1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 sqlite3ExprDelete(db, p->pOffset); 78 if( p->pWith ) sqlite3WithDelete(db, p->pWith); 79 if( bFree ) sqlite3DbFreeNN(db, p); 80 p = pPrior; 81 bFree = 1; 82 } 83 } 84 85 /* 86 ** Initialize a SelectDest structure. 87 */ 88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 89 pDest->eDest = (u8)eDest; 90 pDest->iSDParm = iParm; 91 pDest->zAffSdst = 0; 92 pDest->iSdst = 0; 93 pDest->nSdst = 0; 94 } 95 96 97 /* 98 ** Allocate a new Select structure and return a pointer to that 99 ** structure. 100 */ 101 Select *sqlite3SelectNew( 102 Parse *pParse, /* Parsing context */ 103 ExprList *pEList, /* which columns to include in the result */ 104 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 105 Expr *pWhere, /* the WHERE clause */ 106 ExprList *pGroupBy, /* the GROUP BY clause */ 107 Expr *pHaving, /* the HAVING clause */ 108 ExprList *pOrderBy, /* the ORDER BY clause */ 109 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 110 Expr *pLimit, /* LIMIT value. NULL means not used */ 111 Expr *pOffset /* OFFSET value. NULL means no offset */ 112 ){ 113 Select *pNew; 114 Select standin; 115 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 116 if( pNew==0 ){ 117 assert( pParse->db->mallocFailed ); 118 pNew = &standin; 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0)); 122 } 123 pNew->pEList = pEList; 124 pNew->op = TK_SELECT; 125 pNew->selFlags = selFlags; 126 pNew->iLimit = 0; 127 pNew->iOffset = 0; 128 #if SELECTTRACE_ENABLED 129 pNew->zSelName[0] = 0; 130 #endif 131 pNew->addrOpenEphm[0] = -1; 132 pNew->addrOpenEphm[1] = -1; 133 pNew->nSelectRow = 0; 134 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 135 pNew->pSrc = pSrc; 136 pNew->pWhere = pWhere; 137 pNew->pGroupBy = pGroupBy; 138 pNew->pHaving = pHaving; 139 pNew->pOrderBy = pOrderBy; 140 pNew->pPrior = 0; 141 pNew->pNext = 0; 142 pNew->pLimit = pLimit; 143 pNew->pOffset = pOffset; 144 pNew->pWith = 0; 145 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 ); 146 if( pParse->db->mallocFailed ) { 147 clearSelect(pParse->db, pNew, pNew!=&standin); 148 pNew = 0; 149 }else{ 150 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 151 } 152 assert( pNew!=&standin ); 153 return pNew; 154 } 155 156 #if SELECTTRACE_ENABLED 157 /* 158 ** Set the name of a Select object 159 */ 160 void sqlite3SelectSetName(Select *p, const char *zName){ 161 if( p && zName ){ 162 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 163 } 164 } 165 #endif 166 167 168 /* 169 ** Delete the given Select structure and all of its substructures. 170 */ 171 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 172 if( p ) clearSelect(db, p, 1); 173 } 174 175 /* 176 ** Return a pointer to the right-most SELECT statement in a compound. 177 */ 178 static Select *findRightmost(Select *p){ 179 while( p->pNext ) p = p->pNext; 180 return p; 181 } 182 183 /* 184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 185 ** type of join. Return an integer constant that expresses that type 186 ** in terms of the following bit values: 187 ** 188 ** JT_INNER 189 ** JT_CROSS 190 ** JT_OUTER 191 ** JT_NATURAL 192 ** JT_LEFT 193 ** JT_RIGHT 194 ** 195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 196 ** 197 ** If an illegal or unsupported join type is seen, then still return 198 ** a join type, but put an error in the pParse structure. 199 */ 200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 201 int jointype = 0; 202 Token *apAll[3]; 203 Token *p; 204 /* 0123456789 123456789 123456789 123 */ 205 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 206 static const struct { 207 u8 i; /* Beginning of keyword text in zKeyText[] */ 208 u8 nChar; /* Length of the keyword in characters */ 209 u8 code; /* Join type mask */ 210 } aKeyword[] = { 211 /* natural */ { 0, 7, JT_NATURAL }, 212 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 213 /* outer */ { 10, 5, JT_OUTER }, 214 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 215 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 216 /* inner */ { 23, 5, JT_INNER }, 217 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 218 }; 219 int i, j; 220 apAll[0] = pA; 221 apAll[1] = pB; 222 apAll[2] = pC; 223 for(i=0; i<3 && apAll[i]; i++){ 224 p = apAll[i]; 225 for(j=0; j<ArraySize(aKeyword); j++){ 226 if( p->n==aKeyword[j].nChar 227 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 228 jointype |= aKeyword[j].code; 229 break; 230 } 231 } 232 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 233 if( j>=ArraySize(aKeyword) ){ 234 jointype |= JT_ERROR; 235 break; 236 } 237 } 238 if( 239 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 240 (jointype & JT_ERROR)!=0 241 ){ 242 const char *zSp = " "; 243 assert( pB!=0 ); 244 if( pC==0 ){ zSp++; } 245 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 246 "%T %T%s%T", pA, pB, zSp, pC); 247 jointype = JT_INNER; 248 }else if( (jointype & JT_OUTER)!=0 249 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 250 sqlite3ErrorMsg(pParse, 251 "RIGHT and FULL OUTER JOINs are not currently supported"); 252 jointype = JT_INNER; 253 } 254 return jointype; 255 } 256 257 /* 258 ** Return the index of a column in a table. Return -1 if the column 259 ** is not contained in the table. 260 */ 261 static int columnIndex(Table *pTab, const char *zCol){ 262 int i; 263 for(i=0; i<pTab->nCol; i++){ 264 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 265 } 266 return -1; 267 } 268 269 /* 270 ** Search the first N tables in pSrc, from left to right, looking for a 271 ** table that has a column named zCol. 272 ** 273 ** When found, set *piTab and *piCol to the table index and column index 274 ** of the matching column and return TRUE. 275 ** 276 ** If not found, return FALSE. 277 */ 278 static int tableAndColumnIndex( 279 SrcList *pSrc, /* Array of tables to search */ 280 int N, /* Number of tables in pSrc->a[] to search */ 281 const char *zCol, /* Name of the column we are looking for */ 282 int *piTab, /* Write index of pSrc->a[] here */ 283 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 284 ){ 285 int i; /* For looping over tables in pSrc */ 286 int iCol; /* Index of column matching zCol */ 287 288 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 289 for(i=0; i<N; i++){ 290 iCol = columnIndex(pSrc->a[i].pTab, zCol); 291 if( iCol>=0 ){ 292 if( piTab ){ 293 *piTab = i; 294 *piCol = iCol; 295 } 296 return 1; 297 } 298 } 299 return 0; 300 } 301 302 /* 303 ** This function is used to add terms implied by JOIN syntax to the 304 ** WHERE clause expression of a SELECT statement. The new term, which 305 ** is ANDed with the existing WHERE clause, is of the form: 306 ** 307 ** (tab1.col1 = tab2.col2) 308 ** 309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 311 ** column iColRight of tab2. 312 */ 313 static void addWhereTerm( 314 Parse *pParse, /* Parsing context */ 315 SrcList *pSrc, /* List of tables in FROM clause */ 316 int iLeft, /* Index of first table to join in pSrc */ 317 int iColLeft, /* Index of column in first table */ 318 int iRight, /* Index of second table in pSrc */ 319 int iColRight, /* Index of column in second table */ 320 int isOuterJoin, /* True if this is an OUTER join */ 321 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 322 ){ 323 sqlite3 *db = pParse->db; 324 Expr *pE1; 325 Expr *pE2; 326 Expr *pEq; 327 328 assert( iLeft<iRight ); 329 assert( pSrc->nSrc>iRight ); 330 assert( pSrc->a[iLeft].pTab ); 331 assert( pSrc->a[iRight].pTab ); 332 333 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 334 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 335 336 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 337 if( pEq && isOuterJoin ){ 338 ExprSetProperty(pEq, EP_FromJoin); 339 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(pEq, EP_NoReduce); 341 pEq->iRightJoinTable = (i16)pE2->iTable; 342 } 343 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 344 } 345 346 /* 347 ** Set the EP_FromJoin property on all terms of the given expression. 348 ** And set the Expr.iRightJoinTable to iTable for every term in the 349 ** expression. 350 ** 351 ** The EP_FromJoin property is used on terms of an expression to tell 352 ** the LEFT OUTER JOIN processing logic that this term is part of the 353 ** join restriction specified in the ON or USING clause and not a part 354 ** of the more general WHERE clause. These terms are moved over to the 355 ** WHERE clause during join processing but we need to remember that they 356 ** originated in the ON or USING clause. 357 ** 358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 359 ** expression depends on table iRightJoinTable even if that table is not 360 ** explicitly mentioned in the expression. That information is needed 361 ** for cases like this: 362 ** 363 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 364 ** 365 ** The where clause needs to defer the handling of the t1.x=5 366 ** term until after the t2 loop of the join. In that way, a 367 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 368 ** defer the handling of t1.x=5, it will be processed immediately 369 ** after the t1 loop and rows with t1.x!=5 will never appear in 370 ** the output, which is incorrect. 371 */ 372 static void setJoinExpr(Expr *p, int iTable){ 373 while( p ){ 374 ExprSetProperty(p, EP_FromJoin); 375 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(p, EP_NoReduce); 377 p->iRightJoinTable = (i16)iTable; 378 if( p->op==TK_FUNCTION && p->x.pList ){ 379 int i; 380 for(i=0; i<p->x.pList->nExpr; i++){ 381 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 382 } 383 } 384 setJoinExpr(p->pLeft, iTable); 385 p = p->pRight; 386 } 387 } 388 389 /* 390 ** This routine processes the join information for a SELECT statement. 391 ** ON and USING clauses are converted into extra terms of the WHERE clause. 392 ** NATURAL joins also create extra WHERE clause terms. 393 ** 394 ** The terms of a FROM clause are contained in the Select.pSrc structure. 395 ** The left most table is the first entry in Select.pSrc. The right-most 396 ** table is the last entry. The join operator is held in the entry to 397 ** the left. Thus entry 0 contains the join operator for the join between 398 ** entries 0 and 1. Any ON or USING clauses associated with the join are 399 ** also attached to the left entry. 400 ** 401 ** This routine returns the number of errors encountered. 402 */ 403 static int sqliteProcessJoin(Parse *pParse, Select *p){ 404 SrcList *pSrc; /* All tables in the FROM clause */ 405 int i, j; /* Loop counters */ 406 struct SrcList_item *pLeft; /* Left table being joined */ 407 struct SrcList_item *pRight; /* Right table being joined */ 408 409 pSrc = p->pSrc; 410 pLeft = &pSrc->a[0]; 411 pRight = &pLeft[1]; 412 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 413 Table *pLeftTab = pLeft->pTab; 414 Table *pRightTab = pRight->pTab; 415 int isOuter; 416 417 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 418 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 419 420 /* When the NATURAL keyword is present, add WHERE clause terms for 421 ** every column that the two tables have in common. 422 */ 423 if( pRight->fg.jointype & JT_NATURAL ){ 424 if( pRight->pOn || pRight->pUsing ){ 425 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 426 "an ON or USING clause", 0); 427 return 1; 428 } 429 for(j=0; j<pRightTab->nCol; j++){ 430 char *zName; /* Name of column in the right table */ 431 int iLeft; /* Matching left table */ 432 int iLeftCol; /* Matching column in the left table */ 433 434 zName = pRightTab->aCol[j].zName; 435 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 436 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 437 isOuter, &p->pWhere); 438 } 439 } 440 } 441 442 /* Disallow both ON and USING clauses in the same join 443 */ 444 if( pRight->pOn && pRight->pUsing ){ 445 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 446 "clauses in the same join"); 447 return 1; 448 } 449 450 /* Add the ON clause to the end of the WHERE clause, connected by 451 ** an AND operator. 452 */ 453 if( pRight->pOn ){ 454 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 455 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 456 pRight->pOn = 0; 457 } 458 459 /* Create extra terms on the WHERE clause for each column named 460 ** in the USING clause. Example: If the two tables to be joined are 461 ** A and B and the USING clause names X, Y, and Z, then add this 462 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 463 ** Report an error if any column mentioned in the USING clause is 464 ** not contained in both tables to be joined. 465 */ 466 if( pRight->pUsing ){ 467 IdList *pList = pRight->pUsing; 468 for(j=0; j<pList->nId; j++){ 469 char *zName; /* Name of the term in the USING clause */ 470 int iLeft; /* Table on the left with matching column name */ 471 int iLeftCol; /* Column number of matching column on the left */ 472 int iRightCol; /* Column number of matching column on the right */ 473 474 zName = pList->a[j].zName; 475 iRightCol = columnIndex(pRightTab, zName); 476 if( iRightCol<0 477 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 478 ){ 479 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 480 "not present in both tables", zName); 481 return 1; 482 } 483 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 484 isOuter, &p->pWhere); 485 } 486 } 487 } 488 return 0; 489 } 490 491 /* Forward reference */ 492 static KeyInfo *keyInfoFromExprList( 493 Parse *pParse, /* Parsing context */ 494 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 495 int iStart, /* Begin with this column of pList */ 496 int nExtra /* Add this many extra columns to the end */ 497 ); 498 499 /* 500 ** Generate code that will push the record in registers regData 501 ** through regData+nData-1 onto the sorter. 502 */ 503 static void pushOntoSorter( 504 Parse *pParse, /* Parser context */ 505 SortCtx *pSort, /* Information about the ORDER BY clause */ 506 Select *pSelect, /* The whole SELECT statement */ 507 int regData, /* First register holding data to be sorted */ 508 int regOrigData, /* First register holding data before packing */ 509 int nData, /* Number of elements in the data array */ 510 int nPrefixReg /* No. of reg prior to regData available for use */ 511 ){ 512 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 513 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 514 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 515 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 516 int regBase; /* Regs for sorter record */ 517 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 518 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 519 int op; /* Opcode to add sorter record to sorter */ 520 int iLimit; /* LIMIT counter */ 521 522 assert( bSeq==0 || bSeq==1 ); 523 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 524 if( nPrefixReg ){ 525 assert( nPrefixReg==nExpr+bSeq ); 526 regBase = regData - nExpr - bSeq; 527 }else{ 528 regBase = pParse->nMem + 1; 529 pParse->nMem += nBase; 530 } 531 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 532 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 533 pSort->labelDone = sqlite3VdbeMakeLabel(v); 534 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 535 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 536 if( bSeq ){ 537 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 538 } 539 if( nPrefixReg==0 && nData>0 ){ 540 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 541 } 542 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 543 if( nOBSat>0 ){ 544 int regPrevKey; /* The first nOBSat columns of the previous row */ 545 int addrFirst; /* Address of the OP_IfNot opcode */ 546 int addrJmp; /* Address of the OP_Jump opcode */ 547 VdbeOp *pOp; /* Opcode that opens the sorter */ 548 int nKey; /* Number of sorting key columns, including OP_Sequence */ 549 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 550 551 regPrevKey = pParse->nMem+1; 552 pParse->nMem += pSort->nOBSat; 553 nKey = nExpr - pSort->nOBSat + bSeq; 554 if( bSeq ){ 555 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 556 }else{ 557 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 558 } 559 VdbeCoverage(v); 560 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 561 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 562 if( pParse->db->mallocFailed ) return; 563 pOp->p2 = nKey + nData; 564 pKI = pOp->p4.pKeyInfo; 565 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 566 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 567 testcase( pKI->nAllField > pKI->nKeyField+2 ); 568 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 569 pKI->nAllField-pKI->nKeyField-1); 570 addrJmp = sqlite3VdbeCurrentAddr(v); 571 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 572 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 573 pSort->regReturn = ++pParse->nMem; 574 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 575 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 576 if( iLimit ){ 577 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 578 VdbeCoverage(v); 579 } 580 sqlite3VdbeJumpHere(v, addrFirst); 581 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 582 sqlite3VdbeJumpHere(v, addrJmp); 583 } 584 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 585 op = OP_SorterInsert; 586 }else{ 587 op = OP_IdxInsert; 588 } 589 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 590 regBase+nOBSat, nBase-nOBSat); 591 if( iLimit ){ 592 int addr; 593 int r1 = 0; 594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 596 ** fills up, delete the least entry in the sorter after each insert. 597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 598 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 599 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 600 if( pSort->bOrderedInnerLoop ){ 601 r1 = ++pParse->nMem; 602 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 603 VdbeComment((v, "seq")); 604 } 605 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 606 if( pSort->bOrderedInnerLoop ){ 607 /* If the inner loop is driven by an index such that values from 608 ** the same iteration of the inner loop are in sorted order, then 609 ** immediately jump to the next iteration of an inner loop if the 610 ** entry from the current iteration does not fit into the top 611 ** LIMIT+OFFSET entries of the sorter. */ 612 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 613 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 614 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 615 VdbeCoverage(v); 616 } 617 sqlite3VdbeJumpHere(v, addr); 618 } 619 } 620 621 /* 622 ** Add code to implement the OFFSET 623 */ 624 static void codeOffset( 625 Vdbe *v, /* Generate code into this VM */ 626 int iOffset, /* Register holding the offset counter */ 627 int iContinue /* Jump here to skip the current record */ 628 ){ 629 if( iOffset>0 ){ 630 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 631 VdbeComment((v, "OFFSET")); 632 } 633 } 634 635 /* 636 ** Add code that will check to make sure the N registers starting at iMem 637 ** form a distinct entry. iTab is a sorting index that holds previously 638 ** seen combinations of the N values. A new entry is made in iTab 639 ** if the current N values are new. 640 ** 641 ** A jump to addrRepeat is made and the N+1 values are popped from the 642 ** stack if the top N elements are not distinct. 643 */ 644 static void codeDistinct( 645 Parse *pParse, /* Parsing and code generating context */ 646 int iTab, /* A sorting index used to test for distinctness */ 647 int addrRepeat, /* Jump to here if not distinct */ 648 int N, /* Number of elements */ 649 int iMem /* First element */ 650 ){ 651 Vdbe *v; 652 int r1; 653 654 v = pParse->pVdbe; 655 r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 657 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 658 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 659 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 660 sqlite3ReleaseTempReg(pParse, r1); 661 } 662 663 /* 664 ** This routine generates the code for the inside of the inner loop 665 ** of a SELECT. 666 ** 667 ** If srcTab is negative, then the pEList expressions 668 ** are evaluated in order to get the data for this row. If srcTab is 669 ** zero or more, then data is pulled from srcTab and pEList is used only 670 ** to get the number of columns and the collation sequence for each column. 671 */ 672 static void selectInnerLoop( 673 Parse *pParse, /* The parser context */ 674 Select *p, /* The complete select statement being coded */ 675 ExprList *pEList, /* List of values being extracted */ 676 int srcTab, /* Pull data from this table */ 677 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 678 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 679 SelectDest *pDest, /* How to dispose of the results */ 680 int iContinue, /* Jump here to continue with next row */ 681 int iBreak /* Jump here to break out of the inner loop */ 682 ){ 683 Vdbe *v = pParse->pVdbe; 684 int i; 685 int hasDistinct; /* True if the DISTINCT keyword is present */ 686 int eDest = pDest->eDest; /* How to dispose of results */ 687 int iParm = pDest->iSDParm; /* First argument to disposal method */ 688 int nResultCol; /* Number of result columns */ 689 int nPrefixReg = 0; /* Number of extra registers before regResult */ 690 691 /* Usually, regResult is the first cell in an array of memory cells 692 ** containing the current result row. In this case regOrig is set to the 693 ** same value. However, if the results are being sent to the sorter, the 694 ** values for any expressions that are also part of the sort-key are omitted 695 ** from this array. In this case regOrig is set to zero. */ 696 int regResult; /* Start of memory holding current results */ 697 int regOrig; /* Start of memory holding full result (or 0) */ 698 699 assert( v ); 700 assert( pEList!=0 ); 701 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 702 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 703 if( pSort==0 && !hasDistinct ){ 704 assert( iContinue!=0 ); 705 codeOffset(v, p->iOffset, iContinue); 706 } 707 708 /* Pull the requested columns. 709 */ 710 nResultCol = pEList->nExpr; 711 712 if( pDest->iSdst==0 ){ 713 if( pSort ){ 714 nPrefixReg = pSort->pOrderBy->nExpr; 715 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 716 pParse->nMem += nPrefixReg; 717 } 718 pDest->iSdst = pParse->nMem+1; 719 pParse->nMem += nResultCol; 720 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 721 /* This is an error condition that can result, for example, when a SELECT 722 ** on the right-hand side of an INSERT contains more result columns than 723 ** there are columns in the table on the left. The error will be caught 724 ** and reported later. But we need to make sure enough memory is allocated 725 ** to avoid other spurious errors in the meantime. */ 726 pParse->nMem += nResultCol; 727 } 728 pDest->nSdst = nResultCol; 729 regOrig = regResult = pDest->iSdst; 730 if( srcTab>=0 ){ 731 for(i=0; i<nResultCol; i++){ 732 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 733 VdbeComment((v, "%s", pEList->a[i].zName)); 734 } 735 }else if( eDest!=SRT_Exists ){ 736 /* If the destination is an EXISTS(...) expression, the actual 737 ** values returned by the SELECT are not required. 738 */ 739 u8 ecelFlags; 740 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 741 ecelFlags = SQLITE_ECEL_DUP; 742 }else{ 743 ecelFlags = 0; 744 } 745 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 746 /* For each expression in pEList that is a copy of an expression in 747 ** the ORDER BY clause (pSort->pOrderBy), set the associated 748 ** iOrderByCol value to one more than the index of the ORDER BY 749 ** expression within the sort-key that pushOntoSorter() will generate. 750 ** This allows the pEList field to be omitted from the sorted record, 751 ** saving space and CPU cycles. */ 752 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 753 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 754 int j; 755 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 756 pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 757 } 758 } 759 regOrig = 0; 760 assert( eDest==SRT_Set || eDest==SRT_Mem 761 || eDest==SRT_Coroutine || eDest==SRT_Output ); 762 } 763 nResultCol = sqlite3ExprCodeExprList(pParse,pEList,regResult,0,ecelFlags); 764 } 765 766 /* If the DISTINCT keyword was present on the SELECT statement 767 ** and this row has been seen before, then do not make this row 768 ** part of the result. 769 */ 770 if( hasDistinct ){ 771 switch( pDistinct->eTnctType ){ 772 case WHERE_DISTINCT_ORDERED: { 773 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 774 int iJump; /* Jump destination */ 775 int regPrev; /* Previous row content */ 776 777 /* Allocate space for the previous row */ 778 regPrev = pParse->nMem+1; 779 pParse->nMem += nResultCol; 780 781 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 782 ** sets the MEM_Cleared bit on the first register of the 783 ** previous value. This will cause the OP_Ne below to always 784 ** fail on the first iteration of the loop even if the first 785 ** row is all NULLs. 786 */ 787 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 788 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 789 pOp->opcode = OP_Null; 790 pOp->p1 = 1; 791 pOp->p2 = regPrev; 792 793 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 794 for(i=0; i<nResultCol; i++){ 795 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 796 if( i<nResultCol-1 ){ 797 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 798 VdbeCoverage(v); 799 }else{ 800 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 801 VdbeCoverage(v); 802 } 803 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 804 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 805 } 806 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 807 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 808 break; 809 } 810 811 case WHERE_DISTINCT_UNIQUE: { 812 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 813 break; 814 } 815 816 default: { 817 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 818 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 819 regResult); 820 break; 821 } 822 } 823 if( pSort==0 ){ 824 codeOffset(v, p->iOffset, iContinue); 825 } 826 } 827 828 switch( eDest ){ 829 /* In this mode, write each query result to the key of the temporary 830 ** table iParm. 