1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iParm = iParm; 40 pDest->affinity = 0; 41 pDest->iMem = 0; 42 pDest->nMem = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 int isDistinct, /* true if the DISTINCT keyword is present */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 assert( db->mallocFailed ); 69 pNew = &standin; 70 memset(pNew, 0, sizeof(*pNew)); 71 } 72 if( pEList==0 ){ 73 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 74 } 75 pNew->pEList = pEList; 76 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 assert( pOffset==0 || pLimit!=0 ); 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( db->mallocFailed ) { 91 clearSelect(db, pNew); 92 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 93 pNew = 0; 94 }else{ 95 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 96 } 97 assert( pNew!=&standin ); 98 return pNew; 99 } 100 101 /* 102 ** Delete the given Select structure and all of its substructures. 103 */ 104 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 105 if( p ){ 106 clearSelect(db, p); 107 sqlite3DbFree(db, p); 108 } 109 } 110 111 /* 112 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 113 ** type of join. Return an integer constant that expresses that type 114 ** in terms of the following bit values: 115 ** 116 ** JT_INNER 117 ** JT_CROSS 118 ** JT_OUTER 119 ** JT_NATURAL 120 ** JT_LEFT 121 ** JT_RIGHT 122 ** 123 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 124 ** 125 ** If an illegal or unsupported join type is seen, then still return 126 ** a join type, but put an error in the pParse structure. 127 */ 128 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 129 int jointype = 0; 130 Token *apAll[3]; 131 Token *p; 132 /* 0123456789 123456789 123456789 123 */ 133 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 134 static const struct { 135 u8 i; /* Beginning of keyword text in zKeyText[] */ 136 u8 nChar; /* Length of the keyword in characters */ 137 u8 code; /* Join type mask */ 138 } aKeyword[] = { 139 /* natural */ { 0, 7, JT_NATURAL }, 140 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 141 /* outer */ { 10, 5, JT_OUTER }, 142 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 143 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 144 /* inner */ { 23, 5, JT_INNER }, 145 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 146 }; 147 int i, j; 148 apAll[0] = pA; 149 apAll[1] = pB; 150 apAll[2] = pC; 151 for(i=0; i<3 && apAll[i]; i++){ 152 p = apAll[i]; 153 for(j=0; j<ArraySize(aKeyword); j++){ 154 if( p->n==aKeyword[j].nChar 155 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 156 jointype |= aKeyword[j].code; 157 break; 158 } 159 } 160 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 161 if( j>=ArraySize(aKeyword) ){ 162 jointype |= JT_ERROR; 163 break; 164 } 165 } 166 if( 167 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 168 (jointype & JT_ERROR)!=0 169 ){ 170 const char *zSp = " "; 171 assert( pB!=0 ); 172 if( pC==0 ){ zSp++; } 173 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 174 "%T %T%s%T", pA, pB, zSp, pC); 175 jointype = JT_INNER; 176 }else if( (jointype & JT_OUTER)!=0 177 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 178 sqlite3ErrorMsg(pParse, 179 "RIGHT and FULL OUTER JOINs are not currently supported"); 180 jointype = JT_INNER; 181 } 182 return jointype; 183 } 184 185 /* 186 ** Return the index of a column in a table. Return -1 if the column 187 ** is not contained in the table. 188 */ 189 static int columnIndex(Table *pTab, const char *zCol){ 190 int i; 191 for(i=0; i<pTab->nCol; i++){ 192 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 193 } 194 return -1; 195 } 196 197 /* 198 ** Search the first N tables in pSrc, from left to right, looking for a 199 ** table that has a column named zCol. 200 ** 201 ** When found, set *piTab and *piCol to the table index and column index 202 ** of the matching column and return TRUE. 203 ** 204 ** If not found, return FALSE. 205 */ 206 static int tableAndColumnIndex( 207 SrcList *pSrc, /* Array of tables to search */ 208 int N, /* Number of tables in pSrc->a[] to search */ 209 const char *zCol, /* Name of the column we are looking for */ 210 int *piTab, /* Write index of pSrc->a[] here */ 211 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 212 ){ 213 int i; /* For looping over tables in pSrc */ 214 int iCol; /* Index of column matching zCol */ 215 216 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 217 for(i=0; i<N; i++){ 218 iCol = columnIndex(pSrc->a[i].pTab, zCol); 219 if( iCol>=0 ){ 220 if( piTab ){ 221 *piTab = i; 222 *piCol = iCol; 223 } 224 return 1; 225 } 226 } 227 return 0; 228 } 229 230 /* 231 ** This function is used to add terms implied by JOIN syntax to the 232 ** WHERE clause expression of a SELECT statement. The new term, which 233 ** is ANDed with the existing WHERE clause, is of the form: 234 ** 235 ** (tab1.col1 = tab2.col2) 236 ** 237 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 238 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 239 ** column iColRight of tab2. 240 */ 241 static void addWhereTerm( 242 Parse *pParse, /* Parsing context */ 243 SrcList *pSrc, /* List of tables in FROM clause */ 244 int iLeft, /* Index of first table to join in pSrc */ 245 int iColLeft, /* Index of column in first table */ 246 int iRight, /* Index of second table in pSrc */ 247 int iColRight, /* Index of column in second table */ 248 int isOuterJoin, /* True if this is an OUTER join */ 249 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 250 ){ 251 sqlite3 *db = pParse->db; 252 Expr *pE1; 253 Expr *pE2; 254 Expr *pEq; 255 256 assert( iLeft<iRight ); 257 assert( pSrc->nSrc>iRight ); 258 assert( pSrc->a[iLeft].pTab ); 259 assert( pSrc->a[iRight].pTab ); 260 261 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 262 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 263 264 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 265 if( pEq && isOuterJoin ){ 266 ExprSetProperty(pEq, EP_FromJoin); 267 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 268 ExprSetIrreducible(pEq); 269 pEq->iRightJoinTable = (i16)pE2->iTable; 270 } 271 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 272 } 273 274 /* 275 ** Set the EP_FromJoin property on all terms of the given expression. 276 ** And set the Expr.iRightJoinTable to iTable for every term in the 277 ** expression. 278 ** 279 ** The EP_FromJoin property is used on terms of an expression to tell 280 ** the LEFT OUTER JOIN processing logic that this term is part of the 281 ** join restriction specified in the ON or USING clause and not a part 282 ** of the more general WHERE clause. These terms are moved over to the 283 ** WHERE clause during join processing but we need to remember that they 284 ** originated in the ON or USING clause. 285 ** 286 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 287 ** expression depends on table iRightJoinTable even if that table is not 288 ** explicitly mentioned in the expression. That information is needed 289 ** for cases like this: 290 ** 291 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 292 ** 293 ** The where clause needs to defer the handling of the t1.x=5 294 ** term until after the t2 loop of the join. In that way, a 295 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 296 ** defer the handling of t1.x=5, it will be processed immediately 297 ** after the t1 loop and rows with t1.x!=5 will never appear in 298 ** the output, which is incorrect. 299 */ 300 static void setJoinExpr(Expr *p, int iTable){ 301 while( p ){ 302 ExprSetProperty(p, EP_FromJoin); 303 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 304 ExprSetIrreducible(p); 305 p->iRightJoinTable = (i16)iTable; 306 setJoinExpr(p->pLeft, iTable); 307 p = p->pRight; 308 } 309 } 310 311 /* 312 ** This routine processes the join information for a SELECT statement. 313 ** ON and USING clauses are converted into extra terms of the WHERE clause. 314 ** NATURAL joins also create extra WHERE clause terms. 315 ** 316 ** The terms of a FROM clause are contained in the Select.pSrc structure. 317 ** The left most table is the first entry in Select.pSrc. The right-most 318 ** table is the last entry. The join operator is held in the entry to 319 ** the left. Thus entry 0 contains the join operator for the join between 320 ** entries 0 and 1. Any ON or USING clauses associated with the join are 321 ** also attached to the left entry. 322 ** 323 ** This routine returns the number of errors encountered. 324 */ 325 static int sqliteProcessJoin(Parse *pParse, Select *p){ 326 SrcList *pSrc; /* All tables in the FROM clause */ 327 int i, j; /* Loop counters */ 328 struct SrcList_item *pLeft; /* Left table being joined */ 329 struct SrcList_item *pRight; /* Right table being joined */ 330 331 pSrc = p->pSrc; 332 pLeft = &pSrc->a[0]; 333 pRight = &pLeft[1]; 334 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 335 Table *pLeftTab = pLeft->pTab; 336 Table *pRightTab = pRight->pTab; 337 int isOuter; 338 339 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 340 isOuter = (pRight->jointype & JT_OUTER)!=0; 341 342 /* When the NATURAL keyword is present, add WHERE clause terms for 343 ** every column that the two tables have in common. 344 */ 345 if( pRight->jointype & JT_NATURAL ){ 346 if( pRight->pOn || pRight->pUsing ){ 347 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 348 "an ON or USING clause", 0); 349 return 1; 350 } 351 for(j=0; j<pRightTab->nCol; j++){ 352 char *zName; /* Name of column in the right table */ 353 int iLeft; /* Matching left table */ 354 int iLeftCol; /* Matching column in the left table */ 355 356 zName = pRightTab->aCol[j].zName; 357 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 358 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 359 isOuter, &p->pWhere); 360 } 361 } 362 } 363 364 /* Disallow both ON and USING clauses in the same join 365 */ 366 if( pRight->pOn && pRight->pUsing ){ 367 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 368 "clauses in the same join"); 369 return 1; 370 } 371 372 /* Add the ON clause to the end of the WHERE clause, connected by 373 ** an AND operator. 374 */ 375 if( pRight->pOn ){ 376 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 377 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 378 pRight->pOn = 0; 379 } 380 381 /* Create extra terms on the WHERE clause for each column named 382 ** in the USING clause. Example: If the two tables to be joined are 383 ** A and B and the USING clause names X, Y, and Z, then add this 384 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 385 ** Report an error if any column mentioned in the USING clause is 386 ** not contained in both tables to be joined. 387 */ 388 if( pRight->pUsing ){ 389 IdList *pList = pRight->pUsing; 390 for(j=0; j<pList->nId; j++){ 391 char *zName; /* Name of the term in the USING clause */ 392 int iLeft; /* Table on the left with matching column name */ 393 int iLeftCol; /* Column number of matching column on the left */ 394 int iRightCol; /* Column number of matching column on the right */ 395 396 zName = pList->a[j].zName; 397 iRightCol = columnIndex(pRightTab, zName); 398 if( iRightCol<0 399 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 400 ){ 401 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 402 "not present in both tables", zName); 403 return 1; 404 } 405 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 406 isOuter, &p->pWhere); 407 } 408 } 409 } 410 return 0; 411 } 412 413 /* 414 ** Insert code into "v" that will push the record on the top of the 415 ** stack into the sorter. 416 */ 417 static void pushOntoSorter( 418 Parse *pParse, /* Parser context */ 419 ExprList *pOrderBy, /* The ORDER BY clause */ 420 Select *pSelect, /* The whole SELECT statement */ 421 int regData /* Register holding data to be sorted */ 422 ){ 423 Vdbe *v = pParse->pVdbe; 424 int nExpr = pOrderBy->nExpr; 425 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 426 int regRecord = sqlite3GetTempReg(pParse); 427 int op; 428 sqlite3ExprCacheClear(pParse); 429 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 430 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 431 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 432 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 433 if( pSelect->selFlags & SF_UseSorter ){ 434 op = OP_SorterInsert; 435 }else{ 436 op = OP_IdxInsert; 437 } 438 sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord); 439 sqlite3ReleaseTempReg(pParse, regRecord); 440 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 441 if( pSelect->iLimit ){ 442 int addr1, addr2; 443 int iLimit; 444 if( pSelect->iOffset ){ 445 iLimit = pSelect->iOffset+1; 446 }else{ 447 iLimit = pSelect->iLimit; 448 } 449 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 450 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 451 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 452 sqlite3VdbeJumpHere(v, addr1); 453 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 454 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 455 sqlite3VdbeJumpHere(v, addr2); 456 } 457 } 458 459 /* 460 ** Add code to implement the OFFSET 461 */ 462 static void codeOffset( 463 Vdbe *v, /* Generate code into this VM */ 464 Select *p, /* The SELECT statement being coded */ 465 int iContinue /* Jump here to skip the current record */ 466 ){ 467 if( p->iOffset && iContinue!=0 ){ 468 int addr; 469 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 470 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 471 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 472 VdbeComment((v, "skip OFFSET records")); 473 sqlite3VdbeJumpHere(v, addr); 474 } 475 } 476 477 /* 478 ** Add code that will check to make sure the N registers starting at iMem 479 ** form a distinct entry. iTab is a sorting index that holds previously 480 ** seen combinations of the N values. A new entry is made in iTab 481 ** if the current N values are new. 482 ** 483 ** A jump to addrRepeat is made and the N+1 values are popped from the 484 ** stack if the top N elements are not distinct. 485 */ 486 static void codeDistinct( 487 Parse *pParse, /* Parsing and code generating context */ 488 int iTab, /* A sorting index used to test for distinctness */ 489 int addrRepeat, /* Jump to here if not distinct */ 490 int N, /* Number of elements */ 491 int iMem /* First element */ 492 ){ 493 Vdbe *v; 494 int r1; 495 496 v = pParse->pVdbe; 497 r1 = sqlite3GetTempReg(pParse); 498 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 499 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 500 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 501 sqlite3ReleaseTempReg(pParse, r1); 502 } 503 504 #ifndef SQLITE_OMIT_SUBQUERY 505 /* 506 ** Generate an error message when a SELECT is used within a subexpression 507 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 508 ** column. We do this in a subroutine because the error used to occur 509 ** in multiple places. (The error only occurs in one place now, but we 510 ** retain the subroutine to minimize code disruption.) 511 */ 512 static int checkForMultiColumnSelectError( 513 Parse *pParse, /* Parse context. */ 514 SelectDest *pDest, /* Destination of SELECT results */ 515 int nExpr /* Number of result columns returned by SELECT */ 516 ){ 517 int eDest = pDest->eDest; 518 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 519 sqlite3ErrorMsg(pParse, "only a single result allowed for " 520 "a SELECT that is part of an expression"); 521 return 1; 522 }else{ 523 return 0; 524 } 525 } 526 #endif 527 528 /* 529 ** This routine generates the code for the inside of the inner loop 530 ** of a SELECT. 531 ** 532 ** If srcTab and nColumn are both zero, then the pEList expressions 533 ** are evaluated in order to get the data for this row. If nColumn>0 534 ** then data is pulled from srcTab and pEList is used only to get the 535 ** datatypes for each column. 536 */ 537 static void selectInnerLoop( 538 Parse *pParse, /* The parser context */ 539 Select *p, /* The complete select statement being coded */ 540 ExprList *pEList, /* List of values being extracted */ 541 int srcTab, /* Pull data from this table */ 542 int nColumn, /* Number of columns in the source table */ 543 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 544 int distinct, /* If >=0, make sure results are distinct */ 545 SelectDest *pDest, /* How to dispose of the results */ 546 int iContinue, /* Jump here to continue with next row */ 547 int iBreak /* Jump here to break out of the inner loop */ 548 ){ 549 Vdbe *v = pParse->pVdbe; 550 int i; 551 int hasDistinct; /* True if the DISTINCT keyword is present */ 552 int regResult; /* Start of memory holding result set */ 553 int eDest = pDest->eDest; /* How to dispose of results */ 554 int iParm = pDest->iParm; /* First argument to disposal method */ 555 int nResultCol; /* Number of result columns */ 556 557 assert( v ); 558 if( NEVER(v==0) ) return; 559 assert( pEList!=0 ); 560 hasDistinct = distinct>=0; 561 if( pOrderBy==0 && !hasDistinct ){ 562 codeOffset(v, p, iContinue); 563 } 564 565 /* Pull the requested columns. 566 */ 567 if( nColumn>0 ){ 568 nResultCol = nColumn; 569 }else{ 570 nResultCol = pEList->nExpr; 571 } 572 if( pDest->iMem==0 ){ 573 pDest->iMem = pParse->nMem+1; 574 pDest->nMem = nResultCol; 575 pParse->nMem += nResultCol; 576 }else{ 577 assert( pDest->nMem==nResultCol ); 578 } 579 regResult = pDest->iMem; 580 if( nColumn>0 ){ 581 for(i=0; i<nColumn; i++){ 582 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 583 } 584 }else if( eDest!=SRT_Exists ){ 585 /* If the destination is an EXISTS(...) expression, the actual 586 ** values returned by the SELECT are not required. 587 */ 588 sqlite3ExprCacheClear(pParse); 589 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 590 } 591 nColumn = nResultCol; 592 593 /* If the DISTINCT keyword was present on the SELECT statement 594 ** and this row has been seen before, then do not make this row 595 ** part of the result. 596 */ 597 if( hasDistinct ){ 598 assert( pEList!=0 ); 599 assert( pEList->nExpr==nColumn ); 600 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 601 if( pOrderBy==0 ){ 602 codeOffset(v, p, iContinue); 603 } 604 } 605 606 switch( eDest ){ 607 /* In this mode, write each query result to the key of the temporary 608 ** table iParm. 609 */ 610 #ifndef SQLITE_OMIT_COMPOUND_SELECT 611 case SRT_Union: { 612 int r1; 613 r1 = sqlite3GetTempReg(pParse); 614 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 615 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 616 sqlite3ReleaseTempReg(pParse, r1); 617 break; 618 } 619 620 /* Construct a record from the query result, but instead of 621 ** saving that record, use it as a key to delete elements from 622 ** the temporary table iParm. 623 */ 624 case SRT_Except: { 625 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 626 break; 627 } 628 #endif 629 630 /* Store the result as data using a unique key. 631 */ 632 case SRT_Table: 633 case SRT_EphemTab: { 634 int r1 = sqlite3GetTempReg(pParse); 635 testcase( eDest==SRT_Table ); 636 testcase( eDest==SRT_EphemTab ); 637 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 638 if( pOrderBy ){ 639 pushOntoSorter(pParse, pOrderBy, p, r1); 640 }else{ 641 int r2 = sqlite3GetTempReg(pParse); 642 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 643 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 644 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 645 sqlite3ReleaseTempReg(pParse, r2); 646 } 647 sqlite3ReleaseTempReg(pParse, r1); 648 break; 649 } 650 651 #ifndef SQLITE_OMIT_SUBQUERY 652 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 653 ** then there should be a single item on the stack. Write this 654 ** item into the set table with bogus data. 655 */ 656 case SRT_Set: { 657 assert( nColumn==1 ); 658 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 659 if( pOrderBy ){ 660 /* At first glance you would think we could optimize out the 661 ** ORDER BY in this case since the order of entries in the set 662 ** does not matter. But there might be a LIMIT clause, in which 663 ** case the order does matter */ 664 pushOntoSorter(pParse, pOrderBy, p, regResult); 665 }else{ 666 int r1 = sqlite3GetTempReg(pParse); 667 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 668 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 669 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 670 sqlite3ReleaseTempReg(pParse, r1); 671 } 672 break; 673 } 674 675 /* If any row exist in the result set, record that fact and abort. 