1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 58 }; 59 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 60 61 /* 62 ** Delete all the content of a Select structure. Deallocate the structure 63 ** itself only if bFree is true. 64 */ 65 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 66 while( p ){ 67 Select *pPrior = p->pPrior; 68 sqlite3ExprListDelete(db, p->pEList); 69 sqlite3SrcListDelete(db, p->pSrc); 70 sqlite3ExprDelete(db, p->pWhere); 71 sqlite3ExprListDelete(db, p->pGroupBy); 72 sqlite3ExprDelete(db, p->pHaving); 73 sqlite3ExprListDelete(db, p->pOrderBy); 74 sqlite3ExprDelete(db, p->pLimit); 75 sqlite3ExprDelete(db, p->pOffset); 76 sqlite3WithDelete(db, p->pWith); 77 if( bFree ) sqlite3DbFree(db, p); 78 p = pPrior; 79 bFree = 1; 80 } 81 } 82 83 /* 84 ** Initialize a SelectDest structure. 85 */ 86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 87 pDest->eDest = (u8)eDest; 88 pDest->iSDParm = iParm; 89 pDest->affSdst = 0; 90 pDest->iSdst = 0; 91 pDest->nSdst = 0; 92 } 93 94 95 /* 96 ** Allocate a new Select structure and return a pointer to that 97 ** structure. 98 */ 99 Select *sqlite3SelectNew( 100 Parse *pParse, /* Parsing context */ 101 ExprList *pEList, /* which columns to include in the result */ 102 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 103 Expr *pWhere, /* the WHERE clause */ 104 ExprList *pGroupBy, /* the GROUP BY clause */ 105 Expr *pHaving, /* the HAVING clause */ 106 ExprList *pOrderBy, /* the ORDER BY clause */ 107 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 108 Expr *pLimit, /* LIMIT value. NULL means not used */ 109 Expr *pOffset /* OFFSET value. NULL means no offset */ 110 ){ 111 Select *pNew; 112 Select standin; 113 sqlite3 *db = pParse->db; 114 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 if( p->op==TK_FUNCTION && p->x.pList ){ 370 int i; 371 for(i=0; i<p->x.pList->nExpr; i++){ 372 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 373 } 374 } 375 setJoinExpr(p->pLeft, iTable); 376 p = p->pRight; 377 } 378 } 379 380 /* 381 ** This routine processes the join information for a SELECT statement. 382 ** ON and USING clauses are converted into extra terms of the WHERE clause. 383 ** NATURAL joins also create extra WHERE clause terms. 384 ** 385 ** The terms of a FROM clause are contained in the Select.pSrc structure. 386 ** The left most table is the first entry in Select.pSrc. The right-most 387 ** table is the last entry. The join operator is held in the entry to 388 ** the left. Thus entry 0 contains the join operator for the join between 389 ** entries 0 and 1. Any ON or USING clauses associated with the join are 390 ** also attached to the left entry. 391 ** 392 ** This routine returns the number of errors encountered. 393 */ 394 static int sqliteProcessJoin(Parse *pParse, Select *p){ 395 SrcList *pSrc; /* All tables in the FROM clause */ 396 int i, j; /* Loop counters */ 397 struct SrcList_item *pLeft; /* Left table being joined */ 398 struct SrcList_item *pRight; /* Right table being joined */ 399 400 pSrc = p->pSrc; 401 pLeft = &pSrc->a[0]; 402 pRight = &pLeft[1]; 403 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 404 Table *pLeftTab = pLeft->pTab; 405 Table *pRightTab = pRight->pTab; 406 int isOuter; 407 408 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 409 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 410 411 /* When the NATURAL keyword is present, add WHERE clause terms for 412 ** every column that the two tables have in common. 413 */ 414 if( pRight->fg.jointype & JT_NATURAL ){ 415 if( pRight->pOn || pRight->pUsing ){ 416 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 417 "an ON or USING clause", 0); 418 return 1; 419 } 420 for(j=0; j<pRightTab->nCol; j++){ 421 char *zName; /* Name of column in the right table */ 422 int iLeft; /* Matching left table */ 423 int iLeftCol; /* Matching column in the left table */ 424 425 zName = pRightTab->aCol[j].zName; 426 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 427 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 428 isOuter, &p->pWhere); 429 } 430 } 431 } 432 433 /* Disallow both ON and USING clauses in the same join 434 */ 435 if( pRight->pOn && pRight->pUsing ){ 436 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 437 "clauses in the same join"); 438 return 1; 439 } 440 441 /* Add the ON clause to the end of the WHERE clause, connected by 442 ** an AND operator. 443 */ 444 if( pRight->pOn ){ 445 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 446 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 447 pRight->pOn = 0; 448 } 449 450 /* Create extra terms on the WHERE clause for each column named 451 ** in the USING clause. Example: If the two tables to be joined are 452 ** A and B and the USING clause names X, Y, and Z, then add this 453 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 454 ** Report an error if any column mentioned in the USING clause is 455 ** not contained in both tables to be joined. 456 */ 457 if( pRight->pUsing ){ 458 IdList *pList = pRight->pUsing; 459 for(j=0; j<pList->nId; j++){ 460 char *zName; /* Name of the term in the USING clause */ 461 int iLeft; /* Table on the left with matching column name */ 462 int iLeftCol; /* Column number of matching column on the left */ 463 int iRightCol; /* Column number of matching column on the right */ 464 465 zName = pList->a[j].zName; 466 iRightCol = columnIndex(pRightTab, zName); 467 if( iRightCol<0 468 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 469 ){ 470 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 471 "not present in both tables", zName); 472 return 1; 473 } 474 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 475 isOuter, &p->pWhere); 476 } 477 } 478 } 479 return 0; 480 } 481 482 /* Forward reference */ 483 static KeyInfo *keyInfoFromExprList( 484 Parse *pParse, /* Parsing context */ 485 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 486 int iStart, /* Begin with this column of pList */ 487 int nExtra /* Add this many extra columns to the end */ 488 ); 489 490 /* 491 ** Generate code that will push the record in registers regData 492 ** through regData+nData-1 onto the sorter. 493 */ 494 static void pushOntoSorter( 495 Parse *pParse, /* Parser context */ 496 SortCtx *pSort, /* Information about the ORDER BY clause */ 497 Select *pSelect, /* The whole SELECT statement */ 498 int regData, /* First register holding data to be sorted */ 499 int regOrigData, /* First register holding data before packing */ 500 int nData, /* Number of elements in the data array */ 501 int nPrefixReg /* No. of reg prior to regData available for use */ 502 ){ 503 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 504 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 505 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 506 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 507 int regBase; /* Regs for sorter record */ 508 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 509 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 510 int op; /* Opcode to add sorter record to sorter */ 511 512 assert( bSeq==0 || bSeq==1 ); 513 assert( nData==1 || regData==regOrigData ); 514 if( nPrefixReg ){ 515 assert( nPrefixReg==nExpr+bSeq ); 516 regBase = regData - nExpr - bSeq; 517 }else{ 518 regBase = pParse->nMem + 1; 519 pParse->nMem += nBase; 520 } 521 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 522 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); 523 if( bSeq ){ 524 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 525 } 526 if( nPrefixReg==0 ){ 527 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 528 } 529 530 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 531 if( nOBSat>0 ){ 532 int regPrevKey; /* The first nOBSat columns of the previous row */ 533 int addrFirst; /* Address of the OP_IfNot opcode */ 534 int addrJmp; /* Address of the OP_Jump opcode */ 535 VdbeOp *pOp; /* Opcode that opens the sorter */ 536 int nKey; /* Number of sorting key columns, including OP_Sequence */ 537 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 538 539 regPrevKey = pParse->nMem+1; 540 pParse->nMem += pSort->nOBSat; 541 nKey = nExpr - pSort->nOBSat + bSeq; 542 if( bSeq ){ 543 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 544 }else{ 545 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 546 } 547 VdbeCoverage(v); 548 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 549 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 550 if( pParse->db->mallocFailed ) return; 551 pOp->p2 = nKey + nData; 552 pKI = pOp->p4.pKeyInfo; 553 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 554 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 555 testcase( pKI->nXField>2 ); 556 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 557 pKI->nXField-1); 558 addrJmp = sqlite3VdbeCurrentAddr(v); 559 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 560 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 561 pSort->regReturn = ++pParse->nMem; 562 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 563 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 564 sqlite3VdbeJumpHere(v, addrFirst); 565 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 566 sqlite3VdbeJumpHere(v, addrJmp); 567 } 568 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 569 op = OP_SorterInsert; 570 }else{ 571 op = OP_IdxInsert; 572 } 573 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 574 if( pSelect->iLimit ){ 575 int addr; 576 int iLimit; 577 if( pSelect->iOffset ){ 578 iLimit = pSelect->iOffset+1; 579 }else{ 580 iLimit = pSelect->iLimit; 581 } 582 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v); 583 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 584 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 585 sqlite3VdbeJumpHere(v, addr); 586 } 587 } 588 589 /* 590 ** Add code to implement the OFFSET 591 */ 592 static void codeOffset( 593 Vdbe *v, /* Generate code into this VM */ 594 int iOffset, /* Register holding the offset counter */ 595 int iContinue /* Jump here to skip the current record */ 596 ){ 597 if( iOffset>0 ){ 598 int addr; 599 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 600 sqlite3VdbeGoto(v, iContinue); 601 VdbeComment((v, "skip OFFSET records")); 602 sqlite3VdbeJumpHere(v, addr); 603 } 604 } 605 606 /* 607 ** Add code that will check to make sure the N registers starting at iMem 608 ** form a distinct entry. iTab is a sorting index that holds previously 609 ** seen combinations of the N values. A new entry is made in iTab 610 ** if the current N values are new. 611 ** 612 ** A jump to addrRepeat is made and the N+1 values are popped from the 613 ** stack if the top N elements are not distinct. 614 */ 615 static void codeDistinct( 616 Parse *pParse, /* Parsing and code generating context */ 617 int iTab, /* A sorting index used to test for distinctness */ 618 int addrRepeat, /* Jump to here if not distinct */ 619 int N, /* Number of elements */ 620 int iMem /* First element */ 621 ){ 622 Vdbe *v; 623 int r1; 624 625 v = pParse->pVdbe; 626 r1 = sqlite3GetTempReg(pParse); 627 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 628 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 629 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 630 sqlite3ReleaseTempReg(pParse, r1); 631 } 632 633 #ifndef SQLITE_OMIT_SUBQUERY 634 /* 635 ** Generate an error message when a SELECT is used within a subexpression 636 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 637 ** column. We do this in a subroutine because the error used to occur 638 ** in multiple places. (The error only occurs in one place now, but we 639 ** retain the subroutine to minimize code disruption.) 640 */ 641 static int checkForMultiColumnSelectError( 642 Parse *pParse, /* Parse context. */ 643 SelectDest *pDest, /* Destination of SELECT results */ 644 int nExpr /* Number of result columns returned by SELECT */ 645 ){ 646 int eDest = pDest->eDest; 647 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 648 sqlite3ErrorMsg(pParse, "only a single result allowed for " 649 "a SELECT that is part of an expression"); 650 return 1; 651 }else{ 652 return 0; 653 } 654 } 655 #endif 656 657 /* 658 ** This routine generates the code for the inside of the inner loop 659 ** of a SELECT. 660 ** 661 ** If srcTab is negative, then the pEList expressions 662 ** are evaluated in order to get the data for this row. If srcTab is 663 ** zero or more, then data is pulled from srcTab and pEList is used only 664 ** to get number columns and the datatype for each column. 665 */ 666 static void selectInnerLoop( 667 Parse *pParse, /* The parser context */ 668 Select *p, /* The complete select statement being coded */ 669 ExprList *pEList, /* List of values being extracted */ 670 int srcTab, /* Pull data from this table */ 671 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 672 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 673 SelectDest *pDest, /* How to dispose of the results */ 674 int iContinue, /* Jump here to continue with next row */ 675 int iBreak /* Jump here to break out of the inner loop */ 676 ){ 677 Vdbe *v = pParse->pVdbe; 678 int i; 679 int hasDistinct; /* True if the DISTINCT keyword is present */ 680 int regResult; /* Start of memory holding result set */ 681 int eDest = pDest->eDest; /* How to dispose of results */ 682 int iParm = pDest->iSDParm; /* First argument to disposal method */ 683 int nResultCol; /* Number of result columns */ 684 int nPrefixReg = 0; /* Number of extra registers before regResult */ 685 686 assert( v ); 687 assert( pEList!=0 ); 688 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 689 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 690 if( pSort==0 && !hasDistinct ){ 691 assert( iContinue!=0 ); 692 codeOffset(v, p->iOffset, iContinue); 693 } 694 695 /* Pull the requested columns. 696 */ 697 nResultCol = pEList->nExpr; 698 699 if( pDest->iSdst==0 ){ 700 if( pSort ){ 701 nPrefixReg = pSort->pOrderBy->nExpr; 702 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 703 pParse->nMem += nPrefixReg; 704 } 705 pDest->iSdst = pParse->nMem+1; 706 pParse->nMem += nResultCol; 707 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 708 /* This is an error condition that can result, for example, when a SELECT 709 ** on the right-hand side of an INSERT contains more result columns than 710 ** there are columns in the table on the left. The error will be caught 711 ** and reported later. But we need to make sure enough memory is allocated 712 ** to avoid other spurious errors in the meantime. */ 713 pParse->nMem += nResultCol; 714 } 715 pDest->nSdst = nResultCol; 716 regResult = pDest->iSdst; 717 if( srcTab>=0 ){ 718 for(i=0; i<nResultCol; i++){ 719 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 720 VdbeComment((v, "%s", pEList->a[i].zName)); 721 } 722 }else if( eDest!=SRT_Exists ){ 723 /* If the destination is an EXISTS(...) expression, the actual 724 ** values returned by the SELECT are not required. 725 */ 726 u8 ecelFlags; 727 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 728 ecelFlags = SQLITE_ECEL_DUP; 729 }else{ 730 ecelFlags = 0; 731 } 732 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); 733 } 734 735 /* If the DISTINCT keyword was present on the SELECT statement 736 ** and this row has been seen before, then do not make this row 737 ** part of the result. 738 */ 739 if( hasDistinct ){ 740 switch( pDistinct->eTnctType ){ 741 case WHERE_DISTINCT_ORDERED: { 742 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 743 int iJump; /* Jump destination */ 744 int regPrev; /* Previous row content */ 745 746 /* Allocate space for the previous row */ 747 regPrev = pParse->nMem+1; 748 pParse->nMem += nResultCol; 749 750 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 751 ** sets the MEM_Cleared bit on the first register of the 752 ** previous value. This will cause the OP_Ne below to always 753 ** fail on the first iteration of the loop even if the first 754 ** row is all NULLs. 755 */ 756 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 757 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 758 pOp->opcode = OP_Null; 759 pOp->p1 = 1; 760 pOp->p2 = regPrev; 761 762 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 763 for(i=0; i<nResultCol; i++){ 764 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 765 if( i<nResultCol-1 ){ 766 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 767 VdbeCoverage(v); 768 }else{ 769 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 770 VdbeCoverage(v); 771 } 772 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 773 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 774 } 775 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 776 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 777 break; 778 } 779 780 case WHERE_DISTINCT_UNIQUE: { 781 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 782 break; 783 } 784 785 default: { 786 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 787 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 788 regResult); 789 break; 790 } 791 } 792 if( pSort==0 ){ 793 codeOffset(v, p->iOffset, iContinue); 794 } 795 } 796 797 switch( eDest ){ 798 /* In this mode, write each query result to the key of the temporary 799 ** table iParm. 800 */ 801 #ifndef SQLITE_OMIT_COMPOUND_SELECT 802 case SRT_Union: { 803 int r1; 804 r1 = sqlite3GetTempReg(pParse); 805 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 806 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 807 sqlite3ReleaseTempReg(pParse, r1); 808 break; 809 } 810 811 /* Construct a record from the query result, but instead of 812 ** saving that record, use it as a key to delete elements from 813 ** the temporary table iParm. 814 */ 815 case SRT_Except: { 816 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 817 break; 818 } 819 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 820 821 /* Store the result as data using a unique key. 822 */ 823 case SRT_Fifo: 824 case SRT_DistFifo: 825 case SRT_Table: 826 case SRT_EphemTab: { 827 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 828 testcase( eDest==SRT_Table ); 829 testcase( eDest==SRT_EphemTab ); 830 testcase( eDest==SRT_Fifo ); 831 testcase( eDest==SRT_DistFifo ); 832 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 833 #ifndef SQLITE_OMIT_CTE 834 if( eDest==SRT_DistFifo ){ 835 /* If the destination is DistFifo, then cursor (iParm+1) is open 836 ** on an ephemeral index. If the current row is already present 837 ** in the index, do not write it to the output. If not, add the 838 ** current row to the index and proceed with writing it to the 839 ** output table as well. */ 840 int addr = sqlite3VdbeCurrentAddr(v) + 4; 841 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 842 VdbeCoverage(v); 843 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 844 assert( pSort==0 ); 845 } 846 #endif 847 if( pSort ){ 848 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 849 }else{ 850 int r2 = sqlite3GetTempReg(pParse); 851 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 852 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 853 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 854 sqlite3ReleaseTempReg(pParse, r2); 855 } 856 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 857 break; 858 } 859 860 #ifndef SQLITE_OMIT_SUBQUERY 861 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 862 ** then there should be a single item on the stack. Write this 863 ** item into the set table with bogus data. 864 */ 865 case SRT_Set: { 866 assert( nResultCol==1 ); 867 pDest->affSdst = 868 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 869 if( pSort ){ 870 /* At first glance you would think we could optimize out the 871 ** ORDER BY in this case since the order of entries in the set 872 ** does not matter. But there might be a LIMIT clause, in which 873 ** case the order does matter */ 874 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 875 }else{ 876 int r1 = sqlite3GetTempReg(pParse); 877 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 878 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 879 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 880 sqlite3ReleaseTempReg(pParse, r1); 881 } 882 break; 883 } 884 885 /* If any row exist in the result set, record that fact and abort. 886 */ 887 case SRT_Exists: { 888 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 889 /* The LIMIT clause will terminate the loop for us */ 890 break; 891 } 892 893 /* If this is a scalar select that is part of an expression, then 894 ** store the results in the appropriate memory cell and break out 895 ** of the scan loop. 896 */ 897 case SRT_Mem: { 898 assert( nResultCol==1 ); 899 if( pSort ){ 900 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 901 }else{ 902 assert( regResult==iParm ); 903 /* The LIMIT clause will jump out of the loop for us */ 904 } 905 break; 906 } 907 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 908 909 case SRT_Coroutine: /* Send data to a co-routine */ 910 case SRT_Output: { /* Return the results */ 911 testcase( eDest==SRT_Coroutine ); 912 testcase( eDest==SRT_Output ); 913 if( pSort ){ 914 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, 915 nPrefixReg); 916 }else if( eDest==SRT_Coroutine ){ 917 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 918 }else{ 919 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 920 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 921 } 922 break; 923 } 924 925 #ifndef SQLITE_OMIT_CTE 926 /* Write the results into a priority queue that is order according to 927 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 928 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 929 ** pSO->nExpr columns, then make sure all keys are unique by adding a 930 ** final OP_Sequence column. The last column is the record as a blob. 931 */ 932 case SRT_DistQueue: 933 case SRT_Queue: { 934 int nKey; 935 int r1, r2, r3; 936 int addrTest = 0; 937 ExprList *pSO; 938 pSO = pDest->pOrderBy; 939 assert( pSO ); 940 nKey = pSO->nExpr; 941 r1 = sqlite3GetTempReg(pParse); 942 r2 = sqlite3GetTempRange(pParse, nKey+2); 943 r3 = r2+nKey+1; 944 if( eDest==SRT_DistQueue ){ 945 /* If the destination is DistQueue, then cursor (iParm+1) is open 946 ** on a second ephemeral index that holds all values every previously 947 ** added to the queue. */ 948 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 949 regResult, nResultCol); 950 VdbeCoverage(v); 951 } 952 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 953 if( eDest==SRT_DistQueue ){ 954 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 955 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 956 } 957 for(i=0; i<nKey; i++){ 958 sqlite3VdbeAddOp2(v, OP_SCopy, 959 regResult + pSO->a[i].u.x.iOrderByCol - 1, 960 r2+i); 961 } 962 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 963 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 964 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 965 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 966 sqlite3ReleaseTempReg(pParse, r1); 967 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 968 break; 969 } 970 #endif /* SQLITE_OMIT_CTE */ 971 972 973 974 #if !defined(SQLITE_OMIT_TRIGGER) 975 /* Discard the results. This is used for SELECT statements inside 976 ** the body of a TRIGGER. The purpose of such selects is to call 977 ** user-defined functions that have side effects. We do not care 978 ** about the actual results of the select. 