831 */ 832 #ifndef SQLITE_OMIT_COMPOUND_SELECT 833 case SRT_Union: { 834 int r1; 835 r1 = sqlite3GetTempReg(pParse); 836 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 837 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 838 sqlite3ReleaseTempReg(pParse, r1); 839 break; 840 } 841 842 /* Construct a record from the query result, but instead of 843 ** saving that record, use it as a key to delete elements from 844 ** the temporary table iParm. 845 */ 846 case SRT_Except: { 847 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 848 break; 849 } 850 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 851 852 /* Store the result as data using a unique key. 853 */ 854 case SRT_Fifo: 855 case SRT_DistFifo: 856 case SRT_Table: 857 case SRT_EphemTab: { 858 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 859 testcase( eDest==SRT_Table ); 860 testcase( eDest==SRT_EphemTab ); 861 testcase( eDest==SRT_Fifo ); 862 testcase( eDest==SRT_DistFifo ); 863 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 864 #ifndef SQLITE_OMIT_CTE 865 if( eDest==SRT_DistFifo ){ 866 /* If the destination is DistFifo, then cursor (iParm+1) is open 867 ** on an ephemeral index. If the current row is already present 868 ** in the index, do not write it to the output. If not, add the 869 ** current row to the index and proceed with writing it to the 870 ** output table as well. */ 871 int addr = sqlite3VdbeCurrentAddr(v) + 4; 872 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 873 VdbeCoverage(v); 874 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 875 assert( pSort==0 ); 876 } 877 #endif 878 if( pSort ){ 879 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 880 }else{ 881 int r2 = sqlite3GetTempReg(pParse); 882 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 883 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 884 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 885 sqlite3ReleaseTempReg(pParse, r2); 886 } 887 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 888 break; 889 } 890 891 #ifndef SQLITE_OMIT_SUBQUERY 892 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 893 ** then there should be a single item on the stack. Write this 894 ** item into the set table with bogus data. 895 */ 896 case SRT_Set: { 897 if( pSort ){ 898 /* At first glance you would think we could optimize out the 899 ** ORDER BY in this case since the order of entries in the set 900 ** does not matter. But there might be a LIMIT clause, in which 901 ** case the order does matter */ 902 pushOntoSorter( 903 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 904 }else{ 905 int r1 = sqlite3GetTempReg(pParse); 906 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 907 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 908 r1, pDest->zAffSdst, nResultCol); 909 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 910 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 911 sqlite3ReleaseTempReg(pParse, r1); 912 } 913 break; 914 } 915 916 /* If any row exist in the result set, record that fact and abort. 917 */ 918 case SRT_Exists: { 919 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 920 /* The LIMIT clause will terminate the loop for us */ 921 break; 922 } 923 924 /* If this is a scalar select that is part of an expression, then 925 ** store the results in the appropriate memory cell or array of 926 ** memory cells and break out of the scan loop. 927 */ 928 case SRT_Mem: { 929 if( pSort ){ 930 assert( nResultCol<=pDest->nSdst ); 931 pushOntoSorter( 932 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 933 }else{ 934 assert( nResultCol==pDest->nSdst ); 935 assert( regResult==iParm ); 936 /* The LIMIT clause will jump out of the loop for us */ 937 } 938 break; 939 } 940 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 941 942 case SRT_Coroutine: /* Send data to a co-routine */ 943 case SRT_Output: { /* Return the results */ 944 testcase( eDest==SRT_Coroutine ); 945 testcase( eDest==SRT_Output ); 946 if( pSort ){ 947 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 948 nPrefixReg); 949 }else if( eDest==SRT_Coroutine ){ 950 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 951 }else{ 952 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 953 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 954 } 955 break; 956 } 957 958 #ifndef SQLITE_OMIT_CTE 959 /* Write the results into a priority queue that is order according to 960 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 961 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 962 ** pSO->nExpr columns, then make sure all keys are unique by adding a 963 ** final OP_Sequence column. The last column is the record as a blob. 964 */ 965 case SRT_DistQueue: 966 case SRT_Queue: { 967 int nKey; 968 int r1, r2, r3; 969 int addrTest = 0; 970 ExprList *pSO; 971 pSO = pDest->pOrderBy; 972 assert( pSO ); 973 nKey = pSO->nExpr; 974 r1 = sqlite3GetTempReg(pParse); 975 r2 = sqlite3GetTempRange(pParse, nKey+2); 976 r3 = r2+nKey+1; 977 if( eDest==SRT_DistQueue ){ 978 /* If the destination is DistQueue, then cursor (iParm+1) is open 979 ** on a second ephemeral index that holds all values every previously 980 ** added to the queue. */ 981 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 982 regResult, nResultCol); 983 VdbeCoverage(v); 984 } 985 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 986 if( eDest==SRT_DistQueue ){ 987 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 988 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 989 } 990 for(i=0; i<nKey; i++){ 991 sqlite3VdbeAddOp2(v, OP_SCopy, 992 regResult + pSO->a[i].u.x.iOrderByCol - 1, 993 r2+i); 994 } 995 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 996 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 997 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 998 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 999 sqlite3ReleaseTempReg(pParse, r1); 1000 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1001 break; 1002 } 1003 #endif /* SQLITE_OMIT_CTE */ 1004 1005 1006 1007 #if !defined(SQLITE_OMIT_TRIGGER) 1008 /* Discard the results. This is used for SELECT statements inside 1009 ** the body of a TRIGGER. The purpose of such selects is to call 1010 ** user-defined functions that have side effects. We do not care 1011 ** about the actual results of the select. 1012 */ 1013 default: { 1014 assert( eDest==SRT_Discard ); 1015 break; 1016 } 1017 #endif 1018 } 1019 1020 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1021 ** there is a sorter, in which case the sorter has already limited 1022 ** the output for us. 1023 */ 1024 if( pSort==0 && p->iLimit ){ 1025 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1026 } 1027 } 1028 1029 /* 1030 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1031 ** X extra columns. 1032 */ 1033 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1034 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1035 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1036 if( p ){ 1037 p->aSortOrder = (u8*)&p->aColl[N+X]; 1038 p->nKeyField = (u16)N; 1039 p->nAllField = (u16)(N+X); 1040 p->enc = ENC(db); 1041 p->db = db; 1042 p->nRef = 1; 1043 memset(&p[1], 0, nExtra); 1044 }else{ 1045 sqlite3OomFault(db); 1046 } 1047 return p; 1048 } 1049 1050 /* 1051 ** Deallocate a KeyInfo object 1052 */ 1053 void sqlite3KeyInfoUnref(KeyInfo *p){ 1054 if( p ){ 1055 assert( p->nRef>0 ); 1056 p->nRef--; 1057 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1058 } 1059 } 1060 1061 /* 1062 ** Make a new pointer to a KeyInfo object 1063 */ 1064 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1065 if( p ){ 1066 assert( p->nRef>0 ); 1067 p->nRef++; 1068 } 1069 return p; 1070 } 1071 1072 #ifdef SQLITE_DEBUG 1073 /* 1074 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1075 ** can only be changed if this is just a single reference to the object. 1076 ** 1077 ** This routine is used only inside of assert() statements. 1078 */ 1079 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1080 #endif /* SQLITE_DEBUG */ 1081 1082 /* 1083 ** Given an expression list, generate a KeyInfo structure that records 1084 ** the collating sequence for each expression in that expression list. 1085 ** 1086 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1087 ** KeyInfo structure is appropriate for initializing a virtual index to 1088 ** implement that clause. If the ExprList is the result set of a SELECT 1089 ** then the KeyInfo structure is appropriate for initializing a virtual 1090 ** index to implement a DISTINCT test. 1091 ** 1092 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1093 ** function is responsible for seeing that this structure is eventually 1094 ** freed. 1095 */ 1096 static KeyInfo *keyInfoFromExprList( 1097 Parse *pParse, /* Parsing context */ 1098 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1099 int iStart, /* Begin with this column of pList */ 1100 int nExtra /* Add this many extra columns to the end */ 1101 ){ 1102 int nExpr; 1103 KeyInfo *pInfo; 1104 struct ExprList_item *pItem; 1105 sqlite3 *db = pParse->db; 1106 int i; 1107 1108 nExpr = pList->nExpr; 1109 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1110 if( pInfo ){ 1111 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1112 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1113 CollSeq *pColl; 1114 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1115 if( !pColl ) pColl = db->pDfltColl; 1116 pInfo->aColl[i-iStart] = pColl; 1117 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1118 } 1119 } 1120 return pInfo; 1121 } 1122 1123 /* 1124 ** Name of the connection operator, used for error messages. 1125 */ 1126 static const char *selectOpName(int id){ 1127 char *z; 1128 switch( id ){ 1129 case TK_ALL: z = "UNION ALL"; break; 1130 case TK_INTERSECT: z = "INTERSECT"; break; 1131 case TK_EXCEPT: z = "EXCEPT"; break; 1132 default: z = "UNION"; break; 1133 } 1134 return z; 1135 } 1136 1137 #ifndef SQLITE_OMIT_EXPLAIN 1138 /* 1139 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1140 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1141 ** where the caption is of the form: 1142 ** 1143 ** "USE TEMP B-TREE FOR xxx" 1144 ** 1145 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1146 ** is determined by the zUsage argument. 1147 */ 1148 static void explainTempTable(Parse *pParse, const char *zUsage){ 1149 if( pParse->explain==2 ){ 1150 Vdbe *v = pParse->pVdbe; 1151 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1152 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1153 } 1154 } 1155 1156 /* 1157 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1158 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1159 ** in sqlite3Select() to assign values to structure member variables that 1160 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1161 ** code with #ifndef directives. 1162 */ 1163 # define explainSetInteger(a, b) a = b 1164 1165 #else 1166 /* No-op versions of the explainXXX() functions and macros. */ 1167 # define explainTempTable(y,z) 1168 # define explainSetInteger(y,z) 1169 #endif 1170 1171 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1172 /* 1173 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1174 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1175 ** where the caption is of one of the two forms: 1176 ** 1177 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1178 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1179 ** 1180 ** where iSub1 and iSub2 are the integers passed as the corresponding 1181 ** function parameters, and op is the text representation of the parameter 1182 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1183 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1184 ** false, or the second form if it is true. 1185 */ 1186 static void explainComposite( 1187 Parse *pParse, /* Parse context */ 1188 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1189 int iSub1, /* Subquery id 1 */ 1190 int iSub2, /* Subquery id 2 */ 1191 int bUseTmp /* True if a temp table was used */ 1192 ){ 1193 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1194 if( pParse->explain==2 ){ 1195 Vdbe *v = pParse->pVdbe; 1196 char *zMsg = sqlite3MPrintf( 1197 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1198 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1199 ); 1200 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1201 } 1202 } 1203 #else 1204 /* No-op versions of the explainXXX() functions and macros. */ 1205 # define explainComposite(v,w,x,y,z) 1206 #endif 1207 1208 /* 1209 ** If the inner loop was generated using a non-null pOrderBy argument, 1210 ** then the results were placed in a sorter. After the loop is terminated 1211 ** we need to run the sorter and output the results. The following 1212 ** routine generates the code needed to do that. 1213 */ 1214 static void generateSortTail( 1215 Parse *pParse, /* Parsing context */ 1216 Select *p, /* The SELECT statement */ 1217 SortCtx *pSort, /* Information on the ORDER BY clause */ 1218 int nColumn, /* Number of columns of data */ 1219 SelectDest *pDest /* Write the sorted results here */ 1220 ){ 1221 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1222 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1223 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1224 int addr; 1225 int addrOnce = 0; 1226 int iTab; 1227 ExprList *pOrderBy = pSort->pOrderBy; 1228 int eDest = pDest->eDest; 1229 int iParm = pDest->iSDParm; 1230 int regRow; 1231 int regRowid; 1232 int iCol; 1233 int nKey; 1234 int iSortTab; /* Sorter cursor to read from */ 1235 int nSortData; /* Trailing values to read from sorter */ 1236 int i; 1237 int bSeq; /* True if sorter record includes seq. no. */ 1238 struct ExprList_item *aOutEx = p->pEList->a; 1239 1240 assert( addrBreak<0 ); 1241 if( pSort->labelBkOut ){ 1242 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1243 sqlite3VdbeGoto(v, addrBreak); 1244 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1245 } 1246 iTab = pSort->iECursor; 1247 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1248 regRowid = 0; 1249 regRow = pDest->iSdst; 1250 nSortData = nColumn; 1251 }else{ 1252 regRowid = sqlite3GetTempReg(pParse); 1253 regRow = sqlite3GetTempRange(pParse, nColumn); 1254 nSortData = nColumn; 1255 } 1256 nKey = pOrderBy->nExpr - pSort->nOBSat; 1257 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1258 int regSortOut = ++pParse->nMem; 1259 iSortTab = pParse->nTab++; 1260 if( pSort->labelBkOut ){ 1261 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1262 } 1263 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1264 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1265 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1266 VdbeCoverage(v); 1267 codeOffset(v, p->iOffset, addrContinue); 1268 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1269 bSeq = 0; 1270 }else{ 1271 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1272 codeOffset(v, p->iOffset, addrContinue); 1273 iSortTab = iTab; 1274 bSeq = 1; 1275 } 1276 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){ 1277 int iRead; 1278 if( aOutEx[i].u.x.iOrderByCol ){ 1279 iRead = aOutEx[i].u.x.iOrderByCol-1; 1280 }else{ 1281 iRead = iCol++; 1282 } 1283 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1284 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1285 } 1286 switch( eDest ){ 1287 case SRT_Table: 1288 case SRT_EphemTab: { 1289 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1290 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1291 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1292 break; 1293 } 1294 #ifndef SQLITE_OMIT_SUBQUERY 1295 case SRT_Set: { 1296 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1297 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1298 pDest->zAffSdst, nColumn); 1299 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1300 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1301 break; 1302 } 1303 case SRT_Mem: { 1304 /* The LIMIT clause will terminate the loop for us */ 1305 break; 1306 } 1307 #endif 1308 default: { 1309 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1310 testcase( eDest==SRT_Output ); 1311 testcase( eDest==SRT_Coroutine ); 1312 if( eDest==SRT_Output ){ 1313 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1314 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1315 }else{ 1316 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1317 } 1318 break; 1319 } 1320 } 1321 if( regRowid ){ 1322 if( eDest==SRT_Set ){ 1323 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1324 }else{ 1325 sqlite3ReleaseTempReg(pParse, regRow); 1326 } 1327 sqlite3ReleaseTempReg(pParse, regRowid); 1328 } 1329 /* The bottom of the loop 1330 */ 1331 sqlite3VdbeResolveLabel(v, addrContinue); 1332 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1333 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1334 }else{ 1335 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1336 } 1337 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1338 sqlite3VdbeResolveLabel(v, addrBreak); 1339 } 1340 1341 /* 1342 ** Return a pointer to a string containing the 'declaration type' of the 1343 ** expression pExpr. The string may be treated as static by the caller. 1344 ** 1345 ** Also try to estimate the size of the returned value and return that 1346 ** result in *pEstWidth. 1347 ** 1348 ** The declaration type is the exact datatype definition extracted from the 1349 ** original CREATE TABLE statement if the expression is a column. The 1350 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1351 ** is considered a column can be complex in the presence of subqueries. The 1352 ** result-set expression in all of the following SELECT statements is 1353 ** considered a column by this function. 1354 ** 1355 ** SELECT col FROM tbl; 1356 ** SELECT (SELECT col FROM tbl; 1357 ** SELECT (SELECT col FROM tbl); 1358 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1359 ** 1360 ** The declaration type for any expression other than a column is NULL. 1361 ** 1362 ** This routine has either 3 or 6 parameters depending on whether or not 1363 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1364 */ 1365 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1366 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1367 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1368 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1369 #endif 1370 static const char *columnTypeImpl( 1371 NameContext *pNC, 1372 Expr *pExpr, 1373 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1374 const char **pzOrigDb, 1375 const char **pzOrigTab, 1376 const char **pzOrigCol, 1377 #endif 1378 u8 *pEstWidth 1379 ){ 1380 char const *zType = 0; 1381 int j; 1382 u8 estWidth = 1; 1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1384 char const *zOrigDb = 0; 1385 char const *zOrigTab = 0; 1386 char const *zOrigCol = 0; 1387 #endif 1388 1389 assert( pExpr!=0 ); 1390 assert( pNC->pSrcList!=0 ); 1391 switch( pExpr->op ){ 1392 case TK_AGG_COLUMN: 1393 case TK_COLUMN: { 1394 /* The expression is a column. Locate the table the column is being 1395 ** extracted from in NameContext.pSrcList. This table may be real 1396 ** database table or a subquery. 1397 */ 1398 Table *pTab = 0; /* Table structure column is extracted from */ 1399 Select *pS = 0; /* Select the column is extracted from */ 1400 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1401 testcase( pExpr->op==TK_AGG_COLUMN ); 1402 testcase( pExpr->op==TK_COLUMN ); 1403 while( pNC && !pTab ){ 1404 SrcList *pTabList = pNC->pSrcList; 1405 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1406 if( j<pTabList->nSrc ){ 1407 pTab = pTabList->a[j].pTab; 1408 pS = pTabList->a[j].pSelect; 1409 }else{ 1410 pNC = pNC->pNext; 1411 } 1412 } 1413 1414 if( pTab==0 ){ 1415 /* At one time, code such as "SELECT new.x" within a trigger would 1416 ** cause this condition to run. Since then, we have restructured how 1417 ** trigger code is generated and so this condition is no longer 1418 ** possible. However, it can still be true for statements like 1419 ** the following: 1420 ** 1421 ** CREATE TABLE t1(col INTEGER); 1422 ** SELECT (SELECT t1.col) FROM FROM t1; 1423 ** 1424 ** when columnType() is called on the expression "t1.col" in the 1425 ** sub-select. In this case, set the column type to NULL, even 1426 ** though it should really be "INTEGER". 1427 ** 1428 ** This is not a problem, as the column type of "t1.col" is never 1429 ** used. When columnType() is called on the expression 1430 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1431 ** branch below. */ 1432 break; 1433 } 1434 1435 assert( pTab && pExpr->pTab==pTab ); 1436 if( pS ){ 1437 /* The "table" is actually a sub-select or a view in the FROM clause 1438 ** of the SELECT statement. Return the declaration type and origin 1439 ** data for the result-set column of the sub-select. 1440 */ 1441 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1442 /* If iCol is less than zero, then the expression requests the 1443 ** rowid of the sub-select or view. This expression is legal (see 1444 ** test case misc2.2.2) - it always evaluates to NULL. 1445 */ 1446 NameContext sNC; 1447 Expr *p = pS->pEList->a[iCol].pExpr; 1448 sNC.pSrcList = pS->pSrc; 1449 sNC.pNext = pNC; 1450 sNC.pParse = pNC->pParse; 1451 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1452 } 1453 }else if( pTab->pSchema ){ 1454 /* A real table */ 1455 assert( !pS ); 1456 if( iCol<0 ) iCol = pTab->iPKey; 1457 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1458 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1459 if( iCol<0 ){ 1460 zType = "INTEGER"; 1461 zOrigCol = "rowid"; 1462 }else{ 1463 zOrigCol = pTab->aCol[iCol].zName; 1464 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1465 estWidth = pTab->aCol[iCol].szEst; 1466 } 1467 zOrigTab = pTab->zName; 1468 if( pNC->pParse ){ 1469 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1470 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1471 } 1472 #else 1473 if( iCol<0 ){ 1474 zType = "INTEGER"; 1475 }else{ 1476 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1477 estWidth = pTab->aCol[iCol].szEst; 1478 } 1479 #endif 1480 } 1481 break; 1482 } 1483 #ifndef SQLITE_OMIT_SUBQUERY 1484 case TK_SELECT: { 1485 /* The expression is a sub-select. Return the declaration type and 1486 ** origin info for the single column in the result set of the SELECT 1487 ** statement. 1488 */ 1489 NameContext sNC; 1490 Select *pS = pExpr->x.pSelect; 1491 Expr *p = pS->pEList->a[0].pExpr; 1492 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1493 sNC.pSrcList = pS->pSrc; 1494 sNC.pNext = pNC; 1495 sNC.pParse = pNC->pParse; 1496 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1497 break; 1498 } 1499 #endif 1500 } 1501 1502 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1503 if( pzOrigDb ){ 1504 assert( pzOrigTab && pzOrigCol ); 1505 *pzOrigDb = zOrigDb; 1506 *pzOrigTab = zOrigTab; 1507 *pzOrigCol = zOrigCol; 1508 } 1509 #endif 1510 if( pEstWidth ) *pEstWidth = estWidth; 1511 return zType; 1512 } 1513 1514 /* 1515 ** Generate code that will tell the VDBE the declaration types of columns 1516 ** in the result set. 1517 */ 1518 static void generateColumnTypes( 1519 Parse *pParse, /* Parser context */ 1520 SrcList *pTabList, /* List of tables */ 1521 ExprList *pEList /* Expressions defining the result set */ 1522 ){ 1523 #ifndef SQLITE_OMIT_DECLTYPE 1524 Vdbe *v = pParse->pVdbe; 1525 int i; 1526 NameContext sNC; 1527 sNC.pSrcList = pTabList; 1528 sNC.pParse = pParse; 1529 sNC.pNext = 0; 1530 for(i=0; i<pEList->nExpr; i++){ 1531 Expr *p = pEList->a[i].pExpr; 1532 const char *zType; 1533 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1534 const char *zOrigDb = 0; 1535 const char *zOrigTab = 0; 1536 const char *zOrigCol = 0; 1537 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1538 1539 /* The vdbe must make its own copy of the column-type and other 1540 ** column specific strings, in case the schema is reset before this 1541 ** virtual machine is deleted. 1542 */ 1543 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1544 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1545 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1546 #else 1547 zType = columnType(&sNC, p, 0, 0, 0, 0); 1548 #endif 1549 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1550 } 1551 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1552 } 1553 1554 1555 /* 1556 ** Compute the column names for a SELECT statement. 1557 ** 1558 ** The only guarantee that SQLite makes about column names is that if the 1559 ** column has an AS clause assigning it a name, that will be the name used. 1560 ** That is the only documented guarantee. However, countless applications 1561 ** developed over the years have made baseless assumptions about column names 1562 ** and will break if those assumptions changes. Hence, use extreme caution 1563 ** when modifying this routine to avoid breaking legacy. 1564 ** 1565 ** See Also: sqlite3ColumnsFromExprList() 1566 ** 1567 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1568 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1569 ** applications should operate this way. Nevertheless, we need to support the 1570 ** other modes for legacy: 1571 ** 1572 ** short=OFF, full=OFF: Column name is the text of the expression has it 1573 ** originally appears in the SELECT statement. In 1574 ** other words, the zSpan of the result expression. 1575 ** 1576 ** short=ON, full=OFF: (This is the default setting). If the result 1577 ** refers directly to a table column, then the result 1578 ** column name is just the table column name: COLUMN. 1579 ** Otherwise use zSpan. 1580 ** 1581 ** full=ON, short=ANY: If the result refers directly to a table column, 1582 ** then the result column name with the table name 1583 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1584 */ 1585 static void generateColumnNames( 1586 Parse *pParse, /* Parser context */ 1587 Select *pSelect /* Generate column names for this SELECT statement */ 1588 ){ 1589 Vdbe *v = pParse->pVdbe; 1590 int i; 1591 Table *pTab; 1592 SrcList *pTabList; 1593 ExprList *pEList; 1594 sqlite3 *db = pParse->db; 1595 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1596 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1597 1598 #ifndef SQLITE_OMIT_EXPLAIN 1599 /* If this is an EXPLAIN, skip this step */ 1600 if( pParse->explain ){ 1601 return; 1602 } 1603 #endif 1604 1605 if( pParse->colNamesSet || db->mallocFailed ) return; 1606 /* Column names are determined by the left-most term of a compound select */ 1607 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1608 pTabList = pSelect->pSrc; 1609 pEList = pSelect->pEList; 1610 assert( v!=0 ); 1611 assert( pTabList!