676 */ 677 case SRT_Exists: { 678 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 679 /* The LIMIT clause will terminate the loop for us */ 680 break; 681 } 682 683 /* If this is a scalar select that is part of an expression, then 684 ** store the results in the appropriate memory cell and break out 685 ** of the scan loop. 686 */ 687 case SRT_Mem: { 688 assert( nColumn==1 ); 689 if( pOrderBy ){ 690 pushOntoSorter(pParse, pOrderBy, p, regResult); 691 }else{ 692 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 693 /* The LIMIT clause will jump out of the loop for us */ 694 } 695 break; 696 } 697 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 698 699 /* Send the data to the callback function or to a subroutine. In the 700 ** case of a subroutine, the subroutine itself is responsible for 701 ** popping the data from the stack. 702 */ 703 case SRT_Coroutine: 704 case SRT_Output: { 705 testcase( eDest==SRT_Coroutine ); 706 testcase( eDest==SRT_Output ); 707 if( pOrderBy ){ 708 int r1 = sqlite3GetTempReg(pParse); 709 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 710 pushOntoSorter(pParse, pOrderBy, p, r1); 711 sqlite3ReleaseTempReg(pParse, r1); 712 }else if( eDest==SRT_Coroutine ){ 713 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 714 }else{ 715 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 716 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 717 } 718 break; 719 } 720 721 #if !defined(SQLITE_OMIT_TRIGGER) 722 /* Discard the results. This is used for SELECT statements inside 723 ** the body of a TRIGGER. The purpose of such selects is to call 724 ** user-defined functions that have side effects. We do not care 725 ** about the actual results of the select. 726 */ 727 default: { 728 assert( eDest==SRT_Discard ); 729 break; 730 } 731 #endif 732 } 733 734 /* Jump to the end of the loop if the LIMIT is reached. Except, if 735 ** there is a sorter, in which case the sorter has already limited 736 ** the output for us. 737 */ 738 if( pOrderBy==0 && p->iLimit ){ 739 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 740 } 741 } 742 743 /* 744 ** Given an expression list, generate a KeyInfo structure that records 745 ** the collating sequence for each expression in that expression list. 746 ** 747 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 748 ** KeyInfo structure is appropriate for initializing a virtual index to 749 ** implement that clause. If the ExprList is the result set of a SELECT 750 ** then the KeyInfo structure is appropriate for initializing a virtual 751 ** index to implement a DISTINCT test. 752 ** 753 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 754 ** function is responsible for seeing that this structure is eventually 755 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 756 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 757 */ 758 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 759 sqlite3 *db = pParse->db; 760 int nExpr; 761 KeyInfo *pInfo; 762 struct ExprList_item *pItem; 763 int i; 764 765 nExpr = pList->nExpr; 766 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 767 if( pInfo ){ 768 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 769 pInfo->nField = (u16)nExpr; 770 pInfo->enc = ENC(db); 771 pInfo->db = db; 772 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 773 CollSeq *pColl; 774 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 775 if( !pColl ){ 776 pColl = db->pDfltColl; 777 } 778 pInfo->aColl[i] = pColl; 779 pInfo->aSortOrder[i] = pItem->sortOrder; 780 } 781 } 782 return pInfo; 783 } 784 785 #ifndef SQLITE_OMIT_COMPOUND_SELECT 786 /* 787 ** Name of the connection operator, used for error messages. 788 */ 789 static const char *selectOpName(int id){ 790 char *z; 791 switch( id ){ 792 case TK_ALL: z = "UNION ALL"; break; 793 case TK_INTERSECT: z = "INTERSECT"; break; 794 case TK_EXCEPT: z = "EXCEPT"; break; 795 default: z = "UNION"; break; 796 } 797 return z; 798 } 799 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 800 801 #ifndef SQLITE_OMIT_EXPLAIN 802 /* 803 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 804 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 805 ** where the caption is of the form: 806 ** 807 ** "USE TEMP B-TREE FOR xxx" 808 ** 809 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 810 ** is determined by the zUsage argument. 811 */ 812 static void explainTempTable(Parse *pParse, const char *zUsage){ 813 if( pParse->explain==2 ){ 814 Vdbe *v = pParse->pVdbe; 815 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 816 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 817 } 818 } 819 820 /* 821 ** Assign expression b to lvalue a. A second, no-op, version of this macro 822 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 823 ** in sqlite3Select() to assign values to structure member variables that 824 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 825 ** code with #ifndef directives. 826 */ 827 # define explainSetInteger(a, b) a = b 828 829 #else 830 /* No-op versions of the explainXXX() functions and macros. */ 831 # define explainTempTable(y,z) 832 # define explainSetInteger(y,z) 833 #endif 834 835 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 836 /* 837 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 838 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 839 ** where the caption is of one of the two forms: 840 ** 841 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 842 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 843 ** 844 ** where iSub1 and iSub2 are the integers passed as the corresponding 845 ** function parameters, and op is the text representation of the parameter 846 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 847 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 848 ** false, or the second form if it is true. 849 */ 850 static void explainComposite( 851 Parse *pParse, /* Parse context */ 852 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 853 int iSub1, /* Subquery id 1 */ 854 int iSub2, /* Subquery id 2 */ 855 int bUseTmp /* True if a temp table was used */ 856 ){ 857 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 858 if( pParse->explain==2 ){ 859 Vdbe *v = pParse->pVdbe; 860 char *zMsg = sqlite3MPrintf( 861 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 862 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 863 ); 864 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 865 } 866 } 867 #else 868 /* No-op versions of the explainXXX() functions and macros. */ 869 # define explainComposite(v,w,x,y,z) 870 #endif 871 872 /* 873 ** If the inner loop was generated using a non-null pOrderBy argument, 874 ** then the results were placed in a sorter. After the loop is terminated 875 ** we need to run the sorter and output the results. The following 876 ** routine generates the code needed to do that. 877 */ 878 static void generateSortTail( 879 Parse *pParse, /* Parsing context */ 880 Select *p, /* The SELECT statement */ 881 Vdbe *v, /* Generate code into this VDBE */ 882 int nColumn, /* Number of columns of data */ 883 SelectDest *pDest /* Write the sorted results here */ 884 ){ 885 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 886 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 887 int addr; 888 int iTab; 889 int pseudoTab = 0; 890 ExprList *pOrderBy = p->pOrderBy; 891 892 int eDest = pDest->eDest; 893 int iParm = pDest->iParm; 894 895 int regRow; 896 int regRowid; 897 898 iTab = pOrderBy->iECursor; 899 regRow = sqlite3GetTempReg(pParse); 900 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 901 pseudoTab = pParse->nTab++; 902 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 903 regRowid = 0; 904 }else{ 905 regRowid = sqlite3GetTempReg(pParse); 906 } 907 if( p->selFlags & SF_UseSorter ){ 908 int regSortOut = ++pParse->nMem; 909 int ptab2 = pParse->nTab++; 910 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); 911 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 912 codeOffset(v, p, addrContinue); 913 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 914 sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); 915 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 916 }else{ 917 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 918 codeOffset(v, p, addrContinue); 919 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); 920 } 921 switch( eDest ){ 922 case SRT_Table: 923 case SRT_EphemTab: { 924 testcase( eDest==SRT_Table ); 925 testcase( eDest==SRT_EphemTab ); 926 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 927 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 928 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 929 break; 930 } 931 #ifndef SQLITE_OMIT_SUBQUERY 932 case SRT_Set: { 933 assert( nColumn==1 ); 934 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 935 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 936 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 937 break; 938 } 939 case SRT_Mem: { 940 assert( nColumn==1 ); 941 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 942 /* The LIMIT clause will terminate the loop for us */ 943 break; 944 } 945 #endif 946 default: { 947 int i; 948 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 949 testcase( eDest==SRT_Output ); 950 testcase( eDest==SRT_Coroutine ); 951 for(i=0; i<nColumn; i++){ 952 assert( regRow!=pDest->iMem+i ); 953 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 954 if( i==0 ){ 955 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 956 } 957 } 958 if( eDest==SRT_Output ){ 959 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 960 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 961 }else{ 962 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 963 } 964 break; 965 } 966 } 967 sqlite3ReleaseTempReg(pParse, regRow); 968 sqlite3ReleaseTempReg(pParse, regRowid); 969 970 /* The bottom of the loop 971 */ 972 sqlite3VdbeResolveLabel(v, addrContinue); 973 if( p->selFlags & SF_UseSorter ){ 974 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); 975 }else{ 976 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 977 } 978 sqlite3VdbeResolveLabel(v, addrBreak); 979 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 980 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 981 } 982 } 983 984 /* 985 ** Return a pointer to a string containing the 'declaration type' of the 986 ** expression pExpr. The string may be treated as static by the caller. 987 ** 988 ** The declaration type is the exact datatype definition extracted from the 989 ** original CREATE TABLE statement if the expression is a column. The 990 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 991 ** is considered a column can be complex in the presence of subqueries. The 992 ** result-set expression in all of the following SELECT statements is 993 ** considered a column by this function. 994 ** 995 ** SELECT col FROM tbl; 996 ** SELECT (SELECT col FROM tbl; 997 ** SELECT (SELECT col FROM tbl); 998 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 999 ** 1000 ** The declaration type for any expression other than a column is NULL. 1001 */ 1002 static const char *columnType( 1003 NameContext *pNC, 1004 Expr *pExpr, 1005 const char **pzOriginDb, 1006 const char **pzOriginTab, 1007 const char **pzOriginCol 1008 ){ 1009 char const *zType = 0; 1010 char const *zOriginDb = 0; 1011 char const *zOriginTab = 0; 1012 char const *zOriginCol = 0; 1013 int j; 1014 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1015 1016 switch( pExpr->op ){ 1017 case TK_AGG_COLUMN: 1018 case TK_COLUMN: { 1019 /* The expression is a column. Locate the table the column is being 1020 ** extracted from in NameContext.pSrcList. This table may be real 1021 ** database table or a subquery. 1022 */ 1023 Table *pTab = 0; /* Table structure column is extracted from */ 1024 Select *pS = 0; /* Select the column is extracted from */ 1025 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1026 testcase( pExpr->op==TK_AGG_COLUMN ); 1027 testcase( pExpr->op==TK_COLUMN ); 1028 while( pNC && !pTab ){ 1029 SrcList *pTabList = pNC->pSrcList; 1030 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1031 if( j<pTabList->nSrc ){ 1032 pTab = pTabList->a[j].pTab; 1033 pS = pTabList->a[j].pSelect; 1034 }else{ 1035 pNC = pNC->pNext; 1036 } 1037 } 1038 1039 if( pTab==0 ){ 1040 /* At one time, code such as "SELECT new.x" within a trigger would 1041 ** cause this condition to run. Since then, we have restructured how 1042 ** trigger code is generated and so this condition is no longer 1043 ** possible. However, it can still be true for statements like 1044 ** the following: 1045 ** 1046 ** CREATE TABLE t1(col INTEGER); 1047 ** SELECT (SELECT t1.col) FROM FROM t1; 1048 ** 1049 ** when columnType() is called on the expression "t1.col" in the 1050 ** sub-select. In this case, set the column type to NULL, even 1051 ** though it should really be "INTEGER". 1052 ** 1053 ** This is not a problem, as the column type of "t1.col" is never 1054 ** used. When columnType() is called on the expression 1055 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1056 ** branch below. */ 1057 break; 1058 } 1059 1060 assert( pTab && pExpr->pTab==pTab ); 1061 if( pS ){ 1062 /* The "table" is actually a sub-select or a view in the FROM clause 1063 ** of the SELECT statement. Return the declaration type and origin 1064 ** data for the result-set column of the sub-select. 1065 */ 1066 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1067 /* If iCol is less than zero, then the expression requests the 1068 ** rowid of the sub-select or view. This expression is legal (see 1069 ** test case misc2.2.2) - it always evaluates to NULL. 1070 */ 1071 NameContext sNC; 1072 Expr *p = pS->pEList->a[iCol].pExpr; 1073 sNC.pSrcList = pS->pSrc; 1074 sNC.pNext = pNC; 1075 sNC.pParse = pNC->pParse; 1076 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1077 } 1078 }else if( ALWAYS(pTab->pSchema) ){ 1079 /* A real table */ 1080 assert( !pS ); 1081 if( iCol<0 ) iCol = pTab->iPKey; 1082 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1083 if( iCol<0 ){ 1084 zType = "INTEGER"; 1085 zOriginCol = "rowid"; 1086 }else{ 1087 zType = pTab->aCol[iCol].zType; 1088 zOriginCol = pTab->aCol[iCol].zName; 1089 } 1090 zOriginTab = pTab->zName; 1091 if( pNC->pParse ){ 1092 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1093 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 1094 } 1095 } 1096 break; 1097 } 1098 #ifndef SQLITE_OMIT_SUBQUERY 1099 case TK_SELECT: { 1100 /* The expression is a sub-select. Return the declaration type and 1101 ** origin info for the single column in the result set of the SELECT 1102 ** statement. 1103 */ 1104 NameContext sNC; 1105 Select *pS = pExpr->x.pSelect; 1106 Expr *p = pS->pEList->a[0].pExpr; 1107 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1108 sNC.pSrcList = pS->pSrc; 1109 sNC.pNext = pNC; 1110 sNC.pParse = pNC->pParse; 1111 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1112 break; 1113 } 1114 #endif 1115 } 1116 1117 if( pzOriginDb ){ 1118 assert( pzOriginTab && pzOriginCol ); 1119 *pzOriginDb = zOriginDb; 1120 *pzOriginTab = zOriginTab; 1121 *pzOriginCol = zOriginCol; 1122 } 1123 return zType; 1124 } 1125 1126 /* 1127 ** Generate code that will tell the VDBE the declaration types of columns 1128 ** in the result set. 1129 */ 1130 static void generateColumnTypes( 1131 Parse *pParse, /* Parser context */ 1132 SrcList *pTabList, /* List of tables */ 1133 ExprList *pEList /* Expressions defining the result set */ 1134 ){ 1135 #ifndef SQLITE_OMIT_DECLTYPE 1136 Vdbe *v = pParse->pVdbe; 1137 int i; 1138 NameContext sNC; 1139 sNC.pSrcList = pTabList; 1140 sNC.pParse = pParse; 1141 for(i=0; i<pEList->nExpr; i++){ 1142 Expr *p = pEList->a[i].pExpr; 1143 const char *zType; 1144 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1145 const char *zOrigDb = 0; 1146 const char *zOrigTab = 0; 1147 const char *zOrigCol = 0; 1148 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1149 1150 /* The vdbe must make its own copy of the column-type and other 1151 ** column specific strings, in case the schema is reset before this 1152 ** virtual machine is deleted. 1153 */ 1154 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1155 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1156 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1157 #else 1158 zType = columnType(&sNC, p, 0, 0, 0); 1159 #endif 1160 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1161 } 1162 #endif /* SQLITE_OMIT_DECLTYPE */ 1163 } 1164 1165 /* 1166 ** Generate code that will tell the VDBE the names of columns 1167 ** in the result set. This information is used to provide the 1168 ** azCol[] values in the callback. 1169 */ 1170 static void generateColumnNames( 1171 Parse *pParse, /* Parser context */ 1172 SrcList *pTabList, /* List of tables */ 1173 ExprList *pEList /* Expressions defining the result set */ 1174 ){ 1175 Vdbe *v = pParse->pVdbe; 1176 int i, j; 1177 sqlite3 *db = pParse->db; 1178 int fullNames, shortNames; 1179 1180 #ifndef SQLITE_OMIT_EXPLAIN 1181 /* If this is an EXPLAIN, skip this step */ 1182 if( pParse->explain ){ 1183 return; 1184 } 1185 #endif 1186 1187 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1188 pParse->colNamesSet = 1; 1189 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1190 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1191 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1192 for(i=0; i<pEList->nExpr; i++){ 1193 Expr *p; 1194 p = pEList->a[i].pExpr; 1195 if( NEVER(p==0) ) continue; 1196 if( pEList->a[i].zName ){ 1197 char *zName = pEList->a[i].zName; 1198 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1199 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1200 Table *pTab; 1201 char *zCol; 1202 int iCol = p->iColumn; 1203 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1204 if( pTabList->a[j].iCursor==p->iTable ) break; 1205 } 1206 assert( j<pTabList->nSrc ); 1207 pTab = pTabList->a[j].pTab; 1208 if( iCol<0 ) iCol = pTab->iPKey; 1209 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1210 if( iCol<0 ){ 1211 zCol = "rowid"; 1212 }else{ 1213 zCol = pTab->aCol[iCol].zName; 1214 } 1215 if( !shortNames && !fullNames ){ 1216 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1217 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1218 }else if( fullNames ){ 1219 char *zName = 0; 1220 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1221 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1222 }else{ 1223 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1224 } 1225 }else{ 1226 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1227 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1228 } 1229 } 1230 generateColumnTypes(pParse, pTabList, pEList); 1231 } 1232 1233 /* 1234 ** Given a an expression list (which is really the list of expressions 1235 ** that form the result set of a SELECT statement) compute appropriate 1236 ** column names for a table that would hold the expression list. 1237 ** 1238 ** All column names will be unique. 1239 ** 1240 ** Only the column names are computed. Column.zType, Column.zColl, 1241 ** and other fields of Column are zeroed. 1242 ** 1243 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1244 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1245 */ 1246 static int selectColumnsFromExprList( 1247 Parse *pParse, /* Parsing context */ 1248 ExprList *pEList, /* Expr list from which to derive column names */ 1249 int *pnCol, /* Write the number of columns here */ 1250 Column **paCol /* Write the new column list here */ 1251 ){ 1252 sqlite3 *db = pParse->db; /* Database connection */ 1253 int i, j; /* Loop counters */ 1254 int cnt; /* Index added to make the name unique */ 1255 Column *aCol, *pCol; /* For looping over result columns */ 1256 int nCol; /* Number of columns in the result set */ 1257 Expr *p; /* Expression for a single result column */ 1258 char *zName; /* Column name */ 1259 int nName; /* Size of name in zName[] */ 1260 1261 *pnCol = nCol = pEList ? pEList->nExpr : 0; 1262 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1263 if( aCol==0 ) return SQLITE_NOMEM; 1264 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1265 /* Get an appropriate name for the column 1266 */ 1267 p = pEList->a[i].pExpr; 1268 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1269 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1270 if( (zName = pEList->a[i].zName)!