979 */ 980 default: { 981 assert( eDest==SRT_Discard ); 982 break; 983 } 984 #endif 985 } 986 987 /* Jump to the end of the loop if the LIMIT is reached. Except, if 988 ** there is a sorter, in which case the sorter has already limited 989 ** the output for us. 990 */ 991 if( pSort==0 && p->iLimit ){ 992 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 993 } 994 } 995 996 /* 997 ** Allocate a KeyInfo object sufficient for an index of N key columns and 998 ** X extra columns. 999 */ 1000 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1001 KeyInfo *p = sqlite3DbMallocZero(0, 1002 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 1003 if( p ){ 1004 p->aSortOrder = (u8*)&p->aColl[N+X]; 1005 p->nField = (u16)N; 1006 p->nXField = (u16)X; 1007 p->enc = ENC(db); 1008 p->db = db; 1009 p->nRef = 1; 1010 }else{ 1011 db->mallocFailed = 1; 1012 } 1013 return p; 1014 } 1015 1016 /* 1017 ** Deallocate a KeyInfo object 1018 */ 1019 void sqlite3KeyInfoUnref(KeyInfo *p){ 1020 if( p ){ 1021 assert( p->nRef>0 ); 1022 p->nRef--; 1023 if( p->nRef==0 ) sqlite3DbFree(0, p); 1024 } 1025 } 1026 1027 /* 1028 ** Make a new pointer to a KeyInfo object 1029 */ 1030 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1031 if( p ){ 1032 assert( p->nRef>0 ); 1033 p->nRef++; 1034 } 1035 return p; 1036 } 1037 1038 #ifdef SQLITE_DEBUG 1039 /* 1040 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1041 ** can only be changed if this is just a single reference to the object. 1042 ** 1043 ** This routine is used only inside of assert() statements. 1044 */ 1045 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1046 #endif /* SQLITE_DEBUG */ 1047 1048 /* 1049 ** Given an expression list, generate a KeyInfo structure that records 1050 ** the collating sequence for each expression in that expression list. 1051 ** 1052 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1053 ** KeyInfo structure is appropriate for initializing a virtual index to 1054 ** implement that clause. If the ExprList is the result set of a SELECT 1055 ** then the KeyInfo structure is appropriate for initializing a virtual 1056 ** index to implement a DISTINCT test. 1057 ** 1058 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1059 ** function is responsible for seeing that this structure is eventually 1060 ** freed. 1061 */ 1062 static KeyInfo *keyInfoFromExprList( 1063 Parse *pParse, /* Parsing context */ 1064 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1065 int iStart, /* Begin with this column of pList */ 1066 int nExtra /* Add this many extra columns to the end */ 1067 ){ 1068 int nExpr; 1069 KeyInfo *pInfo; 1070 struct ExprList_item *pItem; 1071 sqlite3 *db = pParse->db; 1072 int i; 1073 1074 nExpr = pList->nExpr; 1075 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1076 if( pInfo ){ 1077 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1078 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1079 CollSeq *pColl; 1080 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1081 if( !pColl ) pColl = db->pDfltColl; 1082 pInfo->aColl[i-iStart] = pColl; 1083 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1084 } 1085 } 1086 return pInfo; 1087 } 1088 1089 /* 1090 ** Name of the connection operator, used for error messages. 1091 */ 1092 static const char *selectOpName(int id){ 1093 char *z; 1094 switch( id ){ 1095 case TK_ALL: z = "UNION ALL"; break; 1096 case TK_INTERSECT: z = "INTERSECT"; break; 1097 case TK_EXCEPT: z = "EXCEPT"; break; 1098 default: z = "UNION"; break; 1099 } 1100 return z; 1101 } 1102 1103 #ifndef SQLITE_OMIT_EXPLAIN 1104 /* 1105 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1106 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1107 ** where the caption is of the form: 1108 ** 1109 ** "USE TEMP B-TREE FOR xxx" 1110 ** 1111 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1112 ** is determined by the zUsage argument. 1113 */ 1114 static void explainTempTable(Parse *pParse, const char *zUsage){ 1115 if( pParse->explain==2 ){ 1116 Vdbe *v = pParse->pVdbe; 1117 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1118 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1119 } 1120 } 1121 1122 /* 1123 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1124 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1125 ** in sqlite3Select() to assign values to structure member variables that 1126 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1127 ** code with #ifndef directives. 1128 */ 1129 # define explainSetInteger(a, b) a = b 1130 1131 #else 1132 /* No-op versions of the explainXXX() functions and macros. */ 1133 # define explainTempTable(y,z) 1134 # define explainSetInteger(y,z) 1135 #endif 1136 1137 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1138 /* 1139 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1140 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1141 ** where the caption is of one of the two forms: 1142 ** 1143 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1144 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1145 ** 1146 ** where iSub1 and iSub2 are the integers passed as the corresponding 1147 ** function parameters, and op is the text representation of the parameter 1148 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1149 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1150 ** false, or the second form if it is true. 1151 */ 1152 static void explainComposite( 1153 Parse *pParse, /* Parse context */ 1154 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1155 int iSub1, /* Subquery id 1 */ 1156 int iSub2, /* Subquery id 2 */ 1157 int bUseTmp /* True if a temp table was used */ 1158 ){ 1159 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1160 if( pParse->explain==2 ){ 1161 Vdbe *v = pParse->pVdbe; 1162 char *zMsg = sqlite3MPrintf( 1163 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1164 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1165 ); 1166 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1167 } 1168 } 1169 #else 1170 /* No-op versions of the explainXXX() functions and macros. */ 1171 # define explainComposite(v,w,x,y,z) 1172 #endif 1173 1174 /* 1175 ** If the inner loop was generated using a non-null pOrderBy argument, 1176 ** then the results were placed in a sorter. After the loop is terminated 1177 ** we need to run the sorter and output the results. The following 1178 ** routine generates the code needed to do that. 1179 */ 1180 static void generateSortTail( 1181 Parse *pParse, /* Parsing context */ 1182 Select *p, /* The SELECT statement */ 1183 SortCtx *pSort, /* Information on the ORDER BY clause */ 1184 int nColumn, /* Number of columns of data */ 1185 SelectDest *pDest /* Write the sorted results here */ 1186 ){ 1187 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1188 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1189 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1190 int addr; 1191 int addrOnce = 0; 1192 int iTab; 1193 ExprList *pOrderBy = pSort->pOrderBy; 1194 int eDest = pDest->eDest; 1195 int iParm = pDest->iSDParm; 1196 int regRow; 1197 int regRowid; 1198 int nKey; 1199 int iSortTab; /* Sorter cursor to read from */ 1200 int nSortData; /* Trailing values to read from sorter */ 1201 int i; 1202 int bSeq; /* True if sorter record includes seq. no. */ 1203 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1204 struct ExprList_item *aOutEx = p->pEList->a; 1205 #endif 1206 1207 if( pSort->labelBkOut ){ 1208 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1209 sqlite3VdbeGoto(v, addrBreak); 1210 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1211 } 1212 iTab = pSort->iECursor; 1213 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1214 regRowid = 0; 1215 regRow = pDest->iSdst; 1216 nSortData = nColumn; 1217 }else{ 1218 regRowid = sqlite3GetTempReg(pParse); 1219 regRow = sqlite3GetTempReg(pParse); 1220 nSortData = 1; 1221 } 1222 nKey = pOrderBy->nExpr - pSort->nOBSat; 1223 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1224 int regSortOut = ++pParse->nMem; 1225 iSortTab = pParse->nTab++; 1226 if( pSort->labelBkOut ){ 1227 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1228 } 1229 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1230 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1231 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1232 VdbeCoverage(v); 1233 codeOffset(v, p->iOffset, addrContinue); 1234 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1235 bSeq = 0; 1236 }else{ 1237 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1238 codeOffset(v, p->iOffset, addrContinue); 1239 iSortTab = iTab; 1240 bSeq = 1; 1241 } 1242 for(i=0; i<nSortData; i++){ 1243 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1244 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1245 } 1246 switch( eDest ){ 1247 case SRT_EphemTab: { 1248 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1249 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1250 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1251 break; 1252 } 1253 #ifndef SQLITE_OMIT_SUBQUERY 1254 case SRT_Set: { 1255 assert( nColumn==1 ); 1256 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1257 &pDest->affSdst, 1); 1258 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1259 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1260 break; 1261 } 1262 case SRT_Mem: { 1263 assert( nColumn==1 ); 1264 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1265 /* The LIMIT clause will terminate the loop for us */ 1266 break; 1267 } 1268 #endif 1269 default: { 1270 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1271 testcase( eDest==SRT_Output ); 1272 testcase( eDest==SRT_Coroutine ); 1273 if( eDest==SRT_Output ){ 1274 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1275 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1276 }else{ 1277 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1278 } 1279 break; 1280 } 1281 } 1282 if( regRowid ){ 1283 sqlite3ReleaseTempReg(pParse, regRow); 1284 sqlite3ReleaseTempReg(pParse, regRowid); 1285 } 1286 /* The bottom of the loop 1287 */ 1288 sqlite3VdbeResolveLabel(v, addrContinue); 1289 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1290 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1291 }else{ 1292 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1293 } 1294 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1295 sqlite3VdbeResolveLabel(v, addrBreak); 1296 } 1297 1298 /* 1299 ** Return a pointer to a string containing the 'declaration type' of the 1300 ** expression pExpr. The string may be treated as static by the caller. 1301 ** 1302 ** Also try to estimate the size of the returned value and return that 1303 ** result in *pEstWidth. 1304 ** 1305 ** The declaration type is the exact datatype definition extracted from the 1306 ** original CREATE TABLE statement if the expression is a column. The 1307 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1308 ** is considered a column can be complex in the presence of subqueries. The 1309 ** result-set expression in all of the following SELECT statements is 1310 ** considered a column by this function. 1311 ** 1312 ** SELECT col FROM tbl; 1313 ** SELECT (SELECT col FROM tbl; 1314 ** SELECT (SELECT col FROM tbl); 1315 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1316 ** 1317 ** The declaration type for any expression other than a column is NULL. 1318 ** 1319 ** This routine has either 3 or 6 parameters depending on whether or not 1320 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1321 */ 1322 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1323 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1324 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1325 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1326 #endif 1327 static const char *columnTypeImpl( 1328 NameContext *pNC, 1329 Expr *pExpr, 1330 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1331 const char **pzOrigDb, 1332 const char **pzOrigTab, 1333 const char **pzOrigCol, 1334 #endif 1335 u8 *pEstWidth 1336 ){ 1337 char const *zType = 0; 1338 int j; 1339 u8 estWidth = 1; 1340 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1341 char const *zOrigDb = 0; 1342 char const *zOrigTab = 0; 1343 char const *zOrigCol = 0; 1344 #endif 1345 1346 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1347 switch( pExpr->op ){ 1348 case TK_AGG_COLUMN: 1349 case TK_COLUMN: { 1350 /* The expression is a column. Locate the table the column is being 1351 ** extracted from in NameContext.pSrcList. This table may be real 1352 ** database table or a subquery. 1353 */ 1354 Table *pTab = 0; /* Table structure column is extracted from */ 1355 Select *pS = 0; /* Select the column is extracted from */ 1356 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1357 testcase( pExpr->op==TK_AGG_COLUMN ); 1358 testcase( pExpr->op==TK_COLUMN ); 1359 while( pNC && !pTab ){ 1360 SrcList *pTabList = pNC->pSrcList; 1361 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1362 if( j<pTabList->nSrc ){ 1363 pTab = pTabList->a[j].pTab; 1364 pS = pTabList->a[j].pSelect; 1365 }else{ 1366 pNC = pNC->pNext; 1367 } 1368 } 1369 1370 if( pTab==0 ){ 1371 /* At one time, code such as "SELECT new.x" within a trigger would 1372 ** cause this condition to run. Since then, we have restructured how 1373 ** trigger code is generated and so this condition is no longer 1374 ** possible. However, it can still be true for statements like 1375 ** the following: 1376 ** 1377 ** CREATE TABLE t1(col INTEGER); 1378 ** SELECT (SELECT t1.col) FROM FROM t1; 1379 ** 1380 ** when columnType() is called on the expression "t1.col" in the 1381 ** sub-select. In this case, set the column type to NULL, even 1382 ** though it should really be "INTEGER". 1383 ** 1384 ** This is not a problem, as the column type of "t1.col" is never 1385 ** used. When columnType() is called on the expression 1386 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1387 ** branch below. */ 1388 break; 1389 } 1390 1391 assert( pTab && pExpr->pTab==pTab ); 1392 if( pS ){ 1393 /* The "table" is actually a sub-select or a view in the FROM clause 1394 ** of the SELECT statement. Return the declaration type and origin 1395 ** data for the result-set column of the sub-select. 1396 */ 1397 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1398 /* If iCol is less than zero, then the expression requests the 1399 ** rowid of the sub-select or view. This expression is legal (see 1400 ** test case misc2.2.2) - it always evaluates to NULL. 1401 ** 1402 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1403 ** caught already by name resolution. 1404 */ 1405 NameContext sNC; 1406 Expr *p = pS->pEList->a[iCol].pExpr; 1407 sNC.pSrcList = pS->pSrc; 1408 sNC.pNext = pNC; 1409 sNC.pParse = pNC->pParse; 1410 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1411 } 1412 }else if( pTab->pSchema ){ 1413 /* A real table */ 1414 assert( !pS ); 1415 if( iCol<0 ) iCol = pTab->iPKey; 1416 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1417 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1418 if( iCol<0 ){ 1419 zType = "INTEGER"; 1420 zOrigCol = "rowid"; 1421 }else{ 1422 zType = pTab->aCol[iCol].zType; 1423 zOrigCol = pTab->aCol[iCol].zName; 1424 estWidth = pTab->aCol[iCol].szEst; 1425 } 1426 zOrigTab = pTab->zName; 1427 if( pNC->pParse ){ 1428 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1429 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1430 } 1431 #else 1432 if( iCol<0 ){ 1433 zType = "INTEGER"; 1434 }else{ 1435 zType = pTab->aCol[iCol].zType; 1436 estWidth = pTab->aCol[iCol].szEst; 1437 } 1438 #endif 1439 } 1440 break; 1441 } 1442 #ifndef SQLITE_OMIT_SUBQUERY 1443 case TK_SELECT: { 1444 /* The expression is a sub-select. Return the declaration type and 1445 ** origin info for the single column in the result set of the SELECT 1446 ** statement. 1447 */ 1448 NameContext sNC; 1449 Select *pS = pExpr->x.pSelect; 1450 Expr *p = pS->pEList->a[0].pExpr; 1451 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1452 sNC.pSrcList = pS->pSrc; 1453 sNC.pNext = pNC; 1454 sNC.pParse = pNC->pParse; 1455 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1456 break; 1457 } 1458 #endif 1459 } 1460 1461 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1462 if( pzOrigDb ){ 1463 assert( pzOrigTab && pzOrigCol ); 1464 *pzOrigDb = zOrigDb; 1465 *pzOrigTab = zOrigTab; 1466 *pzOrigCol = zOrigCol; 1467 } 1468 #endif 1469 if( pEstWidth ) *pEstWidth = estWidth; 1470 return zType; 1471 } 1472 1473 /* 1474 ** Generate code that will tell the VDBE the declaration types of columns 1475 ** in the result set. 1476 */ 1477 static void generateColumnTypes( 1478 Parse *pParse, /* Parser context */ 1479 SrcList *pTabList, /* List of tables */ 1480 ExprList *pEList /* Expressions defining the result set */ 1481 ){ 1482 #ifndef SQLITE_OMIT_DECLTYPE 1483 Vdbe *v = pParse->pVdbe; 1484 int i; 1485 NameContext sNC; 1486 sNC.pSrcList = pTabList; 1487 sNC.pParse = pParse; 1488 for(i=0; i<pEList->nExpr; i++){ 1489 Expr *p = pEList->a[i].pExpr; 1490 const char *zType; 1491 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1492 const char *zOrigDb = 0; 1493 const char *zOrigTab = 0; 1494 const char *zOrigCol = 0; 1495 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1496 1497 /* The vdbe must make its own copy of the column-type and other 1498 ** column specific strings, in case the schema is reset before this 1499 ** virtual machine is deleted. 1500 */ 1501 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1502 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1503 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1504 #else 1505 zType = columnType(&sNC, p, 0, 0, 0, 0); 1506 #endif 1507 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1508 } 1509 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1510 } 1511 1512 /* 1513 ** Generate code that will tell the VDBE the names of columns 1514 ** in the result set. This information is used to provide the 1515 ** azCol[] values in the callback. 1516 */ 1517 static void generateColumnNames( 1518 Parse *pParse, /* Parser context */ 1519 SrcList *pTabList, /* List of tables */ 1520 ExprList *pEList /* Expressions defining the result set */ 1521 ){ 1522 Vdbe *v = pParse->pVdbe; 1523 int i, j; 1524 sqlite3 *db = pParse->db; 1525 int fullNames, shortNames; 1526 1527 #ifndef SQLITE_OMIT_EXPLAIN 1528 /* If this is an EXPLAIN, skip this step */ 1529 if( pParse->explain ){ 1530 return; 1531 } 1532 #endif 1533 1534 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1535 pParse->colNamesSet = 1; 1536 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1537 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1538 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1539 for(i=0; i<pEList->nExpr; i++){ 1540 Expr *p; 1541 p = pEList->a[i].pExpr; 1542 if( NEVER(p==0) ) continue; 1543 if( pEList->a[i].zName ){ 1544 char *zName = pEList->a[i].zName; 1545 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1546 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1547 Table *pTab; 1548 char *zCol; 1549 int iCol = p->iColumn; 1550 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1551 if( pTabList->a[j].iCursor==p->iTable ) break; 1552 } 1553 assert( j<pTabList->nSrc ); 1554 pTab = pTabList->a[j].pTab; 1555 if( iCol<0 ) iCol = pTab->iPKey; 1556 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1557 if( iCol<0 ){ 1558 zCol = "rowid"; 1559 }else{ 1560 zCol = pTab->aCol[iCol].zName; 1561 } 1562 if( !shortNames && !fullNames ){ 1563 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1564 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1565 }else if( fullNames ){ 1566 char *zName = 0; 1567 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1568 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1569 }else{ 1570 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1571 } 1572 }else{ 1573 const char *z = pEList->a[i].zSpan; 1574 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1575 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1576 } 1577 } 1578 generateColumnTypes(pParse, pTabList, pEList); 1579 } 1580 1581 /* 1582 ** Given an expression list (which is really the list of expressions 1583 ** that form the result set of a SELECT statement) compute appropriate 1584 ** column names for a table that would hold the expression list. 1585 ** 1586 ** All column names will be unique. 1587 ** 1588 ** Only the column names are computed. Column.zType, Column.zColl, 1589 ** and other fields of Column are zeroed. 1590 ** 1591 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1592 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1593 */ 1594 int sqlite3ColumnsFromExprList( 1595 Parse *pParse, /* Parsing context */ 1596 ExprList *pEList, /* Expr list from which to derive column names */ 1597 i16 *pnCol, /* Write the number of columns here */ 1598 Column **paCol /* Write the new column list here */ 1599 ){ 1600 sqlite3 *db = pParse->db; /* Database connection */ 1601 int i, j; /* Loop counters */ 1602 int cnt; /* Index added to make the name unique */ 1603 Column *aCol, *pCol; /* For looping over result columns */ 1604 int nCol; /* Number of columns in the result set */ 1605 Expr *p; /* Expression for a single result column */ 1606 char *zName; /* Column name */ 1607 int nName; /* Size of name in zName[] */ 1608 1609 if( pEList ){ 1610 nCol = pEList->nExpr; 1611 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1612 testcase( aCol==0 ); 1613 }else{ 1614 nCol = 0; 1615 aCol = 0; 1616 } 1617 *pnCol = nCol; 1618 *paCol = aCol; 1619 1620 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1621 /* Get an appropriate name for the column 1622 */ 1623 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1624 if( (zName = pEList->a[i].zName)!=0 ){ 1625 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1626 zName = sqlite3DbStrDup(db, zName); 1627 }else{ 1628 Expr *pColExpr = p; /* The expression that is the result column name */ 1629 Table *pTab; /* Table associated with this expression */ 1630 while( pColExpr->op==TK_DOT ){ 1631 pColExpr = pColExpr->pRight; 1632 assert( pColExpr!=0 ); 1633 } 1634 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1635 /* For columns use the column name name */ 1636 int iCol = pColExpr->iColumn; 1637 pTab = pColExpr->pTab; 1638 if( iCol<0 ) iCol = pTab->iPKey; 1639 zName = sqlite3MPrintf(db, "%s", 1640 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1641 }else if( pColExpr->op==TK_ID ){ 1642 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1643 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1644 }else{ 1645 /* Use the original text of the column expression as its name */ 1646 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1647 } 1648 } 1649 if( db->mallocFailed ){ 1650 sqlite3DbFree(db, zName); 1651 break; 1652 } 1653 1654 /* Make sure the column name is unique. If the name is not unique, 1655 ** append an integer to the name so that it becomes unique. 1656 */ 1657 nName = sqlite3Strlen30(zName); 1658 for(j=cnt=0; j<i; j++){ 1659 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1660 char *zNewName; 1661 int k; 1662 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1663 if( k>=0 && zName[k]==':' ) nName = k; 1664 zName[nName] = 0; 1665 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1666 sqlite3DbFree(db, zName); 1667 zName = zNewName; 1668 j = -1; 1669 if( zName==0 ) break; 1670 } 1671 } 1672 pCol->zName = zName; 1673 } 1674 if( db->mallocFailed ){ 1675 for(j=0; j<i; j++){ 1676 sqlite3DbFree(db, aCol[j].zName); 1677 } 1678 sqlite3DbFree(db, aCol); 1679 *paCol = 0; 1680 *pnCol = 0; 1681 return SQLITE_NOMEM; 1682 } 1683 return SQLITE_OK; 1684 } 1685 1686 /* 1687 ** Add type and collation information to a column list based on 1688 ** a SELECT statement. 1689 ** 1690 ** The column list presumably came from selectColumnNamesFromExprList(). 1691 ** The column list has only names, not types or collations. This 1692 ** routine goes through and adds the types and collations. 