xref: /sqlite-3.40.0/src/select.c (revision 2c1023df)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
58 };
59 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
60 
61 /*
62 ** Delete all the content of a Select structure.  Deallocate the structure
63 ** itself only if bFree is true.
64 */
65 static void clearSelect(sqlite3 *db, Select *p, int bFree){
66   while( p ){
67     Select *pPrior = p->pPrior;
68     sqlite3ExprListDelete(db, p->pEList);
69     sqlite3SrcListDelete(db, p->pSrc);
70     sqlite3ExprDelete(db, p->pWhere);
71     sqlite3ExprListDelete(db, p->pGroupBy);
72     sqlite3ExprDelete(db, p->pHaving);
73     sqlite3ExprListDelete(db, p->pOrderBy);
74     sqlite3ExprDelete(db, p->pLimit);
75     sqlite3ExprDelete(db, p->pOffset);
76     sqlite3WithDelete(db, p->pWith);
77     if( bFree ) sqlite3DbFree(db, p);
78     p = pPrior;
79     bFree = 1;
80   }
81 }
82 
83 /*
84 ** Initialize a SelectDest structure.
85 */
86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
87   pDest->eDest = (u8)eDest;
88   pDest->iSDParm = iParm;
89   pDest->affSdst = 0;
90   pDest->iSdst = 0;
91   pDest->nSdst = 0;
92 }
93 
94 
95 /*
96 ** Allocate a new Select structure and return a pointer to that
97 ** structure.
98 */
99 Select *sqlite3SelectNew(
100   Parse *pParse,        /* Parsing context */
101   ExprList *pEList,     /* which columns to include in the result */
102   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
103   Expr *pWhere,         /* the WHERE clause */
104   ExprList *pGroupBy,   /* the GROUP BY clause */
105   Expr *pHaving,        /* the HAVING clause */
106   ExprList *pOrderBy,   /* the ORDER BY clause */
107   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
108   Expr *pLimit,         /* LIMIT value.  NULL means not used */
109   Expr *pOffset         /* OFFSET value.  NULL means no offset */
110 ){
111   Select *pNew;
112   Select standin;
113   sqlite3 *db = pParse->db;
114   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     if( p->op==TK_FUNCTION && p->x.pList ){
370       int i;
371       for(i=0; i<p->x.pList->nExpr; i++){
372         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
373       }
374     }
375     setJoinExpr(p->pLeft, iTable);
376     p = p->pRight;
377   }
378 }
379 
380 /*
381 ** This routine processes the join information for a SELECT statement.
382 ** ON and USING clauses are converted into extra terms of the WHERE clause.
383 ** NATURAL joins also create extra WHERE clause terms.
384 **
385 ** The terms of a FROM clause are contained in the Select.pSrc structure.
386 ** The left most table is the first entry in Select.pSrc.  The right-most
387 ** table is the last entry.  The join operator is held in the entry to
388 ** the left.  Thus entry 0 contains the join operator for the join between
389 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
390 ** also attached to the left entry.
391 **
392 ** This routine returns the number of errors encountered.
393 */
394 static int sqliteProcessJoin(Parse *pParse, Select *p){
395   SrcList *pSrc;                  /* All tables in the FROM clause */
396   int i, j;                       /* Loop counters */
397   struct SrcList_item *pLeft;     /* Left table being joined */
398   struct SrcList_item *pRight;    /* Right table being joined */
399 
400   pSrc = p->pSrc;
401   pLeft = &pSrc->a[0];
402   pRight = &pLeft[1];
403   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
404     Table *pLeftTab = pLeft->pTab;
405     Table *pRightTab = pRight->pTab;
406     int isOuter;
407 
408     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
409     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
410 
411     /* When the NATURAL keyword is present, add WHERE clause terms for
412     ** every column that the two tables have in common.
413     */
414     if( pRight->fg.jointype & JT_NATURAL ){
415       if( pRight->pOn || pRight->pUsing ){
416         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
417            "an ON or USING clause", 0);
418         return 1;
419       }
420       for(j=0; j<pRightTab->nCol; j++){
421         char *zName;   /* Name of column in the right table */
422         int iLeft;     /* Matching left table */
423         int iLeftCol;  /* Matching column in the left table */
424 
425         zName = pRightTab->aCol[j].zName;
426         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
427           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
428                        isOuter, &p->pWhere);
429         }
430       }
431     }
432 
433     /* Disallow both ON and USING clauses in the same join
434     */
435     if( pRight->pOn && pRight->pUsing ){
436       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
437         "clauses in the same join");
438       return 1;
439     }
440 
441     /* Add the ON clause to the end of the WHERE clause, connected by
442     ** an AND operator.
443     */
444     if( pRight->pOn ){
445       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
446       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
447       pRight->pOn = 0;
448     }
449 
450     /* Create extra terms on the WHERE clause for each column named
451     ** in the USING clause.  Example: If the two tables to be joined are
452     ** A and B and the USING clause names X, Y, and Z, then add this
453     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
454     ** Report an error if any column mentioned in the USING clause is
455     ** not contained in both tables to be joined.
456     */
457     if( pRight->pUsing ){
458       IdList *pList = pRight->pUsing;
459       for(j=0; j<pList->nId; j++){
460         char *zName;     /* Name of the term in the USING clause */
461         int iLeft;       /* Table on the left with matching column name */
462         int iLeftCol;    /* Column number of matching column on the left */
463         int iRightCol;   /* Column number of matching column on the right */
464 
465         zName = pList->a[j].zName;
466         iRightCol = columnIndex(pRightTab, zName);
467         if( iRightCol<0
468          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
469         ){
470           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
471             "not present in both tables", zName);
472           return 1;
473         }
474         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
475                      isOuter, &p->pWhere);
476       }
477     }
478   }
479   return 0;
480 }
481 
482 /* Forward reference */
483 static KeyInfo *keyInfoFromExprList(
484   Parse *pParse,       /* Parsing context */
485   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
486   int iStart,          /* Begin with this column of pList */
487   int nExtra           /* Add this many extra columns to the end */
488 );
489 
490 /*
491 ** Generate code that will push the record in registers regData
492 ** through regData+nData-1 onto the sorter.
493 */
494 static void pushOntoSorter(
495   Parse *pParse,         /* Parser context */
496   SortCtx *pSort,        /* Information about the ORDER BY clause */
497   Select *pSelect,       /* The whole SELECT statement */
498   int regData,           /* First register holding data to be sorted */
499   int regOrigData,       /* First register holding data before packing */
500   int nData,             /* Number of elements in the data array */
501   int nPrefixReg         /* No. of reg prior to regData available for use */
502 ){
503   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
504   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
505   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
506   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
507   int regBase;                                     /* Regs for sorter record */
508   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
509   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
510   int op;                            /* Opcode to add sorter record to sorter */
511 
512   assert( bSeq==0 || bSeq==1 );
513   assert( nData==1 || regData==regOrigData );
514   if( nPrefixReg ){
515     assert( nPrefixReg==nExpr+bSeq );
516     regBase = regData - nExpr - bSeq;
517   }else{
518     regBase = pParse->nMem + 1;
519     pParse->nMem += nBase;
520   }
521   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
522                           SQLITE_ECEL_DUP|SQLITE_ECEL_REF);
523   if( bSeq ){
524     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
525   }
526   if( nPrefixReg==0 ){
527     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
528   }
529 
530   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
531   if( nOBSat>0 ){
532     int regPrevKey;   /* The first nOBSat columns of the previous row */
533     int addrFirst;    /* Address of the OP_IfNot opcode */
534     int addrJmp;      /* Address of the OP_Jump opcode */
535     VdbeOp *pOp;      /* Opcode that opens the sorter */
536     int nKey;         /* Number of sorting key columns, including OP_Sequence */
537     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
538 
539     regPrevKey = pParse->nMem+1;
540     pParse->nMem += pSort->nOBSat;
541     nKey = nExpr - pSort->nOBSat + bSeq;
542     if( bSeq ){
543       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
544     }else{
545       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
546     }
547     VdbeCoverage(v);
548     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
549     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
550     if( pParse->db->mallocFailed ) return;
551     pOp->p2 = nKey + nData;
552     pKI = pOp->p4.pKeyInfo;
553     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
554     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
555     testcase( pKI->nXField>2 );
556     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
557                                            pKI->nXField-1);
558     addrJmp = sqlite3VdbeCurrentAddr(v);
559     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
560     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
561     pSort->regReturn = ++pParse->nMem;
562     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
563     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
564     sqlite3VdbeJumpHere(v, addrFirst);
565     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
566     sqlite3VdbeJumpHere(v, addrJmp);
567   }
568   if( pSort->sortFlags & SORTFLAG_UseSorter ){
569     op = OP_SorterInsert;
570   }else{
571     op = OP_IdxInsert;
572   }
573   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
574   if( pSelect->iLimit ){
575     int addr;
576     int iLimit;
577     if( pSelect->iOffset ){
578       iLimit = pSelect->iOffset+1;
579     }else{
580       iLimit = pSelect->iLimit;
581     }
582     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v);
583     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
584     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
585     sqlite3VdbeJumpHere(v, addr);
586   }
587 }
588 
589 /*
590 ** Add code to implement the OFFSET
591 */
592 static void codeOffset(
593   Vdbe *v,          /* Generate code into this VM */
594   int iOffset,      /* Register holding the offset counter */
595   int iContinue     /* Jump here to skip the current record */
596 ){
597   if( iOffset>0 ){
598     int addr;
599     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
600     sqlite3VdbeGoto(v, iContinue);
601     VdbeComment((v, "skip OFFSET records"));
602     sqlite3VdbeJumpHere(v, addr);
603   }
604 }
605 
606 /*
607 ** Add code that will check to make sure the N registers starting at iMem
608 ** form a distinct entry.  iTab is a sorting index that holds previously
609 ** seen combinations of the N values.  A new entry is made in iTab
610 ** if the current N values are new.
611 **
612 ** A jump to addrRepeat is made and the N+1 values are popped from the
613 ** stack if the top N elements are not distinct.
614 */
615 static void codeDistinct(
616   Parse *pParse,     /* Parsing and code generating context */
617   int iTab,          /* A sorting index used to test for distinctness */
618   int addrRepeat,    /* Jump to here if not distinct */
619   int N,             /* Number of elements */
620   int iMem           /* First element */
621 ){
622   Vdbe *v;
623   int r1;
624 
625   v = pParse->pVdbe;
626   r1 = sqlite3GetTempReg(pParse);
627   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
628   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
629   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
630   sqlite3ReleaseTempReg(pParse, r1);
631 }
632 
633 #ifndef SQLITE_OMIT_SUBQUERY
634 /*
635 ** Generate an error message when a SELECT is used within a subexpression
636 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
637 ** column.  We do this in a subroutine because the error used to occur
638 ** in multiple places.  (The error only occurs in one place now, but we
639 ** retain the subroutine to minimize code disruption.)
640 */
641 static int checkForMultiColumnSelectError(
642   Parse *pParse,       /* Parse context. */
643   SelectDest *pDest,   /* Destination of SELECT results */
644   int nExpr            /* Number of result columns returned by SELECT */
645 ){
646   int eDest = pDest->eDest;
647   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
648     sqlite3ErrorMsg(pParse, "only a single result allowed for "
649        "a SELECT that is part of an expression");
650     return 1;
651   }else{
652     return 0;
653   }
654 }
655 #endif
656 
657 /*
658 ** This routine generates the code for the inside of the inner loop
659 ** of a SELECT.
660 **
661 ** If srcTab is negative, then the pEList expressions
662 ** are evaluated in order to get the data for this row.  If srcTab is
663 ** zero or more, then data is pulled from srcTab and pEList is used only
664 ** to get number columns and the datatype for each column.
665 */
666 static void selectInnerLoop(
667   Parse *pParse,          /* The parser context */
668   Select *p,              /* The complete select statement being coded */
669   ExprList *pEList,       /* List of values being extracted */
670   int srcTab,             /* Pull data from this table */
671   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
672   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
673   SelectDest *pDest,      /* How to dispose of the results */
674   int iContinue,          /* Jump here to continue with next row */
675   int iBreak              /* Jump here to break out of the inner loop */
676 ){
677   Vdbe *v = pParse->pVdbe;
678   int i;
679   int hasDistinct;        /* True if the DISTINCT keyword is present */
680   int regResult;              /* Start of memory holding result set */
681   int eDest = pDest->eDest;   /* How to dispose of results */
682   int iParm = pDest->iSDParm; /* First argument to disposal method */
683   int nResultCol;             /* Number of result columns */
684   int nPrefixReg = 0;         /* Number of extra registers before regResult */
685 
686   assert( v );
687   assert( pEList!=0 );
688   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
689   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
690   if( pSort==0 && !hasDistinct ){
691     assert( iContinue!=0 );
692     codeOffset(v, p->iOffset, iContinue);
693   }
694 
695   /* Pull the requested columns.
696   */
697   nResultCol = pEList->nExpr;
698 
699   if( pDest->iSdst==0 ){
700     if( pSort ){
701       nPrefixReg = pSort->pOrderBy->nExpr;
702       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
703       pParse->nMem += nPrefixReg;
704     }
705     pDest->iSdst = pParse->nMem+1;
706     pParse->nMem += nResultCol;
707   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
708     /* This is an error condition that can result, for example, when a SELECT
709     ** on the right-hand side of an INSERT contains more result columns than
710     ** there are columns in the table on the left.  The error will be caught
711     ** and reported later.  But we need to make sure enough memory is allocated
712     ** to avoid other spurious errors in the meantime. */
713     pParse->nMem += nResultCol;
714   }
715   pDest->nSdst = nResultCol;
716   regResult = pDest->iSdst;
717   if( srcTab>=0 ){
718     for(i=0; i<nResultCol; i++){
719       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
720       VdbeComment((v, "%s", pEList->a[i].zName));
721     }
722   }else if( eDest!=SRT_Exists ){
723     /* If the destination is an EXISTS(...) expression, the actual
724     ** values returned by the SELECT are not required.
725     */
726     u8 ecelFlags;
727     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
728       ecelFlags = SQLITE_ECEL_DUP;
729     }else{
730       ecelFlags = 0;
731     }
732     sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags);
733   }
734 
735   /* If the DISTINCT keyword was present on the SELECT statement
736   ** and this row has been seen before, then do not make this row
737   ** part of the result.
738   */
739   if( hasDistinct ){
740     switch( pDistinct->eTnctType ){
741       case WHERE_DISTINCT_ORDERED: {
742         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
743         int iJump;              /* Jump destination */
744         int regPrev;            /* Previous row content */
745 
746         /* Allocate space for the previous row */
747         regPrev = pParse->nMem+1;
748         pParse->nMem += nResultCol;
749 
750         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
751         ** sets the MEM_Cleared bit on the first register of the
752         ** previous value.  This will cause the OP_Ne below to always
753         ** fail on the first iteration of the loop even if the first
754         ** row is all NULLs.
755         */
756         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
757         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
758         pOp->opcode = OP_Null;
759         pOp->p1 = 1;
760         pOp->p2 = regPrev;
761 
762         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
763         for(i=0; i<nResultCol; i++){
764           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
765           if( i<nResultCol-1 ){
766             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
767             VdbeCoverage(v);
768           }else{
769             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
770             VdbeCoverage(v);
771            }
772           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
773           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
774         }
775         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
776         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
777         break;
778       }
779 
780       case WHERE_DISTINCT_UNIQUE: {
781         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
782         break;
783       }
784 
785       default: {
786         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
787         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
788                      regResult);
789         break;
790       }
791     }
792     if( pSort==0 ){
793       codeOffset(v, p->iOffset, iContinue);
794     }
795   }
796 
797   switch( eDest ){
798     /* In this mode, write each query result to the key of the temporary
799     ** table iParm.
800     */
801 #ifndef SQLITE_OMIT_COMPOUND_SELECT
802     case SRT_Union: {
803       int r1;
804       r1 = sqlite3GetTempReg(pParse);
805       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
806       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
807       sqlite3ReleaseTempReg(pParse, r1);
808       break;
809     }
810 
811     /* Construct a record from the query result, but instead of
812     ** saving that record, use it as a key to delete elements from
813     ** the temporary table iParm.
814     */
815     case SRT_Except: {
816       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
817       break;
818     }
819 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
820 
821     /* Store the result as data using a unique key.
822     */
823     case SRT_Fifo:
824     case SRT_DistFifo:
825     case SRT_Table:
826     case SRT_EphemTab: {
827       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
828       testcase( eDest==SRT_Table );
829       testcase( eDest==SRT_EphemTab );
830       testcase( eDest==SRT_Fifo );
831       testcase( eDest==SRT_DistFifo );
832       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
833 #ifndef SQLITE_OMIT_CTE
834       if( eDest==SRT_DistFifo ){
835         /* If the destination is DistFifo, then cursor (iParm+1) is open
836         ** on an ephemeral index. If the current row is already present
837         ** in the index, do not write it to the output. If not, add the
838         ** current row to the index and proceed with writing it to the
839         ** output table as well.  */
840         int addr = sqlite3VdbeCurrentAddr(v) + 4;
841         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
842         VdbeCoverage(v);
843         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
844         assert( pSort==0 );
845       }
846 #endif
847       if( pSort ){
848         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
849       }else{
850         int r2 = sqlite3GetTempReg(pParse);
851         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
852         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
853         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
854         sqlite3ReleaseTempReg(pParse, r2);
855       }
856       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
857       break;
858     }
859 
860 #ifndef SQLITE_OMIT_SUBQUERY
861     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
862     ** then there should be a single item on the stack.  Write this
863     ** item into the set table with bogus data.
864     */
865     case SRT_Set: {
866       assert( nResultCol==1 );
867       pDest->affSdst =
868                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
869       if( pSort ){
870         /* At first glance you would think we could optimize out the
871         ** ORDER BY in this case since the order of entries in the set
872         ** does not matter.  But there might be a LIMIT clause, in which
873         ** case the order does matter */
874         pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
875       }else{
876         int r1 = sqlite3GetTempReg(pParse);
877         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
878         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
879         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
880         sqlite3ReleaseTempReg(pParse, r1);
881       }
882       break;
883     }
884 
885     /* If any row exist in the result set, record that fact and abort.
886     */
887     case SRT_Exists: {
888       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
889       /* The LIMIT clause will terminate the loop for us */
890       break;
891     }
892 
893     /* If this is a scalar select that is part of an expression, then
894     ** store the results in the appropriate memory cell and break out
895     ** of the scan loop.
896     */
897     case SRT_Mem: {
898       assert( nResultCol==1 );
899       if( pSort ){
900         pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
901       }else{
902         assert( regResult==iParm );
903         /* The LIMIT clause will jump out of the loop for us */
904       }
905       break;
906     }
907 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
908 
909     case SRT_Coroutine:       /* Send data to a co-routine */
910     case SRT_Output: {        /* Return the results */
911       testcase( eDest==SRT_Coroutine );
912       testcase( eDest==SRT_Output );
913       if( pSort ){
914         pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol,
915                        nPrefixReg);
916       }else if( eDest==SRT_Coroutine ){
917         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
918       }else{
919         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
920         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
921       }
922       break;
923     }
924 
925 #ifndef SQLITE_OMIT_CTE
926     /* Write the results into a priority queue that is order according to
927     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
928     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
929     ** pSO->nExpr columns, then make sure all keys are unique by adding a
930     ** final OP_Sequence column.  The last column is the record as a blob.
931     */
932     case SRT_DistQueue:
933     case SRT_Queue: {
934       int nKey;
935       int r1, r2, r3;
936       int addrTest = 0;
937       ExprList *pSO;
938       pSO = pDest->pOrderBy;
939       assert( pSO );
940       nKey = pSO->nExpr;
941       r1 = sqlite3GetTempReg(pParse);
942       r2 = sqlite3GetTempRange(pParse, nKey+2);
943       r3 = r2+nKey+1;
944       if( eDest==SRT_DistQueue ){
945         /* If the destination is DistQueue, then cursor (iParm+1) is open
946         ** on a second ephemeral index that holds all values every previously
947         ** added to the queue. */
948         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
949                                         regResult, nResultCol);
950         VdbeCoverage(v);
951       }
952       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
953       if( eDest==SRT_DistQueue ){
954         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
955         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
956       }
957       for(i=0; i<nKey; i++){
958         sqlite3VdbeAddOp2(v, OP_SCopy,
959                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
960                           r2+i);
961       }
962       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
963       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
964       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
965       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
966       sqlite3ReleaseTempReg(pParse, r1);
967       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
968       break;
969     }
970 #endif /* SQLITE_OMIT_CTE */
971 
972 
973 
974 #if !defined(SQLITE_OMIT_TRIGGER)
975     /* Discard the results.  This is used for SELECT statements inside
976     ** the body of a TRIGGER.  The purpose of such selects is to call
977     ** user-defined functions that have side effects.  We do not care
978     ** about the actual results of the select.
979     */
980     default: {
981       assert( eDest==SRT_Discard );
982       break;
983     }
984 #endif
985   }
986 
987   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
988   ** there is a sorter, in which case the sorter has already limited
989   ** the output for us.
990   */
991   if( pSort==0 && p->iLimit ){
992     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
993   }
994 }
995 
996 /*
997 ** Allocate a KeyInfo object sufficient for an index of N key columns and
998 ** X extra columns.