=0 ){ 1271 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1272 zName = sqlite3DbStrDup(db, zName); 1273 }else{ 1274 Expr *pColExpr = p; /* The expression that is the result column name */ 1275 Table *pTab; /* Table associated with this expression */ 1276 while( pColExpr->op==TK_DOT ){ 1277 pColExpr = pColExpr->pRight; 1278 assert( pColExpr!=0 ); 1279 } 1280 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1281 /* For columns use the column name name */ 1282 int iCol = pColExpr->iColumn; 1283 pTab = pColExpr->pTab; 1284 if( iCol<0 ) iCol = pTab->iPKey; 1285 zName = sqlite3MPrintf(db, "%s", 1286 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1287 }else if( pColExpr->op==TK_ID ){ 1288 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1289 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1290 }else{ 1291 /* Use the original text of the column expression as its name */ 1292 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1293 } 1294 } 1295 if( db->mallocFailed ){ 1296 sqlite3DbFree(db, zName); 1297 break; 1298 } 1299 1300 /* Make sure the column name is unique. If the name is not unique, 1301 ** append a integer to the name so that it becomes unique. 1302 */ 1303 nName = sqlite3Strlen30(zName); 1304 for(j=cnt=0; j<i; j++){ 1305 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1306 char *zNewName; 1307 zName[nName] = 0; 1308 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1309 sqlite3DbFree(db, zName); 1310 zName = zNewName; 1311 j = -1; 1312 if( zName==0 ) break; 1313 } 1314 } 1315 pCol->zName = zName; 1316 } 1317 if( db->mallocFailed ){ 1318 for(j=0; j<i; j++){ 1319 sqlite3DbFree(db, aCol[j].zName); 1320 } 1321 sqlite3DbFree(db, aCol); 1322 *paCol = 0; 1323 *pnCol = 0; 1324 return SQLITE_NOMEM; 1325 } 1326 return SQLITE_OK; 1327 } 1328 1329 /* 1330 ** Add type and collation information to a column list based on 1331 ** a SELECT statement. 1332 ** 1333 ** The column list presumably came from selectColumnNamesFromExprList(). 1334 ** The column list has only names, not types or collations. This 1335 ** routine goes through and adds the types and collations. 1336 ** 1337 ** This routine requires that all identifiers in the SELECT 1338 ** statement be resolved. 1339 */ 1340 static void selectAddColumnTypeAndCollation( 1341 Parse *pParse, /* Parsing contexts */ 1342 int nCol, /* Number of columns */ 1343 Column *aCol, /* List of columns */ 1344 Select *pSelect /* SELECT used to determine types and collations */ 1345 ){ 1346 sqlite3 *db = pParse->db; 1347 NameContext sNC; 1348 Column *pCol; 1349 CollSeq *pColl; 1350 int i; 1351 Expr *p; 1352 struct ExprList_item *a; 1353 1354 assert( pSelect!=0 ); 1355 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1356 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1357 if( db->mallocFailed ) return; 1358 memset(&sNC, 0, sizeof(sNC)); 1359 sNC.pSrcList = pSelect->pSrc; 1360 a = pSelect->pEList->a; 1361 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1362 p = a[i].pExpr; 1363 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1364 pCol->affinity = sqlite3ExprAffinity(p); 1365 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1366 pColl = sqlite3ExprCollSeq(pParse, p); 1367 if( pColl ){ 1368 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1369 } 1370 } 1371 } 1372 1373 /* 1374 ** Given a SELECT statement, generate a Table structure that describes 1375 ** the result set of that SELECT. 1376 */ 1377 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1378 Table *pTab; 1379 sqlite3 *db = pParse->db; 1380 int savedFlags; 1381 1382 savedFlags = db->flags; 1383 db->flags &= ~SQLITE_FullColNames; 1384 db->flags |= SQLITE_ShortColNames; 1385 sqlite3SelectPrep(pParse, pSelect, 0); 1386 if( pParse->nErr ) return 0; 1387 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1388 db->flags = savedFlags; 1389 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1390 if( pTab==0 ){ 1391 return 0; 1392 } 1393 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1394 ** is disabled */ 1395 assert( db->lookaside.bEnabled==0 ); 1396 pTab->nRef = 1; 1397 pTab->zName = 0; 1398 pTab->nRowEst = 1000000; 1399 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1400 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1401 pTab->iPKey = -1; 1402 if( db->mallocFailed ){ 1403 sqlite3DeleteTable(db, pTab); 1404 return 0; 1405 } 1406 return pTab; 1407 } 1408 1409 /* 1410 ** Get a VDBE for the given parser context. Create a new one if necessary. 1411 ** If an error occurs, return NULL and leave a message in pParse. 1412 */ 1413 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1414 Vdbe *v = pParse->pVdbe; 1415 if( v==0 ){ 1416 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1417 #ifndef SQLITE_OMIT_TRACE 1418 if( v ){ 1419 sqlite3VdbeAddOp0(v, OP_Trace); 1420 } 1421 #endif 1422 } 1423 return v; 1424 } 1425 1426 1427 /* 1428 ** Compute the iLimit and iOffset fields of the SELECT based on the 1429 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1430 ** that appear in the original SQL statement after the LIMIT and OFFSET 1431 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1432 ** are the integer memory register numbers for counters used to compute 1433 ** the limit and offset. If there is no limit and/or offset, then 1434 ** iLimit and iOffset are negative. 1435 ** 1436 ** This routine changes the values of iLimit and iOffset only if 1437 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1438 ** iOffset should have been preset to appropriate default values 1439 ** (usually but not always -1) prior to calling this routine. 1440 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1441 ** redefined. The UNION ALL operator uses this property to force 1442 ** the reuse of the same limit and offset registers across multiple 1443 ** SELECT statements. 1444 */ 1445 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1446 Vdbe *v = 0; 1447 int iLimit = 0; 1448 int iOffset; 1449 int addr1, n; 1450 if( p->iLimit ) return; 1451 1452 /* 1453 ** "LIMIT -1" always shows all rows. There is some 1454 ** contraversy about what the correct behavior should be. 1455 ** The current implementation interprets "LIMIT 0" to mean 1456 ** no rows. 1457 */ 1458 sqlite3ExprCacheClear(pParse); 1459 assert( p->pOffset==0 || p->pLimit!=0 ); 1460 if( p->pLimit ){ 1461 p->iLimit = iLimit = ++pParse->nMem; 1462 v = sqlite3GetVdbe(pParse); 1463 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1464 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1465 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1466 VdbeComment((v, "LIMIT counter")); 1467 if( n==0 ){ 1468 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1469 }else{ 1470 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; 1471 } 1472 }else{ 1473 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1474 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1475 VdbeComment((v, "LIMIT counter")); 1476 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1477 } 1478 if( p->pOffset ){ 1479 p->iOffset = iOffset = ++pParse->nMem; 1480 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1481 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1482 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1483 VdbeComment((v, "OFFSET counter")); 1484 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1485 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1486 sqlite3VdbeJumpHere(v, addr1); 1487 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1488 VdbeComment((v, "LIMIT+OFFSET")); 1489 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1490 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1491 sqlite3VdbeJumpHere(v, addr1); 1492 } 1493 } 1494 } 1495 1496 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1497 /* 1498 ** Return the appropriate collating sequence for the iCol-th column of 1499 ** the result set for the compound-select statement "p". Return NULL if 1500 ** the column has no default collating sequence. 1501 ** 1502 ** The collating sequence for the compound select is taken from the 1503 ** left-most term of the select that has a collating sequence. 1504 */ 1505 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1506 CollSeq *pRet; 1507 if( p->pPrior ){ 1508 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1509 }else{ 1510 pRet = 0; 1511 } 1512 assert( iCol>=0 ); 1513 if( pRet==0 && iCol<p->pEList->nExpr ){ 1514 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1515 } 1516 return pRet; 1517 } 1518 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1519 1520 /* Forward reference */ 1521 static int multiSelectOrderBy( 1522 Parse *pParse, /* Parsing context */ 1523 Select *p, /* The right-most of SELECTs to be coded */ 1524 SelectDest *pDest /* What to do with query results */ 1525 ); 1526 1527 1528 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1529 /* 1530 ** This routine is called to process a compound query form from 1531 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1532 ** INTERSECT 1533 ** 1534 ** "p" points to the right-most of the two queries. the query on the 1535 ** left is p->pPrior. The left query could also be a compound query 1536 ** in which case this routine will be called recursively. 1537 ** 1538 ** The results of the total query are to be written into a destination 1539 ** of type eDest with parameter iParm. 1540 ** 1541 ** Example 1: Consider a three-way compound SQL statement. 1542 ** 1543 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1544 ** 1545 ** This statement is parsed up as follows: 1546 ** 1547 ** SELECT c FROM t3 1548 ** | 1549 ** `-----> SELECT b FROM t2 1550 ** | 1551 ** `------> SELECT a FROM t1 1552 ** 1553 ** The arrows in the diagram above represent the Select.pPrior pointer. 1554 ** So if this routine is called with p equal to the t3 query, then 1555 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1556 ** 1557 ** Notice that because of the way SQLite parses compound SELECTs, the 1558 ** individual selects always group from left to right. 1559 */ 1560 static int multiSelect( 1561 Parse *pParse, /* Parsing context */ 1562 Select *p, /* The right-most of SELECTs to be coded */ 1563 SelectDest *pDest /* What to do with query results */ 1564 ){ 1565 int rc = SQLITE_OK; /* Success code from a subroutine */ 1566 Select *pPrior; /* Another SELECT immediately to our left */ 1567 Vdbe *v; /* Generate code to this VDBE */ 1568 SelectDest dest; /* Alternative data destination */ 1569 Select *pDelete = 0; /* Chain of simple selects to delete */ 1570 sqlite3 *db; /* Database connection */ 1571 #ifndef SQLITE_OMIT_EXPLAIN 1572 int iSub1; /* EQP id of left-hand query */ 1573 int iSub2; /* EQP id of right-hand query */ 1574 #endif 1575 1576 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1577 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1578 */ 1579 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1580 db = pParse->db; 1581 pPrior = p->pPrior; 1582 assert( pPrior->pRightmost!=pPrior ); 1583 assert( pPrior->pRightmost==p->pRightmost ); 1584 dest = *pDest; 1585 if( pPrior->pOrderBy ){ 1586 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1587 selectOpName(p->op)); 1588 rc = 1; 1589 goto multi_select_end; 1590 } 1591 if( pPrior->pLimit ){ 1592 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1593 selectOpName(p->op)); 1594 rc = 1; 1595 goto multi_select_end; 1596 } 1597 1598 v = sqlite3GetVdbe(pParse); 1599 assert( v!=0 ); /* The VDBE already created by calling function */ 1600 1601 /* Create the destination temporary table if necessary 1602 */ 1603 if( dest.eDest==SRT_EphemTab ){ 1604 assert( p->pEList ); 1605 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1606 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1607 dest.eDest = SRT_Table; 1608 } 1609 1610 /* Make sure all SELECTs in the statement have the same number of elements 1611 ** in their result sets. 1612 */ 1613 assert( p->pEList && pPrior->pEList ); 1614 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1615 if( p->selFlags & SF_Values ){ 1616 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 1617 }else{ 1618 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1619 " do not have the same number of result columns", selectOpName(p->op)); 1620 } 1621 rc = 1; 1622 goto multi_select_end; 1623 } 1624 1625 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1626 */ 1627 if( p->pOrderBy ){ 1628 return multiSelectOrderBy(pParse, p, pDest); 1629 } 1630 1631 /* Generate code for the left and right SELECT statements. 1632 */ 1633 switch( p->op ){ 1634 case TK_ALL: { 1635 int addr = 0; 1636 int nLimit; 1637 assert( !pPrior->pLimit ); 1638 pPrior->pLimit = p->pLimit; 1639 pPrior->pOffset = p->pOffset; 1640 explainSetInteger(iSub1, pParse->iNextSelectId); 1641 rc = sqlite3Select(pParse, pPrior, &dest); 1642 p->pLimit = 0; 1643 p->pOffset = 0; 1644 if( rc ){ 1645 goto multi_select_end; 1646 } 1647 p->pPrior = 0; 1648 p->iLimit = pPrior->iLimit; 1649 p->iOffset = pPrior->iOffset; 1650 if( p->iLimit ){ 1651 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1652 VdbeComment((v, "Jump ahead if LIMIT reached")); 1653 } 1654 explainSetInteger(iSub2, pParse->iNextSelectId); 1655 rc = sqlite3Select(pParse, p, &dest); 1656 testcase( rc!=SQLITE_OK ); 1657 pDelete = p->pPrior; 1658 p->pPrior = pPrior; 1659 p->nSelectRow += pPrior->nSelectRow; 1660 if( pPrior->pLimit 1661 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 1662 && p->nSelectRow > (double)nLimit 1663 ){ 1664 p->nSelectRow = (double)nLimit; 1665 } 1666 if( addr ){ 1667 sqlite3VdbeJumpHere(v, addr); 1668 } 1669 break; 1670 } 1671 case TK_EXCEPT: 1672 case TK_UNION: { 1673 int unionTab; /* Cursor number of the temporary table holding result */ 1674 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1675 int priorOp; /* The SRT_ operation to apply to prior selects */ 1676 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1677 int addr; 1678 SelectDest uniondest; 1679 1680 testcase( p->op==TK_EXCEPT ); 1681 testcase( p->op==TK_UNION ); 1682 priorOp = SRT_Union; 1683 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1684 /* We can reuse a temporary table generated by a SELECT to our 1685 ** right. 1686 */ 1687 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1688 ** of a 3-way or more compound */ 1689 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1690 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1691 unionTab = dest.iParm; 1692 }else{ 1693 /* We will need to create our own temporary table to hold the 1694 ** intermediate results. 1695 */ 1696 unionTab = pParse->nTab++; 1697 assert( p->pOrderBy==0 ); 1698 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1699 assert( p->addrOpenEphm[0] == -1 ); 1700 p->addrOpenEphm[0] = addr; 1701 p->pRightmost->selFlags |= SF_UsesEphemeral; 1702 assert( p->pEList ); 1703 } 1704 1705 /* Code the SELECT statements to our left 1706 */ 1707 assert( !pPrior->pOrderBy ); 1708 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1709 explainSetInteger(iSub1, pParse->iNextSelectId); 1710 rc = sqlite3Select(pParse, pPrior, &uniondest); 1711 if( rc ){ 1712 goto multi_select_end; 1713 } 1714 1715 /* Code the current SELECT statement 1716 */ 1717 if( p->op==TK_EXCEPT ){ 1718 op = SRT_Except; 1719 }else{ 1720 assert( p->op==TK_UNION ); 1721 op = SRT_Union; 1722 } 1723 p->pPrior = 0; 1724 pLimit = p->pLimit; 1725 p->pLimit = 0; 1726 pOffset = p->pOffset; 1727 p->pOffset = 0; 1728 uniondest.eDest = op; 1729 explainSetInteger(iSub2, pParse->iNextSelectId); 1730 rc = sqlite3Select(pParse, p, &uniondest); 1731 testcase( rc!=SQLITE_OK ); 1732 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1733 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1734 sqlite3ExprListDelete(db, p->pOrderBy); 1735 pDelete = p->pPrior; 1736 p->pPrior = pPrior; 1737 p->pOrderBy = 0; 1738 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 1739 sqlite3ExprDelete(db, p->pLimit); 1740 p->pLimit = pLimit; 1741 p->pOffset = pOffset; 1742 p->iLimit = 0; 1743 p->iOffset = 0; 1744 1745 /* Convert the data in the temporary table into whatever form 1746 ** it is that we currently need. 1747 */ 1748 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1749 if( dest.eDest!=priorOp ){ 1750 int iCont, iBreak, iStart; 1751 assert( p->pEList ); 1752 if( dest.eDest==SRT_Output ){ 1753 Select *pFirst = p; 1754 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1755 generateColumnNames(pParse, 0, pFirst->pEList); 1756 } 1757 iBreak = sqlite3VdbeMakeLabel(v); 1758 iCont = sqlite3VdbeMakeLabel(v); 1759 computeLimitRegisters(pParse, p, iBreak); 1760 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1761 iStart = sqlite3VdbeCurrentAddr(v); 1762 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1763 0, -1, &dest, iCont, iBreak); 1764 sqlite3VdbeResolveLabel(v, iCont); 1765 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1766 sqlite3VdbeResolveLabel(v, iBreak); 1767 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1768 } 1769 break; 1770 } 1771 default: assert( p->op==TK_INTERSECT ); { 1772 int tab1, tab2; 1773 int iCont, iBreak, iStart; 1774 Expr *pLimit, *pOffset; 1775 int addr; 1776 SelectDest intersectdest; 1777 int r1; 1778 1779 /* INTERSECT is different from the others since it requires 1780 ** two temporary tables. Hence it has its own case. Begin 1781 ** by allocating the tables we will need. 1782 */ 1783 tab1 = pParse->nTab++; 1784 tab2 = pParse->nTab++; 1785 assert( p->pOrderBy==0 ); 1786 1787 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1788 assert( p->addrOpenEphm[0] == -1 ); 1789 p->addrOpenEphm[0] = addr; 1790 p->pRightmost->selFlags |= SF_UsesEphemeral; 1791 assert( p->pEList ); 1792 1793 /* Code the SELECTs to our left into temporary table "tab1". 1794 */ 1795 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1796 explainSetInteger(iSub1, pParse->iNextSelectId); 1797 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1798 if( rc ){ 1799 goto multi_select_end; 1800 } 1801 1802 /* Code the current SELECT into temporary table "tab2" 1803 */ 1804 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1805 assert( p->addrOpenEphm[1] == -1 ); 1806 p->addrOpenEphm[1] = addr; 1807 p->pPrior = 0; 1808 pLimit = p->pLimit; 1809 p->pLimit = 0; 1810 pOffset = p->pOffset; 1811 p->pOffset = 0; 1812 intersectdest.iParm = tab2; 1813 explainSetInteger(iSub2, pParse->iNextSelectId); 1814 rc = sqlite3Select(pParse, p, &intersectdest); 1815 testcase( rc!=SQLITE_OK ); 1816 pDelete = p->pPrior; 1817 p->pPrior = pPrior; 1818 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 1819 sqlite3ExprDelete(db, p->pLimit); 1820 p->pLimit = pLimit; 1821 p->pOffset = pOffset; 1822 1823 /* Generate code to take the intersection of the two temporary 1824 ** tables. 1825 */ 1826 assert( p->pEList ); 1827 if( dest.eDest==SRT_Output ){ 1828 Select *pFirst = p; 1829 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1830 generateColumnNames(pParse, 0, pFirst->pEList); 1831 } 1832 iBreak = sqlite3VdbeMakeLabel(v); 1833 iCont = sqlite3VdbeMakeLabel(v); 1834 computeLimitRegisters(pParse, p, iBreak); 1835 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1836 r1 = sqlite3GetTempReg(pParse); 1837 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1838 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1839 sqlite3ReleaseTempReg(pParse, r1); 1840 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1841 0, -1, &dest, iCont, iBreak); 1842 sqlite3VdbeResolveLabel(v, iCont); 1843 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1844 sqlite3VdbeResolveLabel(v, iBreak); 1845 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1846 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1847 break; 1848 } 1849 } 1850 1851 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 1852 1853 /* Compute collating sequences used by 1854 ** temporary tables needed to implement the compound select. 