1693 ** 1694 ** This routine requires that all identifiers in the SELECT 1695 ** statement be resolved. 1696 */ 1697 static void selectAddColumnTypeAndCollation( 1698 Parse *pParse, /* Parsing contexts */ 1699 Table *pTab, /* Add column type information to this table */ 1700 Select *pSelect /* SELECT used to determine types and collations */ 1701 ){ 1702 sqlite3 *db = pParse->db; 1703 NameContext sNC; 1704 Column *pCol; 1705 CollSeq *pColl; 1706 int i; 1707 Expr *p; 1708 struct ExprList_item *a; 1709 u64 szAll = 0; 1710 1711 assert( pSelect!=0 ); 1712 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1713 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1714 if( db->mallocFailed ) return; 1715 memset(&sNC, 0, sizeof(sNC)); 1716 sNC.pSrcList = pSelect->pSrc; 1717 a = pSelect->pEList->a; 1718 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1719 p = a[i].pExpr; 1720 if( pCol->zType==0 ){ 1721 pCol->zType = sqlite3DbStrDup(db, 1722 columnType(&sNC, p,0,0,0, &pCol->szEst)); 1723 } 1724 szAll += pCol->szEst; 1725 pCol->affinity = sqlite3ExprAffinity(p); 1726 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1727 pColl = sqlite3ExprCollSeq(pParse, p); 1728 if( pColl && pCol->zColl==0 ){ 1729 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1730 } 1731 } 1732 pTab->szTabRow = sqlite3LogEst(szAll*4); 1733 } 1734 1735 /* 1736 ** Given a SELECT statement, generate a Table structure that describes 1737 ** the result set of that SELECT. 1738 */ 1739 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1740 Table *pTab; 1741 sqlite3 *db = pParse->db; 1742 int savedFlags; 1743 1744 savedFlags = db->flags; 1745 db->flags &= ~SQLITE_FullColNames; 1746 db->flags |= SQLITE_ShortColNames; 1747 sqlite3SelectPrep(pParse, pSelect, 0); 1748 if( pParse->nErr ) return 0; 1749 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1750 db->flags = savedFlags; 1751 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1752 if( pTab==0 ){ 1753 return 0; 1754 } 1755 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1756 ** is disabled */ 1757 assert( db->lookaside.bEnabled==0 ); 1758 pTab->nRef = 1; 1759 pTab->zName = 0; 1760 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1761 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1762 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1763 pTab->iPKey = -1; 1764 if( db->mallocFailed ){ 1765 sqlite3DeleteTable(db, pTab); 1766 return 0; 1767 } 1768 return pTab; 1769 } 1770 1771 /* 1772 ** Get a VDBE for the given parser context. Create a new one if necessary. 1773 ** If an error occurs, return NULL and leave a message in pParse. 1774 */ 1775 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1776 Vdbe *v = pParse->pVdbe; 1777 if( v==0 ){ 1778 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1779 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1780 if( pParse->pToplevel==0 1781 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1782 ){ 1783 pParse->okConstFactor = 1; 1784 } 1785 1786 } 1787 return v; 1788 } 1789 1790 1791 /* 1792 ** Compute the iLimit and iOffset fields of the SELECT based on the 1793 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1794 ** that appear in the original SQL statement after the LIMIT and OFFSET 1795 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1796 ** are the integer memory register numbers for counters used to compute 1797 ** the limit and offset. If there is no limit and/or offset, then 1798 ** iLimit and iOffset are negative. 1799 ** 1800 ** This routine changes the values of iLimit and iOffset only if 1801 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1802 ** iOffset should have been preset to appropriate default values (zero) 1803 ** prior to calling this routine. 1804 ** 1805 ** The iOffset register (if it exists) is initialized to the value 1806 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1807 ** iOffset+1 is initialized to LIMIT+OFFSET. 1808 ** 1809 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1810 ** redefined. The UNION ALL operator uses this property to force 1811 ** the reuse of the same limit and offset registers across multiple 1812 ** SELECT statements. 1813 */ 1814 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1815 Vdbe *v = 0; 1816 int iLimit = 0; 1817 int iOffset; 1818 int addr1, n; 1819 if( p->iLimit ) return; 1820 1821 /* 1822 ** "LIMIT -1" always shows all rows. There is some 1823 ** controversy about what the correct behavior should be. 1824 ** The current implementation interprets "LIMIT 0" to mean 1825 ** no rows. 1826 */ 1827 sqlite3ExprCacheClear(pParse); 1828 assert( p->pOffset==0 || p->pLimit!=0 ); 1829 if( p->pLimit ){ 1830 p->iLimit = iLimit = ++pParse->nMem; 1831 v = sqlite3GetVdbe(pParse); 1832 assert( v!=0 ); 1833 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1834 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1835 VdbeComment((v, "LIMIT counter")); 1836 if( n==0 ){ 1837 sqlite3VdbeGoto(v, iBreak); 1838 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1839 p->nSelectRow = n; 1840 } 1841 }else{ 1842 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1843 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1844 VdbeComment((v, "LIMIT counter")); 1845 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1846 } 1847 if( p->pOffset ){ 1848 p->iOffset = iOffset = ++pParse->nMem; 1849 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1850 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1851 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1852 VdbeComment((v, "OFFSET counter")); 1853 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1854 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1855 sqlite3VdbeJumpHere(v, addr1); 1856 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1857 VdbeComment((v, "LIMIT+OFFSET")); 1858 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1859 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1860 sqlite3VdbeJumpHere(v, addr1); 1861 } 1862 } 1863 } 1864 1865 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1866 /* 1867 ** Return the appropriate collating sequence for the iCol-th column of 1868 ** the result set for the compound-select statement "p". Return NULL if 1869 ** the column has no default collating sequence. 1870 ** 1871 ** The collating sequence for the compound select is taken from the 1872 ** left-most term of the select that has a collating sequence. 1873 */ 1874 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1875 CollSeq *pRet; 1876 if( p->pPrior ){ 1877 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1878 }else{ 1879 pRet = 0; 1880 } 1881 assert( iCol>=0 ); 1882 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1883 ** have been thrown during name resolution and we would not have gotten 1884 ** this far */ 1885 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1886 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1887 } 1888 return pRet; 1889 } 1890 1891 /* 1892 ** The select statement passed as the second parameter is a compound SELECT 1893 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1894 ** structure suitable for implementing the ORDER BY. 1895 ** 1896 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1897 ** function is responsible for ensuring that this structure is eventually 1898 ** freed. 1899 */ 1900 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1901 ExprList *pOrderBy = p->pOrderBy; 1902 int nOrderBy = p->pOrderBy->nExpr; 1903 sqlite3 *db = pParse->db; 1904 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1905 if( pRet ){ 1906 int i; 1907 for(i=0; i<nOrderBy; i++){ 1908 struct ExprList_item *pItem = &pOrderBy->a[i]; 1909 Expr *pTerm = pItem->pExpr; 1910 CollSeq *pColl; 1911 1912 if( pTerm->flags & EP_Collate ){ 1913 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1914 }else{ 1915 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1916 if( pColl==0 ) pColl = db->pDfltColl; 1917 pOrderBy->a[i].pExpr = 1918 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1919 } 1920 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1921 pRet->aColl[i] = pColl; 1922 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1923 } 1924 } 1925 1926 return pRet; 1927 } 1928 1929 #ifndef SQLITE_OMIT_CTE 1930 /* 1931 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1932 ** query of the form: 1933 ** 1934 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1935 ** \___________/ \_______________/ 1936 ** p->pPrior p 1937 ** 1938 ** 1939 ** There is exactly one reference to the recursive-table in the FROM clause 1940 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1941 ** 1942 ** The setup-query runs once to generate an initial set of rows that go 1943 ** into a Queue table. Rows are extracted from the Queue table one by 1944 ** one. Each row extracted from Queue is output to pDest. Then the single 1945 ** extracted row (now in the iCurrent table) becomes the content of the 1946 ** recursive-table for a recursive-query run. The output of the recursive-query 1947 ** is added back into the Queue table. Then another row is extracted from Queue 1948 ** and the iteration continues until the Queue table is empty. 1949 ** 1950 ** If the compound query operator is UNION then no duplicate rows are ever 1951 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1952 ** that have ever been inserted into Queue and causes duplicates to be 1953 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1954 ** 1955 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1956 ** ORDER BY order and the first entry is extracted for each cycle. Without 1957 ** an ORDER BY, the Queue table is just a FIFO. 1958 ** 1959 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1960 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1961 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1962 ** with a positive value, then the first OFFSET outputs are discarded rather 1963 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1964 ** rows have been skipped. 1965 */ 1966 static void generateWithRecursiveQuery( 1967 Parse *pParse, /* Parsing context */ 1968 Select *p, /* The recursive SELECT to be coded */ 1969 SelectDest *pDest /* What to do with query results */ 1970 ){ 1971 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1972 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1973 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1974 Select *pSetup = p->pPrior; /* The setup query */ 1975 int addrTop; /* Top of the loop */ 1976 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1977 int iCurrent = 0; /* The Current table */ 1978 int regCurrent; /* Register holding Current table */ 1979 int iQueue; /* The Queue table */ 1980 int iDistinct = 0; /* To ensure unique results if UNION */ 1981 int eDest = SRT_Fifo; /* How to write to Queue */ 1982 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1983 int i; /* Loop counter */ 1984 int rc; /* Result code */ 1985 ExprList *pOrderBy; /* The ORDER BY clause */ 1986 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1987 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1988 1989 /* Obtain authorization to do a recursive query */ 1990 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1991 1992 /* Process the LIMIT and OFFSET clauses, if they exist */ 1993 addrBreak = sqlite3VdbeMakeLabel(v); 1994 computeLimitRegisters(pParse, p, addrBreak); 1995 pLimit = p->pLimit; 1996 pOffset = p->pOffset; 1997 regLimit = p->iLimit; 1998 regOffset = p->iOffset; 1999 p->pLimit = p->pOffset = 0; 2000 p->iLimit = p->iOffset = 0; 2001 pOrderBy = p->pOrderBy; 2002 2003 /* Locate the cursor number of the Current table */ 2004 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2005 if( pSrc->a[i].fg.isRecursive ){ 2006 iCurrent = pSrc->a[i].iCursor; 2007 break; 2008 } 2009 } 2010 2011 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2012 ** the Distinct table must be exactly one greater than Queue in order 2013 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2014 iQueue = pParse->nTab++; 2015 if( p->op==TK_UNION ){ 2016 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2017 iDistinct = pParse->nTab++; 2018 }else{ 2019 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2020 } 2021 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2022 2023 /* Allocate cursors for Current, Queue, and Distinct. */ 2024 regCurrent = ++pParse->nMem; 2025 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2026 if( pOrderBy ){ 2027 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2028 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2029 (char*)pKeyInfo, P4_KEYINFO); 2030 destQueue.pOrderBy = pOrderBy; 2031 }else{ 2032 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2033 } 2034 VdbeComment((v, "Queue table")); 2035 if( iDistinct ){ 2036 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2037 p->selFlags |= SF_UsesEphemeral; 2038 } 2039 2040 /* Detach the ORDER BY clause from the compound SELECT */ 2041 p->pOrderBy = 0; 2042 2043 /* Store the results of the setup-query in Queue. */ 2044 pSetup->pNext = 0; 2045 rc = sqlite3Select(pParse, pSetup, &destQueue); 2046 pSetup->pNext = p; 2047 if( rc ) goto end_of_recursive_query; 2048 2049 /* Find the next row in the Queue and output that row */ 2050 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2051 2052 /* Transfer the next row in Queue over to Current */ 2053 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2054 if( pOrderBy ){ 2055 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2056 }else{ 2057 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2058 } 2059 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2060 2061 /* Output the single row in Current */ 2062 addrCont = sqlite3VdbeMakeLabel(v); 2063 codeOffset(v, regOffset, addrCont); 2064 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2065 0, 0, pDest, addrCont, addrBreak); 2066 if( regLimit ){ 2067 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2068 VdbeCoverage(v); 2069 } 2070 sqlite3VdbeResolveLabel(v, addrCont); 2071 2072 /* Execute the recursive SELECT taking the single row in Current as 2073 ** the value for the recursive-table. Store the results in the Queue. 2074 */ 2075 if( p->selFlags & SF_Aggregate ){ 2076 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2077 }else{ 2078 p->pPrior = 0; 2079 sqlite3Select(pParse, p, &destQueue); 2080 assert( p->pPrior==0 ); 2081 p->pPrior = pSetup; 2082 } 2083 2084 /* Keep running the loop until the Queue is empty */ 2085 sqlite3VdbeGoto(v, addrTop); 2086 sqlite3VdbeResolveLabel(v, addrBreak); 2087 2088 end_of_recursive_query: 2089 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2090 p->pOrderBy = pOrderBy; 2091 p->pLimit = pLimit; 2092 p->pOffset = pOffset; 2093 return; 2094 } 2095 #endif /* SQLITE_OMIT_CTE */ 2096 2097 /* Forward references */ 2098 static int multiSelectOrderBy( 2099 Parse *pParse, /* Parsing context */ 2100 Select *p, /* The right-most of SELECTs to be coded */ 2101 SelectDest *pDest /* What to do with query results */ 2102 ); 2103 2104 /* 2105 ** Handle the special case of a compound-select that originates from a 2106 ** VALUES clause. By handling this as a special case, we avoid deep 2107 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2108 ** on a VALUES clause. 2109 ** 2110 ** Because the Select object originates from a VALUES clause: 2111 ** (1) It has no LIMIT or OFFSET 2112 ** (2) All terms are UNION ALL 2113 ** (3) There is no ORDER BY clause 2114 */ 2115 static int multiSelectValues( 2116 Parse *pParse, /* Parsing context */ 2117 Select *p, /* The right-most of SELECTs to be coded */ 2118 SelectDest *pDest /* What to do with query results */ 2119 ){ 2120 Select *pPrior; 2121 int nRow = 1; 2122 int rc = 0; 2123 assert( p->selFlags & SF_MultiValue ); 2124 do{ 2125 assert( p->selFlags & SF_Values ); 2126 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2127 assert( p->pLimit==0 ); 2128 assert( p->pOffset==0 ); 2129 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2130 if( p->pPrior==0 ) break; 2131 assert( p->pPrior->pNext==p ); 2132 p = p->pPrior; 2133 nRow++; 2134 }while(1); 2135 while( p ){ 2136 pPrior = p->pPrior; 2137 p->pPrior = 0; 2138 rc = sqlite3Select(pParse, p, pDest); 2139 p->pPrior = pPrior; 2140 if( rc ) break; 2141 p->nSelectRow = nRow; 2142 p = p->pNext; 2143 } 2144 return rc; 2145 } 2146 2147 /* 2148 ** This routine is called to process a compound query form from 2149 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2150 ** INTERSECT 2151 ** 2152 ** "p" points to the right-most of the two queries. the query on the 2153 ** left is p->pPrior. The left query could also be a compound query 2154 ** in which case this routine will be called recursively. 2155 ** 2156 ** The results of the total query are to be written into a destination 2157 ** of type eDest with parameter iParm. 2158 ** 2159 ** Example 1: Consider a three-way compound SQL statement. 2160 ** 2161 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2162 ** 2163 ** This statement is parsed up as follows: 2164 ** 2165 ** SELECT c FROM t3 2166 ** | 2167 ** `-----> SELECT b FROM t2 2168 ** | 2169 ** `------> SELECT a FROM t1 2170 ** 2171 ** The arrows in the diagram above represent the Select.pPrior pointer. 2172 ** So if this routine is called with p equal to the t3 query, then 2173 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2174 ** 2175 ** Notice that because of the way SQLite parses compound SELECTs, the 2176 ** individual selects always group from left to right. 2177 */ 2178 static int multiSelect( 2179 Parse *pParse, /* Parsing context */ 2180 Select *p, /* The right-most of SELECTs to be coded */ 2181 SelectDest *pDest /* What to do with query results */ 2182 ){ 2183 int rc = SQLITE_OK; /* Success code from a subroutine */ 2184 Select *pPrior; /* Another SELECT immediately to our left */ 2185 Vdbe *v; /* Generate code to this VDBE */ 2186 SelectDest dest; /* Alternative data destination */ 2187 Select *pDelete = 0; /* Chain of simple selects to delete */ 2188 sqlite3 *db; /* Database connection */ 2189 #ifndef SQLITE_OMIT_EXPLAIN 2190 int iSub1 = 0; /* EQP id of left-hand query */ 2191 int iSub2 = 0; /* EQP id of right-hand query */ 2192 #endif 2193 2194 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2195 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2196 */ 2197 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2198 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2199 db = pParse->db; 2200 pPrior = p->pPrior; 2201 dest = *pDest; 2202 if( pPrior->pOrderBy ){ 2203 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2204 selectOpName(p->op)); 2205 rc = 1; 2206 goto multi_select_end; 2207 } 2208 if( pPrior->pLimit ){ 2209 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2210 selectOpName(p->op)); 2211 rc = 1; 2212 goto multi_select_end; 2213 } 2214 2215 v = sqlite3GetVdbe(pParse); 2216 assert( v!=0 ); /* The VDBE already created by calling function */ 2217 2218 /* Create the destination temporary table if necessary 2219 */ 2220 if( dest.eDest==SRT_EphemTab ){ 2221 assert( p->pEList ); 2222 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2223 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2224 dest.eDest = SRT_Table; 2225 } 2226 2227 /* Special handling for a compound-select that originates as a VALUES clause. 2228 */ 2229 if( p->selFlags & SF_MultiValue ){ 2230 rc = multiSelectValues(pParse, p, &dest); 2231 goto multi_select_end; 2232 } 2233 2234 /* Make sure all SELECTs in the statement have the same number of elements 2235 ** in their result sets. 2236 */ 2237 assert( p->pEList && pPrior->pEList ); 2238 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2239 2240 #ifndef SQLITE_OMIT_CTE 2241 if( p->selFlags & SF_Recursive ){ 2242 generateWithRecursiveQuery(pParse, p, &dest); 2243 }else 2244 #endif 2245 2246 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2247 */ 2248 if( p->pOrderBy ){ 2249 return multiSelectOrderBy(pParse, p, pDest); 2250 }else 2251 2252 /* Generate code for the left and right SELECT statements. 2253 */ 2254 switch( p->op ){ 2255 case TK_ALL: { 2256 int addr = 0; 2257 int nLimit; 2258 assert( !pPrior->pLimit ); 2259 pPrior->iLimit = p->iLimit; 2260 pPrior->iOffset = p->iOffset; 2261 pPrior->pLimit = p->pLimit; 2262 pPrior->pOffset = p->pOffset; 2263 explainSetInteger(iSub1, pParse->iNextSelectId); 2264 rc = sqlite3Select(pParse, pPrior, &dest); 2265 p->pLimit = 0; 2266 p->pOffset = 0; 2267 if( rc ){ 2268 goto multi_select_end; 2269 } 2270 p->pPrior = 0; 2271 p->iLimit = pPrior->iLimit; 2272 p->iOffset = pPrior->iOffset; 2273 if( p->iLimit ){ 2274 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2275 VdbeComment((v, "Jump ahead if LIMIT reached")); 2276 } 2277 explainSetInteger(iSub2, pParse->iNextSelectId); 2278 rc = sqlite3Select(pParse, p, &dest); 2279 testcase( rc!=SQLITE_OK ); 2280 pDelete = p->pPrior; 2281 p->pPrior = pPrior; 2282 p->nSelectRow += pPrior->nSelectRow; 2283 if( pPrior->pLimit 2284 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2285 && nLimit>0 && p->nSelectRow > (u64)nLimit 2286 ){ 2287 p->nSelectRow = nLimit; 2288 } 2289 if( addr ){ 2290 sqlite3VdbeJumpHere(v, addr); 2291 } 2292 break; 2293 } 2294 case TK_EXCEPT: 2295 case TK_UNION: { 2296 int unionTab; /* Cursor number of the temporary table holding result */ 2297 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2298 int priorOp; /* The SRT_ operation to apply to prior selects */ 2299 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2300 int addr; 2301 SelectDest uniondest; 2302 2303 testcase( p->op==TK_EXCEPT ); 2304 testcase( p->op==TK_UNION ); 2305 priorOp = SRT_Union; 2306 if( dest.eDest==priorOp ){ 2307 /* We can reuse a temporary table generated by a SELECT to our 2308 ** right. 2309 */ 2310 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2311 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2312 unionTab = dest.iSDParm; 2313 }else{ 2314 /* We will need to create our own temporary table to hold the 2315 ** intermediate results. 2316 */ 2317 unionTab = pParse->nTab++; 2318 assert( p->pOrderBy==0 ); 2319 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2320 assert( p->addrOpenEphm[0] == -1 ); 2321 p->addrOpenEphm[0] = addr; 2322 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2323 assert( p->pEList ); 2324 } 2325 2326 /* Code the SELECT statements to our left 2327 */ 2328 assert( !pPrior->pOrderBy ); 2329 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2330 explainSetInteger(iSub1, pParse->iNextSelectId); 2331 rc = sqlite3Select(pParse, pPrior, &uniondest); 2332 if( rc ){ 2333 goto multi_select_end; 2334 } 2335 2336 /* Code the current SELECT statement 2337 */ 2338 if( p->op==TK_EXCEPT ){ 2339 op = SRT_Except; 2340 }else{ 2341 assert( p->op==TK_UNION ); 2342 op = SRT_Union; 2343 } 2344 p->pPrior = 0; 2345 pLimit = p->pLimit; 2346 p->pLimit = 0; 2347 pOffset = p->pOffset; 2348 p->pOffset = 0; 2349 uniondest.eDest = op; 2350 explainSetInteger(iSub2, pParse->iNextSelectId); 2351 rc = sqlite3Select(pParse, p, &uniondest); 2352 testcase( rc!=SQLITE_OK ); 2353 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2354 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2355 sqlite3ExprListDelete(db, p->pOrderBy); 2356 pDelete = p->pPrior; 2357 p->pPrior = pPrior; 2358 p->pOrderBy = 0; 2359 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2360 sqlite3ExprDelete(db, p->pLimit); 2361 p->pLimit = pLimit; 2362 p->pOffset = pOffset; 2363 p->iLimit = 0; 2364 p->iOffset = 0; 2365 2366 /* Convert the data in the temporary table into whatever form 2367 ** it is that we currently need. 2368 */ 2369 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2370 if( dest.eDest!