase = pParse->nMem+1;
4044         int iBase2 = iBase + pEList->nExpr;
4045         pParse->nMem += (pEList->nExpr*2);
4046 
4047         /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The
4048         ** OP_Integer initializes the "first row" flag.  */
4049         pOp->opcode = OP_Integer;
4050         pOp->p1 = 1;
4051         pOp->p2 = iFlag;
4052 
4053         sqlite3ExprCodeExprList(pParse, pEList, iBase, 1);
4054         iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1;
4055         sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1);
4056         for(iExpr=0; iExpr<pEList->nExpr; iExpr++){
4057           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr);
4058           sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr);
4059           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
4060           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
4061         }
4062         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue);
4063 
4064         sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag);
4065         assert( sqlite3VdbeCurrentAddr(v)==iJump );
4066         sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr);
4067       }else{
4068         pOp->opcode = OP_Noop;
4069       }
4070     }
4071 
4072     /* Use the standard inner loop. */
4073     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest,
4074                     pWInfo->iContinue, pWInfo->iBreak);
4075 
4076     /* End the database scan loop.
4077     */
4078     sqlite3WhereEnd(pWInfo);
4079   }else{
4080     /* This is the processing for aggregate queries */
4081     NameContext sNC;    /* Name context for processing aggregate information */
4082     int iAMem;          /* First Mem address for storing current GROUP BY */
4083     int iBMem;          /* First Mem address for previous GROUP BY */
4084     int iUseFlag;       /* Mem address holding flag indicating that at least
4085                         ** one row of the input to the aggregator has been
4086                         ** processed */
4087     int iAbortFlag;     /* Mem address which causes query abort if positive */
4088     int groupBySort;    /* Rows come from source in GROUP BY order */
4089     int addrEnd;        /* End of processing for this SELECT */
4090     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4091     int sortOut = 0;    /* Output register from the sorter */
4092 
4093     /* Remove any and all aliases between the result set and the
4094     ** GROUP BY clause.
4095     */
4096     if( pGroupBy ){
4097       int k;                        /* Loop counter */
4098       struct ExprList_item *pItem;  /* For looping over expression in a list */
4099 
4100       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4101         pItem->iAlias = 0;
4102       }
4103       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4104         pItem->iAlias = 0;
4105       }
4106       if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
4107     }else{
4108       p->nSelectRow = (double)1;
4109     }
4110 
4111 
4112     /* Create a label to jump to when we want to abort the query */
4113     addrEnd = sqlite3VdbeMakeLabel(v);
4114 
4115     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4116     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4117     ** SELECT statement.
4118     */
4119     memset(&sNC, 0, sizeof(sNC));
4120     sNC.pParse = pParse;
4121     sNC.pSrcList = pTabList;
4122     sNC.pAggInfo = &sAggInfo;
4123     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4124     sAggInfo.pGroupBy = pGroupBy;
4125     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4126     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
4127     if( pHaving ){
4128       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4129     }
4130     sAggInfo.nAccumulator = sAggInfo.nColumn;
4131     for(i=0; i<sAggInfo.nFunc; i++){
4132       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4133       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4134     }
4135     if( db->mallocFailed ) goto select_end;
4136 
4137     /* Processing for aggregates with GROUP BY is very different and
4138     ** much more complex than aggregates without a GROUP BY.
4139     */
4140     if( pGroupBy ){
4141       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4142       int j1;             /* A-vs-B comparision jump */
4143       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4144       int regOutputRow;   /* Return address register for output subroutine */
4145       int addrSetAbort;   /* Set the abort flag and return */
4146       int addrTopOfLoop;  /* Top of the input loop */
4147       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4148       int addrReset;      /* Subroutine for resetting the accumulator */
4149       int regReset;       /* Return address register for reset subroutine */
4150 
4151       /* If there is a GROUP BY clause we might need a sorting index to
4152       ** implement it.  Allocate that sorting index now.  If it turns out
4153       ** that we do not need it after all, the OP_SorterOpen instruction
4154       ** will be converted into a Noop.