1855 ** Attach the KeyInfo structure to all temporary tables. 1856 ** 1857 ** This section is run by the right-most SELECT statement only. 1858 ** SELECT statements to the left always skip this part. The right-most 1859 ** SELECT might also skip this part if it has no ORDER BY clause and 1860 ** no temp tables are required. 1861 */ 1862 if( p->selFlags & SF_UsesEphemeral ){ 1863 int i; /* Loop counter */ 1864 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1865 Select *pLoop; /* For looping through SELECT statements */ 1866 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1867 int nCol; /* Number of columns in result set */ 1868 1869 assert( p->pRightmost==p ); 1870 nCol = p->pEList->nExpr; 1871 pKeyInfo = sqlite3DbMallocZero(db, 1872 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1873 if( !pKeyInfo ){ 1874 rc = SQLITE_NOMEM; 1875 goto multi_select_end; 1876 } 1877 1878 pKeyInfo->enc = ENC(db); 1879 pKeyInfo->nField = (u16)nCol; 1880 1881 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1882 *apColl = multiSelectCollSeq(pParse, p, i); 1883 if( 0==*apColl ){ 1884 *apColl = db->pDfltColl; 1885 } 1886 } 1887 1888 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1889 for(i=0; i<2; i++){ 1890 int addr = pLoop->addrOpenEphm[i]; 1891 if( addr<0 ){ 1892 /* If [0] is unused then [1] is also unused. So we can 1893 ** always safely abort as soon as the first unused slot is found */ 1894 assert( pLoop->addrOpenEphm[1]<0 ); 1895 break; 1896 } 1897 sqlite3VdbeChangeP2(v, addr, nCol); 1898 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1899 pLoop->addrOpenEphm[i] = -1; 1900 } 1901 } 1902 sqlite3DbFree(db, pKeyInfo); 1903 } 1904 1905 multi_select_end: 1906 pDest->iMem = dest.iMem; 1907 pDest->nMem = dest.nMem; 1908 sqlite3SelectDelete(db, pDelete); 1909 return rc; 1910 } 1911 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1912 1913 /* 1914 ** Code an output subroutine for a coroutine implementation of a 1915 ** SELECT statment. 1916 ** 1917 ** The data to be output is contained in pIn->iMem. There are 1918 ** pIn->nMem columns to be output. pDest is where the output should 1919 ** be sent. 1920 ** 1921 ** regReturn is the number of the register holding the subroutine 1922 ** return address. 1923 ** 1924 ** If regPrev>0 then it is the first register in a vector that 1925 ** records the previous output. mem[regPrev] is a flag that is false 1926 ** if there has been no previous output. If regPrev>0 then code is 1927 ** generated to suppress duplicates. pKeyInfo is used for comparing 1928 ** keys. 1929 ** 1930 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1931 ** iBreak. 1932 */ 1933 static int generateOutputSubroutine( 1934 Parse *pParse, /* Parsing context */ 1935 Select *p, /* The SELECT statement */ 1936 SelectDest *pIn, /* Coroutine supplying data */ 1937 SelectDest *pDest, /* Where to send the data */ 1938 int regReturn, /* The return address register */ 1939 int regPrev, /* Previous result register. No uniqueness if 0 */ 1940 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1941 int p4type, /* The p4 type for pKeyInfo */ 1942 int iBreak /* Jump here if we hit the LIMIT */ 1943 ){ 1944 Vdbe *v = pParse->pVdbe; 1945 int iContinue; 1946 int addr; 1947 1948 addr = sqlite3VdbeCurrentAddr(v); 1949 iContinue = sqlite3VdbeMakeLabel(v); 1950 1951 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1952 */ 1953 if( regPrev ){ 1954 int j1, j2; 1955 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1956 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1957 (char*)pKeyInfo, p4type); 1958 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1959 sqlite3VdbeJumpHere(v, j1); 1960 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1961 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1962 } 1963 if( pParse->db->mallocFailed ) return 0; 1964 1965 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1966 */ 1967 codeOffset(v, p, iContinue); 1968 1969 switch( pDest->eDest ){ 1970 /* Store the result as data using a unique key. 1971 */ 1972 case SRT_Table: 1973 case SRT_EphemTab: { 1974 int r1 = sqlite3GetTempReg(pParse); 1975 int r2 = sqlite3GetTempReg(pParse); 1976 testcase( pDest->eDest==SRT_Table ); 1977 testcase( pDest->eDest==SRT_EphemTab ); 1978 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1979 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1980 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1981 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1982 sqlite3ReleaseTempReg(pParse, r2); 1983 sqlite3ReleaseTempReg(pParse, r1); 1984 break; 1985 } 1986 1987 #ifndef SQLITE_OMIT_SUBQUERY 1988 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1989 ** then there should be a single item on the stack. Write this 1990 ** item into the set table with bogus data. 1991 */ 1992 case SRT_Set: { 1993 int r1; 1994 assert( pIn->nMem==1 ); 1995 p->affinity = 1996 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1997 r1 = sqlite3GetTempReg(pParse); 1998 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1999 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 2000 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 2001 sqlite3ReleaseTempReg(pParse, r1); 2002 break; 2003 } 2004 2005 #if 0 /* Never occurs on an ORDER BY query */ 2006 /* If any row exist in the result set, record that fact and abort. 2007 */ 2008 case SRT_Exists: { 2009 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 2010 /* The LIMIT clause will terminate the loop for us */ 2011 break; 2012 } 2013 #endif 2014 2015 /* If this is a scalar select that is part of an expression, then 2016 ** store the results in the appropriate memory cell and break out 2017 ** of the scan loop. 2018 */ 2019 case SRT_Mem: { 2020 assert( pIn->nMem==1 ); 2021 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 2022 /* The LIMIT clause will jump out of the loop for us */ 2023 break; 2024 } 2025 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2026 2027 /* The results are stored in a sequence of registers 2028 ** starting at pDest->iMem. Then the co-routine yields. 2029 */ 2030 case SRT_Coroutine: { 2031 if( pDest->iMem==0 ){ 2032 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 2033 pDest->nMem = pIn->nMem; 2034 } 2035 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 2036 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 2037 break; 2038 } 2039 2040 /* If none of the above, then the result destination must be 2041 ** SRT_Output. This routine is never called with any other 2042 ** destination other than the ones handled above or SRT_Output. 2043 ** 2044 ** For SRT_Output, results are stored in a sequence of registers. 2045 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2046 ** return the next row of result. 2047 */ 2048 default: { 2049 assert( pDest->eDest==SRT_Output ); 2050 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 2051 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 2052 break; 2053 } 2054 } 2055 2056 /* Jump to the end of the loop if the LIMIT is reached. 2057 */ 2058 if( p->iLimit ){ 2059 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2060 } 2061 2062 /* Generate the subroutine return 2063 */ 2064 sqlite3VdbeResolveLabel(v, iContinue); 2065 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2066 2067 return addr; 2068 } 2069 2070 /* 2071 ** Alternative compound select code generator for cases when there 2072 ** is an ORDER BY clause. 2073 ** 2074 ** We assume a query of the following form: 2075 ** 2076 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2077 ** 2078 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2079 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2080 ** co-routines. Then run the co-routines in parallel and merge the results 2081 ** into the output. In addition to the two coroutines (called selectA and 2082 ** selectB) there are 7 subroutines: 2083 ** 2084 ** outA: Move the output of the selectA coroutine into the output 2085 ** of the compound query. 2086 ** 2087 ** outB: Move the output of the selectB coroutine into the output 2088 ** of the compound query. (Only generated for UNION and 2089 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2090 ** appears only in B.) 2091 ** 2092 ** AltB: Called when there is data from both coroutines and A<B. 2093 ** 2094 ** AeqB: Called when there is data from both coroutines and A==B. 2095 ** 2096 ** AgtB: Called when there is data from both coroutines and A>B. 2097 ** 2098 ** EofA: Called when data is exhausted from selectA. 2099 ** 2100 ** EofB: Called when data is exhausted from selectB. 2101 ** 2102 ** The implementation of the latter five subroutines depend on which 2103 ** <operator> is used: 2104 ** 2105 ** 2106 ** UNION ALL UNION EXCEPT INTERSECT 2107 ** ------------- ----------------- -------------- ----------------- 2108 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2109 ** 2110 ** AeqB: outA, nextA nextA nextA outA, nextA 2111 ** 2112 ** AgtB: outB, nextB outB, nextB nextB nextB 2113 ** 2114 ** EofA: outB, nextB outB, nextB halt halt 2115 ** 2116 ** EofB: outA, nextA outA, nextA outA, nextA halt 2117 ** 2118 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2119 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2120 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2121 ** following nextX causes a jump to the end of the select processing. 2122 ** 2123 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2124 ** within the output subroutine. The regPrev register set holds the previously 2125 ** output value. A comparison is made against this value and the output 2126 ** is skipped if the next results would be the same as the previous. 2127 ** 2128 ** The implementation plan is to implement the two coroutines and seven 2129 ** subroutines first, then put the control logic at the bottom. Like this: 2130 ** 2131 ** goto Init 2132 ** coA: coroutine for left query (A) 2133 ** coB: coroutine for right query (B) 2134 ** outA: output one row of A 2135 ** outB: output one row of B (UNION and UNION ALL only) 2136 ** EofA: ... 2137 ** EofB: ... 2138 ** AltB: ... 2139 ** AeqB: ... 2140 ** AgtB: ... 2141 ** Init: initialize coroutine registers 2142 ** yield coA 2143 ** if eof(A) goto EofA 2144 ** yield coB 2145 ** if eof(B) goto EofB 2146 ** Cmpr: Compare A, B 2147 ** Jump AltB, AeqB, AgtB 2148 ** End: ... 2149 ** 2150 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2151 ** actually called using Gosub and they do not Return. EofA and EofB loop 2152 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2153 ** and AgtB jump to either L2 or to one of EofA or EofB. 2154 */ 2155 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2156 static int multiSelectOrderBy( 2157 Parse *pParse, /* Parsing context */ 2158 Select *p, /* The right-most of SELECTs to be coded */ 2159 SelectDest *pDest /* What to do with query results */ 2160 ){ 2161 int i, j; /* Loop counters */ 2162 Select *pPrior; /* Another SELECT immediately to our left */ 2163 Vdbe *v; /* Generate code to this VDBE */ 2164 SelectDest destA; /* Destination for coroutine A */ 2165 SelectDest destB; /* Destination for coroutine B */ 2166 int regAddrA; /* Address register for select-A coroutine */ 2167 int regEofA; /* Flag to indicate when select-A is complete */ 2168 int regAddrB; /* Address register for select-B coroutine */ 2169 int regEofB; /* Flag to indicate when select-B is complete */ 2170 int addrSelectA; /* Address of the select-A coroutine */ 2171 int addrSelectB; /* Address of the select-B coroutine */ 2172 int regOutA; /* Address register for the output-A subroutine */ 2173 int regOutB; /* Address register for the output-B subroutine */ 2174 int addrOutA; /* Address of the output-A subroutine */ 2175 int addrOutB = 0; /* Address of the output-B subroutine */ 2176 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2177 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2178 int addrAltB; /* Address of the A<B subroutine */ 2179 int addrAeqB; /* Address of the A==B subroutine */ 2180 int addrAgtB; /* Address of the A>B subroutine */ 2181 int regLimitA; /* Limit register for select-A */ 2182 int regLimitB; /* Limit register for select-A */ 2183 int regPrev; /* A range of registers to hold previous output */ 2184 int savedLimit; /* Saved value of p->iLimit */ 2185 int savedOffset; /* Saved value of p->iOffset */ 2186 int labelCmpr; /* Label for the start of the merge algorithm */ 2187 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2188 int j1; /* Jump instructions that get retargetted */ 2189 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2190 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2191 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2192 sqlite3 *db; /* Database connection */ 2193 ExprList *pOrderBy; /* The ORDER BY clause */ 2194 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2195 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2196 #ifndef SQLITE_OMIT_EXPLAIN 2197 int iSub1; /* EQP id of left-hand query */ 2198 int iSub2; /* EQP id of right-hand query */ 2199 #endif 2200 2201 assert( p->pOrderBy!=0 ); 2202 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2203 db = pParse->db; 2204 v = pParse->pVdbe; 2205 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2206 labelEnd = sqlite3VdbeMakeLabel(v); 2207 labelCmpr = sqlite3VdbeMakeLabel(v); 2208 2209 2210 /* Patch up the ORDER BY clause 2211 */ 2212 op = p->op; 2213 pPrior = p->pPrior; 2214 assert( pPrior->pOrderBy==0 ); 2215 pOrderBy = p->pOrderBy; 2216 assert( pOrderBy ); 2217 nOrderBy = pOrderBy->nExpr; 2218 2219 /* For operators other than UNION ALL we have to make sure that 2220 ** the ORDER BY clause covers every term of the result set. Add 2221 ** terms to the ORDER BY clause as necessary. 2222 */ 2223 if( op!=TK_ALL ){ 2224 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2225 struct ExprList_item *pItem; 2226 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2227 assert( pItem->iOrderByCol>0 ); 2228 if( pItem->iOrderByCol==i ) break; 2229 } 2230 if( j==nOrderBy ){ 2231 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2232 if( pNew==0 ) return SQLITE_NOMEM; 2233 pNew->flags |= EP_IntValue; 2234 pNew->u.iValue = i; 2235 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2236 if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i; 2237 } 2238 } 2239 } 2240 2241 /* Compute the comparison permutation and keyinfo that is used with 2242 ** the permutation used to determine if the next 2243 ** row of results comes from selectA or selectB. Also add explicit 2244 ** collations to the ORDER BY clause terms so that when the subqueries 2245 ** to the right and the left are evaluated, they use the correct 2246 ** collation. 2247 */ 2248 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2249 if( aPermute ){ 2250 struct ExprList_item *pItem; 2251 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2252 assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr ); 2253 aPermute[i] = pItem->iOrderByCol - 1; 2254 } 2255 pKeyMerge = 2256 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2257 if( pKeyMerge ){ 2258 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2259 pKeyMerge->nField = (u16)nOrderBy; 2260 pKeyMerge->enc = ENC(db); 2261 for(i=0; i<nOrderBy; i++){ 2262 CollSeq *pColl; 2263 Expr *pTerm = pOrderBy->a[i].pExpr; 2264 if( pTerm->flags & EP_ExpCollate ){ 2265 pColl = pTerm->pColl; 2266 }else{ 2267 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2268 pTerm->flags |= EP_ExpCollate; 2269 pTerm->pColl = pColl; 2270 } 2271 pKeyMerge->aColl[i] = pColl; 2272 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2273 } 2274 } 2275 }else{ 2276 pKeyMerge = 0; 2277 } 2278 2279 /* Reattach the ORDER BY clause to the query. 2280 */ 2281 p->pOrderBy = pOrderBy; 2282 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2283 2284 /* Allocate a range of temporary registers and the KeyInfo needed 2285 ** for the logic that removes duplicate result rows when the 2286 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2287 */ 2288 if( op==TK_ALL ){ 2289 regPrev = 0; 2290 }else{ 2291 int nExpr = p->pEList->nExpr; 2292 assert( nOrderBy>=nExpr || db->mallocFailed ); 2293 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2294 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2295 pKeyDup = sqlite3DbMallocZero(db, 2296 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2297 if( pKeyDup ){ 2298 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2299 pKeyDup->nField = (u16)nExpr; 2300 pKeyDup->enc = ENC(db); 2301 for(i=0; i<nExpr; i++){ 2302 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2303 pKeyDup->aSortOrder[i] = 0; 2304 } 2305 } 2306 } 2307 2308 /* Separate the left and the right query from one another 2309 */ 2310 p->pPrior = 0; 2311 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2312 if( pPrior->pPrior==0 ){ 2313 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2314 } 2315 2316 /* Compute the limit registers */ 2317 computeLimitRegisters(pParse, p, labelEnd); 2318 if( p->iLimit && op==TK_ALL ){ 2319 regLimitA = ++pParse->nMem; 2320 regLimitB = ++pParse->nMem; 2321 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2322 regLimitA); 2323 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2324 }else{ 2325 regLimitA = regLimitB = 0; 2326 } 2327 sqlite3ExprDelete(db, p->pLimit); 2328 p->pLimit = 0; 2329 sqlite3ExprDelete(db, p->pOffset); 2330 p->pOffset = 0; 2331 2332 regAddrA = ++pParse->nMem; 2333 regEofA = ++pParse->nMem; 2334 regAddrB = ++pParse->nMem; 2335 regEofB = ++pParse->nMem; 2336 regOutA = ++pParse->nMem; 2337 regOutB = ++pParse->nMem; 2338 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2339 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2340 2341 /* Jump past the various subroutines and coroutines to the main 2342 ** merge loop 2343 */ 2344 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2345 addrSelectA = sqlite3VdbeCurrentAddr(v); 2346 2347 2348 /* Generate a coroutine to evaluate the SELECT statement to the 2349 ** left of the compound operator - the "A" select. 2350 */ 2351 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2352 pPrior->iLimit = regLimitA; 2353 explainSetInteger(iSub1, pParse->iNextSelectId); 2354 sqlite3Select(pParse, pPrior, &destA); 2355 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2356 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2357 VdbeNoopComment((v, "End coroutine for left SELECT")); 2358 2359 /* Generate a coroutine to evaluate the SELECT statement on 2360 ** the right - the "B" select 2361 */ 2362 addrSelectB = sqlite3VdbeCurrentAddr(v); 2363 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2364 savedLimit = p->iLimit; 2365 savedOffset = p->iOffset; 2366 p->iLimit = regLimitB; 2367 p->iOffset = 0; 2368 explainSetInteger(iSub2, pParse->iNextSelectId); 2369 sqlite3Select(pParse, p, &destB); 2370 p->iLimit = savedLimit; 2371 p->iOffset = savedOffset; 2372 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2373 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2374 VdbeNoopComment((v, "End coroutine for right SELECT")); 2375 2376 /* Generate a subroutine that outputs the current row of the A 2377 ** select as the next output row of the compound select. 2378 */ 2379 VdbeNoopComment((v, "Output routine for A")); 2380 addrOutA = generateOutputSubroutine(pParse, 2381 p, &destA, pDest, regOutA, 2382 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2383 2384 /* Generate a subroutine that outputs the current row of the B 2385 ** select as the next output row of the compound select. 2386 */ 2387 if( op==TK_ALL || op==TK_UNION ){ 2388 VdbeNoopComment((v, "Output routine for B")); 2389 addrOutB = generateOutputSubroutine(pParse, 2390 p, &destB, pDest, regOutB, 2391 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2392 } 2393 2394 /* Generate a subroutine to run when the results from select A 2395 ** are exhausted and only data in select B remains. 