=priorOp ){ 2371 int iCont, iBreak, iStart; 2372 assert( p->pEList ); 2373 if( dest.eDest==SRT_Output ){ 2374 Select *pFirst = p; 2375 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2376 generateColumnNames(pParse, 0, pFirst->pEList); 2377 } 2378 iBreak = sqlite3VdbeMakeLabel(v); 2379 iCont = sqlite3VdbeMakeLabel(v); 2380 computeLimitRegisters(pParse, p, iBreak); 2381 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2382 iStart = sqlite3VdbeCurrentAddr(v); 2383 selectInnerLoop(pParse, p, p->pEList, unionTab, 2384 0, 0, &dest, iCont, iBreak); 2385 sqlite3VdbeResolveLabel(v, iCont); 2386 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2387 sqlite3VdbeResolveLabel(v, iBreak); 2388 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2389 } 2390 break; 2391 } 2392 default: assert( p->op==TK_INTERSECT ); { 2393 int tab1, tab2; 2394 int iCont, iBreak, iStart; 2395 Expr *pLimit, *pOffset; 2396 int addr; 2397 SelectDest intersectdest; 2398 int r1; 2399 2400 /* INTERSECT is different from the others since it requires 2401 ** two temporary tables. Hence it has its own case. Begin 2402 ** by allocating the tables we will need. 2403 */ 2404 tab1 = pParse->nTab++; 2405 tab2 = pParse->nTab++; 2406 assert( p->pOrderBy==0 ); 2407 2408 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2409 assert( p->addrOpenEphm[0] == -1 ); 2410 p->addrOpenEphm[0] = addr; 2411 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2412 assert( p->pEList ); 2413 2414 /* Code the SELECTs to our left into temporary table "tab1". 2415 */ 2416 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2417 explainSetInteger(iSub1, pParse->iNextSelectId); 2418 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2419 if( rc ){ 2420 goto multi_select_end; 2421 } 2422 2423 /* Code the current SELECT into temporary table "tab2" 2424 */ 2425 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2426 assert( p->addrOpenEphm[1] == -1 ); 2427 p->addrOpenEphm[1] = addr; 2428 p->pPrior = 0; 2429 pLimit = p->pLimit; 2430 p->pLimit = 0; 2431 pOffset = p->pOffset; 2432 p->pOffset = 0; 2433 intersectdest.iSDParm = tab2; 2434 explainSetInteger(iSub2, pParse->iNextSelectId); 2435 rc = sqlite3Select(pParse, p, &intersectdest); 2436 testcase( rc!=SQLITE_OK ); 2437 pDelete = p->pPrior; 2438 p->pPrior = pPrior; 2439 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2440 sqlite3ExprDelete(db, p->pLimit); 2441 p->pLimit = pLimit; 2442 p->pOffset = pOffset; 2443 2444 /* Generate code to take the intersection of the two temporary 2445 ** tables. 2446 */ 2447 assert( p->pEList ); 2448 if( dest.eDest==SRT_Output ){ 2449 Select *pFirst = p; 2450 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2451 generateColumnNames(pParse, 0, pFirst->pEList); 2452 } 2453 iBreak = sqlite3VdbeMakeLabel(v); 2454 iCont = sqlite3VdbeMakeLabel(v); 2455 computeLimitRegisters(pParse, p, iBreak); 2456 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2457 r1 = sqlite3GetTempReg(pParse); 2458 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2459 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2460 sqlite3ReleaseTempReg(pParse, r1); 2461 selectInnerLoop(pParse, p, p->pEList, tab1, 2462 0, 0, &dest, iCont, iBreak); 2463 sqlite3VdbeResolveLabel(v, iCont); 2464 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2465 sqlite3VdbeResolveLabel(v, iBreak); 2466 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2467 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2468 break; 2469 } 2470 } 2471 2472 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2473 2474 /* Compute collating sequences used by 2475 ** temporary tables needed to implement the compound select. 2476 ** Attach the KeyInfo structure to all temporary tables. 2477 ** 2478 ** This section is run by the right-most SELECT statement only. 2479 ** SELECT statements to the left always skip this part. The right-most 2480 ** SELECT might also skip this part if it has no ORDER BY clause and 2481 ** no temp tables are required. 2482 */ 2483 if( p->selFlags & SF_UsesEphemeral ){ 2484 int i; /* Loop counter */ 2485 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2486 Select *pLoop; /* For looping through SELECT statements */ 2487 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2488 int nCol; /* Number of columns in result set */ 2489 2490 assert( p->pNext==0 ); 2491 nCol = p->pEList->nExpr; 2492 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2493 if( !pKeyInfo ){ 2494 rc = SQLITE_NOMEM; 2495 goto multi_select_end; 2496 } 2497 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2498 *apColl = multiSelectCollSeq(pParse, p, i); 2499 if( 0==*apColl ){ 2500 *apColl = db->pDfltColl; 2501 } 2502 } 2503 2504 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2505 for(i=0; i<2; i++){ 2506 int addr = pLoop->addrOpenEphm[i]; 2507 if( addr<0 ){ 2508 /* If [0] is unused then [1] is also unused. So we can 2509 ** always safely abort as soon as the first unused slot is found */ 2510 assert( pLoop->addrOpenEphm[1]<0 ); 2511 break; 2512 } 2513 sqlite3VdbeChangeP2(v, addr, nCol); 2514 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2515 P4_KEYINFO); 2516 pLoop->addrOpenEphm[i] = -1; 2517 } 2518 } 2519 sqlite3KeyInfoUnref(pKeyInfo); 2520 } 2521 2522 multi_select_end: 2523 pDest->iSdst = dest.iSdst; 2524 pDest->nSdst = dest.nSdst; 2525 sqlite3SelectDelete(db, pDelete); 2526 return rc; 2527 } 2528 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2529 2530 /* 2531 ** Error message for when two or more terms of a compound select have different 2532 ** size result sets. 2533 */ 2534 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2535 if( p->selFlags & SF_Values ){ 2536 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2537 }else{ 2538 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2539 " do not have the same number of result columns", selectOpName(p->op)); 2540 } 2541 } 2542 2543 /* 2544 ** Code an output subroutine for a coroutine implementation of a 2545 ** SELECT statment. 2546 ** 2547 ** The data to be output is contained in pIn->iSdst. There are 2548 ** pIn->nSdst columns to be output. pDest is where the output should 2549 ** be sent. 2550 ** 2551 ** regReturn is the number of the register holding the subroutine 2552 ** return address. 2553 ** 2554 ** If regPrev>0 then it is the first register in a vector that 2555 ** records the previous output. mem[regPrev] is a flag that is false 2556 ** if there has been no previous output. If regPrev>0 then code is 2557 ** generated to suppress duplicates. pKeyInfo is used for comparing 2558 ** keys. 2559 ** 2560 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2561 ** iBreak. 2562 */ 2563 static int generateOutputSubroutine( 2564 Parse *pParse, /* Parsing context */ 2565 Select *p, /* The SELECT statement */ 2566 SelectDest *pIn, /* Coroutine supplying data */ 2567 SelectDest *pDest, /* Where to send the data */ 2568 int regReturn, /* The return address register */ 2569 int regPrev, /* Previous result register. No uniqueness if 0 */ 2570 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2571 int iBreak /* Jump here if we hit the LIMIT */ 2572 ){ 2573 Vdbe *v = pParse->pVdbe; 2574 int iContinue; 2575 int addr; 2576 2577 addr = sqlite3VdbeCurrentAddr(v); 2578 iContinue = sqlite3VdbeMakeLabel(v); 2579 2580 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2581 */ 2582 if( regPrev ){ 2583 int j1, j2; 2584 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2585 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2586 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2587 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2588 sqlite3VdbeJumpHere(v, j1); 2589 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2590 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2591 } 2592 if( pParse->db->mallocFailed ) return 0; 2593 2594 /* Suppress the first OFFSET entries if there is an OFFSET clause 2595 */ 2596 codeOffset(v, p->iOffset, iContinue); 2597 2598 assert( pDest->eDest!=SRT_Exists ); 2599 assert( pDest->eDest!=SRT_Table ); 2600 switch( pDest->eDest ){ 2601 /* Store the result as data using a unique key. 2602 */ 2603 case SRT_EphemTab: { 2604 int r1 = sqlite3GetTempReg(pParse); 2605 int r2 = sqlite3GetTempReg(pParse); 2606 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2607 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2608 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2609 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2610 sqlite3ReleaseTempReg(pParse, r2); 2611 sqlite3ReleaseTempReg(pParse, r1); 2612 break; 2613 } 2614 2615 #ifndef SQLITE_OMIT_SUBQUERY 2616 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2617 ** then there should be a single item on the stack. Write this 2618 ** item into the set table with bogus data. 2619 */ 2620 case SRT_Set: { 2621 int r1; 2622 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2623 pDest->affSdst = 2624 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2625 r1 = sqlite3GetTempReg(pParse); 2626 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2627 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2628 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2629 sqlite3ReleaseTempReg(pParse, r1); 2630 break; 2631 } 2632 2633 /* If this is a scalar select that is part of an expression, then 2634 ** store the results in the appropriate memory cell and break out 2635 ** of the scan loop. 2636 */ 2637 case SRT_Mem: { 2638 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2639 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2640 /* The LIMIT clause will jump out of the loop for us */ 2641 break; 2642 } 2643 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2644 2645 /* The results are stored in a sequence of registers 2646 ** starting at pDest->iSdst. Then the co-routine yields. 2647 */ 2648 case SRT_Coroutine: { 2649 if( pDest->iSdst==0 ){ 2650 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2651 pDest->nSdst = pIn->nSdst; 2652 } 2653 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2654 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2655 break; 2656 } 2657 2658 /* If none of the above, then the result destination must be 2659 ** SRT_Output. This routine is never called with any other 2660 ** destination other than the ones handled above or SRT_Output. 2661 ** 2662 ** For SRT_Output, results are stored in a sequence of registers. 2663 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2664 ** return the next row of result. 2665 */ 2666 default: { 2667 assert( pDest->eDest==SRT_Output ); 2668 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2669 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2670 break; 2671 } 2672 } 2673 2674 /* Jump to the end of the loop if the LIMIT is reached. 2675 */ 2676 if( p->iLimit ){ 2677 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2678 } 2679 2680 /* Generate the subroutine return 2681 */ 2682 sqlite3VdbeResolveLabel(v, iContinue); 2683 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2684 2685 return addr; 2686 } 2687 2688 /* 2689 ** Alternative compound select code generator for cases when there 2690 ** is an ORDER BY clause. 2691 ** 2692 ** We assume a query of the following form: 2693 ** 2694 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2695 ** 2696 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2697 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2698 ** co-routines. Then run the co-routines in parallel and merge the results 2699 ** into the output. In addition to the two coroutines (called selectA and 2700 ** selectB) there are 7 subroutines: 2701 ** 2702 ** outA: Move the output of the selectA coroutine into the output 2703 ** of the compound query. 2704 ** 2705 ** outB: Move the output of the selectB coroutine into the output 2706 ** of the compound query. (Only generated for UNION and 2707 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2708 ** appears only in B.) 2709 ** 2710 ** AltB: Called when there is data from both coroutines and A<B. 2711 ** 2712 ** AeqB: Called when there is data from both coroutines and A==B. 2713 ** 2714 ** AgtB: Called when there is data from both coroutines and A>B. 2715 ** 2716 ** EofA: Called when data is exhausted from selectA. 2717 ** 2718 ** EofB: Called when data is exhausted from selectB. 2719 ** 2720 ** The implementation of the latter five subroutines depend on which 2721 ** <operator> is used: 2722 ** 2723 ** 2724 ** UNION ALL UNION EXCEPT INTERSECT 2725 ** ------------- ----------------- -------------- ----------------- 2726 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2727 ** 2728 ** AeqB: outA, nextA nextA nextA outA, nextA 2729 ** 2730 ** AgtB: outB, nextB outB, nextB nextB nextB 2731 ** 2732 ** EofA: outB, nextB outB, nextB halt halt 2733 ** 2734 ** EofB: outA, nextA outA, nextA outA, nextA halt 2735 ** 2736 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2737 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2738 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2739 ** following nextX causes a jump to the end of the select processing. 2740 ** 2741 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2742 ** within the output subroutine. The regPrev register set holds the previously 2743 ** output value. A comparison is made against this value and the output 2744 ** is skipped if the next results would be the same as the previous. 2745 ** 2746 ** The implementation plan is to implement the two coroutines and seven 2747 ** subroutines first, then put the control logic at the bottom. Like this: 2748 ** 2749 ** goto Init 2750 ** coA: coroutine for left query (A) 2751 ** coB: coroutine for right query (B) 2752 ** outA: output one row of A 2753 ** outB: output one row of B (UNION and UNION ALL only) 2754 ** EofA: ... 2755 ** EofB: ... 2756 ** AltB: ... 2757 ** AeqB: ... 2758 ** AgtB: ... 2759 ** Init: initialize coroutine registers 2760 ** yield coA 2761 ** if eof(A) goto EofA 2762 ** yield coB 2763 ** if eof(B) goto EofB 2764 ** Cmpr: Compare A, B 2765 ** Jump AltB, AeqB, AgtB 2766 ** End: ... 2767 ** 2768 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2769 ** actually called using Gosub and they do not Return. EofA and EofB loop 2770 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2771 ** and AgtB jump to either L2 or to one of EofA or EofB. 2772 */ 2773 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2774 static int multiSelectOrderBy( 2775 Parse *pParse, /* Parsing context */ 2776 Select *p, /* The right-most of SELECTs to be coded */ 2777 SelectDest *pDest /* What to do with query results */ 2778 ){ 2779 int i, j; /* Loop counters */ 2780 Select *pPrior; /* Another SELECT immediately to our left */ 2781 Vdbe *v; /* Generate code to this VDBE */ 2782 SelectDest destA; /* Destination for coroutine A */ 2783 SelectDest destB; /* Destination for coroutine B */ 2784 int regAddrA; /* Address register for select-A coroutine */ 2785 int regAddrB; /* Address register for select-B coroutine */ 2786 int addrSelectA; /* Address of the select-A coroutine */ 2787 int addrSelectB; /* Address of the select-B coroutine */ 2788 int regOutA; /* Address register for the output-A subroutine */ 2789 int regOutB; /* Address register for the output-B subroutine */ 2790 int addrOutA; /* Address of the output-A subroutine */ 2791 int addrOutB = 0; /* Address of the output-B subroutine */ 2792 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2793 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2794 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2795 int addrAltB; /* Address of the A<B subroutine */ 2796 int addrAeqB; /* Address of the A==B subroutine */ 2797 int addrAgtB; /* Address of the A>B subroutine */ 2798 int regLimitA; /* Limit register for select-A */ 2799 int regLimitB; /* Limit register for select-A */ 2800 int regPrev; /* A range of registers to hold previous output */ 2801 int savedLimit; /* Saved value of p->iLimit */ 2802 int savedOffset; /* Saved value of p->iOffset */ 2803 int labelCmpr; /* Label for the start of the merge algorithm */ 2804 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2805 int j1; /* Jump instructions that get retargetted */ 2806 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2807 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2808 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2809 sqlite3 *db; /* Database connection */ 2810 ExprList *pOrderBy; /* The ORDER BY clause */ 2811 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2812 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2813 #ifndef SQLITE_OMIT_EXPLAIN 2814 int iSub1; /* EQP id of left-hand query */ 2815 int iSub2; /* EQP id of right-hand query */ 2816 #endif 2817 2818 assert( p->pOrderBy!=0 ); 2819 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2820 db = pParse->db; 2821 v = pParse->pVdbe; 2822 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2823 labelEnd = sqlite3VdbeMakeLabel(v); 2824 labelCmpr = sqlite3VdbeMakeLabel(v); 2825 2826 2827 /* Patch up the ORDER BY clause 2828 */ 2829 op = p->op; 2830 pPrior = p->pPrior; 2831 assert( pPrior->pOrderBy==0 ); 2832 pOrderBy = p->pOrderBy; 2833 assert( pOrderBy ); 2834 nOrderBy = pOrderBy->nExpr; 2835 2836 /* For operators other than UNION ALL we have to make sure that 2837 ** the ORDER BY clause covers every term of the result set. Add 2838 ** terms to the ORDER BY clause as necessary. 2839 */ 2840 if( op!=TK_ALL ){ 2841 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2842 struct ExprList_item *pItem; 2843 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2844 assert( pItem->u.x.iOrderByCol>0 ); 2845 if( pItem->u.x.iOrderByCol==i ) break; 2846 } 2847 if( j==nOrderBy ){ 2848 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2849 if( pNew==0 ) return SQLITE_NOMEM; 2850 pNew->flags |= EP_IntValue; 2851 pNew->u.iValue = i; 2852 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2853 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2854 } 2855 } 2856 } 2857 2858 /* Compute the comparison permutation and keyinfo that is used with 2859 ** the permutation used to determine if the next 2860 ** row of results comes from selectA or selectB. Also add explicit 2861 ** collations to the ORDER BY clause terms so that when the subqueries 2862 ** to the right and the left are evaluated, they use the correct 2863 ** collation. 2864 */ 2865 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2866 if( aPermute ){ 2867 struct ExprList_item *pItem; 2868 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2869 assert( pItem->u.x.iOrderByCol>0 ); 2870 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2871 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2872 } 2873 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2874 }else{ 2875 pKeyMerge = 0; 2876 } 2877 2878 /* Reattach the ORDER BY clause to the query. 2879 */ 2880 p->pOrderBy = pOrderBy; 2881 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2882 2883 /* Allocate a range of temporary registers and the KeyInfo needed 2884 ** for the logic that removes duplicate result rows when the 2885 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2886 */ 2887 if( op==TK_ALL ){ 2888 regPrev = 0; 2889 }else{ 2890 int nExpr = p->pEList->nExpr; 2891 assert( nOrderBy>=nExpr || db->mallocFailed ); 2892 regPrev = pParse->nMem+1; 2893 pParse->nMem += nExpr+1; 2894 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2895 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2896 if( pKeyDup ){ 2897 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2898 for(i=0; i<nExpr; i++){ 2899 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2900 pKeyDup->aSortOrder[i] = 0; 2901 } 2902 } 2903 } 2904 2905 /* Separate the left and the right query from one another 2906 */ 2907 p->pPrior = 0; 2908 pPrior->pNext = 0; 2909 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2910 if( pPrior->pPrior==0 ){ 2911 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2912 } 2913 2914 /* Compute the limit registers */ 2915 computeLimitRegisters(pParse, p, labelEnd); 2916 if( p->iLimit && op==TK_ALL ){ 2917 regLimitA = ++pParse->nMem; 2918 regLimitB = ++pParse->nMem; 2919 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2920 regLimitA); 2921 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2922 }else{ 2923 regLimitA = regLimitB = 0; 2924 } 2925 sqlite3ExprDelete(db, p->pLimit); 2926 p->pLimit = 0; 2927 sqlite3ExprDelete(db, p->pOffset); 2928 p->pOffset = 0; 2929 2930 regAddrA = ++pParse->nMem; 2931 regAddrB = ++pParse->nMem; 2932 regOutA = ++pParse->nMem; 2933 regOutB = ++pParse->nMem; 2934 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2935 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2936 2937 /* Generate a coroutine to evaluate the SELECT statement to the 2938 ** left of the compound operator - the "A" select. 2939 */ 2940 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2941 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2942 VdbeComment((v, "left SELECT")); 2943 pPrior->iLimit = regLimitA; 2944 explainSetInteger(iSub1, pParse->iNextSelectId); 2945 sqlite3Select(pParse, pPrior, &destA); 2946 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2947 sqlite3VdbeJumpHere(v, j1); 2948 2949 /* Generate a coroutine to evaluate the SELECT statement on 2950 ** the right - the "B" select 2951 */ 2952 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2953 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2954 VdbeComment((v, "right SELECT")); 2955 savedLimit = p->iLimit; 2956 savedOffset = p->iOffset; 2957 p->iLimit = regLimitB; 2958 p->iOffset = 0; 2959 explainSetInteger(iSub2, pParse->iNextSelectId); 2960 sqlite3Select(pParse, p, &destB); 2961 p->iLimit = savedLimit; 2962 p->iOffset = savedOffset; 2963 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2964 2965 /* Generate a subroutine that outputs the current row of the A 2966 ** select as the next output row of the compound select. 2967 */ 2968 VdbeNoopComment((v, "Output routine for A")); 2969 addrOutA = generateOutputSubroutine(pParse, 2970 p, &destA, pDest, regOutA, 2971 regPrev, pKeyDup, labelEnd); 2972 2973 /* Generate a subroutine that outputs the current row of the B 2974 ** select as the next output row of the compound select. 2975 */ 2976 if( op==TK_ALL || op==TK_UNION ){ 2977 VdbeNoopComment((v, "Output routine for B")); 2978 addrOutB = generateOutputSubroutine(pParse, 2979 p, &destB, pDest, regOutB, 2980 regPrev, pKeyDup, labelEnd); 2981 } 2982 sqlite3KeyInfoUnref(pKeyDup); 2983 2984 /* Generate a subroutine to run when the results from select A 2985 ** are exhausted and only data in select B remains. 2986 */ 2987 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2988 addrEofA_noB = addrEofA = labelEnd; 2989 }else{ 2990 VdbeNoopComment((v, "eof-A subroutine")); 2991 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2992 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2993 VdbeCoverage(v); 2994 sqlite3VdbeGoto(v, addrEofA); 2995 p->nSelectRow += pPrior->nSelectRow; 2996 } 2997 2998 /* Generate a subroutine to run when the results from select B 2999 ** are exhausted and only data in select A remains. 