xref: /sqlite-3.40.0/src/select.c (revision 3438ea3b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.326 2007/02/01 23:02:45 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 
37 /*
38 ** Allocate a new Select structure and return a pointer to that
39 ** structure.
40 */
41 Select *sqlite3SelectNew(
42   ExprList *pEList,     /* which columns to include in the result */
43   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
44   Expr *pWhere,         /* the WHERE clause */
45   ExprList *pGroupBy,   /* the GROUP BY clause */
46   Expr *pHaving,        /* the HAVING clause */
47   ExprList *pOrderBy,   /* the ORDER BY clause */
48   int isDistinct,       /* true if the DISTINCT keyword is present */
49   Expr *pLimit,         /* LIMIT value.  NULL means not used */
50   Expr *pOffset         /* OFFSET value.  NULL means no offset */
51 ){
52   Select *pNew;
53   Select standin;
54   pNew = sqliteMalloc( sizeof(*pNew) );
55   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
56   if( pNew==0 ){
57     pNew = &standin;
58     memset(pNew, 0, sizeof(*pNew));
59   }
60   if( pEList==0 ){
61     pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
62   }
63   pNew->pEList = pEList;
64   pNew->pSrc = pSrc;
65   pNew->pWhere = pWhere;
66   pNew->pGroupBy = pGroupBy;
67   pNew->pHaving = pHaving;
68   pNew->pOrderBy = pOrderBy;
69   pNew->isDistinct = isDistinct;
70   pNew->op = TK_SELECT;
71   pNew->pLimit = pLimit;
72   pNew->pOffset = pOffset;
73   pNew->iLimit = -1;
74   pNew->iOffset = -1;
75   pNew->addrOpenEphm[0] = -1;
76   pNew->addrOpenEphm[1] = -1;
77   pNew->addrOpenEphm[2] = -1;
78   if( pNew==&standin) {
79     clearSelect(pNew);
80     pNew = 0;
81   }
82   return pNew;
83 }
84 
85 /*
86 ** Delete the given Select structure and all of its substructures.
87 */
88 void sqlite3SelectDelete(Select *p){
89   if( p ){
90     clearSelect(p);
91     sqliteFree(p);
92   }
93 }
94 
95 /*
96 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
97 ** type of join.  Return an integer constant that expresses that type
98 ** in terms of the following bit values:
99 **
100 **     JT_INNER
101 **     JT_CROSS
102 **     JT_OUTER
103 **     JT_NATURAL
104 **     JT_LEFT
105 **     JT_RIGHT
106 **
107 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
108 **
109 ** If an illegal or unsupported join type is seen, then still return
110 ** a join type, but put an error in the pParse structure.
111 */
112 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
113   int jointype = 0;
114   Token *apAll[3];
115   Token *p;
116   static const struct {
117     const char zKeyword[8];
118     u8 nChar;
119     u8 code;
120   } keywords[] = {
121     { "natural", 7, JT_NATURAL },
122     { "left",    4, JT_LEFT|JT_OUTER },
123     { "right",   5, JT_RIGHT|JT_OUTER },
124     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
125     { "outer",   5, JT_OUTER },
126     { "inner",   5, JT_INNER },
127     { "cross",   5, JT_INNER|JT_CROSS },
128   };
129   int i, j;
130   apAll[0] = pA;
131   apAll[1] = pB;
132   apAll[2] = pC;
133   for(i=0; i<3 && apAll[i]; i++){
134     p = apAll[i];
135     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
136       if( p->n==keywords[j].nChar
137           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
138         jointype |= keywords[j].code;
139         break;
140       }
141     }
142     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
143       jointype |= JT_ERROR;
144       break;
145     }
146   }
147   if(
148      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
149      (jointype & JT_ERROR)!=0
150   ){
151     const char *zSp1 = " ";
152     const char *zSp2 = " ";
153     if( pB==0 ){ zSp1++; }
154     if( pC==0 ){ zSp2++; }
155     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
156        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
157     jointype = JT_INNER;
158   }else if( jointype & JT_RIGHT ){
159     sqlite3ErrorMsg(pParse,
160       "RIGHT and FULL OUTER JOINs are not currently supported");
161     jointype = JT_INNER;
162   }
163   return jointype;
164 }
165 
166 /*
167 ** Return the index of a column in a table.  Return -1 if the column
168 ** is not contained in the table.
169 */
170 static int columnIndex(Table *pTab, const char *zCol){
171   int i;
172   for(i=0; i<pTab->nCol; i++){
173     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
174   }
175   return -1;
176 }
177 
178 /*
179 ** Set the value of a token to a '\000'-terminated string.
180 */
181 static void setToken(Token *p, const char *z){
182   p->z = (u8*)z;
183   p->n = z ? strlen(z) : 0;
184   p->dyn = 0;
185 }
186 
187 /*
188 ** Create an expression node for an identifier with the name of zName
189 */
190 Expr *sqlite3CreateIdExpr(const char *zName){
191   Token dummy;
192   setToken(&dummy, zName);
193   return sqlite3Expr(TK_ID, 0, 0, &dummy);
194 }
195 
196 
197 /*
198 ** Add a term to the WHERE expression in *ppExpr that requires the
199 ** zCol column to be equal in the two tables pTab1 and pTab2.
200 */
201 static void addWhereTerm(
202   const char *zCol,        /* Name of the column */
203   const Table *pTab1,      /* First table */
204   const char *zAlias1,     /* Alias for first table.  May be NULL */
205   const Table *pTab2,      /* Second table */
206   const char *zAlias2,     /* Alias for second table.  May be NULL */
207   int iRightJoinTable,     /* VDBE cursor for the right table */
208   Expr **ppExpr            /* Add the equality term to this expression */
209 ){
210   Expr *pE1a, *pE1b, *pE1c;
211   Expr *pE2a, *pE2b, *pE2c;
212   Expr *pE;
213 
214   pE1a = sqlite3CreateIdExpr(zCol);
215   pE2a = sqlite3CreateIdExpr(zCol);
216   if( zAlias1==0 ){
217     zAlias1 = pTab1->zName;
218   }
219   pE1b = sqlite3CreateIdExpr(zAlias1);
220   if( zAlias2==0 ){
221     zAlias2 = pTab2->zName;
222   }
223   pE2b = sqlite3CreateIdExpr(zAlias2);
224   pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
225   pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
226   pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
227   if( pE ){
228     ExprSetProperty(pE, EP_FromJoin);
229     pE->iRightJoinTable = iRightJoinTable;
230   }
231   pE = sqlite3ExprAnd(*ppExpr, pE);
232   if( pE ){
233     *ppExpr = pE;
234   }
235 }
236 
237 /*
238 ** Set the EP_FromJoin property on all terms of the given expression.
239 ** And set the Expr.iRightJoinTable to iTable for every term in the
240 ** expression.
241 **
242 ** The EP_FromJoin property is used on terms of an expression to tell
243 ** the LEFT OUTER JOIN processing logic that this term is part of the
244 ** join restriction specified in the ON or USING clause and not a part
245 ** of the more general WHERE clause.  These terms are moved over to the
246 ** WHERE clause during join processing but we need to remember that they
247 ** originated in the ON or USING clause.
248 **
249 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
250 ** expression depends on table iRightJoinTable even if that table is not
251 ** explicitly mentioned in the expression.  That information is needed
252 ** for cases like this:
253 **
254 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
255 **
256 ** The where clause needs to defer the handling of the t1.x=5
257 ** term until after the t2 loop of the join.  In that way, a
258 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
259 ** defer the handling of t1.x=5, it will be processed immediately
260 ** after the t1 loop and rows with t1.x!=5 will never appear in
261 ** the output, which is incorrect.
262 */
263 static void setJoinExpr(Expr *p, int iTable){
264   while( p ){
265     ExprSetProperty(p, EP_FromJoin);
266     p->iRightJoinTable = iTable;
267     setJoinExpr(p->pLeft, iTable);
268     p = p->pRight;
269   }
270 }
271 
272 /*
273 ** This routine processes the join information for a SELECT statement.
274 ** ON and USING clauses are converted into extra terms of the WHERE clause.
275 ** NATURAL joins also create extra WHERE clause terms.
276 **
277 ** The terms of a FROM clause are contained in the Select.pSrc structure.
278 ** The left most table is the first entry in Select.pSrc.  The right-most
279 ** table is the last entry.  The join operator is held in the entry to
280 ** the left.  Thus entry 0 contains the join operator for the join between
281 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
282 ** also attached to the left entry.
283 **
284 ** This routine returns the number of errors encountered.
285 */
286 static int sqliteProcessJoin(Parse *pParse, Select *p){
287   SrcList *pSrc;                  /* All tables in the FROM clause */
288   int i, j;                       /* Loop counters */
289   struct SrcList_item *pLeft;     /* Left table being joined */
290   struct SrcList_item *pRight;    /* Right table being joined */
291 
292   pSrc = p->pSrc;
293   pLeft = &pSrc->a[0];
294   pRight = &pLeft[1];
295   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
296     Table *pLeftTab = pLeft->pTab;
297     Table *pRightTab = pRight->pTab;
298 
299     if( pLeftTab==0 || pRightTab==0 ) continue;
300 
301     /* When the NATURAL keyword is present, add WHERE clause terms for
302     ** every column that the two tables have in common.
303     */
304     if( pRight->jointype & JT_NATURAL ){
305       if( pRight->pOn || pRight->pUsing ){
306         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
307            "an ON or USING clause", 0);
308         return 1;
309       }
310       for(j=0; j<pLeftTab->nCol; j++){
311         char *zName = pLeftTab->aCol[j].zName;
312         if( columnIndex(pRightTab, zName)>=0 ){
313           addWhereTerm(zName, pLeftTab, pLeft->zAlias,
314                               pRightTab, pRight->zAlias,
315                               pRight->iCursor, &p->pWhere);
316 
317         }
318       }
319     }
320 
321     /* Disallow both ON and USING clauses in the same join
322     */
323     if( pRight->pOn && pRight->pUsing ){
324       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
325         "clauses in the same join");
326       return 1;
327     }
328 
329     /* Add the ON clause to the end of the WHERE clause, connected by
330     ** an AND operator.
331     */
332     if( pRight->pOn ){
333       setJoinExpr(pRight->pOn, pRight->iCursor);
334       p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn);
335       pRight->pOn = 0;
336     }
337 
338     /* Create extra terms on the WHERE clause for each column named
339     ** in the USING clause.  Example: If the two tables to be joined are
340     ** A and B and the USING clause names X, Y, and Z, then add this
341     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
342     ** Report an error if any column mentioned in the USING clause is
343     ** not contained in both tables to be joined.
344     */
345     if( pRight->pUsing ){
346       IdList *pList = pRight->pUsing;
347       for(j=0; j<pList->nId; j++){
348         char *zName = pList->a[j].zName;
349         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
350           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
351             "not present in both tables", zName);
352           return 1;
353         }
354         addWhereTerm(zName, pLeftTab, pLeft->zAlias,
355                             pRightTab, pRight->zAlias,
356                             pRight->iCursor, &p->pWhere);
357       }
358     }
359   }
360   return 0;
361 }
362 
363 /*
364 ** Insert code into "v" that will push the record on the top of the
365 ** stack into the sorter.
366 */
367 static void pushOntoSorter(
368   Parse *pParse,         /* Parser context */
369   ExprList *pOrderBy,    /* The ORDER BY clause */
370   Select *pSelect        /* The whole SELECT statement */
371 ){
372   Vdbe *v = pParse->pVdbe;
373   sqlite3ExprCodeExprList(pParse, pOrderBy);
374   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
375   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
376   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
377   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
378   if( pSelect->iLimit>=0 ){
379     int addr1, addr2;
380     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
381     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
382     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
383     sqlite3VdbeJumpHere(v, addr1);
384     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
385     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
386     sqlite3VdbeJumpHere(v, addr2);
387     pSelect->iLimit = -1;
388   }
389 }
390 
391 /*
392 ** Add code to implement the OFFSET
393 */
394 static void codeOffset(
395   Vdbe *v,          /* Generate code into this VM */
396   Select *p,        /* The SELECT statement being coded */
397   int iContinue,    /* Jump here to skip the current record */
398   int nPop          /* Number of times to pop stack when jumping */
399 ){
400   if( p->iOffset>=0 && iContinue!=0 ){
401     int addr;
402     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
403     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
404     if( nPop>0 ){
405       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
406     }
407     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
408     VdbeComment((v, "# skip OFFSET records"));
409     sqlite3VdbeJumpHere(v, addr);
410   }
411 }
412 
413 /*
414 ** Add code that will check to make sure the top N elements of the
415 ** stack are distinct.  iTab is a sorting index that holds previously
416 ** seen combinations of the N values.  A new entry is made in iTab
417 ** if the current N values are new.
418 **
419 ** A jump to addrRepeat is made and the N+1 values are popped from the
420 ** stack if the top N elements are not distinct.
421 */
422 static void codeDistinct(
423   Vdbe *v,           /* Generate code into this VM */
424   int iTab,          /* A sorting index used to test for distinctness */
425   int addrRepeat,    /* Jump to here if not distinct */
426   int N              /* The top N elements of the stack must be distinct */
427 ){
428   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
429   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
430   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
431   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
432   VdbeComment((v, "# skip indistinct records"));
433   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
434 }
435 
436 
437 /*
438 ** This routine generates the code for the inside of the inner loop
439 ** of a SELECT.
440 **
441 ** If srcTab and nColumn are both zero, then the pEList expressions
442 ** are evaluated in order to get the data for this row.  If nColumn>0
443 ** then data is pulled from srcTab and pEList is used only to get the
444 ** datatypes for each column.