=0 ); 1612 pParse->colNamesSet = 1; 1613 fullName = (db->flags & SQLITE_FullColNames)!=0; 1614 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1615 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1616 for(i=0; i<pEList->nExpr; i++){ 1617 Expr *p = pEList->a[i].pExpr; 1618 1619 assert( p!=0 ); 1620 if( pEList->a[i].zName ){ 1621 /* An AS clause always takes first priority */ 1622 char *zName = pEList->a[i].zName; 1623 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1624 }else if( srcName && p->op==TK_COLUMN ){ 1625 char *zCol; 1626 int iCol = p->iColumn; 1627 pTab = p->pTab; 1628 assert( pTab!=0 ); 1629 if( iCol<0 ) iCol = pTab->iPKey; 1630 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1631 if( iCol<0 ){ 1632 zCol = "rowid"; 1633 }else{ 1634 zCol = pTab->aCol[iCol].zName; 1635 } 1636 if( fullName ){ 1637 char *zName = 0; 1638 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1639 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1640 }else{ 1641 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1642 } 1643 }else{ 1644 const char *z = pEList->a[i].zSpan; 1645 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1646 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1647 } 1648 } 1649 generateColumnTypes(pParse, pTabList, pEList); 1650 } 1651 1652 /* 1653 ** Given an expression list (which is really the list of expressions 1654 ** that form the result set of a SELECT statement) compute appropriate 1655 ** column names for a table that would hold the expression list. 1656 ** 1657 ** All column names will be unique. 1658 ** 1659 ** Only the column names are computed. Column.zType, Column.zColl, 1660 ** and other fields of Column are zeroed. 1661 ** 1662 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1663 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1664 ** 1665 ** The only guarantee that SQLite makes about column names is that if the 1666 ** column has an AS clause assigning it a name, that will be the name used. 1667 ** That is the only documented guarantee. However, countless applications 1668 ** developed over the years have made baseless assumptions about column names 1669 ** and will break if those assumptions changes. Hence, use extreme caution 1670 ** when modifying this routine to avoid breaking legacy. 1671 ** 1672 ** See Also: generateColumnNames() 1673 */ 1674 int sqlite3ColumnsFromExprList( 1675 Parse *pParse, /* Parsing context */ 1676 ExprList *pEList, /* Expr list from which to derive column names */ 1677 i16 *pnCol, /* Write the number of columns here */ 1678 Column **paCol /* Write the new column list here */ 1679 ){ 1680 sqlite3 *db = pParse->db; /* Database connection */ 1681 int i, j; /* Loop counters */ 1682 u32 cnt; /* Index added to make the name unique */ 1683 Column *aCol, *pCol; /* For looping over result columns */ 1684 int nCol; /* Number of columns in the result set */ 1685 char *zName; /* Column name */ 1686 int nName; /* Size of name in zName[] */ 1687 Hash ht; /* Hash table of column names */ 1688 1689 sqlite3HashInit(&ht); 1690 if( pEList ){ 1691 nCol = pEList->nExpr; 1692 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1693 testcase( aCol==0 ); 1694 }else{ 1695 nCol = 0; 1696 aCol = 0; 1697 } 1698 assert( nCol==(i16)nCol ); 1699 *pnCol = nCol; 1700 *paCol = aCol; 1701 1702 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1703 /* Get an appropriate name for the column 1704 */ 1705 if( (zName = pEList->a[i].zName)!=0 ){ 1706 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1707 }else{ 1708 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1709 while( pColExpr->op==TK_DOT ){ 1710 pColExpr = pColExpr->pRight; 1711 assert( pColExpr!=0 ); 1712 } 1713 if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){ 1714 /* For columns use the column name name */ 1715 int iCol = pColExpr->iColumn; 1716 Table *pTab = pColExpr->pTab; 1717 if( iCol<0 ) iCol = pTab->iPKey; 1718 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1719 }else if( pColExpr->op==TK_ID ){ 1720 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1721 zName = pColExpr->u.zToken; 1722 }else{ 1723 /* Use the original text of the column expression as its name */ 1724 zName = pEList->a[i].zSpan; 1725 } 1726 } 1727 if( zName ){ 1728 zName = sqlite3DbStrDup(db, zName); 1729 }else{ 1730 zName = sqlite3MPrintf(db,"column%d",i+1); 1731 } 1732 1733 /* Make sure the column name is unique. If the name is not unique, 1734 ** append an integer to the name so that it becomes unique. 1735 */ 1736 cnt = 0; 1737 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1738 nName = sqlite3Strlen30(zName); 1739 if( nName>0 ){ 1740 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1741 if( zName[j]==':' ) nName = j; 1742 } 1743 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1744 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1745 } 1746 pCol->zName = zName; 1747 sqlite3ColumnPropertiesFromName(0, pCol); 1748 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1749 sqlite3OomFault(db); 1750 } 1751 } 1752 sqlite3HashClear(&ht); 1753 if( db->mallocFailed ){ 1754 for(j=0; j<i; j++){ 1755 sqlite3DbFree(db, aCol[j].zName); 1756 } 1757 sqlite3DbFree(db, aCol); 1758 *paCol = 0; 1759 *pnCol = 0; 1760 return SQLITE_NOMEM_BKPT; 1761 } 1762 return SQLITE_OK; 1763 } 1764 1765 /* 1766 ** Add type and collation information to a column list based on 1767 ** a SELECT statement. 1768 ** 1769 ** The column list presumably came from selectColumnNamesFromExprList(). 1770 ** The column list has only names, not types or collations. This 1771 ** routine goes through and adds the types and collations. 1772 ** 1773 ** This routine requires that all identifiers in the SELECT 1774 ** statement be resolved. 1775 */ 1776 void sqlite3SelectAddColumnTypeAndCollation( 1777 Parse *pParse, /* Parsing contexts */ 1778 Table *pTab, /* Add column type information to this table */ 1779 Select *pSelect /* SELECT used to determine types and collations */ 1780 ){ 1781 sqlite3 *db = pParse->db; 1782 NameContext sNC; 1783 Column *pCol; 1784 CollSeq *pColl; 1785 int i; 1786 Expr *p; 1787 struct ExprList_item *a; 1788 u64 szAll = 0; 1789 1790 assert( pSelect!=0 ); 1791 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1792 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1793 if( db->mallocFailed ) return; 1794 memset(&sNC, 0, sizeof(sNC)); 1795 sNC.pSrcList = pSelect->pSrc; 1796 a = pSelect->pEList->a; 1797 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1798 const char *zType; 1799 int n, m; 1800 p = a[i].pExpr; 1801 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1802 szAll += pCol->szEst; 1803 pCol->affinity = sqlite3ExprAffinity(p); 1804 if( zType && (m = sqlite3Strlen30(zType))>0 ){ 1805 n = sqlite3Strlen30(pCol->zName); 1806 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1807 if( pCol->zName ){ 1808 memcpy(&pCol->zName[n+1], zType, m+1); 1809 pCol->colFlags |= COLFLAG_HASTYPE; 1810 } 1811 } 1812 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1813 pColl = sqlite3ExprCollSeq(pParse, p); 1814 if( pColl && pCol->zColl==0 ){ 1815 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1816 } 1817 } 1818 pTab->szTabRow = sqlite3LogEst(szAll*4); 1819 } 1820 1821 /* 1822 ** Given a SELECT statement, generate a Table structure that describes 1823 ** the result set of that SELECT. 1824 */ 1825 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1826 Table *pTab; 1827 sqlite3 *db = pParse->db; 1828 int savedFlags; 1829 1830 savedFlags = db->flags; 1831 db->flags &= ~SQLITE_FullColNames; 1832 db->flags |= SQLITE_ShortColNames; 1833 sqlite3SelectPrep(pParse, pSelect, 0); 1834 if( pParse->nErr ) return 0; 1835 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1836 db->flags = savedFlags; 1837 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1838 if( pTab==0 ){ 1839 return 0; 1840 } 1841 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1842 ** is disabled */ 1843 assert( db->lookaside.bDisable ); 1844 pTab->nTabRef = 1; 1845 pTab->zName = 0; 1846 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1847 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1848 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1849 pTab->iPKey = -1; 1850 if( db->mallocFailed ){ 1851 sqlite3DeleteTable(db, pTab); 1852 return 0; 1853 } 1854 return pTab; 1855 } 1856 1857 /* 1858 ** Get a VDBE for the given parser context. Create a new one if necessary. 1859 ** If an error occurs, return NULL and leave a message in pParse. 1860 */ 1861 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){ 1862 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1863 if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1); 1864 if( pParse->pToplevel==0 1865 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1866 ){ 1867 pParse->okConstFactor = 1; 1868 } 1869 return v; 1870 } 1871 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1872 Vdbe *v = pParse->pVdbe; 1873 return v ? v : allocVdbe(pParse); 1874 } 1875 1876 1877 /* 1878 ** Compute the iLimit and iOffset fields of the SELECT based on the 1879 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1880 ** that appear in the original SQL statement after the LIMIT and OFFSET 1881 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1882 ** are the integer memory register numbers for counters used to compute 1883 ** the limit and offset. If there is no limit and/or offset, then 1884 ** iLimit and iOffset are negative. 1885 ** 1886 ** This routine changes the values of iLimit and iOffset only if 1887 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1888 ** iOffset should have been preset to appropriate default values (zero) 1889 ** prior to calling this routine. 1890 ** 1891 ** The iOffset register (if it exists) is initialized to the value 1892 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1893 ** iOffset+1 is initialized to LIMIT+OFFSET. 1894 ** 1895 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1896 ** redefined. The UNION ALL operator uses this property to force 1897 ** the reuse of the same limit and offset registers across multiple 1898 ** SELECT statements. 1899 */ 1900 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1901 Vdbe *v = 0; 1902 int iLimit = 0; 1903 int iOffset; 1904 int n; 1905 if( p->iLimit ) return; 1906 1907 /* 1908 ** "LIMIT -1" always shows all rows. There is some 1909 ** controversy about what the correct behavior should be. 1910 ** The current implementation interprets "LIMIT 0" to mean 1911 ** no rows. 1912 */ 1913 sqlite3ExprCacheClear(pParse); 1914 assert( p->pOffset==0 || p->pLimit!=0 ); 1915 if( p->pLimit ){ 1916 p->iLimit = iLimit = ++pParse->nMem; 1917 v = sqlite3GetVdbe(pParse); 1918 assert( v!=0 ); 1919 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1920 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1921 VdbeComment((v, "LIMIT counter")); 1922 if( n==0 ){ 1923 sqlite3VdbeGoto(v, iBreak); 1924 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1925 p->nSelectRow = sqlite3LogEst((u64)n); 1926 p->selFlags |= SF_FixedLimit; 1927 } 1928 }else{ 1929 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1930 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1931 VdbeComment((v, "LIMIT counter")); 1932 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1933 } 1934 if( p->pOffset ){ 1935 p->iOffset = iOffset = ++pParse->nMem; 1936 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1937 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1938 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1939 VdbeComment((v, "OFFSET counter")); 1940 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1941 VdbeComment((v, "LIMIT+OFFSET")); 1942 } 1943 } 1944 } 1945 1946 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1947 /* 1948 ** Return the appropriate collating sequence for the iCol-th column of 1949 ** the result set for the compound-select statement "p". Return NULL if 1950 ** the column has no default collating sequence. 1951 ** 1952 ** The collating sequence for the compound select is taken from the 1953 ** left-most term of the select that has a collating sequence. 1954 */ 1955 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1956 CollSeq *pRet; 1957 if( p->pPrior ){ 1958 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1959 }else{ 1960 pRet = 0; 1961 } 1962 assert( iCol>=0 ); 1963 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1964 ** have been thrown during name resolution and we would not have gotten 1965 ** this far */ 1966 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1967 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1968 } 1969 return pRet; 1970 } 1971 1972 /* 1973 ** The select statement passed as the second parameter is a compound SELECT 1974 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1975 ** structure suitable for implementing the ORDER BY. 1976 ** 1977 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1978 ** function is responsible for ensuring that this structure is eventually 1979 ** freed. 1980 */ 1981 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1982 ExprList *pOrderBy = p->pOrderBy; 1983 int nOrderBy = p->pOrderBy->nExpr; 1984 sqlite3 *db = pParse->db; 1985 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1986 if( pRet ){ 1987 int i; 1988 for(i=0; i<nOrderBy; i++){ 1989 struct ExprList_item *pItem = &pOrderBy->a[i]; 1990 Expr *pTerm = pItem->pExpr; 1991 CollSeq *pColl; 1992 1993 if( pTerm->flags & EP_Collate ){ 1994 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1995 }else{ 1996 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1997 if( pColl==0 ) pColl = db->pDfltColl; 1998 pOrderBy->a[i].pExpr = 1999 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2000 } 2001 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2002 pRet->aColl[i] = pColl; 2003 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2004 } 2005 } 2006 2007 return pRet; 2008 } 2009 2010 #ifndef SQLITE_OMIT_CTE 2011 /* 2012 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2013 ** query of the form: 2014 ** 2015 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2016 ** \___________/ \_______________/ 2017 ** p->pPrior p 2018 ** 2019 ** 2020 ** There is exactly one reference to the recursive-table in the FROM clause 2021 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2022 ** 2023 ** The setup-query runs once to generate an initial set of rows that go 2024 ** into a Queue table. Rows are extracted from the Queue table one by 2025 ** one. Each row extracted from Queue is output to pDest. Then the single 2026 ** extracted row (now in the iCurrent table) becomes the content of the 2027 ** recursive-table for a recursive-query run. The output of the recursive-query 2028 ** is added back into the Queue table. Then another row is extracted from Queue 2029 ** and the iteration continues until the Queue table is empty. 2030 ** 2031 ** If the compound query operator is UNION then no duplicate rows are ever 2032 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2033 ** that have ever been inserted into Queue and causes duplicates to be 2034 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2035 ** 2036 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2037 ** ORDER BY order and the first entry is extracted for each cycle. Without 2038 ** an ORDER BY, the Queue table is just a FIFO. 2039 ** 2040 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2041 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2042 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2043 ** with a positive value, then the first OFFSET outputs are discarded rather 2044 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2045 ** rows have been skipped. 2046 */ 2047 static void generateWithRecursiveQuery( 2048 Parse *pParse, /* Parsing context */ 2049 Select *p, /* The recursive SELECT to be coded */ 2050 SelectDest *pDest /* What to do with query results */ 2051 ){ 2052 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2053 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2054 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2055 Select *pSetup = p->pPrior; /* The setup query */ 2056 int addrTop; /* Top of the loop */ 2057 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2058 int iCurrent = 0; /* The Current table */ 2059 int regCurrent; /* Register holding Current table */ 2060 int iQueue; /* The Queue table */ 2061 int iDistinct = 0; /* To ensure unique results if UNION */ 2062 int eDest = SRT_Fifo; /* How to write to Queue */ 2063 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2064 int i; /* Loop counter */ 2065 int rc; /* Result code */ 2066 ExprList *pOrderBy; /* The ORDER BY clause */ 2067 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 2068 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2069 2070 /* Obtain authorization to do a recursive query */ 2071 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2072 2073 /* Process the LIMIT and OFFSET clauses, if they exist */ 2074 addrBreak = sqlite3VdbeMakeLabel(v); 2075 p->nSelectRow = 320; /* 4 billion rows */ 2076 computeLimitRegisters(pParse, p, addrBreak); 2077 pLimit = p->pLimit; 2078 pOffset = p->pOffset; 2079 regLimit = p->iLimit; 2080 regOffset = p->iOffset; 2081 p->pLimit = p->pOffset = 0; 2082 p->iLimit = p->iOffset = 0; 2083 pOrderBy = p->pOrderBy; 2084 2085 /* Locate the cursor number of the Current table */ 2086 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2087 if( pSrc->a[i].fg.isRecursive ){ 2088 iCurrent = pSrc->a[i].iCursor; 2089 break; 2090 } 2091 } 2092 2093 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2094 ** the Distinct table must be exactly one greater than Queue in order 2095 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2096 iQueue = pParse->nTab++; 2097 if( p->op==TK_UNION ){ 2098 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2099 iDistinct = pParse->nTab++; 2100 }else{ 2101 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2102 } 2103 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2104 2105 /* Allocate cursors for Current, Queue, and Distinct. */ 2106 regCurrent = ++pParse->nMem; 2107 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2108 if( pOrderBy ){ 2109 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2110 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2111 (char*)pKeyInfo, P4_KEYINFO); 2112 destQueue.pOrderBy = pOrderBy; 2113 }else{ 2114 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2115 } 2116 VdbeComment((v, "Queue table")); 2117 if( iDistinct ){ 2118 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2119 p->selFlags |= SF_UsesEphemeral; 2120 } 2121 2122 /* Detach the ORDER BY clause from the compound SELECT */ 2123 p->pOrderBy = 0; 2124 2125 /* Store the results of the setup-query in Queue. */ 2126 pSetup->pNext = 0; 2127 rc = sqlite3Select(pParse, pSetup, &destQueue); 2128 pSetup->pNext = p; 2129 if( rc ) goto end_of_recursive_query; 2130 2131 /* Find the next row in the Queue and output that row */ 2132 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2133 2134 /* Transfer the next row in Queue over to Current */ 2135 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2136 if( pOrderBy ){ 2137 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2138 }else{ 2139 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2140 } 2141 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2142 2143 /* Output the single row in Current */ 2144 addrCont = sqlite3VdbeMakeLabel(v); 2145 codeOffset(v, regOffset, addrCont); 2146 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2147 0, 0, pDest, addrCont, addrBreak); 2148 if( regLimit ){ 2149 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2150 VdbeCoverage(v); 2151 } 2152 sqlite3VdbeResolveLabel(v, addrCont); 2153 2154 /* Execute the recursive SELECT taking the single row in Current as 2155 ** the value for the recursive-table. Store the results in the Queue. 2156 */ 2157 if( p->selFlags & SF_Aggregate ){ 2158 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2159 }else{ 2160 p->pPrior = 0; 2161 sqlite3Select(pParse, p, &destQueue); 2162 assert( p->pPrior==0 ); 2163 p->pPrior = pSetup; 2164 } 2165 2166 /* Keep running the loop until the Queue is empty */ 2167 sqlite3VdbeGoto(v, addrTop); 2168 sqlite3VdbeResolveLabel(v, addrBreak); 2169 2170 end_of_recursive_query: 2171 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2172 p->pOrderBy = pOrderBy; 2173 p->pLimit = pLimit; 2174 p->pOffset = pOffset; 2175 return; 2176 } 2177 #endif /* SQLITE_OMIT_CTE */ 2178 2179 /* Forward references */ 2180 static int multiSelectOrderBy( 2181 Parse *pParse, /* Parsing context */ 2182 Select *p, /* The right-most of SELECTs to be coded */ 2183 SelectDest *pDest /* What to do with query results */ 2184 ); 2185 2186 /* 2187 ** Handle the special case of a compound-select that originates from a 2188 ** VALUES clause. By handling this as a special case, we avoid deep 2189 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2190 ** on a VALUES clause. 2191 ** 2192 ** Because the Select object originates from a VALUES clause: 2193 ** (1) It has no LIMIT or OFFSET 2194 ** (2) All terms are UNION ALL 2195 ** (3) There is no ORDER BY clause 2196 */ 2197 static int multiSelectValues( 2198 Parse *pParse, /* Parsing context */ 2199 Select *p, /* The right-most of SELECTs to be coded */ 2200 SelectDest *pDest /* What to do with query results */ 2201 ){ 2202 Select *pPrior; 2203 int nRow = 1; 2204 int rc = 0; 2205 assert( p->selFlags & SF_MultiValue ); 2206 do{ 2207 assert( p->selFlags & SF_Values ); 2208 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2209 assert( p->pLimit==0 ); 2210 assert( p->pOffset==0 ); 2211 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2212 if( p->pPrior==0 ) break; 2213 assert( p->pPrior->pNext==p ); 2214 p = p->pPrior; 2215 nRow++; 2216 }while(1); 2217 while( p ){ 2218 pPrior = p->pPrior; 2219 p->pPrior = 0; 2220 rc = sqlite3Select(pParse, p, pDest); 2221 p->pPrior = pPrior; 2222 if( rc ) break; 2223 p->nSelectRow = nRow; 2224 p = p->pNext; 2225 } 2226 return rc; 2227 } 2228 2229 /* 2230 ** This routine is called to process a compound query form from 2231 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2232 ** INTERSECT 2233 ** 2234 ** "p" points to the right-most of the two queries. the query on the 2235 ** left is p->pPrior. The left query could also be a compound query 2236 ** in which case this routine will be called recursively. 2237 ** 2238 ** The results of the total query are to be written into a destination 2239 ** of type eDest with parameter iParm. 2240 ** 2241 ** Example 1: Consider a three-way compound SQL statement. 2242 ** 2243 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2244 ** 2245 ** This statement is parsed up as follows: 2246 ** 2247 ** SELECT c FROM t3 2248 ** | 2249 ** `-----> SELECT b FROM t2 2250 ** | 2251 ** `------> SELECT a FROM t1 2252 ** 2253 ** The arrows in the diagram above represent the Select.pPrior pointer. 2254 ** So if this routine is called with p equal to the t3 query, then 2255 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2256 ** 2257 ** Notice that because of the way SQLite parses compound SELECTs, the 2258 ** individual selects always group from left to right. 2259 */ 2260 static int multiSelect( 2261 Parse *pParse, /* Parsing context */ 2262 Select *p, /* The right-most of SELECTs to be coded */ 2263 SelectDest *pDest /* What to do with query results */ 2264 ){ 2265 int rc = SQLITE_OK; /* Success code from a subroutine */ 2266 Select *pPrior; /* Another SELECT immediately to our left */ 2267 Vdbe *v; /* Generate code to this VDBE */ 2268 SelectDest dest; /* Alternative data destination */ 2269 Select *pDelete = 0; /* Chain of simple selects to delete */ 2270 sqlite3 *db; /* Database connection */ 2271 #ifndef SQLITE_OMIT_EXPLAIN 2272 int iSub1 = 0; /* EQP id of left-hand query */ 2273 int iSub2 = 0; /* EQP id of right-hand query */ 2274 #endif 2275 2276 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2277 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2278 */ 2279 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2280 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2281 db = pParse->db; 2282 pPrior = p->pPrior; 2283 dest = *pDest; 2284 if( pPrior->pOrderBy ){ 2285 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2286 selectOpName(p->op)); 2287 rc = 1; 2288 goto multi_select_end; 2289 } 2290 if( pPrior->pLimit ){ 2291 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2292 selectOpName(p->op)); 2293 rc = 1; 2294 goto multi_select_end; 2295 } 2296 2297 v = sqlite3GetVdbe(pParse); 2298 assert( v!=0 ); /* The VDBE already created by calling function */ 2299 2300 /* Create the destination temporary table if necessary 2301 */ 2302 if( dest.eDest==SRT_EphemTab ){ 2303 assert( p->pEList ); 2304 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2305 dest.eDest = SRT_Table; 2306 } 2307 2308 /* Special handling for a compound-select that originates as a VALUES clause. 2309 */ 2310 if( p->selFlags & SF_MultiValue ){ 2311 rc = multiSelectValues(pParse, p, &dest); 2312 goto multi_select_end; 2313 } 2314 2315 /* Make sure all SELECTs in the statement have the same number of elements 2316 ** in their result sets. 2317 */ 2318 assert( p->pEList && pPrior->pEList ); 2319 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2320 2321 #ifndef SQLITE_OMIT_CTE 2322 if( p->selFlags & SF_Recursive ){ 2323 generateWithRecursiveQuery(pParse, p, &dest); 2324 }else 2325 #endif 2326 2327 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2328 */ 2329 if( p->pOrderBy ){ 2330 return multiSelectOrderBy(pParse, p, pDest); 2331 }else 2332 2333 /* Generate code for the left and right SELECT statements. 2334 */ 2335 switch( p->op ){ 2336 case TK_ALL: { 2337 int addr = 0; 2338 int nLimit; 2339 assert( !pPrior->pLimit ); 2340 pPrior->iLimit = p->iLimit; 2341 pPrior->iOffset = p->iOffset; 2342 pPrior->pLimit = p->pLimit; 2343 pPrior->pOffset = p->pOffset; 2344 explainSetInteger(iSub1, pParse->iNextSelectId); 2345 rc = sqlite3Select(pParse, pPrior, &dest); 2346 p->pLimit = 0; 2347 p->pOffset = 0; 2348 if( rc ){ 2349 goto multi_select_end; 2350 } 2351 p->pPrior = 0; 2352 p->iLimit = pPrior->iLimit; 2353 p->iOffset = pPrior->iOffset; 2354 if( p->iLimit ){ 2355 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2356 VdbeComment((v, "Jump ahead if LIMIT reached")); 2357 if( p->iOffset ){ 2358 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2359 p->iLimit, p->iOffset+1, p->iOffset); 2360 } 2361 } 2362 explainSetInteger(iSub2, pParse->iNextSelectId); 2363 rc = sqlite3Select(pParse, p, &dest); 2364 testcase( rc!