999 */
1000 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1001   KeyInfo *p = sqlite3DbMallocZero(0,
1002                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
1003   if( p ){
1004     p->aSortOrder = (u8*)&p->aColl[N+X];
1005     p->nField = (u16)N;
1006     p->nXField = (u16)X;
1007     p->enc = ENC(db);
1008     p->db = db;
1009     p->nRef = 1;
1010   }else{
1011     db->mallocFailed = 1;
1012   }
1013   return p;
1014 }
1015 
1016 /*
1017 ** Deallocate a KeyInfo object
1018 */
1019 void sqlite3KeyInfoUnref(KeyInfo *p){
1020   if( p ){
1021     assert( p->nRef>0 );
1022     p->nRef--;
1023     if( p->nRef==0 ) sqlite3DbFree(0, p);
1024   }
1025 }
1026 
1027 /*
1028 ** Make a new pointer to a KeyInfo object
1029 */
1030 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1031   if( p ){
1032     assert( p->nRef>0 );
1033     p->nRef++;
1034   }
1035   return p;
1036 }
1037 
1038 #ifdef SQLITE_DEBUG
1039 /*
1040 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1041 ** can only be changed if this is just a single reference to the object.
1042 **
1043 ** This routine is used only inside of assert() statements.
1044 */
1045 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1046 #endif /* SQLITE_DEBUG */
1047 
1048 /*
1049 ** Given an expression list, generate a KeyInfo structure that records
1050 ** the collating sequence for each expression in that expression list.
1051 **
1052 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1053 ** KeyInfo structure is appropriate for initializing a virtual index to
1054 ** implement that clause.  If the ExprList is the result set of a SELECT
1055 ** then the KeyInfo structure is appropriate for initializing a virtual
1056 ** index to implement a DISTINCT test.
1057 **
1058 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1059 ** function is responsible for seeing that this structure is eventually
1060 ** freed.
1061 */
1062 static KeyInfo *keyInfoFromExprList(
1063   Parse *pParse,       /* Parsing context */
1064   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1065   int iStart,          /* Begin with this column of pList */
1066   int nExtra           /* Add this many extra columns to the end */
1067 ){
1068   int nExpr;
1069   KeyInfo *pInfo;
1070   struct ExprList_item *pItem;
1071   sqlite3 *db = pParse->db;
1072   int i;
1073 
1074   nExpr = pList->nExpr;
1075   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1076   if( pInfo ){
1077     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1078     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1079       CollSeq *pColl;
1080       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1081       if( !pColl ) pColl = db->pDfltColl;
1082       pInfo->aColl[i-iStart] = pColl;
1083       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1084     }
1085   }
1086   return pInfo;
1087 }
1088 
1089 /*
1090 ** Name of the connection operator, used for error messages.
1091 */
1092 static const char *selectOpName(int id){
1093   char *z;
1094   switch( id ){
1095     case TK_ALL:       z = "UNION ALL";   break;
1096     case TK_INTERSECT: z = "INTERSECT";   break;
1097     case TK_EXCEPT:    z = "EXCEPT";      break;
1098     default:           z = "UNION";       break;
1099   }
1100   return z;
1101 }
1102 
1103 #ifndef SQLITE_OMIT_EXPLAIN
1104 /*
1105 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1106 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1107 ** where the caption is of the form:
1108 **
1109 **   "USE TEMP B-TREE FOR xxx"
1110 **
1111 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1112 ** is determined by the zUsage argument.
1113 */
1114 static void explainTempTable(Parse *pParse, const char *zUsage){
1115   if( pParse->explain==2 ){
1116     Vdbe *v = pParse->pVdbe;
1117     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1118     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1119   }
1120 }
1121 
1122 /*
1123 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1124 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1125 ** in sqlite3Select() to assign values to structure member variables that
1126 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1127 ** code with #ifndef directives.
1128 */
1129 # define explainSetInteger(a, b) a = b
1130 
1131 #else
1132 /* No-op versions of the explainXXX() functions and macros. */
1133 # define explainTempTable(y,z)
1134 # define explainSetInteger(y,z)
1135 #endif
1136 
1137 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1138 /*
1139 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1140 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1141 ** where the caption is of one of the two forms:
1142 **
1143 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1144 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1145 **
1146 ** where iSub1 and iSub2 are the integers passed as the corresponding
1147 ** function parameters, and op is the text representation of the parameter
1148 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1149 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1150 ** false, or the second form if it is true.
1151 */
1152 static void explainComposite(
1153   Parse *pParse,                  /* Parse context */
1154   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1155   int iSub1,                      /* Subquery id 1 */
1156   int iSub2,                      /* Subquery id 2 */
1157   int bUseTmp                     /* True if a temp table was used */
1158 ){
1159   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1160   if( pParse->explain==2 ){
1161     Vdbe *v = pParse->pVdbe;
1162     char *zMsg = sqlite3MPrintf(
1163         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1164         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1165     );
1166     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1167   }
1168 }
1169 #else
1170 /* No-op versions of the explainXXX() functions and macros. */
1171 # define explainComposite(v,w,x,y,z)
1172 #endif
1173 
1174 /*
1175 ** If the inner loop was generated using a non-null pOrderBy argument,
1176 ** then the results were placed in a sorter.  After the loop is terminated
1177 ** we need to run the sorter and output the results.  The following
1178 ** routine generates the code needed to do that.
1179 */
1180 static void generateSortTail(
1181   Parse *pParse,    /* Parsing context */
1182   Select *p,        /* The SELECT statement */
1183   SortCtx *pSort,   /* Information on the ORDER BY clause */
1184   int nColumn,      /* Number of columns of data */
1185   SelectDest *pDest /* Write the sorted results here */
1186 ){
1187   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1188   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1189   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1190   int addr;
1191   int addrOnce = 0;
1192   int iTab;
1193   ExprList *pOrderBy = pSort->pOrderBy;
1194   int eDest = pDest->eDest;
1195   int iParm = pDest->iSDParm;
1196   int regRow;
1197   int regRowid;
1198   int nKey;
1199   int iSortTab;                   /* Sorter cursor to read from */
1200   int nSortData;                  /* Trailing values to read from sorter */
1201   int i;
1202   int bSeq;                       /* True if sorter record includes seq. no. */
1203 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1204   struct ExprList_item *aOutEx = p->pEList->a;
1205 #endif
1206 
1207   if( pSort->labelBkOut ){
1208     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1209     sqlite3VdbeGoto(v, addrBreak);
1210     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1211   }
1212   iTab = pSort->iECursor;
1213   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1214     regRowid = 0;
1215     regRow = pDest->iSdst;
1216     nSortData = nColumn;
1217   }else{
1218     regRowid = sqlite3GetTempReg(pParse);
1219     regRow = sqlite3GetTempReg(pParse);
1220     nSortData = 1;
1221   }
1222   nKey = pOrderBy->nExpr - pSort->nOBSat;
1223   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1224     int regSortOut = ++pParse->nMem;
1225     iSortTab = pParse->nTab++;
1226     if( pSort->labelBkOut ){
1227       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1228     }
1229     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1230     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1231     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1232     VdbeCoverage(v);
1233     codeOffset(v, p->iOffset, addrContinue);
1234     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1235     bSeq = 0;
1236   }else{
1237     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1238     codeOffset(v, p->iOffset, addrContinue);
1239     iSortTab = iTab;
1240     bSeq = 1;
1241   }
1242   for(i=0; i<nSortData; i++){
1243     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1244     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1245   }
1246   switch( eDest ){
1247     case SRT_EphemTab: {
1248       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1249       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1250       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1251       break;
1252     }
1253 #ifndef SQLITE_OMIT_SUBQUERY
1254     case SRT_Set: {
1255       assert( nColumn==1 );
1256       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1257                         &pDest->affSdst, 1);
1258       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1259       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1260       break;
1261     }
1262     case SRT_Mem: {
1263       assert( nColumn==1 );
1264       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1265       /* The LIMIT clause will terminate the loop for us */
1266       break;
1267     }
1268 #endif
1269     default: {
1270       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1271       testcase( eDest==SRT_Output );
1272       testcase( eDest==SRT_Coroutine );
1273       if( eDest==SRT_Output ){
1274         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1275         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1276       }else{
1277         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1278       }
1279       break;
1280     }
1281   }
1282   if( regRowid ){
1283     sqlite3ReleaseTempReg(pParse, regRow);
1284     sqlite3ReleaseTempReg(pParse, regRowid);
1285   }
1286   /* The bottom of the loop
1287   */
1288   sqlite3VdbeResolveLabel(v, addrContinue);
1289   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1290     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1291   }else{
1292     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1293   }
1294   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1295   sqlite3VdbeResolveLabel(v, addrBreak);
1296 }
1297 
1298 /*
1299 ** Return a pointer to a string containing the 'declaration type' of the
1300 ** expression pExpr. The string may be treated as static by the caller.
1301 **
1302 ** Also try to estimate the size of the returned value and return that
1303 ** result in *pEstWidth.
1304 **
1305 ** The declaration type is the exact datatype definition extracted from the
1306 ** original CREATE TABLE statement if the expression is a column. The
1307 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1308 ** is considered a column can be complex in the presence of subqueries. The
1309 ** result-set expression in all of the following SELECT statements is
1310 ** considered a column by this function.
1311 **
1312 **   SELECT col FROM tbl;
1313 **   SELECT (SELECT col FROM tbl;
1314 **   SELECT (SELECT col FROM tbl);
1315 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1316 **
1317 ** The declaration type for any expression other than a column is NULL.
1318 **
1319 ** This routine has either 3 or 6 parameters depending on whether or not
1320 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1321 */
1322 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1323 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1324 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1325 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1326 #endif
1327 static const char *columnTypeImpl(
1328   NameContext *pNC,
1329   Expr *pExpr,
1330 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1331   const char **pzOrigDb,
1332   const char **pzOrigTab,
1333   const char **pzOrigCol,
1334 #endif
1335   u8 *pEstWidth
1336 ){
1337   char const *zType = 0;
1338   int j;
1339   u8 estWidth = 1;
1340 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1341   char const *zOrigDb = 0;
1342   char const *zOrigTab = 0;
1343   char const *zOrigCol = 0;
1344 #endif
1345 
1346   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1347   switch( pExpr->op ){
1348     case TK_AGG_COLUMN:
1349     case TK_COLUMN: {
1350       /* The expression is a column. Locate the table the column is being
1351       ** extracted from in NameContext.pSrcList. This table may be real
1352       ** database table or a subquery.
1353       */
1354       Table *pTab = 0;            /* Table structure column is extracted from */
1355       Select *pS = 0;             /* Select the column is extracted from */
1356       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1357       testcase( pExpr->op==TK_AGG_COLUMN );
1358       testcase( pExpr->op==TK_COLUMN );
1359       while( pNC && !pTab ){
1360         SrcList *pTabList = pNC->pSrcList;
1361         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1362         if( j<pTabList->nSrc ){
1363           pTab = pTabList->a[j].pTab;
1364           pS = pTabList->a[j].pSelect;
1365         }else{
1366           pNC = pNC->pNext;
1367         }
1368       }
1369 
1370       if( pTab==0 ){
1371         /* At one time, code such as "SELECT new.x" within a trigger would
1372         ** cause this condition to run.  Since then, we have restructured how
1373         ** trigger code is generated and so this condition is no longer
1374         ** possible. However, it can still be true for statements like
1375         ** the following:
1376         **
1377         **   CREATE TABLE t1(col INTEGER);
1378         **   SELECT (SELECT t1.col) FROM FROM t1;
1379         **
1380         ** when columnType() is called on the expression "t1.col" in the
1381         ** sub-select. In this case, set the column type to NULL, even
1382         ** though it should really be "INTEGER".
1383         **
1384         ** This is not a problem, as the column type of "t1.col" is never
1385         ** used. When columnType() is called on the expression
1386         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1387         ** branch below.  */
1388         break;
1389       }
1390 
1391       assert( pTab && pExpr->pTab==pTab );
1392       if( pS ){
1393         /* The "table" is actually a sub-select or a view in the FROM clause
1394         ** of the SELECT statement. Return the declaration type and origin
1395         ** data for the result-set column of the sub-select.
1396         */
1397         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1398           /* If iCol is less than zero, then the expression requests the
1399           ** rowid of the sub-select or view. This expression is legal (see
1400           ** test case misc2.2.2) - it always evaluates to NULL.
1401           **
1402           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1403           ** caught already by name resolution.
1404           */
1405           NameContext sNC;
1406           Expr *p = pS->pEList->a[iCol].pExpr;
1407           sNC.pSrcList = pS->pSrc;
1408           sNC.pNext = pNC;
1409           sNC.pParse = pNC->pParse;
1410           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1411         }
1412       }else if( pTab->pSchema ){
1413         /* A real table */
1414         assert( !pS );
1415         if( iCol<0 ) iCol = pTab->iPKey;
1416         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1417 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1418         if( iCol<0 ){
1419           zType = "INTEGER";
1420           zOrigCol = "rowid";
1421         }else{
1422           zType = pTab->aCol[iCol].zType;
1423           zOrigCol = pTab->aCol[iCol].zName;
1424           estWidth = pTab->aCol[iCol].szEst;
1425         }
1426         zOrigTab = pTab->zName;
1427         if( pNC->pParse ){
1428           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1429           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1430         }
1431 #else
1432         if( iCol<0 ){
1433           zType = "INTEGER";
1434         }else{
1435           zType = pTab->aCol[iCol].zType;
1436           estWidth = pTab->aCol[iCol].szEst;
1437         }
1438 #endif
1439       }
1440       break;
1441     }
1442 #ifndef SQLITE_OMIT_SUBQUERY
1443     case TK_SELECT: {
1444       /* The expression is a sub-select. Return the declaration type and
1445       ** origin info for the single column in the result set of the SELECT
1446       ** statement.
1447       */
1448       NameContext sNC;
1449       Select *pS = pExpr->x.pSelect;
1450       Expr *p = pS->pEList->a[0].pExpr;
1451       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1452       sNC.pSrcList = pS->pSrc;
1453       sNC.pNext = pNC;
1454       sNC.pParse = pNC->pParse;
1455       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1456       break;
1457     }
1458 #endif
1459   }
1460 
1461 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1462   if( pzOrigDb ){
1463     assert( pzOrigTab && pzOrigCol );
1464     *pzOrigDb = zOrigDb;
1465     *pzOrigTab = zOrigTab;
1466     *pzOrigCol = zOrigCol;
1467   }
1468 #endif
1469   if( pEstWidth ) *pEstWidth = estWidth;
1470   return zType;
1471 }
1472 
1473 /*
1474 ** Generate code that will tell the VDBE the declaration types of columns
1475 ** in the result set.
1476 */
1477 static void generateColumnTypes(
1478   Parse *pParse,      /* Parser context */
1479   SrcList *pTabList,  /* List of tables */
1480   ExprList *pEList    /* Expressions defining the result set */
1481 ){
1482 #ifndef SQLITE_OMIT_DECLTYPE
1483   Vdbe *v = pParse->pVdbe;
1484   int i;
1485   NameContext sNC;
1486   sNC.pSrcList = pTabList;
1487   sNC.pParse = pParse;
1488   for(i=0; i<pEList->nExpr; i++){
1489     Expr *p = pEList->a[i].pExpr;
1490     const char *zType;
1491 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1492     const char *zOrigDb = 0;
1493     const char *zOrigTab = 0;
1494     const char *zOrigCol = 0;
1495     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1496 
1497     /* The vdbe must make its own copy of the column-type and other
1498     ** column specific strings, in case the schema is reset before this
1499     ** virtual machine is deleted.
1500     */
1501     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1502     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1503     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1504 #else
1505     zType = columnType(&sNC, p, 0, 0, 0, 0);
1506 #endif
1507     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1508   }
1509 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1510 }
1511 
1512 /*
1513 ** Generate code that will tell the VDBE the names of columns
1514 ** in the result set.  This information is used to provide the
1515 ** azCol[] values in the callback.
1516 */
1517 static void generateColumnNames(
1518   Parse *pParse,      /* Parser context */
1519   SrcList *pTabList,  /* List of tables */
1520   ExprList *pEList    /* Expressions defining the result set */
1521 ){
1522   Vdbe *v = pParse->pVdbe;
1523   int i, j;
1524   sqlite3 *db = pParse->db;
1525   int fullNames, shortNames;
1526 
1527 #ifndef SQLITE_OMIT_EXPLAIN
1528   /* If this is an EXPLAIN, skip this step */
1529   if( pParse->explain ){
1530     return;
1531   }
1532 #endif
1533 
1534   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1535   pParse->colNamesSet = 1;
1536   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1537   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1538   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1539   for(i=0; i<pEList->nExpr; i++){
1540     Expr *p;
1541     p = pEList->a[i].pExpr;
1542     if( NEVER(p==0) ) continue;
1543     if( pEList->a[i].zName ){
1544       char *zName = pEList->a[i].zName;
1545       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1546     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1547       Table *pTab;
1548       char *zCol;
1549       int iCol = p->iColumn;
1550       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1551         if( pTabList->a[j].iCursor==p->iTable ) break;
1552       }
1553       assert( j<pTabList->nSrc );
1554       pTab = pTabList->a[j].pTab;
1555       if( iCol<0 ) iCol = pTab->iPKey;
1556       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1557       if( iCol<0 ){
1558         zCol = "rowid";
1559       }else{
1560         zCol = pTab->aCol[iCol].zName;
1561       }
1562       if( !shortNames && !fullNames ){
1563         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1564             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1565       }else if( fullNames ){
1566         char *zName = 0;
1567         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1568         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1569       }else{
1570         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1571       }
1572     }else{
1573       const char *z = pEList->a[i].zSpan;
1574       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1575       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1576     }
1577   }
1578   generateColumnTypes(pParse, pTabList, pEList);
1579 }
1580 
1581 /*
1582 ** Given an expression list (which is really the list of expressions
1583 ** that form the result set of a SELECT statement) compute appropriate
1584 ** column names for a table that would hold the expression list.
1585 **
1586 ** All column names will be unique.
1587 **
1588 ** Only the column names are computed.  Column.zType, Column.zColl,
1589 ** and other fields of Column are zeroed.
1590 **
1591 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1592 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1593 */
1594 int sqlite3ColumnsFromExprList(
1595   Parse *pParse,          /* Parsing context */
1596   ExprList *pEList,       /* Expr list from which to derive column names */
1597   i16 *pnCol,             /* Write the number of columns here */
1598   Column **paCol          /* Write the new column list here */
1599 ){
1600   sqlite3 *db = pParse->db;   /* Database connection */
1601   int i, j;                   /* Loop counters */
1602   int cnt;                    /* Index added to make the name unique */
1603   Column *aCol, *pCol;        /* For looping over result columns */
1604   int nCol;                   /* Number of columns in the result set */
1605   Expr *p;                    /* Expression for a single result column */
1606   char *zName;                /* Column name */
1607   int nName;                  /* Size of name in zName[] */
1608 
1609   if( pEList ){
1610     nCol = pEList->nExpr;
1611     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1612     testcase( aCol==0 );
1613   }else{
1614     nCol = 0;
1615     aCol = 0;
1616   }
1617   *pnCol = nCol;
1618   *paCol = aCol;
1619 
1620   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1621     /* Get an appropriate name for the column
1622     */
1623     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1624     if( (zName = pEList->a[i].zName)!=0 ){
1625       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1626       zName = sqlite3DbStrDup(db, zName);
1627     }else{
1628       Expr *pColExpr = p;  /* The expression that is the result column name */
1629       Table *pTab;         /* Table associated with this expression */
1630       while( pColExpr->op==TK_DOT ){
1631         pColExpr = pColExpr->pRight;
1632         assert( pColExpr!=0 );
1633       }
1634       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1635         /* For columns use the column name name */
1636         int iCol = pColExpr->iColumn;
1637         pTab = pColExpr->pTab;
1638         if( iCol<0 ) iCol = pTab->iPKey;
1639         zName = sqlite3MPrintf(db, "%s",
1640                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1641       }else if( pColExpr->op==TK_ID ){
1642         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1643         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1644       }else{
1645         /* Use the original text of the column expression as its name */
1646         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1647       }
1648     }
1649     if( db->mallocFailed ){
1650       sqlite3DbFree(db, zName);
1651       break;
1652     }
1653 
1654     /* Make sure the column name is unique.  If the name is not unique,
1655     ** append an integer to the name so that it becomes unique.
1656     */
1657     nName = sqlite3Strlen30(zName);
1658     for(j=cnt=0; j<i; j++){
1659       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1660         char *zNewName;
1661         int k;
1662         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1663         if( k>=0 && zName[k]==':' ) nName = k;
1664         zName[nName] = 0;
1665         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1666         sqlite3DbFree(db, zName);
1667         zName = zNewName;
1668         j = -1;
1669         if( zName==0 ) break;
1670       }
1671     }
1672     pCol->zName = zName;
1673   }
1674   if( db->mallocFailed ){
1675     for(j=0; j<i; j++){
1676       sqlite3DbFree(db, aCol[j].zName);
1677     }
1678     sqlite3DbFree(db, aCol);
1679     *paCol = 0;
1680     *pnCol = 0;
1681     return SQLITE_NOMEM;
1682   }
1683   return SQLITE_OK;
1684 }
1685 
1686 /*
1687 ** Add type and collation information to a column list based on
1688 ** a SELECT statement.
1689 **
1690 ** The column list presumably came from selectColumnNamesFromExprList().