445 */
446 static int selectInnerLoop(
447   Parse *pParse,          /* The parser context */
448   Select *p,              /* The complete select statement being coded */
449   ExprList *pEList,       /* List of values being extracted */
450   int srcTab,             /* Pull data from this table */
451   int nColumn,            /* Number of columns in the source table */
452   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
453   int distinct,           /* If >=0, make sure results are distinct */
454   int eDest,              /* How to dispose of the results */
455   int iParm,              /* An argument to the disposal method */
456   int iContinue,          /* Jump here to continue with next row */
457   int iBreak,             /* Jump here to break out of the inner loop */
458   char *aff               /* affinity string if eDest is SRT_Union */
459 ){
460   Vdbe *v = pParse->pVdbe;
461   int i;
462   int hasDistinct;        /* True if the DISTINCT keyword is present */
463 
464   if( v==0 ) return 0;
465   assert( pEList!=0 );
466 
467   /* If there was a LIMIT clause on the SELECT statement, then do the check
468   ** to see if this row should be output.
469   */
470   hasDistinct = distinct>=0 && pEList->nExpr>0;
471   if( pOrderBy==0 && !hasDistinct ){
472     codeOffset(v, p, iContinue, 0);
473   }
474 
475   /* Pull the requested columns.
476   */
477   if( nColumn>0 ){
478     for(i=0; i<nColumn; i++){
479       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
480     }
481   }else{
482     nColumn = pEList->nExpr;
483     sqlite3ExprCodeExprList(pParse, pEList);
484   }
485 
486   /* If the DISTINCT keyword was present on the SELECT statement
487   ** and this row has been seen before, then do not make this row
488   ** part of the result.
489   */
490   if( hasDistinct ){
491     assert( pEList!=0 );
492     assert( pEList->nExpr==nColumn );
493     codeDistinct(v, distinct, iContinue, nColumn);
494     if( pOrderBy==0 ){
495       codeOffset(v, p, iContinue, nColumn);
496     }
497   }
498 
499   switch( eDest ){
500     /* In this mode, write each query result to the key of the temporary
501     ** table iParm.
502     */
503 #ifndef SQLITE_OMIT_COMPOUND_SELECT
504     case SRT_Union: {
505       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
506       if( aff ){
507         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
508       }
509       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
510       break;
511     }
512 
513     /* Construct a record from the query result, but instead of
514     ** saving that record, use it as a key to delete elements from
515     ** the temporary table iParm.
516     */
517     case SRT_Except: {
518       int addr;
519       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
520       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
521       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
522       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
523       break;
524     }
525 #endif
526 
527     /* Store the result as data using a unique key.
528     */
529     case SRT_Table:
530     case SRT_EphemTab: {
531       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
532       if( pOrderBy ){
533         pushOntoSorter(pParse, pOrderBy, p);
534       }else{
535         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
536         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
537         sqlite3VdbeAddOp(v, OP_Insert, iParm, 0);
538       }
539       break;
540     }
541 
542 #ifndef SQLITE_OMIT_SUBQUERY
543     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
544     ** then there should be a single item on the stack.  Write this
545     ** item into the set table with bogus data.
546     */
547     case SRT_Set: {
548       int addr1 = sqlite3VdbeCurrentAddr(v);
549       int addr2;
550 
551       assert( nColumn==1 );
552       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
553       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
554       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
555       if( pOrderBy ){
556         /* At first glance you would think we could optimize out the
557         ** ORDER BY in this case since the order of entries in the set
558         ** does not matter.  But there might be a LIMIT clause, in which
559         ** case the order does matter */
560         pushOntoSorter(pParse, pOrderBy, p);
561       }else{
562         char affinity = (iParm>>16)&0xFF;
563         affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, affinity);
564         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
565         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
566       }
567       sqlite3VdbeJumpHere(v, addr2);
568       break;
569     }
570 
571     /* If any row exist in the result set, record that fact and abort.
572     */
573     case SRT_Exists: {
574       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
575       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
576       /* The LIMIT clause will terminate the loop for us */
577       break;
578     }
579 
580     /* If this is a scalar select that is part of an expression, then
581     ** store the results in the appropriate memory cell and break out
582     ** of the scan loop.
583     */
584     case SRT_Mem: {
585       assert( nColumn==1 );
586       if( pOrderBy ){
587         pushOntoSorter(pParse, pOrderBy, p);
588       }else{
589         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
590         /* The LIMIT clause will jump out of the loop for us */
591       }
592       break;
593     }
594 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
595 
596     /* Send the data to the callback function or to a subroutine.  In the
597     ** case of a subroutine, the subroutine itself is responsible for
598     ** popping the data from the stack.
599     */
600     case SRT_Subroutine:
601     case SRT_Callback: {
602       if( pOrderBy ){
603         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
604         pushOntoSorter(pParse, pOrderBy, p);
605       }else if( eDest==SRT_Subroutine ){
606         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
607       }else{
608         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
609       }
610       break;
611     }
612 
613 #if !defined(SQLITE_OMIT_TRIGGER)
614     /* Discard the results.  This is used for SELECT statements inside
615     ** the body of a TRIGGER.  The purpose of such selects is to call
616     ** user-defined functions that have side effects.  We do not care
617     ** about the actual results of the select.
618     */
619     default: {
620       assert( eDest==SRT_Discard );
621       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
622       break;
623     }
624 #endif
625   }
626 
627   /* Jump to the end of the loop if the LIMIT is reached.
628   */
629   if( p->iLimit>=0 && pOrderBy==0 ){
630     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
631     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
632   }
633   return 0;
634 }
635 
636 /*
637 ** Given an expression list, generate a KeyInfo structure that records
638 ** the collating sequence for each expression in that expression list.
639 **
640 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
641 ** KeyInfo structure is appropriate for initializing a virtual index to
642 ** implement that clause.  If the ExprList is the result set of a SELECT
643 ** then the KeyInfo structure is appropriate for initializing a virtual
644 ** index to implement a DISTINCT test.
645 **
646 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
647 ** function is responsible for seeing that this structure is eventually
648 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
649 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
650 */
651 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
652   sqlite3 *db = pParse->db;
653   int nExpr;
654   KeyInfo *pInfo;
655   struct ExprList_item *pItem;
656   int i;
657 
658   nExpr = pList->nExpr;
659   pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
660   if( pInfo ){
661     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
662     pInfo->nField = nExpr;
663     pInfo->enc = ENC(db);
664     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
665       CollSeq *pColl;
666       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
667       if( !pColl ){
668         pColl = db->pDfltColl;
669       }
670       pInfo->aColl[i] = pColl;
671       pInfo->aSortOrder[i] = pItem->sortOrder;
672     }
673   }
674   return pInfo;
675 }
676 
677 
678 /*
679 ** If the inner loop was generated using a non-null pOrderBy argument,
680 ** then the results were placed in a sorter.  After the loop is terminated
681 ** we need to run the sorter and output the results.  The following
682 ** routine generates the code needed to do that.
683 */
684 static void generateSortTail(
685   Parse *pParse,   /* Parsing context */
686   Select *p,       /* The SELECT statement */
687   Vdbe *v,         /* Generate code into this VDBE */
688   int nColumn,     /* Number of columns of data */
689   int eDest,       /* Write the sorted results here */
690   int iParm        /* Optional parameter associated with eDest */
691 ){
692   int brk = sqlite3VdbeMakeLabel(v);
693   int cont = sqlite3VdbeMakeLabel(v);
694   int addr;
695   int iTab;
696   int pseudoTab;
697   ExprList *pOrderBy = p->pOrderBy;
698 
699   iTab = pOrderBy->iECursor;
700   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
701     pseudoTab = pParse->nTab++;
702     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
703     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
704   }
705   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
706   codeOffset(v, p, cont, 0);
707   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
708     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
709   }
710   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
711   switch( eDest ){
712     case SRT_Table:
713     case SRT_EphemTab: {
714       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
715       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
716       sqlite3VdbeAddOp(v, OP_Insert, iParm, 0);
717       break;
718     }
719 #ifndef SQLITE_OMIT_SUBQUERY
720     case SRT_Set: {
721       assert( nColumn==1 );
722       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
723       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
724       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
725       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "c", P3_STATIC);
726       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
727       break;
728     }
729     case SRT_Mem: {
730       assert( nColumn==1 );
731       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
732       /* The LIMIT clause will terminate the loop for us */
733       break;
734     }
735 #endif
736     case SRT_Callback:
737     case SRT_Subroutine: {
738       int i;
739       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
740       for(i=0; i<nColumn; i++){
741         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
742       }
743       if( eDest==SRT_Callback ){
744         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
745       }else{
746         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
747       }
748       break;
749     }
750     default: {
751       /* Do nothing */
752       break;
753     }
754   }
755 
756   /* Jump to the end of the loop when the LIMIT is reached
757   */
758   if( p->iLimit>=0 ){
759     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
760     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
761   }
762 
763   /* The bottom of the loop
764   */
765   sqlite3VdbeResolveLabel(v, cont);
766   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
767   sqlite3VdbeResolveLabel(v, brk);
768   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
769     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
770   }
771 
772 }
773 
774 /*
775 ** Return a pointer to a string containing the 'declaration type' of the
776 ** expression pExpr. The string may be treated as static by the caller.
777 **
778 ** The declaration type is the exact datatype definition extracted from the
779 ** original CREATE TABLE statement if the expression is a column. The
780 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
781 ** is considered a column can be complex in the presence of subqueries. The
782 ** result-set expression in all of the following SELECT statements is
783 ** considered a column by this function.
784 **
785 **   SELECT col FROM tbl;
786 **   SELECT (SELECT col FROM tbl;
787 **   SELECT (SELECT col FROM tbl);
788 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
789 **
790 ** The declaration type for any expression other than a column is NULL.
791 */
792 static const char *columnType(
793   NameContext *pNC,
794   Expr *pExpr,
795   const char **pzOriginDb,
796   const char **pzOriginTab,
797   const char **pzOriginCol
798 ){
799   char const *zType = 0;
800   char const *zOriginDb = 0;
801   char const *zOriginTab = 0;
802   char const *zOriginCol = 0;
803   int j;
804   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
805 
806   /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING,
807   ** and LIMIT clauses.  But pExpr originates in the result set of a
808   ** SELECT.  So pExpr can never contain an AS operator.
809   */
810   assert( pExpr->op!=TK_AS );
811 
812   switch( pExpr->op ){
813     case TK_AGG_COLUMN:
814     case TK_COLUMN: {
815       /* The expression is a column. Locate the table the column is being
816       ** extracted from in NameContext.pSrcList. This table may be real
817       ** database table or a subquery.
818       */
819       Table *pTab = 0;            /* Table structure column is extracted from */
820       Select *pS = 0;             /* Select the column is extracted from */
821       int iCol = pExpr->iColumn;  /* Index of column in pTab */
822       while( pNC && !pTab ){
823         SrcList *pTabList = pNC->pSrcList;
824         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
825         if( j<pTabList->nSrc ){
826           pTab = pTabList->a[j].pTab;
827           pS = pTabList->a[j].pSelect;
828         }else{
829           pNC = pNC->pNext;
830         }
831       }
832 
833       if( pTab==0 ){
834         /* FIX ME:
835         ** This can occurs if you have something like "SELECT new.x;" inside
836         ** a trigger.  In other words, if you reference the special "new"
837         ** table in the result set of a select.  We do not have a good way
838         ** to find the actual table type, so call it "TEXT".  This is really
839         ** something of a bug, but I do not know how to fix it.
840         **
841         ** This code does not produce the correct answer - it just prevents
842         ** a segfault.  See ticket #1229.
843         */
844         zType = "TEXT";
845         break;
846       }
847 
848       assert( pTab );
849       if( pS ){
850         /* The "table" is actually a sub-select or a view in the FROM clause
851         ** of the SELECT statement. Return the declaration type and origin
852         ** data for the result-set column of the sub-select.
853         */
854         if( iCol>=0 && iCol<pS->pEList->nExpr ){
855           /* If iCol is less than zero, then the expression requests the
856           ** rowid of the sub-select or view. This expression is legal (see
857           ** test case misc2.2.2) - it always evaluates to NULL.
858           */
859           NameContext sNC;
860           Expr *p = pS->pEList->a[iCol].pExpr;
861           sNC.pSrcList = pS->pSrc;
862           sNC.pNext = 0;
863           sNC.pParse = pNC->pParse;
864           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
865         }
866       }else if( pTab->pSchema ){
867         /* A real table */
868         assert( !pS );
869         if( iCol<0 ) iCol = pTab->iPKey;
870         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
871         if( iCol<0 ){
872           zType = "INTEGER";
873           zOriginCol = "rowid";
874         }else{
875           zType = pTab->aCol[iCol].zType;
876           zOriginCol = pTab->aCol[iCol].zName;
877         }
878         zOriginTab = pTab->zName;
879         if( pNC->pParse ){
880           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
881           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
882         }
883       }
884       break;
885     }
886 #ifndef SQLITE_OMIT_SUBQUERY
887     case TK_SELECT: {
888       /* The expression is a sub-select. Return the declaration type and
889       ** origin info for the single column in the result set of the SELECT
890       ** statement.
891       */
892       NameContext sNC;
893       Select *pS = pExpr->pSelect;
894       Expr *p = pS->pEList->a[0].pExpr;
895       sNC.pSrcList = pS->pSrc;
896       sNC.pNext = pNC;
897       sNC.pParse = pNC->pParse;
898       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
899       break;
900     }
901 #endif
902   }
903 
904   if( pzOriginDb ){
905     assert( pzOriginTab && pzOriginCol );
906     *pzOriginDb = zOriginDb;
907     *pzOriginTab = zOriginTab;
908     *pzOriginCol = zOriginCol;
909   }
910   return zType;
911 }
912 
913 /*
914 ** Generate code that will tell the VDBE the declaration types of columns
915 ** in the result set.