=SQLITE_OK ); 2365 pDelete = p->pPrior; 2366 p->pPrior = pPrior; 2367 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2368 if( pPrior->pLimit 2369 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2370 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2371 ){ 2372 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2373 } 2374 if( addr ){ 2375 sqlite3VdbeJumpHere(v, addr); 2376 } 2377 break; 2378 } 2379 case TK_EXCEPT: 2380 case TK_UNION: { 2381 int unionTab; /* Cursor number of the temporary table holding result */ 2382 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2383 int priorOp; /* The SRT_ operation to apply to prior selects */ 2384 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2385 int addr; 2386 SelectDest uniondest; 2387 2388 testcase( p->op==TK_EXCEPT ); 2389 testcase( p->op==TK_UNION ); 2390 priorOp = SRT_Union; 2391 if( dest.eDest==priorOp ){ 2392 /* We can reuse a temporary table generated by a SELECT to our 2393 ** right. 2394 */ 2395 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2396 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2397 unionTab = dest.iSDParm; 2398 }else{ 2399 /* We will need to create our own temporary table to hold the 2400 ** intermediate results. 2401 */ 2402 unionTab = pParse->nTab++; 2403 assert( p->pOrderBy==0 ); 2404 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2405 assert( p->addrOpenEphm[0] == -1 ); 2406 p->addrOpenEphm[0] = addr; 2407 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2408 assert( p->pEList ); 2409 } 2410 2411 /* Code the SELECT statements to our left 2412 */ 2413 assert( !pPrior->pOrderBy ); 2414 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2415 explainSetInteger(iSub1, pParse->iNextSelectId); 2416 rc = sqlite3Select(pParse, pPrior, &uniondest); 2417 if( rc ){ 2418 goto multi_select_end; 2419 } 2420 2421 /* Code the current SELECT statement 2422 */ 2423 if( p->op==TK_EXCEPT ){ 2424 op = SRT_Except; 2425 }else{ 2426 assert( p->op==TK_UNION ); 2427 op = SRT_Union; 2428 } 2429 p->pPrior = 0; 2430 pLimit = p->pLimit; 2431 p->pLimit = 0; 2432 pOffset = p->pOffset; 2433 p->pOffset = 0; 2434 uniondest.eDest = op; 2435 explainSetInteger(iSub2, pParse->iNextSelectId); 2436 rc = sqlite3Select(pParse, p, &uniondest); 2437 testcase( rc!=SQLITE_OK ); 2438 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2439 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2440 sqlite3ExprListDelete(db, p->pOrderBy); 2441 pDelete = p->pPrior; 2442 p->pPrior = pPrior; 2443 p->pOrderBy = 0; 2444 if( p->op==TK_UNION ){ 2445 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2446 } 2447 sqlite3ExprDelete(db, p->pLimit); 2448 p->pLimit = pLimit; 2449 p->pOffset = pOffset; 2450 p->iLimit = 0; 2451 p->iOffset = 0; 2452 2453 /* Convert the data in the temporary table into whatever form 2454 ** it is that we currently need. 2455 */ 2456 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2457 if( dest.eDest!=priorOp ){ 2458 int iCont, iBreak, iStart; 2459 assert( p->pEList ); 2460 iBreak = sqlite3VdbeMakeLabel(v); 2461 iCont = sqlite3VdbeMakeLabel(v); 2462 computeLimitRegisters(pParse, p, iBreak); 2463 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2464 iStart = sqlite3VdbeCurrentAddr(v); 2465 selectInnerLoop(pParse, p, p->pEList, unionTab, 2466 0, 0, &dest, iCont, iBreak); 2467 sqlite3VdbeResolveLabel(v, iCont); 2468 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2469 sqlite3VdbeResolveLabel(v, iBreak); 2470 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2471 } 2472 break; 2473 } 2474 default: assert( p->op==TK_INTERSECT ); { 2475 int tab1, tab2; 2476 int iCont, iBreak, iStart; 2477 Expr *pLimit, *pOffset; 2478 int addr; 2479 SelectDest intersectdest; 2480 int r1; 2481 2482 /* INTERSECT is different from the others since it requires 2483 ** two temporary tables. Hence it has its own case. Begin 2484 ** by allocating the tables we will need. 2485 */ 2486 tab1 = pParse->nTab++; 2487 tab2 = pParse->nTab++; 2488 assert( p->pOrderBy==0 ); 2489 2490 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2491 assert( p->addrOpenEphm[0] == -1 ); 2492 p->addrOpenEphm[0] = addr; 2493 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2494 assert( p->pEList ); 2495 2496 /* Code the SELECTs to our left into temporary table "tab1". 2497 */ 2498 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2499 explainSetInteger(iSub1, pParse->iNextSelectId); 2500 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2501 if( rc ){ 2502 goto multi_select_end; 2503 } 2504 2505 /* Code the current SELECT into temporary table "tab2" 2506 */ 2507 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2508 assert( p->addrOpenEphm[1] == -1 ); 2509 p->addrOpenEphm[1] = addr; 2510 p->pPrior = 0; 2511 pLimit = p->pLimit; 2512 p->pLimit = 0; 2513 pOffset = p->pOffset; 2514 p->pOffset = 0; 2515 intersectdest.iSDParm = tab2; 2516 explainSetInteger(iSub2, pParse->iNextSelectId); 2517 rc = sqlite3Select(pParse, p, &intersectdest); 2518 testcase( rc!=SQLITE_OK ); 2519 pDelete = p->pPrior; 2520 p->pPrior = pPrior; 2521 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2522 sqlite3ExprDelete(db, p->pLimit); 2523 p->pLimit = pLimit; 2524 p->pOffset = pOffset; 2525 2526 /* Generate code to take the intersection of the two temporary 2527 ** tables. 2528 */ 2529 assert( p->pEList ); 2530 iBreak = sqlite3VdbeMakeLabel(v); 2531 iCont = sqlite3VdbeMakeLabel(v); 2532 computeLimitRegisters(pParse, p, iBreak); 2533 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2534 r1 = sqlite3GetTempReg(pParse); 2535 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2536 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2537 sqlite3ReleaseTempReg(pParse, r1); 2538 selectInnerLoop(pParse, p, p->pEList, tab1, 2539 0, 0, &dest, iCont, iBreak); 2540 sqlite3VdbeResolveLabel(v, iCont); 2541 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2542 sqlite3VdbeResolveLabel(v, iBreak); 2543 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2544 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2545 break; 2546 } 2547 } 2548 2549 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2550 2551 /* Compute collating sequences used by 2552 ** temporary tables needed to implement the compound select. 2553 ** Attach the KeyInfo structure to all temporary tables. 2554 ** 2555 ** This section is run by the right-most SELECT statement only. 2556 ** SELECT statements to the left always skip this part. The right-most 2557 ** SELECT might also skip this part if it has no ORDER BY clause and 2558 ** no temp tables are required. 2559 */ 2560 if( p->selFlags & SF_UsesEphemeral ){ 2561 int i; /* Loop counter */ 2562 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2563 Select *pLoop; /* For looping through SELECT statements */ 2564 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2565 int nCol; /* Number of columns in result set */ 2566 2567 assert( p->pNext==0 ); 2568 nCol = p->pEList->nExpr; 2569 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2570 if( !pKeyInfo ){ 2571 rc = SQLITE_NOMEM_BKPT; 2572 goto multi_select_end; 2573 } 2574 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2575 *apColl = multiSelectCollSeq(pParse, p, i); 2576 if( 0==*apColl ){ 2577 *apColl = db->pDfltColl; 2578 } 2579 } 2580 2581 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2582 for(i=0; i<2; i++){ 2583 int addr = pLoop->addrOpenEphm[i]; 2584 if( addr<0 ){ 2585 /* If [0] is unused then [1] is also unused. So we can 2586 ** always safely abort as soon as the first unused slot is found */ 2587 assert( pLoop->addrOpenEphm[1]<0 ); 2588 break; 2589 } 2590 sqlite3VdbeChangeP2(v, addr, nCol); 2591 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2592 P4_KEYINFO); 2593 pLoop->addrOpenEphm[i] = -1; 2594 } 2595 } 2596 sqlite3KeyInfoUnref(pKeyInfo); 2597 } 2598 2599 multi_select_end: 2600 pDest->iSdst = dest.iSdst; 2601 pDest->nSdst = dest.nSdst; 2602 sqlite3SelectDelete(db, pDelete); 2603 return rc; 2604 } 2605 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2606 2607 /* 2608 ** Error message for when two or more terms of a compound select have different 2609 ** size result sets. 2610 */ 2611 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2612 if( p->selFlags & SF_Values ){ 2613 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2614 }else{ 2615 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2616 " do not have the same number of result columns", selectOpName(p->op)); 2617 } 2618 } 2619 2620 /* 2621 ** Code an output subroutine for a coroutine implementation of a 2622 ** SELECT statment. 2623 ** 2624 ** The data to be output is contained in pIn->iSdst. There are 2625 ** pIn->nSdst columns to be output. pDest is where the output should 2626 ** be sent. 2627 ** 2628 ** regReturn is the number of the register holding the subroutine 2629 ** return address. 2630 ** 2631 ** If regPrev>0 then it is the first register in a vector that 2632 ** records the previous output. mem[regPrev] is a flag that is false 2633 ** if there has been no previous output. If regPrev>0 then code is 2634 ** generated to suppress duplicates. pKeyInfo is used for comparing 2635 ** keys. 2636 ** 2637 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2638 ** iBreak. 2639 */ 2640 static int generateOutputSubroutine( 2641 Parse *pParse, /* Parsing context */ 2642 Select *p, /* The SELECT statement */ 2643 SelectDest *pIn, /* Coroutine supplying data */ 2644 SelectDest *pDest, /* Where to send the data */ 2645 int regReturn, /* The return address register */ 2646 int regPrev, /* Previous result register. No uniqueness if 0 */ 2647 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2648 int iBreak /* Jump here if we hit the LIMIT */ 2649 ){ 2650 Vdbe *v = pParse->pVdbe; 2651 int iContinue; 2652 int addr; 2653 2654 addr = sqlite3VdbeCurrentAddr(v); 2655 iContinue = sqlite3VdbeMakeLabel(v); 2656 2657 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2658 */ 2659 if( regPrev ){ 2660 int addr1, addr2; 2661 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2662 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2663 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2664 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2665 sqlite3VdbeJumpHere(v, addr1); 2666 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2667 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2668 } 2669 if( pParse->db->mallocFailed ) return 0; 2670 2671 /* Suppress the first OFFSET entries if there is an OFFSET clause 2672 */ 2673 codeOffset(v, p->iOffset, iContinue); 2674 2675 assert( pDest->eDest!=SRT_Exists ); 2676 assert( pDest->eDest!=SRT_Table ); 2677 switch( pDest->eDest ){ 2678 /* Store the result as data using a unique key. 2679 */ 2680 case SRT_EphemTab: { 2681 int r1 = sqlite3GetTempReg(pParse); 2682 int r2 = sqlite3GetTempReg(pParse); 2683 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2684 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2685 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2686 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2687 sqlite3ReleaseTempReg(pParse, r2); 2688 sqlite3ReleaseTempReg(pParse, r1); 2689 break; 2690 } 2691 2692 #ifndef SQLITE_OMIT_SUBQUERY 2693 /* If we are creating a set for an "expr IN (SELECT ...)". 2694 */ 2695 case SRT_Set: { 2696 int r1; 2697 testcase( pIn->nSdst>1 ); 2698 r1 = sqlite3GetTempReg(pParse); 2699 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2700 r1, pDest->zAffSdst, pIn->nSdst); 2701 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2702 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2703 pIn->iSdst, pIn->nSdst); 2704 sqlite3ReleaseTempReg(pParse, r1); 2705 break; 2706 } 2707 2708 /* If this is a scalar select that is part of an expression, then 2709 ** store the results in the appropriate memory cell and break out 2710 ** of the scan loop. 2711 */ 2712 case SRT_Mem: { 2713 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2714 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2715 /* The LIMIT clause will jump out of the loop for us */ 2716 break; 2717 } 2718 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2719 2720 /* The results are stored in a sequence of registers 2721 ** starting at pDest->iSdst. Then the co-routine yields. 2722 */ 2723 case SRT_Coroutine: { 2724 if( pDest->iSdst==0 ){ 2725 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2726 pDest->nSdst = pIn->nSdst; 2727 } 2728 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2729 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2730 break; 2731 } 2732 2733 /* If none of the above, then the result destination must be 2734 ** SRT_Output. This routine is never called with any other 2735 ** destination other than the ones handled above or SRT_Output. 2736 ** 2737 ** For SRT_Output, results are stored in a sequence of registers. 2738 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2739 ** return the next row of result. 2740 */ 2741 default: { 2742 assert( pDest->eDest==SRT_Output ); 2743 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2744 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2745 break; 2746 } 2747 } 2748 2749 /* Jump to the end of the loop if the LIMIT is reached. 2750 */ 2751 if( p->iLimit ){ 2752 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2753 } 2754 2755 /* Generate the subroutine return 2756 */ 2757 sqlite3VdbeResolveLabel(v, iContinue); 2758 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2759 2760 return addr; 2761 } 2762 2763 /* 2764 ** Alternative compound select code generator for cases when there 2765 ** is an ORDER BY clause. 2766 ** 2767 ** We assume a query of the following form: 2768 ** 2769 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2770 ** 2771 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2772 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2773 ** co-routines. Then run the co-routines in parallel and merge the results 2774 ** into the output. In addition to the two coroutines (called selectA and 2775 ** selectB) there are 7 subroutines: 2776 ** 2777 ** outA: Move the output of the selectA coroutine into the output 2778 ** of the compound query. 2779 ** 2780 ** outB: Move the output of the selectB coroutine into the output 2781 ** of the compound query. (Only generated for UNION and 2782 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2783 ** appears only in B.) 2784 ** 2785 ** AltB: Called when there is data from both coroutines and A<B. 2786 ** 2787 ** AeqB: Called when there is data from both coroutines and A==B. 2788 ** 2789 ** AgtB: Called when there is data from both coroutines and A>B. 2790 ** 2791 ** EofA: Called when data is exhausted from selectA. 2792 ** 2793 ** EofB: Called when data is exhausted from selectB. 2794 ** 2795 ** The implementation of the latter five subroutines depend on which 2796 ** <operator> is used: 2797 ** 2798 ** 2799 ** UNION ALL UNION EXCEPT INTERSECT 2800 ** ------------- ----------------- -------------- ----------------- 2801 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2802 ** 2803 ** AeqB: outA, nextA nextA nextA outA, nextA 2804 ** 2805 ** AgtB: outB, nextB outB, nextB nextB nextB 2806 ** 2807 ** EofA: outB, nextB outB, nextB halt halt 2808 ** 2809 ** EofB: outA, nextA outA, nextA outA, nextA halt 2810 ** 2811 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2812 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2813 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2814 ** following nextX causes a jump to the end of the select processing. 2815 ** 2816 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2817 ** within the output subroutine. The regPrev register set holds the previously 2818 ** output value. A comparison is made against this value and the output 2819 ** is skipped if the next results would be the same as the previous. 2820 ** 2821 ** The implementation plan is to implement the two coroutines and seven 2822 ** subroutines first, then put the control logic at the bottom. Like this: 2823 ** 2824 ** goto Init 2825 ** coA: coroutine for left query (A) 2826 ** coB: coroutine for right query (B) 2827 ** outA: output one row of A 2828 ** outB: output one row of B (UNION and UNION ALL only) 2829 ** EofA: ... 2830 ** EofB: ... 2831 ** AltB: ... 2832 ** AeqB: ... 2833 ** AgtB: ... 2834 ** Init: initialize coroutine registers 2835 ** yield coA 2836 ** if eof(A) goto EofA 2837 ** yield coB 2838 ** if eof(B) goto EofB 2839 ** Cmpr: Compare A, B 2840 ** Jump AltB, AeqB, AgtB 2841 ** End: ... 2842 ** 2843 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2844 ** actually called using Gosub and they do not Return. EofA and EofB loop 2845 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2846 ** and AgtB jump to either L2 or to one of EofA or EofB. 2847 */ 2848 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2849 static int multiSelectOrderBy( 2850 Parse *pParse, /* Parsing context */ 2851 Select *p, /* The right-most of SELECTs to be coded */ 2852 SelectDest *pDest /* What to do with query results */ 2853 ){ 2854 int i, j; /* Loop counters */ 2855 Select *pPrior; /* Another SELECT immediately to our left */ 2856 Vdbe *v; /* Generate code to this VDBE */ 2857 SelectDest destA; /* Destination for coroutine A */ 2858 SelectDest destB; /* Destination for coroutine B */ 2859 int regAddrA; /* Address register for select-A coroutine */ 2860 int regAddrB; /* Address register for select-B coroutine */ 2861 int addrSelectA; /* Address of the select-A coroutine */ 2862 int addrSelectB; /* Address of the select-B coroutine */ 2863 int regOutA; /* Address register for the output-A subroutine */ 2864 int regOutB; /* Address register for the output-B subroutine */ 2865 int addrOutA; /* Address of the output-A subroutine */ 2866 int addrOutB = 0; /* Address of the output-B subroutine */ 2867 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2868 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2869 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2870 int addrAltB; /* Address of the A<B subroutine */ 2871 int addrAeqB; /* Address of the A==B subroutine */ 2872 int addrAgtB; /* Address of the A>B subroutine */ 2873 int regLimitA; /* Limit register for select-A */ 2874 int regLimitB; /* Limit register for select-A */ 2875 int regPrev; /* A range of registers to hold previous output */ 2876 int savedLimit; /* Saved value of p->iLimit */ 2877 int savedOffset; /* Saved value of p->iOffset */ 2878 int labelCmpr; /* Label for the start of the merge algorithm */ 2879 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2880 int addr1; /* Jump instructions that get retargetted */ 2881 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2882 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2883 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2884 sqlite3 *db; /* Database connection */ 2885 ExprList *pOrderBy; /* The ORDER BY clause */ 2886 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2887 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2888 #ifndef SQLITE_OMIT_EXPLAIN 2889 int iSub1; /* EQP id of left-hand query */ 2890 int iSub2; /* EQP id of right-hand query */ 2891 #endif 2892 2893 assert( p->pOrderBy!=0 ); 2894 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2895 db = pParse->db; 2896 v = pParse->pVdbe; 2897 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2898 labelEnd = sqlite3VdbeMakeLabel(v); 2899 labelCmpr = sqlite3VdbeMakeLabel(v); 2900 2901 2902 /* Patch up the ORDER BY clause 2903 */ 2904 op = p->op; 2905 pPrior = p->pPrior; 2906 assert( pPrior->pOrderBy==0 ); 2907 pOrderBy = p->pOrderBy; 2908 assert( pOrderBy ); 2909 nOrderBy = pOrderBy->nExpr; 2910 2911 /* For operators other than UNION ALL we have to make sure that 2912 ** the ORDER BY clause covers every term of the result set. Add 2913 ** terms to the ORDER BY clause as necessary. 2914 */ 2915 if( op!=TK_ALL ){ 2916 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2917 struct ExprList_item *pItem; 2918 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2919 assert( pItem->u.x.iOrderByCol>0 ); 2920 if( pItem->u.x.iOrderByCol==i ) break; 2921 } 2922 if( j==nOrderBy ){ 2923 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2924 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2925 pNew->flags |= EP_IntValue; 2926 pNew->u.iValue = i; 2927 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2928 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2929 } 2930 } 2931 } 2932 2933 /* Compute the comparison permutation and keyinfo that is used with 2934 ** the permutation used to determine if the next 2935 ** row of results comes from selectA or selectB. Also add explicit 2936 ** collations to the ORDER BY clause terms so that when the subqueries 2937 ** to the right and the left are evaluated, they use the correct 2938 ** collation. 2939 */ 2940 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2941 if( aPermute ){ 2942 struct ExprList_item *pItem; 2943 aPermute[0] = nOrderBy; 2944 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2945 assert( pItem->u.x.iOrderByCol>0 ); 2946 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2947 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2948 } 2949 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2950 }else{ 2951 pKeyMerge = 0; 2952 } 2953 2954 /* Reattach the ORDER BY clause to the query. 2955 */ 2956 p->pOrderBy = pOrderBy; 2957 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2958 2959 /* Allocate a range of temporary registers and the KeyInfo needed 2960 ** for the logic that removes duplicate result rows when the 2961 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2962 */ 2963 if( op==TK_ALL ){ 2964 regPrev = 0; 2965 }else{ 2966 int nExpr = p->pEList->nExpr; 2967 assert( nOrderBy>=nExpr || db->mallocFailed ); 2968 regPrev = pParse->nMem+1; 2969 pParse->nMem += nExpr+1; 2970 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2971 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2972 if( pKeyDup ){ 2973 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2974 for(i=0; i<nExpr; i++){ 2975 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2976 pKeyDup->aSortOrder[i] = 0; 2977 } 2978 } 2979 } 2980 2981 /* Separate the left and the right query from one another 2982 */ 2983 p->pPrior = 0; 2984 pPrior->pNext = 0; 2985 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2986 if( pPrior->pPrior==0 ){ 2987 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2988 } 2989 2990 /* Compute the limit registers */ 2991 computeLimitRegisters(pParse, p, labelEnd); 2992 if( p->iLimit && op==TK_ALL ){ 2993 regLimitA = ++pParse->nMem; 2994 regLimitB = ++pParse->nMem; 2995 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2996 regLimitA); 2997 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2998 }else{ 2999 regLimitA = regLimitB = 0; 3000 } 3001 sqlite3ExprDelete(db, p->pLimit); 3002 p->pLimit = 0; 3003 sqlite3ExprDelete(db, p->pOffset); 3004 p->pOffset = 0; 3005 3006 regAddrA = ++pParse->nMem; 3007 regAddrB = ++pParse->nMem; 3008 regOutA = ++pParse->nMem; 3009 regOutB = ++pParse->nMem; 3010 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3011 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3012 3013 /* Generate a coroutine to evaluate the SELECT statement to the 3014 ** left of the compound operator - the "A" select. 3015 */ 3016 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3017 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3018 VdbeComment((v, "left SELECT")); 3019 pPrior->iLimit = regLimitA; 3020 explainSetInteger(iSub1, pParse->iNextSelectId); 3021 sqlite3Select(pParse, pPrior, &destA); 3022 sqlite3VdbeEndCoroutine(v, regAddrA); 3023 sqlite3VdbeJumpHere(v, addr1); 3024 3025 /* Generate a coroutine to evaluate the SELECT statement on 3026 ** the right - the "B" select 3027 */ 3028 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3029 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3030 VdbeComment((v, "right SELECT")); 3031 savedLimit = p->iLimit; 3032 savedOffset = p->iOffset; 3033 p->iLimit = regLimitB; 3034 p->iOffset = 0; 3035 explainSetInteger(iSub2, pParse->iNextSelectId); 3036 sqlite3Select(pParse, p, &destB); 3037 p->iLimit = savedLimit; 3038 p->iOffset = savedOffset; 3039 sqlite3VdbeEndCoroutine(v, regAddrB); 3040 3041 /* Generate a subroutine that outputs the current row of the A 3042 ** select as the next output row of the compound select. 3043 */ 3044 VdbeNoopComment((v, "Output routine for A")); 3045 addrOutA = generateOutputSubroutine(pParse, 3046 p, &destA, pDest, regOutA, 3047 regPrev, pKeyDup, labelEnd); 3048 3049 /* Generate a subroutine that outputs the current row of the B 3050 ** select as the next output row of the compound select. 3051 */ 3052 if( op==TK_ALL || op==TK_UNION ){ 3053 VdbeNoopComment((v, "Output routine for B")); 3054 addrOutB = generateOutputSubroutine(pParse, 3055 p, &destB, pDest, regOutB, 3056 regPrev, pKeyDup, labelEnd); 3057 } 3058 sqlite3KeyInfoUnref(pKeyDup); 3059 3060 /* Generate a subroutine to run when the results from select A 3061 ** are exhausted and only data in select B remains. 3062 */ 3063 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3064 addrEofA_noB = addrEofA = labelEnd; 3065 }else{ 3066 VdbeNoopComment((v, "eof-A subroutine")); 3067 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3068 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3069 VdbeCoverage(v); 3070 sqlite3VdbeGoto(v, addrEofA); 3071 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3072 } 3073 3074 /* Generate a subroutine to run when the results from select B 3075 ** are exhausted and only data in select A remains. 3076 */ 3077 if( op==TK_INTERSECT ){ 3078 addrEofB = addrEofA; 3079 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3080 }else{ 3081 VdbeNoopComment((v, "eof-B subroutine")); 3082 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3083 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3084 sqlite3VdbeGoto(v, addrEofB); 3085 } 3086 3087 /* Generate code to handle the case of A<B 3088 */ 3089 VdbeNoopComment((v, "A-lt-B subroutine")); 3090 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3091 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3092 sqlite3VdbeGoto(v, labelCmpr); 3093 3094 /* Generate code to handle the case of A==B 3095 */ 3096 if( op==TK_ALL ){ 3097 addrAeqB = addrAltB; 3098 }else if( op==TK_INTERSECT ){ 3099 addrAeqB = addrAltB; 3100 addrAltB++; 3101 }else{ 3102 VdbeNoopComment((v, "A-eq-B subroutine")); 3103 addrAeqB = 3104 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3105 sqlite3VdbeGoto(v, labelCmpr); 3106 } 3107 3108 /* Generate code to handle the case of A>B 3109 */ 3110 VdbeNoopComment((v, "A-gt-B subroutine")); 3111 addrAgtB = sqlite3VdbeCurrentAddr(v); 3112 if( op==TK_ALL || op==TK_UNION ){ 3113 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3114 } 3115 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3116 sqlite3VdbeGoto(v, labelCmpr); 3117 3118 /* This code runs once to initialize everything. 