3000 */ 3001 if( op==TK_INTERSECT ){ 3002 addrEofB = addrEofA; 3003 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3004 }else{ 3005 VdbeNoopComment((v, "eof-B subroutine")); 3006 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3007 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3008 sqlite3VdbeGoto(v, addrEofB); 3009 } 3010 3011 /* Generate code to handle the case of A<B 3012 */ 3013 VdbeNoopComment((v, "A-lt-B subroutine")); 3014 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3015 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3016 sqlite3VdbeGoto(v, labelCmpr); 3017 3018 /* Generate code to handle the case of A==B 3019 */ 3020 if( op==TK_ALL ){ 3021 addrAeqB = addrAltB; 3022 }else if( op==TK_INTERSECT ){ 3023 addrAeqB = addrAltB; 3024 addrAltB++; 3025 }else{ 3026 VdbeNoopComment((v, "A-eq-B subroutine")); 3027 addrAeqB = 3028 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3029 sqlite3VdbeGoto(v, labelCmpr); 3030 } 3031 3032 /* Generate code to handle the case of A>B 3033 */ 3034 VdbeNoopComment((v, "A-gt-B subroutine")); 3035 addrAgtB = sqlite3VdbeCurrentAddr(v); 3036 if( op==TK_ALL || op==TK_UNION ){ 3037 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3038 } 3039 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3040 sqlite3VdbeGoto(v, labelCmpr); 3041 3042 /* This code runs once to initialize everything. 3043 */ 3044 sqlite3VdbeJumpHere(v, j1); 3045 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3046 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3047 3048 /* Implement the main merge loop 3049 */ 3050 sqlite3VdbeResolveLabel(v, labelCmpr); 3051 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3052 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3053 (char*)pKeyMerge, P4_KEYINFO); 3054 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3055 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3056 3057 /* Jump to the this point in order to terminate the query. 3058 */ 3059 sqlite3VdbeResolveLabel(v, labelEnd); 3060 3061 /* Set the number of output columns 3062 */ 3063 if( pDest->eDest==SRT_Output ){ 3064 Select *pFirst = pPrior; 3065 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3066 generateColumnNames(pParse, 0, pFirst->pEList); 3067 } 3068 3069 /* Reassembly the compound query so that it will be freed correctly 3070 ** by the calling function */ 3071 if( p->pPrior ){ 3072 sqlite3SelectDelete(db, p->pPrior); 3073 } 3074 p->pPrior = pPrior; 3075 pPrior->pNext = p; 3076 3077 /*** TBD: Insert subroutine calls to close cursors on incomplete 3078 **** subqueries ****/ 3079 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3080 return pParse->nErr!=0; 3081 } 3082 #endif 3083 3084 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3085 /* Forward Declarations */ 3086 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3087 static void substSelect(sqlite3*, Select *, int, ExprList *); 3088 3089 /* 3090 ** Scan through the expression pExpr. Replace every reference to 3091 ** a column in table number iTable with a copy of the iColumn-th 3092 ** entry in pEList. (But leave references to the ROWID column 3093 ** unchanged.) 3094 ** 3095 ** This routine is part of the flattening procedure. A subquery 3096 ** whose result set is defined by pEList appears as entry in the 3097 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3098 ** FORM clause entry is iTable. This routine make the necessary 3099 ** changes to pExpr so that it refers directly to the source table 3100 ** of the subquery rather the result set of the subquery. 3101 */ 3102 static Expr *substExpr( 3103 sqlite3 *db, /* Report malloc errors to this connection */ 3104 Expr *pExpr, /* Expr in which substitution occurs */ 3105 int iTable, /* Table to be substituted */ 3106 ExprList *pEList /* Substitute expressions */ 3107 ){ 3108 if( pExpr==0 ) return 0; 3109 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3110 if( pExpr->iColumn<0 ){ 3111 pExpr->op = TK_NULL; 3112 }else{ 3113 Expr *pNew; 3114 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3115 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3116 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3117 sqlite3ExprDelete(db, pExpr); 3118 pExpr = pNew; 3119 } 3120 }else{ 3121 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3122 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3123 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3124 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3125 }else{ 3126 substExprList(db, pExpr->x.pList, iTable, pEList); 3127 } 3128 } 3129 return pExpr; 3130 } 3131 static void substExprList( 3132 sqlite3 *db, /* Report malloc errors here */ 3133 ExprList *pList, /* List to scan and in which to make substitutes */ 3134 int iTable, /* Table to be substituted */ 3135 ExprList *pEList /* Substitute values */ 3136 ){ 3137 int i; 3138 if( pList==0 ) return; 3139 for(i=0; i<pList->nExpr; i++){ 3140 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3141 } 3142 } 3143 static void substSelect( 3144 sqlite3 *db, /* Report malloc errors here */ 3145 Select *p, /* SELECT statement in which to make substitutions */ 3146 int iTable, /* Table to be replaced */ 3147 ExprList *pEList /* Substitute values */ 3148 ){ 3149 SrcList *pSrc; 3150 struct SrcList_item *pItem; 3151 int i; 3152 if( !p ) return; 3153 substExprList(db, p->pEList, iTable, pEList); 3154 substExprList(db, p->pGroupBy, iTable, pEList); 3155 substExprList(db, p->pOrderBy, iTable, pEList); 3156 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3157 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3158 substSelect(db, p->pPrior, iTable, pEList); 3159 pSrc = p->pSrc; 3160 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3161 if( ALWAYS(pSrc) ){ 3162 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3163 substSelect(db, pItem->pSelect, iTable, pEList); 3164 } 3165 } 3166 } 3167 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3168 3169 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3170 /* 3171 ** This routine attempts to flatten subqueries as a performance optimization. 3172 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3173 ** 3174 ** To understand the concept of flattening, consider the following 3175 ** query: 3176 ** 3177 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3178 ** 3179 ** The default way of implementing this query is to execute the 3180 ** subquery first and store the results in a temporary table, then 3181 ** run the outer query on that temporary table. This requires two 3182 ** passes over the data. Furthermore, because the temporary table 3183 ** has no indices, the WHERE clause on the outer query cannot be 3184 ** optimized. 3185 ** 3186 ** This routine attempts to rewrite queries such as the above into 3187 ** a single flat select, like this: 3188 ** 3189 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3190 ** 3191 ** The code generated for this simplification gives the same result 3192 ** but only has to scan the data once. And because indices might 3193 ** exist on the table t1, a complete scan of the data might be 3194 ** avoided. 3195 ** 3196 ** Flattening is only attempted if all of the following are true: 3197 ** 3198 ** (1) The subquery and the outer query do not both use aggregates. 3199 ** 3200 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3201 ** and (2b) the outer query does not use subqueries other than the one 3202 ** FROM-clause subquery that is a candidate for flattening. (2b is 3203 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3204 ** 3205 ** (3) The subquery is not the right operand of a left outer join 3206 ** (Originally ticket #306. Strengthened by ticket #3300) 3207 ** 3208 ** (4) The subquery is not DISTINCT. 3209 ** 3210 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3211 ** sub-queries that were excluded from this optimization. Restriction 3212 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3213 ** 3214 ** (6) The subquery does not use aggregates or the outer query is not 3215 ** DISTINCT. 3216 ** 3217 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3218 ** A FROM clause, consider adding a FROM close with the special 3219 ** table sqlite_once that consists of a single row containing a 3220 ** single NULL. 3221 ** 3222 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3223 ** 3224 ** (9) The subquery does not use LIMIT or the outer query does not use 3225 ** aggregates. 3226 ** 3227 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3228 ** accidently carried the comment forward until 2014-09-15. Original 3229 ** text: "The subquery does not use aggregates or the outer query 3230 ** does not use LIMIT." 3231 ** 3232 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3233 ** 3234 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3235 ** a separate restriction deriving from ticket #350. 3236 ** 3237 ** (13) The subquery and outer query do not both use LIMIT. 3238 ** 3239 ** (14) The subquery does not use OFFSET. 3240 ** 3241 ** (15) The outer query is not part of a compound select or the 3242 ** subquery does not have a LIMIT clause. 3243 ** (See ticket #2339 and ticket [02a8e81d44]). 3244 ** 3245 ** (16) The outer query is not an aggregate or the subquery does 3246 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3247 ** until we introduced the group_concat() function. 3248 ** 3249 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3250 ** compound clause made up entirely of non-aggregate queries, and 3251 ** the parent query: 3252 ** 3253 ** * is not itself part of a compound select, 3254 ** * is not an aggregate or DISTINCT query, and 3255 ** * is not a join 3256 ** 3257 ** The parent and sub-query may contain WHERE clauses. Subject to 3258 ** rules (11), (13) and (14), they may also contain ORDER BY, 3259 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3260 ** operator other than UNION ALL because all the other compound 3261 ** operators have an implied DISTINCT which is disallowed by 3262 ** restriction (4). 3263 ** 3264 ** Also, each component of the sub-query must return the same number 3265 ** of result columns. This is actually a requirement for any compound 3266 ** SELECT statement, but all the code here does is make sure that no 3267 ** such (illegal) sub-query is flattened. The caller will detect the 3268 ** syntax error and return a detailed message. 3269 ** 3270 ** (18) If the sub-query is a compound select, then all terms of the 3271 ** ORDER by clause of the parent must be simple references to 3272 ** columns of the sub-query. 3273 ** 3274 ** (19) The subquery does not use LIMIT or the outer query does not 3275 ** have a WHERE clause. 3276 ** 3277 ** (20) If the sub-query is a compound select, then it must not use 3278 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3279 ** somewhat by saying that the terms of the ORDER BY clause must 3280 ** appear as unmodified result columns in the outer query. But we 3281 ** have other optimizations in mind to deal with that case. 3282 ** 3283 ** (21) The subquery does not use LIMIT or the outer query is not 3284 ** DISTINCT. (See ticket [752e1646fc]). 3285 ** 3286 ** (22) The subquery is not a recursive CTE. 3287 ** 3288 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3289 ** compound query. This restriction is because transforming the 3290 ** parent to a compound query confuses the code that handles 3291 ** recursive queries in multiSelect(). 3292 ** 3293 ** (24) The subquery is not an aggregate that uses the built-in min() or 3294 ** or max() functions. (Without this restriction, a query like: 3295 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3296 ** return the value X for which Y was maximal.) 3297 ** 3298 ** 3299 ** In this routine, the "p" parameter is a pointer to the outer query. 3300 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3301 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3302 ** 3303 ** If flattening is not attempted, this routine is a no-op and returns 0. 3304 ** If flattening is attempted this routine returns 1. 3305 ** 3306 ** All of the expression analysis must occur on both the outer query and 3307 ** the subquery before this routine runs. 3308 */ 3309 static int flattenSubquery( 3310 Parse *pParse, /* Parsing context */ 3311 Select *p, /* The parent or outer SELECT statement */ 3312 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3313 int isAgg, /* True if outer SELECT uses aggregate functions */ 3314 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3315 ){ 3316 const char *zSavedAuthContext = pParse->zAuthContext; 3317 Select *pParent; 3318 Select *pSub; /* The inner query or "subquery" */ 3319 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3320 SrcList *pSrc; /* The FROM clause of the outer query */ 3321 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3322 ExprList *pList; /* The result set of the outer query */ 3323 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3324 int i; /* Loop counter */ 3325 Expr *pWhere; /* The WHERE clause */ 3326 struct SrcList_item *pSubitem; /* The subquery */ 3327 sqlite3 *db = pParse->db; 3328 3329 /* Check to see if flattening is permitted. Return 0 if not. 3330 */ 3331 assert( p!=0 ); 3332 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3333 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3334 pSrc = p->pSrc; 3335 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3336 pSubitem = &pSrc->a[iFrom]; 3337 iParent = pSubitem->iCursor; 3338 pSub = pSubitem->pSelect; 3339 assert( pSub!=0 ); 3340 if( subqueryIsAgg ){ 3341 if( isAgg ) return 0; /* Restriction (1) */ 3342 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3343 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3344 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3345 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3346 ){ 3347 return 0; /* Restriction (2b) */ 3348 } 3349 } 3350 3351 pSubSrc = pSub->pSrc; 3352 assert( pSubSrc ); 3353 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3354 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3355 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3356 ** became arbitrary expressions, we were forced to add restrictions (13) 3357 ** and (14). */ 3358 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3359 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3360 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3361 return 0; /* Restriction (15) */ 3362 } 3363 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3364 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3365 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3366 return 0; /* Restrictions (8)(9) */ 3367 } 3368 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3369 return 0; /* Restriction (6) */ 3370 } 3371 if( p->pOrderBy && pSub->pOrderBy ){ 3372 return 0; /* Restriction (11) */ 3373 } 3374 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3375 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3376 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3377 return 0; /* Restriction (21) */ 3378 } 3379 testcase( pSub->selFlags & SF_Recursive ); 3380 testcase( pSub->selFlags & SF_MinMaxAgg ); 3381 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3382 return 0; /* Restrictions (22) and (24) */ 3383 } 3384 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3385 return 0; /* Restriction (23) */ 3386 } 3387 3388 /* OBSOLETE COMMENT 1: 3389 ** Restriction 3: If the subquery is a join, make sure the subquery is 3390 ** not used as the right operand of an outer join. Examples of why this 3391 ** is not allowed: 3392 ** 3393 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3394 ** 3395 ** If we flatten the above, we would get 3396 ** 3397 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3398 ** 3399 ** which is not at all the same thing. 3400 ** 3401 ** OBSOLETE COMMENT 2: 3402 ** Restriction 12: If the subquery is the right operand of a left outer 3403 ** join, make sure the subquery has no WHERE clause. 3404 ** An examples of why this is not allowed: 3405 ** 3406 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3407 ** 3408 ** If we flatten the above, we would get 3409 ** 3410 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3411 ** 3412 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3413 ** effectively converts the OUTER JOIN into an INNER JOIN. 3414 ** 3415 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3416 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3417 ** is fraught with danger. Best to avoid the whole thing. If the 3418 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3419 */ 3420 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3421 return 0; 3422 } 3423 3424 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3425 ** use only the UNION ALL operator. And none of the simple select queries 3426 ** that make up the compound SELECT are allowed to be aggregate or distinct 3427 ** queries. 3428 */ 3429 if( pSub->pPrior ){ 3430 if( pSub->pOrderBy ){ 3431 return 0; /* Restriction 20 */ 3432 } 3433 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3434 return 0; 3435 } 3436 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3437 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3438 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3439 assert( pSub->pSrc!=0 ); 3440 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3441 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3442 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3443 || pSub1->pSrc->nSrc<1 3444 ){ 3445 return 0; 3446 } 3447 testcase( pSub1->pSrc->nSrc>1 ); 3448 } 3449 3450 /* Restriction 18. */ 3451 if( p->pOrderBy ){ 3452 int ii; 3453 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3454 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3455 } 3456 } 3457 } 3458 3459 /***** If we reach this point, flattening is permitted. *****/ 3460 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3461 pSub->zSelName, pSub, iFrom)); 3462 3463 /* Authorize the subquery */ 3464 pParse->zAuthContext = pSubitem->zName; 3465 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3466 testcase( i==SQLITE_DENY ); 3467 pParse->zAuthContext = zSavedAuthContext; 3468 3469 /* If the sub-query is a compound SELECT statement, then (by restrictions 3470 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3471 ** be of the form: 3472 ** 3473 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3474 ** 3475 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3476 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3477 ** OFFSET clauses and joins them to the left-hand-side of the original 3478 ** using UNION ALL operators. In this case N is the number of simple 3479 ** select statements in the compound sub-query. 3480 ** 3481 ** Example: 3482 ** 3483 ** SELECT a+1 FROM ( 3484 ** SELECT x FROM tab 3485 ** UNION ALL 3486 ** SELECT y FROM tab 3487 ** UNION ALL 3488 ** SELECT abs(z*2) FROM tab2 3489 ** ) WHERE a!=5 ORDER BY 1 3490 ** 3491 ** Transformed into: 3492 ** 3493 ** SELECT x+1 FROM tab WHERE x+1!=5 3494 ** UNION ALL 3495 ** SELECT y+1 FROM tab WHERE y+1!=5 3496 ** UNION ALL 3497 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3498 ** ORDER BY 1 3499 ** 3500 ** We call this the "compound-subquery flattening". 3501 */ 3502 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3503 Select *pNew; 3504 ExprList *pOrderBy = p->pOrderBy; 3505 Expr *pLimit = p->pLimit; 3506 Expr *pOffset = p->pOffset; 3507 Select *pPrior = p->pPrior; 3508 p->pOrderBy = 0; 3509 p->pSrc = 0; 3510 p->pPrior = 0; 3511 p->pLimit = 0; 3512 p->pOffset = 0; 3513 pNew = sqlite3SelectDup(db, p, 0); 3514 sqlite3SelectSetName(pNew, pSub->zSelName); 3515 p->pOffset = pOffset; 3516 p->pLimit = pLimit; 3517 p->pOrderBy = pOrderBy; 3518 p->pSrc = pSrc; 3519 p->op = TK_ALL; 3520 if( pNew==0 ){ 3521 p->pPrior = pPrior; 3522 }else{ 3523 pNew->pPrior = pPrior; 3524 if( pPrior ) pPrior->pNext = pNew; 3525 pNew->pNext = p; 3526 p->pPrior = pNew; 3527 SELECTTRACE(2,pParse,p, 3528 ("compound-subquery flattener creates %s.%p as peer\n", 3529 pNew->zSelName, pNew)); 3530 } 3531 if( db->mallocFailed ) return 1; 3532 } 3533 3534 /* Begin flattening the iFrom-th entry of the FROM clause 3535 ** in the outer query. 3536 */ 3537 pSub = pSub1 = pSubitem->pSelect; 3538 3539 /* Delete the transient table structure associated with the 3540 ** subquery 3541 */ 3542 sqlite3DbFree(db, pSubitem->zDatabase); 3543 sqlite3DbFree(db, pSubitem->zName); 3544 sqlite3DbFree(db, pSubitem->zAlias); 3545 pSubitem->zDatabase = 0; 3546 pSubitem->zName = 0; 3547 pSubitem->zAlias = 0; 3548 pSubitem->pSelect = 0; 3549 3550 /* Defer deleting the Table object associated with the 3551 ** subquery until code generation is 3552 ** complete, since there may still exist Expr.pTab entries that 3553 ** refer to the subquery even after flattening. Ticket #3346. 3554 ** 3555 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3556 */ 3557 if( ALWAYS(pSubitem->pTab!=0) ){ 3558 Table *pTabToDel = pSubitem->pTab; 3559 if( pTabToDel->nRef==1 ){ 3560 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3561 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3562 pToplevel->pZombieTab = pTabToDel; 3563 }else{ 3564 pTabToDel->nRef--; 3565 } 3566 pSubitem->pTab = 0; 3567 } 3568 3569 /* The following loop runs once for each term in a compound-subquery 3570 ** flattening (as described above). If we are doing a different kind 3571 ** of flattening - a flattening other than a compound-subquery flattening - 3572 ** then this loop only runs once. 3573 ** 3574 ** This loop moves all of the FROM elements of the subquery into the 3575 ** the FROM clause of the outer query. Before doing this, remember 3576 ** the cursor number for the original outer query FROM element in 3577 ** iParent. The iParent cursor will never be used. Subsequent code 3578 ** will scan expressions looking for iParent references and replace 3579 ** those references with expressions that resolve to the subquery FROM 3580 ** elements we are now copying in. 3581 */ 3582 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3583 int nSubSrc; 3584 u8 jointype = 0; 3585 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3586 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3587 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3588 3589 if( pSrc ){ 3590 assert( pParent==p ); /* First time through the loop */ 3591 jointype = pSubitem->fg.jointype; 3592 }else{ 3593 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3594 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3595 if( pSrc==0 ){ 3596 assert( db->mallocFailed ); 3597 break; 3598 } 3599 } 3600 3601 /* The subquery uses a single slot of the FROM clause of the outer 3602 ** query. If the subquery has more than one element in its FROM clause, 3603 ** then expand the outer query to make space for it to hold all elements 3604 ** of the subquery. 3605 ** 3606 ** Example: 3607 ** 3608 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3609 ** 3610 ** The outer query has 3 slots in its FROM clause. One slot of the 3611 ** outer query (the middle slot) is used by the subquery. The next 3612 ** block of code will expand the out query to 4 slots. The middle 3613 ** slot is expanded to two slots in order to make space for the 3614 ** two elements in the FROM clause of the subquery. 3615 */ 3616 if( nSubSrc>1 ){ 3617 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3618 if( db->mallocFailed ){ 3619 break; 3620 } 3621 } 3622 3623 /* Transfer the FROM clause terms from the subquery into the 3624 ** outer query. 3625 */ 3626 for(i=0; i<nSubSrc; i++){ 3627 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3628 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3629 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3630 } 3631 pSrc->a[iFrom].fg.jointype = jointype; 3632 3633 /* Now begin substituting subquery result set expressions for 3634 ** references to the iParent in the outer query. 