916 */
917 static void generateColumnTypes(
918   Parse *pParse,      /* Parser context */
919   SrcList *pTabList,  /* List of tables */
920   ExprList *pEList    /* Expressions defining the result set */
921 ){
922   Vdbe *v = pParse->pVdbe;
923   int i;
924   NameContext sNC;
925   sNC.pSrcList = pTabList;
926   sNC.pParse = pParse;
927   for(i=0; i<pEList->nExpr; i++){
928     Expr *p = pEList->a[i].pExpr;
929     const char *zOrigDb = 0;
930     const char *zOrigTab = 0;
931     const char *zOrigCol = 0;
932     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
933 
934     /* The vdbe must make it's own copy of the column-type and other
935     ** column specific strings, in case the schema is reset before this
936     ** virtual machine is deleted.
937     */
938     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
939     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
940     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
941     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
942   }
943 }
944 
945 /*
946 ** Generate code that will tell the VDBE the names of columns
947 ** in the result set.  This information is used to provide the
948 ** azCol[] values in the callback.
949 */
950 static void generateColumnNames(
951   Parse *pParse,      /* Parser context */
952   SrcList *pTabList,  /* List of tables */
953   ExprList *pEList    /* Expressions defining the result set */
954 ){
955   Vdbe *v = pParse->pVdbe;
956   int i, j;
957   sqlite3 *db = pParse->db;
958   int fullNames, shortNames;
959 
960 #ifndef SQLITE_OMIT_EXPLAIN
961   /* If this is an EXPLAIN, skip this step */
962   if( pParse->explain ){
963     return;
964   }
965 #endif
966 
967   assert( v!=0 );
968   if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
969   pParse->colNamesSet = 1;
970   fullNames = (db->flags & SQLITE_FullColNames)!=0;
971   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
972   sqlite3VdbeSetNumCols(v, pEList->nExpr);
973   for(i=0; i<pEList->nExpr; i++){
974     Expr *p;
975     p = pEList->a[i].pExpr;
976     if( p==0 ) continue;
977     if( pEList->a[i].zName ){
978       char *zName = pEList->a[i].zName;
979       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
980       continue;
981     }
982     if( p->op==TK_COLUMN && pTabList ){
983       Table *pTab;
984       char *zCol;
985       int iCol = p->iColumn;
986       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
987       assert( j<pTabList->nSrc );
988       pTab = pTabList->a[j].pTab;
989       if( iCol<0 ) iCol = pTab->iPKey;
990       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
991       if( iCol<0 ){
992         zCol = "rowid";
993       }else{
994         zCol = pTab->aCol[iCol].zName;
995       }
996       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
997         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
998       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
999         char *zName = 0;
1000         char *zTab;
1001 
1002         zTab = pTabList->a[j].zAlias;
1003         if( fullNames || zTab==0 ) zTab = pTab->zName;
1004         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
1005         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
1006       }else{
1007         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1008       }
1009     }else if( p->span.z && p->span.z[0] ){
1010       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1011       /* sqlite3VdbeCompressSpace(v, addr); */
1012     }else{
1013       char zName[30];
1014       assert( p->op!=TK_COLUMN || pTabList==0 );
1015       sprintf(zName, "column%d", i+1);
1016       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
1017     }
1018   }
1019   generateColumnTypes(pParse, pTabList, pEList);
1020 }
1021 
1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1023 /*
1024 ** Name of the connection operator, used for error messages.
1025 */
1026 static const char *selectOpName(int id){
1027   char *z;
1028   switch( id ){
1029     case TK_ALL:       z = "UNION ALL";   break;
1030     case TK_INTERSECT: z = "INTERSECT";   break;
1031     case TK_EXCEPT:    z = "EXCEPT";      break;
1032     default:           z = "UNION";       break;
1033   }
1034   return z;
1035 }
1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1037 
1038 /*
1039 ** Forward declaration
1040 */
1041 static int prepSelectStmt(Parse*, Select*);
1042 
1043 /*
1044 ** Given a SELECT statement, generate a Table structure that describes
1045 ** the result set of that SELECT.
1046 */
1047 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1048   Table *pTab;
1049   int i, j;
1050   ExprList *pEList;
1051   Column *aCol, *pCol;
1052 
1053   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1054   if( prepSelectStmt(pParse, pSelect) ){
1055     return 0;
1056   }
1057   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
1058     return 0;
1059   }
1060   pTab = sqliteMalloc( sizeof(Table) );
1061   if( pTab==0 ){
1062     return 0;
1063   }
1064   pTab->nRef = 1;
1065   pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
1066   pEList = pSelect->pEList;
1067   pTab->nCol = pEList->nExpr;
1068   assert( pTab->nCol>0 );
1069   pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
1070   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1071     Expr *p, *pR;
1072     char *zType;
1073     char *zName;
1074     int nName;
1075     CollSeq *pColl;
1076     int cnt;
1077     NameContext sNC;
1078 
1079     /* Get an appropriate name for the column
1080     */
1081     p = pEList->a[i].pExpr;
1082     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1083     if( (zName = pEList->a[i].zName)!=0 ){
1084       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1085       zName = sqliteStrDup(zName);
1086     }else if( p->op==TK_DOT
1087               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
1088       /* For columns of the from A.B use B as the name */
1089       zName = sqlite3MPrintf("%T", &pR->token);
1090     }else if( p->span.z && p->span.z[0] ){
1091       /* Use the original text of the column expression as its name */
1092       zName = sqlite3MPrintf("%T", &p->span);
1093     }else{
1094       /* If all else fails, make up a name */
1095       zName = sqlite3MPrintf("column%d", i+1);
1096     }
1097     sqlite3Dequote(zName);
1098     if( sqlite3MallocFailed() ){
1099       sqliteFree(zName);
1100       sqlite3DeleteTable(0, pTab);
1101       return 0;
1102     }
1103 
1104     /* Make sure the column name is unique.  If the name is not unique,
1105     ** append a integer to the name so that it becomes unique.
1106     */
1107     nName = strlen(zName);
1108     for(j=cnt=0; j<i; j++){
1109       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1110         zName[nName] = 0;
1111         zName = sqlite3MPrintf("%z:%d", zName, ++cnt);
1112         j = -1;
1113         if( zName==0 ) break;
1114       }
1115     }
1116     pCol->zName = zName;
1117 
1118     /* Get the typename, type affinity, and collating sequence for the
1119     ** column.
1120     */
1121     memset(&sNC, 0, sizeof(sNC));
1122     sNC.pSrcList = pSelect->pSrc;
1123     zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
1124     pCol->zType = zType;
1125     pCol->affinity = sqlite3ExprAffinity(p);
1126     pColl = sqlite3ExprCollSeq(pParse, p);
1127     if( pColl ){
1128       pCol->zColl = sqliteStrDup(pColl->zName);
1129     }
1130   }
1131   pTab->iPKey = -1;
1132   return pTab;
1133 }
1134 
1135 /*
1136 ** Prepare a SELECT statement for processing by doing the following
1137 ** things:
1138 **
1139 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1140 **         element of the FROM clause.
1141 **
1142 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1143 **         defines FROM clause.  When views appear in the FROM clause,
1144 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1145 **         that implements the view.  A copy is made of the view's SELECT
1146 **         statement so that we can freely modify or delete that statement
1147 **         without worrying about messing up the presistent representation
1148 **         of the view.
1149 **
1150 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1151 **         on joins and the ON and USING clause of joins.
1152 **
1153 **    (4)  Scan the list of columns in the result set (pEList) looking
1154 **         for instances of the "*" operator or the TABLE.* operator.
1155 **         If found, expand each "*" to be every column in every table
1156 **         and TABLE.* to be every column in TABLE.
1157 **
1158 ** Return 0 on success.  If there are problems, leave an error message
1159 ** in pParse and return non-zero.
1160 */
1161 static int prepSelectStmt(Parse *pParse, Select *p){
1162   int i, j, k, rc;
1163   SrcList *pTabList;
1164   ExprList *pEList;
1165   struct SrcList_item *pFrom;
1166 
1167   if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
1168     return 1;
1169   }
1170   pTabList = p->pSrc;
1171   pEList = p->pEList;
1172 
1173   /* Make sure cursor numbers have been assigned to all entries in
1174   ** the FROM clause of the SELECT statement.
1175   */
1176   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1177 
1178   /* Look up every table named in the FROM clause of the select.  If
1179   ** an entry of the FROM clause is a subquery instead of a table or view,
1180   ** then create a transient table structure to describe the subquery.
1181   */
1182   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1183     Table *pTab;
1184     if( pFrom->pTab!=0 ){
1185       /* This statement has already been prepared.  There is no need
1186       ** to go further. */
1187       assert( i==0 );
1188       return 0;
1189     }
1190     if( pFrom->zName==0 ){
1191 #ifndef SQLITE_OMIT_SUBQUERY
1192       /* A sub-query in the FROM clause of a SELECT */
1193       assert( pFrom->pSelect!=0 );
1194       if( pFrom->zAlias==0 ){
1195         pFrom->zAlias =
1196           sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
1197       }
1198       assert( pFrom->pTab==0 );
1199       pFrom->pTab = pTab =
1200         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1201       if( pTab==0 ){
1202         return 1;
1203       }
1204       /* The isEphem flag indicates that the Table structure has been
1205       ** dynamically allocated and may be freed at any time.  In other words,
1206       ** pTab is not pointing to a persistent table structure that defines
1207       ** part of the schema. */
1208       pTab->isEphem = 1;
1209 #endif
1210     }else{
1211       /* An ordinary table or view name in the FROM clause */
1212       assert( pFrom->pTab==0 );
1213       pFrom->pTab = pTab =
1214         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1215       if( pTab==0 ){
1216         return 1;
1217       }
1218       pTab->nRef++;
1219 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1220       if( pTab->pSelect || IsVirtual(pTab) ){
1221         /* We reach here if the named table is a really a view */
1222         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1223           return 1;
1224         }
1225         /* If pFrom->pSelect!=0 it means we are dealing with a
1226         ** view within a view.  The SELECT structure has already been
1227         ** copied by the outer view so we can skip the copy step here
1228         ** in the inner view.
1229         */
1230         if( pFrom->pSelect==0 ){
1231           pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
1232         }
1233       }
1234 #endif
1235     }
1236   }
1237 
1238   /* Process NATURAL keywords, and ON and USING clauses of joins.
1239   */
1240   if( sqliteProcessJoin(pParse, p) ) return 1;
1241 
1242   /* For every "*" that occurs in the column list, insert the names of
1243   ** all columns in all tables.  And for every TABLE.* insert the names
1244   ** of all columns in TABLE.  The parser inserted a special expression
1245   ** with the TK_ALL operator for each "*" that it found in the column list.
1246   ** The following code just has to locate the TK_ALL expressions and expand
1247   ** each one to the list of all columns in all tables.
1248   **
1249   ** The first loop just checks to see if there are any "*" operators
1250   ** that need expanding.
1251   */
1252   for(k=0; k<pEList->nExpr; k++){
1253     Expr *pE = pEList->a[k].pExpr;
1254     if( pE->op==TK_ALL ) break;
1255     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1256          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1257   }
1258   rc = 0;
1259   if( k<pEList->nExpr ){
1260     /*
1261     ** If we get here it means the result set contains one or more "*"
1262     ** operators that need to be expanded.  Loop through each expression
1263     ** in the result set and expand them one by one.
1264     */
1265     struct ExprList_item *a = pEList->a;
1266     ExprList *pNew = 0;
1267     int flags = pParse->db->flags;
1268     int longNames = (flags & SQLITE_FullColNames)!=0 &&
1269                       (flags & SQLITE_ShortColNames)==0;
1270 
1271     for(k=0; k<pEList->nExpr; k++){
1272       Expr *pE = a[k].pExpr;
1273       if( pE->op!=TK_ALL &&
1274            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1275         /* This particular expression does not need to be expanded.
1276         */
1277         pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
1278         if( pNew ){
1279           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1280         }else{
1281           rc = 1;
1282         }
1283         a[k].pExpr = 0;
1284         a[k].zName = 0;
1285       }else{
1286         /* This expression is a "*" or a "TABLE.*" and needs to be
1287         ** expanded. */
1288         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1289         char *zTName;            /* text of name of TABLE */
1290         if( pE->op==TK_DOT && pE->pLeft ){
1291           zTName = sqlite3NameFromToken(&pE->pLeft->token);
1292         }else{
1293           zTName = 0;
1294         }
1295         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1296           Table *pTab = pFrom->pTab;
1297           char *zTabName = pFrom->zAlias;
1298           if( zTabName==0 || zTabName[0]==0 ){
1299             zTabName = pTab->zName;
1300           }
1301           if( zTName && (zTabName==0 || zTabName[0]==0 ||
1302                  sqlite3StrICmp(zTName, zTabName)!=0) ){
1303             continue;
1304           }
1305           tableSeen = 1;
1306           for(j=0; j<pTab->nCol; j++){
1307             Expr *pExpr, *pRight;
1308             char *zName = pTab->aCol[j].zName;
1309 
1310             if( i>0 ){
1311               struct SrcList_item *pLeft = &pTabList->a[i-1];
1312               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1313                         columnIndex(pLeft->pTab, zName)>=0 ){
1314                 /* In a NATURAL join, omit the join columns from the
1315                 ** table on the right */
1316                 continue;
1317               }
1318               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1319                 /* In a join with a USING clause, omit columns in the
1320                 ** using clause from the table on the right. */
1321                 continue;
1322               }
1323             }
1324             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
1325             if( pRight==0 ) break;
1326             setToken(&pRight->token, zName);
1327             if( zTabName && (longNames || pTabList->nSrc>1) ){
1328               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
1329               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
1330               if( pExpr==0 ) break;
1331               setToken(&pLeft->token, zTabName);
1332               setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
1333               pExpr->span.dyn = 1;
1334               pExpr->token.z = 0;
1335               pExpr->token.n = 0;
1336               pExpr->token.dyn = 0;
1337             }else{
1338               pExpr = pRight;
1339               pExpr->span = pExpr->token;
1340             }
1341             if( longNames ){
1342               pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
1343             }else{
1344               pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
1345             }
1346           }
1347         }
1348         if( !tableSeen ){
1349           if( zTName ){
1350             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1351           }else{
1352             sqlite3ErrorMsg(pParse, "no tables specified");
1353           }
1354           rc = 1;
1355         }
1356         sqliteFree(zTName);
1357       }
1358     }
1359     sqlite3ExprListDelete(pEList);
1360     p->pEList = pNew;
1361   }
1362   return rc;
1363 }
1364 
1365 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1366 /*
1367 ** This routine associates entries in an ORDER BY expression list with
1368 ** columns in a result.  For each ORDER BY expression, the opcode of
1369 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1370 ** the top-level node is filled in with column number and the iTable
1371 ** value of the top-level node is filled with iTable parameter.