3119 */ 3120 sqlite3VdbeJumpHere(v, addr1); 3121 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3122 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3123 3124 /* Implement the main merge loop 3125 */ 3126 sqlite3VdbeResolveLabel(v, labelCmpr); 3127 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3128 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3129 (char*)pKeyMerge, P4_KEYINFO); 3130 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3131 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3132 3133 /* Jump to the this point in order to terminate the query. 3134 */ 3135 sqlite3VdbeResolveLabel(v, labelEnd); 3136 3137 /* Reassembly the compound query so that it will be freed correctly 3138 ** by the calling function */ 3139 if( p->pPrior ){ 3140 sqlite3SelectDelete(db, p->pPrior); 3141 } 3142 p->pPrior = pPrior; 3143 pPrior->pNext = p; 3144 3145 /*** TBD: Insert subroutine calls to close cursors on incomplete 3146 **** subqueries ****/ 3147 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3148 return pParse->nErr!=0; 3149 } 3150 #endif 3151 3152 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3153 3154 /* An instance of the SubstContext object describes an substitution edit 3155 ** to be performed on a parse tree. 3156 ** 3157 ** All references to columns in table iTable are to be replaced by corresponding 3158 ** expressions in pEList. 3159 */ 3160 typedef struct SubstContext { 3161 Parse *pParse; /* The parsing context */ 3162 int iTable; /* Replace references to this table */ 3163 int iNewTable; /* New table number */ 3164 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3165 ExprList *pEList; /* Replacement expressions */ 3166 } SubstContext; 3167 3168 /* Forward Declarations */ 3169 static void substExprList(SubstContext*, ExprList*); 3170 static void substSelect(SubstContext*, Select*, int); 3171 3172 /* 3173 ** Scan through the expression pExpr. Replace every reference to 3174 ** a column in table number iTable with a copy of the iColumn-th 3175 ** entry in pEList. (But leave references to the ROWID column 3176 ** unchanged.) 3177 ** 3178 ** This routine is part of the flattening procedure. A subquery 3179 ** whose result set is defined by pEList appears as entry in the 3180 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3181 ** FORM clause entry is iTable. This routine makes the necessary 3182 ** changes to pExpr so that it refers directly to the source table 3183 ** of the subquery rather the result set of the subquery. 3184 */ 3185 static Expr *substExpr( 3186 SubstContext *pSubst, /* Description of the substitution */ 3187 Expr *pExpr /* Expr in which substitution occurs */ 3188 ){ 3189 if( pExpr==0 ) return 0; 3190 if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){ 3191 pExpr->iRightJoinTable = pSubst->iNewTable; 3192 } 3193 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3194 if( pExpr->iColumn<0 ){ 3195 pExpr->op = TK_NULL; 3196 }else{ 3197 Expr *pNew; 3198 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3199 Expr ifNullRow; 3200 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3201 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3202 if( sqlite3ExprIsVector(pCopy) ){ 3203 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3204 }else{ 3205 sqlite3 *db = pSubst->pParse->db; 3206 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3207 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3208 ifNullRow.op = TK_IF_NULL_ROW; 3209 ifNullRow.pLeft = pCopy; 3210 ifNullRow.iTable = pSubst->iNewTable; 3211 pCopy = &ifNullRow; 3212 } 3213 pNew = sqlite3ExprDup(db, pCopy, 0); 3214 if( pNew && pSubst->isLeftJoin ){ 3215 ExprSetProperty(pNew, EP_CanBeNull); 3216 } 3217 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3218 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3219 ExprSetProperty(pNew, EP_FromJoin); 3220 } 3221 sqlite3ExprDelete(db, pExpr); 3222 pExpr = pNew; 3223 } 3224 } 3225 }else{ 3226 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3227 pExpr->iTable = pSubst->iNewTable; 3228 } 3229 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3230 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3231 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3232 substSelect(pSubst, pExpr->x.pSelect, 1); 3233 }else{ 3234 substExprList(pSubst, pExpr->x.pList); 3235 } 3236 } 3237 return pExpr; 3238 } 3239 static void substExprList( 3240 SubstContext *pSubst, /* Description of the substitution */ 3241 ExprList *pList /* List to scan and in which to make substitutes */ 3242 ){ 3243 int i; 3244 if( pList==0 ) return; 3245 for(i=0; i<pList->nExpr; i++){ 3246 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3247 } 3248 } 3249 static void substSelect( 3250 SubstContext *pSubst, /* Description of the substitution */ 3251 Select *p, /* SELECT statement in which to make substitutions */ 3252 int doPrior /* Do substitutes on p->pPrior too */ 3253 ){ 3254 SrcList *pSrc; 3255 struct SrcList_item *pItem; 3256 int i; 3257 if( !p ) return; 3258 do{ 3259 substExprList(pSubst, p->pEList); 3260 substExprList(pSubst, p->pGroupBy); 3261 substExprList(pSubst, p->pOrderBy); 3262 p->pHaving = substExpr(pSubst, p->pHaving); 3263 p->pWhere = substExpr(pSubst, p->pWhere); 3264 pSrc = p->pSrc; 3265 assert( pSrc!=0 ); 3266 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3267 substSelect(pSubst, pItem->pSelect, 1); 3268 if( pItem->fg.isTabFunc ){ 3269 substExprList(pSubst, pItem->u1.pFuncArg); 3270 } 3271 } 3272 }while( doPrior && (p = p->pPrior)!=0 ); 3273 } 3274 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3275 3276 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3277 /* 3278 ** This routine attempts to flatten subqueries as a performance optimization. 3279 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3280 ** 3281 ** To understand the concept of flattening, consider the following 3282 ** query: 3283 ** 3284 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3285 ** 3286 ** The default way of implementing this query is to execute the 3287 ** subquery first and store the results in a temporary table, then 3288 ** run the outer query on that temporary table. This requires two 3289 ** passes over the data. Furthermore, because the temporary table 3290 ** has no indices, the WHERE clause on the outer query cannot be 3291 ** optimized. 3292 ** 3293 ** This routine attempts to rewrite queries such as the above into 3294 ** a single flat select, like this: 3295 ** 3296 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3297 ** 3298 ** The code generated for this simplification gives the same result 3299 ** but only has to scan the data once. And because indices might 3300 ** exist on the table t1, a complete scan of the data might be 3301 ** avoided. 3302 ** 3303 ** Flattening is only attempted if all of the following are true: 3304 ** 3305 ** (1) The subquery and the outer query do not both use aggregates. 3306 ** 3307 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3308 ** and (2b) the outer query does not use subqueries other than the one 3309 ** FROM-clause subquery that is a candidate for flattening. (2b is 3310 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3311 ** 3312 ** (3) The subquery is not the right operand of a LEFT JOIN 3313 ** or (a) the subquery is not itself a join and (b) the FROM clause 3314 ** of the subquery does not contain a virtual table and (c) the 3315 ** outer query is not an aggregate. 3316 ** 3317 ** (4) The subquery is not DISTINCT. 3318 ** 3319 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3320 ** sub-queries that were excluded from this optimization. Restriction 3321 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3322 ** 3323 ** (6) The subquery does not use aggregates or the outer query is not 3324 ** DISTINCT. 3325 ** 3326 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3327 ** A FROM clause, consider adding a FROM clause with the special 3328 ** table sqlite_once that consists of a single row containing a 3329 ** single NULL. 3330 ** 3331 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3332 ** 3333 ** (9) The subquery does not use LIMIT or the outer query does not use 3334 ** aggregates. 3335 ** 3336 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3337 ** accidently carried the comment forward until 2014-09-15. Original 3338 ** text: "The subquery does not use aggregates or the outer query 3339 ** does not use LIMIT." 3340 ** 3341 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3342 ** 3343 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3344 ** a separate restriction deriving from ticket #350. 3345 ** 3346 ** (13) The subquery and outer query do not both use LIMIT. 3347 ** 3348 ** (14) The subquery does not use OFFSET. 3349 ** 3350 ** (15) The outer query is not part of a compound select or the 3351 ** subquery does not have a LIMIT clause. 3352 ** (See ticket #2339 and ticket [02a8e81d44]). 3353 ** 3354 ** (16) The outer query is not an aggregate or the subquery does 3355 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3356 ** until we introduced the group_concat() function. 3357 ** 3358 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3359 ** compound clause made up entirely of non-aggregate queries, and 3360 ** the parent query: 3361 ** 3362 ** * is not itself part of a compound select, 3363 ** * is not an aggregate or DISTINCT query, and 3364 ** * is not a join 3365 ** 3366 ** The parent and sub-query may contain WHERE clauses. Subject to 3367 ** rules (11), (13) and (14), they may also contain ORDER BY, 3368 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3369 ** operator other than UNION ALL because all the other compound 3370 ** operators have an implied DISTINCT which is disallowed by 3371 ** restriction (4). 3372 ** 3373 ** Also, each component of the sub-query must return the same number 3374 ** of result columns. This is actually a requirement for any compound 3375 ** SELECT statement, but all the code here does is make sure that no 3376 ** such (illegal) sub-query is flattened. The caller will detect the 3377 ** syntax error and return a detailed message. 3378 ** 3379 ** (18) If the sub-query is a compound select, then all terms of the 3380 ** ORDER by clause of the parent must be simple references to 3381 ** columns of the sub-query. 3382 ** 3383 ** (19) The subquery does not use LIMIT or the outer query does not 3384 ** have a WHERE clause. 3385 ** 3386 ** (20) If the sub-query is a compound select, then it must not use 3387 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3388 ** somewhat by saying that the terms of the ORDER BY clause must 3389 ** appear as unmodified result columns in the outer query. But we 3390 ** have other optimizations in mind to deal with that case. 3391 ** 3392 ** (21) The subquery does not use LIMIT or the outer query is not 3393 ** DISTINCT. (See ticket [752e1646fc]). 3394 ** 3395 ** (22) The subquery is not a recursive CTE. 3396 ** 3397 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3398 ** compound query. This restriction is because transforming the 3399 ** parent to a compound query confuses the code that handles 3400 ** recursive queries in multiSelect(). 3401 ** 3402 ** (24) The subquery is not an aggregate that uses the built-in min() or 3403 ** or max() functions. (Without this restriction, a query like: 3404 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3405 ** return the value X for which Y was maximal.) 3406 ** 3407 ** 3408 ** In this routine, the "p" parameter is a pointer to the outer query. 3409 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3410 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3411 ** 3412 ** If flattening is not attempted, this routine is a no-op and returns 0. 3413 ** If flattening is attempted this routine returns 1. 3414 ** 3415 ** All of the expression analysis must occur on both the outer query and 3416 ** the subquery before this routine runs. 3417 */ 3418 static int flattenSubquery( 3419 Parse *pParse, /* Parsing context */ 3420 Select *p, /* The parent or outer SELECT statement */ 3421 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3422 int isAgg, /* True if outer SELECT uses aggregate functions */ 3423 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3424 ){ 3425 const char *zSavedAuthContext = pParse->zAuthContext; 3426 Select *pParent; /* Current UNION ALL term of the other query */ 3427 Select *pSub; /* The inner query or "subquery" */ 3428 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3429 SrcList *pSrc; /* The FROM clause of the outer query */ 3430 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3431 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3432 int iNewParent = -1;/* Replacement table for iParent */ 3433 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3434 int i; /* Loop counter */ 3435 Expr *pWhere; /* The WHERE clause */ 3436 struct SrcList_item *pSubitem; /* The subquery */ 3437 sqlite3 *db = pParse->db; 3438 3439 /* Check to see if flattening is permitted. Return 0 if not. 3440 */ 3441 assert( p!=0 ); 3442 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3443 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3444 pSrc = p->pSrc; 3445 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3446 pSubitem = &pSrc->a[iFrom]; 3447 iParent = pSubitem->iCursor; 3448 pSub = pSubitem->pSelect; 3449 assert( pSub!=0 ); 3450 if( subqueryIsAgg ){ 3451 if( isAgg ) return 0; /* Restriction (1) */ 3452 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3453 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3454 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3455 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3456 ){ 3457 return 0; /* Restriction (2b) */ 3458 } 3459 } 3460 3461 pSubSrc = pSub->pSrc; 3462 assert( pSubSrc ); 3463 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3464 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3465 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3466 ** became arbitrary expressions, we were forced to add restrictions (13) 3467 ** and (14). */ 3468 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3469 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3470 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3471 return 0; /* Restriction (15) */ 3472 } 3473 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3474 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3475 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3476 return 0; /* Restrictions (8)(9) */ 3477 } 3478 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3479 return 0; /* Restriction (6) */ 3480 } 3481 if( p->pOrderBy && pSub->pOrderBy ){ 3482 return 0; /* Restriction (11) */ 3483 } 3484 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3485 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3486 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3487 return 0; /* Restriction (21) */ 3488 } 3489 testcase( pSub->selFlags & SF_Recursive ); 3490 testcase( pSub->selFlags & SF_MinMaxAgg ); 3491 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3492 return 0; /* Restrictions (22) and (24) */ 3493 } 3494 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3495 return 0; /* Restriction (23) */ 3496 } 3497 3498 /* 3499 ** If the subquery is the right operand of a LEFT JOIN, then the 3500 ** subquery may not be a join itself. Example of why this is not allowed: 3501 ** 3502 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3503 ** 3504 ** If we flatten the above, we would get 3505 ** 3506 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3507 ** 3508 ** which is not at all the same thing. 3509 ** 3510 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3511 ** query cannot be an aggregate. This is an artifact of the way aggregates 3512 ** are processed - there is no mechanism to determine if the LEFT JOIN 3513 ** table should be all-NULL. 3514 ** 3515 ** See also tickets #306, #350, and #3300. 3516 */ 3517 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3518 isLeftJoin = 1; 3519 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3520 return 0; /* Restriction (3) */ 3521 } 3522 } 3523 #ifdef SQLITE_EXTRA_IFNULLROW 3524 else if( iFrom>0 && !isAgg ){ 3525 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3526 ** every reference to any result column from subquery in a join, even though 3527 ** they are not necessary. This will stress-test the OP_IfNullRow opcode. */ 3528 isLeftJoin = -1; 3529 } 3530 #endif 3531 3532 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3533 ** use only the UNION ALL operator. And none of the simple select queries 3534 ** that make up the compound SELECT are allowed to be aggregate or distinct 3535 ** queries. 3536 */ 3537 if( pSub->pPrior ){ 3538 if( pSub->pOrderBy ){ 3539 return 0; /* Restriction 20 */ 3540 } 3541 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3542 return 0; 3543 } 3544 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3545 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3546 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3547 assert( pSub->pSrc!=0 ); 3548 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3549 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3550 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3551 || pSub1->pSrc->nSrc<1 3552 ){ 3553 return 0; 3554 } 3555 testcase( pSub1->pSrc->nSrc>1 ); 3556 } 3557 3558 /* Restriction 18. */ 3559 if( p->pOrderBy ){ 3560 int ii; 3561 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3562 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3563 } 3564 } 3565 } 3566 3567 /***** If we reach this point, flattening is permitted. *****/ 3568 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3569 pSub->zSelName, pSub, iFrom)); 3570 3571 /* Authorize the subquery */ 3572 pParse->zAuthContext = pSubitem->zName; 3573 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3574 testcase( i==SQLITE_DENY ); 3575 pParse->zAuthContext = zSavedAuthContext; 3576 3577 /* If the sub-query is a compound SELECT statement, then (by restrictions 3578 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3579 ** be of the form: 3580 ** 3581 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3582 ** 3583 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3584 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3585 ** OFFSET clauses and joins them to the left-hand-side of the original 3586 ** using UNION ALL operators. In this case N is the number of simple 3587 ** select statements in the compound sub-query. 3588 ** 3589 ** Example: 3590 ** 3591 ** SELECT a+1 FROM ( 3592 ** SELECT x FROM tab 3593 ** UNION ALL 3594 ** SELECT y FROM tab 3595 ** UNION ALL 3596 ** SELECT abs(z*2) FROM tab2 3597 ** ) WHERE a!=5 ORDER BY 1 3598 ** 3599 ** Transformed into: 3600 ** 3601 ** SELECT x+1 FROM tab WHERE x+1!=5 3602 ** UNION ALL 3603 ** SELECT y+1 FROM tab WHERE y+1!=5 3604 ** UNION ALL 3605 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3606 ** ORDER BY 1 3607 ** 3608 ** We call this the "compound-subquery flattening". 3609 */ 3610 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3611 Select *pNew; 3612 ExprList *pOrderBy = p->pOrderBy; 3613 Expr *pLimit = p->pLimit; 3614 Expr *pOffset = p->pOffset; 3615 Select *pPrior = p->pPrior; 3616 p->pOrderBy = 0; 3617 p->pSrc = 0; 3618 p->pPrior = 0; 3619 p->pLimit = 0; 3620 p->pOffset = 0; 3621 pNew = sqlite3SelectDup(db, p, 0); 3622 sqlite3SelectSetName(pNew, pSub->zSelName); 3623 p->pOffset = pOffset; 3624 p->pLimit = pLimit; 3625 p->pOrderBy = pOrderBy; 3626 p->pSrc = pSrc; 3627 p->op = TK_ALL; 3628 if( pNew==0 ){ 3629 p->pPrior = pPrior; 3630 }else{ 3631 pNew->pPrior = pPrior; 3632 if( pPrior ) pPrior->pNext = pNew; 3633 pNew->pNext = p; 3634 p->pPrior = pNew; 3635 SELECTTRACE(2,pParse,p, 3636 ("compound-subquery flattener creates %s.%p as peer\n", 3637 pNew->zSelName, pNew)); 3638 } 3639 if( db->mallocFailed ) return 1; 3640 } 3641 3642 /* Begin flattening the iFrom-th entry of the FROM clause 3643 ** in the outer query. 3644 */ 3645 pSub = pSub1 = pSubitem->pSelect; 3646 3647 /* Delete the transient table structure associated with the 3648 ** subquery 3649 */ 3650 sqlite3DbFree(db, pSubitem->zDatabase); 3651 sqlite3DbFree(db, pSubitem->zName); 3652 sqlite3DbFree(db, pSubitem->zAlias); 3653 pSubitem->zDatabase = 0; 3654 pSubitem->zName = 0; 3655 pSubitem->zAlias = 0; 3656 pSubitem->pSelect = 0; 3657 3658 /* Defer deleting the Table object associated with the 3659 ** subquery until code generation is 3660 ** complete, since there may still exist Expr.pTab entries that 3661 ** refer to the subquery even after flattening. Ticket #3346. 3662 ** 3663 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3664 */ 3665 if( ALWAYS(pSubitem->pTab!=0) ){ 3666 Table *pTabToDel = pSubitem->pTab; 3667 if( pTabToDel->nTabRef==1 ){ 3668 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3669 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3670 pToplevel->pZombieTab = pTabToDel; 3671 }else{ 3672 pTabToDel->nTabRef--; 3673 } 3674 pSubitem->pTab = 0; 3675 } 3676 3677 /* The following loop runs once for each term in a compound-subquery 3678 ** flattening (as described above). If we are doing a different kind 3679 ** of flattening - a flattening other than a compound-subquery flattening - 3680 ** then this loop only runs once. 3681 ** 3682 ** This loop moves all of the FROM elements of the subquery into the 3683 ** the FROM clause of the outer query. Before doing this, remember 3684 ** the cursor number for the original outer query FROM element in 3685 ** iParent. The iParent cursor will never be used. Subsequent code 3686 ** will scan expressions looking for iParent references and replace 3687 ** those references with expressions that resolve to the subquery FROM 3688 ** elements we are now copying in. 3689 */ 3690 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3691 int nSubSrc; 3692 u8 jointype = 0; 3693 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3694 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3695 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3696 3697 if( pSrc ){ 3698 assert( pParent==p ); /* First time through the loop */ 3699 jointype = pSubitem->fg.jointype; 3700 }else{ 3701 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3702 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3703 if( pSrc==0 ){ 3704 assert( db->mallocFailed ); 3705 break; 3706 } 3707 } 3708 3709 /* The subquery uses a single slot of the FROM clause of the outer 3710 ** query. If the subquery has more than one element in its FROM clause, 3711 ** then expand the outer query to make space for it to hold all elements 3712 ** of the subquery. 3713 ** 3714 ** Example: 3715 ** 3716 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3717 ** 3718 ** The outer query has 3 slots in its FROM clause. One slot of the 3719 ** outer query (the middle slot) is used by the subquery. The next 3720 ** block of code will expand the outer query FROM clause to 4 slots. 3721 ** The middle slot is expanded to two slots in order to make space 3722 ** for the two elements in the FROM clause of the subquery. 3723 */ 3724 if( nSubSrc>1 ){ 3725 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3726 if( db->mallocFailed ){ 3727 break; 3728 } 3729 } 3730 3731 /* Transfer the FROM clause terms from the subquery into the 3732 ** outer query. 3733 */ 3734 for(i=0; i<nSubSrc; i++){ 3735 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3736 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3737 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3738 iNewParent = pSubSrc->a[i].iCursor; 3739 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3740 } 3741 pSrc->a[iFrom].fg.jointype = jointype; 3742 3743 /* Now begin substituting subquery result set expressions for 3744 ** references to the iParent in the outer query. 3745 ** 3746 ** Example: 3747 ** 3748 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3749 ** \ \_____________ subquery __________/ / 3750 ** \_____________________ outer query ______________________________/ 3751 ** 3752 ** We look at every expression in the outer query and every place we see 3753 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3754 */ 3755 if( pSub->pOrderBy ){ 3756 /* At this point, any non-zero iOrderByCol values indicate that the 3757 ** ORDER BY column expression is identical to the iOrderByCol'th 3758 ** expression returned by SELECT statement pSub. Since these values 3759 ** do not necessarily correspond to columns in SELECT statement pParent, 3760 ** zero them before transfering the ORDER BY clause. 3761 ** 3762 ** Not doing this may cause an error if a subsequent call to this 3763 ** function attempts to flatten a compound sub-query into pParent 3764 ** (the only way this can happen is if the compound sub-query is 3765 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3766 ExprList *pOrderBy = pSub->pOrderBy; 3767 for(i=0; i<pOrderBy->nExpr; i++){ 3768 pOrderBy->a[i].u.x.iOrderByCol = 0; 3769 } 3770 assert( pParent->pOrderBy==0 ); 3771 assert( pSub->pPrior==0 ); 3772 pParent->pOrderBy = pOrderBy; 3773 pSub->pOrderBy = 0; 3774 } 3775 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3776 if( isLeftJoin>0 ){ 3777 setJoinExpr(pWhere, iNewParent); 3778 } 3779 if( subqueryIsAgg ){ 3780 assert( pParent->pHaving==0 ); 3781 pParent->pHaving = pParent->pWhere; 3782 pParent->pWhere = pWhere; 3783 pParent->pHaving = sqlite3ExprAnd(db, 3784 sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving 3785 ); 3786 assert( pParent->pGroupBy==0 ); 3787 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3788 }else{ 3789 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3790 } 3791 if( db->mallocFailed==0 ){ 3792 SubstContext x; 3793 x.pParse = pParse; 3794 x.iTable = iParent; 3795 x.iNewTable = iNewParent; 3796 x.isLeftJoin = isLeftJoin; 3797 x.pEList = pSub->pEList; 3798 substSelect(&x, pParent, 0); 3799 } 3800 3801 /* The flattened query is distinct if either the inner or the 3802 ** outer query is distinct. 3803 */ 3804 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3805 3806 /* 3807 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3808 ** 3809 ** One is tempted to try to add a and b to combine the limits. But this 3810 ** does not work if either limit is negative. 