3635 ** 3636 ** Example: 3637 ** 3638 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3639 ** \ \_____________ subquery __________/ / 3640 ** \_____________________ outer query ______________________________/ 3641 ** 3642 ** We look at every expression in the outer query and every place we see 3643 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3644 */ 3645 pList = pParent->pEList; 3646 for(i=0; i<pList->nExpr; i++){ 3647 if( pList->a[i].zName==0 ){ 3648 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3649 sqlite3Dequote(zName); 3650 pList->a[i].zName = zName; 3651 } 3652 } 3653 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3654 if( isAgg ){ 3655 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3656 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3657 } 3658 if( pSub->pOrderBy ){ 3659 /* At this point, any non-zero iOrderByCol values indicate that the 3660 ** ORDER BY column expression is identical to the iOrderByCol'th 3661 ** expression returned by SELECT statement pSub. Since these values 3662 ** do not necessarily correspond to columns in SELECT statement pParent, 3663 ** zero them before transfering the ORDER BY clause. 3664 ** 3665 ** Not doing this may cause an error if a subsequent call to this 3666 ** function attempts to flatten a compound sub-query into pParent 3667 ** (the only way this can happen is if the compound sub-query is 3668 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3669 ExprList *pOrderBy = pSub->pOrderBy; 3670 for(i=0; i<pOrderBy->nExpr; i++){ 3671 pOrderBy->a[i].u.x.iOrderByCol = 0; 3672 } 3673 assert( pParent->pOrderBy==0 ); 3674 assert( pSub->pPrior==0 ); 3675 pParent->pOrderBy = pOrderBy; 3676 pSub->pOrderBy = 0; 3677 }else if( pParent->pOrderBy ){ 3678 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3679 } 3680 if( pSub->pWhere ){ 3681 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3682 }else{ 3683 pWhere = 0; 3684 } 3685 if( subqueryIsAgg ){ 3686 assert( pParent->pHaving==0 ); 3687 pParent->pHaving = pParent->pWhere; 3688 pParent->pWhere = pWhere; 3689 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3690 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3691 sqlite3ExprDup(db, pSub->pHaving, 0)); 3692 assert( pParent->pGroupBy==0 ); 3693 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3694 }else{ 3695 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3696 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3697 } 3698 3699 /* The flattened query is distinct if either the inner or the 3700 ** outer query is distinct. 3701 */ 3702 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3703 3704 /* 3705 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3706 ** 3707 ** One is tempted to try to add a and b to combine the limits. But this 3708 ** does not work if either limit is negative. 3709 */ 3710 if( pSub->pLimit ){ 3711 pParent->pLimit = pSub->pLimit; 3712 pSub->pLimit = 0; 3713 } 3714 } 3715 3716 /* Finially, delete what is left of the subquery and return 3717 ** success. 3718 */ 3719 sqlite3SelectDelete(db, pSub1); 3720 3721 #if SELECTTRACE_ENABLED 3722 if( sqlite3SelectTrace & 0x100 ){ 3723 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3724 sqlite3TreeViewSelect(0, p, 0); 3725 } 3726 #endif 3727 3728 return 1; 3729 } 3730 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3731 3732 3733 3734 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3735 /* 3736 ** Make copies of relevant WHERE clause terms of the outer query into 3737 ** the WHERE clause of subquery. Example: 3738 ** 3739 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3740 ** 3741 ** Transformed into: 3742 ** 3743 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3744 ** WHERE x=5 AND y=10; 3745 ** 3746 ** The hope is that the terms added to the inner query will make it more 3747 ** efficient. 3748 ** 3749 ** Do not attempt this optimization if: 3750 ** 3751 ** (1) The inner query is an aggregate. (In that case, we'd really want 3752 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3753 ** inner query. But they probably won't help there so do not bother.) 3754 ** 3755 ** (2) The inner query is the recursive part of a common table expression. 3756 ** 3757 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3758 ** close would change the meaning of the LIMIT). 3759 ** 3760 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3761 ** enforces this restriction since this routine does not have enough 3762 ** information to know.) 3763 ** 3764 ** (5) The WHERE clause expression originates in the ON or USING clause 3765 ** of a LEFT JOIN. 3766 ** 3767 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3768 ** terms are duplicated into the subquery. 3769 */ 3770 static int pushDownWhereTerms( 3771 sqlite3 *db, /* The database connection (for malloc()) */ 3772 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3773 Expr *pWhere, /* The WHERE clause of the outer query */ 3774 int iCursor /* Cursor number of the subquery */ 3775 ){ 3776 Expr *pNew; 3777 int nChng = 0; 3778 if( pWhere==0 ) return 0; 3779 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3780 return 0; /* restrictions (1) and (2) */ 3781 } 3782 if( pSubq->pLimit!=0 ){ 3783 return 0; /* restriction (3) */ 3784 } 3785 while( pWhere->op==TK_AND ){ 3786 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3787 pWhere = pWhere->pLeft; 3788 } 3789 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3790 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3791 nChng++; 3792 while( pSubq ){ 3793 pNew = sqlite3ExprDup(db, pWhere, 0); 3794 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3795 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3796 pSubq = pSubq->pPrior; 3797 } 3798 } 3799 return nChng; 3800 } 3801 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3802 3803 /* 3804 ** Based on the contents of the AggInfo structure indicated by the first 3805 ** argument, this function checks if the following are true: 3806 ** 3807 ** * the query contains just a single aggregate function, 3808 ** * the aggregate function is either min() or max(), and 3809 ** * the argument to the aggregate function is a column value. 3810 ** 3811 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3812 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3813 ** list of arguments passed to the aggregate before returning. 3814 ** 3815 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3816 ** WHERE_ORDERBY_NORMAL is returned. 3817 */ 3818 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3819 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3820 3821 *ppMinMax = 0; 3822 if( pAggInfo->nFunc==1 ){ 3823 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3824 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3825 3826 assert( pExpr->op==TK_AGG_FUNCTION ); 3827 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3828 const char *zFunc = pExpr->u.zToken; 3829 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3830 eRet = WHERE_ORDERBY_MIN; 3831 *ppMinMax = pEList; 3832 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3833 eRet = WHERE_ORDERBY_MAX; 3834 *ppMinMax = pEList; 3835 } 3836 } 3837 } 3838 3839 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3840 return eRet; 3841 } 3842 3843 /* 3844 ** The select statement passed as the first argument is an aggregate query. 3845 ** The second argument is the associated aggregate-info object. This 3846 ** function tests if the SELECT is of the form: 3847 ** 3848 ** SELECT count(*) FROM <tbl> 3849 ** 3850 ** where table is a database table, not a sub-select or view. If the query 3851 ** does match this pattern, then a pointer to the Table object representing 3852 ** <tbl> is returned. Otherwise, 0 is returned. 3853 */ 3854 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3855 Table *pTab; 3856 Expr *pExpr; 3857 3858 assert( !p->pGroupBy ); 3859 3860 if( p->pWhere || p->pEList->nExpr!=1 3861 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3862 ){ 3863 return 0; 3864 } 3865 pTab = p->pSrc->a[0].pTab; 3866 pExpr = p->pEList->a[0].pExpr; 3867 assert( pTab && !pTab->pSelect && pExpr ); 3868 3869 if( IsVirtual(pTab) ) return 0; 3870 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3871 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3872 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3873 if( pExpr->flags&EP_Distinct ) return 0; 3874 3875 return pTab; 3876 } 3877 3878 /* 3879 ** If the source-list item passed as an argument was augmented with an 3880 ** INDEXED BY clause, then try to locate the specified index. If there 3881 ** was such a clause and the named index cannot be found, return 3882 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3883 ** pFrom->pIndex and return SQLITE_OK. 3884 */ 3885 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3886 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3887 Table *pTab = pFrom->pTab; 3888 char *zIndexedBy = pFrom->u1.zIndexedBy; 3889 Index *pIdx; 3890 for(pIdx=pTab->pIndex; 3891 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3892 pIdx=pIdx->pNext 3893 ); 3894 if( !pIdx ){ 3895 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3896 pParse->checkSchema = 1; 3897 return SQLITE_ERROR; 3898 } 3899 pFrom->pIBIndex = pIdx; 3900 } 3901 return SQLITE_OK; 3902 } 3903 /* 3904 ** Detect compound SELECT statements that use an ORDER BY clause with 3905 ** an alternative collating sequence. 3906 ** 3907 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3908 ** 3909 ** These are rewritten as a subquery: 3910 ** 3911 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3912 ** ORDER BY ... COLLATE ... 3913 ** 3914 ** This transformation is necessary because the multiSelectOrderBy() routine 3915 ** above that generates the code for a compound SELECT with an ORDER BY clause 3916 ** uses a merge algorithm that requires the same collating sequence on the 3917 ** result columns as on the ORDER BY clause. See ticket 3918 ** http://www.sqlite.org/src/info/6709574d2a 3919 ** 3920 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3921 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3922 ** there are COLLATE terms in the ORDER BY. 3923 */ 3924 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3925 int i; 3926 Select *pNew; 3927 Select *pX; 3928 sqlite3 *db; 3929 struct ExprList_item *a; 3930 SrcList *pNewSrc; 3931 Parse *pParse; 3932 Token dummy; 3933 3934 if( p->pPrior==0 ) return WRC_Continue; 3935 if( p->pOrderBy==0 ) return WRC_Continue; 3936 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3937 if( pX==0 ) return WRC_Continue; 3938 a = p->pOrderBy->a; 3939 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3940 if( a[i].pExpr->flags & EP_Collate ) break; 3941 } 3942 if( i<0 ) return WRC_Continue; 3943 3944 /* If we reach this point, that means the transformation is required. */ 3945 3946 pParse = pWalker->pParse; 3947 db = pParse->db; 3948 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3949 if( pNew==0 ) return WRC_Abort; 3950 memset(&dummy, 0, sizeof(dummy)); 3951 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3952 if( pNewSrc==0 ) return WRC_Abort; 3953 *pNew = *p; 3954 p->pSrc = pNewSrc; 3955 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3956 p->op = TK_SELECT; 3957 p->pWhere = 0; 3958 pNew->pGroupBy = 0; 3959 pNew->pHaving = 0; 3960 pNew->pOrderBy = 0; 3961 p->pPrior = 0; 3962 p->pNext = 0; 3963 p->pWith = 0; 3964 p->selFlags &= ~SF_Compound; 3965 assert( (p->selFlags & SF_Converted)==0 ); 3966 p->selFlags |= SF_Converted; 3967 assert( pNew->pPrior!=0 ); 3968 pNew->pPrior->pNext = pNew; 3969 pNew->pLimit = 0; 3970 pNew->pOffset = 0; 3971 return WRC_Continue; 3972 } 3973 3974 #ifndef SQLITE_OMIT_CTE 3975 /* 3976 ** Argument pWith (which may be NULL) points to a linked list of nested 3977 ** WITH contexts, from inner to outermost. If the table identified by 3978 ** FROM clause element pItem is really a common-table-expression (CTE) 3979 ** then return a pointer to the CTE definition for that table. Otherwise 3980 ** return NULL. 3981 ** 3982 ** If a non-NULL value is returned, set *ppContext to point to the With 3983 ** object that the returned CTE belongs to. 3984 */ 3985 static struct Cte *searchWith( 3986 With *pWith, /* Current outermost WITH clause */ 3987 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3988 With **ppContext /* OUT: WITH clause return value belongs to */ 3989 ){ 3990 const char *zName; 3991 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3992 With *p; 3993 for(p=pWith; p; p=p->pOuter){ 3994 int i; 3995 for(i=0; i<p->nCte; i++){ 3996 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3997 *ppContext = p; 3998 return &p->a[i]; 3999 } 4000 } 4001 } 4002 } 4003 return 0; 4004 } 4005 4006 /* The code generator maintains a stack of active WITH clauses 4007 ** with the inner-most WITH clause being at the top of the stack. 4008 ** 4009 ** This routine pushes the WITH clause passed as the second argument 4010 ** onto the top of the stack. If argument bFree is true, then this 4011 ** WITH clause will never be popped from the stack. In this case it 4012 ** should be freed along with the Parse object. In other cases, when 4013 ** bFree==0, the With object will be freed along with the SELECT 4014 ** statement with which it is associated. 4015 */ 4016 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4017 assert( bFree==0 || pParse->pWith==0 ); 4018 if( pWith ){ 4019 pWith->pOuter = pParse->pWith; 4020 pParse->pWith = pWith; 4021 pParse->bFreeWith = bFree; 4022 } 4023 } 4024 4025 /* 4026 ** This function checks if argument pFrom refers to a CTE declared by 4027 ** a WITH clause on the stack currently maintained by the parser. And, 4028 ** if currently processing a CTE expression, if it is a recursive 4029 ** reference to the current CTE. 4030 ** 4031 ** If pFrom falls into either of the two categories above, pFrom->pTab 4032 ** and other fields are populated accordingly. The caller should check 4033 ** (pFrom->pTab!=0) to determine whether or not a successful match 4034 ** was found. 4035 ** 4036 ** Whether or not a match is found, SQLITE_OK is returned if no error 4037 ** occurs. If an error does occur, an error message is stored in the 4038 ** parser and some error code other than SQLITE_OK returned. 4039 */ 4040 static int withExpand( 4041 Walker *pWalker, 4042 struct SrcList_item *pFrom 4043 ){ 4044 Parse *pParse = pWalker->pParse; 4045 sqlite3 *db = pParse->db; 4046 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4047 With *pWith; /* WITH clause that pCte belongs to */ 4048 4049 assert( pFrom->pTab==0 ); 4050 4051 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4052 if( pCte ){ 4053 Table *pTab; 4054 ExprList *pEList; 4055 Select *pSel; 4056 Select *pLeft; /* Left-most SELECT statement */ 4057 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4058 With *pSavedWith; /* Initial value of pParse->pWith */ 4059 4060 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4061 ** recursive reference to CTE pCte. Leave an error in pParse and return 4062 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4063 ** In this case, proceed. */ 4064 if( pCte->zCteErr ){ 4065 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4066 return SQLITE_ERROR; 4067 } 4068 4069 assert( pFrom->pTab==0 ); 4070 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4071 if( pTab==0 ) return WRC_Abort; 4072 pTab->nRef = 1; 4073 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4074 pTab->iPKey = -1; 4075 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4076 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4077 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4078 if( db->mallocFailed ) return SQLITE_NOMEM; 4079 assert( pFrom->pSelect ); 4080 4081 /* Check if this is a recursive CTE. */ 4082 pSel = pFrom->pSelect; 4083 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4084 if( bMayRecursive ){ 4085 int i; 4086 SrcList *pSrc = pFrom->pSelect->pSrc; 4087 for(i=0; i<pSrc->nSrc; i++){ 4088 struct SrcList_item *pItem = &pSrc->a[i]; 4089 if( pItem->zDatabase==0 4090 && pItem->zName!=0 4091 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4092 ){ 4093 pItem->pTab = pTab; 4094 pItem->fg.isRecursive = 1; 4095 pTab->nRef++; 4096 pSel->selFlags |= SF_Recursive; 4097 } 4098 } 4099 } 4100 4101 /* Only one recursive reference is permitted. */ 4102 if( pTab->nRef>2 ){ 4103 sqlite3ErrorMsg( 4104 pParse, "multiple references to recursive table: %s", pCte->zName 4105 ); 4106 return SQLITE_ERROR; 4107 } 4108 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4109 4110 pCte->zCteErr = "circular reference: %s"; 4111 pSavedWith = pParse->pWith; 4112 pParse->pWith = pWith; 4113 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4114 4115 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4116 pEList = pLeft->pEList; 4117 if( pCte->pCols ){ 4118 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4119 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4120 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4121 ); 4122 pParse->pWith = pSavedWith; 4123 return SQLITE_ERROR; 4124 } 4125 pEList = pCte->pCols; 4126 } 4127 4128 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4129 if( bMayRecursive ){ 4130 if( pSel->selFlags & SF_Recursive ){ 4131 pCte->zCteErr = "multiple recursive references: %s"; 4132 }else{ 4133 pCte->zCteErr = "recursive reference in a subquery: %s"; 4134 } 4135 sqlite3WalkSelect(pWalker, pSel); 4136 } 4137 pCte->zCteErr = 0; 4138 pParse->pWith = pSavedWith; 4139 } 4140 4141 return SQLITE_OK; 4142 } 4143 #endif 4144 4145 #ifndef SQLITE_OMIT_CTE 4146 /* 4147 ** If the SELECT passed as the second argument has an associated WITH 4148 ** clause, pop it from the stack stored as part of the Parse object. 4149 ** 4150 ** This function is used as the xSelectCallback2() callback by 4151 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4152 ** names and other FROM clause elements. 4153 */ 4154 static void selectPopWith(Walker *pWalker, Select *p){ 4155 Parse *pParse = pWalker->pParse; 4156 With *pWith = findRightmost(p)->pWith; 4157 if( pWith!=0 ){ 4158 assert( pParse->pWith==pWith ); 4159 pParse->pWith = pWith->pOuter; 4160 } 4161 } 4162 #else 4163 #define selectPopWith 0 4164 #endif 4165 4166 /* 4167 ** This routine is a Walker callback for "expanding" a SELECT statement. 4168 ** "Expanding" means to do the following: 4169 ** 4170 ** (1) Make sure VDBE cursor numbers have been assigned to every 4171 ** element of the FROM clause. 4172 ** 4173 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4174 ** defines FROM clause. When views appear in the FROM clause, 4175 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4176 ** that implements the view. A copy is made of the view's SELECT 4177 ** statement so that we can freely modify or delete that statement 4178 ** without worrying about messing up the persistent representation 4179 ** of the view. 4180 ** 4181 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4182 ** on joins and the ON and USING clause of joins. 4183 ** 4184 ** (4) Scan the list of columns in the result set (pEList) looking 4185 ** for instances of the "*" operator or the TABLE.* operator. 4186 ** If found, expand each "*" to be every column in every table 4187 ** and TABLE.* to be every column in TABLE. 4188 ** 4189 */ 4190 static int selectExpander(Walker *pWalker, Select *p){ 4191 Parse *pParse = pWalker->pParse; 4192 int i, j, k; 4193 SrcList *pTabList; 4194 ExprList *pEList; 4195 struct SrcList_item *pFrom; 4196 sqlite3 *db = pParse->db; 4197 Expr *pE, *pRight, *pExpr; 4198 u16 selFlags = p->selFlags; 4199 4200 p->selFlags |= SF_Expanded; 4201 if( db->mallocFailed ){ 4202 return WRC_Abort; 4203 } 4204 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4205 return WRC_Prune; 4206 } 4207 pTabList = p->pSrc; 4208 pEList = p->pEList; 4209 if( pWalker->xSelectCallback2==selectPopWith ){ 4210 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4211 } 4212 4213 /* Make sure cursor numbers have been assigned to all entries in 4214 ** the FROM clause of the SELECT statement. 4215 */ 4216 sqlite3SrcListAssignCursors(pParse, pTabList); 4217 4218 /* Look up every table named in the FROM clause of the select. If 4219 ** an entry of the FROM clause is a subquery instead of a table or view, 4220 ** then create a transient table structure to describe the subquery. 4221 */ 4222 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4223 Table *pTab; 4224 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4225 if( pFrom->fg.isRecursive ) continue; 4226 assert( pFrom->pTab==0 ); 4227 #ifndef SQLITE_OMIT_CTE 4228 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4229 if( pFrom->pTab ) {} else 4230 #endif 4231 if( pFrom->zName==0 ){ 4232 #ifndef SQLITE_OMIT_SUBQUERY 4233 Select *pSel = pFrom->pSelect; 4234 /* A sub-query in the FROM clause of a SELECT */ 4235 assert( pSel!=0 ); 4236 assert( pFrom->pTab==0 ); 4237 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4238 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4239 if( pTab==0 ) return WRC_Abort; 4240 pTab->nRef = 1; 4241 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4242 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4243 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4244 pTab->iPKey = -1; 4245 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4246 pTab->tabFlags |= TF_Ephemeral; 4247 #endif 4248 }else{ 4249 /* An ordinary table or view name in the FROM clause */ 4250 assert( pFrom->pTab==0 ); 4251 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4252 if( pTab==0 ) return WRC_Abort; 4253 if( pTab->nRef==0xffff ){ 4254 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4255 pTab->zName); 4256 pFrom->pTab = 0; 4257 return WRC_Abort; 4258 } 4259 pTab->nRef++; 4260 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4261 if( pTab->pSelect || IsVirtual(pTab) ){ 4262 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4263 assert( pFrom->pSelect==0 ); 4264 if( pFrom->fg.isTabFunc && !IsVirtual(pTab) ){ 4265 sqlite3ErrorMsg(pParse, "'%s' is not a function", pTab->zName); 4266 return WRC_Abort; 4267 } 4268 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4269 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4270 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4271 } 4272 #endif 4273 } 4274 4275 /* Locate the index named by the INDEXED BY clause, if any. */ 4276 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4277 return WRC_Abort; 4278 } 4279 } 4280 4281 /* Process NATURAL keywords, and ON and USING clauses of joins. 4282 */ 4283 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4284 return WRC_Abort; 4285 } 4286 4287 /* For every "*" that occurs in the column list, insert the names of 4288 ** all columns in all tables. And for every TABLE.* insert the names 4289 ** of all columns in TABLE. The parser inserted a special expression 4290 ** with the TK_ALL operator for each "*" that it found in the column list. 4291 ** The following code just has to locate the TK_ALL expressions and expand 4292 ** each one to the list of all columns in all tables. 4293 ** 4294 ** The first loop just checks to see if there are any "*" operators 4295 ** that need expanding. 4296 */ 4297 for(k=0; k<pEList->nExpr; k++){ 4298 pE = pEList->a[k].pExpr; 4299 if( pE->op==TK_ALL ) break; 4300 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4301 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4302 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4303 } 4304 if( k<pEList->nExpr ){ 4305 /* 4306 ** If we get here it means the result set contains one or more "*" 4307 ** operators that need to be expanded. Loop through each expression 4308 ** in the result set and expand them one by one. 4309 */ 4310 struct ExprList_item *a = pEList->a; 4311 ExprList *pNew = 0; 4312 int flags = pParse->db->flags; 4313 int longNames = (flags & SQLITE_FullColNames)!=0 4314 && (flags & SQLITE_ShortColNames)==0; 4315 4316 for(k=0; k<pEList->nExpr; k++){ 4317 pE = a[k].pExpr; 4318 pRight = pE->pRight; 4319 assert( pE->op!=TK_DOT || pRight!=0 ); 4320 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4321 /* This particular expression does not need to be expanded. 