1372 **
1373 ** If there are prior SELECT clauses, they are processed first.  A match
1374 ** in an earlier SELECT takes precedence over a later SELECT.
1375 **
1376 ** Any entry that does not match is flagged as an error.  The number
1377 ** of errors is returned.
1378 */
1379 static int matchOrderbyToColumn(
1380   Parse *pParse,          /* A place to leave error messages */
1381   Select *pSelect,        /* Match to result columns of this SELECT */
1382   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
1383   int iTable,             /* Insert this value in iTable */
1384   int mustComplete        /* If TRUE all ORDER BYs must match */
1385 ){
1386   int nErr = 0;
1387   int i, j;
1388   ExprList *pEList;
1389 
1390   if( pSelect==0 || pOrderBy==0 ) return 1;
1391   if( mustComplete ){
1392     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1393   }
1394   if( prepSelectStmt(pParse, pSelect) ){
1395     return 1;
1396   }
1397   if( pSelect->pPrior ){
1398     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1399       return 1;
1400     }
1401   }
1402   pEList = pSelect->pEList;
1403   for(i=0; i<pOrderBy->nExpr; i++){
1404     Expr *pE = pOrderBy->a[i].pExpr;
1405     int iCol = -1;
1406     if( pOrderBy->a[i].done ) continue;
1407     if( sqlite3ExprIsInteger(pE, &iCol) ){
1408       if( iCol<=0 || iCol>pEList->nExpr ){
1409         sqlite3ErrorMsg(pParse,
1410           "ORDER BY position %d should be between 1 and %d",
1411           iCol, pEList->nExpr);
1412         nErr++;
1413         break;
1414       }
1415       if( !mustComplete ) continue;
1416       iCol--;
1417     }
1418     for(j=0; iCol<0 && j<pEList->nExpr; j++){
1419       if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
1420         char *zName, *zLabel;
1421         zName = pEList->a[j].zName;
1422         zLabel = sqlite3NameFromToken(&pE->token);
1423         assert( zLabel!=0 );
1424         if( sqlite3StrICmp(zName, zLabel)==0 ){
1425           iCol = j;
1426         }
1427         sqliteFree(zLabel);
1428       }
1429       if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){
1430         iCol = j;
1431       }
1432     }
1433     if( iCol>=0 ){
1434       pE->op = TK_COLUMN;
1435       pE->iColumn = iCol;
1436       pE->iTable = iTable;
1437       pE->iAgg = -1;
1438       pOrderBy->a[i].done = 1;
1439     }
1440     if( iCol<0 && mustComplete ){
1441       sqlite3ErrorMsg(pParse,
1442         "ORDER BY term number %d does not match any result column", i+1);
1443       nErr++;
1444       break;
1445     }
1446   }
1447   return nErr;
1448 }
1449 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1450 
1451 /*
1452 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1453 ** If an error occurs, return NULL and leave a message in pParse.
1454 */
1455 Vdbe *sqlite3GetVdbe(Parse *pParse){
1456   Vdbe *v = pParse->pVdbe;
1457   if( v==0 ){
1458     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1459   }
1460   return v;
1461 }
1462 
1463 
1464 /*
1465 ** Compute the iLimit and iOffset fields of the SELECT based on the
1466 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1467 ** that appear in the original SQL statement after the LIMIT and OFFSET
1468 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1469 ** are the integer memory register numbers for counters used to compute
1470 ** the limit and offset.  If there is no limit and/or offset, then
1471 ** iLimit and iOffset are negative.
1472 **
1473 ** This routine changes the values of iLimit and iOffset only if
1474 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1475 ** iOffset should have been preset to appropriate default values
1476 ** (usually but not always -1) prior to calling this routine.
1477 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1478 ** redefined.  The UNION ALL operator uses this property to force
1479 ** the reuse of the same limit and offset registers across multiple
1480 ** SELECT statements.
1481 */
1482 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1483   Vdbe *v = 0;
1484   int iLimit = 0;
1485   int iOffset;
1486   int addr1, addr2;
1487 
1488   /*
1489   ** "LIMIT -1" always shows all rows.  There is some
1490   ** contraversy about what the correct behavior should be.
1491   ** The current implementation interprets "LIMIT 0" to mean
1492   ** no rows.
1493   */
1494   if( p->pLimit ){
1495     p->iLimit = iLimit = pParse->nMem;
1496     pParse->nMem += 2;
1497     v = sqlite3GetVdbe(pParse);
1498     if( v==0 ) return;
1499     sqlite3ExprCode(pParse, p->pLimit);
1500     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1501     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0);
1502     VdbeComment((v, "# LIMIT counter"));
1503     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
1504   }
1505   if( p->pOffset ){
1506     p->iOffset = iOffset = pParse->nMem++;
1507     v = sqlite3GetVdbe(pParse);
1508     if( v==0 ) return;
1509     sqlite3ExprCode(pParse, p->pOffset);
1510     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1511     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
1512     VdbeComment((v, "# OFFSET counter"));
1513     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
1514     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1515     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
1516     sqlite3VdbeJumpHere(v, addr1);
1517     if( p->pLimit ){
1518       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
1519     }
1520   }
1521   if( p->pLimit ){
1522     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
1523     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1524     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
1525     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1526     sqlite3VdbeJumpHere(v, addr1);
1527     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
1528     VdbeComment((v, "# LIMIT+OFFSET"));
1529     sqlite3VdbeJumpHere(v, addr2);
1530   }
1531 }
1532 
1533 /*
1534 ** Allocate a virtual index to use for sorting.
1535 */
1536 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
1537   if( pOrderBy ){
1538     int addr;
1539     assert( pOrderBy->iECursor==0 );
1540     pOrderBy->iECursor = pParse->nTab++;
1541     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
1542                             pOrderBy->iECursor, pOrderBy->nExpr+1);
1543     assert( p->addrOpenEphm[2] == -1 );
1544     p->addrOpenEphm[2] = addr;
1545   }
1546 }
1547 
1548 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1549 /*
1550 ** Return the appropriate collating sequence for the iCol-th column of
1551 ** the result set for the compound-select statement "p".  Return NULL if
1552 ** the column has no default collating sequence.
1553 **
1554 ** The collating sequence for the compound select is taken from the
1555 ** left-most term of the select that has a collating sequence.
1556 */
1557 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1558   CollSeq *pRet;
1559   if( p->pPrior ){
1560     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1561   }else{
1562     pRet = 0;
1563   }
1564   if( pRet==0 ){
1565     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1566   }
1567   return pRet;
1568 }
1569 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1570 
1571 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1572 /*
1573 ** This routine is called to process a query that is really the union
1574 ** or intersection of two or more separate queries.
1575 **
1576 ** "p" points to the right-most of the two queries.  the query on the
1577 ** left is p->pPrior.  The left query could also be a compound query
1578 ** in which case this routine will be called recursively.
1579 **
1580 ** The results of the total query are to be written into a destination
1581 ** of type eDest with parameter iParm.
1582 **
1583 ** Example 1:  Consider a three-way compound SQL statement.
1584 **
1585 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1586 **
1587 ** This statement is parsed up as follows:
1588 **
1589 **     SELECT c FROM t3
1590 **      |
1591 **      `----->  SELECT b FROM t2
1592 **                |
1593 **                `------>  SELECT a FROM t1
1594 **
1595 ** The arrows in the diagram above represent the Select.pPrior pointer.
1596 ** So if this routine is called with p equal to the t3 query, then
1597 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1598 **
1599 ** Notice that because of the way SQLite parses compound SELECTs, the
1600 ** individual selects always group from left to right.
1601 */
1602 static int multiSelect(
1603   Parse *pParse,        /* Parsing context */
1604   Select *p,            /* The right-most of SELECTs to be coded */
1605   int eDest,            /* \___  Store query results as specified */
1606   int iParm,            /* /     by these two parameters.         */
1607   char *aff             /* If eDest is SRT_Union, the affinity string */
1608 ){
1609   int rc = SQLITE_OK;   /* Success code from a subroutine */
1610   Select *pPrior;       /* Another SELECT immediately to our left */
1611   Vdbe *v;              /* Generate code to this VDBE */
1612   int nCol;             /* Number of columns in the result set */
1613   ExprList *pOrderBy;   /* The ORDER BY clause on p */
1614   int aSetP2[2];        /* Set P2 value of these op to number of columns */
1615   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
1616 
1617   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1618   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1619   */
1620   if( p==0 || p->pPrior==0 ){
1621     rc = 1;
1622     goto multi_select_end;
1623   }
1624   pPrior = p->pPrior;
1625   assert( pPrior->pRightmost!=pPrior );
1626   assert( pPrior->pRightmost==p->pRightmost );
1627   if( pPrior->pOrderBy ){
1628     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1629       selectOpName(p->op));
1630     rc = 1;
1631     goto multi_select_end;
1632   }
1633   if( pPrior->pLimit ){
1634     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1635       selectOpName(p->op));
1636     rc = 1;
1637     goto multi_select_end;
1638   }
1639 
1640   /* Make sure we have a valid query engine.  If not, create a new one.
1641   */
1642   v = sqlite3GetVdbe(pParse);
1643   if( v==0 ){
1644     rc = 1;
1645     goto multi_select_end;
1646   }
1647 
1648   /* Create the destination temporary table if necessary
1649   */
1650   if( eDest==SRT_EphemTab ){
1651     assert( p->pEList );
1652     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1653     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
1654     eDest = SRT_Table;
1655   }
1656 
1657   /* Generate code for the left and right SELECT statements.
1658   */
1659   pOrderBy = p->pOrderBy;
1660   switch( p->op ){
1661     case TK_ALL: {
1662       if( pOrderBy==0 ){
1663         int addr = 0;
1664         assert( !pPrior->pLimit );
1665         pPrior->pLimit = p->pLimit;
1666         pPrior->pOffset = p->pOffset;
1667         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1668         p->pLimit = 0;
1669         p->pOffset = 0;
1670         if( rc ){
1671           goto multi_select_end;
1672         }
1673         p->pPrior = 0;
1674         p->iLimit = pPrior->iLimit;
1675         p->iOffset = pPrior->iOffset;
1676         if( p->iLimit>=0 ){
1677           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
1678           VdbeComment((v, "# Jump ahead if LIMIT reached"));
1679         }
1680         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1681         p->pPrior = pPrior;
1682         if( rc ){
1683           goto multi_select_end;
1684         }
1685         if( addr ){
1686           sqlite3VdbeJumpHere(v, addr);
1687         }
1688         break;
1689       }
1690       /* For UNION ALL ... ORDER BY fall through to the next case */
1691     }
1692     case TK_EXCEPT:
1693     case TK_UNION: {
1694       int unionTab;    /* Cursor number of the temporary table holding result */
1695       int op = 0;      /* One of the SRT_ operations to apply to self */
1696       int priorOp;     /* The SRT_ operation to apply to prior selects */
1697       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1698       int addr;
1699 
1700       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1701       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
1702         /* We can reuse a temporary table generated by a SELECT to our
1703         ** right.
1704         */
1705         unionTab = iParm;
1706       }else{
1707         /* We will need to create our own temporary table to hold the
1708         ** intermediate results.
1709         */
1710         unionTab = pParse->nTab++;
1711         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
1712           rc = 1;
1713           goto multi_select_end;
1714         }
1715         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
1716         if( priorOp==SRT_Table ){
1717           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1718           aSetP2[nSetP2++] = addr;
1719         }else{
1720           assert( p->addrOpenEphm[0] == -1 );
1721           p->addrOpenEphm[0] = addr;
1722           p->pRightmost->usesEphm = 1;
1723         }
1724         createSortingIndex(pParse, p, pOrderBy);
1725         assert( p->pEList );
1726       }
1727 
1728       /* Code the SELECT statements to our left
1729       */
1730       assert( !pPrior->pOrderBy );
1731       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1732       if( rc ){
1733         goto multi_select_end;
1734       }
1735 
1736       /* Code the current SELECT statement
1737       */
1738       switch( p->op ){
1739          case TK_EXCEPT:  op = SRT_Except;   break;
1740          case TK_UNION:   op = SRT_Union;    break;
1741          case TK_ALL:     op = SRT_Table;    break;
1742       }
1743       p->pPrior = 0;
1744       p->pOrderBy = 0;
1745       p->disallowOrderBy = pOrderBy!=0;
1746       pLimit = p->pLimit;
1747       p->pLimit = 0;
1748       pOffset = p->pOffset;
1749       p->pOffset = 0;
1750       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1751       p->pPrior = pPrior;
1752       p->pOrderBy = pOrderBy;
1753       sqlite3ExprDelete(p->pLimit);
1754       p->pLimit = pLimit;
1755       p->pOffset = pOffset;
1756       p->iLimit = -1;
1757       p->iOffset = -1;
1758       if( rc ){
1759         goto multi_select_end;
1760       }
1761 
1762 
1763       /* Convert the data in the temporary table into whatever form
1764       ** it is that we currently need.