1691 ** The column list has only names, not types or collations.  This
1692 ** routine goes through and adds the types and collations.
1693 **
1694 ** This routine requires that all identifiers in the SELECT
1695 ** statement be resolved.
1696 */
1697 static void selectAddColumnTypeAndCollation(
1698   Parse *pParse,        /* Parsing contexts */
1699   Table *pTab,          /* Add column type information to this table */
1700   Select *pSelect       /* SELECT used to determine types and collations */
1701 ){
1702   sqlite3 *db = pParse->db;
1703   NameContext sNC;
1704   Column *pCol;
1705   CollSeq *pColl;
1706   int i;
1707   Expr *p;
1708   struct ExprList_item *a;
1709   u64 szAll = 0;
1710 
1711   assert( pSelect!=0 );
1712   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1713   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1714   if( db->mallocFailed ) return;
1715   memset(&sNC, 0, sizeof(sNC));
1716   sNC.pSrcList = pSelect->pSrc;
1717   a = pSelect->pEList->a;
1718   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1719     p = a[i].pExpr;
1720     if( pCol->zType==0 ){
1721       pCol->zType = sqlite3DbStrDup(db,
1722                         columnType(&sNC, p,0,0,0, &pCol->szEst));
1723     }
1724     szAll += pCol->szEst;
1725     pCol->affinity = sqlite3ExprAffinity(p);
1726     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1727     pColl = sqlite3ExprCollSeq(pParse, p);
1728     if( pColl && pCol->zColl==0 ){
1729       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1730     }
1731   }
1732   pTab->szTabRow = sqlite3LogEst(szAll*4);
1733 }
1734 
1735 /*
1736 ** Given a SELECT statement, generate a Table structure that describes
1737 ** the result set of that SELECT.
1738 */
1739 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1740   Table *pTab;
1741   sqlite3 *db = pParse->db;
1742   int savedFlags;
1743 
1744   savedFlags = db->flags;
1745   db->flags &= ~SQLITE_FullColNames;
1746   db->flags |= SQLITE_ShortColNames;
1747   sqlite3SelectPrep(pParse, pSelect, 0);
1748   if( pParse->nErr ) return 0;
1749   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1750   db->flags = savedFlags;
1751   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1752   if( pTab==0 ){
1753     return 0;
1754   }
1755   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1756   ** is disabled */
1757   assert( db->lookaside.bEnabled==0 );
1758   pTab->nRef = 1;
1759   pTab->zName = 0;
1760   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1761   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1762   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1763   pTab->iPKey = -1;
1764   if( db->mallocFailed ){
1765     sqlite3DeleteTable(db, pTab);
1766     return 0;
1767   }
1768   return pTab;
1769 }
1770 
1771 /*
1772 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1773 ** If an error occurs, return NULL and leave a message in pParse.
1774 */
1775 Vdbe *sqlite3GetVdbe(Parse *pParse){
1776   Vdbe *v = pParse->pVdbe;
1777   if( v==0 ){
1778     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1779     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1780     if( pParse->pToplevel==0
1781      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1782     ){
1783       pParse->okConstFactor = 1;
1784     }
1785 
1786   }
1787   return v;
1788 }
1789 
1790 
1791 /*
1792 ** Compute the iLimit and iOffset fields of the SELECT based on the
1793 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1794 ** that appear in the original SQL statement after the LIMIT and OFFSET
1795 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1796 ** are the integer memory register numbers for counters used to compute
1797 ** the limit and offset.  If there is no limit and/or offset, then
1798 ** iLimit and iOffset are negative.
1799 **
1800 ** This routine changes the values of iLimit and iOffset only if
1801 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1802 ** iOffset should have been preset to appropriate default values (zero)
1803 ** prior to calling this routine.
1804 **
1805 ** The iOffset register (if it exists) is initialized to the value
1806 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1807 ** iOffset+1 is initialized to LIMIT+OFFSET.
1808 **
1809 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1810 ** redefined.  The UNION ALL operator uses this property to force
1811 ** the reuse of the same limit and offset registers across multiple
1812 ** SELECT statements.
1813 */
1814 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1815   Vdbe *v = 0;
1816   int iLimit = 0;
1817   int iOffset;
1818   int addr1, n;
1819   if( p->iLimit ) return;
1820 
1821   /*
1822   ** "LIMIT -1" always shows all rows.  There is some
1823   ** controversy about what the correct behavior should be.
1824   ** The current implementation interprets "LIMIT 0" to mean
1825   ** no rows.
1826   */
1827   sqlite3ExprCacheClear(pParse);
1828   assert( p->pOffset==0 || p->pLimit!=0 );
1829   if( p->pLimit ){
1830     p->iLimit = iLimit = ++pParse->nMem;
1831     v = sqlite3GetVdbe(pParse);
1832     assert( v!=0 );
1833     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1834       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1835       VdbeComment((v, "LIMIT counter"));
1836       if( n==0 ){
1837         sqlite3VdbeGoto(v, iBreak);
1838       }else if( n>=0 && p->nSelectRow>(u64)n ){
1839         p->nSelectRow = n;
1840       }
1841     }else{
1842       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1843       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1844       VdbeComment((v, "LIMIT counter"));
1845       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1846     }
1847     if( p->pOffset ){
1848       p->iOffset = iOffset = ++pParse->nMem;
1849       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1850       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1851       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1852       VdbeComment((v, "OFFSET counter"));
1853       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1854       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1855       sqlite3VdbeJumpHere(v, addr1);
1856       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1857       VdbeComment((v, "LIMIT+OFFSET"));
1858       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1859       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1860       sqlite3VdbeJumpHere(v, addr1);
1861     }
1862   }
1863 }
1864 
1865 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1866 /*
1867 ** Return the appropriate collating sequence for the iCol-th column of
1868 ** the result set for the compound-select statement "p".  Return NULL if
1869 ** the column has no default collating sequence.
1870 **
1871 ** The collating sequence for the compound select is taken from the
1872 ** left-most term of the select that has a collating sequence.
1873 */
1874 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1875   CollSeq *pRet;
1876   if( p->pPrior ){
1877     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1878   }else{
1879     pRet = 0;
1880   }
1881   assert( iCol>=0 );
1882   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1883   ** have been thrown during name resolution and we would not have gotten
1884   ** this far */
1885   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1886     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1887   }
1888   return pRet;
1889 }
1890 
1891 /*
1892 ** The select statement passed as the second parameter is a compound SELECT
1893 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1894 ** structure suitable for implementing the ORDER BY.
1895 **
1896 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1897 ** function is responsible for ensuring that this structure is eventually
1898 ** freed.
1899 */
1900 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1901   ExprList *pOrderBy = p->pOrderBy;
1902   int nOrderBy = p->pOrderBy->nExpr;
1903   sqlite3 *db = pParse->db;
1904   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1905   if( pRet ){
1906     int i;
1907     for(i=0; i<nOrderBy; i++){
1908       struct ExprList_item *pItem = &pOrderBy->a[i];
1909       Expr *pTerm = pItem->pExpr;
1910       CollSeq *pColl;
1911 
1912       if( pTerm->flags & EP_Collate ){
1913         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1914       }else{
1915         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1916         if( pColl==0 ) pColl = db->pDfltColl;
1917         pOrderBy->a[i].pExpr =
1918           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1919       }
1920       assert( sqlite3KeyInfoIsWriteable(pRet) );
1921       pRet->aColl[i] = pColl;
1922       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1923     }
1924   }
1925 
1926   return pRet;
1927 }
1928 
1929 #ifndef SQLITE_OMIT_CTE
1930 /*
1931 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1932 ** query of the form:
1933 **
1934 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1935 **                         \___________/             \_______________/
1936 **                           p->pPrior                      p
1937 **
1938 **
1939 ** There is exactly one reference to the recursive-table in the FROM clause
1940 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1941 **
1942 ** The setup-query runs once to generate an initial set of rows that go
1943 ** into a Queue table.  Rows are extracted from the Queue table one by
1944 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1945 ** extracted row (now in the iCurrent table) becomes the content of the
1946 ** recursive-table for a recursive-query run.  The output of the recursive-query
1947 ** is added back into the Queue table.  Then another row is extracted from Queue
1948 ** and the iteration continues until the Queue table is empty.
1949 **
1950 ** If the compound query operator is UNION then no duplicate rows are ever
1951 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1952 ** that have ever been inserted into Queue and causes duplicates to be
1953 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1954 **
1955 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1956 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1957 ** an ORDER BY, the Queue table is just a FIFO.
1958 **
1959 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1960 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1961 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1962 ** with a positive value, then the first OFFSET outputs are discarded rather
1963 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1964 ** rows have been skipped.
1965 */
1966 static void generateWithRecursiveQuery(
1967   Parse *pParse,        /* Parsing context */
1968   Select *p,            /* The recursive SELECT to be coded */
1969   SelectDest *pDest     /* What to do with query results */
1970 ){
1971   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1972   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1973   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1974   Select *pSetup = p->pPrior;   /* The setup query */
1975   int addrTop;                  /* Top of the loop */
1976   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1977   int iCurrent = 0;             /* The Current table */
1978   int regCurrent;               /* Register holding Current table */
1979   int iQueue;                   /* The Queue table */
1980   int iDistinct = 0;            /* To ensure unique results if UNION */
1981   int eDest = SRT_Fifo;         /* How to write to Queue */
1982   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1983   int i;                        /* Loop counter */
1984   int rc;                       /* Result code */
1985   ExprList *pOrderBy;           /* The ORDER BY clause */
1986   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1987   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1988 
1989   /* Obtain authorization to do a recursive query */
1990   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1991 
1992   /* Process the LIMIT and OFFSET clauses, if they exist */
1993   addrBreak = sqlite3VdbeMakeLabel(v);
1994   computeLimitRegisters(pParse, p, addrBreak);
1995   pLimit = p->pLimit;
1996   pOffset = p->pOffset;
1997   regLimit = p->iLimit;
1998   regOffset = p->iOffset;
1999   p->pLimit = p->pOffset = 0;
2000   p->iLimit = p->iOffset = 0;
2001   pOrderBy = p->pOrderBy;
2002 
2003   /* Locate the cursor number of the Current table */
2004   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2005     if( pSrc->a[i].fg.isRecursive ){
2006       iCurrent = pSrc->a[i].iCursor;
2007       break;
2008     }
2009   }
2010 
2011   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2012   ** the Distinct table must be exactly one greater than Queue in order
2013   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2014   iQueue = pParse->nTab++;
2015   if( p->op==TK_UNION ){
2016     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2017     iDistinct = pParse->nTab++;
2018   }else{
2019     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2020   }
2021   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2022 
2023   /* Allocate cursors for Current, Queue, and Distinct. */
2024   regCurrent = ++pParse->nMem;
2025   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2026   if( pOrderBy ){
2027     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2028     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2029                       (char*)pKeyInfo, P4_KEYINFO);
2030     destQueue.pOrderBy = pOrderBy;
2031   }else{
2032     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2033   }
2034   VdbeComment((v, "Queue table"));
2035   if( iDistinct ){
2036     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2037     p->selFlags |= SF_UsesEphemeral;
2038   }
2039 
2040   /* Detach the ORDER BY clause from the compound SELECT */
2041   p->pOrderBy = 0;
2042 
2043   /* Store the results of the setup-query in Queue. */
2044   pSetup->pNext = 0;
2045   rc = sqlite3Select(pParse, pSetup, &destQueue);
2046   pSetup->pNext = p;
2047   if( rc ) goto end_of_recursive_query;
2048 
2049   /* Find the next row in the Queue and output that row */
2050   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2051 
2052   /* Transfer the next row in Queue over to Current */
2053   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2054   if( pOrderBy ){
2055     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2056   }else{
2057     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2058   }
2059   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2060 
2061   /* Output the single row in Current */
2062   addrCont = sqlite3VdbeMakeLabel(v);
2063   codeOffset(v, regOffset, addrCont);
2064   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2065       0, 0, pDest, addrCont, addrBreak);
2066   if( regLimit ){
2067     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2068     VdbeCoverage(v);
2069   }
2070   sqlite3VdbeResolveLabel(v, addrCont);
2071 
2072   /* Execute the recursive SELECT taking the single row in Current as
2073   ** the value for the recursive-table. Store the results in the Queue.
2074   */
2075   if( p->selFlags & SF_Aggregate ){
2076     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2077   }else{
2078     p->pPrior = 0;
2079     sqlite3Select(pParse, p, &destQueue);
2080     assert( p->pPrior==0 );
2081     p->pPrior = pSetup;
2082   }
2083 
2084   /* Keep running the loop until the Queue is empty */
2085   sqlite3VdbeGoto(v, addrTop);
2086   sqlite3VdbeResolveLabel(v, addrBreak);
2087 
2088 end_of_recursive_query:
2089   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2090   p->pOrderBy = pOrderBy;
2091   p->pLimit = pLimit;
2092   p->pOffset = pOffset;
2093   return;
2094 }
2095 #endif /* SQLITE_OMIT_CTE */
2096 
2097 /* Forward references */
2098 static int multiSelectOrderBy(
2099   Parse *pParse,        /* Parsing context */
2100   Select *p,            /* The right-most of SELECTs to be coded */
2101   SelectDest *pDest     /* What to do with query results */
2102 );
2103 
2104 /*
2105 ** Handle the special case of a compound-select that originates from a
2106 ** VALUES clause.  By handling this as a special case, we avoid deep
2107 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2108 ** on a VALUES clause.
2109 **
2110 ** Because the Select object originates from a VALUES clause:
2111 **   (1) It has no LIMIT or OFFSET
2112 **   (2) All terms are UNION ALL
2113 **   (3) There is no ORDER BY clause
2114 */
2115 static int multiSelectValues(
2116   Parse *pParse,        /* Parsing context */
2117   Select *p,            /* The right-most of SELECTs to be coded */
2118   SelectDest *pDest     /* What to do with query results */
2119 ){
2120   Select *pPrior;
2121   int nRow = 1;
2122   int rc = 0;
2123   assert( p->selFlags & SF_MultiValue );
2124   do{
2125     assert( p->selFlags & SF_Values );
2126     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2127     assert( p->pLimit==0 );
2128     assert( p->pOffset==0 );
2129     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2130     if( p->pPrior==0 ) break;
2131     assert( p->pPrior->pNext==p );
2132     p = p->pPrior;
2133     nRow++;
2134   }while(1);
2135   while( p ){
2136     pPrior = p->pPrior;
2137     p->pPrior = 0;
2138     rc = sqlite3Select(pParse, p, pDest);
2139     p->pPrior = pPrior;
2140     if( rc ) break;
2141     p->nSelectRow = nRow;
2142     p = p->pNext;
2143   }
2144   return rc;
2145 }
2146 
2147 /*
2148 ** This routine is called to process a compound query form from
2149 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2150 ** INTERSECT
2151 **
2152 ** "p" points to the right-most of the two queries.  the query on the
2153 ** left is p->pPrior.  The left query could also be a compound query
2154 ** in which case this routine will be called recursively.
2155 **
2156 ** The results of the total query are to be written into a destination
2157 ** of type eDest with parameter iParm.
2158 **
2159 ** Example 1:  Consider a three-way compound SQL statement.
2160 **
2161 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2162 **
2163 ** This statement is parsed up as follows:
2164 **
2165 **     SELECT c FROM t3
2166 **      |
2167 **      `----->  SELECT b FROM t2
2168 **                |
2169 **                `------>  SELECT a FROM t1
2170 **
2171 ** The arrows in the diagram above represent the Select.pPrior pointer.
2172 ** So if this routine is called with p equal to the t3 query, then
2173 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2174 **
2175 ** Notice that because of the way SQLite parses compound SELECTs, the
2176 ** individual selects always group from left to right.
2177 */
2178 static int multiSelect(
2179   Parse *pParse,        /* Parsing context */
2180   Select *p,            /* The right-most of SELECTs to be coded */
2181   SelectDest *pDest     /* What to do with query results */
2182 ){
2183   int rc = SQLITE_OK;   /* Success code from a subroutine */
2184   Select *pPrior;       /* Another SELECT immediately to our left */
2185   Vdbe *v;              /* Generate code to this VDBE */
2186   SelectDest dest;      /* Alternative data destination */
2187   Select *pDelete = 0;  /* Chain of simple selects to delete */
2188   sqlite3 *db;          /* Database connection */
2189 #ifndef SQLITE_OMIT_EXPLAIN
2190   int iSub1 = 0;        /* EQP id of left-hand query */
2191   int iSub2 = 0;        /* EQP id of right-hand query */
2192 #endif
2193 
2194   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2195   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2196   */
2197   assert( p && p->pPrior );  /* Calling function guarantees this much */
2198   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2199   db = pParse->db;
2200   pPrior = p->pPrior;
2201   dest = *pDest;
2202   if( pPrior->pOrderBy ){
2203     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2204       selectOpName(p->op));
2205     rc = 1;
2206     goto multi_select_end;
2207   }
2208   if( pPrior->pLimit ){
2209     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2210       selectOpName(p->op));
2211     rc = 1;
2212     goto multi_select_end;
2213   }
2214 
2215   v = sqlite3GetVdbe(pParse);
2216   assert( v!=0 );  /* The VDBE already created by calling function */
2217 
2218   /* Create the destination temporary table if necessary
2219   */
2220   if( dest.eDest==SRT_EphemTab ){
2221     assert( p->pEList );
2222     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2223     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2224     dest.eDest = SRT_Table;
2225   }
2226 
2227   /* Special handling for a compound-select that originates as a VALUES clause.
2228   */
2229   if( p->selFlags & SF_MultiValue ){
2230     rc = multiSelectValues(pParse, p, &dest);
2231     goto multi_select_end;
2232   }
2233 
2234   /* Make sure all SELECTs in the statement have the same number of elements
2235   ** in their result sets.
2236   */
2237   assert( p->pEList && pPrior->pEList );
2238   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2239 
2240 #ifndef SQLITE_OMIT_CTE
2241   if( p->selFlags & SF_Recursive ){
2242     generateWithRecursiveQuery(pParse, p, &dest);
2243   }else
2244 #endif
2245 
2246   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2247   */
2248   if( p->pOrderBy ){
2249     return multiSelectOrderBy(pParse, p, pDest);
2250   }else
2251 
2252   /* Generate code for the left and right SELECT statements.
2253   */
2254   switch( p->op ){
2255     case TK_ALL: {
2256       int addr = 0;
2257       int nLimit;
2258       assert( !pPrior->pLimit );
2259       pPrior->iLimit = p->iLimit;
2260       pPrior->iOffset = p->iOffset;
2261       pPrior->pLimit = p->pLimit;
2262       pPrior->pOffset = p->pOffset;
2263       explainSetInteger(iSub1, pParse->iNextSelectId);
2264       rc = sqlite3Select(pParse, pPrior, &dest);
2265       p->pLimit = 0;
2266       p->pOffset = 0;
2267       if( rc ){
2268         goto multi_select_end;
2269       }
2270       p->pPrior = 0;
2271       p->iLimit = pPrior->iLimit;
2272       p->iOffset = pPrior->iOffset;
2273       if( p->iLimit ){
2274         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2275         VdbeComment((v, "Jump ahead if LIMIT reached"));
2276       }
2277       explainSetInteger(iSub2, pParse->iNextSelectId);
2278       rc = sqlite3Select(pParse, p, &dest);
2279       testcase( rc!=SQLITE_OK );
2280       pDelete = p->pPrior;
2281       p->pPrior = pPrior;
2282       p->nSelectRow += pPrior->nSelectRow;
2283       if( pPrior->pLimit
2284        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2285        && nLimit>0 && p->nSelectRow > (u64)nLimit
2286       ){
2287         p->nSelectRow = nLimit;
2288       }
2289       if( addr ){
2290         sqlite3VdbeJumpHere(v, addr);
2291       }
2292       break;
2293     }
2294     case TK_EXCEPT:
2295     case TK_UNION: {
2296       int unionTab;    /* Cursor number of the temporary table holding result */
2297       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2298       int priorOp;     /* The SRT_ operation to apply to prior selects */
2299       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2300       int addr;
2301       SelectDest uniondest;
2302 
2303       testcase( p->op==TK_EXCEPT );
2304       testcase( p->op==TK_UNION );
2305       priorOp = SRT_Union;
2306       if( dest.eDest==priorOp ){
2307         /* We can reuse a temporary table generated by a SELECT to our
2308         ** right.
2309         */
2310         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2311         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2312         unionTab = dest.iSDParm;
2313       }else{
2314         /* We will need to create our own temporary table to hold the
2315         ** intermediate results.