4155       */
4156       sAggInfo.sortingIdx = pParse->nTab++;
4157       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
4158       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4159           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4160           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4161 
4162       /* Initialize memory locations used by GROUP BY aggregate processing
4163       */
4164       iUseFlag = ++pParse->nMem;
4165       iAbortFlag = ++pParse->nMem;
4166       regOutputRow = ++pParse->nMem;
4167       addrOutputRow = sqlite3VdbeMakeLabel(v);
4168       regReset = ++pParse->nMem;
4169       addrReset = sqlite3VdbeMakeLabel(v);
4170       iAMem = pParse->nMem + 1;
4171       pParse->nMem += pGroupBy->nExpr;
4172       iBMem = pParse->nMem + 1;
4173       pParse->nMem += pGroupBy->nExpr;
4174       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4175       VdbeComment((v, "clear abort flag"));
4176       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4177       VdbeComment((v, "indicate accumulator empty"));
4178       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4179 
4180       /* Begin a loop that will extract all source rows in GROUP BY order.
4181       ** This might involve two separate loops with an OP_Sort in between, or
4182       ** it might be a single loop that uses an index to extract information
4183       ** in the right order to begin with.
4184       */
4185       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4186       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
4187       if( pWInfo==0 ) goto select_end;
4188       if( pGroupBy==0 ){
4189         /* The optimizer is able to deliver rows in group by order so
4190         ** we do not have to sort.  The OP_OpenEphemeral table will be
4191         ** cancelled later because we still need to use the pKeyInfo
4192         */
4193         pGroupBy = p->pGroupBy;
4194         groupBySort = 0;
4195       }else{
4196         /* Rows are coming out in undetermined order.  We have to push
4197         ** each row into a sorting index, terminate the first loop,
4198         ** then loop over the sorting index in order to get the output
4199         ** in sorted order
4200         */
4201         int regBase;
4202         int regRecord;
4203         int nCol;
4204         int nGroupBy;
4205 
4206         explainTempTable(pParse,
4207             isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
4208 
4209         groupBySort = 1;
4210         nGroupBy = pGroupBy->nExpr;
4211         nCol = nGroupBy + 1;
4212         j = nGroupBy+1;
4213         for(i=0; i<sAggInfo.nColumn; i++){
4214           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4215             nCol++;
4216             j++;
4217           }
4218         }
4219         regBase = sqlite3GetTempRange(pParse, nCol);
4220         sqlite3ExprCacheClear(pParse);
4221         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4222         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4223         j = nGroupBy+1;
4224         for(i=0; i<sAggInfo.nColumn; i++){
4225           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4226           if( pCol->iSorterColumn>=j ){
4227             int r1 = j + regBase;
4228             int r2;
4229 
4230             r2 = sqlite3ExprCodeGetColumn(pParse,
4231                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
4232             if( r1!=r2 ){
4233               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4234             }
4235             j++;
4236           }
4237         }
4238         regRecord = sqlite3GetTempReg(pParse);
4239         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4240         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
4241         sqlite3ReleaseTempReg(pParse, regRecord);
4242         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4243         sqlite3WhereEnd(pWInfo);
4244         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
4245         sortOut = sqlite3GetTempReg(pParse);
4246         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
4247         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
4248         VdbeComment((v, "GROUP BY sort"));
4249         sAggInfo.useSortingIdx = 1;
4250         sqlite3ExprCacheClear(pParse);
4251       }
4252 
4253       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4254       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4255       ** Then compare the current GROUP BY terms against the GROUP BY terms
4256       ** from the previous row currently stored in a0, a1, a2...