1765       */
1766       if( eDest!=priorOp || unionTab!=iParm ){
1767         int iCont, iBreak, iStart;
1768         assert( p->pEList );
1769         if( eDest==SRT_Callback ){
1770           Select *pFirst = p;
1771           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1772           generateColumnNames(pParse, 0, pFirst->pEList);
1773         }
1774         iBreak = sqlite3VdbeMakeLabel(v);
1775         iCont = sqlite3VdbeMakeLabel(v);
1776         computeLimitRegisters(pParse, p, iBreak);
1777         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1778         iStart = sqlite3VdbeCurrentAddr(v);
1779         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1780                              pOrderBy, -1, eDest, iParm,
1781                              iCont, iBreak, 0);
1782         if( rc ){
1783           rc = 1;
1784           goto multi_select_end;
1785         }
1786         sqlite3VdbeResolveLabel(v, iCont);
1787         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1788         sqlite3VdbeResolveLabel(v, iBreak);
1789         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1790       }
1791       break;
1792     }
1793     case TK_INTERSECT: {
1794       int tab1, tab2;
1795       int iCont, iBreak, iStart;
1796       Expr *pLimit, *pOffset;
1797       int addr;
1798 
1799       /* INTERSECT is different from the others since it requires
1800       ** two temporary tables.  Hence it has its own case.  Begin
1801       ** by allocating the tables we will need.
1802       */
1803       tab1 = pParse->nTab++;
1804       tab2 = pParse->nTab++;
1805       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
1806         rc = 1;
1807         goto multi_select_end;
1808       }
1809       createSortingIndex(pParse, p, pOrderBy);
1810 
1811       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
1812       assert( p->addrOpenEphm[0] == -1 );
1813       p->addrOpenEphm[0] = addr;
1814       p->pRightmost->usesEphm = 1;
1815       assert( p->pEList );
1816 
1817       /* Code the SELECTs to our left into temporary table "tab1".
1818       */
1819       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1820       if( rc ){
1821         goto multi_select_end;
1822       }
1823 
1824       /* Code the current SELECT into temporary table "tab2"
1825       */
1826       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
1827       assert( p->addrOpenEphm[1] == -1 );
1828       p->addrOpenEphm[1] = addr;
1829       p->pPrior = 0;
1830       pLimit = p->pLimit;
1831       p->pLimit = 0;
1832       pOffset = p->pOffset;
1833       p->pOffset = 0;
1834       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1835       p->pPrior = pPrior;
1836       sqlite3ExprDelete(p->pLimit);
1837       p->pLimit = pLimit;
1838       p->pOffset = pOffset;
1839       if( rc ){
1840         goto multi_select_end;
1841       }
1842 
1843       /* Generate code to take the intersection of the two temporary
1844       ** tables.
1845       */
1846       assert( p->pEList );
1847       if( eDest==SRT_Callback ){
1848         Select *pFirst = p;
1849         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1850         generateColumnNames(pParse, 0, pFirst->pEList);
1851       }
1852       iBreak = sqlite3VdbeMakeLabel(v);
1853       iCont = sqlite3VdbeMakeLabel(v);
1854       computeLimitRegisters(pParse, p, iBreak);
1855       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1856       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1857       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1858       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1859                              pOrderBy, -1, eDest, iParm,
1860                              iCont, iBreak, 0);
1861       if( rc ){
1862         rc = 1;
1863         goto multi_select_end;
1864       }
1865       sqlite3VdbeResolveLabel(v, iCont);
1866       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1867       sqlite3VdbeResolveLabel(v, iBreak);
1868       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1869       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1870       break;
1871     }
1872   }
1873 
1874   /* Make sure all SELECTs in the statement have the same number of elements
1875   ** in their result sets.
1876   */
1877   assert( p->pEList && pPrior->pEList );
1878   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1879     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1880       " do not have the same number of result columns", selectOpName(p->op));
1881     rc = 1;
1882     goto multi_select_end;
1883   }
1884 
1885   /* Set the number of columns in temporary tables
1886   */
1887   nCol = p->pEList->nExpr;
1888   while( nSetP2 ){
1889     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
1890   }
1891 
1892   /* Compute collating sequences used by either the ORDER BY clause or
1893   ** by any temporary tables needed to implement the compound select.
1894   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
1895   ** ORDER BY processing if there is an ORDER BY clause.
1896   **
1897   ** This section is run by the right-most SELECT statement only.
1898   ** SELECT statements to the left always skip this part.  The right-most
1899   ** SELECT might also skip this part if it has no ORDER BY clause and
1900   ** no temp tables are required.
1901   */
1902   if( pOrderBy || p->usesEphm ){
1903     int i;                        /* Loop counter */
1904     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1905     Select *pLoop;                /* For looping through SELECT statements */
1906     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
1907     CollSeq **apColl;
1908     CollSeq **aCopy;
1909 
1910     assert( p->pRightmost==p );
1911     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
1912     pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
1913     if( !pKeyInfo ){
1914       rc = SQLITE_NOMEM;
1915       goto multi_select_end;
1916     }
1917 
1918     pKeyInfo->enc = ENC(pParse->db);
1919     pKeyInfo->nField = nCol;
1920 
1921     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1922       *apColl = multiSelectCollSeq(pParse, p, i);
1923       if( 0==*apColl ){
1924         *apColl = pParse->db->pDfltColl;
1925       }
1926     }
1927 
1928     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1929       for(i=0; i<2; i++){
1930         int addr = pLoop->addrOpenEphm[i];
1931         if( addr<0 ){
1932           /* If [0] is unused then [1] is also unused.  So we can
1933           ** always safely abort as soon as the first unused slot is found */
1934           assert( pLoop->addrOpenEphm[1]<0 );
1935           break;
1936         }
1937         sqlite3VdbeChangeP2(v, addr, nCol);
1938         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
1939         pLoop->addrOpenEphm[i] = -1;
1940       }
1941     }
1942 
1943     if( pOrderBy ){
1944       struct ExprList_item *pOTerm = pOrderBy->a;
1945       int nOrderByExpr = pOrderBy->nExpr;
1946       int addr;
1947       u8 *pSortOrder;
1948 
1949       aCopy = &pKeyInfo->aColl[nOrderByExpr];
1950       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
1951       memcpy(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
1952       apColl = pKeyInfo->aColl;
1953       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
1954         Expr *pExpr = pOTerm->pExpr;
1955         if( (pExpr->flags & EP_ExpCollate) ){
1956           assert( pExpr->pColl!=0 );
1957           *apColl = pExpr->pColl;
1958         }else{
1959           *apColl = aCopy[pExpr->iColumn];
1960         }
1961         *pSortOrder = pOTerm->sortOrder;
1962       }
1963       assert( p->pRightmost==p );
1964       assert( p->addrOpenEphm[2]>=0 );
1965       addr = p->addrOpenEphm[2];
1966       sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2);
1967       pKeyInfo->nField = nOrderByExpr;
1968       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
1969       pKeyInfo = 0;
1970       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
1971     }
1972 
1973     sqliteFree(pKeyInfo);
1974   }
1975 
1976 multi_select_end:
1977   return rc;
1978 }
1979 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1980 
1981 #ifndef SQLITE_OMIT_VIEW
1982 /*
1983 ** Scan through the expression pExpr.  Replace every reference to
1984 ** a column in table number iTable with a copy of the iColumn-th
1985 ** entry in pEList.  (But leave references to the ROWID column
1986 ** unchanged.)
1987 **
1988 ** This routine is part of the flattening procedure.  A subquery
1989 ** whose result set is defined by pEList appears as entry in the
1990 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
1991 ** FORM clause entry is iTable.  This routine make the necessary
1992 ** changes to pExpr so that it refers directly to the source table
1993 ** of the subquery rather the result set of the subquery.
1994 */
1995 static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
1996 static void substSelect(Select *, int, ExprList *);  /* Forward Decl */
1997 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
1998   if( pExpr==0 ) return;
1999   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2000     if( pExpr->iColumn<0 ){
2001       pExpr->op = TK_NULL;
2002     }else{
2003       Expr *pNew;
2004       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2005       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2006       pNew = pEList->a[pExpr->iColumn].pExpr;
2007       assert( pNew!=0 );
2008       pExpr->op = pNew->op;
2009       assert( pExpr->pLeft==0 );
2010       pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
2011       assert( pExpr->pRight==0 );
2012       pExpr->pRight = sqlite3ExprDup(pNew->pRight);
2013       assert( pExpr->pList==0 );
2014       pExpr->pList = sqlite3ExprListDup(pNew->pList);
2015       pExpr->iTable = pNew->iTable;
2016       pExpr->pTab = pNew->pTab;
2017       pExpr->iColumn = pNew->iColumn;
2018       pExpr->iAgg = pNew->iAgg;
2019       sqlite3TokenCopy(&pExpr->token, &pNew->token);
2020       sqlite3TokenCopy(&pExpr->span, &pNew->span);
2021       pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
2022       pExpr->flags = pNew->flags;
2023     }
2024   }else{
2025     substExpr(pExpr->pLeft, iTable, pEList);
2026     substExpr(pExpr->pRight, iTable, pEList);
2027     substSelect(pExpr->pSelect, iTable, pEList);
2028     substExprList(pExpr->pList, iTable, pEList);
2029   }
2030 }
2031 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
2032   int i;
2033   if( pList==0 ) return;
2034   for(i=0; i<pList->nExpr; i++){
2035     substExpr(pList->a[i].pExpr, iTable, pEList);
2036   }
2037 }
2038 static void substSelect(Select *p, int iTable, ExprList *pEList){
2039   if( !p ) return;
2040   substExprList(p->pEList, iTable, pEList);
2041   substExprList(p->pGroupBy, iTable, pEList);
2042   substExprList(p->pOrderBy, iTable, pEList);
2043   substExpr(p->pHaving, iTable, pEList);
2044   substExpr(p->pWhere, iTable, pEList);
2045 }
2046 #endif /* !defined(SQLITE_OMIT_VIEW) */
2047 
2048 #ifndef SQLITE_OMIT_VIEW
2049 /*
2050 ** This routine attempts to flatten subqueries in order to speed
2051 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2052 ** occurs.
2053 **
2054 ** To understand the concept of flattening, consider the following
2055 ** query:
2056 **
2057 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2058 **
2059 ** The default way of implementing this query is to execute the
2060 ** subquery first and store the results in a temporary table, then
2061 ** run the outer query on that temporary table.  This requires two
2062 ** passes over the data.  Furthermore, because the temporary table
2063 ** has no indices, the WHERE clause on the outer query cannot be
2064 ** optimized.
2065 **
2066 ** This routine attempts to rewrite queries such as the above into
2067 ** a single flat select, like this:
2068 **
2069 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2070 **
2071 ** The code generated for this simpification gives the same result
2072 ** but only has to scan the data once.  And because indices might
2073 ** exist on the table t1, a complete scan of the data might be
2074 ** avoided.
2075 **
2076 ** Flattening is only attempted if all of the following are true:
2077 **
2078 **   (1)  The subquery and the outer query do not both use aggregates.
2079 **
2080 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2081 **
2082 **   (3)  The subquery is not the right operand of a left outer join, or
2083 **        the subquery is not itself a join.  (Ticket #306)
2084 **
2085 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2086 **
2087 **   (5)  The subquery is not DISTINCT or the outer query does not use
2088 **        aggregates.
2089 **
2090 **   (6)  The subquery does not use aggregates or the outer query is not
2091 **        DISTINCT.
2092 **
2093 **   (7)  The subquery has a FROM clause.
2094 **
2095 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2096 **
2097 **   (9)  The subquery does not use LIMIT or the outer query does not use
2098 **        aggregates.
2099 **
2100 **  (10)  The subquery does not use aggregates or the outer query does not
2101 **        use LIMIT.
2102 **
2103 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2104 **
2105 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2106 **        subquery has no WHERE clause.  (added by ticket #350)
2107 **
2108 **  (13)  The subquery and outer query do not both use LIMIT
2109 **
2110 **  (14)  The subquery does not use OFFSET
2111 **
2112 ** In this routine, the "p" parameter is a pointer to the outer query.
2113 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2114 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2115 **
2116 ** If flattening is not attempted, this routine is a no-op and returns 0.
2117 ** If flattening is attempted this routine returns 1.
2118 **
2119 ** All of the expression analysis must occur on both the outer query and
2120 ** the subquery before this routine runs.
2121 */
2122 static int flattenSubquery(
2123   Select *p,           /* The parent or outer SELECT statement */
2124   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2125   int isAgg,           /* True if outer SELECT uses aggregate functions */
2126   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2127 ){
2128   Select *pSub;       /* The inner query or "subquery" */
2129   SrcList *pSrc;      /* The FROM clause of the outer query */
2130   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2131   ExprList *pList;    /* The result set of the outer query */
2132   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2133   int i;              /* Loop counter */
2134   Expr *pWhere;                    /* The WHERE clause */
2135   struct SrcList_item *pSubitem;   /* The subquery */
2136 
2137   /* Check to see if flattening is permitted.  Return 0 if not.
2138   */
2139   if( p==0 ) return 0;
2140   pSrc = p->pSrc;
2141   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2142   pSubitem = &pSrc->a[iFrom];
2143   pSub = pSubitem->pSelect;
2144   assert( pSub!=0 );
2145   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2146   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2147   pSubSrc = pSub->pSrc;
2148   assert( pSubSrc );
2149   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2150   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2151   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2152   ** became arbitrary expressions, we were forced to add restrictions (13)
2153   ** and (14). */
2154   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2155   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2156   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2157   if( (pSub->isDistinct || pSub->pLimit)
2158          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2159      return 0;
2160   }
2161   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
2162   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
2163      return 0;                                           /* Restriction (11) */
2164   }
2165 
2166   /* Restriction 3:  If the subquery is a join, make sure the subquery is
2167   ** not used as the right operand of an outer join.  Examples of why this
2168   ** is not allowed:
2169   **
2170   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2171   **
2172   ** If we flatten the above, we would get
2173   **
2174   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2175   **
2176   ** which is not at all the same thing.