2316         */
2317         unionTab = pParse->nTab++;
2318         assert( p->pOrderBy==0 );
2319         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2320         assert( p->addrOpenEphm[0] == -1 );
2321         p->addrOpenEphm[0] = addr;
2322         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2323         assert( p->pEList );
2324       }
2325 
2326       /* Code the SELECT statements to our left
2327       */
2328       assert( !pPrior->pOrderBy );
2329       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2330       explainSetInteger(iSub1, pParse->iNextSelectId);
2331       rc = sqlite3Select(pParse, pPrior, &uniondest);
2332       if( rc ){
2333         goto multi_select_end;
2334       }
2335 
2336       /* Code the current SELECT statement
2337       */
2338       if( p->op==TK_EXCEPT ){
2339         op = SRT_Except;
2340       }else{
2341         assert( p->op==TK_UNION );
2342         op = SRT_Union;
2343       }
2344       p->pPrior = 0;
2345       pLimit = p->pLimit;
2346       p->pLimit = 0;
2347       pOffset = p->pOffset;
2348       p->pOffset = 0;
2349       uniondest.eDest = op;
2350       explainSetInteger(iSub2, pParse->iNextSelectId);
2351       rc = sqlite3Select(pParse, p, &uniondest);
2352       testcase( rc!=SQLITE_OK );
2353       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2354       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2355       sqlite3ExprListDelete(db, p->pOrderBy);
2356       pDelete = p->pPrior;
2357       p->pPrior = pPrior;
2358       p->pOrderBy = 0;
2359       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2360       sqlite3ExprDelete(db, p->pLimit);
2361       p->pLimit = pLimit;
2362       p->pOffset = pOffset;
2363       p->iLimit = 0;
2364       p->iOffset = 0;
2365 
2366       /* Convert the data in the temporary table into whatever form
2367       ** it is that we currently need.
2368       */
2369       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2370       if( dest.eDest!=priorOp ){
2371         int iCont, iBreak, iStart;
2372         assert( p->pEList );
2373         if( dest.eDest==SRT_Output ){
2374           Select *pFirst = p;
2375           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2376           generateColumnNames(pParse, 0, pFirst->pEList);
2377         }
2378         iBreak = sqlite3VdbeMakeLabel(v);
2379         iCont = sqlite3VdbeMakeLabel(v);
2380         computeLimitRegisters(pParse, p, iBreak);
2381         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2382         iStart = sqlite3VdbeCurrentAddr(v);
2383         selectInnerLoop(pParse, p, p->pEList, unionTab,
2384                         0, 0, &dest, iCont, iBreak);
2385         sqlite3VdbeResolveLabel(v, iCont);
2386         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2387         sqlite3VdbeResolveLabel(v, iBreak);
2388         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2389       }
2390       break;
2391     }
2392     default: assert( p->op==TK_INTERSECT ); {
2393       int tab1, tab2;
2394       int iCont, iBreak, iStart;
2395       Expr *pLimit, *pOffset;
2396       int addr;
2397       SelectDest intersectdest;
2398       int r1;
2399 
2400       /* INTERSECT is different from the others since it requires
2401       ** two temporary tables.  Hence it has its own case.  Begin
2402       ** by allocating the tables we will need.
2403       */
2404       tab1 = pParse->nTab++;
2405       tab2 = pParse->nTab++;
2406       assert( p->pOrderBy==0 );
2407 
2408       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2409       assert( p->addrOpenEphm[0] == -1 );
2410       p->addrOpenEphm[0] = addr;
2411       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2412       assert( p->pEList );
2413 
2414       /* Code the SELECTs to our left into temporary table "tab1".
2415       */
2416       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2417       explainSetInteger(iSub1, pParse->iNextSelectId);
2418       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2419       if( rc ){
2420         goto multi_select_end;
2421       }
2422 
2423       /* Code the current SELECT into temporary table "tab2"
2424       */
2425       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2426       assert( p->addrOpenEphm[1] == -1 );
2427       p->addrOpenEphm[1] = addr;
2428       p->pPrior = 0;
2429       pLimit = p->pLimit;
2430       p->pLimit = 0;
2431       pOffset = p->pOffset;
2432       p->pOffset = 0;
2433       intersectdest.iSDParm = tab2;
2434       explainSetInteger(iSub2, pParse->iNextSelectId);
2435       rc = sqlite3Select(pParse, p, &intersectdest);
2436       testcase( rc!=SQLITE_OK );
2437       pDelete = p->pPrior;
2438       p->pPrior = pPrior;
2439       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2440       sqlite3ExprDelete(db, p->pLimit);
2441       p->pLimit = pLimit;
2442       p->pOffset = pOffset;
2443 
2444       /* Generate code to take the intersection of the two temporary
2445       ** tables.
2446       */
2447       assert( p->pEList );
2448       if( dest.eDest==SRT_Output ){
2449         Select *pFirst = p;
2450         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2451         generateColumnNames(pParse, 0, pFirst->pEList);
2452       }
2453       iBreak = sqlite3VdbeMakeLabel(v);
2454       iCont = sqlite3VdbeMakeLabel(v);
2455       computeLimitRegisters(pParse, p, iBreak);
2456       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2457       r1 = sqlite3GetTempReg(pParse);
2458       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2459       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2460       sqlite3ReleaseTempReg(pParse, r1);
2461       selectInnerLoop(pParse, p, p->pEList, tab1,
2462                       0, 0, &dest, iCont, iBreak);
2463       sqlite3VdbeResolveLabel(v, iCont);
2464       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2465       sqlite3VdbeResolveLabel(v, iBreak);
2466       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2467       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2468       break;
2469     }
2470   }
2471 
2472   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2473 
2474   /* Compute collating sequences used by
2475   ** temporary tables needed to implement the compound select.
2476   ** Attach the KeyInfo structure to all temporary tables.
2477   **
2478   ** This section is run by the right-most SELECT statement only.
2479   ** SELECT statements to the left always skip this part.  The right-most
2480   ** SELECT might also skip this part if it has no ORDER BY clause and
2481   ** no temp tables are required.
2482   */
2483   if( p->selFlags & SF_UsesEphemeral ){
2484     int i;                        /* Loop counter */
2485     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2486     Select *pLoop;                /* For looping through SELECT statements */
2487     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2488     int nCol;                     /* Number of columns in result set */
2489 
2490     assert( p->pNext==0 );
2491     nCol = p->pEList->nExpr;
2492     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2493     if( !pKeyInfo ){
2494       rc = SQLITE_NOMEM;
2495       goto multi_select_end;
2496     }
2497     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2498       *apColl = multiSelectCollSeq(pParse, p, i);
2499       if( 0==*apColl ){
2500         *apColl = db->pDfltColl;
2501       }
2502     }
2503 
2504     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2505       for(i=0; i<2; i++){
2506         int addr = pLoop->addrOpenEphm[i];
2507         if( addr<0 ){
2508           /* If [0] is unused then [1] is also unused.  So we can
2509           ** always safely abort as soon as the first unused slot is found */
2510           assert( pLoop->addrOpenEphm[1]<0 );
2511           break;
2512         }
2513         sqlite3VdbeChangeP2(v, addr, nCol);
2514         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2515                             P4_KEYINFO);
2516         pLoop->addrOpenEphm[i] = -1;
2517       }
2518     }
2519     sqlite3KeyInfoUnref(pKeyInfo);
2520   }
2521 
2522 multi_select_end:
2523   pDest->iSdst = dest.iSdst;
2524   pDest->nSdst = dest.nSdst;
2525   sqlite3SelectDelete(db, pDelete);
2526   return rc;
2527 }
2528 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2529 
2530 /*
2531 ** Error message for when two or more terms of a compound select have different
2532 ** size result sets.
2533 */
2534 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2535   if( p->selFlags & SF_Values ){
2536     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2537   }else{
2538     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2539       " do not have the same number of result columns", selectOpName(p->op));
2540   }
2541 }
2542 
2543 /*
2544 ** Code an output subroutine for a coroutine implementation of a
2545 ** SELECT statment.
2546 **
2547 ** The data to be output is contained in pIn->iSdst.  There are
2548 ** pIn->nSdst columns to be output.  pDest is where the output should
2549 ** be sent.
2550 **
2551 ** regReturn is the number of the register holding the subroutine
2552 ** return address.
2553 **
2554 ** If regPrev>0 then it is the first register in a vector that
2555 ** records the previous output.  mem[regPrev] is a flag that is false
2556 ** if there has been no previous output.  If regPrev>0 then code is
2557 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2558 ** keys.
2559 **
2560 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2561 ** iBreak.
2562 */
2563 static int generateOutputSubroutine(
2564   Parse *pParse,          /* Parsing context */
2565   Select *p,              /* The SELECT statement */
2566   SelectDest *pIn,        /* Coroutine supplying data */
2567   SelectDest *pDest,      /* Where to send the data */
2568   int regReturn,          /* The return address register */
2569   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2570   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2571   int iBreak              /* Jump here if we hit the LIMIT */
2572 ){
2573   Vdbe *v = pParse->pVdbe;
2574   int iContinue;
2575   int addr;
2576 
2577   addr = sqlite3VdbeCurrentAddr(v);
2578   iContinue = sqlite3VdbeMakeLabel(v);
2579 
2580   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2581   */
2582   if( regPrev ){
2583     int j1, j2;
2584     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2585     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2586                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2587     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2588     sqlite3VdbeJumpHere(v, j1);
2589     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2590     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2591   }
2592   if( pParse->db->mallocFailed ) return 0;
2593 
2594   /* Suppress the first OFFSET entries if there is an OFFSET clause
2595   */
2596   codeOffset(v, p->iOffset, iContinue);
2597 
2598   assert( pDest->eDest!=SRT_Exists );
2599   assert( pDest->eDest!=SRT_Table );
2600   switch( pDest->eDest ){
2601     /* Store the result as data using a unique key.
2602     */
2603     case SRT_EphemTab: {
2604       int r1 = sqlite3GetTempReg(pParse);
2605       int r2 = sqlite3GetTempReg(pParse);
2606       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2607       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2608       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2609       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2610       sqlite3ReleaseTempReg(pParse, r2);
2611       sqlite3ReleaseTempReg(pParse, r1);
2612       break;
2613     }
2614 
2615 #ifndef SQLITE_OMIT_SUBQUERY
2616     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2617     ** then there should be a single item on the stack.  Write this
2618     ** item into the set table with bogus data.
2619     */
2620     case SRT_Set: {
2621       int r1;
2622       assert( pIn->nSdst==1 || pParse->nErr>0 );
2623       pDest->affSdst =
2624          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2625       r1 = sqlite3GetTempReg(pParse);
2626       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2627       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2628       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2629       sqlite3ReleaseTempReg(pParse, r1);
2630       break;
2631     }
2632 
2633     /* If this is a scalar select that is part of an expression, then
2634     ** store the results in the appropriate memory cell and break out
2635     ** of the scan loop.
2636     */
2637     case SRT_Mem: {
2638       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2639       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2640       /* The LIMIT clause will jump out of the loop for us */
2641       break;
2642     }
2643 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2644 
2645     /* The results are stored in a sequence of registers
2646     ** starting at pDest->iSdst.  Then the co-routine yields.
2647     */
2648     case SRT_Coroutine: {
2649       if( pDest->iSdst==0 ){
2650         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2651         pDest->nSdst = pIn->nSdst;
2652       }
2653       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2654       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2655       break;
2656     }
2657 
2658     /* If none of the above, then the result destination must be
2659     ** SRT_Output.  This routine is never called with any other
2660     ** destination other than the ones handled above or SRT_Output.
2661     **
2662     ** For SRT_Output, results are stored in a sequence of registers.
2663     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2664     ** return the next row of result.
2665     */
2666     default: {
2667       assert( pDest->eDest==SRT_Output );
2668       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2669       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2670       break;
2671     }
2672   }
2673 
2674   /* Jump to the end of the loop if the LIMIT is reached.
2675   */
2676   if( p->iLimit ){
2677     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2678   }
2679 
2680   /* Generate the subroutine return
2681   */
2682   sqlite3VdbeResolveLabel(v, iContinue);
2683   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2684 
2685   return addr;
2686 }
2687 
2688 /*
2689 ** Alternative compound select code generator for cases when there
2690 ** is an ORDER BY clause.
2691 **
2692 ** We assume a query of the following form:
2693 **
2694 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2695 **
2696 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2697 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2698 ** co-routines.  Then run the co-routines in parallel and merge the results
2699 ** into the output.  In addition to the two coroutines (called selectA and
2700 ** selectB) there are 7 subroutines:
2701 **
2702 **    outA:    Move the output of the selectA coroutine into the output
2703 **             of the compound query.
2704 **
2705 **    outB:    Move the output of the selectB coroutine into the output
2706 **             of the compound query.  (Only generated for UNION and
2707 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2708 **             appears only in B.)
2709 **
2710 **    AltB:    Called when there is data from both coroutines and A<B.
2711 **
2712 **    AeqB:    Called when there is data from both coroutines and A==B.
2713 **
2714 **    AgtB:    Called when there is data from both coroutines and A>B.
2715 **
2716 **    EofA:    Called when data is exhausted from selectA.
2717 **
2718 **    EofB:    Called when data is exhausted from selectB.
2719 **
2720 ** The implementation of the latter five subroutines depend on which
2721 ** <operator> is used:
2722 **
2723 **
2724 **             UNION ALL         UNION            EXCEPT          INTERSECT
2725 **          -------------  -----------------  --------------  -----------------
2726 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2727 **
2728 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2729 **
2730 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2731 **
2732 **   EofA:   outB, nextB      outB, nextB          halt             halt
2733 **
2734 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2735 **
2736 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2737 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2738 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2739 ** following nextX causes a jump to the end of the select processing.
2740 **
2741 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2742 ** within the output subroutine.  The regPrev register set holds the previously
2743 ** output value.  A comparison is made against this value and the output
2744 ** is skipped if the next results would be the same as the previous.
2745 **
2746 ** The implementation plan is to implement the two coroutines and seven
2747 ** subroutines first, then put the control logic at the bottom.  Like this:
2748 **
2749 **          goto Init
2750 **     coA: coroutine for left query (A)
2751 **     coB: coroutine for right query (B)
2752 **    outA: output one row of A
2753 **    outB: output one row of B (UNION and UNION ALL only)
2754 **    EofA: ...
2755 **    EofB: ...
2756 **    AltB: ...
2757 **    AeqB: ...
2758 **    AgtB: ...
2759 **    Init: initialize coroutine registers
2760 **          yield coA
2761 **          if eof(A) goto EofA
2762 **          yield coB
2763 **          if eof(B) goto EofB
2764 **    Cmpr: Compare A, B
2765 **          Jump AltB, AeqB, AgtB
2766 **     End: ...
2767 **
2768 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2769 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2770 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2771 ** and AgtB jump to either L2 or to one of EofA or EofB.
2772 */
2773 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2774 static int multiSelectOrderBy(
2775   Parse *pParse,        /* Parsing context */
2776   Select *p,            /* The right-most of SELECTs to be coded */
2777   SelectDest *pDest     /* What to do with query results */
2778 ){
2779   int i, j;             /* Loop counters */
2780   Select *pPrior;       /* Another SELECT immediately to our left */
2781   Vdbe *v;              /* Generate code to this VDBE */
2782   SelectDest destA;     /* Destination for coroutine A */
2783   SelectDest destB;     /* Destination for coroutine B */
2784   int regAddrA;         /* Address register for select-A coroutine */
2785   int regAddrB;         /* Address register for select-B coroutine */
2786   int addrSelectA;      /* Address of the select-A coroutine */
2787   int addrSelectB;      /* Address of the select-B coroutine */
2788   int regOutA;          /* Address register for the output-A subroutine */
2789   int regOutB;          /* Address register for the output-B subroutine */
2790   int addrOutA;         /* Address of the output-A subroutine */
2791   int addrOutB = 0;     /* Address of the output-B subroutine */
2792   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2793   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2794   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2795   int addrAltB;         /* Address of the A<B subroutine */
2796   int addrAeqB;         /* Address of the A==B subroutine */
2797   int addrAgtB;         /* Address of the A>B subroutine */
2798   int regLimitA;        /* Limit register for select-A */
2799   int regLimitB;        /* Limit register for select-A */
2800   int regPrev;          /* A range of registers to hold previous output */
2801   int savedLimit;       /* Saved value of p->iLimit */
2802   int savedOffset;      /* Saved value of p->iOffset */
2803   int labelCmpr;        /* Label for the start of the merge algorithm */
2804   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2805   int j1;               /* Jump instructions that get retargetted */
2806   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2807   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2808   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2809   sqlite3 *db;          /* Database connection */
2810   ExprList *pOrderBy;   /* The ORDER BY clause */
2811   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2812   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2813 #ifndef SQLITE_OMIT_EXPLAIN
2814   int iSub1;            /* EQP id of left-hand query */
2815   int iSub2;            /* EQP id of right-hand query */
2816 #endif
2817 
2818   assert( p->pOrderBy!=0 );
2819   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2820   db = pParse->db;
2821   v = pParse->pVdbe;
2822   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2823   labelEnd = sqlite3VdbeMakeLabel(v);
2824   labelCmpr = sqlite3VdbeMakeLabel(v);
2825 
2826 
2827   /* Patch up the ORDER BY clause
2828   */
2829   op = p->op;
2830   pPrior = p->pPrior;
2831   assert( pPrior->pOrderBy==0 );
2832   pOrderBy = p->pOrderBy;
2833   assert( pOrderBy );
2834   nOrderBy = pOrderBy->nExpr;
2835 
2836   /* For operators other than UNION ALL we have to make sure that
2837   ** the ORDER BY clause covers every term of the result set.  Add
2838   ** terms to the ORDER BY clause as necessary.
2839   */
2840   if( op!=TK_ALL ){
2841     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2842       struct ExprList_item *pItem;
2843       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2844         assert( pItem->u.x.iOrderByCol>0 );
2845         if( pItem->u.x.iOrderByCol==i ) break;
2846       }
2847       if( j==nOrderBy ){
2848         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2849         if( pNew==0 ) return SQLITE_NOMEM;
2850         pNew->flags |= EP_IntValue;
2851         pNew->u.iValue = i;
2852         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2853         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2854       }
2855     }
2856   }
2857 
2858   /* Compute the comparison permutation and keyinfo that is used with
2859   ** the permutation used to determine if the next
2860   ** row of results comes from selectA or selectB.  Also add explicit
2861   ** collations to the ORDER BY clause terms so that when the subqueries
2862   ** to the right and the left are evaluated, they use the correct
2863   ** collation.
2864   */
2865   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2866   if( aPermute ){
2867     struct ExprList_item *pItem;
2868     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2869       assert( pItem->u.x.iOrderByCol>0 );
2870       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2871       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2872     }
2873     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2874   }else{
2875     pKeyMerge = 0;
2876   }
2877 
2878   /* Reattach the ORDER BY clause to the query.
2879   */
2880   p->pOrderBy = pOrderBy;
2881   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2882 
2883   /* Allocate a range of temporary registers and the KeyInfo needed
2884   ** for the logic that removes duplicate result rows when the
2885   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2886   */
2887   if( op==TK_ALL ){
2888     regPrev = 0;
2889   }else{
2890     int nExpr = p->pEList->nExpr;
2891     assert( nOrderBy>=nExpr || db->mallocFailed );
2892     regPrev = pParse->nMem+1;
2893     pParse->nMem += nExpr+1;
2894     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2895     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2896     if( pKeyDup ){
2897       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2898       for(i=0; i<nExpr; i++){
2899         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2900         pKeyDup->aSortOrder[i] = 0;
2901       }
2902     }
2903   }
2904 
2905   /* Separate the left and the right query from one another
2906   */
2907   p->pPrior = 0;
2908   pPrior->pNext = 0;
2909   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2910   if( pPrior->pPrior==0 ){
2911     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2912   }
2913 
2914   /* Compute the limit registers */
2915   computeLimitRegisters(pParse, p, labelEnd);
2916   if( p->iLimit && op==TK_ALL ){
2917     regLimitA = ++pParse->nMem;
2918     regLimitB = ++pParse->nMem;
2919     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2920                                   regLimitA);
2921     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2922   }else{
2923     regLimitA = regLimitB = 0;
2924   }
2925   sqlite3ExprDelete(db, p->pLimit);
2926   p->pLimit = 0;
2927   sqlite3ExprDelete(db, p->pOffset);
2928   p->pOffset = 0;
2929 
2930   regAddrA = ++pParse->nMem;
2931   regAddrB = ++pParse->nMem;
2932   regOutA = ++pParse->nMem;
2933   regOutB = ++pParse->nMem;
2934   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2935   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2936 
2937   /* Generate a coroutine to evaluate the SELECT statement to the
2938   ** left of the compound operator - the "A" select.
2939   */
2940   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2941   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2942   VdbeComment((v, "left SELECT"));
2943   pPrior->iLimit = regLimitA;
2944   explainSetInteger(iSub1, pParse->iNextSelectId);
2945   sqlite3Select(pParse, pPrior, &destA);
2946   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2947   sqlite3VdbeJumpHere(v, j1);
2948 
2949   /* Generate a coroutine to evaluate the SELECT statement on
2950   ** the right - the "B" select
2951   */
2952   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2953   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2954   VdbeComment((v, "right SELECT"));
2955   savedLimit = p->iLimit;
2956   savedOffset = p->iOffset;
2957   p->iLimit = regLimitB;
2958   p->iOffset = 0;
2959   explainSetInteger(iSub2, pParse->iNextSelectId);
2960   sqlite3Select(pParse, p, &destB);
2961   p->iLimit = savedLimit;
2962   p->iOffset = savedOffset;
2963   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2964 
2965   /* Generate a subroutine that outputs the current row of the A
2966   ** select as the next output row of the compound select.
2967   */
2968   VdbeNoopComment((v, "Output routine for A"));
2969   addrOutA = generateOutputSubroutine(pParse,
2970                  p, &destA, pDest, regOutA,
2971                  regPrev, pKeyDup, labelEnd);
2972 
2973   /* Generate a subroutine that outputs the current row of the B
2974   ** select as the next output row of the compound select.