4322 */ 4323 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4324 if( pNew ){ 4325 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4326 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4327 a[k].zName = 0; 4328 a[k].zSpan = 0; 4329 } 4330 a[k].pExpr = 0; 4331 }else{ 4332 /* This expression is a "*" or a "TABLE.*" and needs to be 4333 ** expanded. */ 4334 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4335 char *zTName = 0; /* text of name of TABLE */ 4336 if( pE->op==TK_DOT ){ 4337 assert( pE->pLeft!=0 ); 4338 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4339 zTName = pE->pLeft->u.zToken; 4340 } 4341 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4342 Table *pTab = pFrom->pTab; 4343 Select *pSub = pFrom->pSelect; 4344 char *zTabName = pFrom->zAlias; 4345 const char *zSchemaName = 0; 4346 int iDb; 4347 if( zTabName==0 ){ 4348 zTabName = pTab->zName; 4349 } 4350 if( db->mallocFailed ) break; 4351 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4352 pSub = 0; 4353 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4354 continue; 4355 } 4356 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4357 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4358 } 4359 for(j=0; j<pTab->nCol; j++){ 4360 char *zName = pTab->aCol[j].zName; 4361 char *zColname; /* The computed column name */ 4362 char *zToFree; /* Malloced string that needs to be freed */ 4363 Token sColname; /* Computed column name as a token */ 4364 4365 assert( zName ); 4366 if( zTName && pSub 4367 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4368 ){ 4369 continue; 4370 } 4371 4372 /* If a column is marked as 'hidden' (currently only possible 4373 ** for virtual tables), do not include it in the expanded 4374 ** result-set list. 4375 */ 4376 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4377 assert(IsVirtual(pTab)); 4378 continue; 4379 } 4380 tableSeen = 1; 4381 4382 if( i>0 && zTName==0 ){ 4383 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4384 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4385 ){ 4386 /* In a NATURAL join, omit the join columns from the 4387 ** table to the right of the join */ 4388 continue; 4389 } 4390 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4391 /* In a join with a USING clause, omit columns in the 4392 ** using clause from the table on the right. */ 4393 continue; 4394 } 4395 } 4396 pRight = sqlite3Expr(db, TK_ID, zName); 4397 zColname = zName; 4398 zToFree = 0; 4399 if( longNames || pTabList->nSrc>1 ){ 4400 Expr *pLeft; 4401 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4402 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4403 if( zSchemaName ){ 4404 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4405 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4406 } 4407 if( longNames ){ 4408 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4409 zToFree = zColname; 4410 } 4411 }else{ 4412 pExpr = pRight; 4413 } 4414 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4415 sColname.z = zColname; 4416 sColname.n = sqlite3Strlen30(zColname); 4417 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4418 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4419 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4420 if( pSub ){ 4421 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4422 testcase( pX->zSpan==0 ); 4423 }else{ 4424 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4425 zSchemaName, zTabName, zColname); 4426 testcase( pX->zSpan==0 ); 4427 } 4428 pX->bSpanIsTab = 1; 4429 } 4430 sqlite3DbFree(db, zToFree); 4431 } 4432 } 4433 if( !tableSeen ){ 4434 if( zTName ){ 4435 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4436 }else{ 4437 sqlite3ErrorMsg(pParse, "no tables specified"); 4438 } 4439 } 4440 } 4441 } 4442 sqlite3ExprListDelete(db, pEList); 4443 p->pEList = pNew; 4444 } 4445 #if SQLITE_MAX_COLUMN 4446 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4447 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4448 } 4449 #endif 4450 return WRC_Continue; 4451 } 4452 4453 /* 4454 ** No-op routine for the parse-tree walker. 4455 ** 4456 ** When this routine is the Walker.xExprCallback then expression trees 4457 ** are walked without any actions being taken at each node. Presumably, 4458 ** when this routine is used for Walker.xExprCallback then 4459 ** Walker.xSelectCallback is set to do something useful for every 4460 ** subquery in the parser tree. 4461 */ 4462 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4463 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4464 return WRC_Continue; 4465 } 4466 4467 /* 4468 ** This routine "expands" a SELECT statement and all of its subqueries. 4469 ** For additional information on what it means to "expand" a SELECT 4470 ** statement, see the comment on the selectExpand worker callback above. 4471 ** 4472 ** Expanding a SELECT statement is the first step in processing a 4473 ** SELECT statement. The SELECT statement must be expanded before 4474 ** name resolution is performed. 4475 ** 4476 ** If anything goes wrong, an error message is written into pParse. 4477 ** The calling function can detect the problem by looking at pParse->nErr 4478 ** and/or pParse->db->mallocFailed. 4479 */ 4480 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4481 Walker w; 4482 memset(&w, 0, sizeof(w)); 4483 w.xExprCallback = exprWalkNoop; 4484 w.pParse = pParse; 4485 if( pParse->hasCompound ){ 4486 w.xSelectCallback = convertCompoundSelectToSubquery; 4487 sqlite3WalkSelect(&w, pSelect); 4488 } 4489 w.xSelectCallback = selectExpander; 4490 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4491 w.xSelectCallback2 = selectPopWith; 4492 } 4493 sqlite3WalkSelect(&w, pSelect); 4494 } 4495 4496 4497 #ifndef SQLITE_OMIT_SUBQUERY 4498 /* 4499 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4500 ** interface. 4501 ** 4502 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4503 ** information to the Table structure that represents the result set 4504 ** of that subquery. 4505 ** 4506 ** The Table structure that represents the result set was constructed 4507 ** by selectExpander() but the type and collation information was omitted 4508 ** at that point because identifiers had not yet been resolved. This 4509 ** routine is called after identifier resolution. 4510 */ 4511 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4512 Parse *pParse; 4513 int i; 4514 SrcList *pTabList; 4515 struct SrcList_item *pFrom; 4516 4517 assert( p->selFlags & SF_Resolved ); 4518 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4519 p->selFlags |= SF_HasTypeInfo; 4520 pParse = pWalker->pParse; 4521 pTabList = p->pSrc; 4522 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4523 Table *pTab = pFrom->pTab; 4524 assert( pTab!=0 ); 4525 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4526 /* A sub-query in the FROM clause of a SELECT */ 4527 Select *pSel = pFrom->pSelect; 4528 if( pSel ){ 4529 while( pSel->pPrior ) pSel = pSel->pPrior; 4530 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4531 } 4532 } 4533 } 4534 } 4535 #endif 4536 4537 4538 /* 4539 ** This routine adds datatype and collating sequence information to 4540 ** the Table structures of all FROM-clause subqueries in a 4541 ** SELECT statement. 4542 ** 4543 ** Use this routine after name resolution. 4544 */ 4545 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4546 #ifndef SQLITE_OMIT_SUBQUERY 4547 Walker w; 4548 memset(&w, 0, sizeof(w)); 4549 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4550 w.xExprCallback = exprWalkNoop; 4551 w.pParse = pParse; 4552 sqlite3WalkSelect(&w, pSelect); 4553 #endif 4554 } 4555 4556 4557 /* 4558 ** This routine sets up a SELECT statement for processing. The 4559 ** following is accomplished: 4560 ** 4561 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4562 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4563 ** * ON and USING clauses are shifted into WHERE statements 4564 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4565 ** * Identifiers in expression are matched to tables. 4566 ** 4567 ** This routine acts recursively on all subqueries within the SELECT. 4568 */ 4569 void sqlite3SelectPrep( 4570 Parse *pParse, /* The parser context */ 4571 Select *p, /* The SELECT statement being coded. */ 4572 NameContext *pOuterNC /* Name context for container */ 4573 ){ 4574 sqlite3 *db; 4575 if( NEVER(p==0) ) return; 4576 db = pParse->db; 4577 if( db->mallocFailed ) return; 4578 if( p->selFlags & SF_HasTypeInfo ) return; 4579 sqlite3SelectExpand(pParse, p); 4580 if( pParse->nErr || db->mallocFailed ) return; 4581 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4582 if( pParse->nErr || db->mallocFailed ) return; 4583 sqlite3SelectAddTypeInfo(pParse, p); 4584 } 4585 4586 /* 4587 ** Reset the aggregate accumulator. 4588 ** 4589 ** The aggregate accumulator is a set of memory cells that hold 4590 ** intermediate results while calculating an aggregate. This 4591 ** routine generates code that stores NULLs in all of those memory 4592 ** cells. 4593 */ 4594 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4595 Vdbe *v = pParse->pVdbe; 4596 int i; 4597 struct AggInfo_func *pFunc; 4598 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4599 if( nReg==0 ) return; 4600 #ifdef SQLITE_DEBUG 4601 /* Verify that all AggInfo registers are within the range specified by 4602 ** AggInfo.mnReg..AggInfo.mxReg */ 4603 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4604 for(i=0; i<pAggInfo->nColumn; i++){ 4605 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4606 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4607 } 4608 for(i=0; i<pAggInfo->nFunc; i++){ 4609 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4610 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4611 } 4612 #endif 4613 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4614 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4615 if( pFunc->iDistinct>=0 ){ 4616 Expr *pE = pFunc->pExpr; 4617 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4618 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4619 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4620 "argument"); 4621 pFunc->iDistinct = -1; 4622 }else{ 4623 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4624 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4625 (char*)pKeyInfo, P4_KEYINFO); 4626 } 4627 } 4628 } 4629 } 4630 4631 /* 4632 ** Invoke the OP_AggFinalize opcode for every aggregate function 4633 ** in the AggInfo structure. 4634 */ 4635 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4636 Vdbe *v = pParse->pVdbe; 4637 int i; 4638 struct AggInfo_func *pF; 4639 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4640 ExprList *pList = pF->pExpr->x.pList; 4641 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4642 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4643 (void*)pF->pFunc, P4_FUNCDEF); 4644 } 4645 } 4646 4647 /* 4648 ** Update the accumulator memory cells for an aggregate based on 4649 ** the current cursor position. 4650 */ 4651 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4652 Vdbe *v = pParse->pVdbe; 4653 int i; 4654 int regHit = 0; 4655 int addrHitTest = 0; 4656 struct AggInfo_func *pF; 4657 struct AggInfo_col *pC; 4658 4659 pAggInfo->directMode = 1; 4660 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4661 int nArg; 4662 int addrNext = 0; 4663 int regAgg; 4664 ExprList *pList = pF->pExpr->x.pList; 4665 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4666 if( pList ){ 4667 nArg = pList->nExpr; 4668 regAgg = sqlite3GetTempRange(pParse, nArg); 4669 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4670 }else{ 4671 nArg = 0; 4672 regAgg = 0; 4673 } 4674 if( pF->iDistinct>=0 ){ 4675 addrNext = sqlite3VdbeMakeLabel(v); 4676 testcase( nArg==0 ); /* Error condition */ 4677 testcase( nArg>1 ); /* Also an error */ 4678 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4679 } 4680 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4681 CollSeq *pColl = 0; 4682 struct ExprList_item *pItem; 4683 int j; 4684 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4685 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4686 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4687 } 4688 if( !pColl ){ 4689 pColl = pParse->db->pDfltColl; 4690 } 4691 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4692 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4693 } 4694 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4695 (void*)pF->pFunc, P4_FUNCDEF); 4696 sqlite3VdbeChangeP5(v, (u8)nArg); 4697 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4698 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4699 if( addrNext ){ 4700 sqlite3VdbeResolveLabel(v, addrNext); 4701 sqlite3ExprCacheClear(pParse); 4702 } 4703 } 4704 4705 /* Before populating the accumulator registers, clear the column cache. 4706 ** Otherwise, if any of the required column values are already present 4707 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4708 ** to pC->iMem. But by the time the value is used, the original register 4709 ** may have been used, invalidating the underlying buffer holding the 4710 ** text or blob value. See ticket [883034dcb5]. 4711 ** 4712 ** Another solution would be to change the OP_SCopy used to copy cached 4713 ** values to an OP_Copy. 4714 */ 4715 if( regHit ){ 4716 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4717 } 4718 sqlite3ExprCacheClear(pParse); 4719 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4720 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4721 } 4722 pAggInfo->directMode = 0; 4723 sqlite3ExprCacheClear(pParse); 4724 if( addrHitTest ){ 4725 sqlite3VdbeJumpHere(v, addrHitTest); 4726 } 4727 } 4728 4729 /* 4730 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4731 ** count(*) query ("SELECT count(*) FROM pTab"). 4732 */ 4733 #ifndef SQLITE_OMIT_EXPLAIN 4734 static void explainSimpleCount( 4735 Parse *pParse, /* Parse context */ 4736 Table *pTab, /* Table being queried */ 4737 Index *pIdx /* Index used to optimize scan, or NULL */ 4738 ){ 4739 if( pParse->explain==2 ){ 4740 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4741 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4742 pTab->zName, 4743 bCover ? " USING COVERING INDEX " : "", 4744 bCover ? pIdx->zName : "" 4745 ); 4746 sqlite3VdbeAddOp4( 4747 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4748 ); 4749 } 4750 } 4751 #else 4752 # define explainSimpleCount(a,b,c) 4753 #endif 4754 4755 /* 4756 ** Generate code for the SELECT statement given in the p argument. 4757 ** 4758 ** The results are returned according to the SelectDest structure. 4759 ** See comments in sqliteInt.h for further information. 4760 ** 4761 ** This routine returns the number of errors. If any errors are 4762 ** encountered, then an appropriate error message is left in 4763 ** pParse->zErrMsg. 4764 ** 4765 ** This routine does NOT free the Select structure passed in. The 4766 ** calling function needs to do that. 4767 */ 4768 int sqlite3Select( 4769 Parse *pParse, /* The parser context */ 4770 Select *p, /* The SELECT statement being coded. */ 4771 SelectDest *pDest /* What to do with the query results */ 4772 ){ 4773 int i, j; /* Loop counters */ 4774 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4775 Vdbe *v; /* The virtual machine under construction */ 4776 int isAgg; /* True for select lists like "count(*)" */ 4777 ExprList *pEList = 0; /* List of columns to extract. */ 4778 SrcList *pTabList; /* List of tables to select from */ 4779 Expr *pWhere; /* The WHERE clause. May be NULL */ 4780 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4781 Expr *pHaving; /* The HAVING clause. May be NULL */ 4782 int rc = 1; /* Value to return from this function */ 4783 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4784 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4785 AggInfo sAggInfo; /* Information used by aggregate queries */ 4786 int iEnd; /* Address of the end of the query */ 4787 sqlite3 *db; /* The database connection */ 4788 4789 #ifndef SQLITE_OMIT_EXPLAIN 4790 int iRestoreSelectId = pParse->iSelectId; 4791 pParse->iSelectId = pParse->iNextSelectId++; 4792 #endif 4793 4794 db = pParse->db; 4795 if( p==0 || db->mallocFailed || pParse->nErr ){ 4796 return 1; 4797 } 4798 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4799 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4800 #if SELECTTRACE_ENABLED 4801 pParse->nSelectIndent++; 4802 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4803 if( sqlite3SelectTrace & 0x100 ){ 4804 sqlite3TreeViewSelect(0, p, 0); 4805 } 4806 #endif 4807 4808 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4809 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4810 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4811 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4812 if( IgnorableOrderby(pDest) ){ 4813 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4814 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4815 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4816 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4817 /* If ORDER BY makes no difference in the output then neither does 4818 ** DISTINCT so it can be removed too. */ 4819 sqlite3ExprListDelete(db, p->pOrderBy); 4820 p->pOrderBy = 0; 4821 p->selFlags &= ~SF_Distinct; 4822 } 4823 sqlite3SelectPrep(pParse, p, 0); 4824 memset(&sSort, 0, sizeof(sSort)); 4825 sSort.pOrderBy = p->pOrderBy; 4826 pTabList = p->pSrc; 4827 if( pParse->nErr || db->mallocFailed ){ 4828 goto select_end; 4829 } 4830 assert( p->pEList!=0 ); 4831 isAgg = (p->selFlags & SF_Aggregate)!=0; 4832 #if SELECTTRACE_ENABLED 4833 if( sqlite3SelectTrace & 0x100 ){ 4834 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4835 sqlite3TreeViewSelect(0, p, 0); 4836 } 4837 #endif 4838 4839 4840 /* If writing to memory or generating a set 4841 ** only a single column may be output. 4842 */ 4843 #ifndef SQLITE_OMIT_SUBQUERY 4844 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4845 goto select_end; 4846 } 4847 #endif 4848 4849 /* Try to flatten subqueries in the FROM clause up into the main query 4850 */ 4851 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4852 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4853 struct SrcList_item *pItem = &pTabList->a[i]; 4854 Select *pSub = pItem->pSelect; 4855 int isAggSub; 4856 Table *pTab = pItem->pTab; 4857 if( pSub==0 ) continue; 4858 4859 /* Catch mismatch in the declared columns of a view and the number of 4860 ** columns in the SELECT on the RHS */ 4861 if( pTab->nCol!=pSub->pEList->nExpr ){ 4862 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4863 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4864 goto select_end; 4865 } 4866 4867 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4868 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4869 /* This subquery can be absorbed into its parent. */ 4870 if( isAggSub ){ 4871 isAgg = 1; 4872 p->selFlags |= SF_Aggregate; 4873 } 4874 i = -1; 4875 } 4876 pTabList = p->pSrc; 4877 if( db->mallocFailed ) goto select_end; 4878 if( !IgnorableOrderby(pDest) ){ 4879 sSort.pOrderBy = p->pOrderBy; 4880 } 4881 } 4882 #endif 4883 4884 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4885 ** does not already exist */ 4886 v = sqlite3GetVdbe(pParse); 4887 if( v==0 ) goto select_end; 4888 4889 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4890 /* Handle compound SELECT statements using the separate multiSelect() 4891 ** procedure. 4892 */ 4893 if( p->pPrior ){ 4894 rc = multiSelect(pParse, p, pDest); 4895 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4896 #if SELECTTRACE_ENABLED 4897 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4898 pParse->nSelectIndent--; 4899 #endif 4900 return rc; 4901 } 4902 #endif 4903 4904 /* Generate code for all sub-queries in the FROM clause 4905 */ 4906 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4907 for(i=0; i<pTabList->nSrc; i++){ 4908 struct SrcList_item *pItem = &pTabList->a[i]; 4909 SelectDest dest; 4910 Select *pSub = pItem->pSelect; 4911 if( pSub==0 ) continue; 4912 4913 /* Sometimes the code for a subquery will be generated more than 4914 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4915 ** for example. In that case, do not regenerate the code to manifest 4916 ** a view or the co-routine to implement a view. The first instance 4917 ** is sufficient, though the subroutine to manifest the view does need 4918 ** to be invoked again. */ 4919 if( pItem->addrFillSub ){ 4920 if( pItem->fg.viaCoroutine==0 ){ 4921 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4922 } 4923 continue; 4924 } 4925 4926 /* Increment Parse.nHeight by the height of the largest expression 4927 ** tree referred to by this, the parent select. The child select 4928 ** may contain expression trees of at most 4929 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4930 ** more conservative than necessary, but much easier than enforcing 4931 ** an exact limit. 4932 */ 4933 pParse->nHeight += sqlite3SelectExprHeight(p); 4934 4935 /* Make copies of constant WHERE-clause terms in the outer query down 4936 ** inside the subquery. This can help the subquery to run more efficiently. 4937 */ 4938 if( (pItem->fg.jointype & JT_OUTER)==0 4939 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4940 ){ 4941 #if SELECTTRACE_ENABLED 4942 if( sqlite3SelectTrace & 0x100 ){ 4943 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4944 sqlite3TreeViewSelect(0, p, 0); 4945 } 4946 #endif 4947 } 4948 4949 /* Generate code to implement the subquery 4950 */ 4951 if( pTabList->nSrc==1 4952 && (p->selFlags & SF_All)==0 4953 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4954 ){ 4955 /* Implement a co-routine that will return a single row of the result 4956 ** set on each invocation. 4957 */ 4958 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4959 pItem->regReturn = ++pParse->nMem; 4960 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4961 VdbeComment((v, "%s", pItem->pTab->zName)); 4962 pItem->addrFillSub = addrTop; 4963 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4964 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4965 sqlite3Select(pParse, pSub, &dest); 4966 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4967 pItem->fg.viaCoroutine = 1; 4968 pItem->regResult = dest.iSdst; 4969 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4970 sqlite3VdbeJumpHere(v, addrTop-1); 4971 sqlite3ClearTempRegCache(pParse); 4972 }else{ 4973 /* Generate a subroutine that will fill an ephemeral table with 4974 ** the content of this subquery. pItem->addrFillSub will point 4975 ** to the address of the generated subroutine. pItem->regReturn 4976 ** is a register allocated to hold the subroutine return address 4977 */ 4978 int topAddr; 4979 int onceAddr = 0; 4980 int retAddr; 4981 assert( pItem->addrFillSub==0 ); 4982 pItem->regReturn = ++pParse->nMem; 4983 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4984 pItem->addrFillSub = topAddr+1; 4985 if( pItem->fg.isCorrelated==0 ){ 4986 /* If the subquery is not correlated and if we are not inside of 4987 ** a trigger, then we only need to compute the value of the subquery 4988 ** once. */ 4989 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4990 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4991 }else{ 4992 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4993 } 4994 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4995 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4996 sqlite3Select(pParse, pSub, &dest); 4997 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4998 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4999 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5000 VdbeComment((v, "end %s", pItem->pTab->zName)); 5001 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5002 sqlite3ClearTempRegCache(pParse); 5003 } 5004 if( db->mallocFailed ) goto select_end; 5005 pParse->nHeight -= sqlite3SelectExprHeight(p); 5006 } 5007 #endif 5008 5009 /* Various elements of the SELECT copied into local variables for 5010 ** convenience */ 5011 pEList = p->pEList; 5012 pWhere = p->pWhere; 5013 pGroupBy = p->pGroupBy; 5014 pHaving = p->pHaving; 5015 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5016 5017 #if SELECTTRACE_ENABLED 5018 if( sqlite3SelectTrace & 0x400 ){ 5019 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5020 sqlite3TreeViewSelect(0, p, 0); 5021 } 5022 #endif 5023 5024 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5025 ** if the select-list is the same as the ORDER BY list, then this query 5026 ** can be rewritten as a GROUP BY. In other words, this: 5027 ** 5028 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5029 ** 5030 ** is transformed to: 5031 ** 5032 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5033 ** 5034 ** The second form is preferred as a single index (or temp-table) may be 5035 ** used for both the ORDER BY and DISTINCT processing. As originally 5036 ** written the query must use a temp-table for at least one of the ORDER 5037 ** BY and DISTINCT, and an index or separate temp-table for the other. 