2177   */
2178   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
2179     return 0;
2180   }
2181 
2182   /* Restriction 12:  If the subquery is the right operand of a left outer
2183   ** join, make sure the subquery has no WHERE clause.
2184   ** An examples of why this is not allowed:
2185   **
2186   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2187   **
2188   ** If we flatten the above, we would get
2189   **
2190   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2191   **
2192   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2193   ** effectively converts the OUTER JOIN into an INNER JOIN.
2194   */
2195   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
2196     return 0;
2197   }
2198 
2199   /* If we reach this point, it means flattening is permitted for the
2200   ** iFrom-th entry of the FROM clause in the outer query.
2201   */
2202 
2203   /* Move all of the FROM elements of the subquery into the
2204   ** the FROM clause of the outer query.  Before doing this, remember
2205   ** the cursor number for the original outer query FROM element in
2206   ** iParent.  The iParent cursor will never be used.  Subsequent code
2207   ** will scan expressions looking for iParent references and replace
2208   ** those references with expressions that resolve to the subquery FROM
2209   ** elements we are now copying in.
2210   */
2211   iParent = pSubitem->iCursor;
2212   {
2213     int nSubSrc = pSubSrc->nSrc;
2214     int jointype = pSubitem->jointype;
2215 
2216     sqlite3DeleteTable(0, pSubitem->pTab);
2217     sqliteFree(pSubitem->zDatabase);
2218     sqliteFree(pSubitem->zName);
2219     sqliteFree(pSubitem->zAlias);
2220     if( nSubSrc>1 ){
2221       int extra = nSubSrc - 1;
2222       for(i=1; i<nSubSrc; i++){
2223         pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
2224       }
2225       p->pSrc = pSrc;
2226       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2227         pSrc->a[i] = pSrc->a[i-extra];
2228       }
2229     }
2230     for(i=0; i<nSubSrc; i++){
2231       pSrc->a[i+iFrom] = pSubSrc->a[i];
2232       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2233     }
2234     pSrc->a[iFrom].jointype = jointype;
2235   }
2236 
2237   /* Now begin substituting subquery result set expressions for
2238   ** references to the iParent in the outer query.
2239   **
2240   ** Example:
2241   **
2242   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2243   **   \                     \_____________ subquery __________/          /
2244   **    \_____________________ outer query ______________________________/
2245   **
2246   ** We look at every expression in the outer query and every place we see
2247   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2248   */
2249   pList = p->pEList;
2250   for(i=0; i<pList->nExpr; i++){
2251     Expr *pExpr;
2252     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2253       pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
2254     }
2255   }
2256   substExprList(p->pEList, iParent, pSub->pEList);
2257   if( isAgg ){
2258     substExprList(p->pGroupBy, iParent, pSub->pEList);
2259     substExpr(p->pHaving, iParent, pSub->pEList);
2260   }
2261   if( pSub->pOrderBy ){
2262     assert( p->pOrderBy==0 );
2263     p->pOrderBy = pSub->pOrderBy;
2264     pSub->pOrderBy = 0;
2265   }else if( p->pOrderBy ){
2266     substExprList(p->pOrderBy, iParent, pSub->pEList);
2267   }
2268   if( pSub->pWhere ){
2269     pWhere = sqlite3ExprDup(pSub->pWhere);
2270   }else{
2271     pWhere = 0;
2272   }
2273   if( subqueryIsAgg ){
2274     assert( p->pHaving==0 );
2275     p->pHaving = p->pWhere;
2276     p->pWhere = pWhere;
2277     substExpr(p->pHaving, iParent, pSub->pEList);
2278     p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
2279     assert( p->pGroupBy==0 );
2280     p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
2281   }else{
2282     substExpr(p->pWhere, iParent, pSub->pEList);
2283     p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
2284   }
2285 
2286   /* The flattened query is distinct if either the inner or the
2287   ** outer query is distinct.
2288   */
2289   p->isDistinct = p->isDistinct || pSub->isDistinct;
2290 
2291   /*
2292   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2293   **
2294   ** One is tempted to try to add a and b to combine the limits.  But this
2295   ** does not work if either limit is negative.
2296   */
2297   if( pSub->pLimit ){
2298     p->pLimit = pSub->pLimit;
2299     pSub->pLimit = 0;
2300   }
2301 
2302   /* Finially, delete what is left of the subquery and return
2303   ** success.
2304   */
2305   sqlite3SelectDelete(pSub);
2306   return 1;
2307 }
2308 #endif /* SQLITE_OMIT_VIEW */
2309 
2310 /*
2311 ** Analyze the SELECT statement passed in as an argument to see if it
2312 ** is a simple min() or max() query.  If it is and this query can be
2313 ** satisfied using a single seek to the beginning or end of an index,
2314 ** then generate the code for this SELECT and return 1.  If this is not a
2315 ** simple min() or max() query, then return 0;
2316 **
2317 ** A simply min() or max() query looks like this:
2318 **
2319 **    SELECT min(a) FROM table;
2320 **    SELECT max(a) FROM table;
2321 **
2322 ** The query may have only a single table in its FROM argument.  There
2323 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
2324 ** be the min() or max() of a single column of the table.  The column
2325 ** in the min() or max() function must be indexed.
2326 **
2327 ** The parameters to this routine are the same as for sqlite3Select().
2328 ** See the header comment on that routine for additional information.
2329 */
2330 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2331   Expr *pExpr;
2332   int iCol;
2333   Table *pTab;
2334   Index *pIdx;
2335   int base;
2336   Vdbe *v;
2337   int seekOp;
2338   ExprList *pEList, *pList, eList;
2339   struct ExprList_item eListItem;
2340   SrcList *pSrc;
2341   int brk;
2342   int iDb;
2343 
2344   /* Check to see if this query is a simple min() or max() query.  Return
2345   ** zero if it is  not.
2346   */
2347   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2348   pSrc = p->pSrc;
2349   if( pSrc->nSrc!=1 ) return 0;
2350   pEList = p->pEList;
2351   if( pEList->nExpr!=1 ) return 0;
2352   pExpr = pEList->a[0].pExpr;
2353   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2354   pList = pExpr->pList;
2355   if( pList==0 || pList->nExpr!=1 ) return 0;
2356   if( pExpr->token.n!=3 ) return 0;
2357   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2358     seekOp = OP_Rewind;
2359   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2360     seekOp = OP_Last;
2361   }else{
2362     return 0;
2363   }
2364   pExpr = pList->a[0].pExpr;
2365   if( pExpr->op!=TK_COLUMN ) return 0;
2366   iCol = pExpr->iColumn;
2367   pTab = pSrc->a[0].pTab;
2368 
2369 
2370   /* If we get to here, it means the query is of the correct form.
2371   ** Check to make sure we have an index and make pIdx point to the
2372   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
2373   ** key column, no index is necessary so set pIdx to NULL.  If no
2374   ** usable index is found, return 0.
2375   */
2376   if( iCol<0 ){
2377     pIdx = 0;
2378   }else{
2379     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2380     if( pColl==0 ) return 0;
2381     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2382       assert( pIdx->nColumn>=1 );
2383       if( pIdx->aiColumn[0]==iCol &&
2384           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
2385         break;
2386       }
2387     }
2388     if( pIdx==0 ) return 0;
2389   }
2390 
2391   /* Identify column types if we will be using the callback.  This
2392   ** step is skipped if the output is going to a table or a memory cell.
2393   ** The column names have already been generated in the calling function.
2394   */
2395   v = sqlite3GetVdbe(pParse);
2396   if( v==0 ) return 0;
2397 
2398   /* If the output is destined for a temporary table, open that table.
2399   */
2400   if( eDest==SRT_EphemTab ){
2401     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
2402   }
2403 
2404   /* Generating code to find the min or the max.  Basically all we have
2405   ** to do is find the first or the last entry in the chosen index.  If
2406   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2407   ** or last entry in the main table.
2408   */
2409   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2410   assert( iDb>=0 || pTab->isEphem );
2411   sqlite3CodeVerifySchema(pParse, iDb);
2412   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2413   base = pSrc->a[0].iCursor;
2414   brk = sqlite3VdbeMakeLabel(v);
2415   computeLimitRegisters(pParse, p, brk);
2416   if( pSrc->a[0].pSelect==0 ){
2417     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
2418   }
2419   if( pIdx==0 ){
2420     sqlite3VdbeAddOp(v, seekOp, base, 0);
2421   }else{
2422     /* Even though the cursor used to open the index here is closed
2423     ** as soon as a single value has been read from it, allocate it
2424     ** using (pParse->nTab++) to prevent the cursor id from being
2425     ** reused. This is important for statements of the form
2426     ** "INSERT INTO x SELECT max() FROM x".
2427     */
2428     int iIdx;
2429     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
2430     iIdx = pParse->nTab++;
2431     assert( pIdx->pSchema==pTab->pSchema );
2432     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2433     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2434         (char*)pKey, P3_KEYINFO_HANDOFF);
2435     if( seekOp==OP_Rewind ){
2436       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2437       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2438       seekOp = OP_MoveGt;
2439     }
2440     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2441     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2442     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2443     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2444   }
2445   eList.nExpr = 1;
2446   memset(&eListItem, 0, sizeof(eListItem));
2447   eList.a = &eListItem;
2448   eList.a[0].pExpr = pExpr;
2449   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
2450   sqlite3VdbeResolveLabel(v, brk);
2451   sqlite3VdbeAddOp(v, OP_Close, base, 0);
2452 
2453   return 1;
2454 }
2455 
2456 /*
2457 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
2458 ** the number of errors seen.
2459 **
2460 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
2461 ** is an integer constant, then that expression is replaced by the
2462 ** corresponding entry in the result set.
2463 */
2464 static int processOrderGroupBy(
2465   NameContext *pNC,     /* Name context of the SELECT statement. */
2466   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
2467   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
2468 ){
2469   int i;
2470   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
2471   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
2472   assert( pEList );
2473 
2474   if( pOrderBy==0 ) return 0;
2475   for(i=0; i<pOrderBy->nExpr; i++){
2476     int iCol;
2477     Expr *pE = pOrderBy->a[i].pExpr;
2478     if( sqlite3ExprIsInteger(pE, &iCol) ){
2479       if( iCol>0 && iCol<=pEList->nExpr ){
2480         CollSeq *pColl = pE->pColl;
2481         int flags = pE->flags & EP_ExpCollate;
2482         sqlite3ExprDelete(pE);
2483         pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
2484         if( pColl && flags ){
2485           pE->pColl = pColl;
2486           pE->flags |= flags;
2487         }
2488       }else{
2489         sqlite3ErrorMsg(pParse,
2490            "%s BY column number %d out of range - should be "
2491            "between 1 and %d", zType, iCol, pEList->nExpr);
2492         return 1;
2493       }
2494     }
2495     if( sqlite3ExprResolveNames(pNC, pE) ){
2496       return 1;
2497     }
2498   }
2499   return 0;
2500 }
2501 
2502 /*
2503 ** This routine resolves any names used in the result set of the
2504 ** supplied SELECT statement. If the SELECT statement being resolved
2505 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2506 ** of the parent SELECT.
2507 */
2508 int sqlite3SelectResolve(
2509   Parse *pParse,         /* The parser context */
2510   Select *p,             /* The SELECT statement being coded. */
2511   NameContext *pOuterNC  /* The outer name context. May be NULL. */
2512 ){
2513   ExprList *pEList;          /* Result set. */
2514   int i;                     /* For-loop variable used in multiple places */
2515   NameContext sNC;           /* Local name-context */
2516   ExprList *pGroupBy;        /* The group by clause */
2517 
2518   /* If this routine has run before, return immediately. */
2519   if( p->isResolved ){
2520     assert( !pOuterNC );
2521     return SQLITE_OK;
2522   }
2523   p->isResolved = 1;
2524 
2525   /* If there have already been errors, do nothing. */
2526   if( pParse->nErr>0 ){
2527     return SQLITE_ERROR;
2528   }
2529 
2530   /* Prepare the select statement. This call will allocate all cursors
2531   ** required to handle the tables and subqueries in the FROM clause.
2532   */
2533   if( prepSelectStmt(pParse, p) ){
2534     return SQLITE_ERROR;
2535   }
2536 
2537   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2538   ** are not allowed to refer to any names, so pass an empty NameContext.
2539   */
2540   memset(&sNC, 0, sizeof(sNC));
2541   sNC.pParse = pParse;
2542   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2543       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2544     return SQLITE_ERROR;
2545   }
2546 
2547   /* Set up the local name-context to pass to ExprResolveNames() to
2548   ** resolve the expression-list.
2549   */
2550   sNC.allowAgg = 1;
2551   sNC.pSrcList = p->pSrc;
2552   sNC.pNext = pOuterNC;
2553 
2554   /* Resolve names in the result set. */
2555   pEList = p->pEList;
2556   if( !pEList ) return SQLITE_ERROR;
2557   for(i=0; i<pEList->nExpr; i++){
2558     Expr *pX = pEList->a[i].pExpr;
2559     if( sqlite3ExprResolveNames(&sNC, pX) ){
2560       return SQLITE_ERROR;
2561     }
2562   }
2563 
2564   /* If there are no aggregate functions in the result-set, and no GROUP BY
2565   ** expression, do not allow aggregates in any of the other expressions.
2566   */
2567   assert( !p->isAgg );
2568   pGroupBy = p->pGroupBy;
2569   if( pGroupBy || sNC.hasAgg ){
2570     p->isAgg = 1;
2571   }else{
2572     sNC.allowAgg = 0;
2573   }
2574 
2575   /* If a HAVING clause is present, then there must be a GROUP BY clause.
2576   */
2577   if( p->pHaving && !pGroupBy ){
2578     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2579     return SQLITE_ERROR;
2580   }
2581 
2582   /* Add the expression list to the name-context before parsing the
2583   ** other expressions in the SELECT statement. This is so that
2584   ** expressions in the WHERE clause (etc.) can refer to expressions by
2585   ** aliases in the result set.