2975   */
2976   if( op==TK_ALL || op==TK_UNION ){
2977     VdbeNoopComment((v, "Output routine for B"));
2978     addrOutB = generateOutputSubroutine(pParse,
2979                  p, &destB, pDest, regOutB,
2980                  regPrev, pKeyDup, labelEnd);
2981   }
2982   sqlite3KeyInfoUnref(pKeyDup);
2983 
2984   /* Generate a subroutine to run when the results from select A
2985   ** are exhausted and only data in select B remains.
2986   */
2987   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2988     addrEofA_noB = addrEofA = labelEnd;
2989   }else{
2990     VdbeNoopComment((v, "eof-A subroutine"));
2991     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2992     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2993                                      VdbeCoverage(v);
2994     sqlite3VdbeGoto(v, addrEofA);
2995     p->nSelectRow += pPrior->nSelectRow;
2996   }
2997 
2998   /* Generate a subroutine to run when the results from select B
2999   ** are exhausted and only data in select A remains.
3000   */
3001   if( op==TK_INTERSECT ){
3002     addrEofB = addrEofA;
3003     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3004   }else{
3005     VdbeNoopComment((v, "eof-B subroutine"));
3006     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3007     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3008     sqlite3VdbeGoto(v, addrEofB);
3009   }
3010 
3011   /* Generate code to handle the case of A<B
3012   */
3013   VdbeNoopComment((v, "A-lt-B subroutine"));
3014   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3015   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3016   sqlite3VdbeGoto(v, labelCmpr);
3017 
3018   /* Generate code to handle the case of A==B
3019   */
3020   if( op==TK_ALL ){
3021     addrAeqB = addrAltB;
3022   }else if( op==TK_INTERSECT ){
3023     addrAeqB = addrAltB;
3024     addrAltB++;
3025   }else{
3026     VdbeNoopComment((v, "A-eq-B subroutine"));
3027     addrAeqB =
3028     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3029     sqlite3VdbeGoto(v, labelCmpr);
3030   }
3031 
3032   /* Generate code to handle the case of A>B
3033   */
3034   VdbeNoopComment((v, "A-gt-B subroutine"));
3035   addrAgtB = sqlite3VdbeCurrentAddr(v);
3036   if( op==TK_ALL || op==TK_UNION ){
3037     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3038   }
3039   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3040   sqlite3VdbeGoto(v, labelCmpr);
3041 
3042   /* This code runs once to initialize everything.
3043   */
3044   sqlite3VdbeJumpHere(v, j1);
3045   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3046   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3047 
3048   /* Implement the main merge loop
3049   */
3050   sqlite3VdbeResolveLabel(v, labelCmpr);
3051   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3052   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3053                          (char*)pKeyMerge, P4_KEYINFO);
3054   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3055   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3056 
3057   /* Jump to the this point in order to terminate the query.
3058   */
3059   sqlite3VdbeResolveLabel(v, labelEnd);
3060 
3061   /* Set the number of output columns
3062   */
3063   if( pDest->eDest==SRT_Output ){
3064     Select *pFirst = pPrior;
3065     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3066     generateColumnNames(pParse, 0, pFirst->pEList);
3067   }
3068 
3069   /* Reassembly the compound query so that it will be freed correctly
3070   ** by the calling function */
3071   if( p->pPrior ){
3072     sqlite3SelectDelete(db, p->pPrior);
3073   }
3074   p->pPrior = pPrior;
3075   pPrior->pNext = p;
3076 
3077   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3078   **** subqueries ****/
3079   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3080   return pParse->nErr!=0;
3081 }
3082 #endif
3083 
3084 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3085 /* Forward Declarations */
3086 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3087 static void substSelect(sqlite3*, Select *, int, ExprList *);
3088 
3089 /*
3090 ** Scan through the expression pExpr.  Replace every reference to
3091 ** a column in table number iTable with a copy of the iColumn-th
3092 ** entry in pEList.  (But leave references to the ROWID column
3093 ** unchanged.)
3094 **
3095 ** This routine is part of the flattening procedure.  A subquery
3096 ** whose result set is defined by pEList appears as entry in the
3097 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3098 ** FORM clause entry is iTable.  This routine make the necessary
3099 ** changes to pExpr so that it refers directly to the source table
3100 ** of the subquery rather the result set of the subquery.
3101 */
3102 static Expr *substExpr(
3103   sqlite3 *db,        /* Report malloc errors to this connection */
3104   Expr *pExpr,        /* Expr in which substitution occurs */
3105   int iTable,         /* Table to be substituted */
3106   ExprList *pEList    /* Substitute expressions */
3107 ){
3108   if( pExpr==0 ) return 0;
3109   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3110     if( pExpr->iColumn<0 ){
3111       pExpr->op = TK_NULL;
3112     }else{
3113       Expr *pNew;
3114       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3115       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3116       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3117       sqlite3ExprDelete(db, pExpr);
3118       pExpr = pNew;
3119     }
3120   }else{
3121     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3122     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3123     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3124       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3125     }else{
3126       substExprList(db, pExpr->x.pList, iTable, pEList);
3127     }
3128   }
3129   return pExpr;
3130 }
3131 static void substExprList(
3132   sqlite3 *db,         /* Report malloc errors here */
3133   ExprList *pList,     /* List to scan and in which to make substitutes */
3134   int iTable,          /* Table to be substituted */
3135   ExprList *pEList     /* Substitute values */
3136 ){
3137   int i;
3138   if( pList==0 ) return;
3139   for(i=0; i<pList->nExpr; i++){
3140     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3141   }
3142 }
3143 static void substSelect(
3144   sqlite3 *db,         /* Report malloc errors here */
3145   Select *p,           /* SELECT statement in which to make substitutions */
3146   int iTable,          /* Table to be replaced */
3147   ExprList *pEList     /* Substitute values */
3148 ){
3149   SrcList *pSrc;
3150   struct SrcList_item *pItem;
3151   int i;
3152   if( !p ) return;
3153   substExprList(db, p->pEList, iTable, pEList);
3154   substExprList(db, p->pGroupBy, iTable, pEList);
3155   substExprList(db, p->pOrderBy, iTable, pEList);
3156   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3157   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3158   substSelect(db, p->pPrior, iTable, pEList);
3159   pSrc = p->pSrc;
3160   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3161   if( ALWAYS(pSrc) ){
3162     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3163       substSelect(db, pItem->pSelect, iTable, pEList);
3164     }
3165   }
3166 }
3167 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3168 
3169 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3170 /*
3171 ** This routine attempts to flatten subqueries as a performance optimization.
3172 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3173 **
3174 ** To understand the concept of flattening, consider the following
3175 ** query:
3176 **
3177 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3178 **
3179 ** The default way of implementing this query is to execute the
3180 ** subquery first and store the results in a temporary table, then
3181 ** run the outer query on that temporary table.  This requires two
3182 ** passes over the data.  Furthermore, because the temporary table
3183 ** has no indices, the WHERE clause on the outer query cannot be
3184 ** optimized.
3185 **
3186 ** This routine attempts to rewrite queries such as the above into
3187 ** a single flat select, like this:
3188 **
3189 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3190 **
3191 ** The code generated for this simplification gives the same result
3192 ** but only has to scan the data once.  And because indices might
3193 ** exist on the table t1, a complete scan of the data might be
3194 ** avoided.
3195 **
3196 ** Flattening is only attempted if all of the following are true:
3197 **
3198 **   (1)  The subquery and the outer query do not both use aggregates.
3199 **
3200 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3201 **        and (2b) the outer query does not use subqueries other than the one
3202 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3203 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3204 **
3205 **   (3)  The subquery is not the right operand of a left outer join
3206 **        (Originally ticket #306.  Strengthened by ticket #3300)
3207 **
3208 **   (4)  The subquery is not DISTINCT.
3209 **
3210 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3211 **        sub-queries that were excluded from this optimization. Restriction
3212 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3213 **
3214 **   (6)  The subquery does not use aggregates or the outer query is not
3215 **        DISTINCT.
3216 **
3217 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3218 **        A FROM clause, consider adding a FROM close with the special
3219 **        table sqlite_once that consists of a single row containing a
3220 **        single NULL.
3221 **
3222 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3223 **
3224 **   (9)  The subquery does not use LIMIT or the outer query does not use
3225 **        aggregates.
3226 **
3227 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3228 **        accidently carried the comment forward until 2014-09-15.  Original
3229 **        text: "The subquery does not use aggregates or the outer query
3230 **        does not use LIMIT."
3231 **
3232 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3233 **
3234 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3235 **        a separate restriction deriving from ticket #350.
3236 **
3237 **  (13)  The subquery and outer query do not both use LIMIT.
3238 **
3239 **  (14)  The subquery does not use OFFSET.
3240 **
3241 **  (15)  The outer query is not part of a compound select or the
3242 **        subquery does not have a LIMIT clause.
3243 **        (See ticket #2339 and ticket [02a8e81d44]).
3244 **
3245 **  (16)  The outer query is not an aggregate or the subquery does
3246 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3247 **        until we introduced the group_concat() function.
3248 **
3249 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3250 **        compound clause made up entirely of non-aggregate queries, and
3251 **        the parent query:
3252 **
3253 **          * is not itself part of a compound select,
3254 **          * is not an aggregate or DISTINCT query, and
3255 **          * is not a join
3256 **
3257 **        The parent and sub-query may contain WHERE clauses. Subject to
3258 **        rules (11), (13) and (14), they may also contain ORDER BY,
3259 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3260 **        operator other than UNION ALL because all the other compound
3261 **        operators have an implied DISTINCT which is disallowed by
3262 **        restriction (4).
3263 **
3264 **        Also, each component of the sub-query must return the same number
3265 **        of result columns. This is actually a requirement for any compound
3266 **        SELECT statement, but all the code here does is make sure that no
3267 **        such (illegal) sub-query is flattened. The caller will detect the
3268 **        syntax error and return a detailed message.
3269 **
3270 **  (18)  If the sub-query is a compound select, then all terms of the
3271 **        ORDER by clause of the parent must be simple references to
3272 **        columns of the sub-query.
3273 **
3274 **  (19)  The subquery does not use LIMIT or the outer query does not
3275 **        have a WHERE clause.
3276 **
3277 **  (20)  If the sub-query is a compound select, then it must not use
3278 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3279 **        somewhat by saying that the terms of the ORDER BY clause must
3280 **        appear as unmodified result columns in the outer query.  But we
3281 **        have other optimizations in mind to deal with that case.
3282 **
3283 **  (21)  The subquery does not use LIMIT or the outer query is not
3284 **        DISTINCT.  (See ticket [752e1646fc]).
3285 **
3286 **  (22)  The subquery is not a recursive CTE.
3287 **
3288 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3289 **        compound query. This restriction is because transforming the
3290 **        parent to a compound query confuses the code that handles
3291 **        recursive queries in multiSelect().
3292 **
3293 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3294 **        or max() functions.  (Without this restriction, a query like:
3295 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3296 **        return the value X for which Y was maximal.)
3297 **
3298 **
3299 ** In this routine, the "p" parameter is a pointer to the outer query.
3300 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3301 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3302 **
3303 ** If flattening is not attempted, this routine is a no-op and returns 0.
3304 ** If flattening is attempted this routine returns 1.
3305 **
3306 ** All of the expression analysis must occur on both the outer query and
3307 ** the subquery before this routine runs.
3308 */
3309 static int flattenSubquery(
3310   Parse *pParse,       /* Parsing context */
3311   Select *p,           /* The parent or outer SELECT statement */
3312   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3313   int isAgg,           /* True if outer SELECT uses aggregate functions */
3314   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3315 ){
3316   const char *zSavedAuthContext = pParse->zAuthContext;
3317   Select *pParent;
3318   Select *pSub;       /* The inner query or "subquery" */
3319   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3320   SrcList *pSrc;      /* The FROM clause of the outer query */
3321   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3322   ExprList *pList;    /* The result set of the outer query */
3323   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3324   int i;              /* Loop counter */
3325   Expr *pWhere;                    /* The WHERE clause */
3326   struct SrcList_item *pSubitem;   /* The subquery */
3327   sqlite3 *db = pParse->db;
3328 
3329   /* Check to see if flattening is permitted.  Return 0 if not.
3330   */
3331   assert( p!=0 );
3332   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3333   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3334   pSrc = p->pSrc;
3335   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3336   pSubitem = &pSrc->a[iFrom];
3337   iParent = pSubitem->iCursor;
3338   pSub = pSubitem->pSelect;
3339   assert( pSub!=0 );
3340   if( subqueryIsAgg ){
3341     if( isAgg ) return 0;                                /* Restriction (1)   */
3342     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3343     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3344      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3345      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3346     ){
3347       return 0;                                          /* Restriction (2b)  */
3348     }
3349   }
3350 
3351   pSubSrc = pSub->pSrc;
3352   assert( pSubSrc );
3353   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3354   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3355   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3356   ** became arbitrary expressions, we were forced to add restrictions (13)
3357   ** and (14). */
3358   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3359   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3360   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3361     return 0;                                            /* Restriction (15) */
3362   }
3363   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3364   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3365   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3366      return 0;         /* Restrictions (8)(9) */
3367   }
3368   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3369      return 0;         /* Restriction (6)  */
3370   }
3371   if( p->pOrderBy && pSub->pOrderBy ){
3372      return 0;                                           /* Restriction (11) */
3373   }
3374   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3375   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3376   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3377      return 0;         /* Restriction (21) */
3378   }
3379   testcase( pSub->selFlags & SF_Recursive );
3380   testcase( pSub->selFlags & SF_MinMaxAgg );
3381   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3382     return 0; /* Restrictions (22) and (24) */
3383   }
3384   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3385     return 0; /* Restriction (23) */
3386   }
3387 
3388   /* OBSOLETE COMMENT 1:
3389   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3390   ** not used as the right operand of an outer join.  Examples of why this
3391   ** is not allowed:
3392   **
3393   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3394   **
3395   ** If we flatten the above, we would get
3396   **
3397   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3398   **
3399   ** which is not at all the same thing.
3400   **
3401   ** OBSOLETE COMMENT 2:
3402   ** Restriction 12:  If the subquery is the right operand of a left outer
3403   ** join, make sure the subquery has no WHERE clause.
3404   ** An examples of why this is not allowed:
3405   **
3406   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3407   **
3408   ** If we flatten the above, we would get
3409   **
3410   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3411   **
3412   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3413   ** effectively converts the OUTER JOIN into an INNER JOIN.
3414   **
3415   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3416   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3417   ** is fraught with danger.  Best to avoid the whole thing.  If the
3418   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3419   */
3420   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3421     return 0;
3422   }
3423 
3424   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3425   ** use only the UNION ALL operator. And none of the simple select queries
3426   ** that make up the compound SELECT are allowed to be aggregate or distinct
3427   ** queries.
3428   */
3429   if( pSub->pPrior ){
3430     if( pSub->pOrderBy ){
3431       return 0;  /* Restriction 20 */
3432     }
3433     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3434       return 0;
3435     }
3436     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3437       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3438       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3439       assert( pSub->pSrc!=0 );
3440       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3441       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3442        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3443        || pSub1->pSrc->nSrc<1
3444       ){
3445         return 0;
3446       }
3447       testcase( pSub1->pSrc->nSrc>1 );
3448     }
3449 
3450     /* Restriction 18. */
3451     if( p->pOrderBy ){
3452       int ii;
3453       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3454         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3455       }
3456     }
3457   }
3458 
3459   /***** If we reach this point, flattening is permitted. *****/
3460   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3461                    pSub->zSelName, pSub, iFrom));
3462 
3463   /* Authorize the subquery */
3464   pParse->zAuthContext = pSubitem->zName;
3465   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3466   testcase( i==SQLITE_DENY );
3467   pParse->zAuthContext = zSavedAuthContext;
3468 
3469   /* If the sub-query is a compound SELECT statement, then (by restrictions
3470   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3471   ** be of the form:
3472   **
3473   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3474   **
3475   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3476   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3477   ** OFFSET clauses and joins them to the left-hand-side of the original
3478   ** using UNION ALL operators. In this case N is the number of simple
3479   ** select statements in the compound sub-query.
3480   **
3481   ** Example:
3482   **
3483   **     SELECT a+1 FROM (
3484   **        SELECT x FROM tab
3485   **        UNION ALL
3486   **        SELECT y FROM tab
3487   **        UNION ALL
3488   **        SELECT abs(z*2) FROM tab2
3489   **     ) WHERE a!=5 ORDER BY 1
3490   **
3491   ** Transformed into:
3492   **
3493   **     SELECT x+1 FROM tab WHERE x+1!=5
3494   **     UNION ALL
3495   **     SELECT y+1 FROM tab WHERE y+1!=5
3496   **     UNION ALL
3497   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3498   **     ORDER BY 1
3499   **
3500   ** We call this the "compound-subquery flattening".
3501   */
3502   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3503     Select *pNew;
3504     ExprList *pOrderBy = p->pOrderBy;
3505     Expr *pLimit = p->pLimit;
3506     Expr *pOffset = p->pOffset;
3507     Select *pPrior = p->pPrior;
3508     p->pOrderBy = 0;
3509     p->pSrc = 0;
3510     p->pPrior = 0;
3511     p->pLimit = 0;
3512     p->pOffset = 0;
3513     pNew = sqlite3SelectDup(db, p, 0);
3514     sqlite3SelectSetName(pNew, pSub->zSelName);
3515     p->pOffset = pOffset;
3516     p->pLimit = pLimit;
3517     p->pOrderBy = pOrderBy;
3518     p->pSrc = pSrc;
3519     p->op = TK_ALL;
3520     if( pNew==0 ){
3521       p->pPrior = pPrior;
3522     }else{
3523       pNew->pPrior = pPrior;
3524       if( pPrior ) pPrior->pNext = pNew;
3525       pNew->pNext = p;
3526       p->pPrior = pNew;
3527       SELECTTRACE(2,pParse,p,
3528          ("compound-subquery flattener creates %s.%p as peer\n",
3529          pNew->zSelName, pNew));
3530     }
3531     if( db->mallocFailed ) return 1;
3532   }
3533 
3534   /* Begin flattening the iFrom-th entry of the FROM clause
3535   ** in the outer query.
3536   */
3537   pSub = pSub1 = pSubitem->pSelect;
3538 
3539   /* Delete the transient table structure associated with the
3540   ** subquery
3541   */
3542   sqlite3DbFree(db, pSubitem->zDatabase);
3543   sqlite3DbFree(db, pSubitem->zName);
3544   sqlite3DbFree(db, pSubitem->zAlias);
3545   pSubitem->zDatabase = 0;
3546   pSubitem->zName = 0;
3547   pSubitem->zAlias = 0;
3548   pSubitem->pSelect = 0;
3549 
3550   /* Defer deleting the Table object associated with the
3551   ** subquery until code generation is
3552   ** complete, since there may still exist Expr.pTab entries that
3553   ** refer to the subquery even after flattening.  Ticket #3346.
3554   **
3555   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3556   */
3557   if( ALWAYS(pSubitem->pTab!=0) ){
3558     Table *pTabToDel = pSubitem->pTab;
3559     if( pTabToDel->nRef==1 ){
3560       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3561       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3562       pToplevel->pZombieTab = pTabToDel;
3563     }else{
3564       pTabToDel->nRef--;
3565     }
3566     pSubitem->pTab = 0;
3567   }
3568 
3569   /* The following loop runs once for each term in a compound-subquery
3570   ** flattening (as described above).  If we are doing a different kind
3571   ** of flattening - a flattening other than a compound-subquery flattening -
3572   ** then this loop only runs once.
3573   **
3574   ** This loop moves all of the FROM elements of the subquery into the
3575   ** the FROM clause of the outer query.  Before doing this, remember
3576   ** the cursor number for the original outer query FROM element in
3577   ** iParent.  The iParent cursor will never be used.  Subsequent code
3578   ** will scan expressions looking for iParent references and replace
3579   ** those references with expressions that resolve to the subquery FROM
3580   ** elements we are now copying in.
3581   */
3582   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3583     int nSubSrc;
3584     u8 jointype = 0;
3585     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3586     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3587     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3588 
3589     if( pSrc ){
3590       assert( pParent==p );  /* First time through the loop */
3591       jointype = pSubitem->fg.jointype;
3592     }else{
3593       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3594       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3595       if( pSrc==0 ){
3596         assert( db->mallocFailed );
3597         break;
3598       }
3599     }
3600 
3601     /* The subquery uses a single slot of the FROM clause of the outer
3602     ** query.  If the subquery has more than one element in its FROM clause,
3603     ** then expand the outer query to make space for it to hold all elements
3604     ** of the subquery.
3605     **
3606     ** Example:
3607     **
3608     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3609     **
3610     ** The outer query has 3 slots in its FROM clause.  One slot of the
3611     ** outer query (the middle slot) is used by the subquery.  The next
3612     ** block of code will expand the out query to 4 slots.  The middle
3613     ** slot is expanded to two slots in order to make space for the
3614     ** two elements in the FROM clause of the subquery.
3615     */
3616     if( nSubSrc>1 ){
3617       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3618       if( db->mallocFailed ){
3619         break;
3620       }
3621     }
3622 
3623     /* Transfer the FROM clause terms from the subquery into the
3624     ** outer query.