3811 */ 3812 if( pSub->pLimit ){ 3813 pParent->pLimit = pSub->pLimit; 3814 pSub->pLimit = 0; 3815 } 3816 } 3817 3818 /* Finially, delete what is left of the subquery and return 3819 ** success. 3820 */ 3821 sqlite3SelectDelete(db, pSub1); 3822 3823 #if SELECTTRACE_ENABLED 3824 if( sqlite3SelectTrace & 0x100 ){ 3825 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3826 sqlite3TreeViewSelect(0, p, 0); 3827 } 3828 #endif 3829 3830 return 1; 3831 } 3832 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3833 3834 3835 3836 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3837 /* 3838 ** Make copies of relevant WHERE clause terms of the outer query into 3839 ** the WHERE clause of subquery. Example: 3840 ** 3841 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3842 ** 3843 ** Transformed into: 3844 ** 3845 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3846 ** WHERE x=5 AND y=10; 3847 ** 3848 ** The hope is that the terms added to the inner query will make it more 3849 ** efficient. 3850 ** 3851 ** Do not attempt this optimization if: 3852 ** 3853 ** (1) The inner query is an aggregate. (In that case, we'd really want 3854 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3855 ** inner query. But they probably won't help there so do not bother.) 3856 ** 3857 ** (2) The inner query is the recursive part of a common table expression. 3858 ** 3859 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3860 ** close would change the meaning of the LIMIT). 3861 ** 3862 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3863 ** enforces this restriction since this routine does not have enough 3864 ** information to know.) 3865 ** 3866 ** (5) The WHERE clause expression originates in the ON or USING clause 3867 ** of a LEFT JOIN. 3868 ** 3869 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3870 ** terms are duplicated into the subquery. 3871 */ 3872 static int pushDownWhereTerms( 3873 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3874 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3875 Expr *pWhere, /* The WHERE clause of the outer query */ 3876 int iCursor /* Cursor number of the subquery */ 3877 ){ 3878 Expr *pNew; 3879 int nChng = 0; 3880 Select *pX; /* For looping over compound SELECTs in pSubq */ 3881 if( pWhere==0 ) return 0; 3882 for(pX=pSubq; pX; pX=pX->pPrior){ 3883 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3884 testcase( pX->selFlags & SF_Aggregate ); 3885 testcase( pX->selFlags & SF_Recursive ); 3886 testcase( pX!=pSubq ); 3887 return 0; /* restrictions (1) and (2) */ 3888 } 3889 } 3890 if( pSubq->pLimit!=0 ){ 3891 return 0; /* restriction (3) */ 3892 } 3893 while( pWhere->op==TK_AND ){ 3894 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); 3895 pWhere = pWhere->pLeft; 3896 } 3897 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3898 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3899 nChng++; 3900 while( pSubq ){ 3901 SubstContext x; 3902 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3903 x.pParse = pParse; 3904 x.iTable = iCursor; 3905 x.iNewTable = iCursor; 3906 x.isLeftJoin = 0; 3907 x.pEList = pSubq->pEList; 3908 pNew = substExpr(&x, pNew); 3909 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3910 pSubq = pSubq->pPrior; 3911 } 3912 } 3913 return nChng; 3914 } 3915 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3916 3917 /* 3918 ** Based on the contents of the AggInfo structure indicated by the first 3919 ** argument, this function checks if the following are true: 3920 ** 3921 ** * the query contains just a single aggregate function, 3922 ** * the aggregate function is either min() or max(), and 3923 ** * the argument to the aggregate function is a column value. 3924 ** 3925 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3926 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3927 ** list of arguments passed to the aggregate before returning. 3928 ** 3929 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3930 ** WHERE_ORDERBY_NORMAL is returned. 3931 */ 3932 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3933 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3934 3935 *ppMinMax = 0; 3936 if( pAggInfo->nFunc==1 ){ 3937 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3938 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3939 3940 assert( pExpr->op==TK_AGG_FUNCTION ); 3941 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3942 const char *zFunc = pExpr->u.zToken; 3943 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3944 eRet = WHERE_ORDERBY_MIN; 3945 *ppMinMax = pEList; 3946 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3947 eRet = WHERE_ORDERBY_MAX; 3948 *ppMinMax = pEList; 3949 } 3950 } 3951 } 3952 3953 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3954 return eRet; 3955 } 3956 3957 /* 3958 ** The select statement passed as the first argument is an aggregate query. 3959 ** The second argument is the associated aggregate-info object. This 3960 ** function tests if the SELECT is of the form: 3961 ** 3962 ** SELECT count(*) FROM <tbl> 3963 ** 3964 ** where table is a database table, not a sub-select or view. If the query 3965 ** does match this pattern, then a pointer to the Table object representing 3966 ** <tbl> is returned. Otherwise, 0 is returned. 3967 */ 3968 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3969 Table *pTab; 3970 Expr *pExpr; 3971 3972 assert( !p->pGroupBy ); 3973 3974 if( p->pWhere || p->pEList->nExpr!=1 3975 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3976 ){ 3977 return 0; 3978 } 3979 pTab = p->pSrc->a[0].pTab; 3980 pExpr = p->pEList->a[0].pExpr; 3981 assert( pTab && !pTab->pSelect && pExpr ); 3982 3983 if( IsVirtual(pTab) ) return 0; 3984 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3985 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3986 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3987 if( pExpr->flags&EP_Distinct ) return 0; 3988 3989 return pTab; 3990 } 3991 3992 /* 3993 ** If the source-list item passed as an argument was augmented with an 3994 ** INDEXED BY clause, then try to locate the specified index. If there 3995 ** was such a clause and the named index cannot be found, return 3996 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3997 ** pFrom->pIndex and return SQLITE_OK. 3998 */ 3999 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4000 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4001 Table *pTab = pFrom->pTab; 4002 char *zIndexedBy = pFrom->u1.zIndexedBy; 4003 Index *pIdx; 4004 for(pIdx=pTab->pIndex; 4005 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4006 pIdx=pIdx->pNext 4007 ); 4008 if( !pIdx ){ 4009 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4010 pParse->checkSchema = 1; 4011 return SQLITE_ERROR; 4012 } 4013 pFrom->pIBIndex = pIdx; 4014 } 4015 return SQLITE_OK; 4016 } 4017 /* 4018 ** Detect compound SELECT statements that use an ORDER BY clause with 4019 ** an alternative collating sequence. 4020 ** 4021 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4022 ** 4023 ** These are rewritten as a subquery: 4024 ** 4025 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4026 ** ORDER BY ... COLLATE ... 4027 ** 4028 ** This transformation is necessary because the multiSelectOrderBy() routine 4029 ** above that generates the code for a compound SELECT with an ORDER BY clause 4030 ** uses a merge algorithm that requires the same collating sequence on the 4031 ** result columns as on the ORDER BY clause. See ticket 4032 ** http://www.sqlite.org/src/info/6709574d2a 4033 ** 4034 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4035 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4036 ** there are COLLATE terms in the ORDER BY. 4037 */ 4038 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4039 int i; 4040 Select *pNew; 4041 Select *pX; 4042 sqlite3 *db; 4043 struct ExprList_item *a; 4044 SrcList *pNewSrc; 4045 Parse *pParse; 4046 Token dummy; 4047 4048 if( p->pPrior==0 ) return WRC_Continue; 4049 if( p->pOrderBy==0 ) return WRC_Continue; 4050 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4051 if( pX==0 ) return WRC_Continue; 4052 a = p->pOrderBy->a; 4053 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4054 if( a[i].pExpr->flags & EP_Collate ) break; 4055 } 4056 if( i<0 ) return WRC_Continue; 4057 4058 /* If we reach this point, that means the transformation is required. */ 4059 4060 pParse = pWalker->pParse; 4061 db = pParse->db; 4062 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4063 if( pNew==0 ) return WRC_Abort; 4064 memset(&dummy, 0, sizeof(dummy)); 4065 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4066 if( pNewSrc==0 ) return WRC_Abort; 4067 *pNew = *p; 4068 p->pSrc = pNewSrc; 4069 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4070 p->op = TK_SELECT; 4071 p->pWhere = 0; 4072 pNew->pGroupBy = 0; 4073 pNew->pHaving = 0; 4074 pNew->pOrderBy = 0; 4075 p->pPrior = 0; 4076 p->pNext = 0; 4077 p->pWith = 0; 4078 p->selFlags &= ~SF_Compound; 4079 assert( (p->selFlags & SF_Converted)==0 ); 4080 p->selFlags |= SF_Converted; 4081 assert( pNew->pPrior!=0 ); 4082 pNew->pPrior->pNext = pNew; 4083 pNew->pLimit = 0; 4084 pNew->pOffset = 0; 4085 return WRC_Continue; 4086 } 4087 4088 /* 4089 ** Check to see if the FROM clause term pFrom has table-valued function 4090 ** arguments. If it does, leave an error message in pParse and return 4091 ** non-zero, since pFrom is not allowed to be a table-valued function. 4092 */ 4093 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4094 if( pFrom->fg.isTabFunc ){ 4095 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4096 return 1; 4097 } 4098 return 0; 4099 } 4100 4101 #ifndef SQLITE_OMIT_CTE 4102 /* 4103 ** Argument pWith (which may be NULL) points to a linked list of nested 4104 ** WITH contexts, from inner to outermost. If the table identified by 4105 ** FROM clause element pItem is really a common-table-expression (CTE) 4106 ** then return a pointer to the CTE definition for that table. Otherwise 4107 ** return NULL. 4108 ** 4109 ** If a non-NULL value is returned, set *ppContext to point to the With 4110 ** object that the returned CTE belongs to. 4111 */ 4112 static struct Cte *searchWith( 4113 With *pWith, /* Current innermost WITH clause */ 4114 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4115 With **ppContext /* OUT: WITH clause return value belongs to */ 4116 ){ 4117 const char *zName; 4118 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4119 With *p; 4120 for(p=pWith; p; p=p->pOuter){ 4121 int i; 4122 for(i=0; i<p->nCte; i++){ 4123 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4124 *ppContext = p; 4125 return &p->a[i]; 4126 } 4127 } 4128 } 4129 } 4130 return 0; 4131 } 4132 4133 /* The code generator maintains a stack of active WITH clauses 4134 ** with the inner-most WITH clause being at the top of the stack. 4135 ** 4136 ** This routine pushes the WITH clause passed as the second argument 4137 ** onto the top of the stack. If argument bFree is true, then this 4138 ** WITH clause will never be popped from the stack. In this case it 4139 ** should be freed along with the Parse object. In other cases, when 4140 ** bFree==0, the With object will be freed along with the SELECT 4141 ** statement with which it is associated. 4142 */ 4143 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4144 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4145 if( pWith ){ 4146 assert( pParse->pWith!=pWith ); 4147 pWith->pOuter = pParse->pWith; 4148 pParse->pWith = pWith; 4149 if( bFree ) pParse->pWithToFree = pWith; 4150 } 4151 } 4152 4153 /* 4154 ** This function checks if argument pFrom refers to a CTE declared by 4155 ** a WITH clause on the stack currently maintained by the parser. And, 4156 ** if currently processing a CTE expression, if it is a recursive 4157 ** reference to the current CTE. 4158 ** 4159 ** If pFrom falls into either of the two categories above, pFrom->pTab 4160 ** and other fields are populated accordingly. The caller should check 4161 ** (pFrom->pTab!=0) to determine whether or not a successful match 4162 ** was found. 4163 ** 4164 ** Whether or not a match is found, SQLITE_OK is returned if no error 4165 ** occurs. If an error does occur, an error message is stored in the 4166 ** parser and some error code other than SQLITE_OK returned. 4167 */ 4168 static int withExpand( 4169 Walker *pWalker, 4170 struct SrcList_item *pFrom 4171 ){ 4172 Parse *pParse = pWalker->pParse; 4173 sqlite3 *db = pParse->db; 4174 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4175 With *pWith; /* WITH clause that pCte belongs to */ 4176 4177 assert( pFrom->pTab==0 ); 4178 4179 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4180 if( pCte ){ 4181 Table *pTab; 4182 ExprList *pEList; 4183 Select *pSel; 4184 Select *pLeft; /* Left-most SELECT statement */ 4185 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4186 With *pSavedWith; /* Initial value of pParse->pWith */ 4187 4188 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4189 ** recursive reference to CTE pCte. Leave an error in pParse and return 4190 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4191 ** In this case, proceed. */ 4192 if( pCte->zCteErr ){ 4193 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4194 return SQLITE_ERROR; 4195 } 4196 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4197 4198 assert( pFrom->pTab==0 ); 4199 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4200 if( pTab==0 ) return WRC_Abort; 4201 pTab->nTabRef = 1; 4202 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4203 pTab->iPKey = -1; 4204 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4205 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4206 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4207 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4208 assert( pFrom->pSelect ); 4209 4210 /* Check if this is a recursive CTE. */ 4211 pSel = pFrom->pSelect; 4212 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4213 if( bMayRecursive ){ 4214 int i; 4215 SrcList *pSrc = pFrom->pSelect->pSrc; 4216 for(i=0; i<pSrc->nSrc; i++){ 4217 struct SrcList_item *pItem = &pSrc->a[i]; 4218 if( pItem->zDatabase==0 4219 && pItem->zName!=0 4220 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4221 ){ 4222 pItem->pTab = pTab; 4223 pItem->fg.isRecursive = 1; 4224 pTab->nTabRef++; 4225 pSel->selFlags |= SF_Recursive; 4226 } 4227 } 4228 } 4229 4230 /* Only one recursive reference is permitted. */ 4231 if( pTab->nTabRef>2 ){ 4232 sqlite3ErrorMsg( 4233 pParse, "multiple references to recursive table: %s", pCte->zName 4234 ); 4235 return SQLITE_ERROR; 4236 } 4237 assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4238 4239 pCte->zCteErr = "circular reference: %s"; 4240 pSavedWith = pParse->pWith; 4241 pParse->pWith = pWith; 4242 if( bMayRecursive ){ 4243 Select *pPrior = pSel->pPrior; 4244 assert( pPrior->pWith==0 ); 4245 pPrior->pWith = pSel->pWith; 4246 sqlite3WalkSelect(pWalker, pPrior); 4247 pPrior->pWith = 0; 4248 }else{ 4249 sqlite3WalkSelect(pWalker, pSel); 4250 } 4251 pParse->pWith = pWith; 4252 4253 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4254 pEList = pLeft->pEList; 4255 if( pCte->pCols ){ 4256 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4257 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4258 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4259 ); 4260 pParse->pWith = pSavedWith; 4261 return SQLITE_ERROR; 4262 } 4263 pEList = pCte->pCols; 4264 } 4265 4266 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4267 if( bMayRecursive ){ 4268 if( pSel->selFlags & SF_Recursive ){ 4269 pCte->zCteErr = "multiple recursive references: %s"; 4270 }else{ 4271 pCte->zCteErr = "recursive reference in a subquery: %s"; 4272 } 4273 sqlite3WalkSelect(pWalker, pSel); 4274 } 4275 pCte->zCteErr = 0; 4276 pParse->pWith = pSavedWith; 4277 } 4278 4279 return SQLITE_OK; 4280 } 4281 #endif 4282 4283 #ifndef SQLITE_OMIT_CTE 4284 /* 4285 ** If the SELECT passed as the second argument has an associated WITH 4286 ** clause, pop it from the stack stored as part of the Parse object. 4287 ** 4288 ** This function is used as the xSelectCallback2() callback by 4289 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4290 ** names and other FROM clause elements. 4291 */ 4292 static void selectPopWith(Walker *pWalker, Select *p){ 4293 Parse *pParse = pWalker->pParse; 4294 if( pParse->pWith && p->pPrior==0 ){ 4295 With *pWith = findRightmost(p)->pWith; 4296 if( pWith!=0 ){ 4297 assert( pParse->pWith==pWith ); 4298 pParse->pWith = pWith->pOuter; 4299 } 4300 } 4301 } 4302 #else 4303 #define selectPopWith 0 4304 #endif 4305 4306 /* 4307 ** This routine is a Walker callback for "expanding" a SELECT statement. 4308 ** "Expanding" means to do the following: 4309 ** 4310 ** (1) Make sure VDBE cursor numbers have been assigned to every 4311 ** element of the FROM clause. 4312 ** 4313 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4314 ** defines FROM clause. When views appear in the FROM clause, 4315 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4316 ** that implements the view. A copy is made of the view's SELECT 4317 ** statement so that we can freely modify or delete that statement 4318 ** without worrying about messing up the persistent representation 4319 ** of the view. 4320 ** 4321 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4322 ** on joins and the ON and USING clause of joins. 4323 ** 4324 ** (4) Scan the list of columns in the result set (pEList) looking 4325 ** for instances of the "*" operator or the TABLE.* operator. 4326 ** If found, expand each "*" to be every column in every table 4327 ** and TABLE.* to be every column in TABLE. 4328 ** 4329 */ 4330 static int selectExpander(Walker *pWalker, Select *p){ 4331 Parse *pParse = pWalker->pParse; 4332 int i, j, k; 4333 SrcList *pTabList; 4334 ExprList *pEList; 4335 struct SrcList_item *pFrom; 4336 sqlite3 *db = pParse->db; 4337 Expr *pE, *pRight, *pExpr; 4338 u16 selFlags = p->selFlags; 4339 4340 p->selFlags |= SF_Expanded; 4341 if( db->mallocFailed ){ 4342 return WRC_Abort; 4343 } 4344 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4345 return WRC_Prune; 4346 } 4347 pTabList = p->pSrc; 4348 pEList = p->pEList; 4349 if( p->pWith ){ 4350 sqlite3WithPush(pParse, p->pWith, 0); 4351 } 4352 4353 /* Make sure cursor numbers have been assigned to all entries in 4354 ** the FROM clause of the SELECT statement. 4355 */ 4356 sqlite3SrcListAssignCursors(pParse, pTabList); 4357 4358 /* Look up every table named in the FROM clause of the select. If 4359 ** an entry of the FROM clause is a subquery instead of a table or view, 4360 ** then create a transient table structure to describe the subquery. 4361 */ 4362 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4363 Table *pTab; 4364 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4365 if( pFrom->fg.isRecursive ) continue; 4366 assert( pFrom->pTab==0 ); 4367 #ifndef SQLITE_OMIT_CTE 4368 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4369 if( pFrom->pTab ) {} else 4370 #endif 4371 if( pFrom->zName==0 ){ 4372 #ifndef SQLITE_OMIT_SUBQUERY 4373 Select *pSel = pFrom->pSelect; 4374 /* A sub-query in the FROM clause of a SELECT */ 4375 assert( pSel!=0 ); 4376 assert( pFrom->pTab==0 ); 4377 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4378 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4379 if( pTab==0 ) return WRC_Abort; 4380 pTab->nTabRef = 1; 4381 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4382 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4383 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4384 pTab->iPKey = -1; 4385 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4386 pTab->tabFlags |= TF_Ephemeral; 4387 #endif 4388 }else{ 4389 /* An ordinary table or view name in the FROM clause */ 4390 assert( pFrom->pTab==0 ); 4391 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4392 if( pTab==0 ) return WRC_Abort; 4393 if( pTab->nTabRef>=0xffff ){ 4394 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4395 pTab->zName); 4396 pFrom->pTab = 0; 4397 return WRC_Abort; 4398 } 4399 pTab->nTabRef++; 4400 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4401 return WRC_Abort; 4402 } 4403 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4404 if( IsVirtual(pTab) || pTab->pSelect ){ 4405 i16 nCol; 4406 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4407 assert( pFrom->pSelect==0 ); 4408 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4409 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4410 nCol = pTab->nCol; 4411 pTab->nCol = -1; 4412 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4413 pTab->nCol = nCol; 4414 } 4415 #endif 4416 } 4417 4418 /* Locate the index named by the INDEXED BY clause, if any. */ 4419 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4420 return WRC_Abort; 4421 } 4422 } 4423 4424 /* Process NATURAL keywords, and ON and USING clauses of joins. 4425 */ 4426 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4427 return WRC_Abort; 4428 } 4429 4430 /* For every "*" that occurs in the column list, insert the names of 4431 ** all columns in all tables. And for every TABLE.* insert the names 4432 ** of all columns in TABLE. The parser inserted a special expression 4433 ** with the TK_ASTERISK operator for each "*" that it found in the column 4434 ** list. The following code just has to locate the TK_ASTERISK 4435 ** expressions and expand each one to the list of all columns in 4436 ** all tables. 4437 ** 4438 ** The first loop just checks to see if there are any "*" operators 4439 ** that need expanding. 4440 */ 4441 for(k=0; k<pEList->nExpr; k++){ 4442 pE = pEList->a[k].pExpr; 4443 if( pE->op==TK_ASTERISK ) break; 4444 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4445 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4446 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4447 } 4448 if( k<pEList->nExpr ){ 4449 /* 4450 ** If we get here it means the result set contains one or more "*" 4451 ** operators that need to be expanded. Loop through each expression 4452 ** in the result set and expand them one by one. 4453 */ 4454 struct ExprList_item *a = pEList->a; 4455 ExprList *pNew = 0; 4456 int flags = pParse->db->flags; 4457 int longNames = (flags & SQLITE_FullColNames)!=0 4458 && (flags & SQLITE_ShortColNames)==0; 4459 4460 for(k=0; k<pEList->nExpr; k++){ 4461 pE = a[k].pExpr; 4462 pRight = pE->pRight; 4463 assert( pE->op!=TK_DOT || pRight!=0 ); 4464 if( pE->op!=TK_ASTERISK 4465 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4466 ){ 4467 /* This particular expression does not need to be expanded. 4468 */ 4469 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4470 if( pNew ){ 4471 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4472 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4473 a[k].zName = 0; 4474 a[k].zSpan = 0; 4475 } 4476 a[k].pExpr = 0; 4477 }else{ 4478 /* This expression is a "*" or a "TABLE.*" and needs to be 4479 ** expanded. */ 4480 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4481 char *zTName = 0; /* text of name of TABLE */ 4482 if( pE->op==TK_DOT ){ 4483 assert( pE->pLeft!=0 ); 4484 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4485 zTName = pE->pLeft->u.zToken; 4486 } 4487 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4488 Table *pTab = pFrom->pTab; 4489 Select *pSub = pFrom->pSelect; 4490 char *zTabName = pFrom->zAlias; 4491 const char *zSchemaName = 0; 4492 int iDb; 4493 if( zTabName==0 ){ 4494 zTabName = pTab->zName; 4495 } 4496 if( db->mallocFailed ) break; 4497 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4498 pSub = 0; 4499 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4500 continue; 4501 } 4502 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4503 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4504 } 4505 for(j=0; j<pTab->nCol; j++){ 4506 char *zName = pTab->aCol[j].zName; 4507 char *zColname; /* The computed column name */ 4508 char *zToFree; /* Malloced string that needs to be freed */ 4509 Token sColname; /* Computed column name as a token */ 4510 4511 assert( zName ); 4512 if( zTName && pSub 4513 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4514 ){ 4515 continue; 4516 } 4517 4518 /* If a column is marked as 'hidden', omit it from the expanded 4519 ** result-set list unless the SELECT has the SF_IncludeHidden 4520 ** bit set. 4521 */ 4522 if( (p->selFlags & SF_IncludeHidden)==0 4523 && IsHiddenColumn(&pTab->aCol[j]) 4524 ){ 4525 continue; 4526 } 4527 tableSeen = 1; 4528 4529 if( i>0 && zTName==0 ){ 4530 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4531 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4532 ){ 4533 /* In a NATURAL join, omit the join columns from the 4534 ** table to the right of the join */ 4535 continue; 4536 } 4537 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4538 /* In a join with a USING clause, omit columns in the 4539 ** using clause from the table on the right. */ 4540 continue; 4541 } 4542 } 4543 pRight = sqlite3Expr(db, TK_ID, zName); 4544 zColname = zName; 4545 zToFree = 0; 4546 if( longNames || pTabList->nSrc>1 ){ 4547 Expr *pLeft; 4548 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4549 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4550 if( zSchemaName ){ 4551 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4552 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4553 } 4554 if( longNames ){ 4555 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4556 zToFree = zColname; 4557 } 4558 }else{ 4559 pExpr = pRight; 4560 } 4561 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4562 sqlite3TokenInit(&sColname, zColname); 4563 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4564 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4565 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4566 if( pSub ){ 4567 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4568 testcase( pX->zSpan==0 ); 4569 }else{ 4570 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4571 zSchemaName, zTabName, zColname); 4572 testcase( pX->zSpan==0 ); 4573 } 4574 pX->bSpanIsTab = 1; 4575 } 4576 sqlite3DbFree(db, zToFree); 4577 } 4578 } 4579 if( !tableSeen ){ 4580 if( zTName ){ 4581 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4582 }else{ 4583 sqlite3ErrorMsg(pParse, "no tables specified"); 4584 } 4585 } 4586 } 4587 } 4588 sqlite3ExprListDelete(db, pEList); 4589 p->pEList = pNew; 4590 } 4591 #if SQLITE_MAX_COLUMN 4592 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4593 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4594 return WRC_Abort; 4595 } 4596 #endif 4597 return WRC_Continue; 4598 } 4599 4600 /* 4601 ** No-op routine for the parse-tree walker. 