2396 */ 2397 VdbeNoopComment((v, "eof-A subroutine")); 2398 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2399 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2400 }else{ 2401 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2402 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2403 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2404 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2405 p->nSelectRow += pPrior->nSelectRow; 2406 } 2407 2408 /* Generate a subroutine to run when the results from select B 2409 ** are exhausted and only data in select A remains. 2410 */ 2411 if( op==TK_INTERSECT ){ 2412 addrEofB = addrEofA; 2413 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2414 }else{ 2415 VdbeNoopComment((v, "eof-B subroutine")); 2416 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2417 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2418 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2419 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2420 } 2421 2422 /* Generate code to handle the case of A<B 2423 */ 2424 VdbeNoopComment((v, "A-lt-B subroutine")); 2425 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2426 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2427 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2428 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2429 2430 /* Generate code to handle the case of A==B 2431 */ 2432 if( op==TK_ALL ){ 2433 addrAeqB = addrAltB; 2434 }else if( op==TK_INTERSECT ){ 2435 addrAeqB = addrAltB; 2436 addrAltB++; 2437 }else{ 2438 VdbeNoopComment((v, "A-eq-B subroutine")); 2439 addrAeqB = 2440 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2441 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2442 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2443 } 2444 2445 /* Generate code to handle the case of A>B 2446 */ 2447 VdbeNoopComment((v, "A-gt-B subroutine")); 2448 addrAgtB = sqlite3VdbeCurrentAddr(v); 2449 if( op==TK_ALL || op==TK_UNION ){ 2450 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2451 } 2452 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2453 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2454 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2455 2456 /* This code runs once to initialize everything. 2457 */ 2458 sqlite3VdbeJumpHere(v, j1); 2459 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2460 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2461 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2462 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2463 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2464 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2465 2466 /* Implement the main merge loop 2467 */ 2468 sqlite3VdbeResolveLabel(v, labelCmpr); 2469 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2470 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2471 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2472 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2473 2474 /* Release temporary registers 2475 */ 2476 if( regPrev ){ 2477 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2478 } 2479 2480 /* Jump to the this point in order to terminate the query. 2481 */ 2482 sqlite3VdbeResolveLabel(v, labelEnd); 2483 2484 /* Set the number of output columns 2485 */ 2486 if( pDest->eDest==SRT_Output ){ 2487 Select *pFirst = pPrior; 2488 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2489 generateColumnNames(pParse, 0, pFirst->pEList); 2490 } 2491 2492 /* Reassembly the compound query so that it will be freed correctly 2493 ** by the calling function */ 2494 if( p->pPrior ){ 2495 sqlite3SelectDelete(db, p->pPrior); 2496 } 2497 p->pPrior = pPrior; 2498 2499 /*** TBD: Insert subroutine calls to close cursors on incomplete 2500 **** subqueries ****/ 2501 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2502 return SQLITE_OK; 2503 } 2504 #endif 2505 2506 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2507 /* Forward Declarations */ 2508 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2509 static void substSelect(sqlite3*, Select *, int, ExprList *); 2510 2511 /* 2512 ** Scan through the expression pExpr. Replace every reference to 2513 ** a column in table number iTable with a copy of the iColumn-th 2514 ** entry in pEList. (But leave references to the ROWID column 2515 ** unchanged.) 2516 ** 2517 ** This routine is part of the flattening procedure. A subquery 2518 ** whose result set is defined by pEList appears as entry in the 2519 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2520 ** FORM clause entry is iTable. This routine make the necessary 2521 ** changes to pExpr so that it refers directly to the source table 2522 ** of the subquery rather the result set of the subquery. 2523 */ 2524 static Expr *substExpr( 2525 sqlite3 *db, /* Report malloc errors to this connection */ 2526 Expr *pExpr, /* Expr in which substitution occurs */ 2527 int iTable, /* Table to be substituted */ 2528 ExprList *pEList /* Substitute expressions */ 2529 ){ 2530 if( pExpr==0 ) return 0; 2531 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2532 if( pExpr->iColumn<0 ){ 2533 pExpr->op = TK_NULL; 2534 }else{ 2535 Expr *pNew; 2536 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2537 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2538 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2539 if( pNew && pExpr->pColl ){ 2540 pNew->pColl = pExpr->pColl; 2541 } 2542 sqlite3ExprDelete(db, pExpr); 2543 pExpr = pNew; 2544 } 2545 }else{ 2546 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2547 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2548 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2549 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2550 }else{ 2551 substExprList(db, pExpr->x.pList, iTable, pEList); 2552 } 2553 } 2554 return pExpr; 2555 } 2556 static void substExprList( 2557 sqlite3 *db, /* Report malloc errors here */ 2558 ExprList *pList, /* List to scan and in which to make substitutes */ 2559 int iTable, /* Table to be substituted */ 2560 ExprList *pEList /* Substitute values */ 2561 ){ 2562 int i; 2563 if( pList==0 ) return; 2564 for(i=0; i<pList->nExpr; i++){ 2565 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2566 } 2567 } 2568 static void substSelect( 2569 sqlite3 *db, /* Report malloc errors here */ 2570 Select *p, /* SELECT statement in which to make substitutions */ 2571 int iTable, /* Table to be replaced */ 2572 ExprList *pEList /* Substitute values */ 2573 ){ 2574 SrcList *pSrc; 2575 struct SrcList_item *pItem; 2576 int i; 2577 if( !p ) return; 2578 substExprList(db, p->pEList, iTable, pEList); 2579 substExprList(db, p->pGroupBy, iTable, pEList); 2580 substExprList(db, p->pOrderBy, iTable, pEList); 2581 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2582 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2583 substSelect(db, p->pPrior, iTable, pEList); 2584 pSrc = p->pSrc; 2585 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2586 if( ALWAYS(pSrc) ){ 2587 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2588 substSelect(db, pItem->pSelect, iTable, pEList); 2589 } 2590 } 2591 } 2592 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2593 2594 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2595 /* 2596 ** This routine attempts to flatten subqueries as a performance optimization. 2597 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 2598 ** 2599 ** To understand the concept of flattening, consider the following 2600 ** query: 2601 ** 2602 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2603 ** 2604 ** The default way of implementing this query is to execute the 2605 ** subquery first and store the results in a temporary table, then 2606 ** run the outer query on that temporary table. This requires two 2607 ** passes over the data. Furthermore, because the temporary table 2608 ** has no indices, the WHERE clause on the outer query cannot be 2609 ** optimized. 2610 ** 2611 ** This routine attempts to rewrite queries such as the above into 2612 ** a single flat select, like this: 2613 ** 2614 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2615 ** 2616 ** The code generated for this simpification gives the same result 2617 ** but only has to scan the data once. And because indices might 2618 ** exist on the table t1, a complete scan of the data might be 2619 ** avoided. 2620 ** 2621 ** Flattening is only attempted if all of the following are true: 2622 ** 2623 ** (1) The subquery and the outer query do not both use aggregates. 2624 ** 2625 ** (2) The subquery is not an aggregate or the outer query is not a join. 2626 ** 2627 ** (3) The subquery is not the right operand of a left outer join 2628 ** (Originally ticket #306. Strengthened by ticket #3300) 2629 ** 2630 ** (4) The subquery is not DISTINCT. 2631 ** 2632 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 2633 ** sub-queries that were excluded from this optimization. Restriction 2634 ** (4) has since been expanded to exclude all DISTINCT subqueries. 2635 ** 2636 ** (6) The subquery does not use aggregates or the outer query is not 2637 ** DISTINCT. 2638 ** 2639 ** (7) The subquery has a FROM clause. TODO: For subqueries without 2640 ** A FROM clause, consider adding a FROM close with the special 2641 ** table sqlite_once that consists of a single row containing a 2642 ** single NULL. 2643 ** 2644 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2645 ** 2646 ** (9) The subquery does not use LIMIT or the outer query does not use 2647 ** aggregates. 2648 ** 2649 ** (10) The subquery does not use aggregates or the outer query does not 2650 ** use LIMIT. 2651 ** 2652 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2653 ** 2654 ** (**) Not implemented. Subsumed into restriction (3). Was previously 2655 ** a separate restriction deriving from ticket #350. 2656 ** 2657 ** (13) The subquery and outer query do not both use LIMIT. 2658 ** 2659 ** (14) The subquery does not use OFFSET. 2660 ** 2661 ** (15) The outer query is not part of a compound select or the 2662 ** subquery does not have a LIMIT clause. 2663 ** (See ticket #2339 and ticket [02a8e81d44]). 2664 ** 2665 ** (16) The outer query is not an aggregate or the subquery does 2666 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2667 ** until we introduced the group_concat() function. 2668 ** 2669 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2670 ** compound clause made up entirely of non-aggregate queries, and 2671 ** the parent query: 2672 ** 2673 ** * is not itself part of a compound select, 2674 ** * is not an aggregate or DISTINCT query, and 2675 ** * is not a join 2676 ** 2677 ** The parent and sub-query may contain WHERE clauses. Subject to 2678 ** rules (11), (13) and (14), they may also contain ORDER BY, 2679 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 2680 ** operator other than UNION ALL because all the other compound 2681 ** operators have an implied DISTINCT which is disallowed by 2682 ** restriction (4). 2683 ** 2684 ** (18) If the sub-query is a compound select, then all terms of the 2685 ** ORDER by clause of the parent must be simple references to 2686 ** columns of the sub-query. 2687 ** 2688 ** (19) The subquery does not use LIMIT or the outer query does not 2689 ** have a WHERE clause. 2690 ** 2691 ** (20) If the sub-query is a compound select, then it must not use 2692 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2693 ** somewhat by saying that the terms of the ORDER BY clause must 2694 ** appear as unmodified result columns in the outer query. But we 2695 ** have other optimizations in mind to deal with that case. 2696 ** 2697 ** (21) The subquery does not use LIMIT or the outer query is not 2698 ** DISTINCT. (See ticket [752e1646fc]). 2699 ** 2700 ** In this routine, the "p" parameter is a pointer to the outer query. 2701 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2702 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2703 ** 2704 ** If flattening is not attempted, this routine is a no-op and returns 0. 2705 ** If flattening is attempted this routine returns 1. 2706 ** 2707 ** All of the expression analysis must occur on both the outer query and 2708 ** the subquery before this routine runs. 2709 */ 2710 static int flattenSubquery( 2711 Parse *pParse, /* Parsing context */ 2712 Select *p, /* The parent or outer SELECT statement */ 2713 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2714 int isAgg, /* True if outer SELECT uses aggregate functions */ 2715 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2716 ){ 2717 const char *zSavedAuthContext = pParse->zAuthContext; 2718 Select *pParent; 2719 Select *pSub; /* The inner query or "subquery" */ 2720 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2721 SrcList *pSrc; /* The FROM clause of the outer query */ 2722 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2723 ExprList *pList; /* The result set of the outer query */ 2724 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2725 int i; /* Loop counter */ 2726 Expr *pWhere; /* The WHERE clause */ 2727 struct SrcList_item *pSubitem; /* The subquery */ 2728 sqlite3 *db = pParse->db; 2729 2730 /* Check to see if flattening is permitted. Return 0 if not. 2731 */ 2732 assert( p!=0 ); 2733 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2734 if( db->flags & SQLITE_QueryFlattener ) return 0; 2735 pSrc = p->pSrc; 2736 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2737 pSubitem = &pSrc->a[iFrom]; 2738 iParent = pSubitem->iCursor; 2739 pSub = pSubitem->pSelect; 2740 assert( pSub!=0 ); 2741 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2742 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2743 pSubSrc = pSub->pSrc; 2744 assert( pSubSrc ); 2745 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2746 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2747 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2748 ** became arbitrary expressions, we were forced to add restrictions (13) 2749 ** and (14). */ 2750 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2751 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2752 if( p->pRightmost && pSub->pLimit ){ 2753 return 0; /* Restriction (15) */ 2754 } 2755 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2756 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 2757 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 2758 return 0; /* Restrictions (8)(9) */ 2759 } 2760 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2761 return 0; /* Restriction (6) */ 2762 } 2763 if( p->pOrderBy && pSub->pOrderBy ){ 2764 return 0; /* Restriction (11) */ 2765 } 2766 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2767 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2768 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 2769 return 0; /* Restriction (21) */ 2770 } 2771 2772 /* OBSOLETE COMMENT 1: 2773 ** Restriction 3: If the subquery is a join, make sure the subquery is 2774 ** not used as the right operand of an outer join. Examples of why this 2775 ** is not allowed: 2776 ** 2777 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2778 ** 2779 ** If we flatten the above, we would get 2780 ** 2781 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2782 ** 2783 ** which is not at all the same thing. 2784 ** 2785 ** OBSOLETE COMMENT 2: 2786 ** Restriction 12: If the subquery is the right operand of a left outer 2787 ** join, make sure the subquery has no WHERE clause. 2788 ** An examples of why this is not allowed: 2789 ** 2790 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2791 ** 2792 ** If we flatten the above, we would get 2793 ** 2794 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2795 ** 2796 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2797 ** effectively converts the OUTER JOIN into an INNER JOIN. 2798 ** 2799 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2800 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2801 ** is fraught with danger. Best to avoid the whole thing. If the 2802 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2803 */ 2804 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2805 return 0; 2806 } 2807 2808 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2809 ** use only the UNION ALL operator. And none of the simple select queries 2810 ** that make up the compound SELECT are allowed to be aggregate or distinct 2811 ** queries. 2812 */ 2813 if( pSub->pPrior ){ 2814 if( pSub->pOrderBy ){ 2815 return 0; /* Restriction 20 */ 2816 } 2817 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2818 return 0; 2819 } 2820 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2821 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2822 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2823 assert( pSub->pSrc!=0 ); 2824 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2825 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2826 || pSub1->pSrc->nSrc<1 2827 ){ 2828 return 0; 2829 } 2830 testcase( pSub1->pSrc->nSrc>1 ); 2831 } 2832 2833 /* Restriction 18. */ 2834 if( p->pOrderBy ){ 2835 int ii; 2836 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2837 if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0; 2838 } 2839 } 2840 } 2841 2842 /***** If we reach this point, flattening is permitted. *****/ 2843 2844 /* Authorize the subquery */ 2845 pParse->zAuthContext = pSubitem->zName; 2846 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2847 pParse->zAuthContext = zSavedAuthContext; 2848 2849 /* If the sub-query is a compound SELECT statement, then (by restrictions 2850 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2851 ** be of the form: 2852 ** 2853 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2854 ** 2855 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2856 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2857 ** OFFSET clauses and joins them to the left-hand-side of the original 2858 ** using UNION ALL operators. In this case N is the number of simple 2859 ** select statements in the compound sub-query. 2860 ** 2861 ** Example: 2862 ** 2863 ** SELECT a+1 FROM ( 2864 ** SELECT x FROM tab 2865 ** UNION ALL 2866 ** SELECT y FROM tab 2867 ** UNION ALL 2868 ** SELECT abs(z*2) FROM tab2 2869 ** ) WHERE a!=5 ORDER BY 1 2870 ** 2871 ** Transformed into: 2872 ** 2873 ** SELECT x+1 FROM tab WHERE x+1!=5 2874 ** UNION ALL 2875 ** SELECT y+1 FROM tab WHERE y+1!=5 2876 ** UNION ALL 2877 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2878 ** ORDER BY 1 2879 ** 2880 ** We call this the "compound-subquery flattening". 2881 */ 2882 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2883 Select *pNew; 2884 ExprList *pOrderBy = p->pOrderBy; 2885 Expr *pLimit = p->pLimit; 2886 Select *pPrior = p->pPrior; 2887 p->pOrderBy = 0; 2888 p->pSrc = 0; 2889 p->pPrior = 0; 2890 p->pLimit = 0; 2891 pNew = sqlite3SelectDup(db, p, 0); 2892 p->pLimit = pLimit; 2893 p->pOrderBy = pOrderBy; 2894 p->pSrc = pSrc; 2895 p->op = TK_ALL; 2896 p->pRightmost = 0; 2897 if( pNew==0 ){ 2898 pNew = pPrior; 2899 }else{ 2900 pNew->pPrior = pPrior; 2901 pNew->pRightmost = 0; 2902 } 2903 p->pPrior = pNew; 2904 if( db->mallocFailed ) return 1; 2905 } 2906 2907 /* Begin flattening the iFrom-th entry of the FROM clause 2908 ** in the outer query. 2909 */ 2910 pSub = pSub1 = pSubitem->pSelect; 2911 2912 /* Delete the transient table structure associated with the 2913 ** subquery 2914 */ 2915 sqlite3DbFree(db, pSubitem->zDatabase); 2916 sqlite3DbFree(db, pSubitem->zName); 2917 sqlite3DbFree(db, pSubitem->zAlias); 2918 pSubitem->zDatabase = 0; 2919 pSubitem->zName = 0; 2920 pSubitem->zAlias = 0; 2921 pSubitem->pSelect = 0; 2922 2923 /* Defer deleting the Table object associated with the 2924 ** subquery until code generation is 2925 ** complete, since there may still exist Expr.pTab entries that 2926 ** refer to the subquery even after flattening. Ticket #3346. 2927 ** 2928 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2929 */ 2930 if( ALWAYS(pSubitem->pTab!