3625     */
3626     for(i=0; i<nSubSrc; i++){
3627       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3628       pSrc->a[i+iFrom] = pSubSrc->a[i];
3629       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3630     }
3631     pSrc->a[iFrom].fg.jointype = jointype;
3632 
3633     /* Now begin substituting subquery result set expressions for
3634     ** references to the iParent in the outer query.
3635     **
3636     ** Example:
3637     **
3638     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3639     **   \                     \_____________ subquery __________/          /
3640     **    \_____________________ outer query ______________________________/
3641     **
3642     ** We look at every expression in the outer query and every place we see
3643     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3644     */
3645     pList = pParent->pEList;
3646     for(i=0; i<pList->nExpr; i++){
3647       if( pList->a[i].zName==0 ){
3648         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3649         sqlite3Dequote(zName);
3650         pList->a[i].zName = zName;
3651       }
3652     }
3653     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3654     if( isAgg ){
3655       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3656       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3657     }
3658     if( pSub->pOrderBy ){
3659       /* At this point, any non-zero iOrderByCol values indicate that the
3660       ** ORDER BY column expression is identical to the iOrderByCol'th
3661       ** expression returned by SELECT statement pSub. Since these values
3662       ** do not necessarily correspond to columns in SELECT statement pParent,
3663       ** zero them before transfering the ORDER BY clause.
3664       **
3665       ** Not doing this may cause an error if a subsequent call to this
3666       ** function attempts to flatten a compound sub-query into pParent
3667       ** (the only way this can happen is if the compound sub-query is
3668       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3669       ExprList *pOrderBy = pSub->pOrderBy;
3670       for(i=0; i<pOrderBy->nExpr; i++){
3671         pOrderBy->a[i].u.x.iOrderByCol = 0;
3672       }
3673       assert( pParent->pOrderBy==0 );
3674       assert( pSub->pPrior==0 );
3675       pParent->pOrderBy = pOrderBy;
3676       pSub->pOrderBy = 0;
3677     }else if( pParent->pOrderBy ){
3678       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3679     }
3680     if( pSub->pWhere ){
3681       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3682     }else{
3683       pWhere = 0;
3684     }
3685     if( subqueryIsAgg ){
3686       assert( pParent->pHaving==0 );
3687       pParent->pHaving = pParent->pWhere;
3688       pParent->pWhere = pWhere;
3689       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3690       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3691                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3692       assert( pParent->pGroupBy==0 );
3693       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3694     }else{
3695       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3696       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3697     }
3698 
3699     /* The flattened query is distinct if either the inner or the
3700     ** outer query is distinct.
3701     */
3702     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3703 
3704     /*
3705     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3706     **
3707     ** One is tempted to try to add a and b to combine the limits.  But this
3708     ** does not work if either limit is negative.
3709     */
3710     if( pSub->pLimit ){
3711       pParent->pLimit = pSub->pLimit;
3712       pSub->pLimit = 0;
3713     }
3714   }
3715 
3716   /* Finially, delete what is left of the subquery and return
3717   ** success.
3718   */
3719   sqlite3SelectDelete(db, pSub1);
3720 
3721 #if SELECTTRACE_ENABLED
3722   if( sqlite3SelectTrace & 0x100 ){
3723     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3724     sqlite3TreeViewSelect(0, p, 0);
3725   }
3726 #endif
3727 
3728   return 1;
3729 }
3730 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3731 
3732 
3733 
3734 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3735 /*
3736 ** Make copies of relevant WHERE clause terms of the outer query into
3737 ** the WHERE clause of subquery.  Example:
3738 **
3739 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3740 **
3741 ** Transformed into:
3742 **
3743 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3744 **     WHERE x=5 AND y=10;
3745 **
3746 ** The hope is that the terms added to the inner query will make it more
3747 ** efficient.
3748 **
3749 ** Do not attempt this optimization if:
3750 **
3751 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3752 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3753 **       inner query.  But they probably won't help there so do not bother.)
3754 **
3755 **   (2) The inner query is the recursive part of a common table expression.
3756 **
3757 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3758 **       close would change the meaning of the LIMIT).
3759 **
3760 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3761 **       enforces this restriction since this routine does not have enough
3762 **       information to know.)
3763 **
3764 **   (5) The WHERE clause expression originates in the ON or USING clause
3765 **       of a LEFT JOIN.
3766 **
3767 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3768 ** terms are duplicated into the subquery.
3769 */
3770 static int pushDownWhereTerms(
3771   sqlite3 *db,          /* The database connection (for malloc()) */
3772   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3773   Expr *pWhere,         /* The WHERE clause of the outer query */
3774   int iCursor           /* Cursor number of the subquery */
3775 ){
3776   Expr *pNew;
3777   int nChng = 0;
3778   if( pWhere==0 ) return 0;
3779   if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3780      return 0; /* restrictions (1) and (2) */
3781   }
3782   if( pSubq->pLimit!=0 ){
3783      return 0; /* restriction (3) */
3784   }
3785   while( pWhere->op==TK_AND ){
3786     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3787     pWhere = pWhere->pLeft;
3788   }
3789   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3790   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3791     nChng++;
3792     while( pSubq ){
3793       pNew = sqlite3ExprDup(db, pWhere, 0);
3794       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3795       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3796       pSubq = pSubq->pPrior;
3797     }
3798   }
3799   return nChng;
3800 }
3801 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3802 
3803 /*
3804 ** Based on the contents of the AggInfo structure indicated by the first
3805 ** argument, this function checks if the following are true:
3806 **
3807 **    * the query contains just a single aggregate function,
3808 **    * the aggregate function is either min() or max(), and
3809 **    * the argument to the aggregate function is a column value.
3810 **
3811 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3812 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3813 ** list of arguments passed to the aggregate before returning.
3814 **
3815 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3816 ** WHERE_ORDERBY_NORMAL is returned.
3817 */
3818 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3819   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3820 
3821   *ppMinMax = 0;
3822   if( pAggInfo->nFunc==1 ){
3823     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3824     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3825 
3826     assert( pExpr->op==TK_AGG_FUNCTION );
3827     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3828       const char *zFunc = pExpr->u.zToken;
3829       if( sqlite3StrICmp(zFunc, "min")==0 ){
3830         eRet = WHERE_ORDERBY_MIN;
3831         *ppMinMax = pEList;
3832       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3833         eRet = WHERE_ORDERBY_MAX;
3834         *ppMinMax = pEList;
3835       }
3836     }
3837   }
3838 
3839   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3840   return eRet;
3841 }
3842 
3843 /*
3844 ** The select statement passed as the first argument is an aggregate query.
3845 ** The second argument is the associated aggregate-info object. This
3846 ** function tests if the SELECT is of the form:
3847 **
3848 **   SELECT count(*) FROM <tbl>
3849 **
3850 ** where table is a database table, not a sub-select or view. If the query
3851 ** does match this pattern, then a pointer to the Table object representing
3852 ** <tbl> is returned. Otherwise, 0 is returned.
3853 */
3854 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3855   Table *pTab;
3856   Expr *pExpr;
3857 
3858   assert( !p->pGroupBy );
3859 
3860   if( p->pWhere || p->pEList->nExpr!=1
3861    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3862   ){
3863     return 0;
3864   }
3865   pTab = p->pSrc->a[0].pTab;
3866   pExpr = p->pEList->a[0].pExpr;
3867   assert( pTab && !pTab->pSelect && pExpr );
3868 
3869   if( IsVirtual(pTab) ) return 0;
3870   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3871   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3872   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3873   if( pExpr->flags&EP_Distinct ) return 0;
3874 
3875   return pTab;
3876 }
3877 
3878 /*
3879 ** If the source-list item passed as an argument was augmented with an
3880 ** INDEXED BY clause, then try to locate the specified index. If there
3881 ** was such a clause and the named index cannot be found, return
3882 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3883 ** pFrom->pIndex and return SQLITE_OK.
3884 */
3885 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3886   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3887     Table *pTab = pFrom->pTab;
3888     char *zIndexedBy = pFrom->u1.zIndexedBy;
3889     Index *pIdx;
3890     for(pIdx=pTab->pIndex;
3891         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3892         pIdx=pIdx->pNext
3893     );
3894     if( !pIdx ){
3895       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3896       pParse->checkSchema = 1;
3897       return SQLITE_ERROR;
3898     }
3899     pFrom->pIBIndex = pIdx;
3900   }
3901   return SQLITE_OK;
3902 }
3903 /*
3904 ** Detect compound SELECT statements that use an ORDER BY clause with
3905 ** an alternative collating sequence.
3906 **
3907 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3908 **
3909 ** These are rewritten as a subquery:
3910 **
3911 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3912 **     ORDER BY ... COLLATE ...
3913 **
3914 ** This transformation is necessary because the multiSelectOrderBy() routine
3915 ** above that generates the code for a compound SELECT with an ORDER BY clause
3916 ** uses a merge algorithm that requires the same collating sequence on the
3917 ** result columns as on the ORDER BY clause.  See ticket
3918 ** http://www.sqlite.org/src/info/6709574d2a
3919 **
3920 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3921 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3922 ** there are COLLATE terms in the ORDER BY.
3923 */
3924 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3925   int i;
3926   Select *pNew;
3927   Select *pX;
3928   sqlite3 *db;
3929   struct ExprList_item *a;
3930   SrcList *pNewSrc;
3931   Parse *pParse;
3932   Token dummy;
3933 
3934   if( p->pPrior==0 ) return WRC_Continue;
3935   if( p->pOrderBy==0 ) return WRC_Continue;
3936   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3937   if( pX==0 ) return WRC_Continue;
3938   a = p->pOrderBy->a;
3939   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3940     if( a[i].pExpr->flags & EP_Collate ) break;
3941   }
3942   if( i<0 ) return WRC_Continue;
3943 
3944   /* If we reach this point, that means the transformation is required. */
3945 
3946   pParse = pWalker->pParse;
3947   db = pParse->db;
3948   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3949   if( pNew==0 ) return WRC_Abort;
3950   memset(&dummy, 0, sizeof(dummy));
3951   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3952   if( pNewSrc==0 ) return WRC_Abort;
3953   *pNew = *p;
3954   p->pSrc = pNewSrc;
3955   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3956   p->op = TK_SELECT;
3957   p->pWhere = 0;
3958   pNew->pGroupBy = 0;
3959   pNew->pHaving = 0;
3960   pNew->pOrderBy = 0;
3961   p->pPrior = 0;
3962   p->pNext = 0;
3963   p->pWith = 0;
3964   p->selFlags &= ~SF_Compound;
3965   assert( (p->selFlags & SF_Converted)==0 );
3966   p->selFlags |= SF_Converted;
3967   assert( pNew->pPrior!=0 );
3968   pNew->pPrior->pNext = pNew;
3969   pNew->pLimit = 0;
3970   pNew->pOffset = 0;
3971   return WRC_Continue;
3972 }
3973 
3974 #ifndef SQLITE_OMIT_CTE
3975 /*
3976 ** Argument pWith (which may be NULL) points to a linked list of nested
3977 ** WITH contexts, from inner to outermost. If the table identified by
3978 ** FROM clause element pItem is really a common-table-expression (CTE)
3979 ** then return a pointer to the CTE definition for that table. Otherwise
3980 ** return NULL.
3981 **
3982 ** If a non-NULL value is returned, set *ppContext to point to the With
3983 ** object that the returned CTE belongs to.
3984 */
3985 static struct Cte *searchWith(
3986   With *pWith,                    /* Current outermost WITH clause */
3987   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3988   With **ppContext                /* OUT: WITH clause return value belongs to */
3989 ){
3990   const char *zName;
3991   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3992     With *p;
3993     for(p=pWith; p; p=p->pOuter){
3994       int i;
3995       for(i=0; i<p->nCte; i++){
3996         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3997           *ppContext = p;
3998           return &p->a[i];
3999         }
4000       }
4001     }
4002   }
4003   return 0;
4004 }
4005 
4006 /* The code generator maintains a stack of active WITH clauses
4007 ** with the inner-most WITH clause being at the top of the stack.
4008 **
4009 ** This routine pushes the WITH clause passed as the second argument
4010 ** onto the top of the stack. If argument bFree is true, then this
4011 ** WITH clause will never be popped from the stack. In this case it
4012 ** should be freed along with the Parse object. In other cases, when
4013 ** bFree==0, the With object will be freed along with the SELECT
4014 ** statement with which it is associated.
4015 */
4016 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4017   assert( bFree==0 || pParse->pWith==0 );
4018   if( pWith ){
4019     pWith->pOuter = pParse->pWith;
4020     pParse->pWith = pWith;
4021     pParse->bFreeWith = bFree;
4022   }
4023 }
4024 
4025 /*
4026 ** This function checks if argument pFrom refers to a CTE declared by
4027 ** a WITH clause on the stack currently maintained by the parser. And,
4028 ** if currently processing a CTE expression, if it is a recursive
4029 ** reference to the current CTE.
4030 **
4031 ** If pFrom falls into either of the two categories above, pFrom->pTab
4032 ** and other fields are populated accordingly. The caller should check
4033 ** (pFrom->pTab!=0) to determine whether or not a successful match
4034 ** was found.
4035 **
4036 ** Whether or not a match is found, SQLITE_OK is returned if no error
4037 ** occurs. If an error does occur, an error message is stored in the
4038 ** parser and some error code other than SQLITE_OK returned.
4039 */
4040 static int withExpand(
4041   Walker *pWalker,
4042   struct SrcList_item *pFrom
4043 ){
4044   Parse *pParse = pWalker->pParse;
4045   sqlite3 *db = pParse->db;
4046   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4047   With *pWith;                    /* WITH clause that pCte belongs to */
4048 
4049   assert( pFrom->pTab==0 );
4050 
4051   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4052   if( pCte ){
4053     Table *pTab;
4054     ExprList *pEList;
4055     Select *pSel;
4056     Select *pLeft;                /* Left-most SELECT statement */
4057     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4058     With *pSavedWith;             /* Initial value of pParse->pWith */
4059 
4060     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4061     ** recursive reference to CTE pCte. Leave an error in pParse and return
4062     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4063     ** In this case, proceed.  */
4064     if( pCte->zCteErr ){
4065       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4066       return SQLITE_ERROR;
4067     }
4068 
4069     assert( pFrom->pTab==0 );
4070     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4071     if( pTab==0 ) return WRC_Abort;
4072     pTab->nRef = 1;
4073     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4074     pTab->iPKey = -1;
4075     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4076     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4077     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4078     if( db->mallocFailed ) return SQLITE_NOMEM;
4079     assert( pFrom->pSelect );
4080 
4081     /* Check if this is a recursive CTE. */
4082     pSel = pFrom->pSelect;
4083     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4084     if( bMayRecursive ){
4085       int i;
4086       SrcList *pSrc = pFrom->pSelect->pSrc;
4087       for(i=0; i<pSrc->nSrc; i++){
4088         struct SrcList_item *pItem = &pSrc->a[i];
4089         if( pItem->zDatabase==0
4090          && pItem->zName!=0
4091          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4092           ){
4093           pItem->pTab = pTab;
4094           pItem->fg.isRecursive = 1;
4095           pTab->nRef++;
4096           pSel->selFlags |= SF_Recursive;
4097         }
4098       }
4099     }
4100 
4101     /* Only one recursive reference is permitted. */
4102     if( pTab->nRef>2 ){
4103       sqlite3ErrorMsg(
4104           pParse, "multiple references to recursive table: %s", pCte->zName
4105       );
4106       return SQLITE_ERROR;
4107     }
4108     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4109 
4110     pCte->zCteErr = "circular reference: %s";
4111     pSavedWith = pParse->pWith;
4112     pParse->pWith = pWith;
4113     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4114 
4115     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4116     pEList = pLeft->pEList;
4117     if( pCte->pCols ){
4118       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4119         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4120             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4121         );
4122         pParse->pWith = pSavedWith;
4123         return SQLITE_ERROR;
4124       }
4125       pEList = pCte->pCols;
4126     }
4127 
4128     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4129     if( bMayRecursive ){
4130       if( pSel->selFlags & SF_Recursive ){
4131         pCte->zCteErr = "multiple recursive references: %s";
4132       }else{
4133         pCte->zCteErr = "recursive reference in a subquery: %s";
4134       }
4135       sqlite3WalkSelect(pWalker, pSel);
4136     }
4137     pCte->zCteErr = 0;
4138     pParse->pWith = pSavedWith;
4139   }
4140 
4141   return SQLITE_OK;
4142 }
4143 #endif
4144 
4145 #ifndef SQLITE_OMIT_CTE
4146 /*
4147 ** If the SELECT passed as the second argument has an associated WITH
4148 ** clause, pop it from the stack stored as part of the Parse object.
4149 **
4150 ** This function is used as the xSelectCallback2() callback by
4151 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4152 ** names and other FROM clause elements.
4153 */
4154 static void selectPopWith(Walker *pWalker, Select *p){
4155   Parse *pParse = pWalker->pParse;
4156   With *pWith = findRightmost(p)->pWith;
4157   if( pWith!=0 ){
4158     assert( pParse->pWith==pWith );
4159     pParse->pWith = pWith->pOuter;
4160   }
4161 }
4162 #else
4163 #define selectPopWith 0
4164 #endif
4165 
4166 /*
4167 ** This routine is a Walker callback for "expanding" a SELECT statement.
4168 ** "Expanding" means to do the following:
4169 **
4170 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4171 **         element of the FROM clause.
4172 **
4173 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4174 **         defines FROM clause.  When views appear in the FROM clause,
4175 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4176 **         that implements the view.  A copy is made of the view's SELECT
4177 **         statement so that we can freely modify or delete that statement
4178 **         without worrying about messing up the persistent representation
4179 **         of the view.
4180 **
4181 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4182 **         on joins and the ON and USING clause of joins.
4183 **
4184 **    (4)  Scan the list of columns in the result set (pEList) looking
4185 **         for instances of the "*" operator or the TABLE.* operator.
4186 **         If found, expand each "*" to be every column in every table
4187 **         and TABLE.* to be every column in TABLE.
4188 **
4189 */
4190 static int selectExpander(Walker *pWalker, Select *p){
4191   Parse *pParse = pWalker->pParse;
4192   int i, j, k;
4193   SrcList *pTabList;
4194   ExprList *pEList;
4195   struct SrcList_item *pFrom;
4196   sqlite3 *db = pParse->db;
4197   Expr *pE, *pRight, *pExpr;
4198   u16 selFlags = p->selFlags;
4199 
4200   p->selFlags |= SF_Expanded;
4201   if( db->mallocFailed  ){
4202     return WRC_Abort;
4203   }
4204   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4205     return WRC_Prune;
4206   }
4207   pTabList = p->pSrc;
4208   pEList = p->pEList;
4209   if( pWalker->xSelectCallback2==selectPopWith ){
4210     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4211   }
4212 
4213   /* Make sure cursor numbers have been assigned to all entries in
4214   ** the FROM clause of the SELECT statement.
4215   */
4216   sqlite3SrcListAssignCursors(pParse, pTabList);
4217 
4218   /* Look up every table named in the FROM clause of the select.  If
4219   ** an entry of the FROM clause is a subquery instead of a table or view,
4220   ** then create a transient table structure to describe the subquery.
4221   */
4222   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4223     Table *pTab;
4224     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4225     if( pFrom->fg.isRecursive ) continue;
4226     assert( pFrom->pTab==0 );
4227 #ifndef SQLITE_OMIT_CTE
4228     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4229     if( pFrom->pTab ) {} else
4230 #endif
4231     if( pFrom->zName==0 ){
4232 #ifndef SQLITE_OMIT_SUBQUERY
4233       Select *pSel = pFrom->pSelect;
4234       /* A sub-query in the FROM clause of a SELECT */
4235       assert( pSel!=0 );
4236       assert( pFrom->pTab==0 );
4237       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4238       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4239       if( pTab==0 ) return WRC_Abort;
4240       pTab->nRef = 1;
4241       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4242       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4243       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4244       pTab->iPKey = -1;
4245       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4246       pTab->tabFlags |= TF_Ephemeral;
4247 #endif
4248     }else{
4249       /* An ordinary table or view name in the FROM clause */
4250       assert( pFrom->pTab==0 );
4251       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4252       if( pTab==0 ) return WRC_Abort;
4253       if( pTab->nRef==0xffff ){
4254         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4255            pTab->zName);
4256         pFrom->pTab = 0;
4257         return WRC_Abort;
4258       }
4259       pTab->nRef++;
4260 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4261       if( pTab->pSelect || IsVirtual(pTab) ){
4262         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4263         assert( pFrom->pSelect==0 );
4264         if( pFrom->fg.isTabFunc && !IsVirtual(pTab) ){
4265           sqlite3ErrorMsg(pParse, "'%s' is not a function", pTab->zName);
4266           return WRC_Abort;
4267         }
4268         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4269         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4270         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4271       }
4272 #endif
4273     }
4274 
4275     /* Locate the index named by the INDEXED BY clause, if any. */
4276     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4277       return WRC_Abort;
4278     }
4279   }
4280 
4281   /* Process NATURAL keywords, and ON and USING clauses of joins.
4282   */
4283   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4284     return WRC_Abort;
4285   }
4286 
4287   /* For every "*" that occurs in the column list, insert the names of
4288   ** all columns in all tables.  And for every TABLE.* insert the names
4289   ** of all columns in TABLE.  The parser inserted a special expression
4290   ** with the TK_ALL operator for each "*" that it found in the column list.
4291   ** The following code just has to locate the TK_ALL expressions and expand
4292   ** each one to the list of all columns in all tables.