4602 ** 4603 ** When this routine is the Walker.xExprCallback then expression trees 4604 ** are walked without any actions being taken at each node. Presumably, 4605 ** when this routine is used for Walker.xExprCallback then 4606 ** Walker.xSelectCallback is set to do something useful for every 4607 ** subquery in the parser tree. 4608 */ 4609 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4610 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4611 return WRC_Continue; 4612 } 4613 4614 /* 4615 ** No-op routine for the parse-tree walker for SELECT statements. 4616 ** subquery in the parser tree. 4617 */ 4618 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4619 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4620 return WRC_Continue; 4621 } 4622 4623 #if SQLITE_DEBUG 4624 /* 4625 ** Always assert. This xSelectCallback2 implementation proves that the 4626 ** xSelectCallback2 is never invoked. 4627 */ 4628 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4629 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4630 assert( 0 ); 4631 } 4632 #endif 4633 /* 4634 ** This routine "expands" a SELECT statement and all of its subqueries. 4635 ** For additional information on what it means to "expand" a SELECT 4636 ** statement, see the comment on the selectExpand worker callback above. 4637 ** 4638 ** Expanding a SELECT statement is the first step in processing a 4639 ** SELECT statement. The SELECT statement must be expanded before 4640 ** name resolution is performed. 4641 ** 4642 ** If anything goes wrong, an error message is written into pParse. 4643 ** The calling function can detect the problem by looking at pParse->nErr 4644 ** and/or pParse->db->mallocFailed. 4645 */ 4646 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4647 Walker w; 4648 w.xExprCallback = sqlite3ExprWalkNoop; 4649 w.pParse = pParse; 4650 if( pParse->hasCompound ){ 4651 w.xSelectCallback = convertCompoundSelectToSubquery; 4652 w.xSelectCallback2 = 0; 4653 sqlite3WalkSelect(&w, pSelect); 4654 } 4655 w.xSelectCallback = selectExpander; 4656 w.xSelectCallback2 = selectPopWith; 4657 sqlite3WalkSelect(&w, pSelect); 4658 } 4659 4660 4661 #ifndef SQLITE_OMIT_SUBQUERY 4662 /* 4663 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4664 ** interface. 4665 ** 4666 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4667 ** information to the Table structure that represents the result set 4668 ** of that subquery. 4669 ** 4670 ** The Table structure that represents the result set was constructed 4671 ** by selectExpander() but the type and collation information was omitted 4672 ** at that point because identifiers had not yet been resolved. This 4673 ** routine is called after identifier resolution. 4674 */ 4675 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4676 Parse *pParse; 4677 int i; 4678 SrcList *pTabList; 4679 struct SrcList_item *pFrom; 4680 4681 assert( p->selFlags & SF_Resolved ); 4682 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4683 p->selFlags |= SF_HasTypeInfo; 4684 pParse = pWalker->pParse; 4685 pTabList = p->pSrc; 4686 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4687 Table *pTab = pFrom->pTab; 4688 assert( pTab!=0 ); 4689 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4690 /* A sub-query in the FROM clause of a SELECT */ 4691 Select *pSel = pFrom->pSelect; 4692 if( pSel ){ 4693 while( pSel->pPrior ) pSel = pSel->pPrior; 4694 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4695 } 4696 } 4697 } 4698 } 4699 #endif 4700 4701 4702 /* 4703 ** This routine adds datatype and collating sequence information to 4704 ** the Table structures of all FROM-clause subqueries in a 4705 ** SELECT statement. 4706 ** 4707 ** Use this routine after name resolution. 4708 */ 4709 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4710 #ifndef SQLITE_OMIT_SUBQUERY 4711 Walker w; 4712 w.xSelectCallback = sqlite3SelectWalkNoop; 4713 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4714 w.xExprCallback = sqlite3ExprWalkNoop; 4715 w.pParse = pParse; 4716 sqlite3WalkSelect(&w, pSelect); 4717 #endif 4718 } 4719 4720 4721 /* 4722 ** This routine sets up a SELECT statement for processing. The 4723 ** following is accomplished: 4724 ** 4725 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4726 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4727 ** * ON and USING clauses are shifted into WHERE statements 4728 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4729 ** * Identifiers in expression are matched to tables. 4730 ** 4731 ** This routine acts recursively on all subqueries within the SELECT. 4732 */ 4733 void sqlite3SelectPrep( 4734 Parse *pParse, /* The parser context */ 4735 Select *p, /* The SELECT statement being coded. */ 4736 NameContext *pOuterNC /* Name context for container */ 4737 ){ 4738 sqlite3 *db; 4739 if( NEVER(p==0) ) return; 4740 db = pParse->db; 4741 if( db->mallocFailed ) return; 4742 if( p->selFlags & SF_HasTypeInfo ) return; 4743 sqlite3SelectExpand(pParse, p); 4744 if( pParse->nErr || db->mallocFailed ) return; 4745 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4746 if( pParse->nErr || db->mallocFailed ) return; 4747 sqlite3SelectAddTypeInfo(pParse, p); 4748 } 4749 4750 /* 4751 ** Reset the aggregate accumulator. 4752 ** 4753 ** The aggregate accumulator is a set of memory cells that hold 4754 ** intermediate results while calculating an aggregate. This 4755 ** routine generates code that stores NULLs in all of those memory 4756 ** cells. 4757 */ 4758 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4759 Vdbe *v = pParse->pVdbe; 4760 int i; 4761 struct AggInfo_func *pFunc; 4762 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4763 if( nReg==0 ) return; 4764 #ifdef SQLITE_DEBUG 4765 /* Verify that all AggInfo registers are within the range specified by 4766 ** AggInfo.mnReg..AggInfo.mxReg */ 4767 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4768 for(i=0; i<pAggInfo->nColumn; i++){ 4769 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4770 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4771 } 4772 for(i=0; i<pAggInfo->nFunc; i++){ 4773 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4774 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4775 } 4776 #endif 4777 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4778 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4779 if( pFunc->iDistinct>=0 ){ 4780 Expr *pE = pFunc->pExpr; 4781 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4782 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4783 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4784 "argument"); 4785 pFunc->iDistinct = -1; 4786 }else{ 4787 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4788 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4789 (char*)pKeyInfo, P4_KEYINFO); 4790 } 4791 } 4792 } 4793 } 4794 4795 /* 4796 ** Invoke the OP_AggFinalize opcode for every aggregate function 4797 ** in the AggInfo structure. 4798 */ 4799 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4800 Vdbe *v = pParse->pVdbe; 4801 int i; 4802 struct AggInfo_func *pF; 4803 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4804 ExprList *pList = pF->pExpr->x.pList; 4805 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4806 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4807 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4808 } 4809 } 4810 4811 /* 4812 ** Update the accumulator memory cells for an aggregate based on 4813 ** the current cursor position. 4814 */ 4815 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4816 Vdbe *v = pParse->pVdbe; 4817 int i; 4818 int regHit = 0; 4819 int addrHitTest = 0; 4820 struct AggInfo_func *pF; 4821 struct AggInfo_col *pC; 4822 4823 pAggInfo->directMode = 1; 4824 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4825 int nArg; 4826 int addrNext = 0; 4827 int regAgg; 4828 ExprList *pList = pF->pExpr->x.pList; 4829 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4830 if( pList ){ 4831 nArg = pList->nExpr; 4832 regAgg = sqlite3GetTempRange(pParse, nArg); 4833 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4834 }else{ 4835 nArg = 0; 4836 regAgg = 0; 4837 } 4838 if( pF->iDistinct>=0 ){ 4839 addrNext = sqlite3VdbeMakeLabel(v); 4840 testcase( nArg==0 ); /* Error condition */ 4841 testcase( nArg>1 ); /* Also an error */ 4842 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4843 } 4844 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4845 CollSeq *pColl = 0; 4846 struct ExprList_item *pItem; 4847 int j; 4848 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4849 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4850 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4851 } 4852 if( !pColl ){ 4853 pColl = pParse->db->pDfltColl; 4854 } 4855 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4856 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4857 } 4858 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4859 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4860 sqlite3VdbeChangeP5(v, (u8)nArg); 4861 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4862 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4863 if( addrNext ){ 4864 sqlite3VdbeResolveLabel(v, addrNext); 4865 sqlite3ExprCacheClear(pParse); 4866 } 4867 } 4868 4869 /* Before populating the accumulator registers, clear the column cache. 4870 ** Otherwise, if any of the required column values are already present 4871 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4872 ** to pC->iMem. But by the time the value is used, the original register 4873 ** may have been used, invalidating the underlying buffer holding the 4874 ** text or blob value. See ticket [883034dcb5]. 4875 ** 4876 ** Another solution would be to change the OP_SCopy used to copy cached 4877 ** values to an OP_Copy. 4878 */ 4879 if( regHit ){ 4880 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4881 } 4882 sqlite3ExprCacheClear(pParse); 4883 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4884 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4885 } 4886 pAggInfo->directMode = 0; 4887 sqlite3ExprCacheClear(pParse); 4888 if( addrHitTest ){ 4889 sqlite3VdbeJumpHere(v, addrHitTest); 4890 } 4891 } 4892 4893 /* 4894 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4895 ** count(*) query ("SELECT count(*) FROM pTab"). 4896 */ 4897 #ifndef SQLITE_OMIT_EXPLAIN 4898 static void explainSimpleCount( 4899 Parse *pParse, /* Parse context */ 4900 Table *pTab, /* Table being queried */ 4901 Index *pIdx /* Index used to optimize scan, or NULL */ 4902 ){ 4903 if( pParse->explain==2 ){ 4904 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4905 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4906 pTab->zName, 4907 bCover ? " USING COVERING INDEX " : "", 4908 bCover ? pIdx->zName : "" 4909 ); 4910 sqlite3VdbeAddOp4( 4911 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4912 ); 4913 } 4914 } 4915 #else 4916 # define explainSimpleCount(a,b,c) 4917 #endif 4918 4919 /* 4920 ** Context object for havingToWhereExprCb(). 4921 */ 4922 struct HavingToWhereCtx { 4923 Expr **ppWhere; 4924 ExprList *pGroupBy; 4925 }; 4926 4927 /* 4928 ** sqlite3WalkExpr() callback used by havingToWhere(). 4929 ** 4930 ** If the node passed to the callback is a TK_AND node, return 4931 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 4932 ** 4933 ** Otherwise, return WRC_Prune. In this case, also check if the 4934 ** sub-expression matches the criteria for being moved to the WHERE 4935 ** clause. If so, add it to the WHERE clause and replace the sub-expression 4936 ** within the HAVING expression with a constant "1". 4937 */ 4938 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 4939 if( pExpr->op!=TK_AND ){ 4940 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx; 4941 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){ 4942 sqlite3 *db = pWalker->pParse->db; 4943 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 4944 if( pNew ){ 4945 Expr *pWhere = *(p->ppWhere); 4946 SWAP(Expr, *pNew, *pExpr); 4947 pNew = sqlite3ExprAnd(db, pWhere, pNew); 4948 *(p->ppWhere) = pNew; 4949 } 4950 } 4951 return WRC_Prune; 4952 } 4953 return WRC_Continue; 4954 } 4955 4956 /* 4957 ** Transfer eligible terms from the HAVING clause of a query, which is 4958 ** processed after grouping, to the WHERE clause, which is processed before 4959 ** grouping. For example, the query: 4960 ** 4961 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 4962 ** 4963 ** can be rewritten as: 4964 ** 4965 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 4966 ** 4967 ** A term of the HAVING expression is eligible for transfer if it consists 4968 ** entirely of constants and expressions that are also GROUP BY terms that 4969 ** use the "BINARY" collation sequence. 4970 */ 4971 static void havingToWhere( 4972 Parse *pParse, 4973 ExprList *pGroupBy, 4974 Expr *pHaving, 4975 Expr **ppWhere 4976 ){ 4977 struct HavingToWhereCtx sCtx; 4978 Walker sWalker; 4979 4980 sCtx.ppWhere = ppWhere; 4981 sCtx.pGroupBy = pGroupBy; 4982 4983 memset(&sWalker, 0, sizeof(sWalker)); 4984 sWalker.pParse = pParse; 4985 sWalker.xExprCallback = havingToWhereExprCb; 4986 sWalker.u.pHavingCtx = &sCtx; 4987 sqlite3WalkExpr(&sWalker, pHaving); 4988 } 4989 4990 /* 4991 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 4992 ** If it is, then return the SrcList_item for the prior view. If it is not, 4993 ** then return 0. 4994 */ 4995 static struct SrcList_item *isSelfJoinView( 4996 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 4997 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 4998 ){ 4999 struct SrcList_item *pItem; 5000 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5001 if( pItem->pSelect==0 ) continue; 5002 if( pItem->fg.viaCoroutine ) continue; 5003 if( pItem->zName==0 ) continue; 5004 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5005 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5006 if( sqlite3ExprCompare(0, 5007 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5008 ){ 5009 /* The view was modified by some other optimization such as 5010 ** pushDownWhereTerms() */ 5011 continue; 5012 } 5013 return pItem; 5014 } 5015 return 0; 5016 } 5017 5018 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5019 /* 5020 ** Attempt to transform a query of the form 5021 ** 5022 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5023 ** 5024 ** Into this: 5025 ** 5026 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5027 ** 5028 ** The transformation only works if all of the following are true: 5029 ** 5030 ** * The subquery is a UNION ALL of two or more terms 5031 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5032 ** * The outer query is a simple count(*) 5033 ** 5034 ** Return TRUE if the optimization is undertaken. 5035 */ 5036 static int countOfViewOptimization(Parse *pParse, Select *p){ 5037 Select *pSub, *pPrior; 5038 Expr *pExpr; 5039 Expr *pCount; 5040 sqlite3 *db; 5041 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate query */ 5042 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5043 pExpr = p->pEList->a[0].pExpr; 5044 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5045 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Must be count() */ 5046 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5047 if( p->pSrc->nSrc!=1 ) return 0; /* One table in the FROM clause */ 5048 pSub = p->pSrc->a[0].pSelect; 5049 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5050 if( pSub->pPrior==0 ) return 0; /* Must be a compound subquery */ 5051 do{ 5052 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5053 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5054 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5055 pSub = pSub->pPrior; /* Repeat over compound terms */ 5056 }while( pSub ); 5057 5058 /* If we reach this point, that means it is OK to perform the transformation */ 5059 5060 db = pParse->db; 5061 pCount = pExpr; 5062 pExpr = 0; 5063 pSub = p->pSrc->a[0].pSelect; 5064 p->pSrc->a[0].pSelect = 0; 5065 sqlite3SrcListDelete(db, p->pSrc); 5066 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5067 while( pSub ){ 5068 Expr *pTerm; 5069 pPrior = pSub->pPrior; 5070 pSub->pPrior = 0; 5071 pSub->pNext = 0; 5072 pSub->selFlags |= SF_Aggregate; 5073 pSub->selFlags &= ~SF_Compound; 5074 pSub->nSelectRow = 0; 5075 sqlite3ExprListDelete(db, pSub->pEList); 5076 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5077 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5078 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5079 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5080 if( pExpr==0 ){ 5081 pExpr = pTerm; 5082 }else{ 5083 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5084 } 5085 pSub = pPrior; 5086 } 5087 p->pEList->a[0].pExpr = pExpr; 5088 p->selFlags &= ~SF_Aggregate; 5089 5090 #if SELECTTRACE_ENABLED 5091 if( sqlite3SelectTrace & 0x400 ){ 5092 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5093 sqlite3TreeViewSelect(0, p, 0); 5094 } 5095 #endif 5096 return 1; 5097 } 5098 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5099 5100 /* 5101 ** Generate code for the SELECT statement given in the p argument. 5102 ** 5103 ** The results are returned according to the SelectDest structure. 5104 ** See comments in sqliteInt.h for further information. 5105 ** 5106 ** This routine returns the number of errors. If any errors are 5107 ** encountered, then an appropriate error message is left in 5108 ** pParse->zErrMsg. 5109 ** 5110 ** This routine does NOT free the Select structure passed in. The 5111 ** calling function needs to do that. 5112 */ 5113 int sqlite3Select( 5114 Parse *pParse, /* The parser context */ 5115 Select *p, /* The SELECT statement being coded. */ 5116 SelectDest *pDest /* What to do with the query results */ 5117 ){ 5118 int i, j; /* Loop counters */ 5119 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5120 Vdbe *v; /* The virtual machine under construction */ 5121 int isAgg; /* True for select lists like "count(*)" */ 5122 ExprList *pEList = 0; /* List of columns to extract. */ 5123 SrcList *pTabList; /* List of tables to select from */ 5124 Expr *pWhere; /* The WHERE clause. May be NULL */ 5125 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5126 Expr *pHaving; /* The HAVING clause. May be NULL */ 5127 int rc = 1; /* Value to return from this function */ 5128 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5129 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5130 AggInfo sAggInfo; /* Information used by aggregate queries */ 5131 int iEnd; /* Address of the end of the query */ 5132 sqlite3 *db; /* The database connection */ 5133 5134 #ifndef SQLITE_OMIT_EXPLAIN 5135 int iRestoreSelectId = pParse->iSelectId; 5136 pParse->iSelectId = pParse->iNextSelectId++; 5137 #endif 5138 5139 db = pParse->db; 5140 if( p==0 || db->mallocFailed || pParse->nErr ){ 5141 return 1; 5142 } 5143 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5144 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5145 #if SELECTTRACE_ENABLED 5146 pParse->nSelectIndent++; 5147 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5148 if( sqlite3SelectTrace & 0x100 ){ 5149 sqlite3TreeViewSelect(0, p, 0); 5150 } 5151 #endif 5152 5153 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5154 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5155 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5156 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5157 if( IgnorableOrderby(pDest) ){ 5158 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5159 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5160 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5161 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5162 /* If ORDER BY makes no difference in the output then neither does 5163 ** DISTINCT so it can be removed too. */ 5164 sqlite3ExprListDelete(db, p->pOrderBy); 5165 p->pOrderBy = 0; 5166 p->selFlags &= ~SF_Distinct; 5167 } 5168 sqlite3SelectPrep(pParse, p, 0); 5169 memset(&sSort, 0, sizeof(sSort)); 5170 sSort.pOrderBy = p->pOrderBy; 5171 pTabList = p->pSrc; 5172 if( pParse->nErr || db->mallocFailed ){ 5173 goto select_end; 5174 } 5175 assert( p->pEList!=0 ); 5176 isAgg = (p->selFlags & SF_Aggregate)!=0; 5177 #if SELECTTRACE_ENABLED 5178 if( sqlite3SelectTrace & 0x100 ){ 5179 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5180 sqlite3TreeViewSelect(0, p, 0); 5181 } 5182 #endif 5183 5184 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5185 ** does not already exist */ 5186 v = sqlite3GetVdbe(pParse); 5187 if( v==0 ) goto select_end; 5188 if( pDest->eDest==SRT_Output ){ 5189 generateColumnNames(pParse, p); 5190 } 5191 5192 /* Try to flatten subqueries in the FROM clause up into the main query 5193 */ 5194 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5195 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5196 struct SrcList_item *pItem = &pTabList->a[i]; 5197 Select *pSub = pItem->pSelect; 5198 int isAggSub; 5199 Table *pTab = pItem->pTab; 5200 if( pSub==0 ) continue; 5201 5202 /* Catch mismatch in the declared columns of a view and the number of 5203 ** columns in the SELECT on the RHS */ 5204 if( pTab->nCol!=pSub->pEList->nExpr ){ 5205 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5206 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5207 goto select_end; 5208 } 5209 5210 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 5211 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 5212 /* This subquery can be absorbed into its parent. */ 5213 if( isAggSub ){ 5214 isAgg = 1; 5215 p->selFlags |= SF_Aggregate; 5216 } 5217 i = -1; 5218 } 5219 pTabList = p->pSrc; 5220 if( db->mallocFailed ) goto select_end; 5221 if( !IgnorableOrderby(pDest) ){ 5222 sSort.pOrderBy = p->pOrderBy; 5223 } 5224 } 5225 #endif 5226 5227 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5228 /* Handle compound SELECT statements using the separate multiSelect() 5229 ** procedure. 5230 */ 5231 if( p->pPrior ){ 5232 rc = multiSelect(pParse, p, pDest); 5233 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5234 #if SELECTTRACE_ENABLED 5235 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5236 pParse->nSelectIndent--; 5237 #endif 5238 return rc; 5239 } 5240 #endif 5241 5242 /* For each term in the FROM clause, do two things: 5243 ** (1) Authorized unreferenced tables 5244 ** (2) Generate code for all sub-queries 5245 */ 5246 for(i=0; i<pTabList->nSrc; i++){ 5247 struct SrcList_item *pItem = &pTabList->a[i]; 5248 SelectDest dest; 5249 Select *pSub; 5250 5251 /* Issue SQLITE_READ authorizations with a fake column name for any tables that 5252 ** are referenced but from which no values are extracted. Examples of where these 5253 ** kinds of null SQLITE_READ authorizations would occur: 5254 ** 5255 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5256 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5257 ** 5258 ** The fake column name is an empty string. It is possible for a table to 5259 ** have a column named by the empty string, in which case there is no way to 5260 ** distinguish between an unreferenced table and an actual reference to the 5261 ** "" column. The original design was for the fake column name to be a NULL, 5262 ** which would be unambiguous. But legacy authorization callbacks might 5263 ** assume the column name is non-NULL and segfault. The use of an empty string 5264 ** for the fake column name seems safer. 5265 */ 5266 if( pItem->colUsed==0 ){ 5267 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5268 } 5269 5270 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5271 /* Generate code for all sub-queries in the FROM clause 5272 */ 5273 pSub = pItem->pSelect; 5274 if( pSub==0 ) continue; 5275 5276 /* Sometimes the code for a subquery will be generated more than 5277 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5278 ** for example. In that case, do not regenerate the code to manifest 5279 ** a view or the co-routine to implement a view. The first instance 5280 ** is sufficient, though the subroutine to manifest the view does need 5281 ** to be invoked again. */ 5282 if( pItem->addrFillSub ){ 5283 if( pItem->fg.viaCoroutine==0 ){ 5284 /* The subroutine that manifests the view might be a one-time routine, 5285 ** or it might need to be rerun on each iteration because it 5286 ** encodes a correlated subquery. */ 5287 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5288 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5289 } 5290 continue; 5291 } 5292 5293 /* Increment Parse.nHeight by the height of the largest expression 5294 ** tree referred to by this, the parent select. The child select 5295 ** may contain expression trees of at most 5296 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5297 ** more conservative than necessary, but much easier than enforcing 5298 ** an exact limit. 5299 */ 5300 pParse->nHeight += sqlite3SelectExprHeight(p); 5301 5302 /* Make copies of constant WHERE-clause terms in the outer query down 5303 ** inside the subquery. This can help the subquery to run more efficiently. 5304 */ 5305 if( (pItem->fg.jointype & JT_OUTER)==0 5306 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) 5307 ){ 5308 #if SELECTTRACE_ENABLED 5309 if( sqlite3SelectTrace & 0x100 ){ 5310 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5311 sqlite3TreeViewSelect(0, p, 0); 5312 } 5313 #endif 5314 } 5315 5316 /* Generate code to implement the subquery 5317 ** 5318 ** The subquery is implemented as a co-routine if all of these are true: 5319 ** (1) The subquery is guaranteed to be the outer loop (so that it 5320 ** does not need to be computed more than once) 5321 ** (2) The ALL keyword after SELECT is omitted. (Applications are 5322 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 5323 ** the use of co-routines.) 5324 ** (3) Co-routines are not disabled using sqlite3_test_control() 5325 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 5326 ** 5327 ** TODO: Are there other reasons beside (1) to use a co-routine 5328 ** implementation? 5329 */ 5330 if( i==0 5331 && (pTabList->nSrc==1 5332 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5333 && (p->selFlags & SF_All)==0 /* (2) */ 5334 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 5335 ){ 5336 /* Implement a co-routine that will return a single row of the result 5337 ** set on each invocation. 