2586   **
2587   ** Minor point: If this is the case, then the expression will be
2588   ** re-evaluated for each reference to it.
2589   */
2590   sNC.pEList = p->pEList;
2591   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2592       sqlite3ExprResolveNames(&sNC, p->pHaving) ||
2593       processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2594       processOrderGroupBy(&sNC, pGroupBy, "GROUP")
2595   ){
2596     return SQLITE_ERROR;
2597   }
2598 
2599   /* Make sure the GROUP BY clause does not contain aggregate functions.
2600   */
2601   if( pGroupBy ){
2602     struct ExprList_item *pItem;
2603 
2604     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
2605       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
2606         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
2607             "the GROUP BY clause");
2608         return SQLITE_ERROR;
2609       }
2610     }
2611   }
2612 
2613   /* If this is one SELECT of a compound, be sure to resolve names
2614   ** in the other SELECTs.
2615   */
2616   if( p->pPrior ){
2617     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
2618   }else{
2619     return SQLITE_OK;
2620   }
2621 }
2622 
2623 /*
2624 ** Reset the aggregate accumulator.
2625 **
2626 ** The aggregate accumulator is a set of memory cells that hold
2627 ** intermediate results while calculating an aggregate.  This
2628 ** routine simply stores NULLs in all of those memory cells.
2629 */
2630 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
2631   Vdbe *v = pParse->pVdbe;
2632   int i;
2633   struct AggInfo_func *pFunc;
2634   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
2635     return;
2636   }
2637   for(i=0; i<pAggInfo->nColumn; i++){
2638     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
2639   }
2640   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
2641     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
2642     if( pFunc->iDistinct>=0 ){
2643       Expr *pE = pFunc->pExpr;
2644       if( pE->pList==0 || pE->pList->nExpr!=1 ){
2645         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
2646            "by an expression");
2647         pFunc->iDistinct = -1;
2648       }else{
2649         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
2650         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
2651                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2652       }
2653     }
2654   }
2655 }
2656 
2657 /*
2658 ** Invoke the OP_AggFinalize opcode for every aggregate function
2659 ** in the AggInfo structure.
2660 */
2661 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
2662   Vdbe *v = pParse->pVdbe;
2663   int i;
2664   struct AggInfo_func *pF;
2665   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2666     ExprList *pList = pF->pExpr->pList;
2667     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
2668                       (void*)pF->pFunc, P3_FUNCDEF);
2669   }
2670 }
2671 
2672 /*
2673 ** Update the accumulator memory cells for an aggregate based on
2674 ** the current cursor position.
2675 */
2676 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
2677   Vdbe *v = pParse->pVdbe;
2678   int i;
2679   struct AggInfo_func *pF;
2680   struct AggInfo_col *pC;
2681 
2682   pAggInfo->directMode = 1;
2683   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2684     int nArg;
2685     int addrNext = 0;
2686     ExprList *pList = pF->pExpr->pList;
2687     if( pList ){
2688       nArg = pList->nExpr;
2689       sqlite3ExprCodeExprList(pParse, pList);
2690     }else{
2691       nArg = 0;
2692     }
2693     if( pF->iDistinct>=0 ){
2694       addrNext = sqlite3VdbeMakeLabel(v);
2695       assert( nArg==1 );
2696       codeDistinct(v, pF->iDistinct, addrNext, 1);
2697     }
2698     if( pF->pFunc->needCollSeq ){
2699       CollSeq *pColl = 0;
2700       struct ExprList_item *pItem;
2701       int j;
2702       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
2703       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
2704         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
2705       }
2706       if( !pColl ){
2707         pColl = pParse->db->pDfltColl;
2708       }
2709       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2710     }
2711     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
2712     if( addrNext ){
2713       sqlite3VdbeResolveLabel(v, addrNext);
2714     }
2715   }
2716   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
2717     sqlite3ExprCode(pParse, pC->pExpr);
2718     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
2719   }
2720   pAggInfo->directMode = 0;
2721 }
2722 
2723 
2724 /*
2725 ** Generate code for the given SELECT statement.
2726 **
2727 ** The results are distributed in various ways depending on the
2728 ** value of eDest and iParm.
2729 **
2730 **     eDest Value       Result
2731 **     ------------    -------------------------------------------
2732 **     SRT_Callback    Invoke the callback for each row of the result.
2733 **
2734 **     SRT_Mem         Store first result in memory cell iParm
2735 **
2736 **     SRT_Set         Store results as keys of table iParm.
2737 **
2738 **     SRT_Union       Store results as a key in a temporary table iParm
2739 **
2740 **     SRT_Except      Remove results from the temporary table iParm.
2741 **
2742 **     SRT_Table       Store results in temporary table iParm
2743 **
2744 ** The table above is incomplete.  Additional eDist value have be added
2745 ** since this comment was written.  See the selectInnerLoop() function for
2746 ** a complete listing of the allowed values of eDest and their meanings.
2747 **
2748 ** This routine returns the number of errors.  If any errors are
2749 ** encountered, then an appropriate error message is left in
2750 ** pParse->zErrMsg.
2751 **
2752 ** This routine does NOT free the Select structure passed in.  The
2753 ** calling function needs to do that.
2754 **
2755 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2756 ** SELECT is a subquery.  This routine may try to combine this SELECT
2757 ** with its parent to form a single flat query.  In so doing, it might
2758 ** change the parent query from a non-aggregate to an aggregate query.
2759 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2760 ** can be changed.
2761 **
2762 ** Example 1:   The meaning of the pParent parameter.
2763 **
2764 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2765 **    \                      \_______ subquery _______/        /
2766 **     \                                                      /
2767 **      \____________________ outer query ___________________/
2768 **
2769 ** This routine is called for the outer query first.   For that call,
2770 ** pParent will be NULL.  During the processing of the outer query, this
2771 ** routine is called recursively to handle the subquery.  For the recursive
2772 ** call, pParent will point to the outer query.  Because the subquery is
2773 ** the second element in a three-way join, the parentTab parameter will
2774 ** be 1 (the 2nd value of a 0-indexed array.)
2775 */
2776 int sqlite3Select(
2777   Parse *pParse,         /* The parser context */
2778   Select *p,             /* The SELECT statement being coded. */
2779   int eDest,             /* How to dispose of the results */
2780   int iParm,             /* A parameter used by the eDest disposal method */
2781   Select *pParent,       /* Another SELECT for which this is a sub-query */
2782   int parentTab,         /* Index in pParent->pSrc of this query */
2783   int *pParentAgg,       /* True if pParent uses aggregate functions */
2784   char *aff              /* If eDest is SRT_Union, the affinity string */
2785 ){
2786   int i, j;              /* Loop counters */
2787   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
2788   Vdbe *v;               /* The virtual machine under construction */
2789   int isAgg;             /* True for select lists like "count(*)" */
2790   ExprList *pEList;      /* List of columns to extract. */
2791   SrcList *pTabList;     /* List of tables to select from */
2792   Expr *pWhere;          /* The WHERE clause.  May be NULL */
2793   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
2794   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
2795   Expr *pHaving;         /* The HAVING clause.  May be NULL */
2796   int isDistinct;        /* True if the DISTINCT keyword is present */
2797   int distinct;          /* Table to use for the distinct set */
2798   int rc = 1;            /* Value to return from this function */
2799   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
2800   AggInfo sAggInfo;      /* Information used by aggregate queries */
2801   int iEnd;              /* Address of the end of the query */
2802 
2803   if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
2804     return 1;
2805   }
2806   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2807   memset(&sAggInfo, 0, sizeof(sAggInfo));
2808 
2809 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2810   /* If there is are a sequence of queries, do the earlier ones first.
2811   */
2812   if( p->pPrior ){
2813     if( p->pRightmost==0 ){
2814       Select *pLoop;
2815       for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2816         pLoop->pRightmost = p;
2817       }
2818     }
2819     return multiSelect(pParse, p, eDest, iParm, aff);
2820   }
2821 #endif
2822 
2823   pOrderBy = p->pOrderBy;
2824   if( IgnorableOrderby(eDest) ){
2825     p->pOrderBy = 0;
2826   }
2827   if( sqlite3SelectResolve(pParse, p, 0) ){
2828     goto select_end;
2829   }
2830   p->pOrderBy = pOrderBy;
2831 
2832   /* Make local copies of the parameters for this query.
2833   */
2834   pTabList = p->pSrc;
2835   pWhere = p->pWhere;
2836   pGroupBy = p->pGroupBy;
2837   pHaving = p->pHaving;
2838   isAgg = p->isAgg;
2839   isDistinct = p->isDistinct;
2840   pEList = p->pEList;
2841   if( pEList==0 ) goto select_end;
2842 
2843   /*
2844   ** Do not even attempt to generate any code if we have already seen
2845   ** errors before this routine starts.
2846   */
2847   if( pParse->nErr>0 ) goto select_end;
2848 
2849   /* If writing to memory or generating a set
2850   ** only a single column may be output.
2851   */
2852 #ifndef SQLITE_OMIT_SUBQUERY
2853   if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
2854     sqlite3ErrorMsg(pParse, "only a single result allowed for "
2855        "a SELECT that is part of an expression");
2856     goto select_end;
2857   }
2858 #endif
2859 
2860   /* ORDER BY is ignored for some destinations.
2861   */
2862   if( IgnorableOrderby(eDest) ){
2863     pOrderBy = 0;
2864   }
2865 
2866   /* Begin generating code.
2867   */
2868   v = sqlite3GetVdbe(pParse);
2869   if( v==0 ) goto select_end;
2870 
2871   /* Generate code for all sub-queries in the FROM clause
2872   */
2873 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2874   for(i=0; i<pTabList->nSrc; i++){
2875     const char *zSavedAuthContext = 0;
2876     int needRestoreContext;
2877     struct SrcList_item *pItem = &pTabList->a[i];
2878 
2879     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
2880     if( pItem->zName!=0 ){
2881       zSavedAuthContext = pParse->zAuthContext;
2882       pParse->zAuthContext = pItem->zName;
2883       needRestoreContext = 1;
2884     }else{
2885       needRestoreContext = 0;
2886     }
2887     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
2888                  pItem->iCursor, p, i, &isAgg, 0);
2889     if( needRestoreContext ){
2890       pParse->zAuthContext = zSavedAuthContext;
2891     }
2892     pTabList = p->pSrc;
2893     pWhere = p->pWhere;
2894     if( !IgnorableOrderby(eDest) ){
2895       pOrderBy = p->pOrderBy;
2896     }
2897     pGroupBy = p->pGroupBy;
2898     pHaving = p->pHaving;
2899     isDistinct = p->isDistinct;
2900   }
2901 #endif
2902 
2903   /* Check for the special case of a min() or max() function by itself
2904   ** in the result set.
2905   */
2906   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
2907     rc = 0;
2908     goto select_end;
2909   }
2910 
2911   /* Check to see if this is a subquery that can be "flattened" into its parent.
2912   ** If flattening is a possiblity, do so and return immediately.
2913   */
2914 #ifndef SQLITE_OMIT_VIEW
2915   if( pParent && pParentAgg &&
2916       flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
2917     if( isAgg ) *pParentAgg = 1;
2918     goto select_end;
2919   }
2920 #endif
2921 
2922   /* If there is an ORDER BY clause, then this sorting
2923   ** index might end up being unused if the data can be
2924   ** extracted in pre-sorted order.  If that is the case, then the
2925   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
2926   ** we figure out that the sorting index is not needed.  The addrSortIndex
2927   ** variable is used to facilitate that change.
2928   */
2929   if( pOrderBy ){
2930     KeyInfo *pKeyInfo;
2931     if( pParse->nErr ){
2932       goto select_end;
2933     }
2934     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
2935     pOrderBy->iECursor = pParse->nTab++;
2936     p->addrOpenEphm[2] = addrSortIndex =
2937       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2938   }else{
2939     addrSortIndex = -1;
2940   }
2941 
2942   /* If the output is destined for a temporary table, open that table.
2943   */
2944   if( eDest==SRT_EphemTab ){
2945     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
2946   }
2947 
2948   /* Set the limiter.
2949   */
2950   iEnd = sqlite3VdbeMakeLabel(v);
2951   computeLimitRegisters(pParse, p, iEnd);
2952 
2953   /* Open a virtual index to use for the distinct set.
2954   */
2955   if( isDistinct ){
2956     KeyInfo *pKeyInfo;
2957     distinct = pParse->nTab++;
2958     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
2959     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
2960                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2961   }else{
2962     distinct = -1;
2963   }
2964 
2965   /* Aggregate and non-aggregate queries are handled differently */
2966   if( !isAgg && pGroupBy==0 ){
2967     /* This case is for non-aggregate queries
2968     ** Begin the database scan
2969     */
2970     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
2971     if( pWInfo==0 ) goto select_end;
2972 
2973     /* If sorting index that was created by a prior OP_OpenEphemeral
2974     ** instruction ended up not being needed, then change the OP_OpenEphemeral
2975     ** into an OP_Noop.
2976     */
2977     if( addrSortIndex>=0 && pOrderBy==0 ){
2978       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
2979       p->addrOpenEphm[2] = -1;
2980     }
2981 
2982     /* Use the standard inner loop
2983     */
2984     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
2985                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
2986        goto select_end;
2987     }
2988 
2989     /* End the database scan loop.