4293   **
4294   ** The first loop just checks to see if there are any "*" operators
4295   ** that need expanding.
4296   */
4297   for(k=0; k<pEList->nExpr; k++){
4298     pE = pEList->a[k].pExpr;
4299     if( pE->op==TK_ALL ) break;
4300     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4301     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4302     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4303   }
4304   if( k<pEList->nExpr ){
4305     /*
4306     ** If we get here it means the result set contains one or more "*"
4307     ** operators that need to be expanded.  Loop through each expression
4308     ** in the result set and expand them one by one.
4309     */
4310     struct ExprList_item *a = pEList->a;
4311     ExprList *pNew = 0;
4312     int flags = pParse->db->flags;
4313     int longNames = (flags & SQLITE_FullColNames)!=0
4314                       && (flags & SQLITE_ShortColNames)==0;
4315 
4316     for(k=0; k<pEList->nExpr; k++){
4317       pE = a[k].pExpr;
4318       pRight = pE->pRight;
4319       assert( pE->op!=TK_DOT || pRight!=0 );
4320       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4321         /* This particular expression does not need to be expanded.
4322         */
4323         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4324         if( pNew ){
4325           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4326           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4327           a[k].zName = 0;
4328           a[k].zSpan = 0;
4329         }
4330         a[k].pExpr = 0;
4331       }else{
4332         /* This expression is a "*" or a "TABLE.*" and needs to be
4333         ** expanded. */
4334         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4335         char *zTName = 0;       /* text of name of TABLE */
4336         if( pE->op==TK_DOT ){
4337           assert( pE->pLeft!=0 );
4338           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4339           zTName = pE->pLeft->u.zToken;
4340         }
4341         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4342           Table *pTab = pFrom->pTab;
4343           Select *pSub = pFrom->pSelect;
4344           char *zTabName = pFrom->zAlias;
4345           const char *zSchemaName = 0;
4346           int iDb;
4347           if( zTabName==0 ){
4348             zTabName = pTab->zName;
4349           }
4350           if( db->mallocFailed ) break;
4351           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4352             pSub = 0;
4353             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4354               continue;
4355             }
4356             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4357             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4358           }
4359           for(j=0; j<pTab->nCol; j++){
4360             char *zName = pTab->aCol[j].zName;
4361             char *zColname;  /* The computed column name */
4362             char *zToFree;   /* Malloced string that needs to be freed */
4363             Token sColname;  /* Computed column name as a token */
4364 
4365             assert( zName );
4366             if( zTName && pSub
4367              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4368             ){
4369               continue;
4370             }
4371 
4372             /* If a column is marked as 'hidden' (currently only possible
4373             ** for virtual tables), do not include it in the expanded
4374             ** result-set list.
4375             */
4376             if( IsHiddenColumn(&pTab->aCol[j]) ){
4377               assert(IsVirtual(pTab));
4378               continue;
4379             }
4380             tableSeen = 1;
4381 
4382             if( i>0 && zTName==0 ){
4383               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4384                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4385               ){
4386                 /* In a NATURAL join, omit the join columns from the
4387                 ** table to the right of the join */
4388                 continue;
4389               }
4390               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4391                 /* In a join with a USING clause, omit columns in the
4392                 ** using clause from the table on the right. */
4393                 continue;
4394               }
4395             }
4396             pRight = sqlite3Expr(db, TK_ID, zName);
4397             zColname = zName;
4398             zToFree = 0;
4399             if( longNames || pTabList->nSrc>1 ){
4400               Expr *pLeft;
4401               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4402               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4403               if( zSchemaName ){
4404                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4405                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4406               }
4407               if( longNames ){
4408                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4409                 zToFree = zColname;
4410               }
4411             }else{
4412               pExpr = pRight;
4413             }
4414             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4415             sColname.z = zColname;
4416             sColname.n = sqlite3Strlen30(zColname);
4417             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4418             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4419               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4420               if( pSub ){
4421                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4422                 testcase( pX->zSpan==0 );
4423               }else{
4424                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4425                                            zSchemaName, zTabName, zColname);
4426                 testcase( pX->zSpan==0 );
4427               }
4428               pX->bSpanIsTab = 1;
4429             }
4430             sqlite3DbFree(db, zToFree);
4431           }
4432         }
4433         if( !tableSeen ){
4434           if( zTName ){
4435             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4436           }else{
4437             sqlite3ErrorMsg(pParse, "no tables specified");
4438           }
4439         }
4440       }
4441     }
4442     sqlite3ExprListDelete(db, pEList);
4443     p->pEList = pNew;
4444   }
4445 #if SQLITE_MAX_COLUMN
4446   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4447     sqlite3ErrorMsg(pParse, "too many columns in result set");
4448   }
4449 #endif
4450   return WRC_Continue;
4451 }
4452 
4453 /*
4454 ** No-op routine for the parse-tree walker.
4455 **
4456 ** When this routine is the Walker.xExprCallback then expression trees
4457 ** are walked without any actions being taken at each node.  Presumably,
4458 ** when this routine is used for Walker.xExprCallback then
4459 ** Walker.xSelectCallback is set to do something useful for every
4460 ** subquery in the parser tree.
4461 */
4462 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4463   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4464   return WRC_Continue;
4465 }
4466 
4467 /*
4468 ** This routine "expands" a SELECT statement and all of its subqueries.
4469 ** For additional information on what it means to "expand" a SELECT
4470 ** statement, see the comment on the selectExpand worker callback above.
4471 **
4472 ** Expanding a SELECT statement is the first step in processing a
4473 ** SELECT statement.  The SELECT statement must be expanded before
4474 ** name resolution is performed.
4475 **
4476 ** If anything goes wrong, an error message is written into pParse.
4477 ** The calling function can detect the problem by looking at pParse->nErr
4478 ** and/or pParse->db->mallocFailed.
4479 */
4480 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4481   Walker w;
4482   memset(&w, 0, sizeof(w));
4483   w.xExprCallback = exprWalkNoop;
4484   w.pParse = pParse;
4485   if( pParse->hasCompound ){
4486     w.xSelectCallback = convertCompoundSelectToSubquery;
4487     sqlite3WalkSelect(&w, pSelect);
4488   }
4489   w.xSelectCallback = selectExpander;
4490   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4491     w.xSelectCallback2 = selectPopWith;
4492   }
4493   sqlite3WalkSelect(&w, pSelect);
4494 }
4495 
4496 
4497 #ifndef SQLITE_OMIT_SUBQUERY
4498 /*
4499 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4500 ** interface.
4501 **
4502 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4503 ** information to the Table structure that represents the result set
4504 ** of that subquery.
4505 **
4506 ** The Table structure that represents the result set was constructed
4507 ** by selectExpander() but the type and collation information was omitted
4508 ** at that point because identifiers had not yet been resolved.  This
4509 ** routine is called after identifier resolution.
4510 */
4511 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4512   Parse *pParse;
4513   int i;
4514   SrcList *pTabList;
4515   struct SrcList_item *pFrom;
4516 
4517   assert( p->selFlags & SF_Resolved );
4518   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4519   p->selFlags |= SF_HasTypeInfo;
4520   pParse = pWalker->pParse;
4521   pTabList = p->pSrc;
4522   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4523     Table *pTab = pFrom->pTab;
4524     assert( pTab!=0 );
4525     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4526       /* A sub-query in the FROM clause of a SELECT */
4527       Select *pSel = pFrom->pSelect;
4528       if( pSel ){
4529         while( pSel->pPrior ) pSel = pSel->pPrior;
4530         selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4531       }
4532     }
4533   }
4534 }
4535 #endif
4536 
4537 
4538 /*
4539 ** This routine adds datatype and collating sequence information to
4540 ** the Table structures of all FROM-clause subqueries in a
4541 ** SELECT statement.
4542 **
4543 ** Use this routine after name resolution.
4544 */
4545 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4546 #ifndef SQLITE_OMIT_SUBQUERY
4547   Walker w;
4548   memset(&w, 0, sizeof(w));
4549   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4550   w.xExprCallback = exprWalkNoop;
4551   w.pParse = pParse;
4552   sqlite3WalkSelect(&w, pSelect);
4553 #endif
4554 }
4555 
4556 
4557 /*
4558 ** This routine sets up a SELECT statement for processing.  The
4559 ** following is accomplished:
4560 **
4561 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4562 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4563 **     *  ON and USING clauses are shifted into WHERE statements
4564 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4565 **     *  Identifiers in expression are matched to tables.
4566 **
4567 ** This routine acts recursively on all subqueries within the SELECT.
4568 */
4569 void sqlite3SelectPrep(
4570   Parse *pParse,         /* The parser context */
4571   Select *p,             /* The SELECT statement being coded. */
4572   NameContext *pOuterNC  /* Name context for container */
4573 ){
4574   sqlite3 *db;
4575   if( NEVER(p==0) ) return;
4576   db = pParse->db;
4577   if( db->mallocFailed ) return;
4578   if( p->selFlags & SF_HasTypeInfo ) return;
4579   sqlite3SelectExpand(pParse, p);
4580   if( pParse->nErr || db->mallocFailed ) return;
4581   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4582   if( pParse->nErr || db->mallocFailed ) return;
4583   sqlite3SelectAddTypeInfo(pParse, p);
4584 }
4585 
4586 /*
4587 ** Reset the aggregate accumulator.
4588 **
4589 ** The aggregate accumulator is a set of memory cells that hold
4590 ** intermediate results while calculating an aggregate.  This
4591 ** routine generates code that stores NULLs in all of those memory
4592 ** cells.
4593 */
4594 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4595   Vdbe *v = pParse->pVdbe;
4596   int i;
4597   struct AggInfo_func *pFunc;
4598   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4599   if( nReg==0 ) return;
4600 #ifdef SQLITE_DEBUG
4601   /* Verify that all AggInfo registers are within the range specified by
4602   ** AggInfo.mnReg..AggInfo.mxReg */
4603   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4604   for(i=0; i<pAggInfo->nColumn; i++){
4605     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4606          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4607   }
4608   for(i=0; i<pAggInfo->nFunc; i++){
4609     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4610          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4611   }
4612 #endif
4613   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4614   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4615     if( pFunc->iDistinct>=0 ){
4616       Expr *pE = pFunc->pExpr;
4617       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4618       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4619         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4620            "argument");
4621         pFunc->iDistinct = -1;
4622       }else{
4623         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4624         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4625                           (char*)pKeyInfo, P4_KEYINFO);
4626       }
4627     }
4628   }
4629 }
4630 
4631 /*
4632 ** Invoke the OP_AggFinalize opcode for every aggregate function
4633 ** in the AggInfo structure.
4634 */
4635 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4636   Vdbe *v = pParse->pVdbe;
4637   int i;
4638   struct AggInfo_func *pF;
4639   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4640     ExprList *pList = pF->pExpr->x.pList;
4641     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4642     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4643                       (void*)pF->pFunc, P4_FUNCDEF);
4644   }
4645 }
4646 
4647 /*
4648 ** Update the accumulator memory cells for an aggregate based on
4649 ** the current cursor position.
4650 */
4651 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4652   Vdbe *v = pParse->pVdbe;
4653   int i;
4654   int regHit = 0;
4655   int addrHitTest = 0;
4656   struct AggInfo_func *pF;
4657   struct AggInfo_col *pC;
4658 
4659   pAggInfo->directMode = 1;
4660   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4661     int nArg;
4662     int addrNext = 0;
4663     int regAgg;
4664     ExprList *pList = pF->pExpr->x.pList;
4665     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4666     if( pList ){
4667       nArg = pList->nExpr;
4668       regAgg = sqlite3GetTempRange(pParse, nArg);
4669       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4670     }else{
4671       nArg = 0;
4672       regAgg = 0;
4673     }
4674     if( pF->iDistinct>=0 ){
4675       addrNext = sqlite3VdbeMakeLabel(v);
4676       testcase( nArg==0 );  /* Error condition */
4677       testcase( nArg>1 );   /* Also an error */
4678       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4679     }
4680     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4681       CollSeq *pColl = 0;
4682       struct ExprList_item *pItem;
4683       int j;
4684       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4685       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4686         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4687       }
4688       if( !pColl ){
4689         pColl = pParse->db->pDfltColl;
4690       }
4691       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4692       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4693     }
4694     sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4695                       (void*)pF->pFunc, P4_FUNCDEF);
4696     sqlite3VdbeChangeP5(v, (u8)nArg);
4697     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4698     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4699     if( addrNext ){
4700       sqlite3VdbeResolveLabel(v, addrNext);
4701       sqlite3ExprCacheClear(pParse);
4702     }
4703   }
4704 
4705   /* Before populating the accumulator registers, clear the column cache.
4706   ** Otherwise, if any of the required column values are already present
4707   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4708   ** to pC->iMem. But by the time the value is used, the original register
4709   ** may have been used, invalidating the underlying buffer holding the
4710   ** text or blob value. See ticket [883034dcb5].
4711   **
4712   ** Another solution would be to change the OP_SCopy used to copy cached
4713   ** values to an OP_Copy.
4714   */
4715   if( regHit ){
4716     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4717   }
4718   sqlite3ExprCacheClear(pParse);
4719   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4720     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4721   }
4722   pAggInfo->directMode = 0;
4723   sqlite3ExprCacheClear(pParse);
4724   if( addrHitTest ){
4725     sqlite3VdbeJumpHere(v, addrHitTest);
4726   }
4727 }
4728 
4729 /*
4730 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4731 ** count(*) query ("SELECT count(*) FROM pTab").
4732 */
4733 #ifndef SQLITE_OMIT_EXPLAIN
4734 static void explainSimpleCount(
4735   Parse *pParse,                  /* Parse context */
4736   Table *pTab,                    /* Table being queried */
4737   Index *pIdx                     /* Index used to optimize scan, or NULL */
4738 ){
4739   if( pParse->explain==2 ){
4740     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4741     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4742         pTab->zName,
4743         bCover ? " USING COVERING INDEX " : "",
4744         bCover ? pIdx->zName : ""
4745     );
4746     sqlite3VdbeAddOp4(
4747         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4748     );
4749   }
4750 }
4751 #else
4752 # define explainSimpleCount(a,b,c)
4753 #endif
4754 
4755 /*
4756 ** Generate code for the SELECT statement given in the p argument.
4757 **
4758 ** The results are returned according to the SelectDest structure.
4759 ** See comments in sqliteInt.h for further information.
4760 **
4761 ** This routine returns the number of errors.  If any errors are
4762 ** encountered, then an appropriate error message is left in
4763 ** pParse->zErrMsg.
4764 **
4765 ** This routine does NOT free the Select structure passed in.  The
4766 ** calling function needs to do that.
4767 */
4768 int sqlite3Select(
4769   Parse *pParse,         /* The parser context */
4770   Select *p,             /* The SELECT statement being coded. */
4771   SelectDest *pDest      /* What to do with the query results */
4772 ){
4773   int i, j;              /* Loop counters */
4774   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4775   Vdbe *v;               /* The virtual machine under construction */
4776   int isAgg;             /* True for select lists like "count(*)" */
4777   ExprList *pEList = 0;  /* List of columns to extract. */
4778   SrcList *pTabList;     /* List of tables to select from */
4779   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4780   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4781   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4782   int rc = 1;            /* Value to return from this function */
4783   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4784   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4785   AggInfo sAggInfo;      /* Information used by aggregate queries */
4786   int iEnd;              /* Address of the end of the query */
4787   sqlite3 *db;           /* The database connection */
4788 
4789 #ifndef SQLITE_OMIT_EXPLAIN
4790   int iRestoreSelectId = pParse->iSelectId;
4791   pParse->iSelectId = pParse->iNextSelectId++;
4792 #endif
4793 
4794   db = pParse->db;
4795   if( p==0 || db->mallocFailed || pParse->nErr ){
4796     return 1;
4797   }
4798   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4799   memset(&sAggInfo, 0, sizeof(sAggInfo));
4800 #if SELECTTRACE_ENABLED
4801   pParse->nSelectIndent++;
4802   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4803   if( sqlite3SelectTrace & 0x100 ){
4804     sqlite3TreeViewSelect(0, p, 0);
4805   }
4806 #endif
4807 
4808   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4809   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4810   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4811   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4812   if( IgnorableOrderby(pDest) ){
4813     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4814            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4815            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4816            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4817     /* If ORDER BY makes no difference in the output then neither does
4818     ** DISTINCT so it can be removed too. */
4819     sqlite3ExprListDelete(db, p->pOrderBy);
4820     p->pOrderBy = 0;
4821     p->selFlags &= ~SF_Distinct;
4822   }
4823   sqlite3SelectPrep(pParse, p, 0);
4824   memset(&sSort, 0, sizeof(sSort));
4825   sSort.pOrderBy = p->pOrderBy;
4826   pTabList = p->pSrc;
4827   if( pParse->nErr || db->mallocFailed ){
4828     goto select_end;
4829   }
4830   assert( p->pEList!=0 );
4831   isAgg = (p->selFlags & SF_Aggregate)!=0;
4832 #if SELECTTRACE_ENABLED
4833   if( sqlite3SelectTrace & 0x100 ){
4834     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4835     sqlite3TreeViewSelect(0, p, 0);
4836   }
4837 #endif
4838 
4839 
4840   /* If writing to memory or generating a set
4841   ** only a single column may be output.
4842   */
4843 #ifndef SQLITE_OMIT_SUBQUERY
4844   if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4845     goto select_end;
4846   }
4847 #endif
4848 
4849   /* Try to flatten subqueries in the FROM clause up into the main query
4850   */
4851 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4852   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4853     struct SrcList_item *pItem = &pTabList->a[i];
4854     Select *pSub = pItem->pSelect;
4855     int isAggSub;
4856     Table *pTab = pItem->pTab;
4857     if( pSub==0 ) continue;
4858 
4859     /* Catch mismatch in the declared columns of a view and the number of
4860     ** columns in the SELECT on the RHS */
4861     if( pTab->nCol!=pSub->pEList->nExpr ){
4862       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
4863                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
4864       goto select_end;
4865     }
4866 
4867     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4868     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4869       /* This subquery can be absorbed into its parent. */
4870       if( isAggSub ){
4871         isAgg = 1;
4872         p->selFlags |= SF_Aggregate;
4873       }
4874       i = -1;
4875     }
4876     pTabList = p->pSrc;
4877     if( db->mallocFailed ) goto select_end;
4878     if( !IgnorableOrderby(pDest) ){
4879       sSort.pOrderBy = p->pOrderBy;
4880     }
4881   }
4882 #endif
4883 
4884   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4885   ** does not already exist */
4886   v = sqlite3GetVdbe(pParse);
4887   if( v==0 ) goto select_end;
4888 
4889 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4890   /* Handle compound SELECT statements using the separate multiSelect()
4891   ** procedure.
4892   */
4893   if( p->pPrior ){
4894     rc = multiSelect(pParse, p, pDest);
4895     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4896 #if SELECTTRACE_ENABLED
4897     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4898     pParse->nSelectIndent--;
4899 #endif
4900     return rc;
4901   }
4902 #endif
4903 
4904   /* Generate code for all sub-queries in the FROM clause
4905   */
4906 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4907   for(i=0; i<pTabList->nSrc; i++){
4908     struct SrcList_item *pItem = &pTabList->a[i];
4909     SelectDest dest;
4910     Select *pSub = pItem->pSelect;
4911     if( pSub==0 ) continue;
4912 
4913     /* Sometimes the code for a subquery will be generated more than
4914     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4915     ** for example.  In that case, do not regenerate the code to manifest
4916     ** a view or the co-routine to implement a view.  The first instance
4917     ** is sufficient, though the subroutine to manifest the view does need
4918     ** to be invoked again. */
4919     if( pItem->addrFillSub ){
4920       if( pItem->fg.viaCoroutine==0 ){
4921         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4922       }
4923       continue;
4924     }
4925 
4926     /* Increment Parse.nHeight by the height of the largest expression
4927     ** tree referred to by this, the parent select. The child select
4928     ** may contain expression trees of at most
4929     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4930     ** more conservative than necessary, but much easier than enforcing
4931     ** an exact limit.
4932     */
4933     pParse->nHeight += sqlite3SelectExprHeight(p);
4934 
4935     /* Make copies of constant WHERE-clause terms in the outer query down
4936     ** inside the subquery.  This can help the subquery to run more efficiently.
4937     */
4938     if( (pItem->fg.jointype & JT_OUTER)==0
4939      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4940     ){
4941 #if SELECTTRACE_ENABLED
4942       if( sqlite3SelectTrace & 0x100 ){
4943         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4944         sqlite3TreeViewSelect(0, p, 0);
4945       }
4946 #endif
4947     }
4948 
4949     /* Generate code to implement the subquery
4950     */
4951     if( pTabList->nSrc==1
4952      && (p->selFlags & SF_All)==0
4953      && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4954     ){
4955       /* Implement a co-routine that will return a single row of the result
4956       ** set on each invocation.