5338 */ 5339 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5340 pItem->regReturn = ++pParse->nMem; 5341 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5342 VdbeComment((v, "%s", pItem->pTab->zName)); 5343 pItem->addrFillSub = addrTop; 5344 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5345 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5346 sqlite3Select(pParse, pSub, &dest); 5347 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5348 pItem->fg.viaCoroutine = 1; 5349 pItem->regResult = dest.iSdst; 5350 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5351 sqlite3VdbeJumpHere(v, addrTop-1); 5352 sqlite3ClearTempRegCache(pParse); 5353 }else{ 5354 /* Generate a subroutine that will fill an ephemeral table with 5355 ** the content of this subquery. pItem->addrFillSub will point 5356 ** to the address of the generated subroutine. pItem->regReturn 5357 ** is a register allocated to hold the subroutine return address 5358 */ 5359 int topAddr; 5360 int onceAddr = 0; 5361 int retAddr; 5362 struct SrcList_item *pPrior; 5363 5364 assert( pItem->addrFillSub==0 ); 5365 pItem->regReturn = ++pParse->nMem; 5366 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5367 pItem->addrFillSub = topAddr+1; 5368 if( pItem->fg.isCorrelated==0 ){ 5369 /* If the subquery is not correlated and if we are not inside of 5370 ** a trigger, then we only need to compute the value of the subquery 5371 ** once. */ 5372 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5373 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5374 }else{ 5375 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5376 } 5377 pPrior = isSelfJoinView(pTabList, pItem); 5378 if( pPrior ){ 5379 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5380 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5381 assert( pPrior->pSelect!=0 ); 5382 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5383 }else{ 5384 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5385 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5386 sqlite3Select(pParse, pSub, &dest); 5387 } 5388 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5389 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5390 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5391 VdbeComment((v, "end %s", pItem->pTab->zName)); 5392 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5393 sqlite3ClearTempRegCache(pParse); 5394 } 5395 if( db->mallocFailed ) goto select_end; 5396 pParse->nHeight -= sqlite3SelectExprHeight(p); 5397 #endif 5398 } 5399 5400 /* Various elements of the SELECT copied into local variables for 5401 ** convenience */ 5402 pEList = p->pEList; 5403 pWhere = p->pWhere; 5404 pGroupBy = p->pGroupBy; 5405 pHaving = p->pHaving; 5406 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5407 5408 #if SELECTTRACE_ENABLED 5409 if( sqlite3SelectTrace & 0x400 ){ 5410 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5411 sqlite3TreeViewSelect(0, p, 0); 5412 } 5413 #endif 5414 5415 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5416 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5417 && countOfViewOptimization(pParse, p) 5418 ){ 5419 if( db->mallocFailed ) goto select_end; 5420 pEList = p->pEList; 5421 pTabList = p->pSrc; 5422 } 5423 #endif 5424 5425 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5426 ** if the select-list is the same as the ORDER BY list, then this query 5427 ** can be rewritten as a GROUP BY. In other words, this: 5428 ** 5429 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5430 ** 5431 ** is transformed to: 5432 ** 5433 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5434 ** 5435 ** The second form is preferred as a single index (or temp-table) may be 5436 ** used for both the ORDER BY and DISTINCT processing. As originally 5437 ** written the query must use a temp-table for at least one of the ORDER 5438 ** BY and DISTINCT, and an index or separate temp-table for the other. 5439 */ 5440 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5441 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5442 ){ 5443 p->selFlags &= ~SF_Distinct; 5444 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5445 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5446 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5447 ** original setting of the SF_Distinct flag, not the current setting */ 5448 assert( sDistinct.isTnct ); 5449 5450 #if SELECTTRACE_ENABLED 5451 if( sqlite3SelectTrace & 0x400 ){ 5452 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5453 sqlite3TreeViewSelect(0, p, 0); 5454 } 5455 #endif 5456 } 5457 5458 /* If there is an ORDER BY clause, then create an ephemeral index to 5459 ** do the sorting. But this sorting ephemeral index might end up 5460 ** being unused if the data can be extracted in pre-sorted order. 5461 ** If that is the case, then the OP_OpenEphemeral instruction will be 5462 ** changed to an OP_Noop once we figure out that the sorting index is 5463 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5464 ** that change. 5465 */ 5466 if( sSort.pOrderBy ){ 5467 KeyInfo *pKeyInfo; 5468 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5469 sSort.iECursor = pParse->nTab++; 5470 sSort.addrSortIndex = 5471 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5472 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5473 (char*)pKeyInfo, P4_KEYINFO 5474 ); 5475 }else{ 5476 sSort.addrSortIndex = -1; 5477 } 5478 5479 /* If the output is destined for a temporary table, open that table. 5480 */ 5481 if( pDest->eDest==SRT_EphemTab ){ 5482 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5483 } 5484 5485 /* Set the limiter. 5486 */ 5487 iEnd = sqlite3VdbeMakeLabel(v); 5488 if( (p->selFlags & SF_FixedLimit)==0 ){ 5489 p->nSelectRow = 320; /* 4 billion rows */ 5490 } 5491 computeLimitRegisters(pParse, p, iEnd); 5492 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5493 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5494 sSort.sortFlags |= SORTFLAG_UseSorter; 5495 } 5496 5497 /* Open an ephemeral index to use for the distinct set. 5498 */ 5499 if( p->selFlags & SF_Distinct ){ 5500 sDistinct.tabTnct = pParse->nTab++; 5501 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5502 sDistinct.tabTnct, 0, 0, 5503 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5504 P4_KEYINFO); 5505 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5506 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5507 }else{ 5508 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5509 } 5510 5511 if( !isAgg && pGroupBy==0 ){ 5512 /* No aggregate functions and no GROUP BY clause */ 5513 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5514 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5515 wctrlFlags |= p->selFlags & SF_FixedLimit; 5516 5517 /* Begin the database scan. */ 5518 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5519 p->pEList, wctrlFlags, p->nSelectRow); 5520 if( pWInfo==0 ) goto select_end; 5521 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5522 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5523 } 5524 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5525 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5526 } 5527 if( sSort.pOrderBy ){ 5528 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5529 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5530 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5531 sSort.pOrderBy = 0; 5532 } 5533 } 5534 5535 /* If sorting index that was created by a prior OP_OpenEphemeral 5536 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5537 ** into an OP_Noop. 5538 */ 5539 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5540 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5541 } 5542 5543 /* Use the standard inner loop. */ 5544 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5545 sqlite3WhereContinueLabel(pWInfo), 5546 sqlite3WhereBreakLabel(pWInfo)); 5547 5548 /* End the database scan loop. 5549 */ 5550 sqlite3WhereEnd(pWInfo); 5551 }else{ 5552 /* This case when there exist aggregate functions or a GROUP BY clause 5553 ** or both */ 5554 NameContext sNC; /* Name context for processing aggregate information */ 5555 int iAMem; /* First Mem address for storing current GROUP BY */ 5556 int iBMem; /* First Mem address for previous GROUP BY */ 5557 int iUseFlag; /* Mem address holding flag indicating that at least 5558 ** one row of the input to the aggregator has been 5559 ** processed */ 5560 int iAbortFlag; /* Mem address which causes query abort if positive */ 5561 int groupBySort; /* Rows come from source in GROUP BY order */ 5562 int addrEnd; /* End of processing for this SELECT */ 5563 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5564 int sortOut = 0; /* Output register from the sorter */ 5565 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5566 5567 /* Remove any and all aliases between the result set and the 5568 ** GROUP BY clause. 5569 */ 5570 if( pGroupBy ){ 5571 int k; /* Loop counter */ 5572 struct ExprList_item *pItem; /* For looping over expression in a list */ 5573 5574 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5575 pItem->u.x.iAlias = 0; 5576 } 5577 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5578 pItem->u.x.iAlias = 0; 5579 } 5580 assert( 66==sqlite3LogEst(100) ); 5581 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5582 }else{ 5583 assert( 0==sqlite3LogEst(1) ); 5584 p->nSelectRow = 0; 5585 } 5586 5587 /* If there is both a GROUP BY and an ORDER BY clause and they are 5588 ** identical, then it may be possible to disable the ORDER BY clause 5589 ** on the grounds that the GROUP BY will cause elements to come out 5590 ** in the correct order. It also may not - the GROUP BY might use a 5591 ** database index that causes rows to be grouped together as required 5592 ** but not actually sorted. Either way, record the fact that the 5593 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5594 ** variable. */ 5595 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5596 orderByGrp = 1; 5597 } 5598 5599 /* Create a label to jump to when we want to abort the query */ 5600 addrEnd = sqlite3VdbeMakeLabel(v); 5601 5602 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5603 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5604 ** SELECT statement. 5605 */ 5606 memset(&sNC, 0, sizeof(sNC)); 5607 sNC.pParse = pParse; 5608 sNC.pSrcList = pTabList; 5609 sNC.pAggInfo = &sAggInfo; 5610 sAggInfo.mnReg = pParse->nMem+1; 5611 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5612 sAggInfo.pGroupBy = pGroupBy; 5613 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5614 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5615 if( pHaving ){ 5616 if( pGroupBy ){ 5617 assert( pWhere==p->pWhere ); 5618 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere); 5619 pWhere = p->pWhere; 5620 } 5621 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5622 } 5623 sAggInfo.nAccumulator = sAggInfo.nColumn; 5624 for(i=0; i<sAggInfo.nFunc; i++){ 5625 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5626 sNC.ncFlags |= NC_InAggFunc; 5627 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5628 sNC.ncFlags &= ~NC_InAggFunc; 5629 } 5630 sAggInfo.mxReg = pParse->nMem; 5631 if( db->mallocFailed ) goto select_end; 5632 5633 /* Processing for aggregates with GROUP BY is very different and 5634 ** much more complex than aggregates without a GROUP BY. 5635 */ 5636 if( pGroupBy ){ 5637 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5638 int addr1; /* A-vs-B comparision jump */ 5639 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5640 int regOutputRow; /* Return address register for output subroutine */ 5641 int addrSetAbort; /* Set the abort flag and return */ 5642 int addrTopOfLoop; /* Top of the input loop */ 5643 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5644 int addrReset; /* Subroutine for resetting the accumulator */ 5645 int regReset; /* Return address register for reset subroutine */ 5646 5647 /* If there is a GROUP BY clause we might need a sorting index to 5648 ** implement it. Allocate that sorting index now. If it turns out 5649 ** that we do not need it after all, the OP_SorterOpen instruction 5650 ** will be converted into a Noop. 5651 */ 5652 sAggInfo.sortingIdx = pParse->nTab++; 5653 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5654 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5655 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5656 0, (char*)pKeyInfo, P4_KEYINFO); 5657 5658 /* Initialize memory locations used by GROUP BY aggregate processing 5659 */ 5660 iUseFlag = ++pParse->nMem; 5661 iAbortFlag = ++pParse->nMem; 5662 regOutputRow = ++pParse->nMem; 5663 addrOutputRow = sqlite3VdbeMakeLabel(v); 5664 regReset = ++pParse->nMem; 5665 addrReset = sqlite3VdbeMakeLabel(v); 5666 iAMem = pParse->nMem + 1; 5667 pParse->nMem += pGroupBy->nExpr; 5668 iBMem = pParse->nMem + 1; 5669 pParse->nMem += pGroupBy->nExpr; 5670 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5671 VdbeComment((v, "clear abort flag")); 5672 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5673 VdbeComment((v, "indicate accumulator empty")); 5674 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5675 5676 /* Begin a loop that will extract all source rows in GROUP BY order. 5677 ** This might involve two separate loops with an OP_Sort in between, or 5678 ** it might be a single loop that uses an index to extract information 5679 ** in the right order to begin with. 5680 */ 5681 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5682 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5683 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5684 ); 5685 if( pWInfo==0 ) goto select_end; 5686 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5687 /* The optimizer is able to deliver rows in group by order so 5688 ** we do not have to sort. The OP_OpenEphemeral table will be 5689 ** cancelled later because we still need to use the pKeyInfo 5690 */ 5691 groupBySort = 0; 5692 }else{ 5693 /* Rows are coming out in undetermined order. We have to push 5694 ** each row into a sorting index, terminate the first loop, 5695 ** then loop over the sorting index in order to get the output 5696 ** in sorted order 5697 */ 5698 int regBase; 5699 int regRecord; 5700 int nCol; 5701 int nGroupBy; 5702 5703 explainTempTable(pParse, 5704 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5705 "DISTINCT" : "GROUP BY"); 5706 5707 groupBySort = 1; 5708 nGroupBy = pGroupBy->nExpr; 5709 nCol = nGroupBy; 5710 j = nGroupBy; 5711 for(i=0; i<sAggInfo.nColumn; i++){ 5712 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5713 nCol++; 5714 j++; 5715 } 5716 } 5717 regBase = sqlite3GetTempRange(pParse, nCol); 5718 sqlite3ExprCacheClear(pParse); 5719 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5720 j = nGroupBy; 5721 for(i=0; i<sAggInfo.nColumn; i++){ 5722 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5723 if( pCol->iSorterColumn>=j ){ 5724 int r1 = j + regBase; 5725 sqlite3ExprCodeGetColumnToReg(pParse, 5726 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5727 j++; 5728 } 5729 } 5730 regRecord = sqlite3GetTempReg(pParse); 5731 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5732 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5733 sqlite3ReleaseTempReg(pParse, regRecord); 5734 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5735 sqlite3WhereEnd(pWInfo); 5736 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5737 sortOut = sqlite3GetTempReg(pParse); 5738 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5739 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5740 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5741 sAggInfo.useSortingIdx = 1; 5742 sqlite3ExprCacheClear(pParse); 5743 5744 } 5745 5746 /* If the index or temporary table used by the GROUP BY sort 5747 ** will naturally deliver rows in the order required by the ORDER BY 5748 ** clause, cancel the ephemeral table open coded earlier. 5749 ** 5750 ** This is an optimization - the correct answer should result regardless. 5751 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5752 ** disable this optimization for testing purposes. */ 5753 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5754 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5755 ){ 5756 sSort.pOrderBy = 0; 5757 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5758 } 5759 5760 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5761 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5762 ** Then compare the current GROUP BY terms against the GROUP BY terms 5763 ** from the previous row currently stored in a0, a1, a2... 5764 */ 5765 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5766 sqlite3ExprCacheClear(pParse); 5767 if( groupBySort ){ 5768 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5769 sortOut, sortPTab); 5770 } 5771 for(j=0; j<pGroupBy->nExpr; j++){ 5772 if( groupBySort ){ 5773 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5774 }else{ 5775 sAggInfo.directMode = 1; 5776 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5777 } 5778 } 5779 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5780 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5781 addr1 = sqlite3VdbeCurrentAddr(v); 5782 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5783 5784 /* Generate code that runs whenever the GROUP BY changes. 5785 ** Changes in the GROUP BY are detected by the previous code 5786 ** block. If there were no changes, this block is skipped. 5787 ** 5788 ** This code copies current group by terms in b0,b1,b2,... 5789 ** over to a0,a1,a2. It then calls the output subroutine 5790 ** and resets the aggregate accumulator registers in preparation 5791 ** for the next GROUP BY batch. 5792 */ 5793 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5794 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5795 VdbeComment((v, "output one row")); 5796 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5797 VdbeComment((v, "check abort flag")); 5798 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5799 VdbeComment((v, "reset accumulator")); 5800 5801 /* Update the aggregate accumulators based on the content of 5802 ** the current row 5803 */ 5804 sqlite3VdbeJumpHere(v, addr1); 5805 updateAccumulator(pParse, &sAggInfo); 5806 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5807 VdbeComment((v, "indicate data in accumulator")); 5808 5809 /* End of the loop 5810 */ 5811 if( groupBySort ){ 5812 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5813 VdbeCoverage(v); 5814 }else{ 5815 sqlite3WhereEnd(pWInfo); 5816 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5817 } 5818 5819 /* Output the final row of result 5820 */ 5821 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5822 VdbeComment((v, "output final row")); 5823 5824 /* Jump over the subroutines 5825 */ 5826 sqlite3VdbeGoto(v, addrEnd); 5827 5828 /* Generate a subroutine that outputs a single row of the result 5829 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5830 ** is less than or equal to zero, the subroutine is a no-op. If 5831 ** the processing calls for the query to abort, this subroutine 5832 ** increments the iAbortFlag memory location before returning in 5833 ** order to signal the caller to abort. 5834 */ 5835 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5836 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5837 VdbeComment((v, "set abort flag")); 5838 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5839 sqlite3VdbeResolveLabel(v, addrOutputRow); 5840 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5841 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5842 VdbeCoverage(v); 5843 VdbeComment((v, "Groupby result generator entry point")); 5844 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5845 finalizeAggFunctions(pParse, &sAggInfo); 5846 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5847 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5848 &sDistinct, pDest, 5849 addrOutputRow+1, addrSetAbort); 5850 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5851 VdbeComment((v, "end groupby result generator")); 5852 5853 /* Generate a subroutine that will reset the group-by accumulator 5854 */ 5855 sqlite3VdbeResolveLabel(v, addrReset); 5856 resetAccumulator(pParse, &sAggInfo); 5857 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5858 5859 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5860 else { 5861 ExprList *pDel = 0; 5862 #ifndef SQLITE_OMIT_BTREECOUNT 5863 Table *pTab; 5864 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5865 /* If isSimpleCount() returns a pointer to a Table structure, then 5866 ** the SQL statement is of the form: 5867 ** 5868 ** SELECT count(*) FROM <tbl> 5869 ** 5870 ** where the Table structure returned represents table <tbl>. 5871 ** 5872 ** This statement is so common that it is optimized specially. The 5873 ** OP_Count instruction is executed either on the intkey table that 5874 ** contains the data for table <tbl> or on one of its indexes. It 5875 ** is better to execute the op on an index, as indexes are almost 5876 ** always spread across less pages than their corresponding tables. 5877 */ 5878 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5879 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5880 Index *pIdx; /* Iterator variable */ 5881 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5882 Index *pBest = 0; /* Best index found so far */ 5883 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5884 5885 sqlite3CodeVerifySchema(pParse, iDb); 5886 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5887 5888 /* Search for the index that has the lowest scan cost. 5889 ** 5890 ** (2011-04-15) Do not do a full scan of an unordered index. 5891 ** 5892 ** (2013-10-03) Do not count the entries in a partial index. 5893 ** 5894 ** In practice the KeyInfo structure will not be used. It is only 5895 ** passed to keep OP_OpenRead happy. 5896 */ 5897 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5898 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5899 if( pIdx->bUnordered==0 5900 && pIdx->szIdxRow<pTab->szTabRow 5901 && pIdx->pPartIdxWhere==0 5902 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5903 ){ 5904 pBest = pIdx; 5905 } 5906 } 5907 if( pBest ){ 5908 iRoot = pBest->tnum; 5909 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5910 } 5911 5912 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5913 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5914 if( pKeyInfo ){ 5915 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5916 } 5917 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5918 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5919 explainSimpleCount(pParse, pTab, pBest); 5920 }else 5921 #endif /* SQLITE_OMIT_BTREECOUNT */ 5922 { 5923 /* Check if the query is of one of the following forms: 5924 ** 5925 ** SELECT min(x) FROM ... 5926 ** SELECT max(x) FROM ... 5927 ** 5928 ** If it is, then ask the code in where.c to attempt to sort results 5929 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5930 ** If where.c is able to produce results sorted in this order, then 5931 ** add vdbe code to break out of the processing loop after the 5932 ** first iteration (since the first iteration of the loop is 5933 ** guaranteed to operate on the row with the minimum or maximum 5934 ** value of x, the only row required). 5935 ** 5936 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5937 ** modify behavior as follows: 5938 ** 5939 ** + If the query is a "SELECT min(x)", then the loop coded by 5940 ** where.c should not iterate over any values with a NULL value 5941 ** for x. 5942 ** 5943 ** + The optimizer code in where.c (the thing that decides which 5944 ** index or indices to use) should place a different priority on 5945 ** satisfying the 'ORDER BY' clause than it does in other cases. 5946 ** Refer to code and comments in where.c for details. 5947 */ 5948 ExprList *pMinMax = 0; 5949 u8 flag = WHERE_ORDERBY_NORMAL; 5950 5951 assert( p->pGroupBy==0 ); 5952 assert( flag==0 ); 5953 if( p->pHaving==0 ){ 5954 flag = minMaxQuery(&sAggInfo, &pMinMax); 5955 } 5956 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5957 5958 if( flag ){ 5959 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5960 pDel = pMinMax; 5961 assert( db->mallocFailed || pMinMax!=0 ); 5962 if( !db->mallocFailed ){ 5963 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5964 pMinMax->a[0].pExpr->op = TK_COLUMN; 5965 } 5966 } 5967 5968 /* This case runs if the aggregate has no GROUP BY clause. The 5969 ** processing is much simpler since there is only a single row 5970 ** of output. 5971 */ 5972 resetAccumulator(pParse, &sAggInfo); 5973 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0); 5974 if( pWInfo==0 ){ 5975 sqlite3ExprListDelete(db, pDel); 5976 goto select_end; 5977 } 5978 updateAccumulator(pParse, &sAggInfo); 5979 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5980 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5981 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5982 VdbeComment((v, "%s() by index", 5983 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5984 } 5985 sqlite3WhereEnd(pWInfo); 5986 finalizeAggFunctions(pParse, &sAggInfo); 5987 } 5988 5989 sSort.pOrderBy = 0; 5990 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5991 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5992 pDest, addrEnd, addrEnd); 5993 sqlite3ExprListDelete(db, pDel); 5994 } 5995 sqlite3VdbeResolveLabel(v, addrEnd); 5996 5997 } /* endif aggregate query */ 5998 5999 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6000 explainTempTable(pParse, "DISTINCT"); 6001 } 6002 6003 /* If there is an ORDER BY clause, then we need to sort the results 6004 ** and send them to the callback one by one. 6005 */ 6006 if( sSort.pOrderBy ){ 6007 explainTempTable(pParse, 6008 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6009 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6010 } 6011 6012 /* Jump here to skip this query 6013 */ 6014 sqlite3VdbeResolveLabel(v, iEnd); 6015 6016 /* The SELECT has been coded. If there is an error in the Parse structure, 6017 ** set the return code to 1. Otherwise 0. */ 6018 rc = (pParse->nErr>0); 6019 6020 /* Control jumps to here if an error is encountered above, or upon 6021 ** successful coding of the SELECT. 6022 */ 6023 select_end: 6024 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 6025 6026 sqlite3DbFree(db, sAggInfo.aCol); 6027 sqlite3DbFree(db, sAggInfo.aFunc); 6028 #if SELECTTRACE_ENABLED 6029 SELECTTRACE(1,pParse,p,("end processing\n")); 6030 pParse->nSelectIndent--; 6031 #endif 6032 return rc; 6033 } 6034