4257       */
4258       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4259       sqlite3ExprCacheClear(pParse);
4260       if( groupBySort ){
4261         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
4262       }
4263       for(j=0; j<pGroupBy->nExpr; j++){
4264         if( groupBySort ){
4265           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
4266           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
4267         }else{
4268           sAggInfo.directMode = 1;
4269           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4270         }
4271       }
4272       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4273                           (char*)pKeyInfo, P4_KEYINFO);
4274       j1 = sqlite3VdbeCurrentAddr(v);
4275       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4276 
4277       /* Generate code that runs whenever the GROUP BY changes.
4278       ** Changes in the GROUP BY are detected by the previous code
4279       ** block.  If there were no changes, this block is skipped.
4280       **
4281       ** This code copies current group by terms in b0,b1,b2,...
4282       ** over to a0,a1,a2.  It then calls the output subroutine
4283       ** and resets the aggregate accumulator registers in preparation
4284       ** for the next GROUP BY batch.
4285       */
4286       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4287       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4288       VdbeComment((v, "output one row"));
4289       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4290       VdbeComment((v, "check abort flag"));
4291       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4292       VdbeComment((v, "reset accumulator"));
4293 
4294       /* Update the aggregate accumulators based on the content of
4295       ** the current row
4296       */
4297       sqlite3VdbeJumpHere(v, j1);
4298       updateAccumulator(pParse, &sAggInfo);
4299       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4300       VdbeComment((v, "indicate data in accumulator"));
4301 
4302       /* End of the loop
4303       */
4304       if( groupBySort ){
4305         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
4306       }else{
4307         sqlite3WhereEnd(pWInfo);
4308         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
4309       }
4310 
4311       /* Output the final row of result
4312       */
4313       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4314       VdbeComment((v, "output final row"));
4315 
4316       /* Jump over the subroutines
4317       */
4318       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4319 
4320       /* Generate a subroutine that outputs a single row of the result
4321       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4322       ** is less than or equal to zero, the subroutine is a no-op.  If
4323       ** the processing calls for the query to abort, this subroutine
4324       ** increments the iAbortFlag memory location before returning in
4325       ** order to signal the caller to abort.
4326       */
4327       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4328       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4329       VdbeComment((v, "set abort flag"));
4330       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4331       sqlite3VdbeResolveLabel(v, addrOutputRow);
4332       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4333       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4334       VdbeComment((v, "Groupby result generator entry point"));
4335       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4336       finalizeAggFunctions(pParse, &sAggInfo);
4337       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4338       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4339                       distinct, pDest,
4340                       addrOutputRow+1, addrSetAbort);
4341       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4342       VdbeComment((v, "end groupby result generator"));
4343 
4344       /* Generate a subroutine that will reset the group-by accumulator
4345       */
4346       sqlite3VdbeResolveLabel(v, addrReset);
4347       resetAccumulator(pParse, &sAggInfo);
4348       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4349 
4350     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4351     else {
4352       ExprList *pDel = 0;
4353 #ifndef SQLITE_OMIT_BTREECOUNT
4354       Table *pTab;
4355       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4356         /* If isSimpleCount() returns a pointer to a Table structure, then
4357         ** the SQL statement is of the form:
4358         **
4359         **   SELECT count(*) FROM <tbl>
4360         **
4361         ** where the Table structure returned represents table <tbl>.
4362         **
4363         ** This statement is so common that it is optimized specially. The
4364         ** OP_Count instruction is executed either on the intkey table that
4365         ** contains the data for table <tbl> or on one of its indexes. It
4366         ** is better to execute the op on an index, as indexes are almost
4367         ** always spread across less pages than their corresponding tables.
4368         */
4369         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4370         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4371         Index *pIdx;                         /* Iterator variable */
4372         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4373         Index *pBest = 0;                    /* Best index found so far */
4374         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4375 
4376         sqlite3CodeVerifySchema(pParse, iDb);
4377         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4378 
4379         /* Search for the index that has the least amount of columns. If
4380         ** there is such an index, and it has less columns than the table
4381         ** does, then we can assume that it consumes less space on disk and
4382         ** will therefore be cheaper to scan to determine the query result.