4957       */
4958       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4959       pItem->regReturn = ++pParse->nMem;
4960       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4961       VdbeComment((v, "%s", pItem->pTab->zName));
4962       pItem->addrFillSub = addrTop;
4963       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4964       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4965       sqlite3Select(pParse, pSub, &dest);
4966       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4967       pItem->fg.viaCoroutine = 1;
4968       pItem->regResult = dest.iSdst;
4969       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4970       sqlite3VdbeJumpHere(v, addrTop-1);
4971       sqlite3ClearTempRegCache(pParse);
4972     }else{
4973       /* Generate a subroutine that will fill an ephemeral table with
4974       ** the content of this subquery.  pItem->addrFillSub will point
4975       ** to the address of the generated subroutine.  pItem->regReturn
4976       ** is a register allocated to hold the subroutine return address
4977       */
4978       int topAddr;
4979       int onceAddr = 0;
4980       int retAddr;
4981       assert( pItem->addrFillSub==0 );
4982       pItem->regReturn = ++pParse->nMem;
4983       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4984       pItem->addrFillSub = topAddr+1;
4985       if( pItem->fg.isCorrelated==0 ){
4986         /* If the subquery is not correlated and if we are not inside of
4987         ** a trigger, then we only need to compute the value of the subquery
4988         ** once. */
4989         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4990         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4991       }else{
4992         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4993       }
4994       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4995       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4996       sqlite3Select(pParse, pSub, &dest);
4997       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4998       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4999       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5000       VdbeComment((v, "end %s", pItem->pTab->zName));
5001       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5002       sqlite3ClearTempRegCache(pParse);
5003     }
5004     if( db->mallocFailed ) goto select_end;
5005     pParse->nHeight -= sqlite3SelectExprHeight(p);
5006   }
5007 #endif
5008 
5009   /* Various elements of the SELECT copied into local variables for
5010   ** convenience */
5011   pEList = p->pEList;
5012   pWhere = p->pWhere;
5013   pGroupBy = p->pGroupBy;
5014   pHaving = p->pHaving;
5015   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5016 
5017 #if SELECTTRACE_ENABLED
5018   if( sqlite3SelectTrace & 0x400 ){
5019     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5020     sqlite3TreeViewSelect(0, p, 0);
5021   }
5022 #endif
5023 
5024   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5025   ** if the select-list is the same as the ORDER BY list, then this query
5026   ** can be rewritten as a GROUP BY. In other words, this:
5027   **
5028   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5029   **
5030   ** is transformed to:
5031   **
5032   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5033   **
5034   ** The second form is preferred as a single index (or temp-table) may be
5035   ** used for both the ORDER BY and DISTINCT processing. As originally
5036   ** written the query must use a temp-table for at least one of the ORDER
5037   ** BY and DISTINCT, and an index or separate temp-table for the other.
5038   */
5039   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5040    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5041   ){
5042     p->selFlags &= ~SF_Distinct;
5043     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5044     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5045     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5046     ** original setting of the SF_Distinct flag, not the current setting */
5047     assert( sDistinct.isTnct );
5048   }
5049 
5050   /* If there is an ORDER BY clause, then create an ephemeral index to
5051   ** do the sorting.  But this sorting ephemeral index might end up
5052   ** being unused if the data can be extracted in pre-sorted order.
5053   ** If that is the case, then the OP_OpenEphemeral instruction will be
5054   ** changed to an OP_Noop once we figure out that the sorting index is
5055   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5056   ** that change.
5057   */
5058   if( sSort.pOrderBy ){
5059     KeyInfo *pKeyInfo;
5060     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5061     sSort.iECursor = pParse->nTab++;
5062     sSort.addrSortIndex =
5063       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5064           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5065           (char*)pKeyInfo, P4_KEYINFO
5066       );
5067   }else{
5068     sSort.addrSortIndex = -1;
5069   }
5070 
5071   /* If the output is destined for a temporary table, open that table.
5072   */
5073   if( pDest->eDest==SRT_EphemTab ){
5074     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5075   }
5076 
5077   /* Set the limiter.
5078   */
5079   iEnd = sqlite3VdbeMakeLabel(v);
5080   p->nSelectRow = LARGEST_INT64;
5081   computeLimitRegisters(pParse, p, iEnd);
5082   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5083     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5084     sSort.sortFlags |= SORTFLAG_UseSorter;
5085   }
5086 
5087   /* Open an ephemeral index to use for the distinct set.
5088   */
5089   if( p->selFlags & SF_Distinct ){
5090     sDistinct.tabTnct = pParse->nTab++;
5091     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5092                              sDistinct.tabTnct, 0, 0,
5093                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5094                              P4_KEYINFO);
5095     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5096     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5097   }else{
5098     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5099   }
5100 
5101   if( !isAgg && pGroupBy==0 ){
5102     /* No aggregate functions and no GROUP BY clause */
5103     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5104 
5105     /* Begin the database scan. */
5106     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5107                                p->pEList, wctrlFlags, 0);
5108     if( pWInfo==0 ) goto select_end;
5109     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5110       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5111     }
5112     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5113       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5114     }
5115     if( sSort.pOrderBy ){
5116       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5117       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5118         sSort.pOrderBy = 0;
5119       }
5120     }
5121 
5122     /* If sorting index that was created by a prior OP_OpenEphemeral
5123     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5124     ** into an OP_Noop.
5125     */
5126     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5127       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5128     }
5129 
5130     /* Use the standard inner loop. */
5131     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5132                     sqlite3WhereContinueLabel(pWInfo),
5133                     sqlite3WhereBreakLabel(pWInfo));
5134 
5135     /* End the database scan loop.
5136     */
5137     sqlite3WhereEnd(pWInfo);
5138   }else{
5139     /* This case when there exist aggregate functions or a GROUP BY clause
5140     ** or both */
5141     NameContext sNC;    /* Name context for processing aggregate information */
5142     int iAMem;          /* First Mem address for storing current GROUP BY */
5143     int iBMem;          /* First Mem address for previous GROUP BY */
5144     int iUseFlag;       /* Mem address holding flag indicating that at least
5145                         ** one row of the input to the aggregator has been
5146                         ** processed */
5147     int iAbortFlag;     /* Mem address which causes query abort if positive */
5148     int groupBySort;    /* Rows come from source in GROUP BY order */
5149     int addrEnd;        /* End of processing for this SELECT */
5150     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5151     int sortOut = 0;    /* Output register from the sorter */
5152     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5153 
5154     /* Remove any and all aliases between the result set and the
5155     ** GROUP BY clause.
5156     */
5157     if( pGroupBy ){
5158       int k;                        /* Loop counter */
5159       struct ExprList_item *pItem;  /* For looping over expression in a list */
5160 
5161       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5162         pItem->u.x.iAlias = 0;
5163       }
5164       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5165         pItem->u.x.iAlias = 0;
5166       }
5167       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5168     }else{
5169       p->nSelectRow = 1;
5170     }
5171 
5172     /* If there is both a GROUP BY and an ORDER BY clause and they are
5173     ** identical, then it may be possible to disable the ORDER BY clause
5174     ** on the grounds that the GROUP BY will cause elements to come out
5175     ** in the correct order. It also may not - the GROUP BY might use a
5176     ** database index that causes rows to be grouped together as required
5177     ** but not actually sorted. Either way, record the fact that the
5178     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5179     ** variable.  */
5180     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5181       orderByGrp = 1;
5182     }
5183 
5184     /* Create a label to jump to when we want to abort the query */
5185     addrEnd = sqlite3VdbeMakeLabel(v);
5186 
5187     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5188     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5189     ** SELECT statement.
5190     */
5191     memset(&sNC, 0, sizeof(sNC));
5192     sNC.pParse = pParse;
5193     sNC.pSrcList = pTabList;
5194     sNC.pAggInfo = &sAggInfo;
5195     sAggInfo.mnReg = pParse->nMem+1;
5196     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5197     sAggInfo.pGroupBy = pGroupBy;
5198     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5199     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5200     if( pHaving ){
5201       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5202     }
5203     sAggInfo.nAccumulator = sAggInfo.nColumn;
5204     for(i=0; i<sAggInfo.nFunc; i++){
5205       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5206       sNC.ncFlags |= NC_InAggFunc;
5207       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5208       sNC.ncFlags &= ~NC_InAggFunc;
5209     }
5210     sAggInfo.mxReg = pParse->nMem;
5211     if( db->mallocFailed ) goto select_end;
5212 
5213     /* Processing for aggregates with GROUP BY is very different and
5214     ** much more complex than aggregates without a GROUP BY.
5215     */
5216     if( pGroupBy ){
5217       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5218       int j1;             /* A-vs-B comparision jump */
5219       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5220       int regOutputRow;   /* Return address register for output subroutine */
5221       int addrSetAbort;   /* Set the abort flag and return */
5222       int addrTopOfLoop;  /* Top of the input loop */
5223       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5224       int addrReset;      /* Subroutine for resetting the accumulator */
5225       int regReset;       /* Return address register for reset subroutine */
5226 
5227       /* If there is a GROUP BY clause we might need a sorting index to
5228       ** implement it.  Allocate that sorting index now.  If it turns out
5229       ** that we do not need it after all, the OP_SorterOpen instruction
5230       ** will be converted into a Noop.
5231       */
5232       sAggInfo.sortingIdx = pParse->nTab++;
5233       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5234       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5235           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5236           0, (char*)pKeyInfo, P4_KEYINFO);
5237 
5238       /* Initialize memory locations used by GROUP BY aggregate processing
5239       */
5240       iUseFlag = ++pParse->nMem;
5241       iAbortFlag = ++pParse->nMem;
5242       regOutputRow = ++pParse->nMem;
5243       addrOutputRow = sqlite3VdbeMakeLabel(v);
5244       regReset = ++pParse->nMem;
5245       addrReset = sqlite3VdbeMakeLabel(v);
5246       iAMem = pParse->nMem + 1;
5247       pParse->nMem += pGroupBy->nExpr;
5248       iBMem = pParse->nMem + 1;
5249       pParse->nMem += pGroupBy->nExpr;
5250       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5251       VdbeComment((v, "clear abort flag"));
5252       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5253       VdbeComment((v, "indicate accumulator empty"));
5254       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5255 
5256       /* Begin a loop that will extract all source rows in GROUP BY order.
5257       ** This might involve two separate loops with an OP_Sort in between, or
5258       ** it might be a single loop that uses an index to extract information
5259       ** in the right order to begin with.
5260       */
5261       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5262       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5263           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5264       );
5265       if( pWInfo==0 ) goto select_end;
5266       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5267         /* The optimizer is able to deliver rows in group by order so
5268         ** we do not have to sort.  The OP_OpenEphemeral table will be
5269         ** cancelled later because we still need to use the pKeyInfo
5270         */
5271         groupBySort = 0;
5272       }else{
5273         /* Rows are coming out in undetermined order.  We have to push
5274         ** each row into a sorting index, terminate the first loop,
5275         ** then loop over the sorting index in order to get the output
5276         ** in sorted order
5277         */
5278         int regBase;
5279         int regRecord;
5280         int nCol;
5281         int nGroupBy;
5282 
5283         explainTempTable(pParse,
5284             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5285                     "DISTINCT" : "GROUP BY");
5286 
5287         groupBySort = 1;
5288         nGroupBy = pGroupBy->nExpr;
5289         nCol = nGroupBy;
5290         j = nGroupBy;
5291         for(i=0; i<sAggInfo.nColumn; i++){
5292           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5293             nCol++;
5294             j++;
5295           }
5296         }
5297         regBase = sqlite3GetTempRange(pParse, nCol);
5298         sqlite3ExprCacheClear(pParse);
5299         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5300         j = nGroupBy;
5301         for(i=0; i<sAggInfo.nColumn; i++){
5302           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5303           if( pCol->iSorterColumn>=j ){
5304             int r1 = j + regBase;
5305             int r2;
5306 
5307             r2 = sqlite3ExprCodeGetColumn(pParse,
5308                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5309             if( r1!=r2 ){
5310               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5311             }
5312             j++;
5313           }
5314         }
5315         regRecord = sqlite3GetTempReg(pParse);
5316         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5317         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5318         sqlite3ReleaseTempReg(pParse, regRecord);
5319         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5320         sqlite3WhereEnd(pWInfo);
5321         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5322         sortOut = sqlite3GetTempReg(pParse);
5323         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5324         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5325         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5326         sAggInfo.useSortingIdx = 1;
5327         sqlite3ExprCacheClear(pParse);
5328 
5329       }
5330 
5331       /* If the index or temporary table used by the GROUP BY sort
5332       ** will naturally deliver rows in the order required by the ORDER BY
5333       ** clause, cancel the ephemeral table open coded earlier.
5334       **
5335       ** This is an optimization - the correct answer should result regardless.
5336       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5337       ** disable this optimization for testing purposes.  */
5338       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5339        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5340       ){
5341         sSort.pOrderBy = 0;
5342         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5343       }
5344 
5345       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5346       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5347       ** Then compare the current GROUP BY terms against the GROUP BY terms
5348       ** from the previous row currently stored in a0, a1, a2...
5349       */
5350       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5351       sqlite3ExprCacheClear(pParse);
5352       if( groupBySort ){
5353         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5354                           sortOut, sortPTab);
5355       }
5356       for(j=0; j<pGroupBy->nExpr; j++){
5357         if( groupBySort ){
5358           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5359         }else{
5360           sAggInfo.directMode = 1;
5361           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5362         }
5363       }
5364       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5365                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5366       j1 = sqlite3VdbeCurrentAddr(v);
5367       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5368 
5369       /* Generate code that runs whenever the GROUP BY changes.
5370       ** Changes in the GROUP BY are detected by the previous code
5371       ** block.  If there were no changes, this block is skipped.
5372       **
5373       ** This code copies current group by terms in b0,b1,b2,...
5374       ** over to a0,a1,a2.  It then calls the output subroutine
5375       ** and resets the aggregate accumulator registers in preparation
5376       ** for the next GROUP BY batch.
5377       */
5378       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5379       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5380       VdbeComment((v, "output one row"));
5381       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5382       VdbeComment((v, "check abort flag"));
5383       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5384       VdbeComment((v, "reset accumulator"));
5385 
5386       /* Update the aggregate accumulators based on the content of
5387       ** the current row
5388       */
5389       sqlite3VdbeJumpHere(v, j1);
5390       updateAccumulator(pParse, &sAggInfo);
5391       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5392       VdbeComment((v, "indicate data in accumulator"));
5393 
5394       /* End of the loop
5395       */
5396       if( groupBySort ){
5397         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5398         VdbeCoverage(v);
5399       }else{
5400         sqlite3WhereEnd(pWInfo);
5401         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5402       }
5403 
5404       /* Output the final row of result
5405       */
5406       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5407       VdbeComment((v, "output final row"));
5408 
5409       /* Jump over the subroutines
5410       */
5411       sqlite3VdbeGoto(v, addrEnd);
5412 
5413       /* Generate a subroutine that outputs a single row of the result
5414       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5415       ** is less than or equal to zero, the subroutine is a no-op.  If
5416       ** the processing calls for the query to abort, this subroutine
5417       ** increments the iAbortFlag memory location before returning in
5418       ** order to signal the caller to abort.
5419       */
5420       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5421       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5422       VdbeComment((v, "set abort flag"));
5423       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5424       sqlite3VdbeResolveLabel(v, addrOutputRow);
5425       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5426       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5427       VdbeCoverage(v);
5428       VdbeComment((v, "Groupby result generator entry point"));
5429       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5430       finalizeAggFunctions(pParse, &sAggInfo);
5431       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5432       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5433                       &sDistinct, pDest,
5434                       addrOutputRow+1, addrSetAbort);
5435       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5436       VdbeComment((v, "end groupby result generator"));
5437 
5438       /* Generate a subroutine that will reset the group-by accumulator
5439       */
5440       sqlite3VdbeResolveLabel(v, addrReset);
5441       resetAccumulator(pParse, &sAggInfo);
5442       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5443 
5444     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5445     else {
5446       ExprList *pDel = 0;
5447 #ifndef SQLITE_OMIT_BTREECOUNT
5448       Table *pTab;
5449       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5450         /* If isSimpleCount() returns a pointer to a Table structure, then
5451         ** the SQL statement is of the form:
5452         **
5453         **   SELECT count(*) FROM <tbl>
5454         **
5455         ** where the Table structure returned represents table <tbl>.
5456         **
5457         ** This statement is so common that it is optimized specially. The
5458         ** OP_Count instruction is executed either on the intkey table that
5459         ** contains the data for table <tbl> or on one of its indexes. It
5460         ** is better to execute the op on an index, as indexes are almost
5461         ** always spread across less pages than their corresponding tables.
5462         */
5463         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5464         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5465         Index *pIdx;                         /* Iterator variable */
5466         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5467         Index *pBest = 0;                    /* Best index found so far */
5468         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5469 
5470         sqlite3CodeVerifySchema(pParse, iDb);
5471         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5472 
5473         /* Search for the index that has the lowest scan cost.
5474         **
5475         ** (2011-04-15) Do not do a full scan of an unordered index.
5476         **
5477         ** (2013-10-03) Do not count the entries in a partial index.
5478         **
5479         ** In practice the KeyInfo structure will not be used. It is only
5480         ** passed to keep OP_OpenRead happy.
5481         */
5482         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5483         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5484           if( pIdx->bUnordered==0
5485            && pIdx->szIdxRow<pTab->szTabRow
5486            && pIdx->pPartIdxWhere==0
5487            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5488           ){
5489             pBest = pIdx;
5490           }
5491         }
5492         if( pBest ){
5493           iRoot = pBest->tnum;
5494           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5495         }
5496 
5497         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5498         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5499         if( pKeyInfo ){
5500           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5501         }
5502         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5503         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5504         explainSimpleCount(pParse, pTab, pBest);
5505       }else
5506 #endif /* SQLITE_OMIT_BTREECOUNT */
5507       {
5508         /* Check if the query is of one of the following forms:
5509         **
5510         **   SELECT min(x) FROM ...
5511         **   SELECT max(x) FROM ...
5512         **
5513         ** If it is, then ask the code in where.c to attempt to sort results
5514         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5515         ** If where.c is able to produce results sorted in this order, then
5516         ** add vdbe code to break out of the processing loop after the
5517         ** first iteration (since the first iteration of the loop is
5518         ** guaranteed to operate on the row with the minimum or maximum
5519         ** value of x, the only row required).
5520         **
5521         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5522         ** modify behavior as follows:
5523         **
5524         **   + If the query is a "SELECT min(x)", then the loop coded by
5525         **     where.c should not iterate over any values with a NULL value
5526         **     for x.
5527         **
5528         **   + The optimizer code in where.c (the thing that decides which
5529         **     index or indices to use) should place a different priority on
5530         **     satisfying the 'ORDER BY' clause than it does in other cases.
5531         **     Refer to code and comments in where.c for details.
5532         */
5533         ExprList *pMinMax = 0;
5534         u8 flag = WHERE_ORDERBY_NORMAL;
5535 
5536         assert( p->pGroupBy==0 );
5537         assert( flag==0 );
5538         if( p->pHaving==0 ){
5539           flag = minMaxQuery(&sAggInfo, &pMinMax);
5540         }
5541         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5542 
5543         if( flag ){
5544           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5545           pDel = pMinMax;
5546           if( pMinMax && !db->mallocFailed ){
5547             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5548             pMinMax->a[0].pExpr->op = TK_COLUMN;
5549           }
5550         }
5551 
5552         /* This case runs if the aggregate has no GROUP BY clause.  The
5553         ** processing is much simpler since there is only a single row
5554         ** of output.
5555         */
5556         resetAccumulator(pParse, &sAggInfo);
5557         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5558         if( pWInfo==0 ){
5559           sqlite3ExprListDelete(db, pDel);
5560           goto select_end;
5561         }
5562         updateAccumulator(pParse, &sAggInfo);
5563         assert( pMinMax==0 || pMinMax->nExpr==1 );
5564         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5565           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5566           VdbeComment((v, "%s() by index",
5567                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5568         }
5569         sqlite3WhereEnd(pWInfo);
5570         finalizeAggFunctions(pParse, &sAggInfo);
5571       }
5572 
5573       sSort.pOrderBy = 0;
5574       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5575       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5576                       pDest, addrEnd, addrEnd);
5577       sqlite3ExprListDelete(db, pDel);
5578     }
5579     sqlite3VdbeResolveLabel(v, addrEnd);
5580 
5581   } /* endif aggregate query */
5582 
5583   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5584     explainTempTable(pParse, "DISTINCT");
5585   }
5586 
5587   /* If there is an ORDER BY clause, then we need to sort the results
5588   ** and send them to the callback one by one.
5589   */
5590   if( sSort.pOrderBy ){
5591     explainTempTable(pParse,
5592                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5593     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5594   }
5595 
5596   /* Jump here to skip this query
5597   */
5598   sqlite3VdbeResolveLabel(v, iEnd);
5599 
5600   /* The SELECT has been coded. If there is an error in the Parse structure,
5601   ** set the return code to 1. Otherwise 0. */
5602   rc = (pParse->nErr>0);
5603 
5604   /* Control jumps to here if an error is encountered above, or upon
5605   ** successful coding of the SELECT.
5606   */
5607 select_end:
5608   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5609 
5610   /* Identify column names if results of the SELECT are to be output.
5611   */
5612   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5613     generateColumnNames(pParse, pTabList, pEList);
5614   }
5615 
5616   sqlite3DbFree(db, sAggInfo.aCol);
5617   sqlite3DbFree(db, sAggInfo.aFunc);
5618 #if SELECTTRACE_ENABLED
5619   SELECTTRACE(1,pParse,p,("end processing\n"));
5620   pParse->nSelectIndent--;
5621 #endif
5622   return rc;
5623 }
5624