=0) ){ 2931 Table *pTabToDel = pSubitem->pTab; 2932 if( pTabToDel->nRef==1 ){ 2933 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2934 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2935 pToplevel->pZombieTab = pTabToDel; 2936 }else{ 2937 pTabToDel->nRef--; 2938 } 2939 pSubitem->pTab = 0; 2940 } 2941 2942 /* The following loop runs once for each term in a compound-subquery 2943 ** flattening (as described above). If we are doing a different kind 2944 ** of flattening - a flattening other than a compound-subquery flattening - 2945 ** then this loop only runs once. 2946 ** 2947 ** This loop moves all of the FROM elements of the subquery into the 2948 ** the FROM clause of the outer query. Before doing this, remember 2949 ** the cursor number for the original outer query FROM element in 2950 ** iParent. The iParent cursor will never be used. Subsequent code 2951 ** will scan expressions looking for iParent references and replace 2952 ** those references with expressions that resolve to the subquery FROM 2953 ** elements we are now copying in. 2954 */ 2955 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2956 int nSubSrc; 2957 u8 jointype = 0; 2958 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2959 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2960 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2961 2962 if( pSrc ){ 2963 assert( pParent==p ); /* First time through the loop */ 2964 jointype = pSubitem->jointype; 2965 }else{ 2966 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2967 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2968 if( pSrc==0 ){ 2969 assert( db->mallocFailed ); 2970 break; 2971 } 2972 } 2973 2974 /* The subquery uses a single slot of the FROM clause of the outer 2975 ** query. If the subquery has more than one element in its FROM clause, 2976 ** then expand the outer query to make space for it to hold all elements 2977 ** of the subquery. 2978 ** 2979 ** Example: 2980 ** 2981 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2982 ** 2983 ** The outer query has 3 slots in its FROM clause. One slot of the 2984 ** outer query (the middle slot) is used by the subquery. The next 2985 ** block of code will expand the out query to 4 slots. The middle 2986 ** slot is expanded to two slots in order to make space for the 2987 ** two elements in the FROM clause of the subquery. 2988 */ 2989 if( nSubSrc>1 ){ 2990 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2991 if( db->mallocFailed ){ 2992 break; 2993 } 2994 } 2995 2996 /* Transfer the FROM clause terms from the subquery into the 2997 ** outer query. 2998 */ 2999 for(i=0; i<nSubSrc; i++){ 3000 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3001 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3002 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3003 } 3004 pSrc->a[iFrom].jointype = jointype; 3005 3006 /* Now begin substituting subquery result set expressions for 3007 ** references to the iParent in the outer query. 3008 ** 3009 ** Example: 3010 ** 3011 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3012 ** \ \_____________ subquery __________/ / 3013 ** \_____________________ outer query ______________________________/ 3014 ** 3015 ** We look at every expression in the outer query and every place we see 3016 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3017 */ 3018 pList = pParent->pEList; 3019 for(i=0; i<pList->nExpr; i++){ 3020 if( pList->a[i].zName==0 ){ 3021 const char *zSpan = pList->a[i].zSpan; 3022 if( ALWAYS(zSpan) ){ 3023 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 3024 } 3025 } 3026 } 3027 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3028 if( isAgg ){ 3029 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3030 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3031 } 3032 if( pSub->pOrderBy ){ 3033 assert( pParent->pOrderBy==0 ); 3034 pParent->pOrderBy = pSub->pOrderBy; 3035 pSub->pOrderBy = 0; 3036 }else if( pParent->pOrderBy ){ 3037 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3038 } 3039 if( pSub->pWhere ){ 3040 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3041 }else{ 3042 pWhere = 0; 3043 } 3044 if( subqueryIsAgg ){ 3045 assert( pParent->pHaving==0 ); 3046 pParent->pHaving = pParent->pWhere; 3047 pParent->pWhere = pWhere; 3048 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3049 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3050 sqlite3ExprDup(db, pSub->pHaving, 0)); 3051 assert( pParent->pGroupBy==0 ); 3052 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3053 }else{ 3054 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3055 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3056 } 3057 3058 /* The flattened query is distinct if either the inner or the 3059 ** outer query is distinct. 3060 */ 3061 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3062 3063 /* 3064 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3065 ** 3066 ** One is tempted to try to add a and b to combine the limits. But this 3067 ** does not work if either limit is negative. 3068 */ 3069 if( pSub->pLimit ){ 3070 pParent->pLimit = pSub->pLimit; 3071 pSub->pLimit = 0; 3072 } 3073 } 3074 3075 /* Finially, delete what is left of the subquery and return 3076 ** success. 3077 */ 3078 sqlite3SelectDelete(db, pSub1); 3079 3080 return 1; 3081 } 3082 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3083 3084 /* 3085 ** Analyze the SELECT statement passed as an argument to see if it 3086 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 3087 ** it is, or 0 otherwise. At present, a query is considered to be 3088 ** a min()/max() query if: 3089 ** 3090 ** 1. There is a single object in the FROM clause. 3091 ** 3092 ** 2. There is a single expression in the result set, and it is 3093 ** either min(x) or max(x), where x is a column reference. 3094 */ 3095 static u8 minMaxQuery(Select *p){ 3096 Expr *pExpr; 3097 ExprList *pEList = p->pEList; 3098 3099 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 3100 pExpr = pEList->a[0].pExpr; 3101 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3102 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 3103 pEList = pExpr->x.pList; 3104 if( pEList==0 || pEList->nExpr!=1 ) return 0; 3105 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 3106 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3107 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 3108 return WHERE_ORDERBY_MIN; 3109 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 3110 return WHERE_ORDERBY_MAX; 3111 } 3112 return WHERE_ORDERBY_NORMAL; 3113 } 3114 3115 /* 3116 ** The select statement passed as the first argument is an aggregate query. 3117 ** The second argment is the associated aggregate-info object. This 3118 ** function tests if the SELECT is of the form: 3119 ** 3120 ** SELECT count(*) FROM <tbl> 3121 ** 3122 ** where table is a database table, not a sub-select or view. If the query 3123 ** does match this pattern, then a pointer to the Table object representing 3124 ** <tbl> is returned. Otherwise, 0 is returned. 3125 */ 3126 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3127 Table *pTab; 3128 Expr *pExpr; 3129 3130 assert( !p->pGroupBy ); 3131 3132 if( p->pWhere || p->pEList->nExpr!=1 3133 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3134 ){ 3135 return 0; 3136 } 3137 pTab = p->pSrc->a[0].pTab; 3138 pExpr = p->pEList->a[0].pExpr; 3139 assert( pTab && !pTab->pSelect && pExpr ); 3140 3141 if( IsVirtual(pTab) ) return 0; 3142 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3143 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 3144 if( pExpr->flags&EP_Distinct ) return 0; 3145 3146 return pTab; 3147 } 3148 3149 /* 3150 ** If the source-list item passed as an argument was augmented with an 3151 ** INDEXED BY clause, then try to locate the specified index. If there 3152 ** was such a clause and the named index cannot be found, return 3153 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3154 ** pFrom->pIndex and return SQLITE_OK. 3155 */ 3156 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3157 if( pFrom->pTab && pFrom->zIndex ){ 3158 Table *pTab = pFrom->pTab; 3159 char *zIndex = pFrom->zIndex; 3160 Index *pIdx; 3161 for(pIdx=pTab->pIndex; 3162 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3163 pIdx=pIdx->pNext 3164 ); 3165 if( !pIdx ){ 3166 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3167 pParse->checkSchema = 1; 3168 return SQLITE_ERROR; 3169 } 3170 pFrom->pIndex = pIdx; 3171 } 3172 return SQLITE_OK; 3173 } 3174 3175 /* 3176 ** This routine is a Walker callback for "expanding" a SELECT statement. 3177 ** "Expanding" means to do the following: 3178 ** 3179 ** (1) Make sure VDBE cursor numbers have been assigned to every 3180 ** element of the FROM clause. 3181 ** 3182 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3183 ** defines FROM clause. When views appear in the FROM clause, 3184 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3185 ** that implements the view. A copy is made of the view's SELECT 3186 ** statement so that we can freely modify or delete that statement 3187 ** without worrying about messing up the presistent representation 3188 ** of the view. 3189 ** 3190 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3191 ** on joins and the ON and USING clause of joins. 3192 ** 3193 ** (4) Scan the list of columns in the result set (pEList) looking 3194 ** for instances of the "*" operator or the TABLE.* operator. 3195 ** If found, expand each "*" to be every column in every table 3196 ** and TABLE.* to be every column in TABLE. 3197 ** 3198 */ 3199 static int selectExpander(Walker *pWalker, Select *p){ 3200 Parse *pParse = pWalker->pParse; 3201 int i, j, k; 3202 SrcList *pTabList; 3203 ExprList *pEList; 3204 struct SrcList_item *pFrom; 3205 sqlite3 *db = pParse->db; 3206 3207 if( db->mallocFailed ){ 3208 return WRC_Abort; 3209 } 3210 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3211 return WRC_Prune; 3212 } 3213 p->selFlags |= SF_Expanded; 3214 pTabList = p->pSrc; 3215 pEList = p->pEList; 3216 3217 /* Make sure cursor numbers have been assigned to all entries in 3218 ** the FROM clause of the SELECT statement. 3219 */ 3220 sqlite3SrcListAssignCursors(pParse, pTabList); 3221 3222 /* Look up every table named in the FROM clause of the select. If 3223 ** an entry of the FROM clause is a subquery instead of a table or view, 3224 ** then create a transient table structure to describe the subquery. 3225 */ 3226 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3227 Table *pTab; 3228 if( pFrom->pTab!=0 ){ 3229 /* This statement has already been prepared. There is no need 3230 ** to go further. */ 3231 assert( i==0 ); 3232 return WRC_Prune; 3233 } 3234 if( pFrom->zName==0 ){ 3235 #ifndef SQLITE_OMIT_SUBQUERY 3236 Select *pSel = pFrom->pSelect; 3237 /* A sub-query in the FROM clause of a SELECT */ 3238 assert( pSel!=0 ); 3239 assert( pFrom->pTab==0 ); 3240 sqlite3WalkSelect(pWalker, pSel); 3241 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3242 if( pTab==0 ) return WRC_Abort; 3243 pTab->nRef = 1; 3244 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3245 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3246 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3247 pTab->iPKey = -1; 3248 pTab->nRowEst = 1000000; 3249 pTab->tabFlags |= TF_Ephemeral; 3250 #endif 3251 }else{ 3252 /* An ordinary table or view name in the FROM clause */ 3253 assert( pFrom->pTab==0 ); 3254 pFrom->pTab = pTab = 3255 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3256 if( pTab==0 ) return WRC_Abort; 3257 pTab->nRef++; 3258 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3259 if( pTab->pSelect || IsVirtual(pTab) ){ 3260 /* We reach here if the named table is a really a view */ 3261 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3262 assert( pFrom->pSelect==0 ); 3263 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3264 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3265 } 3266 #endif 3267 } 3268 3269 /* Locate the index named by the INDEXED BY clause, if any. */ 3270 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3271 return WRC_Abort; 3272 } 3273 } 3274 3275 /* Process NATURAL keywords, and ON and USING clauses of joins. 3276 */ 3277 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3278 return WRC_Abort; 3279 } 3280 3281 /* For every "*" that occurs in the column list, insert the names of 3282 ** all columns in all tables. And for every TABLE.* insert the names 3283 ** of all columns in TABLE. The parser inserted a special expression 3284 ** with the TK_ALL operator for each "*" that it found in the column list. 3285 ** The following code just has to locate the TK_ALL expressions and expand 3286 ** each one to the list of all columns in all tables. 3287 ** 3288 ** The first loop just checks to see if there are any "*" operators 3289 ** that need expanding. 3290 */ 3291 for(k=0; k<pEList->nExpr; k++){ 3292 Expr *pE = pEList->a[k].pExpr; 3293 if( pE->op==TK_ALL ) break; 3294 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3295 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3296 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3297 } 3298 if( k<pEList->nExpr ){ 3299 /* 3300 ** If we get here it means the result set contains one or more "*" 3301 ** operators that need to be expanded. Loop through each expression 3302 ** in the result set and expand them one by one. 3303 */ 3304 struct ExprList_item *a = pEList->a; 3305 ExprList *pNew = 0; 3306 int flags = pParse->db->flags; 3307 int longNames = (flags & SQLITE_FullColNames)!=0 3308 && (flags & SQLITE_ShortColNames)==0; 3309 3310 for(k=0; k<pEList->nExpr; k++){ 3311 Expr *pE = a[k].pExpr; 3312 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3313 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3314 /* This particular expression does not need to be expanded. 3315 */ 3316 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3317 if( pNew ){ 3318 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3319 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3320 a[k].zName = 0; 3321 a[k].zSpan = 0; 3322 } 3323 a[k].pExpr = 0; 3324 }else{ 3325 /* This expression is a "*" or a "TABLE.*" and needs to be 3326 ** expanded. */ 3327 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3328 char *zTName; /* text of name of TABLE */ 3329 if( pE->op==TK_DOT ){ 3330 assert( pE->pLeft!=0 ); 3331 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3332 zTName = pE->pLeft->u.zToken; 3333 }else{ 3334 zTName = 0; 3335 } 3336 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3337 Table *pTab = pFrom->pTab; 3338 char *zTabName = pFrom->zAlias; 3339 if( zTabName==0 ){ 3340 zTabName = pTab->zName; 3341 } 3342 if( db->mallocFailed ) break; 3343 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3344 continue; 3345 } 3346 tableSeen = 1; 3347 for(j=0; j<pTab->nCol; j++){ 3348 Expr *pExpr, *pRight; 3349 char *zName = pTab->aCol[j].zName; 3350 char *zColname; /* The computed column name */ 3351 char *zToFree; /* Malloced string that needs to be freed */ 3352 Token sColname; /* Computed column name as a token */ 3353 3354 /* If a column is marked as 'hidden' (currently only possible 3355 ** for virtual tables), do not include it in the expanded 3356 ** result-set list. 3357 */ 3358 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3359 assert(IsVirtual(pTab)); 3360 continue; 3361 } 3362 3363 if( i>0 && zTName==0 ){ 3364 if( (pFrom->jointype & JT_NATURAL)!=0 3365 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 3366 ){ 3367 /* In a NATURAL join, omit the join columns from the 3368 ** table to the right of the join */ 3369 continue; 3370 } 3371 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 3372 /* In a join with a USING clause, omit columns in the 3373 ** using clause from the table on the right. */ 3374 continue; 3375 } 3376 } 3377 pRight = sqlite3Expr(db, TK_ID, zName); 3378 zColname = zName; 3379 zToFree = 0; 3380 if( longNames || pTabList->nSrc>1 ){ 3381 Expr *pLeft; 3382 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3383 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3384 if( longNames ){ 3385 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3386 zToFree = zColname; 3387 } 3388 }else{ 3389 pExpr = pRight; 3390 } 3391 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3392 sColname.z = zColname; 3393 sColname.n = sqlite3Strlen30(zColname); 3394 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3395 sqlite3DbFree(db, zToFree); 3396 } 3397 } 3398 if( !tableSeen ){ 3399 if( zTName ){ 3400 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3401 }else{ 3402 sqlite3ErrorMsg(pParse, "no tables specified"); 3403 } 3404 } 3405 } 3406 } 3407 sqlite3ExprListDelete(db, pEList); 3408 p->pEList = pNew; 3409 } 3410 #if SQLITE_MAX_COLUMN 3411 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3412 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3413 } 3414 #endif 3415 return WRC_Continue; 3416 } 3417 3418 /* 3419 ** No-op routine for the parse-tree walker. 3420 ** 3421 ** When this routine is the Walker.xExprCallback then expression trees 3422 ** are walked without any actions being taken at each node. Presumably, 3423 ** when this routine is used for Walker.xExprCallback then 3424 ** Walker.xSelectCallback is set to do something useful for every 3425 ** subquery in the parser tree. 3426 */ 3427 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3428 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3429 return WRC_Continue; 3430 } 3431 3432 /* 3433 ** This routine "expands" a SELECT statement and all of its subqueries. 3434 ** For additional information on what it means to "expand" a SELECT 3435 ** statement, see the comment on the selectExpand worker callback above. 3436 ** 3437 ** Expanding a SELECT statement is the first step in processing a 3438 ** SELECT statement. The SELECT statement must be expanded before 3439 ** name resolution is performed. 3440 ** 3441 ** If anything goes wrong, an error message is written into pParse. 3442 ** The calling function can detect the problem by looking at pParse->nErr 3443 ** and/or pParse->db->mallocFailed. 3444 */ 3445 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3446 Walker w; 3447 w.xSelectCallback = selectExpander; 3448 w.xExprCallback = exprWalkNoop; 3449 w.pParse = pParse; 3450 sqlite3WalkSelect(&w, pSelect); 3451 } 3452 3453 3454 #ifndef SQLITE_OMIT_SUBQUERY 3455 /* 3456 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3457 ** interface. 3458 ** 3459 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3460 ** information to the Table structure that represents the result set 3461 ** of that subquery. 3462 ** 3463 ** The Table structure that represents the result set was constructed 3464 ** by selectExpander() but the type and collation information was omitted 3465 ** at that point because identifiers had not yet been resolved. This 3466 ** routine is called after identifier resolution. 3467 */ 3468 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3469 Parse *pParse; 3470 int i; 3471 SrcList *pTabList; 3472 struct SrcList_item *pFrom; 3473 3474 assert( p->selFlags & SF_Resolved ); 3475 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3476 p->selFlags |= SF_HasTypeInfo; 3477 pParse = pWalker->pParse; 3478 pTabList = p->pSrc; 3479 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3480 Table *pTab = pFrom->pTab; 3481 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3482 /* A sub-query in the FROM clause of a SELECT */ 3483 Select *pSel = pFrom->pSelect; 3484 assert( pSel ); 3485 while( pSel->pPrior ) pSel = pSel->pPrior; 3486 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3487 } 3488 } 3489 } 3490 return WRC_Continue; 3491 } 3492 #endif 3493 3494 3495 /* 3496 ** This routine adds datatype and collating sequence information to 3497 ** the Table structures of all FROM-clause subqueries in a 3498 ** SELECT statement. 3499 ** 3500 ** Use this routine after name resolution. 3501 */ 3502 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3503 #ifndef SQLITE_OMIT_SUBQUERY 3504 Walker w; 3505 w.xSelectCallback = selectAddSubqueryTypeInfo; 3506 w.xExprCallback = exprWalkNoop; 3507 w.pParse = pParse; 3508 sqlite3WalkSelect(&w, pSelect); 3509 #endif 3510 } 3511 3512 3513 /* 3514 ** This routine sets of a SELECT statement for processing. The 3515 ** following is accomplished: 3516 ** 3517 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3518 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3519 ** * ON and USING clauses are shifted into WHERE statements 3520 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3521 ** * Identifiers in expression are matched to tables. 