4383         ** In this case set iRoot to the root page number of the index b-tree
4384         ** and pKeyInfo to the KeyInfo structure required to navigate the
4385         ** index.
4386         **
4387         ** (2011-04-15) Do not do a full scan of an unordered index.
4388         **
4389         ** In practice the KeyInfo structure will not be used. It is only
4390         ** passed to keep OP_OpenRead happy.
4391         */
4392         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4393           if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){
4394             pBest = pIdx;
4395           }
4396         }
4397         if( pBest && pBest->nColumn<pTab->nCol ){
4398           iRoot = pBest->tnum;
4399           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4400         }
4401 
4402         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4403         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4404         if( pKeyInfo ){
4405           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4406         }
4407         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4408         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4409         explainSimpleCount(pParse, pTab, pBest);
4410       }else
4411 #endif /* SQLITE_OMIT_BTREECOUNT */
4412       {
4413         /* Check if the query is of one of the following forms:
4414         **
4415         **   SELECT min(x) FROM ...
4416         **   SELECT max(x) FROM ...
4417         **
4418         ** If it is, then ask the code in where.c to attempt to sort results
4419         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4420         ** If where.c is able to produce results sorted in this order, then
4421         ** add vdbe code to break out of the processing loop after the
4422         ** first iteration (since the first iteration of the loop is
4423         ** guaranteed to operate on the row with the minimum or maximum
4424         ** value of x, the only row required).
4425         **
4426         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4427         ** modify behaviour as follows:
4428         **
4429         **   + If the query is a "SELECT min(x)", then the loop coded by
4430         **     where.c should not iterate over any values with a NULL value
4431         **     for x.
4432         **
4433         **   + The optimizer code in where.c (the thing that decides which
4434         **     index or indices to use) should place a different priority on
4435         **     satisfying the 'ORDER BY' clause than it does in other cases.
4436         **     Refer to code and comments in where.c for details.
4437         */
4438         ExprList *pMinMax = 0;
4439         u8 flag = minMaxQuery(p);
4440         if( flag ){
4441           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4442           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4443           pDel = pMinMax;
4444           if( pMinMax && !db->mallocFailed ){
4445             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4446             pMinMax->a[0].pExpr->op = TK_COLUMN;
4447           }
4448         }
4449 
4450         /* This case runs if the aggregate has no GROUP BY clause.  The
4451         ** processing is much simpler since there is only a single row
4452         ** of output.
4453         */
4454         resetAccumulator(pParse, &sAggInfo);
4455         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag);
4456         if( pWInfo==0 ){
4457           sqlite3ExprListDelete(db, pDel);
4458           goto select_end;
4459         }
4460         updateAccumulator(pParse, &sAggInfo);
4461         if( !pMinMax && flag ){
4462           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4463           VdbeComment((v, "%s() by index",
4464                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4465         }
4466         sqlite3WhereEnd(pWInfo);
4467         finalizeAggFunctions(pParse, &sAggInfo);
4468       }
4469 
4470       pOrderBy = 0;
4471       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4472       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4473                       pDest, addrEnd, addrEnd);
4474       sqlite3ExprListDelete(db, pDel);
4475     }
4476     sqlite3VdbeResolveLabel(v, addrEnd);
4477 
4478   } /* endif aggregate query */
4479 
4480   if( distinct>=0 ){
4481     explainTempTable(pParse, "DISTINCT");
4482   }
4483 
4484   /* If there is an ORDER BY clause, then we need to sort the results
4485   ** and send them to the callback one by one.
4486   */
4487   if( pOrderBy ){
4488     explainTempTable(pParse, "ORDER BY");
4489     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4490   }
4491 
4492   /* Jump here to skip this query
4493   */
4494   sqlite3VdbeResolveLabel(v, iEnd);
4495 
4496   /* The SELECT was successfully coded.   Set the return code to 0
4497   ** to indicate no errors.