5038 */ 5039 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5040 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5041 ){ 5042 p->selFlags &= ~SF_Distinct; 5043 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5044 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5045 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5046 ** original setting of the SF_Distinct flag, not the current setting */ 5047 assert( sDistinct.isTnct ); 5048 } 5049 5050 /* If there is an ORDER BY clause, then create an ephemeral index to 5051 ** do the sorting. But this sorting ephemeral index might end up 5052 ** being unused if the data can be extracted in pre-sorted order. 5053 ** If that is the case, then the OP_OpenEphemeral instruction will be 5054 ** changed to an OP_Noop once we figure out that the sorting index is 5055 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5056 ** that change. 5057 */ 5058 if( sSort.pOrderBy ){ 5059 KeyInfo *pKeyInfo; 5060 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5061 sSort.iECursor = pParse->nTab++; 5062 sSort.addrSortIndex = 5063 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5064 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5065 (char*)pKeyInfo, P4_KEYINFO 5066 ); 5067 }else{ 5068 sSort.addrSortIndex = -1; 5069 } 5070 5071 /* If the output is destined for a temporary table, open that table. 5072 */ 5073 if( pDest->eDest==SRT_EphemTab ){ 5074 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5075 } 5076 5077 /* Set the limiter. 5078 */ 5079 iEnd = sqlite3VdbeMakeLabel(v); 5080 p->nSelectRow = LARGEST_INT64; 5081 computeLimitRegisters(pParse, p, iEnd); 5082 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5083 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5084 sSort.sortFlags |= SORTFLAG_UseSorter; 5085 } 5086 5087 /* Open an ephemeral index to use for the distinct set. 5088 */ 5089 if( p->selFlags & SF_Distinct ){ 5090 sDistinct.tabTnct = pParse->nTab++; 5091 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5092 sDistinct.tabTnct, 0, 0, 5093 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5094 P4_KEYINFO); 5095 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5096 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5097 }else{ 5098 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5099 } 5100 5101 if( !isAgg && pGroupBy==0 ){ 5102 /* No aggregate functions and no GROUP BY clause */ 5103 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5104 5105 /* Begin the database scan. */ 5106 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5107 p->pEList, wctrlFlags, 0); 5108 if( pWInfo==0 ) goto select_end; 5109 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5110 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5111 } 5112 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5113 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5114 } 5115 if( sSort.pOrderBy ){ 5116 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5117 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5118 sSort.pOrderBy = 0; 5119 } 5120 } 5121 5122 /* If sorting index that was created by a prior OP_OpenEphemeral 5123 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5124 ** into an OP_Noop. 5125 */ 5126 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5127 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5128 } 5129 5130 /* Use the standard inner loop. */ 5131 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5132 sqlite3WhereContinueLabel(pWInfo), 5133 sqlite3WhereBreakLabel(pWInfo)); 5134 5135 /* End the database scan loop. 5136 */ 5137 sqlite3WhereEnd(pWInfo); 5138 }else{ 5139 /* This case when there exist aggregate functions or a GROUP BY clause 5140 ** or both */ 5141 NameContext sNC; /* Name context for processing aggregate information */ 5142 int iAMem; /* First Mem address for storing current GROUP BY */ 5143 int iBMem; /* First Mem address for previous GROUP BY */ 5144 int iUseFlag; /* Mem address holding flag indicating that at least 5145 ** one row of the input to the aggregator has been 5146 ** processed */ 5147 int iAbortFlag; /* Mem address which causes query abort if positive */ 5148 int groupBySort; /* Rows come from source in GROUP BY order */ 5149 int addrEnd; /* End of processing for this SELECT */ 5150 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5151 int sortOut = 0; /* Output register from the sorter */ 5152 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5153 5154 /* Remove any and all aliases between the result set and the 5155 ** GROUP BY clause. 5156 */ 5157 if( pGroupBy ){ 5158 int k; /* Loop counter */ 5159 struct ExprList_item *pItem; /* For looping over expression in a list */ 5160 5161 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5162 pItem->u.x.iAlias = 0; 5163 } 5164 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5165 pItem->u.x.iAlias = 0; 5166 } 5167 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5168 }else{ 5169 p->nSelectRow = 1; 5170 } 5171 5172 /* If there is both a GROUP BY and an ORDER BY clause and they are 5173 ** identical, then it may be possible to disable the ORDER BY clause 5174 ** on the grounds that the GROUP BY will cause elements to come out 5175 ** in the correct order. It also may not - the GROUP BY might use a 5176 ** database index that causes rows to be grouped together as required 5177 ** but not actually sorted. Either way, record the fact that the 5178 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5179 ** variable. */ 5180 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5181 orderByGrp = 1; 5182 } 5183 5184 /* Create a label to jump to when we want to abort the query */ 5185 addrEnd = sqlite3VdbeMakeLabel(v); 5186 5187 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5188 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5189 ** SELECT statement. 5190 */ 5191 memset(&sNC, 0, sizeof(sNC)); 5192 sNC.pParse = pParse; 5193 sNC.pSrcList = pTabList; 5194 sNC.pAggInfo = &sAggInfo; 5195 sAggInfo.mnReg = pParse->nMem+1; 5196 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5197 sAggInfo.pGroupBy = pGroupBy; 5198 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5199 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5200 if( pHaving ){ 5201 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5202 } 5203 sAggInfo.nAccumulator = sAggInfo.nColumn; 5204 for(i=0; i<sAggInfo.nFunc; i++){ 5205 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5206 sNC.ncFlags |= NC_InAggFunc; 5207 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5208 sNC.ncFlags &= ~NC_InAggFunc; 5209 } 5210 sAggInfo.mxReg = pParse->nMem; 5211 if( db->mallocFailed ) goto select_end; 5212 5213 /* Processing for aggregates with GROUP BY is very different and 5214 ** much more complex than aggregates without a GROUP BY. 5215 */ 5216 if( pGroupBy ){ 5217 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5218 int j1; /* A-vs-B comparision jump */ 5219 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5220 int regOutputRow; /* Return address register for output subroutine */ 5221 int addrSetAbort; /* Set the abort flag and return */ 5222 int addrTopOfLoop; /* Top of the input loop */ 5223 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5224 int addrReset; /* Subroutine for resetting the accumulator */ 5225 int regReset; /* Return address register for reset subroutine */ 5226 5227 /* If there is a GROUP BY clause we might need a sorting index to 5228 ** implement it. Allocate that sorting index now. If it turns out 5229 ** that we do not need it after all, the OP_SorterOpen instruction 5230 ** will be converted into a Noop. 5231 */ 5232 sAggInfo.sortingIdx = pParse->nTab++; 5233 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5234 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5235 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5236 0, (char*)pKeyInfo, P4_KEYINFO); 5237 5238 /* Initialize memory locations used by GROUP BY aggregate processing 5239 */ 5240 iUseFlag = ++pParse->nMem; 5241 iAbortFlag = ++pParse->nMem; 5242 regOutputRow = ++pParse->nMem; 5243 addrOutputRow = sqlite3VdbeMakeLabel(v); 5244 regReset = ++pParse->nMem; 5245 addrReset = sqlite3VdbeMakeLabel(v); 5246 iAMem = pParse->nMem + 1; 5247 pParse->nMem += pGroupBy->nExpr; 5248 iBMem = pParse->nMem + 1; 5249 pParse->nMem += pGroupBy->nExpr; 5250 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5251 VdbeComment((v, "clear abort flag")); 5252 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5253 VdbeComment((v, "indicate accumulator empty")); 5254 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5255 5256 /* Begin a loop that will extract all source rows in GROUP BY order. 5257 ** This might involve two separate loops with an OP_Sort in between, or 5258 ** it might be a single loop that uses an index to extract information 5259 ** in the right order to begin with. 5260 */ 5261 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5262 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5263 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5264 ); 5265 if( pWInfo==0 ) goto select_end; 5266 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5267 /* The optimizer is able to deliver rows in group by order so 5268 ** we do not have to sort. The OP_OpenEphemeral table will be 5269 ** cancelled later because we still need to use the pKeyInfo 5270 */ 5271 groupBySort = 0; 5272 }else{ 5273 /* Rows are coming out in undetermined order. We have to push 5274 ** each row into a sorting index, terminate the first loop, 5275 ** then loop over the sorting index in order to get the output 5276 ** in sorted order 5277 */ 5278 int regBase; 5279 int regRecord; 5280 int nCol; 5281 int nGroupBy; 5282 5283 explainTempTable(pParse, 5284 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5285 "DISTINCT" : "GROUP BY"); 5286 5287 groupBySort = 1; 5288 nGroupBy = pGroupBy->nExpr; 5289 nCol = nGroupBy; 5290 j = nGroupBy; 5291 for(i=0; i<sAggInfo.nColumn; i++){ 5292 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5293 nCol++; 5294 j++; 5295 } 5296 } 5297 regBase = sqlite3GetTempRange(pParse, nCol); 5298 sqlite3ExprCacheClear(pParse); 5299 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5300 j = nGroupBy; 5301 for(i=0; i<sAggInfo.nColumn; i++){ 5302 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5303 if( pCol->iSorterColumn>=j ){ 5304 int r1 = j + regBase; 5305 int r2; 5306 5307 r2 = sqlite3ExprCodeGetColumn(pParse, 5308 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5309 if( r1!=r2 ){ 5310 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5311 } 5312 j++; 5313 } 5314 } 5315 regRecord = sqlite3GetTempReg(pParse); 5316 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5317 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5318 sqlite3ReleaseTempReg(pParse, regRecord); 5319 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5320 sqlite3WhereEnd(pWInfo); 5321 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5322 sortOut = sqlite3GetTempReg(pParse); 5323 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5324 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5325 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5326 sAggInfo.useSortingIdx = 1; 5327 sqlite3ExprCacheClear(pParse); 5328 5329 } 5330 5331 /* If the index or temporary table used by the GROUP BY sort 5332 ** will naturally deliver rows in the order required by the ORDER BY 5333 ** clause, cancel the ephemeral table open coded earlier. 5334 ** 5335 ** This is an optimization - the correct answer should result regardless. 5336 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5337 ** disable this optimization for testing purposes. */ 5338 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5339 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5340 ){ 5341 sSort.pOrderBy = 0; 5342 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5343 } 5344 5345 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5346 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5347 ** Then compare the current GROUP BY terms against the GROUP BY terms 5348 ** from the previous row currently stored in a0, a1, a2... 5349 */ 5350 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5351 sqlite3ExprCacheClear(pParse); 5352 if( groupBySort ){ 5353 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5354 sortOut, sortPTab); 5355 } 5356 for(j=0; j<pGroupBy->nExpr; j++){ 5357 if( groupBySort ){ 5358 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5359 }else{ 5360 sAggInfo.directMode = 1; 5361 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5362 } 5363 } 5364 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5365 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5366 j1 = sqlite3VdbeCurrentAddr(v); 5367 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5368 5369 /* Generate code that runs whenever the GROUP BY changes. 5370 ** Changes in the GROUP BY are detected by the previous code 5371 ** block. If there were no changes, this block is skipped. 5372 ** 5373 ** This code copies current group by terms in b0,b1,b2,... 5374 ** over to a0,a1,a2. It then calls the output subroutine 5375 ** and resets the aggregate accumulator registers in preparation 5376 ** for the next GROUP BY batch. 5377 */ 5378 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5379 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5380 VdbeComment((v, "output one row")); 5381 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5382 VdbeComment((v, "check abort flag")); 5383 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5384 VdbeComment((v, "reset accumulator")); 5385 5386 /* Update the aggregate accumulators based on the content of 5387 ** the current row 5388 */ 5389 sqlite3VdbeJumpHere(v, j1); 5390 updateAccumulator(pParse, &sAggInfo); 5391 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5392 VdbeComment((v, "indicate data in accumulator")); 5393 5394 /* End of the loop 5395 */ 5396 if( groupBySort ){ 5397 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5398 VdbeCoverage(v); 5399 }else{ 5400 sqlite3WhereEnd(pWInfo); 5401 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5402 } 5403 5404 /* Output the final row of result 5405 */ 5406 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5407 VdbeComment((v, "output final row")); 5408 5409 /* Jump over the subroutines 5410 */ 5411 sqlite3VdbeGoto(v, addrEnd); 5412 5413 /* Generate a subroutine that outputs a single row of the result 5414 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5415 ** is less than or equal to zero, the subroutine is a no-op. If 5416 ** the processing calls for the query to abort, this subroutine 5417 ** increments the iAbortFlag memory location before returning in 5418 ** order to signal the caller to abort. 5419 */ 5420 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5421 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5422 VdbeComment((v, "set abort flag")); 5423 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5424 sqlite3VdbeResolveLabel(v, addrOutputRow); 5425 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5426 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5427 VdbeCoverage(v); 5428 VdbeComment((v, "Groupby result generator entry point")); 5429 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5430 finalizeAggFunctions(pParse, &sAggInfo); 5431 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5432 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5433 &sDistinct, pDest, 5434 addrOutputRow+1, addrSetAbort); 5435 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5436 VdbeComment((v, "end groupby result generator")); 5437 5438 /* Generate a subroutine that will reset the group-by accumulator 5439 */ 5440 sqlite3VdbeResolveLabel(v, addrReset); 5441 resetAccumulator(pParse, &sAggInfo); 5442 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5443 5444 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5445 else { 5446 ExprList *pDel = 0; 5447 #ifndef SQLITE_OMIT_BTREECOUNT 5448 Table *pTab; 5449 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5450 /* If isSimpleCount() returns a pointer to a Table structure, then 5451 ** the SQL statement is of the form: 5452 ** 5453 ** SELECT count(*) FROM <tbl> 5454 ** 5455 ** where the Table structure returned represents table <tbl>. 5456 ** 5457 ** This statement is so common that it is optimized specially. The 5458 ** OP_Count instruction is executed either on the intkey table that 5459 ** contains the data for table <tbl> or on one of its indexes. It 5460 ** is better to execute the op on an index, as indexes are almost 5461 ** always spread across less pages than their corresponding tables. 5462 */ 5463 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5464 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5465 Index *pIdx; /* Iterator variable */ 5466 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5467 Index *pBest = 0; /* Best index found so far */ 5468 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5469 5470 sqlite3CodeVerifySchema(pParse, iDb); 5471 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5472 5473 /* Search for the index that has the lowest scan cost. 5474 ** 5475 ** (2011-04-15) Do not do a full scan of an unordered index. 5476 ** 5477 ** (2013-10-03) Do not count the entries in a partial index. 5478 ** 5479 ** In practice the KeyInfo structure will not be used. It is only 5480 ** passed to keep OP_OpenRead happy. 5481 */ 5482 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5483 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5484 if( pIdx->bUnordered==0 5485 && pIdx->szIdxRow<pTab->szTabRow 5486 && pIdx->pPartIdxWhere==0 5487 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5488 ){ 5489 pBest = pIdx; 5490 } 5491 } 5492 if( pBest ){ 5493 iRoot = pBest->tnum; 5494 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5495 } 5496 5497 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5498 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5499 if( pKeyInfo ){ 5500 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5501 } 5502 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5503 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5504 explainSimpleCount(pParse, pTab, pBest); 5505 }else 5506 #endif /* SQLITE_OMIT_BTREECOUNT */ 5507 { 5508 /* Check if the query is of one of the following forms: 5509 ** 5510 ** SELECT min(x) FROM ... 5511 ** SELECT max(x) FROM ... 5512 ** 5513 ** If it is, then ask the code in where.c to attempt to sort results 5514 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5515 ** If where.c is able to produce results sorted in this order, then 5516 ** add vdbe code to break out of the processing loop after the 5517 ** first iteration (since the first iteration of the loop is 5518 ** guaranteed to operate on the row with the minimum or maximum 5519 ** value of x, the only row required). 5520 ** 5521 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5522 ** modify behavior as follows: 5523 ** 5524 ** + If the query is a "SELECT min(x)", then the loop coded by 5525 ** where.c should not iterate over any values with a NULL value 5526 ** for x. 5527 ** 5528 ** + The optimizer code in where.c (the thing that decides which 5529 ** index or indices to use) should place a different priority on 5530 ** satisfying the 'ORDER BY' clause than it does in other cases. 5531 ** Refer to code and comments in where.c for details. 5532 */ 5533 ExprList *pMinMax = 0; 5534 u8 flag = WHERE_ORDERBY_NORMAL; 5535 5536 assert( p->pGroupBy==0 ); 5537 assert( flag==0 ); 5538 if( p->pHaving==0 ){ 5539 flag = minMaxQuery(&sAggInfo, &pMinMax); 5540 } 5541 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5542 5543 if( flag ){ 5544 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5545 pDel = pMinMax; 5546 if( pMinMax && !db->mallocFailed ){ 5547 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5548 pMinMax->a[0].pExpr->op = TK_COLUMN; 5549 } 5550 } 5551 5552 /* This case runs if the aggregate has no GROUP BY clause. The 5553 ** processing is much simpler since there is only a single row 5554 ** of output. 5555 */ 5556 resetAccumulator(pParse, &sAggInfo); 5557 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5558 if( pWInfo==0 ){ 5559 sqlite3ExprListDelete(db, pDel); 5560 goto select_end; 5561 } 5562 updateAccumulator(pParse, &sAggInfo); 5563 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5564 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5565 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5566 VdbeComment((v, "%s() by index", 5567 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5568 } 5569 sqlite3WhereEnd(pWInfo); 5570 finalizeAggFunctions(pParse, &sAggInfo); 5571 } 5572 5573 sSort.pOrderBy = 0; 5574 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5575 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5576 pDest, addrEnd, addrEnd); 5577 sqlite3ExprListDelete(db, pDel); 5578 } 5579 sqlite3VdbeResolveLabel(v, addrEnd); 5580 5581 } /* endif aggregate query */ 5582 5583 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5584 explainTempTable(pParse, "DISTINCT"); 5585 } 5586 5587 /* If there is an ORDER BY clause, then we need to sort the results 5588 ** and send them to the callback one by one. 5589 */ 5590 if( sSort.pOrderBy ){ 5591 explainTempTable(pParse, 5592 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5593 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5594 } 5595 5596 /* Jump here to skip this query 5597 */ 5598 sqlite3VdbeResolveLabel(v, iEnd); 5599 5600 /* The SELECT has been coded. If there is an error in the Parse structure, 5601 ** set the return code to 1. Otherwise 0. */ 5602 rc = (pParse->nErr>0); 5603 5604 /* Control jumps to here if an error is encountered above, or upon 5605 ** successful coding of the SELECT. 5606 */ 5607 select_end: 5608 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5609 5610 /* Identify column names if results of the SELECT are to be output. 5611 */ 5612 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5613 generateColumnNames(pParse, pTabList, pEList); 5614 } 5615 5616 sqlite3DbFree(db, sAggInfo.aCol); 5617 sqlite3DbFree(db, sAggInfo.aFunc); 5618 #if SELECTTRACE_ENABLED 5619 SELECTTRACE(1,pParse,p,("end processing\n")); 5620 pParse->nSelectIndent--; 5621 #endif 5622 return rc; 5623 } 5624