3522 ** 3523 ** This routine acts recursively on all subqueries within the SELECT. 3524 */ 3525 void sqlite3SelectPrep( 3526 Parse *pParse, /* The parser context */ 3527 Select *p, /* The SELECT statement being coded. */ 3528 NameContext *pOuterNC /* Name context for container */ 3529 ){ 3530 sqlite3 *db; 3531 if( NEVER(p==0) ) return; 3532 db = pParse->db; 3533 if( p->selFlags & SF_HasTypeInfo ) return; 3534 sqlite3SelectExpand(pParse, p); 3535 if( pParse->nErr || db->mallocFailed ) return; 3536 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3537 if( pParse->nErr || db->mallocFailed ) return; 3538 sqlite3SelectAddTypeInfo(pParse, p); 3539 } 3540 3541 /* 3542 ** Reset the aggregate accumulator. 3543 ** 3544 ** The aggregate accumulator is a set of memory cells that hold 3545 ** intermediate results while calculating an aggregate. This 3546 ** routine simply stores NULLs in all of those memory cells. 3547 */ 3548 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3549 Vdbe *v = pParse->pVdbe; 3550 int i; 3551 struct AggInfo_func *pFunc; 3552 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3553 return; 3554 } 3555 for(i=0; i<pAggInfo->nColumn; i++){ 3556 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3557 } 3558 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3559 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3560 if( pFunc->iDistinct>=0 ){ 3561 Expr *pE = pFunc->pExpr; 3562 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3563 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3564 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3565 "argument"); 3566 pFunc->iDistinct = -1; 3567 }else{ 3568 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3569 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3570 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3571 } 3572 } 3573 } 3574 } 3575 3576 /* 3577 ** Invoke the OP_AggFinalize opcode for every aggregate function 3578 ** in the AggInfo structure. 3579 */ 3580 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3581 Vdbe *v = pParse->pVdbe; 3582 int i; 3583 struct AggInfo_func *pF; 3584 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3585 ExprList *pList = pF->pExpr->x.pList; 3586 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3587 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3588 (void*)pF->pFunc, P4_FUNCDEF); 3589 } 3590 } 3591 3592 /* 3593 ** Update the accumulator memory cells for an aggregate based on 3594 ** the current cursor position. 3595 */ 3596 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3597 Vdbe *v = pParse->pVdbe; 3598 int i; 3599 int regHit = 0; 3600 int addrHitTest = 0; 3601 struct AggInfo_func *pF; 3602 struct AggInfo_col *pC; 3603 3604 pAggInfo->directMode = 1; 3605 sqlite3ExprCacheClear(pParse); 3606 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3607 int nArg; 3608 int addrNext = 0; 3609 int regAgg; 3610 ExprList *pList = pF->pExpr->x.pList; 3611 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3612 if( pList ){ 3613 nArg = pList->nExpr; 3614 regAgg = sqlite3GetTempRange(pParse, nArg); 3615 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); 3616 }else{ 3617 nArg = 0; 3618 regAgg = 0; 3619 } 3620 if( pF->iDistinct>=0 ){ 3621 addrNext = sqlite3VdbeMakeLabel(v); 3622 assert( nArg==1 ); 3623 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3624 } 3625 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3626 CollSeq *pColl = 0; 3627 struct ExprList_item *pItem; 3628 int j; 3629 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3630 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3631 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3632 } 3633 if( !pColl ){ 3634 pColl = pParse->db->pDfltColl; 3635 } 3636 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 3637 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 3638 } 3639 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3640 (void*)pF->pFunc, P4_FUNCDEF); 3641 sqlite3VdbeChangeP5(v, (u8)nArg); 3642 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3643 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3644 if( addrNext ){ 3645 sqlite3VdbeResolveLabel(v, addrNext); 3646 sqlite3ExprCacheClear(pParse); 3647 } 3648 } 3649 3650 /* Before populating the accumulator registers, clear the column cache. 3651 ** Otherwise, if any of the required column values are already present 3652 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 3653 ** to pC->iMem. But by the time the value is used, the original register 3654 ** may have been used, invalidating the underlying buffer holding the 3655 ** text or blob value. See ticket [883034dcb5]. 3656 ** 3657 ** Another solution would be to change the OP_SCopy used to copy cached 3658 ** values to an OP_Copy. 3659 */ 3660 if( regHit ){ 3661 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); 3662 } 3663 sqlite3ExprCacheClear(pParse); 3664 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3665 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3666 } 3667 pAggInfo->directMode = 0; 3668 sqlite3ExprCacheClear(pParse); 3669 if( addrHitTest ){ 3670 sqlite3VdbeJumpHere(v, addrHitTest); 3671 } 3672 } 3673 3674 /* 3675 ** Add a single OP_Explain instruction to the VDBE to explain a simple 3676 ** count(*) query ("SELECT count(*) FROM pTab"). 3677 */ 3678 #ifndef SQLITE_OMIT_EXPLAIN 3679 static void explainSimpleCount( 3680 Parse *pParse, /* Parse context */ 3681 Table *pTab, /* Table being queried */ 3682 Index *pIdx /* Index used to optimize scan, or NULL */ 3683 ){ 3684 if( pParse->explain==2 ){ 3685 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", 3686 pTab->zName, 3687 pIdx ? "USING COVERING INDEX " : "", 3688 pIdx ? pIdx->zName : "", 3689 pTab->nRowEst 3690 ); 3691 sqlite3VdbeAddOp4( 3692 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 3693 ); 3694 } 3695 } 3696 #else 3697 # define explainSimpleCount(a,b,c) 3698 #endif 3699 3700 /* 3701 ** Generate code for the SELECT statement given in the p argument. 3702 ** 3703 ** The results are distributed in various ways depending on the 3704 ** contents of the SelectDest structure pointed to by argument pDest 3705 ** as follows: 3706 ** 3707 ** pDest->eDest Result 3708 ** ------------ ------------------------------------------- 3709 ** SRT_Output Generate a row of output (using the OP_ResultRow 3710 ** opcode) for each row in the result set. 3711 ** 3712 ** SRT_Mem Only valid if the result is a single column. 3713 ** Store the first column of the first result row 3714 ** in register pDest->iParm then abandon the rest 3715 ** of the query. This destination implies "LIMIT 1". 3716 ** 3717 ** SRT_Set The result must be a single column. Store each 3718 ** row of result as the key in table pDest->iParm. 3719 ** Apply the affinity pDest->affinity before storing 3720 ** results. Used to implement "IN (SELECT ...)". 3721 ** 3722 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3723 ** 3724 ** SRT_Except Remove results from the temporary table pDest->iParm. 3725 ** 3726 ** SRT_Table Store results in temporary table pDest->iParm. 3727 ** This is like SRT_EphemTab except that the table 3728 ** is assumed to already be open. 3729 ** 3730 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3731 ** the result there. The cursor is left open after 3732 ** returning. This is like SRT_Table except that 3733 ** this destination uses OP_OpenEphemeral to create 3734 ** the table first. 3735 ** 3736 ** SRT_Coroutine Generate a co-routine that returns a new row of 3737 ** results each time it is invoked. The entry point 3738 ** of the co-routine is stored in register pDest->iParm. 3739 ** 3740 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3741 ** set is not empty. 3742 ** 3743 ** SRT_Discard Throw the results away. This is used by SELECT 3744 ** statements within triggers whose only purpose is 3745 ** the side-effects of functions. 3746 ** 3747 ** This routine returns the number of errors. If any errors are 3748 ** encountered, then an appropriate error message is left in 3749 ** pParse->zErrMsg. 3750 ** 3751 ** This routine does NOT free the Select structure passed in. The 3752 ** calling function needs to do that. 3753 */ 3754 int sqlite3Select( 3755 Parse *pParse, /* The parser context */ 3756 Select *p, /* The SELECT statement being coded. */ 3757 SelectDest *pDest /* What to do with the query results */ 3758 ){ 3759 int i, j; /* Loop counters */ 3760 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3761 Vdbe *v; /* The virtual machine under construction */ 3762 int isAgg; /* True for select lists like "count(*)" */ 3763 ExprList *pEList; /* List of columns to extract. */ 3764 SrcList *pTabList; /* List of tables to select from */ 3765 Expr *pWhere; /* The WHERE clause. May be NULL */ 3766 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3767 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3768 Expr *pHaving; /* The HAVING clause. May be NULL */ 3769 int isDistinct; /* True if the DISTINCT keyword is present */ 3770 int distinct; /* Table to use for the distinct set */ 3771 int rc = 1; /* Value to return from this function */ 3772 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3773 int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */ 3774 AggInfo sAggInfo; /* Information used by aggregate queries */ 3775 int iEnd; /* Address of the end of the query */ 3776 sqlite3 *db; /* The database connection */ 3777 3778 #ifndef SQLITE_OMIT_EXPLAIN 3779 int iRestoreSelectId = pParse->iSelectId; 3780 pParse->iSelectId = pParse->iNextSelectId++; 3781 #endif 3782 3783 db = pParse->db; 3784 if( p==0 || db->mallocFailed || pParse->nErr ){ 3785 return 1; 3786 } 3787 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3788 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3789 3790 if( IgnorableOrderby(pDest) ){ 3791 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3792 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3793 /* If ORDER BY makes no difference in the output then neither does 3794 ** DISTINCT so it can be removed too. */ 3795 sqlite3ExprListDelete(db, p->pOrderBy); 3796 p->pOrderBy = 0; 3797 p->selFlags &= ~SF_Distinct; 3798 } 3799 sqlite3SelectPrep(pParse, p, 0); 3800 pOrderBy = p->pOrderBy; 3801 pTabList = p->pSrc; 3802 pEList = p->pEList; 3803 if( pParse->nErr || db->mallocFailed ){ 3804 goto select_end; 3805 } 3806 isAgg = (p->selFlags & SF_Aggregate)!=0; 3807 assert( pEList!=0 ); 3808 3809 /* Begin generating code. 3810 */ 3811 v = sqlite3GetVdbe(pParse); 3812 if( v==0 ) goto select_end; 3813 3814 /* If writing to memory or generating a set 3815 ** only a single column may be output. 3816 */ 3817 #ifndef SQLITE_OMIT_SUBQUERY 3818 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3819 goto select_end; 3820 } 3821 #endif 3822 3823 /* Generate code for all sub-queries in the FROM clause 3824 */ 3825 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3826 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3827 struct SrcList_item *pItem = &pTabList->a[i]; 3828 SelectDest dest; 3829 Select *pSub = pItem->pSelect; 3830 int isAggSub; 3831 3832 if( pSub==0 ) continue; 3833 if( pItem->addrFillSub ){ 3834 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 3835 continue; 3836 } 3837 3838 /* Increment Parse.nHeight by the height of the largest expression 3839 ** tree refered to by this, the parent select. The child select 3840 ** may contain expression trees of at most 3841 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3842 ** more conservative than necessary, but much easier than enforcing 3843 ** an exact limit. 3844 */ 3845 pParse->nHeight += sqlite3SelectExprHeight(p); 3846 3847 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3848 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3849 /* This subquery can be absorbed into its parent. */ 3850 if( isAggSub ){ 3851 isAgg = 1; 3852 p->selFlags |= SF_Aggregate; 3853 } 3854 i = -1; 3855 }else{ 3856 /* Generate a subroutine that will fill an ephemeral table with 3857 ** the content of this subquery. pItem->addrFillSub will point 3858 ** to the address of the generated subroutine. pItem->regReturn 3859 ** is a register allocated to hold the subroutine return address 3860 */ 3861 int topAddr; 3862 int onceAddr = 0; 3863 int retAddr; 3864 assert( pItem->addrFillSub==0 ); 3865 pItem->regReturn = ++pParse->nMem; 3866 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 3867 pItem->addrFillSub = topAddr+1; 3868 VdbeNoopComment((v, "materialize %s", pItem->pTab->zName)); 3869 if( pItem->isCorrelated==0 ){ 3870 /* If the subquery is no correlated and if we are not inside of 3871 ** a trigger, then we only need to compute the value of the subquery 3872 ** once. */ 3873 onceAddr = sqlite3CodeOnce(pParse); 3874 } 3875 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3876 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 3877 sqlite3Select(pParse, pSub, &dest); 3878 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 3879 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 3880 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 3881 VdbeComment((v, "end %s", pItem->pTab->zName)); 3882 sqlite3VdbeChangeP1(v, topAddr, retAddr); 3883 sqlite3ClearTempRegCache(pParse); 3884 } 3885 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3886 goto select_end; 3887 } 3888 pParse->nHeight -= sqlite3SelectExprHeight(p); 3889 pTabList = p->pSrc; 3890 if( !IgnorableOrderby(pDest) ){ 3891 pOrderBy = p->pOrderBy; 3892 } 3893 } 3894 pEList = p->pEList; 3895 #endif 3896 pWhere = p->pWhere; 3897 pGroupBy = p->pGroupBy; 3898 pHaving = p->pHaving; 3899 isDistinct = (p->selFlags & SF_Distinct)!=0; 3900 3901 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3902 /* If there is are a sequence of queries, do the earlier ones first. 3903 */ 3904 if( p->pPrior ){ 3905 if( p->pRightmost==0 ){ 3906 Select *pLoop, *pRight = 0; 3907 int cnt = 0; 3908 int mxSelect; 3909 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3910 pLoop->pRightmost = p; 3911 pLoop->pNext = pRight; 3912 pRight = pLoop; 3913 } 3914 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3915 if( mxSelect && cnt>mxSelect ){ 3916 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3917 goto select_end; 3918 } 3919 } 3920 rc = multiSelect(pParse, p, pDest); 3921 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 3922 return rc; 3923 } 3924 #endif 3925 3926 /* If there is both a GROUP BY and an ORDER BY clause and they are 3927 ** identical, then disable the ORDER BY clause since the GROUP BY 3928 ** will cause elements to come out in the correct order. This is 3929 ** an optimization - the correct answer should result regardless. 3930 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 3931 ** to disable this optimization for testing purposes. 3932 */ 3933 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 3934 && (db->flags & SQLITE_GroupByOrder)==0 ){ 3935 pOrderBy = 0; 3936 } 3937 3938 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 3939 ** if the select-list is the same as the ORDER BY list, then this query 3940 ** can be rewritten as a GROUP BY. In other words, this: 3941 ** 3942 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 3943 ** 3944 ** is transformed to: 3945 ** 3946 ** SELECT xyz FROM ... GROUP BY xyz 3947 ** 3948 ** The second form is preferred as a single index (or temp-table) may be 3949 ** used for both the ORDER BY and DISTINCT processing. As originally 3950 ** written the query must use a temp-table for at least one of the ORDER 3951 ** BY and DISTINCT, and an index or separate temp-table for the other. 3952 */ 3953 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 3954 && sqlite3ExprListCompare(pOrderBy, p->pEList)==0 3955 ){ 3956 p->selFlags &= ~SF_Distinct; 3957 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3958 pGroupBy = p->pGroupBy; 3959 pOrderBy = 0; 3960 } 3961 3962 /* If there is an ORDER BY clause, then this sorting 3963 ** index might end up being unused if the data can be 3964 ** extracted in pre-sorted order. If that is the case, then the 3965 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3966 ** we figure out that the sorting index is not needed. The addrSortIndex 3967 ** variable is used to facilitate that change. 3968 */ 3969 if( pOrderBy ){ 3970 KeyInfo *pKeyInfo; 3971 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3972 pOrderBy->iECursor = pParse->nTab++; 3973 p->addrOpenEphm[2] = addrSortIndex = 3974 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3975 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3976 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3977 }else{ 3978 addrSortIndex = -1; 3979 } 3980 3981 /* If the output is destined for a temporary table, open that table. 3982 */ 3983 if( pDest->eDest==SRT_EphemTab ){ 3984 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3985 } 3986 3987 /* Set the limiter. 3988 */ 3989 iEnd = sqlite3VdbeMakeLabel(v); 3990 p->nSelectRow = (double)LARGEST_INT64; 3991 computeLimitRegisters(pParse, p, iEnd); 3992 if( p->iLimit==0 && addrSortIndex>=0 ){ 3993 sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; 3994 p->selFlags |= SF_UseSorter; 3995 } 3996 3997 /* Open a virtual index to use for the distinct set. 3998 */ 3999 if( p->selFlags & SF_Distinct ){ 4000 KeyInfo *pKeyInfo; 4001 distinct = pParse->nTab++; 4002 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 4003 addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 4004 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4005 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4006 }else{ 4007 distinct = addrDistinctIndex = -1; 4008 } 4009 4010 /* Aggregate and non-aggregate queries are handled differently */ 4011 if( !isAgg && pGroupBy==0 ){ 4012 ExprList *pDist = (isDistinct ? p->pEList : 0); 4013 4014 /* Begin the database scan. */ 4015 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0); 4016 if( pWInfo==0 ) goto select_end; 4017 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; 4018 4019 /* If sorting index that was created by a prior OP_OpenEphemeral 4020 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4021 ** into an OP_Noop. 4022 */ 4023 if( addrSortIndex>=0 && pOrderBy==0 ){ 4024 sqlite3VdbeChangeToNoop(v, addrSortIndex); 4025 p->addrOpenEphm[2] = -1; 4026 } 4027 4028 if( pWInfo->eDistinct ){ 4029 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 4030 4031 assert( addrDistinctIndex>=0 ); 4032 pOp = sqlite3VdbeGetOp(v, addrDistinctIndex); 4033 4034 assert( isDistinct ); 4035 assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 4036 || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE 4037 ); 4038 distinct = -1; 4039 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){ 4040 int iJump; 4041 int iExpr; 4042 int iFlag = ++pParse->nMem; 4043 int iBase = pParse->nMem+1; 4044 int iBase2 = iBase + pEList->nExpr; 4045 pParse->nMem += (pEList->nExpr*2); 4046 4047 /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The 4048 ** OP_Integer initializes the "first row" flag. */ 4049 pOp->opcode = OP_Integer; 4050 pOp->p1 = 1; 4051 pOp->p2 = iFlag; 4052 4053 sqlite3ExprCodeExprList(pParse, pEList, iBase, 1); 4054 iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1; 4055 sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1); 4056 for(iExpr=0; iExpr<pEList->nExpr; iExpr++){ 4057 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr); 4058 sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr); 4059 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 4060 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 4061 } 4062 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue); 4063 4064 sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag); 4065 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 4066 sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr); 4067 }else{ 4068 pOp->opcode = OP_Noop; 4069 } 4070 } 4071 4072 /* Use the standard inner loop. */ 4073 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest, 4074 pWInfo->iContinue, pWInfo->iBreak); 4075 4076 /* End the database scan loop. 4077 */ 4078 sqlite3WhereEnd(pWInfo); 4079 }else{ 4080 /* This is the processing for aggregate queries */ 4081 NameContext sNC; /* Name context for processing aggregate information */ 4082 int iAMem; /* First Mem address for storing current GROUP BY */ 4083 int iBMem; /* First Mem address for previous GROUP BY */ 4084 int iUseFlag; /* Mem address holding flag indicating that at least 4085 ** one row of the input to the aggregator has been 4086 ** processed */ 4087 int iAbortFlag; /* Mem address which causes query abort if positive */ 4088 int groupBySort; /* Rows come from source in GROUP BY order */ 4089 int addrEnd; /* End of processing for this SELECT */ 4090 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4091 int sortOut = 0; /* Output register from the sorter */ 4092 4093 /* Remove any and all aliases between the result set and the 4094 ** GROUP BY clause. 