4498   */
4499   rc = 0;
4500 
4501   /* Control jumps to here if an error is encountered above, or upon
4502   ** successful coding of the SELECT.
4503   */
4504 select_end:
4505   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4506 
4507   /* Identify column names if results of the SELECT are to be output.
4508   */
4509   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4510     generateColumnNames(pParse, pTabList, pEList);
4511   }
4512 
4513   sqlite3DbFree(db, sAggInfo.aCol);
4514   sqlite3DbFree(db, sAggInfo.aFunc);
4515   return rc;
4516 }
4517 
4518 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
4519 /*
4520 ** Generate a human-readable description of a the Select object.
4521 */
4522 static void explainOneSelect(Vdbe *pVdbe, Select *p){
4523   sqlite3ExplainPrintf(pVdbe, "SELECT ");
4524   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
4525     if( p->selFlags & SF_Distinct ){
4526       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
4527     }
4528     if( p->selFlags & SF_Aggregate ){
4529       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
4530     }
4531     sqlite3ExplainNL(pVdbe);
4532     sqlite3ExplainPrintf(pVdbe, "   ");
4533   }
4534   sqlite3ExplainExprList(pVdbe, p->pEList);
4535   sqlite3ExplainNL(pVdbe);
4536   if( p->pSrc && p->pSrc->nSrc ){
4537     int i;
4538     sqlite3ExplainPrintf(pVdbe, "FROM ");
4539     sqlite3ExplainPush(pVdbe);
4540     for(i=0; i<p->pSrc->nSrc; i++){
4541       struct SrcList_item *pItem = &p->pSrc->a[i];
4542       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
4543       if( pItem->pSelect ){
4544         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
4545         if( pItem->pTab ){
4546           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
4547         }
4548       }else if( pItem->zName ){
4549         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
4550       }
4551       if( pItem->zAlias ){
4552         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
4553       }
4554       if( pItem->jointype & JT_LEFT ){
4555         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
4556       }
4557       sqlite3ExplainNL(pVdbe);
4558     }
4559     sqlite3ExplainPop(pVdbe);
4560   }
4561   if( p->pWhere ){
4562     sqlite3ExplainPrintf(pVdbe, "WHERE ");
4563     sqlite3ExplainExpr(pVdbe, p->pWhere);
4564     sqlite3ExplainNL(pVdbe);
4565   }
4566   if( p->pGroupBy ){
4567     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
4568     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
4569     sqlite3ExplainNL(pVdbe);
4570   }
4571   if( p->pHaving ){
4572     sqlite3ExplainPrintf(pVdbe, "HAVING ");
4573     sqlite3ExplainExpr(pVdbe, p->pHaving);
4574     sqlite3ExplainNL(pVdbe);
4575   }
4576   if( p->pOrderBy ){
4577     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
4578     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
4579     sqlite3ExplainNL(pVdbe);
4580   }
4581   if( p->pLimit ){
4582     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
4583     sqlite3ExplainExpr(pVdbe, p->pLimit);
4584     sqlite3ExplainNL(pVdbe);
4585   }
4586   if( p->pOffset ){
4587     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
4588     sqlite3ExplainExpr(pVdbe, p->pOffset);
4589     sqlite3ExplainNL(pVdbe);
4590   }
4591 }
4592 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
4593   if( p==0 ){
4594     sqlite3ExplainPrintf(pVdbe, "(null-select)");
4595     return;
4596   }
4597   while( p->pPrior ) p = p->pPrior;
4598   sqlite3ExplainPush(pVdbe);
4599   while( p ){
4600     explainOneSelect(pVdbe, p);
4601     p = p->pNext;
4602     if( p==0 ) break;
4603     sqlite3ExplainNL(pVdbe);
4604     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
4605   }
4606   sqlite3ExplainPrintf(pVdbe, "END");
4607   sqlite3ExplainPop(pVdbe);
4608 }
4609 
4610 /* End of the structure debug printing code
4611 *****************************************************************************/
4612 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
4613