2990     */
2991     sqlite3WhereEnd(pWInfo);
2992   }else{
2993     /* This is the processing for aggregate queries */
2994     NameContext sNC;    /* Name context for processing aggregate information */
2995     int iAMem;          /* First Mem address for storing current GROUP BY */
2996     int iBMem;          /* First Mem address for previous GROUP BY */
2997     int iUseFlag;       /* Mem address holding flag indicating that at least
2998                         ** one row of the input to the aggregator has been
2999                         ** processed */
3000     int iAbortFlag;     /* Mem address which causes query abort if positive */
3001     int groupBySort;    /* Rows come from source in GROUP BY order */
3002 
3003 
3004     /* The following variables hold addresses or labels for parts of the
3005     ** virtual machine program we are putting together */
3006     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3007     int addrSetAbort;       /* Set the abort flag and return */
3008     int addrInitializeLoop; /* Start of code that initializes the input loop */
3009     int addrTopOfLoop;      /* Top of the input loop */
3010     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
3011     int addrProcessRow;     /* Code to process a single input row */
3012     int addrEnd;            /* End of all processing */
3013     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3014     int addrReset;          /* Subroutine for resetting the accumulator */
3015 
3016     addrEnd = sqlite3VdbeMakeLabel(v);
3017 
3018     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3019     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3020     ** SELECT statement.
3021     */
3022     memset(&sNC, 0, sizeof(sNC));
3023     sNC.pParse = pParse;
3024     sNC.pSrcList = pTabList;
3025     sNC.pAggInfo = &sAggInfo;
3026     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3027     sAggInfo.pGroupBy = pGroupBy;
3028     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
3029       goto select_end;
3030     }
3031     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
3032       goto select_end;
3033     }
3034     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
3035       goto select_end;
3036     }
3037     sAggInfo.nAccumulator = sAggInfo.nColumn;
3038     for(i=0; i<sAggInfo.nFunc; i++){
3039       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
3040         goto select_end;
3041       }
3042     }
3043     if( sqlite3MallocFailed() ) goto select_end;
3044 
3045     /* Processing for aggregates with GROUP BY is very different and
3046     ** much more complex tha aggregates without a GROUP BY.
3047     */
3048     if( pGroupBy ){
3049       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3050 
3051       /* Create labels that we will be needing
3052       */
3053 
3054       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3055       addrGroupByChange = sqlite3VdbeMakeLabel(v);
3056       addrProcessRow = sqlite3VdbeMakeLabel(v);
3057 
3058       /* If there is a GROUP BY clause we might need a sorting index to
3059       ** implement it.  Allocate that sorting index now.  If it turns out
3060       ** that we do not need it after all, the OpenEphemeral instruction
3061       ** will be converted into a Noop.
3062       */
3063       sAggInfo.sortingIdx = pParse->nTab++;
3064       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3065       addrSortingIdx =
3066           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
3067                          sAggInfo.nSortingColumn,
3068                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3069 
3070       /* Initialize memory locations used by GROUP BY aggregate processing
3071       */
3072       iUseFlag = pParse->nMem++;
3073       iAbortFlag = pParse->nMem++;
3074       iAMem = pParse->nMem;
3075       pParse->nMem += pGroupBy->nExpr;
3076       iBMem = pParse->nMem;
3077       pParse->nMem += pGroupBy->nExpr;
3078       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
3079       VdbeComment((v, "# clear abort flag"));
3080       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
3081       VdbeComment((v, "# indicate accumulator empty"));
3082       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
3083 
3084       /* Generate a subroutine that outputs a single row of the result
3085       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3086       ** is less than or equal to zero, the subroutine is a no-op.  If
3087       ** the processing calls for the query to abort, this subroutine
3088       ** increments the iAbortFlag memory location before returning in
3089       ** order to signal the caller to abort.
3090       */
3091       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3092       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
3093       VdbeComment((v, "# set abort flag"));
3094       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3095       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3096       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
3097       VdbeComment((v, "# Groupby result generator entry point"));
3098       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3099       finalizeAggFunctions(pParse, &sAggInfo);
3100       if( pHaving ){
3101         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
3102       }
3103       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3104                            distinct, eDest, iParm,
3105                            addrOutputRow+1, addrSetAbort, aff);
3106       if( rc ){
3107         goto select_end;
3108       }
3109       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3110       VdbeComment((v, "# end groupby result generator"));
3111 
3112       /* Generate a subroutine that will reset the group-by accumulator
3113       */
3114       addrReset = sqlite3VdbeCurrentAddr(v);
3115       resetAccumulator(pParse, &sAggInfo);
3116       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3117 
3118       /* Begin a loop that will extract all source rows in GROUP BY order.
3119       ** This might involve two separate loops with an OP_Sort in between, or
3120       ** it might be a single loop that uses an index to extract information
3121       ** in the right order to begin with.
3122       */
3123       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3124       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3125       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
3126       if( pWInfo==0 ) goto select_end;
3127       if( pGroupBy==0 ){
3128         /* The optimizer is able to deliver rows in group by order so
3129         ** we do not have to sort.  The OP_OpenEphemeral table will be
3130         ** cancelled later because we still need to use the pKeyInfo
3131         */
3132         pGroupBy = p->pGroupBy;
3133         groupBySort = 0;
3134       }else{
3135         /* Rows are coming out in undetermined order.  We have to push
3136         ** each row into a sorting index, terminate the first loop,
3137         ** then loop over the sorting index in order to get the output
3138         ** in sorted order
3139         */
3140         groupBySort = 1;
3141         sqlite3ExprCodeExprList(pParse, pGroupBy);
3142         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
3143         j = pGroupBy->nExpr+1;
3144         for(i=0; i<sAggInfo.nColumn; i++){
3145           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3146           if( pCol->iSorterColumn<j ) continue;
3147           if( pCol->iColumn<0 ){
3148             sqlite3VdbeAddOp(v, OP_Rowid, pCol->iTable, 0);
3149           }else{
3150             sqlite3VdbeAddOp(v, OP_Column, pCol->iTable, pCol->iColumn);
3151           }
3152           j++;
3153         }
3154         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
3155         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
3156         sqlite3WhereEnd(pWInfo);
3157         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3158         VdbeComment((v, "# GROUP BY sort"));
3159         sAggInfo.useSortingIdx = 1;
3160       }
3161 
3162       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3163       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3164       ** Then compare the current GROUP BY terms against the GROUP BY terms
3165       ** from the previous row currently stored in a0, a1, a2...
3166       */
3167       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3168       for(j=0; j<pGroupBy->nExpr; j++){
3169         if( groupBySort ){
3170           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
3171         }else{
3172           sAggInfo.directMode = 1;
3173           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
3174         }
3175         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
3176       }
3177       for(j=pGroupBy->nExpr-1; j>=0; j--){
3178         if( j<pGroupBy->nExpr-1 ){
3179           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
3180         }
3181         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
3182         if( j==0 ){
3183           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
3184         }else{
3185           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
3186         }
3187         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
3188       }
3189 
3190       /* Generate code that runs whenever the GROUP BY changes.
3191       ** Change in the GROUP BY are detected by the previous code
3192       ** block.  If there were no changes, this block is skipped.
3193       **
3194       ** This code copies current group by terms in b0,b1,b2,...
3195       ** over to a0,a1,a2.  It then calls the output subroutine
3196       ** and resets the aggregate accumulator registers in preparation
3197       ** for the next GROUP BY batch.
3198       */
3199       sqlite3VdbeResolveLabel(v, addrGroupByChange);
3200       for(j=0; j<pGroupBy->nExpr; j++){
3201         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
3202       }
3203       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3204       VdbeComment((v, "# output one row"));
3205       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
3206       VdbeComment((v, "# check abort flag"));
3207       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3208       VdbeComment((v, "# reset accumulator"));
3209 
3210       /* Update the aggregate accumulators based on the content of
3211       ** the current row
3212       */
3213       sqlite3VdbeResolveLabel(v, addrProcessRow);
3214       updateAccumulator(pParse, &sAggInfo);
3215       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
3216       VdbeComment((v, "# indicate data in accumulator"));
3217 
3218       /* End of the loop
3219       */
3220       if( groupBySort ){
3221         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3222       }else{
3223         sqlite3WhereEnd(pWInfo);
3224         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3225       }
3226 
3227       /* Output the final row of result
3228       */
3229       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3230       VdbeComment((v, "# output final row"));
3231 
3232     } /* endif pGroupBy */
3233     else {
3234       /* This case runs if the aggregate has no GROUP BY clause.  The
3235       ** processing is much simpler since there is only a single row
3236       ** of output.
3237       */
3238       resetAccumulator(pParse, &sAggInfo);
3239       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
3240       if( pWInfo==0 ) goto select_end;
3241       updateAccumulator(pParse, &sAggInfo);
3242       sqlite3WhereEnd(pWInfo);
3243       finalizeAggFunctions(pParse, &sAggInfo);
3244       pOrderBy = 0;
3245       if( pHaving ){
3246         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
3247       }
3248       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3249                       eDest, iParm, addrEnd, addrEnd, aff);
3250     }
3251     sqlite3VdbeResolveLabel(v, addrEnd);
3252 
3253   } /* endif aggregate query */
3254 
3255   /* If there is an ORDER BY clause, then we need to sort the results
3256   ** and send them to the callback one by one.
3257   */
3258   if( pOrderBy ){
3259     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
3260   }
3261 
3262 #ifndef SQLITE_OMIT_SUBQUERY
3263   /* If this was a subquery, we have now converted the subquery into a
3264   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
3265   ** this subquery from being evaluated again and to force the use of
3266   ** the temporary table.
3267   */
3268   if( pParent ){
3269     assert( pParent->pSrc->nSrc>parentTab );
3270     assert( pParent->pSrc->a[parentTab].pSelect==p );
3271     pParent->pSrc->a[parentTab].isPopulated = 1;
3272   }
3273 #endif
3274 
3275   /* Jump here to skip this query
3276   */
3277   sqlite3VdbeResolveLabel(v, iEnd);
3278 
3279   /* The SELECT was successfully coded.   Set the return code to 0
3280   ** to indicate no errors.
3281   */
3282   rc = 0;
3283 
3284   /* Control jumps to here if an error is encountered above, or upon
3285   ** successful coding of the SELECT.
3286   */
3287 select_end:
3288 
3289   /* Identify column names if we will be using them in a callback.  This
3290   ** step is skipped if the output is going to some other destination.
3291   */
3292   if( rc==SQLITE_OK && eDest==SRT_Callback ){
3293     generateColumnNames(pParse, pTabList, pEList);
3294   }
3295 
3296   sqliteFree(sAggInfo.aCol);
3297   sqliteFree(sAggInfo.aFunc);
3298   return rc;
3299 }
3300 
3301 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
3302 /*
3303 *******************************************************************************
3304 ** The following code is used for testing and debugging only.  The code
3305 ** that follows does not appear in normal builds.
3306 **
3307 ** These routines are used to print out the content of all or part of a
3308 ** parse structures such as Select or Expr.  Such printouts are useful
3309 ** for helping to understand what is happening inside the code generator
3310 ** during the execution of complex SELECT statements.
3311 **
3312 ** These routine are not called anywhere from within the normal
3313 ** code base.  Then are intended to be called from within the debugger
3314 ** or from temporary "printf" statements inserted for debugging.
3315 */
3316 void sqlite3PrintExpr(Expr *p){
3317   if( p->token.z && p->token.n>0 ){
3318     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
3319   }else{
3320     sqlite3DebugPrintf("(%d", p->op);
3321   }
3322   if( p->pLeft ){
3323     sqlite3DebugPrintf(" ");
3324     sqlite3PrintExpr(p->pLeft);
3325   }
3326   if( p->pRight ){
3327     sqlite3DebugPrintf(" ");
3328     sqlite3PrintExpr(p->pRight);
3329   }
3330   sqlite3DebugPrintf(")");
3331 }
3332 void sqlite3PrintExprList(ExprList *pList){
3333   int i;
3334   for(i=0; i<pList->nExpr; i++){
3335     sqlite3PrintExpr(pList->a[i].pExpr);
3336     if( i<pList->nExpr-1 ){
3337       sqlite3DebugPrintf(", ");
3338     }
3339   }
3340 }
3341 void sqlite3PrintSelect(Select *p, int indent){
3342   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
3343   sqlite3PrintExprList(p->pEList);
3344   sqlite3DebugPrintf("\n");
3345   if( p->pSrc ){
3346     char *zPrefix;
3347     int i;
3348     zPrefix = "FROM";
3349     for(i=0; i<p->pSrc->nSrc; i++){
3350       struct SrcList_item *pItem = &p->pSrc->a[i];
3351       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
3352       zPrefix = "";
3353       if( pItem->pSelect ){
3354         sqlite3DebugPrintf("(\n");
3355         sqlite3PrintSelect(pItem->pSelect, indent+10);
3356         sqlite3DebugPrintf("%*s)", indent+8, "");
3357       }else if( pItem->zName ){
3358         sqlite3DebugPrintf("%s", pItem->zName);
3359       }
3360       if( pItem->pTab ){
3361         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
3362       }
3363       if( pItem->zAlias ){
3364         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
3365       }
3366       if( i<p->pSrc->nSrc-1 ){
3367         sqlite3DebugPrintf(",");
3368       }
3369       sqlite3DebugPrintf("\n");
3370     }
3371   }
3372   if( p->pWhere ){
3373     sqlite3DebugPrintf("%*s WHERE ", indent, "");
3374     sqlite3PrintExpr(p->pWhere);
3375     sqlite3DebugPrintf("\n");
3376   }
3377   if( p->pGroupBy ){
3378     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
3379     sqlite3PrintExprList(p->pGroupBy);
3380     sqlite3DebugPrintf("\n");
3381   }
3382   if( p->pHaving ){
3383     sqlite3DebugPrintf("%*s HAVING ", indent, "");
3384     sqlite3PrintExpr(p->pHaving);
3385     sqlite3DebugPrintf("\n");
3386   }
3387   if( p->pOrderBy ){
3388     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
3389     sqlite3PrintExprList(p->pOrderBy);
3390     sqlite3DebugPrintf("\n");
3391   }
3392 }
3393 /* End of the structure debug printing code
3394 *****************************************************************************/
3395 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
3396