4095 */ 4096 if( pGroupBy ){ 4097 int k; /* Loop counter */ 4098 struct ExprList_item *pItem; /* For looping over expression in a list */ 4099 4100 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4101 pItem->iAlias = 0; 4102 } 4103 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4104 pItem->iAlias = 0; 4105 } 4106 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; 4107 }else{ 4108 p->nSelectRow = (double)1; 4109 } 4110 4111 4112 /* Create a label to jump to when we want to abort the query */ 4113 addrEnd = sqlite3VdbeMakeLabel(v); 4114 4115 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4116 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4117 ** SELECT statement. 4118 */ 4119 memset(&sNC, 0, sizeof(sNC)); 4120 sNC.pParse = pParse; 4121 sNC.pSrcList = pTabList; 4122 sNC.pAggInfo = &sAggInfo; 4123 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4124 sAggInfo.pGroupBy = pGroupBy; 4125 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4126 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 4127 if( pHaving ){ 4128 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4129 } 4130 sAggInfo.nAccumulator = sAggInfo.nColumn; 4131 for(i=0; i<sAggInfo.nFunc; i++){ 4132 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4133 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4134 } 4135 if( db->mallocFailed ) goto select_end; 4136 4137 /* Processing for aggregates with GROUP BY is very different and 4138 ** much more complex than aggregates without a GROUP BY. 4139 */ 4140 if( pGroupBy ){ 4141 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4142 int j1; /* A-vs-B comparision jump */ 4143 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4144 int regOutputRow; /* Return address register for output subroutine */ 4145 int addrSetAbort; /* Set the abort flag and return */ 4146 int addrTopOfLoop; /* Top of the input loop */ 4147 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4148 int addrReset; /* Subroutine for resetting the accumulator */ 4149 int regReset; /* Return address register for reset subroutine */ 4150 4151 /* If there is a GROUP BY clause we might need a sorting index to 4152 ** implement it. Allocate that sorting index now. If it turns out 4153 ** that we do not need it after all, the OP_SorterOpen instruction 4154 ** will be converted into a Noop. 4155 */ 4156 sAggInfo.sortingIdx = pParse->nTab++; 4157 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 4158 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4159 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4160 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4161 4162 /* Initialize memory locations used by GROUP BY aggregate processing 4163 */ 4164 iUseFlag = ++pParse->nMem; 4165 iAbortFlag = ++pParse->nMem; 4166 regOutputRow = ++pParse->nMem; 4167 addrOutputRow = sqlite3VdbeMakeLabel(v); 4168 regReset = ++pParse->nMem; 4169 addrReset = sqlite3VdbeMakeLabel(v); 4170 iAMem = pParse->nMem + 1; 4171 pParse->nMem += pGroupBy->nExpr; 4172 iBMem = pParse->nMem + 1; 4173 pParse->nMem += pGroupBy->nExpr; 4174 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4175 VdbeComment((v, "clear abort flag")); 4176 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4177 VdbeComment((v, "indicate accumulator empty")); 4178 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4179 4180 /* Begin a loop that will extract all source rows in GROUP BY order. 4181 ** This might involve two separate loops with an OP_Sort in between, or 4182 ** it might be a single loop that uses an index to extract information 4183 ** in the right order to begin with. 4184 */ 4185 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4186 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0); 4187 if( pWInfo==0 ) goto select_end; 4188 if( pGroupBy==0 ){ 4189 /* The optimizer is able to deliver rows in group by order so 4190 ** we do not have to sort. The OP_OpenEphemeral table will be 4191 ** cancelled later because we still need to use the pKeyInfo 4192 */ 4193 pGroupBy = p->pGroupBy; 4194 groupBySort = 0; 4195 }else{ 4196 /* Rows are coming out in undetermined order. We have to push 4197 ** each row into a sorting index, terminate the first loop, 4198 ** then loop over the sorting index in order to get the output 4199 ** in sorted order 4200 */ 4201 int regBase; 4202 int regRecord; 4203 int nCol; 4204 int nGroupBy; 4205 4206 explainTempTable(pParse, 4207 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY"); 4208 4209 groupBySort = 1; 4210 nGroupBy = pGroupBy->nExpr; 4211 nCol = nGroupBy + 1; 4212 j = nGroupBy+1; 4213 for(i=0; i<sAggInfo.nColumn; i++){ 4214 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4215 nCol++; 4216 j++; 4217 } 4218 } 4219 regBase = sqlite3GetTempRange(pParse, nCol); 4220 sqlite3ExprCacheClear(pParse); 4221 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4222 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4223 j = nGroupBy+1; 4224 for(i=0; i<sAggInfo.nColumn; i++){ 4225 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4226 if( pCol->iSorterColumn>=j ){ 4227 int r1 = j + regBase; 4228 int r2; 4229 4230 r2 = sqlite3ExprCodeGetColumn(pParse, 4231 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 4232 if( r1!=r2 ){ 4233 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4234 } 4235 j++; 4236 } 4237 } 4238 regRecord = sqlite3GetTempReg(pParse); 4239 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4240 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 4241 sqlite3ReleaseTempReg(pParse, regRecord); 4242 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4243 sqlite3WhereEnd(pWInfo); 4244 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 4245 sortOut = sqlite3GetTempReg(pParse); 4246 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 4247 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 4248 VdbeComment((v, "GROUP BY sort")); 4249 sAggInfo.useSortingIdx = 1; 4250 sqlite3ExprCacheClear(pParse); 4251 } 4252 4253 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4254 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4255 ** Then compare the current GROUP BY terms against the GROUP BY terms 4256 ** from the previous row currently stored in a0, a1, a2... 4257 */ 4258 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4259 sqlite3ExprCacheClear(pParse); 4260 if( groupBySort ){ 4261 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 4262 } 4263 for(j=0; j<pGroupBy->nExpr; j++){ 4264 if( groupBySort ){ 4265 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 4266 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 4267 }else{ 4268 sAggInfo.directMode = 1; 4269 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4270 } 4271 } 4272 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4273 (char*)pKeyInfo, P4_KEYINFO); 4274 j1 = sqlite3VdbeCurrentAddr(v); 4275 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4276 4277 /* Generate code that runs whenever the GROUP BY changes. 4278 ** Changes in the GROUP BY are detected by the previous code 4279 ** block. If there were no changes, this block is skipped. 4280 ** 4281 ** This code copies current group by terms in b0,b1,b2,... 4282 ** over to a0,a1,a2. It then calls the output subroutine 4283 ** and resets the aggregate accumulator registers in preparation 4284 ** for the next GROUP BY batch. 4285 */ 4286 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4287 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4288 VdbeComment((v, "output one row")); 4289 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4290 VdbeComment((v, "check abort flag")); 4291 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4292 VdbeComment((v, "reset accumulator")); 4293 4294 /* Update the aggregate accumulators based on the content of 4295 ** the current row 4296 */ 4297 sqlite3VdbeJumpHere(v, j1); 4298 updateAccumulator(pParse, &sAggInfo); 4299 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4300 VdbeComment((v, "indicate data in accumulator")); 4301 4302 /* End of the loop 4303 */ 4304 if( groupBySort ){ 4305 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 4306 }else{ 4307 sqlite3WhereEnd(pWInfo); 4308 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 4309 } 4310 4311 /* Output the final row of result 4312 */ 4313 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4314 VdbeComment((v, "output final row")); 4315 4316 /* Jump over the subroutines 4317 */ 4318 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4319 4320 /* Generate a subroutine that outputs a single row of the result 4321 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4322 ** is less than or equal to zero, the subroutine is a no-op. If 4323 ** the processing calls for the query to abort, this subroutine 4324 ** increments the iAbortFlag memory location before returning in 4325 ** order to signal the caller to abort. 4326 */ 4327 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4328 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4329 VdbeComment((v, "set abort flag")); 4330 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4331 sqlite3VdbeResolveLabel(v, addrOutputRow); 4332 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4333 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4334 VdbeComment((v, "Groupby result generator entry point")); 4335 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4336 finalizeAggFunctions(pParse, &sAggInfo); 4337 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4338 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4339 distinct, pDest, 4340 addrOutputRow+1, addrSetAbort); 4341 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4342 VdbeComment((v, "end groupby result generator")); 4343 4344 /* Generate a subroutine that will reset the group-by accumulator 4345 */ 4346 sqlite3VdbeResolveLabel(v, addrReset); 4347 resetAccumulator(pParse, &sAggInfo); 4348 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4349 4350 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4351 else { 4352 ExprList *pDel = 0; 4353 #ifndef SQLITE_OMIT_BTREECOUNT 4354 Table *pTab; 4355 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4356 /* If isSimpleCount() returns a pointer to a Table structure, then 4357 ** the SQL statement is of the form: 4358 ** 4359 ** SELECT count(*) FROM <tbl> 4360 ** 4361 ** where the Table structure returned represents table <tbl>. 4362 ** 4363 ** This statement is so common that it is optimized specially. The 4364 ** OP_Count instruction is executed either on the intkey table that 4365 ** contains the data for table <tbl> or on one of its indexes. It 4366 ** is better to execute the op on an index, as indexes are almost 4367 ** always spread across less pages than their corresponding tables. 4368 */ 4369 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4370 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4371 Index *pIdx; /* Iterator variable */ 4372 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4373 Index *pBest = 0; /* Best index found so far */ 4374 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4375 4376 sqlite3CodeVerifySchema(pParse, iDb); 4377 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4378 4379 /* Search for the index that has the least amount of columns. If 4380 ** there is such an index, and it has less columns than the table 4381 ** does, then we can assume that it consumes less space on disk and 4382 ** will therefore be cheaper to scan to determine the query result. 4383 ** In this case set iRoot to the root page number of the index b-tree 4384 ** and pKeyInfo to the KeyInfo structure required to navigate the 4385 ** index. 4386 ** 4387 ** (2011-04-15) Do not do a full scan of an unordered index. 4388 ** 4389 ** In practice the KeyInfo structure will not be used. It is only 4390 ** passed to keep OP_OpenRead happy. 4391 */ 4392 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4393 if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){ 4394 pBest = pIdx; 4395 } 4396 } 4397 if( pBest && pBest->nColumn<pTab->nCol ){ 4398 iRoot = pBest->tnum; 4399 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4400 } 4401 4402 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4403 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4404 if( pKeyInfo ){ 4405 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4406 } 4407 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4408 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4409 explainSimpleCount(pParse, pTab, pBest); 4410 }else 4411 #endif /* SQLITE_OMIT_BTREECOUNT */ 4412 { 4413 /* Check if the query is of one of the following forms: 4414 ** 4415 ** SELECT min(x) FROM ... 4416 ** SELECT max(x) FROM ... 4417 ** 4418 ** If it is, then ask the code in where.c to attempt to sort results 4419 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4420 ** If where.c is able to produce results sorted in this order, then 4421 ** add vdbe code to break out of the processing loop after the 4422 ** first iteration (since the first iteration of the loop is 4423 ** guaranteed to operate on the row with the minimum or maximum 4424 ** value of x, the only row required). 4425 ** 4426 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4427 ** modify behaviour as follows: 4428 ** 4429 ** + If the query is a "SELECT min(x)", then the loop coded by 4430 ** where.c should not iterate over any values with a NULL value 4431 ** for x. 4432 ** 4433 ** + The optimizer code in where.c (the thing that decides which 4434 ** index or indices to use) should place a different priority on 4435 ** satisfying the 'ORDER BY' clause than it does in other cases. 4436 ** Refer to code and comments in where.c for details. 4437 */ 4438 ExprList *pMinMax = 0; 4439 u8 flag = minMaxQuery(p); 4440 if( flag ){ 4441 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4442 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4443 pDel = pMinMax; 4444 if( pMinMax && !db->mallocFailed ){ 4445 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4446 pMinMax->a[0].pExpr->op = TK_COLUMN; 4447 } 4448 } 4449 4450 /* This case runs if the aggregate has no GROUP BY clause. The 4451 ** processing is much simpler since there is only a single row 4452 ** of output. 4453 */ 4454 resetAccumulator(pParse, &sAggInfo); 4455 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag); 4456 if( pWInfo==0 ){ 4457 sqlite3ExprListDelete(db, pDel); 4458 goto select_end; 4459 } 4460 updateAccumulator(pParse, &sAggInfo); 4461 if( !pMinMax && flag ){ 4462 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4463 VdbeComment((v, "%s() by index", 4464 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4465 } 4466 sqlite3WhereEnd(pWInfo); 4467 finalizeAggFunctions(pParse, &sAggInfo); 4468 } 4469 4470 pOrderBy = 0; 4471 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4472 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4473 pDest, addrEnd, addrEnd); 4474 sqlite3ExprListDelete(db, pDel); 4475 } 4476 sqlite3VdbeResolveLabel(v, addrEnd); 4477 4478 } /* endif aggregate query */ 4479 4480 if( distinct>=0 ){ 4481 explainTempTable(pParse, "DISTINCT"); 4482 } 4483 4484 /* If there is an ORDER BY clause, then we need to sort the results 4485 ** and send them to the callback one by one. 4486 */ 4487 if( pOrderBy ){ 4488 explainTempTable(pParse, "ORDER BY"); 4489 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4490 } 4491 4492 /* Jump here to skip this query 4493 */ 4494 sqlite3VdbeResolveLabel(v, iEnd); 4495 4496 /* The SELECT was successfully coded. Set the return code to 0 4497 ** to indicate no errors. 4498 */ 4499 rc = 0; 4500 4501 /* Control jumps to here if an error is encountered above, or upon 4502 ** successful coding of the SELECT. 4503 */ 4504 select_end: 4505 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4506 4507 /* Identify column names if results of the SELECT are to be output. 4508 */ 4509 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4510 generateColumnNames(pParse, pTabList, pEList); 4511 } 4512 4513 sqlite3DbFree(db, sAggInfo.aCol); 4514 sqlite3DbFree(db, sAggInfo.aFunc); 4515 return rc; 4516 } 4517 4518 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 4519 /* 4520 ** Generate a human-readable description of a the Select object. 4521 */ 4522 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 4523 sqlite3ExplainPrintf(pVdbe, "SELECT "); 4524 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 4525 if( p->selFlags & SF_Distinct ){ 4526 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 4527 } 4528 if( p->selFlags & SF_Aggregate ){ 4529 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 4530 } 4531 sqlite3ExplainNL(pVdbe); 4532 sqlite3ExplainPrintf(pVdbe, " "); 4533 } 4534 sqlite3ExplainExprList(pVdbe, p->pEList); 4535 sqlite3ExplainNL(pVdbe); 4536 if( p->pSrc && p->pSrc->nSrc ){ 4537 int i; 4538 sqlite3ExplainPrintf(pVdbe, "FROM "); 4539 sqlite3ExplainPush(pVdbe); 4540 for(i=0; i<p->pSrc->nSrc; i++){ 4541 struct SrcList_item *pItem = &p->pSrc->a[i]; 4542 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 4543 if( pItem->pSelect ){ 4544 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 4545 if( pItem->pTab ){ 4546 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 4547 } 4548 }else if( pItem->zName ){ 4549 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 4550 } 4551 if( pItem->zAlias ){ 4552 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 4553 } 4554 if( pItem->jointype & JT_LEFT ){ 4555 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 4556 } 4557 sqlite3ExplainNL(pVdbe); 4558 } 4559 sqlite3ExplainPop(pVdbe); 4560 } 4561 if( p->pWhere ){ 4562 sqlite3ExplainPrintf(pVdbe, "WHERE "); 4563 sqlite3ExplainExpr(pVdbe, p->pWhere); 4564 sqlite3ExplainNL(pVdbe); 4565 } 4566 if( p->pGroupBy ){ 4567 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 4568 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 4569 sqlite3ExplainNL(pVdbe); 4570 } 4571 if( p->pHaving ){ 4572 sqlite3ExplainPrintf(pVdbe, "HAVING "); 4573 sqlite3ExplainExpr(pVdbe, p->pHaving); 4574 sqlite3ExplainNL(pVdbe); 4575 } 4576 if( p->pOrderBy ){ 4577 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 4578 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 4579 sqlite3ExplainNL(pVdbe); 4580 } 4581 if( p->pLimit ){ 4582 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 4583 sqlite3ExplainExpr(pVdbe, p->pLimit); 4584 sqlite3ExplainNL(pVdbe); 4585 } 4586 if( p->pOffset ){ 4587 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 4588 sqlite3ExplainExpr(pVdbe, p->pOffset); 4589 sqlite3ExplainNL(pVdbe); 4590 } 4591 } 4592 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 4593 if( p==0 ){ 4594 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 4595 return; 4596 } 4597 while( p->pPrior ) p = p->pPrior; 4598 sqlite3ExplainPush(pVdbe); 4599 while( p ){ 4600 explainOneSelect(pVdbe, p); 4601 p = p->pNext; 4602 if( p==0 ) break; 4603 sqlite3ExplainNL(pVdbe); 4604 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 4605 } 4606 sqlite3ExplainPrintf(pVdbe, "END"); 4607 sqlite3ExplainPop(pVdbe); 4608 } 4609 4610 /* End of the structure debug printing code 4611 *****************************************************************************/ 4612 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 4613